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Abstract 

Introduction 

Individuals with ANCA-associated vasculitis (AAV) are at high risk of severe 

infections. Using prognosis research methodology, this thesis will explore the 

incidence of severe infection, examine glucocorticoid exposure as a prognostic 

marker for severe infection and will develop prognostic models to predict severe 

infection events: the occurrence of first severe infection after diagnosis and 

early mortality following a severe infection event. Subsequent chapters will 

examine Covid-19 in AAV patients including prognostic factors for severe disease 

and the impact of SARS-CoV-2 vaccination in AAV patients treated with 

rituximab. 

Methods 

Diverse datasets were utilised to address the thesis aims. Novel semantic web 

technology was deployed to federate multiple European AAV registries to 

determine severe infection incidence. Data linkage was used to develop a large 

AAV dataset using national Scottish routinely-collected health data for the 

severe infection prognostic marker and prognostic modelling studies. A bi-

national cohort of AAV patients with Covid-19 was developed through the 

contribution of vasculitis clinicians throughout the UK and Ireland. SARS-CoV-2 

vaccination data was derived from the AAV sub-group of the UK-wide 

multicentre multi-disease OCTAVE study of immunosuppressed individuals. For 

the prognostic modelling studies, modern prediction methodologies were 

applied. 

Results 

Severe infection incidence was high, especially in the first year after diagnosis. 

Glucocorticoid exposure thresholds above 10 mg daily all had a substantial 

positive association with severe infection. Multivariable models were developed 

with good predictive ability for both severe infection events and early mortality 

following severe infection. Prognostic factors for severe Covid-19 included 
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immunosuppressive agents. The humoral immune response to SARS-CoV-2 

vaccination was severely attenuated in AAV patients compared to controls. 

Discussion 

Through applying prognosis research methodology, this thesis quantified the 

incidence of severe infection, identified prognostic factors and developed 

prognostic models for severe infection in individuals with AAV. Prognostic factors 

relating to Covid-19 were determined. 
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1 Introduction 

1.1 Overview 

Individuals with ANCA-associated vasculitis (AAV) are recognised as being at high 

risk of severe infections. This thesis will explore prediction epidemiology themes 

relating to severe infection in this population, guided by a prognosis research 

framework and associated methodology. The incidence of severe infections, 

prognostic factors and prognostic modelling will be investigated. The following 

introductory chapter will give context to the disease, including its history, 

biology and clinical management. Adverse outcomes will be discussed, including 

a detailed review of the epidemiology of severe infections in AAV. Finally, the 

PROGRESS framework, which delineates concepts in prognosis research, will be 

described, providing a conceptual structure on which the subsequent research 

studies described in the thesis are based. 
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1.2 What is ANCA-associated vasculitis? 

The vasculitides are a heterogeneous set of over 25 distinct conditions with a 

core pathological common feature: inflammation in the blood vessel wall. 

Specifically, this is the presence of inflammatory leukocytes in the vessel wall 

with associated reactive damage to the vessel. Disruption of mural structures, 

leading to bleeding and loss of luminal patency due to inflammation and 

clotting, result in downstream tissue ischaemia and necrosis. The vasculitides 

are multiorgan diseases with heterogenous presentations. They are often serious 

and can result in death. These 25 separate entities are classically groups into 

different categories, primarily based on the size of affected blood vessels: small, 

medium and large vessel vasculitis. These categories are described in detail in 

the 2012 Revised International Chapel Hill Consensus Conference Nomenclature 

of Vasculitides (2012 CHCC) (Jennette et al., 2013).  

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) group of 

vasculitides, that typically affects small vessels, from small arteries, through 

arterioles and capillaries to venules. It is therefore classified as a small vessel 

vasculitis (SVV). It is associated with serum ANCA or a phenotypically identical 

vasculitis but without ANCA. AAV can affect any blood vessel in the human body, 

therefore a wide range of clinical manifestations occur with substantial 

variability. AAV is among the most severe of the vasculitides and, untreated, is 

effectively universally fatal. Three main clinicopathological phenotypes are 

recognised: microscopic polyangiitis (MPA), granulomatosis with polyangiitis 

(GPA) and eosinophilic granulomatosis with polyangiitis (EGPA) (Sinico and 

Guillevin, 2019). 

ANCAs are autoantibodies, predominantly IgG antibodies, directed against 

antigens predominantly expressed in the cytoplasm of neutrophils. The two most 

clinically relevance and well recognised antigens are Proteinase 3 (PR3) and 

myeloperoxidase (MPO). AAV can be classified in relation to which ANCA subtype 

is expressed. ANCA-negative AAV also occurs, but is clinically and pathologically 

indistinguishable from ANCA-positive AAV. ANCAs are discussed in more detail in 

section 1.7. 
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1.3 History 

The recognition of MPA, GPA and EGPA as distinct conditions occurred over the 

first half of the twentieth century. The discovery of these entities began in the 

nineteenth century, with the identification of two clinical phenomena associated 

with vasculitides: purpura and arteritis. Purpura is a skin or mucous membrane 

rash due to bleeding from small blood vessels. In vasculitis this localised 

bleeding is caused by necrotising inflammation of small blood vessels. In 1808 

Robert William, a dermatologist, described purpura associated with systemic 

features. Later in the 1800s, Eduard Henoch and Johann Schönlein described 

cases of children with purpura that was typically associated with abdominal 

pain, joint pain and nephritic syndrome. These children most likely had IgA 

vasculitis (previously termed Henoch-Schönlein purpura [HSP]) (Sinico and 

Guillevin, 2019). Later the renowned Canadian physician William Osler described 

a series of cases of purpura with associated multisystem features such as 

epistaxis, arthritis, pulmonary haemorrhage, iritis and nephritis. It is highly 

likely that some of the cases described in Osler’s series had a systemic vasculitis 

such as AAV (Osler, 1914). 

In 1866, Adolf Kussmaul, a physician, and his pathologist colleague, Rudolf 

Maier, described the first known account of a patient with systemic necrotising 

arteritis. They described the condition as periarteritis nodosa due to gross 

inflammatory nodular lesions affecting the wall, and possibly the surrounding 

tissues, of medium sized arteries (Sinico and Guillevin, 2019). Due to transmural 

inflammation later being recognised as a key feature, the condition became 

known as polyarteritis nodosa (PAN) (Dickson, 1908). For many decades, these 

terms were used to describe a multitude of diseases associated with arteritis, 

which were later considered to be distinct entities. 

In 1923, a microscopic form of periarteritis nodosa was described by Friedrich 

Wohlwill, a German neurologist and pathologist (Wohlwill, 1923). This was later 

confirmed by Davson and colleagues as pathologically distinct from PAN 

(Wainwright and Davson, 1950). This was due to specific small arteries being 

affected: arterioles, capillaries and venules. Subsequently a link between 

arteritis and SVV associated with purpura, pulmonary haemorrhage and 

glomerulonephritis began to be established. Following on from Wohlwill’s 
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description, a variety of conditions were identified that had characteristics 

similar to PAN but had unique findings that merited separate diagnoses. These 

included Wohlwill’s description of what was essentially MPA (Wohlwill, 1923), 

Wegener’s granulomatosis (later GPA) (Wegener, 1939), Churg-Strauss syndrome 

(later EGPA) (Churg and Strauss, 1951) and Kawasaki disease (Kawasaki, 1967). In 

the 1950, Godman and Churg grouped the sub-diagnoses of AAV together as 

related entities and separate from PAN (Godman and Churg, 1954). It was in this 

article that the term Wegener’s Granulomatosis was formalised. They proposed 

MPA, GPA and EGPA likely shared common underlying pathogenesis. In the 1980s, 

ANCA were discovered: initially termed anticytoplasmic antibodies or ACPA. This 

confirmed that MPA, GPA and EGPA were biologically related and therefore 

separate entities to PAN, which was found to be ANCA-negative (van der Woude 

et al., 1985). 

Wegener and the Nazis 

In 2011, a group of vasculitis academic clinicians representing multiple nations 

and medical specialties published an explanation for the proposed alternative 

name for Wegener’s Granulomatosis. The new name was Granulomatosis with 

Polyangiitis. This was in the spirit of a shift from historic honorific eponyms to 

names which better represented the clinical features, aetiology or pathogenesis 

of diseases. The move was prompted by evidence that Dr Friedrich Wegener was 

a member of the Nazi party before and during World Ward II and has close 

association with various Nazi organisations. Though his personal views are not 

known, Wegener had close professional relationships with prominent Nazis. 

Before the war, his head of department at the University of Breslau was Martin 

Staemmler, a well-known author of racial hygiene texts. During the war, 

Wegener was stationed in Lodz, Poland as an army pathologist. There is evidence 

that Wegener performed autopsies on Jews who did not survive transport from 

the Lodz ghetto in Poland to the nearby death camp at Chelmno (Falk et al., 

2011; Woywodt et al., 2006). 

Published in 2013, eosinophilic granulomatosis with polyangiitis was used in the 

2012 CHCC as a more descriptive term for Churg-Strauss syndrome (Jennette et 

al., 2013). 
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1.4 Nomenclature and classification 

Classification is a process that uses patients characteristics to group them in 

standardised classes (see definitions below). Classification in the field of 

vasculitis is challenging. AAV can be categorised into distinct clinicopathological 

entities. At a population level, this represents classification, while it would 

represent diagnosis at the level of an individual patient. These classes or 

diagnoses include microscopic polyangiitis (MPA), granulomatosis with 

polyangiitis (GPA) and eosinophilic granulomatosis with polyangiitis (EGPA). 

Organ limited AAV is recognised, such as renal limited vasculitis (RLV), however 

RLV can be considered a form of organ limited MPA. Notably MPA, GPA and EGPA 

can have pathologically identical features. GPA and EGPA can be pathologically 

distinguished from MPA due to the presence of necrotising granulomatous 

lesions. Such lesions most frequently occur in the respiratory tract. Granulomas 

do not occur in MPA. EGPA can be distinguished from GPA due to the presence of 

asthma and eosinophilia. As described above in section 1.2, ANCA can also be 

used to classify AAV.  
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Definitions around classification 

Nomenclature: a system of names and definitions of diseases 

Definition: the underlying disease process of the disease in question, typically 

describing underlying pathology. 

Diagnosis (noun): the name of a disease. 

Diagnosis (process): a process by which an individual patient is allocated a 

diagnosis. The criteria used may be similar to those used for classification. 

Diagnostic criteria often focus on establishing combinations of features that 

indicate a disease is present with a high degree of certainty. 

Classification: a process by which patients are organised into well-defined 

groups. Primarily to allow a homogeneous group of subjects to be correctly 

identified for research. This may be similar to the diagnostic process, but differs 

in important ways. Classification criteria typically exclude disease 

characteristics that are common across different diseases. This is because such 

characteristics may not help differentiate different diseases for inclusion in a 

research study. Common characteristics may, however, facilitate identification 

of an individual with a disease and therefore are an important component of 

diagnostic criteria. Classification criteria are not appropriate to use for obtaining 

a diagnosis in an individual patient. 

1.4.1 Nomenclature: Chapel Hill Consensus Conference 

The first International Chapel Hill Consensus Conference on the Nomenclature of 

Systemic Vasculitides took place in Chapel Hill, North Carolina (Jennette et al., 

1994). The principal aims of the meeting were to reach agreement on the names 

of non-infection related vasculitides and to derive definitions for these 

conditions. 

2012 CHCC led to further clarification on the nomenclature of vasculitis. Similar 

to the output of the previous conference, it did not, however, include criteria 

for allocation groups of patients into these classes (classification) or for the 
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diagnosis of individuals (Jennette et al., 2013). AAV represents a group of SVV, 

but notably it spans more vessels sizes than the other forms of SVV, as depicted 

in Figure 1-1. 

 

Figure 1-1 | Diagram adapted from the 2012 Chapel Hill Consensus Conference Article 

 

An additional feature of 2012 CHCC was the incorporation of ANCA serotype into 

the diagnosis, for example PR3-ANCA GPA. The rationale was that both 

clinicopathological phenotype and serotype can influence classification, 

diagnosis and treatment of AAV patients. 

1.4.2 American College of Rheumatology 1990 Criteria 

The American College of Rheumatology 1990 Criteria for the Classification of 

Vasculitis (ACR 1990) was the result of the first major project conducted to 

formally classify vasculitis using prospective research data. A thousand patients 

were included from 47 rheumatology centres across the United State, Canada 

and Mexico. The objective was to improve communication among clinicians who 

care for vasculitis patients and to standardise research studies across different 

settings, thus facilitating comparison of studies. The initial scope was to 

establish criteria that would differentiate the different vasculitides. Criteria to 
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distinguish individuals with vasculitis from those without any form of vasculitis 

were not attempted. Seven forms of vasculitis were included in the study, two 

of which are currently recognised forms of AAV: EGPA (then Churg-Strauss 

syndrome) and GPA (then Wegener’s Granulomatosis). The remainder were: PAN, 

hypersensitivity vasculitis, HSP, giant cell arteritis (GCA) and Takayasu arteritis. 

Of the 1,000 patients included, 85 had GPA, 20 had EGPA and 213 were excluded 

for having a form a vasculitis different to those listed above, such as rheumatoid 

arthritis (RA) or Kawasaki disease. 807 were ultimately included in the analysis. 

Two statistical methods were used to create the criteria after shortlists of the 

most discriminating variables were created. The first was labelled the 

‘traditional method’ and involved clinicians selecting different combinations of 

shortlisted variables where a subject would be required to have a certain 

number of variables on the list present in order to be confirmed as having the 

disease in question. The second method was the ‘classification tree’ where the 

most discriminating variable first divides the study population into group, 

followed by the next most discriminating value for that branch (Hunder et al., 

1990). Ultimately the include features for GPA were: evidence of red cells in 

urinary sediment, abnormal chest radiograph features typical for GPA, oral 

ulcers or nasal discharge, and granulomatous inflammation on biopsy. Two or 

more of these variables being present was consistent with 88.2% sensitivity and 

92.0% sensitivity with the traditional methodology. The classification tree 

approach achieved very similar results with the same variables and the addition 

of haemoptysis (Leavitt et al., 1990). The decision tree approach yielded very 

high sensitivity and specificity for EGPA with the relatively simple criteria of 

eosinophilia >10% and either asthma or allergy confirming the diagnosis (Masi et 

al., 1990). Challenges around applying ACR 1990 in the modern era include that 

the criteria were published before MPA was formerly acknowledged as a distinct 

form of AAV. As MPA is not included in the ACR criteria, it cannot be used to 

identify or exclude MPA. The data on which ACR 1990 is based likely had, what 

would now be recognised as, MPA patients in the GPA group. It is entirely 

possible that certain MPA cases would be classified as GPA using ACR 1990. An 

additional challenge was the advent of ANCA serotype testing, which latterly has 

been shown to be useful in classifying and diagnosis AAV sub-types, as described 

in section 1.4.3. 
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1.4.3 EMA algorithm 

Published in 2006, the European Medicines Association algorithm aimed to group 

the CHCC, ARC 1990 and the Lanham criteria, and to resolve inconsistencies 

between these approaches. At that time the ACR and CHCC approaches were 

widely used, but no consensus regarding how they should be applied existed. 

Clinician interested in vasculitis met at the European Medicine Agency in 2004 

and in 2006 to develop this algorithm, which can be applied to individuals with a 

diagnosis of AAV or PAN. The algorithm first identifies EGPA, either via the 

stringent and non-validated Lanham criteria (asthma, eosinophilia and vasculitis 

of at least two organs) or ACR 1990 criteria (Emmi et al., 2023). It then applies 

ACR 1990, CHCC and the presence of positive ANCA serology to positively 

identify, first GPA, then MPA. If all these criteria are negative then the patient 

may be classified as classic PAN if consistent histology or imaging are present 

(Watts et al., 2007). 

1.4.4 2022 ACR/EULAR 

The American College of Rheumatology (ACR) 1990 criteria were widely adopted 

and considered effective. The consensus that was achieved around classification 

aided the success of international multicentre randomised controlled trials 

(RCTs). However, there was an increasing strong case being put for revised 

classification criteria. Reasons included the new widespread availability of ANCA 

testing, increased use of cross-sectional imaging which provides new potential 

classification variables, the establishment of MPA as a clinical phenomenon and 

the declining sensitivity of the ACR 1990 criteria. The declining sensitivity may 

be related to more individuals being diagnosed with modern diagnostic tests 

including imaging and ANCA. When the ACR criteria were applied to the DCVAS 

cohort (described below), one-third of patients were misclassified (Seeliger et 

al., 2017). 

An international project to develop updated criteria was led by the ACR and the 

European Alliance of Associations for Rheumatology (EULAR), resulting in the 

2022 ACR/EULAR criteria. The criteria were developed over five stages using 

modern methodology. The GPA development set had 578 GPA cases and 652 

comparators. Ten data items were included in the score for GPA including nasal 



1 28 
 
involvement and PR3 positivity as factors increasing the likelihood of a GPA 

diagnosis and elevated eosinophil count are a factor decreasing the likelihood. A 

score of five or more allows classification as GPA with 93% sensitivity and 94% 

specificity (Robson et al., 2022). Similar scores were developed for other 

vasculitides including MPA and EGPA. The MPA score was developed with 149 

cases and 408 comparators, it yielded sensitivity 91% and specificity 94% 

(Suppiah et al., 2022). The EGPA score was developed with 107 cases and 450 

comparators, it yielded sensitivity 85% and specificity 99% (Grayson et al., 2022). 

1.5 Epidemiology 

AAV represents a set of rare diseases. A comprehensive review of AAV 

epidemiology by Watts et al reported descriptions of the incidence rate of AAV 

that ranged from 13 cases per million per year in reports from Germany and 

Spain to 20 per million per year in reports from Sweden and Japan. In the UK, 

Germany and Australia, GPA was more common than MPA, which in turn, was 

more common than EPGA. GPA was also more common in a report from Western 

Montana, USA. Other nations including Greece, Spain, Canada and Japan 

describe higher incidence rates of MPA compared to GPA. A possible 

phenomenon based on latitude may be influencing GPA and MPA incidence – GPA 

seems to be more common in Northern European countries and MPA in southern 

Europe. This latitudinal effect may also have been reflected in the southern 

hemisphere also, in New Zealand data (Watts et al., 2015). A more recent report 

from Northern Norway describes incidence for AAV overall was 24.7 per million 

per year over 15 years from 1999 to 2013. For the individual AAV diagnoses rates 

were 15.6, 6.5 and 2.7 per million per year for GPA, MPA and EGPA respectively, 

again possibly reflecting a latitudinal phenomenon. Prevalence rates were 350 

per million for AAV overall and 261, 58 and 33 per million for GPA, MPA and 

EGPA respectively (Nilsen et al., 2020). A recent report from Minnesota, USA 

described a 33 per million per year incidence rate for AAV overall and a 

prevalence of 421 per million (Berti et al., 2017). 

There is evidence that the incidence of AAV increased in the 20 years leading up 

to the turn of the century. The report by Nilsen et al from Northern Norway 

showed an increasing trend in incidence over 15 years from 1999 to 2013. In the 

UK, a report for GPA only described an incidence rate of 1.5 per million per year 
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from 1980 to 1986, with an increase later that decade to 6.1 per million per year 

in 1987 to 1989. Notably the later period coincided with the introduction of an 

ANCA assay. The clinical phenotype of patients did not appear to change with 

the exception of less severe kidney involvement at the time of diagnosis and 

associated improved renal outcomes (Andrews et al., 1990). The increased 

incidence rate over this time period likely relates to improved recognition in the 

context of the introduction of classification criteria and ANCA testing. Increasing 

rates of AAV appeared to stabilise around 2000, suggesting there is not an 

underlying aetiological cause for the increased incidence (Watts et al., 2022). 

A study utilising DCVAS data suggested there may be differences in AAV sub-type 

incidence relating to ethnicity. MPO-ANCA was more common in Southern 

Europeans, Japanese and Chinese patients, while PR3-ANCA was more common 

in the other groups studied (Pearce, Craven, et al., 2017). An American study 

from Chapel Hill, indicated that AAV was less common in Black patients (Cao et 

al., 2011). A UK study did not find a difference when comparing a White 

population to a Black/Minority Ethnic population in terms of AAV incidence 

(Pearce, Grainge, et al., 2017). 

There are fewer prevalence studies published relating to AAV when compared to 

incidence studies. On review of the literature, Watts found that prevalence 

estimates ranged from 46 to 184 per million population (Watts et al., 2015). This 

has increased in recent decades, likely reflecting improved case identification 

and a possible reduction in mortality due to earlier identification and better 

therapies. 

Incidence is strongly related to age. A study by Pearce and colleagues found 

overall incidence of 23.1 per million person-years, but this varied substantially 

according to age. For age groups 16 to 39 years, 40 to 54 years, 55 to 69 years, 

70 to 84 years and 85 years or older the incidence rates were 3.0, 12.2, 39.7, 

86.4 and 92.4 per million person-years (Pearce et al., 2016). There is variability 

in the reported age of peak incidence however, with some studies reporting it to 

be between 55 to 64, 65 to 74 or over 75 years (Watts et al., 2015). Incidence 

does not vary substantially depending on sex, though some studies report a 

possible male predominance (Pearce et al., 2016). 
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1.6 Aetiology 

Autoimmune conditions classically are described as having both genetic and 

environmental determinants. The aetiology of AAV is described in such terms yet 

a complete understanding of this interaction remains elusive. 

1.6.1 Genetics 

The genetics underlying AAV have been challenging to investigate due in part to 

the rarity of the condition, occurrence mainly in adults, no clear sex 

predominance, lack of evidence of Mendelian inheritance, rare familial 

clustering and seeming absence of monogenic variants (Trivioli et al., 2022). 

Therefore, AAV genetics are likely complex and polygenic. A significant number 

of candidate-gene association studies have been undertaken, yielding the 

identification of some genetic risk loci for AAV. Genome-wide association studies 

have been more fruitful, confirming some of these loci and establishing several 

new potentially important variants. Current understanding suggests that the 

human leukocyte antigen (HLA) region is the most important with respect to 

genetic risk. The HLA complex, located on chromosome 6, encodes membrane-

bound proteins crucial for regulating the immune system. Polymorphisms in this 

region are implicated in the pathogenesis of many autoimmune diseases. In AAV, 

HLA polymorphisms associate more strongly with ANCA subtype as opposed to 

clinicopathological diagnoses. Other sites of genetic variation of potential 

importance in AAV include: PRTN3, which encodes PR3; SERPINA1, which 

encodes α1-antitrypsin, an inhibitor of PR3 and other serine proteases; PTPN22 

which encodes an enzyme which negatively controls T cell activation; CTLA4, a 

protein similarly involved in T cell activation; and BACH2 which encodes a 

transcriptional repressor involved with the function of both B cells and 

regulatory T cells (Trivioli et al., 2022). Epigenetics may also be important with 

increased histone modifications and altered methylation status being present on 

the PRTN3 and MPO genes of AAV subjects compared to controls (Jones et al., 

2017; Yang et al., 2016). 
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1.6.2 Environment 

An extensive systematic mapping review by Scott and colleagues explored 

potential environmental aetiological factors for AAV (Scott et al., 2020). That 

disease occurs later in life and shows seasonal and temporal peaks points to an 

important role for environmental factors. Seasonality studies consistently report 

clustering of disease onset at particular times, though there is some variability 

in the timing of such clustering. Most report peak onset of AAV in winter (Li et 

al., 2018). Increased latitude has been demonstrated in several studies to be 

associated with increased GPA and EGPA incidence, with lower ultraviolet 

radiation exposure and thus lower levels of vitamin D synthesis potentially 

playing a role in AAV pathogenesis (Gatenby et al., 2009). Rural versus urban 

living has been examined with respect to AAV incidence. Studies have reported 

mixed effects overall, but a large study from Scotland representing a complete 

national cohort found that there was increased incidence of GPA, but not MPA, 

in rural areas (Scott et al., 2020; Aiyegbusi et al., 2021). Environmental dust 

exposure likely has a role in AAV pathogenesis, with the largest body of evidence 

supporting an effect of silica exposure. A meta-analysis in 2013 reported a 2.5 

times increased risk of AAV in individuals ‘ever exposed’ to silica (Gómez-Puerta 

et al., 2013). Increased AAV incidence has been noted after several major 

earthquakes which resulted in increased environmental levels of silica, such as 

the Great East Japan earthquake in 2011 (Takeuchi et al., 2017). Other 

potentially important biological effects of such natural disasters, such as 

psychological stress, have not been explored. Associations for other 

environmental exposures such as industrial solvents and carbon monoxide have 

been identified in some studies, but consensus has not developed in the 

literature. Interaction with farm animals or antigens from soil have similarly 

been suggested, but not consistently replicated (Scott et al., 2020). 

Given that geographic, seasonal and temporal clustering has been observed it is 

considered likely that some form of infection has an aetiological role in AAV. The 

strongest evidence for the role of a microorganism is for chronic Staphylococcus 

aureus nasal colonisation, first identified in an observational cohort study in 

which colonisation was associated with relapse (Stegeman et al., 1994). This has 

subsequently been replicated. Weak associations between seropositivity for 

other infections and AAV have been described, but not substantially replicated. 
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These include cytomegalovirus (CMV), Chlamydia pneumoniae, Helicobacter 

pylori and Toxoplasma gondii (Scott et al., 2020). 

