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Abstract

Autonomous driving holds the potential to transform the transportation industry, offer-

ing significant improvements in safety, efficiency, and convenience. However, traditional

model-based planning approaches struggle to address the complexities and uncertainties of

real-world driving environments. This thesis employs deep reinforcement learning (DRL)

to achieve safe and efficient autonomous driving using realistic simulation settings and

evaluation based on rational criteria.

The proposed framework integrates five key factors—driving safety, driving efficiency,

training efficiency, unselfishness, and interpretability (DDTUI) to ensure reliable and opti-

mal decision-making across various driving scenarios. The research addresses two primary

applications: highway driving and autonomous racing. In highway driving, the DRL-based

framework demonstrates superior performance compared to popular baseline algorithms,

improving safety and efficiency. In autonomous racing, an extreme case of autonomous

driving, the framework is adapted to manage high velocities and safe control, achieving

fewer collisions, faster lap times, and reduced training time in comparison to benchmark

algorithms.

This thesis contributes to the field by advancing RL-based planning techniques and es-

tablishing a design methodology for integrating key factors in autonomous driving. The

results of this study provide evidences of the development of safer, more efficient, and

interpretable autonomous driving systems. Finally, key achievements are summarized,

limitations are discussed, and future research directions are proposed.
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Chapter 1

Introduction

1.1 Motivation
Autonomous driving has emerged as one of the most transformative innovations of the

21st century, poised to revolutionize the transportation industry by offering the potential

for enhanced safety, efficiency, and convenience in daily life. By eliminating human error,

which accounts for a significant proportion of traffic accidents, autonomous vehicles (AVs)

are expected to drastically reduce accident rates, decrease traffic congestion, and optimize

fuel consumption. Despite this potential, the path to fully autonomous vehicles faces

considerable challenges in terms of safety, reliability, and adaptability to complex, real-

world environments.

Historically, model-based planning methods have dominated the decision-making field of

autonomous driving. These methods rely on accurately predefined models of both vehi-

cle dynamics and the driving environment, utilizing optimization techniques to compute

trajectories and ensure safe navigation. Such approaches work well in structured environ-

ments, where the traffic dynamics and road conditions are relatively predictable. However,

in unstructured or highly dynamic environments, model-based planning reveals several

key shortcomings. These include sensitivity to model inaccuracies, difficulty in real-time

adaptation to unknown scenarios, and limited robustness in handling uncertainties and

variations in the driving environment. As the complexity of driving scenarios increases,

the computational burden associated with model-based methods becomes unsustainable,

limiting their practical application in real-time decision-making. Additionally, these meth-

ods struggle to cope with the unpredictable behavior of human drivers and other road

users, leading to suboptimal performance in mixed-traffic conditions.
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To address these limitations, learning-based planning methods, particularly those in-

volving reinforcement learning (RL), have gained significant attention in recent years.

Learning-based approaches shift the paradigm by enabling autonomous vehicles to learn

driving policies directly from data, rather than relying on pre-built models. These methods

can capture complex behaviors and interactions with other road users, adapting to diverse

driving environments by learning from experience. Reinforcement learning, in particular,

allows the vehicle to learn optimal policies through trial-and-error interactions with its en-

vironment, improving its ability to handle uncertainties and respond to novel situations.

Additionally, imitation learning (IL) can be employed to mimic expert human drivers,

further enhancing the driving policy’s performance by leveraging demonstrations.

While learning-based methods present substantial advancements, they also introduce new

challenges, in autonomous driving. A critical aspect of designing robust learning-based

autonomous driving systems is the identification of appropriate factors that influence the

vehicle’s decision-making process. These factors should encompass essential aspects such

as driving safety, operational efficiency, vehicle control, cooperation with other vehicles,

and interpretability of the learned policies. Each of these factors plays a pivotal role in

ensuring that the autonomous vehicle behaves safely and reliably under a wide range of

driving conditions.

First and foremost, safety is the highest priority in autonomous driving. It is essential

to ensure that learning-based methods incorporate safety constraints directly into the

training process to avoid undesirable behaviors, such as collisions or near-miss scenarios.

Efficiency, in terms of both fuel consumption and travel time, is another critical factor,

particularly when considering the deployment of autonomous vehicles at scale. In ad-

dition to safety and efficiency, control over the vehicle’s actions, including maintaining

stability and responding to environmental changes, is crucial. Furthermore, cooperative

behavior has become increasingly important in recent times. For instance, an AV and a

HDV may select a combination of actions that maximizes their total combined profit.

While this outcome might not represent the maximum profit for either individual party,

it achieves the highest total profit overall and can be regarded as cooperative behavior.

Cooperative driving is particularly crucial as AVs must coexist with human drivers and
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②  Control Inputs: Steer, throttle and brake inputs

Figure 1.1: The framework of autonomous driving.

other AVs in mixed-traffic environments. Autonomous driving systems must be able to

engage in cooperative maneuvers, such as lane changes, merging, and overtaking, in a way

that promotes smooth traffic flow and minimizes disruptions. Lastly, interpretability, or

the ability to understand and explain the decisions made by the vehicle, is becoming

a necessity, particularly for regulatory compliance and user trust in AVs. Fig. 1.1 illus-

trates the framework of autonomous driving. The autonomous driving framework consists

of three main modules: perception, planning, and control. The perception module uses

sensors such as GPS/IMU, LiDAR, and cameras to gather data, which is processed to un-

derstand the surrounding environment. The planning module has three sub-components:

route Planning, behavior planning, and motion Planning. Route planning determines the

high-level path based on map and task inputs, while behavior planning decides actions

like lane changes and car-following maneuvers. Motion planning then generates specific

trajectories to follow. Finally, the control module takes the planned trajectories and com-
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putes the necessary actuator commands (e.g., steering, throttle, brake) to execute them.

This integrated approach ensures the autonomous vehicle can perceive its surroundings,

plan an optimal route, and control its movement to reach the intended destination safely

and efficiently.

To design a learning-based planning method that can adequately address these factors, it

is necessary to impose proper rules and constraints during both the training and execu-

tion phases. The learned policies must adhere to driving norms, regulations, and safety

protocols, while simultaneously ensuring optimal performance in terms of efficiency and

control. This requires careful design of the reward functions in reinforcement learning,

where the reward signal must reflect the trade-offs between safety, efficiency, and other

key factors. For example, collision avoidance penalties, lane-keeping rewards, and coop-

erative behavior incentives must be integrated into a unified framework that promotes

desirable driving behavior.

Moreover, planning methods must be adaptable to different driving contexts, ranging from

highways to urban environments, where the challenges vary significantly. In highway driv-

ing, the focus may be on efficiency and cooperation during high-speed lane changes, while

urban driving emphasizes low-speed maneuvering, pedestrian safety, and adherence to

traffic rules. Thus, the ability to design flexible and context-aware learning-based meth-

ods is another important consideration.

In light of these challenges, this thesis is motivated by the need to explore learning-based

planning methods that can systematically integrate multiple critical factors. The goal

is to develop a comprehensive framework that ensures safe, efficient, and interpretable

decision-making for AVs. By leveraging advanced reinforcement learning techniques and

carefully designed reward functions, this thesis aims to advance the field of autonomous

driving by developing a rationale evaluation framework for DRL-based decision-making,

incorporating five key evaluation factors: driving safety, driving efficiency, training effi-

ciency, unselfishness, and interpretability (DDTUI). This thesis further aims to design and

validate the DRL algorithm to address current DRL shortcomings by enhancing safety, ef-

ficiency, and interpretability while achieving faster convergence and lower collision rates in

complex highway scenarios. Additionally, the research aims to improve DRL adaptability
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in extreme driving conditions through curiosity-driven exploration and balanced reward

structures, leading to superior lap times, stability, and safety in autonomous racing. Both

DRL algorithms for highway scenario and extreme conditions are designed to address all

five DDTUI factors simultaneously, promoting well-rounded decision-making strategies

adaptable to real-world autonomous driving challenges. Through this, we seek to over-

come the limitations of traditional model-based approaches and push the boundaries of

what is possible with autonomous vehicle technologies.

1.2 Current Challenges in Autonomous Driving
Autonomous vehicles (AVs) face significant challenges in making reliable decisions when

interacting with human-driven vehicles (HDVs). This challenge is primarily due to the

difficulty of accurately predicting the intentions of HDVs. Road traffic crashes cause sig-

nificant fatalities and serious injuries, reflecting the global issue of millions of lives lost

annually [1]. Since 2021, over 900 Tesla crashes involving driver-assistance systems have

been reported [2]. Despite unresolved safety issues, the number of AVs is projected to

surpass 50 million by 2024 [3]. These statistics underscore the critical need for improving

safety in autonomous driving. With a safe decision-making system, AVs have the potential

to significantly decrease road crashes caused by human errors such as fatigue, distraction,

and delayed reactions [4]. Moreover, AVs are capable of making optimal decisions faster

than human drivers, thereby enhancing traffic efficiency [5].

There are several typical driving scenarios, such as highways, roundabouts, on-ramping

merging, and unsignalized intersections, each characterized by distinct road features and

scenario-specific requirements. Autonomous driving in such scenarios is depicted in Fig.

1.2. For example, on-ramp merging involves completing lane changes well in advance of

any obstructed roadway, while navigating a roundabout requires seamlessly exiting at

the intended point. Achieving these scenario-based requirements relies heavily on precise

and timely operational decision-making in real time. Operational decision support for

AV driving includes perception, planning, and control modules. The perception module

consists of onboard sensors that continuously perceive the surrounding environment. The

perceived data is processed through perception algorithms, such as YOLO methods [6,7].
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Figure 1.2: Autonomous driving in different scenarios.

The planning module handles driving tasks based on scenario recognition. Subsequently,

the motion planner generates discrete decisions and converts them into feasible trajecto-

ries. These feasible trajectories are then transmitted to the control module to generate

control commands, which are sent to the vehicle’s actuators. The actuators, including the

steering wheel and pedals, receive and execute the control commands to drive the vehicle.

The interactions between AVs and HDVs are complex and therefore continuous decision-

making is required, such as lane changes or braking [8]. The model-based, simple guidance,

and learning-based methods are commonly used in interactive driving with HDVs.

1.3 Shortcomings of Model-based Autonomous Driv-

ing
There are mainly four types of model-based approaches. The first model-based approach

aims to predict the intentions or trajectories of HDVs, but heavily relies on rule-based

classification. For example, [9] predicts the trajectories of HDVs within a fixed time win-

dow. However, the time required for a lane-changing maneuver may exceed this fixed

time window. The second model-based approach is to make decisions using robust con-

trol methods, such as the min-max model predictive control [10], as illustrated in Fig.
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AV

Safe corridor

Figure 1.3: This figure highlights a critical approach for ensuring safe autonomous driving
in the presence of uncertainty. In autonomous driving, uncertainties arise from various
factors, such as sensor noise, environmental variability, or unpredictable behavior of other
road users. By predicting the system’s states as sets rather than single points, the approach
accounts for these uncertainties, providing a robust foundation for decision-making. The
green-shaded convex hulls represent the range of possible future states, ensuring that the
true state of the vehicle is always contained within these regions. The safe corridor enclosed
by orange marigins is crucial for safe planning and control, as it allows the autonomous
vehicle to execute actions that maintain safety margin and avoid collisions.

1.3. However, robust control methods make excessively cautious decisions based on a

worst-case scenario assumption [11]. These methods are not suitable for most real traffic

environments because worst-case scenarios are rare in real-world settings. Furthermore,

decisions made for worst-case scenarios negatively impact driving quality, such as resulting

in slower driving speeds.

On the other hand, the game theory, the third model-based approach, has gained popular-

ity recently. Game theory includes cooperative and non-cooperative games, both relying

on equilibrium models. However, these models fail to capture the complexities of real-

world driving, which are characterized by uncertainties and do not adhere to a regular

equilibrium framework. In the real world, drivers often exhibit a wide range of behav-

iors that deviate from purely rational actions. Moreover, the game-based decision-making

normally divides the driving styles into three categories: conservative/cautious, moder-

ate/normal, and aggressive. As illustrated in Fig. 1.4, the driving performance of the host

vehicle (HV) interacting with V2 is presented under three different driving styles [12].
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Figure 1.4: Results of the decision making and path planning considering different driving
styles of obstacle vehicles [12].

However, real-world driving includes a wide range of driving patterns, which are much

more complex and difficult to model. Therefore, game-theoretic approaches may struggle

to handle interactions with HDVs that do not behave as expected, potentially leading to

unsafe or suboptimal decisions.

Therefore, model-based methods are unable to handle interactive driving with HDVs

effectively. Additionally, the fourth model-based approach, including collision-avoidance

methods [13] and Voronoi diagram-based methods [14], is unable to safely respond to

movable objects. Real-world collisions between HDVs and vehicles equipped with advanced

driving system (ADS) assistance are summarized in [15]. As illustrated in Fig. 1.5, 79 %

of accidents involve HDVs hitting AVs, and 21 % of that involve AVs hitting HDVs.

Therefore, achieving collision-free interactions with HDVs are still to be addressed. [16],

which applied APF to guide AVs in lane changes while maintaining a safe distance from

surrounding HDVs.
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Figure 1.5: Rear-end accident conditions between ADS and HDV: (a) Rear-end accidents
that HDV hit an ADS from behind with a sample of 252; (b) Rear-end accidents that
ADS hit an HDV from behind with a sample of 67 [15].
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Figure 1.6: APF.

Compared to the aforementioned methods, simple guidance methods, such as risk-quantified

fields, are widely used because they do not need to predict HDVs’ intentions or make ex-

cessively cautious decisions [17]. The artificial potential field (APF) is a typical example,

which can guide the AV to the target lane without collisions by utilizing attractive and

repulsive force fields [16]. However, APF assumes that all areas around the vehicle have

the same level of risk because it calculates risks toward the central point. This assumption

differs from reality, where the front of a car faces more danger than other parts. Addition-

ally, APF is difficult to generalize across different scenarios without prior knowledge of

the entire environment [18]. Fig. 1.6 suggests an example APF, where the green-shaped

areas are with higher potential field compared to blue shaded-area.
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1.4 Advantages of RL-based Autonomous Driving
To promote collision-free interactions, a large number of interactions are needed to exclude

risky actions, taking into account the uncertainties in decision-making and the varying

driving conditions of HDVs. Learning-based methods facilitate the exploration of control

strategies by allowing full interaction with the mixed-traffic environment. These methods

enable AVs to learn and adapt to complex driving scenarios through iterative interactions

and feedback. Machine learning (ML) [19, 20] focuses on developing algorithms to make

decisions based on data, including supervised, unsupervised, and reinforcement learn-

ing. Supervised learning trains models on labeled data, supporting tasks like classifica-

tion [21,22]. However, supervised learning is less suited for implementation in real driving

environments, as labeling complex driving scenarios exhaustively is challenging and im-

practical. Unsupervised learning methods are particularly suitable for interactive driving

as they do not require labeled data, allowing agents to learn decision-making strategies in-

dependently. Unsupervised machine learning has demonstrated robust performance across

a range of driving scenarios [23]. However, unsupervised learning often struggles with gen-

eralization in highly dynamic environments. Reinforcement learning (RL) is a powerful

technique for making optimal decisions in dynamic environments [24, 25]. RL involves

an agent that interacts with its environment and learns safe control strategies through

a reward-based framework. The adaptability of RL makes it ideal for interactive driv-

ing, where the environment is constantly changing, and the AV must adjust its behavior

accordingly.

RL offers significant advantages over model-based, supervised, and unsupervised learning

approaches for autonomous driving. Model-based methods, such as trajectory prediction

and robust control, often struggle in complex, dynamic environments due to their reliance

on fixed models and worst-case assumptions, resulting in overly conservative decisions and

suboptimal driving quality. Game-theoretic approaches, while promising, fail to capture

the diversity of real-world driving behaviors, leading to challenges when interacting with

human-driven vehicles (HDVs). Collision-avoidance and APF-based methods further suffer

from static risk assessments and limited generalizability across varying scenarios.
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Figure 1.7: DRL-based autonomous driving system

In contrast, RL enables adaptive decision-making by continuously interacting with the

environment, allowing autonomous vehicles to respond effectively to unpredictable HDV

behaviors and changing traffic conditions. Unlike supervised learning, which relies on

extensive labeled datasets and predefined scenarios, RL can explore new situations and

adjust its strategies dynamically. Moreover, while unsupervised learning focuses on pat-

tern recognition without task-specific optimization, RL directly optimizes decision-making

based on defined objectives such as safety, efficiency, and driving comfort. These advan-

tages make RL a superior choice for autonomous driving, ensuring robust, adaptable, and

context-aware decision-making in complex and dynamic environments.
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Deep reinforcement learning (DRL) is an advanced form of RL that combines the princi-

ples of deep learning [26, 27] with RL. By utilizing deep neural networks to approximate

complex value functions, DRL enables agents to learn directly from perceptual inputs,

such as sensory data. This capability allows DRL to handle more complex and real-time

decision-making tasks compared to traditional RL. For example, [28] demonstrates the

application of DRL in collision-free path planning against surrounding obstacles.

While DRL excels in adaptive decision-making for complex and dynamic environments,

its generalization remains limited when facing significantly different scenarios from its

training context. DRL demonstrates flexibility under local variations, but notable en-

vironmental shifts typically necessitate updated training. This challenge highlights the

potential of advanced approaches, such as transfer learning, to improve generalization

across diverse conditions, which is a promising avenue for future exploration beyond the

scope of this thesis. Conversely, model-based methods often achieve superior performance

in constrained environments but rely heavily on predefined parameters. These parame-

ters require fine-tuning when the scenario changes, either through human intervention

or environmental variations. Therefore, while DRL demands retraining for novel environ-

ments, model-based approaches also face adaptation challenges due to their dependency

on scenario-specific configurations.

The DRL-based autonomous driving system is illustrated in Fig. 1.7. The agent interacts

with the environment through actuators, observations, and rewards. The agent comprises

a decision network that receives information from observations of the environment and

uses rewards to assess its actions. These observations are provided by the observer, which

interprets the state of the AV and its environment. Based on the observations, the agent

generates control commands and then sends the commands to actuators. Following the

actuation of these control commands, the renewed environment information and AV state

are updated. Simultaneously, a reward function evaluates the agent’s actions based on

predefined metrics such as safety, efficiency, or compliance to driving norms. This reward

function assigns positive or negative rewards depending on how well the AV’s actions

align with the desired outcomes. These rewards are then fed back to the agent, guiding

the learning towards the optimal driving behavior.
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DRL has been proven effective in handling emergency situations, which are critical for

real-world driving scenarios. For example, [29] proposes a DRL-powered driving system

designed to avoid collisions in emergencies. This system learns to react swiftly and safely

to sudden changes, improving the robustness of decision-making in real-world conditions.

Recently, several studies have been demonstrated in various scenarios [30–39]. However,

different scenarios present distinct driving requirements, necessitating tailored algorithms.

On highways, the decision-making of AVs primarily focuses on avoiding collisions with

HDVs while maintaining a high average speed. In contrast, ramps introduce additional

challenges, such as blocked areas that are not present on highways. Furthermore, it is

essential to assess DRL-based algorithms based on demands from various social perspec-

tives, including vehicle users, vehicle manufacturers, and public traffic systems. Research

on DRL-based algorithms, categorized by driving scenarios and evaluated based on their

adaptability to real-world demands, is crucial for identifying valuable research directions.

While DRL has long driven innovations in autonomous driving, recent studies have demon-

strated that large-scale foundation models can significantly enhance various aspects of

these systems. For instance, [40] provides a comprehensive survey on how these models

can improve perception and decision-making, while also addressing key challenges such as

computational efficiency and the sim-to-real gap. [41] introduces a language-based agent

that integrates a large language model into conventional driving modules for high-level

planning and reasoning. Similarly, [42] leverages language models to formulate driving as

a model-predictive control problem, thereby enhancing safety and interpretability in com-

plex scenarios. In addition, [43] proposes EMMA, a multimodal model that unifies vision

and language inputs to jointly tackle perception and planning tasks, and [44] presents

DriveDreamer, which utilizes a diffusion-based generative world model trained on real

driving data to bridge the gap between simulation and real-world environments. Collec-

tively, these works illustrate the transformative potential of large-scale foundation models

for achieving robust, scalable, and safe autonomous driving systems.
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1.5 Dissertation Structure
The dissertation consists of five chapters, with the outline as follows:

Chapter 1 introduces the motivation of this thesis. In addition, it analyzes and summa-

rizes the challenges in autonomous driving and the advantages of using RL-based methods

to address these challenges. Furthermore, a brief introduction of the research content is

provided. Chapter 2 delves into the details of designing an appropriate RL-based frame-

work for typical driving scenarios. Chapter 2 also identifies the research gaps and outlines

further developments needed in current research. Chapters 3 and 4 address the chal-

lenges in autonomous driving based on the RL-based design rules defined in Chapter 2.

In Chapter 3, an RL-based framework for highway driving is proposed, including driving

safety [45, 46], driving efficiency [47, 48], training efficiency [36, 49], unselfishness [50–52],

and interpretability [53,54]. Simulation results demonstrate that the proposed framework

outperforms other popular DRL algorithms. The environment considered in Chapter 4 is

extended to autonomous racing, which is an extreme edge case of autonomous driving,

requiring precise and safe control at very high velocities. The RL-based framework is

adapted using DDTUI principles, resulting in significant improvements compared to cur-

rent studies in autonomous racing. Simulation results on a physical engine demonstrate

that the proposed algorithm achieves fewer collisions, higher peak rewards, reduced train-

ing time, and shorter lap times across multiple testing racetracks compared to benchmark

algorithms. Chapter 5 concludes the study by summarizing key achievements, analyzing

limitations, and outlining future research directions for RL-based autonomous driving.
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Chapter 2

Literature Review

This chapter reviews DRL-based algorithms for autonomous interactive driving, classified

by scenarios and evaluated for adaptation to real-world conditions. Four typical scenarios

are included: highways, on-ramping merging, roundabouts, and unsignalized intersections.

DRL-based decision-making approaches are reviewed for the four typical scenarios and

evaluated using the criteria of driving safety, driving efficiency, training efficiency, un-

selfishness, and interpretability. The evaluation is consistent across all papers by examin-

ing the inclusion of evaluation factors in the designed algorithms and their corresponding

verifications. For example, if a paper discusses safety but doesn’t include verifications like

a lower number of collisions or consistently maintaining safe distances ds, it would not be

considered to include the safety factor.

2.1 Road Features and Driving Tasks
This section provides the road features and driving tasks for AVs in the scenarios of

highways, on-ramping merging, roundabouts, and unsignalized intersections.

2.1.1 Highways

2.1.1.1 Road Features and Driving Tasks

Highways are fundamental components of road networks, designed to enable vehicle move-

ment over long distances with minimal interruption. The design of highways focuses on

safety, efficiency, and environmental impact. Safety features include wide lanes and clear

signage to reduce collision risks.High efficiency is achieved by optimizing lane layouts
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(c) (d)

4
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Figure 2.1: Example scenarios of autonomous driving: (a) highway; (b) on-ramp merging;
(c) roundabout with 12 ports (8 entrances: EM1–EM4, EB1–EB4; 4 exits: O1–O4) and a
central planted island; (d) unsignalized intersection.

to keep vehicles driving smoothly and reduce bottlenecks. The impact of highways on

natural landscapes is reduced through careful route planning. The M8 Motorway in Glas-

gow is a major transport route connecting Glasgow and Edinburgh, known worldwide

for its heavy traffic flow and complex junctions [55]. The Interstate Highway System in

the United States is a vast network of highways designed to support long-distance travel

and economic connectivity across states [56]. Similarly, Germany’s Autobahn, known for

its sections without speed limits, exemplifies the balance between high-speed travel and

safety on highways [57].
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2.1.1.2 An Example of a Highway

Fig. 2.1(a) presents a scenario involving a three-lane highway. The AV drives in main lane

3 and interacts with HDVs in all three lanes. There are no disturbances or uncertainties

other than the surrounding HDVs. Therefore, the issue of driving safety primarily relates

to collisions with surrounding HDVs. In the car-following phase, the AV can follow the

HDV ahead by adjusting its acceleration. However, cautious following can lead to a loss

of driving efficiency. To maintain high driving efficiency, the AV may change lanes when

the space ahead is limited. However, collisions with HDVs in the target lane could occur

during the lane-changing. Therefore, the driving task on highways can be summarized

as balancing collision avoidance with surrounding HDVs while maintaining a consistently

high speed.

2.1.2 On-ramping Merging

2.1.2.1 Road Features and Driving Tasks

Ramps, including on-ramps or off-ramps, are essential components of highway systems.

Due to the symmetry between on-ramping and off-ramping processes, this chapter con-

siders only on-ramping merging. Ramps enable the smooth and safe transition of vehicles

between different roadways, typically connecting surface streets with highways. Ramps

provide access to highways without disrupting traffic flow on the main highway lanes.

Ramp design focuses on safety, efficiency, and space utilization. Safety is crucial, as ramps

must accommodate vehicles accelerating or decelerating while merging onto or diverging

from the highway. On-ramps enhance traffic flow by reducing disruptions to mainline traf-

fic and providing sufficient space for safe merging. Additionally, urban space constraints

often require innovative ramp designs, such as cloverleaf interchanges, to connect multiple

roadways effectively.
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2.1.2.2 Comparison with Highways

Highways and ramps serve different functions, which are summarized below.

• Functionality: Highways are designed for high-speed, long-distance travel with min-

imal interruption, while ramps are the transition between different road types.

• Design: Highways are characterized by long, straight stretches with multiple lanes,

designed to maintain high speeds and efficient traffic flow. In contrast, ramps often

involve curves and elevation changes, designed to accommodate vehicles as they

speed up or slow down.

• Speed: Highways support higher speeds, with vehicles typically traveling at con-

stant high speeds over long distances. Ramps involve acceleration or deceleration,

requiring careful design to manage the speed differential between the ramp lane and

the main lane.

For example, the Cloverleaf Interchange is a common design that efficiently manages space

while connecting highways with multiple surface streets [58]. Another example is the High

Occupancy Vehicle (HOV) lane ramps, which are designed to control the flow of carpool

vehicles onto highways, providing direct and less congested access points [59].

Consider a three-lane ramp scenario in Fig. 2.1(b), which includes two main lanes and

one ramp lane. The AV interacts with both dynamic and static objects. The dynamic ob-

jects are surrounding HDVs, each with unique driving intentions, speeds, and acceleration

patterns. The static object represents an obstruction within the ramp lane, rendering the

lane impassable and blocking access. As a result, the AV must change into the main lane

before the ramp ends, considering the HDVs and the feasibility in lane-changing.

Waiting for enough space to change lanes and driving slowly to avoid blocked roads lead

to safer driving. However, this cautious driving can significantly reduce driving efficiency

and lower road capacity on the ramp. Consequently, it is challenging to navigate the

ramp, avoid collisions with both surrounding HDVs and the blocked road ahead, while

still maintaining a high driving speed.
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2.1.3 Roundabouts

2.1.3.1 Road Features and Driving Tasks

Roundabouts are designed to improve traffic flow and enhance safety by reducing the

likelihood of severe accidents. One example of a typical roundabout is Folon’s obelisk in

Pietrasanta in Italy, which features a central island and circular roads around it [60].

Another example is the Place Charles de Gaulle in Paris, France, where twelve major

avenues converge around the Arc de Triomphe [61].

2.1.3.2 An Example of a Roundabout

An example of a roundabout is presented in Fig. 2.1(c). The AV starts from the EB4 port

and has three possible exit choices: O1, O2, and O3. When the target exit is O1, the AV

can simply follow the outer lane. For the target exit O2, there are two possible routes.

