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Abstract

The rapid proliferation of smart devices and Internet of Things (IoT) technologies has revolu-
tionised data collection for artificial intelligence (AI)-driven applications, enabling rapid training
and near real-time inference. However, the traditional centralised learning approaches require
transferring vast amounts of raw data from end devices to a central server. This process leads
to substantial network overhead, increased latency, and significant privacy concerns, hinder-
ing the scalability and responsiveness of intelligent applications. This thesis exploits federated
learning (FL) as a distributed, on-device learning framework that enables collaborative model
training without raw data sharing. The distributed architecture of FL offers privacy by design
and reduces communication costs by exchanging the model parameters that align with princi-
ples of data sovereignty and regulatory compliance. Despite its advantages, FL faces significant
challenges in real-world applications, and this thesis aims to address the following three crit-
ical challenges: C1) data diversity; C2) robust aggregation ensuring privacy and security in
the training process; and finally, C3) energy efficiency. The first contribution introduces the
similarity-driven truncated aggregation (SDTA) framework, designed to tackle challenges C1
and C2. SDTA measures the similarity among the model updates to identify and filter the
anomalous updates, mitigating the impact of attacks and overfitting without accessing client
data. Additionally, it incorporates differential privacy (DP) to strengthen training privacy. The
second contribution introduces the semantic-aware federated blockage prediction (SFBP) frame-
work, addressing challenges C1 and C3. Using multi-modal fusion and a lightweight computer
vision model for edge-based semantic extraction, the proposed framework reduces communica-
tion costs and inference delays while maintaining high prediction accuracy. Additionally, SFBP
incorporates a filter mechanism to minimise the effects of noisy or adversarial updates. The
third contribution addresses C1 and C3 and develops a hybrid neuromorphic federated learn-
ing (HNFL) framework for outdoor human activity recognition (HAR) using wearable sensors.
The proposed spiking-long short-term memory (S-LSTM) model combines the energy-efficient
spiking neural networks with the sequential data handling strengths of LSTM networks. This
approach improves the accuracy while ensuring data privacy and reducing computational costs,
making it suitable for deployment on resource-constrained edge devices. Finally, to address
challenges C2 and C3, the federated fusion quantisation (FFQ) framework is proposed to im-
prove HAR models in indoor settings. FFQ combines FL with edge-based preprocessing, feature
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engineering, and model compression to achieve a low false positive rate, essential for applica-
tions like fall detection. A customised FedDist algorithm is used for global model aggregation,
effectively reducing overfitting in diverse data. Additionally, FFQ applies model compression
and quantisation-aware training to lower communication overhead without compromising ac-
curacy. These contributions advance FL by enhancing scalability, robustness, and efficiency,
paving the way for next-generation intelligent systems.
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Chapter 1

Introduction

1.1 Background

The rapid progress in big data and artificial intelligence (AI) has brought significant changes
to the modern technological landscape. The proliferation of Internet of Things (IoT) devices
and smart mobile gadgets, alongside advancements in communication technologies, has fueled
an unprecedented surge in data generation. According to the data protection corporation, 80
billion IoT devices are expected to be connected in future systems, collectively producing an
impressive 163 zettabytes of data worldwide [1, 2]. This massive data influx, coupled with the
growing capabilities of edge processing, is driving the development of innovative, data-driven
applications across sectors. These AI-driven applications include smart healthcare, wireless
communication systems, e-banking, live surveillance, augmented reality, and smart cities [3].

Despite these opportunities, traditional machine learning (ML) model training, which heav-
ily depends on centralised data processing, faces significant obstacles. In a centralised approach,
data from various distributed sources is sent to a central server for training and analysis [4].
While this method is effective for handling large datasets, it presents several challenges that
make it less practical for future applications [5, 6]:

• Privacy Concerns: Centralised data collection often includes handling sensitive informa-
tion and posing risks to user privacy. Data protection laws like the General Data Protec-
tion Regulation (GDPR) in Europe and the Consumer Privacy Bill of Rights in the United
States impose strict rules on data collection, storage, and processing [7], [8]. These regu-
lations aim to protect user data, requiring explicit consent from data owners, which limits
data accessibility and impacts model performance.

• Latency and Time Sensitivity: Transferring large volumes of data to a central server
results in high latency due to transmission delays [9]. This can be particularly problem-
atic in applications that require quick responses, such as smart healthcare, autonomous
vehicles, drone surveillance, and augmented reality, where timely decisions are crucial.

1
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• Communication Costs and Bandwidth Utilisation: The transfer of unstructured raw
data to a centralised location burdens the backbone network, increasing communication
costs and resulting in substantial network footprints.

• Storage Costs: Centralised data collection incurs additional storage and maintenance
costs. Additionally, data collection is a very time-consuming and expensive process.

In response to these challenges, a new approach has emerged that brings computation closer
to the data source. Mobile edge computing (MEC) leverages the processing power of edge de-
vices and servers, reducing the need for data transfers to central servers [10]. While MEC lowers
the latency and saves bandwidth, it still involves data transfer to edge servers, raising ongoing
privacy concerns that discourage collaborative model training. This has led to the development
of federated learning (FL) [11], a paradigm that allows computation to occur on edge devices,
thus maintaining user privacy. Google, a pioneer in this field, utilises FL algorithms extensively
to improve services like Gboard and predictive text [12]. Although FL was initially focused on
smartphone and edge device applications, its integration with IoT sensors and advanced AI tools
has opened up numerous industrial applications in Industry 4.0, digital healthcare, smart cities,
smart buildings, drug discovery, video surveillance, digital imaging, and AR/VR, as well as in
autonomous vehicles [13].

For example, vision processing has become a crucial technology, especially in healthcare
and smart city applications. Vision sensors produce massive data that current wireless networks
struggle to handle efficiently, particularly for time-sensitive use cases. The primary challenge
lies in the high communication costs and delays caused by network congestion [1]. However, 5G
connectivity combined with FL enables a range of vision-based applications in areas like smart
healthcare, wireless communications, live traffic monitoring, and incident management [14].
Many of these applications require strong privacy protections and low latency, making the 5G
and FL combination a promising solution for next-generation intelligent systems.

1.2 Scope and Motivation

FL has addressed several critical limitations inherent in centralised learning frameworks by en-
abling collaborative model training across distributed data sources without transferring raw data
to a central server. FL inherently enhances privacy, reduces communication costs, and decreases
latency. These advantages make FL particularly appealing for intelligent applications in domains
where data sensitivity and the need for real-time response are paramount, such as smart grids,
wireless communication, and healthcare [15]. The decentralised nature of FL aligns with the
principles of data sovereignty, offering a scalable approach that can leverage the computational
capabilities of edge devices while preserving user trust and regulatory compliance [9].

Despite its notable advantages, current FL frameworks face several challenges that hinder



CHAPTER 1. INTRODUCTION 3

their widespread adoption and effectiveness in complex, real-world environments. One key
challenge is data diversity, as client devices often generate non-independent and identically dis-
tributed (non-IID) data due to variations in user behavior and device specifications. This hetero-
geneity can significantly impact the convergence and generalisation capabilities of the global
model, leading to suboptimal performance [16, 17]. Variations in data distributions among
clients, stemming from differences in user behaviour, device specifications, and environmen-
tal contexts, complicate the training process, making it challenging to achieve robust, consistent
model performance. Additionally, many applications using multi-modal data fusion to train a
robust model make FL more complicated.

Another significant challenge is energy efficiency, which combines computation cost and
communication overhead. The computation cost refers to the amount of energy required to
train a model on the edge device, whereas the communication cost is the amount of energy
needed to model parameter sharing during the training. FL requires iterative communication
between client devices and a central server to update and synchronise the global model. This
process results in substantial communication costs, which strain network resources and limit
scalability [18]. Furthermore, frequent model updates increase the energy consumption of par-
ticipating devices, posing a problem for battery-operated edge nodes, particularly in IoT-based
applications where resource constraints are critical [19]. Adversarial attacks and security threats
further complicate FL implementations. While preserving data privacy, the decentralised na-
ture of FL exposes the system to various vulnerabilities, such as model poisoning, where ma-
licious participants deliberately corrupt their local models to degrade the overall model per-
formance [16, 17]. Additionally, inference attacks, where adversaries aim to extract sensitive
information from shared model updates, pose significant risks, undermining the privacy benefits
that FL seeks to uphold [20]. Addressing these security concerns is essential to ensuring the
trustworthiness and reliability of FL systems, especially in critical applications like healthcare
and smart infrastructure.

The choice of aggregation mechanisms in FL is another area that presents challenges. The
commonly used federated averaging (FedAVG) algorithm, while effective for many scenarios,
is often inadequate for handling data diversity and robustness to adversarial contributions [21].
Aggregation strategies need to account for the quality and trustworthiness of client updates, en-
suring that outliers or malicious data do not disproportionately affect the global model. Further-
more, current aggregation mechanisms often overlook the nuances of layer-wise contributions
from client models, which could be pivotal in managing model convergence and addressing data
variability.
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1.3 Problem Statement and Objectives

Despite the advancements in FL, significant challenges persist in achieving optimal efficiency,
security, and robustness across various intelligent applications. The scope of this thesis ad-
dresses three critical challenges that limit the deployment of FL systems in real-world scenarios,
which include:

C1 Data Diversity: Data generated by edge devices in FL systems is inherently diverse and
non-IID due to variations in user behaviour, device specifications, and environmental con-
texts. The data diversity adversely affects the convergence and generalisation capabilities
of the global model, leading to suboptimal performance [16, 17]. Traditional FL tech-
niques often employ clustering approaches to manage heterogeneous data. While clus-
tering works well for highly variable and unpredictable data, such as household energy
forecasting, it adds unnecessary complexity for more uniform data, like substation-level
energy consumption. Furthermore, clustering methods often use predefined static clus-
ters, which struggle to capture transient data variations, limiting the model’s adaptability
to evolving patterns. Additionally, training multiple models for distinct clusters increases
computational overhead, hindering scalability. Moreover, modern intelligent applications
often require multi-modal data fusion, where data from different modalities (e.g., visual,
sensory, textual) are integrated to train robust models. Current FL frameworks struggle
to manage these challenges effectively, underscoring the need for solutions that handle
diverse and multi-modal data seamlessly without the drawbacks of clustering.

C2 Robust Aggregation: While FL ensures privacy by keeping raw data on local devices, it
remains vulnerable to adversarial attacks. Malicious participants deliberately corrupt their
local models (model poisoning) to degrade overall performance. Additionally, the infer-
ence attacks pose additional risks, where adversaries aim to extract sensitive information
from shared model updates, undermining the privacy benefits of FL. Furthermore, the
commonly used FedAVG with clustering is inadequate for handling malicious contribu-
tions. Moreover, integrating differential privacy (DP) within clustering frameworks adds
another layer of difficulty. Noise injection required for DP can disproportionately impact
smaller clusters, leading to degraded accuracy. Moreover, clustering assumes synchronous
communication and consistent client participation, which is challenging to maintain in
real-world FL systems with intermittent connectivity. These issues highlight the need for
robust aggregation mechanisms that enhance security, protect against adversarial attacks,
and maintain model adaptability without compromising performance or scalability.

C3 Energy Efficiency Energy efficiency is a major challenge in FL, especially for resource-
constraint edge devices like IoT sensors and wearables. In FL, energy consumption comes
from two sources: computation cost, the energy needed for local model training, and
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communication cost, the energy used to transmit model updates during training. Fre-
quent communication between client devices and the central server creates substantial
overhead, increasing bandwidth usage and draining device batteries, which impacts scal-
ability and real-time performance. Addressing these challenges requires innovative solu-
tions like model compression, semantic information extraction, and efficient aggregation
techniques. These methods can reduce the communication and computational load while
maintaining seamless integration with existing FL frameworks and ensuring high model
performance.

1.3.1 Aims and Objectives

In response to three challenges identified in the problem statement, the objectives of this thesis
are outlined as follows:

1. Design and implement FL frameworks capable of effectively managing diverse and het-
erogeneous data distributions, including multi-modal datasets, to ensure robust and scal-
able model training. This involves developing energy-efficient solutions that integrate
advanced data processing techniques, seamless multi-modal fusion, and adaptive aggre-
gation methods while avoiding the limitations of clustering and specific hardware depen-
dencies

2. Investigate the vulnerabilities of FL systems, particularly the impact of adversarial and
poisoning attacks on model performance. The main aim is to develop and implement
robust aggregation strategies to identify and mitigate malicious updates, ensuring the in-
tegrity and reliability of the training process while addressing the privacy challenges.

3. Design and implement a scalable and energy-efficient hybrid FL framework optimised
for resource-constrained edge devices. The aim is to develop lightweight neuromorphic
architectures that integrate model compression and feature engineering to reduce com-
putational demands and communication overhead while ensuring high performance and
real-time responsiveness, even in applications with stringent privacy and latency require-
ments.

1.4 Research Contributions

The main contributions of this thesis are itemised as follows:

• The first contribution of this thesis introduces the similarity-driven truncated aggregation
(SDTA) framework to address the challenges C1 and C2, leveraging the similarity mea-
sures, filtering process, and DP mechanism. The similarity measure aligns the model
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updates and detects the anomalies, whereas the filter process excludes the extreme val-
ues to mitigate the adversarial updates. DP is incorporated to safeguard model updates
during training to further enhance security. Unlike traditional methods, SDTA employs
weighted averaging to address adversarial attacks, such as model sign inversion, without
completely excluding client contributions. Extensive simulations on real-world substation
data for short-term load forecasting (STLF) demonstrate that SDTA outperforms existing
methods like FedAVG and federated distance (FedDist), especially in scenarios involving
privacy constraints, adversarial challenges, and client dropouts.

• The second contribution of this thesis introduces the semantic-aware federated blockage
prediction (SFBP) framework, addressing challenges C1 and C3. The proposed SFBP
employs the multi-modal fusion, lightweight computer vision (CV) model for edge-based
semantic extraction, anomaly detection, and filtering for robust aggregation. This frame-
work leverages bimodal visual and wireless sensing data to improve blockage prediction
accuracy, enhancing proactive handover (PHO) performance in communication networks.
A lightweight CV model is used for edge-based semantic extraction, significantly reduc-
ing communication costs and inference latency. To ensure robust model training, SFBP
incorporates similarity-driven FedAVG (SD-FedAVG), which uses anomaly detection and
filtering to mitigate the impact of noisy or adversarial updates. Detailed analyses explore
the effects of noise and data variability on blockage prediction accuracy, including the
impact of false positives (FP) and false negatives (FN) on PHO success rates. Addition-
ally, the framework compares the energy efficiency (measured in kilowatt-hours per giga-
byte (kWh/GB)) for raw data transfer in centralised training with model parameter shar-
ing in FL, highlighting substantial energy savings through semantic information sharing.
Benchmarking against state-of-the-art methods demonstrates SFBP’s superior trade-offs
between computational efficiency and prediction accuracy.

• The third contribution of this thesis proposes a hybrid neuromorphic federated learning
(HNFL) framework for outdoor HAR using wearable sensing time series data, addressing
challenges C1 and C3. The HNFL framework integrates multi-modal data fusion with a
spiking long short-term memory (S-LSTM) model, which combines the event-driven pro-
cessing capabilities of spiking neural networks (SNNs) with the sequential data handling
strengths of LSTM networks. This innovative approach enhances activity recognition ac-
curacy while ensuring data privacy and reducing computational costs. This study also
thoroughly evaluates the performance of the S-LSTM model using two publicly available
datasets, demonstrating its superiority over traditional models like LSTM, spiking con-
volutional neural networks (S-CNN), and standard convolutional neural networks (CNN).
Additionally, the research explores the impact of random client selection on the HAR
model’s performance, providing insights into balancing computational and communica-
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tion efficiency with model accuracy.

• The final contribution of this thesis introduces the federated fusion quantisation (FFQ)
framework, addressing challenges C2 and C3. This framework enhances the performance
of indoor HAR models by combining the FL with edge-based preprocessing and feature
engineering. FFQ extracts and combines the statistical and differential features from raw
signals, achieving a low false positive rate, particularly for critical tasks like fall detection.
This framework incorporates a tailored FedDist algorithm for global model aggregation to
address overfitting in diverse data. The FedDist algorithm uses a modified divergence
metric to adjust model parameters based on dissimilarity measures of model updates.
Additionally, the FFQ framework employs model compression with quantisation-aware
training (QAT), significantly reducing communication overhead while maintaining model
accuracy.

1.5 Thesis Organisation

This thesis is structured into seven chapters, each addressing specific aspects of the research
challenges, proposed solutions, and their applications. The detailed organisation is as follows:

Chapter 1 provides an overview of the research context, motivation, and objectives of the
thesis. It highlights the contributions and outlines the challenges addressed, laying the founda-
tion for the subsequent chapters.

Chapter 2 comprehensively reviews the existing literature on FL and its applications. It
begins by exploring state-of-the-art FL techniques, limitations, and their applications in energy
networks, communication systems, and healthcare domains. The chapter also analyses critical
challenges associated with data diversity, adversarial robustness, privacy, and energy efficiency.
This review identifies the research gaps, particularly in model aggregation, multi-modal data
fusion, adversarial attack resilience, and computational efficiency. The chapter concludes with a
discussion of potential application areas for FL, emphasising the need for innovative frameworks
to address the identified three challenges discussed in Section 1.3.

Chapter 3 introduces the SDTA framework, which addresses challenges C1 and C2, lever-
aging the similarity measures, filtering process, and DP mechanism. First, it draws on the mo-
tivation of this study and discusses the proposed framework, simulation setup, dataset used,
results, and outcomes.

Chapter 4 introduces SFBP framework, addressing challenges C1 and C3. This chapter
discusses the process of multi-modal fusion, edge-based semantic information extraction, and
robust aggregation mechanisms to mitigate adversarial updates. Finally, the proposed framework
is tested on a wireless communication application, and the results and outcomes are discussed.

Chapter 5 focuses on the HNFL framework, which addresses challenges C1 and C3. This
chapter discusses the multi-modal data fusion with a novel S-LSTM model, combining the
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energy-efficient event-driven processing of SNNs with the sequential data handling capabili-
ties of LSTM networks. The chapter evaluated the effectiveness of the proposed framework
in outdoor HAR applications using wearable sensing data. It benchmarked against traditional
models such as LSTM, S-CNN, and CNN, demonstrating the robustness and efficiency of the
HNFL framework.

Chapter 6 introduces the FFQ framework, which addresses challenges C2 and C3. This
chapter discusses the integration of FL with edge-based preprocessing and feature engineering
for contactless sensing in indoor HAR applications. Additionally, this chapter investigated the
impact of feature fusion in achieving a low false positive rate, which is critical for tasks like
fall detection. This chapter also discusses QAT for model compression, significantly reducing
communication overhead while maintaining model accuracy.

Chapter 7 summarises the contributions of this thesis, highlighting the advancements made
in FL frameworks to address the three challenges identified in Section 1.3. It also discusses the
broader implications of the proposed solutions and their applicability across various domains.
The chapter concludes with potential directions for future research, such as exploring adaptive
aggregation methods, integrating FL with novel sensing modalities, and extending the frame-
works to new application areas.



Chapter 2

Literature Review

In recent years, federated learning (FL) has emerged as a transformative paradigm in distributed
machine learning (ML), enabling collaborative model training across decentralised data sources
without requiring data sharing. This chapter reviews the fundamental aspects of FL, focusing
on its application in next-generation intelligent systems that demand strict privacy, high energy
efficiency, and resilience against data and system heterogeneity. The chapter begins by outlining
the foundational concepts and architectural frameworks of FL and introducing key protocols and
mechanisms that make FL a viable solution for distributed learning across diverse environments.
It also covers the critical aspects of privacy and security, exploring established methods such as
DP and secure multi-party computation to protect data confidentiality. Furthermore, this chapter
specifically aligns the literature review with three critical challenges identified in Section 1.3,
and how these factors impact model performance and convergence in FL settings. For instance,
Section 2.3, 2.4 summarise the literature for challenge C1, whereas Section 2.5, 2.6 covers for
challenge C2. A literature review for challenge C3 is presented in 2.7, and a review of FL ap-
plications in smart grids, wireless communications systems, and healthcare, identifying current
limitations and research gaps, is presented in Section 2.8. Finally, Section 2.9 summarises the
research gap and links it with three core challenges identified in the thesis.

2.1 Federated Learning: An Overview

FL is a decentralised ML paradigm that enables multiple clients or devices to collaboratively
train a shared global model while keeping their local data private. Unlike traditional centralised
approaches, where data is aggregated on a central server, FL allows model training to occur di-
rectly on edge nodes (EN) [11]. This approach addresses critical concerns related to data privacy,
security, and communication overhead, making it particularly suitable for applications involv-
ing sensitive information or bandwidth constraints [13, 22]. The motivation for FL arises from
the increasing need to harness distributed data generated by edge devices, such as smartphones,
internet of things (IoT) devices, and organisational silos, without compromising user privacy

9
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Figure 2.1: The generic framework and training process of FL.

or violating data protection regulations like general data protection regulation (GDPR) [23].
FL mitigates the risks associated with data breaches and unauthorised access by ensuring that
raw data remains on local devices, fostering trust among participants in collaborative learning
environments.

2.1.1 FL Training Process

FL training process is an iterative and collaborative procedure involving a federated server (FS)
and multiple clients (also referred to as EN or participants). The objective is to minimise a
global loss function by aggregating locally computed updates from the EN. The generic FL
training process can be described in four key steps as shown in Fig 2.1, which are repeated
across multiple communication rounds until the model converges. Consider a federated system
with a central server FS, and N ENs, index i where i∈ {1,2, . . . ,N}, holds a distinct local dataset
Di. These datasets are defined as Di = {(Xi j,yi j)}Di

j=1, with Di indicating the number of samples
at the i-th EN. Each sample comprises a feature vector Xi j and the targeted class yi j.

The primary objective of the FL framework is to train a global model ω collaboratively by
minimising the overall loss across all ENs, without sharing the raw data from each EN. This can
be formulated as [4, 22]:

min
ω∈Rd

1
N

N

∑
i=1

ℓi(ω,Di), (2.1)

where ℓi(ω,Di) denotes the local loss function at EN i, and ω represents the global model
parameters. For classification, it is a cross-entropy loss, while mean absolute error (MAE) is
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employed for regression problems. The local loss function at EN i is defined as:

ℓi(ω,Di) =
1
Di

Di

∑
j=1

∣∣yi j− ŷi j(ω)
∣∣ , (2.2)

where yi j and ŷi j(ω) are the actual and targeted variables, respectively.

FL Training Steps:

FL model training is an iterative process that involves several communication rounds between
the FS and ENs. The entire process is divided into four steps.
Step 1: The FS initialises the global model parameters ω0 and distributes them to all clients.
Mathematically, this process is represented as:

ω
0→ Clients {1,2, . . . ,N}. (2.3)

Step 2: Each EN i receives a copy of the global model ω t at round t and performs local training
using its dataset Di. The client updates the model parameters by minimising the local loss
function ℓi, typically using stochastic gradient descent (SGD) for E local epochs:

ω
t+1
i = ω

t
i−η∇ℓi(ω

t
i), (2.4)

where η is the learning rate, and ∇ℓi(ω
t
i) is the gradient of the local loss function at client i.

Step 3: After local training, each EN sends its updated model parameters ω
t+1
i to the central

server mathematically represented as:

{ω t+1
1 ,ω t+1

2 , . . . ,ω t+1
N }→ Server (2.5)

Step: 4 The FS aggregates the received local updates to form a new global model ω t+1. A
common aggregation method is federated averaging (FedAVG), which computes a weighted
average of the client updates based on their dataset sizes [11]:

ω
t+1 =

N

∑
i=1

|Di|
∑

N
j=1 |D j|

ω
t+1
i , (2.6)

The server updates the global model with ω t+1 and distributes it to the clients for the next round:

ω
t+1→ Clients {1,2, . . . ,N}. (2.7)

This process repeats for multiple rounds until the model converges or reaches a predefined per-
formance threshold.
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2.1.2 Classification of FL

The recent advancement in FL can be categorised into three classes, which include (a) scale of
federation or operational strategies, (b) data partitioning, and (c) system architecture [19].

Scale of Federation

• The scale of federation is highly dependent on the number of ENs participating in the train-
ing process. This involves a limited number of reliable and often organisational clients
(e.g., hospitals, banks). Clients are stable, have significant computational resources, and
are continuously available [19]. The cross-silo architecture is shown in Fig. 2.2 (a).

• Conversely, cross-device involves a large number of unreliable and heterogeneous devices
(e.g., smartphones, IoT devices). Clients may have intermittent availability and limited
computational power [15].

The typical examples of cross-device are Google Gboard [11], and cross-silo is NVIDA Clara
[24] for brain tumour segmentation. In FL applications, the scale of federation is highly de-
pendent on the nature of data and the user’s intent. For instance, in brain tumour segmentation,
the data is usually stored in silos placed in different geographical locations, and as a result, the
cross-silo mechanism is used for model training.
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Data Partitioning

Data partitioning plays a key role in FL, where it is broadly divided into horizontal, vertical and
transfer learning, as shown in Fig. 2.2 (b) [15].

• Horizontal Federated Learning (HFL): Clients share the same feature space but have
different samples. This approach is suitable when datasets across clients have the same
structure (e.g., mobile devices with similar data types) [15, 22]. The classic example of
horizontal FL is Google Gboard, with the assumption of honest consumers and a secure,
centralised server for global model training [11].

• Vertical Federated Learning (VFL): Clients have different feature spaces but share the
same sample IDs. This approach is applicable when institutions hold different informa-
tion about the same set of individuals (e.g., different companies holding complementary
customer data) [5, 25]. The real-world use case for vertical FL may be a scenario where
the credit card sales team of a bank trains its ML model by using information from online
shopping. In this case, only everyday bank and e-commerce website users will partici-
pate in the training process. With this liaising of secure information exchange, banks can
improve their credit services and provide incentives to active customers [25].

• Federated Transfer Learning (FTL): The transfer FL approach uses a pre-trained model
on a similar dataset to solve a completely new problem set. The real-time example of
transfer FL could be similar to vertical FL with small modifications. In this approach,
the condition of similar users with matching data for model training can be relaxed to
create a diverse system to serve individual customers [26, 27]. It is a personalised model
training for individual users to exploit the better generalisation properties of the global
model, which can be achieved by either data interpolation, model interpolation, and user
clustering [3].

Classification based on System Architecture

Based on system architecture, FL is divided into centralised and decentralised learning.

• Centralised FL (CFL): Features a central server that orchestrates the training process,
aggregates local model updates, and redistributes the global model. This architecture
simplifies coordination but introduces a single point of failure and potential privacy risks
if the server is compromised [19].

• Decentralised FL (DFL): Eliminates the need for a central server by allowing clients
to communicate directly with each other in a peer-to-peer network [28, 29]. This archi-
tecture enhances robustness and reduces centralisation risks but may face challenges in
synchronisation and increased communication overhead.
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2.2 Performance and Energy Metrics in FL

To rigorously evaluate the performance of both regression and classification models within this
research, we employ widely adopted metrics to ensure a comprehensive assessment of predictive
capabilities across different problem settings.

2.2.1 Regression Models

For regression-based tasks, such as short-term load forecasting (STLF), mean absolute error
(MAE) and mean absolute percentage error (MAPE) are used extensively. MAE captures ab-
solute deviations without regard to scale, while MAPE normalizes the errors relative to actual
values, thus providing interpretability in percentage terms. Mathematically, these metrics are
expressed as follows [30]:

MAE =
1
T

T

∑
t=1
|At−Ft |, (2.8)

MAPE =
1
T

T

∑
t=1

∣∣∣∣At−Ft

At

∣∣∣∣×100 (2.9)

where At denotes the actual value, Ft represents the predicted value, and T is the total number
of samples.

2.2.2 Classification Metrics

In classification scenarios such as blockage prediction (binary classification) and human activity
recognition (HAR; multi-class classification), accuracy alone might not be sufficient, particu-
larly in datasets exhibiting class imbalance. Thus, additional metrics such as Precision, Recall,
and F1-score are employed.

• Accuracy: It indicates the proportion of correct predictions among the total predictions:

Accuracy =
T P+T N

T P+T N +FP+FN
(2.10)

where T P, T N, FP, and FN represent true positives, true negatives, false positives, and
false negatives, respectively.

• Precision: This metric evaluates the accuracy of positive predictions, given by the for-
mula:

Precision =
TP

TP+FP
, (2.11)
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where TP represents true positives and FP denotes false positives.

• Recall (sensitivity): This measure assesses the model’s ability to identify all relevant
instances, defined as:

Recall =
TP

TP+FN
, (2.12)

with FN indicating false negatives.

• F1-score: Offering a balance between precision and recall, this metric is particularly
valuable in the presence of class imbalance. It is calculated as:

F1-score = 2× Precision×Recall
Precision+Recall

. (2.13)

Collectively, these metrics facilitate a balanced and insightful performance evaluation, ensuring
robust assessments across diverse problem contexts.

2.2.3 Computational Efficiency

In addition to evaluating performance using error and accuracy metrics, assessing computational
efficiency is crucial to determine the scalability and practicality of the proposed frameworks, es-
pecially for deployment in resource-constrained environments. Computational complexity is
commonly quantified using Floating Point Operations (FLOPs), which measure the number of
arithmetic operations required by an algorithm or model during each computation or communi-
cation round. The total computational complexity per communication round can be generically
expressed as:

FLOPsTotal = N ·FLocal +FAgg +FAlgo, (2.14)

where N denotes the number of participating ENs, FLocal is the computational cost associated
with local training at each EN, FAgg represents the aggregation computational overhead at the
central server, and FAlgo corresponds to any additional computational overhead specific to the
aggregation algorithm employed, such as similarity computation or truncation mechanisms.

Local training cost, FLocal, involves both forward and backward passes through the neural
network model, with complexity depending on model architecture, including layer type, neuron
count, and training sample size. For instance, in the case of recurrent architectures such as
LSTM, the local computational complexity is proportional to the number of hidden units, layers,
and the size of training samples processed at each EN. Formally, this can be represented as:

FLocal ∝ S ·H ·L, (2.15)

where S represents the training sample size per EN, H denotes the number of hidden units per
layer, and L indicates the total number of layers in the LSTM model.
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Aggregation cost, FAgg, involves the computational complexity of combining local updates
at the server and is generally dependent on the number of parameters in the neural network
model and the number of participating edge nodes. Mathematically, it can be expressed as:

FAgg ∝ K ·M, (2.16)

where M denotes the total number of model parameters.
Algorithm-specific computational overhead, FAlgo, varies significantly depending on the ag-

gregation approach utilised. For example, conventional aggregation methods, such as FedAVG,
primarily involve simple averaging operations, resulting in relatively low computational over-
head. Conversely, advanced aggregation algorithms, such as those involving similarity-driven
mechanisms or truncation strategies, entail additional operations like cosine similarity calcula-
tions, sorting, or thresholding operations, thus introducing an extra computational cost. Specif-
ically, for L layers and N participating clients, the complexity introduced by similarity-driven
mechanisms can be approximated as:

FAlgo ∝ L ·N ·M. (2.17)

Thus, comprehensive evaluation of FLOPs provides a practical measure for understanding model
scalability, energy consumption, and suitability for real-world, resource-limited deployments.

In addition, we have expanded our evaluation criteria to include energy efficiency, which is a
crucial factor in FL where computational and communication resources are limited. The energy
efficiency metric is based on the computational requirements of local training and the amount
of data transmitted during each communication round, which is represented by the following
formula: [31, 32]

Eest = R[(α ∗ tcom)+N(β ∗Ptrn)], (2.18)

where α is the computation constant having dimensions of energy per second and β is the
communication constant with dimensions of energy per kilobyte. R represents the number of
communication rounds; N is the number of participants; tcom is the computation time, which is
dependent on the device type; and Ptrn is the data payload size per communication round.

2.3 Heterogeneity and Data Diversity in FL

Heterogeneity is a significant challenge in FL, arising from diverse data distributions, vary-
ing computational capabilities, and network conditions across the ENs. Unlike traditional cen-
tralised learning, FL involves training on decentralised, non-independent and identically dis-
tributed (non-IID) data from multiple sources, where data from each EN represents unique local
patterns or biases due to different environments, user behaviours, and data collection meth-
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ods [33]. The data heterogeneity leads to suboptimal performance, where the global model needs
help to generalise effectively across all clients. Additionally, system heterogeneity, caused by
disparities in hardware, network stability, and computational power among ENs introduces fur-
ther complexities, as slower or less capable devices hinder the training process [34]. Addressing
heterogeneity in FL requires specialised aggregation techniques, robust optimisation algorithms,
and strategies for managing resource-constrained clients to ensure both model accuracy and
fairness across all participants. This section focuses on data diversity, related challenges, and
methods to overcome these challenges. The data diversity is typically classified into statistical
heterogeneity and domain shift [35].

2.3.1 Statistical Heterogeneity and Client Drift

A primary challenge in FL is statistical heterogeneity, where clients collect data with unique
distributions and characteristics, resulting in non-IID datasets [36, 37]. For instance, devices in
distinct environments capture data that varies regarding feature distributions, label proportions,
and data imbalance. This diversity leads to client drift, where local models diverge from each
other during training, creating a challenge for the global model to converge effectively [38].
This client drift, where local model updates deviate significantly from the global model, leads
to unstable convergence and often deteriorates model performance. Furthermore, the inconsis-
tency in data distribution results in suboptimal global models that struggle to adapt to new data
distributions, limiting their effectiveness and accuracy across diverse client populations [39].

2.3.2 Domain Shift

Domain shift is another critical aspect of data heterogeneity, where clients capture data from
different domains or under varying conditions. This issue is common in applications like health-
care, where medical institutions collect patient data with vastly different characteristics due to
regional and demographic factors [38]. Similarly, in industrial applications, two robots operating
in separate geographical locations may encounter different environmental conditions, leading to
domain-specific feature distributions. Such domain shifts can hinder model performance as the
global model struggles to accommodate diverse contexts, reducing adaptability and accuracy
across different clients [40].

2.3.3 Challenges Arising from Data Diversity in FL

• Slow convergence and model instability: Non-IID data often cause each model to di-
verge during local training, leading to difficulties in achieving stable convergence of the
global model. The reliance on stochastic gradient descent (SGD) exacerbates this issue,
as gradients from clients with dissimilar data conflicts slow down convergence and cause
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oscillations [41].

• Client-specific performance variability: The global model exhibits inconsistent perfor-
mance across ENs due to data diversity. Clients with limited or unrepresentative data neg-
atively influence the global model, reducing overall model accuracy [42]. Furthermore,
clients with highly skewed data distributions cause the global model to overfit specific
patterns, compromising generalisation.

• Increased computational complexity: Handling data diversity often demands additional
computational resources, especially for clients with constrained capabilities. Strategies to
mitigate heterogeneity involve added operations for client clustering, data normalisation,
or model adaptation, further straining devices with limited processing power [43].

2.3.4 Techniques to Address Data Diversity in FL

Several techniques have been proposed to overcome data diversity challenges, focusing on
adapting the FL process to handle heterogeneous data effectively. Clustering-based methods
group clients with similar data characteristics, allowing for more targeted model aggregation
within clusters. This approach minimises the impact of non-IID data by aligning the model
updates within each group, enhancing training performance and reducing convergence issues
[44, 45].

Another approach is personalised FL, which customises global models for individual clients
through transfer learning and meta-learning [46, 47]. By tailoring models to specific data dis-
tributions, personalised FL improves local model performance and mitigates the adverse effects
of data heterogeneity on convergence. Additionally, normalisation techniques have been intro-
duced to adjust local model updates before aggregation, addressing disparities in model contri-
butions and reducing gradient scattering [48].

Domain adaptation techniques have also been explored to handle domain shifts by aligning
feature distributions across domains. These methods allow the global model to generalise better
by minimising the divergence between domain-specific and global feature representations [49].
Finally, some studies propose sharing a small public dataset across clients to create a common
data representation, thus bridging the distribution gap between clients [50]. This shared dataset
aids in stabilising the global model and improving its robustness in diverse settings. In conclu-
sion, addressing data diversity in FL is essential to enhance model convergence, performance,
and adaptability. Clustering, personalisation, domain adaptation, and normalisation techniques
provide viable solutions, each tailored to specific aspects of heterogeneity, allowing for more
robust and effective FL models.
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2.4 Multi-Modal Fusion in FL

Multi-modality in FL aims to leverage diverse data sources (e.g., text, image, audio) in a de-
centralised setting to improve model performance while preserving data privacy [51]. Multi-
modality is valuable, especially for applications in healthcare, wireless communication systems,
autonomous systems, and smart cities, where integrating multi-modal data sources can improve
the robustness of predictions [52]. However, multi-modal fusion introduces several complex
challenges, primarily due to the inherent diversity in data distribution, different formats, and
feature representation across different modalities [53].

Data heterogeneity, modality alignment, and communication efficacy are among the primary
challenges in multi-modal fusion [51–53]. Unlike conventional unimodal FL, which typically
shares a similar structure with client data, multi-modal fusion needs to resolve inconsistencies
that vary in data characteristics and processing requirements. This heterogeneity can impede
model convergence and diminish performance if not effectively managed [54]. This complexity
is frequently observed in the healthcare sector, where the structure and relevance of various
modalities, such as clinical text, imaging, and lab results, necessitate meticulous integration to
generate meaningful insights [55].

Key challenges in multi-modal fusion for FL include:

• Data Heterogeneity: Different data types (e.g., images vs. text) have varying feature rep-
resentations, making it challenging to align and aggregate them in a unified model. This
heterogeneity can lead to client drift and impede model convergence if fusion strategies
do not account for these differences [54].

• Modality Alignment: Another intricate issue is consistency maintenance across multi-
modalities, particularly when specific clients possess only partial data. Sophisticated
alignment techniques are necessary to align modalities while preserving their individual
contributions to the global model [55].

• Communication Efficiency: The computational requirements and data size are typically
increased by multi-modal fusion, which results in significant communication overhead.

Several approaches have emerged to address these challenges faced by multi-modal data
fusion in FL. Modality-specific training is one widely used technique where client devices train
models on individual modalities and then aggregate latent representations in a shared feature
space [54]. For instance, attention mechanisms are commonly applied to capture complementary
information across modalities, allowing models to selectively integrate relevant features from
each modality [56]. Another approach involves hierarchical fusion architectures, where early
fusion integrates raw modality data before local training. In contrast, late fusion combines
predictions from each modality, enhancing alignment and preserving the individual strengths of
each data type [57].
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To further address heterogeneity, dynamic modality fusion and similarity-based aggregation
techniques have been proposed [58]. These methods enable the model to prioritise modalities
with the most informative representations, reducing noise and improving convergence. Privacy-
preserving techniques, such as homomorphic encryption (HE) and differential privacy (DP), are
integrated to protect sensitive multi-modal data during transmission. Recent studies have also
explored autoencoder and graph neural network-based methods for modality alignment, which
help create a common latent space for data integration, thus improving the overall performance
and robustness of the global model [59].

