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Abstract

This thesis addresses the development of selection techniques tailored for
optimising meta-analyses in Beyond Standard Model (BSM) physics, focusing
on three key objectives: (i) identifying a minimally overlapping set of results,
(ii) implementing these selections for model exclusion, and (iii) extending
them to anomaly detection applications. Central to this study are the hdfs

and whdfs algorithms—graph-based methods that systematically address
the combinatorial challenge of selecting optimal result combinations.

In the context of model exclusion, the thesis applies the whdfs algorithm
within the taco project to optimise combinations of analyses by estimating
overlaps in signal regions (SRs). Using simplified model spectra looking
at susy-like processes, the project demonstrates a measurable increase in
exclusion. The proto-models project, an extension to the taco project and
previous work by the SModelS collaboration, focused on anomaly detection,
adapting the whdfs algorithm to construct a test statistic for identifying
significant deviations from the Standard Model (SM) hypothesis. Through
iterative improvements in the algorithms’ weighting mechanisms, the study
presents a self-regulating test statistic for the measure of significance.

The findings highlight the dual utility of the hdfs and whdfs algorithms
across domains, from collider-based physics applications to machine learning
contexts. This work thus contributes a computationally robust framework that
enhances reinterpretation capacity in particle physics and supports further
integration with reinterpretation tools like SModelS, MadAnalysis 5 Rivet

and Contur. The research underscores the increasing importance of efficient,
adaptable algorithms for data-intensive BSM analyses. It lays the groundwork
for future reinterpretation methodologies necessary for maximising data utility
in HL-LHC and related high-energy physics experiments.
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Preface

This thesis represents the culmination of a decade-long academic journey I began
as a mature student in 2014. My early educational opportunities had been restricted
due to severe dyslexia, but through the Scottish Wider Access Program (SWAP), I
gained the qualifications required to enter higher education. These initial studies formed
the groundwork for my subsequent MPhys degree in Astrophysics at the University of
Edinburgh, which I completed with First-Class honours in 2020. Driven to broaden
my knowledge into new areas, I commenced my PhD at the University of Glasgow,
concentrating on data selection methodologies within the framework of Beyond Standard
Model (BSM) physics. This research has been supported by the Scottish Data-Intensive
Science Triangle (ScotDIST) funding program, which allowed me to develop my skills
in statistical data analysis.

My research interest in data analysis stems from a strong background in statistical
methodologies developed during my MPhys studies. My focus on astrophysics and
cosmology involved significant engagement with advanced Bayesian statistical techniques.
Through the ScotDIST program, the postgraduate researcher position in Glasgow
offered an exciting opportunity to expand my knowledge and develop these skills in new
settings, specifically frequentist statistics and BSM phenomenology.

This thesis can be divided into two halves. The first half explores the foundational
research and subject matter that underpins the subsequent analysis. It comprises two
chapters dedicated to collider physics and supersymmetry, two chapters focusing on statics
and hypothesis testing, and a chapter addressing the current state of reinterpretation.

The second half focuses on the development of algorithms and their application to
two distinct projects: (1) model exclusion, known as the taco project, and (2) anomaly
detection through the proto-model project. While the chapter on algorithm development
stands alone, it was carried out in parallel with the taco and proto-model projects,
which provided critical test cases and validation opportunities. This integrated approach



x

proved to be both intellectually enriching and demanding, as it necessitated a careful
balance between theoretical advancements and practical applications.

Regarding the publication status of this thesis, several sections are derived from
both published work and ongoing research. Chapter 7, which details the taco project, is
based on the paper “Strength in Numbers: Optimal and Scalable Combination of LHC
New-Physics Searches,” in which I served as a lead author. Chapter 8, which outlines the
proto-models project, is currently under collaborative development with the SModelS

group, and data collection is actively in progress, with a projected publication time
frame in early to mid-2025. Within Chapter 7, all result plots, except those pertaining
to t-channel dark matter, were produced exclusively by myself, thereby underscoring my
direct contributions to this collaborative research effort.

Collaboration was central to the success of this research. Chapter 7 reflects joint efforts
with the other authors of the “Strength in Numbers” paper, while Chapter 8 benefited
from collaborative input and resources provided by the SModelS collaboration. These
partnerships significantly enriched the research process, providing diverse perspectives
and access to specialised tools critical for realising these projects.

This thesis’s target audience includes graduate researchers interested in phenomeno-
logical particle physics, particularly those exploring methods for meta-analysis and
data-driven approaches to model exclusion and anomaly detection. I hope the methods
and results presented herein will provide useful insights for future investigations.

This thesis represents a culmination of years of academic and research training and
a step forward in developing robust methodologies for analysing data in the search for
new physics beyond the Standard Model. I hope that the work presented here will
contribute to the scientific community’s ongoing efforts to advance our understanding of
the fundamental nature of the universe.
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Chapter 1.

Collider Physics

Experimental particle physics is a juxtaposition of extremes, and this is rarely more
apparent when considering the experimental apparatus that constitutes the Large Hadron
Collider(LHC), where femtometre-sized particles are accelerated to relativistic velocities,
producing the conditions necessary to probe fundamental particles and their interactions.

This chapter will cover the fundamentals of collider physics, starting with the Standard
Model (SM), exploring its theoretical foundations and the vital experimental discoveries
that have validated its predictions. Section 1.1 will examine the mathematical formulation
of the SM, focusing on the underlying principles of quantum field theory and gauge
symmetry. Additionally, Section 1.2 will discuss the significance of electroweak symmetry
breaking and the Higgs mechanism.

1.1. The standard model of particle physics

The Standard Model of particle physics, or SM for short, stands as one of the most
successful theories in the history of physics. Developed throughout the 20th century, it
provides a comprehensive framework for understanding the fundamental particles and the
forces that govern their interactions. This theory elegantly unifies the electromagnetic,
weak, and strong nuclear forces under a single theoretical umbrella, excluding only gravity.

At its core, the Standard Model describes a collection of quantum fields that are
components of an irreducible unitary representation of a symmetry group. [1] In this
description, particles are viewed not as individual, isolated entities but as excitations or
quanta of underlying fields. Quantum field theory (QFT), and for the case of collider
physics, Relativistic QFT (RQFT), is the foundation of the Standard Model. In QFT, a

1



2 Collider Physics

Lagrangian density L is constructed from the quantum fields; this is used to calculate
the action and the transition probabilities.

The full symmetry group of the Standard Model splits into two component products,
the local internal and global space-time symmetry. Following Noether’s theorem, "For
each symmetry of the Lagrangian, there is a conserved quantity" [2]. Thus, for each
component symmetry of the SM, a corresponding set of conserved quantities exists; a
good example of how the symmetries lead to conservation laws, which in turn lead to
physically observable quantities, is the Lorentz group (or Poincare group), the space-time
component of the SM. The representations of the Lorentz group are labelled by spin
and mass, which correspond to the conservation of energy and angular momentum. For
our purposes, mass is treated as a positive real number, while spin (s) may assume
half-integer and integer values, which correspond to fermions and bosons, respectively.
The Standard Model contains s = 1/2 fermions, vector bosons of s = 1 and a single
scalar boson with s = 0 (the Higgs [3, 4]).

The local symmetries of the SM are the gauge groups, which are a group of invariant
transformations, i.e. the U(1) transformations of the electromagnetic potential in electro-
magnetism. The gauge group, or local symmetry, of the SM, is SU(3)× SU(2)×U(1),
the individual products are referred to as colour, weak isospin and weak hypercharge,
respectively. These groups correspond to the strong, weak, and electromagnetic forces.
The gauge group SU(3) is associated with the strong force, which binds quarks together
to form protons, neutrons, and other hadrons. This group includes eight gauge bosons
(components) known as gluons, which mediate the interactions between quarks. The
SU(2) group is linked to the weak force responsible for processes like beta decay. It
involves three gauge bosons: (W+), (W−), and (Z0), which interact with particles such
as electrons and neutrinos. Lastly, the U(1) gauge group governs the electromagnetic
force via the photon, which mediates the force between charged particles. Unifying SU(2)

and U(1) leads to the electroweak theory, explaining how these forces merge at high
energies. Particles are labelled by how they transform under this gauge group, meaning
that they are labelled by representations of SU(3), SU(2) and U(1). Table 1.1 shows the
three gauge fields and how they relate to their associated groups, coupling constants and
components (gauge bosons).

The Standard Model has five types of fermionic, chiral fields, usually referred to as
matter fields: qL, uR, dR, lL, lR, where qL and lL are left-handed fields and uR, dR, lR are
the right-handed fields (where L, R denotes a left and right-handed). Table 1.2 lists the
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Gauge Fields

Symbol Group Associated Charge Coupling Gauge Bosons

B U(1) Weak hypercharge (Y ) g1 γ

W SU(2) Weak isospin (T3) g2 W+, W−, Z0

G SU(3) Colour (C) g3 g

Table 1.1.: The three gauge fields with associated charges, couplings and number of components

Matter Fields
Classification Representations

Symbol Name SU(3) SU(2) U(1)

lL (L) Left-handed lepton 1 2 −1

lR (E) Right-handed lepton 1 1 −2

qL (Q) Left-handed quark 3 2 +1
3

uR (U) Right-handed quark (up) 3 1 +4
3

dR (D) Right-handed quark (down) 3 1 −2
3

Scalar Boson
H Higgs Boson 1 2 +1

Table 1.2.: Representations of the five matter fields and the Scalar Higgs boson [3, 4] Symbols
are provided in two common conventions, and the bold numbers shown under
SU(N) are not ordinary abelian charges but labels of Lie group representations [5].

fields and shows under which representation of the gauge group each field transforms (the
value of the weak hypercharge (Y ) is listed under U(1)). The fields qL and lL are weak
isospin doublets, and therefore, their components are indexed by the quantum number
T3, traditionally corresponding to what is referred to as the third generator of the SU(2)
or the component along the 3-axis. It is worth taking a step back here to define what
a generator is, as the term will be extensively used over the next two chapters. In Lie
algebra, generators are the fundamental elements from which the entire algebra can
be constructed through the Lie bracket operation. They form a basis for the algebra,
meaning any element of the Lie algebra can be expressed as a linear combination of
these generators [6]. The relations between generators, captured by commutators (or
Lie brackets), define the structure and properties of the algebra. Each symmetry group
within the SM has its own set of generators, which define the interactions of fundamental
particles, γa (a = 1, ..., 8) for SU(3), σi (i = 1, 2, 3) for SU(2) and Y for U(1). In the
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context of symmetry groups, generators correspond to infinitesimal transformations,
making them crucial in describing the underlying symmetry of physical systems [5].

Gauge fields correspond to the connections associated with a symmetry group, and
they mediate interactions by ensuring local gauge invariance. Matter fields, on the
other hand, transform under specific representations, which dictate their transformation
properties and interactions with gauge bosons. Tables 1.1 and 1.2 give a sense of how the
gauge fields relate to the matter fields through the group representations. For instance, in
quantum electrodynamics (QED), the gauge group is U(1)em, and matter fields correspond
to charged leptons (l), such as the electron (e). These fields are chiral and following
lR and lL are denoted as eR and eL. In QED, both transform under the same electric
charge −e, though they behave differently under the electroweak interaction. Looking
at Table 1.2, the right-handed electron, eR is a singlet under the weak SU(2)L group
and transforms under U(1)em as eR → e−iαeR where α is a constant. The left-handed
electron is part of an electroweak doublet (with the neutrino), but in QED alone, it also
transforms under U(1)em as eL → e−iαeL [7].

Just as the representations of the Lorentz group give rise to conserved quantities
of spin and mass, the conserved quantities associated with the combined gauge group
SU(3)× SU(2)×U(1) are weak isospin (T ), weak hypercharge (Y ), electric charge (Q)
and colour charge (C). The electric charge of the component field is calculated via the
Gell-Mann-Nishijima relation [8], a phenomenologically motivated formula showing the
linear combination of weak hypercharge Y and the third component of weak isospin:

Q = T3 +
1

2
Y . (1.1)

The fermionic weak isospin T value is closely related to chirality (handedness). Left-
handed fermions (and right-handed anti-fermions) have a weak isospin of +1

2
, which are

grouped into doublets with the third component T3 taking the value of ± 1
2
. Right-handed

fermions (and left-handed anti-fermions) have T = 0 and thus T3 = 0, resulting in singlets
that do not undergo charged weak interactions. Table 1.3 lists electroweak quantum
numbers for all the SM matter particles. The values of electromagnetic charge are a direct
application of the Gell-Mann-Nishijima relation from Equation (1.1). For example, the
left-handed lepton field in Table 1.2 has a weak hypercharge of −1; thus, the left-handed
isospin doublet has two instances of charge, the T3 = 1

2
is the electrically neutral neutrino

νL, while the T3 = −1
2

component has a charge of −1 which happens to take the same
value as the right-handed lepton, singlet field, both are the charged lepton fields of the
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Field Y T T3 Q
e−L , µ−

L , τ−L −1 1
2

−1
2

−1

ν−e,L, ν−µ,L, ν−τ,L −1 1
2

1
2

0

e−R, µ−
R, τ−R −2 0 0 −1

ν−e,R, ν−µ,R, ν−τ,R 0 0 0 0

uL, cL, tL 1
3

1
2

1
2

2
3

dL, sL, bL 1
3

1
2

−1
2

−1
3

uR, cR, tR 4
3

0 0 2
3

dR, sR, bR −2
3

0 0 −1
3

Table 1.3.: Electroweak (SU(2)×U(1)) quantum numbers for the fermions, where Y is the
weak hypercharge T the total weak isospin, T3 its component along the 3-axis
and Q is the electromagnetic charge. Subscript L & R denotes a left-handed &
right-handed state respectively [7]

.

electron. For each of the five matter fields, three generations of particles are present in
the theory. For the leptons, the electron (e) and electron-neutrino (νe) are extended by
the muon (µ) and muon-neutrino (νµ) in the second generation as well as the tau (τ)
and its neutrino (ντ ) in the third. For the quarks, a charm and strange, as well as top
and bottom, are added as second and third generations.

Using the information from Tables 1.1 - 1.3, we can begin to build the kinetic terms
of the Lagrangian for the electroweak theory. A generalised form of dynamic terms in
the fermion field can be summarised by:

Lf ⊃
∑
ϕ

iϕ̄γµDµϕ; ϕ ∈ {L,Q,E, ν, U,D} , (1.2)

where Dµ is the covariant derivative, a modified invariant derivative under local gauge
transformations. The specific form that this derivative will take depends on the field,
ϕ, however, by defining Λi and gi as the gauge groups and coupling constants (given in
Table 1.1), the covariant derivative can be represented as

Dµ = ∂µ + i
∑
i

giΛµ,i . (1.3)
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It is now possible to construct the fermionic kinetic terms of L by combining Equa-
tions (1.2) and (1.3) with the gauge fields and matter fields of 1.1 and 1.3 [7]:

Lf,kin = iL̄iγ
µ(∂µ + ig2W

a
µσ

a + ig1YLBµ)Li + iQ̄iγ
µ(∂µ + ig2W

a
µσ

a + ig1YQBµ)Qi

+iĒi
Rγ

µ(∂µ + ig1YeBµ)E
i
R + iν̄iRγ

µ(∂µ + ig1YνBµ)ν
i
R

+iU i
Rγ

µ(∂µ + ig1YUBµ)U
i
R + iDi

Rγ
µ(∂µ + ig1YDBµ)D

i
R ,

(1.4)

where the subscript f defines the fermionic terms. Looking closer at Equation (1.3) and
(1.4), the effect of the covariant derivative is to weakly couple the matter fields to a
set of gauge fields according to the representation. This results in a single gauge-field
component B for U(1), a three-component field W for SU(2), and an eight-component
field G for SU(3). Consequently, there are as many gauge bosons as there are components
of the gauge field: the photon (γ) for the B field, the W+, W− and Z0 for the W field
and eight gluons for the G field. In addition to the fermionic terms, we also require the
kinetic terms of the gauge fields,

Lkin = −1

4

8∑
a=1

GaµνGaµν −
1

4

3∑
a=1

W aµνWaµν −
1

4
F µνFµν , (1.5)

where Ga
µν , W

a
µν and Fµν are the field-strength tensors associated with the gauge fields Ga

µ,
W a
µ and Ba

µ respectively. The standard convention of using Einstein summation notation
has been ignored here to highlight the number of component bosons for each gauge
field. The kinetic terms of Equation (1.5) give rise to massless gauge fields; however,
from experimental results, it has long been known that some of the gauge bosons in the
electroweak theory are massive [9]. A scalar field with a non-zero vacuum expectation
value is introduced to account for this discrepancy. This enables the generation of
non-zero gauge-boson masses through spontaneous symmetry breaking.

1.2. Electroweak symmetry breaking

Fundamental forces in nature are associated with abstract local gauge symmetries.
Requiring theories to possess such symmetries necessitates the introduction of vector
fields, which, in quantum theory, give rise to force-carrying particles. The symmetries
considered thus far include the U(1) symmetry of the original QED theory and the SU(3)

symmetry of QCD. In both contexts, the symmetry is exact. However, it is also possible
that a local gauge symmetry can appear in nature but be broken. This phenomenon
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1
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Figure 1.1.: Orthogonal slices through the potential V (ϕ1, ϕ2) (pointing out of the page in
the right-hand plot). The plots demonstrate that placing a particle at the apex
results in a system that exhibits symmetry under rotation around its central axis

is referred to as spontaneous symmetry breaking and is intimately connected with the
challenge of describing the non-zero mass of fundamental particles.

Spontaneous symmetry breaking is when a physical system, initially in a state of
symmetry, ultimately transitions to an asymmetric state without any external influence.
This term is often used to characterise systems where the Lagrangian has well-defined
symmetries in one state, but the lowest-energy, or vacuum-state, solutions do not display
the same symmetry. Consequently, when the system adopts one of these vacuum solutions,
the symmetry is broken for small disturbances around that vacuum, despite the entire
Lagrangian maintaining corresponding charge symmetries. An illustration of such a
potential is shown in Figure 1.1, where the left and right-hand plots show orthogonal
slices through the potential V (ϕ1, ϕ2). The plots demonstrate that placing a particle at
the apex results in a system that exhibits symmetry under rotation around its central
axis. However, the particle can disrupt this symmetry by spontaneously descending into
a lower-energy state. Subsequently, the particle settles at a fixed location. In this final
state, both the potential and the particle maintain their respective symmetries. However,
the system as a whole does not. Goldstone’s theorem describes a general continuous
symmetry that is spontaneously broken [10]. For example, in the context of the gauge
fields described so far, the charge currents are conserved; however, the corresponding
charges do not change the ground state. This kind of spontaneous breaking of a continuous
symmetry inevitably gives rise to massless scalar fields known as Goldstone bosons, where
there is one such boson for every degree of freedom for each of the symmetries that have



8 Collider Physics

been broken [11]. By choosing a suitable gauge, the Goldstone bosons can be set to
vanish; this leaves one remaining degree of freedom, the massive scalar particle, the Higgs
boson. This can be shown using the U(1) gauge theory with a single gauge field [12]
taken from Equation (1.4). For the case of the photon (γ), the Lagrangian is simply

Lγ = −1

4
F µνFµν . (1.6)

Defining the field strength tensor for the photon as

Fµν = ∂µAµ − ∂µAµ . (1.7)

The local symmetry of the U(1) group is a statement of invariance under the transforma-
tion Aµ(x) → Aµ(x)− ∂µΛ(x) for any Λ and x [7]. It is easily verified that applying this
transformation to Equation (1.7) leaves the L unchanged. Let us now add a mass term
to Equation (1.6):

L = −1

4
F µνFµν +

1

2
m2AµA

µ . (1.8)

Applying the transformation to the second term violates the local gauge invariance,
suggesting that U(1) gauge invariance requires the photon to be massless. Referencing
Tables 1.2 and 1.3, the photon Lagrangian can be extended by adding a single complex
scalar field with charge −e, which couples to the photon

Lγ = −1

4
F µνFµν + (Dµϕ)

†(Dµϕ)− V (|ϕ|) , (1.9)

where Dµ is the covariant derivative from Equation (1.3) for the photon field with a
coupling constant −e. The potential V (|ϕ|) is chosen such that it is invariant under
global U(1) rotations, ϕ→ eiθϕ, and under local gauge transformations

V (|ϕ|) = −µ2ϕ∗ϕ+ λ(ϕ∗ϕ)2 , (1.10)

where µ and λ are arbitrary parameters with the caveat that λ > 0, this ensures that
the potential energy is bounded from below. Equation (1.9) now has two possibilities:
if µ2 < 0, the Lagrangian symmetries are preserved as the state with the lowest energy
ϕ = 0. This is quantum electrodynamics (QED) with a massless photon and a charged
scalar field ϕ with mass µ. However, a very different theory is revealed when µ2 > 0,
the minimum energy state is not at |ϕ| = 0 but at some other value called vacuum
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expectation value (VEV). The VEV for Equation (1.9) for µ2 > 0 [1]

|ϕ| = ϕ0 =

√
µ2

2λ
≡ υ√

2
. (1.11)

Note that ϕ is a complex field; thus, there is an arbitrary choice as to which direction
the vacuum is chosen. By convention, the vacuum is chosen to lie along the direction of
the real part of ϕ:

ϕ =
1√
2
(υ + h)eiχ/υ , (1.12)

where h and χ are real fields that represent deviations from the modulus and phase of
the vacuum field, respectively [7]. Substituting Equation (1.12) into Lγ (excluding cubic
and higher in the fields) gives

Lγ = −1

4
F µνFµν − g1υAµ∂µχ+

g21υ
2

2
AµA

µ

1

2

(
∂µh∂

µh+ 2λυ2h2
)
+

1

2
∂µχ∂

µχ+ · · · .
(1.13)

The terms of this Lagrangian include the kinetic terms from Equation (1.9) together
with two kinetic terms for the scalar fields h and χ. Mass values are given to the photon
with mγ = g1υ, and the scalar field where m2

h = 2λυ2 is the squared mass. Interestingly,
there is no mass term for χ, which is consistent with Goldstone’s Theorem, meaning
that χ is the massless scalar Goldstone boson resultant from the breaking of rotational
symmetry. The final term in the equation implies a mixing between the gauge field and
χ; this lacks physical interpretation and can be understood by considering the degrees of
freedom. Before gauge symmetry breaking, a massless vector field with two polarisation
states exists. This configuration provides four degrees of freedom in conjunction with
the complex scalar field ϕ. Upon symmetry breaking, the system gains a massive vector
field with three polarisation states and two real scalar fields, resulting in five degrees
of freedom. One of these degrees of freedom is redundant and can be eliminated. This
elimination is achieved by performing an appropriate gauge transformation.

ϕ→ ϕe−iχ/υ , (1.14)
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This particular choice of gauge is referred to as the unitary gauge; applying it to
Equation (1.13) gives:

Lγ = −1

4
F µνFµν −

g1υ

2
AµAµ +

1

2
∂µh∂µh− λυ2h2

+g21

(
υh+

1

2
h2
)
AµAµ − λυh3 − λ

4
h4 .

(1.15)

Neglecting constants and retaining all non-linear interaction terms, it is evident that the
extra degree of freedom χ has been completely removed, leaving four manifest degrees of
freedom: the three polarisation states of the vector field and a remaining massive scalar
boson h known as the Higgs boson [3, 4, 13, 14].

1.3. The Higgs mechanism: vector bosons

The Higgs mechanism is a fundamental process in the Standard Model of particle physics
that explains how certain gauge bosons acquire mass while preserving gauge invariance. In
the context of electroweak interactions, the Higgs field undergoes spontaneous symmetry
breaking, leading to the generation of mass for the W ± and Z bosons while leaving the
photon massless. This mechanism, first proposed by Higgs, Brout and Englert [3, 4] in
1964, is a cornerstone of modern particle physics and was experimentally confirmed with
the discovery of the Higgs boson at the LHC in 2012 [13, 14].

Considering the ground state behaviour of the Lagrangian with an invariant potential
spontaneously breaks the local electroweak symmetry SU(2) × U(1)Y to U(1)EM. This
allows for the introduction of Equation (1.12) as the magnitude of a scalar field

[
0
1

]
,

with χ = 0, known as the Higgs doublet Φ. The kinematic terms of the Lagrangian can
now be written as [15]

Lkin = −1

4
BµνBµν −

1

4

3∑
a=1

W aµνWµν + (DµΦ)†(DµΦ)− V (Φ) , (1.16)

where the covariant derivative acting on the Higgs doublet is defined as:

DµΦ =
(
∂µ + ig2W

a
µσ

a +
ig1
2
Bµ

)
Φ . (1.17)
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The final term, V (Φ), is Equation (1.10) (V (|ϕ|)) evaluated in terms of the Higgs doublet;
this defines the Higgs potential.

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2 . (1.18)

Expanding the covariant derivatives from Equation (1.16) results in quadratic terms for
the gauge bosons

|DµΦ|2 = υ2

8

[
(g2W

3
µ − g1Bµ)(g2W

3µ − g1B
µ) + 2g22W

−
µ W

+µ
]
, (1.19)

where the standard convention defines W ± as

W µ± =
1√
2

(
W µ

1 ± iW µ±
2

)
. (1.20)

Looking at Equation (1.19), it’s clear that spontaneous symmetry breaking results in the
mixing of the gauge fields associated with the weak isospin and hypercharge (Bµ, W

3
µ).

The mixing terms can be removed by performing a rotation defined byAµ
Zµ

 =

 cos θW sin θW

− sin θW cos θW

 Bµ

W 3
µ ,

 (1.21)

Aµ = Bµ cos θW +W 3
µ sin θW ,

Zµ = W 3
µ cos θW −Bµ sin θW ,

(1.22)

where θW is the weak mixing angle, which follows the relation tan θW = g1/g2. Together
with Equation (1.20), these equations form a mass basis where A is the massless gauge
boson of the electric charge with W ± and Z bosons being the charged and neutral vector
bosons which, due to spontaneous symmetry breaking, now have mass. The masses of
the W ± and Z boson are given by

mW =
g2υ

2
, mZ = mW

√
g21 + g22
g2

=
g2υ

2 cos θW
. (1.23)
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The interaction terms between the Higgs boson and massive vector bosons can now be
written in the new mass basis:

Lh,VB =
2h

υ

(
m2
WW

+µW−
µ +

1

2
m2
ZZ

µZµ

)
+
(h
υ

)2(
m2
WW

+µW−
µ +

1

2
m2
ZZ

µZµ

)
. (1.24)

1.4. Yukawa’s interaction: fermions

To understand the fermion masses in terms of the electroweak symmetry-breaking, it
is necessary to introduce the Yukawa interactions and couplings [16, 17]. The Yukawa
interactions were first introduced by Hideki Yukawa in 1935 in the context of nuclear
forces [16], though their role in fermion masses became clear later with the development
of the Standard Model. The Yukawa interaction terms in the Lagrangian describe the
coupling between the Higgs and Fermion fields. When the Higgs field acquires a non-zero
VEV, it breaks the electroweak symmetry and gives rise to mass terms for the fermions.
Starting with the leptonic fields, the Yukawa Lagrangian for the lepton fields interacting
with the Higgs field ϕ is given by:

Ll,Yuk = −
∑
i

yiL̄iϕEi + h.c , (1.25)

where the abbreviation ’h.c.’ indicates the hermitian conjugates of the preceding Yukawa
terms, yf is the Yukawa coupling constant and L, E are the left-handed and right-handed
components of the lepton field (consistent with Table 1.2). Upon spontaneous symmetry
breaking, the Higgs field acquires a VEV, giving rise to mass terms in the Lagrangian:

Ll,Yuk = −
∑

L

[
mLl̄LlE +

1

υ
hl̄LlE

]
+ h.c , (1.26)

where the sum is over the lepton generations l ∈ {e, µ, τ}. Thus, the mass of the lepton
is given by:

mL =
yLυ√
2
. (1.27)

This equation shows that the mass of each lepton is proportional to its Yukawa coupling
to the Higgs field. Different fermions have different Yukawa couplings, which accounts for,
but does not explain, the varying masses of the three lepton generations. The hierarchical
structure of lepton masses (with me ≪ mµ ≪ mτ ) arises from the fact that the Yukawa
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couplings are free parameters in the SM and are not predicted by the theory itself. Their
observed values suggest an unexplained hierarchy, hinting at deeper physics beyond
the SM, such as flavour symmetries or extra dimensions. While the Yukawa couplings
successfully parameterise mass differences, they do not explain why they take on their
specific values, which remains an open question in particle physics [18].

Due to their association with the lower components of SU(2), the same procedure
can be applied to the down-type quarks (D). The up-type quarks require changing the
Higgs doublet via a charge conjugation operation, which reverses the quantum numbers,
giving the conjugate Higgs doublet.

Φ̃ =

 0 1

−1 0

Φ∗ = iσ2Φ
∗ =

(υ + h)√
2

0
1

 . (1.28)

The most general set of mass terms for the quark sector can now be written as

Lq,Yuk = −Y U
ij Q̄

iΦ̃U j
R − Y D

ij Q̄
iΦDj

R + h.c , (1.29)

where Y u
ij and Y d

ij are the Yukawa matrices, which specify the strength of the interaction
between the up and down fields with the Higgs boson [5].

1.5. Quantum chromodynamics

Following the review of electroweak symmetry breaking, the resulting vector boson masses,
and the mechanism by which fermions acquire mass, it is time to explore the strong
interaction described by Quantum Chromodynamics (QCD). At the core of QCD lies
the SU(3) group, often referred to as SU(3)C, where the C stands for the colour charge.
This group has non-abelian gauge symmetries, i.e. the group contains elements that
do not necessarily commute. This results in a highly non-linear theory, resulting in
self-interactions between the gauge bosons. Additionally, unlike the W ± and Z0 gauge
bosons of the U(1) and SU(2) gauge groups, which become massive after symmetry
breaking, the gauge bosons in QCD, the gluons remain massless.

The gluons are the force carriers of the strong interaction, mediating the binding force
between quarks. Eight gluons correspond to the eight generators of the SU(3)C group.
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This group’s non-abelian nature means that gluons themselves carry colour charge and
can interact with each other.

To show this, it is necessary to generalise the field strength tensor Fµν from Equa-
tion (1.7) to something not invariant under gauge transformations. To this end, consider
the commutator of two covariant derivatives acting on an arbitrary electron field:[

Dµ,D
µ
]
Ψf = (∂µ + ieAµ)Ψf − (∂ν + ieAν)Ψf

= [∂µ∂ν + ieAµ∂ν + ie(∂µAν) + ieAν∂µ − e2AµAν ]Ψf − [µ↔ ν]

= ie(∂µAν − ∂νAµ)Ψf

= ieFµνΨf .

(1.30)

Applying two covariant derivatives to the electron field, reversing their order, and then
taking the difference results in multiplying the electron field by the electromagnetic field
strength tensor. Additionally, since the electron field under consideration is arbitrary, we
can formally define the field strength tensor as [Dµ,Dν ] = ieFµν . Before defining the
QCD covariant derivative, a gauge field needs to be defined as

Aµ = AaµT
a , (1.31)

where Aaµ are the gauge fields, and T a are the generators of the non-Abelian Lie algebra.
It is now straightforward to generalise to QCD by reevaluating Equation (1.30) in terms
of the new gauge field[

Dµ,D
µ
]
= (∂µ + ig3Aµ)− (∂ν + ig3Aν)

= [∂µ∂ν + ig3(Aµ∂ν +Aν∂µ) + ig3(∂µAν)− g23AµAν ]− [µ↔ ν]

= ig3(∂µAν − ∂νAµ − ig3[Aµ,Aν ])

= ig3Gµν ,

(1.32)

where the QCD field strength tensor is

Gµν = ∂µAν − ∂νAµ + ig3[Aµ,Aν ] . (1.33)

Expanding the field strength tensor in terms of the QCD gauge field in Equation (1.31)
and applying the computation relation [T a,T b] = ifabcTc yields

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + g3f

abcAbµA
c
ν , (1.34)
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where fabc are the structure constants of the SU(3)C group. With these terms in mind,
the QCD Lagrangian is given by

LQCD = −1

4
Ga
µνG

µν
a +

∑
f

Ψ̄f

(
iγµDµ −mf

)
Ψf , (1.35)

where Ga
µν is the gluon field strength tensor, Ψf represents the quark fields, and Dµ is

the covariant derivative containing the gluon fields.

One of the most striking features of QCD is the phenomenon of confinement. Unlike
the electromagnetic force mediated by photons, quarks and gluons cannot be isolated as
free particles; they are always confined within hadrons. This confinement arises from the
property of the QCD potential, which increases with distance, preventing the separation
of quarks over macroscopic scales.

While Equation (1.35) does not explicitly imply confinement itself, it provides the
foundation for confinement to emerge as a non-perturbative phenomenon. The key feature
of QCD is the non-Abelian nature of the SU(3) gauge group, which allows gluons to
interact with themselves due to the presence of terms like Ga

µνG
µν
a . These self-interactions

lead to asymptotic freedom, where the strong coupling constant αs decreases at short
distances but increases at long distances.

Asymptotic freedom at very short distances or high energies is a property first
discovered by Gross, Wilczek [19], and Politzer [20]. Asymptotic freedom is characterised
by the diminishing interaction strength between quarks and gluons as the energy scale
increases, thereby allowing the application of perturbative techniques to QCD at high
energies. This phenomenon is quantitatively described by the QCD beta function, which
governs the running of the strong coupling constant, αs = g23/(4π), with respect to the
energy scale, µ. The QCD beta function is given by

β(αs) ≡ µ
dαs
dµ

= −2αs

[(αs
4π

)
b0 +

(αs
4π

)2
b1 +

(αs
4π

)3
b2 +O(α4

s)
]
, (1.36)

where the first coefficient b0 can be considered as the one-loop correction of the renor-
malisation group equation (RGE) given as [15]

b0 = 11− 2nf
3

, (1.37)

where nf is the number of flavours. Crucially, this shows that b0 is positive, so as long as
nf < 17, the beta function will be negative at low orders, which implies that αs decreases
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logarithmically as µ increases. Thus, interactions are strong at low energies and weaken
when sufficiently high, leading to asymptotic freedom. The duality between confinement
at low energies and asymptotic freedom at high energies is a defining feature of QCD,
encapsulating the complex interplay between the strong force’s strength across different
scales.

The properties of confinement and asymptotic freedom have important phenomenolog-
ical implications. Asymptotic freedom implies that at sufficiently high energies, such as
those encountered in deep inelastic scattering experiments, quarks behave as nearly free
particles, allowing perturbative QCD calculations to predict cross-sections and parton
distribution functions accurately [19], where the parton is a constituent of a hadron (quark
or gluon). This property is crucial for interpreting experimental results from particle
colliders, where high-energy processes can be analysed using perturbative techniques [21].

Conversely, confinement explains why quarks and gluons are never observed as free
particles but are always bound within hadrons. This leads to hadronization, where quarks
and gluons produced in high-energy collisions form hadrons before they can be detected
[22]. The inability to isolate quarks also impacts the formation and decay of hadronic
states, contributing to the mass spectrum of hadrons and the dynamics of bound states,
such as mesons and baryons [23]. Additionally, confinement is essential for understanding
the phase transition between hadronic matter and the quark-gluon plasma, which occurs
at extremely high temperatures or densities, as studied in heavy-ion collisions and early
universe cosmology [24].

Quantum Chromodynamics, with its massless gauge bosons and non-Abelian symme-
try, forms a cornerstone of our understanding of the strong force. The interplay between
quarks and gluons under the principles of confinement and asymptotic freedom explains
the binding of quarks within protons and neutrons but also provides a framework for
exploring the deeper structure of matter. This section lays the groundwork for a deeper
exploration of QCD, its experimental validations, and its implications for particle physics.

1.6. Renormalization

The renormalisation group (RG) is an important feature of QFT that provides insights
into how physical systems behave at different energy scales. This concept originated from
the need to address infinities that arise in QFT calculations. When calculating specific
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quantities, such as the mass and charge of particles, integrals often diverge at high energies,
leading to nonphysical infinite results. The renormalisation process systematically removes
these infinities by absorbing them into redefined (or "renormalised") physical quantities,
leaving finite, physically meaningful predictions. The RG extends this concept by studying
how these renormalised quantities change as the energy scale at which the theory is
applied varies[1].

At its core, the RG approach is rooted in the idea that physical laws might exhibit
different behaviours depending on the scale at which they are examined. This is often
called "running" coupling constants evolving with the energy scale. In QED, for instance,
the fine-structure constant α = g21/(4π) is not a fixed quantity but depends logarithmically
on the momentum transfer q2. This running of α is described by the beta function β(α)
(Equation (1.36) evaluated for α), which quantifies how a coupling constant changes with
the logarithm of the energy scale [1]. In QED, the beta function is positive, indicating
that the coupling constant increases with energy, leading to the phenomenon known as the
Landau pole [25], where the theory becomes non-perturbative at extremely high energies.
In QCD, the beta function leads to asymptotic freedom. As particles interact at higher
energies or equivalently at shorter distances, the strong force becomes weaker, allowing
quarks to behave almost like free particles. This discovery was crucial in explaining the
results of high-energy particle collisions and earned Gross, Politzer, and Wilczek the
Nobel Prize in Physics in 2004 [19, 20].

Another key application of the RG is in the study of phase transitions. In statistical
mechanics, which strongly parallels particle physics, when a system nears a critical point,
it exhibits self-similarity across different scales. The RG flow quantitatively captures
this concept. This flow describes how physical systems transform under changes in
scale, revealing the universal behaviour of phase transitions. The RG also provides a
framework for understanding phase transitions in particle physics, particularly in systems
where symmetry breaking occurs. In the context of electroweak symmetry breaking,
the RG flow can describe how the Higgs field’s vacuum expectation value evolves with
energy, influencing the masses of gauge bosons and fermions. Moreover, the RG approach
is essential in effective field theory, where it guides the integration of heavy degrees
of freedom, leading to a low-energy effective theory with appropriately renormalised
parameters [26].
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1.7. Cross-sections and scattering amplitudes

Understanding the interaction between particles requires a thorough analysis of scattering
processes. These interactions can be quantified using cross-sections and scattering ampli-
tudes, which provide critical insights into the probabilities of various interaction outcomes.
The S-matrix (scattering matrix) is a central concept in this analysis, encapsulating the
transition probabilities between different quantum states.

The S-matrix formalism provides a comprehensive framework for describing particle
interactions. It relates the initial state of a system, comprising particles A and B, to the
final state, consisting of particles with specific momenta. Mathematically, the S-matrix
element Sfi between an initial state |i⟩ and a final state |f⟩ is given by:

Sfi = ⟨f |S|i⟩ , (1.38)

where S is the operator that governs the system’s evolution from the initial to the final
state. To extract physically meaningful information, it is useful to consider the transfer
matrix (or T -matrix), which isolates the interacting part of the S-matrix [15]:

⟨f |S|i⟩ = 1 + iT , (1.39)

where 1 is the identity matrix, i is the initial state and i is the imaginary number. The
matrix element ⟨f |T |i⟩ is directly related to the scattering amplitude M, which in turn
is used to compute cross-sections:

⟨f |S − 1|i⟩ = iT = iM(2π)4δ4(
∑
pf −

∑
pi) . (1.40)

For the scattering of two particles, A and B, into a final state with particles of specific
momenta, the scattering amplitude M can be derived from the matrix elements of the
transfer matrix. Given initial momenta pA and pB and final momenta p1,p2, . . . ,pn, the
scattering amplitude is given by:

M(A+B → 1 + 2 + · · ·+ n) = ⟨p1,p2, . . . ,pn|T |pA,pB⟩ . (1.41)

This scattering amplitude M encapsulates the interaction dynamics. It is computed
using Feynman rules [27] derived from the underlying quantum field theory, such as QCD
or the electroweak theory [28]. The differential cross-section measures the likelihood of
scattering into a particular final state and phase-space point at a certain luminosity. It



Collider Physics 19

is directly related to the scattering amplitude by:

dσ

dΩ
∝ |M|2 , (1.42)

where dΩ represents the differential solid angle. The observable of choice is the cross-
section of the initial state evolving into a given set of "final state" particles. For such a
2 → N transition, the full differential cross-section for the scattering of two particles A
and B, with energies E, velocity v and momenta p, into a final state with particles of
momenta pi is given by

dσ =
1

2EA2EB|vA − vB|
|M(pA, pB → {pi}|2dΠLIPS , (1.43)

where dΠLIPS is the Lorentz-Invariant Phase-Space

dΠLIPS = (2π)4δ4(pa + pb −
∑

pi)

(∏
i

dpi
3

(2π)3
1

2Ei

)
. (1.44)

Integrating this over all possible final states yields the total cross-section, a key observable
in experiments.

When dealing with proton-proton collisions, it is essential to account for the internal
structure. Unlike fundamental particles, protons are composite particles of quarks,
antiquarks, and gluons. As discussed, these constituents interact according to Quantum
Chromodynamics (QCD) principles. The key to simplifying the calculations for these
collisions lies in the factorisation theorem, which allows us to separate the complex
proton structure from the fundamental interactions of the partons [15]. The interactions
of the proton’s constituents, quarks and gluons, collectively known as partons, allow
the overall calculation to be factorised into largely independent components: the hard
scattering process, calculable using perturbative QCD, and the non-perturbative parton
distribution functions (PDFs). The PDF is a critical element in this extended calculation
as it describes the probability of finding a parton with a specific fraction of the proton’s
momentum at a given energy scale. These functions encapsulate the non-perturbative
aspects of QCD, which cannot be calculated directly but are extracted from experimental
data. Mathematically, the cross-section for a proton-proton collision can be expressed as

σ(pp→ X) =
∑
a,b

∫
dxa dxb fa(xa, Q

2) fb(xb, Q
2) σ̂(ab→ X) , (1.45)
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where fa(xa, Q
2) and fb(xb, Q

2) are the PDFs for partons a and b inside the protons,
xa and xb are the momentum fractions carried by the partons, Q2 is the energy scale,
and σ̂(ab → X) is the parton-level cross-section. PDFs are often functions of both
the momentum fraction x and a factorisation scale µF , which is typically linked to a
characteristic energy scale Q in the scattering process where the PDFs are applied. This
scale varies depending on the context, requiring PDFs to be provided across the two-
dimensional parameter space (x,Q2), where the squared energy scale Q2 is conventionally
used. Several global collaborations generate these distributions and offer computer codes
that compute PDF values for any given input. This is often achieved by reading a
precomputed PDF grid containing values at discrete points in the (x,Q2) plane and using
interpolation algorithms to estimate values between these points [7].

The factorisation theorem assumes that the cross-section of the entire proton-proton
collision can be decomposed into a convolution of PDFs and the hard scattering cross-
section of the partons [15]. This theorem greatly simplifies the calculations, allowing
us to handle the proton’s complex internal dynamics separately from the high-energy
interactions of its constituents. The factorised form allows physicists to use perturbative
QCD to calculate the parton-level cross-sections while using empirical data to parameterise
the PDFs.

This factorisation approach has profound implications for particle physics research.
It enables precise predictions for outcomes of high-energy proton collisions, such as
those occurring in the Large Hadron Collider (LHC). Understanding these interactions
at the parton level allows researchers to probe deeper into the fundamental forces and
particles that constitute the universe. It also aids in the search for new physics beyond
the Standard Model by providing a robust framework to compare theoretical predictions
with experimental results.

1.8. Current status of the SM

The Standard Model is one of the most successful scientific theories, accurately predict-
ing many high-precision experimental observations. It has not only described known
experimental results but also made significant predictions, such as the existence of a
third generation of quarks and leptons [29] and the Higgs boson [3, 4], which were
later confirmed through experiments [13, 14]. The Standard Model is also theoretically
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appealing as it represents the most comprehensive theory possible, given its symmetry
group and particle content [30].

Despite its success, the Standard Model has notable limitations. One of the most
significant shortcomings is its inability to incorporate gravity into a unified framework
alongside the strong and electroweak forces. This limitation suggests that the Standard
Model may be a low-energy effective field theory, similar to Fermi’s theory of weak
interactions, which could be a limiting case of a more complete theory that includes
quantum gravity [31]. Developing a consistent theory of quantum gravity that also
encompasses the particle and symmetry structure of the Standard Model remains an
unresolved challenge in modern physics [32].

One of the problems neglected in the previous discussion of fermions is that, in
practice, the neutrinos observed in nature possess mass, as evidenced by neutrino
oscillation experiments [33]. However, neutrinos are considered massless within the
Standard Model due to the absence of right-handed neutrinos [31]. Without these
right-handed counterparts, neutrino masses cannot be generated through the Yukawa
interactions in the same way as quarks and charged leptons [34]. Additionally, the
observed neutrino masses and their associated Yukawa couplings are significantly smaller
than those of quarks and charged leptons [33]. More broadly, the origin of the mass values
for all fundamental particles in the Standard Model remains unexplained. Currently,
these masses are treated as external parameters, encapsulated in the Yukawa couplings,
and must be determined experimentally [35]. While the described mechanism accounts for
the masses of fundamental fermions within the Standard Model, it does not explain the
origins of the Yukawa coupling constants themselves [35]. These discrepancies suggest the
existence of a mechanism beyond the Standard Model that generates neutrino masses and
potentially provides an underlying principle explaining the pronounced mass hierarchy
among the three generations of quarks and leptons [34].

The discovery of the Higgs boson at a mass of 125.11± 0.11 GeV [13, 14, 36] was
not without complications, one of which is the hierarchy problem. As a scalar field in
the theory, the physical mass of the Higgs exhibits quadratic sensitivity to the cutoff
scale of the Standard Model, which is treated as an effective field theory. This implies
that at large cutoff scales, even small changes in the input parameters can result in
substantial variations in the Higgs mass as predicted at collider scales. Therefore, to
achieve the observed Higgs mass, the parameters at high scales must be finely tuned,
giving an unexpected dependency of low-energy physics on the high-energy details of
the theory. Furthermore, the spontaneously broken SU(2)×U(1) symmetry underpinning
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the Higgs mechanism lacks a dynamical explanation for why this symmetry is broken.
The mechanism is introduced without intrinsic justification within the theory, although
this may be more fundamentally linked to the philosophy of representation between
mathematics and reality [37]

One major problem raised by astrophysical observations is that the Standard Model
accounts for only 4.9% of the universe’s energy density. The missing energy is split
between dark energy, at 68.3%, and dark matter, at 26.8% [38]. Dark matter is thought
to be comprised of non-baryonic matter, which is believed to consist of electrically
neutral, weakly interacting particles. Consequently, extensions of the Standard Model
that propose potential dark matter candidates and can be tested at collider energies are
of great interest and are being studied intensively.

This gap in understanding has led to ongoing research into extensions of the Standard
Model, such as supersymmetry or theories involving extra dimensions. These extensions
aim to address the deeper questions surrounding the origin of particle masses and provide
a more fundamental understanding of the observed mass hierarchies.



Chapter 2.

Supersymmetry

Supersymmetry (susy) is a theoretical framework that extends the Standard Model
of particle physics by positing a symmetry between fermions and bosons such that a
corresponding boson exists for every fermion and vice versa. This elegant symmetry aims
to address some of the limitations of the Standard Model and offers potential solutions
to problems mentioned in the previous chapter.

This chapter covers the historical development of supersymmetry, tracing its origins
from early theoretical proposals to its formalisation in the 1970s. It examines the key
motivations behind the development of susy, such as the hierarchy problem, a natural
candidate for dark-matter and a potential pathway towards unifying the fundamental
forces.

The chapter also explores the theoretical constructs of supersymmetry, including
the algebraic structures that define susy transformations and the mathematical frame-
work that allows for the extension of space-time symmetries. Key concepts such as
superpartners, superfields, and superspace will be discussed to understand the theory
comprehensively.

Various models within supersymmetry are presented, ranging from the Minimal
Supersymmetric Standard Model (MSSM) to more complex extensions. The MSSM is
presented as an example susy extension of the Standard Model, introducing superpartners
for all known particles and providing mechanisms for electroweak symmetry breaking.
More intricate models, such as those involving extra dimensions or higher symmetries,
are also considered, illustrating the rich landscape of possibilities within supersymmetric
theories.