One route is staying in the outer lane, which is generally safer. The other route is merging

into the inner lane and exiting near O2. This second route is more efficient, as the inner

lane offers a shorter curve length for the same round angle. However, rear vehicles driving

in the inner lane bring potential collision risks. For the target exit O3, the AV must find

the right moment to merge into the inner lane. After traveling in the inner lane for a

period, the AV is expected to change lanes near the exit. The main challenge is to safely

interact with other HDVs when approaching each of these three exits.

2.1.4 Unsignalized Intersections

2.1.4.1 Road Features and Driving Tasks

Unsignalized intersections are critical components of road networks where two or roads

meet or cross. They are designed to manage traffic flow from different directions, enabling

vehicles to navigate safely through crossing points. Unsignalized intersection can control

and organize traffic movements, reduce congestion, and enhance safety for all vehicles.

One example is the Diverging Diamond Interchange (DDI) [62].
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Figure 2.2: The importance and necessaries of achieving DDTUI in real-world autonomous
driving.

2.1.4.2 An Example of an Unsignalized Intersection

Fig. 2.1(d) shows a three-lane unsignalized intersection designed for moderate to heavy

traffic flow. The intersection accommodates vehicles from all four directions, with dedi-

cated lanes for specific traffic movements. Each approach to the intersection includes three

lanes, and the areas surrounding the intersection are grassland. At the center, where all

four roads meet, there is an ample space for vehicles to make turns from any direction.

This central area is essential for preventing bottlenecks and ensuring smooth traffic flow.

2.2 Rationale of the Evaluation Factors
In the context of adapting decision-making algorithms to real-world driving, five key

evaluation factors have been selected: driving safety and efficiency, training efficiency,

unselfishness, and interpretability. As depicted in Fig. 2.2, driving safety and efficiency

form the foundation of any autonomous driving system. Training efficiency enables faster

convergence of algorithms. Unselfishness enhances interaction with surrounding traffic,

promoting cooperation with HDVs. Meanwhile, interpretability fosters public trust and

addresses algorithmic errors, ensuring that decision-making is transparent and under-

standable. The detailed rationale behind selecting these factors is discussed below.
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2.2.1 Driving Safety

Driving safety is a fundamental requirement for autonomous vehicles. Frequent collisions

cause substantial economic losses and pose severe safety risks [63, 64]. Therefore, driv-

ing safety is primarily evaluated based on the frequency of collisions with other vehi-

cles [65,66]. Minimizing collisions is a direct measure of the vehicle’s compliance to safety

standards. Collision avoidance commonly relies on flexible reactions to hazardous areas.

Once a hazard is detected, the system assesses the risk by analyzing the relative speed,

distance, and trajectory of surrounding objects [67]. Additionally, some autonomous driv-

ing systems evaluate possible decisions to avoid collisions while maintaining high effi-

ciency [68,69]. Furthermore, other autonomous driving systems use rule-based commands

to adjust the AV’s behavior when unsafe conditions emerge [70]. For instance, AVs will

be asked to stop when they encounter an interaction and spot-lines simultaneously [70].

2.2.2 Driving Efficiency

Driving efficiency refers to an AV’s ability to maintain a high average speed while adapting

to varying traffic conditions. However, the implications of driving efficiency extend far

beyond speed, affecting road capacity, user experience, and energy consumption.

On road capacity, efficient driving allows vehicles to travel at optimal speeds, minimiz-

ing delays and reducing traffic congestion. For example, HDVs tend to drive faster on

familiar roads, contributing to higher road capacity and traffic flow [71–73]. Similarly,

AVs promote smoother traffic flow when they operate efficiently. Therefore, efficient driv-

ing allows more vehicles to travel smoothly without congestion. On user experience, an

efficient journey means shorter travel time and a smoother ride, significantly improving

overall satisfaction [74–76]. Besides, improving driving efficiency is crucial for reducing

the energy consumption [77, 78].
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2.2.3 Training Efficiency

Training efficiency of algorithms directly impact the time and resources required to bring a

fully functional AV system to reality. One primary benefit of improved training efficiency

is the reduced training time. The acceleration allows developers to focus more on system

fine-tuning and extensive testing. Several studies have reduced training time by adding

extra training mechanisms or adjusting the structures of networks [36, 79–81]. Another

important benefit is the reduction in device wear and tear. Fast and efficient training

reduces the required computational resources. By improving training efficiency, the work-

load of computing equipment is minimized, resulting in less frequent maintenance and

replacement.

2.2.4 Unselfishness

In the context of autonomous driving, unselfishness refers to an AV’s ability to consider

and accommodate the intentions of other HDVs on the road. Unselfishness evaluates

how well an AV can cooperate with surrounding vehicles by predicting their intentions

and adjusting its behavior accordingly. Human drivers often prioritize factors such as

safety, efficiency, and comfort, and these intentions vary widely depending on the specific

situations.

Accurately classifying these driving intentions is essential for effective interactions with

surrounding HDVs. Existing methods for recognizing driving intentions and enabling

interaction-aware driving have been reviewed in [82]. These methods categorize driving in-

tentions across various scenarios, including car following and lane changing [83,84]. While

many papers have focused on the self-driving characteristics of the ego vehicle [85,86], the

importance of unselfish behavior is becoming increasingly recognized.

An unselfish AV that effectively anticipates and responds to the intentions of other ve-

hicles contributes to a smoother and more harmonious traffic flow. By avoiding overly

aggressive or excessively cautious driving behaviors, the AV can help minimize disrup-

tions and conflicts with other vehicles. This cooperative approach enhances the safety

and efficiency of all vehicles in the road network and improves the driving experience for

everyone involved.
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2.2.5 Algorithm Interpretability

Algorithm interpretability has gained significant importance due to DRL models are re-

quired to make logical decisions. A logical structure makes the black-box of learning more

transparent [53,54]. In DRL-based autonomous driving systems, improving interpretabil-

ity is crucial for system’s safety and transparency. To address the challenges in inter-

pretability, various approaches have been adopted, including policy visualization to show-

case DRL behaviors [87,88], and surrogate models for approximate human-understandable

explanations [89–92]. Furthermore, specific rule-based methods, algorithmic structure-

adapted methods, and human-grounded methods have been proposed to assess inter-

pretability.

Specific rules have been developed to assess interpretability [93]. One such rule, known as

FAST , evaluates interpretability via four criteria: F for fairness, A for accountability, S for

sustainability, and T for transparency [94]. Fairness requires models to be formalized using

basic explanation labels and functionality evaluation. Accountability refers to answerabil-

ity and auditability, ensuring that the system has been clearly defined. Sustainability

ensures safe operation without inequality or discrimination, while transparency ensures

that the model’s internal rule settings are accessible and understandable.

Some methods focuses on assessing interpretability by adjusting DRL algorithmic struc-

tures. Researchers achieve this by developing standardized benchmarks that use inter-

pretability metrics [95,96] or by troubleshooting explanations [97,98] to identify instances

where these explanations fall short. In addition, some studies concentrate on altering neu-

ral network architectures to enhance interpretability [99, 100].

Furthermore, human-grounded methods focus on how easily people can understand the

model’s key computational sections [101]. DRL-based algorithms incorporating traffic-

related models enable people to better understand their structures through traffic knowl-

edge or mathematical formulation, thereby improving interpretability.
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2.3 Deep Reinforcement Learning-based decision-making

on Highways

2.3.1 Single-factor Methods for Highway Driving

Many works consider only one of five key factors. A Double Deep Q-Network (DDQN) is

integrated with handcrafted safety and dynamically-learned safety modules in [102]. The

handcrafted safety module relies on heuristic safety rules derived from common driving

practices, ensuring a safety distance, ds, with other vehicles. The dynamically-learned

safety module uses driving data to learn safety patterns. By integrating both the hand-

crafted and dynamically-learned safety modules, the driving safety is improved.

Moreover, deep deterministic policy gradients (DDPG) have been used to improve driving

efficiency by overtaking surrounding vehicles in [103]. The overtaking-oriented training is

achieved by adding a high reward for overtaking maneuvers. The reward function for

overtaking is formulated as [103]:

Rovertaking = Rlane_keeping +100× (n−Pr) (2.1)

where Rlane_keeping is the reward for lane-keeping, n is the total number of vehicles in a

given episode, and Pr reflects the number of vehicles in front of the AV. Therefore, the

larger the Pr, the smaller the Rovertaking. Although safety rewards are applied, the collision

rate increases with the frequency of overtaking.
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Furthermore, non-linear model predictive control (NMPC) has been integrated with DDQN

to maintain safe highway driving in [104]. NMPC inherently incorporates vehicle dynam-

ics as constraints into its optimization, ensuring that the control inputs from the DRL

agent remain within safe and feasible bounds [104]:

min
x(t),u(t)

∫ T

0
e(t)⊤Qe(t)+ rδ 2(t)+ ru2(t)dt

s.t. ẋ(t) = f (x(t),u(t)),

eymin ≤ ey(t)≤ eymax ,

eψmin ≤ eψ(t)≤ eψmax ,

δmin ≤ δ (t)≤ δmax,

umin ≤ u1(t)≤ umax

(2.2)

where T is the prediction horizon, e(t) is the error vector to be regulated to zero, and

Q = diag(q1,q2) is a diagonal matrix of tracking weights. The control effort weight is

denoted by r. The steering angle is represented by δ (t), and the control input is u(t). The

state vector is x(t), and f represents the system dynamics. ey(t) and eψ(t) are the lateral

position error and heading angle error, respectively. The variables eymin , eymax , eψmin , eψmax ,

δmin, δmax, umin, and umax are the minimum and maximum admissible values for the lateral

position error, heading angle error, steering angle, and control input, respectively. NMPC

improves the interpretability of safe control by providing a clear mathematical formulation

that integrates the system’s constraints with the agent’s decision-making [105–107].

Additionally, a policy gradient (PG) method has been used with hard constraints to ensure

safe highway driving in [108]. These hard constraints prevent the AV from approaching

risky boundaries, such as track edges. For example, the AV’s longitudinal and lateral

positions are restricted from approaching the track boundaries. Cooperative lane-changing

has been achieved in [109], enhancing the unselfishness. Interpretability has been improved

by combining DRL with imitation learning (IL) in [110]. IL uses expert demonstrations

to make the learning more interpretable. Training efficiency in highway driving is also

enhanced by integrating a spatial attention module and attention mechanism into the

deep Q-network in [111].
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2.3.2 Dual-factor Methods for Highway Driving

Additionally, two of the five considered factors are integrated in some recent studies.

The Intelligent Driver Model (IDM) [112] has been incorporated into the DDQN for

highway driving in [113]. The IDM prevents collisions during car-following and therefore,

the integration of DDQN with IDM enhances both the driving safety and interpretability

in highway driving. The IDM is formulated as [113]:

UIDM =Umax

[
1−

(
vFV
ve

)4

−
(

g∗

g

)2
]

(2.3)

where Umax is the maximum acceleration of the AV, ve is the expected velocity, and g is

the gap between the AV and the HDV. The desired gap g∗ between the AV and the front

HDV is formulated as [113]:

g∗ = ds + vAVTe−
vAV∆v

2
√

Umaxb
(2.4)

where Te is the expected time gap, ∆v is the velocity difference between the AV and the

front vehicle (FV), and b is the comfortable deceleration.

The reward function of DDQN has been adapted to improve driving safety and efficiency

in [114]. Specifically, a penalty is applied when the vehicle goes off-road or the time-

to-collision (TTC) falls below a threshold [115] . The reward for driving efficiency is

formulated as [114]:

R =
v0

vmax
(2.5)

where vmax is the maximum velocity, and v0 is the current velocity. This reward function

helps maintain a relatively high driving velocity, thus increasing driving efficiency. More-

over, driving safety and altruism have been achieved using a level-k game-based DQN

in [116]. The level-k game models the reasoning interaction between AVs and HDVs, pro-

moting unselfish decision-making. A crash penalty is implemented in the DQN to prevent

frequent collisions between AVs and HDVs. Additionally, unselfishness and training ef-

ficiency have been considered in [117]. Unselfishness is achieved through a cooperative
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multi-goal credit function-based policy gradient (PG). This adapted PG accounts for the

goals of all vehicles, optimizing overall performance during training. Training efficiency

is improved by a multi-agent reinforcement learning (MARL) curriculum, which reduces

the number of trainable parameters and lowers computational costs.

MARL plays a critical role in promoting unselfishness by enabling agents to learn co-

operative behaviors through shared decision-making. It allows autonomous vehicles to

consider the intentions of surrounding agents, fostering smoother traffic flow and safer

interactions. This cooperative learning aligns closely with game theory principles, where

each agent behaves like a player in a multi-agent system, adjusting strategies based on

others’ actions. While traditional game theory relies on predefined equilibrium models,

MARL enhances this by dynamically learning optimal policies through continuous inter-

action. In this thesis, game theory has been integrated as part of the unselfish driving

framework. By applying game theory models, the decision-making model ensures that au-

tonomous vehicles prioritize both their efficiency and the well-being of surrounding road

users, promoting cooperative and socially aware driving behavior.

Unselfishness and driving efficiency on highways are achieved in [118]. Unselfishness is

promoted through MARL by considering each vehicle’s state. Driving efficiency is en-

hanced by a reward function that selects actions to increase the average velocity of all

vehicles. Driving safety and driving efficiency have been achieved using multi-objective

approximate policy iteration (MO-API) in [119]. Driving safety is ensured by monitoring

collisions, while driving efficiency has been assessed by comparing the v0 with the ve.

In [120], driving efficiency and unselfishness are considered in highway driving. Driving

efficiency is achieved by a reward based on v0, vmax, and vmin. Unselfishness is achieved

by penalizing unnecessary lane changes to reduce disturbances to HDVs. Driving safety

and training efficiency have been addressed in [121]. Safety is maintained by ensuring a

ds between vehicles using rule-based constraints, while training efficiency is improved by

incorporating a multi-head attention mechanism.
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2.3.3 Three-factor Methods for Highway Driving

Furthermore, three of the five considered factors are combined in a few recent papers.

Driving safety, interpretability, and driving efficiency have been improved in [122]. Driving

safety and interpretability are enhanced by using a collision penalty and the IDM. Driving

efficiency is ensured by a reward based on the velocity difference between vmax and v0.

The reward at time step t is formulated as [122]:

Rt =−Collision−0.1× (vt
max− vt

0)−0.4× (L−1)2 (2.6)

where Collision, vt
max, and vt

0 are the occurrence of a collision, maximum velocity, and

current velocity at time t, respectively. L represents the relative position the target lane,

where L = 1 indicates that the vehicle has successfully reached the target lane. A collision

results in a negative reward, and a larger difference between v0 and vmax also leads to a

negative reward. Additionally, if the vehicle does not drive in the target lane, a penalty

is applied.

A multi reward-based DQN has been proposed to achieve safe, efficient, and unselfish

driving in [123]. Three rewards are combined: speed reward, limited lane-changing reward,

and overtaking reward. The speed reward is a normalized reward based on the current

speed relative to the minimum and maximum speed limits [123]:

Rv =
(v0− vmin)∗ rv

vmax− vmin
(2.7)

where Rv represents the reward for speed, encouraging higher speeds within safe limits.

vmin is the minimum speed of the agent vehicle, and rv is the base reward for speed. The

limited lane-changing reward function is designed to minimize the number of lane changes,

promoting safer driving and reducing the disturbance to surrounding vehicles:

Rl =


−rl, if the agent vehicle changes lanes;

0, otherwise.
(2.8)
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where −rl is the penalty value for a lane change. The overtaking reward function encour-

ages the agent vehicle to overtake more vehicles, improving driving efficiency:

Ro =


ro, if the agent vehicle overtakes another vehicle;

0, otherwise.
(2.9)

where ro is the reward value for overtaking.

Interpretability, driving safety, and driving efficiency have been achieved in [124]. Safety

and efficiency are enhanced by penalizing frequent lane changes and tracking the de-

sired velocity vd, respectively. Interpretability is achieved through a car-following process

using a proportional-derivative (PD) controller with transparent mathematical formula-

tion [124]:

ddes,i = α j
i v j+1

l (2.10)

acf,i = Kp(x
j+1
l − x j

i )+Kd(v
j+1
l − v j

i ) (2.11)

where ddes,i is the desired following distance for the i-th vehicle, α j
i is a sensitivity pa-

rameter with random values from N (1.3,0.02), v j+1
l is the speed of the leading vehicle

in the ( j+1)-th lane, acf,i is the acceleration command, Kp and Kd are the proportional

and derivative gains, and x j+1
l and x j

i are the positions of the leading and i-th vehicles,

respectively.

In [125], driving safety, efficiency, and interpretability have also been combined. Safety

and efficiency are achieved by penalizing collisions and rewarding high average velocity.

Interpretability is enhanced by using the risk potential field (RPF), which models and

visualizes risks around surrounding vehicles. In [126], driving safety and interpretability

have been achieved in adaptive cruise control (ACC), which maintains ds between vehicles

and provides interpretable mathematical formulations. Driving efficiency is achieved by

rewarding each high-speed state. Finally, driving safety, driving efficiency, and training

efficiency have been achieved in [127]. Safety is ensured through a collision penalty, and

efficiency is rewarded based on the velocity difference between v0 and vmin. Training effi-

ciency is improved by using a long short-term memory (LSTM) network-assisted DDQN.

However, compared with approaches such as [122], which rewards efficiency based on the



30

velocity gap between vmax and v0 while also integrating safety and interpretability via

collision penalties and lane deviation measures, and [124], where a PD controller pro-

vides clear mathematical transparency for interpretability, the method in [127] uniquely

emphasizes rapid training convergence through its DDQN enhanced with LSTM. More-

over, while [125] utilizes a RPF to offer an intuitive visualization of surrounding hazards,

and [126] leverages ACC to ensure a fixed safe distance with explicit formulations, the

approach in [127] may require further exploration regarding its robustness and stability

in diverse and dynamic driving scenarios, given the additional complexity introduced by

the LSTM component.

2.3.4 Four-factor Methods for Highway Driving

Moreover, four of the five considered factors have been included in some studies. Driving

safety, driving efficiency, training efficiency, and interpretability have been considered

in [128]. Driving safety and driving efficiency are achieved by a reward function that

maintains a ds from the leading vehicle while tracking the vd. Interpretability is ensured

through safety-based driving rules [128]:

t fmin = inf
{

t : t >
2(v− v ftarget)

admax

}
(2.12)

tbmin = inf
{

t : t >
2(vbtarget− v)

admax

}
(2.13)

dtargetmin = min
{
(v− v f )t f

2
,
(vb− v)tb

2

}
(2.14)

∆dtarget = min
{
|xAV− x ftarget |, |xAV− xbtarget |

}
(2.15)

where t fmin and tbmin are the minimum safe time intervals between the AV and the vehicles

in front and behind in the target lane, respectively. v is the speed of the AV; v ftarget and

vbtarget are the speeds of the front and behind vehicles in the target lane, respectively.

admax is the maximum deceleration. dtargetmin is the minimum distance between the AV

and the FV in the target lane, and ∆dtarget is the actual distance between the AV and

the nearest vehicle in the target lane. xAV, x ftarget , and xbtarget represent the horizontal

coordinates of the AV, the front target vehicle, and the vehicle behind in the target lane,
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respectively. By implementing these safety rules, the decision-making of the AV becomes

more transparent and interpretable. Training efficiency is achieved through the potential-

based reward shaping function. The total reward function and reward shaping function

are given by [128]:

R′ = R(s,a,s′)+βF(s,a,s′) (2.16)

F(s,a,s′) = γϕ(s′)−ϕ(s) (2.17)

F(s,a,s′, t, t ′) = γϕ(s′, t ′)−ϕ(s, t) (2.18)

where R′ is the new reward criterion, R(s,a,s′) is the original reward function, β is a

weighting factor, F(s,a,s′) is the potential-based reward shaping function, s and s′ are the

current and next state, respectively, a is the action taken, and γ is the discount factor.

ϕ(s) is the potential function mapping the state to a real number, and t and t ′ are the time

corresponding to s and s′, respectively. (2.16) combines the original reward function with

an additional shaping term. (2.17) defines the shaping function as the difference between

the discounted potential of the next state and the current state. (2.18) extends (2.17) by

including time as a parameter and therefore allows for dynamic potential functions.

Driving safety, driving efficiency, unselfishness, and training efficiency on highways have

been addressed in [129]. Driving safety and efficiency are considered in the reward function

of the DQN. Unselfishness is achieved through a joint policy update, accounting for the

profits of multiple vehicles. Training efficiency is enhanced by reusing the experiences of

single agents within a MARL framework. In [130], driving safety, efficiency, unselfishness,

and training efficiency on highways have been explored. Safety and efficiency are ensured

by assessing the remaining reaction time during emergencies and selecting the proper

lane-changing point, respectively. Unselfishness is achieved using MARL for cooperative

highway driving, while training efficiency is improved with a dynamic coordinate graph

(DCG) that enhances cooperative efficiency. In [131], safety, efficiency, unselfishness, and

training efficiency have been considered. Safety is ensured by applying penalties both for
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collisions and for deviating from the road. Efficiency is achieved by rewarding each state

that overtakes other vehicles. Unselfishness is promoted through MARL to coordinate

driving. Training efficiency is enhanced by employing a parameter-sharing mechanism,

which stores experience of each agent to reinforce common scenario understanding.

In [132], safety, efficiency, unselfishness, and interpretability have been considered. Safety,

efficiency, and unselfishness are improved through rewards for collisions, velocity ratio

between v0, vmax, and vmin, and limiting unnecessary lane changes, respectively. Inter-

pretability is enhanced by integrating an autonomous emergency braking system, pro-

moting safer decision-making. In [133], safety, efficiency, interpretability, and training ef-

ficiency have been addressed. Safety and efficiency are enhanced by adding a safety layer

and incorporating the ratio between longitudinal speed, vmax, and vmin. Interpretability

is improved by using a support vector machine (SVM), which provides interpretable safe

decision boundaries. Training efficiency is boosted through an external space attention

mechanism that pays attention to the crucial areas of surrounding environment.

In [134], safety, efficiency, unselfishness, and training efficiency have been tackled. Safety,

efficiency, and unselfishness are achieved through rewards for collisions, velocity ratios,

and MARL, while training efficiency is improved using a distributional DQN with multi-

type input data. Finally, in [135], safety, efficiency, unselfishness, and interpretability

have been considered. Safety, efficiency, and unselfishness are enhanced through rewards

for collisions, target velocity differences, and unnecessary lane changes, respectively. In-

terpretability is achieved through rule-based constraints, such as preventing lane changes

with short lateral distances to lead vehicles.

2.3.5 Five-factor Methods for Highway Driving

Additionally, all the five factors are addressed in some studies, such as [136]. Driving safety

and efficiency, and unselfishness are achieved by reducing collisions, increasing speed,

and minimizing lane-change frequency through rewards. Training efficiency is improved

through a convolutional neural network-based LSTM. Interpretability is enhanced by
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Table 2.1
Evaluation of the DRL-based decision making in highway driving

Reference Year Safety Efficiency Training Efficiency Unselfishness Interpretability

[102] 2020 Safety modules - - - -

[103] 2018 - Overtaking reward - - -

[104] 2023 NMPC constraints - - - -

[108] 2016 Hard constraints - - - -

[109] 2019 - - - Local interactions -

[110] 2023 - - - - Imitation learning

[111] 2020 - - Attention module - -

[113] 2019 IDM integration - - - IDM integration

[114] 2020 TTC threshold Velocity reward - - -

[116] 2021 Crash penalty - - Level-k game -

[117] 2018 - - MARL curriculum Cooperative function -

[118] 2018 - Average velocity - MARL -

[119] 2018 Collision monitoring Velocity comparison - - -

[120] 2019 - Velocity reward - Lane change penalty -

[121] 2022 Rule-based - Attention mechanism - -

[122] 2020 IDM & collision Velocity difference - - IDM integration

[123] 2019 Speed-limit reward Overtaking reward - Lane-change limit -

[124] 2018 Lane change penalty Velocity tracking - - PD controller

[125] 2021 Reward function Reward function - - Risk potential field

[126] 2021 Adaptive cruise High-speed reward - - ACC formulations

[127] 2020 Collision penalty Velocity difference LSTM-DDQN - -

[128] 2022 Safety rules Reward function Reward shaping - Safety rules

[129] 2019 Reward function Reward function MARL reuse Joint policy -

[130] 2018 Reaction time Lane-changing point DCG efficiency MARL -

[131] 2019 Collision penalties Overtaking reward Parameter sharing MARL -

[132] 2021 Collision rewards Velocity ratio - Lane change limit Emergency braking

[133] 2024 Safety layer Velocity ratio Attention mechanism - SVM boundaries

[134] 2019 Collision rewards Velocity ratio Distributional DQN MARL -

[135] 2022 Collision rewards Velocity difference - Lane change penalty Rule-based

[136] 2022 Collision reduction Speed increase CNN-LSTM Lane change limit Representations

’-’ indicates that the corresponding factor was not explicitly addressed in the study.

using spatio-temporal image representations for HDVs, which increase the interpretability

of the inputs. The DRL-based decision making in highway driving based on DDTUI is

summarized in Table 2.1. In this thesis, ”unselfishness” in autonomous driving includes

cooperative driving as a model, exemplified by MARL and game theory methods.
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2.4 Deep Reinforcement Learning-based decision-making

in On-ramping Merging

2.4.1 Single-factor Methods for On-ramping Merging

Driving efficiency has been considered using Q-learning in [137]. The remaining time of

AV on the ramp lane is reduced by optimizing the reward function, thus promoting fast

lane-changing to the main lane. The reward function is formulated as [137]:

rt = µ v̄t +ω q̄t , µ > 0, ω < 0 (2.19)

where rt represents the reward after taking action at ; v̄t denotes the average speed in the

merging area during time step t; q̄t indicates the average queue length at the on-ramp

during time steps t and t +1; µ is a positive weight assigned to the speed reward, and ω

is a negative weight for the queue length reward. These rewards help balance the trade-off

between enhancing vehicle mobility on the mainline and reducing delays at the on-ramp.

Driving efficiency has also been improved in [138] by reducing the total travel time reward

(RTTT), represented by the summation of the total number of vehicles at each time step.

Driving safety has been achieved through a safety factor in [139]. The safety factor is

a negative reward when the relative distances between AV and HDV are small. Driving

safety has been achieved in [140], by giving rewards for each state having a ds and penalties

for collisions.

2.4.2 Dual-factor Methods for On-ramping Merging

Driving efficiency and unselfishness have been considered in [141]. Driving efficiency is

achieved by using the average velocity of AVs as part of the reward, and unselfishness is

achieved using MARL to maximize general profits. Interpretability and driving efficiency

have been addressed in [142]. Interpretability is achieved by using DDPG to tune a tra-
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ditional controller’s parameters, keeping the traditional controller as the main system to

ensure transparency. Driving efficiency is enhanced by reducing the error state, which

reflects the gap between actual and critical traffic density. A smaller error state leads to

higher traffic flow and average speed.

2.4.3 Three-factor Methods for On-ramping Merging

Driving efficiency, interpretability, and training efficiency have been addressed in [143].

Driving efficiency is achieved through a reward using the difference between the start and

end time of each trip. Training efficiency is improved by a teacher-student model to train

the decision-making system, where the traditional control method acts as the teacher

guiding the DQN student. Similarly, driving efficiency, interpretability, and unselfishness

have been improved in [144]. Driving efficiency is achieved by a reward that compares

the average speed between two consecutive time. Unselfishness and interpretability are

achieved by combining ramp metering (RM) with Q-learning. RM optimizes average vehi-

cle speed and is algorithmically transparent. Driving safety, efficiency, and unselfishness

have been addressed in [145]. Driving safety is achieved through a penalty for small relative

distances, driving efficiency is enhanced by minimizing the relative distance while main-

taining at least the safe distance, and unselfishness is achieved using MARL to optimize

general driving performance.