Various drugs have been associated with AAV, but drug-induced AAV is usually 

considered a separate entity to primary AAV. Such drugs include 

Propylthiouracil, hydralazine, minocycline and levamisole – an anti-helminthic 

agent often used an adulterant for recreational cocaine. Drug-induced AAV 

typically runs a milder course, improves with drug cessation and auto-antibodies 

fall with drug cessation. Occasionally severe organ involvement occurs and 

sometime immunosuppression is utilised (Grau, 2015). 

1.7 Pathogenesis 

1.7.1 MPO and PR3 

The blood vessel inflammation and necrosis that leads to organ damage in AAV 

are mediated through the pathogenic role of ANCA directed against PR3 and 

MPO. PR3 and MPO are both enzymes found in azurophil granules in neutrophils. 

PR3 is an elastinolytic serine protease which catabolises various human proteins. 

In addition to being expressed in neutrophil granules, PR3 is also expressed on 

the cell surface of some healthy individuals and at varying frequencies. This is 

genetically determined and a predicative factor for developing AAV (Witko-

Sarsat et al., 1999; Schreiber et al., 2003). One hypothesis is that the loss of 

self-tolerance in individuals who exhibit PR3 membrane expression leads to the 

development of AAV (Wiik, 2000). MPO is a peroxidase enzyme which exerts 

antimicrobial activity though the formation of highly reactive chloride-based 

oxidants. MPO results in the green colour of pus and due to its bright colour it 

was initially called verdoperoxidase (Klebanoff, 2005). There is evidence that 

MPO adheres to the neutrophil cell surface and has cytokine and cell adhesion 

mediation properties, though whether these properties occur in healthy 

individuals and whether they contribute to AAV pathogenesis is unknown (Lau et 

al., 2005; Johansson et al., 1997). 

1.7.2 Development of ANCA 

MPO and PR3 are not typically exposed to the immune system. When neutrophils 

degranulate they are promptly inhibited: MPO by ceruloplasmin and PR3 by α1-
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antitrypsin. There are several hypotheses attempting to explain the 

development of autoantibodies to neutrophil self-antigens. One explanation is 

prolonged exposure of the immune system to the proteins due to defective 

neutrophil apoptosis or diminished elimination of apoptotic neutrophil 

fragments. Another is molecular mimicry, whereby antigens from 

microorganisms bear similar molecular structure to host proteins, leading to 

antibodies directs at the infectious agent targeting MPO or PR3. Auto-antibodies 

against LAMP2 (anti-LAMP2), a neutrophil protein expressed on the cell surface 

may play a role in the molecular mimicry theory. Most severely affected AAV 

patients are positive for anti-LAMP2 and these antibodies decrease rapidly 

following successful induction immunosuppression (Kain et al., 2012). Rats 

injected with anti-LAMP2 develop a pauci-immune focal necrotizing 

glomerulonephritis (FNGN) – the pathological hallmark of AAV-

glomerulonephritis. The most common human LAMP2 epitope shows complete 

homology for FimH, an adhesin protein that enables Escherichia coli to attach to 

host epithelia. Rats immunised with FimH developed anti-LAMP2 and associated 

pauci-immune FNGN (Kain et al., 2008). A further proposal is the complementary 

peptide hypothesis which is less well developed. Complementary PR3 (cPR3) is a 

protein generated from the antisense DNA strand of PRTN3, the gene which 

codes for PR3. cPR3 peptides may be produced after infections, resulting in 

autoantibodies which not only react with cPR3 but also sense PR3 (Pendergraft 

et al., 2004). NETosis is an additional process which may contribute to the 

exposure of self-antigens. Neutrophil extracellular traps (NETs) are extracellular 

threads which trap and kill invading pathogens. They are primarily comprised of 

DNA and various proteins such as MPO and PR3. NETosis is the process of NET 

formation. Evidence for a role in AAV comes from studies of drug-induced AAV 

where causative drugs can induced NETosis (Lood and Hughes, 2017). 

1.7.3 ANCA pathogenicity 

Clinical, animal model and in vitro experiments demonstrate that ANCAs have a 

pathogenic role in AAV. The presence of ANCAs in up to 90% of individuals with 

AAV, their response to treatment and their correlation with disease activity are 

clinical observations consistent with this (Boomsma et al., 2000). That various 

drugs stimulate an AAV phenotype alongside ANCAs further supports a 

pathogenic role. A clinical case of pulmonary renal syndrome in a newborn 
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represents a human model indicating the pathogenic role of ANCA. The mother 

experienced resurgent MPA during pregnancy and cord blood analysis of the 

neonate indicated the cause of disease was placental transmission of MPO-ANCA 

(Schlieben et al., 2005). Mouse models where MPO-ANCA is infiltrated results in 

pauci-immune FNGN (Xiao et al., 2002). PR3-ANCA models have been 

significantly more challenging to develop due to primed murine neutrophils 

expressing minimal surface PR3 and lack of human PR3-ANCA reactivity with 

murine antigens, however, mice with a humanised immune system have been 

shown to develop an AAV phenotype in response to human PR3-ANCA infiltration 

(Little et al., 2012). In vitro incubation of human neutrophils with both PR3 and 

MPO leads to the release of damaging enzymes, oxygen radicals, NETosis and 

promotion of autoimmunity (Falk et al., 1990; Kessenbrock et al., 2009). 

1.7.4 Complement 

Complement activation was initially not thought to play a major role in AAV 

pathogenesis due to the lack of complement deposition in glomerular AAV 

lesions. The alternative complement pathway was, however, shown to be 

important in an experiment where C4 knockout mice developed disease in 

response to MPO-ANCA, while C5 knockout animals did not (Xiao et al., 2007). 

Neutrophils have been shown to be primed in murine models via C5a receptor 1, 

activation of this receptor promotes both ongoing autoimmunity and release of 

reactive oxygen species (Dick et al., 2018). The CLEAR and ADVOCATE 

randomised controlled trials of avacopan, a selective C5a receptor antagonist, 

have shown this therapy to be effective in AAV in humans, confirming the 

fundamental role of the alternative complement pathway (Jayne et al., 2017, 

2021). It has long been recognised that primed neutrophils activate the alternate 

complement pathway in vitro: this likely leads to a amplification loop in AAV 

pathogenesis (Shingu et al., 1992). 

1.7.5 From ANCA to tissue damage 

The above phenomena provide the basis of how the genesis of ANCAs leads to 

the life-threatening tissue damage seen in AAV. Infection or inflammation lead 

to complement or inflammatory cytokines priming neutrophils. This leads to 

ANCA antigens (MPO or PR3) moving from granules to the surface of neutrophils. 
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ANCA, present though mechanisms described above, cause neutrophils to 

activate and degranulate through binding to their antigens. Monocytes can also 

be activated by ANCA, which can lead to granuloma formation in PR3 disease. 

Activated neutrophils stimulate C5a production, creating a positively reinforcing 

feedback loop whereby more neutrophils are recruited and activated. 

Neutrophils adhere to the vascular endothelium. Once activated, they cause 

endothelial destruction through the release of damaging enzymes and reactive 

oxygen species. NETosis enhances endothelial injury. Deposition of PR3 and MPO 

and cytokine release recruit monocytes and autoreactive T cells, increasing 

injury. Spill-over of plasma and coagulation products through the damaged mural 

structures lead to the familiar pathological lesions of fibrinoid necrosis in blood 

vessels and to glomerular crescents. Later, macrophages and T cells remove 

apoptotic neutrophils. Where tissue injury continues, fibroblasts deposit 

collagen leading to fibrosis and sclerosis of the damaged structures (Sinico and 

Guillevin, 2019). 

1.8 Pathology 

AAV is known as a necrotising pauci-immune vasculitis, as it is associated with no 

or few immune deposits, specifically immunoglobulin or complement deposition. 

This distinguishes AAV immunopathologically from immune complex-mediated 

vasculitis and anti-glomerular basement membrane antibody (anti-GBM) disease. 

The pathology of AAV is characterised by segmental neutrophil-dense 

inflammatory and necrotic lesions. Necrotic lesions lead to physical defects in 

the blood vessel wall. This allows the components of plasma to flow from vessels 

into interstitial tissue or adjacent areas, such as the urinary space next to 

glomerular blood vessels and the alveoli associated with alveolar capillaries. 

Thrombogenic proteins, such as tissue factor, are present in interstitial tissue 

and are also released in response to blood vessel damage. This leads to the 

clotting process being initiated around the site of blood vessel necrosis and 

ultimately to fibrin formation, therefore the damage process associated with 

AAV is termed fibrinoid necrosis. A pathological picture typically present is 

leukocytoclastic vasculitis, commonly present in venules and arterioles. 

Leukocytoclastic vasculitis results when invading leukocytes undergo cell death 

leading to a pattern called leukocytoclasia, caused by nuclear fragmentation. 
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Figure 1-2 shows classic histopathological lesions in AAV. It is adapted from 

(Ishizu et al., 2023) and (Almaani et al., 2021) under the terms of Creative 

Commons Attribution-NonCommercial 4.0 License 

(https://creativecommons.org/licenses/by-nc/4.0/). This license requires credit 

to authors (above), a link to the licence (above) and description of any changes 

(below). Sections A. to G. were taken from (Ishizu et al., 2023). Section F. was 

taken from (Almaani et al., 2021), resized and cropped to match the rest of the 

Figure.  

  

https://creativecommons.org/licenses/by-nc/4.0/
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Figure 1-2 | Histopathology of ANCA-associated vasculitis 
Adapted from (Ishizu et al., 2023) and (Almaani et al., 2021) under the terms of Creative Commons 
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/). 
A. Cellular crescent (white arrow) in a glomerulus in MPA (PAMS-HE staining) 
B. Necrotising arteritis in a renal interlobular artery (arrow, elastic Masson staining) 
C. Red cell extravasation and infiltration of neutrophils around renal medulla capillaries in MPA. 
Interstitial fibrin deposition (arrows, HE staining) 
D. Pulmonary GPA (HE staining). Inflammatory cells, including multinucleated giant cells, forming a 
necrotising granuloma (inset: higher power view). 
E. Cellular crescent in glomerulus (arrow), GPA (PAS staining) 
F. Hepatic EGPA (HE staining). Eosinophilic infiltration and fibrinoid necrosis associated with 
injured vessel wall. 
G. Dura mater (HE staining). AAV causing hypertrophic pachymeningitis. Microabscess-like 
inflammatory cell foci (asterisks). 
H. Negative-to-very-weak immunofluorescence for immunoglobulins in a glomerulus, illustrating the 
classic pauci-immune nature of AAV. 
(See abbreviation section for abbreviations of histopathological stains.)  

https://creativecommons.org/licenses/by-nc/4.0/
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1.9 Clinical features 

The clinical signs and symptoms of MPA and GPA have substantial overlap and 

will be discussed first. While EGPA shares many clinical features, there are 

important differences which merit a separate description. 

Theoretically any blood vessel in humans can be involved in GPA and MPA, 

leading to a wide variety of affected organs and resultant diverse presentations. 

Severity is highly variable, with some presenting with mild organ-limited 

disease, but many present with severe organ or life-threatening disease. 

Descriptions such as “non-severe” or “limited” disease have been used in 

reference to AAV initially presenting without obvious major organ involvement. 

However, a large majority of those presenting with such apparently mild disease 

will go on to develop severe organ involvement, therefore the above 

descriptions may have limited clinical utility. The proportion of those presenting 

with such disease is approximately 25%, with symptoms such as polyarthropathy 

and nasal crusting. They are typically younger, female, more likely to have 

recurring disease and more likely to have destructing upper airway disease 

(Stone and Wegener’s Granulomatosis Etanercept Trial Research Group, 2003). A 

summation of organ involvement frequency across AAV sub-diagnoses is 

presented in Table 1-1. 

Table 1-1 | Percentage organ involvement at time of diagnosis in MPA, GPA and EGPA 

 MPA GPA EGPA 

Constitutional 86% 78% 70% 

Cutaneous 30% 35% 50% 

ENT 26% 82% 59% 

Mucous membrane or eyes 13% 38% - 

Respiratory 63% 63% 100% 

Cardiovascular 15% 11% 28% 

Abdominal 22% 19% 35% 

Renal 82% 59% 21% 

Neurological 37% 31% 65% 

ENT = ear, nose and throat. Percentages for MPA and GPA are derived from DCVAS data 
reproduced in (Kronbichler et al., 2024). EGPA data is median percentages in the clinical 
features articles featured in (Sinico and Guillevin, 2019). 

 

Constitutional symptoms are common in AAV, including EGPA. Typical such 

symptoms include anorexia, weight loss, fever, malaise, myalgia and arthralgia. 
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These are often the first to develop and are notably non-specific. As a result, 

the classic presentation of AAV is often vague, at least before more obvious 

organ-specific features develop. Many individuals with AAV are therefore 

misdiagnosed with other more common conditions that can present with similar 

symptoms such as infection, cancer and inflammatory joint disease. 

ENT presentations include hearing loss (both conductive and sensorineural), 

earache, otorrhoea, otitis media, sinusitis, nasal discharge including epistaxis, 

nasal ulcers, oral ulcers and polychondritis. GPA patients are much more likely 

to have destructive disease affecting bone and cartilage leading to saddle nose 

deformity, cranial nerve entrapment and upper airway and retroorbital masses. 

Respiratory manifestations can involve the airways and lung parenchyma. 

Symptoms include breathlessness, cough, haemoptysis, stridor, hoarseness, 

wheeze and pleuritic pain. Examination findings include those of tracheal or 

subglottic stenosis, pleural effusion and consolidation. Interstitial lung disease 

and pulmonary hypertension can occur, more commonly with MPA or MPO-ANCA 

disease, and may represent a separate disease entity (Sebastiani et al., 2020). 

Chest imaging may reveal a diverse set of features such as adenopathy, nodules, 

opacification and patchy or diffuse opacification. 

Kidney involvement in GPA and MPA is classically a rapidly progressive 

glomerulonephritis represented by rising serum creatinine, haematuria, 

proteinuria and hypertension. Urine microscopy typically reveals red cell casts. 

Proteinuria is typically in the sub-nephrotic range. Kidney involvement may be 

severe and require dialysis on presentation. In GPA 20% will have excretory renal 

dysfunction at diagnosis, but this increases over time with around 80% going on 

to have renal involvement (Hoffman et al., 1992). Renal dysfunction is more 

common in MPA at presentation. 

Skin manifestations are common. The classic lesion is palpable purpura – a 

“vasculitic rash”. Other skin presentations from most to least common are 

ulcers, livedo reticularis, nodules and urticaria. Eye involvement may present as 

ophthalmoplegia, episcleritis, scleritis, uveitis, conjunctivitis, corneal 

ulceration, retinal vasculitis, nasolacrimal duct blockage and retro-orbital 

masses. The typical nervous system lesion is mononeuritis multiplex, but central 
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nervous system masses, granulomatous meningeal disease, sensory neuropathy 

and cranial nerve involvement may occur. Venous thromboembolism is more 

common in AAV and may be part of a non-classical presentation. Less common 

presentations include clinically apparent gut involvement, genitourinary 

manifestations and cardiac disease. Pericarditis, myocarditis and dysrhythmias 

can occur (Sinico and Guillevin, 2019). 

EGPA shares many clinical features with GPA and MPA, but there are important 

differences, including the frequency of involvement of various organs. EGPA is a 

systemic vasculitis almost always accompanied by asthma. It is likely to be 

associated with allergic rhinitis or nasal polyps and significant eosinophilia. Any 

organ system can be involved but respiratory manifestations are most common, 

followed by cutaneous. Involvement of the nervous system and heart are more 

prominent than in GPA or MPA. Renal involvement is less common than other 

AAVs but can be severe. It generally manifests in three stages: late-onset severe 

asthma occurs first, sometimes with allergy features; this is followed by lung 

infiltrates and eosinophilia; with features of systemic vasculitis becoming 

apparent later. 

1.10 Diagnosis 

Diagnosis is challenging in AAV. Often patients attend multiple specialists in the 

months leading up to an AAV diagnosis. Pearce et al reported that 20% of 

individuals attended more than one specialist in the period prior to diagnosis 

(Pearce, Hubbard, et al., 2018).  

Jayne described a pathway for vasculitis diagnosis, which can be applied to AAV 

specifically. This first includes identifying a compatible clinical syndrome, which 

often requires a high index of suspicion on the part of the clinician. A chronic 

inflammatory condition for which a diagnosis remains elusive is a typical clinical 

scenario where vasculitides such as AAV should be considered. This is followed 

by non-invasive investigations such as ANCA serology or diagnostic imaging. If 

there is a plausible clinical phenotype with test results supporting the diagnosis, 

then tissue biopsy should be sought to confirm disease histologically. Disease 

mimics and secondary causes should be considered and excluded. Mimics include 

infective endocarditis and paraneoplastic syndromes. Secondary causes of 
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vasculitis include infections such as tuberculosis and drugs such as those 

described in Section 1.6.2. Lastly, clinical observation over time can help 

improving diagnostic certainty (Jayne, 2009). 

Notably there are no published diagnostic criteria for AAV. The use of 

classification criteria has often been extended to diagnosis, beyond their 

intended scope for use in research studies. Classification criteria are described 

in Section 1.4. Such criteria are likely overly specific and poorly sensitive for 

diagnostic purposes, but they may assist clinicians where applied with the 

knowledge that those with an incomplete clinical syndrome may be missed. 

Surrogates that would enable a diagnosis of GPA over MPA include features such 

as destructive processes in nasal cartilage or bone and destructive nodular or 

cavitating lung lesions. These features may be apparent clinically in the case of 

saddle-nose deformity, on endoscopy or on imaging. 

1.11 Management 

Therapy in AAV is classically described in two phases. The remission induction 

phase aims to promptly bring about suppression of disease activity. Intense 

immunosuppressive therapy is typically used, especially in the case of organ or 

life-threatening disease. Disease remission is ideally achieved within three 

months. The induction phase is followed by a maintenance phase, whereby less 

intense immunosuppression is used to prevent relapse of disease. Representation 

of EGPA in important trials of AAV therapy is low, due to the rarity of the 

condition and potential differences in underlying pathogenesis. EGPA will briefly 

be discussed after reviewing remission induction and maintenance therapy for 

MPA and GPA. 

1.11.1.1 Remission induction 

Oral glucocorticoids have been a cornerstone of AAV induction treatment for 

several decades. In combination with other agents, this transformed the outlook 

for AAV patients: AAV was once considered to be universally fatal, whereas now 

the vast majority of patients survive over the course of the first year of therapy 

(Fauci et al., 1971). Intravenous methylprednisolone is typically used at the start 

of therapy, though this is not underpinned by controlled studies. While ongoing 
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high dose oral glucocorticoids are commonly used for ongoing management, 

adverse effects such as severe infections are well recognised. The PEXIVAS trial 

was a two-by-two factorial design RCT including one arm which evaluated 

plasma exchange while the other examined reduced dose glucocorticoid therapy 

(Walsh et al., 2020). It is the largest RCT yet to be performed in AAV. It found 

that a glucocorticoid regimen with a substantially reduced total cumulative dose 

was similar to the standard dose regimen in terms of achieving disease 

remission, but there were fewer severe infection events. Similar results were 

achieved in the LOVAS trial, a multicentre RCT based in Japan (Furuta et al., 

2021). 

Cyclophosphamide, in combination with glucocorticoids, transformed the outlook 

for AAV patients when it was first studied in individuals with GPA in the 1970s. 

Prior to the use of cyclophosphamide, as described above, AAV was considered 

universally fatal. Fauci and colleagues, working at the National Institute for 

Health (NIH) in Bethesda, Maryland, demonstrated that over 90% of 

cyclophosphamide and glucocorticoid treated patients achieved complete 

remission (Fauci et al., 1983). The application of cyclophosphamide has been 

explored in various RCTS. It can be administered by either the oral or the 

intravenous route as a pulsed therapy. These approaches were compared in the 

CYCLOPS trial. There were no significant differences in major outcomes such as 

mortality, renal outcomes or adverse effects. There was a lower cumulative 

dose and less leukopenia in the intravenous group, however there were fewer 

disease relapses in the oral group at 20.8% compared to 39.5% (Harper et al., 

2012). 

B cell depletion using rituximab has been employed in both induction and 

maintenance strategies in AAV. The RAVE and RITUXVAS trials showed that 

rituximab regimens were non-inferior with respect to remission induction 

compared to cyclophosphamide-based regimens. No difference in adverse events 

was detected. RAVE did not enrol individuals with severe renal disease, while 

RITUXVAS did. Notably RITUXVAS included two or three pulses of intravenous 

cyclophosphamide as part of its regimen, therefore there is no RCT evidence 

that rituximab alone has efficacy in the setting of severe renal disease. RAVE 

included patients with relapsing disease where rituximab demonstrated greater 
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efficacy over cyclophosphamide (Stone et al., 2010; Jones et al., 2010). These 

trials are the basis for recommendations that rituximab and cyclophosphamide 

are equally effective at remission induction, except for the setting of relapse 

where rituximab is recommended. 

The C5a receptor inhibitor avacopan represents a significant advance in AAV 

induction therapy. In the ADVOCATE RCT avacopan added in to standard 

induction regimens with minimal glucocorticoid use was compared to a regimen 

utilising a tapering glucocorticoid regimen. Avacopan was non-inferior to 

glucocorticoid taper at 26 weeks and superior at one year with respect to 

sustained disease remission. Overall adverse events were similar. The avacopan 

group had a mean cumulative glucocorticoid dose that was approximately one 

third that of the comparator group (Jayne et al., 2021). 

Plasma exchange is considered an adjunctive therapy in severe AAV. Its 

mechanism is not fully understood, though removal of pathogenic ANCA and 

cytokines may play a role. PEXIVAS showed a numerical reduction in the primary 

composite outcome of death or end-stage kidney disease (ESKD), but this finding 

was not statistically significant (Walsh et al., 2020). A subsequent meta-analysis 

of nine trials including over one thousand participants showed no important 

effect on mortality, but a significant reduction in the risk of ESKD and an 

increased risk of severe infection. Therefore plasma exchange remains a 

therapeutic option in some patients with severe disease such as severe renal 

involvement or diffuse alveolar haemorrhage (Walsh et al., 2022). 

Other therapies that can be employed for remission induction include 

methotrexate, mycophenolate mofetil and intravenous immunoglobulin (IVIG). 

The initial results of the NORAM trial showed non-inferiority of methotrexate 

compared to cyclophosphamide in the setting of non-severe AAV, but a later 

longer term analysis demonstrated increased use of glucocorticoids and worse 

disease control (Faurschou et al., 2012). The MYCYC trial compared 

mycophenolate mofetil to cyclophosphamide in the setting of non-severe 

relapse. This study did not show mycophenolate mofetil to be as effective. 

Therefore it is not usually considered an option for first line treatment (Tuin et 

al., 2019). IVIG is not routinely used but can be employed in severe disease, 

refractory disease or typical immunosuppression is not deemed safe such as 
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ongoing severe infection. One small placebo controlled trial of 34 patients 

showed reduced disease activity, though this effect was not sustained (Jayne et 

al., 2000). 

1.11.1.2 Maintenance 

Long-term follow-up of initial studies of cyclophosphamide and glucocorticoids 

of patients with GPA at the NIH showed that the condition has a high propensity 

to relapse without maintenance therapy (Hoffman et al., 1992). The CYCAZAREM 

trial showed that azathioprine did not have increased rates of relapse compared 

to cyclophosphamide (Jayne et al., 2003). Although the rates of adverse events 

were similar in the two arms, azathioprine maintenance became the standard of 

care given the recognised toxicity associated with long-term cyclophosphamide 

use. The MAINRITSAN series of RCTs from the French Vasculitis Study Group have 

explored the use of rituximab as maintenance therapy. MAINRITSAN (the first of 

three trials in the series) showed a decreased relapse rate and similar rates of 

adverse events with rituximab when compared to azathioprine. The outcome of 

MAINRITSAN has recently been confirmed in RITAZAREM, an international 

multicentre RCT comparing rituximab and azathioprine (Smith et al., 2023). 

MAINRITSAN2 compared a standard schedule of rituximab to tailored dosing 

guided by plasma B-cell repopulation. There was no difference in relapse rate, 

but the tailored dosing group received few infusions of rituximab (Charles et al., 

2018). After the first two years of treatment with rituximab, MAINRITSAN3 

compared two further years of rituximab therapy to placebo. Relapse free 

survival was 97% in the prolonged rituximab group and 74% in the placebo group, 

serious adverse events being similar in both arms (Charles et al., 2020). 

The REMAIN trial explored duration of maintenance therapy, comparing 24 

months of therapy with azathioprine or glucocorticoid with 48 months. Higher 

relapse rates were found with the early withdrawal group, but more adverse 

events in the continuation group. An optimal strategy for maintenance therapy 

duration remains unclear (Karras et al., 2017). Other agents trialled for use as 

maintenance therapy include methotrexate, mycophenolate mofetil and 

etanercept but these have not demonstrated advantages over the standard of 

care (Kitching et al., 2020). 
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1.11.2 Treatment of EGPA 

Severe EGPA is typically managed in a similar fashion to MPA and GPA. Severity 

can be defined using the five-factor score. This scoring includes low renal 

excretory function, proteinuria, gastrointestinal involvement, cardiomyopathy 

and central nervous system involvement. A small RCT of participants with at 

least one five-factor item indicated that 12 pulses of cyclophosphamide were 

better at controlling severe disease compares to 6 pulses (Cohen et al., 2007). 