23
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Throughout this chapter and beyond, there will be references to experimental results
from direct measurements and searches; these terms refer to two distinct but comple-
mentary approaches used to explore beyond the standard model (BSM). "Search" refers
to the systematic effort to discover new particles or phenomena predicted by a BSM
theory, such as susy. These searches involve analysing data for unexpected signatures,
such as missing energy or new particle decays, indicating the presence of supersymmetric
particles like neutralinos or gluinos. On the other hand, "measurement" pertains to the
precise quantification of known physical processes, such as Standard Model interactions,
to detect deviations from expected values. Precise measurements of particle masses,
cross-sections, and branching ratios can also be useful for indirectly testing susy models,
especially in scenarios where direct evidence is elusive.

Through this exploration, the chapter aims to provide a comprehensive overview of
supersymmetry, its theoretical underpinnings, and its significance in the broader context
beyond the Standard Model (BSM) particle physics.

2.1. An introduction to susy

The previous chapter demonstrated just how central the concept of symmetry was in
guiding the construction of the SM. As it turns out, the SM splitting into component
products of the local and global symmetries is a characteristic fundamental to group
theories in general and provides valuable constraints. The Coleman-Mandula theorem
states that for a relativistic quantum field theory with well-defined operators (i.e. an
operator that gives the same result when the representation of the input is changed
without changing the value of the input), a finite number of particle types and a non-
trivial S-matrix, the symmetries of the S-matrix must be a direct product of the Poincaré
and internal symmetries [39, 40]. The theorem, formulated by Sidney Coleman and
Jeffrey Mandula in 1967, is a "no-go" theorem, which is one that states that a particular
formulation is not physically possible. The theorem implies that any attempt to unify
space-time symmetries with internal symmetries into a larger symmetry group must
fail, except in the trivial case where they form a direct product. This was a significant
obstacle to developing unified theories that combined these different types of symmetries.

The concept of supersymmetry emerged in the early 1970s, primarily within the
context of string theory. In 1974, early contributions by Julius Wess and Bruno Zumino
led to the formulation of the first four-dimensional supersymmetric field theory, now



Supersymmetry 25

known as the Wess-Zumino model [41]. While the theorem prohibits the unification of
internal symmetries with space-time symmetries in a non-trivial way, it does not apply to
graded Lie algebras. A graded Lie algebra is a Lie algebra decomposed into a direct sum
of vector spaces indexed by integers, called grades. The Lie bracket operation respects this
grading, meaning the bracket of elements from grades p and q belongs to grade p+q. This
structure allows for the study of symmetries that are more complex than those in ordinary
Lie algebras. These extended symmetries are characterised by algebras encompassing
commutation and anti-commutation relations. Specifically, symmetry generators in
this framework are categorised as bosonic or fermionic, depending on their statistical
properties. The theorem’s restrictions remain intact for relations involving solely bosonic
generators. However, when fermionic generators are introduced, the situation becomes
more nuanced. The Haag-Łopuszański-Sohnius theorem [42] provides crucial guidance
here: It dictates that fermionic generators must transform consistently under both the
internal symmetry group and the Lorentz group, adhering to specific commutation and
anti-commutation relations. For realistic theories incorporating chiral fermions, where
the left-handed and right-handed components of fermions transform differently under
the gauge group, parity-violating interactions become possible. In such contexts, the
Haag-Łopuszański-Sohnius theorem [42] necessitates that the supercharge generators Q
and Q† that generate transformations between bosonic and fermionic states adhere to
a specific algebra. This algebra consists of both anti-commutation and commutation
relations,

Q|Boson⟩ = |Fermion⟩ , |Q|Fermion⟩ = |Boson⟩ . (2.1)

The anti-commutation relations reflect the fermionic nature of the supersymmetry gener-
ators are as follows: {

Qi, Q
†
j

}
= 2σµijPµ{

Qi, Qj

}
=
{
Q†
i , Q

†
j

}
= 0 ,

(2.2)

where σµij are the Pauli matrices and Pµ represents the four-momentum operator. The
commutation relations are [

Qi, Pµ
]
=
[
Q†
i , Pµ

]
= 0[

Qi, Jµν
]
=(σµν)

j
iQj[

Q†
i , Jµν

]
=(σµν)

j
iQ

†
j ,

(2.3)
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where Jµν are the generators of the Lorentz group. These commutation relations ensure
that the supersymmetry generators transform appropriately under Lorentz transforma-
tions and commute with the momentum operator. It is worth noting that the anti-
commutation relation involving the four-momentum Pµ directly ties the supersymmetry
transformations to space-time translations. Additionally, the commutation relations with
the Lorentz generators Jµν ensure that the supersymmetric partners of particles transform
correctly under rotations and boosts. This is crucial for maintaining the covariance of
the theory and ensuring that physical observables, such as scattering amplitudes, behave
consistently under Lorentz transformations [43, 44].

In a supersymmetric theory, single-particle states are organised into irreducible repre-
sentations of the supersymmetry algebra, known as supermultiplets. Each supermultiplet
encompasses both fermion and boson states, referred to as superpartners. By definition,
if |Ω⟩ and |Ω′⟩ belong to the same supermultiplet, then |Ω′⟩ can be generated by applying
a combination of the supersymmetry generators Qi and Q†

i to |Ω⟩, modulo a space-time
translation or rotation.

The squared mass operator, P 2, commutes with the supersymmetry generators Qi

and Q†
i , as well as with all space-time translation and rotation operators. Consequently,

particles within the same irreducible supermultiplet must share the same eigenvalues of P 2,
implying that they have identical masses. This mass degeneracy is a significant result, as
it ensures that a supermultiplet’s bosonic and fermionic components are indistinguishable
in their mass. However, since supersymmetry must be a broken symmetry in nature
(given the absence of observed mass-degenerate superpartners for known particles), the
actual masses of superpartners in realistic models are split, typically by mechanisms
associated with supersymmetry breaking. Understanding these mechanisms is crucial for
predicting the mass spectrum of superparticles.

The supersymmetry generators Qi and Q†
i also commute with the generators of gauge

transformations; therefore, particles grouped in the same supermultiplet must transform
identically under gauge transformations. Consequently, all particles within a given
supermultiplet must be in the same representation of the gauge group. This means that
these particles share identical gauge quantum numbers. For instance, they must possess
the same electric charge, reflecting their transformation properties under the U(1) gauge
symmetry. Similarly, they must have identical weak isospin values, corresponding to
SU(2)L; if they are subject to the strong interaction, they must share the same colour
charge, as dictated by the SU(3)C of quantum chromodynamics (QCD).
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This requirement ensures consistent transformation behaviour under the respective
gauge groups and maintains the internal symmetry structure of the supersymmetric theory.
The identical gauge quantum numbers within a supermultiplet highlight the connection
between the gauge symmetry and supersymmetry, enforcing stringent constraints on the
particles’ properties and interactions. This consistency is crucial for the coherence and
predictive power of supersymmetric models as it guarantees that the introduction of
superpartners does not violate the established gauge symmetry dynamics of the SM.

In practical terms, understanding the algebra of Q and Q† helps construct realistic
supersymmetric models that can be tested experimentally. For instance, the relations
guide the development of supersymmetric extensions of the Standard Model, such as the
Minimal Supersymmetric Standard Model (MSSM). These models predict many new
particles, including neutralinos, charginos, and squarks, whose interactions and decays
are governed by supersymmetric algebra.

2.2. Supersymmetric models

It is beneficial to outline a brief description of how a supersymmetric theory is constructed
to gain a qualitative understanding of the potential interactions. This section will cover the
fundamental principles and mechanisms underlying the construction of a supersymmetric
theory and provide examples of the most widely studied supersymmetric extensions.

2.2.1. The superpotential

The superpotential represents a fundamental concept in supersymmetric theories, encap-
sulating the interactions among chiral superfields. It is characterised as a holomorphic
function, meaning it is complex and differentiable and depends solely on the chiral super-
fields, excluding their conjugates. This characteristic is crucial as it plays a significant
role in defining both the dynamics and the overall structure of the theory [45, 46]. The
superpotential W can be generally expressed in the form

W = Liϕi +
1

2
M ijϕiϕj +

1

6
yijkϕiϕjϕk . (2.4)

In this expression, Li denotes parameters with dimensions of [mass]2, Mij represents
a symmetric mass matrix for the fermion fields, and yijk are the Yukawa couplings
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associated with the scalar fields ϕi. These parameters and coefficients delineate the
interaction terms and mass structures within supersymmetric models [43].

The holomorphic property of the superpotential is essential for preserving super-
symmetry after spontaneous symmetry breaking. This is because the potential derived
from the superpotential remains dependent solely on the scalar components of the chiral
superfields. By defining the interactions among the chiral superfields, the superpotential
significantly influences the mass spectrum of the particles within the theory.[47]. The
superpotential induces interaction terms in the Lagrangian as

Lint ⊃ −1

2
W ijϕiϕj + |W iW ∗

i | , (2.5)

where the terms W ij and W i are polynomials in the scalar fields, with degrees 1 and 2
respectively, and are defined as

W ij =
δ2W

δϕi, δϕj
, W i =

δW

δϕi
. (2.6)

Evaluating these derivatives in terms of the superpotential defined in Equation (2.4) we
obtain

Lint ⊃ W ij =M ij + yijkϕk

Lint ⊃ |W iW ∗
i | = |M |2ϕ∗kϕj +

1

2
Mkny∗jinϕkϕ

∗jϕ∗i

+
1

2
M∗

kny
jinϕ∗kϕjϕi +

1

4
ykjny∗ilnϕkϕjϕ

∗iϕ∗l .

(2.7)

These represent the basic renormalisable set of interaction terms available. Supersym-
metric field theories exhibit several fundamental types of interactions. These include
mass-like vertices for both fermions and bosons, which involve two fermionic fields and
one bosonic field, and vertices consisting of three and four scalar fields. An example of
such an interaction is the Yukawa-type interaction in Equation (2.7) and found in the
SM.

A superfield is a composite entity that integrates all the bosonic, fermionic, and
auxiliary fields associated with a given supermultiplet. This is illustrated by Φi, which
encompasses components ϕi and Wi. This concept is analogous to describing a weak
isospin doublet or a colour triplet using a multi-component field. The gauge quantum
numbers and the mass dimension of a chiral superfield match those of its scalar component.
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In the superfield formulation, the expression used is

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk . (2.8)

2.2.2. The gauge sector

In supersymmetry, the gauge sector consists of vector superfields that correspond to
the gauge bosons present in the Standard Model. A vector superfield V includes three
main components: a gauge boson, its fermionic superpartner called the gaugino and
an auxiliary field. These components combine to form a superfield that transforms
appropriately under supersymmetry transformations.

The Lagrangian for the gauge sector incorporates kinetic terms for the fields and
interaction terms that maintain gauge invariance. The kinetic terms describe the propa-
gation and self-interaction of the gauge fields, while the interaction terms ensure that
the theory respects the symmetry principles. A central feature of this formulation is the
gauge kinetic function fab(Φ), a holomorphic function of the chiral superfields Φ, where
the ab indices correspond to the different gauge group factors and are associated with the
generators of the gauge group. Specifically, in a theory with a gauge group G that can be
decomposed into several simple or abelian factors (such as G = G1×G2× . . . ×Gn), the
indices a and b label the components of the field strengths and gauge fields corresponding
to different factors of this gauge group. The gauge kinetic function fab is typically a
matrix-valued function, where each entry fab(Φ) determines the coupling between the
gauge fields associated with generators of the gauge group. The holomorphicity of fab
implies that it depends on the chiral superfields Φ in a way that preserves the supersym-
metry of the theory [48–50]. The gauge kinetic function determines the coupling of the
gauge fields and their interactions. The Lagrangian for the gauge sector is given by [44]

Lgauge =
∫
d2θ fab(Φ)W

aW b + h.c. , (2.9)

whereW a represents the gauge field strength superfields, which describe the field strengths
of the gauge bosons along with their superpartners. The integral is defined over d2θ
which are Grassmann coordinates. In the context of supersymmetric theories, Grassmann
coordinates are used to extend conventional spacetime into a higher-dimensional space
known as superspace. Superspace combines ordinary spacetime coordinates with addi-
tional Grassmann coordinates to incorporate supersymmetry. The coordinates, denoted
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typically as θ and θ̄, are anticommuting variables, meaning they satisfy the property
θθ′ = −θ′θ. This anticommutative nature is essential for representing fermionic degrees of
freedom within the supersymmetric framework [51]. Superspace is therefore, a space that
includes both the usual four spacetime dimensions xµ (where µ runs over the spacetime
indices) and the Grassmann coordinates θ and θ̄. A point in superspace is described
by the coordinates (xµ, θ, θ̄). In this setting, supersymmetric fields, or superfields, are
functions of both the spacetime coordinates and the Grassmann coordinates. These
superfields encapsulate the components of a supersymmetric multiplet, including both
bosonic fields (like gauge fields) and their fermionic superpartners.

The integral over the Grassmann coordinates is used to select specific components of
a superfield, typically the highest component, which corresponds to the physical field
content of the theory after integrating out the Grassmann variables. For our case of the
gauge field strength superfield W a, the d2θ integral effectively isolates the component that
describes the gauge boson field strengths and their supersymmetric partners, contributing
to the Lagrangian of the theory. Thus, the form of the gauge kinetic function fab(Φ)

determines how the gauge fields couple to the matter fields in the theory. This function
can vary depending on the specific model of supersymmetry being considered, leading to
different physical implications and predictions. In many models, fab is often considered
a constant or a function of the scalar components of the chiral superfields, which can
result in different gauge interactions and the running of coupling constants. An example
of this is in N = 1 Super Yang-Mills theory where fab(Φ) = τ , with τ being the natural
combination of the gauge coupling to θ [52].

Including auxiliary fields in the vector superfield V simplifies the supersymmetric
Lagrangian. These auxiliary fields do not have kinetic terms. They can be eliminated
through their equations of motion, resulting in the standard form of the Lagrangian with
the gauge fields and gauginos.

Overall, the structure of the gauge sector in supersymmetry is designed to extend the
Standard Model by incorporating superpartners for the gauge bosons. Thus, it maintains
consistency with the supersymmetric framework while potentially addressing some of its
limitations and unanswered questions.
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2.2.3. Supersymmetry breaking

If supersymmetry were a realised, unbroken symmetry, the superpartners of known
particles would have identical masses to the particles of the Standard Model; however,
this is not observed experimentally. This necessitates susy breaking, introducing a
characteristic energy scale where superpartners acquire masses different from their SM
counterparts. The specific scale of susy breaking depends on the mechanism employed.
In gravity-mediated susy breaking, the soft susy-breaking scale is typically around the
Planck scale MPl, suppressed by a mediation factor, leading to soft terms at O(TeV) [53].
In gauge-mediated susy breaking, the scale can be much lower, with soft masses arising
from loop effects of messenger fields coupling to the susy-breaking sector [54]. While
these mechanisms constrain the mass range of superpartners, they do not yield a single,
unique value for each mass; rather, they depend on model parameters such as coupling
constants, mediation scales, and details of susy breaking. Therefore, while susy models
predict that new particle masses should be within a certain energy range—typically
near the electroweak scale for naturalness reasons—there is no strict lower or upper
bound beyond theoretical consistency and experimental limits. This flexibility has been
a challenge for direct experimental detection, as different scenarios can push the susy

particle masses to multi-TeV scales or even higher, beyond current collider reach [43].
Hence, while susy breaking determines characteristic scales, it does not impose a single
fixed mass value for new particles.

In supersymmetric theories, the P 2 operator, which corresponds to the mass, commutes
with all elements of the supersymmetry algebra. This characteristic allows the mass to
serve as a label for supermultiplets, similar to how it functions in the Poincaré symmetry
context. If supersymmetry were a realised symmetry, the superpartners of known particles
would have identical masses to the particles of the Standard Model. Consequently, these
superpartners would have already been detected in experiments. However, since such
particles have not been observed, it indicates that supersymmetry must be broken at
energy scales currently accessible to collider experiments.

This supersymmetry breaking can be analogous to the spontaneous symmetry break-
ing observed in the Standard Model. In section 1.2, spontaneous symmetry breaking
was described as when a physical system, initially in a state of symmetry, ultimately
transitions to an asymmetric state without any external influence. Applying this concept
to supersymmetry implies that the theory can remain fundamentally supersymmetric,
even if the observed phenomena do not exhibit supersymmetry.
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To preserve the beneficial properties of supersymmetric theories, such as the cancella-
tion of quadratic divergences in radiative corrections to scalar masses, the breaking of
supersymmetry must occur so that the resulting mass differences between particles and
their superpartners are relatively small. This condition ensures the breaking is "soft",
meaning minimal mass splitting. The set of soft supersymmetry-breaking terms in the
Lagrangian of a general theory are

Lsoft ⊃ −1

2
Maλ

aλa − 1

6
aikjϕiϕjϕk −

1

2
bijϕiϕj − tiϕi − (m2)ijϕ

∗jϕi . (2.10)

The terms include explicit soft gaugino masses Ma, tri-linear couplings denoted as aijk,
and both holomorphic and non-holomorphic scalar mass terms represented by (m2)ij and
bij, respectively. The coupling term ti can only be realised for singlets of the internal
symmetries [43].

At the scales probed by current colliders, spontaneous and soft supersymmetry
breaking can be described using effective operators that explicitly break supersymmetry.
These effective operators encapsulate the low-energy consequences of the underlying
supersymmetry-breaking dynamics. Consequently, they provide a phenomenological
description that can be tested against experimental data, allowing for exploring the
supersymmetric parameter space and searching for potential signs of supersymmetry in
collider experiments.

The literature on supersymmetry breaking identifies three main modes, each char-
acterised by a distinct procedure. These modes include Planck-Scale-Mediated, Gauge-
Mediated, Extra-Dimensional and Anomaly-Mediated; they can be summarised as follows:

Planck-Scale-Mediated Breaking

Often referred to as gravity-mediated models, assume that supersymmetry breaking
occurs in a hidden sector and is communicated to the visible sector through gravitational
interactions [55]. These models typically operate at the Planck scale (MPl ≈ 1019 GeV),
where gravitational interactions become significant. The primary mechanism involves
the mediation of supersymmetry breaking through Planck-suppressed operators in the
supergravity Lagrangian, leading to soft supersymmetry breaking terms in the observable
sector [53]. This mediation generates soft masses for superpartners proportional to the
gravitino mass, typically in the range of hundreds of GeV to a few TeV [56]. These models,
including mSUGRA (minimal supergravity), posit that all fields feel supersymmetry-
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breaking effects universally due to the gravitational force [57]. The scalar masses, gaugino
masses, and tri-linear couplings in these models are typically of the same order of
magnitude as the gravitino mass, and the hierarchy problem is partially addressed by
these soft terms stabilising the electroweak scale [58].

Gauge-Mediated Supersymmetry Breaking Models

Often referred to as GMSB models, these propose an alternative to Planck-scale-mediated
scenarios, where the supersymmetry breaking is transmitted to the visible sector via
gauge interactions instead of gravitational ones [59]. In these models, the communication
occurs through messenger fields charged under the Standard Model gauge groups, which
acquire supersymmetry-breaking masses. The resulting soft terms in the visible sector
are generated at a lower scale, usually around 100 TeV, significantly lower than the
Planck scale. This leads to a spectrum where the gravitino is the lightest supersymmetric
particle (LSP), with typical masses ranging from a few eV to keV, making it a candidate
for dark-matter [60].

Extra-Dimensional and Anomaly-Mediated Breaking

Extra-dimensional and anomaly-mediated models explore the idea that supersymmetry
is broken in a higher-dimensional space, and its effects are felt in our four-dimensional
world through mechanisms involving compactified dimensions [61]. These models often
utilise the framework of string theory or brane-world scenarios, where the hidden and
visible sectors are localised on different branes and communicate via bulk fields.

On the other hand, anomaly-mediated supersymmetry breaking (AMSB) is a distinct
mechanism where the supersymmetry breaking is mediated by superconformal anomalies
[62]. Superconformal anomalies are a specific type of anomaly that occurs in theories with
superconformal symmetry, which is an extension of conformal symmetry incorporating
supersymmetry. In field theory, an anomaly refers to the breaking of a symmetry that is
preserved at the classical level but violated upon quantisation. In the context of AMSB,
superconformal anomalies arise when the superconformal symmetry of the theory is
broken by quantum effects, specifically by the renormalisation group flow of the theory
[63]. In a superconformal theory, the anomaly is associated with breaking the dilatation
(scaling) symmetry and the superconformal symmetry. The quantum corrections that
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lead to these anomalies are proportional to the gauge couplings’ beta functions and the
matter fields’ anomalous dimensions.

AMSB exploits these anomalies to generate soft supersymmetry-breaking terms
in the low-energy effective theory [64]. The mechanism works as follows: even if the
supersymmetry is unbroken in a higher energy regime, the quantum corrections associated
with the superconformal anomalies induce soft-breaking terms when moving to a lower
energy scale. These terms are proportional to the beta functions and the anomalous
dimensions, making AMSB highly predictive because the pattern of supersymmetry
breaking is tightly linked to the known RG flow of the theory. A good example of
such predictions is the gravitino in AMSB models, which typically has a mass of tens
to hundreds of TeV, making it less accessible for collider experiments but relevant for
cosmological considerations [65].

2.2.4. R-parity

R-parity is a quantum number introduced in supersymmetric theories to prevent baryon
and lepton number-violating interactions, which, if allowed, would predict rapid decay of
the proton (a phenomenon that has not been observed [66, 67]). R-parity is multiplica-
tively conserved, which means that the corresponding product, rather than the sum, is
preserved. The introduction of R-parity avoids the proton decay issues while ensuring
the stability of the lightest supersymmetric particle (LSP). R-parity is defined as

Rp = (−1)3(B−L)+2S , (2.11)

where B is the baryon number, L is the lepton number, and S is the particle’s spin
[40]. Under this definition, all Standard Model (SM) particles have Rp = +1, and all
supersymmetric partners (sparticles) have Rp = −1. R-parity conservation implies that
interactions must involve an even number of sparticles. This conservation has significant
consequences for the stability of the LSP and the decay channels of heavier sparticles. The
lightest particle with Rp = −1 cannot decay into any SM particle because it would violate
R-parity conservation. Consequently, the LSP is stable, making it a viable candidate
for dark-matter, as it can only annihilate or decay into other supersymmetric particles.
Heavier sparticles can only decay through cascades that produce the LSP and other
SM particles. For instance, a neutralino (χ̃0

2)–a hypothetical particle that arises as a
mass eigenstate from the mixing of the neutral supersymmetric partners (gauginos and
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higgsinos) of the photon (γ̃), Z boson (Z̃), and neutral Higgs bosons (H̃0
u, H̃

0
d)–might

decay into a lighter neutralino (χ̃0
1), and a photon or a Z boson, provided that these

processes are kinematically allowed [68].

R-parity provides some interesting phenomenological consequences; for example, the
LSP is a stable dark-matter candidate in R-parity conservation. The nature of the LSP,
whether it be the neutralino, gravitino, or another sparticle, significantly affects dark-
matter detection strategies and relic-density calculations. Additionally, at colliders such
as the LHC, R-parity conservation implies that supersymmetric particle production must
result in events with missing transverse momentum (Emiss

T ), as the LSP escapes detection.
In contrast, R-parity violating (RPV) scenarios can lead to distinctive signatures without
Emiss

T , often involving multiple leptons or jets due to the additional decay-channels
available. Finally, in RPV models, proton-decay constraints are relaxed compared to
scenarios with R-parity conservation. The specific RPV couplings must be small enough
to comply with experimental bounds on proton lifetime, yet they allow for new decay
channels that can be probed experimentally [40].

2.2.5. The minimal supersymmetric standard model (MSSM)

Supersymmetry as a framework can be implemented in various quantum field theories. In
collider physics, phenomenologically viable alternative theories encompass the experimen-
tally verified gauge structure and matter content of the SM. The Minimal Supersymmetric
Standard Model (MSSM) is the most extensively examined supersymmetric extension
of the SM. The MSSM incorporates the minimal set of new particle states necessary
to organise the existing matter fields into supermultiplets while maintaining neutrality
regarding the exact mechanism of symmetry breaking. The superpotential for the MSSM
is given by

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd . (2.12)

In this expression, the fields Q, L, ē, ū, and d̄ represent the familiar quark and lepton
doublets and singlets of the Standard Model. In their supersymmetric form, these fields
also contain scalar partners, squarks and sleptons. The dimensionless Yukawa coupling
parameters yu, yd and ye are 3× 3 matrices in the vector like family space [69]. The
Higgs sector is augmented to include two Higgs doublets, denoted Hu and Hd. This is
necessitated by the requirement for the superpotential to be holomorphic, which prohibits
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Gauge Supermultiplets
Names Spin 1 Spin 1/2

gluon, gluino g g̃

W -bosons, wino W ± , W 0 W̃ ± W̃ 0

B-bosons, bino B0 B̃0

Table 2.1.: The gauge supermultiplets of the Minimal Supersymmetric Standard Model.

Matter Fields of the MSSM
Classification Representations

Symbol spin 0 spin 1/2 SU(3) SU(2) U(1)

L (ν̃L, ẽL) (νL, eL) 1 2 −1

E ẽ∗R e†R 1 2 −2

Q (ũL, d̃L) (uL, dL) 3 2 +1
3

U ũ∗R (up) u†R 3 1 +4
3

D d̃∗R (down) d†R 3 1 −2
3

Hu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 −1

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 2 +1

Table 2.2.: Matter Fields in the Minimal Supersymmetric Standard Model

using a single Higgs field and its complex conjugate to generate Yukawa interactions for
both up-type and down-type quarks [43]. The fermionic superpartners of the Higgs fields
are referred to as Higgsinos. The supermultiplets of the MSSM are shown in Tables 2.1 and
2.2 [40]. The gauge sector in the MSSM mirrors that of the Standard Model but includes
additional superpartners. The gauge groups SU(3)C ×SU(2)L ×U(1)Y correspond to
the gauge bosons G, W , and B, respectively. In the MSSM, the superpartners of these
gauge bosons are termed gluinos, winos, and binos, respectively. The soft supersymmetry

breaking operators that correspond to the MSSM can be built by applying Tables 2.1
and 2.2 to Equation (2.10) and writing down the most general set of such terms:

LMSSM
soft ⊃

(
−1

2

∑
∈{B̃,W̃ ,g̃}

mααα

)
− ˜̄uauQ̃Hu +

˜̄dadQ̃Hd + ˜̄eaeL̃Hd

LMSSM
soft ⊃

(
−

∑
∈{L,E,Q,U,D}

ϕ̃†m2
ϕϕ̃

)
−m2

Hu
H∗
uHu −m2

Hd
H∗
dHd − bHuHd ,

(2.13)
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Where mα corresponds to the gluino, wino, and bino mass terms followed by the tri-linear
couplings (a), which are in one-to-one correspondence with the Yukawa couplings of the
superpotential (Equation (2.4)). The second line contains squark and slepton mass terms
where each mϕ is a 3× 3 real hermitian matrix, followed by the Higgs squared-mass
terms m2

Hu
and m2

Hd
. The final term b is the non-holomorphic scalar mass term that can

occur in the MSSM according to Equation (2.4).

2.3. Simplifying supersymmetry

Various simplifying assumptions and models are employed to manage the complexity
of susy models, such as the constrained MSSM (cMSSM), phenomenological MSSM
(pMSSM), and simplified models.

2.3.1. Constrained MSSM (cMSSM)

The Constrained Minimal Supersymmetric Standard Model (cMSSM), often called the
minimal supergravity (mSUGRA) model, is a well-motivated extension of the MSSM.
This model is characterised by its enforcement of universality conditions on the soft
susy breaking parameters at the Grand Unified Theory (GUT) scale [55]. "Soft" in
this context refers to a type of supersymmetry breaking that does not cause ultraviolet
divergences to appear in scalar masses. The purpose of the softly broken supersymmetry
is to protect the scalar mesons from quadratic mass renormalisations, preventing their
appearance in the physics below the GUT mass scale [70]. These constraints significantly
reduce the parameter space, enhancing the model’s predictive power and facilitating
analytical and numerical investigations.

In the cMSSM, the soft susy-breaking parameters are assumed to be unified at the
GUT scale, typically around 1016GeV. Specifically, the universality conditions require
that the scalar masses m0, gaugino masses M1/2, and tri-linear couplings A0 are each
set to be shared values for all respective particles [71]. Consequently, the cMSSM is
often characterised by the set of parameters shown in Table 2.3. These conditions
significantly reduce the number of independent parameters compared to the general
MSSM, which has over 100 free parameters. This parameter space reduction makes the
model more manageable and allows for more straightforward phenomenological analysis
and experimental testing.
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Parameter Description

m0 Universal scalar mass.
M1/2 Universal gaugino mass.
A0 Universal tri-linear coupling.
tan β Ratio of the two Higgs doublets VEVs.
sgn(µ) Sign of the Higgsino mass.

Table 2.3.: Common representation of the five parameters that define the cMSSM [71].

The cMSSM provides a framework that naturally incorporates the mechanism of
supersymmetry breaking through gravitational interactions, linking it to the more fun-
damental theory of supergravity [72]. The gravitational mediation of susy-breaking
suggests that the soft terms are generated at the GUT scale and then evolve to the
electroweak scale via the renormalisation-group equations (RGEs) [53]. The RGEs for
the soft susy-breaking parameters ensure that the low-energy spectrum of superpartners
can be computed once the initial conditions at the GUT scale are specified. The resultant
spectrum and its properties are subject to experimental constraints from collider searches,
dark-matter detection experiments, and precision measurements of SM observables.

2.3.2. Phenomenological MSSM (pMSSM)

The Phenomenological Minimal Supersymmetric Standard Model (pMSSM) represents
an extension of the cMSSM by relaxing several assumptions and constraints that define
the cMSSM. This relaxation allows for a larger parameter space, essential for reconciling
theoretical models with the increasing volume of experimental data.

As covered in the previous section, the cMSSM makes certain assumptions to reduce
the number of free parameters, which leads to a highly constrained model with only a few
free parameters. The cMSSM’s strict constraints can limit its flexibility and applicability
in light of experimental results from collider experiments and dark-matter searches. In
the pMSSM, the constraints of universality at the GUT scale are lifted, allowing the
soft susy-breaking parameters to vary independently at the electroweak scale. This
results in a model with 19 free parameters [73], provided in Table 2.4. Decoupling these
parameters from each other means that the pMSSM can accommodate a greater range of
phenomenological scenarios. For instance, the mass hierarchy between the sfermions and
gauginos can be more finely tuned, and the model can be better adjusted to match the
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Parameter Description

MA Mass of the pseudoscalar Higgs boson
M1,M2,M3 Bino, wino and gluino mass.
mq̃,mũR

,mb̃R
,ml̃,mẽR

First/second generation sfermion masses
mQ̃,mt̃R

,mb̃R
,mL̃,mτ̃R

Third generation sfermion masses
At, Ab, Aτ Universal tri-linear coupling parameter
tan β Ratio of the two Higgs doublets VEVs.
µ Higgs–Higgsino mass.

Table 2.4.: Common representation of the 19 parameters that define the pMSSM [73].

observed Higgs boson mass and other experimental constraints such as those from direct
and indirect dark-matter detection experiments, electroweak precision tests, and flavour
physics.

Additionally, the pMSSM allows for a more detailed exploration of the susy breaking
mechanism. While the cMSSM’s universality conditions imply a specific mechanism,
such as gravity-mediated susy breaking [53, 72], the pMSSM can accommodate various
mediation scenarios, including gauge-mediated and anomaly-mediated susy breaking.
This flexibility is particularly valuable for phenomenological studies comparing theoretical
predictions with experimental data.

The parameter space of the pMSSM is typically explored using a combination of ana-
lytical techniques and numerical simulations. Parameter scans are conducted to identify
regions consistent with experimental data, often employing sophisticated statistical meth-
ods and global fits to account for uncertainties in the experimental measurements and
theoretical predictions. Tools such as Markov Chain Monte Carlo (MCMC) methods [74]
or nested-sampling [75] algorithms are frequently used to sample the high-dimensional
parameter space of the pMSSM efficiently. A new search approach is presented in Chap-
ter 7, where the limits on the pMSSM are improved by combining data from multiple
experiments.

2.3.3. Simplified models

Simplified models in supersymmetry (susy) research are designed to focus on specific
scenarios by considering only a limited subset of superpartners and their interactions.
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Figure 2.1.: Feynman diagrams of four simplified-model examples. The diagrams are split
into T1 and T2 type topologies with (a) and (c) showing gluino pair production
followed by the decay into a qq (tt) pair and a neutralino χ̃. Diagrams (b) and
(d) show squark (top-squark) pair production, where each squark decays into a
quark and a neutralino.

By reducing the number of particles and interactions under consideration, these models
provide a more tractable framework for both theoretical and experimental studies.
Simplified models facilitate targeted searches for susy signatures at colliders, such as the
Large Hadron Collider (LHC), by enabling a clear interpretation of experimental results
in the context of specific susy predictions [76, 77]. In these models, assumptions are
made to isolate particular susy processes, thereby avoiding the full complexity of more
comprehensive models like the MSSM, cMSSM, or the pMSSM. For example, a simplified
model might focus on the production and decay of a gluino and a squark, ignoring other
possible susy particles. Figure 2.1 shows the Feynman diagrams for the T1 and T2
simplified models (sometimes called topologies), along with an alternative top-quark (t)
decay mode.

Simplified models are related to full Simplified Model Spectra (SMS) through projec-
tion techniques, where the higher-dimensional parameter space of the SMS is projected
onto a lower-dimensional subspace defined by the simplified model and, in turn, full susy

models project into sets of orthogonal SMS [78]. The projection process is a method
used to map high-dimensional parameter spaces onto lower-dimensional representations
that capture the essential phenomenological features of the model. The projection is
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typically performed by selecting a subset of parameters, such as the masses of the light-
est supersymmetric particles and their dominant production and decay modes, while
marginalising over less relevant details (further detail on likelihoods and marginalisation
can be found in Section 3.3). Mathematically, this can be expressed as an integration
over the marginalised parameters in a likelihood function,

Lproj(mχ̃,mg̃, . . . ) =

∫
L(mχ̃,mg̃, θ) dθ, (2.14)

where L(mχ̃,mg̃, θ) represents the full likelihood function dependent on both the primary
mass parameters (mχ̃, mg̃) and the marginalised variables θ, which may include couplings,
branching fractions, or higher-order corrections. This projection preserves the leading
kinematic and cross-section information while reducing the complexity of the model space,
allowing for efficient reinterpretation of experimental data. The validity of the projection
depends on the assumption that the marginalised parameters do not significantly alter
the experimental observables and must be carefully evaluated in specific scenarios [78–80].

This projection process allows researchers to effectively constrain and interpret the
broader parameter space by focusing on critical interactions and characteristics captured
by the simplified models. For example, tools like SModelS [81] and Fastlim [82] can be used
to project and constrain natural susy scenarios within the SMS framework, highlighting
the practical utility of projections in making complex models more computationally and
experimentally accessible. This approach aligns with general projection-based methods,
such as those discussed in other fields like spectral projection models for scattering, which
similarly reduce complexity by projecting onto subspaces that capture the most relevant
features for specific analyses. This targeted approach aids in understanding how specific
superpartners could manifest in collider data and allows for more precise measurements
of their properties, such as masses and cross-sections.

Constraints derived from simplified models must be considered with caution as they
depend on several factors, such as:

• Minimal Assumptions: Simplified models assume a limited set of production and
decay modes, making them useful for setting conservative constraints that apply to
broad classes of SUSY scenarios. However, real SUSY models often have additional
decay channels or interference effects that can weaken or modify these bounds.

• Kinematic Representativity: if the dominant production mechanisms and kinematic
features of the simplified model match those in a full SUSY theory, constraints
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would be relatively robust. However, differences in mass spectra, branching ratios, or
missing energy distributions may lead to overestimated or underestimated bounds.

• Reinterpretation in Complete Models: A full SUSY model may include additional
particles and decay paths that evade simplified model constraints, making it crucial
to reinterpret bounds in the context of the full parameter space.

• Experimental Coverage: Simplified models typically provide upper limits on cross-
sections and mass exclusions, but they do not account for the full complexity of a
SUSY parameter space.

Constraints are most reliable when derived from multiple complementary searches
across different final states. Thus, while simplified models provide valuable guidance,
they must be used carefully, keeping in mind the assumptions made and the need for
reinterpretation within a full SUSY framework.

Simplified models serve as effective tools for comparing theoretical predictions with
experimental data. By narrowing down the parameter space, these models help identify
regions consistent with observed signals and rule out those that are not. This methodology
significantly enhances the efficiency of susy searches, enabling a systematic exploration
of potential susy phenomena without the computational and analytical burdens of more
complex models [83].

2.4. Motivations for supersymmetry

2.4.1. Solution to the hierarchy problem

One of the primary motivations for supersymmetry is its potential to address the
hierarchy problem, a fundamental question arising from the observed disparity between
the gravitational scale, characterised by the Planck mass MPl ≈ 1019 GeV, and the
electroweak scale, marked by the Higgs boson mass mH ≈ 125 GeV [36]. This problem
highlights why the Higgs boson mass is so much lighter than the Planck mass despite
quantum corrections that naively suggest it should be much heavier. This disparity is at
odds with the concept of naturalness [37, 84], which indicates that any physics model
should work without requiring ad-hoc coincidences or the fine-tuning of its parameters.
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Figure 2.2.: Feynman diagrams showing one and two-loop quantum corrections to the Higgs
squared mass parameter m2

h. The upper plots show one-loop due to (a) a Dirac
fermion f and (b) a scalar S. lower plots show two-loop corrections involving
a heavy fermion F that couples only indirectly to the SM Higgs through gauge
interactions [43].

Chapter 1 explored the process of electroweak symmetry breaking (Section 1.2) by
introducing the potential V (|ϕ|) (Equation (1.18)) and evaluating the minima with
µ2 > 0 and λ > 0, which resulted in a non-zero VEV. From this, it was shown that
the quarks and leptons and the electroweak gauge bosons Z0, W ± all obtain masses
through interactions with the Higgs field. Thus, the mass of the Higgs boson is subject
to significant radiative corrections due to interactions with other particles in the SM.

The Higgs squared-mass, defined as m2
h = 2λυ2, receives significant quantum correc-

tions from each particle that couples, directly or indirectly, to the Higgs field. Figure 2.2
shows one and two-loop corrections to m2

h, with the upper two plots showing one-loop
cases with a Dirac fermion f (a) and a complex scalar S (b). The two lower plots show
two-loop corrections involving a heavy fermion F that couples indirectly to the SM Higgs
through gauge interactions. The quadratically divergent contributions to the Higgs mass
from the loop diagrams necessitate fine-tuning the bare Higgs mass to cancel out these
large corrections and yield the observed Higgs mass.

The corrected Higgs squared-mass can be expressed as m2
h = m2

h0 +∆m2
h, where m2

h0

is the bare Higgs mass squared and ∆m2
h represents the radiative corrections. The latter

is dominated by contributions proportional to the cutoff scale ΛUV, which is assumed to



44 Supersymmetry

be around the Planck scale. The correction terms corresponding to Figure 2.2 are [43]

∆m2
h = −|λf |2

8π2 Λ2
UV + ... (a)

∆m2
h =

|λS|2
16π2

[
Λ2
UV − 2m2

S

(
ΛUV
mS

)
+ ...

]
(b)

∆m2
h = CHTF

g2F

16π2

[
aΛ2

UV − 24m2
F

(
ΛUV
mF

)
+ ...

]
(c, d) ,

(2.15)

where λα,mα are the coupling and mass terms for the fermion (α = f), heavy scalar
(α = S) and heavy fermion (α = F ), and where CH and TF are group-theory factors
of order one. Given ΛUV ∼ 1019 GeV, the correction term ∆m2

h is many orders of
magnitude larger than the observed Higgs mass squared m2

h ≈ (125GeV)2, suggesting an
unnatural cancellation unless new physics is introduced at or near the electroweak scale.
Supersymmetry introduces superpartners to the Standard Model particles, where the
fermionic and bosonic loops cancel out the quadratic divergences, stabilising the Higgs
mass naturally.

2.4.2. Dark-matter candidate

One of the most compelling motivations for susy is its capacity to provide a viable
candidate for dark-matter, the unidentified matter component constituting approximately
27% of the universe’s mass-energy content. In supersymmetric models, every SM particle
has a corresponding superpartner with differing spin. A crucial feature of many susy

models, particularly those with R-parity (Equation (2.11)) conservation, is the Lightest
Supersymmetric Particle (LSP) stability. For all SM particles, R-parity is +1, while for
their superpartners, it is -1. R-parity conservation implies that the LSP cannot decay
into SM particles, ensuring stability. This stability is a crucial criterion for the LSP to be
a dark-matter candidate since dark-matter must be long-lived on cosmological timescales
[85].

Among the possible LSPs, the neutralino is the most extensively studied candidate.
The neutralino is electrically neutral and weakly interacting, fitting the profile of a weakly
interacting massive Particle (WIMP), a leading class of dark-matter candidates. The
neutralino’s mass and interaction strength can be fine-tuned within susy models to yield
the correct relic-density, matching the observed dark-matter abundance [86].



Supersymmetry 45

The relic-density of neutralinos is determined through a process called ’thermal freeze-
out’ in the early universe. Initially, neutralinos were in thermal equilibrium with the
SM particles. As the universe expanded and cooled, the interaction rate of neutralinos
fell below the expansion rate, causing them to decouple or freeze out. The relic-density
depends on the annihilation cross-section of neutralinos: a larger cross-section results
in a lower relic-density and vice versa. susy models allow parameter adjustments that
reproduce the observed dark-matter relic-density (ΩDMh

2 ≈ 0.12) [87, 88].

Another candidate is the gravitino, the superpartner of the graviton. In scenarios
where the gravitino is the LSP, its interactions are suppressed by the Planck scale,
making it a viable dark-matter candidate. Gravitino dark-matter models, however, can
face challenges related to their production mechanisms and implications for Big Bang
nucleosynthesis [89].

The superpartners of neutrinos, known as sneutrinos, are also potential dark-matter
candidates. However, traditional sneutrino dark-matter is often disfavoured due to direct
detection constraints, as their interaction cross-sections with nuclei are typically large.
Nonetheless, variants such as right-handed sneutrinos can evade these constraints and
remain viable candidates [90].

2.4.3. Gauge coupling unification

Another significant motivation for susy is its potential to facilitate gauge-coupling
unification. In the context of the SM, the three fundamental gauge couplings do not
converge to a single value at any energy scale. This lack of unification presents a
challenge for constructing a cohesive theory that encompasses all fundamental interactions.
However, within a supersymmetric framework, the presence of additional particles
modifies the renormalisation-group equations governing the running of these couplings.
Specifically, in the MSSM, these modifications converge the gauge couplings at a GUT
scale, approximately µ = 1016 GeV. At the two-loop level, the renormalisation group
equations are given by

dωi
d logµ

=
ai
2π

−
∑
j

bij

8π2ωj

ωi = α−1
i =

4π

g2i
,

(2.16)
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where the i, j indices denote the various subgroups at energy scale µ, with the gauge
couplings g1, g2, and g3 representing the usual U(1), SU(2), and SU(3) gauge interactions.
The coefficients ai and bij contain the normalisation of the generators in the representation
of the fermionic and scalar states [91].

The unification of gauge couplings at the GUT scale provides a more coherent and
aesthetically appealing picture of the fundamental forces, suggesting that they may be
manifestations of a single underlying force at high energies. This convergence supports
the idea of a unified theory, such as those proposed in GUTs, which attempt to describe
the three gauge interactions within a single framework.

Furthermore, gauge coupling unification in susy models addresses several theoretical
issues within the SM, such as the hierarchy problem and the stability of the Higgs boson
mass. By incorporating susy, these models offer a more robust theoretical foundation
for exploring BSM physics, reinforcing the appeal of supersymmetry as a candidate for
new physics. Thus, the ability of supersymmetry to facilitate gauge coupling unification
constitutes a compelling argument for its consideration in the search for an extension on
the SM [53].

2.5. susy in summary

susy continues to be a compelling extension of the Standard Model (SM), addressing
several outstanding issues, such as the hierarchy problem [37, 84], the nature of dark-
matter[88], and the unification of gauge couplings [91].

The LHC has played an important role in testing susy models, particularly through
its experiments like ATLAS and CMS, which have focused on searching for signatures
predicted by these models. Among the various susy frameworks, the pMSSM has been
extensively studied due to the reduced parameter space.

In 2015, the ATLAS collaboration performed a comprehensive reinterpretation cam-
paign on the full pMSSM parameter space with 22 Run-1 analyses covering 200 signal
regions [93–115]. The study explored millions of pMSSM model points and compared
the predicted event yields against the observed data across various channels. The results
from the ATLAS pMSSM study place significant constraints on the susy parameter
space [92]. The absence of observed excesses corresponding to susy particles in the data
has led to the exclusion of large portions of the parameter space, particularly in regions
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(a) Right down squark (b) Right up squark

Figure 2.3.: Fraction of model points excluded. Upper plots a and b are in the planes of the
masses of the right-handed squarks (up and down) versus the neutralino mass.
(Figure taken from Ref. [92])

corresponding to lighter supersymmetric particles. For instance, scenarios where gluinos
and squarks are below a few TeV are heavily constrained, especially in models where
the lightest neutralino is assumed to be the lightest supersymmetric particle (LSP). The
ATLAS study has shown that the exclusion limits are particularly strong in simplified
models where certain sparticles are assumed to be decoupled, narrowing the viable susy

parameter space considerably. Figure 2.3 shows the fraction of model points excluded
in the pMSSM for the case of the right up and down squark. The plots were generated
using simplified models and run 1 data from the ATLAS experiment.

Despite these significant constraints, the ATLAS pMSSM study highlighted several
limitations. One critical issue is the reliance on certain assumptions that may bias the
results; for instance, the exclusion limits depend heavily on the assumed mass hierarchy
and the specific decay chains considered. In scenarios where the mass difference between
sparticles is small, the resulting soft leptons or jets that may evade detection, thus leaving
certain regions of the parameter space unconstrained. The constraints derived from these
results suffer from many of the factors discussed in the simplified model case (Section
2.3.3) such as minimal assumptions, kinematic representativity and reinterpretation in
complete Models. Moreover, the pMSSM framework, while more manageable than the
full MSSM, still involves a 19-dimensional parameter space. Such large dimensionality
is too large for a Cartesian grid, so statistical sampling techniques were required to
select model points. Such a complex study inevitably introduces potential issues, such as
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the choices made in the parameter scans, such as flat priors that may overlook regions
with non-trivial correlations between parameters. Then, there is data reduction and
filtration; this is common practice when the processing chains contain bottlenecks like
complicated calculations or simulation stages. In these situations, the model point being
considered must be of interest and not be one that has already been excluded due to
some other experimental result or theoretical condition. For this reason, conditionals
are imposed to filter the selected model points; an example would be upper limits on
cross-sections, as only points with low cross-sections are considered not excluded. These
kinds of conditionals inevitably introduce some bias, as thresholds must be implemented
by hand.

Another limitation is the experimental sensitivity, which is finite and dependent on
the integrated luminosity and the specific analysis techniques employed. As the LHC
continues to accumulate more data and as experimental techniques evolve, it is plausible
that regions of the parameter space previously deemed excluded could reemerge or that
new constraints could be imposed on currently allowed regions. Moreover, the ATLAS
study primarily focuses on specific decay channels that are most accessible experimentally,
but alternative decay modes or more exotic susy scenarios, such as those involving long-
lived particles, are less stringently tested and could provide viable paths within the susy

framework that evade current constraints.

The paper "Status of Searches for Electroweak-Scale Supersymmetry after LHC Run
2" [116] provides a comprehensive review of the results from the LHC following its second
data-taking period. LHC Run 2 delivered proton-proton collisions at a

√
s = 13 TeV

and an integrated luminosity of 140fb−1. Despite the extensive data collected by the
ATLAS and CMS experiments, no conclusive evidence was found for the production
of supersymmetric particles. The search encompassed various experimental signatures
and phenomenological scenarios, yet the null results have led to increasingly stringent
constraints on susy models. For instance, Figure 2.4 the masses of the gluinos in gluino
to LSP, plot (a), and top squarks, stop to LSP plot (b), are now constrained to be above
2.2 TeV and 1.1 TeV, respectively. The left-hand plot (a) shows the gluino-neutralino
plane for different simplified models, while the right-hand plot (b) shows top squark
(stop) pair production for dedicated ATLAS searches. These constraints challenge older
notions of naturalness but align with more modern theoretical frameworks that consider
the string landscape and refined susy breaking scenarios.