2.5 Aggregation Mechanism in FL

In FL, aggregation mechanisms are central to the collaborative training process, enabling the in-
tegration of model updates from multiple clients to produce an optimal global model. The choice
of aggregation method can significantly affect model performance, especially when dealing with
challenges like non-IID data, system heterogeneity, and limited computational resources on
ENs [60]. This subsection examines the most commonly used aggregation techniques, includ-
ing gradient descent (GD), SGD, FedAVG, federated matched averaging (FedMA), federated
proximal (FedProx), and federated splitting (FedSplit) [34, 60, 61].

GD is one of the foundational methods used in centralised ML. It involves iteratively ad-
justing model parameters by descending along the gradient of the loss function, gradually min-
imising the difference between predicted and actual values [62]. While effective, GD can be
computationally intensive when applied directly in FL, requiring each client to compute the
gradient on its entire dataset. SGD is a variant of GD that reduces computational load by us-
ing a randomly selected subset of data, known as a mini-batch, to approximate the gradient.
In FL, SGD is commonly used in local training on each client, as it strikes a balance between
computational efficiency and accuracy, making it suitable for large-scale, resource-constrained
settings [33]. In the FL setting, Federated (FedSGD) is exploited to quantify how frequently the
global FL model needs to be updated [11]. Despite its advantages, the FedSGD requires large
communication rounds proportionate to the data volume, which can strain communication links
and consume unnecessary bandwidth.

To address the challenge of frequent updates, McMahan et al. [12], introduced FedAVG,
which computes a weighted average of model updates from all participating ENs where each
EN is weighted based on the size of its dataset. Mathematically, this is expressed as:

ω
t+1 =

1

∑
N
i=1 |Di|

N

∑
i=1
|Di| ·ω t+1

i , (2.19)

where ω t+1 represents the global model at round t + 1, N is the number of clients, Di is the
dataset of client i, and ω

t+1
i is the locally updated model from client i. FedAVG is simple, com-
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putationally efficient, and well-suited to scenarios with IID data across multiple ENs. However,
it faces challenges with non-IID data distributions, as averaging non-uniform updates can lead
to suboptimal model convergence and performance [63]. Moreover, FedAVG can be sensitive to
client dropout, which may distort the global model if certain clients disproportionately influence
the aggregation process.

Multiple variants of FedAVG have been introduced based on the customised requirements
to address the limitations. For instance, FedProx was introduced as a modification that includes
a proximal term in the local objective function to stabilise updates across clients with varying
data distributions and computational capacities [64]. In FedProx, the optimisation problem of
each EN is augmented with a penalty term that keeps the local model close to the global model
parameters, reducing the drift caused by clients with highly skewed data. This method is partic-
ularly beneficial in heterogeneous networks, where client data and resources vary significantly,
enabling more robust model convergence. The local objective function for client i in FedProx is
given by [64]:

ℓi(ω)+
µ

2
∥ω−ω

t∥2, (2.20)

where µ is a regularisation parameter that controls the strength of the proximal term. The
proximal term ∥ω −ω t∥2 ensures that local updates do not diverge too drastically from the
global model, helping to align client updates even under non-IID conditions.

FedMA, another extension of FedAVG, handles heterogeneous model architectures across
ENs [65]. FedMA aligns model layers from different EN before averaging, thus enabling ag-
gregation in scenarios where client models have varying architectures. This approach begins
by identifying correspondences between layers of each EN’s model and then averaging matched
parameters. FedMA is particularly useful in applications where each EN uses different model ar-
chitectures, as it allows for flexibility while still achieving a meaningful global update. However,
FedMA can be computationally complex due to the need for matching and alignment before av-
eraging, making it more suitable for federated systems with moderate levels of heterogeneity.

Another promising method for model aggregation is FedSplit, which divides the model pa-
rameters into subsets and assigns them to different ENs based on data relevance or computational
capabilities [66]. FedSplit enables selective participation, where only relevant ENs update spe-
cific model subsets. This approach reduces the computational burden on individual clients, as
they are responsible only for particular segments of the model rather than the entire parameter
set. By distributing model components across clients, FedSplit facilitates parallel processing,
accelerating model convergence [66]. However, it requires careful coordination to ensure that
all parts of the model are updated in a synchronised manner, and it may increase communication
costs if extensive coordination is needed among clients.

Beyond these primary methods, several other aggregation techniques have been explored to
address specific challenges in FL. For example, federated gradient sparsification (FGS) [67],
federated distance (FedDist) [68], federated meta-learning (FedMeta) [69], and federated boost-
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ing (FedBoost) [70] worked to reduce the computational complexity and communication cost.
In summary, aggregation mechanisms in FL have evolved to meet the diverse needs of dis-

tributed systems. While FedAVG remains the most commonly used technique due to its simplic-
ity and efficiency, methods like FedProx and FedMA have been developed to address data het-
erogeneity and client variability challenges. Advanced methods, such as FedSplit and gradient
sparsification, provide further flexibility, catering to applications with unique communication,
computational, and privacy constraints. The selection of an aggregation mechanism depends
heavily on the specific application requirements and EN characteristics, as well as on factors
like data distribution, client reliability, and resource limitations.

2.6 Privacy and Security in FL

As FL grows in prominence as a method for decentralised model training, privacy and security
emerge as two of its most crucial considerations. FL preserves data locally, enabling multiple EN
to train collaboratively and offers privacy by design [17]. However, the decentralised nature of
FL introduces unique privacy and security challenges, as model updates shared during training
can inadvertently leak sensitive information by data reconstruction [16, 17]. Furthermore, FL is
vulnerable to various adversarial attacks, including poisoning and inference attacks, which can
compromise both data confidentiality and model integrity [71, 72].

This section explores the key privacy and security issues in FL, starting with a summary
of privacy challenges and common objectives for protecting client data. Next, we explore the
essential privacy-preserving techniques used in FL, such as DP, secure multi-party computation
(SMPC), and homomorphic encryption (HE), each providing a unique approach to improving
data confidentiality. The discussion then shifts to the security landscape of FL, exploring poten-
tial adversarial threats such as poisoning and inference attacks, which can compromise model
integrity and privacy. Finally, we review existing defence mechanisms designed to counter these
threats, highlighting advancements that strengthen the robustness of FL against attacks while
maintaining model performance.

2.6.1 Vulnerabilities in FL

While FL offers privacy by design, it remains vulnerable to various adversarial attacks that can
compromise the performance, integrity, or even the privacy of individual data points. From a
broader perspective, the adversarial attacks in FL can be classified into two main categories, i.e.,
performance attacks and privacy attacks [17, 28]. Performance attacks aim to degrade model
accuracy or robustness, while privacy attacks seek to infer sensitive information from model
updates. Understanding these attack types and their operational mechanisms is crucial for im-
plementing effective defences in FL systems.
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Performance Attacks

Performance attacks primarily target the predictive capabilities and generalisation of FL models
by introducing biases, errors, or disruptions during training. Common types of performance
attacks include data poisoning and model poisoning.

1) Data Poisoning Attack: Data poisoning involves manipulating or corrupting the local
training data to introduce erroneous patterns into the model. In FL, adversaries can disguise
themselves as legitimate clients and insert manipulated data into their training sets to influ-
ence the global model. One typical example is label flipping, where specific class labels are
deliberately misassigned (e.g., changing all instances of “cat” to “dog”) to distort the model’s
predictions. This type of attack biases the model without altering its structure, making detection
challenging in a decentralised setting [73, 74].

Another form of data poisoning is backdoor attacks, which subtly insert specific patterns into
the data (e.g., a particular pixel patch in images) that trigger incorrect predictions only when the
pattern appears [75]. For example, in a facial recognition model, attackers could add a small
patch to an image to make the model misclassify specific individuals. Data poisoning, whether
through label flipping or backdoors, can significantly degrade model performance, especially
when multiple compromised clients participate in the training process [76].

2) Model Poisoning: Model poisoning targets the integrity of the global model by directly
manipulating model updates rather than altering the data itself. In this attack, malicious clients
intentionally modify the gradients they send to the server [77]. By sending poisoned gradients,
adversaries can skew the global model towards incorrect patterns or objectives. Model poisoning
can be targeted where only specific outcomes are affected or untargeted, impacting the model’s
overall accuracy [5].

In targeted model poisoning, an attacker may use the same data as legitimate clients but alter
the objective function to inject specific biases, effectively compromising the model for particular
tasks. Untargeted attacks, on the other hand, aim to degrade the global model’s performance
across all tasks, often by injecting noise or deviating gradients. Model poisoning is especially
challenging to detect, as malicious clients can craft gradients that closely resemble legitimate
updates, bypassing standard anomaly detection techniques [73, 74].

Privacy Attacks

Privacy attacks in FL aim to extract sensitive information about the local data from the shared
model updates. Common types of privacy attacks include model inversion, membership infer-
ence, and gradient leakage [19].

1) Model Inversion Attack Model inversion attacks allow adversaries to reconstruct pri-
vate data based on shared model parameters. In FL, an attacker accessing the global model’s
gradients or parameters can reverse-engineer data patterns, approximating the original data
points [78]. Model inversion can be done with generative adversarial networks (GANs), which
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train a generator network to make data samples that look like they came from the targeted client
while using the global model as a discriminator [79]. Model inversion threatens privacy, espe-
cially in applications handling sensitive information like medical records or financial data.

2) Membership Inference Attacks: Membership inference attacks aim to determine whether
a specific data point was part of a client’s training dataset by analysing the updates that clients
contribute. This type of attack allows adversaries to infer details about individual data points
or their characteristics. For instance, by observing clients’ gradient updates, an attacker can
identify if a particular data sample influenced the model, thus revealing membership informa-
tion [80]. Membership inference attacks are particularly concerning in applications with sensi-
tive dataset membership, such as healthcare or law enforcement.

3) Gradient Leakage and Gradient Inference Attacks: In gradient leakage attacks, ad-
versaries exploit gradients shared during FL training to infer sensitive details about the data.
Gradients can contain information about the direction and magnitude of data changes, which
attackers can use to approximate original data points. For example, attackers may leverage gra-
dient information to perform gradient inversion, reconstructing partial or complete data samples
from the updates shared by clients [80]. This risk is especially high in FL systems with fewer
clients or susceptible data. Implementing privacy-preserving mechanisms such as gradient noise
is essential to mitigate leakage risks.

2.6.2 Privacy Challenges and Goals in FL

The impact and likelihood of different types of attacks depend on the resources, knowledge, and
access that the attacker has to the system. Attacks like backdoors and model poisoning require
a deep understanding and access to the architecture of the FL system. In contrast, membership
inference and gradient leakage attacks can be executed more efficiently with minimal resources.

One of the primary privacy risks in FL stems from information leakage through model up-
dates. Despite EN only sharing model parameters, research has shown that an attacker with ac-
cess to these updates can reconstruct aspects of the local data used to generate them [16,71,72].
For instance, gradient inversion techniques enable adversaries to infer data characteristics or
approximate data values from the gradient updates, posing a significant privacy threat in sen-
sitive applications like healthcare or financial services [81]. Additionally, differential updates
between training rounds can reveal client-specific data patterns over time, enabling attackers
to reconstruct details about local data more accurately. This makes FL vulnerable to sophisti-
cated reconstruction attacks, where long-term exposure to model updates can accumulate into a
significant privacy breach [20].

Another critical privacy issue in FL involves membership inference attacks, where adver-
saries attempt to determine whether specific data points were part of a client’s dataset. These
attacks take advantage of vulnerabilities in model updates to differentiate between data that the
model has seen and data that it has not. This allows attackers to verify the presence of spe-
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Table 2.1: Summary of Attack Types in FL.

Type of
Attack Source of Attack Target of Attack Complexity Impact Effectiveness Detection

Challenge

Data
Poisoning

Malicious clients
Global model
performance

Medium
(requires data

access)

Biases model
predictions,
decreases
accuracy

High when
multiple clients

are compromised

Difficult (label
flipping or

backdoors subtle)

Model
Poisoning

Malicious clients
Global model

parameters

High (requires
gradient

manipulation)

Compromises
model integrity,

affects specific or
all outcomes

High (both
targeted and
untargeted

attacks effective)

High
(manipulated

gradients
resemble
legitimate
updates)

Model
Inversion

Adversary
accessing model

parameters

Reconstruction
of private data

points

High (requires
GANs or
advanced

reconstruction)

Reveals sensitive
data, high privacy

risk

High in sensitive
applications

High
(reconstruction
techniques hard

to detect)

Membership
Inference

Adversary
observing

gradient updates

Individual data
inclusion

Low (easily
inferred from

updates)

Exposes
individual data
points, privacy

breach

Moderate to High
(depending on
application)

Moderate
(privacy-

preserving
techniques help)

Gradient
Leakage

Adversary
analysing shared

gradients

Sensitive data
patterns

Medium
(requires gradient

analysis)

Reveals partial
data, medium
privacy risk

Moderate (more
effective with
fewer clients)

Moderate to High
(privacy-

preserving
mechanisms

needed)

cific records, such as medical information, within client datasets [19]. Membership inference
is particularly concerning in applications where the mere presence of data can have sensitive
implications, such as records indicating the diagnosis of a disease. While designed to prevent
direct data sharing, the FL framework risks exposing sensitive information through such infer-
ence attacks due to its iterative update process.

Additionally, the privacy challenges in FL extend beyond individual clients to include risks
associated with client-server trust dynamics. In typical FL setups, a central server aggregates
model updates from clients, creating a potential single point of vulnerability. The central server
could be compromised, either by external attackers or by collusion with malicious clients, lead-
ing to unauthorised access to aggregated updates and compromising client privacy [71]. The
absence of a direct trust mechanism between clients and the central server increases this risk,
as clients must depend on the server to ensure privacy without insight into its data aggregation
or handling practices. This dynamic underscores the need for robust privacy guarantees that
operate independently of server trustworthiness, particularly for sensitive data applications.

In terms of impact, targeted backdoor attacks are particularly effective as they compromise
model predictions without changing the overall structure of the model. On the other hand, un-
targeted attacks, such as generic model poisoning, reduce the overall accuracy of the model but
may be easier to detect. Privacy attacks, including model inversion and membership inference,
can be highly effective, especially when data confidentiality is a primary concern. Table 2.1
summarise the targets and complexity of adversarial attacks in FL.

In light of the challenges discussed in above, privacy preservation in FL focuses on three
main goals: (a) minimising information leakage, (b) ensuring data confidentiality, and (c) main-
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taining the integrity of the learning process.

• The first goal, minimising information leakage, aims to restrict the amount of information
inferred from shared model updates. Techniques like DP introduce controlled noise to
model updates during training, limiting the potential for data reconstruction while retain-
ing model utility [82].

• The second goal is data confidentiality, which emphasises protecting client data from
unauthorised access, particularly during model aggregation on the server. SMPC and
HE are commonly employed to enable computations on encrypted data, ensuring that
the server only processes encrypted updates without accessing the underlying informa-
tion [71].

• The final goal is the integrity of the learning process, which addresses the risk of mali-
cious or compromised clients manipulating model updates to inject biased or misleading
information into the global model. Robust aggregation techniques, such as anomaly detec-
tion and reweighting strategies, are critical to maintaining model reliability in adversarial
settings.

2.6.3 Defense Mechanism in FL

Several privacy-preserving methods have recently been proposed to enhance the resilience of
FL, each offering a unique balance between privacy and utility. Here, we discuss the primary
privacy-preserving techniques, including HE, secure multi-party computation (SMPC), and DP,
and advanced model robustness methods, such as anomaly detection, robust aggregation, and
pruning.

Defense against Privacy Attacks

Given the variety of attacks in FL, it is imperative to deploy a range of defense frameworks
tailored to the specific nature of each attack, considering factors such as device configurations,
FL architecture, and available resources.

1) Homomorphic Encryption: HE enables computations on encrypted data without de-
crypting it, thus maintaining data privacy during model training. In FL, HE allows ENs to
send encrypted updates to the central server, which can perform arithmetic operations on the
encrypted values. HE has three primary variations based on its computational flexibility and
complexity, including full, partial, and somewhat encryption [83, 84]. In full encryption, arbi-
trary computations are performed on ciphertexts, which offer maximal flexibility but are com-
putationally intensive, often impractical for large-scale applications [85]. Partial encryption
supports only one type of operation (e.g., addition or multiplication), while the somewhat HE
allows a limited number of both operations [86]. Although HE enhances privacy, the added
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computational and memory demands make it challenging to deploy efficiently in FL, particu-
larly when handling non-linear operations required by complex models. Some FL frameworks,
such as those using additively HE, aim to balance privacy and computational overhead, but the
trade-offs remain a critical consideration in implementing HE [83].

2) Secure Multi-Party Computation: SMPC enables collaborative computations across
multiple ENs without sharing individual data, enhancing privacy in distributed settings. In
SMPC, each client divides its data into random shares, which are then distributed among other
clients for local computation [87]. Once each client computes the function on the shared data,
the results are aggregated to produce the desired outcome, ensuring that no single party can ac-
cess complete information [88]. SMPC has been effectively used in FL to secure private model
training. However, it typically incurs significant communication and computational costs due to
its dependence on data-sharing among multiple clients [89]. While SMPC provides robust pri-
vacy, the high communication overhead makes it less efficient for large-scale FL applications,
where a large number of clients participate. However, implementing SMPC on a large scale
requires meticulous coordination and can be vulnerable to performance issues, particularly in
resource-constrained environments [87].

3) Differential Privacy: DP is widely used in FL to protect against data inference attacks
by introducing random noise to the model updates, making it difficult for attackers to derive
specific information about individual data points [90]. DP is beneficial for safeguarding against
both inference and data poisoning attacks, as it disrupts the underlying gradients that attackers
may exploit [82, 90]. In most cases, DP is added to FL using methods such as the exponential
noise mechanism or the Gaussian noise addition to gradients, hiding the private data before up-
dates are sent [72]. While DP imposes a lower computational cost compared to HE and SMPC,
it can affect model quality due to noise injection. Moreover, DP faces challenges related to cu-
mulative privacy loss across iterative training rounds, as privacy degradation may increase with
each successive iteration. Techniques such as privacy amplification by subsampling and con-
trolled noise injection have been proposed to mitigate this issue, providing more stable privacy
guarantees over multiple rounds [91].

In FL, DP can be applied at different levels, such as user-level privacy, which protects the
presence of an entire dataset, or instance-level privacy, which focuses on securing individual
records. User-level DP ensures that the model remains secure even if individual clients or their
data are removed from the training process, while instance-level DP provides a more granular
protection level, securing each data point within the client’s dataset [91]. In summary, HE,
SMPC, and DP each bring unique strengths to privacy preservation in FL; they also involve
trade-offs between privacy, computational cost, and model utility. The choice of technique often
depends on the specific privacy requirements and resource constraints of the FL deployment.

4) Knowledge Distillation: Knowledge distillation (KD) is a method by which knowledge is
transmitted from a larger, well-trained model “teacher” to a smaller, more lightweight model, the
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“student”, by training the student to approximate the teacher’s predictions [92]. This method is
useful for developing lightweight, efficient models without sacrificing accuracy, making it appli-
cable to a wide range of applications. KD is crucial in the FL as it enables the direct deployment
of efficient student models on decentralised devices, thereby enhancing model performance [92].

Instead of sharing entire, huge mentor models, the federated knowledge distillation (FedKD)
approach [93], focuses on sharing updates from smaller “mentee” models, which promotes pri-
vacy protection. FedKD reduces privacy threats by sharing the most critical updates, minimis-
ing the amount of information exchanged. Furthermore, FedKD utilises gradient encryption
before transmitting local gradients to the central server, thereby obscuring sensitive patterns
included within the gradients [93, 94]. Methods like singular value decomposition (SVD) are
employed for gradient compression, reducing sensitive information leakage [19]. In the con-
vergence phase, FedKD progressively enhances compression precision, as gradients possess di-
minished private information at this level. The integrated methodology of FedKD offers strong
privacy protections while preserving superior model performance.

5) Trusted execution environments (TEEs): are secure enclaves on client devices or servers
that safeguard sensitive computations and data against unauthorised access and manipulation
[17]. In FL, TEEs isolate the model training processes, thus ensuring the confidentiality and
integrity of client data against adversaries seeking to intercept or modify updates transferred
between clients and the central server [19]. This secure environment fosters trust by guaran-
teeing that individual contributions remain confidential, thereby encouraging increased client
engagement in FL. Additionally, the tamper-resistant features of TEEs in FL enhance training
and aggregation by minimising the risk of attacks where adversaries might alter model updates.

For example, IntelSGX proposed in [95] is a privacy-preserving FL framework that guar-
antees secure local training and global aggregation. By restricting computations to verified
TEEs, IntelSGX uses remote attestation to verify integrity. This configuration detects and elimi-
nates manipulated gradients, safeguarding the global model against harmful modifications. An-
other sophisticated architecture, privacy-preserving federated learning (PPFL) proposed in [96],
utilises TEEs on both client and server sides to safeguard against privacy breaches. This frame-
work implements layer-wise training to mitigate memory limitations, with just the final layer
retained in the client’s TEE to safeguard against membership inference attacks. Encrypted com-
munication across TEEs guarantees data secrecy, significantly reducing risks associated with
data reconstruction and property inference attacks [19]. Table. 2.2 provide the summary of
defence mechanisms for privacy attacks with their characteristics and weaknesses.

Defense against Model and Data Attack

In addition to privacy-preserving methods, several defence mechanisms aim to enhance model
robustness against adversarial manipulations in FL. These techniques focus on detecting and
neutralising malicious updates, ensuring the reliability and stability of the global model. This
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Table 2.2: Summary of Key Defense Mechanisms in FL for Privacy Attacks.

Defense
Mechanism Definition (Purpose) Characteristics Implementation

Stages Weakness References

HE

Enables computations on
encrypted data without
decrypting it, maintaining
data privacy during model
training.

Variations include full,
partial, and somewhat HE;
supports computation on
ciphertext; offers high
security.

Server side
(aggregation of
updates)

Computationally
intensive, particularly for
non-linear operations,
challenging for large-scale
FL applications.

[83–86]

SMPC

Supports collaborative
computations across clients
without data sharing,
enhancing privacy in
distributed settings.

Uses data-sharing with
random shares, ensuring no
single party has complete
data; robust privacy but high
communication overhead.

Client side (local
updates sharing)

High communication cost
due to data-sharing
requirements;
performance issues in
resource-constrained
environments.

[87–89]

DP

Protects against inference
attacks by introducing
random noise, safeguarding
sensitive information.

Different levels (user-level,
instance-level); flexible noise
injection; efficient in terms of
computational cost.

Client and server
sides

Potential impact on model
utility due to noise;
cumulative privacy loss
over iterative rounds may
reduce effectiveness.

[72, 82, 90,
91]

KD

Transfers knowledge from a
larger model to a smaller one
to enhance efficiency without
sacrificing accuracy.

Creates lightweight student
models; FedKD variant with
gradient encryption and
compression; high privacy
protection.

Client side (local
model training)

Limited in protecting
against sophisticated
reconstruction attacks;
effectiveness varies with
model and task
complexity.

[19,92–94]

TEEs

Provides secure enclaves on
devices to protect sensitive
computations from
unauthorized access.

Secure, isolated environment
for computations; supports
remote attestation; strong
defence against data
tampering.

Both client and
server sides

Limited by memory
constraints; potential
overhead with large
models or datasets.

[19, 95, 96]

subsection will discuss the defence mechanism for the data and model attacks discussed in Sec-
tion 2.6.1.

1) Anomaly Detection: Anomaly detection is pivotal in FL training against malicious up-
dates that could degrade model integrity or introduce data poisoning. Typically implemented
on the server side, anomaly detection monitors deviations of upcoming updates from normal
patterns, identifying and flagging abnormal updates that indicate adversarial behaviour [97, 98].
Several frameworks demonstrate the breadth of anomaly detection strategies in FL. For instance,
the local malicious factor (LoMar) employs a two-step strategy to protect against poisoning at-
tacks [99]. Initially, it scores the “maliciousness” of each update by utilising kernel density es-
timation based on k-nearest neighbours. Subsequently, it applies a threshold to classify updates
as either clean or malicious. By successfully removing malicious updates from the aggrega-
tion process, this method significantly increases the reliability of the global model. Similarly,
FederatedReverse proposed in [100] employs outlier detection and reverse engineering to de-
tect malware triggers in client updates. This approach entails the generation of reverse triggers
for each label at the client level, which are subsequently centralised. Median-based filtering is
employed to identify anomalies among these triggers. When such anomalies are identified, cor-
rective actions are implemented to mitigate the backdoor effects while maintaining the accuracy
of the model.

Another technique presented in [101] is a dynamic defence against Byzantine attacks (DDaBA),
which employs the induced ordered weighted averaging (IOWA) operator to provide adaptive
protection against Byzantine attacks. This operator assigns dynamic weights to client updates
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based on the performance of the validation process. Moreover, the SecFedNIDS framework
proposed in [102] incorporates layer-wise relevance propagation and gradient-based anomaly
detection to secure intrusion detection systems, filtering both poisoned model updates and data
samples. Additionally, frameworks such as BAFFLE [75] employ a client feedback loop to
verify the integrity of the model during each training round, thereby ensuring that anomalous
updates are identified based on discrepancies in the error rate. Other methods, such as Multi-
KRUM [103] and FoolsGold [104], facilitate the detection of coordinated malicious activities
without compromising performance by addressing the identification of Sybil groups and gradi-
ent variances.

2) Robust Aggregation: The robust aggregation methods usually mitigate the effects of ma-
licious updates, handle data heterogeneity, and optimise model performance. The foundational
approach in FL is the FedAVG algorithm [12], where the server aggregates client updates by
computing a weighted average, typically based on the number of data samples each client pos-
sesses. While simple and effective under ideal conditions, FedAVG is vulnerable to outlier and
adversarial updates. Hence, multiple aggregation techniques like FedMA, FedProx, FedSplit,
FedMeta, and FedDist [34, 60, 61, 65, 68] are proposed in the literature. These techniques use
model updates and modify the aggregation mechanism to deal with vulnerabilities and adversar-
ial updates. The detail of these model aggregation techniques is discussed in Section 2.5.

Apart from these traditional methods, various other techniques have also been proposed. For
instance, the author in [103] proposed Kurm, which selects a single client update that is closest
to the majority of other updates in terms of Euclidean distance. Krum reduces the influence
of outliers by choosing the update with minimal cumulative distance to its nearest neighbours.
Additionally, trim mean aggregation and clustering approaches are actively used in literature to
mitigate the impact of adversarial updates. Clustering-based methods group client updates based
on similarity, which helps to isolate outliers and aggregate only those representative of typical
client data. Techniques like similarity-based aggregation calculate cosine similarity scores to
form clusters of similar updates, reducing the influence of adversarial noise [35].

Advanced clustering approaches, such as Hierarchical Clustering Aggregation (HCA), ex-
tend this concept by iteratively grouping similar updates into hierarchical clusters [105]. The
hierarchical structure enables the aggregation mechanism to preserve relationships within client
updates while excluding clusters that exhibit high variance or dissimilarity. HCA is beneficial
in dynamic FL environments, where clients may have drastically different data distributions or
resource constraints, as it helps form a more nuanced and resilient aggregation process. More-
over, Byzantine-resilient methods are specifically designed to counteract malicious clients that
aim to disrupt the FL process. Bulyan aggregation, proposed in [18], is one such method that
integrates Krum with the coordinate-wise majority voting to tolerate Byzantine faults. This ap-
proach identifies and discards updates that deviate significantly from most updates, focusing on
updates that maintain model accuracy under adversarial conditions.
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Robust client selection frameworks minimise the risk of aggregating malicious or faulty
updates by choosing only trustworthy clients in each training round. Techniques like FedClean
[106] use reputation-based scoring to select highly trustworthy clients for model aggregation. By
continually evaluating client performance, FedClean reduces the impact of unreliable clients on
the global model, effectively balancing accuracy and security. Similarly, sampling mechanisms
like diverse federated learning (DivFL) select a subset of clients that best represent the diversity
of data distributions within the FL environment [107]. This submodular optimisation strategy
ensures that the aggregated model reflects a broader range of data, improving its generalisation
across heterogeneous clients while reducing reliance on any single client’s updates.

3) Model Pruning: Model pruning is a method that is employed to improve the efficiency of
neural networks by eliminating redundant or insignificant parameters, such as weights, neurones,
or entire layers, without substantially affecting the performance [108]. This process involves the
identification and elimination of parameters that have a negligible impact on the output of the
neural network, thereby reducing the computational complexity and size of the model [109].
Pruning is classified into two primary categories:

• Structured Pruning: This approach eliminates entire network structures, including neu-
rones, filters, and layers [109]. Structured pruning results in more efficient computation
and memory usage by simplifying the network architecture. Parallel processing and hard-
ware acceleration can be more readily optimised with the simplified network.

• Unstructured Pruning: This method removes the least significant weights by focusing on
individual weights and utilising criteria such as magnitude [109]. Although unstructured
pruning can generate networks with a high degree of sparsity, it frequently necessitates
specialised hardware or libraries to completely capitalise on the sparsity as a result of the
irregular remaining network structure.

Pruning is a widely used technique in FL that can considerably enhance the defence of local
models by reducing the attack surface and increasing robustness [110]. Pruning mitigates the ef-
fects of adversarial manipulations by eradicating redundant or less significant parameters. This
decrease in model complexity complicates the process of attackers injecting malicious updates
without detection. Furthermore, pruning enhances the generalisation capacity of local models,
thereby reducing their susceptibility to minor perturbations introduced by assaults [111]. In ad-
dition to reducing communication overhead during parameter sharing, pruned models facilitate
quicker and more secure aggregation processes in FL due to their reduced number of parame-
ters. Pruning can be implemented on both the server and client platforms, improving the model’s
security and efficiency throughout the federated network.

4) Regularisation: Regularisation functions as a strategic defense mechanism in FL, ensur-
ing that the server and ENs are protected from data and model poisoning attacks. On the server
side, regularisation techniques incorporate penalty terms in the loss function during model ag-
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Table 2.3: Summary of Generic Defense Mechanisms in FL for data and model attack.

Defense Mech-
anism

Definition Characteristics Implementation
Stage

Weaknesses References

Anomaly De-
tection

Identifies and removes mali-
cious updates by flagging de-
viations from expected pat-
terns.

Detects abnormal updates, flags
suspicious patterns, and often
relies on statistical or machine
learning-based anomaly detec-
tion techniques.

Server-side, often
with client feed-
back to verify in-
tegrity.

May struggle with sub-
tle adversarial changes and
high computational costs.

[75, 97–
103]

Robust Aggre-
gation

Aggregates client updates
while mitigating the impact
of malicious data and model
poisoning.

Uses techniques to average or
cluster updates aims to minimise
adversarial impact and improve
aggregation resilience.

Server-side, dur-
ing aggregation.

Vulnerable to sophisti-
cated attacks if malicious
clients not excluded,
possible loss of useful
updates.

[12, 34, 60,
61, 65]

Model Pruning Enhances model efficiency by
eliminating redundant or in-
significant parameters, such
as weights or neurons.

Reduces model complexity,
improves computational effi-
ciency, lowers communication
overhead, and increases model
robustness.

Server- or client-
side; during train-
ing or before ag-
gregation.

Specialized hardware may
be needed for unstructured
pruning, risk of accuracy
loss.

[108–111]

Regularisation Adds penalty terms to loss
functions to prevent overfit-
ting and enhance model ro-
bustness.

Controls model complexity, en-
hances generalisation and in-
creases model robustness against
adversarial manipulations.

Applied on both
server and client
sides during
model training
and aggregation.

Potential trade-off in
model accuracy may re-
quire fine-tuning to avoid
underfitting.

[19, 112–
114]

gregation. This control of the complexity promotes robust generalisation across diverse client
data [19]. This mitigates the risk of overfitting to specific client updates and enhances the re-
silience of the aggregated global model against adversarial influences.

On the client side, local training incorporates regularisation methods such as weight decay,
batch normalisation, and dropout to improve the robustness of individual models further [112].
For example, dropout mitigates the probability of any single neuron becoming excessively dom-
inant, enhancing the model’s resilience to adversarial modifications. On the other hand, weight
decay penalises heavier weights, thereby mitigating the potential effects of smaller adversarial
perturbations to stabilising the model [113].

For instance, the author in [113] proposed local self-regularisation (LSR). This framework
is intended to overcome the obstacles presented by noise-labelled data in FL while maintaining
data privacy. LSR integrates two types of regularisation: implicit and explicit. Implicit regu-
larisation enhances the model’s resilience and confidence in label noise by employing MixUp,
which merges data points. In contrast, explicit regularisation employs self-knowledge distil-
lation to align the outputs of augmented and original samples, thereby preventing overfitting
on noise labels. Similarly, the authors in [114] presented contractible regularisation (ConTre)
as a solution to the non-IID data challenges in FL, emphasising image classification. ConTre
improves the adaptability and stability of FL frameworks by progressively decreasing the regu-
larisation effect as the model approaches convergence. Table. 2.3 summarises the characteristics
and weaknesses of federated defense mechanisms of data and model attacks.
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2.7 Model Complexity, Communication Overhead and La-
tency

This section provides the summary of model complexity, communication overhead and latency
issues in FL. Additionally, it delves into state-of-the-art techniques dealing with the challenges
caused by model complexity and communication overhead.

2.7.1 Model Complexity in FL

Model complexity in FL is influenced by factors such as model size, the number of parame-
ters, and computational requirements, which affect the feasibility and effectiveness of deploying
models on edge devices with limited resources [33]. It is imperative to manage model complex-
ity in order to guarantee performance, efficiency, and inclusivity across heterogeneous clients as
FL scales to larger models and increasingly diverse datasets [28].

High model complexity in FL can impose substantial computational and memory demands
on client devices, particularly those with limited processing capacity, such as smartphones or IoT
devices [29]. It is challenging for all clients to participate effectively in complex models with
many parameters since they demand significant power, processing, and storage resources [60].
Additionally, the training process is slowed by the high complexity, which necessitates large
number of communication rounds and can impede real-time applications [12, 29]

Several techniques have been developed to reduce model complexity in FL, enabling efficient
training while preserving model accuracy:

• Model Pruning: Model pruning removes redundant parameters by selectively eliminating
weights or neurons that have minimal impact on model predictions. Techniques such as
structured pruning (removing entire neurons or layers) and unstructured pruning (remov-
ing individual weights) can help reduce the model’s size and computational load, making
it more suitable for resource-constrained devices. Structured pruning is advantageous for
deployment as it maintains model architecture integrity, facilitating efficient parallelisa-
tion on hardware [108].

• Quantisation: Quantisation reduces model precision by representing weights and activa-
tions with lower-bit representations, such as 8-bit integers instead of 32-bit floating-point
values [115]. This reduction can drastically decrease the model’s memory requirements
and speed up computations. Quantisation-aware training (QAT) allows models to main-
tain high accuracy despite lower precision, making it an effective strategy for deploying
complex models in FL settings where device constraints are significant [116].

• Knowledge Distillation: Knowledge distillation transfers knowledge from a complex
“teacher” model to a smaller “student” model. The student model learns to replicate the
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teacher’s performance using a simplified architecture, reducing computation and memory
costs while preserving accuracy. In FL, federated knowledge distillation enables each
client to train smaller, personalised models using teacher-student frameworks, which also
reduces communication overhead [39].

• Parameter Sharing Strategies: Techniques such as partial model sharing, layer-based
updates, and sparse communication reduce model complexity by transmitting only criti-
cal parts of the model. For example, in layer-based sharing, only select neural network
layers are updated or shared among clients, reducing the communication cost and allowing
simpler models on resource-constrained clients [117].

2.7.2 Communication Overhead in FL

Communication overhead is a major bottleneck in FL, as frequent exchanges of model updates
between clients and the server can lead to significant latency and energy consumption. This
challenge is compounded by the diverse network conditions across devices, where bandwidth
limitations or intermittent connectivity can further delay the aggregation process [35]. As FL
typically requires multiple communication rounds to converge, managing communication over-
head is essential to make FL viable for large-scale and real-time applications.

Techniques to Address Communication Overhead and Latency

• Compression and Sparsification: Compressing model updates reduces the data size
transmitted between clients and the server, thereby lowering communication costs. Gradi-
ent sparsification and quantisation are two popular techniques for this purpose. Gradient
sparsification sends only a subset of significant gradients, often based on a threshold, while
setting others to zero [117]. Quantisation, on the other hand, reduces the bit precision of
gradients. Combined, these approaches can substantially reduce communication without
severely impacting model accuracy [115, 116].

• FedAVG: The FedAvg algorithm reduces communication rounds by allowing each client
to perform multiple local updates before sending the model to the server. By aggregating
model updates after several local epochs, FedAVG reduces the frequency of communi-
cation, which is particularly effective in settings with unstable connectivity or limited
bandwidth. However, this technique may introduce additional challenges in non-IID data
settings, potentially affecting model convergence [12].

• Client Selection and Scheduling: Selecting a subset of clients to participate in each
training round can lower communication costs. Adaptive client selection methods pri-
oritise clients based on data quality, network conditions, and resource availability, thus
balancing communication overhead with model accuracy. Scheduling clients based on
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their bandwidth and latency can also optimise communication efficiency, reducing wait
times caused by slow devices [82].

• Asynchronous Federated Learning: Asynchronous FL techniques allow clients to send
updates simultaneously rather than synchronising all clients in each round. This approach
reduces latency and enables faster clients to continue training without waiting for slower
devices, thereby minimising the impact of stragglers. Asynchronous methods, however,
must account for stale updates from slower clients to avoid adverse effects on model per-
formance [33].

• Hierarchical Federated Learning: Hierarchical FL reduces communication between
clients and the central server by organising clients into clusters or intermediate nodes that
aggregate updates locally before sending them to the server. This multi-layered approach
reduces the total communication load on the central server and enhances scalability. Hier-
archical FL is particularly advantageous in environments with many clients, such as IoT
networks, where direct server communication for each client would be infeasible [44].

In summary, balancing complexity and communication efficiency is crucial for effective FL
deployment. Complex models generally improve accuracy but lead to higher communication
costs due to large model updates. Conversely, reducing model complexity enhances commu-
nication efficiency but impacts model performance. Therefore, adopting a hybrid approach,
such as a combination of model compression, selective update techniques, and client selection,
enables FL systems to dynamically balance these competing demands based on the specific re-
quirements of the deployment environment. The techniques addressing model complexity and
communication overhead reflect the ongoing efforts in FL research to accommodate real-world
constraints. As FL expands into applications requiring complex models and real-time process-
ing, these strategies enhance scalability, responsiveness, and inclusivity across diverse client
populations.