Mepolizumab is an anti-interleukin 5 monoclonal antibody therapy and is used in 

chronic eosinophilic asthma. An RCT in refractory or relapsing EGPA using this 

therapy showed increased time in remission, fewer relapses and lower 

glucocorticoid exposure. Remission did not occur in 47% of the mepolizumab 

group, demonstrating the resistance of this sub-set of EGPA to currently 

available therapy (Wechsler et al., 2017). 

Non-severe EGPA is often managed with glucocorticoids and additional 

immunosuppressive agents to limit the high glucocorticoid doses often required 

to control disease activity. A small trial in vasculitis patients included a high 

proportion of EGPA patients and compared the addition of azathioprine to 

glucocorticoids alone. This did not show improved outcomes in terms of disease 

activity or steroid sparing (Puéchal et al., 2017). 

1.12 Outcomes 

1.12.1 Survival 

Published in the British Medical Journal, one of the earliest reports of outcomes 

in AAV was of 56 patients from Northern England. These individuals had GPA, 

then described as “giant-cell granuloma of the respiratory tract”. Early mortality 

was high, with 44 of 56 (79%) patients dying within 12 months of diagnosis. Half 

of the patients died of uraemia, while the other common causes of death were 

respiratory failure, cardiovascular causes and sepsis (Walton, 1958). An analysis 

of four EUVAS trials explored AAV outcomes in the era of effective 

immunosuppressive therapy. Survival was 89.3%, half of those who died did so 

following an infection (Little et al., 2010). A later population-based study from 

southern Sweden covered the era during which rituximab treatment was 
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introduced. The study reported one-year, two-year, five-year and ten-year 

patient survival in 195 patients at 87%, 82%, 70% and 55% respectively. Mortality 

was substantially increased compared to an age, sex and time-matched 

comparator group. (Heijl et al., 2017).  

1.12.2 Relapse 

With modern therapy, disease remission is achieved in a high proportion of 

patients. In the RAVE trial, defined as a Birmingham Vasculitis Score (BVAS) of 

zero, remission was achieved in 86% of participants (Miloslavsky et al., 2013). In 

an analysis of four clinical trials undertaken by the European Vasculitis Study 

Group (EUVAS), 38% of 535 participants experienced at least one relapse over 

five years (Walsh et al., 2012). The competing risk of death without relapse 

should be taken into account, notably 18% died without experiencing disease 

relapse. Relapse is not necessarily associated with worse mortality, as many 

relapses are ENT related. However, such relapses are still associated with 

reduced quality of life and increased exposure to potentially toxic therapies 

(Sinico and Guillevin, 2019). Relapse rates may now improve in the era of 

rituximab: long term analysis of the MAINRITSAN trial showed relapse-free 

survival rates of 71.9% for major relapses and 57.9% for all relapses at 5 years 

(Terrier et al., 2018). 

1.12.3 Renal Outcomes 

Although not always present at diagnosis, the prevalence of renal involvement in 

AAV is 75 to 95%. Kidney disease is typically worse in MPA or MPO-ANCA disease 

compared to GPA or PR3-ANCA disease, this is in part due to extrarenal 

manifestations leading to earlier presentation and resultant earlier treatment in 

the latter phenotypes. The Berden classification derived histological scoring to 

predict renal outcomes. In a validation cohort at five years, renal survival was 

93% for the focal group, 76% for the crescentic class, 61% for the mixed class and 

50% for the sclerotic class (Berden et al., 2010). 

1.12.4 Comorbidities and adverse events 

Severe infection is the most common adverse event in the first year of therapy 

for AAV and is discussed in greater depth in section 0. 
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The Vasculitis Damage Index (VDI) is a comprehensive, validated list of 64 items 

relating to incident comorbidities and adverse events following AAV diagnosis 

(Exley et al., 1997). All accrued damage is recorded, regardless of whether the 

cause is considered to be vasculitis related, treatment related or otherwise. As 

it records chronic damage, acute events such as severe infection are not 

included. Robson and colleagues used VDI items to analyse data from six EUVAS 

RCTs to explore the frequency of incident comorbidities and adverse events in 

MPA and GPA. Long-term follow up data were available for 87% of patients. At a 

mean of 7 years after diagnosis, the most frequent VDI items were hypertension 

(41.5%), osteoporosis (14.1%), malignancy (12.6%) and diabetes (10.4%), with the 

overall burden of damage increasing over time. Complications potentially 

related to glucocorticoid toxicity such as diabetes, osteoporosis and cataract 

(which occurred in 9.3%) are notably prominent in this data. Cardiovascular 

disease is a substantial cause of morbidity and mortality in AAV patients 

(Wallace et al., 2020). In the study by Robson, cardiovascular items were 

frequent at long-term follow up with angina/coronary bypass, stroke and 

myocardial infarction having occurred in 8.1%, 3.7% and 4.4% respectively. There 

was no direct comparison to rates of complications expected in the general 

population (Robson et al., 2015). Venous thromboembolism (VTE) is not included 

in VDI, but is recognised to be higher in AAV. The WeCLOT study prospectively 

enrolled individuals with GPA. It found a 7 per 100 person-years incidence rate 

of VTE, higher than reported rates in the general population and other 

autoimmune conditions (Merkel et al., 2005). In the rituximab era, 

hypogammaglobulinemia has become recognised as a complication of rituximab 

therapy in a non-dose dependent fashion. In one study, 4.2% of rituximab 

treated patients required immunoglobin replacement for recurrent infection 

(Roberts et al., 2015). 

Sarica and colleagues investigated multimorbidity in AAV through a Scottish 

population-based study of over 543 AAV patients. Patients were individually 

matched by age, sex and locality to 2,672 general population controls. Median 

5.1 years of follow-up data was available. Substantially increased risk of several 

morbidities was identified. In order of decreasing incidence rate ratios these 

included: osteoporosis, pulmonary circulation disorders, hypothyroidism, 

valvular heart disease, hypertension, cardiac dysrhythmias, chronic respiratory 
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disease, diabetes mellitus and cardiovascular disease. Notably hypertension and 

cardiovascular disease were the most frequently occurring morbidities in AAV 

patients at 19.7% and 12.6% respectively, but the magnitude of difference was 

less compared to the general population relative to other conditions. 

Hypertension and cardiovascular disease occurred at 9.4% and 9.5% respectively 

in the general population. Osteoporosis had the greatest difference in terms of 

magnitude. AAV patients had a 5.4% frequency of osteoporosis compared to 0.8% 

of controls, equating to an incident rate ratio of 8.0 (Shifa H. Sarica et al., 

2020). 

1.12.5 Quality of life 

The importance of quality of life (QOL), in addition to clinical outcomes such as 

survival and disease remission, is increasingly being acknowledged as of high 

importance to patients. Importantly patients and physicians have differing 

perspectives on the relative importance of such outcomes. A multicentre 

international survey of the burden of disease in vasculitis patients, a large 

majority of whom had AAV, was conducted between 2006 and 2007. This work 

concluded that fatigue, loss of energy, weight gain, joint paint and sinusitis 

were the highest ranked symptoms of concern for patients. Ninety-five percent 

of patients reported fatigue and energy loss, most rated this severe. Severe 

organ involvement was considered less of a priority. Pain, musculoskeletal 

symptoms, financial aspects and anxiety were also prominent concerns (Herlyn 

et al., 2010). A multicentre case-control QOL study by Basu and colleagues 

compared 410 AAV cases to matched chronic disease and general population 

controls. Across physical and mental domains, AAV patients had similar QOL to 

chronic disease controls, but substantially worse QOL when compared to the 

general population. Fatigue, sleep disturbance, depression and anxiety were 

symptoms identified as strongly associated with poor QOL in a multivariable 

model. High serum C-reactive protein levels and high glucocorticoid dose were 

additional disease-related factors identified in the model, these may relate to 

disease activity and are potentially modifiable. Only 7% of AAV group had ESKD, 

therefore the effect of advanced kidney disease in AAV patients may not be 

accounted for in this study (Basu et al., 2014). 
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1.12.6 Fertility and pregnancy 

Fertility can be adversely affected, both by disease activity and certain AAV 

therapies. Chronic kidney disease (CKD) is a recognised cause of reduced fertility 

in women and men (Dumanski and Ahmed, 2019). Data in systemic lupus 

erythematosus demonstrates a high incidence of ovarian failure with 

cyclophosphamide treatment. Higher cumulative dose appears to be a risk factor 

(Mok et al., 1998). Cyclophosphamide can severely affect sperm counts in men, 

though there is more potential for recovery on the cessation of therapy (Cigni et 

al., 2008). Teratogenicity is an important concern in AAV therapy. 

Cyclophosphamide, mycophenolate mofetil and methotrexate are teratogenic 

and rituximab depresses neonatal B-cells (Sinico and Guillevin, 2019). 

1.13 Severe infection 

1.13.1 Background 

The evolutionary success of microorganisms has enabled them to occupy virtually 

every ecological niche on Earth. This includes utilising other organisms as 

potential habitats, such as humans and other mammals. Where this relationship 

is beneficial to the host, it is described as symbiosis, but where it is detrimental 

infection results. Infection is the pathological invasion of body tissues by 

microorganisms, followed by reproduction in the host and the subsequent host 

immune response to the pathogen and any associated toxins. Most commonly 

caused by bacteria and viruses, infections can also be caused by fungi, parasites 

and prions. The spectrum of infection varies from asymptomatic colonisation to 

severe illness, involving tissue destruction due to microbial toxin release or a 

damaging inflammatory response. The nature of a toxin, and the site of its 

action; or the site of bacterial replication, and type of immune response 

induced, determine the phenotype of the associated disease. Where the immune 

response involves overwhelming systemic inflammation, sepsis occurs, with 

associated circulatory compromise and frequently death (Maskell and Wood, 

2020). As a clinical phenotype representative of severe infection, sepsis is a 

major cause of morbidity and mortality globally. A retrospective cohort study of 

2.9 million individuals admitted to hospital in the United States found a sepsis 

incidence of 6% (Rhee et al., 2017). An analysis for the Global Burden of Disease 
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Study estimated that 48.9 million cases of sepsis occurred in 2017. These cases 

led to 11 million deaths, accounting for 20% of all deaths globally (Rudd et al., 

2020). Modern management of infection including antimicrobials, vaccination 

and infection control measures have changed the outlook for individuals with 

severe infection. 

1.13.2 Immune-mediated inflammatory disease and infection 

Individuals with immune-mediated inflammatory diseases (IMID) typically are at 

increased susceptibility to infection. AAV is an archetypal example of this 

phenomenon and will be discussed in the next section (1.13.3). The mechanisms 

underlying vulnerability to infection in IMID likely relate to factors due to the 

underlying disease processes, such as immune dysregulation, and 

immunosuppressive therapy aimed at treating the disorder in question. 

Immunosuppressive therapies target different immune pathways. Depending on 

the pathway targeted, susceptibility to different organisms may be apparent 

(Doran et al., 2002; Cannon et al., 2023). 

A large US based registry study of over 10,000 patients with IMID including RA, 

inflammatory bowel disease, psoriasis and spondyloarthropathies found high 

rates of serious infections. The RA group had approximately 8 events per 100 

person-years. A dose-dependent relationship was demonstrated between 

baseline glucocorticoid use and infection rates (Grijalva et al., 2011). A 

systematic review of a broad range of connective tissue diseases found that 29% 

of patients developed a serious infection and, of those patients, there was a 24% 

mortality rate due to the infection. Typical bacterial infections represented the 

majority of these events, though opportunistic infections, such as fungal 

infections, also occurred. In a small number of the included studies, 

glucocorticoid exposure was studied. Use of intravenous methylprednisolone and 

overall cumulative glucocorticoid exposure were identified as prognostic factors 

(Falagas et al., 2007). A systematic review carried out to inform EULAR 

vaccination recommendations described the incidence and prevalence rates of 

vaccine preventable infections in individuals with autoimmune inflammatory 

rheumatic diseases. It reported increased risks of influenza, VZV, human 

papillomavirus and pneumococcal infections in the disease groups when 
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compared to the general population. Prevalence of hepatitis B was not different 

to the general population based on serological data (Furer et al., 2019). 

Focusing on studies of specific IMIDs, a retrospective cohort study matched RA 

patients to general population controls. A hazard ratio of 1.83 was found for 

increased risk for hospitalisation related to infection for the RA group (Doran et 

al., 2002). Rituximab is a commonly utilised therapy in a range of IMIDs, 

including RA. A study pooled clinical trials of RA patients who received 

rituximab. It found a 4.3 per 100 patient-year rate of serious infections (van 

Vollenhoven et al., 2010). A systematic review of RCTs and observational studies 

compared glucocorticoid exposure to non-exposure in RA. Observational studies 

found a significant increase in risk associated with glucocorticoids, with relative 

risk 1.67. Analysis of RCTs in the report found a null effect, but with wide 

confidence intervals such that both clinically important increased risk and 

decreased risk were plausible. That individuals in observational studies tended 

to have increased cumulative glucocorticoid exposure compared to those in RCTs 

may partially explain this finding (Dixon et al., 2011). A large retrospective 

cohort study of US claims data in RA found a dose-dependent relationship for 

increased infection risk with increased glucocorticoid exposure over a prior 90-

day window (George et al., 2020). The same group analysed the impact of low 

dose glucocorticoid exposure and described an increased risk for those exposed 

to up to 5 mg daily prednisone equivalents. The incidence of infection 

necessitating admission to hospital was 8.0 per 100 person-years in the non-

exposed group, compared to 11.7 per 100 person-years in the exposed group 

(George et al., 2020). A case-control analysis of Canadian data in the setting of 

elderly patients with RA showed that while current and recent glucocorticoid 

exposure carries the highest associated risk, exposure over the prior 2-3 years 

also carries risk of infection (Dixon et al., 2012). 

A prospective multicentre study of 1,000 SLE patients found that over 10 years 

of follow up, 36% presented with infection. Mortality was 6.8%, with infection 

being cited as one of the most common causes at 25% of those who died (Cervera 

et al., 2003). A Canadian matched cohort study utilised administrative health 

data comparing over 5,000 individuals with SLE. It reported adjusted hazard 

ratios of 1.82 for first severe infection and 1.61 for infection-related death 
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(Zhao et al., 2021). In a report of SLE patients treated with rituximab, 

prognostic factors for serious infections included the presence of CKD and higher 

background glucocorticoid exposure (Sun et al., 2024). Sjögren's syndrome is also 

associated with severe infections. A French nationwide population-based 

retrospective study of over 25,000 individuals with Sjögren's syndrome found an 

increased risk of hospitalisation due to infection with an adjusted hazard ratio of 

1.29, when compared to matched controls (Goulabchand et al., 2022). 

Individuals with IMID are susceptible to severe infections, both typical bacterial 

or viral infections and opportunistic infections such as PCP. Host and treatment 

factors likely play a role. AAV is no exception, and the following section will 

provide evidence that individuals with AAV are among the most vulnerable to 

this potentially life-threatening complication. 

1.13.3 AAV and infection 

Infection is recognised as one of the most important complications of AAV and its 

therapy (Kitching et al., 2020). For this thesis, a systematised review (defined 

below) was carried out to explore the incidence, prognostic factors and 

outcomes of severe infection in AAV. Defining severe infection in the 

epidemiological setting can be challenging. Many studies use an adapted form of 

the criteria for severe infection described in the Common Terminology Criteria 

for Adverse Events, initially developed for use in oncology clinical trials (Colevas 

and Setser, 2004). CTCAE grades for a typical infection are described in Table 

1-2. Definitions vary in epidemiological studies, but often represent Grade 3 and 

above such that a severe infection is one that results in the need for hospital 

admission, intravenous antimicrobial therapy or death. 

Grade Descriptor 

1 N/A or minimally invasive non-drug intervention indicated 

2 Oral therapy indicated 

3 Intravenous therapy or invasive procedure indicated 

4 Life-threatening infection or urgent intervention indicated 

5 Death 

Table 1-2 | Common Terminology Criteria for Adverse Events example grades for infection 
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1.13.3.1 Systematised review 

A systematised review is a methodological exploration of the scientific literature 

that does not meet all the requirements to be designated a systematic review. 

As is the case with the current review, often only one reviewer performs a 

systematised review and a formal risk of bias assessment may be excluded 

(Booth et al., 2022). Literature searches were performed in early 2020 to 

identify deficiencies in the prognosis research literature relating to AAV and 

infection. This process directly informed the scientific questions addressed in 

this thesis. A formal literature search of two major biomedical academic 

databases, Medline and Embase, was performed on 1 March 2022. This ensured 

all relevant studies had been used to inform this thesis, including the current 

introductory chapter. Studies from early 2020 and prior are described in this 

section, as these informed the development of thesis scientific questions. 

Relevant studies from after this period are considered in the appropriate 

substantive thesis chapter discussions. The search strategies can be found in 9.1. 

An adapted list of terms designed to identify epidemiological studies was used 

(Li et al., 2019). The search yielded 1,301 and 3,350 results from Medline and 

Embase respectively. After removal of duplicates there were 3,609 unique 

records. Article titles and abstracts were screened, leading to 342 articles to be 

considered for inclusion. Prospective studies, multicentre studies, population-

based studies, studies with appropriate methodology and those with sufficient 

size for the study question were prioritised for inclusion. Where many studies 

reiterated similar findings to more rigorous studies, where only one AAV subtype 

was studied or multiple IMIDs were studied, such articles were not necessarily 

included. Where many studies were summarised by a systematic review, 

reference will be made to such a review, as opposed to summarising all studies 

contained within the work. 

1.13.3.2 Incidence 

Observational studies report variable rates of infection in AAV. Variable patient 

inclusion criteria, variable definitions of and degrees of severity and variable 

follow-up time make comparison between studies challenging. One of the 

earliest reports of long-term outcomes relating to infection in AAV comes from 

the NIH group led by Anthony Fauci which pioneered treatment with 
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cyclophosphamide and glucocorticoids. This NIH cohort comprised 158 patients 

with GPA in whom 46% developed an infection leading to hospitalisation over a 

mean follow-up period of eight years, ranging from 6 months to 24 years, 

totalling 1,229 patients-years (Hoffman et al., 1992). 

A report by Reinhold-Keller and colleagues, described an early experience of 

patients with AAV including the long-term outcomes of 155 consecutive patients 

with GPA in Germany. Patients were diagnosed between 1966 - 1993 and were 

followed for median seven years. Most were treated with cyclophosphamide and 

glucocorticoids, while approximately half were treated with 

trimethoprim/sulfamethoxazole (TMP/SMX) and half with methotrexate at some 

stage. There were 56 serious infections requiring hospitalisation reported, 

occurring in 41 patients – 26% of the cohort. Most infections were described as 

pneumonia or sepsis. Three patients developed a CMV infection and one had PCP 

infection (Reinhold-Keller et al., 2000). 

A multicentre registry report of patients managed with a modern 

cyclophosphamide-based regimen comes from the Glomerular Disease 

Collaborative Network (GDCN). McGregor analysed the outcomes of 147 AAV 

patients in this US glomerular disease registry, covering several states. The study 

aimed to examine the impact of glucocorticoid exposure from six months 

following diagnosis, therefore notably patients who died before six months were 

excluded. Patients with ESKD at presentation or lacking 12 months of sufficient 

follow-up data were also excluded. Patients diagnosed over 10 years from the 

year 2000 were included and all had induction therapy with cyclophosphamide 

and glucocorticoids. Evaluating the whole cohort, 87 patients (59%) experienced 

at least one infection over median follow-up of just under 3 years. A subsequent 

study from the same group examined a broader cohort from the GDCN registry. 

The cohort of 489 patients included biopsy-proven AAV patients treated with 

cyclophosphamide or rituximab-based regimens. Median follow-up was 2.8 years. 

Importantly the authors again did not include patients with ESKD at 

presentation, a group more vulnerable to infection. Infection rates were 

reported at 1, 2 and 5 years. The cumulative incidence of any infection was 51%, 

58% and 65% at the respective time points, while the equivalent rates for severe 

infection were 22%, 23% and 26%. A significant proportion experienced three or 
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more infections: 11% over 1 year and 22% over 2 years. Patients who suffered 

multiple infections were also more likely to suffer a severe infection. 

Antimicrobial prophylaxis was used in many patients but was not universal. 

Proportions of patients receiving prophylaxis were not possible to ascertain. 

Pneumocystis pneumonia occurred in only one patient at 6 weeks following 

diagnosis (McGregor et al., 2012, 2015). 

A large retrospective cohort study from Beijing, China described infection rates 

and survival in 398 consecutive patients with AAV-GN. Immunosuppression was 

cyclophosphamide-based and more intense than modern regimens with slower 

prednisone wean and longer courses of cyclophosphamide. PCP prophylaxis was 

not used routinely. Median follow up was just over two years. Severe infection 

occurred in 44% of the cohort over all follow-up. Most infections, 82%, were in 

the first year of therapy. The one-year infection-free survival rate was 61% (Lai 

et al., 2014). 

Other cohort studies include the Spanish Registry of Systemic Vasculitis (REVAS) 

retrospective study, where 40% of 450 AAV patients developed an infection over 

median 6.8 years follow-up. Opportunistic infections occurred in 15%, including 

14 cases of pneumocystis pneumonia and 12 cases of CMV. These patients were 

treated with regimens that predated widespread use of rituximab. An era 

comparison was performed, showing higher incidence of bacterial infection 

before 2000 at 55%, compared to after at 33%. Differing patterns of 

immunosuppression may have contributed to this finding (Solans-Laque et al., 

2013). Remission Induction Therapy in Japanese patients with ANCA-associated 

vasculitis (RemIT-JAV) was a national, prospective cohort study including 

patients diagnosed with AAV in 2009 and 2012. An analysis of 156 registry 

patients identified 63 severe infections in 42 patients within six months of 

induction therapy, an incidence rate of 88 per 100 patient-years. Pulmonary 

infections were the most common infection site, followed by VZV skin infections. 

There were 23 opportunistic infections: 12 cases of fungal pneumonia, six PCP, 

four CMV respiratory infection and one case of respiratory tuberculosis 

(Watanabe-Imai et al., 2017). A retrospective Korean study examined 154 AAV 

patients. 14.9% had at least one hospitalisation due to infection in the first year, 

there were no deaths in the first year, giving a severe infection-free survival 
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rate of 85.1. Five year and ten year equivalent rates were 77.9% and 72.7% 

respectively (Yoo et al., 2018).  

In the UK, retrospective survey data from the north of England showed that 24% 

of patients had an infection within the first 6 months of treatment with 

cyclophosphamide (Pearce, McGrath, et al., 2018). Scottish multicentre 

population-based data examining 379 AAV cases has shown that 35.6% of AAV 

patients developed a severe infection, 55.4% developed a laboratory-confirmed 

infection and 74% received an antibiotic prescription from primary care over 

median 3.5 years follow-up. The rates of severe infections were highest in the 

first 30 days following diagnosis at over 400 events per 1000 person-years. Rates 

decreased over time, but remained substantially higher than controls at all time 

points, including at 8 years following diagnosis (Sarica et al., 2018). 

A systematic review and meta-analysis of studies of AAV patients treated with 

rituximab included over 1400 patients. It reported a cumulative incidence of 

15.4% for severe infection. Median follow-up ranged from 0.6 to 5 years across 

studies. Opportunistic infection occurred in 1.5% with 0.2% PCP infections. The 

overall incidence of severe infection was estimated to be 6.5 per 100 person-

years. The incidence of PCP was 1.1 per 100 person-years. There was significant 

heterogeneity across studies (Thery-Casari et al., 2020). 

Case-control population-based cohort studies provide evidence of the rates of 

events in AAV patients compared to general population matched controls. Such a 

study from the southern Sweden compared 186 AAV patients to 744 matched 

controls. Median follow-up was 4.8 years and 6 years for cases and controls 

respectively. AAV cases experienced 116.2 severe infection events per 1000 

person-years compared to 25.6 events per 1000 person-years in the controls, an 

incidence rate ratio (IRR) of 4.53 (Mohammad et al., 2017). The multicentre 

study from Scotland by Sarica, described above, compared 179 AAV cases to 

1859 controls. Severe infection, laboratory-confirmed infection and prescription 

of antibiotics by primary care was more likely in AAV patients compared to 

population controls with incidence rate ratios 4.4, 7.3 and 2.2 respectively. Co-

trimoxazole prophylaxis was prescribed to 76% of the AAV group. Escherichia was 

the most frequently observed genus in both groups, IRR 4.9. The pathogens with 

the highest incidence relative to controls were Herpes, Candida and Clostridium 
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with IRRs 12.5, 11.4 and 9.2 respectively. Varicella zoster virus (VZV) was not 

evaluated. (Sarica et al., 2018). 

Understanding of severe infection incidence in AAV is hampered by studies with 

significant limitations. Such limitations include retrospective design, small 

sample size and lack of important data items to provide context. Retrospective 

design can result in incidence studies which are vulnerable to survival bias – 

patients who survive for longer may be more likely to be included in 

retrospective studies. This is potentially problematic when assessing severe 

infection incidence, as severe infection is associated with mortality. 

Retrospective studies may be biased against inclusion of patients with severe 

infection, potentially leading to underestimation of the incidence. Retrospective 

studies are vulnerable to non-standardised and missing data. Data in such studies 

is frequently not standardised for research purposes, as the reason for its 

collection is non-research related such as for clinical or administrative purposes. 