The paper also highlights the importance of the LHC’s future phases, especially
Run 3, which is expected to provide higher sensitivity due to detector and accelerator
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(a) Gluino & lightest neutralino mass plane (b) Squark & lightest neutralino mass plan

Figure 2.4.: Gluino to LSP (a) and stop to LSP (b) summary plot of mass exclusion. Left-
hand plot (a) shows the gluino-neutralino plane for different simplified models.
Right-hand plot (b) shows top squark (stop) pair production for dedicated ATLAS
searches (b) (Figures 1 and 6 from ATLAS [117]). According to the legend, each
curve refers to a different decay mode and is assumed to proceed with 100%
branching ratio. All data is based on pp collision data taken at

√
s = 13 TeV

upgrades. These improvements are essential for probing deeper into unknown parameter
spaces during Run 2. The focus is shifting towards more challenging signatures, such
as compressed mass spectra, which are harder to detect but remain consistent with the
absence of signals in previous searches. In summary, while susy has not yet been observed,
its exclusion is far from complete, and the upcoming Run 3 offers new opportunities to
potentially uncover supersymmetric particles.[116, 117]

The implications of LHC Run 3 for susy are significant, particularly in the quest to
probe more challenging regions of parameter space that were less accessible in earlier runs.
The primary objective of Run 3 is to continue the search for susy particles with improved
sensitivity. With a higher centre-of-mass energy of

√
s = 14 TeV and an anticipated

increase in integrated luminosity beyond 300fb−1, Run 3 aims to explore scenarios that
involve compressed mass spectra and more elusive particles, such as electroweakinos,
which were not excluded in previous searches.

One key area of focus is the search for susy models that involve near-degenerate mass
states, where the mass difference between supersymmetric particles and their Standard
Model counterparts is small, making detection more difficult. These models have become
more relevant due to the stringent constraints placed on more traditional susy searches
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that assumed larger mass differences. Detecting new particles with near-degenerate mass
states presents significant experimental challenges due to the difficulty in distinguishing
their signals from background noise and each other. In the context of susy, near-
degenerate mass spectra often arise in scenarios such as compressed susy models, where
the mass difference between the lightest supersymmetric particles is very small. This
small mass difference leads to low-energy decay products, such as soft leptons or jets,
which are challenging to detect [118].

Another implication of Run 3 is the potential to explore models of susy that are
embedded within broader theoretical frameworks, such as the string theory landscape
or models incorporating extra dimensions, which predict higher sparticle masses or
non-standard signatures.

Additionally, Run 3 will provide an opportunity to refine exclusion limits on the
masses of key particles like gluinos and squarks, which are expected to push current
bounds even higher, further challenging theories based on older naturalness arguments. If
no evidence of susy is found, this would deepen the exclusion of certain susy models but
would not necessarily rule out supersymmetry as a whole, especially in light of theoretical
developments that suggest susy may manifest in more subtle or indirect ways.

Despite the absence of experimental evidence for superpartners, the framework
remains fertile for phenomenological investigation. Ongoing and future experimental
efforts persist in probing the extensive parameter space inherent to susy models, seeking
potential signals that may corroborate its predictions [81]. As detailed in this chapter,
theoretical constructs such as the superpotential, supersymmetry breaking mechanisms,
and the MSSM’s introduction refine our theoretical comprehension and guide experimental
searches by delineating the parameter space experiments should target. The models
discussed, particularly the simplified ones, serve as essential tools in testing the principles
of susy. They provide a systematic approach to studying potential signatures and their
implications in particle physics[76, 77].

The ongoing absence of empirical verification of susy does not undermine its theoreti-
cal elegance or utility as a research paradigm. On the contrary, it underscores the necessity
for comprehensive and nuanced approaches in theoretical modelling and experimental
design. There are currently hundreds of search analyses available for reinterpretation,
providing a wealth of data to test new susy models and develop the statistical methods
and tools that can be repurposed for future experimental data. As new data become
available from current and future high-energy physics experiments, the insights gained
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from the study of susy will continue to inform and shape the trajectory of particle
physics research. Thus, while supersymmetry has not yet been observed, its theoretical
frameworks and the rich phenomenology they encompass ensure that it remains a critical
area of study. The exploration of supersymmetric theories continues to be instrumental
in pushing the boundaries of our understanding of fundamental physics.
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Chapter 3.

Statistics for Collider Physics

The interpretation of data from high-energy particle collisions is inherently statistical,
necessitating the development and application of statistical techniques to discern signals
from background noise and to make precise predictions. The LHC at CERN represents the
forefront of this field, providing a wealth of data from particle collisions at unprecedented
energy scales. Analysing such data involves overcoming several challenges, such as the
sheer volume of data, the complexity of the physical processes involved, and the need for
rigorous statistical methods to identify known processes and validate discoveries.

This chapter will explore the statistical methodologies employed to understand collider
physics data. Starting from the fundamentals of probability, it will introduce concepts
and notation that will be used extensively throughout this thesis. We will move through
the axioms of probability, Bayesian and frequentist interpretations, into the derivations of
distributions that describe experimental observations. This chapter intends to cement the
theoretical foundations and the practical implementations of these methods, providing
a comprehensive overview of their application in the analysis of collider data. This
exploration will be framed within the context of recent experimental results from the
LHC, highlighting the ongoing developments and challenges in the field.

3.1. Fundamentals of probability

Defining the term "probability" is essential as it forms the foundation of statistical
analysis. While probability has been intuitively understood and applied in various forms
for centuries, its formal mathematical definition was established in the early 20th century
by Andrey Kolmogorov [119]. Let’s consider a set of random events, denoted as Ei, where
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each event Ei is mutually exclusive, i.e. if one event occurs, none of the other events can
co-occur; they are disjoint or mutually exclusive. The probability P associated with a
particular event Ei is defined according to the following axioms, which are known as the
Kolmogorov axioms [7, 120]:

1. Non-negativity For any event Ei, the probability P (Ei) is a non-negative number:

P (Ei) ≥ 0 . (3.1)

2. Normalisation The probability of the entire sample space S, which represents the
set of all possible outcomes, is equal to one∑

i

P (Ei) = P (S) = 1 . (3.2)

3. Additivity For any countable sequence of mutually exclusive events E1, E2, . . . ,
the probability of the union of these events is equal to the sum of their probabilities:

P

(⋃
i=1

Ei

)
=
∑
i=1

P (Ei) . (3.3)

These axioms collectively define the mathematical properties of a probability measure.
They provide the basis for calculating the likelihood of events within a well-defined
probability space. The axioms are fundamentally grounded in set theory and provide the
foundational basis from which various properties of probability can be systematically
derived. To illustrate, consider two subsets of events, A and B, within the universal event
space S. These subsets are non-exclusive, meaning that at least one event element, Ei,
is common to A and B. In other words, A and B are not disjoint, allowing for overlap
between the two subsets. The inclusion-exclusion principle describes the probability of
an event occurring that belongs to either A alone, B alone, or both A and B. According
to this principle, the probability of the union of A and B is given by:

P (A ∪B) = P (A) + P (B)− P (A ∩B) , (3.4)

In this expression, P (A) denotes the probability of an event in subset A, P (B) denotes
the probability of an event in subset B, and P (A ∩B) represents the probability of an
event that is common to both A and B. The subtraction of P (A ∩B) ensures that the
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A B

(a) P (A)

A B

(b) P (B)

A B

(c) Intersection P (A ∩B)

A B

(d) Union P (A ∪B)

A B

(e) Conditional P (A | B)

Figure 3.1.: Plots a through d show the probability relations that emerge from the Kolmogorov
axioms [119], plot e introduces the conditional relation that is the probability of
A given B where the darker shaded area illustrates the conditional overlap.

probability of events occurring in both subsets is not double-counted. This relationship
is shown as a series of Venn diagrams in Figure 3.1 where P (A), P (B), and P (A ∪ B)
are subplots a, b and d, respectively.

3.1.1. Bayes’ theorem

Expanding on these relations, consider an event Ei that is known to belong to the set
B; what would be the probability that the event Ei also belongs to the set A? This
conditional probability is denoted by P (A | B) and is interpreted as “the probability of
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A given B.” Conditional probability provides a mechanism to update the probability
estimates based on additional information, in this case, the occurrence of an event in
B. This relation is depicted in the lower plot (e) of Figure 3.1; the formal definition of
conditional probability is given by

P (A | B) =
P (A ∩B)

P (B)
. (3.5)

This equation states that the conditional probability P (A | B) is equal to the probability
of the intersection of events A and B (i.e., the event that occurs in both A and B) divided
by the probability of B. It is important to note that this definition assumes P (B) > 0

since the conditional probability is only meaningful when the conditioning event B has
a non-zero probability. Looking at Figure 3.1, it is easy to see that the intersection
P (A ∩B) is equivalent to P (B ∩ A), putting this into Equation (3.5) provides the the
following relation

P (A ∩B) = P (A | B) · P (B) = P (B | A) · P (A) . (3.6)

This is a significant result as it provides a way to invert conditional probabilities, dividing
through by P (A) or P (B), which results in the central equation of Bayes’ theorem:

P (B | A) = P (A | B) · P (B)

P (A)
⇒ P (A | B) =

P (B | A) · P (A)
P (B)

. (3.7)

This equation can be generalised by considering that the event Ei belongs to a single
partition Λi of the sample space. If B is any event, the probability of B can now be
written as

P (B) =
∑
i

P (B ∩ Λi) =
∑
i

P (B | Λi) · P (Λi) . (3.8)

Putting this relation back into Equation (3.7) gives an extended, generalised form of
Bayes’ theorem

P (Λi | B) =
P (B | Λi) · P (Λi)∑
i P (B | Λi)P (Λi)

. (3.9)
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A common representation of this equation is often used where the individual components
have symbolic representations

π(Λi | B) =
L(B | Λi) · π(Λi)

Z(B)
, (3.10)

where π(Λi | B) is referred to as the posterior, L(B | Λi) the likelihood, π(Λi) the
prior and Z(B) as the evidence. Up to this point, the language has been restricted to
the language of events and sets, which has provided a solid framework for statistical
derivations. However, to bring the statistics into the context of experimental physics, it
is practical to consider Equation (3.10) in terms of hypotheses H and Data D

π(Hypothesis | Data) = π(H | D) =
L(D | H) · π(H)

Z(D)
. (3.11)

In this context, it is helpful to break down Equation (3.11) and describe what each
component represents in terms of H and D.

Posterior, π(H | D): The posterior distribution is the probability of the hypothesis
H given the observed data B. The posterior combines prior knowledge about H with
the information provided by the data. In Bayesian inference, the posterior is of primary
interest, as it reflects the revised beliefs about the parameter H given the observed
data D. Using π for the symbolic representation identifies the posterior as an updated
probability distribution of the parameter H that can be used as the prior for in an
iterative procedure.

Likelihood L(D | H): The likelihood quantifies how well the hypothesis H explains
the observed data D. It is the probability of the data given the hypothesis. In practice,
the likelihood function plays a crucial role in the inference process, as it indicates the
relative plausibility of different hypotheses based on the observed evidence. The likelihood
is not a probability distribution over H but a function of H for fixed D. The likelihood
is covered in more detail in Section 3.3, as it plays a large role in frequentist analysis and
particle physics, especially in hypothesis testing.

Prior π(H): The prior probability represents the initial degree of belief in the
hypothesis before any data is observed. It reflects prior knowledge or assumptions
about the parameter or hypothesis. The choice of prior can be described as informative,
incorporating specific knowledge, or non-informative, representing a state of relative
ignorance about H.
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An informative prior incorporates specific knowledge or assumptions about the
hypothesis. This type of prior is typically derived from previous research and is often a
previously calculated posterior result. An informative prior will influence, and possibly
bias, the posterior distribution, especially when the amount of new data is limited. For
instance, if previous experiments have suggested that a particular parameter is likely
within a specific range, the prior distribution can be given a higher weight to that range,
reflecting a higher degree of confidence in that parameter value.

Conversely, a non-informative prior, also known as an objective or reference prior,
is designed to have minimal influence on the posterior distribution. Non-informative
priors are employed when there is little to no previous knowledge about the hypothesis,
representing a state of relative ignorance. Such priors are often chosen to be uniform
over the parameter space or to have large variances, allowing the data to play a more
dominant role in shaping the posterior distribution. A non-informative prior tries to
avoid introducing subjective biases, aiming instead for an analysis driven primarily by
the observed data. A classic choice of such a prior is the Jeffreys prior, which is defined
by the square root of the determinant of the Fisher information matrix, I(θ) (see Section
3.3.2), for a parameter θ. Formally, the Jeffreys prior π(θ) is expressed as

π(θ) ∝
√
det(I(θ)) , (3.12)

where I represents the Fisher information with respect to the likelihood p(x|θ). This
formulation is invariant under reparameterisation, making it a popular choice in objective
Bayesian analysis [121, 122].

There is a continuum of choices between maximally and minimally informative priors.
The degree of informativeness of the prior should be carefully considered in light of the
specific context and objectives of the analysis, as it can significantly impact the resulting
inferences [120]

Evidence Z(D): The evidence, or marginal likelihood Z(D), is the normalising
constant in Bayes’ theorem. It is the total probability of the observed data D under all
possible hypotheses. It is obtained by summing (or integrating, in the case of continuous
hypotheses) the likelihood over the entire space of hypotheses, weighted by their prior
probabilities:

Z(D) = L(D) =
∑
i

L(D | H) · π(H) (discrete case) , (3.13)
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Z(D) =

∫
L(D | H) · π(H) dH (continuous case) . (3.14)

The evidence is crucial for model comparison as it allows for the assessment of how well
different hypotheses explain the observed data, taking into account both the fit of the
model (through the likelihood) and the complexity or plausibility of the model (through
the prior).

A fundamental concept in Bayesian inference is the posterior odds ratio, which
quantifies how the odds of one hypothesis relative to another update after observing data.
Given two competing hypotheses, H1 and H2, the posterior odds ratio is defined as

Posterior Odds =
P (H1|D)

P (H2|D)
=

(
P (D|H1)

P (D|H2)

)
×
(
P (H1)

P (H2)

)
, (3.15)

where P (H1|D) and P (H2|D) are the posterior probabilities given data D, while
P (H1)/P (H2) is the prior odds ratio. The term P (D|H1)/P (D|H2) represents how
well the data supports one hypothesis over the other and is known as the Bayes factor
[122]. The posterior odds ratio incorporates both prior beliefs and the evidence from the
data, allowing for a comprehensive update of beliefs in light of new observations. The
Bayes factor is a likelihood ratio that serves as a measure of the strength of evidence
provided by the data in favour of one hypothesis relative to another. It is formally defined
as

BF12 =
P (D|H1)

P (D|H2)
, (3.16)

where BF12 > 1 indicates that the data favours H1 over H2, while BF12 < 1 suggests
the opposite [123]. The Bayes factor plays a crucial role in Bayesian model comparison
as it quantifies the relative plausibility of competing hypotheses independent of prior
beliefs. However, its interpretation depends on the prior odds: a high Bayes factor can
significantly shift posterior odds if the prior odds are not strongly against the favoured
hypothesis. Since the posterior odds ratio is the product of the prior odds and the Bayes
factor, the latter functions as a bridge between prior beliefs and posterior inference,
directly influencing the extent to which the observed data modifies the initial hypothesis
preference.

In Bayesian inference, Bayes’ theorem provides a systematic way to update the
probability of a hypothesis as new data becomes available. The posterior probability
P (H | B) combines the prior information π(H) with the new evidence provided by the
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likelihood L(B | H), with the evidence Z(B) ensuring that the posterior distribution
sums (or integrates) to one, maintaining a valid probability distribution.

3.1.2. Frequentist interpretation

So far, probability has been presented as a stochastic interpretation of abstract events
within a region or domain. Extending the logic into conditional probabilities allowed us
to derive the Bayesian interpretation. However, there is a definition of probability that
requires much less abstraction and is arguably more intuitive

P (X) = lim
N→∞

1

N

∑
i

Xi, Xi ∈ {0, 1} . (3.17)

This is Frequentist probability where P (X) is the asymptotic proportion of trials for
which an X is true, or in the boolean sense, X = 1. The classic example of this is the
simple coin toss, which, under ideal conditions, provides a 50 % chance of either heads or
tails. In the frequentist interpretation of probability, the probability of an event is defined
as the long-run relative frequency with which the event occurs when an experiment is
repeated under identical conditions. Consequently, this conceptualisation of probability is
inherently tied to repeatable experiments. For instance, when considering the probability
of obtaining a specific number of heads in one hundred tosses of a fair coin, the frequentist
framework is applicable because the experiment of tossing the coin can be repeated an
arbitrary number of times, allowing the probability to be estimated through the observed
frequency of outcomes.

Frequentist statistics is dominant in experimental collider physics due to its well-
established framework for hypothesis testing (Chapter 4) and its historical alignment with
the field’s experimental practices. Particle physics experiments are, by design, repeatable,
produce large amounts of data and involve testing specific hypotheses about the existence
or properties of particles, which aligns naturally with the frequentist approach. But still,
there is only one universe and only one true set of priors.

3.2. Probability mass and density functions

In statistical theory, probability mass functions (PMFs) and probability density functions
(PDFs) are fundamental tools for characterising random variables. These functions provide
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a mathematical framework for describing the distribution of discrete and continuous
variables. For a discrete random variable X, the probability mass function pX(x) assigns
a probability to each possible value of X, where x represents a possible outcome of X,
meaning that P (X = x) denotes the probability that X takes the value x. The PMF
satisfies the Kolmogorov axioms, ensuring that the total probability across all possible
outcomes is unity ∑

x

pX(x) =
∑
x

P (X = x) = 1 . (3.18)

In contrast, for a continuous random variable Y , the probability density function f(y)

describes the relative likelihood of Y taking a particular value. Unlike the PMF, the PDF
does not assign a direct probability to any specific value of Y . Instead, the probability
that Y lies within an interval [a, b] is the integral of the PDF over that interval. Consider
a discrete random variable with values yi and a small interval δy around each yi. Defining
a density function f(y) such that

P (a ≤ Y ≤ b) ≈
∑
yi∈[a,b]

pi ≈
∑
yi∈[a,b]

f(yi)δy , (3.19)

we take the limit as ∆y→ 0, replacing the summation with an integral:

P (a ≤ Y ≤ b) =

∫ b

a

f(y) dy, (3.20)

where f(y) is the probability density function (PDF) and must satisfy the same properties
as the discrete case in the limit of δyi → 0, such that

f(y) ≥ 0 for all y,∫ ∞

−∞
f(y) dy = 1 ,

(3.21)

ensuring that the area under the f(y) curve equals one, reflecting the total probability.

The distinction between PMFs and PDFs is critical in statistical analysis as it guides
the appropriate methods for computing probabilities and deriving inferential statistics.
This section will cover some fundamental concepts related to the PMF and PDF functions
and define a selection of distributions encountered in collider statistics relevant to later
chapters.
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3.2.1. Expectation values and moments

Given a probability density function (PDF) defined for a random variable x, the expecta-
tion value of some function g(x) is given by

⟨g(x)⟩ =
∫ ∞

−∞
g(x)f(x) dx , (3.22)

where f(x) is the PDF of the random variable x and ⟨g(x)⟩ represents the expected value
or mean of the function g(x) under the distribution defined by f(x). Statistical moments,
specifically the central moments about the mean, are essential tools for characterising
distributions. The central moments are a common applications of Equation (3.22) where
the n-th central moment of a random variable x is defined as [124]

µn = ⟨xn⟩ =
∫ ∞

−∞
xnf(x) dx . (3.23)

The first moment, µ1, represents the mean of the distribution and provides a measure of
the central location of the data. The mean is fundamental in descriptive and inferential
statistics, as it is a point of reference for other moments [125]. The second moment µ2,
commonly expressed as σ2, is the variance of the distribution, defined as

σ2 = ⟨(x− µ1)
2⟩ =

∫ ∞

−∞
(x− µ1)

2f(x) dx . (3.24)

The variance quantifies the dispersion of the data around the mean, offering insight into
the variability within the dataset. The square root of the variance, σ, is the standard
deviation often referred to as the scale or width of the distribution.

Higher-order moments provide additional information about the distribution’s shape.
The third moment, normalised by the cube of the standard deviation, is known as the
skewness:

γ1 =
⟨(x− µ1)

3⟩
σ3 . (3.25)

Skewness measures the asymmetry of the distribution around its mean. A positive
skewness indicates a distribution with a longer right tail, while a negative skewness
indicates a longer left tail. A skewness of zero corresponds to a symmetric distribution.
A non-zero skewness (and higher moments) will also result in divergence between the
mean, mode and median values. The fourth moment, normalised by the fourth power of
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the standard deviation, the kurtosis

γ2 =
⟨(x− µ1)

4⟩
σ4 , (3.26)

Kurtosis measures the "tailedness" of the distribution, indicating the presence of outliers.
A high kurtosis implies heavy tails, suggesting that extreme values are more likely than
in a normal distribution, whereas a low kurtosis indicates lighter tails. In practice, excess
kurtosis, defined as γ2 − 3, is often used to compare a distribution’s kurtosis to that of a
normal distribution, which has a kurtosis of 3.

Together, the mean, variance, skewness, and kurtosis form the basis for understanding
and describing the shape and characteristics of a probability distribution. The moments
beyond the fourth are rarely used in practice but provide further detail if necessary.
Statistical moments are powerful tools in both theoretical and applied statistics. They
enable the characterisation of distributions beyond mere central tendency.

3.2.2. The binomial distributions

To understand the binomial distribution, let’s return to the coin-toss example raised when
discussing the frequentist interpretation. Figure 3.2 shows the frequency distribution
of the sum k of n binary trials, specifically, taking the sum of the outcomes from a
repeated coin-toss experiment. Each histogram illustrates the results of N repetitions,
with the number of binary trials n increasing from left to right. The histogram in the
upper left-hand plot of Figure 3.2, corresponding to n = 1, shows N = 10, 000 repeats
of a single binary event, resulting in an approximately equal probability of obtaining
either k = 0 or k = 1. This reflects the inherent symmetry of a fair coin-toss, where the
probabilities of heads (1) and tails (0) are both 0.5. Moving to the right, the value of
n increases, expanding the range of possible outcomes. The mean and variance of the
distribution are np and np(1− p), where p represents the probability of success in each
binary trial (p = 0.5). These are the expectation value and variance of the binomial
distribution with parameters k, n and p,

P (k, n, p) =

(
n

k

)
pk(1− p)n−k . (3.27)

The red points correspond to the expected frequency value of each bin according
to the binomial PMF, while the solid red line demonstrates the convergence to the
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Figure 3.2.: Histograms showing the frequencies of values obtained by taking the sum of
n binary trials (i.e. a coin-toss) repeated multiple times (N). The left-hand
plots show 10,000 repeats of a single binary event (n = 1) with a near-equal
split between 0 and 1. Moving to the right, the number of events increases, and
thus, the range of possible values increases, with the mean value being n/2 = np
where p = 0.5. The red points indicate the expected results using the Binomial
distribution and the black solid line illustrates how the distribution approaches
the normal distribution at the limit of large n.

normal distribution at large n (this is covered in greater detail later in the chapter, see
Section 3.2.4)

3.2.3. The Poisson distribution

The Poisson distribution can be understood as a limiting case of the binomial distribution
(Equation (3.27)). This relationship emerges when the number of trials n becomes
infinitely large, while the product λ = np, representing the expected number of successes,
remains finite. To elaborate, the binomial distribution describes the probability of
obtaining a fixed number of successes in a series of n independent trials, each with a
success probability p. Redefining p as λ/n Equation (3.27) can be rewritten as

P (X = k, n, λ) =
λk

k!

n!

(n− k)!nk

(
1− λ

n

)n(
1− λ

n

)−k
. (3.28)

In this limits of n→ ∞ the terms containing n become

lim
n→∞

n!

(n− k)!nk
=
n(n− 1)...(n− k + 1)

nk
= 1

lim
n→∞

(
1− λ

n

)n
= e−λ

lim
n→∞

(
1− λ

n

)−k
= 1 ,

(3.29)
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giving the Poisson distribution

P (X = k, λ) =
λke−λ

k!
, k ∈ Z+ . (3.30)

The binomial distribution converges to the Poisson distribution as n increases without
bound and p correspondingly decreases such that the product λ = np remains fixed.
Mathematically, Equation (3.29) is a straightforward exercise in limits; however, the
physical interpretation of this limit can be hard to visualise; One way to do this is to
consider that the Poisson distribution expresses the probability of a given number of
events occurring in a fixed interval. Looking back to the previous Binomial example,
consider the coin-toss shown in Figure 3.2; one might ask the question, "Given N repeated
trials of counting the number heads in n coin-tosses, where n is an even number, what is
the distribution of k being equal to the expectation value?" Looking at Figure 3.2, it
is clear that as n increases, the probability of k from a single trial being equal to any
given value between 0 and n reduces. The probability that any single trial is equal to
the expectation is given by:

P (K,N, Pn) =

(
N

K

)
PK
n (1− Pn)

N−K , (3.31)

where Pn is the Binomial PMF function (Equation (3.27)) evaluated at the expectation
value np and K is the the successful trail defined as k = np. The expectation of value of
Equation (3.31) is simply NPn with a variance of NPn(1− Pn). Following the Poisson
limit of Pn going to zero while N tends to infinity is equivalent to the limit of N → ∞ and
n→ ∞. For example, in a single trial, a coin is flipped twice (n = 2), and the number
of heads is counted, giving three possible outcomes: 0, 1, and 2, with an expectation
value of np = n/2 = 1. If this experiment is repeated one thousand times (N = 1, 000),
one would expect around 500 instances of a trial outcome equal to 1. Repeating this
experiment many times produces the distribution shown in the upper left-hand plot of
Figure 3.3, and as expected, the central mean value sits at 500. Moving to the right,
the number of flips per trial n increases, increasing the possible outcomes. With more
possible outcomes, the probability that a single trial will equal the expectation value (Pn)
decreases. Each plot shows the binned results (with integer spacing) of the trails, along
with the expected frequency according to both the binomial and Poisson distributions
(Equations 3.31 and 3.30). As Pn decreases, so does the difference between the binomial
and Poisson distributions shown in the residuals below each plot. The convergence of
the two distributions is quantified by the Kullback–Leibler divergence (DKL) using the
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Figure 3.3.: Histograms displaying the results of 100, 000 bootstrap, each consisting of N =
1, 000 trials. In each trial, a coin is flipped n times, and a trial is considered
successful if the number of heads, k, matches the expected value np. For example,
if a coin is tossed twice (n = 2) with a fair probability of heads (p = 0.5), a
successful trial occurs when exactly one head is observed, as the expectation is
np = 2× 0.5 = 1. Thus for 1, 000 trials with n = 2, one would expect to see
500± 16 heads. As n increases, the probability Pn of observing k trials equal to
the expectation value np approaches zero, this pushes the distribution closer to
the Poisson approximation (3.29), which is shown in the residuals along with the
decreasing Kullback-Leibler divergence.

following equation [126]

DKL(PA || PB) =
∑
x

PA(x) log

(
PA(x)

PB(x)

)
, (3.32)

where PA and PB are the two probability distributions of interest. The Kullback-Leibler
divergence is a measure of relative entropy or a measure of information variation [127].
Looking at the residuals in Figure 3.3, it is clear that as Pn → 0, the two distributions
converge and the DKL "distance" reduces; this demonstrates how in the limit of large N
and small Pn the binomial distribution can be approximated by the Poisson.

The Poisson distribution is widely used in collider physics due to the discrete and
stochastic nature of particle-detection processes. This application is grounded in several
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fundamental properties of the Poisson distribution that align well with the characteristics
of particle events.

Firstly, the Poisson distribution describes events occurring in a fixed interval; this is
an appropriate choice for modelling the number of events happening at a given rate. In
collider physics, the rate is defined by the relationship between instantaneous luminosity
L(t), integrated luminosity Lint, cross-section σ and count N :

N = σLint = σ

∫ T

0

L(t) dt

dN

dt
= σL(t) .

(3.33)

Here, we can see that the integrated luminosity measures how much potential data has
been taken in time T [7]. In practice, expressing the rate in terms of unit time fails
to capture the relationship between particle process and beam energy. Thus, the rate
is expressed as per unit integrated luminosity, a continuous measurement of the total
number of collisions that occur over time and is usually expressed in inverse femtobarns
(fb−1). Therefore, the rate of such detections can be modelled as a Poisson process,
where the mean number of events, denoted as λ where λ = σLint, represents the expected
number of particles detected in a given interval.

The suitability of Poisson statistics in collider physics also stems from its applicability
in scenarios where the mean event rate λ is low, but the number of trials is large. Given
that some particle interactions are often rare events, the assumption of a small λ is
realistic. This aligns with the conditions frequently encountered in experiments, where
the total number of particles or events under observation is very large, while only a small
fraction is detected or measured.

3.2.4. The normal distribution & the central limit theorem

The normal distribution, or Gaussian distribution, is one of statistics’ most fundamental
and widely used probability distributions. It is defined for a continuous random variable
and is characterised by its bell-shaped curve, which is symmetric about the mean. The
general form of the probability density function of a normal distribution is given by:

N (x, µ, σ) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (3.34)
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Figure 3.4.: The Kullback–Leibler divergence between the Binomial (PB) and normal (N )
distributions as n increases. The compared values are taken as integers between
the 0.01% and 99.99% extent of the binomial distribution evaluated at n and p.
As n increases, the normal distribution becomes a better approximation to the
Binomial distribution as per the Central Limit Theorem (CLT).

where µ is the mean of the distribution, and σ2 is the variance. The mean µ represents
the location parameter, indicating the centre of the distribution, while the variance σ2

describes the spread or dispersion around the mean. The scale parameter or standard
deviation, σ, is an important metric in experimental physics as it provides a standardised
description of distance from the mean; this will be discussed further in Chapter 4.2 The
normal distribution exhibits several key properties; first, as noted earlier, it is symmetric
about its mean, implying that P (X ≤ µ) = P (X ≥ µ) = 0.5. The distribution is
unimodal, meaning it has a single peak at the mean µ and is fully determined by its
first two moments: the mean µ and the variance σ2. The normal distribution is also
known for its asymptotic behaviour; as x moves further away from the mean, the PDF
approaches but never reaches zero. This implies that all possible outcomes, no matter
how extreme, have a non-zero probability, although very large deviations from the mean
are highly unlikely. A particular case of the normal distribution is the standard normal
distribution (N (0, 1)), which has a mean of zero and a variance of one. The “standardised”
or “reduced” form of the normal PDF is often written in terms of z

f(z) = N (z, 0, 1) =
1√
2π

exp

(
−z

2

2

)
, (3.35)

where z = x−µx
σx

is the standard score, or z-score. The standard normal distribution
or normalised Gaussian is often used in statistical hypothesis testing, particularly in
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z-tests, where sample means are compared to population means, assuming the underlying
population follows a normal distribution.

A series of coin flips were used as an example of how the binomial distribution
can be used to calculate the probability of successful trials, i.e. the number of heads
(k) from n flips (Section 3.2.2). In the lower plots of Figure 3.2, it was shown as n
continued to increase, the distribution began to approximate a normal distribution.
Figure 3.4 shows this convergence can be seen using the Kullback–Leibler divergence
(DKL, Equation (3.32)). This convergence is consistent with the Central Limit Theorem
(CLT), a fundamental result in probability theory and statistics. CLT states that, given
a sufficiently large sample size n, the distribution of the sum (or equivalently, the sample
mean) of independent and identically distributed (i.i.d.) random variables, each with
finite mean E[Xi] = µ and variance V [Xi] = σ2, will tend to approximate a normal
distribution, regardless of the original distribution of the variables. Mathematically, if
X1, X2, . . . , Xn are i.i.d. random variables with mean µ and variance σ2, the standardised
sum Zn is defined as:

Zn =
1√
n

n∑
i=1

Xi − µ

σ
. (3.36)

As n approaches infinity, the distribution of Zn converges to a normal distribution N (0, 1)

[128]. Specifically, the convergence will satisfy the following equation:

lim
n→∞

P
{
Zn ≤ x

}
= PX(x) , (3.37)

where PX(x) is the cumulative distribution of the standard normal variable given by:

PX(x) =

∫ x

−∞
N (0, 1) dx =

1√
2π

∫ x

−∞
e−

x
2

2 dx , (3.38)

This result is crucial because it justifies using normal distribution approximations where
n is very large, even if the underlying data is not normally distributed.

3.2.5. The χ2 distribution

The χ2 distribution is widely used in physics and statistics, particularly in the context of
hypothesis testing and inferential statistics. It is a continuous probability distribution
that is defined as a sum of the squares of k independent standard normal random variables.
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Mathematically, if Z1, Z2, . . . , Zk are independent and identically distributed standard
normal variables, then the random variable X given by:

X =
k∑
i=1

Z2
i , (3.39)

where X follows a χ2 distribution with k degrees of freedom, denoted as X ∼χ2(k). The
parameter k, known as the degrees of freedom, is a positive integer that is important in
determining the shape of the distribution. The probability density function (PDF) of the
χ2 distribution is given by:

f(x, k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2 for x > 0 , (3.40)

where Γ(·) denotes the Gamma function, the commonly used extension of the factorial
function, defined as:

Γ(k) =

∫ ∞

0

tk−1e−t dt . (3.41)

It is important to note that the χ2 distribution is a specific case of the gamma distribution,
a distribution parameterised by a shape parameter κ and a scale parameter θ, has a PDF
given by

f(x, κ, θ) =
1

Γ(κ)θκ
xκ−1e−x/θ, x > 0 . (3.42)

The shape parameter κ governs the distribution’s form, and the scale parameter θ
stretches or compresses the distribution along the x-axis. When κ is an integer, the
gamma distribution is known as the Erlang distribution, which describes the time until
the nth event of a Poisson process with a rate of λ [129]. The χ2 distribution emerges as
a special case of the gamma distribution when the shape parameter is κ = k

2
and the

scale parameter is θ = 2, where k represents the degrees of freedom.

Returning to the χ2 distribution, the PDF is positively skewed, especially for small
k. As k increases, the distribution becomes more symmetric and approaches a normal
distribution in accordance with Central Limit Theorem. The mean and variance of the
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χ2 distribution are directly related to the degrees of freedom:

E[X] = k

and

Var[X] = 2k .

(3.43)

These properties imply that as the degrees of freedom increase, the mean and variance
both increase linearly, leading to a broader distribution. Additionally, the skewness of
the distribution is given by

√
8/k, which indicates that the distribution becomes less

skewed as k increases.

The χ2 distribution is widely used in various statistical procedures. One of its primary
applications is in the χ2 test, which assesses the goodness-of-fit of an observed distribution
to a theoretical one. In the context of a Poisson random variable where Ei is the variance,
the χ2 statistic is computed as:

χ2 =
n∑
i=1

(Oi − Ei)
2

Ei
, (3.44)

where Oi and Ei are the observed and expected data, respectively. This statistic follows
a χ2 distribution under the null hypothesis, determining the significance of deviations
between observed and expected values. A more generalised test can be constructed using
the uncertainty on the observation σi

χ2 =
n∑
i=1

(Oi − Ei)
2

σ2
i

. (3.45)

In linear algebra, the χ2 statistic can be expressed as a quadratic form involving the
covariance matrix of the residuals Σ:

χ2 = XTΣ−1X , (3.46)

where X = O− E is the vector of residuals (differences between observed and expected
values), and Σ is the covariance matrix of the residuals. In many cases, Σ is a diagonal
matrix with the expected values Ei on the diagonal, i.e., Σ = diag(Ei)

χ2 = XTdiag
(

1

Ei

)
X =

∑
i

X2
i

Ei
. (3.47)
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This returns the traditional scalar expression of the χ2 statistic shown in Equation (3.44).

3.2.6. The beta distribution

The beta distribution is a continuous probability distribution defined over the interval
[0, 1] and is characterised by two shape parameters, α and β. It is often used to model
random variables that represent probabilities, proportions or rates that lie within the
interval [0, 1], which makes it particularly useful in Bayesian statistics and various
applications in experimental physics [130, 131]. The probability density function (PDF)
of the beta distribution is given by [132]:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, (3.48)

where 0 ≤ x ≤ 1, α > 0, β > 0, and B(α, β) is the beta function, defined as:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt . (3.49)

The beta function serves as a normalising constant to ensure that the integral of the
probability density function over [0, 1] equals 1. For integers α and β, the beta function
can be expressed in terms of the Gamma function as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (3.50)

This derivation links the beta distribution with the Gamma function (Equation (3.41)),
connecting it to other statistical distributions, such as the Gamma distribution. The first
two moments, mean and variance, are defined as

E[X] =
α

α + β
, Var[X] =

αβ

(α + β)2(α + β + 1)
. (3.51)

The shape parameters α and β control the behaviour of the distribution. Specifically, α
governs the distribution’s behaviour near x = 0, while β affects the shape near x = 1.
When α = β = 1, the beta distribution reduces to the uniform distribution over [0, 1].
When α > β, the distribution skews towards x = 1, and when α < β, it skews towards
x = 0 [133]. These shape parameters provide flexibility in modelling a wide range of
probabilistic behaviours.
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The beta distribution finds significant use in Bayesian statistics, where the prior
probability P (θ) can be chosen such that the posterior probability P (θ | D) takes the
same parametric form as the prior probability. Such a prior choice is called a conjugate
prior for the likelihood P (D | θ) [134, 135]. The beta distribution often serves as the
conjugate prior to the binomial distribution. This property simplifies the process of
updating the distribution in light of new experimental data. Consider a scenario where
the success probability of a particular outcome in an experiment, such as detecting a
specific particle, is unknown. A beta distribution with prior parameters α0 and β0 can be
chosen to represent prior beliefs about the probability of success. After observing n trials
with k successes, Bayes’ theorem is applied to update the prior distribution, resulting in
a posterior beta distribution with updated parameters [136]

αposterior = α0 + k, βposterior = β0 + (n− k) . (3.52)

This updated distribution provides a refined estimate of the probability of success,
accounting for both prior knowledge and the new data. The conjugacy of the beta
distribution in this context is highly advantageous, as it allows for analytical tractability
in Bayesian inference. This makes it popular for modelling uncertainties in detection
probabilities, branching ratios, and other binomial processes.

Beyond its role in Bayesian inference, the beta distribution is also utilised in parameter
estimation techniques such as maximum likelihood estimation (MLE) and the construction
of credible intervals for proportions. Given its support on the unit interval, it is well-
suited for modelling uncertainties in Monte Carlo simulations commonly used in particle
physics, where random variables confined to a range between 0 and 1 are frequent. For
instance, the beta distribution can model efficiency measurements, where the efficiency
is constrained to lie between 0 and 1, and the beta distribution naturally describes
uncertainties around these estimates.

The beta distribution is a versatile tool in particle physics, particularly in the context
of Bayesian analysis and Monte Carlo simulations. Its ability to model probabilities
and proportions makes it especially useful for handling binomial processes, parameter
estimation, and the quantification of uncertainties. The connection between the beta
distribution and the Gamma function further reinforces its importance in statistical
modelling, allowing for flexible and analytically tractable applications across various
probabilistic problems in the field.
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3.3. The likelihood

In Section 3.1, the likelihood function was introduced within the framework of Bayesian
statistics. More generally, the "likelihood" is central to statistical data analysis. While it
is closely related to "probability," it is essential to understand the distinction between
these two terms. In everyday language, "probability" and "likelihood" are often used
interchangeably; however, they have distinct meanings within the formal context of
statistics. This section will investigate the theoretical underpinnings of the likelihood
function and its role in statistical inference. Subsequently, the discussion will transition
to various applications of the likelihood function in collider physics. These applications
include but are not limited to the estimation of parameters, the construction of confidence
intervals, and the implementation of hypothesis testing across different scenarios.

3.3.1. The likelihood function

Fundamentally, the likelihood function, L(x|θ), quantifies the probability of observing
the data x given a set of parameters θ that define the theoretical model. It is defined as
L(x|θ) = P (data|θ), where P (data|θ) is the probability of the observed data given the
parameters θ. It is important to note that θ could be a known or unknown parameter or
vector of parameters in the parameter space Θ. It is often the case that θ is a vector.
If the parameters of interest are a subset of the available components, the remaining
parameters are referred to as nuisance parameters [137].

Constructing a likelihood function that describes a physical process often involves
complex processes, including the convolution of experimental influence with theoretical
predictions. For example, in searching for a Higgs boson, the likelihood function must
account for both the signal and background processes. The signal process is modelled by
the expected distribution of events based on the hypothesised production and decay of
the Higgs boson, parameterised by θs. The background processes, which can mimic the
signal, are modelled by a separate set of parameters θb. The total likelihood function is
then the product of the likelihoods for the signal and background components, reflecting
the combined probability of observing the data under both hypotheses. Mathematically,
if n independent events are observed, each with a probability P (xi|θ), the likelihood



Statistics for Collider Physics 75

function is given by

L(x|θ) =
n∏
i=1

P (xi|θ). (3.53)

The application and interpretation of the likelihood function L(x|θ) falls into multiple
schools of thought. In Section 3.1.1, the Bayesian interpretation of the likelihood was
presented as a distinct part of Bayes’ theorem. It is also worth considering three other
interpretations, namely the Fisherian, Neyman-Pearson and Likelihoodist frameworks
[121].

3.3.2. The Fisherian interpretation

The concept of likelihood, as introduced by Sir Ronald A. Fisher, plays an important role
in the development of statistical theory. The Fisherian approach to likelihoods provides
a framework through which the plausibility of different parameter values, given observed
data, can be assessed. Fisher’s development of the likelihood function and its related
concepts, such as maximum likelihood estimation (MLE), has profoundly influenced
modern statistical methods [138].

Although closely related, the likelihood function is distinct from the probability
function in the Fisherian framework. Consider a random variable X with a probability
density function f(x|θ), where θ is a parameter (or vector of parameters) characterising
the distribution. Consistent with previous definitions, the probability density function,
f(x|θ), is viewed as a function of x for a fixed θ. In contrast, the likelihood function
is obtained by considering x as fixed, while θ is treated as the variable. Formally, the
likelihood function is defined as:

L(θ|x) = f(x|θ) . (3.54)

This distinction is crucial because, in frequentist inference, the observed data x is treated
as fixed, and the parameter θ is unknown1. The likelihood function, therefore, represents
the plausibility of different values of θ given the observed data. Fisher emphasised that
the likelihood function should not be interpreted as a probability distribution over θ;
instead, it is a measure of the relative support provided by the data for various values of
θ [139].

1Note here that the position of arguments x and θ can switch depending on the specific interpretation
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One of Fisher’s key contributions to statistical inference is the maximum likelihood
estimation method. Given a sample of observed data x = (x1, x2, . . . , xn), the maximum-
likelihood estimate (MLE) of θ is the value that maximises the likelihood function:

θ̂MLE = argmax
θ

L(θ|x) . (3.55)

In practice, it is often more convenient to work with the log-likelihood function, defined
as:

l(θ|x) = logL(θ|x) =
n∑
i=1

log f(xi|θ) . (3.56)

The log-likelihood function retains the properties of the likelihood function and has
two key advantages. Firstly, it is numerically stable when dealing with exponential
distributions like the Gaussian or Poisson. Secondly, it is often easier to differentiate,
making it easier to identify the MLE via gradient-based approaches such as the score
equation s(θ|x), which is derived from the first derivative of the log-likelihood function
wrt θ:

s(θ|x) = ∂l(θ|x)
∂θ

. (3.57)

The Fisher information, which quantifies the amount of information the data provides
about the parameter θ, is related to the second derivative of the log-likelihood function:

I(θ) = −E

[
∂2l(θ|X)

∂θ2

]
. (3.58)

This quantity plays a central role in the asymptotic properties of the MLE, including
the derivation of its variance and the construction of confidence intervals (see Sec-
tion 4.2) [140].

The likelihood principle, which arises naturally from the Fisherian approach, states
that the likelihood function captures all the information about the parameter θ contained
in the data. More formally, if two likelihood functions are proportional to each other,
they provide the same information for statistical inference. That is, if

L(θ|x) ∝ L(θ|x′) , (3.59)
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for all θ, where x and x′ are two different data sets, then any inference about θ should be
identical whether one uses x or x′ [141]. This principle implies that the actual probability
model generating the data is irrelevant for inference as long as the likelihood function
remains unchanged. Consequently, Fisher’s approach stands in contrast to methods
that depend on the sampling distribution of estimators, such as those rooted in the
Neyman-Pearson framework [142].

An important feature of the likelihood function is its invariance under reparameteri-
sation. Suppose the parameter θ is reparameterised as ϕ = g(θ), where g is a one-to-one
function. The likelihood function in terms of ϕ is:

L(ϕ|x) = L(g−1(ϕ)|x) . (3.60)

The invariance property ensures that the MLE of ϕ is simply the transformation of the
MLE of θ:

ϕ̂MLE = g(θ̂MLE) . (3.61)

This property is advantageous when dealing with complex models where a reparameteri-
sation can simplify the likelihood function.

Despite its widespread use, the Fisherian approach to likelihoods is not without
criticism. One limitation is that the MLE can exhibit significant bias, particularly in
small samples. Various modifications and extensions to the Fisherian approach have
been developed in response to such concerns. For example, bias-corrected estimators
and penalised likelihood methods, such as L1 and L2 regularization, have been proposed
to address this bias by adding penalty terms to overly complex models and handling
situations where the number of parameters exceeds the number of observations [143].

A final interesting observation comes from interpreting the likelihood function itself.
While Fisher asserted that the likelihood function provided a measure of the “support” for
different parameter values, he did not formalise this concept as a probability distribution
over parameters. This contrasts with the Bayesian interpretation, where the likelihood
is combined with a prior distribution to form a posterior distribution, providing a
probabilistic interpretation of parameter uncertainty [144].

References to important works on the Fisherian interpretation include Fisher’s original
papers and subsequent developments by later statisticians who extended or critiqued his
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Figure 3.5.: Demonstration of Type I and II error. A Type I error (α) occurs when a null
hypothesis (H0)) is incorrectly rejected, whereas a Type II error (β) is the failure
to reject a false null hypothesis when the alternative is true.

methods. Further discussion on the relative merits of the Fisherian approach, particularly
in comparison to the Bayesian and frequentist approaches, can be found in [145–147].

3.3.3. The Neyman-Pearson framework

The Neyman-Pearson (NP) framework provides a formal method for evaluating hypotheses
based on data, establishing a systematic procedure to decide between competing statistical
models. This method is rooted in the work of Jerzy Neyman and Egon Pearson in the
early 20th century [148], where they addressed the limitations of previous approaches,
such as those proposed by Fisher [138–140]. The NP framework is distinguished by its
emphasis on power and its formalisation of Type I and Type II errors.

The Neyman-Pearson approach begins with two competing hypotheses: the null
hypothesis, denoted by H0, and the alternative hypothesis, denoted by H1. The null
hypothesis H0 typically represents the status quo or a baseline assumption, while H1

represents a different, often more complex, scenario. A Type I error (α) occurs when
a null hypothesis is incorrectly rejected, whereas a Type II error (β) is the failure to
reject a false null hypothesis. An illustration of the error types is presented in Figure 3.5.
The primary objective in the NP framework is to design a test that maximises the
probability of correctly rejecting H0 while controlling the probability of a Type I error.
The Neyman-Pearson lemma provides a key result in this framework, asserting that for
simple hypotheses (where both H0 and H1 are fully specified), the most powerful test
at a given significance level α is the likelihood ratio test. Formally, the lemma states
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that the test which rejects H0 in favour of H1 when the likelihood ratio exceeds a critical
value k is the most powerful test for detecting H1 at level α [148]:

Λ(x) =
L(x;H1)

L(x;H0)
. (3.62)

Here, L(x;H) denotes the likelihood of observing the data x under hypothesis H. The
critical value k is determined by the condition that the probability of Type I error equals
α:

P (Λ(X) > k | H0) = α . (3.63)

The likelihood ratio test (LRT) derived from the NP-lemma is a general tool applicable
beyond the context of simple hypotheses. For composite hypotheses, where either H0

or H1 (or both) are not fully specified, the LRT remains an effective method, although
additional complexities arise. In such cases, the likelihood functions involve maximisation
over the parameter spaces under H0 and H1, leading to the generalised likelihood ratio
[145, 149]:

Λ(x) =
maxθ∈Θ1

L(x; θ)
maxθ∈Θ0

L(x; θ) , (3.64)

where Θ0 and Θ1 are the parameter spaces associated with H0 and H1, respectively.
The NP framework then prescribes rejecting H0 if Λ(x) > k, with k determined to
maintain the desired significance level α. This is similar in form to the Bayes factor from
Equation (3.16), except for the Bayesian case the parameter space is marginalised and
not maximised and weighted by the prior, e.g. a ratio of marginal likelihoods. This point
will be further explored in Section 3.3.5.