2.8 Application of FL

Recently, a substantial body of research has been conducted, advancing, refining, and identifying
the multiple verticals in FL. The versatility of FL lies in its ability to adapt to different environ-
ments where data is inherently distributed and privacy is a significant concern. The applica-
tion areas include smart healthcare, smart grids, wireless communication systems, smart cities,
smart industrial control, education, banking, smartphones, IoT, cyber security, and more [33].
While FL does have potential applications in various fields, it is essential to consider the chal-
lenges and limitations associated with implementing this technology, such as communication
overhead, model aggregation, and data privacy concerns. Additionally, the practical implemen-
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tation of FL in real-world scenarios may require significant resources and expertise, making
widespread adoption challenging.

In this thesis, we choose the application areas, which include smart grid energy forecasting,
wireless communication systems, and healthcare through indoor and outdoor human activity
recognition (HAR). These applications are strategically selected based on their alignment with
the core challenges and contributions addressed in this thesis. Each domain exemplifies envi-
ronments where data privacy, efficient communication, computational overhead, and data het-
erogeneity are pivotal concerns. For instance, smart grid and energy forecasting present unique
challenges due to the sensitive nature of energy consumption data and the competitive market
structure, making FL an ideal solution for collaborative load forecasting while preserving data
privacy.

Wireless communication, especially in the context of 5G and beyond, benefits from FL for
managing the dynamic nature of high-frequency networks, where proactive blockage prediction
and seamless handovers are necessary for ensuring reliable connectivity. To achieve scalabil-
ity, future wireless systems will adopt multi-modal data fusion and robust learning mechanisms.
Additionally, incorporating FL into wireless systems will allow for efficient resource alloca-
tion and network efficiency, enhancing user experiences and overall network reliability. Lastly,
healthcare, specifically focusing on HAR using wearable or contactless sensing, underscores the
critical need for data privacy, multi-modal fusion, and efficient on-device processing, as personal
health data is highly sensitive. The rationale for choosing these applications is their significance
to society, their challenges in data management, and their alignment with the innovative solu-
tions proposed in this thesis. These solutions aim to tackle data diversity, energy efficiency,
and communication constraints using customised FL mechanisms. This section will provide a
thorough literature review of the application areas considered in this thesis and the research gap
analysis.

2.8.1 FL Application in Load Forecasting

STLF plays a pivotal role in ensuring the stability and operational efficiency of modern power
systems. It enables utility companies to manage the integration of renewable energy sources
better, optimise generation scheduling, and enhance demand-side management strategies. The
complexity of the current electricity market, marked by deregulation, competition among various
stakeholders, and the integration of advanced metering infrastructure (AMI), has made accurate
STLF increasingly essential [118, 119].

Various STLF techniques have been developed for both macro-scale (substation/grid level)
and micro-scale (household level) forecasting [120–122]. Traditional statistical approaches,
such as linear regression, auto-regressive moving average (ARMA), and auto-regressive inte-
grated moving average (ARIMA), have been widely utilised [123, 124]. However, the advent
of big data and artificial intelligence (AI) has propelled the use of deep learning (DL) mod-
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els that excel at capturing complex, non-linear patterns in load data [30]. While these models
have shown significant promise, they often require vast amounts of historical data for train-
ing. This requirement typically leads to centralised data aggregation, which poses challenges
related to data privacy, high communication costs, and the restricted accessibility of secure data
silos [125]. For instance, residential energy data collected at the micro-scale level is highly
privacy-sensitive and could be exploited to infer user behaviours, raising security concerns [126].
Similarly, utility providers at the macro-scale level are often unwilling to share data due to com-
petitive and privacy-related reasons.

FL is gaining popularity in residential-level STLF, where smart meter data is inherently di-
verse and varies significantly across different households. Many existing studies have applied
FL to residential data by employing clustering techniques to manage data heterogeneity and
group clients based on consumption patterns. These clustering-based approaches create multi-
ple federated models tailored to different clusters, as demonstrated by Singh et al. [127], who
combined FL and transfer learning to enhance forecasting accuracy by clustering households
with similar electricity usage profiles. Although effective, the accuracy of these models heavily
relies on the quality of clustering and remains sensitive to data anomalies, which can negatively
impact model stability.

Other clustering-based FL models for STLF have incorporated various data attributes. For
example, researchers have implemented federated long short-term memory (LSTM) models that
use socioeconomic clustering to categorise users based on load characteristics [128]. Addition-
ally, studies like [129] have explored non-clustered LSTM training for individual households but
reported challenges related to data variability affecting model stability. Similarly, approaches in-
volving bidirectional LSTM models combined with optics-based clustering have been developed
to group users by region and heating type [130]. While clustering can help mitigate data diver-
sity by segmenting clients into more homogenous groups, it has limitations. Static, predefined
clusters struggle to capture transient variations in data, leading to increased communication and
computational overheads.

In addition to handling different data types, new studies have added privacy-protecting meth-
ods like DP and clustering-based defence mechanisms to make FL models safer and more re-
liable. For instance, the FedBranched approach, introduced in [31], assigns clients to separate
branches to improve adversarial resilience. At the same time, Layer-Based Anomaly Aware Fe-
dAVG (LBAA-FedAVG) selectively discards potentially adversarial updates to safeguard model
robustness [131].

Limitations and Research Gap

Despite the advancements in clustering-based FL for residential STLF, there is limited research
on applying FL at the substation level, which exhibits more stability and regularity than residen-
tial smart meter data. The consumption patterns at this level are aggregated and less susceptible
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Table 2.4: Summary of FL Studies for STLF Using Clustering Approaches

Ref Strengths Weaknesses
[127] Improves forecasting accuracy by clus-

tering households with similar con-
sumption patterns; reduces computa-
tional complexity.

Effectiveness is highly dependent on
clustering quality; sensitive to data
anomalies that can impact robustness.

[128] Groups users based on socioeconomic
data, enhancing model performance by
considering load characteristics.

It relies on static clustering, which may
not capture transient or dynamic varia-
tions in data distribution.

[129] Demonstrated the potential for han-
dling diverse household data without
predefined clusters.

High variability in household data
posed challenges for achieving stable
model performance.

[130] Effectively groups users by region and
heating type for better accuracy.

Static clustering fails to address short-
term data shifts and lead to over-
segmentation and increased model
complexity.

[31] Enhances adversarial robustness by as-
signing clients to different branches for
training.

Depends on clustering, leading to po-
tential segmentation issues and higher
communication overhead.

[131] Selectively discards potentially adver-
sarial updates to enhance model robust-
ness.

Clustering-based mechanisms overlook
non-clustered data patterns and in-
crease computational costs.

[132] Integrates differential privacy to protect
model updates and enhance resilience.

It does not address data diversity;
adding noise disproportionately affects
small clusters, reducing accuracy.

to individual behavioural fluctuations. Hence, the necessity for clustering diminishes, and alter-
native strategies for handling data heterogeneity become more appropriate.

Moreover, existing studies often overlook the need for effective aggregation methods that
can manage diverse data without relying on clustering. Clustering-based approaches can lead to
unnecessary segmentation and added complexity when applied to substation-level data, where a
unified model would be sufficient. The strengths and limitations of current studies for STLF are
given in Table. 2.4. Additionally, these approaches adequately address other critical challenges,
such as:

• Static Clusters and Increased Complexity: Dependence on predefined static clusters
struggles to capture transient variations in household data, limiting the model’s adapt-
ability to changing consumption patterns [129]. Training multiple models for different
clusters also increases model complexity and computational overhead.

• Adversarial Robustness: Protecting the FL system from malicious clients injecting poi-
soned updates is crucial. Clustering has limitations in mitigating such risks, especially if
an entire cluster is compromised. Moreover, the effectiveness of clustering-based models
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is highly dependent on clustering quality and can be adversely affected by data anoma-
lies [127].

• Privacy Preservation: While FL inherently provides privacy benefits, integrating mech-
anisms like DP is essential to prevent indirect leakage through model updates. Clustering
complicates DP implementation, as noise addition disproportionately affects smaller clus-
ters, degrading model accuracy [132].

• Intermittent Client Participation: In real-world conditions, client availability can be
unpredictable. Clustering approaches often assume synchronous communication patterns,
which may not hold in dynamic environments [119, 133].

2.8.2 FL for Vision Aided Wireless Communication

Vision-aided wireless communication has emerged as a transformative approach to improv-
ing network reliability and supporting proactive handover (PHO) in high-frequency wireless
networks, such as those using millimetre-wave (mmWave) and sub-terahertz (THz) frequen-
cies. While offering substantial bandwidths for high-throughput applications, these frequencies
are more susceptible to physical obstructions, necessitating precise and efficient beamform-
ing [134]. Integrating vision-based data and traditional wireless sensing through multi-modal
fusion has shown potential in enhancing blockage prediction accuracy by leveraging a richer
representation of the wireless environment [135, 136]. Multi-modal fusion combines data from
various sources, such as cameras, radar, and channel state information (CSI), to provide com-
prehensive environmental insights that improve beam selection and PHO strategies [137].

Recent research highlights the growing role of DL frameworks in facilitating these multi-
modal approaches for link blockage prediction. For instance, frameworks such as Vision Wire-
less (ViWi) integrate vision and wireless sensing data to offer holistic views of the network
environment, improving PHO performance [135]. Vision-aided approaches have demonstrated
a significant edge over traditional wireless-only methods regarding detection accuracy and main-
taining link quality. However, these methods often depend on centralised data processing, which
raises privacy concerns, incurs high communication overhead, and limits scalability, particularly
in privacy-sensitive and large-scale deployments [138].

Research Gap

The inherent limitations of centralised processing have prompted the exploration of distributed
learning methods like FL, which facilitate collaborative model training without sharing raw data,
thereby preserving user privacy and reducing bandwidth requirements [21]. Nevertheless, stan-
dard FL methods, such as FedAVG, face challenges in handling the variability of client data
and noise from diverse edge nodes, which can compromise model robustness and performance
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in dynamic environments [80]. While promising, the application of FL in vision-aided wire-
less communication remains limited, particularly in integrating semantic extraction techniques.
Semantic extraction in FL aims to derive meaningful and compact representations of the envi-
ronment from raw sensor data, significantly reducing data volume and transmission costs while
retaining critical information [137]. However, research in vision-assisted wireless networks has
scarcely focused on semantic-aware FL approaches.

The few studies available do not fully address how to balance the complexity of extracting
semantic information with the need for real-time adaptability and efficient on-device processing.
Furthermore, the current literature does not explore the impact of adversarial factors on the
accuracy and robustness of blockage prediction models. This gap is particularly significant as
adversarial attacks can introduce noise and distort model updates, degrading the performance
and reliability of PHO systems [22]. This highlights the need for advanced aggregation methods
within FL to mitigate the impact of malicious or noisy updates while handling data heterogeneity
and ensuring robust performance across diverse edge nodes.

2.8.3 FL for Human Activity Recognition

HAR is an active area of research, developing intelligent systems that can monitor and in-
terpret human actions in real-time for various applications, from healthcare to smart environ-
ments [139]. HAR can be categorised into outdoor and indoor settings, each utilising distinct
technologies tailored to their unique challenges. Outdoor HAR often relies on wearable sen-
sors like accelerometers, gyroscopes, and heart rate monitors, capturing multi-modal data that
provides comprehensive insights into physical activity [140, 141]. These devices are ideal for
dynamic, mobile environments where portability and versatility are crucial. In contrast, indoor
HAR leverages contactless sensing technologies, such as radio frequency (RF) signals, includ-
ing CSI and RSSI [142, 143]. These systems offer non-intrusive monitoring by analysing how
wireless signals interact with human movements, preserving privacy and ensuring user com-
fort [144, 145].

The rationale behind using wearable technologies outdoors lies in their flexibility and de-
tailed data capture, whereas contactless sensing is preferred indoors for its non-invasive nature
and scalability in private, enclosed spaces [146, 147]. Both approaches highlight the ongoing
need for advanced processing techniques, such as FL, to ensure data privacy, efficiency, and
accuracy in distributed HAR systems [148, 149]. This section thoroughly reviews the indoor
and outdoor environments for HAR systems, highlighting the challenges and research gaps in
current research.
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Outdoor HAR

The outdoor settings for HAR present unique challenges, such as user mobility, multi-modality,
battery constraints, and energy efficiency. FL inherently supports multi-modal data fusion by
enabling data collected from different sensors, such as accelerometers, gyroscopes, and GPS
units, to contribute to a single model without pooling raw data in one place [147, 148]. This ca-
pability enhances the robustness of HAR systems, as it allows for richer contextual information
and more accurate activity recognition, especially in outdoor environments where data sources
can vary widely. Additionally, FL frameworks inherently distribute computational tasks across
multiple edge devices, enabling personalised model training that can adapt to the diverse and
context-specific nature of user activities [147].

However, the real-world implementation of FL-based HAR systems faces substantial chal-
lenges, particularly due to the heterogeneous nature of data collected from various users and
sensors. Non-IID is a common challenge that affects model generalisation and convergence
[150]. Addressing these challeges, advanced frameworks such as ProtoHAR [150], and Clus-
terFL [151] have been proposed to manage data heterogeneity through strategic clustering and
personalised model updates. Similarly, recent explorations into FL-based HAR systems reveal
a concerted effort to leverage multi-modal data fusion for enhancing classification accuracy,
particularly in fall detection scenarios [148]. This study proposed a novel approach that trans-
forms time-series sensor data into images to detect anomalies. Additionally, this approach also
leverages visual data from cameras and input-level data fusion within FL frameworks to achieve
a classification accuracy of 89.76%. Similarly, novel FL via augmented knowledge distilla-
tion (FedAKD) was designed for the collaborative training of heterogeneous DL models [152].
FedAKD exhibited superior communication efficiency compared to the FedAVG algorithm, with
a 200-fold increase. It also achieved 20% higher accuracy than other knowledge distillation-
based FL methods.

Research Gap

Despite the substantial progress in applying FL to outdoor HAR systems, several gaps are iden-
tified, such as:

• Energy Efficiency: Existing studies largely employ traditional DL models, which are not
optimal for resource-constrained, battery-operated devices. Hence, architectural changes
like the use of neuromorphic computing or hybrid models like Spike-LSTM can signifi-
cantly reduce the computational complexity.

• Handling Data Heterogeneity: Though frameworks such as ProtoHAR and ClusterFL
address non-IID data to some extent, they primarily focus on clustering and personalisa-
tion strategies. These approaches often increase computational complexity and are not
suitable for real-time applications.
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• Communication Overhead: While FL reduces the need to share raw data, the frequent
transmission of model updates can still strain the limited bandwidth and battery life of
wearable devices.

Addressing these gaps requires the development of innovative frameworks that seamlessly inte-
grate energy-efficient neuromorphic models, advanced data fusion techniques, and adaptive FL
protocols.

Indoor HAR settings

Indoor HAR utilises a range of sensor-based approaches, moving from traditional wearable de-
vices to advanced contactless sensing technologies. These systems aim to classify and identify
human actions through observations captured by diverse sensors, such as RF sensing and vision-
based methods [144, 153]. Vision-based HAR, which depends on high-resolution cameras and
computer vision techniques for effective activity tracking, encounters notable challenges regard-
ing privacy concerns, including unauthorised data collection and sensitivity to environmental
variables such as lighting conditions and background distractions [146]. These limitations di-
rectly shift the focus towards sensor-based approaches that prioritise maintaining a higher level
of user privacy.

As a result, contactless RF sensing, particularly through channel state information (CSI),
has garnered significant attention as a non-invasive, privacy-preserving substitute for wearable
and vision-based systems. The primary advantage of RF-based HAR lies in its ability to mon-
itor activities without requiring individuals to wear or carry sensors, enhancing convenience
and scalability. CSI-based systems capture detailed physical layer information, such as ampli-
tude and phase per sub-carrier, to generate unique signatures for various activities [143, 154].
This characteristic makes CSI-based HAR particularly effective in indoor settings, where the
phenomenon of multipath propagation and signal scattering caused by human bodies creates
distinct patterns that aid in accurate activity classification [155].

To this extent, limited studies have been conducted on HAR leveraging FL. For instance,
the authors in [149] propose a novel method for HAR using wireless signals that address data
privacy and the non-IID nature of distributed datasets. This scheme introduced a cross-domain
federated learning framework (CDFL) that leverages transfer learning and achieves high accu-
racy rates in ultrasonic signal-based gesture recognition tasks (over 90% for a 5-category task
with simulated data and 88% for a 10-category task with minimal real data), promising to ease
the data collection burden while preserving privacy.

Similarly, the authors in [156] propose FedHAR as a customised FL framework that ad-
dresses significant challenges in HAR, such as label scarcity, real-time processing, and hetero-
geneous data. It leverages distributed learning to keep data local and employs a semi-supervised
online learning strategy to handle unlabeled data effectively. The framework incorporates a hi-
erarchical attention architecture for feature alignment and a semi-supervised learning loss to
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integrate gradients from labelled and unlabelled clients. After extensive testing on two public
datasets, FedHAR has shown superior performance compared to existing methods, with a signif-
icant improvement of about 10% across various metrics when fine-tuning models for unlabeled
clients, highlighting its effectiveness in real-world HAR applications. However, this study used
wearable sensing data and overlooked the energy efficiency and communication overhead during
training.

The authors in [157] propose a novel method for HAR using a 3D convolutional neural net-
work (3DCNN) applied to sensory data, translating the temporal and frequency bio-signal values
into voxel intensities. This method enhances privacy and security by employing bitwise XOR
encryption and FL, achieving significant accuracy with minimal loss when data is encrypted.
Similarly, [158] introduces Hydra, a hybrid-model FL framework designed for devices with
varying computational capabilities. It uses BranchyNet technology to create a hybrid model,
allowing heterogeneous devices to train different model parts suited to their capabilities. Hy-
dra clusters devices based on data similarity to improve co-training efficiency and introduces
a sample selection algorithm and a large-to-small knowledge distillation technique to enhance
model accuracy. Extensive experiments demonstrate Hydra’s superior performance compared
to state-of-the-art methods. However, both [157, 158] used wearable sensing data and did not
consider communication overhead and energy efficiency.

In [159], a cluster FL-based algorithm is proposed for activity classification using wearable
devices. The proposed algorithm demonstrated better model generalisation with diverse datasets
and improved the system’s overall performance. In [160], a wearable sensor-based FL model is
presented for indoor HAR using the FedAVG algorithm. This work used the publicly available
HAR datasets and demonstrated the utility of using FL for activity recognition. Similarly, novel
FL via augmented knowledge distillation (FedAKD) was designed for the collaborative training
of heterogeneous DL models [94]. FedAKD exhibited superior communication efficiency com-
pared to the FedAVG algorithm, with a 200-fold increase. It also achieved 20% higher accuracy
than other knowledge distillation-based FL methods.

Research Gap

Finally, Table. 2.5 summarises the contributions and limitations of the related work. Although
FL presents a promising solution to privacy and scalability challenges in HAR, the integration
with CSI-based systems remains underexplored. Moreover, the potential of utilising raw signal
data to extract features and provide contextual information in HAR systems, particularly in an
FL framework, has yet to be fully realised. This approach can revolutionise understanding and
interpreting complex human activities in various environments. Furthermore, conventional ap-
proaches often involve converting wireless signals into spectrograms, which, while effective for
visual feature extraction, result in significant computational overheads and increased communi-
cation burdens when transferring model updates [149, 165]. Additionally, the issue of commu-
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Table 2.5: Comparative analysis of recent advances in HAR with contributions and limitations.

Ref Contributions Limitations
[161] Introduced a simple RSSI-based

HAR using K-means for activity
classification.

Suffers from low accuracy, lacks privacy-
preserving mechanisms, and does not con-
sider energy efficiency or communication
overhead.

[162] Developed a gesture recognition
system emphasising simplicity
and ease of use.

Relies on centralised data processing,
which raises privacy concerns and in-
creases communication costs.

[155] Applied ML algorithms for vital
sign and activity classification us-
ing CSI data.

Centralised model poses privacy risks,
lacks FL integration, and does not address
communication or energy efficiency chal-
lenges.

[163,
164]

Demonstrated feature-level fu-
sion in CSI-based activity classi-
fication for improved accuracy.

Limited by a theoretical approach, lacks
practical privacy solutions, and omits con-
siderations for energy efficiency and com-
munication overhead.

[149] Explored cross-domain FL to ad-
dress HAR, considering the im-
pact on communication overhead.

Did not incorporate feature fusion, missing
richer contextual data analysis, and lacks
energy efficiency measures.

[157] Translated temporal and fre-
quency bio-signal values into
voxel intensities and used en-
cryption to ensure security.

Focused on wearable sensor data, did not
consider energy efficiency, and involved
high communication overhead.

[158] Created hybrid models allowing
co-training with varying compu-
tational capabilities.

Utilised wearable sensor data lacked en-
ergy efficiency considerations and did not
address communication overhead.

[159] Utilised clustering to enhance
HAR accuracy, leveraging wear-
able sensors.

Did not address communication efficiency
or energy constraints, potentially limiting
scalability in real-world applications.

[94] Introduced a robust FL frame-
work via knowledge distillation,
optimising model learning.

Primarily focused on wearable sensor data;
not directly applicable to CSI-based HAR
and lacks energy and communication effi-
ciency measures.

nication overhead, a critical factor in the scalability and efficiency of HAR systems, especially
when integrated with FL, has not been fully explored in the current body of research. Develop-
ing and implementing efficient model-sharing techniques within FL-based HAR systems could
significantly mitigate this challenge, paving the way for more sophisticated, real-time activity
recognition solutions. Furthermore, most sensors are expected to be battery-operated, and fre-
quently sharing large model parameters during training will drain the battery. Therefore, the
potential of combining FL with advanced feature fusion and model compression strategies to
enhance efficiency and maintain high accuracy in indoor HAR remains underexplored. For
instance, while QAT offers a pathway to reduce communication overhead, its application to fed-
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erated CSI-based HAR remains limited. Furthermore, the majority of studies do not address the
need for adaptive aggregation algorithms capable of handling heterogeneous data effectively,
leading to potential model instability.

2.9 Summary of Literature Review, Research Gap and Link
with Challenges

The literature review highlights key findings, research gaps, and challenges in FL that align with
the three core challenges identified in Section 1.3. Data diversity and multi-modal fusion C1
in FL emerges as a significant obstacle due to the diverse data distributions and computational
capabilities of ENs [33]. The data from ENs embodies unique local patterns or biases stemming
from varying environments, user behaviors, and data collection methods [34]. This heterogene-
ity leads to suboptimal performance, where the global model struggles to generalise effectively
across all clients, causing issues like model drift and unstable convergence [38,39]. On the other
hand, multi-modal fusion in FL seeks to leverage diverse data sources, such as text, images, and
audio, to enhance model performance [51]. This approach is particularly valuable in applica-
tions requiring rich contextual information, including healthcare, wireless communications, and
smart cities [52]. However, integrating multi-modal data introduces complexities due to inher-
ent diversity in data formats and feature representations. Issues such as modality alignment,
data heterogeneity, and increased communication overhead persist, impeding effective model
convergence [53, 54].

Significant gaps still need to be addressed despite the development of various techniques
to address data diversity and multi-modal fusion. For instance, clustering-based methods group
clients with similar data characteristics to mitigate non-IID issues [44,45], but struggle to handle
transient data variations and often increase computational costs. Personalised FL customises
global models for individual clients, improving local performance, but can be resource-intensive
and needs to scale better [46, 47]. Normalisation techniques adjust local model updates before
aggregation to reduce disparities [48], and domain adaptation aligns feature distributions across
domains [49]. However, there is a need for scalable frameworks that can seamlessly integrate
multi-modal data and address statistical heterogeneity without compromising efficiency.

Adversarial robustness and privacy preservation C2 are significant concerns in FL, where
the decentralised nature of training makes the system vulnerable to various attacks [17], [16].
Performance attacks like data poisoning involve malicious clients injecting corrupted data to in-
troduce biases or errors into the global model, such as label flipping or backdoor attacks [73–75].
Model poisoning attacks involve attackers manipulating model updates to skew the global model
towards incorrect patterns [77]. Techniques like HE, SMPC, and DP offer solutions but in-
volve several trade-offs. For instance, HE enables computations on encrypted data, maintain-
ing data privacy during model training [83, 84], but introduces significant computational over-
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head. SMPC supports collaborative computations without data sharing, enhancing privacy in
distributed settings [87, 88]. However, it incurs high communication costs. DP protects against
inference attacks by introducing random noise to model updates, safeguarding sensitive infor-
mation [82, 90]. However, noise injection degrades the model’s performance. Additionally,
defence mechanisms against model and data attacks include anomaly detection [97, 98], robust
aggregation methods like Krum and Bulyan [18, 103], model pruning [108], and regularisation
techniques [113,114]. However, these methods often involve trade-offs between privacy preser-
vation, computational overhead, and model utility.

Energy efficiency and computational constraints C3 pose significant challenges in deploying
FL on resource-constrained devices like IoT nodes. High model complexity imposes substan-
tial computational and memory demands on client devices, particularly those with limited pro-
cessing capacity. Managing model complexity ensures performance, efficiency, and inclusivity
across heterogeneous clients as FL scales to larger models and datasets [28]. While techniques
like model pruning [108, 109], quantisation [115, 116], and knowledge distillation [39] reduce
complexity and communication overhead, their integration into FL frameworks for real-time
applications remains underexplored. Additionally, techniques to address communication over-
head include compression and sparsification of model updates [116, 117], client selection and
scheduling [82], asynchronous federated learning [33]. However, balancing model complex-
ity and communication efficiency remains a challenge. Complex models improve accuracy but
increase communication costs, while simplifying models may impact performance. Innovative
strategies are required to balance these demands, particularly for resource-constrained edge de-
vices dynamically.

In summary, addressing the core challenges in FL requires innovative frameworks that han-
dle data diversity and multi-modal fusion without increasing computational overhead, enhance
privacy preservation and adversarial robustness without sacrificing model utility, and optimise
model complexity and communication efficiency for deployment on resource-constrained de-
vices. By tackling these gaps, this thesis aims to advance FL’s applicability across critical
domains such as smart grids, wireless communication, and healthcare, contributing scalable,
robust, and energy-efficient solutions.



Chapter 3

Similarity Driven Truncated Aggregation
(SDTA)

This chapter introduces the SDTA algorithm, a novel cluster-free aggregation mechanism that
addresses the challenges C1 and C2 as discussed in Section 1.3. SDTA leverages cosine sim-
ilarity to align client model updates, effectively managing data diversity without clustering. In
conjunction with cosine similarity, the truncated aggregation mitigates the impact of noisy or
adversarial updates, enhancing the resilience of the global model against potential attacks. Ad-
ditionally, SDTA integrates DP to protect sensitive client data during training, ensuring privacy
preservation without significantly compromising model performance. The proposed algorithm
is tested for STLF at the substation level. This setting offers unique opportunities and chal-
lenges due to the inherent diversity and stability of the data compared to residential energy
forecasting data. This study demonstrates that the proposed SDTA effectively managed diverse
data sources, improving forecasting accuracy and enhancing the robustness and privacy of the
federated model, all without relying on clustering techniques.

3.1 Introduction

The global shift towards a sustainable energy future is driving a need for reliable, efficient,
and accurate methods in energy management. As countries transition to cleaner and renewable
energy sources like solar, wind, and hydro, the variability and intermittency inherent in these
sources introduce new complexities in power grid operations [166, 167]. These challenges ne-
cessitate accurate STLF, which helps grid operators maintain supply-demand equilibrium, sup-
port economic dispatch, and optimise generation in real-time [30]. The importance of precise
forecasting extends to operational and environmental impacts, where balancing load reduces
emissions and enhances system reliability [168]. However, the increasing complexity of the
electricity market, characterised by multiple stakeholders such as producers, distributors, and
consumers, coupled with regulatory pressures, has driven interest in sophisticated forecasting
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techniques capable of addressing diverse operational demands [169].
STLF techniques have evolved considerably, with traditional statistical methods like au-

toregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA)
paving the way for more advanced data-driven methods [123, 124]. With the advent of big
data and artificial intelligence, deep learning (DL) algorithms have been increasingly utilised
for STLF, offering a robust means to model the complex and nonlinear load profiles associated
with modern energy consumption patterns [30]. However, DL-based forecasting often requires
substantial historical data, which raises privacy and security concerns when managed in a cen-
tralised framework. Centralised data collection not only poses privacy risks but also leads to
increased communication costs and limited access to secure data silos, especially for sensitive
data at the micro-level (e.g., individual buildings or households) [126].

FL has emerged as a distributed alternative to address these issues, allowing multiple enti-
ties to train a global model collaboratively without directly sharing sensitive data [11, 170]. In
STLF, FL has been primarily applied at the residential level, where clustering techniques are
frequently used to group clients with similar load profiles, thereby creating multiple federated
models for different clusters. For instance, Singh et al. [127] combined clustering with feder-
ated and transfer learning to improve forecasting by segmenting households based on similar
consumption patterns. Although this approach effectively manages high-variability residential
data, it is highly sensitive to data anomalies and heavily dependent on clustering quality, which
can impact model robustness and stability.

The reliance on clustering in FL has led to several limitations. For instance, clustering-
based approaches typically require static groupings, unable to capture transient data variations
in household-level STLF [128, 129]. Additionally, various studies have explored enhancements
such as adversarial robustness and privacy protection. For example, Manzoor et al. [31] pro-
posed FedBranched, an FL model that groups clients to enhance resilience against adversarial
attacks. However, these approaches are unsuitable for substation-level data, which is inherently
more stable and diverse than residential data, thus limiting the need for extensive cluster-specific
models. Furthermore, clustering introduces overhead in terms of communication and computa-
tional complexity, which hinder model convergence, mainly when applied under privacy con-
straints, as noise addition from DP disproportionately affects smaller clusters [132].

3.1.1 Contributions

Addressing challenges C1 and C2, this chapter proposes a novel SDTA framework tailored for
substation-level STLF. Unlike traditional clustering-based approaches, SDTA avoids unneces-
sary segmentation by focusing on aligning client updates through layer-wise cosine similarity,
thereby allowing for a unified model that accommodates data diversity without directly access-
ing client data. A distinctive feature of SDTA is its use of a truncated mean, which mitigates
the influence of extreme or anomalous updates and reduces overfitting. This approach ensures
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that the model remains robust to outliers and adversarial updates while enhancing convergence
stability, particularly in the context of substation data, which exhibits more regularity compared
to residential data.

Furthermore, SDTA incorporates DP mechanisms to protect client privacy without signifi-
cantly compromising model accuracy. By balancing the trade-offs between privacy and accu-
racy, SDTA offers resilience against adversarial attacks, such as model sign inversion, without
excluding entire client contributions. Through extensive simulations and testing on real-world
substation data, this chapter demonstrates that SDTA outperforms standard FL algorithms like
FedAVG and FedDist in scenarios that involve DP budgets, adversarial attacks, and partial client
participation. The key contributions of this chapter are highlighted as:

• This study introduces SDTA, which combines similarity measures, filtering process, and
DP mechanisms to enhance the robustness FL training process. The proposed techniques
use layer-wise cosine similarity to align client updates and identify anomalous updates.
Unlike traditional clustering-based approaches, SDTA measures the alignment of model
updates without accessing client data. This allows it to effectively aggregate contributions
from diverse clients while minimising the influence of outliers. Additionally, by employ-
ing truncated mean aggregation to filter the extreme values, SDTA enhances robustness
against adversarial attacks and reduces the risk of overfitting.

• SDTA incorporates DP mechanisms to protect model updates during training, ensuring
a balance between privacy and model accuracy. The proposed framework is thoroughly
evaluated under varying privacy levels, low, medium, and high, each corresponding to
different amounts of noise added to the model updates. Its performance is benchmarked
against traditional methods like FedAVG and FedDist, demonstrating its robustness across
diverse privacy requirements.

• SDTA enhances model robustness against adversarial updates by utilising similarity-based
filtering and truncated aggregation at the layer level. It effectively mitigates the impact of
adversarial updates, such as model sign inversion attacks, without relying on clustering or
discarding entire client contributions.

• Extensive simulations on real-world substation data are performed to compare the perfor-
mance of SDTA with established FL algorithms such as FedAVG and FedDist. Evaluation
encompasses various challenging scenarios, including DP budget, adversarial attacks, and
partial client participation due to random client dropout.

3.2 System Model and Preliminaries

This section will discuss the system model and some preliminary knowledge of the FL training
process and aggregation mechanism.
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Figure 3.1: FL training process in each communication round for STLF.

3.2.1 Model Training Process for SDTA

This study considers a cross-silo FL architecture for STLF, which consists of a central federated
server (FS) and N edge nodes (ENs), each corresponding to a substation within the distribution
network as depicted in Fig. 6.1. The EN are denoted by index i where i ∈ {1,2, . . . ,N}, holds a
distinct local dataset Di. These datasets are defined as Di = {(Xi j,yi j)}Di

j=1, with Di indicating
the number of samples at the i-th EN. Each sample comprises a feature vector Xi j capturing
historical load data and temporal features alongside a corresponding load demand label yi j.

The primary objective of the FL framework is to train a global model ω collaboratively by
minimising the overall loss across all ENs, without sharing the raw data from each EN. This can
be formulated as equ. (2.1). For regression tasks such as STLF, MAE is employed as the loss
function, which is robust to outliers and provides a clear interpretation of forecasting errors. The
local loss function at EN i given in equ. (2.2) is modified as:

ℓi(ω,Di) =
1
Di

Di

∑
j=1

∣∣yi j− ŷi j(ω)
∣∣ , (3.1)

where yi j and ŷi j(ω) are the actual and forecasted load demands, respectively.
The FL training process begins with the FS distributing the initial global model ω0 to all ENs

at the start of round t = 0. Each EN updates this model using its local dataset Di. The update
involves computing the gradient of the local loss function with respect to the model parameters:

∇ωℓi(ω
t ,Di), (3.2)

where ℓi(ω
t ,Di) is the local loss function at EN i for model parameters ω t at round t. Note

that ω t is used for both the global model sent to ENs and as the initial point for local updates,
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emphasising the consistency of model parameters across the network. After computing the
gradient, each EN i updates its local model weights, applying the learning rate ηi:

ω
t+1
i = ω

t−ηi∇ℓi(ω
t ,Di), (3.3)

where ω
t+1
i represents the updated local model parameters at EN i after local training in round

t. This updated local model ω
t+1
i is then returned to the FS for aggregation to obtain the new

global model. The details of the aggregation process and algorithms involved are discussed in
Section 3.2.4.

3.2.2 Steps in FL Training Process

FL model training is an iterative process that involves several communication rounds between
the FS and EN. The entire process is divided into six steps, as shown in Fig. 6.1. The first
four steps in the FL training process represent a communication round. In contrast, the updated
global model sharing and performance evaluation are done in step five, and actual predictions
are made in step six. The detailed explanation of each step is given below:

Step 1: During the first communication round, the FS initialises the global model parameters
ω0 and broadcasts them to all ENs to start the training process. In subsequent communication
rounds, the FS shares the aggregated global model parameters ω t with ENs obtained from the
previous training round. The ENs use the global model parameters as the initial point for their
local model training.

Step 2: Each EN receives a copy of the global model parameters and trains a local model
using its local data Di. At this stage, the LSTM model is trained using the preprocessed data
at each EN. The details of data pre-processing and local model training using the LSTM are
discussed in Section 3.2.3. The objective of the local loss function is defined in equ. (3.1).

Step 3: Since each EN trains its model using local data, they obtain distinct local model
parameters ω

t+1
i . Therefore, the ENs return their updated local model parameters to the FS for

aggregation.
Step 4: After obtaining the local model parameters for each EN, the FS performs the model

aggregation to update the global model. This study proposed the SDTA algorithm for model
aggregation and compared the results with FedAVG and FedDist. The four steps mentioned
above represent a communication round, which is repeated until the convergence of the global
model.

Step 5: Once the aggregation is done, the FS shares the updated global model ω t+1 with all
ENs for local use.

Step 6: This is the final stage in FL, where the outdated model of each EN is replaced with
the updated global model received from the FS and ready for load forecasting. The global model
is trained collaboratively throughout the process without sharing any data.
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Table 3.1: Feature variables for local model training

Weather Information
1. Dry bulb temperature
2. Dew points
Time Factor
3. Day of week
4. Hour of the day
5. Holiday/ weekend flag
Historic load profile
6. Previous day average load (24-h average load)
7. Previous day same-hour load (24-h lagging load)
8. Previous week same day same hour load (168-h lagging load)

3.2.3 Local Learning

To obtain an optimal global model, the training process for the EN model is similar to traditional
ML model training, but it requires multiple communication rounds. In FL, data pre-processing
is even more critical than in conventional model training because EN data has distinct trends and
patterns that make the training process more challenging. Therefore, it is crucial to preprocess
the forecasting data to develop a robust model. Preprocessing involves feature engineering,
extracting input variables from the given data for local training, and feature scaling to normalise
the input variables. Normalising the input variable reduces the dominance of features with
relatively larger values, which improves the overall convergence time of the local model.

When dealing with a supervised regression problem like STLF, the quality of the model’s
performance hinges on the features selected during data processing. Historical load profiles and
weather information are key input variables for accurate load forecasting. Additionally, contex-
tual calendar information was considered, as it plays a pivotal role in the process. To achieve
this, time factor is incorporated the time factor and extracted eight distinct feature variables are
listed in the Table. 3.1.

The first two features represent the weather information derived from the previous hour
of the day. As mentioned in [171], the weather parameters are key for accurate energy demand
forecasting. Temperature, in particular, is essential since it considerably influences energy usage.
Furthermore, distinct weather parameters are highly correlated, so including one or more results
in multicollinearity [171], [172]. The time factor features are one-hot encoded variables where
the day of the week ranges from 1 to 7 (1 for Monday and 7 for Sunday), an hour of the day
varies from 1 to 24. A holiday flag is either 1 (public holidays) or 0, which were introduced
based on the previous studies [173], [174]. Moreover, the historical load profile represents the
lagging load data to consider the influence of demand on the previous values [175].

In conventional model training, scaling brings all input variables on a normalised scale to
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reduce the dominance of features with larger values. It helps in improving the convergence
time and performance of the model. This study applies Min-Max normalisation to weather
information and historical load profiles. It is worth noting that feature scaling is done on EN,
which transforms the input x to scaled value xo as follows:

xo =
x−Min(x)

Max(x)−Min(x)
, (3.4)

where x is the input feature, Min(x) and Max(x) are the minimum and maximum values of a
given feature, whereas the xo is the transformed value which ranges between 0 and 1 [176].