Where important variables are not available in the information source for the 

study, such as the clinical record or administrative record, then it is often 

impossible to retrospectively acquire this data. Retrospective studies are also 

more vulnerable to p-hacking, where multiple analyses are performed until 

“interesting” or “significant” results are obtained. Prospective studies with pre-

specified analyses are less likely to suffer from these issues and are more likely 

to have high quality data. Missing information in studies of infection incidence in 

AAV make interpretation difficult. For example, many studies are unclear what 

proportion of subjects with treated with antimicrobial prophylaxis against PCP. 

Given that PCP prophylaxis is now largely considered a standard of care, the risk 

of severe infection is unclear for patients treated with modern regimens. 

Achieving adequate sample size is challenging in rare disease research. Many 

studies of infection incidence in AAV are small, frequently with sample sizes of 

100 individuals or fewer. This makes it difficult to obtain accurate measures of 

the frequency of complications. There is a clear need in the AAV literature for 

studies of severe infection incidence with adequate sample size, variables to 

provide full context and high quality, complete underlying data to inform the 

epidemiological question. 
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1.13.3.3 Prognostic factors 

Age has been identified as a risk factor for infections in AAV across multiple 

studies. The Beijing study by Lai identified an additional decade of age as an 

independent predictor of infection over one year with hazard ratio 1.3 (Lai et 

al., 2014). A similar effect was reported in an analysis of French RCTs which 

enrolled 733 patients (Lafarge et al., 2020). McGregor found an association 

between age and any infection with odds ratio 1.01, however when severe 

infections were analysed in a multivariable model, age was not statistically 

significant (McGregor et al., 2015). In a rituximab-treated cohort from two 

tertiary centres, one from the UK and one from Austria, Kronbichler identified 

age in years as predictive of severe infection with hazard ratio 1.03 (Kronbichler 

et al., 2018). 

Female sex was identified by McGregor in a multivariable model to be associated 

with both any infection and severe infection, with odds ratios 1.75 and 1.83 

respectively (McGregor et al., 2015). Women were far more likely to experience 

urinary tract infection but were also more likely to have upper respiratory tract 

infection. Other infections were similarly distributed according to sex (McGregor 

et al., 2015). Conversely, Watanabe-Imai reported female sex as a protective 

prognostic factor in relation to serious infection, with hazard ratio 0.47. 

Interaction with smoking history, which was strongly associated with sex in this 

study, may account for this finding (Watanabe-Imai et al., 2017). The French 

analysis of RCT data did not find an association between severe infection and sex 

using a competing risk model (Lafarge et al., 2020). 

Exposure to cigarette smoking has been identified as a prognostic factor for 

severe infection. The RemIT-JAV study found a hazard ratio of 2.6, though this 

may have been confounded by sex (Watanabe-Imai et al., 2017). A retrospective 

cohort from China of 248 AAV patients reported a hazard ratio of 2.3 for smoking 

in relation to severe infection (Yang et al., 2018). 

Glucocorticoid exposure was recognised early as a prognostic factor associated 

with subsequent severe infection in the treatment of patients with AAV. In the 

1970s the NIH group identified that patients receiving daily prednisone had a 

higher incidence of infections compared to those taking prednisone on alternate 
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days or those treated with cyclophosphamide alone (Hoffman et al., 1992). The 

relationship between high glucocorticoid exposure was further evidenced in an 

early French RCT comparing oral to intravenous cyclophosphamide. 

Glucocorticoid weaning was slower in this trial compared to alternative 

regimens, with patients receiving an average of 55 mg daily prednisone at three 

months. Rate of infections were high at 55% across the whole trial population. 

The oral cyclophosphamide group demonstrated a 70% infection incidence, while 

41% of the intravenous group experienced this adverse event. Notably this study 

recruited some patients from the critical care setting, a population at particular 

high risk of infection (Guillevin et al., 1997). In the US report from McGregor, 

from 6 months after diagnosis, a significantly higher incidence of infections was 

found among those treated with glucocorticoids beyond 6 months, at 0.42 

infections per person-year, compared to those who were not receiving 

glucocorticoids, at 0.23 per person-year (P<0.0001) (McGregor et al., 2012). 

Glucocorticoids were identified in the Japanese cohort as associated with serious 

infection. Their multivariable models contained initial prednisolone dose ≥0.8 

mg/kg/day as a prognostic factor, with approximate hazard ratio of 3. This dose 

threshold equates to above 56 mg per day for a 70 kg person. Not all studies 

found a clear association with glucocorticoids. Lei reported that total 

glucocorticoid exposure did not predict severe infection, but confidence 

intervals for this finding were not available (Lai et al., 2014). No studies were 

available which examined the impact of different glucocorticoid dose thresholds 

in AAV. 

Other treatments may impact the rates of infections. Rates of severe infections 

were not notably different in RCTs comparing rituximab and cyclophosphamide 

(Stone et al., 2010; Jones et al., 2010). In the systematic review by Thery-

Casari, a meta-regression indicated that severe infection was associated with 

the cumulative dose of rituximab (Thery-Casari et al., 2020). Both RCT and 

observational data indicate that there is not a significant difference between 

oral or intravenous cyclophosphamide in terms of severe infection incidence 

(Pearce, McGrath, et al., 2018; Harper et al., 2012). Kronbichler identified 

TMP/SMX antimicrobial prophylaxis as strongly predictive of decreased rates of 

severe infection with hazard ratio 0.3 in a multivariable model (Kronbichler et 

al., 2018). 
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Comorbidities are important prognostic factors for infection in both the general 

population and AAV. McGregor identified steroid-induced diabetes as a strong 

predictor of severe infection with odds ratio 1.91 (McGregor et al., 2012). 

Kronbichler identified chronic obstructive pulmonary disease (COPD) as 

predictive with hazard ratio 6.3 in a multivariable analysis. In the same study, 

diabetes was predictive of severe infection on univariable analysis, but was not 

significant in the multivariable model. Cardiac involvement, represented by 

prior myocardial infarction or reduced left ventricular systolic function, was 

predictive of severe infection on univariable analysis, but was not significant in 

the multivariable model (Kronbichler et al., 2018). 

Worse renal function has shown to be a predictor of severe infection across most 

studies. Lai and colleagues found that an increased creatinine clearance of 10 

mL/min at baseline carried hazard ratio 0.93 (Lai et al., 2014). Lafarge reported 

numerically increased rates of infection with lower eGFR, though confidence 

intervals spanned both protective and deleterious effects (Lafarge et al., 2020). 

Kronbichler found higher eGFR to predict lower rates of severe infection in a 

rituximab-treated cohort, but this was not significant in a multivariable model 

(Kronbichler et al., 2018). A multivariable model in AAV-GN suggested that lower 

estimated glomerular filtration rate (eGFR) was statistically significantly 

associated with fewer severe infection events, with odds ratio 0.99. The 

thresholds of eGFR incorporated into the model were unclear, therefore this 

data is difficult to interpret (McGregor et al., 2015). 

Other organ system involvement may predict infection. Lai found that lung 

involvement predicted infection within one year, with hazard ratio 2.3 (Lai et 

al., 2014). Lafarge’s analysis of French RCT data revealed a hazard ratio of 1.81 

for pulmonary involvement predicting severe infection (Lafarge et al., 2020). 

Similar results were found in the Korean study by Yoo, with hazard ratio 2.4 (Yoo 

et al., 2018). Kronbichler identified endobronchial disease activity as predictive 

of severe infection in the rituximab-treated tertiary centre cohort (Kronbichler 

et al., 2018). Yoo reported BVAS as associated with hospitalised infection events 

(Yoo et al., 2018). Increased organ system involvement implies more extensive 

and severe disease: worse immune dysfunction at baseline may contribute to 
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increased infection, but the relationship may also be confounded by subsequent 

high intensity of immunosuppression. 

Certain laboratory or immune parameters predict infection. Lei reported that an 

increase in peripheral lymphocytes at diagnosis of 1 x 109/L was protective with 

hazard ratio 0.7 for severe infection (Lai et al., 2014). Leukopenia and 

neutropenia were associated with increased rates of severe infection in the 

Kronbichler study, though this was not significant in the multivariable model 

(Kronbichler et al., 2018). A small case-control study from France previously 

reported that lymphopenia prior to and during therapy was more prevalent in 

GPA cases who developed PCP, compared to GPA cases who did not (Godeau et 

al., 1995). ANCA subtype was not predictive of infection in the French RCT data 

(Lafarge et al., 2020). A study of vaccine response in 91 AAV patients reported 

that hypogammaglobulinaemia, reduced B cell count and reduced CD4-positive 

lymphocyte count predicted infection (Morgan et al., 2016). 

Several studies have sought to identify prognostic factors for severe infection in 

AAV, but these are hampered by similar reasons to those described in relation to 

incidence studies, detailed in section 1.13.3.2 above: retrospective design, small 

sample size and missing important variables. The impact of these deficiencies 

becomes worse in the setting of prognostic factor and prognosis modelling. 

Studies with retrospective design are more vulnerable to selection bias, as 

inclusion criteria may be associated with the prognostic factor under 

investigation (Geneletti et al., 2009). This may lead to a biased estimate of the 

strength of association between prognostic factor and outcome. Sample size is 

highly important in studies that build statistical models using multiple variables. 

Such models are used in both prognosis factor and prognosis modelling research. 

An insufficient sample size can result in overfitting, with inaccurate estimates of 

prognostic factor model coefficients. The modelling conducted in studies of 

infection in AAV patients is highly vulnerable to this phenomenon – many studies 

have inadequate sample size for the type of modelling undertaken and none use 

recommended sample size calculations. 

A further problem in the AAV prognosis literature is poor differentiation between 

the type of research undertaken: whether the scientific question relates to 

aetiology or prediction research (see section 1.14 for a more detailed discussion 



1 62 
 
of this issue in epidemiology). It is an almost universal weakness of the literature 

that studies in AAV where multivariable modelling is undertaken do not specify 

whether the goal is aetiological or predictive research. This is important because 

different modelling strategies should be used depending on the goal, specifically 

different variables should be included depending on the goal. For an aetiological 

study consideration of whether candidate variables are confounders, colliders or 

mediators is crucial. All confounders should be included in the modelling 

process, but colliders or mediators must be excluded. Prediction, or prognostic 

modelling, studies may consider all variables. As this thesis focuses on prognosis 

research, a detailed discussion of variable selection for aetiological studies is 

out with the scope of the thesis. Consideration of such issues can be found 

elsewhere such as a review by Heinze and colleagues (Heinze et al., 2018). The 

impact can be substantial however, as the model effect size of a given variable 

may be very different depending on the approach taken. Notably, no prognosis 

modelling studies relating to infection in AAV were found following the literature 

search. 

Glucocorticoids are well recognised as contributing to severe infection, but 

studies of this exposure as a prognostic factor are limited for many of the 

reasons described above. In adjacent IMIDs, such as RA, well-conducted studies 

of the impact of different dose thresholds have been conducted (Dixon et al., 

2011). Such studies have not been conducted in the AAV setting. 

1.13.3.4 Outcomes 

The early German study by Reinhold-Keller reported 22 (14%) deaths over 

median 7 years follow up in 155 patients. Five deaths (23% of all deaths) were 

due to infection, though active disease was also present. Overall, 3% of patients 

died due to infection. One death was associated with pneumonia without an 

identified pathogen and four were associated with Staphylococcus aureus 

bacteraemia. The NIH group reported a similar number of infection related 

deaths, despite a greater overall number of severe infections. As described 

above this variation may be related to glucocorticoid exposure. Further early 

experience was reported in a multicentre British case series of 265 patients 

diagnosed with GPA between 1975 and 1985. Although fewer patients were 

treated with cyclophosphamide compared to other similar reports at the time, 
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12% of the cohort died of infection (Anderson et al., 1992). A longitudinal 

analysis of 77 patients who were enrolled for the ACR vasculitis classification 

study showed that 10% of patients died of infection over mean 7.1 years follow-

up (Matteson et al., 1996). In the French RCT conducted by Guillevin and 

colleagues, infection-related mortality was 18% over a mean follow-up period of 

approximately 28 months. This was significantly higher than infection mortality 

rates reported in other studies. High levels of glucocorticoid exposure may have 

contributed, though may also have been related to the high risk nature of the 

cohort (Guillevin et al., 1997). 

McGregor described causes of death in the larger US registry report of individuals 

with AAV and renal involvement. Of 421 patients with 12 months complete 

follow-up, 31 (7%) died. The study also identified an association between the 

number of infections experienced in the first year of treatment and death. 

Infection resulted in at least 13% of deaths and 29% died with active vasculitis. 

Cardiovascular disease accounted for 10% of deaths, with the remainder 

described as causes after reaching ESKD or unknown causes. For individuals who 

did not experience an infection mortality was 3%, 1-2 infections were associated 

with 10% mortality rate, while those who suffered 3 or more infections had 13% 

mortality in the first year. Severe infection was associated with 19% mortality in 

the first year, compared to 4% in those who did not experience severe infection. 

A multivariable analysis revealed a strong association for severe infection with 

death, with hazard ratio 4.2 (McGregor et al., 2015).  

The Chinese study from Lai and colleagues also reported that severe infection 

was a strong predictor of mortality within the first year, with adjusted hazard 

ratio 4.0. It found that the most frequent cause of early mortality was infection 

at 47%, followed by active vasculitis (22%), then cardiovascular disease (12%). 

After the first year of therapy, the most common cause of death was 

cardiovascular disease (29%), closely followed by infection (27%) (Lai et al., 

2014). The REVAS study described a similar association between infections and 

mortality with odds ratio 3.7 (Solans-Laque et al., 2017). In the RemIT-JAV 

study, there were five deaths due to infection over the six month observation 

period following induction, 3.2% of the cohort (Watanabe-Imai et al., 2017). 
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Flossmann and colleagues performed a follow-up survey of patients recruited to 

four early EUVAS RCTs. Infection was the most common cause of death in the 

first year following enrolment at 48%. After the first year, infection remained an 

important contributor to mortality, responsible for 20% of deaths, with more 

deaths being caused by cardiovascular disease and malignancy at 26% and 22% 

respectively (Flossmann et al., 2011). The same data was evaluated by Little and 

colleagues, aiming to determine the contribution of adverse events to early 

mortality. The analysis demonstrated that infection was a strong independent 

predictor of mortality within 12 months following diagnosis (Little et al., 2010). 

As described, many studies report infection as the most common cause early 

mortality following AAV diagnosis, with some describing it as causing the 

majority of deaths. In many reports with longer follow-up, infection is overtaken 

as the most common cause of death by other causes, such as cardiovascular 

events. It is important to consider standardised mortality rates (SMR) when 

evaluating the cause of death, as excess deaths within a population deserve 

greater attention and are likely to be more amenable to interventions. Wallace 

and colleagues performed such an analysis in a large, contemporary AAV cohort 

of 484 patients, over mean follow-up of 7 years. Cardiovascular disease was 

responsible for the most deaths, but infection was identified as causing the most 

excess deaths by a substantial margin. The SMRs for infection, renal disease, 

cancer and cardiovascular disease were 13.9, 4.3, 2.7 and 2.3 respectively 

(Wallace et al., 2020). 

1.13.3.5 AAV and Covid-19 

At the outset of the Covid-19 pandemic, there was widespread concern among 

patients, clinicians, researchers and governments about the potential impact of 

the novel infectious disease on immunosuppressive individuals. Due to their 

vulnerability to severe infections, individuals with AAV were a specific 

population of concern. At the time of initial literature searches which informed 

this thesis, there was no published data on the incidence, prognostic factors or 

outcomes relating to Covid-19 in individuals with AAV. 
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1.13.3.6 AAV and infection: summary 

Studies relating to severe infection in AAV have accumulated in recent years, 

providing increasing awareness of the frequency of this complication, prognostic 

factors and impact. The cumulative incidence over all follow-up time in studies 

described above ranges from 26 to 59%, with median 40%. In the first year 15 to 

22% will experience a severe infection. The early incidence rate varies from 22 

to 88 severe infections per 100 person-years, while the rate over more prolonged 

follow-up times ranges from 7 to 12 severe infections per 100 person-years. Over 

variable follow-up periods, infection as a proportion of the cause of death 

ranges from 10 to 48%, with median 20%. 

Important patient-related predictive factors include age, diabetes, pulmonary 

disease and smoking history. Disease related factors likely include renal function 

and the presence of lung involvement. Therapy related factors are 

glucocorticoid exposure and possibly the use of cyclophosphamide over 

rituximab, although increased rituximab exposure has also been shown to be 

associated with greater number of infections. TMP/SMX is likely to be protective 

against severe infection. Leukopenia and hypogammaglobulinaemia are 

biomarkers of severe infection susceptibly. 

Much of the literature has methodological limitations. Studies are frequently 

small, leading to inaccurate estimates and potentially spurious results. 

Retrospective studies are commonplace and prone to missing and inaccurate 

data, as well as survival bias. RCTs do not report infections in a standardised 

manner (Kronbichler et al., 2015). Important areas of deficiency exist in the AAV 

infection literature, which are highlighted above. It is clear, however, that 

severe infections are common and can lead to devastating outcomes for AAV 

patients. Although causality is difficult to determine, there is acceptance in the 

medical literature that necessarily intense immunosuppression leads to 

infections, many of which are severe in nature and can lead to early mortality. A 

large body of observation data from a variety of settings, and with varying 

analytical approaches, support this position. 
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1.14 Prognosis research 

In clinical epidemiology, studies typically have descriptive, aetiological or 

predictive objectives. While descriptive studies, which typically aim to quantify 

incidence or prevalence of diseases and their outcomes, are intuitively 

understood, there is often conflation between the objectives of aetiological and 

predictive studies. Aetiological studies aim to determine whether an exposure 

causes an outcome. A predictive study uses multiple factors to predict the 

presence of a diagnosis or future occurrence of an outcome. This is regardless of 

where the factors incorporated into the tool are causal (Ramspek et al., 2021). 

Well-conducted predictive studies, also referred to as prognostic modelling 

studies, use advanced statistical methods to develop models which include 

multiple predictive factors. Such studies fall under a wider spectrum of scientific 

endeavour known as prognosis research. The PROGRESS framework was 

developed to help clarify concepts, improve study design and enhance standards 

of reporting in this field. This thesis will aim to develop aspects of prognosis 

research relating to the prediction of severe infection in AAV, utilising the 

underlying structure of the PROGRESS framework, described below. 

1.14.1 The PROGRESS framework 

Prognosis is the aspect of clinical medicine whereby the likelihood of future 

clinical events is determined in individuals or populations with a specific disease 

or within a particular clinical scenario. Prognosis research aims to establish the 

relationship between baseline health status and subsequent clinical events. The 

ultimate aim is to be able to accurately predict future outcomes, using 

information known about individuals at baseline, in order to improve outcomes 

for patients (Hemingway et al., 2009). 

While the impact of high-quality prognosis research is not in doubt, the field has 

been less prominent, and methodological standards less rigorous, than in other 

important clinical fields such as RCTs and genomics. The field has suffered from 

variable terminology and poorly defined concepts. Many studies are low quality 

due to being underpowered, inappropriate methodology, vulnerability to 

publication bias and failing to replicate previous findings. The Prognosis 

Research Strategy (PROGRESS) was developed to improve research standards in 
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prognosis research. Four main types of prognosis studies have been defined to 

assist this objective: overall prognosis research, prognostic factor research, 

prognostic model research and stratified medicine research (Hemingway et al., 

2013). 

Overall prognosis research explores the average frequency of clinical outcomes 

of a specific disease or at-risk group within a particular population, at a specific 

time and within a defined location or healthcare setting. This type of study aims 

to answer questions such as “In females over 65 years in Scotland with 

hypertension diagnosed in primary care, what proportion will experience a major 

adverse cardiovascular event over the following 10 years?”. This contributes to 

understanding the impact of disease and allows comparisons across locations and 

time (Hemingway et al., 2013). 

Prognostic factor research investigates whether specific characteristics of 

individuals with a disease impacts the frequency of an outcome. For the same 

group described above, an example might be “In females with hypertension does 

variation in the aldosterone synthase gene predict increased cardiovascular 

events over 10 years?”. A wide array of characteristics can be considered, such 

as environmental exposures, genes, clinical features or treatments. Such studies 

often examine the added predictive ability of novel characteristics, such as 

laboratory biomarkers, to more traditional characteristics, such as age or clinical 

observations (Riley et al., 2013). 

Prognostic model research comprises developing and validating statistical 

models aiming to predict outcomes in individual patients. Such models typically 

include multiple prognostic factors. Where appropriate datasets are available, 

the clinical impact of the model should be evaluated. The QRISK3 model uses 21 

patient characteristics to predict cardiovascular events over 10 years (Hippisley-

Cox et al., 2017). Many models are used in routine clinical practice to make 

individualised decisions with patients (Steyerberg et al., 2013). 

Stratified medicine research, also described as “predictors of treatment effect 

research”, aims to determine whether sub-groups of patients with particular 

prognostic characteristics will or will not benefit from specific treatments. An 

example might be: for an individual with hypertension and a specific 
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combination of prognostic factors, Drug A will likely provide more clinical 

benefit and cause fewer adverse effects than Drug B (Hingorani et al., 2013). 

1.15 Aims 

Individuals with AAV are vulnerable to an array of adverse clinical outcomes, 

with severe infection being among the most concerning. However, there is a lack 

of clearly defined, high quality prognosis research in this setting. As detailed 

above, incidence studies are hampered by incomplete variables, small sample 

size and retrospective design. There are no studies examining specific 

glucocorticoid dose thresholds as prognostic factors. There are no prognosis 

modelling studies examining severe infection risk from the time of diagnosis or 

mortality risk following a severe infection. Studies relating to Covid-19 prognosis 

research in AAV were not available. This thesis will seek to explore the impact of 

severe infection in AAV and develop methods for prediction, utilising prognosis 

research themes and methodology as described in the PROGRESS framework. The 

aims are as follows: 

• To determine the incidence of severe infection in individuals with AAV across 

European registries using novel web technology (overall prognosis research, 

Chapter 2) 

• To explore the predictive ability of glucocorticoid exposure, including dose 

thresholds, in relation to severe infection in individuals with AAV (prognostic 

factor research, Chapter 3) 

• To develop and internally validate a predictive model for severe infection 

events in individuals with AAV (prognostic model research, Chapter 4) 

• To develop and internally validate a predictive model for early mortality 

following a severe infection in individuals with AAV (prognostic model 

research, Chapter 5) 

• To identify prognostic factors for severe Covid-19 in individuals with AAV and 

confirmed Covid-19 (prognostic factor research, Chapter 6) 
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• To explore the immunological response to SARS-CoV-2 vaccination and factors 

which predict SARS-CoV-2 infection in individuals with AAV (overall prognosis 

research/prognostic factor research, Chapter 7) 

1.16 Summary 

This introductory chapter has described AAV from epidemiologic, biological and 

clinical perspectives. While outcomes for individuals with AAV have improved 

with modern methods of diagnosis and evidence-based application of 

immunosuppressive therapy, adverse events are frequent and have serious 

impact on quality of life and longevity. Severe infections are among the most 

concerning adverse events and are the most common cause of early mortality 

and overall excess mortality. Through the studies alluded to above, this thesis 

will explore: the incidence of infection in AAV, prognostic factors for severe 

infection and prognostic modelling relating to severe infection, including 

examination of a novel infectious disease, Covid-19.  
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2 Data quality and incidence of severe infection in 
AAV registries: a retrospective cohort study 

2.1 Overview 

Chapter 1 provided a detailed overview of ANCA-associated vasculitis (AAV). It 

established that severe infection occurs frequently in AAV and can be life 

threatening. Studies conducted in this area often have limited sample size, 

therefore the resulting estimations of severe infection incidence lack precision. 

This chapter will describe the FAIRVASC initiative, a project undertaken by a 

European consortium which seeks to federalise vasculitis patient registry data 

using novel web technology. First, a data quality analysis of registry data will be 

described. Then, severe infection incidence will be reported, following one of 

the first applications of the FAIRVASC infrastructure to interrogate registry data 

in this manner. Due to challenges with the availability and quality of severe 

infection data, only two of seven registries were suitable to use. Regardless, this 

work represents the largest known study of severe infection incidence in AAV.  
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2.2 Abstract 

2.2.1 Background 

Individuals with ANCA-Associated Vasculitis (AAV) are at increased risk of severe 

infections. Understanding the incidence of severe infection in AAV patients 

across different settings is desirable. The FAIRVASC project seeks to federalise 

seven AAV registries using semantic web technology. Prior to the data uplift 

required for federalisation, the FAIRVASC consortium sought to perform a data 

quality (DQ) analysis of the data contained within the registries. This chapter 

describes two studies: a DQ analysis of FAIRVASC registry data prior to semantic 

web uplift and an assessment of severe infection incidence in AAV patients using 

the prototype FAIRVASC architecture. 

2.2.2 Methods 

A quantitative DQ assessment of core data items was performed at each 

FAIRVASC pilot registry. Eight representative variables were analysed across four 

DQ domains: uniqueness, consistency, completeness and correctness. The formal 

DQ assessment did not include infection data, but infection DQ was assessed 

qualitatively. The underlying FAIRVASC technology was described. Registry data 

was mapped according the FAIRVASC ontology and uplifted to local triplestores. 