The properties of LRTs, particularly their asymptotic behaviour, make them valuable
in practice. Under regularity conditions, the distribution of the test statistic −2 lnΛ(x)

asymptotically follows a chi-square distribution with degrees of freedom equal to the
difference in dimensionality between Θ0 and Θ1 [150]. This result, known as Wilks’
theorem (covered formally in Section 3.3.4), facilitates the determination of k and enables
the use of LRTs in various applications.

In the NP framework, the concept of power plays a crucial role. The power of a test is
defined as the probability of correctly rejecting the null hypothesis when the alternative
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hypothesis is true:

Power = 1− β = P (Reject H0 | H1 is true) . (3.65)

Given the significance level α, the NP framework aims to maximise power. This is
achieved through the likelihood ratio test, which, according to the NP-lemma, is the
most powerful test for simple hypotheses. The situation is more complex for composite
hypotheses, but the likelihood ratio remains a central tool for developing tests with
desirable power properties.

The trade-off between α and β is a fundamental aspect of the NP approach. Lowering
α reduces the risk of Type I error but generally increases β, thereby reducing power.
Conversely, increasing α raises power but at the cost of a higher risk of Type I error.
This trade-off must be carefully managed depending on the context, balancing errors’
costs against detection’s benefits.

While the NP framework provides a rigorous basis for hypothesis testing, it is not
without criticism. One common critique is its strict binary decision-making process, which
does not naturally accommodate situations where evidence is ambiguous or a continuous
measure of support for hypotheses would be more appropriate [151]. Additionally, the
NP approach assumes that hypotheses are fixed and that repeated testing is performed,
which may not align with the practices of exploratory data analysis.

Extensions to the Neyman-Pearson framework have been proposed to address these
limitations. For example, the Bayesian approach incorporates prior information and
updates beliefs probabilistically, providing a more nuanced perspective on hypothesis
testing. Furthermore, the development of false discovery rate (FDR) control techniques
allows for more flexible error management in settings involving multiple comparisons,
mitigating the rigid dichotomy imposed by traditional NP tests.

The Neyman-Pearson approach to likelihoods is a cornerstone of modern statistical
hypothesis testing. By formalising the concepts of Type I and Type II errors and
introducing the notion of the most powerful test, the NP framework provides a robust
method for making decisions based on data. As derived from the NP lemma, the likelihood
ratio test remains widely used, particularly valued for its optimal properties in simple
and composite hypothesis testing scenarios.

Despite its limitations and the emergence of alternative frameworks, the Neyman-
Pearson approach continues to influence statistical practice and theory. Its emphasis on
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balancing error probabilities and optimising test power ensures that it remains relevant
in various applications, from scientific research to industrial quality control. Future
developments in statistical methodology will likely continue to build on the foundational
principles established by Neyman and Pearson, refining and extending their approach to
meet the evolving needs of data-driven decision-making.

The likelihoodist Framework

An additional and contrasting framework to consider is the likelihoodist approach. It
offers a distinctive perspective within statistical inference by interpreting the likelihood
function as a direct measure of evidence for different parameter values. Central to this
approach is the likelihood principle, which asserts that all information relevant to the
inference about a parameter is encapsulated within the likelihood function. This principle
implies that once the data have been observed, the likelihood function should be the
basis for making inferences about the parameter θ. The likelihood function, therefore,
serves as the foundation upon which likelihoodists build their analyses, distinguishing
this framework from others, particularly the frequentist and Bayesian approaches [152].

Like NP-lemma, the key tool in the likelihoodist framework is the likelihood ratio,
which allows for comparing different parameter values by assessing the relative plausibility
of one value of θ compared to another. Unlike other statistical frameworks, the likelihood
approach does not require the specification of prior distributions (as in Bayesian inference)
or the long-run frequency properties of estimators (as in frequentist inference). Instead, it
focuses on the likelihood function’s role as a measure of evidence, allowing for inductive
reasoning based on the observed data alone [153].

Following Fisher’s influence, Maximum Likelihood Estimation (MLE) is an important
tool within this framework also (see Equation (3.55), Section 3.3.2). What distinguishes
the likelihoodist use of MLE is the interpretation of the resulting estimate as the parameter
value with the strongest evidential support rather than as an estimator with desirable
long-run properties [147].

One of the main critiques of the likelihoodist framework is its lack of a formal decision
rule for hypothesis testing or interval estimation. In contrast to the frequentist approach,
which provides a framework for making decisions based on p-values or confidence intervals
(see Sections 4.1 and 4.2), the likelihoodist perspective emphasises the interpretation of
likelihoods as relative evidence without dictating specific actions. Understandably, this



82 Statistics for Collider Physics

has led to debates regarding the practical applicability of the likelihoodist approach in
scenarios where decision-making is required.

Moreover, the likelihoodist framework faces challenges when dealing with nuisance
parameters—parameters that are not of direct interest but must be accounted for in
the analysis. In such cases, the likelihood function may be maximised over the nuisance
parameters, but this process can lead to overfitting or misinterpreting the evidence.
Additionally, when the likelihood function is not well-behaved (e.g. when it is multimodal
or flat over a range of values), the inference drawn from it can be ambiguous or unreliable,
limiting the robustness of this approach.

While the likelihoodist framework provides a compelling interpretation of statistical
evidence through the lens of the likelihood function, it is accompanied by limitations
that restrict its applicability in specific contexts. Its reliance on the likelihood principle
as the basis for inference underscores a commitment to evidence-based reasoning. Yet,
this commitment necessitates carefully considering the framework’s boundaries and the
contexts in which it is most effective [152]. The likelihoodist framework is not used in
the work presented here; however, it does demonstrate that the interpretation of the
likelihood function has a degree of flexibility that should not be overlooked.

3.3.4. Wilks’ theorem

So far, in this section, the likelihood-ratio test (LRT) has been mentioned several times.
This is because the LRT is a powerful tool for comparing the fit of two competing models.
Specifically, evaluating the ratio of the maximum likelihoods of these models provides a
mechanism for determining which model better explains the observed data.

Wilks’ theorem provides a critical result regarding the distribution of this statistic.
According to Wilks, under certain regularity conditions, when the null hypothesis H0

is true and in the large-sample limit i.e. the number of observations n tends to infinity
(n→∞), the distribution of −2 log λ asymptotically follows a chi-square distribution
with degrees of freedom equal to the difference in dimensionality between Θ and Θ0.
Specifically, if dim(Θ) = k and dim(Θ0) = m, then [150]:

−2 log λ
d−→ χ2

k−m as n→ ∞ , (3.66)

where n is the sample size and d−→ denotes convergence in distribution.
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To derive Wilks’ theorem, consider the general framework of the likelihood ratio test
(LRT) from the Neyman-Pearson framework in Section 3.3.3. Let X = (X1, X2, . . . , Xn)

denote a sample of independent and identically distributed (i.i.d.) observations from a
probability distribution with a density function f(xi; θ), where θ is a vector of unknown
parameters. The parameter space is denoted by Θ, and we test the null hypothesis
H0 : θ ∈ Θ0 against the alternative hypothesis H1 : θ ∈ Θ, where Θ0 ⊆ Θ. To clarify the
previous statement, consider a parameter vector θ that belongs to both Θ0 (denoted as
θ0) and Θ1 (denoted as θ). This implies that θ0 and θ share the same dimensionality. A
fundamental aspect of Wilks’ theorem is that, given Θ0 ⊆ Θ, there must exist a set of
component values that are constrained to be null within the larger space Θ but satisfy
the conditions imposed by Θ0. This relationship is central to the asymptotic distribution
of likelihood ratio test statistics, where the difference in dimensionality between Θ0 and
Θ determines the degrees of freedom in the limiting chi-square distribution of the test
statistic [150]

The generalised likelihood ratio statistic Λ(x), defined in Equation (3.64), can be
used to define a new test statistic −2 log λ, which can be expressed as [149]:

−2 log Λ = 2
[
logL(θ̂|x)− logL(θ̂0|x)

]
, (3.67)

where θ̂ is the usual maximum likelihood estimate (MLE) of θ under the alternative
hypothesis, and θ̂0 is the MLE under the null hypothesis. To analyse the asymptotic
distribution of −2 log Λ, it is useful to Taylor-expand the log-likelihood function logL(θ|x)
around θ̂0. The log-likelihood function can be expanded as follows:

logL(θ|x) ≈ logL(θ̂0) + (θ − θ̂0)
T ∂ logL(θ|x)

∂θ

∣∣∣∣
θ=θ̂0

+
1

2
(θ − θ̂0)

T ∂
2 logL(θ|x)
∂θ ∂θT

∣∣∣∣
θ=θ̂0

(θ − θ̂0) .

(3.68)

Given that θ̂0 maximises logL(θ0|x) under the null hypothesis, the first derivative term
vanishes:

∂ logL(θ|x)
∂θ

∣∣∣∣
θ=θ̂0

= 0 . (3.69)

Thus, the expansion simplifies to:

logL(θ|x) ≈ logL(θ̂0) +
1

2
(θ − θ̂0)

T ∂
2 logL(θ|x)
∂θ ∂θT

∣∣∣∣
θ=θ̂0

(θ − θ̂0) . (3.70)
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The second derivative of the log-likelihood function with respect to θ is the observed
Fisher information matrix, denoted as In(θ̂0). The matrix is defined as

In(θ̂0) = −∂
2 logL(θ|x)
∂θ ∂θT

∣∣∣∣
θ=θ̂0

. (3.71)

Under standard regularity conditions, the MLE θ̂ is considered to be is asymptotically
normally distributed:

√
n(θ̂ − θ0)∼N (0, I−1(θ0)) , (3.72)

where I(θ0) is the expected Fisher information matrix. Since θ̂ maximises logL(x|θ) over
Θ, the difference in log-likelihoods can be written as:

logL(θ̂)− logL(θ̂0) ≈
1

2
(θ̂0 − θ̂)T In(θ̂0)(θ̂0 − θ̂) . (3.73)

Substituting this into the expression for −2 log Λ gives:

−2 log Λ ≈ (θ̂ − θ̂0)
T In(θ̂0)(θ̂ − θ̂0) . (3.74)

Under the null hypothesis, θ̂ ∈ Θ0. Therefore, the difference θ̂ − θ̂0 lies approximately in
a subspace of Rk, where k is the number of free parameters under H1. The dimensionality
of this subspace is d = dim(Θ)− dim(Θ0). The quadratic form (θ̂ − θ̂0)

T In(θ̂0)(θ̂ − θ̂0)

converges on Equation (3.46) and thus follows a chi-square distribution with d degrees of
freedom [154].

Wilks’ theorem holds under several regularity conditions, which include the assump-
tions that the true parameter lies within the interior of the parameter space, the models
are correctly specified, and the likelihood function satisfies certain smoothness conditions
(e.g., differentiability). Moreover, the parameter estimates should be consistent, and the
information matrix must be positive definite.

The practical implication of Wilks’ theorem is significant. It enables the use of the
chi-square distribution as an approximation for the distribution of the likelihood ratio
test statistic in large samples, simplifying hypothesis testing. This allows researchers
to compute p-values and make decisions about the null hypothesis using the chi-square
distribution without relying on the exact distribution of the test statistic, which may be
complex or unknown.
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3.3.5. The profiled and marginalised likelihood

In statistical analysis, profiling and marginalising a likelihood are two different methods
of handling nuisance parameters when estimating parameters of interest. Both methods
simplify the likelihood function but do so in distinct ways, each with specific implications
for the estimation process. Profiling a likelihood involves focusing on the parameter of
interest while maximising the likelihood function with respect to the nuisance parameters.
Specifically, if we have a likelihood function L(θ, ψ), where θ is the parameter of interest
and ψ represents nuisance parameters, profiling is achieved by finding the value of ψ that
maximises the likelihood for each fixed value of θ. The profiled likelihood is then defined
as

Lp(θ) = max
ψ

{
L(θ, ψ)

}
. (3.75)

This method reduces the problem’s dimensionality by removing the nuisance parameters
through maximisation. The resulting likelihood function Lp(θ) depends solely on the
parameter of interest θ. Profiling is particularly useful in frequentist inference, where
confidence intervals (see Section 4.2) for θ can be derived from the profiled likelihood,
especially when using asymptotic approximations.

Marginalising a likelihood, on the other hand, involves integrating out the nuisance
parameters from the joint likelihood function. Given the same likelihood function L(θ, ψ),
the marginalised likelihood for θ is obtained by integrating over the nuisance parameters
ψ wrt their probability distribution π(ψ):

Lm(θ) =
∫

L(θ, ψ)π(ψ) dψ . (3.76)

This approach is commonly employed in Bayesian inference, where integration accounts
for prior beliefs regarding the nuisance parameters. By marginalising over these pa-
rameters rather than optimising them, the resulting marginal likelihood Lm(θ) reflects
the uncertainty associated with ψ in the estimation of θ. However, the choice of prior
distribution for ψ plays a crucial role in this formulation, as it directly influences the
resulting marginal likelihood. Different prior specifications can lead to substantially
different inferences, particularly when the prior carries significant weight relative to the
available data. This sensitivity highlights a fundamental challenge in Bayesian model
selection, where the integration over nuisance parameters introduces an additional layer of
subjectivity that must be carefully considered. The critical difference between profiling
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Figure 3.6.: Upper plots show three examples of multivariate likelihoods L(θ, ψ), the lower
plots show the results of marginalising and profiling over ψ for each of the
likelihoods. The black line in the upper plot traces the value of Ψ that maximises
the profiled distribution. Moving from left to right, the upper distributions
become more complex, causing Lm(θ) and Lp(θ) to diverge. This is quantified
using the Kullback-Leibler divergence DKL

and marginalising lies in how the nuisance parameters are treated; profiling involves
maximisation, which selects the most favourable value of the nuisance parameter for each
value of θ, effectively considering only the best-case scenario for the nuisance parameter
Marginalising averages over all possible values of the nuisance parameter according to
a specified distribution, thereby incorporating the uncertainty associated with ψ into
the estimation process. In terms of their applications, profiling is more aligned with
frequentist methods and is particularly useful when the primary interest is in the point
estimate and the related confidence intervals. Marginalising is intrinsic to Bayesian
methods, where the goal is often to account for all sources of uncertainty, including those
associated with nuisance parameters. Figure 3.6 illustrates how these differences can
significantly affect the resulting estimates and their interpretations. Like many of the
methods discussed so far, the choice between profiling and marginalising should be based
on the statistical framework and the specific objectives of the analysis.



Chapter 4.

Hypothesis Testing

In particle physics, hypothesis testing plays a central role in determining the validity
of theoretical models against experimental data. This process allows researchers to
evaluate competing hypotheses, typically structured as a null hypothesis representing
a well-established theory and an alternative hypothesis proposing a deviation from
the expected model. The statistical framework employed in these analyses is critical
to distinguishing signal from noise, especially when observed phenomena are rare or
subtle. For our purposes, the null hypothesis, denoted as H0, typically represents the
SM prediction, while the alternative hypothesis, H1, often suggests a BSM theory.

When comparing hypotheses, it is often convenient to construct a test statistic
t(X) derived from experimental data, X, that quantifies the difference between H0 and
H1. Various methods are employed to compute this statistic, yielding insights into
whether deviations from H0 are statistically significant. The corresponding p-value,
which measures the probability of observing data at least as extreme as the test statistic
under H0, is often used to assess the evidence against the null hypothesis. Furthermore,
physicists often rely on confidence intervals or regions to estimate the parameters of
interest, incorporating concepts such as Type I and Type II errors to minimise incorrect
conclusions.

Hypothesis testing in particle physics is a mathematical tool and a methodological
cornerstone, ensuring rigorous and systematic comparisons between theoretical predictions
and empirical observations. This chapter will consider how effectively a chosen theory
explains the data. A framework of hypothesis tests must exist to assess whether a theory
is consistent with data, encompassing tests of a single hypothesis, comparisons between
different hypotheses, the optimisation of parameters and statements of confidence in the
conclusions reached.

87
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4.1. p-values

The p-value provides a robust measure to quantify the strength of the evidence against the
null hypothesis, H0. The p-value is defined as the probability of obtaining an observation
at least as extreme as the one observed, assuming that H0 is true. Mathematically,
if t represents a test statistic calculated from the data–a good example would be t =
−2 lnΛ(x), from Section 3.3.3–the p-value is given by [155]

p = P (t ≥ tobs | H0) , (4.1)

where tobs is the observed value of the test statistic, and the probability is calculated
under the null hypothesis distribution. When the p-value is small, it suggests that
the observed data is unlikely under H0, which suggests rejecting H0 in favour of the
alternative hypothesis H1. However, it is essential to note that the p-value does not
provide the probability that H0 is true or false, nor does it measure the size of any
effect. Instead, it quantifies how compatible the observed data is with the assumption
that H0 holds [153]. Figure 4.1 shows the standard normal distribution divided into
segments corresponding to standard deviations (σ) from the mean. One can extract three
quantities of interest for each unit of standard deviation taken from the mean. First is the
area under the curve within the band, i.e. how much of the total probability is contained
within a single band; this is given as a percentage under each segment. The second
quantity is the total probability under the curve between equivalent bands, i.e. ±nσ;
this is shown as a percentage in the upper section of the Figure and roughly corresponds
to the confidence interval (CI). For the case of the standard normal distribution, the
CI’s correspond to the empirical rule, often referred to as the 68-95-99.7 rule, which
states that approximately 95% of the data points in a normal distribution fall within
two standard deviations of the mean. The third quantity in Figure 4.1 is the p-value,
which is given as p following Equation (4.1), it is clear that moving from left to right,
the value decreases. For the case of a continuous probability distribution, the p-value is
defined as

p =

∫ ∞

tobs

P (t | H0) dt (4.2)

where the integral ranges from tobs to ∞ covering the proportion greater than tobs

following Equation (4.1).
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Figure 4.1.: The standard normal distribution shown in terms standard deviations (σ) from
the mean. starting from the upper section of the plot, the values correspond to
first, the approximate confidence intervals (CIs), then the p-values taken from σ
(LHS of the arrow) to ∞ and finally the percentage of probability within a single
σ band

In experimental physics, p-values are often used in the context of searching for new
particles or interactions. To claim a discovery, a p-value threshold corresponding to
a "5-sigma" (5σ) significance level is typically used. The threshold is a convention in
particle physics used to define the level of statistical significance required to claim a
discovery. It corresponds to a p-value of approximately 3× 10−7, or a 1 in 3.5 million
chance that the observed effect is due to random fluctuations under the null hypothesis.
This stringent criterion was established to minimise the frequency of type I errors, which
could lead to incorrect claims of new physics. The threshold is set at 5-sigma because
experience in high-energy physics has shown that lower significance levels often result in
false discoveries due to unaccounted-for systematic uncertainties, background fluctuations,
or other experimental errors. By requiring such a high level of statistical significance, the
field aims to ensure that discoveries are both statistically and scientifically credible [156].

The calculation of the p-value often involves generating distributions of the test
statistic under the null hypothesis using Monte Carlo simulations. These simulations
model the expected background processes without any signal. The p-value is then
obtained by integrating the tail of the distribution beyond the observed value of the
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test statistic. In cases where the test statistic follows a known distribution (e.g., a
chi-squared distribution), the p-value can be computed analytically. This method will be
used extensively in Chapter 8 where p-values are extracted from an unknown distribution.

The uniformity of p-values under the null hypothesis is a useful property in hypothesis
testing. This uniformity arises from the cumulative distribution function (CDF) properties
associated with the test statistic when the null hypothesis H0 is true. To understand this,
consider the p-value as the area under the probability distribution curve of t to the right
of tobs. When H0 is true, the test statistic t distribution is correctly specified, meaning
that t behaves according to its known probability distribution. Now, consider the CDF
of the test statistic, F (t), which gives the probability that t is less than or equal to some
value tobs:

F (tobs) = P (t ≤ tobs | H0) . (4.3)

The p-value can be expressed in terms of the CDF as

p = 1− F (tobs) . (4.4)

If t is a continuous random variable, then under H0, the CDF F (t) is uniformly distributed
over the interval [0, 1]. This uniformity means that for any p-value p computed under
the null hypothesis, the probability of observing a p-value within a specific interval [a, b]
is proportional to the length of that interval:

P (a ≤ p ≤ b) = b− a . (4.5)

This relationship directly follows from the properties of the CDF and the fact that it
maps the values of t onto the unit interval [0, 1] in a linear manner. Consequently, when
H0 is true, the distribution of p-values across many repeated samples should be uniform.
Thus, each possible p-value is equally likely, and the distribution of these p-values will be
flat across the interval [0, 1] [157]. This uniformity is fundamental to the interpretation
of p-values in hypothesis testing. It ensures that under H0, the likelihood of observing a
p-value at any particular level is consistent, which allows significance thresholds (e.g.,
α = 0.05) with a clear understanding of the associated Type I error rate. If p-values
were not uniformly distributed under the null hypothesis, it would imply a bias in the
test statistic or an incorrect specification of the null distribution [158].
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Figure 4.2.: Plot showing the uniformity of the p-value distribution. The left-hand plot shows
a histogram of 10,000 randomly generated, normally distributed samples of test
statistic t. The right-hand plot shows a histogram of the corresponding p-values.

Despite its widespread use, the interpretation of the p-value requires caution. A small
p-value does not imply that the null hypothesis is definitively false, nor does it quantify
the probability of a false positive. Consider a case where we want to use Wilks’ theorem
(Section 3.3.4) to compare H0 and H1. Knowing that H0 ∈ H1 and ∆dof = k we can use
the χ2 distribution with k dof to calculate the p-value. However, we can now consider
the same comparison using the Bayes factor, the ratio of Equation (3.11), or

P (H0 | D)

P (H1 | D)
=

L(D | H0)

L(D | H1)
× π(H0)

π(H1)
. (4.6)

Here, instead of the frequentist likelihood ratio, a ratio of probabilities is used, the usual
likelihood ratio multiplied by the ratio of the prior probabilities. Hence, in this approach,
even if the likelihood ratio favours H1, we would still prefer H0 if our prior belief in H1

was very low. This reweighing of the likelihood with a prior belief provides a layer of
protection at the expense of the asymptotic behaviour predicted by Wilks. Therefore,
it is common to complement p-values with other metrics, such as the Bayes factor or
confidence intervals, to provide a more robust assessment of the evidence [156].

4.2. Confidence limits

In frequentist statistical inference, a confidence interval (CI) is a range of values derived
from a dataset that is believed to contain the true value of an unknown population
parameter with a specified probability, often referred to as the confidence level. The CI
is closely related to the significance level denoted α, covered in Section 3.3.3, defined as
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the type I error, the probability of incorrectly rejecting the null hypothesis. Formally, if
θ represents the parameter of interest and θ̂ denotes its estimator, then the confidence
interval for θ can be expressed as [155][

θ̂ − zα/2 · σθ̂ , θ̂ + zα/2 · σθ̂
]
, (4.7)

where σθ̂ is the standard error of the estimator θ̂, and zα/2 corresponds to the critical
value from the standard normal distribution associated with a confidence level of 1− α.
The confidence level, often expressed as a percentage (e.g., 95% or 99%), indicates the
frequency with which the true parameter would fall within the interval if the experiment
were repeated multiple times. For example, a 95% confidence interval implies that the
interval would capture the true parameter value in 95 out of 100 samples drawn from the
population; this interval is approximated as the 95.4% line in Figure 4.1.

It is crucial to distinguish that the CI does not provide a probability statement about
the parameter itself; instead, it reflects the long-term reliability of the estimation process.
The interpretation of the CI must align with the frequentist framework: it is incorrect
to state that there is a 95% probability that the true parameter lies within a specific
calculated interval. The correct interpretation is that 95% of similarly constructed
intervals would contain the parameter [137].

The bounds of the CI are called confidence limits (CL). Specifically, the lower
confidence limit (LCL) and upper confidence limit (UCL) denote the smallest and largest
values of the interval, respectively. For the two-sided CI described above, the CLs can be
expressed as

LCL = θ̂ − zα/2 · σθ̂,
UCL = θ̂ + zα/2 · σθ̂ .

(4.8)

Confidence limits serve as practical markers in hypothesis testing and the evaluation
of statistical significance. For example, in a hypothesis test for a population mean, if
the null hypothesis value is outside the CL, it can be rejected at the corresponding
significance level α. Conversely, if the null hypothesis value lies within the CL, it cannot
be dismissed [159, 160].

The LHC has a well-defined convention for specifying confidence levels for the back-
ground and signal-plus-background hypotheses [161, 162]. Here, CLsb and CLb represent
the 95% confidence limits for the signal-plus-background and background hypotheses,
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respectively. The confidence level for the signal CLs is then defined as:

CLs =
CLsb

CLb
≡ psb

1− pb
< α (4.9)

where α = 0.05 and psb, pb defined as:

psb = P (t ≥ tobs | s + b) =
∫ ∞

tobs

f(t | s + b) dt ,

pb = P (t ≤ tobs | b) =
∫ tobs

−∞
f(t | b) dt .

(4.10)

Despite their widespread use, confidence intervals are not without limitations. The
accuracy of a CI depends on the validity of the underlying assumptions, such as the
normality of the estimator distribution or the correct specification of the model. Violations
of these assumptions can lead to misleading intervals. Additionally, the width of a CI is
inversely related to sample size; small samples yield wider intervals, reflecting greater
uncertainty. These factors necessitate careful consideration when interpreting CIs in
practical applications.

Confidence intervals and their corresponding limits are effective tools in statistical
analysis, offering a structured approach to quantifying and communicating uncertainty.
Their proper interpretation and use, however, require careful attention to the underlying
assumptions and the context of the data analysis. As with all statistical methods, they
should be applied thoughtfully, with an awareness of their strengths and limitations.

4.3. The χ2 test

The χ2 test is a non-parametric statistical method commonly employed in hypothesis
testing to assess the relationship between categorical variables. This test is particularly
useful in situations where the data do not meet the assumptions of parametric tests,
such as normality or homoscedasticity (also known as the homogeneity of variance).
The χ2 test, through its relation to the χ2 distribution introduced in section 3.2.5,
facilitates the evaluation of observed versus expected frequencies across different categories.
This approach is used to determine whether there is a significant association between
variables or whether the distribution of a categorical variable differs from a hypothesised
distribution.
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Figure 4.3.: Demonstration of the χ2 test statistic using a toy data set. The data simulates
the comparison between a background (B) and a background-plus -signal (B +
S) model. The histogram and red error bar show the simulated S + B data,
while the blue error bar shows the background-only hypothesis. The ratio of the
χ2
SB/dof is approximately one, suggesting that the data is a good fit to the S +

B model.

The χ2 test has two primary forms: the χ2 goodness-of-fit test and the χ2 test
of independence. The goodness-of-fit test determines if a sample distribution fits a
specific theoretical distribution. For example, it can be used to test whether a sample’s
frequency of observed events aligns with the expected frequencies derived from a uniform
distribution or any other specified distribution. The test statistic for the goodness-of-fit
test is calculated Equation (3.44) [155]. Where, for this case, Oi is the observed frequency
for category i with Ei as the expected frequency for that category, assuming Poisson
statistics with n categories. This results in a test statistic that follows a χ2 distribution
with degrees of freedom (dof) given by k = n− 1, where the subtraction of one accounts
for the constraint that the total observed frequency

∑
Oi must equal the total expected

frequency
∑
Ei. The computed χ2 statistic is then compared to the critical value from

the χ2 distribution with k = n− 1 dof, as discussed in Section 3.2.5.

Figure 4.3 shows an example of the goodness of fit test using background (B) and
signal-plus-background (S + B) models. The filled histogram and red error bars show
the S + B model, while the blue error bars show the B-only hypothesis; both data sets
are assumed to follow Poissonian statistics and thus have a per-bin error of

√
N . The χ2

goodness of fit has been evaluated for both the B and S + B models using 26 bins, giving a
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dof of 25. Looking at the figure, it is clear that the S + B model is the better fit, and this
is corroborated by the test statistic. A statistically significant result indicates that the
observed frequencies deviate from the expected frequencies more than would be expected
by chance. In the case of Figure 4.3, if we were to define exclusion of the background-only
hypothesis as a p-value < 0.05, this would correspond to a χ2

B > 38. Thus, an observed
value of 875 would strongly favour excluding the background hypothesis. It is common
practice to present the χ2 score as a fraction in terms of the dof. This convention allows
for quick evaluation of the fit, as a value close to unity indicates a preference towards
the chosen model and a correctly calibrated uncertainty.

An alternative χ2 test is the test of independence used, unsurprisingly, to evaluate
whether two categorical variables are independent. This test is commonly applied to
contingency tables where the relationship between two variables is of interest. The test
statistic is calculated like the goodness-of-fit test [163]

χ2 =
r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
, (4.11)

where Oij is the observed frequency corresponding to the ith row and jth column of
a matrix, Eij is the expected frequency under the assumption of independence, r is
the number of rows, and c is the number of columns. The expected frequency Eij is
calculated as:

Eij =
Ri · Cj
N

, (4.12)

where Ri is the total frequency for the ith row, Cj is the total frequency for the jth
column, and N is the overall sample size. The degrees of freedom for this test are given
by (r − 1)× (c− 1).

Both forms of the χ2 test hinge on the assumption that the expected frequency in
each category is sufficiently large, typically at least 5, to ensure the validity of the test
results. When this assumption is violated, the χ2 statistic may not closely follow the
χ2 distribution, leading to potentially inaccurate conclusions. In such cases, alternative
methods, such as Fisher’s exact test, may be more appropriate [164].

With very large samples, even small deviations from the expected frequencies can
produce a large χ2 statistic, potentially leading to the rejection of the null hypothesis even
when the practical significance of the deviation is negligible. When errors are inflated
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or overly conservative, each term in the sum is reduced, meaning the total χ2 statistic
decreases. This results in a χ2 value that is artificially closer to the expected range for
a good fit, making it more likely that the model appears to fit the data well, even if
there are significant discrepancies. This increases the risk of Type II errors because the
inflated errors make the model look better than it is. With these conditions in mind, the
results of a χ2 test should be interpreted with caution, considering both the statistical
significance and the effect size.

4.4. Parameter estimation

Parameter estimation is the process of determining the values of unknown parameters
within a model that best describes the observed data. A model’s accuracy and reliability
are heavily dependent on the correct estimation of these parameters. Therefore, effective
parameter estimation is crucial for making valid inferences and predictions from the
model.

Parameter estimation can be approached through various methods, with three of the
most widely used being Maximum Likelihood Estimation (MLE), Bayesian inference and
χ2 minimisation. Each approach provides a framework for estimating parameters based
on the available data, but they differ significantly in their underlying philosophies and
implementation.

It is important to note here that the mathematics of MLE and Bayesian inference are
practically identical to that of profiling and marginalising in Section 3.3. This is also
true for the χ2 method, where the derivations were covered in Sections 4.3 and 3.2.5.
However, in the context of parameter estimation, the implementation and interpretations
are slightly different, so we will take a quantitative approach to their application and
focus on assessing uncertainty in the estimate.

In Section 4.3, a toy model was used to demonstrate the use case of the χ2 test for
model comparison. The toy model comprised an exponentially decaying background with
a Gaussian signal, giving a model with four free parameters, the signal mean (µ), the
signal standard deviation (σ), the background decay rate λ and the signal fraction f .

P (x; f, µ, σ, λ) = f × 1√
2πσ2

exp(−(x− µ)2

2σ2 ) + (1− f)×λ exp(−λx) . (4.13)
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We can assume that the background is well understood and fix the decay rate parameter,
which leaves three free parameters of interest. Maintaining continuity with Equation (4.13)
and Figure 4.3, the parameters µ, σ and λ are 1.5, 0.5 and 0.05 respectively. Using this
toy model, we can now apply the parameter estimation methods, compare the results
and discuss the relative pros and cons.

Maximum-likelihood estimation (MLE)

Maximum Likelihood Estimation is used to estimate the parameters of a model by
maximising the likelihood function. The likelihood function, denoted as L(θ), represents
the probability of observing the given data X as a function of the parameters θ. The
goal of MLE is to find the parameter values θ̂ that maximise this likelihood function:

θ̂ = argmax
θ

L(θ) . (4.14)

In practice, the logarithm of the likelihood function, known as the log-likelihood, is often
used instead of the likelihood itself due to its computational simplicity and numerical
stability. The log-likelihood function is given by:

ℓ(θ)) = logL(θ)) , (4.15)

and the MLE is then obtained by solving:

θ̂ = argmax
θ

ℓ(θ) . (4.16)

In some instances, this equation can be solved analytically by taking the derivative of ℓ(θ)
with respect to θ, setting the derivative equal to zero, and solving for θ. Analytically solv-
ing for the MLE becomes impractical when dealing with high-dimensional spaces, complex
models, or non-linear relationships. For multi-parameter models, the likelihood function
depends on several parameters simultaneously, necessitating numerical optimisation
techniques. In addition to high dimensionality, the likelihood function L(θ1, θ2, . . . , θk)
is often constructed as a product of probability density functions L =

∏
i P (θ)i Thus,

maximising this function’s logarithm is easier to handle due to its addictive properties.

To numerically compute the MLE in such cases, algorithms such as the Nelder-Mead
[165] method, the Expectation-Maximization (EM) algorithm [166], and gradient-based
techniques like Broyden-Fletcher-Goldfarb-Shanno (BFGS) [167] are commonly employed.
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Figure 4.4.: Application of the MLE method to a three-parameter toy model, where each plot
shows the maximum likelihood l(θ) estimate for each parameter (blue dashed
line) with an associated one sigma (σ) error band (red dashed line) estimated
using the inverse hessian matrix. For this simple model, the MLE method was
executed using a BFGS maximisation algorithm, which correctly estimated each
parameter to within one standard deviation

These methods iteratively search for the parameter values that satisfy the condition

∇θ logL(θ1, θ2, . . . , θk) = 0 , (4.17)

where ∇θ is the gradient with respect to the parameters. In multi-parameter models,
each step simultaneously updates all parameters, often requiring the computation of the
Hessian matrix or its approximations to capture second-order information. The Hessian
matrix is often used to understand the curvature of the log-likelihood function and the
uncertainty of parameter estimates. When the log-likelihood function is maximised, the
Hessian matrix H(θ) is the matrix of second-order partial derivatives of the log-likelihood
with respect to the parameters θi. Specifically, the Hessian for the log-likelihood function
is defined as:

H(θ) =



∂
2
l(θ)
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2
1

∂
2
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. (4.18)

The Hessian matrix is closely related to the Fisher information I(θ) from Equation
(3.58) where I(θ) = −E[H(θ)]. Near the MLE solution θ̂, the negative inverse of the
Hessian matrix provides an approximation for the covariance matrix of the estimated
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parameters. To prove this, we first consider a Gaussian random vector θθθ with mean θθθ∗

and covariance matrix ΣΣΣθθθ, so its joint probability density function (PDF) is given by

P (θθθ) = (2π)−
Nθθθ
2 |ΣΣΣθθθ|−

1
2 exp

[
−1

2
(θθθ − θθθ∗)TΣΣΣ−1

θθθ (θθθ − θθθ∗)

]
, (4.19)

where Nθθθ is the dimension of the vector. Taking the natural logarithm of P (θθθ) gives:

l(θθθ) = lnP (θθθ) = −Nθθθ

2
ln 2π − 1

2
ln |ΣΣΣθθθ| −

1

2
(θθθ − θθθ∗)TΣΣΣ−1

θθθ (θθθ − θθθ∗) , (4.20)

the θθθ dependence is now isolated into the final term, allowing us to evaluate the Hessian
matrix as

H(θθθ) =
∂2 log l(θθθ)

∂θi∂θj

∣∣∣∣
θθθ=θθθ

∗
= −ΣΣΣ−1

θθθ . (4.21)

According to CLT, Equation (4.19) is a generalised limit of l(θ); thus, it can be stated
that ΣΣΣθθθ ≥ −H(θθθ)−1, meaning that the Hessian provides a lower limit on the covariance
matrix that, provided high statistics, can be used to approximate the uncertainty in the
MLE. Figure 4.4 shows the application of the MLE method to the toy model, where
each plot shows the maximum likelihood l(θ) (blue dashed line) with an associated error
band (red dashed line) for each free parameter. For this simple model, the MLE method
was executed using a BFGS maximisation algorithm, which estimated each parameter to
within one σ.

One of the challenges in using MLE for more complex models is ensuring convergence,
especially when the likelihood surface has flat regions or multiple local maxima. Regular-
isation techniques or suitable constraints on parameter space are sometimes applied to
improve the stability and convergence of the optimisation process. Furthermore, care
must be taken in interpreting the covariance matrix derived from the inverse of the
Fisher information matrix, as it provides insights into the uncertainties of the estimated
parameters.

Bayesian inference

Bayesian inference, grounded in Bayes’ theorem, offers an alternative approach to param-
eter estimation. Unlike MLE, which provides point estimates of parameters, Bayesian
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inference generates a posterior distribution over the parameters, incorporating prior
beliefs about the parameters and the observed data.

The posterior distribution p(θ|X) encapsulates all the information about the parame-
ters after observing the data and allows for the computation of various statistics, such as
the mean or credible intervals, which can be used to estimate the parameters. Bayesian
methods are particularly useful when prior information is available or when dealing
with complex models where MLE may be difficult to apply. For a set of parameters
θθθ = {θ1, θ2 . . . θN}, given a set of observed data D and assuming that the prior distribu-
tion has no correlation between the parameters and is separable, Bayes’ theorem can be
written as

p(θθθ|D) =
L(D|θθθ)
Z(D)

∏
i

π(θi) =
L(D|θθθ)π(θθθ)

Z(D)
, (4.22)

where p(θθθ|D) is the posterior distribution, L(D|θθθ) is the combined likelihood, Z(D) is
the evidence, and π(θi) is the prior distribution representing initial beliefs about each
component of θθθ. The posterior distribution, p(θθθ|D), combines the likelihood of the
observed data with the prior distribution, representing initial beliefs about θθθ. Bayes’
theorem shows that the posterior is proportional to the product of the likelihood and the
prior since the marginal likelihood p(D) is independent of θ,

p(θθθ|D) ∝ L(D|θθθ)π(θθθ) . (4.23)

This proportionality highlights the role of the prior distribution in shaping the posterior.
In physics, prior distributions often represent previous experimental results or theoretical
expectations. For example, the prior might incorporate existing knowledge from earlier
experiments through well-defined distributions that may provide bounds or expectation
values on expected measurements. The marginal likelihood p(D), also known as the
evidence Z(D), which serves as a normalising constant, is obtained by integrating the
product of the likelihood and the prior over all possible values of θ

Z(D) =

∫
L(D|θθθ)π(θθθ) dθθθ . (4.24)

Calculating this integral analytically is difficult in practical applications, particularly for
high-dimensional parameter spaces or complex models. In these cases, numerical methods
such as Markov Chain Monte Carlo (MCMC) are often employed to approximate Z(D).
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The parameter θ can be estimated by leveraging the proportionality relationship
of equation (4.23), depending on the goal of the analysis. One common approach is
maximum a posteriori (MAP) estimation, which involves finding the value of θ that
maximises the posterior distribution. Mathematically, the MAP estimate is the solution
to [120]

θ̂θθMAP = argmax
θθθ

p(θθθ | D) . (4.25)

This method is closely related to maximum likelihood estimation. Still, it differs in
that it incorporates the prior distribution, which can significantly affect the estimate,
especially in cases where the data are sparse or noisy. Another widely used approach is
to compute the posterior mean, which estimates θθθ by taking the expected value of the
posterior distribution. The posterior mean is given by

E[θθθ | D] =

∫
θθθp(θθθ | D) dθθθ . (4.26)

This estimate is useful because it provides the average value of θθθ given the data and
the prior. The posterior mean often produces estimates that are more robust to outliers
than the MAP estimate. It is also important to quantify the uncertainty in parameter
estimates. This is commonly done through credible intervals [121], representing a range
of values within which the parameter is believed to lie with a specified probability. For
example, a 95% credible interval for θ is defined as:

P (θlower ≤ θ ≤ θupper | D) = 0.95 . (4.27)

Unlike confidence intervals seen in frequentist statistics, credible intervals have a direct
probabilistic interpretation: the true parameter value lies within the interval with a
specified probability.

Applying Bayesian inference techniques to the toy model from Equation (4.13) first
required selecting appropriate priors for the three parameters. A Gaussian prior was
selected for the mean of the signal µ as it was reasonable to assume that an expectation
could be obtained from theory or previous results. A half-normal distribution was chosen
for the signal width σ to ensure a weakly informative, positive-definite prior [168]. For
the signal fraction prior, the beta distribution was used as it is defined over the interval
[0, 1]. For this situation, a numerical MCMC integration approach was used to evaluate
the posterior mean (Equation (4.26)). Figure 4.5 shows the analysis results, which used
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Figure 4.5.: Results from Bayesian inference used to fit the parameters of a toy model. The
analysis used 40,000 samples split over four MCMC trials, producing four sets
of posterior samples per parameter. Each parameter’s final value and error are
taken from the mean and standard deviation of the combined samples. When
compared to MLE estimates, the Bayesian method provided a more robust error
estimation but at the cost of computational complexity

40,000 samples split over four MCMC trials, producing four sets of posterior samples
per parameter. Each parameter’s final value and error are taken from the mean and
standard deviation of the combined samples. The results are compatible with the MLE
method. However, the errors are improved quantitatively and qualitatively by sampling
the posterior distribution and producing a robust estimate of the uncertainty that does
not rely on the approximation. The downside to this technique is the computational
complexity due to the sampling requirements of the MCMC.

χ2 minimisation

The final method of parameter estimation to compare is χ2 minimisation. This technique
follows from Section 4.3, where we used the χ2 goodness of fit test to compare hypotheses.
Implementing the χ2 test statistic to parameter estimation effectively performs an MLE
for a multivariate Gaussian likelihood. As such, the algorithm follows a similar gradient-
based approach.

θ̂ = argmin
θ

χ2(θ) . (4.28)

However, the implementation has one significant difference: the χ2 method requires a
direct comparison between observation and expectation. Thus, in this instance, the
evaluation is made on a per-bin basis rather than per event. This raises an important
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Figure 4.6.: χ2 minimisation results for the three-parameter toy model where the best-fit
parameter lies on the lower blue horizontal line. The parameter errors were
calculated using the profile-likelihood approach [169], which calculates the 1-σ
confidence interval at the (χ2

min + 1)/dof intersection. The intersection corre-
sponds to the upper green and vertical red dashed lines.

consideration, the number of bins, or equivalently, the bin-width, as it affects the trade-off
between bias and variance; decreasing the bin-width reduces bias, allowing for a more
detailed data representation. In other words, histograms with narrower bins can better
approximate the underlying distribution. However, this also increases variance, as fewer
data points are available to estimate the height of each bin. Consequently, histograms
with narrower bins become more sensitive to random fluctuations in the data, leading to
increased variability across datasets sampled from the same population.

In collider physics, data is typically presented as counts per bin, significantly reducing
the complexity of describing a dataset. This simplification works well when the expected
counts per bin are sufficiently high since statistical fluctuations scale with the square
root of the expected number of events. However, issues arise when statistics are low and
the number of events in a given bin approaches zero. This is particularly problematic
when searching for BSM signals, which may manifest as only a handful of events through
rare processes. While this challenge will be explored in later chapters, for our purposes,
we assume that the event statistics are high enough to justify analysis on a per-bin basis.

Figure 4.6 shows the χ2-minimisation results for the three-parameter toy model.
The parameter errors were calculated using the profile-likelihood approach [169], which
examines how χ2 changes when one parameter is varied while others are fixed at their
best-fit values. For a good fit, χ2 increases by 1 when the parameter is varied by one
standard deviation. The value of θi where χ2 increases by one from its minimum is
a good approximation of the one-sigma confidence interval for θi. The assumption of
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µ = 1.5 σ = 0.2 f = 0.05

MLE 1.5± 0.1 0.19± 0.03 0.051± 0.004

Bayesian inference 1.5± 0.03 0.2± 0.03 0.045± 0.006

χ2 minimisation 1.5± 0.1 0.21± 0.009 0.051± 0.002

Table 4.1.: Comparison of results of parameter estimation using three distinct methods to
estimate three free parameters of a toy model

a symmetric error relies on the observation that χ2(θ) is approximately quadratic at
its minimum, where the function is dominated by the second-order term of its Taylor
expansion. Much like the estimation of uncertainty in the MLE method, this method
offers an approximation of 1σ bound. There are instances where this approximation may
fail; a good example would be for bounded or discrete parameters that constrain the
minima breaking the quadratic statement.

The y-axis in Figure 4.6 is scaled in terms of the degrees of freedom dof = n− p− 1,
where n is the number of data points and p is the number of fitted parameters. This
reduction was briefly discussed in Section 4.3, where the proximity to unity was used to
assess the goodness of fit intuitively. In parameter estimation, the reduced chi-squared,
χ2
red, serves as an indicator of the fit quality. A χ2

red value significantly greater than one
suggests that the model does not adequately describe the data, which may indicate either
a poor model or inconsistencies in the data sample. Conversely, a χ2

red value much smaller
than one can signal overfitting, often due to overly conservative error estimates. For
example, if the variance in each bin is assumed to be Poisson, such that σ2

i = Ei, but the
errors are artificially inflated so that σi >

√
Ei, the term (Ei −Oi)

2/σ2
i will frequently

be less than one, leading to an underestimated χ2
red.

Table 4.1 shows the results from all three methods. The χ2 minimisation results are
within the approximation of one sigma from the known value and are compatible with the
MLE and Bayesian inference techniques in terms of accuracy and uncertainty. The toy
model used in this example was a simple combination of two distinct processes; actual
experimental data and theoretical models are rarely so simple. However, the purpose
of a toy model is to test the application and compare the results of different methods,
ensuring consistent and well-understood results. By starting with idealised conditions,
one can refine techniques and identify potential problems in a controlled environment.
In later chapters, toy models will be used to understand complex analysis chains and
unknown emergent distributions.



Chapter 5.

Reinterpretation

In particle physics, data reinterpretation plays a crucial role in maximising the scientific
return from LHC experiments. By applying different theoretical models and hypotheses to
existing data, researchers can extract new insights without needing to perform additional
experiments. This approach is especially useful when exploring the vast parameter spaces
of “beyond the SM” (BSM) theories, where direct searches might not be feasible. The
reinterpretation of LHC data requires dedicated tools and methods, including Monte
Carlo event generators and specialised analysis frameworks, to simulate, analyse, and
compare theoretical predictions with experimental observations.

Monte Carlo event generators, including MadGraph5 [170], Sherpa [171], and
Pythia 8 [172], play a crucial role in generating theoretical predictions for particle colli-
sions at the Large Hadron Collider (LHC). These generators effectively simulate various
components of the collision process, encompassing hard scattering, parton showering,
hadronization, and the underlying event, thereby offering a comprehensive understanding
of the final state particles detected.

The simulated events generated by these tools are crucial for designing and interpreting
LHC searches. To reinterpret existing experimental results under different theoretical
frameworks, researchers utilize analysis tools like MadAnalysis 5 [173], Rivet [174],
Contur [175] and SModelS [76].