2.4.4 Four-factor Methods for On-ramping Merging

Driving efficiency, training efficiency, unselfishness, and interpretability have been im-

proved in [146], where driving and training efficiency is enhanced by DDPG-assisted RM

and variable speed limit (VSL) control. Interpretability and unselfishness are improved

through RM and VSL, which are algorithmically transparent. Driving safety, efficiency,

training efficiency, and interpretability have been achieved in [147], where safety and in-

terpretability are enhanced by combining APF, which quantifies and visualizes risk areas

and provides interpretable input. Driving and training efficiency are achieved by combin-

ing MPC with DDQN, which outperforms single MPC or DDQN methods. Compared with

this approach, [143] focuses on efficiency through a reward based on the time difference be-



36

tween the start and end of each trip and improves training efficiency via a teacher-student

model in which traditional control guides DQN; however, it does not explicitly quantify

risk areas or provide the visual interpretability offered by the APF in [147]. Similarly, [144]

achieves efficiency by comparing average speeds over consecutive intervals and enhances

interpretability through ramp metering combined with Q-learning, yet its safety mecha-

nism is less comprehensive compared to the risk visualization provided by APF. In [145],

driving safety is enforced by penalizing small relative distances and efficiency is main-

tained by ensuring a safe gap, but this method lacks advanced control techniques such

as MPC and does not offer the same level of interpretability as APF-based approaches.

Meanwhile, [146] integrates DDPG-assisted ramp metering and variable speed limit con-

trol to boost driving and training efficiency, along with unselfishness and interpretability;

however, its mechanism does not explicitly provide the quantification and visualization

of risks that characterize the approach in [147]. Collectively, while each method exhibits

strengths in specific aspects, the approach in [147] stands out for its balanced integra-

tion of safety, efficiency, training efficiency, and interpretability, serving as a promising

baseline for future research in on-ramping merging. Similarly, driving safety, efficiency,

training efficiency, and unselfishness have been addressed in [148], where safety and effi-

ciency are promoted by penalties for collisions and stop maneuvers. Training efficiency is

improved by integrating the driver’s intention model (DIM) with DDPG, while unselfish-

ness is achieved by considering HDVs’ various cooperation intentions. In [149], driving

safety, efficiency, training efficiency, and interpretability have been achieved by applying

the safety, efficiency rewards, and IDM respectively, with independant PPO (IPPO) used

for improved training efficiency compared to baseline algorithms.

2.4.5 Five-factor Methods for On-ramping Merging

In [150], driving safety and efficiency have been achieved through collision and stable speed

assessment rewards, respectively. Training efficiency is improved by using a safety super-

visor, filtering detectable collision cases. Interpretability is enhanced through rule-based

safety constraints, and unselfishness is achieved using MARL to maximize general profits.

Similarly, all factors have been addressed in [151], where driving safety and efficiency

are achieved via collision rewards and a velocity ratio, respectively. Training efficiency is
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Table 2.2
Evaluation of the DRL-based decision making in on-ramping merging

Ref. Year Safety Efficiency Training Effi-
ciency

Unselfishness Interpretability

[137] 2021 - Reward func-
tion

- - -

[138] 2019 - Travel time re-
ward

- - -

[139] 2017 Safety factor - - - -

[140] 2020 Collision-free
driving

- - - -

[141] 2019 - Average veloc-
ity reward

- MARL -

[142] 2022 - Error state re-
duction

- - Traditional
controller

[145] 2022
Distance penalty Distance minimization- MARL -

[143] 2024 - Trip time dif-
ference

Teacher-
student model

- Traditional
control

[144] 2023 - Speed compari-
son

- Ramp metering Ramp metering

[146] 2022 - DDPG-assisted
RM

DDPG RM and VSL RM and VSL

[147] 2024 APF MPC with
DDQN

MPC with
DDQN

- APF

[148] 2022
Collision penalty

Stop maneuver
DIM with DDPG

HDV
-

penalty intentions

[149] 2023 Safety reward Efficiency re-
ward

IPPO - Rule-based

[150] 2023
Crash evaluation

Stable speed Safety
MARL

Rule-based

assessment supervisor constraints

[151] 2023 Collision re-
wards

Velocity ratio Adversarial
constraints

Nash-based
game

Transparent
game process

[152] 2023 DRAC Velocity ratio
reward

Multi-state
rep.

Vehicle coop. DRAC

enhanced by adversarial constraints, while unselfishness and interpretability is enhanced

through a transparent Nash-based game that considers HDV’s profits. Finally, in [152],

driving safety and interpretability have been achieved using the deceleration rate to avoid

a crash (DRAC), which has a detailed mathematical formulation and is transparent. Driv-

ing efficiency is improved by using (5) as an efficiency reward. Unselfishness is addressed

by considering the cooperation intentions of other vehicles, and training efficiency is im-

proved using multi-state representations to enhance the agent’s learning capabilities. The

DRL-based decision making on on-ramp merging based on DDTUI is summarized in Table

2.2.
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2.5 Deep Reinforcement Learning-based decision-making

at Roundabouts

2.5.1 Single-factor Methods for Roundabout Driving

Driving efficiency in roundabout driving has been improved using soft actor-critic (SAC)

with higher peak rewards in [153]. Training efficiency has been achieved through action

repeat and asynchronous advantage in [154]. Action repeat improves efficiency by allowing

the agent to repeat the same action for several time steps, decreasing the frequency of

making new decisions. Asynchronous advantage enables each agent to share its interaction

experience with others. Training efficiency has been further improved by embedding the

operational design domain (ODD) into DQN in [155]. ODD guides the training to more

targeted scenarios, reducing unnecessary exploration and accelerating convergence.

2.5.2 Dual-factor Methods for Roundabout Driving

Driving efficiency and training efficiency are improved using the Conditional Representa-

tion Model (CRM) in [156], which helps the agent better understand safety by defining

each state as safe or unsafe state. Training efficiency and interpretability have been im-

proved by leveraging labeled data from domain experts as guidance in [157]. Driving safety

and driving efficiency have been enhanced in [158] by incorporating vd and allowable rel-

ative distance into the reward function.

Training efficiency and interpretability have been improved in [159]. Training efficiency

is achieved through optimization-embedded DRL for adaptive decision-making, and in-

terpretability is enhanced by transparent model-based optimization. Driving safety and

unselfishness have been achieved in [160], with safety ensured by penalizing collisions and

ramping off the road, and unselfishness promoted by using MARL to maximize collective

benefits. Driving safety and interpretability have been achieved in [161], with safety main-

tained through penalties for collisions with HDVs and walls. Interpretability is supported

by gradual training mode, similar to human learning, where the system starts with sparse

traffic and progresses to dense traffic later.
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2.5.3 Three-factor Methods for Roundabout Driving

Driving safety, driving efficiency, and training efficiency have been improved in [162].

Driving safety and driving efficiency are promoted through safety and efficiency rewards,

respectively. Training efficiency is enhanced via trust region policy optimization (TPRO),

which converges faster than PPO and DDPG. In [163], driving safety and driving efficiency

have been achieved by rewards for non-collision lane-changing and the difference between

initial and target velocities, respectively. Training efficiency is improved by embedding

LSTM into the actor-critic network. Training efficiency, driving safety and efficiency have

been enhanced in [164]. Training efficiency is improved by normalizing the initial reward

for faster convergence. Driving efficiency and driving safety benefit from multiple environ-

ments where agents are trained simultaneously, achieving higher success rates and fewer

crashes.

2.5.4 Four-factor Methods for Roundabout Driving

Driving safety, driving efficiency, training efficiency, and unselfishness have been ad-

dressed in [165], where safety is maintained using ds, and driving efficiency is enhanced

by the ratio of initial to target velocity. Training efficiency is improved through a syn-

thetic representation mechanism that enhances agents’ understanding, and unselfishness

is promoted using MARL to maximize joint benefits. Driving safety, driving efficiency, in-

terpretability, and training efficiency have been addressed in [65], where safety is ensured

via crash penalties and efficiency via high-speed rewards. Interpretability is maintained

using the IDM for safe, transparent algorithmic-following. Training efficiency is improved

through an interval prediction model to precompute feasible paths, reducing training com-

putation. Driving safety, driving efficiency, training efficiency, and interpretability have

been enhanced in [166]. Safety and efficiency are promoted through penalties for collisions

and vehicle-stop maneuvers, respectively. Training efficiency is increased by integrating

DDPG, DQN, and NMPC. Interpretability is enhanced via the NMPC. Compared with

this [166], [165] also addresses four factors by using ds for safety and the ratio of initial

to target velocity for efficiency, with training efficiency improved through a synthetic

representation mechanism and unselfishness promoted using MARL; however, it lacks an
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explicit interpretability mechanism akin to the NMPC in [166]. Similarly, [65] ensures

safety via crash penalties and driving efficiency via high-speed rewards, while employ-

ing the IDM to maintain transparency and an interval prediction model to precompute

feasible paths for improved training efficiency. Although effective, its approach to inter-

pretability and training efficiency does not reach the level of integration observed in [166].

In the case of three-factor methods, [162], [163], and [164] focus on safety, efficiency, and

training efficiency without explicitly addressing interpretability. Their mechanisms, such

as using trust region policy optimization, embedding LSTM into actor-critic networks, or

normalizing initial rewards and training in multiple environments, provide improvements

in training convergence and driving performance, but they do not offer the explicit, inter-

pretable decision-making structure that NMPC affords in [166]. Collectively, while each

approach exhibits its own merits, the method in [166] stands out for its balanced inte-

gration of all four factors, thereby serving as a promising baseline for future research in

roundabout driving.

2.5.5 Five-factor Methods for Roundabout Driving

All five factors have been considered in [106], where driving safety and interpretability are

ensured by a rule-based action inspector. Driving efficiency is enhanced via high-speed

rewards. Training efficiency is achieved through a Kolmogorov-Arnold network-enhanced

DQN. Unselfishness is promoted through rule-based route planning that considers the

varying distributions of HDVs on the roundabout. The DRL-based decision making in

roundabouts based on DDTUI is summarized in Table 2.3.
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Table 2.3
Evaluation of the DRL-based decision making at roundabouts

Ref. Year Safety Efficiency Training Effi-
ciency

Unselfishness Interpretability

[153] 2019 - SAC with
higher peak
rewards

- - -

[154] 2019 - - Action repeat,
asynchronous
advantage

- -

[155] 2024 - - ODD-
embedded
DQN

- -

[156] 2020 - CRM CRM - -

[157] 2022 - - Expert guid-
ance

- Expert guid-
ance

[158] 2024 Allowable rela-
tive distance

Desired veloc-
ity

- - -

[159] 2021 - - Optimization-
embedded RL

- Model-based
optimization

[160] 2021 Collision
penalties

- - MARL -

[161] 2023 Collision
penalties

- - - Gradual train-
ing

[162] 2023 Safety rewards Efficiency re-
wards

TPRO - -

[163] 2024 Non-collision
rewards

Velocity differ-
ence rewards

LSTM-
embedded
actor-critic

- -

[164] 2020 Fewer crashes Higher success
rates

Reward nor-
malization

- -

[165] 2020 Safety distance Velocity ratio Synthetic rep-
resentation

MARL -

[65] 2016 Crash penalties High-speed re-
wards

Interval predic-
tion

- IDM

[166] 2023 Collision
penalties

Vehicle-stop
penalties

DDPG, DQN,
NMPC integra-
tion

- NMPC

[106] 2024 Rule-based in-
spector

High-speed re-
wards

KAN-DQN Rule-based
planning

Rule-based in-
spector

2.6 Deep Reinforcement Learning-based decision-making

at Unsignalized Intersections

2.6.1 Single-factor Methods for Intersection Driving

Traffic efficiency has been improved by using the difference between v0 and vd as a reward

in [167]. Additionally, a penalty is applied when the velocity drops below a threshold,

further boosting traffic efficiency. In [168], driving efficiency has been achieved by applying

a constant penalty as long as the AV has not reached the target exits.
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2.6.2 Dual-factor Methods for Unsignalized Intersection Driving

Both driving and training efficiency have been improved in [169], where the driving ef-

ficiency is enhanced by using total waiting time (TWT) as part of the reward. Training

efficiency is increased by employing a background removal ResNet as the Q-network,

resulting in lower TWT than baseline algorithms. In [170], driving efficiency and inter-

pretability have been enhanced. The driving efficiency is improved by using the difference

between the vd and v0 as part of the reward, while the interpretability is achieved through

the use of IDM for safe and transparent vehicle following. Similarly, in [171], both driving

efficiency and interpretability have been improved. The former is enhanced by incorpo-

rating a velocity-based reward, and the latter is enhanced by applying a safety-based

rule policy. In [172], driving efficiency is increased by using the safe distance as a reward

and the risky distance as a penalty, resulting in higher success rates. Interpretability is

achieved using a model-based transparent method combined with twin delayed deep deter-

ministic policy gradient (TD3). In [173], driving efficiency is enhanced by the ratio of v0 to

vmax as part of the reward, and interpretability is improved by gridding the coordination

zone into different granularities, converting risky areas into a matrix format.

Both driving efficiency and training efficiency have been improved in [174]. Driving effi-

ciency is achieved by rewarding goal attainment, and training efficiency is increased by

using DQN with common and specific sub-tasks. The common sub-task enables knowl-

edge sharing across tasks, while the specific sub-task helps the system better understand a

task’s main goal. Training efficiency and unselfishness have been improved in [175] through

an incentive communication-assisted MARL. Agents create custom messages to influence

other agents’ policies, improving coordination and achieving globally optimal decisions.

The unselfishness is realized by using MARL to maximize overall profits. In [176], driv-

ing efficiency and training efficiency have been improved by the adaptive dual-objective

transit signal priority (D2-TSP) algorithm with DDQN. D2-TSP optimizes bus speed, sav-

ing time for both passengers and those waiting at downstream stops. Similarly, in [177],

cooperative intersection management-enhanced DQN boosts both driving and training

efficiency by leveraging connectivity between vehicles.
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2.6.3 Three-factor Methods for Unsignalized Intersection Driv-

ing

In [178], driving efficiency, unselfishness, and training efficiency have been addressed.

Driving efficiency is enhanced by penalizing each low-speed state, while unselfishness is

achieved through MARL for maximizing overall profits. Training efficiency is improved

with multi-agent DQN, which offers faster convergence than baseline algorithms. In [179],

driving efficiency, training efficiency, and interpretability have been integrated. Driving

efficiency is increased by rewarding each high-velocity state, and training efficiency is

achieved by combining deep Q-learning with transfer learning. Interpretability is improved

by using the IDM for safe vehicle following.

In [180], driving safety, driving efficiency, and training efficiency have been incorporated.

Driving safety is promoted through collision penalties, and driving efficiency is enhanced

by rewarding velocities higher than a baseline. Training efficiency is improved by using

a spatial and temporal attention module with SAC. The approach in [180] to promoting

driving safety and efficiency through collision penalties and velocity-based rewards is based

on the referenced study, which primarily focuses on standard driving scenarios. However,

it is acknowledged that this method does not explicitly address edge cases, where RL may

exploit weaknesses in the reward function.

To improve DRL performance in edge cases, several techniques can be employed. One effec-

tive solution is integrating rule-based conditions to handle safety-critical scenarios beyond

standard training. Additionally, applying strict safety constraints during both training and

deployment can prevent RL from exploiting reward function loopholes. Techniques such

as shielded reinforcement learning, which combines DRL with formal safety verification,

further ensure robust decision-making under extreme conditions. While addressing edge

cases was not the primary focus of the referenced work, these methods present promising

directions for enhancing DRL-based decision-making in future research.
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In [181], all three aspects have also been addressed. Driving safety and efficiency are

improved by rewarding goal attainment and penalizing collisions. Training efficiency is

enhanced using a randomized prior function for each ensemble member, leading to a

better Bayesian posterior [182]. Compared with this approach, [178] focuses on driving

efficiency by penalizing each low-speed state and promotes unselfishness through multi-

agent reinforcement learning, with training efficiency improved via multi-agent DQN;

however, its safety mechanism is less explicitly defined and does not incorporate the

goal-oriented reward strategy used in [181]. Similarly, [179] increases driving efficiency by

rewarding each high-velocity state and enhances training efficiency by combining deep Q-

learning with transfer learning, while interpretability is achieved by employing the IDM for

safe vehicle following. Although this offers a more transparent decision-making process, it

lacks the robust uncertainty estimation provided by the randomized prior function in [181].

Furthermore, [180] promotes driving safety and efficiency through collision penalties and

velocity-based rewards, and improves training efficiency using a spatial and temporal

attention module with SAC. While its approach is similar in spirit to that of [181], it

primarily focuses on standard driving scenarios and does not explicitly address edge cases

where reinforcement learning might exploit reward function loopholes. Collectively, these

comparisons highlight that while each method exhibits unique strengths, the approach

in [181] offers a more balanced integration of safety, efficiency, and training efficiency,

particularly through its use of randomized prior function for robust uncertainty handling.

2.6.4 Four-factor Methods for Unsignalized Intersection Driving

In [183], driving safety, driving efficiency, training efficiency, and unselfishness have been

incorporated. Driving safety is enhanced through autonomous intersection management

(AIM), and driving efficiency is improved by applying a constant penalty until the AV

reaches the exits. Training efficiency is improved by embedding AIM and LSTM into the

learning, and unselfishness is achieved through MARL. The framework in [183], based on

SUMO simulation, enhances training efficiency by integrating the AIM and LSTM net-

works. AIM prioritizes critical interactions, while LSTM captures historical dependencies,

improving optimization. However, onboard training remains impractical due to compu-

tational complexities, with training typically performed offline for real-time deployment.
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In [184], driving safety, driving efficiency, training efficiency, and interpretability have

been integrated. Driving safety is promoted through collision penalties, and driving effi-

ciency is enhanced by rewarding goal attainment. Training efficiency is improved through

the Mix-Attention Network, synthetic representation mechanism, and replay memory

mechanism. The interpretability is ensured by using the IDM.

Table 2.4
Evaluation of the DRL-based decision making at unsignalized intersections

Ref. Year Safety Efficiency Training Effi-
ciency

Unselfishness Interpretability

[167] 2021 - Velocity differ-
ence reward

- - -

[168] 2020 - Time penalty - - -
[169] 2022 - Total waiting

time
Background re-
moval ResNet

- -

[170] 2020 - Velocity differ-
ence reward

- - IDM

[171] 2022 - Velocity-based
reward

- - Safety-based
rule policy

[172] 2022 - Safe distance
reward

- - MPC with TD3

[173] 2023 - Velocity ratio
reward

- - Gridded coor-
dination zone

[174] 2020 - Goal attain-
ment reward

DQN with sub-
tasks

- -

[175] 2024 - - Incentive com-
munication

MARL -

[176] 2023 - D2-TSP DDQN - -
[177] 2023 - CIM-enhanced

DQN
CIM-enhanced
DQN

- -

[178] 2020 - Low-speed
penalty

Multi-agent
DQN

MARL -

[179] 2021 - High-velocity
reward

DQL with
transfer learn-
ing

- IDM

[180] 2021 Collision
penalties

High-velocity
reward

SAC with at-
tention

- -

[181] 2020 Collision
penalties

Goal attain-
ment reward

RPF - -

[183] 2022 AIM Constant time
penalty

AIM and
LSTM

MARL -

[184] 2024 Collision
penalties

Goal attain-
ment reward

Mix-Attention
Network

- IDM

[185] 2023 Collision
penalties

Low-velocity
penalty

VD-MADQL MARL IDM
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2.6.5 Five-factor Methods for Intersection Driving

In [185], driving safety has been promoted through collision penalties, while driving effi-

ciency is enhanced by penalizing each state with velocity lower than the vmin. Training

efficiency is improved using value decomposition-based multi-agent deep Q-learning. Un-

selfishness is achieved by employing MARL to minimize joint profits, and interpretability

is ensured through the IDM. The DRL-based decision making on unsignalized intersec-

tions based on DDTUI is summarized in Table 2.4.

2.6.6 Five-factor Methods for Intersection Driving

Finally, all the five factors are addressed in a few studies. In [185], driving safety has

been promoted through collision penalties, while driving efficiency is enhanced by penal-

izing velocities lower than the predefined vmin. Training efficiency is improved using value

decomposition-based multi-agent deep Q-learning. Unselfishness is achieved by employing

MARL to minimize joint profits, and interpretability is ensured through IDM. The whole

evaluation based on DDTUI is summarized in Table 2.4.

2.7 Summary
This chapter presents a comprehensive overview of the current state of the art in DRL-

based decision-making for autonomous vehicles. By discussing recent research efforts in

this field, this chapter highlights the diverse algorithms developed to address decision-

making tasks across various scenarios, including highways, on-ramping merging, round-

abouts, and unsignalized intersections. Our analysis goes beyond simply presenting these

algorithms by uncovering valuable insights, identifying key gaps in the current research,

and highlighting emerging trends in DRL-based decision making for autonomous driv-

ing. Current DRL algorithms, such as DQN and PPO, often require additional mech-

anisms, like reward shaping or attention modules, to comprehensively achieve DDTUI

objectives. DQN, as a value-based method, performs effectively in discrete-action envi-

ronments, enhancing training efficiency and driving safety. PPO, being policy-based, ex-

cels in continuous-action settings, promoting smoother driving behavior and unselfishness
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through adaptive decision-making. While both algorithms contribute to solving DDTUI

challenges, their effectiveness varies depending on the driving context, highlighting the

need for adaptation for specific tasks and driving environments. While driving efficiency

and safety are addressed across most studies, there is a growing trend towards address-

ing multiple DDTUI factors concurrently. Emerging approaches, such as MARL and the

integration of traditional control methods with DRL, show promise in tackling complex

challenges with increased unselfishness and interpretability in autonomous driving.

Based on existing studies, Table V summarizes the distribution of evaluation factors con-

sidered in four typical scenarios. Most studies, i.e., 17 studies that account for 94.4%

of existing studies, prioritize efficiency at intersections to optimize travel time in com-

plex and interaction-heavy environments. Efficiency is also emphasized at ramps in 14

studies (i.e., 87.5%) to reduce congestion and streamline traffic flow. Safety is particu-

larly emphasized on highways in 23 studies (i.e., 76.7%), which addresses the importance

of accident prevention in high-speed settings. In contrast, intersections address safety

less often. Training efficiency is significant at roundabouts in 12 studies (i.e., 75%) and

unsignalized intersections in 12 studies (i.e., 66.7%). This reflects a need for effective

training methods to ensure smooth vehicle maneuvering in these challenging contexts. In-

terpretability is particularly valued at ramps in 9 studies (i.e., 56.25%) and on highways

in 11 studies (i.e., 36.7%), respectively. This emphasizes understandable decision-making

in these areas. Unselfishness receives less emphasis overall, although highways and ramps

give it much attention. Unselfish driving plays a crucial role in enhancing overall driv-

ing performance and ensuring smooth traffic flow. Compared to selfish driving, where

vehicles prioritize individual objectives, unselfish driving promotes cooperative behaviors,

reducing abrupt lane changes, minimizing congestion, and improving road safety. This

cooperative approach facilitates smoother merging and lane-changing, benefiting both in-

dividual drivers and the overall traffic system. However, unselfishness is not an absolute

requirement in all scenarios. While it is generally advantageous, special conditions, such

as emergencies, may necessitate prioritizing self-interest for safety or efficiency. As such

situations are relatively rare, it is recommended to maintain an unselfish driving norm

under typical conditions while ensuring adaptive mechanisms for handling exceptional

scenarios. Future challenges are summarized as
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Table 2.5
Occurrence and Ratio of Evaluation Factors Across Different Scenarios

Scenario Safety Efficiency Training Effi-
ciency

Unselfishness Interpretability

Highway 23 (76.7%) 20 (66.7%) 11 (36.7%) 13 (43.3%) 11 (36.7%)

Ramp 9 (56.25%) 14 (87.5%) 8 (50%) 8 (50%) 9 (56.25%)

Roundabout 10 (62.5%) 11 (68.75%) 12 (75%) 3 (18.75%) 6 (37.5%)

Intersection 5 (27.7%) 17 (94.4%) 12 (66.7%) 4 (22.2%) 6 (33.3%)

Total 47 (58%) 63 (77.8%) 44 (54.3%) 29 (35.8%) 32 (39.5%)
The numbers in parentheses indicate the percentage of the total studies for each factor.

1. Achieving a balance between all five DDTUI factors in a single framework: This

chapter reveals that while many studies addressed multiple DDTUI factors, very few

managed to incorporate all five factors simultaneously. For instance, only 3 out of

16 studies in roundabout scenarios and 1 out of 19 studies in intersection scenarios

addressed all five factors. This highlights the complexity of developing a unified

framework that can effectively balance DDTUI. Future research should focus on

developing integrated frameworks that can holistically address five DDTUI factors

concurrently.

2. Improving the interpretability of DRL models without sacrificing performance:

While some studies have made strides in improving interpretability, such as us-

ing IDM for interpretable car-following, many high-performing DRL models remain

black boxes. Out of the reviewed papers, less than 40% explicitly addressed in-

terpretability. Furthermore, most papers considering interpretability use only one

method. In the future, multiple interpretability methods can be applied to enhance

interpretability, such as using the APF and IDM concurrently.

3. Enhancing the unselfishness of AVs in complex, multi-agent environments: While

approximately 50% of studies use MARL to promote unselfishness, the complexity

of real-world traffic scenarios presents uncertainties of driving behaviors. Future

research should explore more sophisticated MARL techniques based on real-world

experience. For example, combining game theory with driving style classification

based on real-world datasets can better model the behaviors of HDVs.
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Chapter 3

Balanced Exploration and
Attention-inspired Decision Making

on Highways

Autonomous driving has attracted great interest due to its potential capability in en-

hancing safety and improving traffic efficiency. Both model-based and learning-based

methods are widely used in autonomous driving. Out of which, model-based methods rely

on existing events in the dataset but are poor in learning extended situations [153]. As a

comparison, the Deep Q-Network (DQN) has a strong capability in learning within inter-

active driving. However, existing DQN faces challenges in convergence in terms of speed

and accuracy, especially in interactive environments. Furthermore, the poor convergence

causes high risks of collisions and slow driving speed. Therefore, this chapter presents

a modified DQN to achieve a lower number of collisions, higher average driving speed,

and faster convergence during interactive driving. Besides, interpretability and unselfish-

ness are also considered in this chapter to satisfy the DDTUI discussed in the previous

chapter. The modified DQN is developed by introducing a risk-attention mechanism, a

balanced reward function, and a collision-supervised mechanism (RBDQN-CS). The risk-

attention mechanism enhances the DQN to pay attention to high-frequent interactions.

The balanced reward function specifies the weight of the control strategy to handle the

interactions with surrounding human driven vehicles. The collision-supervised mechanism

detects the collision risks and prevents the collision occurrence during lane-changing. Sim-

ulation results demonstrate that the proposed RBDQN-CS outperforms DQN and other

popular baseline DRL algorithms.
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The selected KPIs, such as collision rate, average driving speed, and convergence speed,

are widely recognized in current DRL-based autonomous driving research for evaluat-

ing driving performance, as discussed in Chapter 2. These KPIs align with the DDTUI

framework, which is among the most commonly accepted evaluation frameworks in recent

studies. While other KPIs could also provide valuable insights for real-world driving, this

study focuses on DDTUI as the primary evaluation method. Future work could further

expand the evaluation scope by incorporating additional performance indicators.