Via SPARQL queries, the FAIRVASC interface was used to retrieve severe 

infection incidence data over discrete time periods. 

2.2.3 Results 

There were 6,104 participants across seven registries. Uniqueness was 100% 

across all registries in terms of unique identification numbers. Duplicate patients 

existed below 1% for UKIVAS and Czech registries and at 3.6% for the POLVAS 

registry. Consistency of data type was 100% across all registries and variables. 

Consistency with respect to logic tests and plausibility tests was 95-100%. 

Completeness varied between 53-100%, but was greater than 95% for most 

variables in most registries. Correctness was greater than 95% for most variables 

in most registries. Due to specific issues with the presence and quality of 

infection data, only two registries were appropriate to use to determine severe 

infection incidence. There were 1,120 participants in these registries. The 
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combined incidence of severe infection was 179.2 events per thousand person-

years (95% confidence interval 153.9 – 207.6) for the first year after diagnosis 

and was progressively lower over subsequent time periods. 

2.2.4 Conclusions 

A quantitative assessment of core data items determined that DQ in the 

FAIRVASC registries was of an appropriate standard for future FAIRVASC research 

studies and activities, however a qualitative assessment of severe infection data 

resulted in only two of seven registries being able to be used to evaluate severe 

infection incidence. Although fewer registries were able to be used than 

anticipated, application of the FAIRVASC architecture demonstrated that severe 

infections were a major complication, most frequently occurring in the first year 

after diagnosis. 
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2.3 Introduction 

2.3.1 Severe infection incidence in AAV 

Individuals with ANCA-associated Vasculitis (AAV) are at increased risk of severe 

infection due to the requirement for potent immunosuppressive therapy to 

control disease activity. Disease related factors, such as disruption of the innate 

immune defence with respect to the respiratory tract, also contribute to 

infection susceptibility. As summarised in Chapter 1, a variety of studies have 

shown that AAV patients are highly susceptible to infections, including registry 

based cohort studies, population-based cohort studies and case-control 

studies.(McGregor et al., 2015; S. H. Sarica et al., 2020; Rathmann et al., 2021) 

Infection is the leading cause of early mortality.(Little et al., 2010) Studies of 

the incidence of infection from different regions with comparative methodology 

are lacking. Quantifying the risk of severe infections across different 

geographical and healthcare settings is key to a deeper understanding of the 

impact of this disease complication and how it might best be tackled, both from 

a basic and clinical research perspective, and a health care delivery perspective. 

Making such data available to vasculitis researchers is a principal goal of the 

FAIRVASC project. FAIRVASC is a large European consortium aiming to combine 

data from multiple AAV registries. Key to understanding the project are the 

current European data protection landscape and the underlying technology, the 

semantic web. 

2.3.2 Data protection landscape 

In 2016 the European Parliament and Council legislated on the use of personal 

data through the General Data Protection Regulation (GDPR) (REGULATION (EU) 

2016). This aimed to strike a balance between two key societal values: 

protecting personal data whilst preserving the ability for individuals and 

organisations to be able to legitimately use personal data for the benefit of 

citizens. Prior to the introduction of GDPR, the basis on which scientists and 

clinicians were able to use patient data was contingent on either the consent of 

participants or anonymisation of the data in question. For data to be fully 

anonymised various important attributes of the data often must be removed, 

potentially rendering it less useful or, in some cases, no longer fit for the 
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purpose of addressing the original scientific question. Anonymisation is 

particularly challenging in rare disease research where subjects are at increased 

risk of being identifiable due to the rarity of their underlying condition. In the 

case of scientific research, GDPR allows for limited exemption from some 

obligations, such as the necessity for the subject’s consent for data processing, 

where there is deemed to be sufficient public good achievable from the research 

in question. However, these exemptions are determined at a Member State 

level, leading to variability across national borders in terms of what data sharing 

or data processing is permitted. This leads to significant challenges for cross-

border health research projects. Complicated multi-party data sharing 

agreements are often required, with input from the legal teams of all 

participating institutions. For many projects, funding and resources are not 

available to overcome this challenge. FAIRVASC seeks to utilise semantic web 

technology to analyse subject level data in a manner that is fully compliant with 

GDPR without that data leaving the host institution. The aim is for rare disease 

research to be able to be performed across national boundaries, simultaneously 

removing the need for complicated legal agreements and comprehensively 

protecting personal data in a secure manner.(Donnelly and McDonagh, 2019) 

2.3.3 The Semantic Web 

The semantic web, also known as the web of data, is a movement to have, 

theoretically all, online data being uniquely identifiable, clearly described and 

have defined relationships with other data. The concept was first popularised in 

the early 2000s. Each data item should be uniquely identified with a uniform 

resource identifier (URI), much in the way all webpages are uniquely identified 

with a web address, the uniform resource locator (URL). Data, and the 

relationships between data items, should be clearly described using ontologies. 

An ontology is a formal description of concepts within a specific domain and the 

relationship of the concepts to other concepts. Well know examples outside of 

the biomedical domain include FOAF (Friend of a friend), an ontology for 

describing relationships between people, and the DBpedia ontology, a cross-

domain ontology which originated from data on Wikipedia.(FOAF collaboration, 

2022; DBpedia collaboration, 2022) Important ontologies in biomedicine include 

SNOMED CT, a large collection of medical terms and definitions, and the Gene 

Ontology, a compilation of genes and gene products across all species.(SNOMED 
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International, 2022; Gene Ontology Consortium, 2022) Data in the sematic web is 

stored in a semantic graph comprised of nodes and edges. In this graph 

structure, data points are represented by the nodes and relationships between 

data points are represented by the edges. To give an example of data 

represented in this manner, consider two data points: a patient’s identification 

number (ID) and a doctor’s ID, where the relationship between the data points is 

that the patient is under the care of that doctor. In semantic graph structured 

data these two data points (“Patient ID” and “Doctor ID”) can be conceptualised 

as nodes, while the edge is the relationship between the data points (“is under 

the care of”). This simple example can be expanded upon infinitely and flexibly 

– one of the key strengths of the semantic web. This is represented graphically in 

Figure 2-1. This contrasts with traditional means of storing data in relational 

databases, which are comprised of separate tables and keys in each table 

relating them. Notably, relationships between data points are not described in 

the latter. The graph structure has several strengths including being highly 

flexible, infinitely extensible, machine readable and suited to data structures 

with complicated relationships between variables. Ascribing these properties to 

data essentially makes it machine readable, meaning that computers can analyse 

the relationships between different data items. Using computation, scientists 

can take advantage of this semantically structured data to make new 

discoveries. As an example, linking a genetics database to a protein database 

using semantic technology, allowed new gene-protein interactions to be 

discovered, thus providing potential novel therapeutic targets. Semantic web 

technology has seen widespread adoption and the amount of semantically 

described online data has increased dramatically over the past two decades. 

Major administrations, such as American and UK governments, publish a large 

proportion of public data as semantic data and all major technology companies, 

including IBM, Alphabet and Meta utilise semantic web technology. 
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Figure 2-1 | Example of nodes and edges in a simple semantic graph 

 

2.3.4 FAIRVASC 

The concept of FAIR, developed by the GO-FAIR initiative, aims to make 

scientific data Findable, Accessible, Interoperable and Reusable.(Wilkinson et 

al., 2016) FAIRVASC is a European Joint Program on Rare Diseases (EJPRD) 

funded study, with additional support from industry, which seeks to make 

vasculitis data FAIR in order to answer new research questions. It does so by 

combining multiple AAV registries using semantic web technology. AAV 

represents a rare set of diseases with the incidence for AAV as a whole being 

reported as 1.4 – 38.2 cases per million person-years.(Kitching et al., 2020) 

Epidemiological research relies on data with sufficient sample size to permit 

reliable statistical inference. Achieving such a sample size in the rare disease 

setting - such as AAV research – is not always possible, particularly within a 

single nation or region. This is one of the principal challenges that FAIRVASC 

seeks to address. Various solutions have been proposed, traditionally a form of 

multinational registry. Traditional multinational registries have two main 

designs: central and network. In the central registry model, there is a single 

research protocol and data is submitted to a central database administered by a 

coordinating centre. Participating sites collect local patient data using a single 

case report form (CRF), possibly with some minor variability such as language or 

adaptation for local services. There are several registries which align with this 

model, covering a diverse set of both rare and common clinical conditions, such 

123456789 987654321 

Patient ID (node – a data point) Doctor ID (node – data point) 

“is under the care of” 

An edge – the relationship between data points 
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as Gaucher disease and acute coronary syndrome.(Khan et al., 2012; Zubaid et 

al., 2014) The network model takes a different approach. This model seeks to 

align separate registries, each of which has its own protocol, CRF and database. 

There is often a common data model whereby registries collect specific shared 

variables. These variables can then be submitted to a central platform and 

combined. Various groups subscribe to this model with clinical areas including 

psoriasis and medical devices.(Lecluse et al., 2009; Sedrakyan et al., 2014) 

These models have strengths and limitations. Strengths include a consistent data 

structure for the central model and ease of analysis for both, as the data 

ultimately exists within one database for analysis. Limitations include cost, 

other resource consumption, lack of efficiency, requirement for complicated 

ethical approvals and privacy concerns. Setting up a central registry can take 

resource away from existing local registries. In the rare disease context, there 

are often many existing heterogeneous registries and heightened concerns 

regarding data privacy due to the increased identifiability of rare disease 

patients. Taking advantage of recent technological developments, the federated 

model seeks to address many of these challenges. In FAIRVASC, the federated 

approach utilises semantic web technology to make aggregated data available 

without the data ever leaving the server of the registry’s host institution. As a 

result, the process complies with both the spirit and the letter of European data 

protection legislation, without necessarily requiring complicated data sharing 

agreements. The semantic approach requires comprehensive data harmonisation 

which results in carefully aligned data before federation takes place. The model 

for aligning data is described in the FAIRVASC ontology (see methods). 

2.3.5 Data quality 

There is variability in the literature as to what constitutes data quality (DQ). 

Defining DQ, and its constituent domains, remains an active area of research. 

One common definition, however, is that DQ is characterised by the extent to 

which data is fit for purpose.(Fadahunsi et al., 2019) Overall DQ is typically 

represented by different DQ domains.(Batini et al., 2009) Notably, there is also 

significant variability in the nomenclature of DQ domains in the 

literature.(Weiskopf and Weng, 2013) Some domains are quantitative and can be 

used to evaluate variables contained within a database, producing DQ statistics. 

Examples of such domains are accuracy (also described as correctness), 
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consistency, completeness and timeliness. Qualitative DQ domains include 

governance, availability, trustworthiness and relevance. It is not known what 

level of DQ is required for reliable scientific research. It is likely that the degree 

of necessary DQ will vary depending on the subject area, methodology and 

purpose of the study. Some domains will also be of greater or lesser importance 

depending on the setting. However, it is generally accepted that organisations 

should assess DQ and where necessary take steps to improve it, in order to 

improve the reliability of scientific results based on that data. 

2.3.6 Aims 

The first aim of this chapter is to describe a pilot study of various data quality 

metrics for the FAIRVASC pilot registries and to report summary measures across 

all registries as an indication of the suitability of the data for the stated aims of 

FAIRVASC. The second aim is to utilise the FAIRVASC infrastructure to extract 

and report severe infection incidence from multiple registries. This represents 

one of the initial components of prognosis research, whereby it is key to 

establish the incidence of an adverse clinical outcome, before going on to 

determine prognostic factors which are associated with the outcome or to derive 

multivariable models to predict the outcome. 

2.4 Methods 

2.4.1 Methods overview 

First the FAIRVASC project methodology will be briefly summarised. The 

methodology for the DQ study and the severe infection incidence study will then 

be described. Reporting follows guidance according to the Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) statement.(von Elm 

et al., 2007) 

2.4.2 FAIRVASC  

A framework to deliver the core infrastructure was developed iteratively with 

input from clinicians, researchers, computer scientists, health data experts and, 

crucially, patients and patient representatives. This framework is depicted 

graphically in Figure 2-2. A detailed description of the FAIRVASC approach has 
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been published.(McGlinn et al., 2022) Harmonisation refers to the process of 

identifying similar or identical terminology used across systems to describe 

phenomena. In the case of rare disease registry integration this involved 

identifying variables across registries that either represent the same information 

but may be labelled differently or identifying variables which could be 

transformed, sometimes utilising other data in the registry, to represent the 

clinical concept in question. Data dictionaries from each pilot registry were 

collated and compared. Potentially common variables were identified across 

registries in several categories including demographics, vasculitis diagnosis, 

comorbidities, investigations, treatment and complications, such as 

cardiovascular disease, malignancy and infection, and outcomes such as 

mortality. The output from assessment of data dictionaries then informed initial 

discussions of the Query Implementation Team (QIT), a group of vasculitis 

clinician scientists with representation from across the pilot registries. The focus 

of QIT was to determine research questions which would be of scientific 

importance to eventual users of the FAIRVASC infrastructure, many of whom are 

likely to be clinician scientists. The summary output is requested from the 

registries through the FAIRVASC web interface through a point-and-click web 

application that is easily used without the need for computer science expertise. 

This request is transformed into a SPARQL Protocol and RDF Query Language 

(SPARQL) query. SPARQL is a query language designed to retrieve data from a 

semantic data graph, specifically one in the Resource Description Framework 

(RDF) format. RDF is a World Wide Web Consortium (W3C) standard for 

describing semantic web data. The Harmonisation Team is predominantly made 

up of registry representatives with close working knowledge of registry 

metadata, structure and use. Once potential queries were developed by QIT, the 

Harmonisation Team (HIT) then established how each registry would derive the 

necessary variables. This informed the development of the FAIRVASC ontology, 

published online at http://ontologies.adaptcentre.ie/fairvasc/. This web page 

includes an interactive visualisation of the FAIRVASC ontology. Screenshots of 

the ontology visualisation and a small section of the structure of the ontology 

are available in the appendix. The FAIRVASC Implementation Team (FIT) is made 

up of a representative from each registry with an information technology 

background and trained by semantic web experts within the consortium on 

semantic web technologies. Based on output from HIT, FIT transformed registry 

http://ontologies.adaptcentre.ie/fairvasc/
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data to RDF format using the Relational to Resource Description Framework 

Mapping Language (R2RML). RDF data was then uplifted to a local ‘triplestore’, a 

database designed for the storage and retrieval of semantic data. Registry 

triplestores were then able to be queried remotely using SPARQL via the 

FAIRVASC interface. An iterative approach to ontology design and 

implementation has been used, with continuous input from QIT, HIT and FIT. A 

‘core team’ of three individuals, one computer scientist and two clinical 

researchers (including the thesis author), has coordinated the interaction 

between these groups. Ultimately a protype interface was developed. This 

enables the user to determine counts, percentages and confidence intervals (CI) 

for a range of outcomes and can be stratified by various baseline characteristics, 

including by registry.  
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Figure 2-2 | Framework underpinning the development of the FAIRVASC infrastructure 
FIT = FAIRVASC implementation team, HIT = Harmonisation implementation team, QIT = 
Query implementation team, RDF = resource description framework, SPARQL = SPARQL 
protocol and RDF query language. These terms are described above. 
 

 

2.4.3 Study design and setting 

The DQ study is a cross-sectional pilot analysis of the seven pilot FAIRVASC 

registries, which are either registries dedicated to AAV or broader registries 

covering other vasculitides, but with substantial numbers of AAV participants. 

The DQ study was a global and quantitative assessment of registry data and was 

not specific to infection, therefore variables relating to severe infection were 

not included. The severe infection incidence study is a registry-based, mixed 

retrospective-prospective cohort study. With respect to severe infection, a 

qualitative DQ assessment was undertaken by surveying registry owners to 

ascertain the presence, consistency, completeness and correctness of relevant 

data. The study design, setting, location, period of recruitment, follow-up, data 

collection and summary of qualitative DQ relating to severe infection for each 

registry is described in Table 2-1. 

2.4.4 Participants 

Eligible participants for the DQ study were all AAV patients within the seven 

FAIRVASC pilot registries as defined by recognised international standards such 
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as the American College of Rheumatology 1990 criteria for the classification of 

Wegener’s granulomatosis (ACR 1990), the 2012 revised International Chapel Hill 

Consensus Conference Nomenclature of Vasculitides (CHCC 2012) or the 

European Medicines Agency (EMA) classification algorithm (Leavitt et al., 1990; 

Jennette et al., 2013; Watts et al., 2007). Data for the incidence of severe 

infection study were from AAV patients registered with FAIRVASC registries 

where severe infection data was available (Table 2-1). Severe infection was 

defined as an infection associated with an admission to hospital. Sources and 

methods of selection of participants and methods of follow-up for each registry 

are described in Table 2-1. 

2.4.5 Variables 

Eight variables were assessed as part of the DQ study: sex, date of birth, serum 

ANCA autoantibody, a single comorbidity (chosen by the local registry team, 

diabetes was recommended), Birmingham Vasculitis Activity Score (BVAS), serum 

creatinine at baseline, date of death (if death had occurred) and date of End 

Stage Kidney Disease (EKSD; if ESKD had occurred). Serum ANCA autoantibodies 

and serum creatinine assays varied across, and within, registry sites. Presence of 

comorbidity was defined by the local investigator’s clinical judgement. BVAS was 

version 3.(Mukhtyar et al., 2009)  ESKD was defined as requirement for dialysis 

or kidney transplantation. 

Baseline variables for the severe infection incidence study were sex, AAV 

diagnosis, ANCA autoantibody status and mortality status. Ideally age would have 

been included, but at the time of retrieving analyses via the FAIRVASC interface 

this variable had not yet been incorporated into the available queries. The 

outcome variable was incidence rate of severe infection as defined by the 

number of severe infections per thousand person-years. 

2.4.6 Data sources / measurement 

One registry (FVSG; French) was predominantly derived from national clinical 

trials. The Skåne registry (Sweden) identifies possible AAV patients through 

health district administrative codes, then utilises the local clinical record to 

confirm this diagnosis before inclusion and use of the clinical record to populate 
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the registry. All other registries recruited patients with AAV prospectively and 

data was sourced from the local clinical record or through direct patient 

interaction as part of registry data collection. Where some patients are 

recruited after their vasculitis diagnosis, some retrospective data collection is 

carried out (Czech AAV registry, GEVAS, POLVAS). All seven registries were 

analysed for the data quality study. Due to infection DQ issues, only two 

registries were appropriate to analyse for the severe infection incidence study, 

discussed further below. 

DQ domains were selected by the FAIRVASC Data Quality Group (DQG) which has 

a broad range of clinical, statistical, health informatics and computer science 

expertise, in addition to representation from all pilot registries. These domains 

were prioritised by investigator consensus from a pool of nine candidate domains 

drawn from the literature and developed through prior published research.(Aerts 

et al., 2021) The identified domains were uniqueness, completeness, consistency 

and correctness. Definitions for DQ domains can vary across subject areas. For 

this study DQ domains were defined as follows. Uniqueness was defined as the 

degree of unwanted duplication within a variable. It was reported as the 

proportion of non-duplicated values for a variable with respect to the total 

number of values. Completeness represents the extent to which missing data has 

been minimised and was defined as the proportion of all subjects with non-

missing data for a given variable. Consistency is the extent to which data is in a 

format which aligns with the registry’s data dictionary. Correctness, synonymous 

with accuracy, is the degree to which data represents the true, real-world 

object or event.(Arts et al., 2002) Completeness, consistency and correctness 

were also reported as the proportion of values which aligned with the definition. 

A DQ work sheet was designed and disseminated to local registry DQ analysts. 

Uniqueness was assessed in two ways. First, the total number of unique patient 

identifiers (IDs) were analysed for duplicates. Then possible duplicate patients 

entered under different IDs were assessed. This was done by identifying patients 

with the same sex and date of birth (DOB). Local DQ analysts then further 

compared these individuals across additional variables such as approximate date 

of diagnosis and date of death to determine whether the case was indeed a 

duplicate. Consistency was examined with three approaches. First, all eight DQ 

variables were examined for appropriate data type or format, according to the 
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local data dictionary. Potential data types include character string, numeric, 

integer and dates. Then two logic tests were applied to three variables: was 

date of death “greater than” date of birth and was date of death “greater than” 

date of diagnosis. The last consistency checks were two plausibility tests: was 

BVAS at diagnosis within the possible range (0 – 63) and was serum creatinine at 

diagnosis within a biologically plausible range (0 – 5000 micromol/L). 

Completeness was checked across all variables by assessing the amount of 

missing data, this was reported as “percentage complete”. For date of death 

and date of ESKD, the denominator was the number of these events that had 

occurred. Where possible, correctness of values in each registry was assessed 

against the source data for at least 10 patients per registry. Where the variable 

did not exist in a given registry this was reported as “NA”. Accessing source data 

was not possible in the required time frame for the French registry, therefore all 

correctness data was reported as “NA”. 

Severe infection data is not collected in all registries. It is not collected in 

UKIVAS and POLVAS collect whether any infection has taken place, but do not 

count individual infections. GEVAS at present likely has incomplete infection 

data. The Czech registry is not designed for complete capture of infection data. 

French registry infection data was not in a suitable format for transformation 

into RDF. Therefore, due to variation across registries in how severe infection 

data is collected and represented, we included severe infection data from 

registries where this was likely to be complete and there was sufficient 

granularity in terms of number and severity of infection. Therefore, the ideal 

included registries for the severe infection incidence analysis were RKD and 

Skåne. 

2.4.7 Bias 

Data quality study: Variables were intentionally selected to gain a 

representative sample of both those likely to have a high level of data quality 

(e.g. age) and those which may be suspected to have a significantly lower level 

of overall data quality due to complexity of entry (e.g. BVAS). To maximise 

external validity, variables which were considered likely to be useful in 

epidemiological studies were selected. For correctness assessment, participants 

were selected randomly to avoid selection bias. 
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Severe infection incidence study: As above, where significant missing data on 

severe infection occurrence was likely, such registries were excluded from the 

severe infection analysis. The data quality analysis informed registry inclusion. 

Survival bias, a form of selection bias, is a potential concern in any cohort study 

where the outcome can potentially affect study participation. Although the large 

majority of participant data was collected prospectively from diagnosis, some 

retrospectively entered participants were included. An exact proportion is not 

available. In this instance, survival bias would occur whereby a patient may not 

be recruited to a study due to having the event of interest – a severe infection, 

which may result in death, prior to the time of potential recruitment. This may 

result in systemic bias where the cohort experiences a lower incidence of severe 

infection compared to the ideal target population. Information bias may be an 

issue in some AAV cohorts. AAV cohorts are often recruited at tertiary centres. 

Some patients who experience a severe infection may be admitted to a local, 

secondary care centre. Data relating to such events may not be accessible to 

investigators from the tertiary site. These forms of bias were addressed in this 

study by only selecting registries that had a large proportion of prospectively 

recruited participants (RKD) or a population-derived cohort (Skåne), which have 

high levels of estimated complete outcome data.  

2.4.8 Study size 

The sample size was determined by the maximum number of cases available in 

registries with minimal missing data regarding incidence of infection and low loss 

to follow-up. 

2.4.9 Quantitative variables 

Due to the nature of the federated approach, it was not possible to gain access 

to patient level data. Ideally statistical adjustment would have been carried out 

using dichotomised variables such as age and sex using the Cochran-Mantel-

Haenszel method. However, at the time of analysis age was not available as a 

variable for stratification in the FAIRVASC web interface, therefore adjustment 

was not possible. 
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2.4.10 Statistical methods 

Baseline characteristics were reported as counts and percentages. DQ metrics 

were reported as counts and/or percentages. Severe infection was reported as 

incidence rates for each individual registry and the combined registries. CIs were 

calculated by approximation to a normal distribution. 

2.5 Results 

2.5.1 Description of the FAIRVASC registries 

Table 2-1 shows a descriptive table of the FAIRVASC pilot registries. The total 

number of patients in each registry varied from 106 to 2644 individuals with 

AAV. Some registries were purely dedicated to AAV, while most collected data 

on all patients with systemic vasculitis. All registries utilised a recognised 

international standard for the definition of AAV, such as ACR 1990, CHCC 2012 or 

EMA.(Leavitt et al., 1990; Jennette et al., 2013; Watts et al., 2007) Other 

aspects of the registries, such as study design, setting, location, recruitment 

period, follow up, data collection and availability of severe infection data, are 

described. Severe infection data was not a component of the formal, 

quantitative DQ assessment, but a qualitative evaluation was carried out. Two 

registries (RKD and Skåne) contained severe infection data deemed complete, 

consistent (i.e. in a useable format) and correct by registry owners. Two 

registries (Czech and GEVAS) contained severe infection in their data 

dictionaries, but registry owners reported that such data was not routinely 

collected. This was reflected in implausibly low severe infection incidence. The 

French registry contained infection data, but in a “free text” format that was 

not possible to quantitatively analyse. POLVAS collected minimal severe 

infection data: a binary variable relating to the prevalence of severe infection 

data, but no count data relating to number of infections or associated 

timestamp. UKIVAS did not collect severe infection data. Therefore only two 

registries were included in the incidence study, described in section 2.5.3. 