For example, researchers can simulate theoretical models with Monte Carlo event
generators, apply experimental selections using MadAnalysis 5 or Rivet, and then
reinterpret the results using tools like SModelS. This workflow allows for the exploration
of a broad spectrum of new physics scenarios, providing critical tests of the Standard
Model’s robustness and identifying potential signals of new phenomena. Importantly,

105
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data reinterpretation efforts benefit from the ongoing development of open-source software
and the collaborative nature of the high-energy physics community, which ensures that
the tools and methodologies remain state-of-the-art and accessible.

As LHC experiments continue to collect data, the role of data reinterpretation will only
grow in significance. With the ongoing improvements in event generators and analysis
tools, the community will be better equipped to explore the limits of our understanding of
particle physics. This approach not only enhances the scientific value of existing datasets
but also guides future experimental efforts by identifying promising areas for further
investigation.

5.1. Reinterpretation tools

Reinterpretation has been greatly facilitated by the development of dedicated tools
such as Rivet, MadAnalysis 5, and SModelS, each offering unique features and
methodologies that contribute to the comprehensive analysis of collider data. This section
will look at these tools individually and highlight their distinct capabilities, underlying
procedures, and the specific roles they play in the reinterpretation of experimental results.

5.1.1. Rivet

Rivet [174] (Robust Independent Validation of Experiment and Theory) is a software
tool used to validate and compare theoretical predictions from particle-physics models
against experimental data. It provides a framework for performing these comparisons
in a consistent and reproducible manner. Recent updates to Rivet, particularly since
version 4 [176], have introduced modifications intended to accommodate evolving research
needs, such as extending the range and precision of comparisons and enabling the
development of new analysis techniques.

The primary function of Rivet is to facilitate comparisons between theoretical models,
such as those generated by Monte Carlo event generators and experimental data. It
provides a standardised interface for assessing simulated events against measurements,
incorporating options for detector simulation and event smearing. The workflow is
structured around explicit runs of simulated collider events, produced using external
event generator tools and recorded in the HepMC 3 event format [177]. The software
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consists of a computational core designed for consistent processing of experimental data,
along with a configurable system for smearing-based detector emulation and a library of
over 1,500 preserved analyses.

Rivet is integrated with the HepData [178] database, which archives published data
from high-energy physics experiments. This integration allows researchers to access
experimental results directly, facilitating the validation of theoretical models. The
modular structure of Rivet supports applications in beyond the Standard Model (BSM)
scenarios. For instance, Contur ("Constraints On New Theories Using Rivet" [175])
utilises experimental measurements available through Rivet to investigate BSM theories.
This approach takes advantage of the model independence of particle-level differential
measurements within fiducial regions of scattering phase space, enabling systematic
comparisons with BSM scenarios simulated using Monte Carlo generators.

Version 4 introduced several new features, including more flexible histogram handling,
aligned with updates to the yoda 2 [179] statistical data-analysis library. Additional
capabilities include support for storing and loading analysis-specific data in HDF5 format
and the ability to import machine learning (ML) models, particularly deep neural networks
and graph neural networks, from ONNX serialisation files [180].

A central aspect of Rivet ’s development is the provision of reliable, reproducible
comparisons between theory and experiment. Version 4 facilitates this by ensuring
consistent handling of experimental measurements and supporting independent validation
through cross-checking methods. Given the diversity of theoretical models employed
in collider physics, this validation process is an important component of the analysis
workflow.

yoda serves as the backend for managing histogram objects within Rivet [179]
and providing the main output data format. yoda provides a system for handling
these objects with improved memory management and scalability, including dynamic
binning and multi-weight options. The framework is integrated with Rivet to ensure
that Monte Carlo-generated data can be compared with experimental measurements in a
reproducible manner. Through yoda, Rivet stores analysis results in a standardised
format, facilitating data visualisation and comparison. The latest version, yoda 2,
includes support for generating python visualisation scripts using the matplotlib

package [181]. In collaboration with the yoda team, contributions were made to
visualisation updates, particularly in the development of 2D histogram outputs. Figure 5.1
presents examples of 1D and 2D plot outputs from the yoda 2 plotting interface.
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(a) (b)

Figure 5.1.: Example 1D and 2D plot outputs from the yoda 2 plotting interface, illustrating
a mix of uniform and irregular bin sizes and automatic ratio plotting for 1D
data/prediction comparisons. Plots were taken from [179].

The release of Rivet 4 expanded the number of available analyses to over 1,500,
incorporating recent experimental data. Furthermore, improvements to the underlying
framework have been implemented to enhance performance and scalability, allowing for
larger datasets and more complex analyses while maintaining efficiency. These updates
align with the increasing data volumes generated in high-energy physics experiments,
ensuring that Rivet remains a useful tool for theoretical model validation.

5.1.2. MadAnalysis 5

MadAnalysis 5 [173] is a comprehensive framework that integrates a wide range of
functionalities to analyse both simulated and experimental data. Similar to Rivet, Mad-

Analysis 5 enables users to perform highly flexible event-level analyses. MadAnalysis 5

offers a platform for beginner and expert users to conduct physics reinterpretations and
analyses using event files, such as those generated by a large class of Monte Carlo event
generators. The tool is optimised for phenomenological investigations, making it easy to
analyse, simulate, and reconstruct events. The framework provides two operating modes:
one tailored for simplicity (a beginner-friendly mode) and another for experts needing
advanced control over their analyses.
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MadAnalysis 5 includes support for multiple event formats (parton-level, hadron-
level, and reconstructed-level events) and the ability to handle complex simulations
such as parton showering, hadronization, and fragmentation. It integrates with Monte
Carlo generators like Pythia 8 [172] and Herwig [182] to simulate particle interactions
and supports fast detector simulation using external programs like Delphes 3 [183],
allowing researchers to test the response of a collider detector to the particle. While full
detector simulations used by large experimental collaborations are time-consuming and
complex, fast simulations offer a streamlined approach, providing realistic estimates of
particle interactions, smearing effects, and detector resolutions. This capability enables
users to quickly evaluate the feasibility of analyses, study signatures of new physics, and
estimate backgrounds without the computational overhead of full-scale simulations. It is
particularly beneficial for early-stage phenomenological studies or when testing numerous
models.

MadAnalysis 5 also supports a user-friendly interface for constructing analysis
routines through a command-line interface or by writing Python scripts, offering a lower
entry barrier for new users. Furthermore, the tool incorporates advanced statistical
analysis capabilities, allowing users to compute exclusion limits, p-values, and confidence
intervals based on the observed data. This makes MadAnalysis 5 particularly suited
for reinterpreting experimental results in the context of various BSM scenarios, as it
provides a streamlined workflow from event generation to statistical interpretation.

5.1.3. SModelS

SModelS provides a framework for the reinterpretation of beyond the Standard Model
(BSM) scenarios by decomposing them into simplified model spectra (SMS) [76]. This
approach enables a systematic comparison of theoretical predictions with existing experi-
mental constraints from the Large Hadron Collider (LHC), facilitating the identification
of viable parameter spaces for new physics.

The methodology employed in SModelS involves the decomposition of supersym-
metric (susy) theories into SMS, which correspond to distinct experimental signatures
(see Section 2.3.3). These SMS are then compared against LHC data to assess their
consistency or exclusion. The automation of this decomposition and comparison process
allows for an efficient evaluation of a broad class of BSM models without necessitating a
full phenomenological simulation of each scenario. This approach is particularly useful
when the complexity of a model makes direct comparison with experimental searches
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challenging. By focusing on SMS components, SModelS provides a structured reinter-
pretation of experimental results, indicating which aspects of a model are subject to
constraints from current data.

The second version of SModelS introduced significant modifications aimed at enhanc-
ing its applicability to a wider range of BSM scenarios [81]. Among these modifications
was the extension of its capabilities to accommodate more complex topologies beyond the
minimal SMS approach, thereby expanding the theoretical search space. Additionally,
the version incorporated an enlarged database of experimental results from ATLAS and
CMS, including over 100 new searches for BSM phenomena spanning various topologies
and final states. These results impose constraints on different new physics scenarios by
setting exclusion limits based on observed data, thereby refining the viable parameter
space of theoretical models.

The most recent iteration, SModelS v3 [184], introduced further developments to
the framework. Earlier versions primarily focused on supersymmetric models with Z2

symmetries, which enforce specific particle decay patterns. These topologies are relevant
in susy models as they characterize stable particles and decay chains leading to the
lightest supersymmetric particle (LSP), which is often considered a dark matter candidate.
However, the assumption of Z2 symmetry imposes limitations when analyzing more
general BSM scenarios. SModelS v3 extends beyond these constraints by incorporating
topologies with multi-step decay chains, metastable intermediate states, and non-minimal
final states. These features align with the complexity of realistic BSM models that
cannot be reduced to simple two-state Z2 structures. The extended framework enables
an analysis of scenarios where particles undergo multiple intermediate decays, thereby
broadening the range of possible new physics signals that can be tested against LHC
data. SModelS v3 also includes an expanded database of experimental constraints from
recent LHC runs, refining the exclusion limits applied to BSM models. Additionally,
improvements in computational efficiency facilitate the analysis of more intricate scenarios,
enabling broader model scans.

A technical development in SModelS v3 is the implementation of graph-based
analysis techniques to address the increasing complexity of particle decay chains and
topologies. Within this framework, decay processes are represented as directed graphs,
where vertices correspond to particles and edges denote decay transitions. Figure 5.2
illustrates a simplified model topology using this representation. The graph-based
formalism provides a systematic approach for encoding and analyzing complex decay
chains.
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Figure 5.2.: Graph representation of a simplified model topology and its elements: root
node, SM and BSM nodes, edges, and node indices. Plot taken from the paper
“SModelS v3: Going Beyond Z2 Topologies” [184].

By utilizing graph structures, SModelS v3 facilitates an efficient decomposition and
analysis of intricate topologies, including those with loops or branching points in decay
chains. Each topology is treated as a graph, allowing the tool to explore a diverse set
of BSM signatures beyond simple tree-like decay patterns. Graph traversal algorithms
enable the identification of possible decay paths, which are then compared against LHC
data. This approach generalizes the decomposition of models, enabling the detection and
analysis of new physics scenarios that involve complex final states.

With these extensions, SModelS v3 provides a structured framework for testing
a broad range of BSM models. The inclusion of more general decay topologies and
an expanded database of experimental constraints enhances its capability to assess
theoretical scenarios against LHC data, offering a systematic approach for confronting
new physics models with experimental observations.

5.2. Limitations of Current Reinterpretation Tools

Tools such as Rivet, MadAnalysis 5, and SModelS have facilitated the reinterpreta-
tion of experimental results in particle physics. However, several limitations remain that
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affect their applicability and precision. A key challenge is the inherent model dependence
of these tools. The results of reinterpretation studies are often sensitive to the specific
theoretical assumptions and input parameters, such as the choice of parton distribution
functions (PDFs) and the treatment of systematic uncertainties. This is particularly
relevant in the context of the subsequent chapters, where the absence of uncertainty
propagation to BSM reinterpretation statistics is considered. Mitigation strategies include
event re-weighting or re-sampling of the PDFs, though these approaches do not eliminate
all sources of bias.

Another limitation concerns the coverage of phase space. While Rivet and Mad-

Analysis 5 provide extensive libraries of analysis routines, these are generally derived
from published experimental analyses, which may not encompass all possible final states
or kinematic regimes. Consequently, certain new physics scenarios, particularly those
involving rare or unconventional signatures, may not be adequately tested. Similarly,
SModelS, which rely on simplified model spectra (SMS) for reinterpretation, may not
fully capture the complexity of more intricate BSM scenarios, potentially neglecting
important correlations or decay chains.

Computational complexity presents an additional constraint, particularly in high-
dimensional parameter spaces or when combining multiple datasets. Large-scale Monte
Carlo simulations and detailed statistical analyses can be computationally expensive,
limiting the feasibility of certain studies. Furthermore, the accuracy of reinterpretation
outcomes is influenced by approximations in detector simulation and event reconstruction,
which may not fully account for the complexities of real experimental conditions.

Finally, the reliance on published data remains a significant challenge, as data may
not always be available in a format suitable for reinterpretation. Although initiatives
have sought to enhance data preservation and accessibility (see [178, 180]), gaps persist,
particularly for older experiments or results lacking sufficient documentation. This
limitation constrains the scope of possible reinterpretations and introduces biases based
on the selection of available analyses.

In summary, while reinterpretation tools such as Rivet, MadAnalysis 5, and
SModelS provide valuable frameworks for testing new physics models against existing
data, limitations related to model dependence, phase-space coverage, computational
demands, detector simulation accuracy, and data availability necessitate continued
efforts to enhance their flexibility, accuracy, and accessibility within the particle physics
community.
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5.3. Combining results

The ATLAS and CMS experiments at the LHC are designed to probe the Standard Model
(SM) through precise measurements and searches for phenomena beyond established
theoretical frameworks. These searches typically involve testing multiple hypotheses over
a broad parameter space, with each experiment reporting its findings independently. To
fully exploit the statistical power of both experiments, it is often necessary to combine
their results. However, this process presents a number of challenges arising from differences
in experimental methodologies, systematic uncertainties, and the statistical treatment of
correlated and uncorrelated uncertainties. This section examines the challenges associated
with combining results from ATLAS and CMS, with a focus on detector sensitivities,
systematic uncertainties, and their correlations.

Detector sensitivities, systematic uncertainties, and correlations

One of the main challenges in combining results from ATLAS and CMS stems from differ-
ences in detector design and operational parameters. Despite both being general-purpose
detectors, they differ in magnet configurations, calorimeter technologies, and tracking
systems, leading to variations in energy resolution, particle identification, and event
reconstruction. These differences introduce experiment-specific systematic uncertainties
that must be carefully treated when performing combined analyses.

The ATLAS and CMS collaborations conduct analyses independently, each using
distinct calibration procedures, data reconstruction algorithms, and statistical method-
ologies. This independence mitigates common systematic biases, lending robustness to
results when both experiments observe the same physical phenomenon. However, while
the results are largely independent, they are not entirely uncorrelated. Some systematic
uncertainties, such as those arising from detector calibration, particle identification
efficiencies, and background estimation procedures, have experiment-specific components,
while others, such as luminosity uncertainties, are partially correlated between the two
experiments.

Formally, let θi represent a nuisance parameter associated with a systematic un-
certainty that is correlated between ATLAS and CMS. The joint likelihood func-
tion for a parameter of interest mX , Ljoint(mX , θi), can be expressed as the product
LATLAS(mX , θi) · LCMS(mX , θi). In this expression, consistent treatment of θi across both
likelihoods is required, necessitating detailed communication and data sharing between
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the collaborations. Additionally, external inputs, such as theoretical uncertainties on
cross-section calculations, contribute to systematic uncertainties common to both ex-
periments. The propagation of these uncertainties in combined analyses often relies on
advanced statistical techniques, including Markov Chain Monte Carlo (MCMC) methods
or numerical integration approaches.

Although the distinct designs and methodologies of ATLAS and CMS reduce direct
correlations, shared theoretical models and environmental conditions can introduce
dependencies. Therefore, while the results of these experiments can be considered largely
independent, they are not completely uncorrelated, and careful treatment of systematic
uncertainties is required when performing combined analyses.

Theoretical Model Dependencies

Theoretical uncertainties, such as those associated with parton distribution functions
(PDFs) and higher-order QCD corrections, introduce additional challenges when com-
bining search results from different experiments. These uncertainties influence both the
predicted signal and background rates and are often correlated across different analyses. A
consistent combination of results necessitates the systematic treatment of such theoretical
uncertainties, which are typically obtained from external groups or derived from global
fits to experimental data.

Discrepancies may arise when combining results obtained under different theoretical
assumptions. For instance, one experiment may employ next-to-leading-order (NLO) QCD
calculations for a signal process, while another may use leading-order (LO) predictions.
To ensure consistency, either a common theoretical framework must be adopted, or the
discrepancies must be accounted for through additional uncertainty terms.

Dependence on specific theoretical models further complicates the combination of
results across experiments. LHC searches are often interpreted within particular frame-
works, such as the Standard Model (SM) or beyond the Standard Model (BSM) scenarios,
including supersymmetry (SUSY) or models with extra dimensions. The optimisation
of search strategies may vary between experiments due to differing assumptions about
model parameters, such as the mass spectrum of SUSY particles or the coupling strengths
in extra-dimensional models.

Consequently, combining results requires careful consideration of the treatment of
theoretical uncertainties and model parameters. If one experiment is primarily sensitive to
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low-mass SUSY particles while another is optimised for high-mass regions, the combined
result must appropriately incorporate these different sensitivities. This issue becomes
particularly relevant in models with a large number of free parameters, where the coverage
of parameter space by individual experiments may be non-uniform.

Signal Model Dependence

In searches for new particles or interactions, the signal model defines the expected
manifestation of a hypothesised process in experimental data. This model is typically
parameterised by quantities such as particle masses, coupling constants, and decay
channels. Differences in these assumptions between experiments can lead to variations in
reported exclusion limits and significance levels.

A consistent combination of results requires that both experiments test the same
hypothesis. This can be challenging if different signal models or theoretical frameworks
are used in the interpretations. In SUSY searches, for example, exclusion limits may
depend on the choice of a specific SUSY-breaking scenario. A meaningful combination of
results necessitates the application of a consistent theoretical scenario across datasets.

One approach to addressing this issue is the reinterpretation of one experiment’s
results within the signal model used by the other. This requires access to detailed
information on signal acceptance and efficiency, which may not always be available.
Alternatively, a more model-independent combination can be pursued by focusing on
simplified models or benchmark scenarios common to both collaborations. In either case,
residual differences arising from model dependence must be systematically evaluated and
incorporated into the final combination.

Differences in event selection criteria and the definition of signal regions present
additional challenges. Each experiment applies distinct selection criteria to enhance
sensitivity while suppressing backgrounds, but these selections are not always directly
comparable. For instance, variations may exist in the transverse-momentum thresholds
for jets or leptons, as well as in isolation criteria for electrons and muons. Addressing
these discrepancies requires either re-analysis with standardised selection criteria or the
application of efficiency and acceptance corrections, both of which introduce additional
uncertainties. Furthermore, the treatment of background processes, such as multijet
production or top-quark pair production, may differ between experiments, as these
backgrounds are often estimated using different methodologies and control regions.
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Beyond the combination of results, the interpretation of combined data in the con-
text of global fits introduces further complexities. Global fits aim to determine the
best-fit values of model parameters by incorporating data from multiple experiments
and decay channels. This process requires careful treatment of correlations between
measurements and the associated systematic uncertainties to ensure a consistent and
robust interpretation of the results.

Data combination techniques

The process of data combination introduces a range of complexities. A common approach
involves constructing a combined likelihood function that incorporates the likelihoods from
multiple experiments while accounting for both correlated and uncorrelated systematic
uncertainties. This method requires careful formulation to ensure compatibility across
different datasets, which can be non-trivial given the variations in detector performance,
event selection criteria, and background modelling.

An alternative method employs simplified template cross sections (STXS) [185] or
signal strength modifiers (µ̂), facilitating a standardised representation of results across
multiple experiments and decay channels. The use of STXS aims to minimise theoretical
uncertainties directly embedded in the measurements while allowing for a consistent
combination of results across different decay channels and experimental setups.

The signal strength modifier µ̂, defined as σobs/σSM, provides a normalised measure
relative to the Standard Model (SM) expectation, aiding in the comparison and combina-
tion of results across production modes and decay channels (e.g., H → γγ, H → ZZ).
This normalisation is particularly relevant given the distinct systematic uncertainties,
backgrounds, and signal efficiencies associated with each channel. However, differences in
the treatment of systematic uncertainties and signal modelling across experiments may
introduce additional sources of uncertainty. Furthermore, the applicability of STXS or µ̂
values relies on the assumption that the theoretical model remains valid across the full
parameter space of interest, which may not always be the case.

Practical aspects of combination

In addition to statistical and theoretical considerations, practical challenges arise in the
combination of ATLAS and CMS search results. Differences in data formats, analysis
frameworks, and software tools can complicate this process. While efforts have been made
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to establish standardised procedures, residual discrepancies can impede the efficiency of
result combination.

A fundamental aspect of the combination process is the validation of the combined
results. This involves ensuring consistency with individual ATLAS and CMS results
and verifying that all sources of uncertainty are appropriately accounted for. Tools such
as RooStats [186] and pyhf [187] (the python implementation of HistFactory [188])
provide functionality for constructing probability models and digitally publishing analysis
results. These tools are widely adopted within the high-energy physics community and
contribute to the validation process. However, given the complexity of these analyses
and the large number of systematic uncertainties involved, additional cross-checks and
robustness studies are often required.

The scale of LHC data and the complexity of the associated analyses present significant
computational challenges. The combination of experimental results frequently necessitates
access to substantial computing resources, particularly when handling high-dimensional
likelihood functions or conducting global fits. The computational demands are further
increased by the need for extensive systematic uncertainty studies, which often involve
large numbers of pseudo-experiments or toy Monte Carlo simulations.

Moreover, coordination between different experimental collaborations is a complex
task that requires significant organisational effort. Effective coordination is necessary
to ensure that results are combined in a scientifically rigorous manner, with proper
treatment of relevant uncertainties and correlations. Cross-experiment communication
plays a crucial role in this process, as different experiments may have distinct priorities,
timelines, and resource constraints.

The combination of search results from LHC experiments requires consideration of
multiple factors, including differences in detector sensitivities, statistical methodologies,
theoretical model dependencies, and event selection criteria. The process itself introduces
additional challenges, particularly in the construction of combined likelihood functions and
the interpretation of results within global fits. These challenges are further compounded by
computational and resource requirements. Despite these complexities, combining results
from different LHC experiments remains an essential task, enabling more comprehensive
tests of the Standard Model and potential deviations from it.
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Chapter 6.

Optimal Combinations

Combining ATLAS and CMS analyses poses multiple challenges. However, as is often
the case in physics, the problem can be broken down into smaller parts and considered
one step at a time. This chapter will consider the combinatorial challenge of selecting
the optimum set of analyses and/or signal regions–each defined by different kinematic
cuts, particle identification requirements, and background suppression techniques–for a
given BSM model. One of the key insights to this problem was the realisation that the
process is analogous to feature-selection in machine learning, particularly in handling
issues of redundancy, correlation, and optimality in high-dimensional data spaces. In
both cases, the objective is to select an optimal subset from a large pool of potential
features or regions, where choosing poorly can introduce bias, lead to overfitting, or
result in the double-counting of information. In machine learning, feature-selection
aims to identify minimally correlated features that best represent the dataset without
introducing redundancy. Similarly, analyses and/or signal regions must be selected to
maximise the sensitivity of searches for new physics while avoiding those that record the
same underlying physical processes. This parallels the feature-selection process, where
including highly correlated features leads to biased models, just as selecting overlapping
signal regions can inflate statistical significance and introduce bias into the results.

A key similarity lies in the combinatorial nature of both problems. In feature-selection,
the search for an optimal subset of features from a large feature space grows, as will be
shown, as 2n with the number of features (n), making brute-force searches impractical as
n increases. This is analogous to the situation in high-energy physics, where the number
of possible signal regions grows exponentially with the dimensionality of the phase space.
The challenge is compounded by the need to account for correlations between regions,
as multiple regions may be sensitive to or contain the same underlying physical process.
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Using combinatorial optimisation techniques, such as genetic algorithms [189, 190] or
simulated annealing [191], explores the space of possible feature sets or signal regions
while avoiding local optima that might arise from greedy search strategies. However,
such searches are computationally expensive and often struggle with many features.

Another parallel is the treatment of correlations between selected features or regions. In
machine learning, pairwise correlations between features are often measured to prevent the
selection of redundant features. Similarly, in ATLAS and CMS analyses, the combination
of signal regions must carefully consider correlations between the events in each region.
This is typically done using statistical techniques like profile-likelihood fits, accounting
for the uncertainties and correlations between signal regions. When such correlation
information is available, these methods ensure that the combination of signal regions
maximises the statistical power of the analysis while preventing the over-counting of
events common to multiple regions.

The first simplifying assumption we can make is that it is possible to make the
statement that the two analyses can be combined. In many cases, this is already the
case. For instance, if the combination process requires the construction of a test statistic
based on event yields, then correlations would be arguably negligible if results from
different experimental locations or ones performed at different energies were combined.
So, assuming correlations can be estimated, the question becomes how to choose a
minimally correlated set from hundreds or thousands of options.

6.1. Compatible sets as path-finding

Without prior information about overlaps, correlations or statistical significances, finding
a preferred subset of data features l from a set of size n is a combinatorial challenge with
2n possible solutions. Specifically, the total number N of subsets with r > 1 elements is

N =
n∑
r=2

(
n

r

)
≡

n∑
r=2

n!

r!(n− r)!
= 2n − (n+ 1) . (6.1)

Exhaustively generating and evaluating each potential combination exhibits exponential
time complexity, making it computationally infeasible even for relatively small values of n,
especially for the n∼O(1000) required in practical applications. However, we can reduce
this number by acknowledging that there will exist forbidden pair-wise combinations
due to excessive correlation or shared information–a concise description of this metric is
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required; thus, this study will refer to the pair-wise relation as overlap–We can assume
that a binary pair-wise matrix exists that determines whether or not any given pair of
features {li, lj} can be combined such that Bij is either true or false; this is defined as
the binary acceptance matrix (bam). When accounting for exclusivities, Bij, over an
entire set, most of these N combinations will be forbidden. This is because, for large r, it
becomes increasingly likely that naïve subsets will include at least one pair of overlapping
features. Given prior knowledge of Bij , the pertinent question is whether it is possible to
evaluate all allowed combinations more efficiently than through exhaustive generation
followed by overlap checking.

This section demonstrates that the answer to this question is yes and that the
solution can be considered the optimal path within a directed acyclic graph (DAG). I will
introduce a new algorithm that improves the asymptotic time complexity by efficiently
selecting path elements through the recursive application of the bam. This approach
reduces the combinatorial nature of the problem, making it computationally feasible
while significantly enhancing efficiency.

The critical optimisation is to avoid generating invalid combinations in the first place;
this can be achieved by evaluating the combinations directly from the bam. Hence, we
must restrict the generated subsets to those with Bij = 1 for all the set’s distinct elements
i, j. This condition requires that if a subset of all possible features is built up iteratively,
its jth element must have no significant overlap with all the previously selected elements
0...j − 1.

Figure 6.1 illustrates a specific instance of a binary adjacency matrix (B) consisting
of ten features. To create this example, a symmetric matrix of random values with
dimensions 10× 10 was generated and subsequently transformed into the bam by applying
a threshold of T = 0.5. The matrix ρ contains random numbers where ρij ∼U(0, 1);
further discussion will demonstrate alternative methods for constructing this matrix,
which include using correlation metrics. In this example, the elements of ρij that are
below the specified threshold are deemed combinable and are depicted in white, whereas
those that exceed the threshold are shaded in black. For reasons that will be covered in
more detail later in this chapter, the construction of combinations is limited to subsets
where features are added in a strictly increasing index order. Beginning at the top left
corner of Figure 6.1, corresponding to the element ρ00 (or (l0, l0)), the features available
for combination with l0 are constrained to those associated with white elements in the
first column, i.e., Bi0 = 1. We define Ai as the ordered set of all permissible, minimally
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Figure 6.1.: Binary acceptance matrix of 10 data features (l0−l9) with values masked according
to some threshold T e.g. correlation or mutual-information below a certain value.
The final Sink index has been inserted to provide a target for the path-finding
algorithm.

overlapping feature indices relative to element li, such that

Ai ≡ {j : ρij < T, i < j < n} . (6.2)

Using Figure 6.1 as an example, A0 would be {1, 7, 8, 9}. We now define a set of
indexed variables to represent the sets and subsets of features: the single-index version,
Ki, is a set of all allowed paths with initial elements li such that

Ki ≡ {{li, . . . , lfinal}, . . .} . (6.3)

Following this construction, Ki,j is the jth path within Ki, and by extension Ki,j,k would
refer to the kth element of Ki,j. Applying this formalism to Figure 6.1 and initiating a
subset K0,0,0 with l0, the available options for the second element are given by indices in
A0 (Equation 6.2). It follows that K0,0,1 = l1 as this is the first index in A0, and thus
K0,0,2 = l7 as this is the first available index that is allowed by the intersection of A0 and
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Figure 6.2.: Binary acceptance matrix of 10 data features (l0−l9) with values masked according
to some threshold T e.g. correlation or mutual-information below a certain value.
The left-hand plot is the first allowed (legal) path evaluated from l0 following the
HDFS algorithm. The right-hand plot shows all available (legal) paths originating
at l0.

A1. Repeating the procedure and taking the intersection of A0, A1 and A7 gives {l8, l9},
but now we see that B8,9=0 and is not allowed, meaning that K0,0 is a complete subset of
four features containing {l0, l1, l7, l8}, all with overlaps below T . The next combination,
K0,1, is the first allowed alternative to the final element of K0,0: K0,1 = {l0, l1, l7, l9}.
The left-hand plot of Figure 6.2 K0,0 as a single red line originating from l0.

The method employed for constructing paths closely resembles that of a depth-first
search in an unweighted, directed acyclic graph (DAG), where the nodes represent
features and the edges signify the allowed pairwise combinations between them. The
directed and acyclic structure of the graph is maintained by imposing an ordering on
the features, ensuring that the edges consistently point from lower to higher indices.
Nevertheless, an important distinction arises: the choice of each feature is dependent on
those allowed by all previous elements in the path, or in other words, the allowed vertices
would be inherited. This hereditary condition, however, can be seamlessly incorporated
into well-established DAG “simple path” algorithms [192, 193].

Recasting the problem as an optimum-path search requires minor changes to the
definitions covered. Firstly, each path has to be defined between two points: a source and
a sink. As previously stated, each combination within the subset Ki has a defined source,
however, the final element in each set will depend on the path taken. A convenient way
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to deal with this condition is to define a universally allowed nth feature so that every
possible path terminates at index n. This can be done by appending an nth “sink” feature
to ρ, this is shown in Figure 6.1 but can also be expressed as

ρn,i = ρi,n = 0.0 : 0 ≤ i ≤ n . (6.4)

This modification of ρ necessitates that the definition of Ai also be modified to include
the nth term:

Ai ≡ {j : ρi,j < T, i ≤ j ≤ n} . (6.5)

With Ai defined in terms inclusive of n, we can define a modified hereditary depth-first
search (HDFS) algorithm that generates all the available paths starting from an initial
feature. This algorithm proceeds by recursively appending diminishing subsets of allowed
elements S, with the current subset Sc defined as the intersection of Ac with the previous
subset such that

Sc ≡ Ac ∩ Sc−1 . (6.6)

The total intersection of the compatible sets for the feature elements already in the path
gives the remaining compatible features. As this is constructed iteratively, each stage
of completion-refinement needs only to be compared against the set of completions for
the current final element, Sc−1. The HDFS algorithm uses this condition to exclude
overlapping feature combinations from consideration efficiently. Figure 6.3 shows the
PathFinder algorithm used to find the longest path for two examples of the bam with
ten (upper) and fifteen (lower) features. The right-hand plots show a graph representation
of the hereditary condition with the longest path given by tracing the red arrow. The
HDFS algorithm uses this condition to efficiently exclude overlapping feature combinations
from consideration.

In summary, initiated from a source li, with the first element of S being Ai, the set
of all allowed paths Ki can be built by recursively evaluating the subsets of S. Once the
current iteration has reached the “sink” ln, a full path is defined by the steps taken. Upon
each path completion, the set S is recalculated from the next element of the previous set
(Sc−1). This process is repeated until the “sink” (ln) is reached within the first subset
of S. Figure 6.2 shows the results from running this algorithm using the bam from
Figure 6.1 for paths starting from l0. The left-hand figure shows the first allowed path
starting from l0 K0,0. The right-hand plot shows all paths that are allowed from source
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Figure 6.3.: Graph representation of the longest path identified from two examples bam’s
using ten (upper) and fifteen (lower) features. The left-hand plots show the
combinations as a path traced on the bam, while the right-hand plots show the
hereditary condition as a graph. The nodes of the graph evolve as with the
selection such that the subscript of the label refers to the previous node. The
sink node is shaded red, with the red arrows tracing the longest path to the sink.
The nodes within the combination are shaded green, with the alternatives shaded
blue.

l0. The complete HDFS algorithm is given in pseudocode as Algorithm 1 in Appendix A.
The PathFinder code is available at https://github.com/J-Yellen/PathFinder.

6.2. Weighted edges for sensitivity optimisation

So far, in generating the set of allowed paths, we have been concerned solely with feature-
exclusivity and treated all graph edges (and hence feature) as of equivalent value within
the fixed DAG ordering provided. However, this is most often not the case in practice:
for each specific model, certain features will be more sensitive than others. Thus, the

https://github.com/J-Yellen/PathFinder
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edge weight will determine the optimum set in most use cases, which is any that isn’t
directly performing a longest-path search. Such weights should be motivated by the
statistical goal being tested and, ideally, should be additive so standard longest-path
optimisation can be used to identify the most sensitive allowed feature combination.

In general, the optimal path can be found in a reasonable time by evaluating the
overall sensitivity metric for every allowed element combination identified by the HDFS
algorithm of the previous section. However, in the case of additive weights, further
algorithmic optimisations are possible by a) ordering the elements in decreasing order of
individual sensitivity and b) exiting early from the generation of allowed-path subsets for
which there is no possibility of exceeding the metric obtained for the current maximum-
sensitivity path. The first of these conditions is implemented by a priori ordering the
elements according to decreasing weight, such that paths dominant features are evaluated
first — this opens the possibility of evaluating only the sets of paths starting with the
first O(10) elements. The second makes such a manual cut-off largely redundant by
maintaining records of the highest complete-path weight and the sum of weights over
all remaining elements in Sc as the allowed paths are generated. Should the sum of
the current path’s weight and its maximum possible completion become smaller than
the current best complete path, there is no point in continuing to evaluate that set of
completions. This condition is given by∑

i∈Sc

ωi +
∑

j∈Ac+1

ωi >
∑

k∈Kbest

ωk , (6.7)

where ωi is the weight of feature i andKbest is the set of features with the highest combined
weight evaluated so far. This condition acts as a “short-circuit”, reducing the path-finding
algorithmic complexity. However, this final optimisation step has the consequence of no
longer being able to track all of the possible paths available. This optimised version of the
hdfs algorithm for weighted graph edges defines an alternative weighted hdfs algorithm
(whdfs). This algorithm is the final method for efficiently addressing the problem of
finding the combination of statistically non-overlapping elements that maximises their
additive combination of sensitivities in a given model. While the whdfs outperforms
the hdfs in terms of efficiently finding the best combination, the hdfs algorithm does
not discard the information. Thus, the algorithms answer two distinct questions:

• What are the possible combinations? → hdfs

• What are the best combinations? → whdfs
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6.3. Optimisation and performance

Ordering

Introducing weights introduces the possibility of arranging the bam to improve the run
time. Finding an optimal set of features depends on which metric defines optimality, e.g.
maximum information, p-value, or similar. By ordering the bam according to decreasing
single-feature contribution to the optimality metric, the optimum set will probably be
initiated from an “early” li with i ≪ n (for large n). In practice, this means that the
PathFinder algorithms only need to be run over the top few indices. Ordering the
bam and weights can be done by calling the sort_bam_by_weights method of the bam

class after defining the bam object:

bam = pathfinder.BinaryAcceptance(input_matrix, weights=weights)

index_map = bam.sort_bam_by_weight()

This returns an array of indices that map back to the original configuration. After
calculating the best path, the result can be converted back to the original indices via the
remap_path method of the Results object.

hdfs = pathfinder.HDFS(bam)

hdfs.find_paths()

results = hdfs.remap_path(index_map)

Here, we call an instance of the hdfs class and then calculate the results using the
find_path method. The results are stored on a Results class–from which the hdfs and
whdfs classes inherit–which handles all of the paths and corresponding weights using
ordered python data classes for each result. This structure allows for quick sorting of
each path according to its weight.

To understand the benefit of introducing ordering, Figure 6.4 compares the internal
path evaluations performed by each algorithm when calculating the best path for ten
features. The upper plots (a) show the evaluations made while running on unordered
weights; the hdfs performs 52 path evaluations while the whdfs performs 12 to reach
an identical conclusion. The lower plots (b) show the evaluation made using ordered
weights. For the hdfs, the number of evaluations stays the same as no stopping criterion
exists. However, the whdfs algorithm only takes five evaluations, less than half of what
was required in the unordered case. The best path, in this case, was {l0, l1, l7, l8}, for the
unordered mode, the best path was evaluated on the third “run” starting at l1 (the third
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Figure 6.4.: Comparison between the hdfs and whdfs algorithms running with 10 features.
The plots demonstrate every path evaluation performed by the two algorithms
running in weight-ordered (lower) and unordered (upper) modes. The hdfs
evaluated 52 paths for both modes, evaluating each allowed combination before
returning the best result. The whdfs reduced the number to 12 paths in the
unordered mode and 5 when ordered. For consistency, the axis labels have been
presented in weight order for all plots.

feature). Both ordered runs evaluated the best path within the first iterations of the first
run, demonstrating the benefits of weight ordering for both algorithms.
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6.3.1. Subsets

A logical inconsistency was discovered early in developing the hdfs algorithm. If the
bam were constructed with all features combinable, one would expect a single result of
length n containing all the features. However, the hdfs returned ≈ 2n results, which
made sense as that is the number of all possible paths shown in Equation (6.1). This
exposed a subtle difference between the expected and designed behaviour because, as it
turned out, the answer to the question “How many available paths there are?” depends
on whether or not subsets are allowed in the combination. To achieve the behaviour of
generating one path for a fully “legal” or “allowed” bam, the definition of the superset K
must be altered such that:

∀Kα,i, Kα,j ∈ Kα, Kα,i ̸⊆ Kα,j and Kα,j ̸⊆ Kα,i , (6.8)

where the number of combinations entering K depends on the fraction of the elements in
bam that are “allowed”. The allowed fraction (fA) is defined as:

fA =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

Bi,j , (6.9)

where the elements of the bam (Bij) are treated as binary; thus, the sum of elements
must be less than or equal to n(n−1). Figure 6.5 shows the number of paths available for
twenty features for a given fA. The bam was randomly generated 50 times for each, and
the hdfs algorithm was used to calculate the total number of paths under subsets-allowed
and subsets-not-allowed configurations. Both configurations show the expected behaviour
with the “allowed” results tending to 2n and the “not-allowed” results tending to unity.

This modification becomes particularly important when dealing with negative weights.
To demonstrate this issue, let’s consider the following scenario:

W =
l∑

i∈Kbest

ωi = 5 + 4 + 3 + 2 + 1 + (−1) . (6.10)

The addition of the final weight in Equation (6.10) depends on the condition of allowing
subsets. If allowed, the negative value is dropped in favour of a larger sum. There are
examples of use cases where this is the desired behaviour, i.e., when data reduction
is the goal and selecting the datasets most sensitive to a target is the primary task.
However, there are also use cases where selection biases, such as cherry-picking or the
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Figure 6.5.: Difference in the number of combinations when allowing and not allowing subsets.

“look-elsewhere effect”, are of concern. In these cases, negative weight can signify data
in favour of the null hypothesis, and thus, their inclusion reduces the chance of type I
errors.

By default, the PathFinder module does not allow negative weights. When calling
an instance of the BinaryAcceptance object with negative weights, a warning is raised,
providing the user with two suggestions. The first is to rescale the weights to positive
values; this option must be used if subsets are not allowed in the calling of hdfs or
whdfs. The second option is to set the flag allow_negative_weights=True when
calling the BinaryAcceptance object. If the first option is chosen and the weights are
rescaled, the original weights can be recovered via the remap_path method of the hdfs

or whdfs object:

constant_shift = abs(min(weights)) + 1

weights = weights + constant_shift

bam = pathfinder.BinaryAcceptance(input_matrix, weights=weights)

hdfs = pathfinder.HDFS(bam)

hdfs.find_paths()

results = hdfs.remap_path(weight_offset=constant_shift)
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Figure 6.6.: Comparison of the number of iterations, or “steps” taken by the hdfs and whdfs
algorithms. The analysis was performed over five bam sizes indicated by the
“number of features”, each generated with different values of fA. In the most
extreme case, the whdfs outperformed the hdfs algorithm by three orders of
magnitude.

6.3.2. Performance

The performance of the PathFinder algorithms is dependent on two factors. First is the
dimensionality (N), the number of features entering the bam. The second is the fraction
of allowed combinations fA. The algorithm’s performance can be measured in two ways:
completion time, i.e., how long it takes to find the optimum combination. Alternatively,
one could measure the number of iterations required, which is another way of saying the
number of “steps” taken. Figure 6.6 compares the hdfs and whdfs algorithms applied
to five bam matrices ranging in size from n = 10 to n = 50 features with fA ranging
from 0.1 to 0.75. For each configuration, the same bam object was provided to both
algorithms, calling the PathFinder, hdfs and whdfs classes via:

hdfs = pathfinder.HDFS(bam, top=1))

hdfs.find_paths()

wdfs = pathfinder.WHDFS(bam, top=1)

wdfs.find_paths()
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Where “top” refers to the number of best-performing results to be tracked, i.e. keep the
top n results. Both algorithms essentially loop over the available nodes; thus, they can be
arbitrarily modified to keep track of the number of loops or “steps“ performed. Looking
at the right-hand plot of Figure 6.6, the number of iterations performed by the hdfs

scales quickly with the bam size, less than exponential but greater than logarithmic.
Moving to the left-hand whdfs plot, the scaling is reduced to near n log(n) for fA = 0.1.
The red (upper) line corresponding to fA = 0.75 shows a difference of three orders of
magnitude in the number of iterations. It is reasonable to assume that both algorithms
take the same time per iteration. Thus, the gain in efficiency for the whdfs algorithm
reduces the time complexity close to O(n lnn)1. This is a valuable result as it means
that a combinatorial problem that once required approximations or large amounts of
computing time now has a solution for situations that involve potentially thousands of
features.

1A comparison between the hdfs, whdfs and a brute force approach is provided in Section 7.4.5



Chapter 7.

Exclusion: Testing Analysis
Combinations

7.1. The taco project

Multiple theories of physics beyond the standard model (BSM) have been proposed to
address the questions left by the Standard Model. Over the last decade, the ATLAS
and CMS experiments at the Large Hadron Collider (LHC) have played a large part in
excluding the most obvious models beyond the Standard Model (BSM) and, as such,
more complex models are entering the game. These bring increasing complexity in both
the dimensionality of their parameter spaces and the range of phenomenology possible
within them. This increases the probability that new physics will not be discoverable
via one powerful experimental signature but will disperse across many signatures at a
level below direct exclusion in any search analysis. Thus, to view what the LHC tells
us about physics beyond the Standard Model, it is crucial that different BSM-sensitive
analyses can be combined.

The current construction of search analyses means that comprehensive combinations
require knowledge of how the same events co-populate multiple analyses’ signal regions.
The taco (Testing Analysis Combinations) project presented a novel, stochastic method
to determine this degree of overlap. It combines this with the whdfs algorithm to find the
optimum combination of signal regions (see Chapter 6). The project published the paper
“Strength in numbers: Optimal and scalable combination of LHC new-physics searches”
in April 2023 [194]; much of the research presented in the following chapter is taken from
the taco paper with additional content taking a retrospective view of the project. My

133
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contributions to the taco project included developing and implementing the whdfs

(see Chapter 6), which I used to generate the results presented in Section 7.4. While
the procedures for calculating overlaps between signal regions (SRs) were already well
established before my involvement, I contributed to the implementation and fine-tuning
of the final procedure as presented in the taco paper [194].

Before we get into the main content, we must carefully define the term “optimum
combination”. For the taco project, this was taken to mean a set of signal regions
with no mutual overlap in event co-population that simultaneously optimises expected
upper limits on BSM-model cross-sections. With this definition, the project demonstrates
the gain in exclusion power relative to single-analysis limits using models with varying
degrees of complexity, ranging from simplified models to the 19-dimensional pMSSM.

The project primarily focused on using the MadAnalysis 5 analysis toolkit with
SModelS to investigate how to best combine analyses for optimal statistical power.
The motivation for the project came from the idea that definitive statements about
any dispersed signature would require the combination of as many analyses as possible.
As previously stated, not all analyses can be combined because simply combining the
test statistics of every signal region (SR) from every analysis would certainly double-
count physics effects since the same events could pass multiple analyses’ event-selection
cuts and observable binnings. As observables used for selection-cut purposes can be
highly correlated, with a complex dependence on the rest of the selection phase-space,
it is impossible to reliably identify these degrees of overlap directly from a list of cut
observables and values. And crucially, even when the analysis correlations are known,
there remains the problem of identifying which compatible subset will place the optimal
constraint on any given BSM model.

7.2. Overlap estimation

To investigate how analyses could be combined to provide the most stringent constraints
on a BSM model point, the selection of analyses available in both SModelS and
MadAnalysis 5 was chosen as the database. At the time of taco project in 2020,
this included 19 analyses: ATLAS-SUSY-2013-02 [195], ATLAS-SUSY-2013-04 [196],
ATLAS-SUSY-2013-05 [197], ATLAS-SUSY-2013-11 [198], ATLAS-SUSY-2013-21 [199],
ATLAS-SUSY-2015-06 [200], ATLAS-SUSY-2016-07 [201], ATLAS-SUSY-2018-04 [202],
ATLAS-SUSY-2018-06 [203], ATLAS-SUSY-2018-31 [204], ATLAS-SUSY-2018-32 [205],
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ATLAS-SUSY-2019-08 [206]; CMS-SUS-13-011 [207], CMS-SUS-13-012 [208], CMS-SUS-
16-033 [209], CMS-SUS-16-039 [210], CMS-SUS-16-048 [211]. CMS-SUS-17-001 [212],
and CMS-SUS-19-006 [213].

The cascade decays, or topologies, addressed by these analyses were simplified to focus
on the production of two massive BSM states, each decaying into at most 2–3 final-state
particles. For example, CMS-SUS-19-006 [213] covered six simplified models with 2–3
final-state particles, four with direct gluino pair production: T1tttt, T1bbbb, T1qqq, and
three with direct squark pair production: T2tt, T2bb and T2qq. The topologies covered
by all the named analyses, following the SModelS naming convention [214], were: T1,
T1bbbb, T1btbt, T1tttt(-off), T2, T2bb, T2tt(-off), T2bbWW(-off), T2bt, T2cc, T3GQ,
T5, T5bbbb, T5tctc, T5tttt, T5GQ, T5WW(-off), T5WZh, T5ZZ, T6bbhh, T6bbWW(-
off), T6WW(-off), T6WZh, TChiChipmSlepL, TChiChipmSlepStau, TChiChipmStauS-
tau, TChiChipmSlepSlep, TChipChimSlepSnu, TSlepSlep, TChiZZTChiWH, TChiWW,
TChiWZ(-off), TChiZoff, TGQ, TSlepSlep, and TStauStau.

7.2.1. Model-space sampling and event generation

Efficiently estimating the degree of overlap between different SRs required an efficient
sampling strategy. One of the first issues encountered by the project was how to define a
sample space that contained all the relevant analyses in terms of a given simplified model.
To achieve this, we considered the minimal volume in the mass-parameter space in terms
of a convex hull. In mathematics, the convex hull of a set of points is the smallest convex
set that contains all the points. Intuitively, you can think of it as the shape you would
get if you stretched a rubber band around the outermost points of a set; the rubber
band would enclose all the points and form a convex polygon or polyhedron. In more
formal terms, a convex set is one in which, for any two points within the set, the line
segment connecting them also lies entirely within the set. As such, the convex hull is the
intersection of all convex sets that contain the given set of points. It is the smallest such
convex set [215].

In 2D, the convex hull forms a polygon, while in 3D, it forms a polyhedron. For
example, if you have a set of scattered points in the plane, their convex hull would be
the boundary of the minimal convex polygon that encloses all the points. In 3D space,
the convex hull would be a polyhedron where the outer faces form the smallest convex
shape that encloses all points.
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In N dimensions, the concept of a convex hull generalises similarly to how it works
in 2D or 3D. The convex hull of a set of points in N-dimensional space is the smallest
convex set that contains all the points. Given a set of points, X = {x1, x2, . . . , xk} in
N-dimensional space RN , the convex hull is the set of all convex combinations of these
points. A convex combination is any point that can be written as:

y = λ1x1 + λ2x2 + · · ·+ λkxk , (7.1)

where the coefficients λi satisfy:

1. λi ≥ 0 for all i (non-negative).