As mentioned earlier, STLF is converted into a supervised regression problem employing
multiple data types, as tabulated in Table. 3.1. Once EN receives the initial model parameters
from FS, a LSTM is built to perform day-ahead load forecasting hourly, using local data. To
ensure fairness, each EN has the same architecture, including an LSTM layer, two dense layers
with 100 and 50 neurons, respectively and one fully connected layer. The activation function
used for the fully connected layer is the rectifier linear unit (ReLU), and ADAM is used as an
optimiser. Hyperparameter tuning on individual EN can improve the system’s overall perfor-
mance, resulting in massive computational costs, which is undesirable. Furthermore, it is still
an open challenge due to the distributed nature of the data. Therefore, grid search is adopted
on centralised data and obtains all the hyperparameters used by the local clients to reduce the
system’s complexity.

3.2.4 Model Aggregation Mechanism

The model aggregation mechanism at FS is pivotal in combining local model parameters from
the ENs to update the global model. This process is iterative and continues until the global
model converges. The global objective function involving N clients or EN is given in equ. (2.1).
FedAVG, a prevalent aggregation method, synthesises the local updates into the global model
by averaging the local model parameters. The FedAVG update to the global model ω at round
t +1 is given in equ. (2.19):

One of the most effective and extensively used aggregation methods to solve the optimisation
problem given in equ. (2.1) is FedAVG, which considers all local model parameters (weights
and biases) in aggregation. The FedAVG algorithm presented in [11] extends the federated
stochastic distance (FedSGD) algorithm, which aims to minimise the global loss function. SGD
can be applied naively to the federated optimisation problem, where a single batch gradient
calculation is done per communication round. This approach is computationally efficient but
requires many communication rounds to obtain an optimal global model. In FedSGD, the EN
completes a single-step gradient descent in each communication round and shares the acquired
weights with FS. The FS performs weight aggregation proportionally to the number of local
training samples, and this process can be thought of as a gradient descent step on the global
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Algorithm 1: Federated Averaging (FedAVG) Algorithm for STLF.
Result: Final global model ωT for STLF

1 Input: Local datasets {Di}, total number of clients N, fraction C of clients participating
per round, number of communication rounds T , local batch size B, number of local
epochs E, learning rate η ;

2 Initialise global model parameters ω0;
3 for t = 0 to T −1 do
4 Select a random subset St of clients, where |St |=C×N;
5 D = ∑i∈St Di;
6 for each client i ∈ St in parallel do
7 Send the global model ω t to client i;
8 ω

t+1
i ← LOCALTRAINING(i,ω t);

9 end
10 Update global model equ. (2.19).
11 end
12 Procedure LOCALTRAINING(i,ω t);
13 Initialise local model ωi← ω t ;
14 for e = 1 to E do
15 for each batch B⊆Di do
16 ωi← ωi−η∇ℓi(ωi,B);
17 end
18 end
19 return ω

t+1
i ← ωi to the central server;

model. However, the slow global model convergence is one of the major drawbacks of FedSGD.
Therefore, this limitation is addressed in the FedAVG algorithm by introducing the concept

of local epochs and batch size. In each communication round, multiple local epochs are executed
on the subset of local data (small batches), reducing the frequent communication of FS and
EN. Global model initialisation is the major step in the FL training process as it defines the
model’s architecture in terms of the number of layers and neurons. Once the global model
is shared with EN, local training is done using the data on each client. The updated model
parameter is shared with FS where the model aggregation is weighted, averaging as given in
Algorithm 1. However, FedAVG is a coordinate-wise averaging technique that may lead to sub-
optimal solutions, especially when diverging neurons in specific clients and increasing training
time. Unlike FedAVG and FedDist, the proposed SDTA mechanism specifically addresses the
challenges posed by data diversity and potential adversarial updates by incorporating similarity-
based aggregation and outlier removal through truncation.

3.2.5 Federated Distance Algorithm

FedDist algorithm is a dissimilarity measurement approach that considers the Manhattan dis-
tance between the neurons of global and local models having a similar coordinate [177]. The
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Figure 3.2: FedDist neuron generation process, where the diverging neuron is identified by com-
puting the pair-wise Manhattan distance between the neurons of the EN model and FS model.
The diverging neuron is added to an aggregated model if the distance is greater than the given
threshold, as shown in (b).

divergence in neurons is caused by heterogeneous or non-IID data, which could be useful for
updating the global model to make it more robust. These client-specific diverging neurons are
incorporated into the global model as new neurons. This approach effectively deals with sparse
data, where particular features are only present in a small subset of clients or data points, re-
sulting in a more generalised model. Furthermore, layer-wise training is initiated to enable the
neuron of the next layer to learn from the previous layer. The outstanding layers are frozen at
this stage, and subsequent training is started. The first step is obtaining a global model, shown
in Fig. 3.2 (a). The diverging node is identified using the Manhattan distance and added to the
aggregating model. The detail of FedDist is given in Algorithm 2. Initially, the FS broadcasts the
global model ω t to each EN having local model ω t

i . The EN starts local training and computes
the pairwise Manhattan distance, or L1 norm, given by the following equation:

dist(N1,N2) = |Nw1
1 −Nw1

2 |+ ...+ |NwC
1 −NwC

2 |, (3.5)

where N1, N2 are two different neurons and wi is the ith of C weights of neurons. The process
of identifying diverging neurons is divided into three steps mentioned in the Algorithm 2. In
the first step, the pair-wise Manhattan distance is calculated based on the equ. 3.5 to obtain the
distance cost function represented by ∏. After the Manhattan distance calculation, the mean µ

and standard deviation σ of the distance matrix are calculated for thresholding. The new neuron
is added based on the thresholding process in the second step. If the distance exceeds the given
threshold, the system freezes the layer, and a layer-wise update is started on the unfrozen layers.
This process continues until all layers are treated.
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Algorithm 2: Federated Distance Algorithm for STLF
Result: Final global model ωT for STLF

1 Input: Total Communication Rounds T , Number of Clients N, Number of Layers L,
Local Dataset Di, Fraction C of Clients participating, Learning Rate η ;

2 Initialize global model parameters ω0;
3 for t = 1 to T do
4 Select a subset S of clients, where |S|=C×N;
5 for each i ∈ S in parallel do
6 Send global model ω t to client i;
7 ∆ωi← LOCALTRAINING(i,ω t);
8 end
9 ω t+1← 1

∑i∈S Di
∑i∈S Di∆ωi ; // Federated Averaging

10 for each layer l = 1 to L−1 do
11 for each client i = 1 to N do
12 Compute neuron pair distance for layer l: Πl

t=1← distance(ω l
t ,ω

l
it);

13 end
14 Compute mean µ l and standard deviation σ l for each neuron distance Πl

t ;
15 newNeuron← False;
16 for each neuron distance d in Πl

t do
17 dist_threshold← 3 ·µ l

d +σ l
d +penalty(t);

18 if mean(d)> dist_threshold then
19 Append new neuron to layer l: ω l

t ;
20 newNeuron← True;
21 end
22 end
23 if newNeuron then
24 for each client i = 1 to N do
25 Update client i’s model for layer l and above;
26 Freeze updates for layer l and below;
27 end
28 end
29 end
30 Update global model for the next round: ω t+1← ω t ;
31 end

3.2.6 Differential Privacy in FL

In FL, it is essential to protect the privacy of local data, which remains on devices while only
model updates are shared with the server. However, these updates can still leak sensitive infor-
mation. To mitigate this risk, DP ensures a formal privacy guarantee [132]. (ε,δ )-DP offers a
rigorous framework to quantify privacy preservation during distributed data processing, espe-
cially for STLF. Here, ε > 0 is a measure of the distinguishability between two neighbouring
datasets, Di and D ′i , after the application of a privacy-preserving mechanism. A smaller value
of ε indicates stronger privacy, implying that the outputs from similar datasets will be indistin-
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guishable, reducing the risk of privacy leakage. Conversely, larger values of ε suggest a higher
risk of exposing information from individual data points [82, 90].

Formally, the definition of (ε,δ )-DP a randomised mechanism M : X → R, mapping a do-
main X to a range R, satisfies (ε,δ )-DP if for any two neighboring datasets Di,D ′i ∈ X and for
all measurable sets S⊆ R, the following inequality holds [82]:

Pr[M (Di) ∈S ]≤ eεPr[M (D ′i ) ∈S ]+δ . (3.6)

This definition ensures that the inclusion or exclusion of any individual data point in Di

does not significantly change the outcome of the mechanism M , thus protecting the privacy of
individual data points. In our proposed SDTA mechanism, DP is applied during the local model
update phase by adding Gaussian noise to the updates before they are sent to the federated server,
ensuring robust privacy protection while maintaining model performance.

Gaussian Mechanism for Differential Privacy

For numerical data in FL, one of the commonly used methods to ensure (ε,δ )-DP is the Gaussian
mechanism, which involves adding Gaussian noise to the outputs of the function [82, 90]. This
mechanism is particularly suitable for preserving privacy while performing continuous-valued
operations, such as gradient updates in FL. Let n ∼ N (0,σ2) represent the Gaussian noise
added to the local updates before they are transmitted to the FS. The noise distribution ensures
the resulting updates maintain the (ε,δ )-DP guarantee. To achieve this, the noise variance
σ2 must be carefully chosen based on the privacy budget ε and δ [82]. According to the DP
theory, the noise scale σ is determined as σ ≥ c∆s

ε
, where ∆s is the sensitivity of the function s,

defined as given as ∆s = maxDi,D ′i
∥s(Di)− s(D ′i )∥. The sensitivity ∆s represents the maximum

change in the output of the function s when a single data point is modified in the dataset. The
constant c is computed as c ≥

√
2ln
(1.25

δ

)
, and ensures that the noise scale is sufficient to

preserve privacy within the given bounds of ε and δ . Introducing DP into the proposed SDTA
mechanism allows for robust privacy preservation during model aggregation in FL while still
facilitating collaborative model improvement. However, the choice of ε and σ remains a critical
area for further research as it directly influences privacy and performance.

3.2.7 Adversarial Attacks

In FL, malicious clients can pose significant threats by trying to corrupt the global model ω t

that all ENs share. One of the most common adversarial strategies is model poisoning, where
attackers alter their local model updates to diminish the global model’s performance [132]. This
can result in decreased accuracy on specific tasks or embedding backdoor vulnerabilities.
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Threat Model: Model Leakage and Poisoning

This threat model considers a scenario where a malicious attacker controls a subset of clients.
The attacker aims to poison the global model ω t by crafting malicious updates ∆ω t

k that cause the
model to perform poorly on specific tasks while still appearing effective on other data samples
to avoid detection. Let ω t−1 represent the global model at iteration t−1, and ∆ω t

k be the mali-
cious update from client k. The attacker’s objective can be formulated as Attack(ω t−1,∆ω t

k) =

maxℓ(ω t(ω t−1 +∆ω t
k),Dtest), where ℓ is the loss function measuring the model’s performance

on the test dataset Dtest, and ω t is the global model obtained by aggregating the updates from all
clients, including the attacker’s poisoned update ∆ω t

k [132].
We focused on the model flipping attack, where the attacker alters the sign of their local

update before sending it to the FS. In this attack, the adversarial client submits the following
update:

∆ω
t
k =−∇ωℓk(ω

t ,Dk). (3.7)

By flipping the gradient sign, the attacker attempts to reverse the effect of their local update,
thus misguiding the global model ω t during aggregation. This type of attack can subtly degrade
the performance of the global model without being immediately detected.

3.3 Proposed SDTA

In FL, aggregating model updates from ENs is critical for maintaining the performance of the
global model. Traditional aggregation methods, such as FedAVG, assume equal contributions
from all ENs, making them susceptible to noisy updates or outliers from ENs with diverse local
data. These misaligned updates can significantly degrade the performance, especially in hetero-
geneous data environments [133]. To address these challenges, we propose the SDTA algorithm,
which selectively aggregates EN updates by measuring their similarity, ranking them, and dis-
carding the least aligned updates before aggregation. The proposed SDTA algorithm involves
three steps, which include i) layer-wise similarity computation and ranking, ii) truncation of
misaligned updates, and iii) layerwise aggregation.

The following subsections provide a detailed description of each step, including the mathe-
matical formulations and the optimisation of the truncation percentage.

3.3.1 Layer-wise Similarity Computation and Ranking

At each communication round t, the FS receives local model updates ∆ω
t,l
i for each layer l ∈

{1,2, . . . ,L} from all N ENs. The local update ∆ω
t,l
i is the difference between the updated local

model weights and the previous global model weights at layer l given as ∆ω
t,l
i = ω

t,l
i −ω t,l .

To measure the alignment of updates from different ENs, the FS computes the cosine similarity
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between every pair of ENs (i, j) for each layer l mathematically given as:

St,l
(i, j) =

⟨∆ω
t,l
i ,∆ω

t,l
j ⟩

∥∆ω
t,l
i ∥2 ∥∆ω

t,l
j ∥2

, (3.8)

where ⟨·, ·⟩ denotes the inner product of two vectors, and ∥ · ∥2 denotes the Euclidean norm
(2-norm) of a vector.

The cosine similarity St,l
(i, j) measures the directional alignment between the updates of EN i

and EN j for layer l. A higher value of St,l
(i, j) (closer to 1) indicates that the updates are more

aligned, while a lower value (closer to -1) indicates misalignment. The FS constructs a similarity
matrix St,l ∈ RN×N for each layer l, where each element St,l

(i, j) captures the pairwise similarity
between ENs. Cosine similarity is chosen over other distance metrics due to its sensitivity to
the directional alignment of updates rather than their magnitude. This is crucial in FL, where
the magnitude of updates may vary significantly across ENs due to data heterogeneity, while the
direction of updates is a more reliable indicator of alignment [132].

Average Similarity Score Calculation

For each EN i at layer l, the FS calculates the average similarity score S̄t,l
i with respect to all

other ENs:

S̄t,l
i =

1
N−1

N

∑
j=1
j ̸=i

St,l
i, j. (3.9)

This score represents how well the updates from EN i align with the updates from other ENs
at layer l. A higher S̄t,l

i indicates that EN i’s update is more consistent with the majority of the
ENs, whereas a lower value suggests that the update is divergent or noisy.

Ranking of Edge Nodes

After computing the average similarity scores S̄t,l
i for each EN i at layer l, the FS ranks the ENs

for each layer l based on their scores S̄t,l
i in decreasing order. Specifically, the FS arranges the

ENs in decreasing order of their average similarity scores as follows:

S̄t,l
(i1)
≥ S̄t,l

(i2)
≥ ·· · ≥ S̄t,l

(iN)
, (3.10)

where i1, i2, . . . , iN represent the indices of the ENs ordered by their similarity scores. This
ranking allows the FS to prioritise the updates from ENs that are more aligned with the overall
update direction.
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3.3.2 Truncation of Misaligned Updates

To enhance the robustness of the global model, the SDTA algorithm discards a fraction of ENs
with the lowest similarity scores for each layer. Specifically, for each layer l, a predefined
truncation percentage Z% is applied, and the FS discards the bottom Z% of ENs based on their
similarity rankings. The number of discarded ENs is calculated as:

Nl
Tr =

⌊
Z

100
×Nl

⌋
, (3.11)

where Nl is the total number of ENs at layer l. The remaining Nl
R = Nl −Nl

Tr, ENs will con-
tribute to the aggregation process. This truncation step ensures that updates from misaligned
or potentially malicious ENs are excluded, thereby mitigating the influence of outliers or noisy
data on the global model.

3.3.3 Layer-wise Aggregation and Global Model Update

After truncation, the FS aggregates the updates from the remaining ENs for each layer using a
simple averaging rule. For each layer l, the aggregated update is computed as:

∆ω
t,l =

1
Nl

R
∑

i∈IR

∆ω
t,l
i , (3.12)

where IR denotes the set of ENs that were not truncated for layer l. The global model is then
updated using the aggregated updates for each layer l:

ω
t+1,l = ω

t,l +η∆ω
t,l, (3.13)

where η is the learning rate. By aggregating only the updates from the most aligned ENs, the
global model update becomes more robust to noise and heterogeneity in the data across ENs.
The pseudocode for the proposed SDTA algorithm is given in Algorithm. 3.

3.3.4 Optimisation of Truncation

In the proposed SDTA algorithm, the truncation percentage Z% is critical in balancing between
excluding noisy or misaligned updates from ENs and retaining the most important contributions.
Properly tuning Z% is crucial for improving the robustness and performance of the global model
in FL setup.

Problem Formulation

The objective of the optimisation process is to find the optimal truncation percentage Z∗%, which
minimizes the global loss function ℓ(ω t+1). In this context, the global loss function ℓ(ω t+1)
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Algorithm 3: Similarity-Driven Truncated Aggregation (SDTA)
Result: Optimised global model ωT

1 Input: Local datasets Di for EN i, Total number of ENs N, Number of layers L in the
model, Number of communication rounds T , Truncation percentage Z%

2 Initialise global model weights ω0

3 for t = 1 to T do
4 for each EN i = 1 to N in parallel do
5 Send global model ω t to EN i
6 EN i performs local training and computes local model update ∆ω

t,l
i for each

layer l
7 ENs send local updates ∆ω

t+1,l
i to the FS

8 end
9 for each layer l do

10 for all pairs of ENs (i, j), i ̸= j do
11 Compute cosine similarity Sl

i, j for the l-th layer updates, as in Eq. ( 4.14)
12 end
13 Calculate average similarity score S̄l

i for each EN i, as in Eq. ( 3.9)
14 end
15 Rank ENs in decreasing order of similarity scores S̄l

i
16 Apply layer-wise truncation Z% of ENs with the lowest similarity as per Eq. ( 3.11)
17 Aggregate the remaining updates for each layer l, as in Eq. ( 3.12)
18 Update global model ω t+1,l = ω t,l +η∆ω t,l for each layer l
19 end
20 Return final global model ωT

is defined as the MAE, a common evaluation metric for STLF. The optimisation problem is
mathematically formulated as follows:

min
Z∈[0,Zmax]

ℓ(ω t+1(Z)), (3.14)

subject to the constraint:

0≤ Z ≤ Zmax, (3.15)

where ℓ(ω t+1(Z)) is the global loss after applying truncation percentage Z%, Z = 0, Zmax is
the maximum allowable truncation percentage, set to 50%, ensuring that at least half of the EN
updates are retained during aggregation.

Grid search is applied to efficiently explore the search space of possible truncation percent-
ages Z%. Instead of using the entire dataset for each EN in every communication round, a
representative subset of the dataset is used for a limited number of communication rounds. This
enables us to estimate the trend of the global loss function ℓ(ω t+1) without incurring the com-
putational cost of a full-scale training process. The grid search procedure is outlined as follows:
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• Each EN uses a random subset of its local dataset Di during the grid search process. This
subset is selected to be representative of the full dataset, ensuring that the performance
trends observed in the subset align with those observed over the entire dataset. The SDTA
algorithm is run for a fixed number of communication rounds, Ts, using these subsets to
evaluate the impact of different truncation percentages Z% on the global loss function.

• A predefined set of truncation percentages is chosen to cover the search space:

Z ∈ {0%,10%,20%,30%,40%,50%}.

This range provides a comprehensive evaluation of model performance across varying
truncation levels.

• After the global model ω t+1(Z) is obtained for each Z%, the global loss function ℓ(ω t+1(Z))

is evaluated on the validation dataset Dval.

• By tracking the global loss function for different truncation percentages, the behaviour
of the model as a function of Z% can be observed. This analysis allows us to determine
how sensitive the model performance is to various truncation levels, helping us identify
the truncation percentage that minimizes the global loss.

Finally, the optimal truncation percentage Z∗% is selected as the value that minimises the global
loss function. This ensures that the SDTA algorithm retains only the most aligned EN updates,
excluding noisy or misaligned contributions, to optimize the global model performance. Using
subsets of the dataset and a limited number of communication rounds allows for a computa-
tionally efficient method to identify the optimal truncation percentage. This approach ensures
that the loss function trend is captured accurately while reducing the computational overhead
typically associated with running a full grid search across all EN datasets.

3.4 Simulation Setup

In this work, our focus was on developing an efficient STLF at the substation level. We adopted
the cross-silo FL architecture and considered the small number of trusted users for model train-
ing. Since this study is intended to provide a practical and scalable framework for STLF, a
diverse dataset with historical load profiles, weather, and contextual information was needed
to evaluate the performance. Therefore, the ISO-New England dataset is used, containing
the hourly reading of the historical load profile at the substation level with weather informa-
tion [178]. The details of data distribution are discussed in the subsequent subsection.
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Figure 3.3: A sample plot of the dataset for all ENs showing varying peaks.
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Figure 3.4: The histogram showing right-skewed data distribution ENs.

3.4.1 Dataset Description

This study used the ISO-New England dataset, which provides comprehensive hourly load
profiles at the substation level, spanning five years from January 2009 to December 2013.



CHAPTER 3. SIMILARITY DRIVEN TRUNCATED AGGREGATION (SDTA) 64

The dataset includes weather-related variables and contextual information essential for accu-
rate STLF. We partitioned the dataset into 10 subsets to simulate FL settings, with each subset
representing an edge node (EN) capable of local training. Each EN receives data for six months
(26 weeks), with 80% allocated for training and 20% for testing. Finally, a combined global
test set is created consisting of all local test sets, offering a diverse representation of energy
consumption patterns to test the robustness of the proposed scheme.

The underlying rationale for this structured data distribution is two-fold: first, it ensures
each client accesses a diverse data spectrum; second, it provides insight into how data distribu-
tion influences the global model’s performance. This distribution approach mirrors real-world
FL environments where data diversity is a key challenge. Before starting the training process,
extensive data preprocessing is performed to extract handcrafted features, enhancing the effec-
tiveness of local training. For a detailed explanation of feature extraction and data preprocessing,
please refer to Section 3.2.3.

A sample plot of the dataset is shown in Fig. 3.3 to demonstrate the diversity of the data.
Additionally, Fig. 3.4 visualises the data distribution across clients using histograms, revealing
a right-skewed distribution that deviates from the normal distribution typically assumed in sta-
tistical models. The skewness suggests that many observations fall below the mean, reflecting
peak loads in shorter intervals at substations. This inherent data diversity justifies the need for
specific statistical tests to assess variance across clients, as such variance can affect the global
model’s accuracy.

3.4.2 Data Diversity Test

The dataset is right-skewed and deviates from a normal distribution; hence, two statistical tests,
Levene’s and Fligner-Killeen, were performed to check for diversity [179, 180].

Levene’s Test

Levene’s Test is a widely used method for testing the homogeneity of variances across multiple
groups. It is particularly effective when the assumption of normality is violated, making it
more suitable for the right-skewed data observed in our study. The test assesses whether the
variance of load data differs significantly between clients, which is critical for FL systems since
inconsistent variance can lead to biased global model updates. The mathematical formulation
for Levene’s Test is as follows [179]:

W =
(N− k)
(k−1)

· ∑
k
i=1 Ni(Zi·−Z··)2

∑
k
i=1 ∑

Ni
j=1(Zi j−Zi·)2

, (3.16)

where N is the total number of data points, k is the number of groups (in this case, ENs), Zi j =

|Xi j− X̃i| is the absolute deviation of observation Xi j from its group median X̃i, Zi· is the mean
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deviation for group i, and Z·· is the overall mean deviation. The null hypothesis (H0) of Levene’s
Test states that the variances are equal across all groups. A low p-value (typically < 0.05)
leads us to reject the null hypothesis, indicating significant variance differences between groups.
We performed pairwise Levene’s Tests across all clients for our dataset and computed the p-
values. The resulting matrix is presented in Table. 3.2, highlighting the statistical significance
of variance differences between each pair of clients. The diagonal values in the matrix are NaN
(Not a Number), as these represent the variance comparison of a client with itself, which is
not meaningful. The matrix demonstrates substantial diversity across ENs, as most client pairs
exhibit p-values far below the 0.05 threshold, suggesting significant variance differences. This
indicates that some clients contribute disproportionately large or small updates to the global
model, potentially introducing bias in the aggregated model.

Table 3.2: Pairwise Levene’s Test p-value Matrix for ENs

EN 1 EN 2 EN 3 EN 4 EN 5 EN 6 EN 7 EN 8 EN 9 EN 10
EN 1 NaN 1.000e-13 7.06e-05 1.16e-62 1.81e-09 1.97e-36 6.38e-03 2.33e-13 0.609 2.83e-02
EN 2 1.00e-13 NaN 3.94e-30 1.57e-23 3.66e-41 2.27e-09 2.85e-24 0.674 1.16e-15 2.08e-06
EN 3 7.06e-05 3.94e-30 NaN 5.40e-91 4.11e-02 3.52e-58 0.212 5.30e-28 4.67e-04 4.72e-09
EN 4 1.16e-62 1.57e-23 5.40e-91 NaN 1.99e-107 2.70e-04 1.33e-81 1.00e-19 9.75e-67 1.33e-43
EN 5 1.81e-09 3.66e-41 4.11e-02 1.99e-107 NaN 3.38e-71 9.97e-04 1.21e-37 2.70e-08 1.14e-14
EN 6 1.97e-36 2.27e-09 3.52e-58 2.70e-04 3.38e-71 NaN 7.49e-51 1.27e-07 2.30e-39 1.90e-23
EN 7 6.38e-03 2.85e-24 0.212 1.33e-81 9.97e-04 7.49e-51 NaN 8.04e-23 2.51e-02 2.46e-06
EN 8 2.33e-13 0.674 5.30e-28 1.00e-19 1.21e-37 1.27e-07 8.04e-23 NaN 4.28e-15 1.24e-06
EN 9 0.609 1.16e-15 4.67e-04 9.75e-67 2.70e-08 2.30e-39 2.51e-02 4.28e-15 NaN 7.34e-03

EN 10 2.83e-02 2.08e-06 4.72e-09 1.33e-43 1.14e-14 1.90e-23 2.46e-06 1.24e-06 7.34e-03 NaN

Fligner-Killeen Test

The second test performed is the Fligner-Killeen Test, which involves transforming the data
based on ranks and medians within each group, making it highly effective for non-normal data
distributions like those observed in our dataset. This method calculates a test statistic by ranking
the observations and evaluating the deviations from the median ranks within each group. The
formula for the test statistic is given as [180]:

X2 =
12

N(N +1)

[
k

∑
i=1

Ni

(
Ri·−

N +1
2

)2
]
−Correction Factor, (3.17)

where N represents the total number of data points across all groups, k is the number of groups
(in our case, ENs), Ni denotes the number of observations in each group, and Ri· is the sum of
ranks for the i-th group.

The p-values obtained from our pairwise Fligner-Killeen tests, presented in Table 3.3, reveal
key insights about the variance diversity between different ENs. Several EN pairs, such as EN
1 and EN 4 (p-value = 9.38e-66) and EN 4 and EN 10 (p-value = 3.88e-44), exhibit highly
significant variance differences, further reinforcing the diversity discovered by Levene’s Test.
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These results underscore the need to account for these differences in the model aggregation
process.

Table 3.3: Pairwise Fligner-Killeen Test p-value Matrix for ENs

EN 1 EN 2 EN 3 EN 4 EN 5 EN 6 EN 7 EN 8 EN 9 EN 10
EN 1 NaN 9.188e-14 7.36e-06 9.38e-66 9.47e-12 1.87e-35 1.06e-03 8.58e-13 4.23e-01 3.55e-02
EN 2 9.19e-14 NaN 4.21e-33 7.27e-28 1.33e-45 8.50e-10 5.15e-26 5.10e-01 5.15e-17 4.06e-06
EN 3 7.36e-06 4.21e-33 NaN 1.07e-93 1.82e-02 2.24e-59 1.83e-01 6.78e-29 1.41e-04 3.36e-09
EN 4 9.38e-66 7.27e-28 1.07e-93 NaN 1.13e-108 3.50e-05 5.60e-85 4.28e-21 2.20e-70 3.88e-44
EN 5 9.47e-12 1.33e-45 1.82e-02 1.13e-108 NaN 5.98e-73 1.49e-04 8.67e-39 5.69e-10 5.63e-15
EN 6 1.87e-35 8.50e-10 2.24e-59 3.50e-05 5.98e-73 NaN 4.71e-51 6.22e-08 1.24e-39 8.27e-24
EN 7 1.06e-03 5.15e-26 1.83e-01 5.60e-85 1.49e-04 4.71e-51 NaN 1.10e-22 1.17e-02 2.74e-06
EN 8 8.58e-13 5.10e-01 6.78e-29 4.28e-21 8.67e-39 6.22e-08 1.10e-22 NaN 2.36e-15 1.56e-06
EN 9 4.23e-01 5.15e-17 1.41e-04 2.20e-70 5.69e-10 1.24e-39 1.17e-02 2.36e-15 NaN 7.26e-03

EN 10 3.55e-02 4.06e-06 3.36e-09 3.88e-44 5.63e-15 8.27e-24 2.74e-06 1.56e-06 7.26e-03 NaN

3.4.3 Performance Metrics

To assess the performance of the STLF problem, the most commonly used metrics in traditional
ML are mean absolute percentage error (MAPE) and mean absolute error (MAE), which are
discussed in 2.2.1 and given in equ. (2.19 and 2.20). Together, these metrics provide a com-
prehensive understanding of model performance. MAE focuses on the absolute error without
considering the magnitude of the actual values, while MAPE accounts for the relative error,
offering a percentage-based view of forecasting accuracy.

In addition to error metrics, evaluating computational complexity is critical to understanding
the scalability and efficiency of the proposed framework, particularly in resource-constrained en-
vironments. The computational complexity is quantified using floating point operations (FLOPs),
which measures the operations required during each communication round as discussed in Sec-
tion 2.2.3 as given in equ. (2.14). Local training FLocal, includes the forward and backward
passes of the DL model during training. For an LSTM model used in this study, the computa-
tional cost is proportional to the number of neurons, layers, and training samples processed at
each EN. Let S represent the sample size, H the hidden units in LSTM, and L the number of
layers, than Flocal is calculated as:

FLocal = O(S×H2×L). (3.18)

Aggregation FAgg is the cost of combining the local update depending on the number of partici-
pating ENs (N) and the model size (ω , representing the number of parameters):

FAgg = O(N×ω). (3.19)

Finally, algorithm-specific operations (FAlgo) depend on the type of aggregation mechanism
used. For instance, the cost is limited to coordinate-wise averaging of model weights for Fe-
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dAVG. However, FedDist has additional computations for distance calculations and neuron addi-
tion, and the proposed SDTA includes cosine similarity computations and truncation operations,
which adds an extra cost. For L layers and N participating clients, the complexity is:

FFedDist = O(2×N×ω×L),FSDTA = O(L×N2). (3.20)

3.4.4 Performance Evaluation Strategy

We conducted all experimental procedures in a simulated environment to evaluate the perfor-
mance of our proposed framework thoroughly under different scenarios. These simulations as-
sessed the global generalisation capabilities and the personalised performance of models trained
using FL. The global performance was evaluated using a global test set, while the personalised
performance was assessed using the locally fine-tuned models at each EN. We calculated the
MAPE and MAE for each model using the test data specific to each EN, ensuring a robust
comparison across varying conditions.

3.4.5 Simulation Scenarios:

• FL vs Centralised Learning: In the first scenario, the basic performance of the proposed
SDTA algorithm is evaluated in an FL setup. This was compared against centralised learn-
ing and two commonly used FL algorithms, FedAVG and FedDist. This comparison en-
abled us to investigate the effectiveness of SDTA in handling the challenges of diverse
data distributions across ENs. .

• Incorporating DP: We incorporated DP based on the (ε,δ )-differential privacy frame-
work to ensure data privacy during model updates. This mechanism controls the amount
of noise added to model updates, ensuring that individual client data remains protected.
The privacy budget ε controls the level of privacy, which has an inverse relation with pri-
vacy level. The larger ε values provide low noise, resulting in weaker privacy but better
performance, while smaller ε values offer stronger privacy guarantees at the cost of ac-
curacy. The parameter δ , set to 10−5, accounts for the small probability that the privacy
loss might exceed ε . We tested three scenarios where low privacy ε ranges between 6 and
8, providing lower noise, thus a better model performance with weaker privacy guaran-
tee [82]. In medium privacy, the ε range is kept between 0 and 1, balancing privacy and
accuracy. Finally, high privacy, where ε is kept at 0.1, offers strong privacy protection at
the expense of reduced model performance.

• Testing Under Diverse Conditions: Beyond privacy and security, we explored the re-
silience of our proposed algorithm under various challenging conditions, such as random
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client selection and adversarial attacks. In random client selection, a scenario is simulated
where a subset of ENs are randomly selected in training, testing the algorithm’s ability
to maintain accuracy even when fewer clients contribute updates. This scenario is crucial
in practical applications where communication failures or client unavailability may occur.
Furthermore, we intentionally dropped some EN with similar patterns and used transfer
learning to fine-tune them to reduce the communication cost. We also tested the algo-
rithm’s performance in adversarial attacks, where some clients send corrupted updates to
disrupt the model. This scenario tested the proposed SDTA’s ability to detect and mitigate
the impact of such adversarial behaviour, comparing its performance with FedAVG and
FedDist.

By incorporating DP mechanisms and adversarial defence strategies, our performance eval-
uation strategy ensures that the SDTA framework is robust and resilient to privacy threats and
operational challenges in FL environments.

3.5 Results and Discussions

To evaluate the effectiveness of the proposed SDTA framework for STLF, we conducted a com-
prehensive comparative analysis against two widely employed FL algorithms: FedAVG and Fed-
Dist. This evaluation aims to demonstrate how SDTA addresses the challenges inherent in FL,
such as data diversity and privacy preservation while maintaining high model performance. This
study treated the STLF task as a multivariate regression problem, utilising handcrafted features
derived from historical load profiles and weather data to predict hourly energy consumption.

Local training was conducted using a DNN model, as Section 3.2.3 outlined. The DNN
model is purposefully kept simple to reduce computational complexity and minimise model
size, ensuring scalability. For the comparative analysis, the performance of the global federated
model is benchmarked against a centralised learning model, while the personalised models are
compared to local training on individual ENs. During the local training phase, each EN refined
its model independently using its local dataset, with no communication or parameter sharing
among the nodes.

The hyperparameters for local and FL models were standardised to ensure a fair and con-
sistent evaluation. In the FL setup, each EN trained locally for 20 epochs per communication
round, with 500 communication rounds in total. The ADAM optimiser was employed with a
local batch size 32, ensuring efficient convergence across nodes with heterogeneous data distri-
butions.

In obtaining the optimal percentage of truncation value %Z, a grid search is performed for
predefined values of Z as discussed in Section 3.3.4. We used a subset of data and trained the
model for 100 communication rounds to check the trend of a learning curve using our proposed
SDTA algorithm. The results for our initial analysis are presented in Fig. 3.5, and the curve is
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Figure 3.5: FL learning curve for percentage truncation value Z and MAPE using the subset of
training data.

plotted against different percentages of Z values. The results showed that the optimal value for
Z is 0.2, i.e., 20%, where the MAPE value is minimised. Therefore, a 20% truncation ratio is
adopted in all subsequent experiments to enhance model alignment and mitigate the impact of
data heterogeneity across ENs.

3.5.1 Centralised vs FL learning

In the initial phase of our evaluation, we compared the performance of centralised learning
to that of FL, focusing on assessing the capabilities of the proposed SDTA framework. To
isolate the impact of aggregation techniques, an ideal FL environment is assumed where all ENs
updates are noise-free, allowing us to evaluate actual performance. Table 3.4 summarises the
results, including key metrics such as MAE, MAPE, and the number of communication rounds
required for model convergence.

As expected, centralised learning with direct access to aggregated data yielded the best per-
formance, achieving an MAE of 290.4 and a MAPE of 1.96%. The number of communication
rounds is not applicable (NA) for centralised learning, as the data is processed centrally without
needing federated updates. However, centralised learning is rarely feasible in real-world appli-
cations due to strict data privacy regulations and the logistical challenges of aggregating data
from disparate sources.

In the federated setting, the performance of FedAVG and FedDist underscores the challenges
posed by data diversity across ENs. FedAVG recorded an MAE of 464.03 and a MAPE of
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Table 3.4: Comparative results of centralised training and globalised models using different
aggregation techniques.

Algorithm MAE MAPE No of Rounds
Centralised 290.4 1.96 NA

FedAVG 464.03 3.11 225
FedDist 426.03 2.89 239

Proposed-SDTA 380.69 2.63 209
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Figure 3.6: FL learning curve based on MAE as loss function for each communication round
during the training process.

3.11%, reflecting the difficulties in aggregating models trained in diverse data. FedDist slightly
improved performance by incorporating a distance-based weighting mechanism, with an MAE
of 426.03 and a MAPE of 2.89%. The proposed SDTA framework, however, demonstrated a
clear improvement over both FedAVG and FedDist, achieving an MAE of 380.69 and a MAPE
of 2.63%. This can be attributed to SDTA’s layer-wise cosine similarity scoring and truncated
aggregation, which enhance model alignment and mitigate the impact of data diversity across
ENs. Moreover, SDTA converged faster, requiring only 209 communication rounds compared
to 225 for FedAVG and 239 for FedDist, reflecting its superior efficiency in federated environ-
ments.

The results in Fig. 3.6 present the learning curve of loss function MAPE in each communi-
cation round generated using the global test set during the training process. This curve exhibits a
classical learning behaviour with a steep reduction in MAPE in initial rounds until it reaches the
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Table 3.5: Complexity analysis of federated algorithms per round.

Algorithm FLocal (FLOPs) FAgg (FLOPs) FAlgo (FLOPs) FTotal (FLOPs)
FedAVG 93.84×109 586,500 0 93.8406×109

FedDist 93.84×109 586,500 5.238×106 93.846×109

SDTA 93.84×109 469,200 5.238×106 93.845×109

slow monotonic decrease after a few initial rounds. The results show that the proposed SDTA
has a minimum MAPE of 2.63% and converges early compared to the FedAVG and FedDist
algorithms. Furthermore, the rapid decrease in MAPE loss shows the quick learning capabilities
of our proposed algorithm in a federated setup.

3.5.2 Complexity Analysis Under Normal Conditions

The computational complexity of FL algorithms significantly impacts their efficiency and scal-
ability, especially in resource-constrained distributed systems. To analyse this, we evaluate the
complexity of three algorithms based on FLOPs as discussed in Section. 2.2.3. The analysis
considers local training, model aggregation, and additional operations specific to each algorithm
as given equ. (2.14). The existing model architecture comprises an LSTM layer, two dense
layers (100 and 50 neurons), and a fully connected layer, yielding 58,650 parameters. Each
client trains locally on a dataset of 4,000 samples for 20 epochs, with a batch size 32. For local
training, the complexity per sample is 2× Parameters = 117,300 FLOPs (forward and backward
passes). Across all samples and epochs, the local training complexity per client is 9.38 billion
FLOPs, and for 10 clients, this totals 93.84 billion FLOPs per communication round.