3.1 Introduction
AVs faces challenges in making reliable decisions when interacting with HDVs. This is

attributed to the difficulty in accurately predicting intentions of HDVs, especially on

highways. In the real-world setting, HDVs driving on highways may frequently perform

lane-keeping, lane-changing, acceleration, and deceleration. To predict the intentions of

HDVs, some model-based methods have been developed [186]. However, these model-

based methods struggle to adapt well to complex traffic environments, as the interactions

with HDVs are typically oversimplified. Model-based methods typically assume regular

movements and constant speeds for surrounding HDVs, simplifying interactions to reduce

computational complexity. However, such assumptions limit the variability of HDV be-

havior, resulting in low unpredictability and reduced robustness when facing real-world

driving conditions, where driver behavior is dynamic and less predictable. In contrast,

DRL-based approaches can better account for HDV unpredictability by introducing ran-

domized behaviors during training. By simulating diverse HDV actions, such as varying

speeds, unexpected lane changes, and irregular driving patterns, DRL enables the agent

to adapt its decision-making strategies in real-time. Learning-based methods provide al-

ternative solutions to enable the agent to explore complex situations thoroughly, thereby

making them more suitable for interactive driving. For example, DRL can generate the

optimal control strategy to handle the complex traffic environment [187]. This is because

DRL enables the AV to fully interact with HDVs during training, filtering out strategies

that fail to ensure safety and efficiency.
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Existing DRL algorithms, such as a DQN [188], perform well in short-term driving scenar-

ios. However, these algorithms still have limitations in the learning during the long-term

driving. First, it is difficult for DQN algorithms to obtain the global optimal solution in

long sequences because they struggle with long-term dependencies, which may cause colli-

sions. Second, DQN algorithms treat the non-interactive driving and interactive driving of

the AV as the same cases. Therefore, the performance of the DQN might be compromised

in interactive driving. Third, collision detection is not considered in DQN algorithms

during the lane-changing process, which may cause substantial economic loss and pose

severe safety risk. Moreover, the lack of a collision detection phase makes the DQN less

interpretable in collision-avoidance.

To address the aforementioned limitations, this chapter proposes a modified DQN frame-

work by introducing the risk-attention mechanism, the balanced reward function, and the

collision-supervised mechanism (RBDQN-CS). The risk-attention mechanism quantifies

the risk levels around surrounding HDVs, thereby enabling AVs to focus on interaction

areas, increasing training efficiency. The balanced reward function facilitates balanced

exploration from a global perspective. In the balanced reward function, the weight of re-

wards increases when the interactions occur frequently. Consequently, the updated control

strategies are derived mainly from interaction areas. The collision-supervised mechanism

uses a double-side collision detection, aiming to filter out certain predicted and detected

collisions, enabling the agent to explore much complex uncertainties and thereby increas-

ing the training efficiency. Namely, collision risks from both the front vehicle (FV) and

the rear vehicle (RV) during lane-changing are considered. In addition, the DRL is com-

bined with MPC as a safe and generalizable control strategy [189]. The main contributions

include

• An RBDQN-CS is proposed that achieves lower collision rates and higher average

speeds, as well as higher rewards and faster convergence from a learning perspective,

compared to benchmark algorithms [34, 38, 190, 191].

• The collision rate when driving on a highway is significantly reduced by using the

proposed collision-supervision mechanism. Furthermore, this mechanism enhances

the interpretability of the DQN [190] in interactive driving.
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• From a traffic perspective, combining DQN with either a risk-attention mechanism

or a balanced reward function individually results in lower collision rates, higher

average speeds, faster convergence, and higher rewards compared to DQN [190].

3.2 Related Works
State-of-the-art results of using DRL have been demonstrated in AVs [192], including

Q-Learning [30], deep deterministic policy gradient (DDPG) [193], proximal policy opti-

mization (PPO) [194], and DQN [190].

In Q-Learning, the state-action value function is utilized to determine the best action in

a given state [30]. For example, correct actions are selected by Q-Learning in autonomous

driving despite numerous safety constraints [31]. However, this method can only be used

in simple tasks and scenarios [31]. Moreover, The convergence of Q-Learning is slow [32].

DDPG uses deep neural networks to approximate the control policy [193]. This method has

been demonstrated to effectively improve the convergence and driving performance [38,39].

However, this method has limitations in the exploration of more possible actions and the

adaptability in diverse driving scenarios because it obtains an absolute result from the

control policy. The absolute result restricts the algorithm’s flexibility, as it discourages

exploration of alternative actions that could be more suitable.

PPO utilizes the control policy in a probability distribution and offers faster exploration

improvements over DDPG [195]. PPO has been used to create control models for multi-

agent driving scenarios and crowded highway traffic [33,34]. In PPO, the reward function

is often connected to the general performance instead of emphasizing the performance

of required objective. Therefore, the convergence efficiency of PPO for long training se-

quences is low, as many irrelevant sections dilute the performance of crucial sections.

DQN has been widely utilized in various traffic simulations and is well-suited for tasks like

navigation during the interactive driving and intersection management [196]. Its discrete-

action framework is applicable to driving tasks with discrete commands, such as acceler-

ating, decelerating, lane-changing, and lane-keeping. Therefore, DQN does not need extra
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action discretization in driving tasks. In addition, DQN uses experience replay to learn

from past experiences more efficiently. Moreover, DQN is generally less computationally

intensive, which is critical in real-time driving [35]. However, DQN is not suitable for

complex driving scenarios because it struggles with long-term dependencies, leading to

suboptimal decision-making in complex interactive environments. Moreover, a component

that provides interpretability for the collision-avoidance in driving is needed.

In summary, existing DRL algorithms face challenges in discrete-action frameworks, high

computational load, and low convergence speed, relying on the extra information of envi-

ronment. Despite DQN addresses some of these challenges by employing discrete-action

framework, its convergence slows down in long-term dependencies, such as long-term

driving on highways. In addition, the inherent risk of collisions during interactions with

HDVs remains unresolved due to the same attention given to input features and low

interpretability. Furthermore, it is essential for balanced exploration in long-term driv-

ing to construct a suitable probability distribution for DQN. To address these issues,

the risk-attention mechanism, the balanced reward function and the collision-supervised

mechanism are needed to be introduced into DQN.

3.3 Problem Formulation and the Decision-making

Framework

3.3.1 Problem Formulation

Fig. 3.1 depicts the considered interactive driving scenario and three cases. Fig. 3.1(a)

shows the considered interactive driving scenario. Fig. 3.1(b) to Fig. 3.1(d) present three

cases. The upper sub-figures of Fig. 3.1(b) to Fig. 3.1(d) depict normal autonomous driving

mode. The lower sub-figures of Fig. 3.1(b) to Fig. 3.1(d) illustrate the desired mode,

focusing on safety, efficiency, and unselfishness.
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Figure 3.1: Performance of different driving. (a) the interactive driving on a highway;
(b) attention-based interactive driving; (c) collision-supervised interactive driving; (d)
unselfish interactive driving.

Fig. 3.1(a) presents a scenario that involves in a three-lane highway: the target lane, the

current lane, and the other lane. In this scenario, the AV follows the lead vehicle (LV) in

current lane. The AV would interact with the front vehicle (FV) and rear vehicle (RV)

if it changes to the target lane, and interact with other HDVs if it changes to the other

lane. Since the lane-changing process is same, this study focuses on the lane-changing

maneuver from the current lane to the target lane. To describe the scenario clearly, some

statement are presented as follows.

Denote vAV, vFV, and vRV as the speed of the AV, FV, and RV, respectively; dFV and

dRV are the longitudinal distance between the AV and the FV and between the AV and

the RV, respectively. pAV(t), vAV(t), and hAV(t) denote the position, speed, and heading

of the AV at time t, and pi
SV(t), vi

SV(t), and hi
SV(t) represent the position, speed, and

heading of the i-th surrounding HDV at time t. vmin and vmax denote the minimum and

maximum allowable speed for the AV, respectively. umin and umax denote the minimum

and maximum allowable acceleration for the AV, respectively. δmin and δmax denote the
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minimum and maximum allowable steering angle for the AV, respectively. u(t) and δ (t)

denote the acceleration and the steering angle for the AV at timestep t, respectively. L is

the wheelbase length. u(t) is the acceleration of the AV at timestep t. δ (t) is the steering

angle of the AV at timestep t. ds represents predefined safe distance.

HDVs are assumed to exhibit random driving behaviors, enhancing the realism and fidelity

of the simulations. During driving, three aspects are important for the AV: safe decision-

making, efficient path planning, and unselfish driving. Safe decision-making enables the

AV to judge whether each HDV surrounded with high risks, avoiding interaction with

high-risk HDVs. Efficient path planning allows the AV to reach the target position faster,

reducing time loss. Unselfish driving minimizes unnecessary interactions with HDVs, re-

ducing the complexity of interactive driving.

Fig. 3.1(b) compares driving performance of the AV with and without using an attention

mechanism. In the upper sub-figure, the AV assigns equal importance to all surround-

ing HDVs when an attention mechanism is not used. In the lower sub-figure, the AV

deferentially prioritizes three nearby HDVs across three levels when an attention mech-

anism is used. This different priority setting helps the AV better understand potential

risks and adapt to the current traffic environment. Fig. 3.1(c) compares driving perfor-

mance of the AV with and without using a collision-supervised mechanism. The upper

sub-figure depicts that without using a collision-supervised mechanism, the AV collides

with a HDV in the target lane because it would change lane. From the lower sub-figure,

when a collision-supervised mechanism is used, the AV would keep the lane to avoid the

collision. Fig. 3.1(d) illustrates driving performance of the AV with and without using

an unselfish driving mechanism. In the upper sub-figure, the AV changes the lane which

disturbs all nearby HDVs without using an unselfish driving mechanism. Collisions can be

avoided in such a situation, however the complexity of the AV’s decision-making increases

as the frequency of interaction between AVs and HDVs increases. The lower sub-figure

demonstrates that the AV performs a simple and appropriate lane-changing maneuver

when an unselfish driving mechanism is used. This situation affect only two surround-
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ing HDVs and prevents other HDVs from unnecessary interactions. Based on the above

analysis, it can be found that attention-based, collision-supervised, and unselfish driving

mechanisms can effectively enhance driving performance of AVs from the perspective of

the safety and rationality when interacting with HDVs on highways.
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Figure 3.2: The decision-making framework.

3.3.2 The Decision-making Framework

The interactive driving with safety, efficiency and unselfishness on a three-lane highway is

achieved by the proposed RBDQN-CS framework, as illustrated in Fig. 3.2. In this frame-

work, the three mechanisms are categorized into two critical aspects, corresponding to two

sections of this chapter: the risk-attention mechanism and balanced reward function, and

the collision-supervised mechanism. Attention to interaction areas is achieved through

the proposed risk-attention mechanism. The balanced update of the control strategy for

interaction areas is realized via the proposed balanced reward function. The collision-

supervised mechanism uses collision detection and time-to-collision (TTC) detection to

avoid detectable collisions with RV and FV, respectively. The collision-supervised mech-
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anism addresses the shortcomings identified in previous DQN work, where the collision

detection phase was missing [190]. In addition, MPC is implemented to translate planned

actions into safe and smooth control commands (accelerations and steers), enhancing

safety and robustness throughout the driving.

3.4 Risk-attention Mechanism and Balanced Reward

Function
The risk-attention mechanism is embedded with the network structure of the DQN frame-

work to emphasize the interaction areas. The balanced reward function is integrated with

the Q-function of the DQN framework to efficiently update control strategies during in-

teractive driving.

3.4.1 Network Structure of the Risk-attention Mechanism

Fig. 3.3 illustrates the network structure of the risk-attention mechanism, which includes

the input layer, convolutional neural network layer, risk-attention layer, fully connected

layer, and output layer.
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Figure 3.3: Network structure of the risk-attention mechanism.
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3.4.1.1 Input Layer

The input layer receives raw images from the vehicle’s onboard sensors, encapsulating the

AV’s current state, and is represented by the state vector s.

3.4.1.2 Convolutional Neural Network Layer

The raw data is transformed by convolutional neural network (CNN) layers into a feature

set F that helps pattern recognition and decision-making:

F = CNN(s;θCNN) (3.1)

where θCNN are the parameters of the CNN.

3.4.1.3 Risk-attention Layer

Inspired by [197], a risk-attention layer is designed in this chapter. The risk-attention layer

processes features extracted by the convolutional neural network layers while focusing

on critical features that influence decision-making during navigation. The input to this

attention layer is the feature matrix F , obtained from the CNN layers, where each row of

F represents features derived from different parts of the input image. The risk-attention

layer first calculates attention scores, which determine the importance priority of each

feature when compiling the final output. This is achieved using a set of trainable weights

that is often structured as three matrices known as Query (Q), Key (K), and Value (V )

matrices. To obtain the Q, K, and V matrices from the feature matrix F , learned linear

transformations are used. Each of these matrices is derived from F using separate linear

transformations. Denote the linear transformations as WQ, WK , and WV respectively. The

transformations are applied to F as

Q = F ·WQ, K = F ·WK, V = F ·WV (3.2)
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The attention score for each feature is computed using the dot product of Q and K:

A = softmax
(

QKT
√

dk

)
(3.3)

where dk represents the dimensionality of the K, which normalizes the dot products to

prevent them from growing too large. The attention scores matrix A is then used to create

a weighted sum of the value vectors, which forms the output of the attention mechanism:

F ′ = A∗V (3.4)

This step effectively allows the network to focus on the most relevant features. The output

F ′ then feeds into the fully connected layers to calculate the Q-values. The risk-attention

layer allows the network to dynamically adjust itself by focusing on important features.

These important features are dependable on the current driving context on highways.

During the converging, the parameters θatt of the risk-attention layer (comprising the

weights of the Q, K, and V matrices) are updated to optimize the attention given to the

most important features.

3.4.1.4 Fully Connected Layer

The fully connected layer approximates the Q-function by mapping the processed features

F ′ to Q-values for candidate actions a′:

Q(s,a′;θ) = f (F ′;θfc) (3.5)

where θfc indicates the parameters of the fully connected layers. θ represent the weights of

all neural networks in risk-attention mechanism used to approximate the Q-value function.
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3.4.1.5 Output Layer

The output layer provides the estimated Q-values for each possible action, forming the

basis for the optimal decision-making:

a∗ = argmax
a′

Q(s,a′;θ) (3.6)

where a∗ is the optimal action selected by the network.

3.4.2 Network Policy of the Risk-attention Mechanism

The network policy governs the AV’s behavior by determining actions based on the Q-

values. During the converging of DQN, the determination of new candidate actions is

crucial for policy exploration. The risk-attention layer enhances policy exploration by

extracting key features from the feature matrix. In addition, exploitation enables the

risk-attention mechanism to select optimal actions. Ultimately, a converged policy with

safety and efficiency is obtained.

3.4.2.1 Action Determination

In action determination, an epsilon-greedy policy is employed to strike a crucial equilib-

rium between exploration of new actions at at timestep t and known control strategies:

at =


random action with probability ε,

argmaxa Q(s,a;θ) with probability 1− ε.
(3.7)

This policy facilitates the discovery of new control strategies and navigates the highway

more efficiently.
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3.4.2.2 Adaptive Exploration Rate

The value of ε is adaptively decayed, allowing the AVs to transit from an exploratory phase

to a more exploitation-focused phase. The exploitation-focused approach enables the AV

to significantly rely on the past learning. The AV uses the optimal control strategy derived

from past learning to make decisions efficiently and safely. The value of ε is employed

to balance exploration and exploitation during training. It starts at ε = 0.9, encourag-

ing exploration in the early stages. The value decays by 0.15 every 1000 episodes until

reaching a minimum of ε = 0.1, ensuring a gradual transition toward exploitation while

retaining some exploratory behavior to avoid premature convergence to suboptimal poli-

cies. As ε updates, the AV transits from exploring random actions to exploiting optimal

actions, leading to more reliable driving behaviors. Therefore, ε handles the complexities

of interactive driving.

3.4.2.3 Integration with the Risk-attention Layer

The risk-attention layer enhances the policy exploration by ensuring that the AV pays

more attention to the most salient features of HDVs. These features, including the prox-

imity and speed of surrounding HDVs, are critical when making decisions in a congested

environment on highways.

3.4.2.4 Exploration vs. Exploitation

Exploration involves in testing various maneuvers, including lane-keeping,lane change, and

speed adjustments, to optimize the AV’s path on highways. Exploitation take advantages

of the accumulated experience of the AV’s to select optimal actions with safety, efficiency

and unselfishness.
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Algorithm 1: RDQN Learning Algorithm
Input: Replay memory capacity N, total episodes M, total timesteps T , update
frequency C, and exploration probability ε
Output: Learned action-value function Q
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ ← θ
for episode = 1 to M do

Initialize sequence s1 and preprocessed sequence ϕ1
for timestep t = 1 to T do

if with probability ε then
Select a random action at

else
Select at ← argmaxa Q(ϕ(st+1),a′;θ)

end if
Execute action at by attention-Q-network and observe reward rt and new state
st+1
Store transition (st ,at ,rt ,st+1) in D
Sample minibatch from D
Set target y j based on Bellman equation
Compute the predicted Q-value ŷ j← Q(ϕ(st+1),a′;θ)
Calculate Loss using Mean Squared Error
Perform a gradient descent step by Loss
if every C steps then

Reset Q̂← Q
end if

end for
end for

3.4.2.5 Convergence to the Optimal Control Strategy

The optimal control strategy is expected to be reached based on the accumulated driving

experience of AVs. The optimal control strategy prioritizes the safety and efficiency of

AVs by minimizing both collisions and travel time.

3.4.3 Learning of Risk Attention-assisted DQN (RDQN)

The learning algorithm updates the weights of the network to optimize the policy. The

updating leverages the risk-attention mechanism and reward function. As shown in Algo-

rithm 1, the replay memory, action-value function, and target action-value function are

initialized. The replay memory stores the experiences (state,action,reward,next state) in a

replay buffer during the converging. The replay buffer makes full use of historical data.



63

The network periodically samples a batch of experiences from this buffer for learning

purpose. Then for timestep t, the target Q-value y j is updated by the Bellman equation.

The calculating process is formulated as

y j = r+ γ ·max
a′

Q(ϕ(st+1),a′;θ) (3.8)

where r is the current reward, γ is the discount factor, st+1 is the state at timestep t +1

resulting from taking action at in state st , and ϕ is a function that transforms the raw

state input into a feature representation. maxa Q(ϕ(st+1),a′;θ) is the maximum Q-value

for st+1 over a′, predicted by the target network with θ .

To stabilize learning, the network maintains a separate and slowly updated target network.

The target network provides a fixed target Q-value for updating, which helps stabilize the

converging process. The Q-network optimizes the weights by minimizing the difference

between the predicted Q-values ŷ j and y j:

Loss = (y j− ŷ j)
2 (3.9)

Once the Loss is obtained, the Q-network’s weights are updated in the opposite direction

of the gradient to minimize the loss. Finally, the parameters of the risk-attention layer

are wholly updated and enhanced to better handle complex interactions on highways.

3.4.4 Balanced Reward Function

To formulate the driving problem on highways as a Markov Decision Process (MDP),

the key components are the state space, action space and reward function. The state

space includes the AV’s position, velocity, and heading, as well as the relative positions,

velocities, and headings of surrounding vehicles within a specified range. The state at time

t is represented as

st = [pAV(t),vAV(t),hAV(t), pi
SV(t),v

i
SV(t),h

i
SV(t)]

⊤ (3.10)
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The action space is discrete and includes five discrete-actions: accelerate, decelerate, main-

tain speed, turn right, and turn left. These discrete-actions are subsequently converted

into control commands (acceleration and steering) by the MPC controller.

The reward function, called the feedback module, can assess the actions determined by

the AV. The velocity and capability of collision avoidance are used to measure the effi-

ciency and safety of the AV, respectively. Specifically, the risk-attention mechanism can

help the AV avoid collisions with surrounding HDVs while driving at a highly average

speed when an appropriate reward function is provided. However, the traditional reward

functions cannot be applied directly because they fail to reflect the interactive process

for two reasons. First, the reward in the function is significantly influenced by the pre-

vious actions. Therefore, it is impossible to balance the historical and current control

strategies in the interactive-orientated tasks when the interaction is not considered in the

traditional reward function. Second, most collisions occur to AVs when interacting with

HDVs because of high speeds [198]. In such situations, more attention should be paid to

the interactive steps. This goal can not be achieved in the traditional reward function

as their weights updates without considering the interaction between the AV and HDVs.

Third, the longer the sequence length, the less attention is paid to to the performance of

interactive steps.

To address the aforementioned issue, a hyperparameter is introduced to balance the histor-

ical reward and the reward obtained from the interactive-oriented tasks. Then, a balanced

reward function is proposed to update based on the number of interactive HDVs, and Con-

sidering the number of surrounding HDVs, the balanced discount factor γb is considered

as

γb = γ +α · NHDVs
max_HDVs (3.11)

where NHDVs is the number of surrounding HDVs. max_HDVs is the maximum number

of surrounding HDVs the AV has encountered. The balanced value yb used for updating

the Q-value in this adjusted setting is computed as

yb = r+ γb ·max
a′

Q(ϕ(st+1),a′;θ) (3.12)
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If there is a highly interactive process, the current decision becomes more valuable, lead-

ing to the control strategies’ updating assign a greater value to interactive actions from

the current timestep. Therefore, γb promotes a safety-aware and forward-looking control

strategy during the interaction. The r is formulated as

r = re + rs + ru + rc (3.13)

where re is the reward of efficiency, rs is the reward of safety, ru is the reward of un-

selfishness, and rc is a constant reward. The sub-rewards were selected to balance driving

objectives: efficiency, safety, and unselfishness. Fine-tuning was conducted based on a

priority-driven approach, where safety was considered the most important factor, fol-

lowed by efficiency and unselfishness. During training, if the observed driving behavior

did not align with this priority order, the corresponding reward values were adjusted by

increasing or decreasing them by 25% to 50%, ensuring the final policy reflected the de-

sired balance among the driving objectives. The reward of efficiency is presented to meet

the requirements from the perspective from efficiency:

re = N if the final point is not reached (3.14)

where N is a constant and negative value, representing that there is a fixed penalty for

the AV as long as it does not reach the final point. The reward of safety is presented to

meet the requirements from the perspective from safety:

rs = M if there is a collision (3.15)

where M is a largely constant and negative value, representing there is a large penalty for

AV as long as it encounters collisions. Therefore, the AV is guided to take actions that can

avoid any collisions. The reward of unselfishness is presented to meet the requirements

from the perspective from unselfishness:

ru = H if only one lane-changing to the target lane (3.16)
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where H is a constant and positive value, representing that there is a reward for AV as

long as it makes only one or two lane-changing behaviors to the target lane based on its

initial position during a long time span. ru can lead to a smaller number of lane changes,

guiding the AV to avoid collisions.

3.5 Collision-supervised Mechanism
This section introduces the collision-supervised mechanism that helps the AVs avoid colli-

sions with surrounding HDVs during the interaction on highway. This mechanism mainly

includes three parts: driving rules of HDVs, lane-changing rules of AV, and safety evalu-

ator.

3.5.1 Driving Rules of HDVs

Lane-changing and lane-keeping rules are included.

3.5.1.1 Lane-changing Rules

According the driving rules of HDVs on highways, an HDV has to keep a safe distance

from other HDVs ahead. Namely, dc > ds. Once dc < ds is encountered, the HDV changes

lanes.

3.5.1.2 Lane-keeping Rules

The Intelligent Driver Model (IDM) [199] is used to depict the car-following behavior of

HDVs:

UIDM =Umax

[
1−

(
vFV
ve

)4

−
(

g∗

g

)2
]

(3.17)

where amax is the maximum acceleration of AV, ve is the expected velocity, and g is the

gap between AV and HDV. g∗ is the desired gap between AV and front HDV formulated

as

g∗ = ds + vAVTe−
vAV∆v

2
√

umaxb
(3.18)
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Figure 3.4: An Example of the IDM using the NGSIM.

where Te is the expected time gap, ∆v is the velocity difference between AV and FV, and

b is the comfortable deceleration.

Fig. 3.4 illustrates a segment of the tracking process using the IDM with the Next Gen-

eration Simulation (NGSIM) dataset [200]. The green curve represents the target vehicle,

while the blue curve indicates the preceding vehicle. The target vehicle uses the IDM

to track the preceding vehicle. Initially, the target vehicle maintains a gap of 22.45 m

and travels at a speed similar to that of the preceding vehicle. The IDM model accu-

rately tracks the longitudinal position x and longitudinal velocity vx of the preceding

vehicle, showing only minor deviations. The gap between the target and preceding vehi-

cles remains close to the desired distance of 15 m, demonstrating that the IDM model

effectively maintains a safe and comfortable following distance.
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Figure 3.5: Selecting the proper driving lane under three scenarios.

3.5.2 The Lane-changing Rules of AV

Based on the relationships between the distance of the AV and the HDV and safety

distance, this chapter separates lane-changing behaviors of the AV into two categories:

passive lane-changing and active lane-changing. It is regarded as passive lane-changing

when the AV performs the lane-change under the condition that dc < ds. Active lane-

changing is considered under the condition that d f ≥ ds, where d f represents the distance

between the AV and the HDV ahead in the target lane. In addition, the HDVs will perform

passive lane changes with a defined probability of 10% to simulate and reflect the complex

maneuvers encountered in real driving.

3.5.2.1 Passive Lane-changing

Fig. 3.5(a) presents a case where the AV performs passive lane-changing on dual-lane

highways. In such a case, the AV would change lane when the following condition is

satisfied:

fLC = True if ∃dc ≤ ds (3.19)

where fLC is the lane-changing judgment flag, which triggers the AV to changes the lane.

Fig. 3.5(b) presents a case where the AV performs passive lane-changing on three-lane

highways when this AV drives in the middle lane. In this case, the first assessment is

made to determine whether a safe lane-changing to the target lane can be made by the

AV. If so, the AV will change to the target lane. Otherwise, it will change to the other

lane.
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Figure 3.6: Collision detection in lane-changing.

3.5.2.2 Active Lane-changing

Fig. 3.5(c) presents a case where the AV performs active lane-changing on dual-lane

highways. In such a case, the AV would perform lane-changing once the following condition

is satisfied:

fLC = True if ∃d f ≥ ds (3.20)

Similar to the passive lane-changing, on the three-lane highway, the AV first assesses

whether the condition in (3.20) is satisfied in the target lane. If yes, the AV will change

to the target lane. If not, the AV then assesses whether the condition in (3.20) is satisfied

in the other lane. If yes, the AV will switch to the other lane. If neither the target lane

nor the other lane meets the condition in (3.20), the AV will remain in its current lane.

this chapter primarily focuses on decision-making algorithms for autonomous driving.