2.
∑k

i=1 λi = 1 (the sum of the weights) .

The resulting convex hull is the smallest convex "shape" that encloses all the points
in X. As such, in ND, the convex hull forms a convex polytope [216], which is the
N -dimensional analogue of a polygon (in 2D) or polyhedron (in 3D).

With an understanding of how to define a minimal volume in a high-dimensional
space, the following procedure was followed to estimate signal overlaps for arbitrary
scenarios. For each analysis, a convex hull was constructed in each simplified model’s
parameter space accessed by a given topology, using the efficiency maps implemented
in SModelS [217]. The efficiency maps provided upper limits on the production cross-
sections of the two relevant BSM states, depending on the masses in the simplified decay
chains. For each simplified model, a convex hull existed for each analysis that included
results for that specific model. The focus was on the joint set of convex hulls corresponding
to each simplified model. A contour was then constructed around the mass-parameter
space beyond which the expected event yield from all corresponding analyses was zero.
The union of these regions was populated with events without redundantly populating
areas shared between analyses. Events were uniformly generated within this joint set of
convex hulls to introduce minimally informative flat prior to the procedure.

The MC events were generated at leading order (LO) with MadGraph5 (v2.6.5) [218]
at the partonic level using the NNPDF 2.3 LO [219] set of parton distribution functions
via the Lhapdf library [220], with parton-showering and hadronisation simulated by
Pythia 8 [221] through the MadGraph5 interface. Detector-level events were obtained
using Delphes 3 and FastJet [183, 222], executed through MadAnalysis 5 with
analysis-specific configurations interleaved with the event-selection logic. The input
for the generation pipeline was a corresponding SLHA-format [223] data file for each
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topology, with the masses of the produced, final, and (in some cases) intermediate BSM
states defined as free parameters. The initial partonic processes in the generation chain
involved direct production of the topology’s massive BSM states, with decay chains
implemented via Pythia 8’s decay mechanism.

The required output of the MC generation procedure was an shared-event matrix Θ

of shape Nevt×NSR, where Θe,s = 1 meant that event e populated SR-bin s, and vice
versa Θe,s = 0 indicated that event e did not pass the cuts for SR s. This matrix was
produced using a command in MadAnalysis 5,

set main.recast.TACO_output = <file-name>,

that was added to the framework for this purpose. The shared-event matrices were saved
as text files with each event corresponding to a pair of lines encoding first the list of
floating-point event weights [224] (in this study, we use only the nominal weight), and
then a list of 0 and 1 characters corresponding to the NSR signal regions. These files
were written separately for each Delphes 3 configuration to the location:

<Output>/SAF/defaultset/<delphes-card-name>.<file-name>.

In the output directory of the recasting process, the minimal number of Monte-Carlo
events needed for a reliable estimation of the binary acceptance matrix was determined
by starting with 100 events for 1000 random parameter points sampled from the union
of the convex hulls of the signal regions, resulting in an initial N = 100, 000 events. For
any pair of signal regions SR1 and SR2 populated with n1 and n2 events, respectively,
the number k of shared-events was determined. If k > 100, enough statistics had been
accumulated, and the bootstrapping procedure proceeded (see Section 7.2.2).

For k ≤ 100, with n ≡ n1 + n2, the confidence interval construction by Clopper and
Pearson [225] of the binomial distribution was used.

B(n, p) =

(
n

k

)
pk(1− p)n−k , (7.2)

where p is a free parameter defined as the probability of overlap. To guarantee enough
events for the case of a negligible overlap, we had to obtain a one-sided (upper) confidence
interval for p at confidence level CL ≡ 1− α = 0.95 and guarantee that it was below a
certain threshold. From the Clopper–Pearson construction, this was computed as the
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Figure 7.1.: Flowchart for determining the number of Monte Carlo events needed to estimate
the overlap matrix.

1− α quantile of the β distribution

f(p | k, n) = β1−α;k+1;n−k . (7.3)

Suppose this upper bound is below the arbitrarily chosen threshold, f(p | k, n) < 0.01.
In that case, we assumed that we had accumulated enough statistics to safely infer the
potential absence of significant overlap, and we confidently proceeded to the bootstrapping
procedure. Using these criteria, we employed the logic of Figure 7.1, as it guaranteed
that enough statistics were available to robustly and reliably determine a significant or
negligible overlap between a given pair of signal regions.

7.2.2. Overlap-matrix estimation

With a set of sufficiently populated SRs, the project moved to determine whether or not
such SRs were approximately orthogonal or disjoint with respect to one another. The
Pearson correlation can be estimated from the acceptance matrix via the event-averaged
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covariance,

covij = ⟨ΘiΘj⟩ − ⟨Θi⟩⟨Θj⟩ ,

≡
∑

eΘe,iΘe,j

Nevt

−
∑

e
′ Θe

′
, i · ∑e

′′ Θe
′′
, j

N2
evt

,
(7.4)

where Nevt is the number of events in the estimation sample and, as made explicit in the
second line, i and j are SR indices. This method was possible because the entire event-
wise shared-event matrix was available; hence, overlaps can be estimated by averaging
over the event axis of the matrix.

An alternative approach, which was employed in this project, involved bootstrap
sampling from a unit Poisson distribution. In this method, each event was assigned Nboot

independent “bootstrap weights” we,b∼Pois(λ = 1), which were subsequently aggregated
to construct Nboot replicas of the signal region (SR) yield estimates. This procedure
resulted in an NSR ×Nboot yield matrix Y , where each entry represents the sum of event
weights falling into the SRs for a given bootstrap replica. The matrix encapsulates Nboot

alternative realisations of the yields, generated from a single set of input events.

The degree of overlap between different SRs was then quantified through their
correlated weight fluctuations across bootstrap replicas, yielding an alternative estimate
of the covariance:

covij = ⟨YiYj⟩ − ⟨Yi⟩⟨Yj⟩

≡
∑

b Yi,bYj,b
Nboot

−
∑

b
′ Yi,b′ · ∑b

′′ Yj,b′′

N2
boot

.
(7.5)

A key distinction of this method is that the averaging is performed over bootstrap replicas
of the aggregate yields, rather than over individual event-level acceptance tuples. While
not critical in the present implementation, the bootstrap approach offers a practical
advantage by eliminating the need for a linearly growing acceptance matrix. Instead,
it maintains a fixed-size NSR ×Nboot yield matrix, which may become computationally
significant for large event samples. From the covariance matrix obtained via either
method, we then define the overlap matrix.

ρij =
covij√

covii covjj
, (7.6)
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following the usual Pearson correlation definition. Lower-triangle plots of this symmetric
acceptance matrix for the sets of signal regions common to SModelS and MadAnal-

ysis 5 are shown in the Appendix B Figures B.1 and B.2 for 8TeV and 13TeV LHC
data-analyses respectively, with patterns of highly and partially co-populated SRs visible.
Finally, the bam B between SR-pairs SRi and SRj was derived by applying an “acceptable
overlap” threshold T such that the overlap between SRs i and j is Bij = (| ρij| ≤ T ). The
value chosen for T is somewhat subjective, reflecting that for each use-case, there will be
a finite value of ρij below which double-counting biases are not statistically resolvable:
treating these low correlations as zero-correlations avoids blocking useful SR combinations
due to irrelevant and noisy correlation estimates.

The procedure described above is implemented in the public Python program
TACO (Testing Analyses COrrelations), available at https://gitlab.com/t-a-c-o/

taco_code.

7.3. Optimal signal-region combination

To fully take advantage of the whdfs algorithm, we would need to define edge weights
that maximise the exclusion power given a model point. With this, we can select a set of
signal regions that results in the maximum expected significance for exclusion. For each
specific BSM model, some signal regions will be more sensitive than others. For example,
leptophilic models naturally tend to see the most sensitivity in SRs with multilepton
signatures; models with enhanced couplings to the third generation have the most impact
on t- and b-quark and τ -lepton signatures; and dark-matter models favour jet + missing
transverse-energy signatures. In addition, when not all SRs have the same integrated
luminosity, SRs in high-luminosity datasets are naturally more sensitive than those in
low-statistics ones.

7.3.1. Selection of weights for exclusion

A typically appropriate choice for the edge weights, and one that is motivated by use in
collider physics, is the logarithm of the expected likelihood-ratios (LLR) between the
signal-model under test and the background-only model, for pseudodata equal to the

https://gitlab.com/t-a-c-o/taco_code
https://gitlab.com/t-a-c-o/taco_code
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expected yields under the background-only model.

ωi = −2 ln

(
Li(µ = 1,

ˆ̂
θθθe)

Li(µ̂, θ̂θθe)

)
= −2 lnΛexp

i (µ) , (7.7)

where the index i links the i-th weight to SR (node) i and θθθ = (θθθs, θθθb, bz) denotes all
of the nuisance parameters, with bz being the total number of background events. The
likelihoods are obtained using the SModelS [81] software package, which implements a
mixture of pyhf [187] and Simplified Likelihoods, [226]. The precise form of the
likelihood changes with the analysis and depends on the data provided by the experiment.
However, the use of likelihoods in SModelS can be summarised by a generalised example:

L
(
n | µ, s(θθθ), b,∆∆∆

)
=
∏
i

[
µsi(θθθ) + bi +∆i

]ni 1

ni!
exp
(
−(µsi(θθθ) + bi +∆i)

)
P (∆∆∆) . (7.8)

Here, L(n | µ, s(θθθ), b,∆∆∆) represents the likelihood function, which is the product of
Poisson PDF’s (see Section 3.2.3) for each bin. It describes the probability of observing ni
events in a given bin, given the expected signal contribution si, background contribution
bi, and signal strength µ at the model point θθθ. The nuisances, contained within the vector
∆∆∆, are described by a non-specific distribution P (∆∆∆) and are coupled to the Poisson.
This equation represents a simplified explicit likelihood form, where the new nuisance
parameters directly modify the nominal background event yield, bi → bi +∆i, and the
P (∆∆∆) term imposes a penalty on such deviations It is worth mentioning that nuisances
can be completed objects where the elements of ∆∆∆ can correspond to many factors that
affect the rates for signal and background processes. Influences such as energy scale,
b-tagging efficiency, and detector effects are often incorporated; these elementary nuisance
responses are generally non-linear, resulting in a completed likelihood function that is
difficult to report as an analysis outcome. The Simplified Likelihoods scheme replaces
this full complexity with linear responses of expected (background) event yields with
an effective nuisance parameter ∆i for each bin, with the interplay between elementary
nuisances absorbed into a covariance matrix (ΣΣΣ) between the new effective nuisances.

One option for P (∆∆∆) could be an additional Poissonian corresponding to the control
sample containing background events, which can be used to construct a histogram of
some chosen kinematic variable, thus constraining bz. Alternatively, one could replace the
elementary nuisances with effective ones, corresponding to the terms in the bin-covariance
matrix. In this scenario, P (∆∆∆) would most naturally be a multivariate Gaussian of
bin-value mean and covariance ΣΣΣ. Additional improvements could be made by adding
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some asymmetry to that Gaussian, bringing it closer to the Poisson, which is especially
useful for reducing negative-rate sampling. For the moment, the exact form of P (∆∆∆) is
of minimal concern when considering the test statistic, as ωi is the profiled likelihood
ratio; thus, the likelihoods are profiled over ∆∆∆, giving:

L
(
n | µ, s(θθθ), b

)
= max

∆∆∆

{
L
(
n | µ, s(θθθ), b,∆∆∆

)}
. (7.9)

The use of the Equation (7.7) is motivated by the following logic:

1. As we are combining a set of direct-search analyses in which no individual significant
signal was found, we choose to frame our mission primarily as maximising the
volume of model exclusion rather than a discovery. Our null hypothesis is, hence,
the BSM signal model, and we seek to overturn it with a preference for the SM at
every point in its parameter space.

2. Maximum exclusion power at each point hence corresponds to minimising the rate
β of Type-2 errors (false-negatives, i.e. identifying the data as BSM when it is SM),
hence maximising the conventional statistical power 1− β.

3. We hence aim to maximise the expected significance of exclusion Z at each point
in the BSM parameter space. Under the assumptions of Wald’s Theorem [227,
228], the expected significance is given by the square root of the LLR between the
models; hence, maximising the LLR maximises the expected model-exclusion.

As any generated path is by definition composed of SRs, which can be treated as
non-overlapping, the total log likelihood-ratio (LLR) of an element subset is just the sum
of such weights along its corresponding path candidate C:

ΩE =
∑
i∈C

ωi . (7.10)

The use of expected-background pseudodata rather than the actually observed data
counts is important to avoid cherry-picking statistical fluctuations. To avoid bias, we
identified the optimal element-combinations for each point as if the data had not yet
been recorded.

The desired distribution of ΩE can be found starting with a result due to Wald [227],
who showed that for the case of a single parameter of interest, and expanding this to the
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sum of minimally correlating LLRs such that:

ΩE =
∑
i

−2 ln

(
Li(µ = 1,

ˆ̂
θθθe)

Li(µ̂, θ̂θθe)

)
=

(µ− µ̂)2

σ2 +O
(
1/
√
N
)
, (7.11)

where we assume µ̂ is normally distributed with mean µ′ and standard deviation σ for
a sample size N . With these assumptions and neglecting the O(1/

√
N) term, one can

show that ΩE follows a non-central chi-square distribution with one degree of freedom,

f(ΩE | µ) = 1√
2π

1

2
√
ΩE

[
exp
(
−1

2

(√
ΩE +

µ− µ′

σ

)2)
+exp

(
−1

2

(√
ΩE − µ− µ′

σ

)2)] (7.12)

where the (µ− µ′)/σ term defines the non centrality of the distribution. However, by
definition, under the SM background hypothesis µ = µ′ = 0; thus, the equation reduces
to the χ2 distribution with one degree of freedom [228].

f(ΩE | µ) = 1√
2π

1√
ΩE

exp
(
−1

2
ΩE

)
(7.13)

This is a crucial result for the project as it provides a robust weight and easy access
to p-values via the χ2 CDF. Alternative test statistics for other use cases, particularly
anomaly detection, in which the observed data is compared to background expectations
in search of the most consistent, discrepant, non-overlapping subset of measurements, a
modified metric is required, but with similar motivation. For such use cases, however,
the edge weights are, in general, no longer additive, resulting in a more complicated and
CPU-intensive task.

7.3.2. Combination

Using the SModelS toolkit, the weights defined by Equation (7.7) were calculated for
all SRs for a given model. This was done by producing SUSY Les Houches Accord data
files (SLHA files) [229, 230] and the following classes from SModelS:

from smodels.base.model import Model

from share.model_spec import BSMList

from smodels.share.models.SMparticles import SMList
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Figure 7.2.: BAM constructed from 10 signal regions (SR0−SR9) with values masked according
to threshold T. The weights have been calculated using a model point from the
“T1” results (Section 7.4. The coloured lines show all allowed paths originating at
SR0.

from smodels.decomposition.decomposer import decompose

from smodels.base.physicsUnits import GeV, FB

from smodels.matching.theoryPrediction import TheoryPrediction

A Model object could then be called from SModelS and subsequently decomposed into
SMS topologies:

model = Model(BSMparticles=BSMList, SMparticles=SMList)

model.updateParticles(inputFile=SLHA_file)

topology_list = decompose(model, sigmacut=0.005*fb,

minmassgap=minmassgap=5*GeV))

From the SModelS database, the experimental results were used to generate a theory
prediction object using the TheoryPrediction class. From this object, the relevant
likelihoods were calculated to evaluate ωi for each SR. Figure 7.2 shows a selection of
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SRs contributing to a model point taken from the “T1” SMS topology. The coloured lines
show all ranked paths starting from SR0 with combinations ranked highest to lowest,
going from violet to red. With this machinery in place, we could evaluate the optimum
combinations over the mass space of simplified models and extend to more complex
models.

Before moving to the results of the taco project, it is worth examining how the
combinations were used to estimate exclusion. The experimental results in the SModelS

database can be categorised in two main ways [231–233]:

• Upper Limit (UL) results: these correspond to the observed limits on the produc-
tion cross-section (times the branching ratio) for simplified model topologies as a
function of the BSM masses obtained by the experimental collaborations, σUL

obs. The
results can also include the expected upper limits, denoted as σUL

exp. All limits are
given at 95% confidence level (CL).

• Efficiency Map (EM) results: these correspond to signal efficiencies–or more
precisely, acceptance × efficiency, (A× ϵ)–for simplified topologies as a function of
the BSM masses for the signal regions considered by the corresponding experimental
analysis. These results include information about the number of observed and
expected events with the corresponding uncertainties for each signal region

For the taco project, only the “efficiency map” results were used as they contained the
event information needed to construct the likelihood functions. However, for results that
considered a single topology, it was convenient to present the data in terms of the r-value,
which is defined as

r =
σsignal
σUL

, (7.14)

where r ≥ 1 means that an experimental result is excluded. The upper limit is defined
at the 95% CL, thus, an isocontour at r = 1 is equivalent to the 95% CL.

7.4. taco results

To demonstrate the effectiveness of our approach, we presented physics results for various
BSM-reinterpretation scenarios. Starting with simpler cases, we first demonstrated
increases in model-exclusion limits in the context of simplified models, as detailed in
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Figure 7.3.: Feynman diagram for the “T1” topology, representing a simplified gluino pair-
production scenario followed by the decay into a qq pair and a neutralino χ̃.

Section 7.4.2. Moving to more complex scenarios, we then showed the impact of our
combinations on the pMSSM-19 model, which is discussed in Section 7.4.3. Finally, we
concluded by analysing our combination results in the context of a simple t-channel dark
matter model, where we fully recast the relevant analyses, as described in Section 7.4.4.

Throughout the project, control regions and overlaps in the background expectations
of the signal regions were disregarded. This approach reflected the assumption that the
signal regions were sufficiently specific to event topology and kinematic phase space,
making distinguishing between signal and background events unnecessary. The removal
of reducible backgrounds had already been addressed through pre-selection and SR-cut
definitions. As a result, overlap estimation could also have been performed using large
background-event samples rather than relying solely on sampling across signal models.

7.4.1. T1 simplified-model combination

Following the procedure outlined in Section 7.2, an overlap matrix was constructed based
on the set of analyses provided in both SModelS and MadAnalysis 5. From the
SModelS database, a binary acceptance matrix (bam) containing 393 SRs was generated
using a 1% maximum overlap threshold. The initial test of the taco formalism involved
comparing the combined results to the validation plots for analyses and topologies in the
SModelS database. These analyses were selected to ensure consistency within a model
space thoroughly mapped and understood by SModelS. The first simplified model
examined was the “T1” topology, representing a simplified gluino pair-production scenario
where each gluino undergoes a three-body decay. Figure 7.3 shows the corresponding
Feynman diagram with g̃ → qq̄χ̃0

1, producing a light-flavor quark-antiquark pair along
with the lightest stable particle (LSP) χ̃0

1.
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(b) Observed

Figure 7.4.: Validation plots comparing the (a) expected and (b) observed results of the
taco SR-combination against three individual-analysis limits from the SModelS
results database for the T1 topology. The lines represent the exclusion limits
based on r-values, where r = 1 corresponds to the 95% confidence-level exclusion
boundary. The CMS-SUS-19-006-ma5 analysis is labelled in this way because
its efficiency map was derived for SModelS using MadAnalysis 5 rather than
directly from the experimental analysis data. The grey dashed line marks the
edge of the efficiency maps.

Figure 7.4 shows the validation plots for the T1 topology, illustrating the (a) expected
and (b) observed exclusion limits for the combined signal regions (SRs) compared to three
individual analyses. The contour lines represented the exclusion limits in terms of the
ratio between the predicted cross-section σpred and the upper limit on that cross-section
σUL, expressed as r ≡ σpred/σUL, where r = 1 marked the exclusion limit at a 95%
confidence level. The left-hand plot shows the theoretical expected improvement in
exclusion gained by the optimised combinations at each mass-parameter point. The
right-hand plot shows the actual improvement using the experimental (observed) data.
A total of 265 SRs were applied to the T1 topology. At each model point, the number
of relevant SRs was determined by identifying those with efficiency maps covering the
parameter ranges of the given model point. In SModelS (v2.1), this was done by first
decomposing a given new physics model into its SMS components, representing distinct
production and decay processes. These components were matched against experimental
results, which provide efficiency maps that describe how well different signal regions of
a detector respond to specific event topologies. For a given model point, SModelS

checks which signal regions have been covered by these efficiency maps and evaluates
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Figure 7.5.: Fractional distributions of (a) starting SR-index and (b) number of SRs in each
combination. Data was drawn from the optimal SR combination identified for
each model point in the T1 model space. As described in Section 7.3, the nodes
were constructed from an ordered set of SRs optimised for each point in the model
space. Plot taken from the taco paper [194]

their impact on the model’s parameter space. In normal operation, when available,
SModelS utilises covariance matrices to combine multiple signal regions in a statistically
robust manner, ensuring that the best-constraining regions are identified for exclusion or
validation of the model [81, 234]. However, for our purposes, this combination procedure
was suppressed in favour of our combination criterion.

Once the relevant SRs had been identified, they were ranked based on the expected
upper limit (UL) on the predicted yield (luminosity × cross-section × efficiency) for
each SR. This process of selecting and ranking the signal regions was incorporated into
the bam, after which the whdfs SR-selection algorithm was implemented. As shown
in Figure 7.4, the combined results pushed the exclusion line approximately 150GeV
beyond the best individual analysis available in the SModelS database.

Upon further examination of the combined results, Figure 7.5 (a) displays the distribu-
tion of starting (i.e., lowest) SR indices over the set of maximum-sensitivity combinations.
This supported the statements made in Section 6.2, which suggested that the efficiency
of the path-finding process was greatly enhanced by sorting the bam by individual
SR sensitivities. The histogram indicated that, when ordered in this way, the optimal
combination typically appeared early in the iteration process, allowing many later path
sets to be excluded when it became clear that they could not outperform the current best
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Figure 7.6.: Feynman diagram for the “T1tttt” topology, a modification of the T1 model in
gluino decays exclusively into top quark–antiquark pairs and neutralinos χ̃.

set. The right-hand plot of Figure 7.5 showed the percentage prevalence of the number of
SRs in each optimal-sensitivity combination, with typically 6–10 of the available 265 SRs
being utilised. This small number conveniently allowed for expensive statistical methods,
such as coherent profiling or marginalisation of systematic uncertainties across analyses,
which would have been prohibitively costly over the full set of 265 (and growing) SRs.

7.4.2. T1tttt simplified-model combination

The T1 model represents a minimal scenario where gluinos decay into a pair of jets and
a neutralino, making it simpler to analyse due to the lower complexity of final states. In
our analysis, this serves as a benchmark for SUSY searches, where current experimental
results from LHC exclude gluino masses up to around 2TeV based on missing transverse
energy and jet signatures. Building on the T1 analysis, the T1tttt model introduces more
complexity where the gluino decays exclusively into pairs of top quarks and antiquarks
(g̃ → tt̄χ̃0

1). Figure 7.6 shows the corresponding Feynman diagram.

Including top quarks in the final state significantly increases the complexity of
the analysis, necessitating advanced techniques for accurate event identification and
reconstruction. This added complexity stems from various characteristics of top quark
decays. High-momentum, or "boosted," top quarks produce decay products—jets and
leptons—that tend to cluster closely within the detector, requiring the application of
complex jet substructure methods and boosted object tagging techniques to distinguish
individual components within these densely populated regions.

Additionally, the top quark almost invariably decays via the b-quark, resulting in
multiple b-jets in the final state. Precisely identifying these b-jets relies on b-tagging
algorithms that detect distinguishing features, such as displaced vertices associated with
the relatively long-lived B-mesons. The presence of multiple b-jets further complicates



150 Exclusion: Testing Analysis Combinations

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
mg̃ [TeV]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
χ̃

0 1
 [T

eV
]

pp→ g̃g̃, g̃→ tt̄χ̃0
1     √s = 8, 13 TeV

Exclusion Limits (r = 1)
Best Expected Combination
ATLAS-SUSY-2013-04
CMS-SUS-19-006
CMS-SUS-16-033

(a) Expected

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
mg̃ [TeV]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
χ̃

0 1
 [T

eV
]

pp→ g̃g̃, g̃→ tt̄χ̃0
1     √s = 8, 13 TeV

Exclusion Limits (r = 1)
Best Expected Combination
ATLAS-SUSY-2013-04
CMS-SUS-19-006
CMS-SUS-16-033

(b) Observed

Figure 7.7.: Validation plots comparing (a) the expected and (b) the observed outcomes of
the combination results with three individual analyses available in the SModelS
results database for the T1tttt topology. The lines display the exclusion limits in
terms of the r-value, where r = 1 corresponds to the 95% confidence level. The
dashed-grey line marks the boundary of the efficiency maps. Plot taken from the
taco paper [194].

the analysis, as each b-jet must be accurately associated with its parent particle to enable
a correct reconstruction of the event.

Furthermore, the complex decay chain of top quarks frequently generates leptons
and missing transverse energy due to undetectable neutrinos, which adds additional
analytical challenges. Accounting for these leptons and missing energy requires precise
calibration and robust background rejection methods to infer the missing components and
differentiate top quark signals from background processes. Despite these complexities,
experimental searches using SModelS v2.1 have imposed stringent constraints on this
model, excluding gluino masses up to approximately 1.8TeV, depending on the mass of
the neutralino.

Figure 7.7 presents the results for T1tttt topology, with (a) the validation plot for
the expected and (b) the observed outcomes, once again comparing the exclusion ranges
of the combined signal regions (SRs) with those from three individual analyses. The
plot construction followed the same approach as in Figure 7.4. Similarly, the primary
contribution to the T1tttt combination came from the CMS-SUS-19-006 analysis [213]
(depicted by the blue dot-dashed exclusion line). As before, there was a notable expansion
of the 95% exclusion contour when compared to the individual SR results, with the
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combination smoothing out the particular weakness of the most constraining analysis
near m

χ̃
0
1
∼ 1.1 TeV.

7.4.3. pMSSM-19 reinterpretation

With the machinery previously established to construct the bam from signal regions (SRs)
based on a specified model point, the analysis was expanded to encompass more complex
models. The 19-parameter phenomenological Minimal Supersymmetric Standard Model
(pMSSM-19) was selected as a case study for reinterpretation due to its significantly larger
degrees of freedom than those typically considered in experimental publications. Data
points were drawn from the ATLAS 2015 pMSSM-19 scan paper [235], independently for
the two scenarios explored in that work: bino-like and wino-like lightest supersymmetric
particles (LSPs). ATLAS had classified these points according to their viability against
8TeV ATLAS data, providing an a priori valuable set for subsequent re-evaluation
against 13TeV LHC data.

With a high-dimensional model, the analysis had to move away from exclusion
contours expressed in 2-dimensions and consider the data behaviour in a generalised
manner. To do this, the p-values from the analyses of 13TeV LHC Run-2 data were
computed for the first (randomly ordered) 27,000 model points in both the bino and
wino scenarios separately. These points were processed through the SModelS analysis
chain, with those outside the bounds of the SModelS efficiency maps discarded, leaving
approximately 20,000 points in each run.

The test statistic ωi (Equation (7.7)) was calculated using the SModelS best-
single-expected signal region selection and best-expected-combination procedures. The
resulting p-value distributions from the pMSSM-19 bino-LSP reinterpretation are shown
in Figure 7.8. The histograms revealed that in both the (a) expected and (b) observed
cases, the combination method shifted a substantial fraction of points from below the 95%
exclusion limit into the excluded category. This resulted in an increase in the exclusion
fraction from approximately 35% to 70% of all points in the ATLAS set of bino-like
models.

This shift in the mean from single to combined could have been interpreted as
evidence of the exclusionary capacity of the taco approach. However, before drawing
any conclusions, it was essential to carefully examine how the model points behaved at
the bin-to-bin level. While the only definitive statement that can be made from a p-value
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Figure 7.8.: Results from the pMSSM-19 bino reinterpretation using the taco combination
method. p-values were calculated from a selection of 22 000 points taken from
the ATLAS pMSSM-19 data set. The blue and orange dashed lines show the
mean p-values for the single and combined results. The histograms show that
in both the (a) expected and (b) observed cases, a large fraction of points are
moved beyond the 95% exclusion limit by whdfs SR-combination

is whether the model is excluded, additional insights can be gained by examining how
combining results affects the population of model points.

To achieve this, we used transition matrices, also known as stochastic matrices. These
are routinely used in modelling Markov processes, where the future state of a system
depends only on its current state and not on the sequence of events that preceded it [236].
A transition matrix is a square matrix in which each entry represents the probability
of transitioning from one state to another. For a discrete-time Markov chain with n

states, the transition matrix P is an n×n matrix, where each element pij represents
the probability of transitioning from state i to state j, such that

∑n
j=1 pij = 1 for all

i, ensuring the matrix is stochastic. The rows of P must sum to 1, reflecting that the
system must transition to some state in the next time step.

Mathematically, suppose the system’s current state is represented by a probability
vector xt, where each entry corresponds to the probability of the system being in a
particular state at time t. In that case, the state of the system at the next time step is
given by xt+1 = Pxt. This iterative process describes how the system evolves [236].

To interrogate the pMSSM results on a bin-by-bin level, we repurposed the transition
matrices. Figure 7.9 presents the matrices for the pMSSM-19 bino dataset, which depicted
the probability of a model point “transitioning” between p-value bins based on whether
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Figure 7.9.: Transition matrices showing the pMSSM-19 bino outcomes. These matrices
represented the likelihood that a model point shifted from one p-value bin to
another, using the SR-combination approach instead of the more conservative
single-best-SR method employed by prior recasting tools. The columns of each
subfigure separated the transition behaviour based on the movement to combined
p-value distributions, given the performance in individual SRs and the origins of
each combined-SR p-value range in the individual SR outcomes. The top row of
subfigures presented the expected transitions, while the bottom row displayed
the observed transitions.

the single-SR or combined-SR LLR construction method had been applied. This could
either be viewed as the probability of points in a specific single-SR bin transitioning to
various combined-SR bins or as the "origin distribution" of points that ended up in a
given combined-SR p-value bin. Both perspectives were informative and displayed in
the subfigures’ left- and right-hand columns, respectively, with expected and observed
outcomes shown in the corresponding rows. Since the values in each matrix represent
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probabilities P (row | column), the sum across the column values equals 1 (the transpose
of the usual transition matrix).

In this completed project, we began by analysing the expected P (combined|single)
result, which is presented in the top left of Figure 7.9 (a). This result demonstrates how
the taco combination changes the p-values of model points based on their initial p-value
obtained from the single best-expected SR. The overall structure of the transition pattern
was consistent with the use of SR combinations to enhance exclusionary power. Therefore,
it was expected that the transitions would predominantly lie in the upper triangle of
the P (combined|single) matrix. Notably, the transitions were largely characterised by
shifts into the excluded p ∈ [0, 0.05) bin, originating not only from neighbouring "nearly
excluded" single-SR bins but also spanning a wide range of single-SR p-values. This
demonstrated that 40% of the least excluded single-SR points could be excluded when in-
dependent SR combinations were employed. Additionally, sub-leading transition patterns
were observed in the matrix, indicating below-threshold increases in exclusion that could
potentially exceed the threshold with more analyses. The expected P (single|combined)

results, shown in Figure 7.9 (b), were concentrated in the lower triangle of the matrix, as
anticipated, and also exhibited similar structures in the transition pattern.

Turning to the observed case in the lower plots of Figure 7.9, the findings became
more intricate as the transition distribution became dilute. The prominent transition
into the exclusion bin, highlighted in plot (a), was reproduced in the observed case shown
in plot (c), as anticipated from the histogram results. The "negative transition" of model
points, which moved opposite to what was expected, was attributed to over-fluctuations
in the observed yields of the SRs used to compute the combined result. This appeared
to be a statistical artefact, likely arising from the combination of multiple SRs, though
it only occurred in a small percentage of cases (approximately 5%). Referring back to
Figure 7.8 (b), the percentage of points in the exclusion bin jumped from around 35%
to over 90% when using the combined SRs. Therefore, the negative transitions seen in
plot (d) of Figure 7.9 represented only a small portion of the model points.

Figure 7.10 presents the pMSSM-19 wino-LSP reinterpretation results. When com-
pared to the bino results in Figure 7.8, a similar overall shift toward the exclusion bins
was observed, with migration into the 95%-exclusion bin increasing from approximately
15% (single) to over 50% (combined) in both the expected and observed cases. Notably,
the wino scenario exhibited a larger fraction of expected single-SR points with p-values
greater than 0.3, indicating that a larger population of points at moderate and high-p
had the potential to be improved through SR combination.
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Figure 7.10.: Results from the pMSSM-19 wino reinterpretation were obtained using the
taco combination method. p-values were derived from a sample of 20 000 points
selected from the pMSSM-19 dataset. The blue and orange dashed lines represent
the average p-values for the individual and combined results, respectively. The
histograms illustrate that, in both the (a) expected and (b) observed scenarios, a
significant portion of the points was shifted beyond the 95% exclusion threshold
through the whdfs SR-combination method.

Upon reviewing the transition matrices in Figure 7.11, similar trends to the bino
case were identified. The P (combined|single) plots highlighted the clear shift into the
exclusion bin, as shown in the 1D histogram, and the observed plots again showed some
degree of negative transitions. However, these were insufficient to increase the overall
population of points in the higher-p bins.

The expected transitions into the 95%-excluded p-value bin extended less far along
the single-SR p-value spectrum compared to the bino-LSP scenario. Only 12% of
the least-excluded single-SR points (those with single-SR p > 0.95) were predicted to
transition into the combined-SR exclusion bin. In practice, as observed in the yield
plots, over-fluctuations in the SR yields resulted in greater exclusion than anticipated for
weakly constrained single-SR model points, with nearly 50% of the least-excluded points
ultimately being ruled out in combination.

The filament structures observed in both the expected and observed transition plots
were more pronounced in the wino scenario, allowing clearer identification of their origins.
One of these structures, represented by the shallower lower line in subfigure (b), was
associated with the single-SR peak structures at approximately 0.95 for the expected case
and 0.65 for the observed case. The other structure followed the main migration trend,
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Figure 7.11.: Transition matrices showing the pMSSM-19 wino findings. These matrices
represented the likelihood that a model point shifted from one p-value bin to
another, utilising the SR-combination approach instead of the more conservative
single-best-SR method commonly employed by recasting tools. The columns
in the sub-figures separated the transition patterns based on the movement
into combined p-value distributions, given the performance in individual SRs,
and the origins from single-SR results for each range of combined-SR p-values.
The upper and lower rows of the sub-figures presented the predicted and actual
transitions, respectively

indicating that the dominant contribution to a given combined p-value bin came from a
single-SR p-value bin that was 0.2 units higher. These transition patterns underscored
the potential for further improvements in the model-point exclusion fraction, given the
availability of additional SRs.

As in the interpretation of the simplified model from Section 7.4.2, the performance
of the whdfs SR-combination algorithm was evaluated for both the bino- and wino-LSP
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Figure 7.12.: Fractional distributions of starting-SR (a, b) and number of SRs (c, d) in
each combination. Data is taken from the optimum SR-combination found for
each model-point for both the pMSSM-19 bino and wino reinterpretations. As
mentioned in Section 7.3, the combinations are constructed from a differently
ordered set of SRs for each point in the model space, so the identity of the
zeroth SR is free to change from point to point.

pMSSM-19 reinterpretations. The initial SR index distributions were presented in the
top row of Figure 7.12, exhibiting a similar bias toward low starting indices as observed
in Figure 7.5.

The bottom two plots of Figure 7.12 illustrated the distribution of the number of SRs
per combination for (c) the bino and (d) the wino reinterpretations. The rapid decrease
in this distribution was attributed to the hereditary condition, which progressively
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reduced the number of available SRs with each iteration of the path-building process.
Consequently, a critical point was reached, after which the cumulative reduction of
available SRs became statistically noticeable in the average number of SRs. In the
pMSSM-19 bino and wino analyses, this critical threshold occurred at around 11 SRs.

7.4.4. t-channel dark-matter

As a final demonstration of the effectiveness of the taco approach, we examined one
of the t-channel dark matter models investigated in Refs. [237, 238]. In this model, the
Standard Model was extended to include a fermionic dark-matter candidate χ and a
scalar mediator Y , both of which interacted with the right-handed up-quark. The model’s
Lagrangian is given by

L = LSM + Lkin +
[
y
(
χuR

)
Y † +H.c.

]
, (7.15)

where LSM represented the Standard Model Lagrangian, Lkin contained the kinetic and
mass terms for the new particles, and y described the strength of the interaction between
the mediator, dark matter, and up-quark. In this model, the full new-physics signal
involved three components:

1. direct production of dark matter with a hard jet from initial-state radiation
(pp→χχj);

2. on-shell production of mediator pairs followed by their decay into dark matter and
jets (pp→Y Y ∗→χjχj);

3. and the associated production of a mediator decaying into χj and a dark-matter
state (pp→χY →χ(χj)).

This signal could be sought through analyses that targeted multiple jets and missing
transverse energy, with each signal component yielding distinct jet multiplicities and
properties. We focused on reinterpreting the results from the ATLAS-SUSY-2015-06 [200],
ATLAS-SUSY-2016-07 [201], CMS-SUS-16-033 [209], and CMS-SUS-19-006 [213] analyses
to determine which mediator and dark-matter mass combinations were consistent with the
data, with the new-physics coupling fixed at µ = 1. All the analyses were incorporated
into the MadAnalysis 5 Public Analysis Database [239], and the corresponding recast
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codes, along with validation notes, were made available through Refs. [240–244] and the
database web page.1

To estimate the exclusion limits from each analysis, we employed MadGraph5

v2.6.5 [218] to generate leading-order (LO) hard-scattering events. The signal contribu-
tions were grouped into two sets based on jet multiplicity at the parton level. The first
matrix element described dark-matter pair production with a hard jet (pp→χχj), while
the second concerned mediator pair production and decay (pp→Y Y ∗→χjχj).

The associated production of a dark-matter state with a mediator was included
in the first subprocess, as it led to the same final state (pp→χY →χ(χj) with the
on-shell mediator Y ). This subprocess captured scenarios where a mediator produced in
association with a dark matter particle decays within the detector acceptance. These
events contribute to the dark matter search channels, specifically those characterised by
missing transverse momentum. Neglecting this contribution would underestimate the
signal yield and, therefore, the potential for excluding model points for cases where the
mediator mass is relatively low, as these configurations become kinematically feasible.

These matrix elements were combined with the NNPDF 2.3 LO [219] parton distribu-
tion functions, generating 200,000 signal events per model point, reducing the statistical
uncertainty in signal yield predictions. In exclusion studies, the precision of signal yield
estimates directly impacts the confidence level of exclusion limits, particularly when the
signal-to-background ratio is small. Generating 200,000 events ensures a sufficient sample
size across mass-parameter space, enabling a robust estimate of the exclusion potential.

Hadronization and parton showering were handled by Pythia 8 v8.240 [245], which
simulates the evolution of partonic final states into observable hadrons and the subsequent
particle showers, accurately modelling particle interactions as they appear in collider
data. The parton showering and hadronisation process contributes significantly to jet
formation, which is an important component in searches that rely on identifying missing
transverse momentum and jet multiplicities, as it reflects the underlying partonic activity
and mediator decay structure.

The CMS and ATLAS detector responses were simulated using Delphes 3 [183], with
custom detector parameterisations from each recast code. These simulations account for
detector-specific resolutions, efficiencies, and acceptance effects, translating parton-level
predictions to observed event signatures. Employing custom parameterisations ensures

1See http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase.

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase
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Figure 7.13.: Exclusions at 95% confidence level for the studied t-channel dark matter model.
The exclusions are shown separately for the processes pp→χχj (upper left)
and pp→Y Y ∗→χjχj (upper right), and their sum (lower panel). Dashed
lines depict limits from the individual analyses: ATLAS-SUSY-2015-06 (purple),
ATLAS-SUSY-2016-07 (green), CMS-SUS-16-033 (blue), and CMS-SUS-19-006
(orange). The solid red line represents the combined exclusion derived by our
method.

that the detector response reflects the known effects of each experiment’s geometry and
technology, thus enhancing the accuracy of the exclusion limits derived from this analysis.

The results, presented in the (mY ,mχ) plane in Figure 7.13, displayed exclusions
for mediator masses mY ∈ [0.5, 1.8] TeV and dark-matter masses mχ ∈ [0.1, 1] TeV.
Exclusions are shown separately for single-jet events (pp→χχj, upper left), dijet events
(pp→Y Y ∗→χjχj, upper right), and the combined limits from the full new-physics
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signal (lower panel). In each panel, the dashed lines corresponded to individual exclusions
derived from the ATLAS-SUSY-2015-06 (purple), ATLAS-SUSY-2016-07 (green), CMS-
SUS-16-033 (blue), and CMS-SUS-19-006 (orange) analyses, which respectively probed
3.2 fb−1 , 36.1 fb−1 , 35.9 fb−1 , and 137 fb−1 of data. These limits were obtained by
selecting the signal region with the strongest expected exclusion for each benchmark.

Not surprisingly, the CMS-SUS-19-006 analysis, which utilised the largest data set,
provided the strongest individual exclusion. For single-jet events (Figure 7.13, upper
left), mediator masses up to 1.5TeV were excluded for small dark-matter masses mχ.
By comparison, the ATLAS-SUSY-2016-07 and CMS-SUS-16-033 analyses, which used
about one-third of the Run 2 data, only excluded mediator masses below 900GeV to
1000GeV for the same mχ values. More compressed spectra, which are harder to detect
due to softer final states, were also better constrained by the CMS-SUS-19-006 analysis.
In contrast, the early Run 2 ATLAS-SUSY-2015-06 analysis only reached exclusions
around 500GeV for new-physics masses.

A similar pattern was observed for the dijet component (Figure 7.13, upper right).
The CMS-SUS-19-006 analysis was more sensitive to both larger masses and compressed
spectra compared to the earlier analyses, which showed little sensitivity. The reduced
sensitivity in this case was due to phase-space suppression from the production of two
heavy mediators. As a result, the combined exclusion limits for the full new-physics signal
(Figure 7.13, lower panel) were nearly identical to those from the single-jet scenario, with
an improvement of about 100GeV for light dark-matter masses. This demonstrated that
considering the full signal yielded better limits than an approximate treatment.

Figure 7.13 also illustrates the effect of combining the four analyses, both for the
individual signal components (upper panels) and after combining them (lower panel).
By determining the overlaps between the analyses’ signal regions (see Sections 7.2
and 7.3), we were able to perform a combination despite the analyses targeting similar
topologies (multijet and missing energy). This demonstrated the advantage of a quantified
measure of overlap over informal estimates of orthogonality. The combination allowed for
improved parameter space coverage, as shown by the solid red lines in Figure 7.13. This
combination significantly improved, especially for split-mass spectra (light dark-matter,
heavy mediator) and compressed spectra. For mχ ≈ 100 GeV, mediator masses up to
1.9TeV are reachable, whereas scenarios with a dark-matter mass mχ < 600 GeV get
excluded from Y < 1.2 TeV
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Figure 7.14.: Comparison of CPU-runtime scaling against a number of features between the
standard depth-first search (DFS), the hereditary DFS hdfs, and the weighted
whdfs algorithms. The width of the lines was determined by the spread of
results taken over 100 trials.

7.4.5. Performance

In BSM scans considering many thousands or possibly millions of model points and
hundreds of SRs, the computation of which combination to use for each point must
typically be made in seconds, or preferably less. In Section 6.2, we saw that the
performance of the hdfs and whdfs algorithms depended on the dimensionality N and
the fraction of allowed combinations fA. The difference in performance was demonstrated
in Figure 6.6, where the number of iterations was used as a proxy for efficiency in finding
the optimum path. This relationship could now be tested in a real use-case scenario.

To accurately measure the algorithm performance, 20 mass points from the “T1” sim-
plified gluino-pair with over 240 available SRs were chosen. To generate a range of results,
we calculated the optimal combinations for each of a set of reduced element collections
{SR0, . . . , SRN−1} and its corresponding N ×N BAM submatrix. We randomly selected
SRs to avoid bias and maintained the original BAM fraction of allowed combinations,
fA ≈ 0.75. The number of elements m ≤ n in the reduced element sets was evaluated
from m = 20 to 80 in steps of 10 and from m = 80 to 140 in steps of 20. The upper limit
on m was determined by the requirement to find 20 mass points (for timing-uncertainty
estimation) with at least that many supported elements.
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Figure 7.14 shows the CPU-performance comparison between the hdfs and whdfs

algorithms. There is an additional baseline comparison using a depth-first search (DFS)
algorithm from the python NetworkX package [193]. The plot clearly shows that the
DFS does not scale sufficiently for physics purposes, as it requires hundreds of seconds
by 40 SRs, with extremely strong exponential scaling. The hdfs algorithm fares much
better, scaling up to 100 SRs with a flatter exponential growth than DFS and with slightly
sub-exponential growth thereafter. Although an improvement on DFS, hdfs requires
O(100) seconds for 100 SRs, which is insufficient for most applications that require a best
combination only. The further optimisations enabled by the whdfs formulation show
a flatter still scaling exponent, with sub-exponential growth that becomes particularly
flat for large element counts. 230 SRs were obtained in around 2 seconds, which is very
compatible with adaptive sampling and indicates little issue in scaling further toward
thousands of elements. These performance gains indicate the effectiveness of the whdfs

algorithm and its ability to meet the current practical requirements of large-scale analysis
combinations.

7.5. taco conclusions

In this project, we argued that enhancing the BSM search capabilities of the LHC and
other colliders, especially in light of the numerous null results from Run 2 direct searches,
required combining analyses to improve sensitivity to subtle, dispersed-signal models
that had not been fully considered before.

However, such combinations could not be done naively due to overlapping event
acceptances across analyses. In the absence of long-term, top-down coordination within
experimental collaborations to prevent phase-space overlaps—or public tracking of which
collider events contributed to which signal regions across published analyses—a post hoc
approach was necessary to estimate the degree of overlap. To address this, we developed
the taco method, using the SModelS and MadAnalysis 5 analysis databases to guide
the simulated-event population across all recastable signal regions. We introduced a
new feature in the MadAnalysis 5 analysis framework to compute overlap coefficients
between pairs of signal regions through Poisson bootstrapping.

We also demonstrated how this overlap information could effectively identify the
optimal subset of non-overlapping signal regions for excluding a given BSM model or
model point. The computationally complex task of evaluating all allowed combinations
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of roughly 400 signal regions—expected to increase—was transformed into a directed
acyclic graph construction problem. This construction was made efficient by using a
binarised overlap matrix, which excluded partially overlapping graphs, and by ordering
signal regions based on their expected log-likelihood ratio (LLR). The best combination
of signal regions could then be determined through a weighted hereditary depth-first
search (WHDFS) algorithm, analogous to solving a weighted longest-path problem. The
overlap estimation and the signal region combination code are publicly accessible from
the https://gitlab.com/t-a-c-o/taco_code repository.

Using the taco WHDFS algorithm to compute optimal SR subsets proved a viable
alternative to directly applying a correlation matrix for correlated χ2 or other measures
across all signal regions. The latter approach is prone to numerical instabilities in
covariance inversion and is computationally costly due to the challenge of profiling
likelihoods across the entire set of signal regions. This graph-based method thus offers a
promising pathway not only for composite likelihood calculations in reinterpretations
but also as a dimension-reduction tool for visualising and understanding how dominant
analyses and signal regions evolve across model spaces.

We tested the taco method for overlap estimation and optimal subset selection
using various BSM models of increasing complexity, including a SUSY simplified model,
ATLAS’ 8TeV pMSSM-19 scan re-evaluated using 13TeV data and a t-channel dark
matter model. In all cases, we observed that combining SRs algorithmically significantly
extended experimental limit-setting reach, typically by O(100)GeV in mass parameters for
both simple and complex BSM models considered with existing reinterpretation analyses.
Transition matrices studied for the SR combinations indicated that the improvements
were not merely marginal, pushing nearly excluded model points over the threshold but
substantial, with combinations of weaker signal regions contributing to a more robust
exclusion.