FedAVG involves only local training and aggregation, hence the computation cost Parameters
× N = 586,500 FLOPs for 10 clients. In contrast, FedDist includes pairwise distance compu-
tation for neurons, incurring an additional cost of 5.23 million FLOPs. SDTA computes cosine
similarities for layer-wise updates and ranks clients for truncation. While the similarity compu-
tation adds 5.23 million FLOPs, SDTA reduces aggregation costs to 469,200 FLOPs by truncat-
ing 20% of the least similar clients. A summary of the complexity analysis is presented in Table.
3.5.

These results were expected where the FedAVG has the lowest complexity due to its simple
aggregation strategy. FedDist, while slightly more complex, incorporates layer-wise distance
computations to improve robustness to heterogeneous updates. SDTA, on the other hand, bal-
ances computational cost and robustness by truncating low-quality updates, achieving a marginal
reduction in aggregation overhead compared to FedDist. This analysis highlights that while Fe-
dAVG is the most computationally efficient, the proposed SDTA offers enhanced robustness
against noisy or adversarial updates with only a minimal increase in complexity.
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Table 3.6: Convergence time comparison for the algorithms under comparison.

Algorithm Rounds Training Time per Round Total Training Time (seconds)
SDTA 209 62.31 13,007.79

FedDist 239 64.86 15,501.54
FedAVG 225 59.83 13,462.25

3.5.3 Convergence Analysis

The convergence time for FL algorithms is critical for evaluating their practical feasibility, es-
pecially in resource-constrained environments. This study compared the total training time re-
quired for SDTA, FedDist, and FedAVG to reach their respective minimum MAPE values under
normal conditions. The average training time per communication round for SDTA, FedDist, and
FedAvg was recorded as 62.31, 64.86, and 59.83 seconds, respectively. Table 3.6 presents the to-
tal convergence time for each algorithm based on the number of communication rounds required
to achieve the minimum MAPE. SDTA achieved convergence in 209 rounds, while FedDist and
FedAVG required 239 and 225 rounds, respectively. The results highlight that SDTA achieves
the lowest MAPE in the shortest convergence time, reflecting its ability to balance computational
efficiency with robustness to data heterogeneity. FedDist, despite incorporating a distance-based
weighting mechanism, required longer convergence. This analysis demonstrates that SDTA of-
fers a competitive advantage in terms of convergence efficiency, even with its added complexity
for outlier rejection and layer-wise similarity computation.

3.5.4 Personalised Learning vs Local Learning

In the next phase, we evaluated the effectiveness of personalised models compared to local
training. Fig. 3.7 compares MAPE across different ENs for personalised and local models.
Each EN trained a model for local learning using only its local dataset, resulting in significant
variation in MAPE. The lack of collaboration in local learning led to a higher average MAPE,
with individual ENs exhibiting substantial performance differences based on their specific data
characteristics.

In contrast, the personalised models derived from fine-tuning the global models produced by
FedAVG, FedDist, and SDTA exhibited more consistent performance across ENs, achieving the
lowest MAPE values across nearly all clients. For example, at EN 3, the MAPE for the proposed
SDTA was approximately 1.81%, compared to 2.55% for local learning, highlighting the advan-
tage of FL in leveraging shared knowledge from diverse ENs.While FedAVG and FedDist also
benefited from personalisation, SDTA outperformed these methods due to its effective aggrega-
tion mechanism, which better captures underlying patterns across diverse datasets. By aligning
model updates through cosine similarity and truncating outliers, SDTA produces a more robust
global model that, when fine-tuned locally, yields superior personalised models. Finally, the
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Figure 3.7: Comparative bar graph of personalised learning and local learning.
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Figure 3.8: Comparison of actual vs predicted values using the personalised SDTA model.

results in Fig. 3.8 compare actual and predicted curves based on the personalised SDTA model
and show a nearly good fit for actual vs. predicted values.

3.5.5 Comparison Under Differential Privacy

The experimental evaluation assesses the comparative performance of FedAVG, FedDist, and
the proposed SDTA algorithm under varying DP settings. The analysis explores three privacy
scenarios defined by the parameter ε , with results measured using MAPE over 500 communica-
tion rounds.

At the low privacy level ε = 8.0, where noise addition is small, SDTA achieves a mini-
mum MAPE of 3.09%, surpassing FedDist 3.41% and FedAVG 3.66% as shown in Fig. 3.9.
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Figure 3.9: FL learning curve based on MAPE, low privacy level ε = 8.0 for each communica-
tion round during the training process.
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Figure 3.10: FL learning curve based on MAPE, medium level ε = 1 for each communication
round during the training process.

This shows an improvement of approximately 9.4% and 15.6% over FedDist and FedAVG, re-
spectively. All aggregation algorithms perform better with relaxed privacy settings with slight
degradation to baseline results. However, in the medium privacy setting (ε = 1.0), SDTA out-
performs the other algorithms, achieving a MAPE of 3.59% as shown in Fig. 3.10. In contrast,
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Figure 3.11: FL learning curve based on MAPE, high level ε = 0.1 for each communication
round during the training process.

FedDist records 3.94%, and FedAVG results in 4.27%. This relative improvement of proposed
SDTA over FedDist, and FedAVG demonstrates the ability to balance privacy and accuracy more
effectively than the baseline methods. This trend highlights the adaptable proposed aggregation
mechanism and maintains a performance advantage even as privacy constraints moderate.

Finally, in the high privacy setting (ε = 0.1), SDTA achieves a minimum MAPE of 4.02%,
outperforming FedDist, which records 4.45%, and FedAVG, which registers 5.05%. The re-
sults of this analysis are shown in Fig. 3.11. The results represent an improvement of 9.7%
and 20.4% over FedDist and FedAVG, respectively, demonstrating the robustness of SDTA un-
der strict privacy constraints. The superior performance indicates that incorporating similarity-
driven aggregation effectively mitigates the impact of high noise levels associated with strong
privacy guarantees.

3.5.6 Comparison Under Adversarial Conditions and Client Dropout

To assess the robustness of the proposed SDTA against adversarial conditions, a model sign-
flipping attack is simulated, compromising 40% of ENs by inverting the sign of their model
updates. Robustness against such attacks is critical in FL systems to ensure reliability and trust-
worthiness, especially when dealing with malicious clients or corrupted data. The results, de-
picted in Fig. 3.12 and Fig. 3.13, underscore the significant resilience of the proposed algorithm
compared to baseline methods FedAVG and FedDist. For instance, the results in Fig. 3.12
present the convergence behaviour of SDTA, FedDist, and FedAVG plotted across 500 commu-
nication rounds in the presence of a sign-flipping attack affecting 40% of ENs. The learning
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Figure 3.12: FL learning curve for model sign inversion attack, where 40% ENs are compro-
mised.
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Figure 3.13: Performance comparison of FedAVG, FedDist, and SDTA under varying propor-
tions of compromised EN (0-40%).

curves reveal that SDTA achieves a MAPE of 3.95%, which surpasses the performance of Fed-
Dist, with a MAPE of 4.31%, and FedAVG, achieving a final MAPE of 4.97%. These results
indicate a substantial improvement in prediction accuracy, with SDTA outperforming FedAVG
by 20.5% and FedDist by 8.4%.

These results further validate the robustness of the proposed SDTA against adversarial at-
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Figure 3.14: Impact of random client selection, comparing the MAPE values for FedAVG, Fed-
Dist, and SDTA across different client participation rates (90-50%).

tacks, particularly when a substantial proportion of ENs are compromised. The comparison in
Fig. 3.13 provides additional insights by analysing the effect of different proportions of compro-
mised ENs on model performance, covering attack scenarios ranging from 0% to 40%. Under
non-adversarial conditions (0% attack), all approaches exhibit comparable performance, with
MAPE values ranging between 2.6% and 3.1%, establishing a clear baseline for further com-
parison. However, as the proportion of compromised nodes rises, the pattern of performance
degradation becomes distinct across the methods. FedAVG experiences the steepest decline,
with MAPE value increased from 3.11% to 4.99% at the highest attack intensity, underscoring
its vulnerability to adversarial manipulation. In contrast, SDTA maintains remarkable resilience,
with only a slight increase in MAPE to 3.95% under the highest attack level (40%), representing
a modest 1.32 percentage point increase from its baseline performance.

Finally, the impact of partial client participation is evaluated through random client selection,
where the selection rates ranged from 90% to 50% per communication round. Random EN
selection reduces communication and computation costs, making FL more scalable and efficient
in real-world applications where full client participation may not be feasible due to resource
constraints or network limitations. The results are presented in Fig. 3.14, demonstrate that with
a 90% selection rate, SDTA achieves the lowest MAPE of 2.65%, establishing the near-optimal
performance benchmark. At the same time, FedDist and FedAVG follow with MAPE values of
2.94% and 3.14%, respectively. As client selection rates decrease, all approaches show a gradual
rise in MAPE, reflecting increased sensitivity to reduced participation. These results show that,
when the percentage of client selection decreases, the performance of the global model also
decreases.
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3.5.7 Key Lesson Learnt

The impact of key factors on the SDTA framework is systematically analysed. EN participa-
tion affects both model performance and energy efficiency. While full participation enhances
generalisation, random selection (e.g., 50%) significantly reduces energy consumption while
maintaining competitive accuracy, highlighting the need for adaptive client selection. Privacy
considerations, evaluated using DP, reveal a trade-off between accuracy and privacy as shown in
Fig. 3.9-3.11. Despite performance degradation at higher privacy levels, SDTA outperforms Fe-
dAVG and FedDist by up to 20.4%, demonstrating its robustness in privacy-constrained settings.
The comparison between local, centralised, and FL Table 3.4 highlights the infeasibility of cen-
tralised learning due to privacy and computational constraints, despite its superior performance
(MAPE = 1.96%). FL approaches, particularly SDTA (MAPE = 2.63%), balance accuracy and
efficiency, requiring fewer communication rounds than FedAVG and FedDist. The learning
complexity analysis Table 3.5 confirms that SDTA introduces minimal additional computation
while effectively mitigating noisy updates and adversarial attacks. Under a 40% adversarial at-
tack, SDTA reduces the error rate by 20.5% over FedAVG, demonstrating its resilience against
adversarial threats as given in figures 3.12-3.13. These findings establish SDTA as a scalable,
privacy-preserving, and energy-efficient FL aggregation method, well-suited for heterogeneous
and adversarial FL environments. Future improvements can focus on adaptive client selection,
enhanced adversarial robustness, and optimising communication efficiency.

3.6 Summary

This chapter introduced the SDTA framework to address challenges C1 and C3, as discussed
in Section 1.3. Traditional FL aggregation methods, such as FedAVG, are often inadequate in
scenarios involving data diversity, stringent privacy requirements, and adversarial threats due to
their inability to effectively manage diverse and potentially malicious updates. The proposed
SDTA algorithm selectively aggregates updates from ENs using a similarity-driven scoring and
truncation mechanism on each layer. This method of selective aggregation reduces the effects
of data diversity, noisy updates, and adversarial attacks. As a result, SDTA is particularly well-
suited for heterogeneous and privacy-sensitive FL environments.

Simulation results demonstrated that SDTA outperforms existing FL aggregation methods
across various scenarios. In an ideal FL environment without noise, SDTA achieved a MAPE of
2.63%, surpassing FedAVG and FedDist while requiring fewer communication rounds for con-
vergence, thus demonstrating greater efficiency. Under DP constraints, SDTA showed minimal
performance degradation, achieving a MAPE of 4.02% with ε = 0.1, outperforming FedDist
and FedAVG by 9.7% and 20.4%, respectively. The resilience of the proposed scheme was
further validated under model sign inversion attacks on 40% of ENs, where SDTA achieved a
MAPE reduction of 20.5% over the FedAVG algorithm. The framework also proved effective
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in situations with partial client participation, maintaining stable performance even as the client
selection rate decreased from 90% to 50%. This resilience makes SDTA particularly suitable
for practical applications where client availability is intermittent due to resource constraints or
network issues.



Chapter 4

Semantic-Aware Federated Blockage
Prediction (SFBP)

This chapter focuses on energy efficiency (both computation cost and communication overhead)
and introduces SFBP, addressing the challenges C1 and C3 as discussed in Section 1.3. The core
idea of the proposed framework is multi-modal data fusion and semantic information extraction.
Additionally, the proposed framework performs similarity-driven FedAVG (SD-FedAVG), im-
proving resilience against adversarial updates and reducing communication and computational
overhead. Moreover, semantic awareness and SD-FedAVG also address latency issues inherent
in FL training and inference. The proposed framework is tested on a wireless communication
problem where multi-modal vision and wireless sensing data are used for proactive blockage
prediction to assist handover. Therefore, this study aims to advance energy-efficient and secure
FL framework integration in complex, dynamic environments like wireless networks.

4.1 Introduction

The rapid evolution of digital technologies has significantly increased the demand for higher
data rates, lower latency, and enhanced energy efficiency in wireless communication networks.
Fifth-generation (5G) networks were developed to address these needs, enabling services such
as ultra-reliable low-latency communication (URLLC), massive machine-type communication
(mMTC), and enhanced mobile broadband (eMBB) [22, 181]. However, emerging applications
like autonomous vehicles, augmented and virtual reality, Industry 4.0, and smart healthcare
impose even stricter bandwidth, latency, and reliability requirements, challenging the limits of
5G technology [182]. These demands have catalysed exploration into beyond 5G (B5G) and
sixth-generation (6G) networks, envisioned to adapt seamlessly to rapidly changing data and
connectivity needs [183].

A key enabler for B5G and 6G networks is the utilisation of higher frequency bands, such
as millimeter-wave (mmWave) and sub-terahertz (THz) frequencies [184]. These bands of-

80
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fer substantially larger bandwidths, making them ideal for supporting high-throughput applica-
tions. However, these frequency bands are more susceptible to physical obstructions and require
precise beamforming with large antenna arrays to maintain stable connections [134]. Achiev-
ing precise beamforming introduces significant training overhead for optimal beam selection,
hindering the low-latency and high-reliability requirements of many applications [185, 186].
Traditional solutions, such as adaptive beam codebooks and compressive sensing techniques,
provide limited improvements, especially in dynamic environments where rapid adjustments are
necessary [187, 188]. Recent research is focused on multi-modal sensing with machine learn-
ing (ML) techniques to address these challenges. By leveraging diverse inputs like GPS data,
camera images, and radar, these solutions enhance beam selection and predict potential signal
blockages [135,136]. While these methods improve blockage prediction accuracy, their reliance
on centralised data processing presents significant scalability challenges and risks of privacy
breaches. Additionally, their limited sensing range constrains effectiveness in large, complex
environments, limiting real-time adaptability [183].

An emerging approach to overcome these limitations involves multi-modal distributed sens-
ing, where edge nodes with sensors collaborate to provide a richer, more comprehensive view
of the wireless environment. This distributed sensing extends beyond individual base stations
(BS), improving prediction accuracy in dynamic environments by combining data from multi-
ple sources [22]. However, managing the large volumes of data generated and synchronising it
across nodes in real-time poses significant challenges. Extracting compact, meaningful environ-
ment semantics from raw sensor data at the edge is a crucial solution. Semantic representations
retain critical information while significantly reducing data volume and bandwidth usage, ad-
dressing the bottlenecks of traditional methods [137].

FL has emerged as a pivotal technology to harness the potential of distributed sensing,
enabling collaborative model training without sharing raw data and thus preserving user pri-
vacy [21]. However, deploying FL in high-frequency wireless networks presents significant
challenges. Managing noisy updates from diverse nodes, adversarial attacks, data heterogeneity,
and maintaining model stability under dynamic conditions remain critical obstacles [80]. These
factors can significantly degrade model performance, particularly in non-uniform or highly vari-
able data environments. Recent studies have explored these challenges in different applications,
highlighting the need for robust aggregation mechanisms and adaptive strategies to ensure reli-
able performance [189, 190].

4.2 Contributions

Motivated by recent advances in vision-aided wireless communication (VAWC) [135], this chap-
ter introduces a novel framework called SFBP, tailored for next-generation wireless networks.
The key innovation of this framework lies in combining edge-based semantic extraction with
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FL to enable proactive blockage prediction and seamless proactive handover (PHO). To enhance
edge processing efficiency, the SFBP framework employs MobileNetV3 [191], a lightweight
computer vision (CV) model for semantic extraction. This model converts raw images into com-
pact, privacy-preserving representations suitable for edge environments. The proposed frame-
work introduced the SD-FedAVG algorithm to deal with noisy updates caused by adversarial
attacks and data variability. This enhancement ensures better alignment of model updates, im-
proving the robustness and stability of the global model even in scenarios with data variations
across edge nodes. Prior research has not explored the combination of semantic information
and FL for predicting blockages in vision-assisted systems. A key contribution of this work is
the detailed analysis of the impact of model prediction discrepancies, specifically false positives
(FP) and false negatives (FN), on the performance of PHO. These discrepancies, often caused
by noisy updates during the FL training process, can critically affect PHO success rates. Addi-
tionally, we present a comparative analysis of the proposed SFBP framework against traditional
centralised and FL approaches, focusing on metrics like energy efficiency, latency, and com-
munication overhead. The publicly available Vision Wireless (ViWi) dataset [135] is utilised to
benchmark our results, ensuring that findings are grounded in realistic and reproducible scenar-
ios. The key contributions of this study are highlighted as follows:

• This study introduces the SFBP framework, leveraging bimodal vision and wireless sens-
ing data and a lightweight CV model MobileNetV3 as a feature extractor for edge-based
semantic extraction. This approach significantly reduces communication costs and infer-
ence latency, making it suitable for real-time, resource-constrained environments. The
results are benchmarked against the more complex YOLOv5 model, illustrating the trade-
offs between computational efficiency and prediction accuracy.

• A modified aggregation algorithm, SD-FedAVG is introduced, incorporating a cosine sim-
ilarity measure to align model updates. This adaptive aggregation mechanism effectively
mitigates the impact of noisy updates caused by adversarial attacks, ensuring robustness.

• Thorough analysis of the effects of noise on model updates and data variability on block-
age prediction accuracy is done. Additionally, the impact of FP and false negatives FN
on PHO success rates is examined, offering insights into the resilience of FL in practical
deployments.

• Comparative analysis of the SFBP framework is presented, focusing on the energy effi-
ciency of raw data transfer during centralised training and model parameter sharing, both
with and without semantic information. Energy efficiency refers to the average electrical
energy consumption for transferring raw data or model parameters over a wireless link,
measured in kilowatt-hours per gigabyte (kWh/GB). Additionally, we evaluate the latency
of centralised versus on-device inference using the publicly available ViWi dataset [135].



CHAPTER 4. SEMANTIC-AWARE FEDERATED BLOCKAGE PREDICTION (SFBP) 83

Figure 4.1: The mmWave BS is equipped with vision sensors that serve mobile users in an urban
setting. Users can experience link blockages while passing large objects (e.g., buses).

4.3 System Model for Blockage Predicition

In this study, we consider a mmWave communication system where each BS is equipped with vi-
sion sensors to capture high-resolution images of the surrounding environment, as illustrated in
Fig. 4.1. The system consists of N distributed nodes, each denoted by the index n∈{1,2, . . . ,N}.
The mmWave BS is equipped with M-element antenna arrays, using orthogonal frequency di-
vision multiplexing (OFDM) with K subcarriers. A predefined beamforming codebook F =

{ fm}Z
m=1 is used, where fm ∈ CM×1 represents the beamforming vector, and Z denotes the total

number of beamforming vectors. The received downlink signal for user n at subcarrier k and
time t is represented as:

yn,k[t] = hT
n,k[t] fmx[t]+nn,k[t], (4.1)

where hn,k[t] ∈ CM×1 denotes the channel between the BS and user n at the k-th subcarrier
and time t. The term x[t] is the complex transmitted symbol, and nn,k[t] is the Gaussian noise,
modeled as nn,k[t]∼ C N (0,σ2).

The channel hk in equation (4.1) is a general one that can be shown mathematically as the



CHAPTER 4. SEMANTIC-AWARE FEDERATED BLOCKAGE PREDICTION (SFBP) 84

sum of multiple path propagation, which is shown here [137]:

hn,k[t] = hLOS
n,k [t]+hNLOS

n,k [t], (4.2)

where hLOS
n,k [t] is the LOS component, and hNLOS

n,k [t] is the NLOS component. LOS commu-
nication is crucial in mmWave systems due to its higher channel gains compared to NLOS
paths [192]. The presence or absence of the LOS link is determined by the binary variable bn[t]:

bn[t] =

1 LOS blocked for user n

0 LOS not blocked for user n
(4.3)

Consequently, the effective channel model at time t for user n can be written as:

hn,k[t] = (1−bn[t])hLOS
n,k [t]+hNLOS

n,k [t]. (4.4)

4.3.1 Problem Formulation for Blockage Prediction

Link blockages in urban wireless environments are often caused by dynamic objects like vehi-
cles or pedestrians, leading to interruptions in LOS communication. Predicting these blockages
requires analysing sequences of images captured by the vision sensors at each BS. For each user
n, the goal is to predict future link blockages using a sequence of images and beam indices.
At any given time t, the sequence of observations for user n over a window of r instances is
represented as:

Sn[t] = {(Xn[i],bn[i])}ti=t−r+1, (4.5)

where Xn[i] ∈RW×H×C is the RGB image captured by the vision sensor at time instance i. Here,
W , H, and C represent the image width, height, and number of color channels, respectively,
and bn[i] denotes the corresponding beamforming vector from the predefined codebook. The
objective is to predict the blockage status sn[t] over a future observation window of r′ time
instances, defined as:

sn[t] =

1 if bn[t] = 1 for t ∈ {t +1, . . . , t + r′}

0 otherwise
(4.6)

where sn[t] = 1 indicates a predicted blockage within the observation window. The goal is to
utilise Sn[t] to estimate sn[t] with high success probability, represented as P(ŝn[t] = sn[t]|Sn[t]),
where ŝn[t] is the estimated status obtained using the DL model ℓω(Sn[t]). The DL is trained
using the dataset D = {(Sn,sn)}N

n=1, where N represents the number of users, and each in-
stance includes observed sequences Sn and corresponding ground truth sn. Thus, the prediction
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function ℓω is optimised to maximise the likelihood:

ℓω∗ = argmax
ℓω

N

∏
n=1

P(ŝn = sn|Sn), (4.7)

ensuring the best estimation of blockage status for each user based on the observed sequence
Sn.

4.3.2 Proactive Handover Mechanism

The key idea behind the blockage prediction is to perform PHO for seamless connectivity. For
user n, we consider two BSs: the current serving BS c and a neighbouring BS c′. The sequence of
observations at each BS for user n is represented as S

(c)
n = {(X (c)

n [i],b(c)n [i])}ti=t−r+1 and S
(c′)

n =

{(X (c′)
n [i],b(c

′)
n [i])}ti=t−r+1. The handover decision variable dcc′

n is defined as:

dcc′
n =

1 if (s(c)n = 1, s(c
′)

n = 0)

0 otherwise
(4.8)

where dcc′
n = 1 signifies the need for handover, while dcc′

n = 0 indicates that no handover is
necessary. To simplify, we assume that s(c

′)
n = 0, thus the condition simplifies to:

dcc′
n =

1 if s(c)n = 1

0 otherwise
(4.9)

where the HO decision solely depends on the link status of the user. Therefore, to account for
the prediction inaccuracies caused by the ML model, HO success metric H will consider both
false positives and false negatives. This metric is mathematically represented as:

H =

1 if (ŝ(c)n ,s(c)n ) ∈ {TP,TN}

0 if (ŝ(c)n ,s(c)n ) ∈ {FP,FN},
(4.10)

where TP, TN, FP, and FN are true positive, true negative, false positive and false negative,
respectively. H = 1 indicates successful handover based on accurate blockage prediction, while
H = 0 represents failure due to incorrect prediction.

4.4 Proposed SFBP Approach

This section introduces the proposed SFBP framework, which aims to ensure seamless con-
nectivity of high-mobility mmWave wireless communication systems by anticipating potential
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Figure 4.2: A block diagram of proposed SFBP for training a DL model on edge node.

blockages in advance. Traditional approaches often rely on co-located sensing and centralised
processing, which limits their applicability in real-world systems. Our framework leverages dis-
tributed sensing using data from multiple nodes with vision sensors across the network. This
distributed approach expands sensing coverage and captures diverse environmental perspectives,
effectively addressing LOS and NLOS conditions.

However, the increase in data volume from distributed sensing introduces challenges in
data storage, processing, and synchronisation between nodes and the BS. To mitigate these is-
sues, we employ edge processing techniques and extract critical environment semantics using a
lightweight CV model MobileNetV3 [191]. By focusing on essential information, such as the
presence and locations of objects in the scene, we significantly reduce the data traffic between
distributed nodes and the BS, alleviating storage and transmission burdens. Furthermore, the
SFBP framework incorporates FL to train blockage prediction models collaboratively across
distributed nodes without data sharing, thus preserving privacy and reducing communication
overhead. By sharing only model parameters, FL minimises the need for data synchronisa-
tion and handles data heterogeneity across different nodes. The SFBP framework provides a
streamlined and effective solution, enabling the wireless system to understand its surroundings
and maintain uninterrupted connectivity through PHO decisions. The entire process is divided
into three key steps: (i) semantic extraction, (ii) blockage prediction, and (iii) PHO, which are
detailed in the subsequent sections.

4.4.1 Semantic Information Extraction

The first step in the proposed SFBP framework is extracting semantic information from raw
images, represented as Xsem. This process involves identifying relevant features in the environ-
ment, which are later used for training the blockage prediction model. Selecting a suitable DL
model for semantic feature extraction is essential at this stage, as it must balance accuracy and
computational efficiency, especially for edge processing on distributed nodes.

For semantic information extraction, we utilise MobileNetV3, a lightweight and efficient
DNN model designed explicitly for edge processing. Instead of building and training Mo-
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bileNetV3 from scratch, we integrated a pre-trained MobileNetV3 into our architecture with
slight modifications. This decision offers two key advantages: (i) improved detection perfor-
mance through transfer learning and (ii) faster training convergence. Transfer learning allows
MobileNetV3 to leverage prior knowledge from large and diverse datasets, such as the COCO
dataset [193], which includes object classes typically found in diverse outdoor environments. As
a result, the model delivers robust detection performance without requiring extensive additional
training.

At the inference stage of MobileNetV3, a sequence of input images X is processed; it ex-
tracts key semantic features such as object classes and bounding box coordinates. This capa-
bility allows for the efficient conversion of raw images into compact semantic representations
Xsem ∈R[N×(6×1)], where N is the number of detected objects. Each object’s vector includes crit-
ical details like top-left coordinates (x1,y1), bottom-right coordinates (x2,y2), and centre point
(xc,yc). This semantic information, in combination with wireless sensing data, is used to train
the DL model for blockage prediction. The schematic diagram of model training is shown in
Fig. 4.2.

We also compare YOLOv5, a state-of-the-art object detection model for semantic informa-
tion extraction, known for its accuracy in segmenting urban environments. While YOLOv5
offers high precision, it requires significantly more computational resources, making it less suit-
able for edge nodes with limited processing power. This efficient semantic extraction process en-
ables the SFBP framework to focus on transmitting only critical information from the distributed
nodes to the BS if needed, reducing data transmission overhead and preserving bandwidth while
maintaining high accuracy in blockage prediction.

4.4.2 Federated Learning for Blockage Prediction

This subsection provides a detailed explanation of FL, a key component in our blockage
prediction approach. FL enables distributed training of models directly on edge nodes (ENs)
without sharing raw data, preserving privacy and reducing communication overhead. In our
proposed system, each BS functions as an EN, represented by the set i ∈ {1,2, . . . ,N}, where N

denotes the number of client ENs actively participating in the training process.
Each EN maintains a local dataset, denoted as |Di|, representing a subset of data at the i-th

BS. The total volume of vision-sensing data across all nodes is represented as D = ∑
N
i=1 |Di|.

Traditional ML solutions often require transmitting these datasets to a centralised server, which
can result in high communication costs and latency due to the large data volumes. To address
this, we leverage FL using the semantic features obtained from MobileNetV3 at each EN to
train local models. Once local training is complete, each EN shares only its model parameters
ωi with the Federated Server (FS), significantly reducing communication costs. This is an it-
erative process which continues for several communication rounds until the model converges
and the desired number of communication rounds is reached. A comprehensive representation
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Figure 4.3: A block diagram of proposed SFBP framework with multiple BS equipped with
vision and wireless sensing capabilities. Each EN has local data processing capabilities.

of the training process encompassing semantic extraction and DNN for blockage prediction is
illustrated in Fig. 6.1.

Local Training

The local training process at each EN involves a 3-layer DNN, trained using the semantic infor-
mation extracted by MobileNetV3. Each DNN is structured with layers comprising 132, 64, and
32 neurons, respectively, and utilises a rectified linear unit (ReLU) as the activation function to
introduce non-linearity. A dropout layer is added after each dense layer to mitigate overfitting,
and a sigmoid function is used in the output layer for the binary classification of blockage states.
Each EN trains its model using its local dataset |Di| and updates its model parameters ωn,t . The
training process is uniform across all ENs, ensuring consistent model structures throughout the
network. The common goal of local learning is to minimise the local loss function ℓn(ω) given
in eq. (2.1) where Xsem is the input features, and y are the the target labels.

Global Model Aggregation

Once the local learning phase is completed, the ENs share their locally optimised model pa-
rameters ωn with the FS, which aggregates these updates to create a global model given in eq.
(2.19). The goal is to find the optimal global model parameters ω∗ by minimising this global
cost function:

ω
∗ = argmin

ω

ℓ(ω). (4.11)



CHAPTER 4. SEMANTIC-AWARE FEDERATED BLOCKAGE PREDICTION (SFBP) 89

Similarity driven model aggregation

A novel aspect of our approach is the SD-FedAVG, which aims to improve the robustness of
model aggregation, particularly in noisy updates during training. The proposed SD-FedAVG
enhances the aggregation process by weighting each EN’s contribution based on the alignment
between its local update and the global model. This is achieved using cosine similarity, which
helps prioritise updates that align closely with the overall training direction, improving the sta-
bility and performance of the global model. The global model parameters ω t are updated using:

ω
t+1 =

N

∑
i=1

wiω
t+1
i , (4.12)

where wi is the weight assigned to the i-th EN and is computed based on the similarity between
its local update and the global model:

wi =


exp(cos_simi)

∑
N
j=1 exp(cos_sim j)

, if cos_simn ≥ τ,

0, otherwise.
(4.13)

The cosine similarity between the local update ω
t+1
i and the global model ω t+1 is given by:

cos_simi =
⟨ω t+1

i ,ω t+1⟩
∥ω t+1

i ∥∥ω t+1∥
, (4.14)

where ⟨·, ·⟩ denotes the dot product, and ∥ · ∥ represents the Euclidean norm. A threshold τ

is applied to filter out noisy updates, helping maintain the integrity of the global model by
excluding updates that deviate significantly from the overall direction.

Noise Detection and Thresholding

A noise detection mechanism is implemented at the FS to ensure robust aggregation. This
mechanism identifies potentially noisy updates by analysing the distribution of cosine similarity
scores across all ENs. The mean µcos and standard deviation σcos of the similarity scores are
calculated as follows:

µcos =
1
N

N

∑
n=1

cos_simn, σcos =

√
1
N

N

∑
n=1

(cos_simn−µcos)2.

The threshold τ is determined using:

τ = µcos−ασcos,
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where α is set to 1 in our implementation. This choice is based on the empirical rule (68-95-
99.7 rule), which suggests that approximately 68% of the data points lie within one standard
deviation from the mean [194]. By setting α = 1, we ensure that around 68% of the clients with
similarity scores near the mean can contribute to the global model while significantly deviating
updates are excluded. If the variance σcos exceeds a predefined threshold σnoise, SD-FedAVG is
applied. Otherwise, standard FedAVG is used, with weights based on the relative size of each
EN’s dataset:

wi =
|Dn|

∑
N
j=1 |D j|

(4.15)

The overall FL process includes several communication rounds to refine the global model itera-
tively, and the pseudo-code is given in Algorithm 4. Once training is complete, the global model
is distributed back to the ENs, enabling each EN to use the trained model for real-time blockage
prediction.

4.4.3 Proactive HO Mechanism

Predicting blockages in high-frequency wireless networks is highly beneficial as it allows for
the proactive handling of LOS obstructions via HO. With the assistance of a vision-based block-
age prediction model, the proactive HO algorithm can initiate and complete the HO process to
maintain seamless connectivity. In support of this, the proposed SFBP framework discussed
in Section 4.4.1 and 4.4.2 is employed for blockage prediction, using the setting discussed in
Section 4.3. This setup encompasses two neighbouring high-frequency BSs operating within
identical wireless conditions. Additionally, both BSs are equipped with vision and wireless
sensors, providing raw data of the wireless system’s surroundings.

The HO process is tightly coupled with the accuracy of blockage prediction, which is why
our approach utilises a two-phase methodology: (i) Training Phase and (ii) Inference Phase.
The training phase is conducted offline using the FL approach discussed in the Section 4.4.2.
During this phase, multiple BSs collaboratively train a global model that captures the spatial
and temporal dynamics of blockages in the network. The training is distributed by leveraging
FL, allowing each BS to refine its local model based on region-specific data while maintaining
privacy.

Afterwards, the optimal global model is deployed on each BS for real-time inference. The
key objective of this study is to predict blockage proactively using environment semantics that
will enable the PHO decision metric H given in the equation (4.10). Here are some assumptions
for our HO mechanism: (i) there is a BS denoted by B(c′) available for HO to serve the user from
B(c), (ii) the time to block is always greater than the HO time, which ensures the successful HO.
It is important to note that one of our previous studies thoroughly investigated the relationship
between blockage, HO time, and their impact on quality QoS. Hence, these assumptions have
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Algorithm 4: Dynamic Aggregation with SD-FedAVG
Result: Trained global model parameters ωT

1 Input: Communication rounds T , number of clients N, α = 1, noise threshold σnoise;
2 Initialise global model ω0;
3 for each communication round t = 1 to T do
4 Receive local parameters ω

t+1
i from each client i;

5 for each client i do
6 Compute cos_simi between ω

t+1
i and ω t ;

7 end
8 Compute µcos and σcos;
9 Set threshold τ = µcos−ασcos;

10 if σcos > σnoise then
11 Apply SD-FedAVG:
12 for each client i do
13 if cos_simi ≥ τ then
14 wi =

exp(cos_simi)

∑
N
j=1 exp(cos_sim j)

;

15 end
16 else
17 wi = 0;
18 end
19 end
20 else
21 Apply Standard FedAVG:
22 for each client i do
23 wi =

|Di|
∑

N
j=1 |D j|

;

24 end
25 end
26 Aggregate global model:
27 ω t+1 = ∑

N
i=1 wiω

t+1
i ;

28 Send ω t+1 back to each client i;
29 end

simplified our analysis [184].
Note: Despite our goal of achieving accurate blockage prediction and timely handovers,

real-world deployments present inherent challenges that can impact performance. Factors such
as data heterogeneity across base stations, channel noise during federated updates, adversarial
attacks like model poisoning, and hardware constraints due to varying sensor capabilities can
affect the consistency and reliability of the global model. If not properly managed, these issues
may lead to increased latency or reduced reliability in the handover mechanism. Therefore, a
comprehensive evaluation of the model’s robustness and adaptability under various conditions
is essential to optimising its performance.
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Table 4.1: Data distribution of ViWi Dataset.

Training Samples Testing Samples Total Samples
EN-1 1173 297 1470
EN-2 1653 387 2040
EN-3 1174 316 1490
Total 4000 1000 5000

4.5 Simulation Setup

This section outlines the simulation process, including the dataset used, the metrics applied
to evaluate the performance, and the comparison scenarios considered for the proposed SFBP
framework.

4.5.1 Dataset Description

The performance of the proposed SFBP framework is evaluated using the publicly available
ViWi dataset [135], which provides a rich set of vision and wireless data for studies in mmWave
communications. ViWi is generated using Wireless Insite, a ray-tracing tool, and Blender 3D to
simulate realistic urban environments. The dataset consists of synchronous wireless and vision-
sensing samples across various scenarios, differentiated by camera location (distributed or co-
located) and view (direct or blocked).

This study focuses on a distributed scenario with three vision sensors mounted on different
BSs, named EN-1, EN-2, and EN-3. These sensors have unique fields of view (FoV) and capture
data related to a highly mobile user (a car) and a blocking object (a bus). The dataset includes
5,000 samples, with 4,000 samples dedicated to training and 1,000 for testing the model. The
dataset categorizes the user’s link status b[t] into two classes: LOS (not blocked) and NLOS
(blocked), based on the user’s received signal strength and position relative to the obstacles.
The distribution of samples across the three edge nodes, highlighting the data heterogeneity, is
presented in Table 4.1.

4.5.2 Performance Metrics

A rigorous evaluation of the predictive model and the PHO algorithm is essential to demonstrate
the effectiveness of the SFBP framework. The following metrics are used to assess the system’s
performance comprehensively.

Predictive Model Evaluation

The blockage prediction task is treated as a binary classification problem. While accuracy is a
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commonly used metric measuring the ratio of correct predictions to total predictions, it can be
misleading in imbalanced datasets due to the accuracy paradox. To ensure a balanced evalu-
ation, we also consider Precision, Recall, and F1-score as discussed in Section. 2.2.2. These
metrics provide a deeper insight into the model’s predictive power, particularly in handling mi-
nority classes (NLOS cases). Using semantic information from MobileNetV3 and YOLOv5,
comparisons are made between centralised and distributed learning setups.

PHO Algorithm Evaluation

The effectiveness of the PHO mechanism is directly linked to the accuracy of the blockage
prediction model. To evaluate this, we introduce a modified HO failure rate metric H, accounting
for FP and FN:

H =
1
N

N

∑
i=1

(
1{(ŝ(c)ni ,s

(c)
ni )∈FP∪FN}

)
, (4.16)

where N is the total number of samples used for testing. Here, {(ŝ(c)n ,s(c)n )} includes TP, TN, FP,
and FN. The metric captures the impact of incorrect blockage predictions (FP and FN) on the
HO success rate, providing a holistic measure of the PHO mechanism’s performance.