2 87 
 

Table 2-1 | Descriptive table of registries 

 Czech GEVAS French POLVAS RKD Skåne UKIVAS 
n 268 106 2644 878 698 325 1185 

Disease 
area 

AAV, 
nephrolog
y 
predomin
ant 

All 
systemic 
vasculitis 

All 
systemic 
vasculiti
s, 
majority 
AAV 

All 
systemic 
vasculitis 

All 
systemic 
vasculitis, 
nephrolog
y 
predomin
ant 

AAV Systemic 
vasculitis 
including 
AAV 

AAV 
definitio
n 

EMA CHCC 
2012 (all) 
ACR 1990 
(GPA & 
EGPA) 
Clinical 
(Renal 
limited) 

ACR 
1990 
and/or 
CHCC 
2012 

Combine
d CHCC  
2012 and 
ACR 1990 

EMA EMA CHCC  
2012 

Study 
design 

Mixed 
retrospect
ive / 
prospectiv
e 

Mixed 
retrospect
ive / 
prospectiv
e 

Prospec
tive 
cohort 
study 

Retrospe
ctive 
(prospect
ive 
compone
nt not in 
FAIRVASC
) 

Mixed 
retrospect
ive / 
prospectiv
e 

Mixed 
retrospec
tive / 
prospecti
ve 

Mixed 
retrospec
tive / 
prospecti
ve 

Setting Secondary 
/ tertiary 
care, 16 
recruitme
nt sites 

Vasculitis 
centres 

Seconda
ry / 
tertiary 
care, 75 
recruitm
ent sites 

Secondar
y care 

Secondary 
/ tertiary 
care, 8 
recruitme
nt sites 

Populatio
n based 

Secondar
y care 

Location Czech 
Republic - 
approxima
tely 60-65 
% of Czech 
AAV 
patients 
recruited 

Germany 
(future: 
Austria, 
Switzerlan
d) 

France 10 
centres 
covering 
60% of 
populatio
n 

Ireland - 
approxim
ately 75% 
of Irish 
AAV 
patients 
recruited 

Skåne, 
Sweden 

UK and 
Ireland 

Period 
of 
recruitm
ent 

2009 – 
present 

June 2019 
– present 

1983 – 
present 

March 
2016 – 
present 

Septembe
r 2012 – 
present 

1997 – 
2019 

 

Follow-
up 

To present Up to 
2022 

To 
present 

Up to 
2021 

To 
present 

Up to 
2020 

Plan for 
follow up 
with data 
linkage 

Data 
collectio
n 

Encounter 
based, 
minimum 
annually 

At clinical 
visit 

At 
clinical 
visit 
(typicall
y 

Review of 
clinical 
record 

Encounter 
based 

Review 
of clinical 
record 

Initial 
clinical 
visit / 
clinical 
record 
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biannual
) 

Loss to 
follow 
up 

n/a – date 
of last 
encounter 
marks end 
of follow 
up 

3% n/a – 
date of 
last 
encount
er 
marks 
end of 
follow 
up 

Nil (for 
retrospec
tive 
compone
nt) 

n/a – date 
of last 
encounter 
marks end 
of follow 
up 

Estimate
d 0.5% 
for those 
attending 
clinical 
services 

n/a 

Severe 
infectio
n data 
availabl
e / DQ 

Yes / 
substantia
lly 
underrepo
rted 

Yes / 
substantia
lly 
underrepo
rted 

Yes / 
inaccess
ible 
format 

No / - Yes / 
sufficient 
DQ 

Yes / 
sufficient 
DQ 

No / - 

ACR = American College of Rheumatology criteria, CHCC = Chapel Hill Consensus 
Conference criteria, DQ = data quality, EMA = European Medicines Agency criteria for AAV, 
EGPA = eosinophilic granulomatosis with polyangiitis, GPA = granulomatosis with 
polyangiitis, n = number of AAV participants 
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2.5.2 Data quality  

Issues with severe infection DQ are addressed in section 2.5.3. With respect to 

overall DQ as determined in the main DQ assessment, uniqueness was described 

both in terms of the number of unique IDs, but also the number of unique 

patients who in could be entered into the registry with more than one unique ID. 

Across all registries, participant IDs were 100% unique (Figure 2-3). The number 

of patients who had possible duplicate entries was zero or low across registries, 

however the POLVAS registry did have higher than expected duplicated patients 

at 3.6% (32/878). Consistency of data type was 100% across all variables. In some 

registries certain variables were not present and therefore were not able to be 

assessed for consistency, e.g. ANCA auto-antibodies in UKIVAS and comorbidity 

in Czech, POLVAS and UKIVAS (Figure 2-4). Consistency for logic tests of date of 

birth, date of diagnosis and date of death was between 95% to 100% and 

between 99.8% to 100% for plausibility test for BVAS and serum creatinine 

(Figure 2-5). Completeness was more variable across registries (Figure 2-6). 

Completeness for sex, date of birth and date of ESKD was 95% to 100% across all 

registries. Completeness for serum ANCA autoantibodies was similarly high, with 

the exception of the French registry at 52% (1382/2644). Due to the nature of 

registry data structures, comorbidity completeness could only be performed in 

the French registry. Many of the other registries collected data on comorbidities, 

but stated when these were present and not explicitly when absent. As a result, 

it was not possible to determine completeness in those registries for this 

variable. Completeness for BVAS scoring varied from 57% to 99% and for serum 

creatinine from 71% to 99%. Completeness for date of death was 94% to 100%, 

with the exception of 67% for GEVAS. Notably GEVAS is the most recently 

initiated registry, having started recruitment in 2019. At the time of analysis 

only three individuals were deceased, and date of death was missing for one 

individual. 
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Figure 2-3 | Data quality metrics by registry – Uniqueness 
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Figure 2-4 | Data quality metrics by registry – Consistency: data dictionary format 
BVAS = Birmingham vasculitis activity score, ESKD = end stage kidney disease. “NA” represents 
where a variable was not available for a registry.
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Figure 2-5 | Data quality metrics by registry – Consistency: Logic and Plausibility Tests 
ESKD = end stage kidney disease. “NA” represents where a variable was not available for a 
registry. 
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Figure 2-6 | Data quality metrics by registry – Completeness 
BVAS = Birmingham vasculitis activity score, ESKD = end stage kidney disease. “NA” represents 
where a variable was not available for a registry. 
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Figure 2-7 | Data quality metrics by registry – Correctness 
BVAS = Birmingham vasculitis activity score, ESKD = end stage kidney disease. “NA” represents 
where a variable was not available for a registry.



2 1 
 

2.5.3 Severe infection: Cohort baseline characteristics and 

incidence 

Baseline characteristics, mortality and follow-up of the severe infection cohort, 

both per-registry and combined, are summarised in Table 2-2. Missing data in 

the core registry variables is summarised in the data quality analysis under 

‘completeness’. At present data on completeness for infections is not available. 

Number of severe infections, total time-at-risk and incidence of severe infection 

for various time periods (less than one year, between one and two years, 

between two and five years and greater than five years) are summarised in 

Table 2-3. The incidence rate for severe infections was highest in the first year 

following diagnosis at 179.2 (95% CI 137.8 – 201.1) severe infections per thousand 

person-years. It was sequentially lower in subsequent time periods. The latest 

time period, beyond five years, demonstrated a severe infection incidence of 

35.1 (95% CI 29.4 – 41.6) events per thousand person-years. 

Table 2-2 | Registry baseline characteristics 

Variable 
 

RKD Skåne Combined 

Total  n = 746 n = 374 n 1120 

Mean age (years)  59.2 65.0 61.1 

Sex 
Female 327 (43.8) 174 (46.5) 501 (44.7) 

Male 419 (56.2) 200 (53.3) 619 (55.3) 

AAV diagnosis 

GPA 316 (42.4) 192 (51.3) 508 (45.4) 

MPA 385 (51.6) 159 (42.5) 544 (48.6) 

EGPA 45 (6.0) 23 (6.1) 68 (6.1) 

ANCA autoantibody 
specificity 

PR3 336 (45.0) 187 (50.0) 523 (46.7) 

MPO 363 (48.7) 161 (43.0) 524 (46.8) 

Negative 34 (4.6) 26 (7.0) 60 (53.6) 

Unknown (missing) 13 (1.7) 0 (0) 13 (1.2) 

Mortality 
Alive 613 (82.2) 187 (50.0) 800 (71.4) 

Deceased 133 (17.8) 187 (50.0) 320 (28.6) 

Mean follow-up 
(years) 

 
8.1 8.0 8.0 

EGPA = eosinophilic granulomatosis with polyangiitis, GPA = granulomatosis with 
polyangiitis, MPA = microscopic polyangiitis, MPO = anti-myeloperoxidase antibody, PR3 = 
anti-proteinase 3 antibody, RKD = Ireland Rare Kidney Disease registry 
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Table 2-3 | Incidence rate of severe infections over different time periods post diagnosis 

Registry Time period  Number of 
Infection 
events 

Total time-
at-risk 
(years) 

Event rate per 
thousand person 
years (95% CI) 

RKD Less than 1 
year 

 
110 649 169.5 (137.8, 201.1) 

 Between 1 and 
2 years 

 
27 573 47.0 (29.3, 64.8) 

 Between 2 and 
5 years 

 
43 1315 32.7 (22.9, 42.5) 

 More than 5 
years 

 
68 2277 29.9 (22.8, 36.9) 

Skåne Less than 1 
year 

 
68 344 197.6 (153.5, 250.6) 

 Between 1 and 
2 years 

 
30 315 95.2 (64.2, 136.0) 

 Between 2 and 
5 years 

 
44 781 56.3 (40.9, 75.6) 

 More than 5 
years 

 
66 1538 42.9 (33.2, 54.6) 

Combined Less than 1 
year 

 178 993 179.2 (153.9, 207.6) 

 Between 1 and 
2 years 

 57 888 64.2 (48.6, 83.1) 

 Between 2 and 
5 years 

 87 2096 41.5 (33.3, 51.2) 

 More than 5 
years 

 134 3815 35.1 (29.4, 41.6) 

95% CI = 95% confidence interval, RKD = Ireland Rare Kidney Disease registry 

 

2.6 Discussion 

2.6.1 Data quality – results 

A pilot DQ analysis of core variables was undertaken. Potential strategies to 

improve registry DQ are discussed below. The DQ analysis covered all pilot 

registries and evaluated a range of variables that were likely to be 

representative of broader data collected by the registries. Variables likely to 

have a high level of DQ, such as age and date of birth, but also variables with 

potential for lower DQ, such as BVAS and creatinine, were evaluated. We found 

that uniqueness of registry IDs was 100% across all registries. Duplication of 

patients, but with separate unique identifiers, was similarly low with the 

exception of POLVAS. POLVAS had 3.6% of patients possibly entered more than 

once under different unique identifiers. This uncovered an issue requiring 

further investigation and provided an opportunity for practical improvement 

steps to be considered, as discussed below. Consistency with respect to data 
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dictionary format was 100% across all registries and variables. This likely 

represents data validation systems in the various software platforms used by the 

registries, whereby it is only possible to enter data in the correct format for the 

variables that were checked. Logic tests of consistency for important dates such 

as date of birth, diagnosis and death were typically 100% and were 98% at lowest 

in one registry. Plausibility tests of consistency for BVAS and creatinine were 

also typically 100%. The lowest reported compliance with plausibility for 

creatinine was 99.8%. This suggests a low frequency of major errors for these 

variables but does not exclude more subtle errors. Completeness was high for 

certain variables such as sex, date of birth and date of death. However, there 

was substantial variability in completeness for other variables, such as serum 

ANCA autoantibody status, which varied from 52% in the French registry to 100% 

in the GEVAS, RKD and Skåne registries. This likely reflects the fact that the 

French registry was established around a decade before the introduction of 

ANCA autoantibody testing. A basic test of correctness was performed by each 

registry team. A minimum of 10 patients from each registry was sampled by the 

local DQ analyst. The eight DQ variables for each patient were then compared to 

a gold standard source of information - the respective clinical record for all 

registries. Correctness was high across most variables at 90% to 100%. This was 

lower for RKD for Comorbidity, BVAS and Creatinine at 71%, 85% and 85% 

respectively. 

2.6.2 Impact of data quality 

On review of the rare disease registry medical literature, while many evaluations 

of data quality of such registry data have been undertaken, it is clear that 

standards which indicate adequacy of data quality are lacking (Aerts et al., 

2021; Taruscio et al., 2014; Trama et al., 2017). A qualitative commentary is 

often provided, suggesting that DQ levels are “good” or “high”, with 

recommendations typically made for approaches for improving DQ, however 

beyond intuitive statements that high quality data is necessary for reliable 

research and the provision of good clinical care, clear evidence for adequate 

levels of DQ is lacking. Similar themes emerge from literature beyond the rare 

disease setting in clinical domains such as cancer and trauma (Chiang et al., 

2015; O’Reilly et al., 2016). This is not surprising, due to the complexity of 

quantifying required DQ for any given scientific investigation and that different 
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thresholds of DQ may be required depending on the specific research question or 

DQ domain. The levels of DQ demonstrated in the current analysis of the 

FAIRVASC registries suggest that DQ is similar to other registries considered to 

have a high level of DQ (Aerts et al., 2021; Taruscio et al., 2014). This provides a 

reasonable level of confidence that systematic bias will be minimised in the 

eventual outputs of the project. Planned projects include cluster analysis to 

determine novel AAV phenotypes, prediction analysis for death and ESKD as well 

as making summaries of key variables available via the main FAIRVASC interface. 

The interface will provide a portal to explore the impact of AAV in terms of 

outcomes, helping to assess unmet need, and will supply information regarding 

the demographics and epidemiology of AAV across different nations, thus 

facilitating the planning and design of future clinical studies. 

2.6.3 Strategies to improve data quality 

From the outset the FAIRVASC consortium has not viewed DQ assessment as a 

‘one-off’ task. We have elected to integrate a DQ culture into the FAIRVASC 

project and plan future regular iterations of DQ assessment. A repeat DQ study is 

already underway and is evaluating additional variables, specifically induction 

treatment and serum C-reactive protein. Ultimately, we aim to achieve a cycle 

of assessment and improvements, leading to FAIRVASC containing high quality 

data. This data will be suitable for a variety of scientific analyses, the results of 

which the vasculitis community can have confidence in, with bias having been 

minimised. Notably this pilot study did not include infection as a variable for 

formal DQ assessment. Future DQ studies will seek to evaluate this variable. 

Possible duplicate patients under different IDs were identified at a significant 

level in the POLVAS registry but also in the Czech and UKIVAS registries. Further 

detailed analysis of these cases is warranted to confirm the likelihood of 

duplication. Following further assessment, subjects confirmed as duplicates 

could easily be removed from an analysis at a data cleaning stage, improving the 

reliability of subsequent inferences based on this dataset. Systems for data entry 

could be enhanced, for example an automated warning when a patient is 

registered that a similar patient already exists in the registry could be directed 

at the user, allowing them to check likelihood of duplication at an early stage. 
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This could help reduce unnecessary work for registry personnel, conserving 

limited local resources. 

A potential improvement step for consistency could be a further enhancement of 

data validation systems, if suitable systems are not already in place. For 

example, for an individual performing data entry, it would be easy to mistakenly 

add an extra digit to a numerical value, making the value erroneous by a factor 

of ten. If a data entry system only allowed entry of plausible values, some of 

these erroneous values could be avoided. Notably, many registries already utilise 

such data validation approaches at the data entry stage. More elaborate systems 

are possible. For example, if a blood test value is entered that is substantially 

different to previous values or a previous trend, then a warning message could 

be shown to the user. Alternatively, automated input of certain variables from a 

laboratory database to a registry could be applied, reducing the capacity for 

human error. This would also reduce manual workload for registry personnel. 

Strategies to improve completeness include targeted additional data collection 

for specific variables where funding and resource allow. Missing data is well 

recognised as a DQ issue across multiple study designs and various strategies 

exist for dealing with this at the data analysis stage. A useful additional to the 

FAIRVASC interface would be a function to allow an assessment of missing data 

when exploring the data, helping to inform which strategies may be useful to 

mitigate against low completeness. For some analyses, for example where 

completeness is independent of confounders (i.e. data that is missing completely 

at random (MCAR)), a complete case analysis may be valid.(Ross et al., 2020) 

Multiple imputation is an alternative option and can help produce results with 

minimal bias, even with low levels of completeness.(Blazek et al., 2020) One 

could envisage a sub-study of FAIRVASC, where multiple imputation is carried 

out on datasets at the registry level before being uplifted to local triplestores, 

proving interface users with a multiple imputation version of the FAIRVASC 

dataset. 
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2.6.4 Severe infection incidence – main results and comparison 

with other studies 

Incidence rate was highest in the first year following diagnosis at 179.2 (95% CI 

153.9 – 207.6) events per thousand person-years and decreased over subsequent 

time periods. This highlights the well-recognised impact of the potent 

immunosuppression used in the initial months after AAV diagnosis to control 

disease activity as well as increased susceptibility due to disease related factors. 

That infection is common in the first year following diagnosis is well recognised. 

The largest published study on this topic is by McGregor and colleagues, who 

included 489 patients – less than half the size of the current study at 1120 

participants. McGregor et al evaluated the risk of infection, including severe 

infection, over different time points in a longitudinal registry based AAV cohort 

in the USA. They found 22% had at least one severe infection within the first 

year following diagnosis. Over two years of follow-up, most infections occurred 

within the first year and the greatest number of infections occurred within the 

first three months. The number of patients who experienced at least one severe 

infection over the two-year period was reported at 96 out of a population of 

374. This equates to at least 128 severe infections per 1000 person-

years.(McGregor et al., 2015) Sarica et al undertook a multicentre matched 

cohort study of 379 AAV cases which utilised data linkage to national records in 

Scotland. 35% of individuals experienced at least one severe infection over 

median 3.5 years follow up. Incidence was highest in the first year following 

diagnosis, particularly in the first 30 days when the incidence rate ratio was 10.6 

(95% CI 4.0-28.0) compared to general population controls. The incidence rate 

ratio for the 181 – 365 day period was 6.6 (95% CI 4.1-10.5) (S. H. Sarica et al., 

2020). Rathmann et al performed a population-based cohort study using the 

Skane registry, therefore the underlying patient data was very similar to that 

reported in the current study. This study also reported incidence rates over the 

first and second year. In 129 AAV patients, the incidence rate over the first year 

was 22.1 per 100 person-years (95% CI 16.7-27.4) and for the second year was 

11.4 per 100 person-years (95% CI 9.5-13.3) (Rathmann et al., 2021). The results 

of the current study demonstrate a similar trend to the key studies highlighted, 

in that severe infection incidence is highest soon after diagnosis but then falls 

substantially over subsequent years. The reported incidence rate in the current 

study of 179.2 severe infections per 1000 person-years appears consistent with 
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findings from the literature, as described above (McGregor et al., 2015; 

Rathmann et al., 2021). 

The larger registry in the current severe infection incidence study was RKD, a 

nephrology registry. Lower renal function is a recognised prognostic factor for 

severe infection. It would therefore be expected that the severe infection 

incidence would be higher in RKD, a nephrology registry, compared to Skåne, a 

population-based registry. This was not the case in the current study. That the 

mean age of the Swedish cohort was 5.8 years older may, at least partly, 

account for this. Other possible explanations include the proportion with renal 

dysfunction not being substantially different across the two registries. Renal 

data was not available to aid further exploration of this. Other possibilities 

include variability in data collection technique, immunosuppression regimens or 

geographical variation. 

2.6.5 Strengths 

FAIRVASC represents the largest amalgamation of AAV data yet assembled. 

Achieving an adequate sized epidemiological study is challenging in the rare 

disease setting, but is essential in order to achieve sufficient statistical power 

and to enable reliable estimates of association to be determined. FAIRVASC has 

deployed state of the art web technology to enable federalisation of diverse 

data sets and thus establish this large data resource. It has achieved this whilst 

maintaining high standards of data protection and is fully compliant with modern 

European legislation (“REGULATION (EU) 2016/679 OF THE EUROPEAN 

PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural 

persons with regard to the processing of personal data and on the free 

movement of such data, and repealing Directive 95/46/EC (General Data 

Protection Regulation),” 2016). This is of particular importance in the rare 

disease setting where, due to the rarity of conditions such as AAV, individuals 

are at greater risk of being identifiable despite attempts at anonymisation. The 

size of the FAIRVASC data sets is significantly larger than many existing datasets 

on which previous research has been based. The aim is that new insights into the 

epidemiology of AAV will be possible. While FAIRVASC has successfully 

federalised the data of 6,104 participants, the presence and quality of severe 

infection data was not sufficient for all registries to be included in the incidence 
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study of this complication. Only two registries with a total of 1,120 AAV 

participants were used for the incidence study – much smaller than the intended 

goals of the FAIRVASC project. While a smaller study than anticipated, the 

current study still represents the largest study of severe infection incidence in 

AAV to the author’s knowledge. The three closest comparable studies in terms of 

size have between 400 to 500 participants, while the current study is over 

double this size (Lai et al., 2014; McGregor et al., 2015; Solans-Laque et al., 

2017). 

Crucial to the aims of FAIRVASC being achieved is that the underlying data is of 

high quality. The core DQ data reported in the current study indicates that, for 

the variables assessed, FAIRVASC data is of a similar standard to other carefully 

maintained registries, as explored above. A broad range of DQ domains were 

explored in a variety of clinically important variables. A continually improving 

DQ culture has been established in FAIRVASC. This will give confidence to 

researchers about the validity of output. 

Data from the FAIRVASC project will be highly generalisable to real-world 

populations with AAV. This is partly evidenced by demonstration of similar 

baseline demographics to a typical AAV population (Kitching et al., 2020). A 

broad range of European countries were represented, covering variable 

demographics and healthcare systems. FAIRVASC has been designed such that 

existing registries will be able to easily transform their data to be made 

available through the FAIRVASC interface. Expansion is planned internationally, 

with current interest from many national AAV registries including Spain, Turkey, 

Denmark and Australia. This will further enhance the generalisability of analyses 

emerging from the project. 

AAV registries vary considerably in size and maturity. As a result, the underlying 

structures of the datasets varies substantially. In many cases identical clinical 

phenomena were described with different terminology. In other cases, similar 

concepts were recorded requiring cross referencing of different data fields 

within the registries such that the same information could be derived from each. 

FAIRVASC benefitted from a dedicated team of clinicians, computer scientists 

and health data experts in aligning these disparate data sources in a reliable 

manner. 
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Forms of bias were mitigated against to limit any impact in the severe infection 

incidence study. This includes survival bias and information bias. Survival bias is 

when either death or the study outcome, in this case severe infection, occurs 

and adversely affects inclusion or subsequent participation in a study. A large 

majority of patients in the study were prospectively identified and 

comprehensive follow-up was performed via clinical records. This would have 

the effect of minimising survival bias and minimising information bias in the 

form of “loss to follow-up”. 

2.6.6 Limitations 

There were limitations that are important to acknowledge. With respect to the 

core DQ assessment, levels of data quality were variable across registries. 

Aspects of the DQ analysis could be improved upon such as the biological 

plausibility tests, particularly with respect to serum creatinine. In this study the 

biologically plausible range for serum creatinine was defined as 0-5000 

micromol/L. On further reflection, a serum creatinine of zero is implausible and, 

based on the clinical experience of the thesis author and supervising team, is not 

observed clinically. The upper limit of 5000 micromol/L could also be revised: 

there are published case reports of higher values being observed. One report 

(published after the DQ approach was designed) described a serum creatinine 

value of 73.8 ml/dL, approximately equivalent to 6200 micromol/L (Persaud et 

al., 2021). Logic tests such as date of birth being greater than date of diagnosis 

will have high sensitivity for major consistency errors, but are at risk of missing 

less obvious errors. Correctness, potentially the most important DQ domain, was 

examined to a limited extent in the study. Ten individuals were checked for 

correctness across a range of variables. This may be too few registry participants 

to accurately identify levels of correctness and it will be difficult to determine if 

changes over time are statistically significant due to a lack of power with 

respect to this measure. Due to limited local resource at the participating 

registries it was not possible for more extensive correctness checks to be 

undertaken. 

While a systematic assessment of DQ was carried out, infection data was not 

part of this assessment. A qualitative assessment of registry severe infection 

data was conducted in the form of a survey of registry owners. This revealed 
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that registry severe infection data was variable in terms of overall presence and 

quality. Where infection data was collected, registries were not typically 

directly funded for this data capture, therefore substantial missingness may 

result. Some registries did not collect severe infection data at all. Another 

registry collected such data, but this was in free-text format and was not 

possible to assess or use. 

In the incidence study, we noted a substantial decrease in severe infection 

events over time. While this is biologically plausible, it remains possible there 

was degree of detection bias, whereby severe infections that occur in later years 

are less likely to be detected, as follow-up is typically not as frequent at this 

stage of the disease. Selection bias may also occur, in that individuals who 

present to hospital more frequently, for example with infection, may be more 

likely to encounter clinicians involved in the registry and therefore become a 

registry study participant. In theory this could inflate severe infection events. 

Ideally infection outcome data would have been presented for multiple 

registries, but unfortunately this data was not available. Age was available as a 

mean, but due to the prototype nature of the FAIRVASC web interface, was not 

available in dichotomised age brackets. Had age been available in a 

dichotomised form, it would have been desirable to perform an age and sex 

adjusted analysis of infection rates using direct standardisation (Naing, 2000). 