This approach demonstrated that combining BSM direct-search data post hoc is
feasible and computationally efficient, eliminating the need for conservative strategies
that use only one SR per event topology. As a scalable and empirical computational
method, taco can handle hundreds of potentially overlapping analyses, far exceeding the
capacity of manual or subjective analysis. Nonetheless, the method has its limitations.
The assumption of effective orthogonality for signal regions with overlap coefficients
ρij < T is critical for computational efficiency. However, this can be addressed by
integrating correlated LLR evaluations on the reduced set of SRs. Furthermore, the
current method does not account for systematic uncertainties, although uncertainties

https://gitlab.com/t-a-c-o/taco_code
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accessible through event reweighting can be incorporated into future work. We hope that
this method and the corresponding toolkit will serve as a useful reference for how BSM
combinations are approached in the future, with analysis routines submitted to major
reinterpretation frameworks and the introduction of event-bootstrapping tools beyond
MadAnalysis 5.

7.5.1. Retrospective analysis

At the time of writing, it has been over a year since the publication of the Strength in
numbers: Optimal and scalable combination of LHC new-physics searches (taco) paper
[194]. In that time, there has been ongoing discussion among the authors and the broader
LHC reinterpretation community regarding the project’s strengths and weaknesses. This
section will cover key aspects of these discussions, focusing on the paper’s methodological
innovations, its applicability to current high-energy physics challenges, and the limitations
encountered in its real-world implementation. A notable strength of the taco approach
lies in its ability to provide a scalable framework for combining results from multiple LHC
new-physics searches. By leveraging advanced statistical techniques and developing new
selection algorithms, the framework optimises the sensitivity to new physics signals while
maintaining computational feasibility, even for large-scale datasets. The novelty of this
approach has attracted significant attention, particularly in contexts where traditional
methods struggle with data scalability.

Control regions

Certain weaknesses have also been identified, particularly concerning the assumptions in
calculating the overlap matrix. While necessary for tractability, these assumptions may
introduce biases when applied to data sets with varying degrees of correlation. This is
particularly true between control regions, a specific subset of the experimental data used
to validate or constrain the background predictions in an analysis. They are typically
a region of phase space where new physics signals are not expected to appear, making
them ideal for understanding and modelling the standard processes that contribute to
the background [246].

Control regions are designed to contain mostly well-understood, background-only
events, with minimal or no contribution from the hypothetical signal being searched
for. They help to fine-tune the background estimation by comparing the predicted
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background (usually derived from simulation or theoretical models) with the actual data.
This comparison allows physicists to adjust or reweight their models to better reflect
reality, thus improving the accuracy of the background prediction in the signal region.
The effectiveness of a control region relies on the assumption that the factors influencing
the background processes are similar in both the control and signal regions, except for
the presence of the signal itself [7].

The scenario that caused the most concern was where the control region of one SR
physically overlaps an alternative, combinable SR. This situation is theoretically quite
realistic as the overlaps are, in essence, calculated via the estimate of shared events, and
control regions do not share signal events by design. This would require a model that
populated an SR and its corresponding control region; let’s call these SRA and CRA,
with SRB ∈ CRA. For the case of no signal, the background estimate is unaffected, and
the exclusion “power” is unaffected. For the alternative case, the background estimate
for SRA contains signal events resulting in a higher yield expectation, meaning that ωi is
inflated, resulting in an overly conservative estimate.

An alternative approach would be to estimate the overlaps in terms of the SM
background. This would improve the overlap estimate, but it would also be extremely
computationally expensive. Using only signal events restricted to the SMS topologies,
generating the overlap matrix took over two months. As such, the approach balanced
traceability and efficiency reasonably well, producing a statistically well-motivated
technique for estimating the overlaps between SRs.

An absolute mistake

When reflecting on the use of the overlap matrix, specifically in terms of creating the bam

via the “arbitrary” threshold T , it was realised that a mistake had been made. When
determining the threshold under which to allow combinations, we defined elements of the
bam B as Bij = (| ρij |≤ T ). The logic for this definition was that we wanted minimally
“overlapping” SRs, and close to zero was minimal. However, upon further consideration
of ρij, it was realised that negative or “anti-correlated” values would also be suitable for
combination. The “anti-correlation” provided information regarding the fluctuations of
events that were being discarded by taking the absolute value of ρij.

To investigate the effect of redefining the threshold to allow negative values, the
analysis of the “T1” topology was redone using the new bam definition. The first
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Figure 7.15.: Comparison of results using the updated definition of the bam. The new results
are shown by the black line, with the previous results shown in grey.

result that should be mentioned is that changing the bam configuration increased
the total fraction of allowable combinations fA (Equation (6.9)) of both ATLAS and
CMS analyses at

√
s = 8, 13TeV, from 72% to 85%. Treated separately, ATLAS and

CMS at
√
s = 13TeV increased from 36% to 60% and 41% to 69%, respectively. And

finally, at
√
s = 8TeV, ATLAS and CMS increased from 25% to 44% and 29% to 58%,

respectively. As predicted, this increase in fA subsequently increased the computation
time logarithmically.

Figure 7.15 shows the results in terms of both definitions of the bam. For the expected
case, there is a small but not insignificant increase in exclusion, changing from 58% to
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Figure 7.16.: Comparison of results using the updated definition of the bam, including a heat
map of combination lengths for each model point. The left-hand plot shows the
original published results, and the right-hand plot shows the length using the
new bam configuration

60% exclusion using the new bam calculation. For the observed case, adding new SRs
made little difference, changing from 56.45% to 56.38%, a slight reduction of 0.07%. The
lower plot of Figure 7.15 shows the change in combination length. For the previous
iteration, the majority of the combinations were around six or seven SRs long; moving
to the new configuration, the number of SRs increases to around 13, with a significant
number of points getting around twenty SRs. This result was surprising as one would
think that a large increase in the number of SRs per combination would be translated
into exclusion “power”.

A short comparative analysis was performed to understand why the effect had been
so slight. Following from plot c of Figure 7.15, Figure 7.16 shows the lengths of each
combination as a heat map over the “T1” mass plane. The left-hand plot shows the
original published results, and the right-hand plot shows the length using the new bam

configuration. The first and most obvious feature in both plots is the over-representation
of data for mg̃ < 1.45 TeV. This is due to the free combination of

√
s = 8 TeV and

√
s = 13 TeV data, which are assumed to be uncorrelated by default. Looking at the

upper section of the exclusion line at m
χ̃
0
1
≈ 1.25 TeV, the increase in available data

provides an extra “bump” in exclusion for both results. The combination length within
this region is apparent in the secondary peaks in Figure 7.15, which occur at around
twelve SRs for the original data and nineteen for the new. Moving to the upper right
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Figure 7.17.: Plots showing the fraction of the original result represented in the new combi-
nation. Both plots a include the exclusion (r = 1) lines calculated using the
updated bam configuration, with the left-hand plot (a) using expected data and
the right-hand plot (b) using observed data.

of each plot, the increase in combination length appears approximately homogeneous,
suggesting the additional SRs provided little extra exclusionary “power”.

The next point of enquiry was comparing the SRs combination per model point. For
a meaningful comparison, the original results were used as a baseline, meaning that for
each model point on the “T1” mass plane, a list of SRs contributed to the published result.
Each one of the lists was then compared to the new combination in terms of the fraction of
the old SR list represented in the new, i.e. what fraction of the original result is still in the
new combination. Figure 7.17 shows the results of this analysis, with the left-hand plot
(a) showing the expected results and the right-hand plot (b) showing the observed. The
combinations were calculated using the expected values; thus, the combinations used in
each plot were the same. It was found that the fraction of original SR represented at each
model point averaged at 0.60 with a standard deviation of 0.16. For both sets of results,
the dominant analyses were ATLAS-SUSY-2016-07 [201] and CMS-SUS-19-006 [213],
both of which were searched in final state jets with missing transverse momentum at
√
s = 13TeV. The main difference was the increased representation of individual SR

from these analyses.

A visual example of this is the filament structure seen in Figure 7.17 starting at
≈ mg̃ = 1.6TeV. This band curves up and to the right and shares, on average, 35% of
the SRs from the original result. Comparing the SRs within this filament showed that
the original result used four to six SRs from CMS-SUS-19-006, whereas the new result
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used upwards of twelve. Interestingly, they were almost completely different sets of SRs
in each case, only sharing one or two SRs. Looking at plot b, following this filament
structure up to approximately mg̃ = 2 TeV, we see a loss of exclusion driven by this
selection.

The weights (ωi) introduced by the new SRs revealed that in most cases, the SRs
retained in the new combination from the old are the most exclusionary. This makes
sense as the whdfs algorithm would select the SRs with the most “power”, and if they
were combinable in the original result, they would still be combinable under the new
bam configuration. Thus, we still see the same combinations of analyses, i.e. ATLAS-
SUSY-2016-07 and CMS-SUS-19-006, but the new configuration allows for a potentially
different mix of SRs from the analyses.

Unfortunately, the additional choice didn’t improve the original results to the extent
that would warrant a complete recalculation of all results. However, the realisation that
the bam could be configured differently provided an interesting opportunity to investigate
the behaviour of the whdfs algorithm.

Reinterpretation outlook

Looking at the results of this comparative analysis, it is safe to say that the original
conclusions of the taco project remain valid. The main criticism of the project was
the method by which the overlaps were calculated and how realistic this approach was.
This raises an interesting issue for reinterpretation studies in general: to get the most
out of the data available from search analyses like the ones used in this study, there are
three options. First, we accept that there will be overlaps in SRs, so for reinterpretation,
we only choose the data where we know the correlations. This would limit the data
to that for which the analysis provides correlations or that we know is uncorrelated by
default (i.e. different energies, time or experiment). The second option is to estimate the
correlations via methods like the one presented in the taco paper. However, as pointed
out, this estimation is computationally expensive and biased to be overly conservative.
The third option is to design the SRs such that they don’t overlap in the first place. This
last option is the most idealistic and challenging as it requires the standardisation of
SRs across experimental collaborations; however, at the time of writing, consideration is
being given to this idea by the reinterpretation community.



Chapter 8.

Anomaly detection: proto-models

Anomaly detection attempts to identify generic unexpected signatures in the data.
Traditional BSM searches are generally hypothesis-driven, where signatures of particular
BSM scenarios, such as supersymmetry or extra dimensions, are explicitly targeted.
However, these approaches can overlook phenomena that do not conform to the predefined
signatures. Anomaly detection offers a complementary strategy by leveraging data-driven
methods to identify regions in the data that exhibit significant discrepancies compared
to SM predictions. For example, by constructing representations of the SM background,
often through machine learning or other statistical techniques, and flagging regions with
excesses not explained by statistical fluctuations or known physical processes.

This chapter combines the PathFinder package with an anomaly search, reinter-
preting search analyses from the ATLAS and CMS experiments. In general, anomaly
detection looks for subtle deviations from the SM expectations, which may indicate the
presence of new physics without relying on specific BSM models. In addition to this goal,
this chapter will demonstrate how the whdfs algorithm provides an ideal selection tool
for choosing analyses.

This project builds on a previous study conducted by the SModelS collaboration in
2021. While I was not involved in the original research, I provide an overview of it in
Section 8.1. My contribution to this work includes implementing the whdfs algorithm
and conducting the statistical analysis required to establish a robust test statistic for
anomaly detection. As of the time of writing, the project is still ongoing, and the results
presented here are preliminary.
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8.1. Proto-models version 1

This project follows from previous research presented in the paper “Artificial Proto-
Modelling: Building Precursors of a Next Standard Model from Simplified Model Results”
[233]. The original paper explored an innovative approach to identifying signs of new
BSM physics. The authors proposed a methodology using a Markov Chain Monte
Carlo (mcmc)-like “random walk” algorithm to generate proto-models — theoretical
frameworks involving new particles. These models are tested against experimental results
from the Large Hadron Collider (LHC), specifically using data from the ATLAS and
CMS experiments integrated with the SModelS framework. This framework analyses
simplified-model results, focusing on regions where deviations from the SM might be
significant. By assessing various analyses and signal regions that potentially conflict with
the SM while still adhering to existing LHC constraints, the method looked to identify
patterns that could suggest new physics.

This section will summarise the original research and discuss pertinent elements
carried over to the current project in greater detail. We will start with the definition of
a proto-model, move through the free parameters of the mcmc “walk,” and finish with
the results and conclusions of the original research.

8.1.1. What is a proto-model?

Proto-models are simplified theoretical frameworks that suggest the existence of new
particles or interactions beyond the Standard Model (SM). They serve as preliminary
versions of more complex theories and are tested against experimental data to evaluate
their validity. In the context of the work presented in Chapter 7, which focused on
exclusion, proto-models function as alternative hypotheses (H1) in anomaly detection,
contrasting with the Standard Model null hypothesis (H0). Proto-models are constructed
by introducing sets of hypothetical particles with specific parameters–masses decay
channels and production cross sections–and then comparing their predictions with results
from experiments like those conducted at the LHC. They serve as “prototypes” that can
either be discarded if incompatible with experimental constraints or further developed
into more comprehensive models of new physics. The approach simplifies the search for
new phenomena by focusing on basic components rather than fully developed, intricate
theories. The “Proto-Modelling” paper introduces proto-models as collections or “stacks”
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of simplified models, where the number of BSM particles, as well as their masses,
production cross sections and decay branching ratios, are taken as free parameters [233].

Approximation likelihoods were constructed using simplified-model constraints via
the SModelS [76] package, allowing for a mcmc type walk through the parameter space.
The mcmc walks refer to randomised “steps” in the parameter space, translating to
random changes in the BSM model via the number of particles, their masses, production
cross sections, and decay branching ratios. The purpose was to identify proto-models
that evaded all available constraints while explaining potential dispersed signals in the
data. This ambitious objective did, however, come with some large caveats; the authors
emphasised that the proto-models were not intended to be UV complete, nor were they
a consistent, effective field theory. With these limitations, the authors admit that the
purpose of the analysis was to guide future experimental and theoretical efforts toward
the possible construction of the Next Standard Model (NSM)

As the proto-models were not intended to be fully consistent theoretical models,
they were, by definition, unbound by higher-level theoretical assumptions, such as
representations of the SM gauge groups or higher symmetries. As such, the following
constraints were imposed:

• Only consider particles with masses within the reach of the LHC for a specific
proto-model.

• All BSM particles are odd under a Z2-type symmetry, so they are always pair-
produced and cascade decay to the lightest state.

• The Lightest BSM Particle (LBP) is stable and electrically and colour neutral, and
hence is a dark matter candidate

• Except for the LBP, all particles are assumed to decay promptly.

• Each particle’s production cross-section was treated as a free parameter, effectively
reducing the degrees of freedom by absorbing the effects of spin and multiplicity.

With these constraints applied, the original proto-models mcmc “walk” was conducted
with the following pool of 20 (susy-inspired) particles under consideration:

• Light quark partners Xq(q = u, d, c, s): A single partner was allowed for each light-
flavour quark. Unlike susy models, two independent particles (left and right-handed
squarks) for each flavour are not considered.
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• Heavy quark partners X i
b, X

i
t(i = 1, 2): unlike the light quark partners, two indepen-

dent particles for each flavour were considered. The large amount of available data
from LHC searches meant that two states were included to allow enough (degrees
of) freedom to accommodate the data.

• Gluon partner Xg: One new colour-octet particle, analogous to a gluino in susy.

• Electroweak partners X i
W , X

j
Z(i = 1, 2; j = 1, 2, 3): Two electrically charged and

three neutral states were allowed. These could correspond to charginos and neu-
tralinos in the MSSM (with the neutral higgsinos being exactly mass-degenerate)
or to the scalars of an extended Higgs sector with a new conserved parity. The
lightest neutral state (X1

Z) was assumed to be the LBP and, hence, a dark matter
candidate.

• Charged lepton partners Xℓ(ℓ = e, µ, τ): a single partner for each lepton flavour
was considered for light-flavour quarks.

• Neutrino partners Xν : again, one partner for each neutrino flavour (νe, νµ, ντ ) was
considered.

A full list of particles considered in the proto-modelling paper is given in Table 8.1,
summarising the BSM particles and decay channels.

8.1.2. Free parameters

Masses

As previously defined, the lightest BSM particle was required to be the X1
Z . Thus, all

the masses considered in the “walk” had to satisfy the relation m(X) ≥ m(X1
Z). States

that exist in two- or three-fold multiplicities were mass-ordered. Only masses below
2.4TeV were considered, as they were assumed to be within the LHC reach at the time
of publication. Some additional mass requirements were necessary to tailor the machinery
to the available database; more details can be found in the original publication Ref. [233]



Anomaly detection: proto-models 175

Decay branching ratios

The branching ratios (BRs) of the allowed channels must add up to unity with the decay
modes of each new particle consistent with its quantum numbers. The BSM particles and
decay channels were restricted to those shown in Table 8.1. Not all configurations were
considered in the paper; in particular, XW and XZ decay into Xℓ + ℓ/ν, Xν + ν/ℓ, and
XW,Z + γ were not taken into account. Specific decay modes were turned off if one of the
daughter particles was not present in the proto-model or if the decay was kinematically
forbidden.

Production cross sections

The initial values of the cross sections were calculated assuming the BSM particles to
be MSSM-like (see section 2.2.5). This value could be rescaled freely by signal strength
multipliers κ. For instance, the pair production of Xg is given by:

σ(pp→ XgXg) = κXgXg
σ(pp→ g̃g̃) , (8.1)

where the mass of the gluino g̃ is set to the Xg mass. The rescaling factors κXgXg
were

then used as free parameters of the proto-model. SLHA templates were used to define
the masses and BRs, with the reference susy cross sections computed using Pythia 8.2

[172] and NLLfast 3.1 [247–254].

Particle Decay Channels Particle Decay Channels

Xq qXj
Z , q′X i

W , qXg X1
W WX i

Z

X1
t tXj

Z , bX i
W , WX1

t , tXg X2
W WXj

Z , ZX1
W , hX1

W

X1
b bXj

Z , tX i
W , WX1

t , tXg Xj ̸=1
Z WX i

W , ZX
k<j
Z , hXk<j

Z

X2
t tXj

Z , bX i
W , ZX1

t , WX1
b , tXg Xl ℓXj

Z , νX i
W

X2
b bXj

Z , tX i
W , ZX1

b , WX1
t , bXg Xνl νlX

j
Z , ℓX i

W

Xg qq̄X i
Z , qq̄′X i

W , bb̄X i
Z , tt̄Xj

Z , btX i
W , qXq, bX

i
b, tX

i
t

Table 8.1.: BSM states and decay channels used for proto-model construction. The contents
of this table are in reference to and were taken from Ref. [233]
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8.1.3. Likelihoods and constraints

The extent to which the likelihoods could be calculated depended heavily on the informa-
tion the experimental collaborations provided. As mentioned in Section 7.3.2, the results
available in the SModelS database are mainly split into upper-limit (UL) type and
efficiency map (EM) type. The likelihood options were dependent on the data available,
and starting with the least ideal case, the options were:

1. If only observed ULs were available, then the likelihood became a constraint in the
form of a step function at 95% CL.

2. If expected and observed ULs were available, the likelihood was approximated using
a truncated Gaussian:

L(µ | D) = c√
2π

σref
σσσobs

exp

(
−(µσref − σmax)

2

2σσσ2
obs

)
, for µ ≥ 0 , (8.2)

where the likelihood is a function of the signal strength parameter µ and the reference
cross-section σref predicted for a given proto-model for data D and normalising
constant c. The value of σσσobs was approximated using σUL

exp, and σmax was chosen
such that the truncated Gaussian correctly reproduced the 95% CL. Equation (8.2)
was, admittedly, a crude approximation. However, it did contain useful information.

3. For EM-type results, a simplified likelihood [255] could be used where nuisances (ξ)
are introduced and p(ξ) is assumed to follow a Gaussian distribution located at zero
with a variance of δ2, such that:

L(µ | D) = (µs+ b+ ξ)nobse−(µs+b+ξ)

nobs!
exp

(
− ξ2

2δ2

)
, (8.3)

where nobs is the number of observed events in the signal region under consideration,
b and s are the number of expected background and signal events, and δ2 = δ2b + δ2s

are the signal plus background uncertainty. Where nobs, b and δb were taken from
experimental results, the uncertainty on the signal (δs) was assumed to be 20%.

4. The ideal case was an EM-type result with a statistical model. This was only
available for a handful of analyses at the time of publication, and as such, none
were used in this iteration. Nevertheless, the publication of covariance matrices or,
in some cases, full likelihoods allows for combining multiple SRs. The benefit of
providing such information is that it increases the amount of information available
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from a signal analysis. Without, only a single “best” SR from each analysis can
contribute to the global likelihood estimate.

Constructing a global likelihood using multiple results relied upon the assumption that
results from distinct experiments and taken from different LHC runs were approximately
uncorrelated. This is a reasonable assumption to make and one that was used in the taco

project (Chapter 7). The proto-modelling paper also conducted a “by-eye” assessment,
which involved identifying results with different final states in their signal regions (e.g.,
fully hadronic final states vs. final states with leptons) and defining them as uncorrelated.
The final result was similar to the bam from Section 7.2.2 in that it is a symmetric
binary matrix where each element defined the combinability of the SRs corresponding to
the column and row. The likelihoods from uncorrelated analyses were then combined by
taking the product:

LBSM(µ) =
n∏
i=1

Li(µ) , (8.4)

where µ is the global signal strength parameter, which was bound by an upper limit
obtained from the most sensitive analysis,

µ×σ = 1.3×σUL
obs ⇒ µ < µmax = 1.3

σUL
obs

σ
. (8.5)

where σ is the signal cross-section and the 1.3 factor allowed for a 30% violation of
the 95% CL observed limit. Minor violations were allowed to account for the fact that
a few are statistically allowed to be violated when simultaneously checking limits from
many analyses.

8.1.4. mcmc-type walker

Before exploring the walker algorithm, it is worth looking at the test statistic K. During
the mcmc-type walk, K was maximised and, as such, was designed to increase for proto-
models that satisfy the given constraints. Thus, for a proto-model, for each combination
of results c ∈ C, the auxiliary quantity Kc was defined as:

Kc = 2 ln
LcBSM(µ̂) · π(BSM)

LcSM(µ = 0) · π(SM)
(8.6)
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where LcBSM is the likelihood for a combination of experimental results given the proto-
model. Being the BSM likelihood, this was evaluated at the signal strength value µ̂,
which maximised the likelihood and satisfies 0 ≤ µ̂ < µmax. LcSM is the corresponding
SM likelihood, given by the usual LcSM(µ = 0). The π(BSM) and π(SM) are the priors
for the proto-model and SM, respectively. The choice of priors was crucial to formulating
the test statistic as it allowed for the introduction of a penalty for model complexity. For
the SM, a flat prior was assumed (π(SM) = 1) as the SM was a common factor for all
combinations and, as such, did not affect the comparison between different proto-models.
For the BSM prior, the following distribution was chosen:

π(BSM) = exp
[
−
(nparticles

a1
+
nBRs

a2
+
nSSMs

a3

)]
(8.7)

Where nparticles, nBRs and nSSMs refer to the number of new particles, branching ratios
and signal strength multipliers, respectively. The parameters a1, a2, and a3 were chosen
to be 2, 4, and 8, respectively. This was chosen such that one particle with one decay and
two production modes was equivalent to one free parameter in the Akaike Information
Criterion (AIC) [256]:

AIC = −2 ln
[
Lmax(θ̂θθ)

]
+ 2k , (8.8)

where Lmax(θ̂θθ) is the maximised profiled likelihood and k is the degrees of freedom. The
test statistic K is defined as the maximum value of Kc

K = max
∀c∈C

Kc . (8.9)

The test statistic was assumed to roughly correspond to a ∆χ2–distributed variable.
However, the authors made it clear that the choice of prior in Equation (8.7) along with
the introduction of the critic and the selection of the maximum Kc, made the exact
distribution of K unknown.

The walker algorithm comprised several stages or building blocks. A procedural flow
chart is shown in Figure 8.1, detailing the stages of a single walker iteration, which
follows the subsequent steps:

• Starting with the Standard Model, the builder created proto-models by randomly
adding or removing particles and changing any proto-model parameters as follows:
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– Add a new particle: one of the BSM particles not yet present in the model
could be randomly added. Once added, the new particle’s mass was drawn
from a uniform distribution between the LBP mass and 2.4TeV, conditions
on the generations already present, i.e. m

X
2
b
> m

X
1
b
. The new particle was

initialized with random branching ratios and signal strength multipliers set to
one. Adding a particle is programmed to occur more often for models with low
test statistics and/or with a small number of particles.

– Remove an existing particle: one particle in the model was randomly
selected and removed. All the production cross sections and decays involving
the removed particle were deleted, and the remaining branching ratios were
normalized, so they summed to unity. The removal of a particle was set to
occur more often for models with low test statistics and/or with a large number
of particles.

– Change the mass of an existing particle: The mass of a randomly chosen
particle was changed by an amount δm according to a uniform distribution
whose exact interval depends on the test statistic and the number of unfrozen
particles in the model, with better-performing models making smaller changes.
This change was always performed if no other changes had been made in the
proto-model in a given step.

– Change the branching ratios: the branching ratios of a randomly chosen
particle was changed. This change can occur in three ways: First, a random
decay channel can set its BR to 1, and all other channels are closed. Second,
a random decay channel can be closed and third, each decay channel can
have its BR modified by a distinct random amount δBR drawn from a uniform
distribution between −a and a, where a = 0.1/(number of open channels).
After any of these changes, the branching ratios were normalized to make sure
they sum to unity.

• The proto-model was then passed on to the critic, which checked it against the
database of SMS results to determine an upper bound on signal strength (µmax).

• The combiner identified all possible results combinations– assuming that results from
different LHC runs and distinct experiments (ATLAS or CMS) were combinable–and
constructed a combined likelihood for each subset.
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Start: Start step i

Randomly perform
any of the following

Add new or re-
move a particle

Change mass of a particle Change signal
strength multipliers

Change branching ratios

Check against SMS
results, compute up-
per bound on µmax

Combiner computes
combined likelihood
L(µ̂), µ̂ ∈ [0, µmax]

Compute test statistic Ki

Is Ki improved?

Accept with proba-
bility e−

1
2 (Ki−Ki−1)

Is number of iterations > max

Keep proto-model Discard proto-model

Yes

No

No

Yes

Figure 8.1.: Procedural flowchart of a single interaction of the “walker” algorithm presented
in the proto-modeling paper [233]. See the text for further details.

• Using the combinations provided by the combiner, the walker computed the test
statistic K for the proto-model. The new proto-model was kept if the K value was
higher than the one obtained in the last step. If it was lower than the previous K,
the step was accepted with a probability of exp[−1

2
(Ki −Ki−1)], where i was the

index of the current step.

Over many iterations of the above procedure, the walker could identify proto-models
that evade all simplified-model limits and, simultaneously, could explain dispersed signals
in the data.
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8.1.5. Results and conclusions from v1

The walker algorithm was applied to the SModelS database, performing ten runs, each
employing 50 walkers and 1,000 steps/walker. The results are summarized in Figure 8.2,
showing each run’s proto-models with the highest K value. Besides the X1

Z LBP, all
models included one top partner, X1

t , and one light-flavor quark partner, Xd,c, and
their test statistics were at K = 6.76± 0.08, which, argue the authors, showed the
stability of the algorithm. The Xµ particle introduced in run 5 was due to small (≈ 1σ)
excesses in the CMS search for sleptons, CMS-SUS-17-009 [257] and the ATLAS search
for electroweakinos, ATLAS-SUSY-2016-24 [258]; the prior’s penalty for introducing the
additional particle, ∆K = −1.25, was overruled by the increase in the likelihood ratio,
∆K = 1.94.

The top performing proto-model from Figure 8.2 obtained a test statistic value of
K = 6.90 and was generated in step 582 of the 29th walker in run 9. It had X1

t , Xd and
X1
Z masses of 1166, 735 and 163 GeV, respectively, and produced signals in the tt̄+ET

miss

and jets + ET
miss final states with susy-like cross sections. The effective signal strength

multipliers were found to be µ̂×κ
X

1
t X̃

1
t
≈ 1.2 and µ̂×κXdX̃d

≈ 0.5, corresponding to
σ(pp→ X1

t X̃
1
t ) ≈ 2.6fb and to σ(pp→ XdX̃d) ≈ 24fb at

√
s = 13 TeV and both the X t

1

and Xd directly decay to the lightest state (X1
Z) with 100% BR. The full results can be

found in the proto-modeling paper Ref.[233], A global p-value was estimated using a
kernel density estimate (KDE) for the test statistic K. A p-value of 0.19 was determined
which did not reach the threshold typically used to claim a significant discovery (set at
5σ or 0.00003%).

The paper demonstrated that the proto-model approach could navigate the complexity
of LHC data to identify signals of new particles, such as top partners and light-flavour
quark partners. The best-performing proto-models feature particles with masses around
1.2 TeV, 700 GeV, and 160 GeV, and the authors calculated a global p-value of approx-
imately 0.19 for the SM hypothesis. Extensive thought and effort went into avoiding
the “look-elsewhere effect” by constructing upper limits on µ and introducing priors
with penalties for free parameters. Although still approximate in some instances, these
procedures attempted to ensure that the signals identified were not statistical flukes
but potential avenues for discoveries. The paper emphasizes the importance of building
upon existing simplified models to guide future theoretical and experimental research in
high-energy physics, laying the groundwork for a potential “next Standard Model”.
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Figure 8.2.: Particle content and masses for the proto-models with highest test-statistic K
obtained in each of the ten runs performed over the SModelS database. The
corresponding K values are shown at the top. This plot was taken from the
results of the “proto-modelling” paper Ref. [233]

8.2. Proto-models version 2

At the time of the original “proto-modelling” paper [233], the authors stressed the results
were intended as a proof-of-principle. The variety and type of simplified-model results
available from SModelS v1.2 [234] limited the realisation of the proto-model builder.
However, since publication, the SModelS framework and database have seen a large
expansion in available data and capability (see section 5.1.3). For version 1, 40 ATLAS
and 46 CMS analyses were included in the SModelS database v1.2.4. For version 2,
SModelS v3 [184] with database v3, contains 62 ATLAS and 63 CMS analyses, at
√
s = 8 and 13 TeV. Crucially for the proto-model project, the database contains 6,349

efficiency maps from 1,430 distinct signal regions and 117 different SMS topologies [217].

The frustration of such a large results database was that the original walker couldn’t
compute all possible combinations, as the increasing number of combinations quickly
created a computational bottleneck. Fortunately, the PathFinder algorithms developed
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during the taco protect (see Chapter 7) provided a mechanism to efficiently select
subsets of minimally correlated results from large numbers of analyses/SRs.

Before simply plugging the PathFinder algorithms into the proto-models analysis
chain, consideration had to be given to what effect this would have on any resulting test
statistic and whether alternative test statistics would be required. To this extent, the
following sections will consider various test statistics for the combinations.

The second proto-models analysis is ongoing at the time of writing, with only prelimi-
nary results. Thus, much of this chapter will concentrate on the work done to integrate
the PathFinder algorithm into the analysis chain and the considerations made when
changing context from exclusion to anomaly detection. We will finish with a project
update, looking at the changes made to the analysis chain and presenting preliminary
results.

8.2.1. PathFinder for anomaly detection

In Chapter 7, the whdfs algorithm was used to find the optimum set of exclusionary SRs.
Fundamental to this procedure was the definition of the test statistic ω, in Equation (7.7),
that served as the edge weight for the whdfs algorithm. We defined ω to be the logarithm
of the expected negative log-likelihood ratio (NLLR) between the signal model (µ = 1),
under test, and the background-only model at a signal strength µ̂ that maximised the
likelihood:

Λexp
i (µ) =

Lexp
i (µ = 1,

ˆ̂
θθθ)

Lexp
i (µ̂, θ̂θθ)

,

ωi = −2 lnΛexp
i ,

(8.10)

where i runs over the combination C, with ˆ̂
θθθ and θ̂θθ refering to the conditional ML

estimators of the expected θθθ given a signal-strength parameter µ. This test statistic was
chosen because, under the assumption of Wald’s theorem [227], the expected exclusion is
given by the square root of the NLLR between models. Hence, the NLLR maximises
the expected model exclusion. Another motivation for this choice was that ω is additive,
with Ωexp =

∑
ωi, where Ωexp has an asymptotic distribution approaching χ2 with one

degree of freedom according to Wilks’ theorem [150, 228].
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For anomaly detection, the choice of test statistic becomes more involved as the
data moves away from expectations and into observed data. This section will examine
the available test statistics options and how one was finally selected for use in the
proto-models project.

8.2.2. The test statistic αi
′

The first step in any statistical analysis is to interrogate the question. For anomaly
detection, the question is, for a given BSM theory or model point, “do significant
discrepancies exist in the data compared to SM predictions?” Let’s, for the moment,
ignore the complexity of choosing a given BSM model point, assume we have a model
point in mind and concentrate on quantifying the discrepancy compared to the SM. The
first and somewhat obvious divergence from ω is the shift to using observed data; using
expected background pseudodata rather than observed data was important to avoid
cherry-picking statistical fluctuations. However, for anomaly detection, observed data
has to be compared to SM expectations, requiring a modification of the Equation (8.10).
The naïve choice for such a modification would be

Λ′
A,i =

Lobs
i (µ = 0,

ˆ̂
θθθ)

Lobs
i (µ̂, θ̂θθ)

,

α′
i = −2 lnΛ′

A,i ,

(8.11)

i.e., α′
i is twice the observed negative log-likelihood ratio (NLLR) between the SM (µ = 0),

under test, and the signal model at the signal strength that maximises the likelihood.

The problem with α′
i is that switching to observed likelihoods meant that the sum of

the LLRs was no longer equal to the log of the combined likelihood ratio. This is because
the product of minimally correlating likelihoods optimised at µ̂ does not necessarily equal
the product of optimised likelihoods,

Lobs
comb(µ̂) ≤

∏
i∈C

Lobs
i (µ̂i) , (8.12)

This inequality made the process of evaluating the edge weight in the whdfs algorithm
a more complicated and CPU-intensive task. However, the inequality could be leveraged
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to provide an upper limit by combining Equations (8.11) and (8.12)

Ω̄′ =
∑
i∈C

α′
i ≥ Ω′

Ω′ =− 2 ln

(
Lobs

comb(µ = 0,
ˆ̂
θθθ)

Lobs
comb(µ̂, θ̂θθ)

)
,

(8.13)

where Ω′ defines the combined NLLR. We can define an upper limit to the weight available
in a current combination (C) by assuming all results that are potentially combinable
with the current set (Ac) to be combinable and taking the sum of the remaining weight

Ω̄′
UL =

∑
i∈C

α′
i +

∑
j∈Ac

α′
j . (8.14)

The whdfs algorithm was altered such that the “current weight” (Ω′) and the “remaining
weight” (Ω̄′

UL) were calculated using functions defined (optionally) by the user. This
meant that the Ω′ could be calculated using the combined likelihood ratio, and the Ω̄′

UL

could provide an upper limit to the weight available to any given set. The solution
vastly reduced the computational efficiency of the whdfs algorithm, resulting in the
algorithm taking minutes to run per model point rather than fractions of a second for
simple additive weights. This could be a serious issue for a test statistic required to run
over many thousands of proto-model points, however, this was still manageable given
large computational resources.

With a partially workable solution to the combined weight calculation, the focus turned
to understanding the asymptotic distribution of Ω′. When discussing the distribution of
the test statistic ΩE for the expected NLLR under the SM hypothesis (see Section 7.3.1),
we defined the general case to be a non-central χ2 (Equation (7.12)). The distribution was
simplified further by Wilks’ theorem; however, as previously mentioned, the definition of
Ω̄′ no longer satisfies the conditions of the theorem, and the non-centrality parameters of
Equation (7.12) no longer vanish. However, the non-centrality terms in the distribution
of Ω′ will cancel under the SM hypothesis. Retaining the original assumption that µ is
Gaussian distributed, the general distribution for a test statistic tµ takes the form:

f(tµ | µ) = 1√
2π

1

2
√
tµ

[
exp
(
−1

2

(√
tµ +

√
λµ

)2)
+exp

(
−1

2

(√
tµ −

√
λµ

)2)]
,

(8.15)
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where λµ is unknown for tµ = Ω̄′, and λµ = 0 for tµ = Ω′. To compute the signifi-
cance of a test statistic tµ and, ultimately, obtain a p-value, we needed to understand
f(tµ | µ). Fortunately, a suite of tools was available as a codebase from the pre-
vious proto-model anomaly search by the SModelS group [233]. This included an
Experimental Results Modifier (ERM), which allowed for the production of “MC fake”
versions of the SModelS database where the observed data is replaced by values sampled
from the SM background. Testing the distribution of tµ required event yields for a given
BSM point under the SM hypothesis; thus, the toy database was restricted to data
with available efficiency maps (EM). Generating data for EM-type results first requires
sampling from the background distributions; for results with covariance matrices or full
statistical models, this is done by sampling events from all SRs at once. For the cases
without, a normal distribution is sampled with a mean corresponding to the background
estimate (b) and a variance of the squared background error (σb). The sampled value is
then entered as the expectation parameter of a Poissonian distribution. The value drawn
from the Poissonian is then used as the “fake” observation, i.e. the fake event yield.

For the proto-models paper, the pseudo-databases were used to produce fake databases,
which were used by the Walker algorithm. For each pseudo-database, the proto-models
with the highest test statistic K were combined to estimate the density of the test
statistic K under the SM hypothesis via a kernel density estimator. A similar strategy
was employed to test the assumption that Ω′ was χ2∼ distributed by adjusting the
ERM to procedurally generate hundreds of pseudo-databases, which were used to create
the BAM and weights for the PathFinder module. Unfortunately, it soon became
apparent that maximising the combined likelihood (Lcomb) within the whdfs algorithm
was infeasible due to the computational complexity increasing the time taken per model
point beyond the point where it could be used in an anomaly search.

8.2.3. The test statistic αi

Using the infrastructure in place to evaluate the previous test statistic, an alternative
that removed the need to maximise Lobs for each set was considered.

ΛA,i(µ) =
Lobs
i (µ = 0,

ˆ̂
θθθ)

Lobs
i (µ = 1,

ˆ̂
θθθ)
,

Ω =
∑
i

αi =
∑
i

−2 lnΛA,i.

(8.16)
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Here, once again, L(µ = 1,
ˆ̂
θθθ) is the likelihood of the signal plus background model and

L(µ = 0,
ˆ̂
θθθ) is that of the background-only hypothesis. The test statistic, αi, can be

understood as the difference between α′(µ = 0) and α′(µ = 1), which, following log rules,
equals the ratio of ratios, thus cancelling out the µ̂ terms

αi = −2 ln

Lobs(µ = 0,
ˆ̂
θθθ)

Lobs(µ̂,
ˆ̂
θθθ)

+ 2 ln

Lobs(µ = 1,
ˆ̂
θθθ)

Lobs(µ̂,
ˆ̂
θθθ)

 = −2 ln (ΛA(µ)) . (8.17)

Removing the maximisation step means that the sum of αi (
∑
αi = Ω) can be used

directly as a test statistic. A similar statistic is discussed in “Asymptotic formulae for
likelihood-based tests of new physics” [228], where the ratio is presented as Ls+b / Lb as
opposed to Lb / Ls+b, following the same logic one can express αi as

αi = −2 ln(ΛA,i(µ)) = −2 ln

[
Lobs
i (µ = 0,

ˆ̂
θθθ)

]
+ 2 ln

[
Lobs
i (µ = 1,

ˆ̂
θθθ)

]
. (8.18)

We once again assume the validity of the Wald approximation [227], which states that in
the limit of large statistics (N), for the case of a single parameter of interest, the LLR is:

Lobs(µ,
ˆ̂
θθθ) =

(µ̂− µ)2

σ2 +O
(
1/
√
N
)
. (8.19)

Applying Equation (8.19) to Equation (8.18), one can approximate αi as

αi ≈
µ̂2

σ2 − (µ̂− 1)2

σ2 =
2µ̂− 1

σ2 , (8.20)

where σ2 is the variance of µ̂. Assuming µ̂ follows a Gaussian distribution, the distribution
of αi will also be Gaussian with an expectation value and variance of:

E[αi] =
2µ− 1

σ2 , Var[αi] =
4

σ2 , Std[αi] =
2

σ
, (8.21)

where µ is the true unknown value of the signal strength parameter. The left-hand plots
of Figure 8.3 show a normally distributed random variable X. The upper plot shows four
histograms representing example distributions of µ̂ over four different mean values E[µ]

with unit variance. The lower plot transforms X via Equation (8.20), giving the expected
distribution of αi (with colours corresponding to the relevant µ̂). The right-hand plots
show the variance (upper) and the expectation value (lower) of the transformed samples
as a function of σ (standard deviation of µ̂) with µ fixed at 0 and 1. Looking a Figure 8.3
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Figure 8.3.: Relation between distributions of µ′ and αi following the the transform from
Equation (8.20). The left-hand plots show a normally distributed random variable
X. The upper plot shows four histograms representing example distributions
of µ′ over four different mean values E[µ] with unit variance. The lower plot
transforms X via Equation (8.20), giving the expected distribution of αi. The
right-hand plots show the variance (upper) and the expectation value (lower) of
the transformed samples as a function of σ (standard deviation of µ′) with µ′

fixed at 0, 0.5 and 1.

and Equation (8.21) it is clear that if the expectation value of µ̂ is less than 0.5 the
resulting expectation of αk will be E[αi] < 0 approaching zero at large Var[µ̂]. This
makes intuitive sense when considering the NLLR in the case where the data heavily
favours the SM hypothesis (µ = 0); thus, L(µ = 0) > L(µ = 1) meaning that the ratio
would be greater than one and αi would be less than zero.

As no significant evidence for susy had been reported from the ATLAS or CMS
experiments–where significant implies a 5σ signal from a single search analysis–we can
comfortably assume that if any BSM signal does exist in the data, it is close to the SM
expectations. Thus, to understand the significance of such a signal, we need to understand
the behaviour of αi for SM-only data. In addition to the pseudo-database generator,
the distributions of αi, α̂i, Ω, and Ω̂ were investigated in a simplified environment,
independent of the SModelS framework. This was done by breaking the analysis chain
down into components:

1. A well-defined background and signal model with cuts applied to isolate signal
regions.

2. Background and signal events sampled b and s+ b models.
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Figure 8.4.: Example of the toy model described by Equation (8.22), comprising a gamma-
distributed background with a Gaussian signal. The signal fraction has been set
to fs = 0.015, producing a well-pronounced bump in the background tail.

3. A representative likelihood equation with effective nuisances (as described in Section
7.3.1).

4. A binary acceptance matrix describing the overlap between signal regions

A simple signal-background model was chosen, a linear combination of a gamma-
distributed background (Pb) and a Gaussian signal (Ps) with a mean located on the
right-hand tail of the background. The general form of the model was

P(x|θb, θs, fs) = (1− fs)Pb(x | θb) + fsPs(x | θs) , (8.22)

where θb and θs contain the parameters of the distributions and fs is the signal fraction,
maintaining overall normalisation via the opposing 1−fs term. The fs term should not be
confused with the signal strength parameter µ, as fs controls the contribution of the signal
PDF to the overall model and does not necessarily correspond to the number of signal
events. Equation (8.22) was used to generate a range by defining values of θb, θs and fs

and applying a “kinematic” cut. Events could then be generated by applying Monte-Carlo
(MC) sampling, which involves drawing random samples from an expected distribution.
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In this case, the predicted distribution represents a probability density, but the likelihood
of specific particle interactions or decay channels is often used. The MC method used
here is the inverse-CDF transform MC and begins by identifying the probability density
function (PDF) of the process under investigation. A cumulative distribution function
(CDF) is then derived from the PDF, and random numbers are generated uniformly
between 0 and 1. These random numbers are mapped to the corresponding values of
the CDF to sample from the original distribution. This procedure ensures that the
generated events follow the same statistical properties as the theoretical model, such
as the shape of the distribution. Figure 8.4 shows an example implementation of the
sampling method. MC sampling was used to generate multiple sets of background and
signal events, using the average value and standard error per bin as the expected B
(green) and S+B (red) counts. Example events (blue) were then generated using single
MC runs with Poisson errors on the bin counts. It is clear from Figure 8.4 that the “MC
events” were generated containing no signal; this will become an important detail when
discussing how to interpret the significance of the statistic.

With the tools to generate events from a given background and signal model, the
next task was to select a likelihood function. Two different functions were chosen for
thoroughness, representing two very different approaches to the same task. The first
function contains a single nuisance that uniformly scales both signal and background [7]:

L
(
n | µ, s(θθθ), b, ξ

)
=
∏
i

[
ξ(µsi(θθθ) + bi)

]ni 1

ni!
exp
(
−ξ(µs(θθθ)i + bi)

)
P (ξ) , (8.23)

where ξ acts as a global scale factor on the expected rate, which approximately accounts
for the systematic uncertainties. The probability distribution for ξ is given as:

P (ξ|σξ) =
1√
2πσξ

exp

[
−1

2

(
1− ξ

σξ

)2
]
. (8.24)

This distribution peaks at ξ = 1 and has a width characterised by

σξ =
σ2
b + µ2σ2

s

(b+ µs)2
. (8.25)

The profiled likelihood is defined as:

L
(
n | µ, s(θθθ), b

)
= max

ξ

{
L
(
n | µ, s(θθθ), b, ξ

)}
, (8.26)
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where the maximisation occurs over the scalar quantity ξ, the second likelihood equation
follows the general form defined in Equation (7.8):

L
(
n | µ, s(θθθ), b,∆∆∆

)
=
∏
i

P
(
ni | µ, si(θθθ), bi,∆i

) 1

(2π)n/2 detΣΣΣ
exp
(1
2
∆∆∆TΣΣΣ−1∆∆∆

)
, (8.27)

where the P (∆∆∆) from Equation (7.8) has been replaced with a multivariate normal distri-
bution which follows the Simplified Likelihoods scheme [255] using linear responses
of expected (background) event yields with an effective nuisance parameter ∆i for each
bin. The interplay between elementary nuisances is absorbed into a covariance matrix
(ΣΣΣ), a diagonal matrix containing the background variances. The profiled likelihood is
defined as

L
(
n | µ, s(θθθ), b

)
= max

∆∆∆

{
L
(
n | µ, s(θθθ), b,∆∆∆

)}
, (8.28)

where the maximisation occurs over the vector quantity ∆∆∆. It’s worth noting that if
we assume zero covariance (or zero off-diagonal terms) for ΣΣΣ, Equation (8.27) reduces
independent instances of Equation (8.24) for each bin and thus can be profiled over
each bin independently. For convenience, when referencing the profiled likelihoods from
Equations (8.26) and (8.28) the corresponding sub-script will be used to differentiate
between the two, i.e. L∆ and Lξ.

A series of test observables were defined and used to calculate the likelihoods to test
the assumptions’ validity in defining the profiled likelihood, αi, and its corresponding
distribution. Figure 8.5 shows the results from two toy models; both models were initiated
with identical background and signal distributions but with different signal fractions
fs. For model one, fs is set such that expected signal expectations are predominantly
outside of the one-sigma band of the background expectations, meaning that the signal
is easily differentiated from the background hypothesis. For model two, fs is reduced
to the point where the error bars overlap. Thus, the signal is not easily differentiated
from noise. The upper plots show the binned observable expectations with an example
set of “Events”. The central plots (c and d) show the maximised µ̂ distribution for 500
events. The results are presented for both versions of the profiled likelihood Lξ and L∆

The lower plots (e and f) show the distribution of the NLLR αi, which according to
Equations (8.20) and (8.21) should be normally distributed with an expectation value
and standard deviation defined by the distribution of µ̂.
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(a) Toy Model One fs = 0.004
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(b) Toy Model Two fs = 0.002
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Figure 8.5.: Comparison of the NLL and NLLR behaviour for two toy observables (upper
plots) following the relations derived in Equations (8.17) through (8.21). The
plots confirm the relationship between αi and µ̂ using the likelihood functions
shown in Equations (8.23) and (8.27)

The results from the toy model confirmed the expected relations between µ̂ and
αi produced a consistent result for both versions of the profiled likelihood, which is
not surprising considering the simplicity of the toy model. While investigating these
distributions, it became clear that the αi’s dependence on µ̂ would become problematic
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Figure 8.6.: distribution of αi for pseudo data produced under the SM hypothesis using the
Experimental Results Modifier for the SModelS database. The results were
generated for three search analyses (upper) and three SRs (lower)

when combining the likelihoods. If each SRi has a unique E[αi] and Var[αi], the sum of
the unknown expectation and variances of the set would define the distribution of the
sum. Therefore, defining the significance would require E[αi] and Var[αi] for each SR at
each model point. Thus, for each point in BSM space, one would have to sample events
to estimate the distribution of µ̂ under the SM hypothesis. Once again, this calculation
would increase the computational complexity beyond the point of being practical.