While real-world sensing errors, such as noise and delays, can impact lane-changing

decisions, these challenges are typically addressed in the computer vision domain. The

decision-making algorithms presented in this work were verified using a decision-making-

focused simulator, consistent with prior research, where sensing uncertainties were not the

primary focus. Future work could explore the integration of decision-making algorithms

with camera systems and realistic driving equipment to better account for sensing errors

in real-world scenarios.
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3.5.3 Safety Evaluator

3.5.3.1 Detection of Collisions with RV

Fig. 3.6 presents the collision detection of lane-changing process, where the RV is as-

sumed to travel at a constant velocity. This assumption could be attributed to the fact

that drivers maintaining a constant speed are at the lowest risk of collisions [201]. The

assumption that the RV maintains a constant speed during the collision detection pro-

cess is applied specifically for decision-making within the training environment. This does

not imply that the RV would maintain a constant speed in simulator. Instead, this as-

sumption establishes a safety margin reference based on the current RV speed, which the

neural network learns and adapts during training. The safety margin evolves flexibly, ad-

justing according to the relative speed and distance between the AV and RV. Moreover,

this collision detection mechanism filters out unsafe scenarios, avoiding unnecessary train-

ing and improving training efficiency. This approach differs from traditional model-based

methods, such as MPC, which rely on constant-speed assumptions for decision-making. In

addition, a ideal and smooth lane-changing curve that conforms to human driving habits

is used to model the lane-changing trajectory [202]. This curve is based on a cubic polyno-

mial that describes the relationship between the lateral displacement and the longitudinal

displacement. The cubic polynomial possesses the advantages of simplicity and smooth-

ness while it can be easily optimized under various constraints and objectives [203]. The

following cubic polynomial curve is used to perform the feasibility check:

y(x) = c0 + c1x+ c2x2 + c3x3 (3.21)

where c0, c1, c2 and c3 are the constant coefficients for the cubic polynomial cruve.

In Fig. 3.6, there are three positions labeled: (0,−yr), (xr,0), and (2xr,2), matching the

start point, potential collision point, and final point respectively. To simplify the relation-

ship between the lateral displacement and longitudinal displacement, the road width is

assumed as 4 m and three positions are labelled: (0,−2), (xr,0), and (2xr,2). The position

of the potential collision point for the feasibility check is denoted by (xc,yc). Submitting

the three positions into equation (3.21) gives c0 = −2, c0 + c1xr + c2x2
r + c3x3

r = 0, and
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c0+2c1xr +4c2x2
r +8c3x3

r = 2. These are simplified as c1 = 2c3x2
r , c2 =−3c3x2

r and c3 =
1
x3

r
.

Therefore, the cubic polynomials is formulated as

y(x) =−2+
2
xr

x− 3
x2

r
x2 +

1
x3

r
x3 (3.22)

Inspired by [204], the time to the difference between potential collision position (TPCP)

is used to assess the collision risks between AV and RV. It is computed by

TPCPHV =
dr

vAV
, TPCPRV =

xr

vRV
(3.23)

where TPCPAV and TPCPRV are the TPCP of AV and RV, respectively. dr represents the

distance from the starting position to the potential collision position. It can be expressed

by

dr =
∫ xr

0
dl =

∫ xr

0

√
1+(y′)2 dx

=
∫ xr

0

√
1+

(
2
xr

+
6x
x2

r
− 6x2

x3
r

)2

dx (3.24)

where l represents the whole lane-changing curve. If the AV performs the lane-change

maneuver without any collision with the RV, the following condition should be satisfied

|TPCPHV−TPCPRV|> Tsafe (3.25)

where Tsafe is a time parameter that represents the safety margin.

3.5.3.2 Detection of Collisions with FV

The TTC is used to assess the collision risk between AV and FV [205]. The TTC can be

calculated as follows:

TTC =
lAV-FV

vAV− vFV
(3.26)

where lAV-FV is the longitudinal distance from AV to FV.
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Algorithm 2: Collision-Supervised Mechanism
Input: vAV, vFV, vRV, dFV, dRV,
Tsafe: Safety time threshold,
TTCsafe: Safe time-to-collision threshold.
Output: Decision: Lane-changing or lane-keeping

1 TPCPAV← compute using (23)
2 TPCPRV← compute using (23)
3 if |TPCPAV−TPCPRV|> Tsafe then
4 TTCAV← compute using (26)
5 if TTC≥ TTCsafe then
6 Decision←Make lane-changing
7 else
8 Decision←Make lane-keeping

9 else
10 Decision←Make lane-keeping
11 return Decision

If the AV performs the lane-change maneuver without any collision with the FV, the

following condition should be satisfied

TTC≥ TTCsafe (3.27)

where TTCsafe is the predefined threshold.

Based on the above description, the safety evaluation for lane-changing is summarized

in Algorithm 2. This algorithm is based on the relative velocities and distances between

the AV and both FV and RV in lane-changing. Once both conditions (25) and (27) are

satisfied, the AV changes the lane. Otherwise, the AV keeps the lane. The final decision

is returned as the output of the algorithm.
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3.6 MPC for Enhancing DRL Performance
This section introduces robust control for the AV, including the vehicle dynamic model

and MPC. The vehicle dynamic model simulates vehicle movements, enhancing the fidelity

of the simulation. The MPC is to generate safe control commands, which is transferred

from the upper-level decisions made by the RBDQN-CS. In particular, the MPC ensures

AVs precisely and stably follow the actions determined by the risk-attention mechanism

which is a part of the RBDQN-CS. The following control input and collision avoidance

constraints are applied to ensure safety and feasibility:

vmin ≤ vAV(t)≤ vmax,umin ≤ u(t)≤ umax

δmin ≤ δ (t)≤ δmax,∥pAV(t)− pSV(t)∥ ≥ dsafe (3.28)

where vmin and vmax denote the minimum allowable speed and maximum allowable speed

for the AV, respectively. umin and umax denote the minimum allowable acceleration and

maximum allowable acceleration for the AV, respectively. δmin and δmax denote the min-

imum allowable steering angle and the maximum allowable steering angle for the AV,

respectively. u(t) and δ (t) denote the acceleration and the steering angle for the AV at

timestep t, respectively. At timestep t, the MPC controller finds the optimal solutions

u∗(t) and δ ∗(t) by solving the optimization problem below:

minJc :=
Np−1

∑
k=0

(vAV(k)− v∗AV)
2+

Np−1

∑
k=0

Nv

∑
i=1

(∥pi
SV(k)− pi

AV(k)∥−dsa f e)
2 +λ

Nc−1

∑
k=0

u2(k)

s.t. 0 < vAV(k)≤ vmax,umin ≤ u(k)≤ umax,

δmin ≤ δ (k)≤ δmax,SV ∈ NV ,k ∈ [0,N−1],

vAV(k) ∈ Dc (3.29)
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Algorithm 3: MPC Controller for Vehicle Speed Adjustment
Input: v∗AV: Desired speed for the autonomous vehicle
Output: u[0]: Optimal acceleration for the initial timestep, or fallback to the PID

controller if no solution is obtained
/* Initialize MPC Controller and surrounding vehicle information */

1 AV← deepcopy(self) ;
2 NV ← get_surrounding_vehicles() ;
3 opti← ca.Opti() ;
4 u← opti.variable(N) ;
5 Jc← 0 ;
/* Formulate the cost function and constraints */

6 for k← 0 to N−1 do
7 for vehicle in NV do
8 action← use_RBDQN-CS_to_predict_vehicle_action(vehicle) ;
9 δ (k)← compute_steering(AV,NV) ;

10 AV.update(u(k),δ (k)) ;
11 Jc← Jc +(vAV(k)− v∗AV)

2 ;
12 for i← 1 to Nsv do
13 Jc← Jc +(∥pi

SV(k)− pi
AV(k)∥−dsafe)

2 ;
14 Jc← Jc +λu2(k) ;
15 add_vehicle_constraints(AV, NV , u(k)) ;

/* Solve the optimization problem */
16 opti.minimize(Jc) ;
17 solution← opti.solve() ;

where Np and Nc denote the prediction horizon and control horizon, respectively. v∗AV(k) is

the target speed, Nsv is the number of surrounding vehicles, and λ is a weighting factor for

the acceleration penalty. (30) represents AV’s state at timestep t based on the following

constraints of dynamics:

pAV(t +1) = pAV(t)+ vAV(t) · cos(hAV(t)) ·∆t

vAV(t +1) = vAV(t)+u(t) ·∆t

hAV(t +1) = hAV(t)+
vAV(t)

L
· tan(δ (t)) ·∆t (3.30)

where ∆t is the timestep duration. L is the wheelbase length. u(t) is the acceleration of

the AV at timestep t. and δ (t) is the steering angle of the AV at timestep t.The entire

control process is summarized in Algorithm 3.
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3.7 Simulation Results

Table 3.1
Parameters for the RBDQN-CS Agent

Parameters Default Settings Description
n_episodes 5000 Total training episodes
gamma 0.99 Discount factor
train_steps 5 Train steps
learning_rate 0.001 Learning rate
batch_size 100 Batch size
eval_freq 200 Evaluation frequency
eval_episodes 5 Evaluation episodes
sim_frequency 15 Simulation frequency
policy_frequency 5 Policy frequency
low_level_control True Choose MPC
prediction_n_steps 7 Number of prediction steps

The proposed RBDQN-CS is validated by evaluating its convergence, converged value,

as well as the collision rate and speed variation of the AV on the three-lane highways.

To demonstrate the generalizability of the proposed algorithm, two different traffic flows

are used. These two traffic flows involve 4-6 HDVs and 7-10 HDVs, referred to as the

normal traffic flow and the high traffic flow, respectively. Among the whole validation,

two kinds of verification are considered. In the first verification, the proposed RBDQN-

CS is compared with four benchmarks: DQN, DQN with a balanced reward function

(BDQN), DQN with a risk-attention mechanism (RDQN), and DQN with a collision-

supervised mechanism (DQN-CS). In the second verification, the proposed RBDQN-CS

is compared with four benchmark DRL algorithms under two different traffic flows. The

four benchmark DRL algorithms include DDPG [38], PPO [34], Advantage Actor-Critic

(A2C) [191] and DQN [190]. this chapter uses a highway virtual simulation platform

called Highway-env to conduct the validation [206]. To illustrate the generalizability of

the RBDQN-CS, the initial position and speed of HDVs are randomly set within a small

range. The setting is achieved using Python 3.6, PyTorch 1.10.0, Ubuntu 20.04.6 LTS,

a 12th generation 16-thread Intel® Core™ i5-12600KF CPU, an NVIDIA GeForce RTX

3090 GPU, and 64 GB of RAM. The environment setup and parameters used are detailed

in Table 3.1. The prediction_n_steps parameter represents the number of future steps

considered during trajectory prediction, commonly used in MPC frameworks. In this work,
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Figure 3.7: Rewards of the RBDQN-CS, BDQN, RDQN, DQN-CS, and DQN during the
converging.

it guides decision-making by anticipating potential outcomes within a limited horizon. The

choice of 7 steps was determined empirically, balancing computational efficiency and

prediction accuracy. During training, this prediction horizon ensured robust performance

without causing any abrupt negative behavior. The robustness of decision-making relies

not only on the prediction horizon but also on how effectively the agent utilizes these

predictions to adapt its actions. Further fine-tuning of this parameter can be explored for

more complex driving environments.

3.7.1 Comparison with DQN, RDQN, BDQN, and DQN-CS

Figs. 3.7 and 3.9 present the convergence, driving speed variation, collision rates of the

proposed RBDQN-CS and RDQN, BDQN, DQN-CS, and DQN during the converging,

respectively. Fig. 3.10 presents the rewards of the proposed RBDQN-CS and four other al-

gorithms using converged policy. The other four algorithms include DQN, BDQN, RDQN,

and DQN-CS. As shown in Fig. 3.7, the proposed RBDQN-CS reaches a higher reward

and faster convergence compared to four other algorithms. The rewards of the proposed

RBDQN-CS, BDQN, RDQN, DQN-CS and DQN, are around 35, 30, 27, 25, and 20,

respectively. As shown in Fig. 3.8, the proposed RBDQN-CS achieves a higher average

speed and faster convergence compared to four other algorithms. The average speed and

variance of the RBDQN-CS, BDQN, RDQN, DQN, and DQN-CS are (22, 2), (20, 3), (20,
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Figure 3.8: Speed variations of the RBDQN-CS, BDQN, RDQN, DQN-CS, and DQN
during the converging.

3), (18, 5), and (18, 5), respectively. As shown in Fig. 3.9, the proposed RBDQN-CS has

a lower collision rate and faster convergence. The collision rate of the proposed RBDQN-

CS, BDQN, RDQN, DQN, and DQN-CS are below 0.05 per 100 episodes, 0.10 per 100

episodes, 0.10 per 100 episodes, 0.15 per 100 episodes, and 0.15 per 100 episodes, respec-

tively. As shown in Fig. 3.10, the proposed RBDQN-CS has a higher reward after the

converging compared to four other algorithms. The rewards of the proposed RBDQN-CS,

BDQN, RDQN, DQN-CS and DQN, are around 40, 30, 30, 27, and 24, respectively. The

above analysis demonstrates the effectiveness in terms of the safety and efficiency of the

proposed RBDQN-CS.

Higher rewards indicate better balance across key evaluation factors, including safety, effi-

ciency, and unselfishness. In dynamic scenarios, higher rewards reflect successful decision-

making, such as safe lane changes and efficient driving. Lower rewards can suggest con-

servative behavior, prioritizing safety in complex situations. The priority-based reward

tuning used in this work ensures that higher rewards align with real-world driving needs,

emphasizing safety first, followed by efficiency and unselfishness. This approach prevents

aggressive driving while promoting adaptive and context-aware decision-making.
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Figure 3.9: Collision rates of the RBDQN-CS, BDQN, RDQN, DQN-CS, and DQN during
the converging.

3.7.2 Comparison under Different Traffic Flows

Figs. 3.11 and 3.13 present three indicators of the proposed RBDQN-CS and the four

benchmark DRL algorithms over 5000 training episodes in the normal and high traffic

flows, respectively. The three indicators include convergence, speed variation, and collision

rates. The four benchmark DRL algorithms include DQN, PPO, A2C, and DDPG. Figs.

3.12 and 3.14 present the rewards of the proposed RBDQN-CS and the four benchmark

DRL algorithms in the normal and high traffic flows using converged policy, respectively.

3.7.2.1 Normal Traffic Flow

As shown in Fig. 3.11(a), the proposed RBDQN-CS reaches a higher reward and faster

convergence compared to the four benchmark DRL algorithms. The rewards of the pro-

posed RBDQN-CS, DQN, A2C, PPO and DDPG, are around 37, 23, 20, 18, and 17,

respectively. As shown in Fig. 3.11(b), the proposed RBDQN-CS achieves a higher av-

erage speed and faster convergence compared to the four benchmark DRL algorithms.

The average speed and variance of the RBDQN-CS, DQN, DDPG, PPO, and A2C are

around (24, 2), (22.5, 1.5), (22, 5), (20, 3), and (19, 3), respectively. As shown in Fig.

3.11(c), the proposed RBDQN-CS has a lower collision rate and faster convergence. The

collision rates of the proposed RBDQN-CS, DQN, A2C, DDPG, and PPO are below 0.02

per 100 episodes, 0.03 per 100 episodes, 0.035 per 100 episodes, 0.04 per 100 episodes, and
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Figure 3.10: Reward of the RBDQN-CS, BDQN, RDQN, DQN-CS, and DQN after the
converging.

0.045 per 100 episodes, respectively. As shown in Fig. 3.12, the proposed RBDQN-CS has

a higher reward after the converging compared to the four benchmark DRL algorithms.

The rewards of the proposed RBDQN-CS, DQN, A2C, PPO and DDPG, are around 38,

23, 20, 19, and 18, respectively.

3.7.2.2 High Traffic Flow

As shown in Fig. 3.13(a), the proposed RBDQN-CS reaches a higher reward and faster

convergence compared tothe four benchmark DRL algorithms. The rewards of the pro-

posed RBDQN-CS, PPO, DQN, A2C, and DDPG, are around 35, 25, 20, 10, and 5,

respectively. As shown in Fig. 13(b), the proposed RBDQN-CS achieves a higher aver-

age speed and faster convergence compared to the four benchmark DRL algorithms. The

average speed and variance of the The average speed and variance of the RBDQN-CS,

DQN, A2C, DDPG, and PPO are around (22.5, 3.5), (18, 6), (17.5, 3), (17, 1.5), and (16,

3), respectively. As shown in Fig. 13(c), the proposed RBDQN-CS has a lower collision

rate and faster convergence. The collision rates of the proposed RBDQN-CS, DQN, A2C,

DDPG, and PPO are below 0.04 per 100 episodes, 0.06 per 100 episodes, 0.08 per 100
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Figure 3.11: Performance of the RBDQN-CS, PPO, A2C, DDPG, and DQN during con-
vergence in normal traffic flow. (a) Rewards; (b) Speed variations; (c) Collision rates.

episodes, 0.11 per 100 episodes, and 0.12 per 100 episodes, respectively. As shown in Fig.

3.14, the proposed RBDQN-CS has a higher reward after the converging compared to

the four benchmark DRL algorithms. The rewards of the proposed RBDQN-CS, DDPG,

DQN, A2C and PPO are around 40, 27, 24, 8, and 3, respectively.
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Figure 3.12: Rewards of the RBDQN-CS, PPO, A2C, DDPG, and DQN in the normal
traffic flow after the converging.

3.7.2.3 Speed and Collision Rate after the Converging

after the converging, the comparison of speed variation and collision rate between the

proposed RBDQN-CS and the four benchmark DRL algorithms are made in both normal

and high traffic flows. The results are presented in Table 3.2. In the normal traffic flow,

the RBDQN-CS demonstrates the lowest collision rate at 2.3%, followed by DDPG at

4.1%, A2C at 4.3%, and 4.6%, indicating the safety performance of the RBDQN-CS. In

addition, the RBDQN-CS has the highest average speed of 24.73 m/s, which is larger

than that of PPO at 20.36 m/s, A2C at 18.83 m/s, DDPG at 21.86 m/s, and DQN at

22.34 m/s, showcasing greater efficiency. In the normal traffic flow, the collision rate of

the RBDQN-CS is at 3.4%, which is smaller than that of PPO at 11.6%, A2C at 7.3%,

DDPG at 8.2%, and DQN at 8.3%. In addition, the average speed of the RBDQN-CS

is 22.36 m/s,which is greater than PPO at 16.67 m/s, A2C at 18.04 m/s, DDPG at

17.73 m/s, and DQN at 19.33 m/s.

The marginal differences observed in the highlighted average speed values can be at-

tributed to the controlled simulation environment, where stable traffic conditions limit

performance variation once collision avoidance and efficient lane-changing are achieved.

To further improve speed performance, strategies such as traffic-aware reward shaping,

which adjusts rewards based on traffic density, and adaptive speed planning, where the
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Figure 3.13: Performances of the RBDQN-CS, PPO, A2C, DDPG, and DQN during con-
vergence in high traffic flow. (a) Rewards; (b) Speed variations; (c) Collision rates.

agent optimizes speed according to surrounding vehicle behavior, can be applied. Addi-

tionally, enhanced exploration techniques, like curiosity-driven learning, could help the

agent discover more efficient driving patterns. While the current results reflect a balanced

trade-off between speed and safety, these refinements could further enhance the advan-

tages of the RBDQN-CS algorithm under more dynamic driving conditions. In summary,

when converging, the proposed RBDQN-CS has higher rewards, higher average speed, a

lower collision rate and a higher reward using converged policy than the four benchmark

DRL algorithms in the normal and high traffic flows. After the converging, the proposed
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Figure 3.14: Rewards of the RBDQN-CS, PPO, A2C, DDPG and DQN in the high traffic
flow after the converging .

Table 3.2
Comparison of Collision Rate and Average Speed after the Converging

Scenarios Metrics PPO A2C DDPG DQN Ours

Normal traffic Flow
coll. rate (%) 4.6 4.3 4.1 3.7 2.3

avg. v (m/s) 20.36 18.83 21.86 22.34 23.73

High traffic Flow
coll. rate (%) 11.6 7.3 8.6 8.2 3.4

avg. v (m/s) 16.67 18.04 17.73 19.33 22.36

coll. rate means collision rate per 100 episodes during the converging. The best
results are highlighted in bold.

RBDQN-CS has higher average speed and lower collision rate than the four benchmark

DRL algorithms in the normal and high traffic flows. The results demonstrate the effective-

ness in terms of the safety and efficiency of the proposed RBDQN-CS in the normal and

high traffic flows. While the RBDQN-CS algorithm shows improved performance in both

average speed and collision reduction compared to benchmark DRL algorithms, achieving

near-perfect safety and avoiding almost all collisions requires further enhancements. This

can be addressed by refining the existing DQN-based framework with advanced strategies

tailored for highway driving. These include risk-aware planning with safety shields, adap-

tive safety margins that adjust based on traffic density, and multi-modal sensor fusion to

improve environmental perception. Additionally, adaptive reward shaping can further pe-
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Figure 3.15: Example illustration in the normal traffic flow.

nalize near-collision events, while continuous learning through online updates or transfer

learning can enhance adaptability to evolving traffic patterns. These improvements would

strengthen the robustness of the RBDQN-CS framework while maintaining efficient and

safe highway driving.

3.7.3 Examples in the Normal and High Traffic Flows

Using the proposed RBDQN-CS, the AV successfully changes the lane. Figs. 3.15 and

3.16 present lane-changing of the AV when it interacts with HDVs between 0− 3 s in

the normal and high traffic flows, respectively. The orange and blue blocks represent the

AV and the HDV, respectively. During this process, the AV changes lanes in three-lane

highways twice and seven time points of the AV are presented, including t = 0 s, t = 0.5 s,

t = 1.0 s, t = 1.5 s, t = 2.0 s, t = 2.5 s, and t = 3.0 s. The three lanes of this highway are

named by the upper, middle and bottom lanes from top to bottom.
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Figure 3.16: Example illustration in the high traffic flow.

In the normal traffic flow, when t = 0.5 s and t = 2.0 s, the AV starts changing the lane for

the first time (from the upper to middle lane) and for the second time (from the middle

to bottom lane ), respectively. At t = 1.0 s and t = 2.5 s, the AV changes lanes for the

first and second time, respectively.

In the high traffic flow, when t = 1.0 s and t = 2.0 s, the AV starts changing the lane for

the first time (from the bottom to middle lane) and for the second time (from the middle

to upper lane ), respectively. At t = 1.5 s and t = 2.5 s, the AV changes lanes for the first

and second time, respectively. In both traffic flows, the AV maintains stable and safe aside

from the lane-changing.
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3.8 Evaluation Based on DDTUI
The RBDQN-CS has considered and verified all the factors of DDTUI, contributing to

state-of-the-art DRL-based decision-making. For driving safety, RBDQN-CS employs a

collision penalty to ensure that the safety intentions generated during convergence and

collision detection function as rule-based safety mechanisms, effectively reducing collisions.

Verification is achieved by comparing the collision rates of RBDQN-CS with those of other

benchmark algorithms, indicating lower collision rates. The rule-based safety mechanism

provides comprehensible mathematical formulations, enhancing interpretability. Regard-

ing driving efficiency, RBDQN-CS uses an efficiency reward to encourage the AV to reach

the endpoint as quickly as possible. Verification is achieved by comparing the average

speeds of RBDQN-CS with other benchmark algorithms, demonstrating higher average

speeds. For training efficiency, RBDQN-CS utilizes a risk-attention mechanism, a balanced

reward function, and a collision supervisor to achieve faster convergence. Verification is

achieved by comparing the convergence rates of RBDQN-CS with other benchmark algo-

rithms, indicating faster convergence. Unselfishness is addressed by limiting the number

of lane changes to minimize disturbance to other vehicles. Verification is provided through

scenarios illustrating the AV’s minimal lane changes from the initial lane to the target

lane. RBDQN-CS considers the needs of users, companies, and public traffic, supporting

the adaptation of DRL-based decision-making as a practical real-world solution.

3.9 Summary
this chapter proposed a DRL algorithm, called RBDQN-CS, to improve the safety and ef-

ficiency of AVs on highway interactive driving. This proposed RBDQN-CS is achieved by

introducing the risk-attention mechanism, the balanced reward function, and the collision-

supervised mechanism to DRL. The effectiveness of this proposed RBDQN-CS with re-

spect to safety and efficiency has been validated. In particular, the proposed RBDQN-CS

surpasses DQN, BDQN, RDQN, and DQN-CS in terms of a higher reward both at con-

vergence and after convergence, lower collision rate, higher average speed, and faster

convergence. In addition, The proposed algorithm outperforms PPO, A2C, DDPG, and
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DQN in terms of a higher reward both at convergence and after convergence, lower col-

lision rate, higher average speed, and faster convergence in the normal and high traffic

flows. In the future, extensive research will be conducted in two aspects, including 1)

improving the predictions for HDV’s trajectories, and 2) extending the algorithm to tasks

with multi AVs by using multiple agents.
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Chapter 4

Balanced Exploration and
Curiosity-inspired Decision Making

Autonomous racing is a specialized case of autonomous driving. Compared to standard au-

tonomous driving, autonomous racing requires decision-making at the extreme situations,

increasing its difficulty. However, full exploration of extreme-case driving benefits the

development of autonomous driving, as extreme cases reveal the upper capabilities of au-

tonomous systems. While Chapter 4 proposed a decision-making framework for standard

autonomous driving, this chapter explores decision-making under these extreme condi-

tions. Autonomous racing has attracted extensive interest due to its great potential in

self-driving at the extreme limits. Model-based and learning-based methods are widely

used in autonomous racing. Model-based methods often struggle in complex environments

when only local perception is available. This limitation can be overcome by Proximal Pol-

icy Optimization (PPO), a typical learning-based method that does not rely heavily on

global perception. PPO is an on-policy reinforcement learning algorithm that improves

training stability using a clipped surrogate objective to limit the change in policy between

updates, ensuring robust and efficient learning. However, existing PPO faces challenges

with low training efficiency in long sequences. To solve this issue, this chapter develops

an improved PPO by introducing a curiosity mechanism, a balanced reward function, and

an image-efficient actor-critic network. The curiosity mechanism focuses on training on

key segments, facilitating efficient short-term learning of the PPO. The balanced reward

function adjusts rewards based on the complexity of racetracks, promoting efficient ex-

ploration of the control strategy during training. The image-efficient actor-critic network
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Figure 4.1: Sketch of a closed-circuit car racing environment.

enhances the PPO to fast process the perceived information. Simulation results on a phys-

ical engine demonstrate that the proposed algorithm outperforms benchmark algorithms

in achieving less number of collisions, higher peak reward with less training time, and

shorter laptime among multiple testing racetracks.

4.1 Introduction
Racing is a challenging and exciting sport that requires reliable decision making, precise

control, and robust perception because of complex racetracks. As illustrated in Fig. 4.1,

the racetracks are designed with a series of sharp bends, which makes safe driving more

difficult at high velocity.
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Figure 4.2: Diagram of the autonomous racing algorithm using the curiosity-assisted prox-
imal policy optimization.

To address the limitations of traditional car racing approaches, autonomous racing has

been developed, which combines the excitement of human car racing and the state-of-the-

art autonomous driving technologies. Compared to traditional car racing, autonomous

racing can drive through complex tracks at the speed limits with high precision due to its

superior decision-making capabilities. The capabilities of autonomous racing have been

demonstrated in the Roborace [207–209], Indy Autonomous Challenge [210–212], and

Formula Student Driverless [213].

Global perception and local perception are both being applied to the autonomous rac-

ing. Out of which, local perception-based methods rely less on equipment and therefore

are more cost effective. Perception-based decision making consists of model-based and

learning-based methods. Learning-based methods are more promising because the global

perception is not excessively used. For example, RL is capable to adapt to the local condi-

tions of the environment and generates optimal control commands [25]. DRL, extending

RL with DNN to handle complex functions, allows agents to learn from high-dimensional

inputs like images. Existing DRL algorithms, such as the PPO, perform well in short-term

gaming scenarios. However, these algorithms still encounter challenges in the learning dur-

ing the long-duration racing. To this end, a local perception-based, image-efficient, and

balanced reward-orientated PPO with curiosity mechanism (PPO-C) is proposed in this
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chapter, as illustrated in Fig. 4.2. The inputs of the decision network are the sequence

of local images. An image-efficient decision network is proposed to process images and

generate safe control commands. The curiosity mechanism [214] uses intrinsic rewards

to encourage the agents paying more attention to the steps with large prediction errors.