Energy Efficiency and Latency Analysis

In addition to prediction accuracy, energy efficiency and latency are critical factors for the prac-
tical deployment of the SFBP framework. Energy efficiency refers to the average electrical en-
ergy consumption for transferring raw data or model parameters over a wireless link, measured
in kilowatt-hours per gigabyte (kWh/GB) as discussed in Section. 2.2.3 given in equ. (2.18).

Finally, latency is evaluated based on the time required for image capture (tcap), data trans-
mission (ttx), and inference (tin f ). With a 10 Gbps mmWave backhaul link and a camera frame
rate of 26 frames per second (fps), the overall latency D is calculated as:

D = tcap + ttx + tin f . (4.17)

This metric evaluates the advantage of on-device inference provided by MobileNetV3, espe-
cially compared to the more computationally intensive YOLOv5 model.

4.5.3 Simulation Scenarios

To validate the robustness and effectiveness of the SFBP framework, the following scenarios are
considered:

• Performance under data heterogeneity: Evaluating the model’s accuracy across varying
data distributions to assess the impact of data diversity on the global model.
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• Robustness to noisy updates: Assessing the impact of noisy updates on model con-
vergence and how the SD-FedAVG mechanism mitigates the effects of FP and FN, thus
maintaining a low HO failure rate.

• Adversarial attack resilience: Simulating simple adversarial attacks to evaluate the
model’s robustness, comparing the standard FedAVG and the proposed SD-FedAVG.

• Energy and latency comparison: Comparing energy estimates and latency between cen-
tralised data sharing, semantic sharing, and the proposed scheme.

4.6 Results and Discussion

In this section, we present a detailed analysis of the simulation results to evaluate the effective-
ness of the proposed SFBP framework. The results are compared with both centralised learning
and FL without semantic extraction to highlight the performance gains and trade-offs in terms
of predictive accuracy, HO failure rate, energy efficiency, and inference latency. The simula-
tions are conducted using the ViWi dataset, with three base stations (EN-1, EN-2, EN-3) acting
as federated clients, where training is performed for 40 communication rounds. Additionally,
we assess the SFBP framework under varying conditions, including ideal learning, data het-
erogeneity, and noisy updates. Moreover, we explore how the proposed SD-FedAVG mitigates
the impact of noisy updates and adversarial attacks. Finally, we conduct an energy efficiency
comparison and provide insights into latency reduction, highlighting the practical advantages of
on-device inference in edge nodes. The results are presented in three main subsections: pre-
dictive model performance, HO algorithm performance, and communication cost and latency
comparison.

4.6.1 Predictive Model Performance

This section compares the performance of the proposed model under various scenarios. This
includes ideal learning conditions where centralised and distributed learning are compared. To
further evaluate the robustness of the proposed framework, model evaluation is done using vary-
ing data distribution and noisy updates during the model updates.

Centralised vs FL Comparison

We adopted a simplistic approach for our initial analysis, thus establishing an ideal learning
environment using the entire sample size in the ViWi dataset. We subsequently compared the
outcomes with those of centralised learning and FL without semantics, and the results are shown
in Table 4.2. These results also compare YOLOv5 and MobileNetV3, and the simulations ran
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Table 4.2: Comparison results of centralised learning, FL without semantics and proposed SFBP
with MobileNetV3.

Technique Accuracy Precision Recall F1-Score
Centralised 99 98 99 99
FL-baseline 98.5 98 98.9 98.2

SFBP-YOLOv5 97.5 98 97 98
SFBP-MobileNetV3 97.1 97.6 97.8 97.8

several times to get reliable average results. As anticipated, the centralised model training per-
formed better. However, it is worth noting that our SFBP framework with MoblileNetV3 was
not far behind, even though it does not involve data sharing.
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Figure 4.4: Confusion matrix for (a) centralised, (b) FL-baseline, (c) SFBP-YOLOv5 and (d)
proposed SFBP-MobileNetV3, where diagonal values represent correct predictions and off-
diagonal values represent FP and FN, respectively.

The confusion matrices of centralised learning, FL without semantics, SFBP-YOLOv5 and
our proposed SFBP-MobileNetV3 are presented in Fig. 4.4. The diagonal values of the confu-
sion matrix represent the TP and TN, whereas the off-diagonal values represent the FP and FN,
respectively. These matrices give us a clear picture of how each method performed, where the
centralised learning achieved an impressive accuracy of about 99%. FL without semantics was
not far behind, with a global model accuracy of 98.5%, followed by the SFBP-YOLOv5 with
97.56%, and the proposed SFBP-MobileNetV3 with an accuracy of 97.12%. We also reported
the precision, recall, and F1 scores for all three scenarios to further validate the effectiveness
of our proposed scheme. Although centralised learning performs the best, our proposed SFBP
framework achieves comparable results while benefiting from reduced computation cost and
latency, which will be discussed in the following section.

Comparison for Data Variations

We adjusted the data size to create an imbalanced dataset in this comparison and used SFBP-
MobileNetV3 only, as there is no significant difference between the object detection results of
YOLOv5 and MobileNetV3. Our goal is to see the impact of data variation on the performance
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Figure 4.5: Learning curve plotted for data variations using the global test for each communica-
tion round.

of the predictive model, which has a direct effect on the PHO mechanism. The proposed model
was trained using varying percentages of the dataset on each EN, and a learning curve was gen-
erated using the global test, depicted in Fig. 4.5. The results display typical learning behaviour,
with a sharp increase in the initial rounds followed by steady improvement. However, using a
smaller training set caused a significant decrease in performance. For example, with only 60%
of the training data, the maximum accuracy over 40 communication rounds was approximately
77.8%, compared to 97.5% under ideal learning conditions.

Comparison for Noisy Updates

In this study, we evaluated the impact of noise on model aggregation in FL by varying the privacy
budget (ε) across five levels: ε = 0.1, ε = 0.5, ε = 1, ε = 2, and ε = 5. For each ε , Gaussian
noise was added to the local gradients before aggregation, with noise variance (σ2) determined
by ε according to the formula σ2 = 2ln(1.25/δ )

ε2 , where δ was fixed at 10−5 [195]. A smaller ε

resulted in higher noise variance, which directly impacted the ability of the model to converge.
Additionally, we created a simple adversarial attack where the EN-3 intentionally added the
noise to poison the model updates. The learning curve for noisy updates and adversarial attacks
is shown in Fig. 4.6. The results in Fig 4.6, compares the learning accuracy of FedAVG and the
proposed SD-FedAVG across different noise levels (ε) over 40 communication rounds. Under
various noise conditions, ranging from ε = 5 (low noise) to ε = 0.1 (high noise), SD-FedAVG
consistently performs better than FedAVG, particularly at ε = 5 as shown in Fig. 4.6 (a), where
SD-FedAVG achieves an accuracy of 95.1% compared to FedAVG’s 94.5%. As noise increases
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Figure 4.6: Plot (a) shows the variable noise level controlled by ε and plot (b) represents the
learning curve for the adversarial attack on EN-3 during the training process.

(ε decreases), the performance gap widens, especially at ε = 0.1, where SD-FedAVG achieves
77.2% accuracy versus 69.6% for FedAVG. Similarly, for an adversarial attack on EN-3, the
trend remains consistent as shown in Fig. 4.6 (b), with SD-FedAVG performing better than
FedAVG, particularly at higher noise levels. For instance, at ε = 0.1, the accuracy achieved
by SD-FedAVG is approximately 86.91% compared to FedAVG, which achieves an accuracy
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of 77.76%. Finally, the results in Fig. 4.7 show the confusion matrix for worst-case scenarios
for both noisy updates and adversarial attacks. The results are obtained using the global model
trained under variable noise conditions controlled by ε , where in our case, the value of ε =

0.1 for both cases. The results show that the proposed SD-FedAVG aggregation mechanism
performed better than the FedAVG algorithm with low FP and FN. These results directly impact
the PHO mechanism, which will be discussed in the next subsection.
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Figure 4.7: Confusion matrix for (a) FedAVG and (b) SD-FedAVG with ε = 0.1, (c) FedAVG,
and (d) SD-FedAVG with ε = 0.1 on EN-3.

4.6.2 PHO Performance Evaluation

The effectiveness of the PHO mechanism is intricately linked to the accuracy of the blockage
prediction model. This section evaluates the PHO performance under various conditions, includ-
ing ideal learning scenarios, diverse data distribution, noisy updates, and adversarial attacks.
These conditions thoroughly analyse the robustness of the prediction model and the resulting
HO failure rates.

Ideal Learning Conditions

In the first scenario, we assume ideal learning conditions, where the model is trained with the
complete dataset, and no noise is introduced. Under these conditions, we compare the handover
failure rates (H) for centralised FL without semantics and the proposed SFBP framework. The
results are shown in Table 4.3, which show that the FN is comparatively higher, suggesting that
the algorithm is more likely to miss the optimal timing for an HO, potentially leading to service
disruptions or reactive HO that could degrade the user experience. However, the overall impact
is very low. For instance, the HO failure rate is increased by 1.9% and 1.5% when the proposed
framework is compared with centralised learning. These results were expected; however, there
is a huge gain in energy efficiency, which we will discuss in the next subsection and provide a
trade-off comparison.
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Model FN FP % HO failure (H)
Centralised 8 2 1
FL-baseline 9 6 1.5

SFBP-YOLOv5 14 11 2.5
SFBP-MobileNetV3 18 11 2.91

Table 4.3: Comparison of HO failure rates (H) for, centralised, FL-baseline (without seman-
tics), SFBP-YOLOv5 and SFBP-MobileNetV3 based on the performance of blockage predic-
tion model.

Scenario FP FN % HO failure rate (H)
Training data 40% 155 210 36.5
FedAVG (noisy update) 134 170 30.4
SD-FedAVG (noisy update) 93 135 22.8
FedAVG (EN-3) 90 132 22.2
SD-FedAVG (EN-3) 70 76 14.6

Table 4.4: HO failure rates for worst-case scenario, i.e., data distribution of 40%, ε = 0.1 for
noisy update and attack on EN-3.

Data Distribution Variations

The first worst-case scenario involves training the model with only 40% of the dataset at each
EN, leading to imbalanced data across the network. The results, shown in Fig 4.5, indicate a
significant drop in model accuracy, which results in FN and FP values of 155 and 210, respec-
tively. This results in an HO failure rate of 36.5%, in which approximately 21% of users would
experience service disruptions due to missed HO triggers, highlighting the challenges posed by
data heterogeneity FL.

Noisy Updates and Adversarial Attack

Noisy updates and adversarial attacks can severely degrade the performance predictive model.
Hence, we chose the worst-case scenario with a small value of ε = 0.1. Additionally, we eval-
uated the impact of an adversarial attack on EN-3, where malicious updates were introduced.
Using the results reported in Fig. 4.7, we created a Table. 4.4, summarising the HO failure
rates. The results show that SD-FedAVG significantly improves the performance of the proac-
tive HO mechanism by reducing the HO failure rate by up to 7.6% under both noisy updates.
This improvement highlights the effectiveness of the cosine similarity-based aggregation mech-
anism in filtering out noisy or malicious updates, ensuring robust blockage prediction and PHO
decision-making in mmWave communication systems.
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4.6.3 Analysis of Communication Cost and Latency

The comparative analysis of energy efficiency in terms of energy estimates, as expressed in equ.
(2.18), is presented in Table 4.5. For centralised learning, the energy estimation equation is
defined as Eest = [E(α × tc) + (β ×Ptrn)], where E is the total number of epochs during the
training process. Throughout the analysis, parameters α and β are consistently kept at values
of 0.003 and 0.0001, respectively. For the centralised scenario without semantic compression,
the number of epochs E is set to 40, the computation time per epoch (tc) is 300 seconds, and the
data size (Ptrn) is 386100 KB. This results in an estimated energy cost (Eest) of approximately
74.61 W.

Introducing semantic compression significantly reduces the computational and communica-
tion overhead. With semantic compression, the centralised model requires 72 epochs, each with
a computation time of 102 seconds and a reduced data transmission size of 38100 KB. Conse-
quently, the total energy estimate decreases considerably to approximately 25.842 W. In the FL
setups, the energy estimation equation is adapted as Eest = [N(α × tc)+ (N + 1)(β ×Ptrn)]R,
where N denotes the number of edge nodes (ENs), and R represents the number of communica-
tion rounds. The additional term (N +1) in the communication cost accounts for model sharing
from the central server to the edge nodes. For the FL-baseline model, computational and com-
munication parameters are notably lower, yielding an estimated energy cost of approximately
19.92 W.

The proposed SFBP method further optimises the model by leveraging semantic extraction
techniques such as YOLOv5 and MobileNetV3, significantly decreasing both model size and
computational complexity. With a model size reduction from 300 KB (FL-baseline) to just 97
KB (SFBP), the SFBP approach achieves an energy estimate of approximately 8.392 W. As
shown in Table 4.5, the proposed SFBP method achieves substantial improvements in energy
efficiency, demonstrating approximately 88.75% and 57.87% energy reduction compared to the
centralised method without semantic compression and the FL-baseline, respectively. The en-
ergy efficiency of the proposed SFBP method improves by approximately 67.53% compared to
centralised learning with semantic compression. This additional reduction highlights the effi-
cacy of integrating semantic extraction with FL, significantly minimising both computational
and communication overhead. These results underscore the suitability of SFBP for deployment
in resource-constrained and latency-sensitive environments.

Finally, the proposed SFBP framework uses on-device inference, which results in a signifi-
cant reduction in latency. This study assumes a 10 Gbps mmWave backhaul link with a camera
frame rate of 26 frames per second (fps) [196]. The overall latency is calculated using equation
(4.17) where tcap, ttx is an image capture and the transmission time, whereas tin f is the model
inference time. In this study, tcap is 38.5 ms, ttran is 4.4 as given in [184, 196]. The tin f for
FL-baseline is 28 ms, SFBP-YOLOv5 is 16 ms and proposed SFBP-MobileNetV3 is 12.5 ms;
therefore, the overall delay in equation (4.17) is 70.9 ms for centralised learning. For on-device
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Table 4.5: Comparison of efficiency in energy estimates for centralised learning (with and with-
out semantic compression), FL-baseline (with semantics), and proposed SFBP.

Model Computation cost Communication cost Eest

Centralised
E(α× tc)
40(0.003 × 300)
36

β ×Ptran
0.0001 × 386100
38.61

74.61

Centralised (Semantic)
E(α× tc)
72(0.003 × 102)
22.032

β ×Ptran
0.0001 × 38100
3.81

25.842

FL-baseline
N(α× tc)
3(0.003 × 42)
0.378

(N +1)(β ×Ptran)
4(0.0001 × 300)
0.12

19.92

SFBP
N(α× tc)
3(0.003 × 19)
0.171

(N +1)(β ×Ptran)
4(0.0001 × 97)
0.0388

8.329

inference, the ttran is zero, and the overall inference time for FL-baseline, SFBP-YOLOv5, and
the proposed scheme is 66.4, 54.5 and 51 ms, respectively.

4.6.4 Discussion on Model Performance, Privacy, and Energy Trade-offs
in SFBP

The performance evaluation of SFBP highlights its effectiveness in blockage prediction and
PHO under diverse conditions, including data heterogeneity, noisy updates, and adversarial at-
tacks. The impact of EN participation, privacy constraints, and energy efficiency trade-offs are
analysed, demonstrating the practical advantages of semantic extraction in FL settings.

Impact of EN Participation and Data Heterogeneity

The effect of varying the number of ENs and training data sizes on model performance was
assessed. Table 4.4 demonstrates that reducing training data to 40% per EN leads to a significant
drop in blockage prediction accuracy, with an HO failure rate of 36.5% compared to 2.91% under
ideal conditions. This highlights the need for balanced data distribution to maintain predictive
accuracy in FL environments. However, SFBP with MobileNetV3 mitigates this degradation by
preserving semantic features, allowing the model to retain performance even under limited data
availability.

Privacy Considerations and Robustness to Noisy Updates

The impact of privacy constraints was evaluated by introducing DP noise at varying levels of
ε . As seen in Fig. 4.6, SFBP with SD-FedAVG consistently outperforms FedAVG, particu-
larly under strict privacy budgets (ε = 0.1), where SFBP achieves 77.2% accuracy compared to
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FedAVG’s 69.6%. Furthermore, the proposed SD-FedAVG mechanism effectively mitigates ad-
versarial attacks, with a HO failure rate reduction of 7.6% compared to FedAVG in the presence
of malicious updates (Table 4.4). These results validate SFBP’s resilience to privacy noise and
adversarial perturbations while preserving model accuracy.

Trade-offs Between Centralised, FL, and Personalised Models

The comparison in Table 4.2 highlights that centralised learning achieves the highest accuracy
(99%) but at the cost of high communication overhead and privacy risks. The FL baseline (with-
out semantics) achieves 98.5% accuracy, while SFBP-MobileNetV3 achieves 97.1%, demon-
strating a minimal performance trade-off in exchange for significant energy efficiency gains.
This trade-off is further evident in handover failure rate analysis in Table 4.3, where SFBP per-
forms slightly worse than centralised learning (2.91% vs. 1%) but achieves major reductions in
computation and communication costs.

Energy Consumption and Latency Analysis

A detailed energy efficiency evaluation in Table 4.5 demonstrates that SFBP achieves an 88.75%
reduction in energy consumption compared to centralised learning and a 57.87% reduction com-
pared to the FL baseline. This improvement is due to semantic compression, which reduces
model size from 300 KB (FL-baseline) to 97 KB (SFBP), leading to lower transmission costs
and computational complexity. Additionally, the latency analysis shows that on-device infer-
ence with SFBP-MobileNetV3 achieves a total delay of 51 ms, a 28% reduction compared to
centralised inference (70.9 ms), making it suitable for real-time mmWave blockage prediction
applications.

4.7 Summary

This chapter presented the SFBP framework, integrating lightweight computer vision CV tech-
niques with FL for proactive blockage prediction in mmWave/THz networks, addressing chal-
lenges C1 and C3. The key innovation of this work lies in the use of semantic information
extracted by lightweight CV models, specifically MobileNetV3, to decentralise the training
process. Through extensive simulations on the ViWi dataset, the framework demonstrated
its robustness and practicality in real-world scenarios. A comparative analysis between Mo-
bileNetV3 and YOLOv5 for semantic information extraction revealed that while YOLOv5 pro-
vides marginally better object detection accuracy (97.5% compared to MobileNetV3’s 97.1%),
MobileNetV3 significantly reduces the computational cost and inference latency, making it more
efficient for edge processing. Specifically, the inference latency using MobileNetV3 was de-
creased to 51 ms, compared to 66.4 ms for YOLOv5 and 70.9 ms for centralised learning, high-



CHAPTER 4. SEMANTIC-AWARE FEDERATED BLOCKAGE PREDICTION (SFBP) 103

lighting the advantages of lightweight models for edge processing in high-mobility networks.
The SFBP framework also significantly reduced communication costs, cutting data transmission
by 88.75% compared to centralised learning and by 57.87% compared to FL without semantic
extraction (FL-baseline). Furthermore, the proposed SFBP framework has shown better re-
sults compared to centralised semantic compression with the improvement of 67% in energy
efficiency. Another key contribution is the detailed analysis of HO failure rates, focusing on
the impact of FP and FN in the predictive model. The framework’s performance under noisy
updates and adversarial attacks revealed increased HO failure rates due to reduced prediction
accuracy. To address this, the proposed SD-FedAVG aggregation mechanism effectively miti-
gates the impact of noisy updates and adversarial attacks, reducing the HO failure rate by up to
7.6% under worst-case conditions.



Chapter 5

Hybrid Neuromorphic Federated Learning

This chapter introduces the HNFL framework to address the challenges C1 and C3, identified in
Section 1.3. HNFL is designed to tackle the challenges of multi-modal data fusion and energy
efficiency in edge computing environments, particularly for applications involving resource-
constrained IoT devices and sensors. By integrating SNNs with LSTM networks, the proposed
framework implements a hybrid model called Spiking-LSTM (S-LSTM). This hybrid approach
leverages the event-driven processing capabilities of SNNs and the sequence modelling strengths
of LSTMs, enabling efficient on-device processing, reducing communication overhead, and en-
hancing scalability and security in FL systems. The proposed HNFL framework is applied to
HAR applications using wearable sensing data, a domain that demands real-time processing,
personalisation, and privacy preservation. Through this application, we demonstrate that HNFL
not only outperforms traditional DL methods in accuracy but also achieves significant improve-
ments in energy efficiency, making it a promising solution for next-generation IoT and edge
computing applications in healthcare and lifestyle management.

5.1 Introduction

HAR has gained prominence across diverse fields, such as healthcare, smart living environ-
ments, and sports, enabled by wearable sensors that provide a continuous stream of contextual
data. The rapid adoption of wearable technologies, such as smartwatches and fitness track-
ers, has transformed HAR by allowing real-time monitoring and proactive health and lifestyle
management. In particular, HAR is valuable for remote patient monitoring, elderly care, and
performance tracking in athletes, where accurate and timely recognition of activities can offer
critical insights and support [139].

Traditional HAR systems primarily rely on centralised DL models as shown in Fig. 5.1,
which aggregate data on a central server for analysis. Although these models deliver high ac-
curacy, they encounter several limitations, such as high communication costs, potential privacy
risks, and scalability issues due to increased data volumes. In addition, the computational bur-

104
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Figure 5.1: Conceptual framework of centralised indoor HAR using wearable sensors

den of DL-based HAR on centralised servers leads to latency challenges, particularly for real-
time applications [197, 198]. Moreover, the dependency on data transfer to a centralised server
raises privacy concerns, especially in health and lifestyle applications where data sensitivity
is paramount [148]. FL has emerged as a decentralised solution to address these challenges,
enabling collaborative model training across multiple edge devices without raw data exchange.
This paradigm shift enhances user privacy and lowers communication costs by distributing com-
putation across devices [21]. However, implementing FL in HAR systems introduces new issues,
particularly for edge devices with limited processing power. The high computational demands
of DL models often exceed the capabilities of wearable devices, prompting the need for more
energy-efficient frameworks.

Neuromorphic computing, particularly with SNNs, offers a promising solution by emulating
the event-driven nature of biological neural systems to reduce energy consumption. Unlike con-
ventional DL models, SNNs operate asynchronously and event-driven, making them well-suited
for real-time, low-power applications on resource-constrained edge devices [199]. However,
while SNNs provide efficient data processing, they lack the sequence modelling strengths re-
quired for time-series data, which is integral to HAR. To address this limitation, this study pro-
poses a hybrid S-LSTM model that combines the energy efficiency of SNNs with the sequence
processing capability of LSTMs, creating a hybrid neuromorphic approach for federated HAR.

The S-LSTM model operates within an FL framework to process multi-modal sensor data,
improving activity recognition accuracy while managing energy efficiency and privacy. The key
contributions of this chapter include:

• The study introduced a HNFL framework specifically designed for time series HAR data.
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The proposed S-LSTM combines the strengths of SNNs and LSTM and multi-modal data
fusion to improve activity recognition accuracy while ensuring privacy and reducing com-
putational demands.

• This study rigorously evaluates the S-LSTM model using two publicly available datasets
covering various environmental settings and activity scenarios. The study compares the
performance of the S-LSTM model with that of traditional LSTM, spike CNN (S-CNN),
and simple CNN models. The results highlight the strength and robustness of the proposed
HNFL framework and demonstrate how multi-modal data fusion can significantly improve
HAR accuracy within a FL paradigm.

• This research analyses how randomly selecting clients affects the performance of the HAR
model and provides valuable insights into finding the best balance between computational
and communication efficiency in relation to the accuracy of the HAR model. The findings
offer a strategic framework for selecting clients, which can help develop more effective
and efficient FL implementations in HAR systems.

5.2 Preliminaries and System Model

This section provides a detailed discussion of the fundamental principles of FL and SNNs, along
with the hybrid S-LSTM model used for HAR in distributed settings.

5.2.1 FL Framework for HAR

The system model for outdoor HAR is shown in Figure 5.2. Each participant or node holds only
a subset of the dataset, ensuring privacy. The learning process is collaborative, with a central
FS coordinating the training process and aggregating the model parameters from all participants
(N) to refine the global model. The training continues until the global model reaches a specified
level of accuracy or a predetermined number of iterations.

Without losing the generality, for each participant i = {1, . . . ,N}, a localised dataset is de-
noted as |Di| ≡ D , with Di representing the subset of the dataset at the i-th device, and the
cumulative dataset expressed as D = ∑

N
i=1 |Di|. In this schema, given the model parameter ω

and a local loss function ℓ(ωi,x) applicable to any data sample x, the local empirical loss at the
i-th participant is given in eq. (2.2). The core job of FL is to optimise a global loss function
ℓ(ω) on the FS, which is mathematically defined in eq. (2.1). FL is an iterative process that
necessitates each participant to compute the local gradient at each time iteration t = {1, . . . ,T},
following the equation:

ωit = ω̃i(t−1)−η∇ℓi(ω̃i(t−1),xi(t)), (5.1)



CHAPTER 5. HYBRID NEUROMORPHIC FEDERATED LEARNING 107

Participant  1

FS 1. Send Generic model to all clients 

2. Local model training

3. Send local models to server

4. Model aggregation

5. Global model sharing

...

Participant 2 Participant 3 Participant  N

Figure 5.2: Conceptual FL framework for HAR using wearable sensing in the outdoors.

where ωi(t) denoting the model parameters for the i-th participant, η as the learning rate, ω̃i(t−
1) as the model parameters from the previous iteration, and ∇ℓi(ω̃i(t− 1),xi as the gradient of
the loss function ℓ with respect to the model parameters for the data point xi(t). Upon receiving
all local updates, the FS conducts model aggregation, expressed as given in eq. (2.19).

5.2.2 Spiking Neural Network

SNNs are inspired by biological neural networks that use discrete events ‘spike’ for information
processing, as shown in Figure 5.3. Unlike ANNs, which process information in a continuous
manner, SNNs utilise discrete events to encode and transmit information, embodying a more
energy-efficient [200]. The operation of SNNs relies on the idea of event-driven computation.
This means that the neurons in the network stay inactive until incoming spikes trigger them.
This mechanism makes the computational model highly efficient because only a few neurons
are active at any given time, achieving sparsity [201]. Additionally, the binary nature of spike
signals (0s and 1s) facilitates processing with low-precision arithmetic, further reducing the
computational load. These characteristics collectively endow SNNs with the capacity for high-
efficiency processing, particularly on resource-constrained edge devices, a feature that sets them
apart from conventional DL models [200, 201].
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Figure 5.3: Spiking neurons propagation process.

In every spiking neuron, the membrane potential accumulates spike signals received from
preceding neurons. This potential varies over time t, potentially increasing, decreasing, or re-
maining unchanged based on the incoming spikes. When the membrane potential surpasses a
predefined threshold vth, it triggers the neuron to emit a spike signal, which is then propagated
to subsequent layers in the network. Following spike generation, the neuron undergoes a re-
fractory period during which its membrane potential is temporarily invariant to further spikes,
ensuring a period of inactivity post-firing. This dynamic spike generation and transmission pro-
cess is modelled using the Leaky Integrate-and-Fire (LIF) model. The LIF model is celebrated
for its simplicity and effectiveness in capturing the essential characteristics of neuronal spiking
behaviour, making it a standard framework for simulating spiking neural networks [202].

LIF neuron model provides a fundamental abstraction of biological neuron dynamics, closely
resembling an electrical circuit consisting of a capacitor Q, a resistor Z, a power source V , and
an input current J. In this analogy, the neuron’s membrane potential V (l)

i (t) is equivalent to the
voltage across the capacitor, where the membrane capacitance Q determines the charge-storing
capacity, and the resistance Z represents the leakage of the accumulated charge. The neuron
integrates incoming synaptic inputs over time, similar to how a capacitor accumulates charge
when an external current Ji(t) is applied. The governing equation of the LIF neuron at layer l
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and neuron index i can be mathematically expressed as [203]:

τq
dV (l)

i (t)
dt

=−(V (l)
i (t)−Vres)+ZJi(t), (5.2)

where τq = Q · Z represents the membrane time constant, controlling the rate of decay of the
membrane potential. The term V (l)

i (t) denotes the instantaneous membrane potential, Vres is the
resting potential to which the neuron resets after firing, and Ji(t) represents the input current at
time t, corresponding to the sum of pre-synaptic inputs. In the absence of external input, the
neuron’s potential decays over time due to passive leakage, akin to a capacitor slowly discharg-
ing through a resistor. To capture this behavior in a discrete-time simulation, the membrane
potential update rule is reformulated as [203, 204]:

V (l)
i (t) = βV (l)

i (t−1)+∑
j

ωi jo
(l−1)
j (t), (5.3)

where β (0 < β < 1) is the leakage factor governing how much past information is retained,
j represents the index of neurons in the previous layer (l− 1), wi j is the synaptic weight from
neuron j to neuron i, and o(l−1)

j (t) is the binary output of neuron j at time t. The neuron
accumulates the weighted sum of its inputs until the membrane potential surpasses a predefined
threshold vth, triggering a spike event [203]:

o(l)i (t) =

1, if V (l)
i (t)≥ vth

0, otherwise
(5.4)

This behavior mirrors the breakdown voltage of a capacitor in an electrical circuit, where the
accumulated voltage exceeds a critical level, leading to a rapid discharge. The neuron’s mem-
brane voltage is subsequently reset to Vres, preparing it for the next cycle of integration. In
computational neuroscience and neuromorphic computing, this event-driven thresholding mech-
anism plays a crucial role in enabling energy-efficient SNNs by reducing unnecessary compu-
tations. The LIF model thus serves as a biologically inspired and computationally efficient
framework for implementing artificial spiking neurons, bridging the gap between neuroscience
and hardware-efficient deep learning architectures.

The inherent challenge in training SNNs lies in the non-differentiability of the spike function,
a hurdle for traditional gradient descent methods, like backpropagation, which rely on contin-
uous and differentiable activation functions [205]. The main problem with the step function is
that its gradient is either zero or undefined, which makes it impossible to update weights dur-
ing training. To solve this issue, surrogate gradient methods are used. These methods employ
a smooth, differentiable approximation of the step function during the backward pass, which
makes it possible to compute the gradient. This allows the network to be trained using tra-
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ditional techniques while still using the unique spiking behaviour of SNNs during inference.
The surrogate piece-wise linear function, aligning with the previously established notation, is
mathematically represented as [200, 203]:

∂o(l)i (t)

∂V (l)
i (t)

= γ max

(
0,1−

|V (l)
i (t)− vth|

vth

)
, (5.5)

where γ is a scaling factor controlling the SNNs’ update magnitude and vth is the threshold
voltage for spiking. The backpropagation method in SNNs mirrors that of ANNs, except for
using a surrogate function to approximate the non-differentiable threshold function. Hence,
the weight update rule on the local participant for layer l at a given time is mathematically
represented as [204]

ω
(l)
i j (t) = ω

(l)
i j (t−1)−η

∂ℓ(t)

∂ω
(l)
i j (t−1)

, (5.6)

where ω
(l)
i j (t−1) represent the model parameters at t−1 for neuron j in layer l to neuron i. Nu-

merous strategies have been developed to effectively utilise the capabilities of SNNs and over-
come their inherent challenges, especially the non-differentiability of spike operations. Among
these strategies, Spike-Timing-Dependent Plasticity (STDP) is particularly useful for unsuper-
vised learning, as it leverages the temporal dynamics of spikes and is well-suited for handling
unlabelled data [206].

On the other hand, supervised learning scenarios benefit from the Backpropagation Through
Time (BPTT) technique, which modifies traditional backpropagation to allow for error correc-
tion over sequential time steps [200], thus facilitating the analysis of spatiotemporal data. Ad-
ditionally, surrogate gradient learning introduces a means to approximate the non-differentiable
spike function with a continuous, differentiable surrogate, enabling the use of gradient-based
optimisation techniques [200]. Parallelly, reward-modulated STDP integrates principles from
reinforcement learning, applying rewards to modulate STDP in a feedback-driven learning pro-
cess [207]. Our investigation focuses on the supervised training of spiking neural networks with
diverse datasets. This has led to the development of a hybrid model that combines BPTT with
surrogate gradient methods, as given in [208]. This approach addresses two pivotal challenges:
It overcomes the spike function’s non-differentiability, a significant obstacle for conventional
gradient-based optimisation, and it equips the model to learn temporal patterns in HAR data
proficiently. By extending BPTT to facilitate backward error propagation through time, the
model optimises a loss function ℓ, thereby improving its predictive accuracy. The formulation
for the gradient of the loss ℓ with respect to synaptic weights ωi j and the neuron’s membrane
potential is given as:

∂ℓ(t)
∂ωi j

= ∑
t

∂ℓ(t)

∂V (l)
i (t)

·o(l−1)
j (t), (5.7)
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Figure 5.4: Proposed hybrid S-LSTM model where input LSTM layer activated by LIF.

∂ℓ(t)

∂V (l)
i (t)

=
∂ℓ(t)

∂o(l)i (t)
·

∂o(l)i (t)

∂V (l)
i (t)

+β
∂ℓ(t)

∂V (l)
i (t +1)

, (5.8)

where o(l−1)
j (t) signifies the output from neuron j in the preceding layer l−1 at time t, influenc-

ing the input to neuron i in layer l. This formulation underscores our system’s ability to navigate
the complexities inherent in training SNNs, enabling detailed learning of temporal dependencies
critical for HAR applications.

5.2.3 Proposed S-LSTM Model

Our proposed S-LSTM model seamlessly combines LSTM units with the spiking behaviour of
LIF neurons, as shown in Figure 5.4. Initially, the framework employs an LSTM layer composed
of 100 neurons dedicated to analysing the input data. This particular layer is designed to return
sequences, capturing the essential temporal correlations present within the data. Subsequently,
the spiking layer with LIF replaces the conventional activation functions. The spiking layer has
a trainable threshold that determines neuron firing and uses a surrogate gradient to approximate
the gradient during backpropagation due to the non-differentiable nature of spiking behaviour.
Following the spiking neural layer, an additional LSTM layer, also comprising 100 neurons,
further refines the data sequences. This is followed by a dense layer, integrating 300 neurons,
which also adopts LIF neurons. Additionally, a dropout layer is added to mitigate overfitting,
followed by a fully connected output layer. The output layer uses a SoftMax activation function,
producing a probability distribution over the possible activity classes. The training process of
federated S-LSTM for HAR is given in Algorithm 5.
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Algorithm 5: Federated S-LSTM training with surrogate gradient and BPTT.
1: Input: Initial model parameters ω0, clients i = {1,2, . . .,N}
2: Output: Trained model parameters ωt
3: Procedure: Initialisation
4: for each client i in parallel do
5: Di← local dataset
6: ωi← ω0 {Initialise local model}
7: end for
8: Procedure: FL training
9: for round t = {1,2, . . .,T} do

10: for each client i = {1,2, . . .,N} in parallel do
11: ∆ωi← LOCALTRAINING(ωi,Di)
12: end for
13: ωt+1← SERVERUPDATE({∆ωi}N

i=1) {Aggregate updates}
14: broadcast ωt+1 to clients
15: end for
16: Procedure: LocalTraining(ω,D)
17: Initialise local parameters ωi, learning rate η

18: for each time step t = {1, . . .,T} do
19: Compute local gradient using surrogate gradient and BPTT {Based on Equ (5.5)–(5.9)}
20: Update local model parameters ωi(t)
21: end for
22: return model update ω

23: Procedure: ServerUpdate({∆ωi}N
i=1)

24: ω ← aggregate({∆ωi})
25: return updated model parameters ωt+1

5.3 Simulation Setup

This section provides a detailed explanation of the methodologies we employed, offering an in-
depth exploration of the datasets used, the criteria used to evaluate performance, and the metrics
used to determine the effectiveness of our proposed model. Our discussion thoroughly analyses
the datasets, highlighting the unique challenges and considerations of HAR with wearable sensor
data. Furthermore, it discusses the performance evaluation strategy and metrics used in the study.

5.3.1 Dataset Description

Despite being a well-researched topic, evaluating HAR using smartphone data is a recent and
active area of research. However, using wearable sensing data for HAR offers both opportunities
and challenges. The complexity of such datasets arises from various factors, including sensor
configurations, sampling rates, accessibility, and diversity of the collected data. Furthermore,
distinct activity patterns among different classes lead to significant class imbalances, making
HAR an ideal domain for evaluating the effectiveness of neuromorphic federated learning ap-
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proaches under diverse conditions. In our pursuit of datasets that offer reproducibility, diversity,
and realism, we found two publicly accessible datasets. The first, known as the UCI dataset
[209], is a staple in HAR research due to its widespread use in benchmarking. However, the
UCI dataset is collected in a highly controlled laboratory setting, and its relatively small sam-
ple size presents certain limitations. To broaden the scope of our analysis, we incorporated the
Real-World dataset [210], which was collected in unconstrained outdoor environments. Further
details on each dataset, including its unique characteristics and challenges, are discussed below.

UCI dataset

The UCI dataset was collected using Samsung Galaxy S II smartphones worn by a diverse group
of 30 participants of various ages and genders. These individuals engaged in six everyday ac-
tivities, including walking, walking upstairs, walking downstairs, sitting, standing, and lying
down. The activities were performed under varied conditions, with the smartphones positioned
on the left wrist and at a location of the participant’s choosing to simulate real-world usage
scenarios. The embedded sensors in the smartphones, specifically the accelerometers and gyro-
scopes, were instrumental in capturing data on triaxial linear acceleration and angular velocity,
achieving a sampling rate of 50 Hz. This dataset was extensively processed to remove noise and
enhance signal quality using advanced filtering techniques [209]. A total of 17 distinct features
were meticulously extracted from each signal, covering a broad spectrum of time and frequency
domain characteristics, such as signal magnitude, jerk, and the application of the fast Fourier
transform (FFT).

The collected signals were segmented into discrete windows lasting 2.56 seconds each to
facilitate a detailed analysis, with a 50% overlap between consecutive windows [209]. This
segmentation process yielded 561 unique features for each window, drawn from various sta-
tistical and frequency-domain analyses. The comprehensive dataset encompasses over 10,299
instances, thoughtfully divided into training (70%) and testing (30%) subsets to support robust
model evaluation. However, the dataset was intentionally partitioned into five distinct subsets
to simulate localised datasets for individual participants, mirroring real-world federated learn-
ing scenarios where data distribution is inherently uneven. Each participant’s data was further
divided, allocating 80% for training and 20% for testing purposes, with the testing portions ag-
gregated to create a global test set. This organised approach emphasises the adaptability of the
dataset in federated learning research and demonstrates the meticulous technique used for data
preprocessing and merging sensor data. The preprocessing methods, such as noise reduction
and segregating sensor signals into significant components, highlight the dataset’s usefulness in
capturing and analysing intricate human activities through multi-sensor integration.
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Real-World Dataset

While the UCI dataset is widely used in HAR research, it has limitations because it was collected
in a controlled laboratory setting. Additionally, due to the small sample size, the true potential of
FL could not be explored. Therefore, we opted for a more realistic dataset collected by Sztyler
and Stuckenschmidt [210]. This dataset comprises data from 15 individuals (eight males and
seven females) embodying a broad spectrum of daily activities such as climbing stairs, jumping,
lying, standing, sitting, running, and walking. Distinctively, this dataset captures accelerome-
ter, GPS, gyroscope, light, magnetic field, and sound levels. We used the accelerometer and
gyroscope data in which sensors were placed on seven strategic body locations: the chest, fore-
arm, head, shin, thigh, upper arm, and waist, thereby providing a comprehensive view of bodily
movements during various activities.