Despite the possible impracticality of αi, the next step was to evaluate the distribution
of αi using the proto-models pseudo-data generator simulating the SModelS database.
There was still information to be gained, not only in the practical sense of troubleshooting
the code base but in whether the distribution αi would still confirm the “normalness”
of µ̂. Figure 8.6 shows the distribution of αi for pseudo data produced under the SM
hypothesis for a proto-model point using three search analyses (upper) and three SRs
(lower). The results confirm that αi follows a normal distribution, indicating that µ̂ is
also normally distributed. The plots demonstrate the variability of E[αi] and Var[αi]

over the different SRs; when combining optimum sets using the whdfs algorithm, this
variation will affect the final distribution.
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8.2.4. The combined test statistic Ω̂

Two key insights came from the derivations of Ω′ and Ω. The optimisation of µ for
combined likelihoods in Ω′ produces test statistics described by a non-central χ2. This
distribution reduced to χ2 when working with expected yields; the insight here was that
this reduction occurred when the value of µ equalled the expectation of µ (µ′). The second
insight came from the factorisation quality of Ωi, defined by the sum of the individual
evaluations of αi. Combining these two qualities required a holistic reconsideration of
the anomaly-detection procedure.

In the original plan for the proto-model analysis chain, the result selection would sit
between the model point selection and combined likelihood evaluation. In this mode, the
whdfs algorithm plays a passive role, selecting the best set of SRs / Analyses for a given
proto-model. To exploit the attributes of the previous test statistics, the combinations
would have to be evaluated such that the product of L(µ = 1, θ̂θθ) is equal to the combined
likelihood maximised at µ̂c:

L(µ̂c | θ̂θθ
′
) =

l∏
i

Li(µ = 1 | θ̂θθi) . (8.29)

This condition would require the recursive optimisation of µ̂ where the evaluation of
µ̂ for a combined set of results is used to modify the expected signal yields via the
cross-sections of the model until µ̂ converges to unity. This procedure modifies the
proto-model point by multiplying the cross-sections by the signal strength parameter. It
is important to note that µ is a global signal strength. Therefore, the signal cross-sections
are given by σ = µ×κ×σSUSY, where κ are the signal strength multipliers defined
in Section 8.1. Technically, once the value of µ which maximises the likelihood (µ̂) is
determined, all signal strength multipliers are rescaled by κ→ µ̂×κ and µ is taken as 1.
The modification of yields directly affects the whdfs weights; thus, for each recursion,
the best combination has to be re-evaluated, affecting µ̂ for the combined set. This could
easily result in an infinite loop where µ̂A modifies the model such that set B is chosen to
calculate µ̂B, which modifies the model such that set A is chosen to calculate µ̂A. With
this situation in mind, a limit on the number of loops is required, along with a minimum
tolerance on the optimised µ̂ to prevent small non-converging fluctuations around unity.
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If successful, the recursion loop will return a new model point and a set of results
that, when evaluated for Ω, will give a value approximately equal to Ω′,

Ω̂ ≡ −2
l∑
i

ln

(
Lobs
i (µ = 0,

ˆ̂
θθθi)

Lobs
i (µ = 1,

ˆ̂
θθθi)

)
≈ −2 ln

(
Lobs

comb(µ = 0,
ˆ̂
θθθ)

Lobs
comb(µ̂c, θ̂θθ)

)
. (8.30)

This procedure essentially adds a parameter optimisation stage to the proto-models
analysis chain. We should be careful in identifying the difference between this equation
and that of test statistics Ω′ in Equation (8.11) and Ω in Equation (8.16). Here, Ω̂ is
defined as when Ω′ and Ω are approximately equal. This simultaneously retains the
additive weights for the whdfs algorithm to optimise and constrains the asymptotic
distribution of the sum. We can also define Ω′ as the maximum of all possible combinations
under the optimised model point Ω′

c:

Ω̂ = max

(∑
i

α̂i

)
= max

(
Ω′

c
)
. (8.31)

Figure 8.7 shows the distribution of α for both the toy data and the proto-models pseudo-
database results created using ERM. This shows the test statistic over all SRs (α) instead
of a single SR αi. The left-hand plot (a) shows the results for 2,000 bootstraps of 50
“toy” SRs like those shown in Figure 8.4. The right-hand plot (b) shows the distribution
from 50 bootstrapped “fake universes” pseudo-databases containing 62 analyses [217]
generated under the SM hypothesis. It is clear from the comparison that there is now a
deviation in results between the two examples. The distribution is normal for the toy (a),
as expected from the definitions of αi and α̂i when compared to the distributions of αi
in Figure 8.4 it is clear the optimisation procedure shifts the distribution to the right.

The upper right-hand plot (b) was generated using 50 bootstraps of the pseudo-
database produced under the SM (no signal) assumption using the latest proto-model
result (to date). The deviation from the normal distribution is unsurprising, considering
the results shown in Figure 8.6, where the different analyses and SRs had widely dispersed
distributions. When considered together and under the optimisation condition, the results
in Figure 8.7 have an expectation of 1.06 with a range of values going from α̂min = −91

to α̂max = 5.8, the plot has been truncated to provide greater detail for the main body of
the histogram.

As previously discussed, the summation term of Equation (8.30) is equivalent to
Equation (8.16) and was shown to be normally distributed. However, the maximisation
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Figure 8.7.: The distribution of α. The left-hand plot (a) shows the results for 2,000 bootstraps
of 50 “toy” SRs like those shown in Figure 8.4. The right-hand plot (b) shows
the distribution from 50 bootstrapped pseudo-databases created using ERM
containing 62 analyses [217] generated under the SM hypothesis. Plot (c) compares
the distribution of the values before and after the proto-models optimisation step
α→ α̂. α̂S is α̂ filtered for significance such that results are either full statistical
models or the best performing SRs from a single analysis

condition imposed by the right-hand side means that Ω̂ is positive definite and, making
the usual assumptions regarding µ̂, one would assume it to be χ2 distributed with one
degree of freedom. Plot (c) of Figure 8.7 shows the difference in the distribution moving
from α to α̂, where α is the test statistic before the µ̂ optimisation step. Because the
optimisation is performed on the highest scoring set of SRs, the optimisation moves the
proto-model point into a region supported by that subset. This broadens the distribution,
as evidenced by the increase in the standard deviation and the gap between the extreme
minimum and maximum values. The plot also shows the distribution of α̂S; this is the
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distribution of the α̂ filtered for significance such that results are either full statistical
models or the best-performing SRs from a single analysis. The implications of α̂S will be
discussed further in Section 8.2.5.

Finally, looking at Equation (8.30), there is an extra consideration to make, as the
summation over αi introduces a new degree of freedom (dof) in the form of l, the length
of the combination. This can be considered a dof because the best combination of
results is recalculated at each iteration of the µ̂ optimisation, meaning that l is not a
fixed quantity during this process.

8.2.5. Subsets and the look-elsewhere effect

As discussed in Section 6.3.1, the whdfs algorithm can be run in two modes: allowing
subsets and not allowing subsets. For the current use case, we want to select the best
sample of results from a large selection of analyses, but we also want that sample to
represent reality. So, should it be dropped from the set when the whdfs algorithm
chooses a selection of l results if dropping the lth result improves the overall test statistic?
The answer to that question is no, as to do so is the definition of “cherry picking”. Thus,
no subsets are allowed to be considered, meaning that if every analysis or SR is deemed
combinable, all results will enter into the test statistic.

By not allowing subsets, we force the inclusion of results that support the null
hypothesis if such results can be included. This is not an insignificant statement as it
implies that we avoid including what would be a penalty term by forcing the inclusion
of all available data. The proto-models model builder deals with model complexity by
estimating an AIC-type penalty on the free parameters (see Section 8.1). If we were to
select only the best result for a given proto-model point, then we would have to apply
something similar. It is worth modelling such behaviour statistically and comparing it to
the data to understand how negative weights affect a combination.

Suppose, for the moment, we ignore the hereditary condition in the whdfs algorithm
and consider the fraction of allowed combinations fA to equal the probability of being
allowed to add a result to the set at any one step. In that case, we can calculate the
probability of finding a negative weight in any set of results.

• fA: The probability of being allowed to add a result to the set, ignoring the
cumulative hereditary condition for the moment.
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• fs: The probability of not being allowed to add the result to the set. 1− fA

• P (w−): The probability of a negative weight.

• P (w+): The probability of a positive weight, P (w+) = 1− P (w−).

• l the length of a given set.

• n number of available results.

If we assume that the fA and P (w+) are independent quantities, then the probability of
finding a negative weight in a set of length l is:

P (All positive) = P (w+)l

P (At least one negative) = 1− P (w+)l .
(8.32)

The more complicated relation is the distribution and expectation of l. Let’s consider
the hereditary condition where the probability of being allowed to add a result decreases
with the number of results already in the set. In terms of building sets of results, this
condition introduces a dependency between the probability of adding an element to the
set (fA) and the current size. Thus, we need to define fA(l), the probability of being
allowed to add the l-th result, which decreases as l increases. The probability of being
allowed to add each successive result decreases exponentially as:

fA(l) = f lA . (8.33)

The length of a set is dependent on two factors: the probability of any one step being
allowed fA(l) and the upper limit on the number of steps available n. Modelling this
behaviour requires the definition of a Bernoulli-type variable:

Xi = 1 (success) with probability f
Li−1

A ,

Xi = 0 (failure) with probability 1− f
Li−1

A ,
(8.34)

where i runs from 1 to n and Ln is defined as

Ln =
n∑
i=1

Xi Xi ∈ {0, 1} . (8.35)

The distribution of Ln approximates the distribution of all set-lengths identified by the
hdfs algorithm with no subsets allowed. Figure 8.8 shows the distribution of lengths as
identified by the hdfs algorithm using a randomly generated bam s with fA = 0.75. The
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Figure 8.8.: The distribution of set lengths l calculated using hdfs algorithm and the predicted
distribution with l∼Ln defined in Equation (8.35)

distribution of Ln is shown in green and was calculated for 10,000 trials. The plot shows
the results running over four different bam sizes with increasing elements (n). Figure 8.8
shows that n can be well approximated by the construction of Bernoulli-like trials Ln.
Simulating the distribution for allowed subsets would require the evaluation of Ln from
0 to n as this follows the construction of the hdfs algorithm, which runs n graphs per
n×n bam, with each jth iteration having source k0 = j and sink km = n. The resulting
distribution would be shifted to lower values and broadened to accommodate the extra
values.

Figure 8.9 consists of two plots; the left-hand plot (a) shows the relationship between
the bam size and the mean length of all sets constructed with no subsets. The right-hand
plot (b) converts the result from (a) via Equation (8.32), giving the expectation of
negative weights per set chosen from n results. The results have been calculated at
P (w−) = 0.1 and P (w−) = 0.5, knowing that for a typical proto-model point fA is
approximately 0.75 and P (w−) ≈ 0.5 and n is over 150-200 analyses and SR; thus we
would expect to see all results containing at least one negative weight.

Up to now, we have been working under the assumption that fA and P (w−) are
independent, which is a fair approximation to first order; however, there is a relation
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Figure 8.9.: Relationship between the bam size n and the average length l of the combinations
c (a) and the probability of at least one weight in combination being negative
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that requires acknowledgement. For this project, the bam is constructed from analyses
and SRs– instead of just SRs used in the taco project. As discussed in Section 8.1, we
assume that results from different experiments or energies are uncorrelated and thus
combinable.1 For analyses from the same experiment and energy, the combinability is
assessed “by hand”. The complication enters when choosing SRs from an analysis that
contains results in favour of the proto-model and others that are either uninformative or
in favour of the null hypothesis. In this case, the result favouring the proto-model will
be chosen, excluding the alternatives from the set. The effect on the distribution of α̂
is shown in Figure 8.7, where α̂S is α̂ filtered such that results are either full statistical
models or the best-performing SRs from a single analysis. If there are enough separate
combinable analyses to counter this, then the effect would be minimised; however, this
does introduce an intra-analyses bias for analyses without a statistical model.

This issue was still being addressed at the time of writing, and several possible
solutions were under consideration. One option is to penalise the weight calculated for a
single best SR in terms of its significance within the context of α̂ such that:

Single SR Penalty ∝
∫ ∞

,−∞
α̂nP (α̂ | µ) · Φ(α̂ | µ)n−1 dα̂− E[α̂] , (8.36)

where P (α̂ | µ) and Φ(α̂ | µ) are the PDF and CDF, estimated from f(α̂ | µ) (Figure 8.7),
and n is the number of SRs in the original analysis. The integrand consists of α̂ multiplied

1A complete representation of the proto-models bam is presented in Appendix B, Figure B.3
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Figure 8.10.: Distribution of Ω̂ (a) and Ω̂R (b) for toy data using a the likelihood L =
maxξ{Lξ}. The data was generated using MC events under the SM hypothesis
(no signal). The best combinations were identified with subsets allowed (red)
and not allowed (blue). The results show that allowing subsets biases the results
towards shorter combinations.

by the distribution that describes picking the highest value from n random variates.
Thus, the integral is the expectation value of the distribution. The expectation of α̂–
which is approximately zero under the SM hypothesis– is then subtracted to give a
penalty weighted by the expectation values of the single SR and the SR in terms of
n. Interestingly, the bias for which this penalty is designed would have also affected
proto-models version 1; the use of combinations in version 2 compounds this bias and, as
such must be addressed before final publication.

One benefit to knowing this selection tendency in advance is that it allows for reducing
the bam size. For analyses evaluated on an SR level with no statistical model, only the
most significant SR will be combined. Thus, additional SRs from the same analysis can
be dropped from the bam, as they would always be ignored in favour of the significant
result. With a sufficient penalty for such cases, the selection should not affect the original
distribution f(α̂ | µ); in fact, the distribution of α̂ would be the appropriate test for
such a penalty. This reduction was tested using the proto-model’s ERM to generate
multiple versions of the database over a selection of test proto-model points and running
the whdfs algorithm for both reduced and unreduced bam. The results were matched
for each run with the bam size reducing from 150-200 results to around 60-80.

Assuming that the analyses are representative, running the whdfs algorithm with no
subsets seems to provide a self-regulating test statistic for finding the best-performing set
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of results for a given proto-model point. When running the whdfs algorithm without
subsets, the PathFinder module will not allow the inclusion of negative weights, so an
offset must be applied. The final weight is easily retrieved, providing the offset applied
to the remap_path method of the whdfs class. Negative weights can be used when
allowing subsets, and as such, we can compare the results with and without the inclusion
of subsets. The left-hand plot of Figure 8.10 shows the distribution of Ω̂ calculated using
the toy model data with L = maxξ{Lξ} from Equation (8.26). The distribution of the test
statistic α̂ (shown in Figure 8.7) had an expectation value of E[α̂] = 0.45 with a standard
deviation of Std[α̂] = 1.63. The distribution of α̂ was generated using 1,000 bootstraps
of 50 toy observables; for a single set of 50 observables, the fraction of negative weights
(or the probability of choosing negative weight) was P (w−) = 0.40. For the combined
statistic Ω̂ in Figure 8.10, the average path length is 8.5, thus using Equation (8.32) the
probability of at least one negative weight in a path is 1 − P (w+)l = 0.988, or 98.8%.
The proportion of combinations with at least one negative weight for the “subsets not
allowed” histogram in Figure 8.10 is 99%. This is compared to 0.4% for the histogram
with subsets allowed. On average, each combination contained 40% negative; this had
the effect of pulling the distribution of α̂ towards zero. We can define this pull as:

Pull =
∑

iΘ(−α̂i) · (−α̂i)∑
iΘ(α̂i) · α̂i

, (8.37)

where Θ(α̂i) is the heavy-side function applied to α̂i, such that the equation gives the
ratio of negative to positive values. Because µ̂ is optimized for the best combination Ω̂,
its value is always greater than zero. Thus, the pull value must be between zero and
one ([0, 1)), with zero corresponding to no negative weights and one corresponding to
the complete cancellation of positive values. For Figure 8.10, the average pull was found
to be E[Pull] = 0.33 with a standard deviation of Std[Pull] = 0.16. This confirms that
applying the no-subset condition results in a shift to lower values as shown in Figure 8.10.

Beyond the single proto-model point, when comparing points in proto-model space,
we require a measure of significance. Considering the discussion thus far, we have seen
that the number of results entering a given set depends on n and fA. Yet, as the Walker
moves in the model space, selecting relevant SMS topologies will alter the number of
analyses for each point due to their respective coverage. This brings us back to the
extra dof introduced by l in Equation (8.30). Considering the moments of α̂, we can
use l to reduce Ω̂ and produce a consistent distribution independent of the number of
results. Figure 8.7 showed that the expectation of α̂ is close to zero, and assuming the
self-mediating effect of not allowing subsets in the final combination, we can assume
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that the correction to the first moment vanishes under the SM hypothesis. The second
moment, on the other hand, does not vanish and is proportional to the number of results
that enter into a combination. If we consider the distribution of Ω̂ to be ∼χ2, then we
can approximately, if not crudely, account for the second moment by dividing through
by the square root of the χ2 variance (2k) where we replace the k with our new degrees
of freedom l − 1.

Ω̂R =
Ω̂√
2k

=
Ω̂√

2(l − 1)
. (8.38)

Here, the dof is expressed in the standard form of k, and if a combination is defined
as containing more than one result, the minimum rescaling factor becomes

√
2. It is

reasonable to assume the rescaled Ω̂ would make a better test statistic for the combination
selection, as it includes a penalty on the length. This would be incorrect as such a
penalty would bias the whdfs algorithm towards shorter combinations, less likely
to contain results that balance the selection. Because the whdfs algorithm is only
provided with positive weights, it can only increase the final sum by adding more results.
When we consider that the bam and weight are also ordered by decreasing significance,
the weights corresponding to a negative test statistic will likely appear in the initial
iterations and, thus, in the longest sets (this being a primary feature of the depth-first
search algorithm). The left-hand plot of Figure 8.10 shows the subset analysis with
the new rescaled test statistic. The difference between the inclusion and exclusion of
subsets becomes more apparent as the inclusion favours shorter sets, dropping negative
weights. Figure 8.11 shows the distributions of Ω̂ and Ω̂R for both toy and proto-model
simulations, using data generated under the SM-only hypothesis. The toy data was
generated using 2,000 bootstraps of 50 toy observables (like those shown in Figure 8.5).
Plot (b) shows the same analyses but performed on proto-model data, which was created
by generating 200 SM-only pseudo-databases for 15 proto-model test points (available
at https://smodels.github.io/protomodels/). The data is shown in the histograms
along with a fit to χ2 and Γ distributions with associated errors estimated via the Hessian
matrix (see Section 4.4). For the proto-models results, 41% of all sets contained at least
one damaging result, translating to a pull fraction of 0.2± 0.19 from positive. This is
a lower value than what was predicted from the toy simulations but not unexpected,
considering the intra-analysis bias previously identified.

Although we would expect the distribution to behave as χ2, the actual distribution
is better described by the more general Γ(θ = 1, k) distribution. In Figure 8.11 the

https://smodels.github.io/protomodels/
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Figure 8.11.: Distributions of Ω̂ and Ω̂R for the toy (a) and proto-model (b) simulations, using
data generated under the SM-only hypothesis The distributions are shown pre-
and post-reduction (Ω̂ → Ω̂R). The plots show the best-fit results from a single
parameter χ2 and Γ distribution fit where the θ parameter for the Γ distribution
is fixed to one. Each fit has a corresponding Kullback–Leibler divergence DKL
calculated using the normalised histogram bin counts

Kullback–Leibler divergence DKL is used to quantify the “quality” of fit and shows that
the Γ distribution (with the scale parameter θ fixed to one) performs better for the
reduced data. This is not entirely surprising, given the assumptions we have made with
the optimisation step. However, the agreement between the distribution fitted for the toy
and the proto-model simulation can’t be ignored. The agreement does suggest asymptotic
behaviour for the rescaled statistic. Figure 8.12 takes the data from plot (b) of 8.11
and breaks the Ω̂R distribution down by length l. The results show that the Γ(θ, k) fit
does vary over different lengths, but the approximation still holds for the purpose of a
significance test.
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Figure 8.12.: Distributions of Ω̂R for proto-model pseudo-database simulations, using data
generated under the SM-only hypothesis. The distributions have been separated
by the length of the result set identified by the whdfs algorithm. The plots
show the best-fit and fixed results from a single parameter Γ distribution. The
θ parameter for the Γ distributions is fixed to one. Each fit has a corresponding
Kullback–Leibler divergence DKL calculated using the normalised histogram bin
counts

8.2.6. Version 2 – analysis chain

With a test statistic defined such that a significance could be estimated for a given
proto-model point, we can now look at how this fits into the analysis chain. Some
important changes have been made since version 1 to accommodate the changes in the
SModelS framework and database. In this section, we will examine these changes and
how they affect the analysis chain.
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Particle 3-body decay channels Relative ratios (if fixed)

Xj ̸=1
Z qq̄ Xk

Z , ℓ+ℓ−Xk
Z , νν̄ Xk

Z 0.7, 0.1, 0.2

qq̄′X i
W , ℓνℓX

i
W 0.68, 0.11

X i
W qq̄′Xk

Z , ℓνℓX
k
Z 0.68, 0.11

X2
W qq̄ X1

W , ℓ+ℓ−X1
W , νν̄ X1

W 0.7, 0.1, 0.2

Table 8.2.: Three-body decay channels for the XZ and XW particles and their relative ratios
(for given k, i) when assuming that they proceed through off-shell Z- or W -boson
decays. In practice, at least in the first step, only the channels in blue need to be
implemented (for k = 1).

Particle content

A specific aim for the second version of the proto-modelling project is to see whether the
algorithm singles out the small excesses observed in electroweakino (Wino) analyses, and
what are the preferred mass relations. One development required for this is the inclusion
of three-body decays for the XZ and XW particles. These may or may not assume
off-shell W -and Z-boson decays: in the former case, the hadronic/leptonic branching
ratios will be fixed (and the mass differences limited); in the latter case, leptonic and
hadronic three-body decays will be separate degrees of freedom. In practice, the choice
should make little to no difference: at present, the experimental results in the off-shell
region only constrain leptonic decays.

In addition to the 20 BSM states and their decay channels considered for constructing
proto-models in Table 8.1, we include three-body decays of XZ and XW , which are given
in Table 8.2. However, not all are needed to characterise the soft-lepton excesses seen in
Wino analyses. First, as mentioned, no hadronic results are available in the low-mass
compressed regions where the leptonic excesses reside. So we may disregard qq̄ XZ and
qq̄ XW final states in the first step. Second, the decay into νν̄ XZ or νν̄ XW is invisible;
the only effect of this channel would be to introduce an additional mass scale. This might
be of interest if, e.g., different experimental results pointed to different LSP masses, but
given the current uncertainties, this is not relevant. Therefore, the three-body channels
to implement in the first step are:

X2,3
Z → ℓ+ℓ−X1

Z , ℓνℓX
1
W ; (8.39)

X1,2
W → ℓνℓX

1
Z . (8.40)



Anomaly detection: proto-models 207

The interest of considering also X3
Z and X2

W instead of only X2
Z and X1

W is that this will
allow us to see to which extent different excesses are consistent (or need the introduction
of different particles to explain them). If the hadronic (qq̄) and the neutrino (νν̄) modes
are also added, and the relative ratios fixed to those of Z- or W -boson decays as indicated
in Table 8.2, this can be used for predicting complementary signals. However, the mass
difference between mother and daughter XW,Z should be restricted to the off-shell region.
Finally, note that as in [233], XW and XZ decays into Xℓ + ℓ/ν, Xν + ν/ℓ, and XW,Z + γ

are not yet taken into account.

Analyses and likelihoods

As mentioned in Section 8.1.3, the extent to which the likelihoods can be calculated
depends heavily on the information the experimental collaborations provided. Since
version 1, the SModelS database has expanded to include a total of 157 analyses, with
7,736 individual efficiency maps from 1,529 distinct signal regions covering 130 different
SMS topologies [217]. This increase has shifted the ratio of UL- and EM-type results
in favour of EM-type, meaning that the likelihood approximation using a truncated
Gaussian can be removed from version 2. This is not to say that UL-type results will no
longer be used, as they still provide a sanity check for prior exclusion.

There has also been a move towards experiments providing correlation information or
full statistical models with the search analyses. This has shifted the likelihood evaluations
to simplified likelihoods v1 and v2 [255] and pyhf [187].

Much work has been done under the premise that constructing a global likelihood
from multiple results is reasonable so long as the results are from distinct experiments and
taken from different LHC runs. We can’t say that the results are entirely uncorrelated;
one such source of overlap may be the PDFs used to model background estimates. If
such methods are shared between experiments, then this would correlate with the results.
However, this would be a 2nd or 3rd-order effect, and as such, it can be neglected. For
version 2, the combinability of analyses and SRs is still conducted on a “by-eye” basis.
This maintains the original approach, identifying results with different final states in
their signal regions (e.g., fully hadronic final states vs final states with leptons).
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Test statistic Kc

Before exploring the new Walker algorithm, it is worth updating the definition of the
global test statistic K. During the MCMC-type walk, K is maximised and, as such, is
designed to increase for proto-models that satisfy the given constraints. Thus, for a given
proto-model with an optimised combination of results c ∈ C, the auxiliary quantity Kc

is now defined as:

Kc =

√
2

l − 1
ln

(
Lobs
c (µ̂s, θ̂θθ)

Lobs
c (µ = 0,

ˆ̂
θθθ)

)
+ 2 ln

(
π(BSM)

π(SM)

)
= Ω̂R + 2 ln

(
π(BSM)

π(SM)

)
(8.41)

where we have inserted the definition of the test statistic Ω̂ into Equation (8.6) and
rearranged the terms accordingly. The π(BSM) and π(SM) are the priors for the proto-
model and SM, respectively. Defining the priors is still crucial to formulating the test
statistic as it introduces a penalty for model complexity. For the SM, a flat prior was
assumed (π(SM) = 1) as the SM is a common factor for all combinations and, as such,
does not affect the comparison between different proto-models. Equation (8.7) is still
used for the BSM prior, where nparticles, nBRs and nSSMs are the number of new particles,
branching ratios and signal strength multipliers, respectively. The parameters a1, a2, and
a3 are still being optimised to approximate the AIC penalty condition, but the initial
values are 2, 4, and 8, respectively.

Architecture

With everything covered thus far, the most significant change moving from version 1 to
two is inevitably the Walker algorithm. Figure 8.13 shows the full procedural flow chart
for the new algorithm, demonstrating the entire iterative cycle. For efficient visualisation,
the randomised parameter selection nodes from Figure 8.1 are contained within the "Go
to new point" node of Figure 8.13. The test statistic optimisation loop (Ω̂ calculation) is
contained within the blue-shaded area in the upper part of the diagram. This loop has a
limit of five iterations before a new proto-model is chosen. If the µ̂ is successful, then the
global test statistic Kc is computed and compared to the previous iteration.

If the value of Kc improves on the previous iteration, the “fast critic” is employed.
This method uses the available UL-type data to check that the proto-model point isn’t
excluded by the available data. If Kc is not an improvement on the previous point, then
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Figure 8.13.: Procedural flowchart of the code architecture. See the text for details. The
blue-shaded area contains the test statistic optimisation loop for Ω̂ (Section
8.2.4)
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there is still a chance of moving on to the next step if the following condition is met

u ≤ e(K
c
new−Kc

old)/2 where u∼U(0, 1) . (8.42)

If all checks are passed, we introduce an adversarial counter process that employs a
taco-like procedure to calculate a combined 95% (r = 1) exclusion limit for the proto-
model point. The method uses the same data available for the calculation of Ω̂ but the
weights are changed to ωi = −2 ln(LSM/LBSM), as defined in Equation (7.7). Following
the procedure in Chapter 7, the combinations are identified using weights calculated from
theory expectations, but the final sum is calculated using the observed data. In other
words, the combinations are selected using theory, but the exclusion is determined from
observations. This adversarial step uses the techniques developed in the taco project to
get the most exclusionary “power” out of the available data. If the proto-model is not
excluded, it can be included in the top 10 performing points.

The definitive significance test is not represented in Figure 8.1. Before any assertions
regarding significance, it is necessary to assess the test statistic K according to the
prescribed methodology for simulating the distribution of the estimator Ω̂. This process
will entail generating multiple pseudo-databases and calculating the distribution of K
at the proto-model point under the standard model (SM) hypothesis. The value of K
demonstrating the highest performance will ultimately constitute the best result.

8.2.7. Preliminary results

At the time of writing, the new Walker algorithm is in the early stages of testing. The
analysis chain is fully constructed and in operation, but the focus is currently on testing
the design and understanding the initial results.

Nevertheless, there have been some preliminary results which we can discuss. The
current best-performing proto-model has obtained a test statistic value of K = 8.47 and
was generated in step 3 of the 95th trial run. The “winning” proto-model consisted of a
Xt, Xg, X

2
Z and X1

Z with masses of 1,267, 741 and 578 and 317 GeV, respectively. This
produced signals in the ℓℓ+ jets+Emiss, bb̄+E

T
miss, tt̄+E

T
miss and jets+ET

miss final states
with susy-like cross sections. The mass results are shown in Figure 8.14, along with the
contributing analyses.
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Figure 8.14.: Preliminary result from an early run of the proto-models Walker algorithm. The
left-hand plot shows the particle type, mass values and contributing analyses,
while the right-hand plot shows the decay channels and branching ratios.

The effective signal strength multipliers were found to be µ̂×κXtX̃t
≈ 1.1 and

µ̂×κXgXg
≈ 1.3, and µ̂×κ

X
2
ZX

2
Z

≈ 4.6, corresponding to σ(pp → X̃tXt) ≈ 1.2 fb,
σ(pp→ XgXg) ≈ 3981 fb and σ(pp→ X2

ZX
2
Z) ≈ 52.2 fb at

√
s = 13T eV. the Xt directly

decay to the lightest state (X1
Z) with 100% BR. However, the Xg decays directly to

the X1
Z with only a 10% BR; the preferred route is via X2

Z , which then decays to the
(X1

Z) via the ZXk
Z or hXk

Z channels. Table 8.3 gives a full breakdown of the analysis
contributions.

Although this is a preliminary result, we can make some interesting observations. The
first and most obvious is the cascade decay of the Xg through an intermediate state X2

Z .
Such proto-models were not considered in version 1 as there were not enough results in
the database covering this type of process. If nothing else, this is a promising start that
indicates a shift to more complex models.

A further observation is that the proto-model serves as an empirical representation of
the observed phenomena. When aligned with fundamental theories – candidates for the
Next Standard Models – many potential ambiguities must be considered. For example,
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Analysis Name Type Topology Obs Exp ≈ σ Particles

ATLAS-SUSY-2016-07 [259] EM T2 611 526± 31 2.2σ Xg, X
1
Z

CMS-SUS-20-004 [260] Comb TChiHH 0.3 fb 0.1 fb 2.1σ X1
Z , X

2
Z

ATLAS-SUSY-2016-16 [261] EM T2tt 8 3.80± 1.00 1.7σ X1
Z , Xt

ATLAS-SUSY-2018-05 [262] EM T6ZZ 8 3.38± 1.64 1.6σ Xg, X
1
Z , X

2
Z

CMS-SUS-13-012 [263] EM T2, TChiZZ 32 22.80± 5.20 1.3σ Xg, X
1
Z , X

2
Z

ATLAS-SUSY-2013-02 [264] EM T2 133 125± 10 0.6σ Xg, X
1
Z

Table 8.3.: Breakdown of results contributing to the latest preliminary results from the proto-
model Walker

the Xg particle, initially posited as the partner particle of the gluon, could be substituted
by a quark due to their experimentally similar signatures. In a similar manner, the X2

Z

could, with additional data, potentially be attributed to two or more mutually resembling
fundamental particles.

From a BSM standpoint, this result is not inconsistent with susy with all signal
strength multipliers of order unity. If it were the case that the signal strength multipliers
with µ̂×κ≫ 1, the resulting small cross sections could imply same-spin scenarios like
those predicted by extra dimensions [265–267]. As previously mentioned, having the
production cross section as a free parameter while leaving spin undefined gives the Walker
immense freedom to explore the potential proto-model space. Seeing early indications of
susy-like results in the signal-strength multipliers is a promising start. A full breakdown
of the result discussed in this section can be found at https://smodels.github.io/

protomodels/jamie300/.

https://smodels.github.io/protomodels/jamie300/
https://smodels.github.io/protomodels/jamie300/


Chapter 9.

Conclusions

The primary aim of this study was to identify selection techniques for the optimal meta-
analysis of BSM physics. This was done by addressing three specific research questions,
including (i) how to select an optimum set of minimally overlapping results, (ii) How to
implement such a selection technique for model exclusion, and (iii) How to implement
such a selection technique for anomaly detection? Through a systematic exploration
of these questions, the findings show that through the application and modification of
graph-based selection methods, a problem of order O(2n) complexity can be reduced to
approximately O(n lnn). Such a solution reduces the combinatorial challenge of selecting
the optimum set of results, which will only get more relevant as we move into the era of
high-luminosity LHC.

9.1. Summary of findings

Starting with the hdfs algorithm, in Chapter 6, the hdfs is presented as a potential
solution to the problem of choosing an optimum subset of results from 2n possible
combinations. The algorithm is a modification of the well-known depth-first search. The
modification excludes nodes prohibited from combination recursively, so the number
of available combinations reduces with depth. The bam matrix, an n by n symmetric
matrix that provides a binary description of the allowable combinations, was crucial to
evaluating the available combinations. The hdfs algorithm was shown to evaluate all
available combinations efficiently. However, it was soon realised that a more efficient
method could be devised by sacrificing the requirement to identify all combinations.
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The whdfs algorithm was developed to use weights to optimise the hdfs method.
This was achieved by taking advantage of the DFS ordering and tracking the best
combination weight. (The “best” here is assumed to be a simple sum of weight, but
alternatives could be defined in place). The crucial realisation was that the algorithm
could be “short-circuited” by comparing the current best combination weight with an
upper limit to the weight available to any future combination in the iteration. This upper
limit vastly reduced the number of iterations per evaluation and, thus, reduced the time
complexity.

Before fully deploying the hdfs and whdfs algorithms, it was noticed that specific
behaviour was required for different tasks. This led to the development of subset
conditions where we defined a priori whether or not subsets were to be included when
evaluating a result. This condition mainly affected some edge cases but was an important
consideration when dealing with negative weights.

The first application of the whdfs algorithm in the taco project where search
analyses SRs were combined to improve pre-existing exclusion limits. The project
included–among others–authors from the SModelS [184] and MadAnalysis 5 [173]
collaborations and made extensive use of both frameworks. Much of the project was
dedicated to estimating the overlaps between different SRs from analyses considered to
share events. To achieve this, we defined the overlap matrix, estimated by generating
BSM events populating a well-defined region in a mass-parameter space constructed from
the union volumes covered by the SMS topologies and SRs. By tracking which events
populated bins shared by different SRs, we could estimate a correlation-type matrix
defined as the overlap matrix.

By specifying a minimum threshold for the allowed overlap between different SRs, we
could define the bam required for the whdfs algorithm. The NLLR of signal expectation
with µ = 1 over the maximised SM expectation with µ = µ̂ = 0 was used for the weights
as the sum over a combination provided a well-defined test statistic. The combination
analysis was compared to results for two SMS topologies (T1 and T1tttt), model points
from the ATLAS 2015 pMSSM-19 scan [235] and 3 t-channel dark matter models. In all
cases, there was an evident increase in exclusionary power reinforced by a statistically
rigorous treatment of the overlap estimation.

The final project considered in this work is the ongoing research project called proto-
models, which examines combinatorial methods to enhance anomaly detection. In many
ways, this work is an extension of the taco project into anomaly detection. The project
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continues on previous work done by the SModelS team, presented in the paper “Artificial
Proto-Modelling: Building Precursors of a Next Standard Model from Simplified Model
Results” [233].

The work presented in this study makes two significant contributions to the proto-
models project via two distinct applications of the whdfs algorithm. In moving the
primary objective from model exclusion to anomaly detection, much work had to be
done to identify a test statistic capable of being used as an additive weight and measure
of significance. This involved understanding the asymptotic distribution of the chosen
statistic and how the whdfs algorithm influenced the distribution of the combined
weight. By leveraging model selection techniques and treating the number of results in
a combination as a degree of freedom, we could demonstrate the asymptotic behaviour
of the test statistic Ω̂. This provided a metric from which an approximate significance
could be calculated.

The proto-models MCMC walker algorithm also uses a taco-like adversarial counter
metric to critique chosen proto-models. This process follows the exclusion procedure in the
taco project intending to prevent the selection of a proto-model driven by fluctuations
present in a database that could be used–via a different metric–to exclude the same
point.

At the time of writing, the proto-models project is in the testing and validation stages.
However, some preliminary results are presented, containing particles with strength
multipliers not inconsistent with susy-like expectations. There is also an increase in
model complexity due to the increased pool of results in the SModelS database.

9.2. Implications

The work presented in the study is divided into three main parts: algorithmic, statistical,
and applications in BSM physics. Admittedly, there is a significant overlap in each part
due to the concurrent development and application. However, the implications of this
work can be separated into these categories.

The hdfs and whdfs algorithms presented as part of the PathFinder module
provide a specific utility separate from the physics applications. As presented in Chapter 6,
the algorithms aligned well with feature selection in machine learning. The construction
of the bam is not limited to correlations but could be extended to joint mutual or Fisher
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information. This flexibility means that the algorithm has the potential to be used in
many contexts, extending beyond particle physics applications.

Moving onto the implications of the taco project [194] and leaving aside the SR
selection, the development of the overlap matrix provided a solid foundation for future
development. Evaluating the overlap matrix was by far the most computationally
expensive strategy in the project. However, the project proved the traceability of such
computation and demonstrated the result to be a statistically reasonable measure of the
events shared between SRs.

One unexpected result shown in this study was the potential to force an unbiased
data selection with the hdfs and whdfs algorithms. For the case of model comparison,
where the weights measure the agreement with–or deviation from–a null hypothesis, one
can expect the weights to include negative values. In such a case, including as much
available data as possible is essential to counter the influence of inevitable statistical
fluctuations. Providing the whdfs algorithm with weights, shifted to be positive, and
forcing the non-consideration of any extendable set, i.e. not allowing subsets, the whdfs

will select the highest scoring complete set of results. This was a powerful realisation as
this not only suggested a self-regulating metric, but the regulation improved with scale.

From the standpoint of applications in BSM physics, the findings of this study un-
derscore the critical role of reinterpretation within the realm of particle physics. This
significance is particularly pronounced when acknowledging the dependence on experi-
mental data to facilitate the recasting of results to alternative models. The combinatorial
methods outlined articulate how numerous SRs and analyses can be systematically as-
sessed to identify the optimal subset. However, this endeavour would not have been
achievable without utilising reinterpretation frameworks such as SModelS [184], Mad-

Analysis 5 [173] and Rivet [268].

9.3. Limitations

A consistent theme of this study was how to make the most of the data available
from the LHC. To this end, some assumptions and approximations have been made to
accommodate the complexity of the task. A good example is the potential effect of control
regions in estimating the overlap. This issue was given a great deal of consideration, but
there was no straightforward solution. It was eventually determined that the effect would
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lessen the exclusionary power of the combined results; thus, any affected result would be
conservative in estimation. This was an acceptable trade-off between traceability and
accuracy.

One of the most challenging aspects of the study was the development of the proto-
models test statistics Ω̂ and Ω̂R. The nested dependencies on the bam size n, the allowed
fraction fA and path length l, along with the distribution of weights that entered into the
combination, meant that there was no closed form for the distribution of Ω̂. The solution
described in Section 8.2.4 was found using independent simulations of the proto-models
analysis chain, generating results under the SM hypothesis and replicating the relevant
profiled likelihoods. The final distribution was best approximated by a Γ(θ, k) with a
scale parameter θ = 1 and shape parameter k = 2.23. This relation was confirmed in
both toy and pseudo-database simulations; however, the reason for the exact form is still
unknown. As covered in Chapter 3, the Gamma distribution Γ(θ, k) is a generalisation
of the exponential family of continuous probability distributions, which includes the
χ2 distribution, which is a particular case with θ = 1/2. Considering Ω̂ was expected to
have a χ2 distribution [228], the emergence of a more generalised form is not unreasonable.

The final and most general limitation of the work presented here is that any significant
deviation from SM expectations should be used to inform future search analyses and be
understood in the context in which they are presented. Any assumptions or approxi-
mations made were made with significant consideration, and a conservative strategy is
always assumed to be the most appropriate.

9.4. Recommendations

Moving into the era of HL-LHC, it is more important than ever to develop reinterpretation
tools capable of handling the increasing number of analyses. The work presented in this
study was conducted using search analyses, but increasingly reinterpretation software such
as Contur, “Constraints On New Theories Using Rivet” [175], probes BSM theories using
measurements. This approach takes advantage of the model independence associated
with particle-level differential measurements conducted within fiducial regions of phase
space. Consequently, these measurements can be compared to BSM physics scenarios
simulated in Monte Carlo generators in a very general manner, thereby enabling the
exploration of a broader range of final states than is usually encountered. Incorporating
a taco-like combination strategy into this framework would likely necessitate an SM
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background estimate of the overlap matrix. This requirement would entail implementing
efficient sampling strategies for the MC generators; however, it remains well within the
capabilities of contemporary tools.

In more general terms, this study demonstrates that the hdfs and whdfs algorithms
should be used whenever appropriate. Whether it be for the purpose of data selection or
optimisation, this work has demonstrated a variety of use cases. The success of these
algorithms has been due to the combination of efficiency and scalability.

Given the recent engagement of experiments within the reinterpretation community,
it is plausible to anticipate that the collection of analyses will only increase in the
forthcoming years. This expectation is further supported by the recent enhancements in
providing full statistical models. Therefore, it is reasonable to conclude that the pool of
available data is set to grow, necessitating adaptations in the whdfs algorithm. Certain
algorithmic complexities have prevented the development of a multi-threaded/processed
implementation; however, there are plans to implement such functionality in the near
future.

The proto-models project is currently underway, and the results presented in this study
are to be regarded as preliminary. Notable issues, including the single SR selection bias,
have been identified during the preparation of this work, alongside a potential resolution.
As the project progresses into its operational phase, there are still opportunities to extend
the range of particles under consideration. The motivation for this would come from the
fact the analyses with the most significant excess come from searches for mono-jet with
large missing Emiss

T , specifically concerning the TRV1 and TRS1 topologies associated
with vector and scalar mediators (XV, XS) [269, 270]. There is also the possibility of
looking for log-lived–metastable–charginos and gluinos.

9.5. Final remarks

This thesis has advanced the methodological framework for optimising meta-analyses
in the context of beyond the Standard Model (BSM) physics by addressing complex
selection challenges in collider data reinterpretation. Through the development and
application of novel algorithms, namely the hdfs and whdfs algorithms, this work
demonstrated that graph-based methods can effectively reduce the combinatorial com-
plexity of selecting minimally overlapping results from O(2n) to approximately O(n lnn).
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These algorithms have thus proven instrumental in systematically identifying optimal
combinations for model exclusion and anomaly detection, providing a scalable and com-
putationally efficient approach that addresses both theoretical and practical concerns
inherent in high-luminosity Large Hadron Collider (HL-LHC) data.

The findings underscore the significance of combining exclusion limits in collider-based
searches and point to potential applications beyond particle physics. By facilitating
a rigorous and statistically robust framework, this work has laid the foundation for
future implementations that extend to machine learning and feature selection contexts,
highlighting the algorithms’ adaptability across domains. Notably, the results emphasize
the need for continued development of reinterpretation tools as the volume of available
data and analyses increases in the HL–LHC era, a trend that underscores the broader
relevance and potential impact of this research within both the particle physics community
and data-intensive scientific fields.

In conclusion, this thesis contributes meaningfully to the ongoing efforts within particle
physics to refine model selection methods and optimize data utilisation. It reaffirms the
importance of reinterpretation frameworks and innovative algorithms in navigating the
complexities of modern collider data, paving the way for more refined and statistically
robust approaches to BSM discovery and anomaly detection in future research.
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A. HDFS algorithm

The pseudocode shown in Algorithms 1 and 2 are written in a Pythonic syntax as the
code makes use of the generator – denoted by the term Gen() – functionality, which
allows for efficient iteration ordering. Aspects of the code are heavily influenced by the
“all simple paths” method from the Python NetworkX package [193].

Algorithm 1 Hereditary Depth-First Search (HDFS)

Require: source = i
Target = n
Cutoff = n− 1
Visited = [i]
Stack = [Gen(Ai)]
S = [Ai]
while Stack is not empty do

Children = last element of the stack
c = Next element in Children or None if Empty
if c is None then

Drop last element of Stack
Drop last element of S
Drop last element of Visited

else if length(Visited) < cutoff then
if c = Target then

Yield: Visited + [c]
end if
Visited += [c]
if target not in Visited then

Sc = Ac ∩ Sc−1

Stack += [Gen(j: for index in Ac if index ∈ Sc)]
else if then

Drop last element of Visited
end if

else if length(Visited) = cutoff then
Drop last element of Stack
Drop last element of S
Drop last element of Visited
Yield: Visited + [Target]

end if
end while
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B. WHDFS algorithm

The pseudocode shown in Algorithm 2 is a modification of Algorithm 1. WHDFS uses
the edge weights to calculate an upper limit of the total weight available at each step in
the path. This modification eliminated the need to explore all allowed paths instead of
limiting the combinations to those with the greatest potential.

Algorithm 2 Weighted Hereditary Depth-First Search (WHDFS)

Require: source = i
Require: maximum weight

Best Path = [], Target = n, Cutoff = n− 1
Visited = [i], Stack = [Gen(Ai)], S = [Ai]
while Stack is not empty do

Children = last element of the stack
c = Next element in Children or None if Empty
if c is None then

Drop last element of Stack
Drop last element of S
Drop last element of Visited

else if length(Visited) < cutoff then
if Target in Visited then

continue
end if
Sc = Ac ∩ Sc−1

Visited += [c]
Current Weight = weight function (Visited)
Available Weight = weight function (Sc)
if c = Target & Current Weight > Max weight then

Max weight = Current Weight
Best Path = Visited

end if
if (Current Weight + Remaining Weight) > Max weight then

Stack += [Gen(j: for index in Ac if index ∈ Sc)]
else if then

Drop last element of Visited
end if

else if length(Visited) = cutoff then
Drop last element of Stack
Drop last element of S
Drop last element of Visited

end if
end while
return Best Path
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A. taco overlap matrices
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Figure B.1.: The overlap matrix ρij obtained from the TACO sampling procedure between
all LHC BSM searches at 8 TeV commonly implemented in SModelS and
MadAnalysis 5. Non-overlap between ATLAS and CMS analyses is manually
imposed, as analyses from both experiments could not accept the same proton
collisions, regardless of the MC overlaps. Similarly, overlaps between 8 and 13
TeV analyses must be zero regardless of final-state acceptances. The set of SR
pairs considered sufficiently independent in the analyses of Sections 7.3 and 7.4,
with T < 0.01, are shown in white.
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Figure B.2.: The overlap matrix ρij obtained from the TACO sampling procedure between
all LHC BSM searches at 13 TeV commonly implemented in SModelS and
MadAnalysis 5. Non-overlap between ATLAS and CMS analyses is manually
imposed, as analyses from both experiments could not accept the same proton
collisions, regardless of the MC overlaps. Similarly, overlaps between 8 and 13
TeV analyses must be zero regardless of final-state acceptances. The set of SR
pairs considered sufficiently independent in the analyses of Sections 7.3 and 7.4,
with T < 0.01, are shown in white.
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