Therefore, the agents can mitigate the uncertainties in local planning. Furthermore, a

balanced reward function is proposed to consider both historical and prospective actions.

The main contributions of this chapter are as follows.

• Only the local perception is used to get images that combine the racing vehicle and

the surrounding environment. Global perception is no more required in detecting

the boundaries and the center line of the racing track.

• The time required to reach the saturation value of rewards is significantly reduced,

and the collisions with sharp bends are avoided. The convergence of the training is

improved over benchmark algorithms.

• Shorter laptime and less collisions are achieved by the proposed balanced reward

function. The challenge of maintaining balanced exploration over long sequences is

tackled by introducing the balanced reward function.

4.2 Related Works

4.2.1 Challenges in Autonomous Racing

In traditional car racing, human driving skills dominate the competition because unex-

pected disturbances are often encountered. To minimize the effects of these disturbances,

two main approaches have been developed. The first approach aims to optimize the aerody-

namics of the racing car, and the second approach is to design effective control strategies.

Despite the demonstrated effectiveness, the first approach is restrained by the limited

potential for improvement. For the majority of race cars, the aerodynamic models have

been optimized to their maximum capacity. The drawback of the second approach lies

in the absence of an experience-based decision-making mechanism. Therefore, the con-

trol performance cannot be effectively transferred to different tracks. Existing methods in

autonomous racing are mainly ground in global perception and local perception. Global
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Table 4.1: Enhanced comparison of key features across different reinforcement learning
algorithms with reasons for differences

Feature PPO-C DDPG PPO SAC Reasons for Difference
Enhanced conver-
gence consistency

✓ ✓ PPO-C and PPO use a
clipped objective function
limiting excessive updates,
enhancing training conver-
gence consistency.

Ability to focus on
complex segments

✓ Curiosity rewards enhance
learning in complex scenar-
ios against SAC and DDPG.

Adaptation to com-
plex environments

✓ Curiosity rewards help
PPO-C adjust strategy
more effectively in complex
conditions than other algo-
rithms.

Improved data uti-
lization efficiency

✓ ✓ PPO-C and PPO update
their learning multiple
times per sample, improv-
ing efficiency.

Optimization of
critical behaviors

✓ ✓ ✓ PPO-C targets critical ar-
eas through intrinsic curios-
ity, unlike standard PPO or
SAC.

Promoting explo-
ration in uncer-
tainty

✓ Curiosity-based exploration
targets high uncertainty ar-
eas ignored by other algo-
rithms.

Advanced reward
structure

✓ PPO-C uses prediction er-
rors in rewards to accelerate
learning, unlike other algo-
rithms.

perception leverages comprehensive environmental data, the whole maps, and precise lo-

calization to provide a broad context for long-term planning [215, 216]. External sensors

have been applied to global perception such as GPS, Inertial Measurement Unit (IMU),

or Vehicle-to-Everything (V2X) communication. On the other hand, local perception fo-

cuses on real-time sensor data to detect and respond to immediate surroundings, ensuring

dynamic object detection, short-term planning, and collision avoidance. Local perception

uses onboard sensors, such as cameras and LIDARs [217]. For example, local perception

is employed to perceive the surrounding road geometry and plan the vehicle speed in

high-speed driving [218].
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Global perception-based methods, predominately used in real world racing, heavily depend

on specific perception conditions [212,219,220]. However, local perception-based methods

are not bounded by specific perception conditions, reducing costs associated with global

perception-based equipment. Therefore, local perception-based methods have gained pop-

ularity in autonomous racing [221,222]. Model-based methods rely on pre-defined models

or extra processes, such as Gaussian Process (GP) to quantify uncertainties [223]. How-

ever, model-based methods are incapable to cope with complex environments when only

local perception is available. Model-based methods struggle in complex environments with

only local perception due to their reliance on predefined planning and optimization rules.

Without global information, these methods often lack the flexibility to handle unpre-

dictable sections, as they may not obtain safe and efficient routes in unseen environments.

A path-planning method is proposed in [224] that uses a path created by connecting the

center lines on the straights and using clothoids between the center lines. The forward

center line is required for global perception. A minimum-time optimal control problem

using the centerline of the racetrack is formulated in [225]. Furthermore, uncertainty

quantification in Model-based methods, such as GP, may encounter challenges when the

real racetrack differs significantly from the tracks used to define the uncertainties. As a

comparison, learning-based methods learn the optimal driving manner from data [226].

DRL, an advanced learning-based method that leverages deep neural networks to approx-

imate complex functions, enables agents to learn from locally perceptive images. Addi-

tionally, [227] secured the world championship in automobile racing by using the DRL.

It demonstrated the outstanding capability of DRL to enhance both the safety and sta-

bility in autonomous racing. Furthermore, [228] proposes a DRL powered racing system

that surpasses the quickest human driver among a dataset comprising more than 50,000

players.
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4.2.2 Deep Reinforcement Learning

State-of-the-art results of using DRL have been demonstrated in autonomous cars [208].

Recently, a set of DRL algorithms with exceptional performance have attracted interest,

such as DDPG, SAC and PPO algorithms.

DDPG is an off-policy algorithm that uses deep neural networks to learn the control policy.

With its suitability for handling high-dimensional data, multiple demonstrations of using

DDPG have been presented in autonomous driving [38]. In particular, a DDPG model

was proposed for safe driving within an end-to-end architecture [38]. Improved DDPG

models have been proposed to enhance training efficiency [39]. The speed of racing cars

could be accelerated by using DDPG, as demonstrated in [229]. A vision-based DDPG

that considers driving safety at high speeds was proposed in [230]. In these studies, DDPG

produces a definite control policy instead of a probability distribution of control policies.

However, this definite control limits the exploration of other potential actions, implying

that the decision may be satisfactory but not optimal. SAC is another off-policy model

that incorporates a maximum entropy framework to enhance training robustness [231].

It has been shown to achieve higher average speeds than DDPG on multiple racetracks

[232]. However, [232] focuses solely on optimizing average speed without considering other

factors, such as reducing collisions with racetracks. Although SAC encourages exploration,

it might not efficiently explore strategies to simultaneously minimize lap times and avoid

collisions due to its undirected exploration. Furthermore, SAC’s entropy term in the loss

function sometimes leads to excessive exploration and slower convergence in complex

scenarios.

The PPO depicts the control policy as a probability distribution, which facilitates faster

exploration of strategies compared to DDPG [195]. Moreover, PPO uses a policy gradient-

based method, achieving a stable equilibrium and providing assurance of its steadiness

[233]. In contrast, off-policy algorithms are unstable and ineffective because they rely on

training data that must be efficient under the current policy [234]. PPO has been used for

generating driving strategies that balance safety and efficiency [34]. However, PPO aims to

identify the most favorable steps for improvement while avoiding regression that could lead
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to performance degradation. In PPO, the agent may struggle to generalize its experiences

across different states and actions, leading to slower convergence. Moreover, PPO is prone

to falling into local optima, which increases the training time [235]. Furthermore, the

training efficiency of PPO in complex environments is low [236].

In summary, current DRL algorithms encounter challenges in fully exploring the envi-

ronment, unstable training in off-line algorithm, and exhibiting lower convergence speed.

PPO addresses some of these challenges by employing probability distributions for explo-

ration. However, the training efficiency of PPO diminishes in complex-environment tasks

like racing due to the increased variability. Moreover, the inherent risk of collisions with

track boundaries during perilous turns remains unresolved due to its averaged intention

mechanism. Additionally, achieving balanced exploration is crucial in long sequences to

effectively construct the probability distribution of PPO. To mitigate these issues, a bal-

anced reward-orientated PPO with curiosity mechanism is proposed in this chapter. The

proposed curiosity mechanism directs the attention of PPO to critical short segments, thus

enhancing the training efficiency. Furthermore, the balanced reward function facilitates

balanced exploration from a global perspective. As a result, the low convergence speed

and poor performance in crucial racing sections of PPO are addressed by introducing the

curiosity mechanism and the balanced reward function.

The advantages of PPO-C compared to PPO, DDPG, and SAC are summarized in Table

4.1. PPO-C uses intrinsic rewards to drive targeted exploration towards less-understood

regions. The targeted exploration is particularly beneficial in complex environments such

as racing, where standard rewards are sparse or less informative. Moreover, PPO-C excels

in dynamically changing environments by continually adapting its policy to maximize

both normal and intrinsic rewards. The adaptive learning fosters learning in crucial and

difficult-to-navigate parts, optimizing critical behaviors, and promoting exploration based

on state uncertainty.
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Figure 4.3: Structure of the image-efficient actor-critic network.

4.3 Decision Network
The decision network is to generate safe and efficient control commands during training.

The decision network consists of two sets of image-efficient actor-critic networks that

receive the sequence of images, the balanced rewards of actions and the curiosity reward

respectively. The control policy in the actor-critic network compares the candidate control

commands and chooses the best one based on their relative advantages.

4.3.1 Network Structure

The aforementioned two actor-critic networks select actions based on the states of the rac-

ing car. Given the proven effectiveness of convolutional neural networks (CNN) in image

classification [237], a series of convolutional layers are used to extract essential informa-

tion from raw image data. The control policy selects commands to minimize collisions and

laptime. Fig. 4.3 illustrates the actor-critic network structure. While the current image-

efficient actor-critic network effectively processes 2D image inputs, future advancements

in autonomous driving simulations are expected to incorporate 3D image data for more re-

alistic environmental perception. To enhance the network’s ability to handle such inputs,

integrating transformer-based architectures, such as Vision Transformers or Swin Trans-

formers, would be a promising direction. These models can improve feature extraction and

decision-making by capturing long-range dependencies and complex spatial relationships,

ensuring robust performance in advanced simulators.



97

Algorithm 4: Actor-Critic Network
Input: State St+1, reward rt
Output: Policy πθ evaluated by the Actor-Critic Network
Initialize actor and critic network weights randomly
for each racing sequence do

for m = 1 to M do
for t = m to T do

Run actor network (AN) to receive an action at using current policy πθ
Run critic network (CN) to compute rewards Rt , . . . ,RT
Compute the advantage A of action at
A = Rm + γRm+1 + · · ·+ γT Rm+T

end for
end for
Update πθ based on the computed advantage A

end for

The actor-critic network comprises an actor network (AN) and a critic network (CN) in

similar structures. The AN generates candidate control commands and the CN assesses

their relative advantages. The AN consists of an input layer, convolutional layers, a linear

layer, and an output layer. It processes the current state, extracts features, adds linearity

for better representation learning, and generates control commands. The ReLU activation

is used to introduce non-linearity. The CN is composed of an input layer, convolutional

layers, and an output layer. It uses the AN output and current state as inputs, extracts

features, and selects the best control commands based on their evaluation. The CN aims

to reflect long-term advantages over a period T , comparing the performance of selected

control commands with the average performance.

The convolution layer (CL) is expressed as:

CL = (A,B,C) (4.1)

where A , B , and C indicate the number of input channels, the number of output channels,

and the kernel size, respectively. The actor-critic network for racing is summarized in

Algorithm 4.
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To verify the image-efficient property of the proposed network, a comparison is made

against the SqueezeNet [238]. The SqueezeNet is designed to achieve high accuracy with

significantly fewer parameters and a smaller model size, making it theoretically suitable

for processing imagingltraining data. However, when applied to the training in car rac-

ing, SqueezeNet achieves a peak reward of around 150, which is substantially lower than

the peak reward of 900 obtained by the proposed network. This suggests that although

SqueezeNet is efficient in parameters, it might not be as effective in handling the spe-

cific characteristics of racing images.The limited capacity and heavy reliance on 1× 1

convolutions in SqueezeNet restrict its ability to capture intricate spatial relationships.

Additionally, fine-grained details that are crucial for optimal performance in car racing

may also be inadequately represented. The proposed network proves to be more successful

in capturing spatial dependencies and making accurate decisions in the complex task of

car racing.

4.3.2 Control Policy Update of the Decision Network

The control policy is determined by the weights of the neurons in the decision network.

Therefore, the weights of the neurons should be adjusted to optimize the control policy.

Fig. 4.4 shows an example of a learning process involving a single racing sequence. The

autonomous racing car starts from the starting point with the maximum score sm . During

the racing, two types of losses including safety loss Ls and efficiency loss Le are defined.

Ls increases as the distance to the track boundaries decreases. Le is a constant value until

the car completes the racing. When the autonomous racing car reaches the finish point,

a final score is calculated.

The final score s f is formulated as

s f = sm−Ls−Le (4.2)
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Figure 4.4: Control policy update of the decision network.

once the final score is obtained, a score comparator compares the final score with a

predefined expected score. If the final score is higher than the expected value, the weights

of the neurons in the decision network are updated. Otherwise, the weights are maintained,

as the performance does not meet the expected level. When the racing car leaves the

racetrack, the training score suffers significant safety losses, hindering the attainment of

expected rewards. As decision sequences failing to reach the expected rewards are sieved

out, the control policy updating prevents instances of the car veering off the track.
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4.4 Curiosity-assisted Training Optimization
The curiosity-assisted optimization aims to enhance the training efficiency and the atten-

tion to dangerous sections, composing of the balanced reward function and the curiosity

mechanism. The balanced reward function is to avoid collisions and reduce laptime during

the training. The curiosity mechanism is to make optimal decisions in particular under

hazard conditions.

4.4.1 Feature Encoding with CNNs

This thesis uses local perception. Therefore, the input to the curiosity mechanism consists

of a sequence of raw images, {It}T
t=1, captured from the racing environment over a period of

time, from t to T . The It represents the image at time step t. To extract meaningful features

from these images, the CNNs are employed as the feature encoder. The CNNs learn to

detect local patterns and features in the input images, reduce the spatial dimensions and

provide translation invariance. Let θ f denote the parameters of the feature encoder. At

each time step t, the CNNs process the input image It and output a feature vector Fm,t :

Fm,t = CNN(It ;θ f ) (4.3)

The encoded feature vector Fm,t captures the relevant information from the input image

It and serves as a compact representation of the racing environment at time step t.

4.4.2 Curiosity Mechanism

In DRL, the agent is expected to pay attention to specific sections of racetracks. However,

the traditional agent explores each part of the game with equal attention, indicating

that no particular areas receive highlighted emphasis. Although a high averaged reward

generally signifies good performance, safety issues may persist in dangerous corners due

to unequal focus. Hence, establishing an attention-distribution mechanism is necessary.

To diversify the focus across distinct sections, the curiosity space Sc is denoted by

Sc =| Fm−Fp | (4.4)
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where Fp denotes the predicted encoded features. Sc quantifies the discrepancy between

the outputs Fm and Fp. A higher value of the discrepancy indicates a poorer understanding

of the environment. Therefore, this value enables the agent to identify sections of the

racetrack where its understanding is lacking and that require further exploration. By

encouraging targeted exploration in these sections, the agent can efficiently gather data

and refine its understanding of the environment. This targeted exploration also helps

maintain a balance between exploration and exploitation. Therefore, the agent is ensured

not to get stuck in suboptimal behaviors and continuously improves its performance.

At each time step t , assume that the action at , current state st and next state st+1 are

known. The output encoded features of the current state Fm,s and the next state Fm,s+1

could be obtained via feature quantifier vectors

Fm,s = q(st ,θ f ) (4.5)

Fm,s+1 = q(st+1,θ f ) (4.6)

where Fm,s denotes the current encoded features. Fm,s is taken as the input to obtain the

predicted encoded features of the next state Fp,s

Fp,s = FM(at ,Fm,s) (4.7)

where FM is the forward model to predict the feature representation of the next state.

The curiosity reward space rc could be obtained by

rc = β
∥∥Fm,s+1−Fp,s

∥∥2
2 (4.8)

where β is a scaling factor obtained by calibration. The curiosity reward rc plays a vi-

tal role in guiding the agent’s exploration and enhancing its learning efficiency. While

Sc quantifies the discrepancy between predicted and actual encoded features, rc takes

this discrepancy and directly incorporates it into the reward. The integration of curiosity

into the reward function provides several advantages compared to using Sc alone. From a

theoretical perspective, incorporating rc directly into the reward modifies the DRL objec-
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tive to include an intrinsic motivation component. This modification can be formalized

by augmenting the traditional reward function with rc as an integrated reward. By di-

rectly influencing the agent’s reward, rc helps prioritize actions that reduce significant

uncertainty, leading to more efficient learning. The agent receives immediate feedback by

exploring uncertain states, which is reflected in the integrated reward. The integrated

reward encourages a balanced approach to exploration and exploitation. This balance is

crucial in DRL, as it prevents the agent from focusing too much on curiosity (exploration)

at the expense of task performance (exploitation).

The β parameter in the curiosity reward equation is used to appropriately scale the

difference between the predicted feature vector Fp,s and the real feature vector Fm,s+1,

ensuring the difference contributes effectively to the training process. The value of β was

determined through an adaptive tuning process. Initially, β = 1 was applied as a baseline.

If the training performance with curiosity was worse than without it, β was increased to 2.

If this adjustment improved performance, the value was further increased incrementally

until a performance decline was observed. This approach ensured an optimal balance

between exploration and task-specific learning.

By maintaining a constant exploration and learning, rc helps the agent overcome unsat-

isfying sections associated with high discrepancy and facilitates continuous learning and

improvement. Furthermore, β in the computation of rc allows for the balancing of cu-

riosity with the traditional reward. This ensures that the agent’s exploration is flexibly

guided by both curiosity and task-specific objectives.

4.4.3 Balanced Reward Function

The reward function is the feedback module that evaluates the actions generated by the

decision network. During autonomous racing, the laptime and collision rates are the two

major factors that evaluate the performance of the racing car. The laptime reflects the

effectiveness of actions, while the collision frequency measures the safety of actions. There-

fore, a good reward function for autonomous racing should guide the decision network to

select actions that can avoid collisions with the track boundaries and reduce the laptime.

However, the traditional reward functions assign equal attention to each step. The aver-
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aged reward is heavily influenced by previous high-reward actions. Therefore, the averaged

reward is not able to balance the historical and current rewards. The averaged reward

function is defined as

rave = 0.99rave +0.01rcurrent (4.9)

where rave and rcurrent are the averaged reward for historical states and the reward of the

current state, respectively. (4.9) represents an exponential moving average of the reward,

commonly applied in PPO to maintain a stable performance estimate. Here, the weight

0.99 emphasizes historical rewards, ensuring stability by minimizing the impact of short-

term fluctuations, while the 0.01 weight allows gradual adaptation to current rewards. This

balance ensures consistent policy updates without overreacting to individual rewards, a

standard practice in reinforcement learning to promote robust and adaptive training. The

selected discount of 0.99 are used in [239], ensuring that the running reward estimate

remains both reliable and informative throughout training.

Collisions during large and series bends at high speeds are the main safety concerns. The

reward function should pay more attention to these critical steps, which are called corner

rewards. However, the averaged reward cannot focus on dangerous scenarios effectively,

as the averaged reward gives equal weights to all historical steps. Moreover, the longer

the sequence length, the less attention it pays to the performance of each single step. To

address this issue, a hyper parameter is introduced to balance the average reward and

the corner rewards. With the hyper parameter, a balanced reward function is proposed

to consider both the historical and current rewards

rb = (1− γ ∗Nc)rave + γ ∗Nc ∗ rcurrent (4.10)

where γ represents a hyper parameter that directs the racing car to prioritize random

corners. rb is the balanced reward under the current state of the racing car. Nc is the

number of corners. If there are lots of corners, the current decision is more crucial and

thus the discount of historical reward becomes higher. rave is formulated as

rave =
N−1

∑
i=1

si
f (4.11)
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where N is the number of current step. si
f is the final score at ith step. rcurrent is equal to

s f at N step. Therefore, γ promotes a safety-aware and forward-looking strategy, allowing

the car to pay attention to possible dangers.

Constraints on the learning speed are also required to be limited within a fair range

during each update. To improve the stability in learning, a clipped surrogate objective is

used to control the learning speed. The clipped surrogate objective prevents significant

adjustments of neurons that might lead to control policy divergence. The clipped surrogate

objective is employed to update the policy network. The clipped surrogate objective is

defined as

Lclip = min(R∗A,clip(R,1−σ ,1+σ)∗A) (4.12)

where R is the ratio of the new policy probability to the old policy probability, and the

clip() function ensures that each component of the gradient is limited between 1−σ and

1+σ . A is obtained from the decision networks, and σ is a self-defined hyper-parameter

constraining the change for the weights of neuros during each iterative update.

In this work, the σ hyperparameter was fine-tuned based on training observations. Ini-

tially set to 0.2, the standard value for PPO, σ was intended to facilitate moderate policy

updates while preserving stability. However, during training, significant fluctuations in

the reward curve were observed, leading to unstable learning characterized by high vari-

ance and inconsistent convergence across training episodes. This instability suggested that

policy updates were overly aggressive, causing the agent to overfit to recent experiences

while compromising its generalization across diverse scenarios. To address this issue, σ

was gradually reduced to 0.1, ensuring that the R closer to 1, thereby encouraging more

conservative updates. This reduction effectively constrained policy changes, preventing

abrupt shifts in behavior between training iterations. As a result, the training process ex-

hibited smoother convergence, with the policy improving consistently without pronounced

performance fluctuations.
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Algorithm 5: Curiosity-assisted Control Policy Update
1: Input: State s0, hyper-parameter α
2: Output: Policy πθ evaluated by the Critic-Actor Network
3: Randomly initialize Actor Network (AN), Critic Network (CN), Forward Network

(FN), and Inverse Model (IM)
4: Initialize state s0
5: Define the value of hyper-parameter α for FN and BN
6: for m = 1 to M do
7: Use AN to obtain sm, rm, am, and sm+1
8: Compute curiosity reward rc using Equation (6)
9: Reconstruct reward rm← rm + rc

10: Store sm, rm, am, sm+1 into the game sequence
11: Compute advantage A using Algorithm 4
12: Compute the loss of FN LF by

LF =
∥∥Fm,s+1−Fp,s

∥∥2
2

13: Compute predicted action ap by IM

ap = IM(Fm,s,Fm,s+1)

14: Compute the loss of IM LB by

LB =
∥∥ap−at

∥∥2
2

15: Update BN and FN using

min
AN,FN,BN

(1−α)LB +αLF

16: Update πθ in AN and CN using Algorithm 4
17: end for

4.4.4 Curiosity-assisted Control Policy Optimization

The update of control policy based on the curiosity mechanism is summarized in Algorithm

5. The IM is a component of the decision network that predicts the actions based on

the current state and a target state. The FN is the forward network that implements

the forward model using a neural network. BN is the backward network that learns the

rationale of selecting actions from a target state and moving backward to the current state.

Unlike traditional control policy updates, the curiosity-assisted control policy updates

both the FN and the BN. The update of the FN and the BN is conducted by balancing
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Figure 4.5: Curiosity-assisted control policy update of the decision network. (a) General
process of the control policy update. (b) Internal structure of the decision network.

the losses of the BN and the FN using a scaling factor α . The FN generates the curiosity

reward, and the BN explores the sections that need high attention. Fig. 4.5(a) illustrates

the curiosity-based policy update. The generated data is stored in the data storage, which

is the profit under the chosen actions based on the given state. The weights of the decision

network are updated using both actions and curiosity rewards.

Fig. 4.5(b) illustrates the internal structure of the decision network. The observer actor

network compares the ratio between the updated strategy and the previous strategy to

measure whether the update is proper. The critic network provides the relative advantages

to access the values of control commands. RMSProp is a process that helps train neural

networks by adjusting the learning rate for each parameter.

The learning begins with an initial exploration. During the initial exploration, the agent

randomly explores the racing environment. Therefore, the initial exploration allows the

agent to form a preliminary understanding of the environment. After the initial explo-

ration, the optimization is utilized to update the control policy network. With a contin-



107

uous interaction with the environment, the agent has the potential to focus on critical

areas. The curiosity mechanism enables the focused learning by directing the attention

towards regions with higher potential for improvement. Throughout the learning, the de-

cision results are evaluated against a set of predefined metrics, such as the laptime and

collision occurrence frequency. By evaluating the driving performance during the training,

the algorithm can be fine-tuned for various car racetracks.

4.4.5 Curiosity-based Training with Balanced Reward Function

To incorporate both the balanced reward rb and the curiosity reward rc, a dual decision

network is employed. The network consists of two separate networks: the primary decision

network Dp and the curiosity decision network Dc. Out of which, Dp is trained using the

balanced reward rb, which reflects the agent’s performance in terms of safety and efficiency.

Dc is trained using the curiosity reward rc, which encourages exploration based on the

discrepancy between predicted and actual encoded features. At each time step t, the

input image It is processed by the CNN feature encoder to obtain the encoded features

Fm,t . These encoded features are then given to both decision networks in generating their

respective actions ap,t and ac,t :

ap,t = Dp(Fm,t ;θp) (4.13)

ac,t = Dc(Fm,t ;θc) (4.14)

where θp and θc denote the parameters of Dp and Dc, respectively. The action at executed

in the environment is determined by Dp. The training for the dual decision network is

illustrated in Algorithm 6. During each training episode, the racing environment is reset,

and the initial state s0 is obtained. At each time step t, the input image It is processed by

the CNN feature encoder to obtain Fm,t . Fm,t are then given to Dp and Dc in generating their

respective actions ap,t and ac,t . The action at executed in the environment is determined

by Dp. Dp is updated using the tuple (st ,ap,t ,rb,t ,st+1), which includes the balanced reward

rb,t . Dc is updated using the tuple (st ,ac,t ,rc,t ,st+1), which includes the curiosity reward

rc,t . At the end of each training epoch, the weights of Dp and Dc are exchanged. This

weight exchange allows the networks to share their learned knowledge and benefit from

each other’s experiences.
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Algorithm 6: Curiosity-Driven Exploration with Balanced Reward Function
1: Input: Total epochs N, total episodes M, total timesteps T , hyper-parameter α , β
2: Output: Trained policy networks Dp and Dc
3: Randomly initialize CNN feature encoder with θ f , Dp, Dc, Forward Model (FM),

and Inverse Model (IM)
4: Initialize state s0
5: Define the value of hyper-parameter α for balancing the losses
6: for epoch = 1 to N do
7: for episode = 1 to M do
8: Reset racing environment and obtain initial state s0
9: for t = 0 to T −1 do

10: Obtain input image It from state st
11: Compute encoded features Fm,t = CNN(It ;θ f )
12: Generate actions ap,t = Dp(Fm,t ;θp) and ac,t = Dc(Fm,t ;θc)
13: Execute action at = ap,t and observe next state st+1, reward re,t , and curiosity

reward rc,t
14: Obtain input image It+1 from state st+1
15: Compute encoded features Fm,t+1 = CNN(It+1;θ f )
16: Predict encoded features Fp,t = FM(Fm,t ,at ;θ f m)
17: Compute curiosity reward rc,t = β∥Fm,t+1−Fp,t∥2

2
18: Reconstruct reward rt = re,t + rc,t
19: Store transition (st ,at ,rt ,st+1) into the replay buffer
20: Compute the loss of FM LF = ∥Fm,t+1−Fp,t∥2

2
21: Predict action ap,t = IM(Fm,t ,Fm,t+1;θim)
22: Compute the loss of IM LI = ∥ap,t−at∥2

2
23: Update FM and IM by minimizing (1−α)LI +αLF
24: Update Dp and Dc using the stored experiences in the replay buffer
25: end for
26: Exchange weights between Dp and Dc
27: θp← θc
28: θc← θp
29: end for
30: end for

4.5 Real-time Proximal Control Policy Update
The real-time control policy update comprises the gradient-based control policy mecha-

nism and the experience network. The experience network uses the gradient-based mech-

anism to adjust parameters and produce safe control commands.
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4.5.1 Gradient-based Policy Update for Real-time Control

The PPO-C aims to learn the rules of choosing actions based on the states of the car

and the local racing environment. Therefore, learning a precise policy in a short time is

essential for effective DRL. The gradient policy method is applied to learn the control

policy more efficiently, enabling the experience network to update its driving strategy by

leveraging the gradient of rewards.