This would have allowed comparison of severe infection incidence across 

different registries, while taking demographics into account. Future iterations of 

the FAIRVASC infrastructure will seek to use novel encrypted federated learning 

techniques which will allow more advanced statistical approaches to be 

undertaken remotely on fully encrypted patient level data. Within the FAIRVASC 

consortium this has been successfully trialled using fabricated data with logistic 

regression. More complex techniques such as survival analysis and machine 

learning methods are also technically feasible. 

2.6.7 Conclusion 

A pilot DQ study of the initial FAIRVASC registries was carried out and indicated 

high levels of DQ across several core variables and DQ domains. The data was 

deemed sufficient for the initial FAIRVASC research activities, namely cluster 
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analysis, predictive modelling and presenting count data of baseline 

characteristics and outcomes via the FAIRVASC web interface. The FAIRVASC web 

interface utilises semantic web technology to federate AAV registry data across 

several European nations. The interface was used to conduct a study of severe 

infection incidence. Due to issues identified with severe infection data quality, 

only two registries were used for the severe infection incidence study. This still 

resulted in the largest study yet undertaken of this complication, to the author’s 

knowledge. This study highlights that severe infection is a major complication in 

AAV. Severe infection incidence was substantially higher in the first year 

following diagnosis. This work highlights severe infection in AAV as a research 

priority for the AAV clinical and scientific communities.  

2.7 Summary 

This chapter found that European AAV registries contain data of suitable quality 

for the principal research activities of the FAIRVASC EU consortium. Novel 

semantic web technology was used to federalise the registries, but with the 

underlying data staying in the host institution in a secure manner. A severe 

infection incidence study was performed using the prototype FAIRVASC 

infrastructure, though due to DQ issues only two registries were used for this. 

Severe infection occurred with high frequency, especially in the first year after 

diagnosis. Chapter 3 will seek to identify prognostic factors that predict severe 

infection, namely glucocorticoid dose thresholds. Subsequent chapters utilise 

the knowledge derived by developing prognostic models aiming to help clinicians 

and scientists predict severe infection in AAV and its consequences. 
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3 Glucocorticoids as a prognostic factor for 
severe infection in ANCA-associated vasculitis 
(AAV): dose relationship retrospective cohort 
studies 

3.1 Overview 

The previous chapter investigated the frequency of severe infection using the 

novel FAIRVASC federated rare disease platform. This represented ‘overall 

prognosis research’: one of the four main study types described in the PROGRESS 

framework which classifies prognosis research. Now that we have established 

that severe infection occurs with high frequency, and with the knowledge that 

its consequences can result in death, the importance of being able to determine 

the likelihood of severe infection based on patient characteristics is clear. The 

next step in prognosis research is to identify prognostic factors: patient 

characteristics that are associated with the outcome of interest. Glucocorticoids 

are well recognised as contributing to severe infection risk, but the impact of 

different dose thresholds has not been explored in AAV. This chapter will utilise 

a large, real-world, observational dataset to ascertain the value of 

glucocorticoid exposure as a prognostic factor in individuals with AAV.  
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3.2 Abstract 

3.2.1 Background 

For decades, glucocorticoids have been a cornerstone of AAV management. In 

recent years, efforts have been made to find strategies to reduce or replace 

their use due to a wide range of adverse effects. Based on observational and 

randomised data, one of the most concerning adverse effects is susceptibility to 

severe infection. While this is well recognised, it is unclear whether different 

thresholds of glucocorticoid exposure are associated with differing risk for 

severe infection. This chapter will evaluate different glucocorticoid thresholds 

as prognostic factors for severe infection. 

3.2.2 Methods 

AAV patient data was identified from national Scottish datasets. Linked datasets 

such as those for hospital admissions and community prescribing were used to 

ascertain comorbid conditions and severe infection outcome, and glucocorticoid 

exposure, respectively. Four separate Cox proportional hazards models were 

developed. Glucocorticoid exposure was represented at daily prednisolone 

equivalents. Severe infection was defined as a hospital admission associated 

with infection. The observation period was 12 months. Glucocorticoid thresholds 

evaluated included: 1) 0 mg, >0-10 mg and >10 mg; 2) zero mg, >0 to 5 mg, >5 to 

10 mg, >10 to 20 mg and >20 mg, 3) 0 mg vs 5-7.5 mg. A fourth model evaluated 

glucocorticoid exposure as a continuous variable. 

3.2.3 Results 

Suitable data was available for analysis in 978 individuals with AAV. For model 1) 

glucocorticoid exposure >10 mg had hazard ratio (HR) 1.93 (95% CI 1.19 – 3.13, p 

= 0.008). The referent for all models was zero glucocorticoid exposure. Model 2) 

showed similar hazard ratios above 5 mg, with >20 mg having HR 2.05 (95% CI 

1.23 – 3.43, p = 0.015). In model 3) the 5 mg to 7.5 mg group had HR 2.55 (95% 

CI 0.72 – 8.94, p = 0.145). Model 4) showed a HR 1.01 (95% CI 1.00 – 1.02, p = 

0.047) for every milligram increase in glucocorticoid exposure. 
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3.2.4 Conclusions 

Glucocorticoid exposure thresholds above 10 mg daily all had a substantial 

positive association with severe infection. For lower exposures an association 

was not clearly determined. For every milligram increase in glucocorticoid 

exposure, the odds of severe infection increased on average by 1%. 

Glucocorticoid dose threshold may have value as prognostic factors for severe 

infection.  
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3.3 Introduction 

3.3.1 Background 

Glucocorticoids were one of the first immunosuppressive therapies to be 

introduced for treatment of AAV. Initial reports in the 1950s described cases of 

GPA, then known as Wegener’s granulomatosis, being managed with cortisone 

(Fahey et al. 1954). Glucocorticoids appeared to ameliorate the disease in some 

individuals and perhaps extended survival, but ultimately did not prevent the 

progression to death (Hollander and Manning 1967). A major turning point came 

from studies on the effect of cytotoxic therapy on AAV, at the National Institute 

of Heath (NIH) in Maryland, USA. Led by Anthony Fauci, these studies showed 

that, combined with glucocorticoids, cyclophosphamide was shown to induce 

disease remission (Fauci et al., 1971). Disease prognosis was transformed from a 

condition considered universally fatal to one where most individuals were alive 

at the end of the first year following treatment. 

3.3.2 Glucocorticoids: mechanism of action 

Glucocorticoids act through pleotropic mechanisms. Potent immunosuppressive 

effects are predominantly mediated via cytosolic glucocorticoid receptors. These 

receptors exert genomic effects that result in upregulation of anti-inflammatory 

proteins and suppression of proinflammatory proteins. Non-genomic effects 

include action on cellular membranes, on membrane-located glucocorticoid 

receptors and non-genomic actions of intracellular glucocorticoid receptors 

(Stahn and Buttgereit 2008). 

3.3.3 Glucocorticoid therapy: outcomes and adverse events 

Therapy for AAV has been evaluated in several multicentre randomised 

controlled trials, a major success for a rare condition (Wallace and Miloslavsky 

2020). However, trials of glucocorticoid treatment were lacking until the 

PEXIVAS study, the largest RCT yet conducted in AAV, was reported. In this 

open-label trial 704 AAV patients were randomised in a two-by-two factorial 

design to evaluate the use of plasma exchange versus no plasma exchange and a 

standard-dose glucocorticoid regimen versus a reduced-dose regimen. With 

respect to the glucocorticoid comparison, the reduced-dose regimen was found 
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to be non-inferior to the standard regimen, both in terms of overall patient 

survival and progression to end-stage kidney disease (ESKD) (Walsh et al., 2020). 

Severe infections were observed less frequently in the reduced-dose group 

compared to the standard-dose group, with an incident rate ratio of 0.69 (95% CI 

0.52-093). Similarly in LoVAS, a multicentre trial conducted in Japan, a low-dose 

glucocorticoid regimen was non-inferior with respect to the primary outcome of 

remission at six months and showed reduced severe infections, when compared 

to a standard-dose regimen (Furuta et al., 2021). 

There have been various observational studies published describing outcomes 

and adverse effects of glucocorticoid therapy in AAV, but most are small or 

methodologically flawed. McGregor et al sought to explore the effects of 

glucocorticoids in a small cohort totalling 147 individuals. In this report, patients 

receiving glucocorticoids beyond six months following therapy initiation suffered 

a higher rate of infections, when compared to patients not receiving 

glucocorticoids beyond six months. No significant differences were apparent 

with other important outcomes such as occurrence of ESKD or mortality 

(McGregor et al., 2012). 

Current guidance recommends a reduced-dose glucocorticoid regimen consistent 

with the PEXIVAS trial (Hellmich et al., 2023). Following stepwise glucocorticoid 

tapering over the initial months of the regimen, this notably includes a 

prolonged duration of low-dose glucocorticoid for over six months, at 5 mg daily. 

After 12 months, current guidelines recommend that ongoing glucocorticoid 

dosing is left to the discretion of the clinician. This may result in further 

prolonged treatment at this dose. It is unclear what impact chronic low-dose 

glucocorticoid therapy has on individuals with AAV. Studies in other settings 

have found an association between low-dose glucocorticoid therapy and severe 

infection, such as a large observational study in rheumatoid arthritis which 

showed an association at the low dose of 5 mg (George et al., 2020). 

3.3.4 Optimising the use of glucocorticoids 

While glucocorticoid treatment approaches have been compared to other 

treatments, such as plasma exchange in MEPEX and avacopan in ADVOCATE, to 

date only two studies have compared glucocorticoid regimens in an RCT setting: 
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the PEXIVAS study (Jayne et al., 2007, 2021; Walsh et al., 2020) and LoVAS 

(Furuta et al., 2021). In PEXIVAS, the cumulative glucocorticoid dose in the 

reduced-dose arm was less than 60% of that in the standard-dose arm. While 

PEXIVAS represented significant progress in the care of vasculitis patients, the 

optimal application of glucocorticoids in AAV management remains to be 

clarified. Several aspects need elucidation: optimum duration, dose, total 

cumulative dose, speed of taper and long-term dosing. Prognostics markers, such 

as clinical disease activity, or prognostics scores, aimed at predicting outcomes 

or adverse events, could be utilised in dynamically adapting the dose over time. 

Decisions regarding investigation of these research questions must take into 

consideration other urgent research needs in the care of AAV patients. These 

include optimisation of other existing treatments, introduction of new 

treatments, introduction of new tests and evaluation of the use of prognostic 

scores – all of which, ideally, should be evaluated using RCT methodology. 

However due to restrained resources and a limited number of participants 

available for enrolment, the vasculitis research community must prioritise 

clinical studies which have the maximum potential utility for patients. It 

therefore is logical to utilise existing data sources to inform decisions about 

which research agenda to pursue. Through observational, real-world data, a 

better understanding of the relationship between glucocorticoids, outcomes and 

adverse effects can be achieved. An important concern around the use of 

glucocorticoids in AAV is the recognised impact on frequency of severe 

infections. This both in terms of the magnitude to which glucocorticoid exposure 

is associated with severe infections and whether there is a glucocorticoid dose 

threshold at which risk increases. 

3.3.5 Rationale for this investigation 

While investigation of the causal role of glucocorticoids in relation to severe 

infection is important, the focus of the current study was to determine the 

ability of glucocorticoid dosing to predict severe infection as a prognostic factor. 

It is well established that glucocorticoids cause adverse effects across many 

settings. The contribution of glucocorticoids to the occurrence of severe 

infection has been evidenced in observational and randomised data (McGregor et 

al., 2012; Walsh et al., 2020). Severe infection, being the main cause of early 
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mortality in AAV patients, is a particular concern for patients and clinicians 

(Little et al., 2010). Being able to predict the occurrence of severe infection 

would be highly desirable in the setting of AAV patients. It would have the 

potential to help clinicians and patients make treatment decisions regarding the 

intensity of immunosuppression, it could be a useful research tool for targeting 

higher risk patients for recruitment to interventional studies and would give 

patients clearer expectations about the risk of adverse events. 

Given that glucocorticoids are generally accepted as having a causal role in 

contributing to the occurrence of severe infections, it follows that glucocorticoid 

use should be predictive of severe infection. In this sense it would be described 

as a prognostic factor – a clinical parameter in a given disease population which 

can be used to determine an individual’s likelihood of a future event occurring 

(Riley et al. 2009). Prognosis factor research falls under the purview of the 

PROGRESS (PROGnosis RESearch Strategy) framework, described in the 

introduction chapter, section 1.14.1 (Hemingway et al., 2013).  

The current study should be considered prognostic factor research – stage 2. If 

clear associations are found between glucocorticoids and severe infection, 

particularly if a dose-response relationship can be demonstrated, then this 

would also be supportive evidence for a causal role for glucocorticoids. However 

specific study designs and methodology would be more appropriate for 

addressing this causal question as a primary aim, such as: target trial emulation 

with respect to design, considering the time varying nature of medication and 

specifically only including confounders in a multivariable analysis. It would also 

be important to include a wider range of covariates such that all recognised 

potential confounding variables are included – this is not strictly necessary in a 

prognostic factor study. (Hernán and Robins 2016) 

3.3.6 Aims 

The aims of this study are to explore the association between glucocorticoids, in 

various prespecified dose groupings, and severe infection in AAV. This will be 

achieved through the development of separate multivariable models for each 

different dose grouping and including glucocorticoid dose as an exposure in each 

model. Models will be designed in a manner suitable for prediction, as opposed 
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to primarily aiming to support a causal role for glucocorticoids – an important 

but separate research question. 

3.4 Methods 

The Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) statement guidance for cohort studies was used to guide reporting of 

this study. (Vandenbroucke et al. 2007) 

3.4.1 Data source, study design and setting 

Vasculitis Outcomes in relation to Care Experiences (VOICES) was a services 

mapping study of vasculitis care and outcomes with projects covering both 

Scotland and the whole of the United Kingdom. VOICES included a Scottish data 

linkage matched cohort study which aimed to examine patterns of vasculitis care 

and outcomes. This dataset was developed using the advanced data linkage 

capabilities in Scotland via services provided by the electronic Data and 

Research Service (eDRIS) within Public Health Scotland (PHS). This dataset was 

utilised in the current study in line with the overall objectives of VOICES. The 

dataset identified all patients in Scotland with a relevant International 

Statistical Classification of Diseases and Related Health Problems 10th Revision 

(ICD-10) code for AAV and Giant Cell Arteritis (CGA) from the Scottish Morbidity 

Record admissions database (SMR01). SMR01 captures hospital admission data 

from all non-obstetric and non-psychiatric inpatient and day case care episodes. 

Patients were identified from a start date of 1st April 1996, when ICD-10 was 

adopted in Scotland, to 31st October 2020, the latest available update. Ten 

controls were identified, matched by age, sex and health board of residence. 

Patient identifiers were used to link to administrative health care data from 

multiple national datasets. These datasets are described in Table 3-1. An index 

date representing probable AAV diagnosis was defined as the earliest admission 

date associated with an AAV ICD-10 code. A look-back period of 5 years allowed 

comorbidities that occurred prior to the index date to be determined, according 

to established methodology (Quan et al. 2005). Data linkage was performed by 

PHS using a robust approach that has been demonstrated to result in highly 

accurate and complete data (Evans and MacDonald 1999; Scottish Public Health 

Observatory 2022). Application to use these data sets typically requires ethical 
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approval and a successful application to the NHS Scotland Public Benefit and 

Privacy Panel for Health and Social Care (HSC-PBPP), the body in Scotland which 

scrutinises applications for research using national health data and considers the 

potential public benefit of proposed work. An application to HSC-PBPP was 

successful, specific ethical approval was not required as this was covered by 

existing National Safe Haven (NSH) approvals. In order to access study data, all 

individuals in the study team were required to have up-to-date UK information 

governance training, such as that provided by the UK Medical Research Council 

Regulatory Support Centre (MRC Regulatory Support Centre 2023). Data was 

accessed through the secure NSH, using two-factor identification. Additional 

information regarding the study is available online (VOICES, University of 

Aberdeen 2022). 

Table 3-1 | Public Health Scotland linkage datasets – description and availability 

PHS dataset Description Years data 
available* 

General Acute/Inpatient 
(SMR01) 

SMR01 captures data at the encounter level on all 
inpatient and day case care episodes, with the 
exception of mental health and obstetric specialties. 
An entry in the dataset is created at the end of an 
episode of care. This may be being discharged to 
home, change of care to a different specialty, change 
of hospital or death. Over one million entries are 
generated each year. 

1981 
onwards 

National Records of 
Scotland (NRS) Death 
Records 

All deaths occurring in Scotland. Typically 55,000 
deaths are registered annually. 

1974 
onwards 

Prescribing Information 
System (PIS) 

PIS captures data on all community prescriptions in 
Scotland. Most are written by General Practitioners 
(GPs), but hospital prescriptions that are dispensed 
in the community are also included. Approximately 
100 million data items are captured every year. 

January 
2009 
onwards 

* ‘Years data available’ represents data available for linkage for researchers via Public 
Health Scotland, data may exist for earlier time periods. Data linkage became more practical 
in 2009 following application of Community Health Index (CHI) numbers. 

 

The dataset for this study was derived from the overall VOICES dataset as 

follows (and described in results section Figure 3-1): first GCA cases were 

excluded, then individuals whose index date was over six months before the 

start date of PIS records were excluded, following this AAV controls were 

excluded then, finally, individuals who died before the end of the glucocorticoid 

exposure observation period were excluded. This resulted in a dataset of 

individuals with AAV from the VOICES cohort who were alive at the end of 

glucocorticoid exposure period and had PIS prescription data available for the 



21 

whole of the glucocorticoid exposure period. Patients who did not have any PIS 

data available during PIS era were assumed not to be taking any medication. 

The setting covers the entire Scottish population who could have been identified 

as having vasculitis in relation to an inpatient admission. Data collection was 

undertaken as part of routine heath care and national records processing, such 

as clinical coding and death registration. In Scotland, at the end of each hospital 

or day case admission, trained clinical coders assign codes to describe clinical 

events and comorbid conditions. This is according to standardised guidance 

(Public Health Scotland, 2023). As such this study is a retrospective cohort study 

utilising administrative data. 

3.4.2 Patient and public involvement 

Collaboration with the Aberdeen Centre for Arthritis and Musculoskeletal 

Health’s user group and patients identified through national support groups 

(Vasculitis UK and the Lauren Currie Twilight Foundation) was undertaken as 

part of VOICES. This identified patient and carer priorities. This process 

informed the design and aims of the current study. (VOICES, University of 

Aberdeen 2022) 

3.4.3 Participants 

The VOICES study sought to identify all adults, ages 16 years or older, identified 

within the SMR01 database with a code for AAV or GCA. For this study, 

individuals with a clinical code for AAV were included. The following ICD-10 

codes were used to identify patients: M31.1 (granulomatosis with polyangiitis), 

M31.7 (microscopic polyangiitis) and M30.1 (eosinophilic granulomatosis with 

polyangiitis). The first SMR01 admission associated with a clinical code for AAV 

was designated as the index date. Patients were included if their index date 

occurred between 31st July 2008 (six months prior to the start of PIS data) up to 

31st October 2020 (the end of the observation period). The start date was 

selected so that all patients included in the study had full data available for the 

glucocorticoid exposure period. Patients were followed up from the end of the 

exposure period to 365 days post-index, to the time of death or to the end of 

the observation period, whichever occurred first.  
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3.4.4 Exposure 

The prognostic factor of interest was glucocorticoid exposure. Due to PIS dataset 

being based on prescribed medication that was obtained at community 

pharmacies, the exact prescribed dose of a given medication is not known at any 

specific time point. The dataset includes medication that was dispensed each 

month with variables including drug name, the preparation strength and number 

of units (e.g. tablets) dispensed. Using a 90-day period of this information, it 

was possible to estimate the glucocorticoid exposure according to a simple 

formula (preparation strength x number of units / 90 days). The 90-day interval 

was selected based on existing literature relating to glucocorticoid exposure and 

infections in RA, described below. As described in Chapter 1, in studies of AAV 

patients where prognostic factors for severe infection are explored, the time 

window for glucocorticoid exposure was frequently not clearly specified. Where 

the time window was specified, this was typically at baseline, another specific 

time period such as a six months or over an initial index period such as the first 

month following diagnosis (Kronbichler et al., 2018; McGregor et al., 2012; Sakai 

et al., 2019). No study specified an exposure window over which cumulative 

glucocorticoid exposure was calculated. Therefore, studies in RA, as an adjacent 

immune-mediated inflammatory disease (IMID), were deemed a useful 

alternative source of methodology to derive a relevant cumulative glucocorticoid 

exposure period. A systematic review and meta-analysis of the association 

between glucocorticoid exposure and the likelihood of infection in the setting of 

RA found many observational studies showing steroid dosing captured over a 

three-month period was associated with subsequent infection. Of the groups 

reported with a known time window of possible exposure to glucocorticoids, this 

group had the strongest association with subsequent infection, with a mean 

relative risk of 1.7 (95% CI 1.47-1.97). Other groups were glucocorticoid 

exposure at baseline, within 6 months of the outcome, glucocorticoid 

administered ‘ever’ or an unclear time window (Dixon et al., 2011). Another 

study supporting the 90-day time window was Dixon et al 2012. This was a large 

case-control study performed in RA patients in Quebec, Canada. It showed that 

current and recent glucocorticoid doses had the greatest impact on the risk of 

severe infection, with “any use in the past 90 days” carrying the largest odds 

ratio at 2.26 (95% CI 2.02-2.54) (Walsh et al., 2020). 
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Almost all individuals prescribed glucocorticoid were prescribed prednisolone. 

The following conversion factors were applied to non-prednisolone 

glucocorticoids as per the British National Formulary: betamethasone – 6.667, 

dexamethasone – 6.667, hydrocortisone – 0.25 (Joint Formulary Committee, 

2022). As a result, the unit for glucocorticoid dosing in this study was ‘daily 

prednisolone equivalents’. The index date for most participants was deemed 

likely to be close to the date of diagnosis when treatment with induction 

therapy would be ongoing. Induction treatments for AAV, such as 

cyclophosphamide and rituximab, are typically administered and supplied by 

hospital pharmacies, not primary care. Therefore, data documenting 

administration of such induction treatments was not available within the PIS 

dataset. Given that other immunosuppressive treatments, particularly induction 

treatment, would be important confounders and that glucocorticoid regimens 

that accompany induction treatment have already been explored in RCTs as 

described above, an a priori decision was made to examine the association 

between glucocorticoid exposure from six months after the index date. By this 

time point most individuals treated for AAV, including those treated with a 

standard glucocorticoid regimen, should be receiving a stable low dose such as 5 

mg prednisolone daily (Walsh et al., 2020). Higher doses at this time point may 

represent ongoing disease activity or relapse. Disease activity was not possible 

to derive from available datasets as a confounding variable. 

Various glucocorticoid dose groupings were used as exposures in separate 

models. The objective was to explore the relationship between different 

glucocorticoid doses and severe infection. The comparisons and associated 

models explored different aspects of glucocorticoid dosing, with rationales 

described below. 

3.4.4.1 Glucocorticoid dose: 0 mg vs >0-10 mg vs >10 mg 

This evaluation divided individuals into three glucocorticoid exposure groups. 

This aim of this model was to confirm whether there is a similar relationship 

between glucocorticoids and severe infection in the AAV population as has been 

established for specific glucocorticoid doses in other immunosuppressed 

populations. There are various reports of this relationship, which typically group 

patients into no glucocorticoid, low dose glucocorticoid and high dose 
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glucocorticoid. Schenfeld et al undertook several comparisons in an RA 

population. Low dose was defined as >0 to 7.5 mg and high dose as >7.5 mg per 

day. The low dose group had an adjusted rate ratio of 1.4 (95% CI 1.21–1.60) for 

severe infection and 2.8 (95% CI 2.32-3.34) for the high dose group, when 

compared to a group on no glucocorticoid (Schenfeld et al. 2017). A similar study 

from Strangfeld et al showed glucocorticoid dosing from 7.5 to 14 mg per day 

had an adjusted incident rate ratio (IRR) for severe infection of 2.1 (95% CI 1.4-

3.2), compared to no glucocorticoid, while dosing of 15 mg per day or greater 

had IRR 4.7 (95% CI 2.4-9.4) (Strangfeld et al. 2011). Notably a previous iteration 

of the American College of Rheumatology guidelines for the treatment of RA 

described low dose glucocorticoid at >0-10 mg and high dose as >10 mg (Walsh et 

al., 2020). 

3.4.4.2 Glucocorticoid dose: multiple dose thresholds 

This evaluation divided glucocorticoid dosing into the following groups: zero mg, 

>0 to 5 mg, >5 to 10 mg, >10 to 20 mg and >20 mg. The aim of this model was to 

explore in greater detail whether there is an increasing risk of severe infection 

associated with increasing dose thresholds. This could be a a linear relationship; 

a non-linear, but smooth relationship; or a threshold effect, whereby at a 

specific dose threshold, there is a substantial increase in risk – potentially a 

logarithmic relationship. Stepwise increased risk associated with increased 

glucocorticoid exposure has been reported in other settings. Dixon et al reported 

a systematic review and meta-analyses of randomised controlled trials and 

observational studies describing the association between systemic glucocorticoid 

treatment and infections. As the dose category was restricted to higher 

thresholds, there was an increasing risk of infection: >5 mg prednisolone 

equivalents carried a relative risk (RR) of 2.46 (95% CI 2.08-2.92), >10 mg had RR 

2.97 (95% CI 2.39-6.69) and >20 mg had RR 4.30 (95% CI 3.16-5.84) (Dixon et al., 

2011).  A similar relationship may exist in AAV, but this has not yet been 

evaluated. 