The data collection utilised standard smartphones and a smartwatch affixed to these body
positions, recording at a frequency of 50 Hz. The devices used were synchronised using net-
work time services to guarantee accuracy in time-stamping the collected data [210]. To mirror
real-life usage scenarios as closely as possible, the devices were attached to the body using ev-
eryday items such as sports armbands and pockets. This method ensured comfort and realism,
simulating how wearable devices are typically worn during daily activities. The data collection
spanned various real-world locations, including urban and natural settings, to capture a diverse
range of movement patterns and environmental influences on sensor data.

The innovative aspect of our study is multi-sensor fusion, incorporating HAR accelerometer
and gyroscope data in federated settings. The preprocessing and feature extraction stages are
pivotal in transforming the raw sensor data into a format suitable for analysis. The data was
segmented into windows, each spanning one second and overlapping by half to ensure continuity
and capture transitions between activities effectively [210]. Various time and frequency-based
features were extracted from these windows, including applying a discrete Fourier transform to
translate time-based signals into the frequency domain. Our data processing technique included
the unique feature of computing gravity-based characteristics to determine the position of the
wearable device on the body. A low-pass filter was applied to segregate the acceleration data
into gravitational and body movement components, allowing us to compute the orientation of the
device. This orientation data helped us understand the context of activity recognition. To avoid
over-fitting and improve the generalisability of the model, we categorised these orientations into
predefined groups [210].

The Real-World dataset was suitable for the HAR study because it was captured in a natural
environment and had a realistic class imbalance. For example, the jumping activity only made
up 2% of the data, while standing accounted for 14% of the total data. Moreover, the high-class
imbalance and the availability of separated user data made it a perfect fit for a comprehensive
study on FL approaches for HAR.
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5.3.2 Performance Metrics

HAR is a multi-class classification where multiple metrics are used to assess the effectiveness
of the DL model. The commonly used metric accuracy, the proportion of correctly identified
activities among all classifications, is a fundamental metric. However, the utility of accuracy is
often limited in datasets characterised by a significant imbalance among classes. This imbalance
can lead to the accuracy paradox, where models might exhibit high accuracy by predominantly
predicting the majority class, thus neglecting the nuanced detection of less frequent activities.
We employ additional metrics, precision, recall, and the F1-score to address these limitations
and provide a more comprehensive evaluation as discussed in Section. 2.2.2.

All experimental procedures were conducted in a simulated environment for a comprehen-
sive evaluation. This allowed us to evaluate its effectiveness using two strategies: global per-
formance evaluation and personalized model assessment. The global assessment evaluates the
model’s capability across the entire dataset by leveraging a global test set to infer its gener-
alization potential. On the other hand, personalised evaluations are conducted at an individual
participant level, using local data to refine the global model and tailor predictions more closely to
individual patterns. This bifurcated approach enables a comparison between the model’s univer-
sal applicability and its customized effectiveness. In addition, we have expanded our evaluation
criteria to include energy efficiency, which is a crucial factor in FL situations where computa-
tional and communication resources are limited. The energy efficiency metric is based on the
computational requirements of local training and the amount of data transmitted during each
communication round, which is discussed in Section. 2.2.3, and mathematically given in equ.
(2.18).

5.4 Results and Discussion

In this chapter, the proposed hybrid neuromorphic S-LSTM model is rigorously evaluated us-
ing two distant publicly available datasets (UCI and Real-World), focusing on applying HAR
indoors and outdoors. This study aims to assess the performance of the proposed S-LSTM in
terms of accuracy, energy efficiency, and adaptability within the context of wearable sensor data
fusion. The evaluation begins with the UCI dataset, which provides a controlled indoor envi-
ronment to benchmark the capabilities of the proposed S-LSTM model against traditional DL
architectures such as LSTM and CNN. The UCI dataset, with its structured activities and con-
trolled settings, offers an ideal scenario for scrutinising the nuanced differences between the
models. It allows us to explore the effectiveness of the S-LSTM model in capturing and learning
from the temporal sequences inherent in human activities. Following the UCI dataset, we ex-
tend our evaluation to the Real-World dataset, which presents a more challenging and varied set
of outdoor activities, thus testing the robustness and generalisability of our model in scenarios
closer to everyday human behaviours.
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Figure 5.5: Learning curve representing the accuracy for UCI-dataset obtained using global test
set.

5.4.1 UCI Results

As previously discussed, the UCI dataset covers various indoor human activities, making it a
suitable option to evaluate our model’s effectiveness in a controlled setting. This dataset is
divided among five participants acting as the edge nodes capable of model training without data
sharing. To analyse the results, we used an 80-20 split for training and testing the model on each
participant, creating separate local training and testing sets. Later, we aggregated the test set
of each participant to create a global test set, which allowed us to assess the robustness of the
proposed architecture.

It is important to note that this evaluation is done in simulations, where each model training
spans 500 communication rounds in a federated setting. Each model is trained for 3 epochs
locally and shares the model parameters with FS, where FedAVG is adopted for model aggre-
gation. In our first comparison, the results in Figure. 5.5, represent the accuracy of the learning
curve obtained using a global test set in the training process. This learning curve exhibits a
typical pattern of a rapid increase in accuracy with more steady-state behaviour as training ap-
proaches its performance limits. It is noteworthy that the hybrid S-LSTM model performed bet-
ter than both LSTM and CNN models, reaching a maximum accuracy of 97.36%. The LSTM
model came in a close second with a peak accuracy of 96.30%, while the CNN and S-CNN
models had slightly lower results, peaking at 95.14% and 93.25%, respectively.
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Confusion matrices provide a comprehensive predictive accuracy metric across activities to
analyse model performance effectively on the UCI HAR dataset. The results in Figure 5.6, pro-
vide an insight into the predictive accuracy of the CNN, S-CNN, LSTM, and S-LSTM models
for individual classes. Each figure represents a normalised confusion matrix, where the diagonal
elements indicate the percentage of correct predicted labels for each class. It is worth noting that
class 6 (lying) had a true positive rate of 100% across all models, as it is an easily distinguish-
able activity. The results in Figure 5.6 (d) show that the S-LSTM model performed well and
distinguished between classes 1, 2, and 3, with true positive rates exceeding 0.99%. Addition-
ally, the model showed impressive proficiency in distinguishing other classes like 4 (sitting) and
5 (standing), with a misclassification rate of only 0.06%. This demonstrates its enhanced ability
to identify the subtle temporal patterns that differentiate these activities. The CNN and S-CNN
models displayed slightly higher misclassification rates of 0.12% and 0.11%, respectively, for
classes 4 and 5, while the LSTM showed a rate of 0.11%. These models performed well but
were not as proficient as the S-LSTM model in distinguishing between the relevant classes.

The results presented in Table 5.1, provide a detailed comparison of the performance metrics,
including precision, recall, and F1-score. The models were evaluated based on their classifica-
tion capabilities for six common daily activities. The proposed S-LSTM model outperforms
others, with high F1-scores of 0.99% for activities like walking and walking upstairs and a per-
fect F1-score of 1.00 for other activities like walking downstairs and lying. The uniform success
in identifying the lying activity across all models can be attributed to the unique motion patterns
associated with this activity. However, the analysis has identified a challenge in distinguishing
between sitting and standing activities. The proposed S-LSTM model has a small advantage
with F1-scores of 0.93% for sitting and 0.94% for standing. Moreover, the CNN and S-CNN
models have lower efficacy, with F1-scores ranging between 0.88 and 0.90. This pattern sug-
gests that the motion characteristics of sitting and standing are similar, posing challenges for
models, especially CNN and S-CNN, in accurately distinguishing between these two activities.

Table 5.1: Comparative results of global models for CNN, S-CNN, LSTM, and S-LSTM for the
UCI dataset trained in a federated environment. Here P, R, F1 represents precision, recall and
F1-score.

Class CNN S-CNN LSTM S-LSTM

P R F1 P R F1 P R F1 P R F1

Walking 0.98 0.97 0.98 0.93 0.95 0.94 0.99 0.98 0.99 0.99 0.99 0.99
Walking up 0.98 0.98 0.98 0.93 0.96 0.95 0.99 0.99 0.99 0.99 0.99 0.99
Walking down 0.98 0.99 0.98 0.93 0.88 0.91 0.99 0.99 0.99 1.00 1.00 1.00
Sitting 0.89 0.88 0.88 0.90 0.88 0.89 0.91 0.90 0.91 0.93 0.94 0.93
Standing 0.89 0.90 0.89 0.89 0.91 0.90 0.91 0.92 0.91 0.94 0.93 0.94
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 5.6: The confusion matrix for four DL models compared in this study for UCI HAR
dataset, where the index number represents the activity. The labels corresponding to the activi-
ties are (1) walking, (2) walking upstairs, (3) walking downstairs, (4) sitting, (5) standing, and
(6) lying.

5.4.2 Real-World Dataset Results

In the Real-World dataset, simulations were conducted over 500 communication rounds with the
participation of 15 edge nodes. During each communication round, every participant was trained
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Figure 5.7: Learning curve of accuracy obtained using a global test set for Real-World dataset
spanning 500 communication rounds.

for five local epochs. The dataset was split into 80-20 for each participant to train and test, re-
spectively. The global test set was generated by aggregating the test sets of all participants. The
performance of the S-LSTM model was evaluated using this global test set. Figure 5.7 illustrates
the accuracy learning curve during training. The Real-World dataset’s learning curve displayed
a sharp increase in accuracy during the initial rounds, followed by a steadier response towards
the end of the simulation. The results demonstrated that S-LSTM and S-CNN perform better
than their traditional counterparts, LSTM and CNN, with the highest accuracy of 89.69% and
86.90%, respectively. In contrast, the LSTM and CNN models achieved accuracies of 85.85%
and 84.97%, respectively. This comparison of learning curves highlighted the superior perfor-
mance of hybrid spiking models and their potential to capture complex human activities in less
controlled outdoor environments.

To further consolidate the discussion, the confusion matrix of the four models considered in
this study is illustrated in Figure 5.8. More specifically, the results in Figure 5.8 (d) provide the
classification ability of S-LSTM for eight outdoor activities in the Real-World HAR dataset. The
results show that the S-LSTM model is proficient in classifying more prominent activities, with a
score of 0.96% for jumping, 0.86% for running, and 0.91% for walking. However, the confusion
matrix also reveals that the S-LSTM model encountered challenges in classifying activities with
subtle motion patterns, such as climbing down 0.88%, climbing up 0.87%, and standing 0.80%.
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Figure 5.8: The confusion matrix CNN, S-CNN, LSTM and S-LSTM models for Real-World
data set. The index represents the activity, where the label corresponding to the activities are:
(1) climbing down, (2) climbing up, (3) jumping, (4) lying, (5) running, (6) sitting, (7) standing,
(8) walking.

Misclassifications mainly occur between activities that share similar motion characteristics. For
instance, climbing down was occasionally misclassified as walking, climbing up was confused
with running, and sitting was sometimes classified as standing.

The results in Table 5.2 extensively analyse various models trained using the Real-World
HAR dataset in a federated learning context. The proposed S-LSTM has consistently demon-
strated superior performance among the models, surpassing the other models in precision, recall,
and F1-score. For instance, when classifying the walking activity, the S-LSTM model achieved
a precision of 0.94%, a recall of 0.93%, and an F1-score of 0.94%, which sets a benchmark that
surpasses other models in this study. The S-LSTM model performs better in accurately iden-
tifying and classifying complex temporal activity patterns. This is evident from its remarkable
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Table 5.2: Comparison of different DL techniques for Real-World dataset. Here P, R, F1 repre-
sents precision, recall, and F1-score, respectively.

Class CNN S-CNN LSTM S-LSTM

P R F1 P R F1 P R F1 P R F1

Climb down 0.90 0.91 0.90 0.92 0.91 0.91 0.90 0.91 0.90 0.94 0.93 0.94
Climb up 0.90 0.88 0.89 0.92 0.89 0.90 0.90 0.88 0.89 0.93 0.92 0.93
Jumping 0.92 0.91 0.91 0.89 0.92 0.94 0.99 0.94 0.96 0.94 0.93 0.94
Lying 0.84 0.90 0.87 0.89 0.89 0.89 0.84 0.90 0.87 0.95 0.89 0.92
Running 0.98 0.88 0.93 0.98 0.87 0.93 0.98 0.88 0.93 0.97 0.91 0.94
Sitting 0.73 0.77 0.75 0.74 0.81 0.77 0.73 0.77 0.75 0.78 0.85 0.82
Standing 0.77 0.77 0.77 0.75 0.83 0.79 0.77 0.77 0.77 0.79 0.83 0.81
Walking 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.93 0.94 0.93

F1-scores of 0.94% for climbing down and 0.93% for climbing up. These scores demonstrate the
model’s proficiency in distinguishing and categorising intricate motion sequences. It is worth
noting that all models examined encountered challenges in differentiating between the ‘sitting’
and ‘standing’ activities. The F1 scores in these categories remained relatively modest, rang-
ing from 0.73% to 0.85%. However, the S-LSTM model achieved marginally higher scores in
these challenging classifications, confirming its robustness and the effectiveness of its learning
architecture in complex scenario discrimination.

5.4.3 Energy Efficiency Comparison

To further enhance our comparative study, we implemented a strategy where only 50% of edge
nodes would participate randomly during the training process. The idea behind randomly se-
lecting clients is to reduce communication overheads and assess the trade-off between accuracy
and communication cost. For comparison, the results shown in Figure 5.9 illustrate the accuracy
of the learning curve obtained during the training process using a global test set of 500 rounds.
This approach was used to determine how reducing client participation affects model perfor-
mance and communication cost benefits. The results indicate that the proposed S-LSTM model
achieved the highest accuracy of 88.11%, while the counterpart LSTM reached a maximum of
84.43%. The CNN and S-CNN models achieved accuracies of 83.98% and 85.20%, respec-
tively. More specifically, the random client participation significantly reduced communication
costs in this case, with only a slight variation in performance.

To further analyse the energy efficiency of the proposed hybrid model, rigorous evalua-
tions were conducted by quantifying energy estimates as defined by Eq. (5.12). The energy
efficiency is calculated for a single communication round with all participants and a randomly
selected 50% of participants. For the simplicity of our analysis, the computation constant α

and communication constant β were set to 0.003 and 0.0001, respectively, as adopted from past
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Figure 5.9: Learning curve for Real-World dataset, with 50% random client participant trained
for 500 communication rounds.

literature [31, 32]. The results in Table 5.3 present the energy estimates Eest , which are depen-
dent on both computation time and model parameters Ptrn, under the specified client selection
criteria. Notably, the S-LSTM model had a minimum computation time of 208 s with all partic-
ipants, further reduced to 121 s with 50% client participation. Regarding energy consumption,
the S-LSTM model demonstrated superior efficiency, with the lowest energy estimate of 6.10
watts. This represents a 24.41% decrease compared to the LSTM model, which had an en-
ergy estimate of 8.07 watts. The results confirm that selecting 50% of participants at random
significantly improved the model’s energy efficiency. However, it’s important to consider the
accuracy-efficiency trade-off when using DL models, especially for energy-constrained appli-
cations. Finding the optimal balance between accuracy and efficiency is critical for deploying
these models.

5.4.4 Personalised Model Comparison

The previous results were obtained and discussed using the global model and test set. However,
using local data, participants can customise the model to their needs. Therefore, the global model
is fine-tuned using local data to create a personalised model. The personalised performance is
then compared to the global model. The results in Figure 5.10 compare the global and person-
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Table 5.3: Comparison of energy efficiency for different models with 100% and 50% client
selection per communication round.

Model Client Selection (%) Computation Time tcom (s) Energy Estimate Eest (W)

CNN
100
50

258
143

38.24
15.73

S-CNN
100
50

252
136

29.38
15.67

LSTM
100
50

220
137

8.07
4.32

S-LSTM
100
50

208
121

6.10
3.27

alised models on test accuracy across 15 participants. The x-axis represents the client number,
while the y-axis plots the test accuracy. For each client, two bars represent the global and per-
sonalised model accuracy. The results show that personalisation significantly improved the local
test accuracy compared to the global model for all models under consideration. Specifically, the
proposed S-LSTM personalised model achieved the highest average accuracy of 97.12% across
clients, substantially higher than its 89.69% global accuracy. The other models showed similar
trends of increased accuracy with personalisation, with averages of 95.39% (LSTM), 95.96%
(S-CNN), and 95.10% (CNN).

5.4.5 Discussion on Performance, Scalability, and Energy Trade-offs

The evaluation of the hybrid neuromorphic S-LSTM model for HAR in federated environments
highlights critical trade-offs in terms of model performance, computational efficiency, scalabil-
ity, and learning paradigms. This section provides insights into the impact of EN participation,
model personalisation, global vs. local learning trade-offs, and energy consumption.

Effect of Number of Clients on Model Performance

The number of participating ENs significantly influences model generalisability and conver-
gence in FL. As demonstrated in the Real-World dataset experiments, reducing client participa-
tion to 50% per communication round led to only a minor accuracy degradation (from 89.69% to
88.11%) Fig. 5.9. However, this reduction lowered the energy consumption by 46.3%, highlight-
ing an essential trade-off between model accuracy and energy efficiency. The UCI dataset results
also confirmed that a larger number of active clients enhances convergence stability, as observed
from the learning curves in Fig. 5.5. These findings suggest that selective client participation
strategies can significantly optimize energy efficiency while maintaining model performance,
making FL more practical for resource-constrained environments.
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Figure 5.10: Accuracy comparison graph for global and personalised models for participants.
The personalised accuracy was obtained after fine-tuning using the local dataset.

Trade-off Between Global, Local, and Personalised Learning

The comparison between global and personalised models revealed significant performance im-
provements when clients fine-tuned the global model on their local datasets. Fig. 5.10 shows that
personalised S-LSTM models achieved an average accuracy of 97.12%, significantly surpassing
the global model’s 89.69% accuracy. This highlights the importance of client-specific adaptation
in FL, where global models may not generalise well across diverse activity patterns. In contrast,
local training without FL resulted in lower accuracy due to the limited availability of training
data per client. These results demonstrate that a hybrid FL approach, where a global model is
first trained and then personalised at each client, offers the best trade-off between generalisation
and adaptation.

5.4.6 Energy Efficiency Across Learning Paradigms

Energy consumption plays a crucial role in wearable sensor-based HAR applications, where
computational resources are often limited. The proposed S-LSTM model demonstrated the low-
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est energy consumption, consuming 6.10 W with full client participation and only 3.27 W with
50% participation as given in Table. 5.3. Compared to LSTM (8.07 W), CNN (38.24 W), and
S-CNN (29.38 W), the spiking-based S-LSTM model achieved a 24.41% reduction in energy
consumption compared to LSTM, highlighting its efficiency for real-world deployment. More-
over, reducing the client selection rate from 100% to 50% further enhanced energy efficiency,
proving that selective client participation strategies can significantly optimise energy usage with-
out major performance degradation.

5.5 Summary

In this chapter, we proposed an HNFL framework that synergises the computational efficiency of
SNNs with the dynamic temporal learning capabilities of LSTM networks for HAR using multi-
model data from wearable sensors, addressing challenges C1 and C3. This integrated S-LSTM
model capitalises on LSTM layers to adeptly capture temporal dependencies within time-series
sensor data while incorporating spiking layers to facilitate event-driven processing, thereby en-
hancing energy efficiency in federated settings. The model training leverages surrogate gradient
learning and BPTT, facilitating supervised end-to-end learning. Our approach has been tested
on two publicly available HAR datasets, UCI and Real-World. The UCI dataset is for indoor en-
vironments, while the Real-World dataset is for outdoor settings. Our evaluations demonstrated
the superior performance of the proposed S-LSTM model in a FL paradigm compared to tra-
ditional models like LSTM, CNN, and S-CNN. The simulation results show concrete evidence
that the S-LSTM model outperforms the LSTM model in accuracy. In controlled indoor envi-
ronments represented by the UCI dataset, the S-LSTM model outperformed the LSTM model by
1.06%. However, its performance in the complex and diverse outdoor settings of the Real-World
dataset was even more impressive, with a significant 3.84% increase in accuracy over the LSTM
model. This improvement highlights the S-LSTM model’s robustness and ability to handle the
unpredictable nature of real-world human activities. Moreover, our findings highlighted a sig-
nificant 32.30% improvement in energy efficiency compared to the LSTM model. Randomly
selecting participants for model training improves energy efficiency but affects accuracy. How-
ever, personalising the global model by fine-tuning it with local data can significantly increase
performance. On average, this approach improved accuracy by 9% across participants.



Chapter 6

Federated Fusion and Model Quantisation

Our final chapter introduces FedFusionQuant (FFQ), a novel FL framework designed to further
reduce computational and communication overhead in distributed learning systems, addressing
the challenges C2 and C3, as discussed in Section 1.3. The proposed FFQ framework incorpo-
rates signal processing, feature fusion and model compression through QAT. Additionally, the
proposed framework employed a customised FedDist algorithm for adaptive parameter tuning
based on neuron dissimilarity measures to effectively mitigate overfitting. Moreover, incor-
porating QAT allows the model to maintain high accuracy while substantially reducing model
size. This framework showcases how strategic model compression and feature fusion can over-
come the computational and communication constraints inherent in FL for HAR, paving the
way for more efficient, real-time implementations in resource-constrained environments. This
chapter highlights how edge based feature fusion and model compression techniques can be
synergistically employed within FL to advance the scalability and practicality of HAR systems,
particularly in resource-constrained environments.

6.1 Introduction

The advent of pervasive computing has significantly transformed indoor environments, integrat-
ing smart devices to create intelligent living spaces. This technological synergy has propelled
the development of applications ranging from real-time monitoring and security surveillance to
automation in building and industrial processes, facilitating scalable local autonomy [211,212].
HAR and indoor localisation are at the forefront of this evolution, which have emerged as piv-
otal research domains with applications in smart healthcare, intelligent building control, the
IoT, behaviour analysis, gesture recognition, and smart surveillance systems [153, 213, 214]. In
particular, HAR plays a crucial role in elderly care for fall detection, enabling continuous moni-
toring and timely interventions to enhance patient safety and independence [144]. Additionally,
indoor HAR optimises space utilisation and energy efficiency in smart buildings by providing
contextual awareness of user location and occupancy.

126
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Indoor HAR is fundamentally a classification problem that aims to identify human actions
and movements based on observations captured through various sensors [144, 153]. Traditional
HAR systems have employed vision-based methods utilising high-resolution cameras and com-
puter vision techniques. While effective, these approaches raise significant privacy concerns due
to the intrusive nature of video capture and are sensitive to environmental factors such as lighting
conditions and background variability [146]. Wearable sensors, including accelerometers and
gyroscopes, offer an alternative by directly capturing movement data. However, as explored in
HNFL, wearable sensors, particularly in outdoor settings, require continuous physical interac-
tion, which can pose challenges in scenarios like elderly care due to inconvenience and potential
discomfort [144, 215].

In contrast, this chapter focuses on non-invasive HAR for indoor environments using RF
sensing, which has gained popularity due to its unobtrusiveness and high privacy preservation.
RF-based systems, particularly those leveraging CSI, provide sophisticated methods for mon-
itoring indoor activities by capturing comprehensive wireless signal characteristics at the sub-
carrier level [145,153]. The ubiquitous presence of Wi-Fi signals in indoor environments makes
CSI-based HAR an economical and practical solution. Human movements induce unique scat-
tering patterns in wireless signals, creating distinct CSI signatures that can be mapped to classify
corresponding activities [143].

Despite the advantages, CSI-based HAR systems face challenges related to the unpredictabil-
ity of wireless signals. Multipath propagation, environmental dynamics, and signal fluctuations
introduce noise and inconsistencies in the captured data, affecting the accuracy and reliability
of HAR models [143]. Moreover, traditional HAR systems rely on centralised data collection
and processing, necessitating the sharing of raw data with a central server. This approach raises
significant privacy concerns, especially under stringent regulations like the General Data Protec-
tion Regulation (GDPR) [146, 215]. Centralised processing also leads to inefficient bandwidth
usage, increased network and storage costs, energy inefficiency, and latency issues that limit
real-time performance and scalability.

The previous Chapter 5 explored architectural innovations in FL to enhance energy ef-
ficiency and processing capabilities on edge devices. Specifically, HNFL demonstrated how
integrating SNNs with LSTMs could improve HAR accuracy and energy efficiency for wear-
able sensors in outdoor settings. However, applying FL in non-invasive, indoor HAR using
CSI data introduces new challenges, particularly regarding communication overhead and energy
efficiency. In this chapter, we introduce a FL framework designed to enhance the efficiency, ac-
curacy, and scalability of HAR systems using CSI data in indoor environments. Unlike HNFL,
which focuses on architectural changes to improve on-device processing, FFQ addresses com-
putational and communication efficiency by integrating signal processing, feature fusion, and
model compression techniques.

Feature fusion combines statistical and differential features with processed CSI data, provid-
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ing the model with the contextual understanding necessary for navigating varied environmental
conditions [145,153]. Distinguishing itself from traditional FL approaches, FFQ adopts the Fed-
Dist algorithm [216], tailored to mitigate overfitting by adjusting the model parameters based on
a dissimilarity measure of diverging neurons, a pivotal enhancement for handling heterogeneous
data effectively.

To reduce the communication overhead in the federated training process, our framework
introduces a model compression strategy that quantises the model parameters from a 32-bit
float point to 16 and 8-bit integers precision. Additionally, we adopted the quantisation-aware
training (QAT), which involves adjusting the bit precision of model computations and gradients
from the conventional 32-bit float point to a more communication-efficient 16 and 8-bit format
during local model training. This quantisation not only minimises the size of the model updates
transmitted in each communication round but also ensures that local model training adapts to the
reduced precision, maintaining accuracy while reducing bandwidth requirements. Furthermore,
FFQ optimises the synthesis of model updates, ensuring that collective intelligence accurately
reflects the diversity of human activities across disparate settings, thereby enhancing the overall
accuracy and reliability of the HAR system. In summary, the main contributions of this work
are highlighted as follows:

• This work introduces the FFQ framework, merging FL with edge-based preprocessing and
feature fusion to enrich HAR models with a deep contextual understanding of CSI data.
The proposed framework aims to extract and fuse the statistical and differential features
to achieve a low false positive rate, particularly for fall detection.

• The study adopted the FedDist algorithm for global model aggregation tailored to address
the challenge of overfitting in the context of highly heterogeneous data. This study also
modified the divergence metric by adjusting model parameters based on a dissimilarity
measure of diverging neurons, resulting in the effective handling of diverse data. The
results of the modified FedDist are compared with FedAVG algorithm.

• The proposed FFQ framework incorporates QAT into its model compression strategy, sig-
nificantly improving the efficiency of FL architectures by training local models directly
in a reduced 16 and 8-bit precision format. This approach minimises the size of model
updates, significantly reducing communication overhead while maintaining comparable
accuracy with the state-of-the-art techniques.

6.2 Preliminaries and System Model

This section presents the generic FL training process for a typical classification problem for
HAR. The conventional HAR model collects the raw data samples and transmits them to a
centralised location for processing and model training. In contrast, the FL approach trains the
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Figure 6.1: The conceptual framework for FL-based HAR using CSI.

model across many clients where the dataset is highly decentralised. This work considered a
cross-silo FL architecture where the data is divided among a few trusted end clients, as shown
in Fig. 6.1. Consider a FL system with N ENs representing clients, where each client i holds
a local dataset Di. The global learning objective is to minimise the loss function ℓ(ω) over the
global model parameters ω , formulated as in eq. 2.1. The local loss function given in eq. 2.2, is
modified as the average loss over the data points in Di, expressed as:

ℓi(ω) =
1
|Di| ∑

j∈Di

ℓ(x j,y j;ω), (6.1)

here, ℓ(x j,y j;ω) denotes the loss of the model parameterised by ω on a data point (x j,y j) from
client i’s dataset, with x j being the feature vector and y j the associated class label.

The FedAVG algorithm aggregates the model parameters on the FS during the training pro-
cess across T communication rounds, each comprising E local epochs of training on each client,
with a local batch size of B. The FedAVG process is mathematically represented through the
following iterative process:

• Initialisation: The FS initialises the global model parameters ω0 and distributes them to
all EN. This process is represented by step 1⃝ as shown in Fig. 6.1.

• Local Training: For each communication round t = {1,2, . . . ,T}, and each client i, the
client updates the model parameters ω by performing E epochs of gradient descent on its
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local dataset Di, using a batch size of B. This can be mathematically depicted as:

ω
t+1
i = ω

t
i −η∇ℓi(ω

t
i ), (6.2)

where η is the learning rate and ∇ℓi(ω
t
i ) is the gradient of the loss function ℓi with respect

to the model parameters ω at round t. The process of local learning is represented by step
2⃝, as shown in Fig. 6.1.

• Model Aggregation: After local training, each client sends its updated model parameters
ω

t+1
i back to the FS given as step 3⃝. The server then aggregates these parameters to

update the global model step 4⃝ as shown in Fig 6.1. The aggregation is performed as a
weighted average, considering the size of each client’s dataset:

ω
t+1 =

1

∑
N
i=1|Di|

N

∑
i=1
|Di|ω t+1

i (6.3)

• Global Model Update: The updated global model parameters ω t+1 are then shared with
all clients, marking the beginning of the next training round.

This iterative process of local training and global aggregation continues for T rounds, aiming
to minimise the global loss function ℓ(ω) and improve the model’s performance on the multi-
class classification task.

6.3 Proposed FFQ for HAR

The section outlines our proposed FFQ framework for HAR, building on the foundational un-
derstanding of FL discussed earlier in section 6.2. The proposed framework includes extensive
data pre-processing, feature engineering, feature-level fusion, and model compression, enhanc-
ing communication efficiency while maintaining high classification accuracy. We will discuss
the methodologies employed in data pre-processing and feature engineering and the novel tem-
poral feature extraction and feature fusion process. Additionally, we will elaborate on the local
training, model compression strategy with QAT, and our custom model aggregation mechanism,
which collectively contributes to the robustness and efficacy of the FFQ framework.

6.3.1 Signal Propagation and CSI Acquisition

The first step in FL-based HAR is collecting fine-grain CSI data under the influence of daily
routine activities. Wi-Fi signals undergo various effects due to their broadcast nature, such as
reflection, refraction, scattering, and diffraction [217]. For example, static objects like floors,
ceilings, walls, tables, and chairs reflect signals, while micro activities cause dynamic effects like
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Figure 6.2: 2D plots of received CSI under the influence of different activities.

refraction, diffraction, and scattering. These dynamic activities weaken the signal and distort
both the phase and amplitude of the received signal.

In this study, we implemented the IEEE 802.11a standard using software-defined radios
(SDR) and used two universal software radio peripherals (USRP) as transmitters and receivers.
The preamble (known data sequences) in the message packet is used for channel estimation,
and the physical layer CSI is acquired under the influence of different activities. The details of
implementing the IEEE 802.11a standard and data collection process are beyond the scope of
this work. However, the implementation and process of raw data collection in a lab environment
are discussed in our previous studies [217, 218]. The plots of the 2000 CSI samples under the
influence of different activities are shown in Fig. 6.2. It can be observed that different activities
have a significant variation in received CSI, which can be translated into a unique signature for
different activities after careful signal processing.

6.3.2 Data Pre-processing and Feature Engineering

The collected raw CSI signal contains information on both phase and amplitude. The received
signal phase is usually affected by carrier frequency offset (CFO) caused by a mismatch of
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transmitter-receiver clocks. A small CFO causes significant variation in the phase of the re-
ceived signal, which makes the phase changes caused by the body negligible [153]. Therefore,
this work considered the amplitude information for indoor human activity classification. Al-
though the amplitude of the received signal is a stable metric, the noise added by the external
environment is still a big problem. The noisy CSI may not give distinct features; therefore, data
denoising is one of the vital steps in HAR.

Signal Denoising using EMD

In this work, we used EMD for data denoising, given the non-linear and non-stationary nature
of time series CSI data [153, 163]. The EMD decomposes the raw symbols, which consists
of m samples for each client i, denoted as X(t) = {x1,x2, . . . ,xm}. The EMD process enables
the decomposition of X(t) into a finite set of intrinsic mode functions (IMFs) and a residue,
significantly enhancing the signal quality for further processing. For client i, the denoising
process through EMD can be mathematically represented as:

Xi(t) =
ni

∑
k=1

IMFik(t)+ ri(t), (6.4)

where IMFik(t) are the intrinsic mode functions extracted from Xi(t), ni denotes the total number
of IMFs for client i, and ri(t) represents the residue.

The signal post-denoising, denoted as X̂i(t), is reconstructed by excluding the first few
IMFik(t), identified primarily as noise components:

X̂i(t) =
ni

∑
k=p+1

IMFik(t)+ ri(t), (6.5)

where p is the last IMF considered to be noise. This modification ensures that the reconstructed
signal X̂i(t) is free of primary noise artefacts.

Feature Engineering

Feature engineering plays a crucial role in the subsequent analysis following the denoising of
the time series data. We employ DWT for feature extraction, given its efficacy in capturing both
frequency and time domain aspects of human activities, which vary across different activities.
The denoised signal, denoted as X̂i(t), undergoes decomposition into high and low-frequency
components using DWT, facilitating the separation of the signal into different time scales. This
process involves passing X̂i(t) through a pair of low and high pass filters, followed by down-
sampling to adhere to the Nyquist criteria. The extraction of meaningful features is achieved
by applying a thresholding technique to the wavelet coefficients obtained from DWT, which is
mathematically represented as [219]:



CHAPTER 6. FEDERATED FUSION AND MODEL QUANTISATION 133

Φ̃ j,i =

(Φ j,i)
(
|Φ j,i|− τ j

)
, |Φ j,i| ≥ τ j

0, |Φ j,i|< τ j

(6.6)

where Φ j,i and Φ̃ j,i denote the original and denoised wavelet coefficients, respectively, at the jth

level of decomposition and ith location. The threshold τ j is determined based on the universal
threshold τU , detailed as follows [220]:

τU = σ
√

2log(L), (6.7)

with L representing the length of the pre-processed CSI signal, and σ denoting the standard
deviation of noise, estimated by:

σ =
median(|Z1|)

0.6745
, (6.8)

where Z1 is the first level detail coefficient.
After completing the feature extraction process, the next step is to perform feature selection

to reduce redundancy in the training data and avoid overfitting [221]. While there are many
ways to select features, we chose LDA because the CSI data shows a normal distribution with
features that are minimally correlated [221]. LDA aims to create a new subspace of the data
by maximising the distance between classes (inter-class) and minimising the distance within the
same class (intra-class), as defined by the equations below:

The between-class scatter matrix Cb is given by:

Cb =
k

∑
j=1

d j(m j− c)(m j− c)T , (6.9)

where d j denotes the number of samples in the jth class, m j the mean vector of the jth class, and
c the global centroid. The within-class scatter matrix Cw is defined as:

Cw =
k

∑
j=1

∑
x∈D j

(x−m j)(x−m j)
T , (6.10)

where D j represents the set of all samples in the jth class.
Furthermore, the total scatter matrix Ct is represented by:

Ct =
n

∑
j=1

(x j− c)(x j− c)T , (6.11)

where x j are the data points, and c is the global centroid. The lower dimensions of the input
training data are achieved through the application of eigenvalue decomposition on the scatter
matrices, which effectively eliminates noisy and redundant components.
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6.3.3 Temporal Feature Extraction and Feature Fusion

This study extracts temporal features from the denoised signal X̂i(t) to expand the feature space
beyond the conventional LDA feature set. The goal is to capture the dynamic nature of hu-
man activities with statistical and first-order differential features from each signal window. A
comprehensive set of statistical features, including mean, variance, standard deviation, skew-
ness, and kurtosis, is computed from each window W in the denoised signal X̂i(t) to capture the
signal’s intrinsic properties over time.

First-order differential features are calculated to encapsulate the temporal evolution of the
signal, highlighting changes between consecutive samples. For a signal window W , the differ-
ential feature, Di f fW

i , is defined as:

Di f fW
i = {xi+1− xi|xi,xi+1 ∈W} (6.12)

After extracting the statistical features (SW
i ) and differential features (Di f fW

i ), a fusion process is
performed to combine these temporal features with the raw CSI features selected through LDA
(G′i). This approach ensures a more complete characterisation of each activity, considering both
the static and dynamic aspects of the signal. The fusion of LDA-selected features and temporal
features yields the final feature vector Hi for each signal window W , formulated as:

Hi = G′i⊕SW
i ⊕Di f fW

i (6.13)

In this formulation, ⊕ symbolises the concatenation operation, blending the diverse feature sets
into a unified representation Hi also named as combined temporal features (CTF), which is the
input for the subsequent classification model. This fused feature vector Hi is poised to offer a
robust foundation for accurate activity recognition, embodying the multifaceted nature of human
motion patterns.

6.3.4 Local Training and Quantisation

A pivotal stage in our proposed FFQ framework is local training, wherein individual clients fine-
tune the global model using their local data Di as discussed in Section 6.2. This stage is crucial
for adapting the global model to diverse local conditions and data characteristics. Following
local training, the quantisation process is employed to optimise communication efficiency by
compressing the updated model parameters before they are transmitted back to the FS.

Quantisation Process

The quantisation strategy aims to reduce the model parameter size, facilitating efficient com-
munication across the FL network. This reduction is achieved by lowering the precision of the
model parameters to a specified bit-length b without significantly compromising the model’s
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predictive performance. The simplified quantisation operation is represented mathematically as:

ω̂
t+1
i = Q(ω t+1

i ,b), (6.14)

where Q(·,b) denotes the quantisation function that compresses the parameters ω
t+1
i , with b

indicating the target bit precision. This process balances the trade-off between model accuracy
and communication cost.