A racing sequence includes a series of states. Denote N as the number of separated states.

The control commands are generated by a probabilistic network for each state. The prob-

ability of choosing a proper action in a given state is written as pθ (at |st) . θ represents the

parameters of the policy model. The training involves continuously updating the prob-

abilities of different control commands. The racing sequential probability is formulated

as

S = (pθ (a1|s1), pθ (a2|s2), ..., pθ (aN |sN)) (4.15)

During the racing, the number of collisions with the track boundaries indicates the level

of safety. The laptime indicates the level of racing capability. The probability of achieving

a game sequence pm in the mth track is defined as

pm =
N

∑
t=1

pθ (at |st) (4.16)

Assume the total number of racetracks is M , and Rm is the reward among the mth track.

Thus, to generate a probability distribution suitable for safe and efficient driving on

different racetracks, a reward function is defined as

Rtotal =
M

∑
m

Rm pm (4.17)

where Rtotal is the total reward among M tracks. As Rm is a fixed value for the sequence

m , pm should be adjusted to increase Rtotal . The radient descent method is an effective

way to update the decision network towards the desired outcomes. The desired outcomes

are defined as shorter laptime and collision avoidance. The gradient descent method is
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expressed as

▽ f (x) = f (x)▽ ln f (x) (4.18)

Lemma 1 is used to transform (4.18) to a more rigorous format.

Lemma 1. For a differentiable function f (x) , the following equation holds:

f (x)
dln f (x)

dx
= f ′(x)

Proof. Assume the initial conditions are

y = ln f (x)

z = f (x) (4.19)

Then we have

y = lnz (4.20)

According to (4.20), the following equation is obtained

dy
dz

=
1
z

(4.21)

From (4.19) we have
dz
dx

= f ′(x) (4.22)

It is seen that
dy
dx

=
dy
dz
× dz

dx
(4.23)

According to (4.21), we have
dy
dx

=
1
z
× f ′(x) (4.24)

Afterwards, (4.24) could be further transferred to

dy
dx

=
1
fx
× f ′(x) (4.25)
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Combining y = ln f (x) with (4.25), the proof is finished with

f (x)
dln f (x)

dx
= f ′(x) (4.26)

With Lemma 1, (4.17) is further transferred to

▽Rtotal =
M

∑
m

Rm pm▽ lnpm (4.27)

Assuming that there is a long series of states, the probability of each racetrack pm is

extremely low and thus considered with the same small value. This small value is assumed

to be in accordance with classical probability distribution, and (4.27) is further transferred

to

▽Rtotal =
1
m

M

∑
m

Rm▽ lnpm (4.28)

Finally, each racing sequence could be expanded to N steps

▽Rtotal =
1
m

M

∑
m

Rm

N

∑
t=1
▽lnpm(at |st) (4.29)

The objective of (4.29) is to approach sequences associated with greater racing rewards. θ

is updated by utilizing the rewards of each racing sequence. As illustrated in Fig. 4.6, the

incorporation of a gradient-based mechanism significantly boosts the training efficiency

by handling distinct states. Adhering to racing regulations, the racing reward is desired

to reduce both laptime and achieve collision avoidance. The update process of θ among

track m is formulated as

θ = θ +α▽ logeπm(at |st) (4.30)

where α is a parameter for the gradient exploration and πm is the strategy network

trained in the mth track. The whole process is illustrated in Fig. 4.6
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Figure 4.6: The gradient-based control policy update process.

4.5.2 Control Policy Optimization of the Experience Network

The experience network has the same actor-critic network as the decision network. There-

fore, the experience network keeps updating the actor-critic network parameters until the

average reward meets the desired value. The five steps to implement the control policy

update of the experience network are below.

• The historical game sequences are stored in the experience repla, which is a recorder

of the rewards for different combinations of states and actions. The current racing

environment, the car state and the reward are used to update the experience replay.

• Candidate commands are generated according to the current state, racing environ-

ment and control constraints.

• The relative advantages of candidate commands are estimated for every state-action

pair in the generated data through the actor-critic network.

• The optimal control commands are generated according to the relative advantages.

• The average reward over the past training is assessed. If the average reward is higher

than the desired value, the experience network is updated using a gradient-based

policy. Otherwise, the car state is updated and returned to the first step for new

iterations.
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Figure 4.7: The physical rule-based racing setup and test racetracks in the Box2D. (a)
The physical model of the racing car in the Box2D. (b) The definition of fixed distance
in the Box2D. (c) The local perception of racing car in the Box2D. (d) The various tire
traction in the Box2D.

4.6 Simulation Results
The simulations are designed to evaluate the safety and effectiveness of the PPO-C in

different driving scenarios. To generalize the training results, racetracks are randomly

selected from the candidate tracks. The training efficiency of PPO-C and three other DRL

algorithms has been assessed in terms of training scores over various training epochs. The

number of collisions with track boundaries and the lap time achieved by PPO-C have

been compared and analyzed on 50 random racetracks. The racing performance at critical

bends, trajectories, and variations of control levels are illustrated by four example cases.

4.6.1 Simulation Environmental Setup

The training and testing environment is Box2D, a widely used open-source physics engine

designed to simulate and animate two-dimensional rigid-body dynamics [240]. In Box2D,

the racing car is modeled as a rigid body with connected shapes, such as the chassis and

wheels, resembling a real-world car. Figure 7(a) shows the car model in Box2D, which

maintains a fixed distance between the body and tires, as exemplified in Fig. 4.7(b).
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Box2D also supports local perception, with cameras capturing images for the decision

network, as illustrated in Fig. 4.7(c). Additionally, Box2D realistically models tire traction

and body damping, considering car-track interactions, as illustrated in Fig. 4.7(d). Tire

traction varies with the contact area, and damping influences stability, simulating real-

world conditions. Moreover, Box2D uses collision filtering to manage collisions between the

car and track boundaries, enabling realistic suspension system simulations and enhancing

simulation fidelity.

4.6.2 Results and Analysis

4.6.2.1 Car Dynamics

In order to reduce the computing burden of PPO-C, a bicycle model is used for the racing

car in Box2D [241]

ẋ =Vcos(φ +β ) (4.31)

ẏ =V sin(φ +β ) (4.32)

φ̇ =
V
lr

sin(β ) (4.33)

V̇ = a (4.34)

β = tan−1(
lr

l f + lr
tan(δ f )) (4.35)

where x and y are the coordinates of car’s centre of mass. lr is the length between the

center of mass and car’s rear axle. l f is the length between the center of mass and car’s

front axle. β is the angle of the velocity with respect to the longitudinal axis of the car.

ψ represents the yaw angle. a and δ f are chosen as the inputs. a is the car longitudinal

acceleration

a = Fthrottle,maxuthrottle/M (4.36)

where Fthrottle,max and uthrottle are the maximum force of engine and the input level of

throttle gate, respectively. M is the mass of the car. δ f is the steering angle given by

δ f = δmaxusteering (4.37)
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where δmax is the maximum angle of steering and usteering is the input of steering level.

Therefore, the states of the car can be changed by adjusting the inputs usteering and

uthrottle . The proposed algorithm is also applicable to the Ackerman model.

The Box2D simulator used in this study effectively captures variable track friction and

system inaccuracies. Different friction coefficients are applied to various surfaces, such as

racetracks and grasslands, as demonstrated in Figure 4.7(d). This allows the simulator

to realistically reflect how the vehicle’s handling changes when transitioning between

high- and low-friction surfaces. The friction modeling ensures that the agent experiences

realistic traction conditions, influencing acceleration, braking, and cornering performance.

To address system inaccuracies, Box2D simulates control execution latency by introducing

a slight delay between the agent’s decision and the vehicle’s response. This time-step-

based simulation ensures that the agent learns to adapt its decision-making under realistic

conditions, accounting for both environmental complexity and system-induced delays.

These features provide a comprehensive simulation environment for testing autonomous

driving algorithms under real-world-like conditions.

4.6.2.2 Scenario Description

During the training, the racing car starts at the initial point and the race is considered

finished when it returns to the initial point. The car must avoid racetrack boundaries

to ensure the safety, beginning with an initial speed of 0 and aiming to reach the final

point as quickly as possible. this chapter designs scenarios with varying degrees of racing

aggressiveness to evaluate performance across different driving habits. The effectiveness

of PPO-C is evaluated every 50 episodes. The car drives approximately 80 steps, typically

encountering at least 6 curvy sections per racetrack.

• Scenario I: The car faces irregular racetracks with multiple curvy sections, in-

creasing the difficulty of avoiding collisions. A penalty of 1 for efficiency at each

step represents normal driving.

• Scenario II: The car has a higher penalty for efficiency of 1.5, demanding quicker

completion during training, representing aggressive driving. All other settings are

the same as in Scenario I.
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Additionally, different minibatch sizes of 10, 12, and 15 are used to validate the effec-

tiveness of PPO-C. Consistent performance across various minibatch sizes demonstrates

the robustness of the algorithm, indicating its effectiveness is not batch-size dependent,

making the results more reliable.

4.6.2.3 Fast Convergence by using the Image-based Curiosity

Mechanism

Simulations are demonstrated in the training curves of image-based PPO-C without bal-

anced reward, standard image-based PPO, and numerical features-based PPO-C across

different minibatch sizes and scenarios. The numerical inputs used as embedded features

include position, steering, and throttle openings. Fig. 4.8(a)-(f) plot the average reward

against the epoch, showcasing learning performance over time.

In Scenario I, Fig. 4.8(a) shows that with a minibatch size of 10, image-based PPO-

C significantly outperforms both PPO and numerical features-based PPO-C, achieving

higher average rewards more rapidly and maintaining superior performance throughout

training. Similarly, Fig. 4.8(b) and Fig. 4.8(c) depict minibatch sizes of 12 and 15, respec-

tively, where image-based PPO-C achieves higher rewards earlier and consistently out-

performs both PPO and numerical features-based PPO-C. In Scenario II, Fig. 4.8(d) with

a minibatch size of 10 shows image-based PPO-C maintaining its superior performance,

with higher average rewards across epochs. Figure 8(e) and Fig. 4.8(f) with minibatch

sizes of 12 and 15, respectively, demonstrate that image-based PPO-C still outperforms

both PPO and numerical features-based PPO-C. The poor performance of the numerical

features-based PPO-C is due to the limited capability of CNNs to process numerical data

effectively. Additionally, the numerical data can not reflect the distance of the racing car

from the grasslands, contributing to the poor training results.
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Figure 4.8: The training curves of PPO-C without balanced reward, normal PPO, and
PPO-C with numerical inputs across different minibatch sizes and scenarios. (a) The
average reward curve with a minibatch size of 10 in Scenario I. (b) The average reward
curve with a minibatch size of 12 in Scenario I. (c) The average reward curve with a
minibatch size of 15 in Scenario I. (d) The average reward curve with a minibatch size of
10 in Scenario II. (e) The average reward curve with a minibatch size of 12 in Scenario
II. (f) The average reward curve with a minibatch size of 15 in Scenario II.

4.6.2.4 Reasoning Parameters of the Balanced Reward Function

Simulations are demonstrated in selecting the appropriate γ for a balanced reward func-

tion. To ensure sufficient and convincing simulations, it is assumed that the historical

reward still constitutes the major portion of the total reward. Therefore, in this chapter,

the minimum historical reward ratio is set at around 0.8. Considering that racetracks typ-

ically have approximately six corners in the Box2D environment, we select the maximum

γ = 0.04:

γ =
(1−historical reward)

number of corners =
(1−0.8)

6
= 0.036≈ 0.04
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Figure 4.9: The training curves of the PPO-C with γ from 0.01 to 0.04 across different
minibatch sizes and scenarios. (a) The average reward curve with a minibatch size of 10
in Scenario I. (b) The average reward curve with a minibatch size of 12 in Scenario I.
(c) The average reward curve with a minibatch size of 15 in Scenario I. (d) The average
reward curve with a minibatch size of 10 in Scenario II. (e) The average reward curve
with a minibatch size of 12 in Scenario II. (f) The average reward curve with a minibatch
size of 15 in Scenario II.

The other three candidate values for γ = 0.01, 0.02, and 0.03, respectively. To verify the

generalization of the most suitable parameter for learning, three different minibatch sizes

are used: 10, 12, and 15. Additionally, to confirm the adaptability of the best parameter

across varied driving styles in racing, two different scenarios are employed to determine

the most appropriate parameter.

Fig. 4.9 displays the training curves of PPO-C with various values of γ (ranging from

0.01 to 0.04) across different minibatch sizes and scenarios. Fig. 4.9(a) to Fig. 4.9(f)

represent the following conditions: Fig. 4.9(a) to Fig. 4.9(c) are simulation results with

minibatch sizes of 10, 12, and 15 in Scenario I, respectively; Fig. 4.9(d) to Fig. 4.9(f)
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are simulation results with minibatch sizes of 10, 12, and 15 in Scenario II, respectively.

Across all the test cases, there is a consistent trend of increasing average rewards with the

number of epochs, generally stabilizing between 600 and 1000 epochs. Notably, the PPO-

C with γ = 0.03 tends to perform better across multiple settings. Curves with γ = 0.03

consistently achieve higher average scores and show more stability as training progresses.

For instance, in Fig. 4.9(a) and Fig. 4.9(d) with a minibatch size of 10, curves with

γ = 0.03 demonstrate superior performance compared to other values. Similarly, in Fig.

4.9(b), Fig. 4.9(c), Fig. 4.9(e), and Fig. 4.9(f) with larger minibatch sizes, the curves

with γ = 0.03 continue to outperform the others, achieving higher scores and smoother

trends. The variability of the reward curves decreases with larger minibatch sizes, showing

smoother trends for minibatch sizes of 15 compared to those of 10. Overall, γ = 0.03 is

identified as the best-performing configuration across the various scenarios and minibatch

sizes. Through comparisons with other benchmark algorithms, γ = 0.03 will be applied.

4.6.2.5 Comparison of Training Curves among Different Bench-

mark Algorithms

Fig. 4.10 displays the training curves of PPO-C compared with other benchmark algo-

rithms across different minibatch sizes and scenarios. In Fig. 4.10(a) with a minibatch

size of 10 in Scenario I, the PPO-C outperforms other algorithms consistently, achieving

higher average scores and demonstrating more stability, especially noticeable after 400

epochs. In Fig. 4.10(b) with a minibatch size of 12 in Scenario I, the PPO-C shows su-

perior performance, rising more sharply and stabilizing at a higher average score. Fig.

4.10(c) with a minibatch size of 15 in Scenario I shows the PPO-C continuing to out-

perform other algorithms, achieving higher average scores more quickly and maintaining

steady improvement. In Scenario II, Fig. 4.10(d) with a minibatch size of 10, PPO-C

remains the top performer, with its curve rising rapidly and stabilizing at a higher level.

Fig. 4.10(e) with a minibatch size of 12 in Scenario II shows PPO-C outperforming SAC,

PPO, and DDPG, achieving higher scores and showing less variability. Finally, in Fig.

4.10(f) with a minibatch size of 15 in Scenario II, the PPO-C maintains its lead, achieving
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Figure 4.10: The training curves of PPO-C with other benchmark algorithms across dif-
ferent minibatch sizes and scenarios. (a) The average reward curve with a minibatch size
of 10 in Scenario I. (b) The average reward curve with a minibatch size of 12 in Scenario
I. (c) The average reward curve with a minibatch size of 15 in Scenario I. (d) The average
reward curve with a minibatch size of 10 in Scenario II. (e) The average reward curve
with a minibatch size of 12 in Scenario II. (f) The average reward curve with a minibatch
size of 15 in Scenario II.

higher average scores and exhibiting smoother trends. Overall, the PPO-C consistently

demonstrates superior performance across various scenarios and minibatch sizes, achiev-

ing higher average scores and showing more stability compared to SAC, PPO, and DDPG,

underscoring its robustness and adaptability in different training conditions.



121

Table 4.2: Average Number of Collisions among 50 Racetracks

Number of Collisions

PPO-C SAC PPO DDPG

Scenario I
Minibatch 10 0.54 1.26 2.16 2.86
Minibatch 12 0.46 0.82 1.72 2.76
Minibatch 15 0.42 0.56 1.66 2.74

Scenario II
Minibatch 10 0.64 0.72 2.68 3.24
Minibatch 12 0.52 0.62 2.46 3.16
Minibatch 15 0.48 0.66 2.06 3.22

Table 4.3: Average Laptime among 50 racetracks

Laptime

PPO-C SAC PPO DDPG

Scenario I
Minibatch 10 24.13 26.23 26.73 25.32
Minibatch 12 23.52 25.14 26.32 25.76
Minibatch 15 22.91 24.36 25.96 24.74

Scenario II
Minibatch 10 23.93 24.12 25.33 24.76
Minibatch 12 22.26 23.88 24.74 24.56
Minibatch 15 22.44 22.56 23.77 24.25

4.6.2.6 Performance Analysis of Simulation Results Over Bench-

mark Algorithms

The PPO-C algorithm is compared against three benchmark algorithms recently used in

racing, PPO, DDPG and SAC. Table 4.2 compares the laptime of the PPO-C and other

benchmark algorithms among 50 random racetracks across different racing conditions

and minibatch sizes. In normal racing, PPO-C records the minimum laptime of 24.13,

23.52, and 22.91 for Minibatch 10, 12, and 15 respectively. In Aggressive Racing, PPO-C

continues to lead with minimum number of collisions of 23.93, 22.26, and 22.44 for the

same minibatch sizes. SAC remains competitive, typically ranking second, while PPO

and DDPG exhibit longer laptime. These results highlight PPO-C’s superior capability

in minimizing the laptime, demonstrating its effectiveness in both normal and aggressive

racing scenarios.
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PPO-C PPO DDPG SAC

Figure 4.11: Driving performance of using PPO-C, PPO, DDPG and SAC in an Example
Case.

Table 4.3 compares the number of collisions of the PPO-C and other benchmark algo-

rithms among 50 racetracks across different racing conditions and minibatch sizes. PPO-C

achieves a minimum number of collisions of 0.54, 0.46, and 0.42 for Minibatch 10, 12, and

15 respectively in normal racing, and 0.64, 0.52, and 0.48 in aggressive racing. SAC con-

sistently ranks second in performance, followed by PPO and DDPG with higher collision

rates. These results suggest that PPO-C excels in minimizing collisions across varying

racing dynamics and minibatch sizes.
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Table 4.4: Comparison of Average Speed and Average Lateral Acceleration in 5 Corners

Metrics

PPO-C SAC PPO DDPG

Average Speed (m/s)

Corner A 20.69 19.23 17.23 18.86
Corner B 24.45 23.67 19.36 22.72
Corner C 30.67 32.98 26.46 28.23
Corner D 20.87 20.45 18.34 19.66
Corner E 15.99 15.56 14.65 9.43

Average Lateral Acceleration (m/s2)

Corner A 3.95 4.37 5.76 -2.23
Corner B 6.32 7.26 6.30 -4.22
Corner C 8.57 9.37 9.15 -0.28
Corner D 1.25 1.62 2.02 -5.32
Corner E -2.62 -2.21 -5.91 -7.38

Fig. 4.11 illustrates how PPO-C and the other benchmark algorithms react to dangerous

bends in an example case. There are five bends from A to E in this case. Bend A has a

high curvature, making it challenging to drive through. Bends B and C are normal bends,

requiring moderate control. Bends D and E are close to each other, increasing the difficulty

of steering. It can be seen that PPO-C demonstrates safer and smarter driving than the

other three algorithms, as it travels within the boundaries and stays close to the inner

side of the curve when possible. In bend A, PPO deviates from the driving area, causing

a high safety loss. DDPG follows the outer and middle side of the track, increasing its

efficiency loss. SAC drives along the inner track, decreasing the time consumption. In bend

B, DDPG also leaves the driving area, leading to a high safety loss. In bends C and D,

PPO-C stays in the center of the track and drives along the track boundary, respectively,

balancing the safety and efficiency objectives. DDPG and SAC move closer to the inner

side of the track boundary, improving their efficiency performance. Bends C and D suggest

that PPO-C is willing to sacrifice some efficiency profits to avoid collisions. In bend E,

both PPO and DDPG exit the driving area, resulting in a high safety loss. In Table 4.4,
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the comparison of average speed and average lateral acceleration across five corners for

different DRL algorithms is illustrated. For average speed, PPO-C demonstrates higher

levels in four out of five corners compared to SAC, PPO, and DDPG. This suggests that

PPO-C adjusts its speed effectively on straight sections before entering corners, indicating

a balanced approach that takes into account the connection between straight sections

and corners. Higher speeds in straight sections can contribute to maintaining competitive

performance while ensuring stability during cornering, as evidenced by PPO-C’s consistent

higher speeds.

Regarding average lateral acceleration, PPO-C generally exhibits lower acceleration levels

in corners A to D compared to other algorithms. Lower lateral acceleration indicates

smoother and more stable driving, reflecting the ability of PPO-C to make balanced

decisions and maintain stability throughout the track. Notably, corners D and E, being

closely positioned, highlight a strategy where acceleration is applied in the first corner and

deceleration in the subsequent one, optimizing control and speed management through

successive turns.

Conversely, DDPG shows lateral deceleration across most corners, implying potentially

higher speeds on straight sections followed by necessary deceleration in corners to maintain

control. However, the high lateral acceleration in corner E for DDPG suggests challenges

in maintaining control within the track boundaries, leading to instances where the vehicle

exceeds the driving area.

4.6.2.7 Driving Performance and Control Levels in Three Sam-

ple Cases

There are no shortcuts in the testing tracks, ensuring the algorithm cannot exploit any

contingencies. The testing tracks feature sharp or multiple curves, increasing difficulty.

The racing car starts from the center of the starting point and aims to reach the end

point quickly. Figure 4.12 demonstrates that the racing car follows a safe and efficient

trajectory within the feasible racetracks. Fig. 4.12(a) to Fig. 4.12(c) show the trajectories

of Case 1 through Case 3, respectively, with a color bar indicating steering and throttle

opening ranging from -1 to 1. Fig. 4.12(d) to Fig. 4.12(f) illustrate the steering angles
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Figure 4.12: The driving performance and control levels of three sample autonomous racing
cases. (a)-(c) show the trajectories of cases 1-3, respectively. (d)-(f) show the steering
angles of cases 1-3, respectively. (g)-(i) show the throttle openings of cases 1-3, respectively.

of Case 1 through Case 3, respectively, and Fig. 4.12(g) to Fig. 4.12(i) show the throttle

openings for these cases. In Fig. 4.12(a), the car deviates from the inner track boundary

to avoid collisions. In Fig. 4.12(b) and Fig. 4.12(c), the car prefers the inner side of most

curves to minimize lap time. These results show that PPO-C effectively balances safety

and efficiency. Fig. 4.12(d) indicates that the car maintains its steering within -0.2 to 0.2

on curvy roads without large bends. In Fig. 4.12(e), the car exhibits both high steering

around large bends and minor adjustments around consecutive bends. In Fig. 4.12(f), the

car adjusts its steering angle more frequently due to larger and more consecutive bends,

preferring slight steering on small bends and sharper steering on large bends. Fig. 4.12(g)

illustrates that the car briefly increases its throttle opening when leaving curvy sections.

In Fig. 4.12(h), the car reduces its throttle opening when passing the second bend in a
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Table 4.5: Comparison against other learning-based methods

Methods LPR ITE SL RC SMRT VVCM
Salvaji et al. [242] -

√
- - - -

Spielberg et al. [243] -
√ √

-
√ √

Evans et al. [244] -
√ √ √ √ √

Ghignone et al. [245]
√

-
√

-
√

-
Proposed

√ √ √ √ √ √

Abbreviations: LPR: Local perception-based race; ITE: Im-
proved training efficiency; SL: Shorter laptime; RC: Reduced
collisions; SMRT: Simulation with multiple racetracks; VVCM:
Visible variation of control commands; -: not considered or not
given.

series. In Fig. 4.12(i), the car changes its throttle more frequently due to larger and more

consecutive bends, maintaining a throttle opening around 0.3 on straight roads. Thus, the

throttle control strategy involves steady acceleration on small bends and more pronounced

adjustments for a series of bends.

To illustrate the advantages of the proposed algorithm, this chapter benchmarked against

recent studies in Table 4.5. The DRL in [242] demonstrates enhanced training efficiency

but overlooks other key factors, including reducing laptime, fewer collisions, validating

performance across multiple tracks, and providing visualizations of control commands.

On the other hand, [243] introduces a DRL that encompasses improved training effi-

ciency, shorter laptime, validation across various tracks, and clear visualization of control

commands. However, it overlooks the aspect of reducing collisions. In contrast, the al-

gorithms proposed in [244] considered all the factors in both [242] and [243], but still

heavily relies on global perception. Furthermore, [245] focuses solely on local perception,

emphasizing shorter laptime and validation across various tracks. However, [245] neglects

improvements in training efficiency, collision reduction, and variations in control com-

mands.

The proposed algorithm reduces dependency on sophisticated equipment and achieves

enhanced training efficiency. Moreover, the laptime is reduced and collisions are avoided,

thereby the overall racing performance is improved. Furthermore, validations on multiple

tracks have been made, while interpretable control commands are provided, showcasing

the generalization and interpretability of the proposed algorithm.
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4.7 Evaluation Based on DDTUI
The PPO-C has considered and verified all the factors of DDTUI, contributing to state-

of-the-art DRL-based decision-making for autonomous driving. For driving safety, PPO-C

employs a substantial collision penalty to ensure that the autonomous car avoids collisions

with track boundaries. Verification is achieved by comparing the collisions of PPO-C

with those of other benchmark algorithms, indicating fewer collisions. Regarding driving

efficiency, PPO-C uses an efficiency penalty to encourage the AV to reach the endpoint

as quickly as possible. Verification is achieved by comparing the lap times of PPO-C

with those of other benchmark algorithms, demonstrating shorter lap times. For training

efficiency, PPO-C utilizes a curiosity mechanism to facilitate faster convergence, verified

by comparing its convergence rates with those of other benchmark algorithms, which

indicate faster convergence.

The curiosity mechanism fits well with the idea of intrinsic interpretability, as it inherently

provides a rationale for an agent’s actions that is understandable to humans [246, 247].

Curiosity makes the decision-making process more self-explanatory by focusing the agent’s

exploration efforts on reducing uncertainty or discovering novel situations, aligning with

the principle of designing interpretable models by restricting unnecessary complexity and

providing clear motivations. Environmental consideration is addressed by penalizing col-

lisions with track boundaries, which minimizes damage to surrounding grasslands and

protects the environment. Verification is illustrated through the AV’s trajectories, which

remain within designated driving areas without veering off-track. PPO-C takes into ac-

count the needs of users, companies, and the public environment, supporting the adapta-

tion of DRL-based decision-making as a practical real-world solution.

4.8 Discussion
The PPO-C algorithm typically surpasses comparative benchmarks by achieving greater

training efficiency, higher average rewards, collision avoidance, and reduced laptime. No-

tably, while PPO-C approaches the highest training scores, it remains approximately 100

points behind, indicating the room for improvement. Future developments aim to narrow
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this gap, ideally to within 50 points of the top score. Although the PPO-C demonstrates

proficiency in static environments, its performance in dynamic settings requires further

validation. Additionally, there is potential to decrease laptime, as the PPO-C has not yet

completely optimized for inner track navigation, as shown in Fig. 11. Before real-world

application, the PPO-C’s policy network and reward function must undergo refinement

and rigorous testing to ensure safety and reliability. Moreover, prior to real-world im-

plementation, a higher-fidelity simulation environment will be utilized to bridge the gap

between simulation and actual conditions effectively.

4.9 Summary
This chapter proposed a local perception-based, image-efficient, and balanced reward-

orientated PPO-C for autonomous racing. The PPO-C aims to improve the training ef-

ficiency and driving performance of the racing car. To enhance the attention to critic

steps, a balanced reward function is used to balance the historical and current rewards

during the training. To enhance safety in exploration, a curiosity mechanism is intro-

duced to focus on the dangerous racing periods. The results demonstrate that as training

time increased, the proposed PPO-C improves its average scores with a higher degree of

safety. Comparisons among the PPO-C and other three representative DRL algorithms

were conducted, showing that the proposed algorithm outperforms in terms of no colli-

sion, shorter laptime, shorter training time, and higher average rewards. In the future,

extensive research will be conducted in several aspects, including 1) verifying the racing

ability of PPO-C under more uncertain conditions, and 2) optimizing the racing process

considering diverse objectives such as riding comfort.
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Chapter 5

Conclusion

This chapter summarizes the contributions of the current work. Furthermore, this chapter

highlights the present work’s limitations and potential future work to overcome these

limitations.

5.1 Research Contributions
This work has explored DRL-based decision-making for autonomous driving in detail. It

proposes a rationale evaluation framework for DRL-based decision-making algorithms, a

holistic architecture that enables highway driving in accordance with the proposed eval-

uation framework, and an integrated decision-making algorithm for autonomous racing

that considers this framework. Results for each research objective mentioned in previous

chapters will be presented in order to highlight the contributions made by this work.

5.1.1 This Thesis Proposes a Rationale Evaluation Framework

for DRL Decision-Making

A rationale evaluation framework is beneficial for the development of DRL-based decision-

making and the transition from concept to real-world products. Currently, only general

evaluation frameworks for AI products have been proposed, such as in [93]. Therefore,

a rationale evaluation framework for DRL-based decision-making in autonomous driv-

ing should be designed. This thesis proposes a rationale evaluation framework for DRL-

based decision-making in autonomous driving, focusing on five key factors: driving safety,

driving efficiency, training efficiency, unselfishness, and interpretability. While the frame-

work has demonstrated effectiveness within simulation environments, further validation
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in real-world scenarios remains necessary to confirm its practical applicability. Driving

safety remains the foremost requirement, as minimizing collisions directly correlates with

improved safety outcomes and adherence to rigorous standards [65, 66]. Similarly, driv-

ing efficiency not only enhances user experience but also optimizes road capacity, traffic

flow, and emergency response capabilities, highlighting its multifaceted role in improv-

ing AV effectiveness and energy efficiency [74, 78]. Training efficiency is critical for AV

development, as it directly impacts the time and computational resources required, ulti-

mately reducing costs and device wear [36, 81]. Furthermore, unselfishness, or the AV’s

ability to account for the intentions of human-driven vehicles, fosters cooperative driving

behaviors, promoting smoother, more harmonious road interactions and mitigating po-

tential conflicts [82, 85]. Lastly, interpretability is essential for ensuring that DRL-based

algorithms make transparent and justifiable decisions, thereby enhancing user trust and

enabling compliance with regulatory standards [93, 101]. These factors create a robust

framework for evaluating and improving DRL-based decision-making algorithms for au-

tonomous driving, advancing the field toward safer, more efficient, and more user-centered

AV systems.

5.1.2 Summarization for DRL Decision-Making Across Scenar-

ios.

The different scenarios have various tasks and road features for driving, therefore the

divided analysis and summary for each scenario is crucial for the future algorithm devel-

opment. Given the DDTUI is proposed as a good evaluation framework, each scenario is

evaluated based on DDTUI in this thesis. Through recent researches, efficiency is highly

prioritized at intersections and ramps to optimize travel time and reduce congestion, cited

in 94.7% and 87.5% of studies respectively. Safety is primarily emphasized on highways

(76.7% of studies), where accident prevention is crucial at high speeds, whereas inter-

sections receive less focus on safety. Training efficiency is highlighted at roundabouts

(75%) and unsignalized intersections (68.4%) to support effective vehicle maneuvering in

complex environments. Interpretability is notably valued at ramps (56.25%) and high-

ways (36.7%), underscoring the importance of understandable decision-making. While
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unselfishness is generally less emphasized, highways and ramps receive more focus in this

area. The primary challenges identified for future DRL-based decision making algorithms

include: (1) achieving a balance across all DDTUI factors in one unified framework, as

very few studies address all five simultaneously, reflecting the complexity of integrated

approaches; (2) improving interpretability without compromising model performance, as

less than 40% of studies explicitly prioritize interpretability; (3) enhancing unselfish be-

havior in multi-agent scenarios through advanced techniques like integrating game theory

with social value orientation; and (4) bridging the gap between simulation-based train-

ing and real-world deployment by developing more realistic simulation environments to

ensure DRL models can adapt to real-world conditions. These challenges underscore the

need for interdisciplinary approaches in advancing DRL-based autonomous driving and

offer guidance for future research. By addressing these challenges, the field can move closer

to achieving safe, efficient, and intelligent autonomous transportation systems.

5.1.3 Integrated DRL-Based Algorithm for Current DRL Short-

comings.

Recent advances in DRL have demonstrated state-of-the-art results in AV applications,

particularly using methods like Q-Learning [30], DDPG [193], PPO [194], and DQN [190].

Each method brings unique strengths and limitations to AV decision-making. Q-Learning

employs a state-action value function to determine optimal actions under various condi-

tions [30] and is capable of selecting safe actions in constrained environments [31]. How-

ever, its application is limited to simpler tasks and scenarios due to its slow convergence

speed [32]. DDPG, which utilizes deep neural networks for control policy approxima-

tion, has proven effective at improving convergence rates and driving performance in AV

tasks [38, 39]. Nonetheless, DDPG faces challenges in exploring alternative actions and

adapting to diverse driving conditions, as it tends to produce absolute results that limit

flexibility in action selection. PPO, which employs a probabilistic control policy, offers

improved exploration capabilities and has been successfully applied in multi-agent and

high-density traffic scenarios [33, 34]. Despite these advantages, PPO often relies on gen-

eralized reward functions that dilute performance in lengthy training sequences, leading
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to slower convergence in critical task-specific objectives [195]. DQN, a widely used DRL

algorithm for AVs, excels in tasks involving discrete actions like acceleration, deceleration,

and lane changes, and is computationally efficient due to its use of experience replay [35].

However, DQN struggles with complex scenarios requiring long-term dependencies and in-

terpretability, which can lead to suboptimal decisions and unresolved collision-avoidance

issues in interactive environments.

To address these limitations, this study proposes the RBDQN-CS (Risk-Balanced Deep

Q-Network with Collision Supervision), an advanced DQN variant that introduces a

risk-attention mechanism, balanced reward function, and collision-supervised mechanism.

These enhancements are designed to improve interpretability, convergence efficiency, and

safety in complex driving environments. Specifically, the risk-attention mechanism enables

more nuanced attention to high-risk scenarios, the balanced reward function aligns reward

distribution with critical objectives, and the collision-supervised mechanism enhances

collision-avoidance capabilities. The effectiveness of RBDQN-CS is validated through per-

formance evaluations on a three-lane highway, considering both normal (4-6 HDVs) and

high (7-10 HDVs) traffic flows. In the first validation, RBDQN-CS is compared with base-

line models—standard DQN, DQN with a balanced reward function (BDQN), DQN with

a risk-attention mechanism (RDQN), and DQN with a collision-supervised mechanism

(DQN-CS)—demonstrating superior performance in convergence speed, reward accumu-

lation, collision rate reduction, and average speed maintenance. In a second validation,

RBDQN-CS is benchmarked against established DRL algorithms, including DDPG [38],

PPO [34], Advantage Actor-Critic (A2C) [191], and DQN [190]. RBDQN-CS consistently

achieves higher rewards both at and after convergence, demonstrates a lower collision

rate, maintains a higher average speed, and converges faster than these benchmarks in

both normal and high-traffic scenarios. By addressing the challenges of computational

efficiency, interpretability, and balanced exploration, RBDQN-CS represents a significant

step forward in developing reliable, high-performing decision-making models for AVs in

complex and dynamic environments, enhancing safety, efficiency, and robustness in au-

tonomous driving systems.
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5.1.4 Integrated DRL-based algorithm considering DDTUI si-

multaneously

As summarized in Section 5.1.2, addressing all five factors in DDTUI simultaneously is

essential. The proposed RBDQN-CS addresses and validates each of these factors, ad-

vancing DRL-based decision-making toward state-of-the-art performance in autonomous

vehicles. For driving safety, RBDQN-CS integrates a collision penalty mechanism that

enables the AV to recognize and avoid potential collision scenarios as it converges. This

penalty functions as a rule-based safety check, minimizing collision occurrences and ensur-

ing that safety-related decisions are made transparently. The model’s safety verification is

established by comparing collision rates between RBDQN-CS and other benchmark algo-

rithms, with results showing that RBDQN-CS consistently achieves lower collision rates.

This rule-based mechanism also enhances interpretability by providing clear mathematical

formulations that offer insights into the AV’s decision-making process.

In terms of driving efficiency, RBDQN-CS applies an efficiency-focused reward structure

that encourages the AV to reach its destination in the shortest possible time. The model’s

efficiency is validated by evaluating average speed metrics and comparing them to those

achieved by other benchmarks; RBDQN-CS demonstrates a measurable improvement in

average speeds, highlighting its ability to optimize travel time. For training efficiency,

RBDQN-CS introduces three main strategies: a risk-attention mechanism, a balanced re-

ward function, and a collision-supervision component. These mechanisms contribute to

faster model convergence by guiding the training process in a more focused and efficient

manner. The effectiveness of this training efficiency strategy is confirmed through com-

parisons of convergence rates with other benchmarks, showing that RBDQN-CS achieves

faster convergence, indicating a reduction in training time and resource demand.

To address unselfishness, RBDQN-CS limits the AV’s lane-changing actions, minimizing

disruptions to nearby vehicles and promoting smoother traffic flow. Verification of this

factor is demonstrated through scenario-based assessments, illustrating that RBDQN-CS

keeps lane changes to a minimum, moving only when necessary from the starting lane

to the target lane. This approach reflects a balanced consideration of user experience,
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corporate objectives, and broader public traffic safety. By addressing each DDTUI factor

in a structured and practical manner, RBDQN-CS advances DRL-based decision-making,

offering a viable and well-rounded solution adaptable to real-world autonomous driving

challenges.

5.1.5 Integrated DRL-based algorithm for current DRL short-

comings at extreme situations

Autonomous racing is a specialized case of autonomous driving. Compared to standard

autonomous driving, autonomous racing requires decision-making at the extreme situa-

tions, increasing its difficulty. However, fully exploring extreme-case driving benefits the

development of autonomous driving as these scenarios reveal the upper capabilities of au-

tonomous systems. State-of-the-art DRL techniques such as DDPG, SAC, and PPO have

demonstrated promising applications in autonomous driving scenarios, each with unique

strengths and limitations [208]. DDPG, as an off-policy algorithm, uses deep neural net-

works to develop a deterministic control policy, allowing it to handle high-dimensional

data effectively. However, its deterministic approach limits exploration, often resulting

in suboptimal decisions in dynamic environments where adaptive exploration is criti-

cal [38,39]. SAC, on the other hand, employs a maximum entropy framework, promoting

robust exploration and achieving higher average speeds in competitive environments like

racetracks [231, 232]. However, SAC’s undirected exploration can lead to excessive and

inefficient exploration, slowing convergence in more complex scenarios. PPO, with its

policy gradient approach, offers stability and a probabilistic policy structure that enables

faster exploration than deterministic algorithms. Nevertheless, PPO’s efficiency declines

in long-sequence, high-variability tasks, such as racing, where it may fall into local optima

and struggle to generalize across diverse states and actions [233, 235, 236].

To address these challenges, this paper proposes the PPO-C algorithm, which enhances

PPO by introducing a curiosity-driven exploration mechanism and a balanced reward

structure to improve training efficiency, adaptability, and performance in complex envi-

ronments. The curiosity mechanism directs PPO-C’s attention to high-uncertainty and

less-explored regions, fostering adaptive exploration that dynamically adjusts as the racing
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environment evolves. Additionally, the balanced reward function helps distribute rewards

effectively across short segments of crucial racing sections, enabling PPO-C to prioritize

safety and efficiency without sacrificing speed in critical maneuvers. These enhancements

are particularly beneficial in racing contexts, where standard reward structures often lead

to sparse or insufficiently informative feedback, hindering performance optimization. The

proposed PPO-C model was validated through extensive comparisons with DDPG, SAC,

and PPO across multiple racing scenarios. Results demonstrate that PPO-C achieves

superior performance in minimizing lap time and collision rates while exhibiting higher

convergence stability and improved training consistency [34, 190]. Specifically, PPO-C

outperformed the benchmarks in maintaining a balanced approach to speed and safety,

showing significantly higher average speeds on straight sections and stable lateral acceler-

ation through corners. Its ability to dynamically adjust speed and trajectory in response to

track complexities, particularly in high-curvature sections, underscores its effectiveness in

managing challenging racing scenarios [190, 239]. Furthermore, PPO-C’s robustness was

verified across various minibatch sizes, demonstrating consistent performance improve-

ments regardless of batch configuration, which supports its adaptability and reliability in

real-world applications.

For further verification, PPO-C was evaluated on diverse racetrack configurations, where it

consistently outperformed other algorithms in terms of average speed, cornering stability,

and avoidance of boundary collisions [35, 196]. It showed a clear advantage in promoting

a balanced exploration-exploitation strategy by dynamically adjusting its policy to max-

imize both standard and curiosity-based intrinsic rewards, effectively enhancing learning

in critical sections [214]. Notably, PPO-C achieves these improvements with reduced de-

pendency on sophisticated sensing equipment, making it a practical solution for broader

applications. In addition to these performance benefits, PPO-C produces interpretable

control commands that align well with human driving expectations, facilitating a better

understanding of the algorithm’s decision-making process [93].
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5.1.6 Integrated DRL-based algorithm at extreme situations con-

sidering DDTUI simultaneously

As highlighted in Section 5.1.2, addressing all five factors in the DDTUI framework simul-

taneously is critical for developing comprehensive DRL-based decision-making systems.

The proposed PPO-C algorithm successfully addresses and validates each of these factors,

pushing DRL-based decision-making toward state-of-the-art performance in autonomous

racing. By integrating each DDTUI component, PPO-C provides a robust framework for

autonomous driving that balances safety, efficiency, environmental considerations, inter-

pretability, and user needs. For driving safety, PPO-C incorporates a significant collision

penalty that discourages the autonomous vehicle from making contact with track bound-

aries, thereby reducing the likelihood of accidents. This safety mechanism was verified

by comparing PPO-C’s collision rates with those of other benchmark algorithms, with

PPO-C showing consistently fewer collisions, indicating enhanced safety under high-speed

conditions.

In terms of driving efficiency, PPO-C applies an efficiency-oriented penalty designed to

motivate the autonomous vehicle to complete laps in the shortest time possible. This ap-

proach was validated through lap time comparisons with other algorithms, demonstrating

that PPO-C achieves shorter lap times, thus optimizing both speed and efficiency on

complex racetracks. Training efficiency is another critical factor that PPO-C addresses

through its integrated curiosity mechanism, which guides the algorithm to explore high-

value sections of the track more effectively. This mechanism encourages faster conver-

gence by focusing learning on critical areas rather than exploring uniformly. Comparative

analysis of convergence rates against other benchmarks confirmed that PPO-C reaches

optimal policies faster, thus reducing training time and computational resources needed

for deployment. The curiosity mechanism also aligns well with the concept of intrinsic

interpretability by inherently offering an understandable rationale for the agent’s actions

to humans [246, 247].
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Environmental considerations are incorporated through penalties for boundary collisions,

which serve to keep the vehicle within designated driving areas, thereby minimizing poten-

tial damage to surrounding grasslands and protecting the natural environment adjacent

to the track. This feature was validated by observing PPO-C’s driving trajectories, which

consistently stayed within the designated track boundaries, avoiding off-track excursions

and preserving the surrounding landscape. Finally, PPO-C is designed to consider the di-

verse needs of users, companies, and the public. Its balanced approach to safety, efficiency,

and environmental respect reflects real-world concerns, making PPO-C a viable solution

for DRL-based decision-making applications in practical autonomous driving scenarios.

By aligning with DDTUI principles, PPO-C promotes adaptive, efficient, and respon-

sible decision-making, establishing itself as an advanced and well-rounded tool in the

autonomous racing field.

5.2 Limitations

5.2.1 Limitation of the 2D Simulator

A primary limitation of this study lies in the reliance on a 2D simulator for training

and evaluation. The 2D environment, while offering a simplified and computationally ef-

ficient platform, lacks the complexity and fidelity of a 3D simulation environment like

CARLA. In 2D simulators, key factors such as vehicle dynamics, lighting conditions, and

environmental variations are simplified, resulting in a less realistic representation of real-

world conditions. In contrast, a 3D simulator offers advanced physics and detailed visual

data that allow for more sophisticated environmental interactions. For instance, CARLA

incorporates vehicle dynamics modeling, which accounts for acceleration, braking, and

cornering forces, producing a more accurate and nuanced interaction between the vehicle

and its surroundings. Additionally, 3D simulators capture changing lighting conditions,

varying weather patterns, and complex terrains, all of which impact autonomous driving

performance and require advanced algorithmic adaptations. These real-world factors are

critical for robust algorithm development, as they enable the model to learn and adapt
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to dynamic scenarios that are likely to be encountered in actual driving situations. By

transitioning to a 3D simulator, future work could enhance the depth of learning and pro-

vide a more comprehensive assessment of the algorithm’s performance, thereby ensuring

a smoother transition from simulation to real-world application.

5.2.2 Limited Verified Scenarios

Another limitation of the current study is the narrow scope of scenarios, specifically

focusing on a controlled highway environment using the RBDQN-CS algorithm. While

effective in this context, this approach does not encompass the variety of real-world driving

situations encountered on public roads. Complex scenarios such as on-ramp merging,

roundabouts, and unsignalized intersections introduce unique interaction dynamics and

decision-making complexities that are distinct from highway driving.

On-ramp mergings require vehicles to adjust speed and safely enter the main highway.

To handle this scenario, an DRL-based system must be able to predict the behavior of

surrounding vehicles while accounting for factors like limited visibility and fluctuating

speeds. A potential solution is to incorporate a mechanism for multi-agent interaction

prediction, which could involve integrating game-theoretic approaches to anticipate the

behavior of nearby human-driven vehicles. Moreover, integrating a visible risk assessment

module could assist in improving lane-change decisions during merging.

Roundabouts present additional challenges, involving complex decisions in a continuous

circular movement. Unlike linear movements on highways, roundabouts demand coordina-

tion with multiple vehicles simultaneously entering or exiting at different points. Effective

decision-making in these environments could benefit from integrating dynamic priority

systems that allow the AV to assess the intentions and priority of other vehicles, thereby

navigating the roundabout efficiently. The incorporation of a reinforcement learning pol-

icy specifically trained on managing entry and exit at roundabouts would further improve

navigation.
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Unsignalized intersections introduce yet another layer of complexity due to the require-

ment for adaptive right-of-way decisions, pedestrian interaction, and simultaneous en-

gagement with multiple agents. The introduction of priority assignment and right-of-way

prediction mechanisms would enable more context-sensitive actions by AVs. Additionally,

unsignalized intersections involve higher uncertainty due to non-standardized behaviors

of other drivers. Thus, implementing uncertainty-aware learning mechanisms that focus

on probabilistic modeling of interactions could significantly enhance performance in these

situations.

Expanding the DRL-based model to include these varied scenarios would involve adopt-

ing hierarchical reinforcement learning, where high-level policies determine appropriate

behaviors for each type of scenario (e.g., merging, entering/exiting roundabouts, stopping

at intersections), and lower-level policies generate context-specific maneuvers.

5.2.3 Limited Racing Competitors

Currently, the thesis’s focus on single-vehicle autonomous racing restricts the scope of the

proposed PPO-C algorithm to solo driving tasks. Expanding PPO-C to include multi-

vehicle competition would add complexity by introducing scenarios that require the ve-

hicle to make strategic decisions in response to other competitors. Multi-vehicle racing

presents a unique set of challenges that include overtaking, blocking, and cooperative rac-

ing strategies, all of which are crucial for achieving optimal performance in competitive

settings. From a theoretical perspective, multi-agent interactions require algorithms to

account for the potential behaviors and decisions of other vehicles, effectively simulating

a game-theoretic environment. This involves modeling not only the physical aspects of

driving but also the intentions and goals of other agents, introducing an additional layer of

strategy to the decision-making process. In real-world applications, autonomous vehicles

often need to navigate in environments with other vehicles, making split-second decisions

in response to the actions of human drivers or other autonomous systems. Expanding

PPO-C to a multi-agent framework would enhance its robustness, as it would learn to

handle these complex interactions, improving decision-making under competitive pressure



140

and making the algorithm more applicable to real-world scenarios such as autonomous

racing, cooperative transport systems, and emergency response. Ultimately, a multi-agent

extension of PPO-C would deepen its strategic capabilities, allowing for a wider range of

applications and increased resilience in competitive, high-stakes environments.

5.3 Future Work

5.3.1 Transition to 3D Simulation Environments

A key direction for future work involves transitioning from the 2D simulator used in this

study to a high-fidelity 3D simulation environment, such as CARLA. Incorporating a 3D

simulator would allow future research to benefit from more realistic vehicle dynamics, var-

ied traffic scenarios, and complex environmental conditions, all of which are essential for

closely simulating real-world complexities. This transition, however, presents significant

computational challenges due to the increased data processing requirements associated

with the richer sensory inputs and complex visual data in 3D environments. Additionally,

as the simulation becomes more detailed, the model will need to address more sophisti-

cated and nuanced road conditions, which may require the design and implementation

of enhanced safety mechanisms to ensure the autonomous vehicle operates within safe

bounds. The introduction of these safety constraints and the increased computational de-

mands make this transition a longer-term objective, as it will involve extensive algorithmic

adaptation, testing, and verification in a more demanding 3D environment.

5.3.2 DRL-Based Algorithms for Diverse Driving Scenarios

To extend the versatility of DRL-based algorithms, future work should focus on adapting

and testing these algorithms in a wider variety of driving scenarios, such as on-ramp merg-

ing, roundabouts, intersections, and urban streets. Each of these scenarios presents unique

challenges. For example, on-ramp merging requires coordination with other vehicles on the

highway, while roundabouts necessitate continuous motion and multi-agent interaction

in constrained spaces. Similarly, intersections involve stop-and-go decisions, right-of-way
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considerations, and variable traffic signal timing. Addressing these diverse scenarios re-

quires the development of scenario-specific reward structures, exploration strategies, and

policy adjustments, allowing DRL-based algorithms to effectively handle each context.

This line of research would enable autonomous driving systems to learn and adapt across

a broader spectrum of situations, ultimately supporting the deployment of autonomous

vehicles that can seamlessly operate in mixed and dynamic traffic environments.

5.3.3 Multi-Agent Competitive Models

A promising future direction is the extension of the PPO-C algorithm to multi-agent

competitive settings. By expanding from a single-vehicle model to a multi-vehicle frame-

work, the algorithm can be adapted to simulate competitive racing environments where

autonomous vehicles must account for the actions of other agents in real-time. This would

introduce an additional layer of strategic decision-making, where the vehicle would need

to manage overtaking, blocking, and defensive driving maneuvers in response to other

competitors. Implementing PPO-C in a multi-agent framework would involve leveraging

game-theoretic principles to simulate interactions between autonomous vehicles, allowing

for more sophisticated tactics and coordination. This approach could not only enhance the

robustness of autonomous racing algorithms but also provide valuable insights for real-

world applications, such as autonomous convoy driving, collaborative transportation, and

high-stakes rescue missions. Multi-agent models would also foster innovation in competi-

tive autonomous vehicle applications, supporting the development of algorithms capable of

adapting to real-time interactions and pressures within a dynamic, multi-vehicle context.

5.3.4 Failure Cases

While the proposed algorithms demonstrated significant improvements in autonomous

driving decision-making, some limitations were observed during evaluation. One notable

failure case involved the RBDQN-CS algorithm, which exhibited increased collision rates

when the speed limitation exceeded 25 m/s in highway driving scenarios. This issue arises

from the risk-attention mechanism’s inability to adapt quickly to dynamic traffic changes

at higher speeds. To address this, future work could integrate adaptive risk perception
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based on real-time traffic flow and implement speed-dependent safety margins to balance

efficiency and safety under varying speed conditions. Similarly, the PPO-C algorithm en-

countered low-speed driving in multi-curve scenarios, particularly when consecutive sharp

turns appeared within a short distance. This behavior was linked to the over-conservative

reward structure, where safety was prioritized over speed in complex environments. To

overcome this limitation, future improvements could involve dynamic reward shaping, en-

couraging the agent to maintain efficient speeds while navigating complex track sections

safely. Additionally, integrating path prediction modules could help the agent anticipate

upcoming curves and optimize its speed accordingly.

5.3.5 Implementation of Developed Models in Real-World Au-

tonomous Driving

Given that real-world testing is not included in this thesis, this subsection summarizes

the progress of developed models in real-world autonomous driving to support future re-

search efforts. Deploying DRL models for real-world autonomous driving involves multiple

critical considerations. One major challenge is the transferability of policies trained in sim-

ulators, such as CARLA [248] and AirSim [249], to real-world environments—a challenge

commonly referred to as the sim-to-real gap. In [250], a real-world-like simulator called

DriveDreamer is introduced, while a systematic approach for physical-world testing of au-

tonomous driving systems, known as DeepBillboard, is proposed in [251]. To improve AVs’

responses to challenging corner cases, a dataset capturing real-world-like corner cases was

created in [252]. Techniques such as domain randomization and domain adaptation have

also been proposed to address these challenges [253–255]. Additionally, due to constraints

in the real-world testing environment, some studies have employed real-world data for

training or evaluating the algorithms [256–259]. Furthermore, weather-related effects are

considered in [260], thereby improving the vehicles’ responses under abnormal weather

conditions.
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Safety and reliability remain paramount, necessitating rigorous testing of DRL-based mod-

els against unpredictable edge cases and interactions with human-driven vehicles. Recent

approaches—including scenario-based testing and adversarial training—aim to ensure ro-

bust performance under diverse driving conditions [261–263]. Additionally, modular DRL

architectures that integrate traditional control mechanisms have further enhanced safety

by providing structured responses to high-risk scenarios [264].

Computational constraints represent another key issue, as real-time decision-making de-

mands efficient models suitable for onboard deployment. Techniques such as network

pruning and structured model compression have demonstrated significant promise in re-

ducing model complexity without compromising performance [265, 266].

Finally, regulatory compliance and ethical considerations are critical for practical de-

ployment. DRL-based decision-making frameworks must align with existing traffic reg-

ulations, ethical norms, and liability considerations. Current discussions and guidelines

emphasize the need for clearer frameworks for ethical decision-making, accountability,

and transparency in autonomous driving policies [267–269]. Addressing these real-world

implementation considerations and incorporating the proposed DDTUI-based framework

are essential steps for successfully transitioning DRL models from simulated environments

to safe, efficient, and socially acceptable autonomous driving systems in the real world.
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