Pre-Quantisation and Post-Quantisation

The quantisation process can be performed into two stages: pre-quantisation and post-quantisation.
In Pre-Quantisation, the model parameters are compressed before local training. This phase
involves standard training operations where the parameters ω t

i are adjusted based on the local
data characteristics. The goal during this phase is to adapt the global model to local nuances and
improve its performance across diverse data distributions. Post-Quantisation: After the local
training, the updated model parameters ω

t+1
i are quantised to reduce their size before model

sharing. This step compresses the parameter values, resulting in ω̂
t+1
i , which are then sent to the

FS. While this significantly reduces communication overhead, it introduces potential precision
loss, which can degrade the model’s performance.

Incorporating Quantisation-Aware Training

QAT is integrated into the local training phase to enhance the model’s robustness to quantisation
effects. QAT anticipates the impact of quantisation by incorporating a simulation of the quan-
tisation process within the training algorithm. This approach allows the model to adapt to the
reduced precision and maintain high accuracy compared to post-quantisation. The mathematical
representation of QAT is as follows:

Model Quantisation during Training: The model parameters undergo a simulation of
quantisation and subsequent de-quantisation within each training iteration, represented by:

ω
t
i,sim = DQ(Q(ω t

i ,b)), (6.15)

where DQ(·) represents the de-quantisation function, reversing the quantisation effect for train-
ing purposes.

Parameter Update with Model Quantisation: This simulated environment enables the
gradient descent optimisation to account for quantisation effects, mathematically expressed as:

ω̂
t+1
i = ω

t
i −η∇ℓi(ω

t
i,sim), (6.16)

where η is the learning rate, and ∇ℓi denotes the gradient of the loss function with respect to
the simulated quantised parameters. This equation is a modified version of the local update
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with QAT given in Eq. 6.2. Incorporating QAT into local training effectively counters potential
accuracy declines due to reduced parameter precision. It is worth mentioning that the post-
quantisation effectively reduces the communication burden, but it has inherent limitations. For
instance, reducing the bit-length of model parameters can lead to a loss of precision, negatively
impacting the model’s predictive performance. Additionally, the post-quantisation does not ac-
count for the reduced precision during the local training phase, meaning the model parameters
are optimised without considering the eventual quantisation, which can result in suboptimal
performance after quantisation.

6.3.5 Global Aggregation using FedDist

The FedDist algorithm improves the conventional aggregation process in FL by introducing a
divergence analysis between quantised local and global model parameters. This selective aggre-
gation strategy optimises model performance across highly diverse client data. Given quantised
weights from the clients ω̂

t+1
i and the global model ω̂ t , the Euclidean distance for divergence

assessment is calculated as follows:

dist(N̂1, N̂2) =

√√√√ C

∑
i=1

(N̂wi
1 − N̂wi

2 )2, (6.17)

where N̂1 and N̂2 represent neurons in the local and global models, respectively, and C is the
number of weights per layer. This is a layer-wise update process where the architecture of the
global model is modified based on the diverging neuron. If the distance between the neurons
of the local and global model is greater than the given threshold, the local node is considered
as diverging; thus, layer-wise training is started. The layer having the diverging neuron on the
client side is frozen, and weights for an unfrozen layer are sent to minimise the communication
overhead. Once there is no diverging neuron, the system performs the simple weighted average
as the FedAVG algorithm. This technique enables the identification of the client that constantly
acts as an outlier and has a negative impact on the performance of the global model. This QAT
FedDist algorithm is given in Algorithm 6.

6.4 Simulation Setup

This section explains the simulation setup created to thoroughly test the effectiveness of the pro-
posed FFQ framework for HAR using CSI. Our goal is to validate the accuracy, robustness, and
efficiency of the FFQ model under various conditions using experiments that mimic real-world
scenarios in smart healthcare applications. Additionally, we describe a dataset consisting of real-
world activities captured through advanced sensing technologies, followed by a discussion of the
performance metrics that measure the performance of the proposed framework. Furthermore,
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Algorithm 6: QAT-Enhanced Federated Distance Algorithm
Result: Final global model ω̂T after enhancement

1 Input: Total communication rounds T , number of clients N, number of layers L;
2 Initialise global quantised model parameters ω̂0;
3 for t = 0 to T −1 do
4 Client Updates:
5 for each client i = 1 to N in parallel do
6 Send global model parameters ω̂ t to client i;
7 ω̂

t+1
i ← ClientUpdate(i, ω̂ t);

8 end
9 Global Aggregation:

10 ω̂ t+1← ∑
N
i=1

|Di|
∑

N
j=1 |D j|

ω̂
t+1
i ;

11 ω̂ t+1← ∑
N
i=1

ni
N ω̂

t+1
i ;

12 Euclidean Distance:
13 for l = 1 to L−1 do
14 for i = 1 to N do
15 Compute pair distance dist(N̂1, N̂2);
16 end
17 Compute µ t

l and σ t
l for distances in layer l;

18 Set newNeuron = False;
19 for c = 1 to C do
20 dist_threshold = 3 ·µ t

dl +σ t
dl;

21 if mean(c)> dist_threshold then
22 Append new neuron ω̂ l

t ;
23 Set newNeuron = True;
24 end
25 end
26 if newNeuron then
27 for i = 1 to N do
28 ω̂ l

i = ω̂ l// Freeze layer l and below

29 Update layers ω̂
l+1
i to ω̂L

i at client i;
30 end
31 end
32 end
33 ω̂ t+1← ω̂ t// Global updates

34 end
35 Procedure ClientUpdate(i, ω̂);
36 Initialise local model parameters ω̂i← ω̂;
37 for epoch = 1 to E do
38 for each batch b of size B from client i’s data do
39 ω̂i← ω̂i−η∇Fi(ω

t
i,sim;b);

40 end
41 end
42 return ω̂i;

we also outline our performance evaluation strategy, which includes accuracy, communication
overhead and comparative analysis with state-of-the-art models.
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6.4.1 Dataset Description and Data Partitioning

The raw dataset is collected in an indoor lab environment where an IEEE 802.11a standard is
implemented using SDR. Two USRPs are used as transmitters and receivers and are kept at ap-
proximately 6m distance. Thirty volunteers from different age groups have participated in the
data collection process. The implementation and data collection process details are beyond this
paper’s scope; however, the details can be seen in [217]. The dataset includes 80,000 samples
across six typical daily activities: sitting, standing, running, falling, lying down, and jumping.
Additionally, the line-of-sight component of CSI is also captured where no activity is performed.
These activities were selected to encompass a range of human motions relevant to smart health-
care monitoring systems.

The raw data from this study comprises complex CSI for 52 subcarriers, capturing both
amplitude and phase components. However, for the purpose of this analysis, only the amplitude
information was extracted and utilised to develop features engineering for the HAR tasks as
discussed in section 6.3. This selective data usage helps focus on the most relevant information
for activity recognition, reduce computational complexity, and enhance model performance.

To simulate a realistic FL environment, the dataset was equitably distributed among five
clients ENs. Each client was allocated 16,000 samples. A standard split of 80% training and
20% testing was employed to prepare the data for the federated training process. Hence, the
training set of each EN consists of 12800 samples. Notably, the test sets from each client were
combined to form a comprehensive global test set, where the total number of the test samples
in the global test set is 16000. This global test set plays a crucial role in assessing the overall
performance of the proposed FFQ model, ensuring that the evaluation reflects a wide array of
scenarios and is not biased by any single client’s data profile. Additionally, the data distribution
among the participants was kept highly unbalanced to ensure the actual case for the FL scenario.
Despite being a HAR task, the dataset used in this study is highly diverse and involves several
participants, device limitations and high-class imbalance, which could be a good use case for
FL applications.

6.4.2 Model Configurations and Hyperparameters

In this study, we employed a straightforward yet robust Deep Neural Network (DNN) for local
learning. This model configuration is specifically chosen to balance the computational load and
maintain high accuracy across various EN implementations. The local model consists of an input
layer that accepts an N-dimensional vector with N as the number of features per sample. This
architecture includes three fully connected layers with 128, 64, and 32 units, respectively, each
followed by a rectified linear unit (ReLU) activation function. Finally, there is a dropout layer
with a dropout rate of 0.3 and an output layer with a softmax activation function. Additionally,
regularisation factor of 0.01 was applied with learning rate of t 10−5.
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Local Model Configuration

• Input Layer: The input layer accepts an N-dimensional vector with N as the number of
features per sample.

• Dense Layers: The architecture includes three fully connected layers with 128, 64, and
32 units, respectively, each followed by a rectified linear unit (ReLU) activation function.

• Dropout Layer: A dropout layer with a dropout rate of 0.3 is implemented to help prevent
overfitting during training.

• Output Layer: The final layer uses a softmax activation function to classify the input
into various activity categories. It is optimised during training using a sparse categorical
cross-entropy loss function.

• Optimiser: ADAM, known for its adaptive learning rate features, was chosen to facilitate
efficient convergence.

• Kernel Regulariser: A regularisation factor 0.01 was applied to minimise overfitting by
penalising large weights.

• Learning Rate: Set at 10−5 to provide a slow and steady update during backpropagation,
minimising the risk of overshooting minima.

6.4.3 Performance Metrics

To evaluate the proposed FFQ framework, we use average accuracy as the baseline metric. How-
ever, accuracy alone can be misleading with imbalanced datasets, leading to the accuracy para-
dox, where a model appears effective but is biased towards the majority class. We consider
Precision, Recall, and F1-score as discussed in Section. 2.2.2. Precision measures the correct-
ness of positive predictions, which is crucial for high-stakes activities like fall detection. Recall
assesses the model’s ability to identify all relevant instances, which is vital in scenarios where
missing a positive instance is critical. The F1-score provides a harmonic mean of precision and
recall, balancing both metrics and being especially useful for imbalanced classes. To evaluate
the FFQ framework, we conducted experiments in a controlled simulation environment using a
global test set, assessing the model’s performance across all participants. We also included an
evaluation of energy efficiency, an important metric in FL environments where resource con-
straints are significant. We measured energy efficiency in terms of communication overhead by
simplifying this equation: [222]:

Eest = R [α · tcom +N · (β ·Ptrn)] , (6.18)



CHAPTER 6. FEDERATED FUSION AND MODEL QUANTISATION 140

where α and β represent the energy cost coefficients for computation (per second) and com-
munication (per kilobyte), respectively; R is the number of communication rounds; N denotes
the number of participating clients; tcom is the computation time depending on the device; and
Ptrn is the payload size per communication round. In eq. (6.18), we are only interested in the
communication overhead per round, hence, the simplified equation is as Er = N(β ·Ptrn).

6.5 Results and Discussion

This section provides a comprehensive evaluation of the proposed FFQ framework, specifically
tailored for HAR. The dataset, distributed across five clients, each containing 16,000 samples,
forms the basis of our experimental analysis. Specifically, each client utilises 12,800 samples
for training purposes and the remaining 3,200 for testing. The test samples from each client are
combined into a global test set comprising 16,000 samples in total, which is used to evaluate the
performance of the global model under different experimental setups. For robust analysis, two
distinct case studies are conducted, which include:

1. Combined Temporal Fusion (CTF): This setup explores the performance enhancement
achieved by integrating statistical and differential features with basic raw data features.
The evaluation is conducted across two scenarios: multi-class classification of daily activ-
ities and binary-class fall detection.

2. CTF with QAT: In addition to the basic CTF setup, this case study incorporates QAT
to investigate the impact on communication overhead and examine the trade-off between
accuracy and energy efficiency in contexts of both multi-class and binary-class problems.

These case studies assess the effectiveness of the FFQ framework in enhancing classification
accuracy, minimising communication overhead, and ensuring data privacy and computational
efficiency. Subsequent sections will provide detailed quantitative results from these studies,
followed by a discussion of the implications of these findings. Additionally, we will identify
potential areas for improvement and discuss how these findings can be applied to improve fed-
erated learning applications in smart healthcare.

6.5.1 Case:1 CTF for Multi-class Classification

The CTF provides additional contextual information, which aims to improve classification accu-
racy significantly. Here, we systematically evaluate the performance by comparing the results of
the FedDist algorithm with FedAVG, with and without the incorporation of feature fusion. Anal-
yses are conducted for multi-class classification scenarios encompassing seven daily activities
and binary-class fall detection, which is critical for prompt and effective healthcare response.
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Figure 6.3: The comparative accuracy learning curve for CTF and simple feature for FedDist
and FedAVG algorithm.

The results in Fig. 6.3 present the learning curves from the global model evaluated using
the test set across 300 communication rounds, comparing the accuracy of FedDist and FedAVG
algorithms under two feature configurations: CTF and simple amplitude (Amp) obtained using
DWT and LDA. The CTF-FedDist setup achieved the highest accuracy, peaking at 92.50%,
demonstrating the effectiveness of combining temporal features with the FedDist algorithm. In
comparison, CTF-FedAVG, Amp-FedDist, and Amp-FedAVG reached maximum accuracies of
89.21%, 88.31%, and 87.66%, respectively. These results highlight the importance of contextual
information and strategic model aggregation to improve the accuracy of multi-class HAR.

The results in Fig. 6.4 show a set of normalised confusion matrices representing the clas-
sification outcomes for FedDist and FedAVG. Each confusion matrix displays the predictive
performance across six activity classes and a No Activity category. The CTF-FedDist matrix
shown in Fig. 6.4 (a) indicates high diagonal values, which imply strong true positive rates
for most activities, particularly for Fall, Sit, and No Activity. These results show that the CTF
features combined with the FedDist algorithm lead to highly accurate classification. In compari-
son, the CTF-FedAVG matrix given by Fig. 6.4 (b) also demonstrates high accuracy but slightly
lower true positive rates for Run and Walk, indicating a minor increase in confusion between
these two activities.

Conversely, the Amp-FedDist Fig. 6.4 (c) and Amp-FedAVG Fig. 6.4 (d) matrices exhibit
lower diagonal values across activities, with a notable decrease in correctly classified instances
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(a) Confusion Matrix for CTF-FedDist.
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(b) Confusion Matrix for CTF-FedAVG.
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(c) Confusion Matrix for Raw-FedDist.

Fall Laydown Sit Stand Run Walk No Activity
Predicted Class

Fa
ll

La
yd

ow
n

Si
t

St
an

d
Ru

n
W

al
k

No
 A

ct
iv

ity
Tr

ue
 C

la
ss

0.85 0.06 0.03 0.02 0.01 0.01 0.02

0.06 0.88 0.02 0.01 0.01 0.00 0.02

0.01 0.02 0.87 0.05 0.01 0.01 0.02

0.00 0.01 0.01 0.94 0.02 0.01 0.01

0.01 0.01 0.02 0.03 0.84 0.06 0.02

0.01 0.00 0.02 0.03 0.07 0.83 0.03

0.02 0.01 0.01 0.03 0.02 0.03 0.87

0.0

0.2

0.4

0.6

0.8

(d) Confusion Matrix for Amp-FedAVG.

Figure 6.4: Confusion matrices for CTF and raw amplitude-only feature for FedDist and Fe-
dAVG algorithms: (a) Confusion Matrix for CTF-FedDist, (b) Confusion Matrix for CTF-
FedAVG, (c) Confusion Matrix for Raw-FedDist, (d) Confusion Matrix for Amp-FedAVG.

for Fall, a critical class for safety in healthcare scenarios. Additionally, across all matrices, the
off-diagonal elements represent misclassifications, with the non-zero values indicating the pro-
portion of each actual class being incorrectly predicted as each of the other classes. Additionally,
the results also demonstrate that the Fall and Laydown are frequently confused due to the similar
motion patterns captured using CSI. Similarly, activities like Walk and Run exhibit a degree of
confusion, with off-diagonal values of 0.03 and 0.04, respectively. This misclassification is ex-
pected, as walking and running share similarities in their dynamic nature and can be challenging
to distinguish based on certain features.

In Table 6.1, there is a comparison of performance metrics that shows the benefits of using
feature fusion instead of simple amplitude-based (Amp) features in the FedDist algorithm. The
CTF-FedDist configuration has a higher precision, recall, and F1 Score when compared to Amp-
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Table 6.1: Performance comparison for CTF-FedDist and Raw-FedDist

CTF-FedDist Amp-FedDist

Class Precision Recall F1 Score Precision Recall F1 Score

Fall 0.939 0.920 0.929 0.926 0.870 0.897
Laydown 0.929 0.919 0.924 0.882 0.909 0.896
Sit 0.942 0.980 0.960 0.901 0.910 0.905
Stand 0.932 0.960 0.946 0.868 0.911 0.889
Run 0.939 0.930 0.935 0.882 0.828 0.854
Walk 0.908 0.890 0.899 0.853 0.870 0.861
NA 0.929 0.919 0.924 0.880 0.889 0.884

FedDist, especially for critical activity classes such as Fall, Run, and Stand. It is important to
note that in the Fall classification, the precision and F1 Score of CTF-FedDist are significantly
higher than Amp-FedDist. This highlights the significance of temporal feature fusion in accu-
rately distinguishing complex activities. These results indicate that using CTF features in FL
models can significantly improve HAR in practical healthcare systems.

6.5.2 Case:2 CTF for Fall Detection (Binary Classification)

In this scenario, the idea was to train a binary classifier to identify Falls from other daily rou-
tine activities. Similar to multi-class classification, the model is trained for 300 communication
rounds. The global test set is used to evaluate the performance of the model, and results for the
accuracy learning curve for binary classifier with and with temporal feature fusion are given in
Fig. 6.5. The learning curve for fall detection for a binary classifier exhibits classical behaviour,
with a sharp increase in initial results and a more steady state of behaviour after 100 commu-
nication rounds. The results show that the CTF feature set improves the model performance.
Notably, the CTF-FedDist configuration achieves the highest accuracy, peaking at 97.21%, il-
lustrating the benefits of integrating temporal context in the detection algorithm. Moreover, this
performance is closely followed by the CTF-FedAVG, with a maximum accuracy of 95.67%. On
the other hand, configurations that used simple amplitude-based features such as Amp-FedDist
and Amp-FedAVG exhibited reduced peak accuracies of 93.88% and 91.39%, respectively.

The results in Fig. 6.6 show the confusion matrices for binary classification in Fall detec-
tion using CTF and amplitude-only features for FedDist and FedAVG algorithms. The matrices
reveal that CTF features combined with FedDist, as shown in Fig 6.6 (a), yield the highest true
positive rate for Falls at 0.98% and a true negative rate of 0.96%, outperforming the other con-
figurations. In comparison, the amplitude-only feature sets given in Fig. 6.6 (c), (d) exhibit
reduced performance, particularly in distinguishing non-fall activities, underscoring the signifi-
cance of temporal features in achieving higher classification accuracy for critical fall detection
tasks in FL environments.
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Figure 6.5: The comparative accuracy learning curve for CTF and simple feature for FedDist
and FedAVG algorithm for fall detection.

6.5.3 Case:3 CTF with QAT

Building upon the insights from the previous two case studies, we now turned our attention to
model compression through quantisation at varying bit precisions and incorporating QAT. This
case study is driven by optimising the FFQ framework, particularly the FedDist algorithm, to
balance performance (accuracy) and reduce communication overhead. Furthermore, this case
study evaluates the impact of lowering model parameter precision from the standard 32-bit to
16-bit and further to 8-bit, both with and without QAT.

The results in Fig. 6.7, plot the model accuracy for multi-class activity classification against
the number of communication rounds, demonstrating the convergence behaviour over 300 com-
munication rounds. The baseline 32-bit FedDist model serves as a benchmark with a peak
accuracy of 92.50%. When quantisation is applied, the QAT-FedDist models at 16-bit and 8-bit
precision achieve peak accuracies of 90.89% and 89.66%, respectively, affirming the efficacy
of QAT in mitigating the loss in accuracy typically associated with reduced bit representations.
The Post-Quant models at corresponding quantisation levels exhibit a slight dip, with peak ac-
curacies of 88.06% for 16-bit and 86.89% for 8-bit, underscoring the importance of QAT in
optimising the model for lower-bit precision operations.

Similarly, Fig. 6.8 presents the accuracies of a learning curve for binary Fall detection,
illustrating the performance for models trained with and without QAT. Benchmarking against
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Figure 6.6: Confusion matrices for binary fall detection using CTF and amplitude-only features
with FedDist and FedAVG.

the FedDist 32-bit precision model, which achieved an accuracy of 97.21%, the QAT-FedDist
models at 16-bit and 8-bit precisions achieve comparable accuracies of 94.33% and 91.23%,
respectively. In contrast, the Post-Quant with FedDist at 16 and 8-bit quantisation demonstrated
lower average accuracy of 90.06% and 88.86%. Although a certain degree of accuracy reduc-
tion is anticipated due to model compression, applying QAT considerably mitigates this effect,
showcasing its critical role in maintaining high model performance despite the reduced bit depth.

Finally, the energy efficiency of the proposed FFQ framework is measured by the com-
munication overhead, which is quantified using the simplified version of Equ. (6.18), given
as Er = N · (β ·Ptrn). With the energy cost coefficient for communication, β , assumed to be
0.0001 [222], and the payload size per communication round, Ptrn, equating to the size of the
model. Notably, the original model, at 32-bit precision, has a size of 185.91 KB. Through quan-
tisation, the model size is considerably reduced to 98.33 KB for the 16-bit representation and
52.31 KB for the 8-bit version.
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Figure 6.7: The comparative accuracy learning curve for post quantisation (Post-Qant) and QAT
for Multi-class classification using FedDist.

These model size reductions result in a commensurate decrease in communication overhead
and directly translate to a significant enhancement in energy efficiency, as shown in Fig. 6.9. The
results show a reduction from 185.91 KB to 98.33 KB in the 16-bit quantised model, equating to
approximately a 47% reduction in energy consumption per communication round. Similarly, the
8-bit quantised model, at 52.31 KB, implies a reduction of over 71% in energy costs compared
to the original model size. This tangible improvement in energy efficiency underscores the
practical relevance of our research in the context of FL setups. Additionally, the quantisation
process, particularly when combined with QAT, not only preserves the accuracy of the FFQ
framework but also significantly diminishes the energy required for model updates during the
learning process.

6.5.4 Discussion on Model Convergence and Energy Efficiency

The evaluation of the FFQ framework across different case studies highlights the trade-off be-
tween model convergence and classification performance. The comparative learning curves in-
dicate that model accuracy stabilises within 250–300 communication rounds, suggesting that
further rounds may yield diminishing returns while increasing energy consumption. This obser-
vation is particularly relevant for optimising training efficiency in FL scenarios.

For multi-class HAR classification (Case 1), the learning curves in Fig. 6.3 show that Fed-
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Figure 6.8: The comparative accuracy learning curve for Post-Qant and QAT for binary fall
detection using FedDist.

Dist with CTF achieves the highest accuracy of 92.50% at 300 rounds, outperforming FedAVG.
However, the learning curve suggests that optimal convergence is reached around 250 rounds,
indicating that extending training beyond this point results in marginal improvements at the
cost of increased communication overhead. Similarly, for fall detection (Case 2), the results in
Fig. 6.5 reveal that the CTF-FedDist model reaches a peak accuracy of 97.21% at 300 rounds,
with the accuracy curve flattening after approximately 250 rounds. This suggests that further
training rounds contribute minimally to model improvement but significantly increase resource
consumption.

In QAT (Case 3), the learning curves in Fig. 6.7 and Fig. 6.8 highlight that model quantisa-
tion influences both convergence behavior and classification performance. The baseline 32-bit
FedDist model achieves 92.50% accuracy for multi-class HAR and 97.21% for fall detection,
whereas the 16-bit and 8-bit QAT models retain competitive performance with slight reductions
(90.89% and 89.66% for multi-class, 94.33% and 91.23% for fall detection). Notably, quantised
models demonstrate faster convergence, particularly at 16-bit precision, suggesting that reducing
bit-depth can accelerate training while maintaining acceptable accuracy levels.

Implications for Energy Consumption

From an energy perspective, excessive training rounds increase computational and communica-
tion costs unnecessarily. Since the FFQ models exhibit accuracy saturation beyond 250 rounds,
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Figure 6.9: The comparison between the reduction in communication overhead, computed as
energy estimates for different quantisation.

implementing an adaptive stopping criterion based on convergence metrics could significantly
reduce energy consumption. Moreover, the quantisation process reduces the model size and
communication overhead, making it more suitable for energy-constrained FL applications. The
energy efficiency benefits of quantisation are evident from the reduced model sizes: 16-bit
quantized models reduce communication overhead by approximately 47%, while 8-bit models
achieve a reduction of over 71%. Given this trade-off, 16-bit QAT emerges as the most effective
balance between accuracy retention and energy efficiency, as it achieves faster convergence with
minimal degradation in model performance.

6.5.5 Summary of Key Findings

The results presented in this study validate the effectiveness of the proposed FFQ framework for
HAR in federated settings, demonstrating its capability to balance accuracy, energy efficiency,
and communication overhead. This section discusses key outcomes.

Impact of Client Participation on Model Performance and Energy Efficiency

The study maintained five federated clients for consistency, with each contributing to global
model training. The results in Fig. 6.3 show that client participation combined with temporal
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feature fusion (CTF) improves classification accuracy, reaching 92.50% for FedDist, compared
to 88.31% with simple amplitude features. Energy efficiency was indirectly analysed through
QAT, where reducing model precision to 16-bit and 8-bit lowered communication overhead by
47% and 71%, respectively (Fig. 6.9). While the number of clients was fixed, the findings
suggest that optimising client selection strategies in FL can further enhance efficiency.

Trade-Off Between Local, Global, and Personalised Models

The results highlight the performance benefits of global FL over local models while ensuring
privacy compared to centralised learning. CTF-FedDist achieved 92.50% accuracy, closely ap-
proaching centralised learning but without data sharing. Additionally, the use of personalised
models (as explored in Chapter 5) can further refine local performance. While personalisation
was not explicitly evaluated in this chapter, prior results suggest it can mitigate inter-client vari-
ability.

Energy Consumption at Different Stages

The study systematically analysed energy efficiency in communication overhead reduction through
model quantisation. Fig. 6.9 shows that QAT significantly reduces energy costs without major
accuracy loss, making it viable for real-world deployment. However, energy consumption re-
lated to semantic inference or model execution on-device (e.g., in pre-trained vision models, as
applicable in Chapter 4) was not explicitly measured in this study. Future work could extend
this evaluation by incorporating real-time device profiling.

6.6 Summary

This chapter presented the FFQ framework for indoor HAR using CSI, incorporating advanced
pre-processing, feature fusion, and model quantisation strategies to address challenges C2 and
C3. Unlike traditional FL approaches for HAR, the FFQ framework employed the FedDist
algorithm to adjust model parameters based on a dissimilarity measure of diverging neurons,
effectively mitigating overfitting. Additionally, during local model training, the framework em-
ployed QAT to refine the precision of model computations and gradients from a standard 32-bit
down to 16 or 8-bit formats. This strategy significantly reduces bandwidth requirements while
maintaining an acceptable level of accuracy.

Our comprehensive evaluation demonstrates that the CTF significantly enhances activity
classification accuracy, with an improvement of approximately 4.29% in multi-class HAR sce-
narios and up to 5.55% in binary fall detection tasks compared to models without feature fusion.
However, the introduction of model compression revealed a trade-off between accuracy and
energy efficiency. The QAT within the 16-bit quantised models resulted in a slight decrease
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in accuracy, which is approximately 1.61% for multi-class tasks and 2.88% for fall detection
scenarios, relative to their 32-bit counterparts. However, the 16-bit quantisation also achieved a
47% reduction in communication overhead. In the case of 8-bit quantisation, performance decre-
ments of 3.84% for multi-class and 5.98% for binary classifications were observed, alongside
an impressive 71% reduction in communication overhead.



Chapter 7

Conclusion and Future Work

This final chapter summarises the research presented in this thesis, highlighting the key contribu-
tions and their impact on addressing the three critical challenges in FL, as discussed in Section
1.3. These challenges include managing data diversity, ensuring robustness against adversarial
threats, and optimising resource efficiency, requiring innovative real-world application solutions.
This thesis has advanced FL by proposing novel frameworks that address these gaps, making it
more effective in domains like energy forecasting, wireless communications, and HAR. This
chapter also synthesises the contributions, explores their broader implications, and identifies fu-
ture research directions to improve FL further. The goal is to provide a clear summary of the
progress made and a roadmap for future work.

7.1 Summary of Contributions

In Chapter 3, a novel SDTA framework is proposed to address the challenges C1 and C2. The
SDTA overcome these challenges by leveraging layer-wise similarity measures, truncated mean
aggregation to filter extreme values and DP to secure model updates. Statistical tests like Lev-
ene’s and Fligner-Killeen confirmed significant heterogeneity among client datasets. SDTA per-
forms layer-wise similarity measures to align the model updates from diverse clients and identify
anomalous updates. Truncated mean aggregation filters the outliers in model parameters to mit-
igate the impact of noise and adversarial attacks. Under ideal FL conditions with non-IID data,
SDTA achieved the MAPE of 2.63%, outperforming the FedAVG and FedDist with MAPE of
2.89% and 3.11%, respectively. This highlights the ability of the proposed SDTA to achieve
higher accuracy and efficiency in environments with non-IID data distributions, effectively ad-
dressing the challenge C1. Furthermore, SDTA was further tested under DP constraints and
adversarial scenarios to evaluate its robustness and privacy-preserving capabilities. Under strict
DP settings with ε = 0.1, SDTA achieved a MAPE of 4.02%, surpassing FedAVG and FedDist
by 20.4% and 9.7%, respectively. This validates the resilience of SDTA in balancing accuracy
and privacy, a critical requirement in FL systems addressing challenge C2. Additionally, the
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robustness of SDTA was further demonstrated under model sign inversion attacks affecting 40%
of ENs. In this adversarial scenario, SDTA achieved a 20.5% MAPE reduction compared to
FedAVG, showcasing its capability to detect and mitigate malicious updates effectively. More-
over, the framework exhibited remarkable stability under partial client participation, maintaining
consistent performance even as the client selection rate dropped from 90% to 50%.

Chapter 4 introduced the SFBP framework, addressing challenges C1 and C3. The pro-
posed framework leveraged lightweight CV models, specifically MobileNetV3, for efficient
edge-based semantic information extraction, enabling multi-modal fusion for proactive block-
age prediction in mmWave/THz networks. MobileNetV3 demonstrated its suitability for edge
processing by achieving a comparable object detection accuracy of 97.1%. MobileNetV3 re-
duced the inference latency to 51 ms compared to YOLOv5, with an inference latency of 66.4
ms, highlighting its efficiency for high-mobility networks. Additionally, the proposed frame-
work effectively reduced communication cost by 88.75% compared to centralised learning and
57.87% compared to baseline FL, showcasing its ability to optimise resource efficiency in dis-
tributed settings, addressing challenge C3. The proposed framework integrated the SD-FedAVG
aggregation mechanism to improve prediction accuracy, addressing challenge C1. Furthermore,
this robust aggregation reduced the HO failure rates by up to 7.6% under worst-case condi-
tions, demonstrating resilience and stability. Integrating multi-modal fusion with semantic-
aware lightweight models and robust aggregation, the SFBP framework successfully balances
computational efficiency, communication overhead, and prediction accuracy, making it highly
applicable for next-generation wireless networks.

Chapter 5 introduced the HNFL framework, dealing with the challenges C1 and C3. This
hybrid model synergised the computational efficiency of SNNs with the dynamic temporal learn-
ing capabilities of LSTM networks for outdoor HAR using wearable sensor data. The proposed
hybrid model integrated spiking layers for event-driven processing with LSTM layers adept at
capturing temporal dependencies, addressing the challenge of multi-modal fusion. The HNFL
framework is evaluated on two publically available datasets: the UCI for controlled indoor set-
tings and the Real-World dataset for diverse and unpredictable outdoor scenarios. The sim-
ulation results showcased its robustness in handling both simple and complex environments.
Specifically, the S-LSTM outperformed traditional LSTM models, achieving a 1.06% increase
in accuracy for indoor environments and an impressive 3.84% improvement in outdoor set-
tings. Moreover, energy efficiency, a critical component of challenge C3, was another notable
outcome of this work. The S-LSTM model demonstrated a remarkable 32.30% improvement in
energy efficiency compared to LSTM models, making it highly suitable for resource-constrained
edge devices. Additionally, personalisation through fine-tuning the global model with local data
further enhanced performance, yielding an average accuracy improvement of 9% across partic-
ipants. This contribution exemplified the potential of hybrid neuromorphic architectures in FL
and provided practical insights into addressing the dual challenges of data diversity and resource
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efficiency in HAR applications.
Finally, Chapter 6 introduced the FFQ framework, which addresses C2 and C3 by leveraging

advanced signal processing, feature engineering, and model compression techniques. Unlike the
architectural innovations of the HNFL framework in Chapter 5, FFQ focuses on computational
and communication efficiency through signal processing, feature fusion, and model compres-
sion. The proposed framework combines statistical and differential features with processed CSI
data, providing a contextual understanding for navigating varied environmental conditions. Ad-
ditionally, FFQ framework also includes a FedDist-based adjustment mechanism that reduces
overfitting by aligning model updates according to neuron divergence. This approach ensures
improved model robustness in federated settings. Moreover, the framework employed quanti-
sation with QAT, reducing computation precision to 16-bit or 8-bit formats while maintaining
competitive accuracy. Evaluation results demonstrated the effectiveness of FFQ in improving
activity classification accuracy and energy efficiency. Feature fusion contributed to an improve-
ment of 4.29% in multi-class HAR scenarios and 5.55% in binary fall detection tasks compared
to models without fusion. However, model compression introduced a trade-off between accu-
racy and efficiency. While 16-bit quantisation resulted in minor accuracy reductions of 1.61%
for multi-class and 2.88% for binary tasks, it achieved a 47% reduction in communication over-
head. For 8-bit quantisation, the trade-off was more pronounced, with a 3.84% and 5.98%
accuracy reduction, respectively, but an impressive 71% reduction in communication overhead.
This contribution showcased how pre-processing, feature fusion and quantisation techniques can
drive the adoption of FL in privacy-sensitive, non-invasive HAR systems, making it a valuable
addition to real-world indoor applications.

7.2 Limitations and Future Research Direction

This thesis has addressed the three critical challenges in FL, offering innovative solutions for
data diversity, adversarial robustness, and resource efficiency. Despite these contributions, sev-
eral areas remain unexplored, paving the way for future research to build upon the current find-
ings. This section outlines potential directions for enhancing FL frameworks by addressing the
identified limitations, exploring emerging privacy-preserving techniques, and tackling new chal-
lenges. These directions aim to refine the scalability, robustness, and applicability of FL further
across diverse real-world scenarios.

Privacy and security remain a critical challenge in FL, with DP being a widely used tech-
nique for safeguarding sensitive data. While DP effectively balances privacy and model util-
ity, its reliance on noise injection can degrade accuracy, particularly in resource-constrained or
highly sensitive applications. Emerging model encryption techniques and quantum key distribu-
tion (QKD) offer promising alternatives to address these limitations. HE enables computations
on encrypted data, ensuring privacy throughout the training process. Similarly, QKD provides
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a theoretically unbreakable method for secure communication between nodes. However, these
techniques have significant computational and communication overheads, potentially limiting
their scalability in practical FL deployments. Future research will conduct a thorough compu-
tational complexity analysis of these methods, exploring optimisations to make them viable for
large-scale FL systems while maintaining a balance between security, efficiency, and accuracy.

Another critical limitation of this research lies in the scope of data and update mechanisms
considered. The proposed frameworks were evaluated using data from a limited number of
edge nodes, ensuring controlled heterogeneity. Additionally, the research primarily employed
synchronous update mechanisms, where all participating nodes were required to complete local
training before aggregation. While this approach simplifies implementation and analysis, it does
not account for the straggler effect, delays caused by nodes with slower computational capabil-
ities or unstable network connections. Such scenarios can significantly impact system perfor-
mance and convergence time in real-world deployments. Future investigations should focus on
scaling the analysis to more extensive and diverse edge networks and exploring asynchronous
update strategies to mitigate the straggler effect. This would provide deeper insights into the
robustness and efficiency of the proposed frameworks under realistic operational constraints.

Another limitation of the current research is the absence of an incentive mechanism to en-
courage active participation in model training, particularly for those contributing high-quality
updates. In FL, the heterogeneity of client data and computational capabilities often leads to
varying contributions to the global model’s performance. Without a proper incentive mecha-
nism, there is little motivation for clients to participate actively or to ensure the quality of their
local updates. Incorporating incentive mechanisms could improve client engagement and en-
hance the system’s overall robustness and efficiency by prioritising clients’ contributions with
valuable updates. Future research will explore dynamic incentive models that reward nodes
based on the quality and relevance of their updates. These mechanisms will integrate game the-
ory and reinforcement learning techniques to balance fairness and efficiency while maintaining
privacy and resource constraints.

Another limitation of the current research lies in the assumption of homogeneous model ar-
chitectures across all clients during aggregation. In real FL scenarios, edge nodes often have
varying computational resources, sensor types, and data characteristics, making it impractical
to enforce a single, unified model architecture across all participants. This constraint limits the
flexibility and applicability of the existing frameworks, especially in settings involving diverse
hardware or multi-modal data. Future research can also focus on developing aggregation meth-
ods that can seamlessly integrate updates from heterogeneous model architectures. Techniques
such as meta-learning, cross-model compatibility layers, or shared latent space representations
can be explored to enable effective aggregation while preserving the unique contributions of
each client. This direction would enhance the scalability and adaptability of federated learning
systems for diverse, real-world environments.
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A critical limitation of the current frameworks is the absence of explainability mechanisms
essential for interpreting and understanding the decisions made by models. In many real-world
applications, such as healthcare, energy management, and wireless communications, providing
insights into why a model made a specific prediction or decision is crucial for building trust and
facilitating adoption. Explainability is particularly challenging in FL due to the decentralised na-
ture of the system, where local data remains private, and only model updates are shared. Future
research can explore developing lightweight and privacy-preserving explainability techniques
tailored for FL. Methods such as federated feature attribution, model interpretability layers, or
distributed explainable AI (XAI) frameworks could be explored to provide transparency with-
out compromising client privacy. Incorporating explainability in FL will enhance user trust and
enable stakeholders to identify potential biases or errors in the system, paving the way for more
reliable and ethical applications.

Another promising area for future exploration is incorporating multi-modal transformer
models into the FL paradigm. With their self-attention mechanisms, transformers have shown
remarkable success in capturing complex relationships across diverse data modalities, such as
text, images, and time-series signals. Integrating such models into FL frameworks could en-
hance the ability to process and fuse multi-modal data in a decentralised setting, enabling richer
feature extraction and improved predictive performance. However, applying transformers in
FL introduces new challenges, such as high computational and memory demands, which could
strain resource-constrained edge devices. Future research will investigate the techniques to op-
timise transformer architectures for FL, such as parameter sharing, pruning, quantisation, and
efficient attention mechanisms.
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