3.4.4.3 Glucocorticoid dose: 0 mg vs 5-7.5 mg 

It is common for individuals with AAV to be on a small dose of steroid for a 

prolonged time, such as 5 mg daily prednisolone equivalent. This is evidenced by 
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both regimens in the PEXIVAS trial having over six months at this dosage (Walsh 

et al., 2020). Following on from 12 months, there is limited data available to 

guide ongoing steroid dosing and there is no formal recommendation for 

clinicians. A previous meta-analysis by Walsh et al suggested that ongoing low 

dose glucocorticoid for greater than 12 months from diagnosis may be beneficial 

for prevention of relapse (Walsh et al. 2010). As a result, it is common practice 

for some clinicians to continue patients on low dose glucocorticoid beyond 12 

months. Anecdotally, where there is perceived increased risk of disease relapse, 

perhaps relating to previous relapse or anti-PR3 antibody positivity, some 

patients continue on low-dose glucocorticoid for the long term. In the Walsh et 

al meta-analysis risk of infection was not quantified. The authors acknowledge 

that the benefit of relapse prevention at this stage is unclear in terms of impact 

on long-term outcomes and quality of life. They state that a substantial 

proportion of individuals are able to tolerate withdrawal of glucocorticoid 

(Walsh et al. 2010). At present it is not know the extent to which low-dose 

glucocorticoid is associated with the risk of severe infection, when compared to 

no glucocorticoid. This model aimed to address this question. 

3.4.4.4 Glucocorticoid dose: continuous 

The final model considers glucocorticoid dose as a continuous linear variable. 

This aimed to quantify the average increased risk of infection per milligram (mg) 

glucocorticoid dose. As described above, dichotomising the exposure variable 

was intended to explore the effect of dose thresholds. However, dichotomising 

loses information from the analysis and may reduce statistical power. Also 

dichotomising may result in increased residual confounding, whereby some of 

the variable’s confounding effect can continue to be unadjusted for. However, 

this is unlikely to be an issue where the only variable being dichotomised is the 

main exposure variable and the effect of this on associations between other 

variables and the outcome are not within the scope of the study questions. 

Arguably a non-linear representation of continuous glucocorticoid dose would be 

most informative, for example by fitting a cubic spline or transformation of the 

variable with multiple fractional polynomials (Harrell 2015). However, these 

procedures typically require increased power, therefore it was decided to 

proceed with a standard linear description of glucocorticoid dose for this initial 

evaluation. 
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3.4.5 Covariates 

Choice of covariates for inclusion in an epidemiological model depends on study 

objectives. This study aims to evaluate different steroid dose groups as 

prognostic markers of severe infection. It does not seek to identify a causal 

relationship between steroid dosing and severe infection, an important but 

separate scientific question. STROBE guidance advises specific covariates to be 

identified, namely confounders and effect modifiers, however specifying these 

covariates would be important in a study which seeks to identify a causal role 

for the exposure of interest and is not necessary in a predictive study. 

Predictors to include as covariates in the survival model were selected based on 

recognised association with severe infection. This was explored in the published 

prognostic literature relating to infections in AAV and IMID, and though the 

clinical judgment of the study team (Fine et al., 1997; Shapiro et al., 2003; 

Hespanhol and Bárbara, 2020; Bahlis et al., 2021; Ye et al., 2023). Selected 

variables included age, sex, Scottish index of multiple deprivation in deciles 

(SIMD) as a continuous variable and comorbidities including cancer (localised or 

metastatic), cerebrovascular disease, chronic heart failure, chronic respiratory 

disease, diabetes, liver disease and renal disease. Derivation of these covariates 

is described below: 

3.4.5.1 Age 

Date of birth (DOB) was included in all the linked datasets described in Table 

3-1. As a privacy preserving measure the date component was not supplied, 

meaning that for all individuals only the month and year of birth is supplied. 

“14” was imputed as the date of DOB for all individuals. Index date is the date 

of admission associated with the first care episode in SMR01 that includes a 

diagnostic code for AAV. The study team considered it likely that that this will 

approximate to the date of diagnosis for most patients. Age at the time of index 

date in years was derived as “index date – DOB” in unit “years”. 

3.4.5.2 Sex 

Sex was available in all the linked datasets, coded as ‘male’ or ‘female’. 
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3.4.5.3 Scottish Index of Multiple Deprivation  

The Scottish Index of Multiple Deprivation (SIMD) is a rank assigned to 6,976 

geographical ‘data zones’ across Scotland (Scottish Government, 2020). Its 

purpose is to quantify deprivation. It is derived from over 30 indicators, for 

example local educational attainment, proximity to primary health care 

services, crime and unemployment. These indicators are grouped in seven 

domains. These domains are then used to form an index which is used to rank 

each data zone. Data zones are then grouped in quintiles or deciles. When 

included in national administrative datasets, the SIMD quintile or decile can be 

used as an indication of the levels of disadvantage associated with the location 

where an individual resides. Notably SIMD is not a direct measure of the level of 

deprivation experienced by an individual. Deprivation has been identified on 

various analyses as being associated with occurrence of infection (Ye et al., 

2023). SIMD in deciles was used to maximise granularity. 

3.4.5.4 Comorbidities 

In Scotland, trained clinical coders review medical documentation at the end of 

each care episode. In accordance with national standards, codes are assigned to 

describe the clinical events which occurred during the episode and comorbid 

conditions. SMR01 also includes data items such as demographics, date of 

admission and date of discharge, among other items. For the VOICES study each 

participant in the dataset had a five-year SMR01 ‘look-back’ period, such that 

comorbidities could be identified. This approach has been shown to be valid, 

including in the setting of infection (Hwang et al. 2016). Comorbidities were 

ascertained from SMR01 look-back period episode codes as Charlson comorbidity 

items. The Charlson Comorbidity Index (CCI) is a weighted index of 17 comorbid 

conditions (Charlson et al., 1987). Quan et al developed coding algorithms to 

map ICD-10 codes to Charlson comorbidity items (Quan et al. 2005). The R 

programming package ‘comorbidity’ incorporates such coding algorithms, 

allowing programmatic conversion of lists of ICD-10 codes for an entire cohort of 

patients into a CCI for each patient, as well as the presence of individual CCI 

disease components (Gasparini 2018). This enabled efficient determination of 

important comorbidities for all patients in the study. Comorbidities were 

ascertained at the time of index date, as the linked dataset produced was 
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initially designed for the exposures to be ascertained at this point for other 

studies in this thesis. 

3.4.6 Outcome 

The outcome of interest was occurrence of first severe infection, defined as an 

admission to hospital documented within SMR01 associated with a diagnostic 

code for infection. A common definition of severe infection is requirement for 

intravenous antimicrobial therapy, requirement for an invasive intervention or 

requirement for hospital admission (National Institutes of Health. National 

Cancer Institute. 2017). A proxy of this definition often utilised in the 

epidemiology literature is infection-related hospital admission (Barber et al. 

2013). This definition of severe infection was used in this thesis. In an national 

administrative database this can be described by using a hospital care episode 

associated with an ICD-10 code for infection. This study, and studies contained 

in subsequent thesis chapters, utilised a published code list by Inada-Kim et al. 

This code list was designed to detect infection related conditions which most 

closely identify patients with ‘suspicion of sepsis’. The term ‘suspicion’ is used 

as Inada-Kim et al highlight that sepsis guidelines advise, and clinicians aim, to 

prevent conditions that represent a severe infection deteriorating into true 

sepsis. Therefore the group of patients that this code list aims to identify are 

individuals with a bacterial infection whose severity merits hospital admission 

(Inada-Kim et al., 2017). This aligns with the outcome of interest for this study. 

Inada-Kim et al used the ‘primary diagnosis’ code to determine if the episode 

represented ‘suspicion of sepsis’. We extended this use by applying the code list 

to both the ‘main diagnosis’ in SMR01 and ‘other conditions’. Other conditions 

are defined by the Scottish Clinical Coding Standards as either coexisting 

conditions, often longstanding and not identified as a major factor in the 

hospital admission or new active problems which required investigation and 

management during the hospital stay (Public Health Scotland: Data and 

Intelligence, 2014). Given that ‘suspicion of sepsis’ conditions are rarely, if ever, 

a longstanding problem, ‘other conditions’ were considered to be active issues if 

the code was contained in the Inada-Kim list. 

Individuals who died before the end of the study period or for whom there was 

less than 365 days follow-up were censored. Death was extracted from the 
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linked dataset derived from the National Records of Scotland (NRS) Central 

Register. As a measure to preserve pseudonymisation, date of death is recorded 

within PHS linked datasets as month and year only. For survival time calculation, 

‘14’ was simply imputed as the day of the month. 

3.4.7 Bias 

Unequal ascertainment of events due to competing risks is a theoretical issue in 

this study. The competing risk for severe infection in this study was death. 

However, the vast majority of individuals with AAV survive to the end of the first 

year following diagnosis. Of those who died approximately 50% died of infection 

– this should be ascertained in administrative datasets as an infection if there 

was an associated admission to hospital with correct dates. If present, this 

source of bias would tend to reduce the apparent risk of severe infection. It is 

estimated that this would have a small effect. 

Medical surveillance bias, also known as detection bias or ascertainment bias, 

occurs where the outcome is more likely to be detected in one group compared 

to another, due to the intensity of medical involvement (Vandenbroucke et al. 

2007). It is not considered likely to have significantly impacted this study. 

Individuals on higher glucocorticoid doses may be more likely to receive more 

medical input as the higher dose may be representative of more active disease. 

In the current study, it could be possible to account for this by quantifying the 

intensity of medical follow up and adjusting for this in the statistical model. 

However, while medical surveillance bias may lead to increased detection of 

minor infections, it was not deemed likely to have substantially contributed to 

increased hospital admissions related to infection. 

Inflation bias, sometimes referred to as ‘p-hacking’, on the part of the study 

team was minimised in this study. This is a practice where the investigator, 

often unconsciously, adopts practices which lead to more ‘positive’ results. Such 

practices include conduction of multiple analyses and selecting the most 

favourable or stratifying the data in multiple ways and choosing the version of a 

dataset that is the most flattering (Head et al., 2015). In this study only 

prespecified and planned analyses of the data were undertaken. Two of these 

were not reported as it was decided retrospectively that the questions posed by 
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these models were less clinically and scientifically relevant, irrespective of 

statistical results. This substantially limited the possibility of multiple analyses 

unintentionally leading to spurious results. 

Selection bias, where the probability of inclusion is associated either positively 

or negatively with the exposure, is unlikely to be an issue for this study. To be 

included in this study an AAV patient had to have a hospital admission associated 

with an AAV code documented in the SMR01 database. As a result, the 

population included in this study is likely comprised of individuals more 

comorbid, frail and potentially susceptible to complications of AAV compared to 

the target population, namely all AAV patients in Scotland. This could 

potentially bias the study in two ways. Firstly, increased frailty could interact 

with higher glucocorticoid dose in a multiplicative way, resulting in an 

exaggeration phenomenon whereby the effect of higher glucocorticoid has a 

greater magnitude of effect on severe infection risk than is true. Alternatively, 

non-frail patients with AAV may never be admitted to hospital, including never 

having a significant infection, despite being treated with glucocorticoids. The 

impact on magnitude of effect is difficult to quantify in this case. 

3.4.8 Study size 

The maximum number of patients eligible for the study who were available in 

the VOICES dataset determined the study size. A formal sample size was not 

calculated. Sample size was however factored into the design of the study in 

terms of limiting the number of parameters included in statistical models. 

Events per parameter (EPP) was considered. For most of the models the number 

of events was 111 and for those models the number of parameters ranged from 

11 to 14. This resulted in an EPP of 7.9 to 10. For the 5-7.5 mg comparison, the 

number of events was 25-30 (showed as a range for data protection purposes) 

and the number of parameters was 11. This resulted in an EPP 2.3 to 2.7, given 

that this model is more at risk for overfitting it should be considered more 

exploratory than the others. While it may have been preferable to determine the 

sample size by factoring in the number of proposed parameters and the number 

of events experienced by the population, a larger dataset was not available. 

However, though careful selection of a limited number of covariates, avoiding an 

unnecessarily low EPP decreased the risk of overfitting. Traditionally a ‘rule of 
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thumb’ of EPP equal to 10 was considered reasonable to avoid overfitting. Other 

sources have suggested an EPP of 20 or 50 as more appropriate. Ultimately, 

sample size calculations incorporating other factors are the most appropriate 

mechanism to determine sample size or recommended maximum number of 

parameters (Riley et al., 2020). Given the rarity of AAV and the difficulty of 

curating large observational datasets, a lower EPP was considered acceptable for 

this study, the results of which were interpreted as exploratory.  

3.4.9 Statistical methods 

Baseline characteristics were reported. This information per glucocorticoid 

exposure groups as described in section 3.4.4. To protect against identification 

of participants, where a cell contained a low value (below five), the value was 

redacted and represented as ‘<5’. Where the value of a low cell count could be 

inferred from other cells, values were suppressed to a range (e.g. ‘15–20’ as 

opposed to ‘16’). This was required by Public Health Scotland for extracting data 

from the National Safe Haven.  Continuous variables were reported as median 

and interquartile range. Missing data was minimal and is noted in each baseline 

characteristics table. A complete case analysis was performed for each model. 

Four separate Cox proportional hazards models were developed. The predictors 

and outcome described above were included in the model. Individuals were 

censored as described above in section 3.4.6. These models can therefore be 

considered cause-specific models for severe infection with non-infection related 

death being the competing event. For each version of the exposure, the full 

model was used, without variable selection strategies. Fitting the full model is 

one of a group of recommended strategies for an informative prediction model. 

Alternative approaches include using data reduction methods and penalised 

estimation to reduce number of covariates in the model or the impact of 

covariates. The ‘full model’ approach was selected for several reasons: it takes 

into account all potential confounding variables to reveal the predictive ability 

of the exposure of interest, it does not erroneously remove variables which can 

occur when penalisation methods are applied to insufficiently large data sets, it 

is not necessary to reduce variables in these models as only the exposure is of 

interest and the approach is commonly accepted and understood (Harrell 2015). 

Hazard ratios, 95% confidence intervals and p-values were reported for the 
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exposures. Results were considered statistically significant if the associated p 

value was less than 0.05. Adjusted hazard ratio plots were shown for the 

exposure. Unadjusted Kaplan-Meier (KM) plots were also produced to show the 

progression of the outcome over time. KM plots included a p-value derived using 

the log rank test. Testing for assumptions in the Cox model included: testing for 

proportional hazards, testing for influential observations and testing for non-

linearity. The proportional hazards assumption was tested using Schoenfeld 

residuals (not significant for each covariate or the global test) and visual 

examination of scaled Schoenfeld residuals against transformed time (no pattern 

with time). This was done in the model which included glucocorticoid as a 

continuous variable. Influential observations were tested by plotting “dfbeta” – 

the estimated change in regression coefficients upon deleting each observation 

in turn. This confirmed that no single observation was overly influential. Plotting 

Martingale residuals against age confirmed there was not obvious non-linearity. 

SIMD was not tested for non-linearity due to significant number of zero values. 

All statistical analyses were done within the Scottish National Safe Haven (NSH). 

The thesis author is grateful for the support of the eDRIS team (Public Health 

Scotland) for their assistance with acquiring approvals, providing data, 

performing data linkage and facilitating the use of the secure analytical platform 

within the NSH. All analyses were done using R version 4.2.0 with packages 

including comorbidity, finalfit, survival and the tidyverse packages. 

3.5 Results 

Figure 3-1 shows the derivation of the AAV glucocorticoid exposure cohort from 

the VOICES cohort. It also included patients index dates that predated the 

availability of prescription data from PIS (i.e. before April 2009). 
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Figure 3-1 | Derivation of AAV glucocorticoid exposure cohort from VOICES cohort. The total 
VOICES dataset includes AAV cases and controls, as well as GCA cases and controls. Only AAV 
cases with sufficient prescription data and who were alive at the end of the exposure period were 
included. 

 

3.5.1 Glucocorticoid dose: 0 mg vs >0-10 mg vs >10 mg 

Table 3-2 shows the baseline characteristics for the comparison of those exposed 

to no glucocorticoids versus total daily prednisolone equivalent >0 mg to 10 mg 

versus >10 mg glucocorticoid per day. Table 9-1 in the appendices displays the 

full results of univariable and multivariable models. Glucocorticoid exposure 

equivalent to >0 mg to 10 mg prednisolone daily had a HR of 1.74 (95% CI 0.90 – 

3.38, p = 0.102), while glucocorticoid exposure of >10 mg daily had HR 1.93 (95% 

CI 1.19 – 3.13, p = 0.008). This is displayed graphically in Error! Reference 

source not found. and Error! Reference source not found..

Total VOICES dataset 
n = 169,283 

AAV cases and controls 
n = 12,618 

AAV cases in PIS era alive at end of exposure period 

n = 978 

AAV cases in PIS era 

n = 1,065 

156,665 GCA cases and controls excluded 

5,325 AAV controls excluded 

87 death within 9 months of index date excluded 

AAV cases and controls in PIS era 
n = 6,390 

6,228 excluded if index date before PIS era 
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Table 3-2 | Glucocorticoid 0 mg vs >0-10 mg vs >10 mg: baseline characteristics (see next 
page for legend) 
 Missing N Zero >0 to 10 mg 

Total N (%)  290 (29.7) 120 (12.3) 

Age; median (IQR) 0 61.3 (46.5 to 71.3) 61.7 (48.8 to 72.2) 

Female sex 0 166 (57.2) 61 (50.8) 

SIMD (deciles); median (IQR) 6 5.0 (3.0 to 8.0) 5.5 (3.0 to 8.0) 

Cardiovascular disease (all) 0 35-40 (12) 14 (11.7) 

Atherosclerotic disease (all) 0 30-35 (11) 10-15 (9) 

MI 0 5-10 (3) 8 (6.7) 

CVD 0 20-25 (7) <5 

PVD 0 5-10 (2) <5 

Chronic heart failure 0 5-10 (2) 5-10 (6) 

Hypertension 0 <5 <5 

Diabetes 0 15-20 (6) 8 (6.7) 

Renal disease 0 30-35 (11) 16 (13.3) 

Dementia 0 <5 <5 

Cancer (all) 0 15-20 (6) <5 

Cancer (localised) 0 16 (5.5) <5 

Cancer (metastatic) 0 <5 <5 

Chronic respiratory disease 0 49 (16.9) 24 (20.0) 

Rheumatic disease 0 20-25 (8) 5-10 (4) 

Peptic ulcer disease 0 5 (1.7) <5 

Liver disease 0 5-10 (2) <5 

Previous infection 0 86 (29.7) 36 (30.0) 

Charlson comorbidity index; median (IQR) 0 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 

Severe infection (outcome) 0 23 (7.9) 10-15 (12) 

Died 0 30-35 (11) 15-20 (15) 

Follow-up (days) 0 365.0 (365.0 to 365.0) 365.0 (365.0 to 365.0) 



35 

Table 3-2 legend: 
CVD = cerebrovascular disease, IQR = interquartile range, MI = myocardial infarction, PVD = 
peripheral vascular disease, SIMD = Scottish index of multiple deprivation 

 

 

Figure 3-2 | Glucocorticoid 0 mg vs >0-10 mg vs >10 mg: HR plot. Adjusted hazard ratios for 
association with severe infection for glucocorticoid exposures. This is derived from a multivariable 
model including age, sex, SIMD, cancer, cerebrovascular disease, chronic heart failure, chronic 
respiratory disease, diabetes, liver disease and renal disease. See appendix for full model. 

 

 

Figure 3-3 | Glucocorticoid 0 mg vs >0-10 mg vs >10 mg: KM plot. This Kaplan-Meier plot 
shows the probability of first severe infection over time for glucocorticoid exposure groups. A log-
rank test p-value is displayed. 
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3.5.2 Glucocorticoid dose: multiple dose thresholds 

Table 3-3i and Table 3-3ii show the baseline characteristics for the comparison 

of several groups based on multiple differing dose thresholds – the data is split 

across two tables for size purposes. Table 9-1 in the appendices shows the full 

univariable and multivariable models for severe infection within the first year 

following the index date for the glucocorticoid multiple dose model. Individuals 

with total daily glucocorticoid exposure of >0 mg to 5 mg prednisolone 

equivalent had a hazard ratio (HR) of 0.72 (95% CI 0.17 – 3.09, p = 0.659) for 

severe infection compared to the reference group who had no documented 

glucocorticoid exposure. Individuals with >5 to 10 mg prednisolone equivalent 

glucocorticoid exposure had HR 2.22 (95% CI 1.11 – 4.46, p = 0.025). The >10 to 

20 mg group and the >20 mg daily prednisolone equivalent group had HR 1.73 

(95% CI 0.97 – 3.09, p = 0.065) and HR 2.05 (95% CI 1.23 – 3.43, p = 0.015), 

respectively. This is displayed graphically in Figure 3-4 and Figure 3-5.
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Table 3-3i | Glucocorticoid multiple doses: baseline characteristics (missing data, zero mg, 
>0 to 5 mg; see page 35 for table legend) 

 Missing N Zero >0 to 5 mg 

Total N (%)  290 (29.7) 38 (3.9) 

Age; median (IQR) 0 61.3 (46.5 to 71.3) 61.0 (48.3 to 71.3) 

Female sex 0 166 (57.2) 16 (42.1) 

SIMD (deciles); median (IQR) 6 5.0 (3.0 to 8.0) 7.0 (3.0 to 8.0) 

Cardiovascular disease (all) 0 35-40 (12) 5 (13.2) 

Atherosclerotic disease (all) 0 30-35 (11) <5 

MI 0 5-10 (3) <5 

CVD 0 20-25 (7) <5 

PVD 0 5-10 (2) <5 

Chronic heart failure 0 5-10 (2) <5 

Hypertension 0 <5 <5 

Diabetes 0 15-20 (6) <5 

Renal disease 0 30-35 (11) 5 (13.2) 

Dementia 0 <5 <5 

Cancer (all) 0 15-20 (6) <5 

Cancer (localised) 0 16 (5.5) <5 

Cancer (metastatic) 0 <5 <5 

Chronic respiratory disease 0 49 (16.9) 6 (15.8) 

Rheumatic disease 0 20-25 (8) <5 

Peptic ulcer disease 0 5 (1.7) <5 

Liver disease 0 5-10 (2) <5 

Previous infection 0 86 (29.7) 14 (36.8) 

Charlson comorbidity index; median (IQR) 0 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 

Severe infection (outcome) 0 23 (7.9) <5 

Died 0 30-35 (11) <5 

Follow-up (days) 0 365.0 (365.0 to 365.0) 365.0 (365.0 to 365.0) 
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Table 1-3ii | Glucocorticoid multiple doses: baseline characteristics (>5 to 10 mg, >10 to 20 
mg, >20 mg; see page 35 for table legend) 

 >5 to 10 mg >10 to 20 mg >20 mg 

Total N (%) 82 (8.4) 198 (20.2) 370 (37.8) 

Age; median (IQR) 62.6 (49.0 to 72.4) 63.0 (54.5 to 71.9) 60.5 (51.3 to 70.3) 

Female sex 45 (54.9) 107 (54.0) 179 (48.4) 

SIMD (deciles); median (IQR) 5.0 (3.0 to 8.0) 6.0 (3.0 to 8.0) 6.0 (3.0 to 8.0) 

Cardiovascular disease (all) 9 (11.0) 21 (10.6) 47 (12.7) 

Atherosclerotic disease (all) 7 (8.5) 18 (9.1) 39 (10.5) 

MI 5-10 (6) 6 (3.0) 18 (4.9) 

CVD <5 9 (4.5) 15-20 (4) 

PVD <5 5 (2.5) 10 (2.7) 

Chronic heart failure 5 (6.1) 5-10 (3) 12 (3.2) 

Hypertension <5 <5 <5 

Diabetes <5 15 (7.6) 23 (6.2) 

Renal disease 11 (13.4) 21 (10.6) 25-30 (7) 

Dementia <5 <5 <5 

Cancer (all) <5 13 (6.6) 15-20 (5) 

Cancer (localised) <5 5-10 (4) 15 (4.1) 

Cancer (metastatic) <5 <5 <5 

Chronic respiratory disease 18 (22.0) 40 (20.2) 67 (18.1) 

Rheumatic disease <5 11 (5.6) 12 (3.2) 

Peptic ulcer disease <5 5 (2.5) 6 (1.6) 

Liver disease <5 <5 6 (1.6) 

Previous infection 22 (26.8) 56 (28.3) 107 (28.9) 

Charlson comorbidity index; median (IQR) 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 

Severe infection (outcome) 13 (15.9) 25 (12.6) 45-50 (13) 

Died 15 (18.3) 30 (15.2) 55 (14.9) 

Follow-up (days) 365.0 (365.0 to 365.0) 365.0 (365.0 to 365.0) 365.0 (365.0 to 365.0) 
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Table 1-3i and 1-3ii legend: 
CVD = cerebrovascular disease, IQR = interquartile range, MI = myocardial infarction, PVD = 
peripheral vascular disease, SIMD = Scottish index of multiple deprivation 

 

 

Figure 3-4 | Glucocorticoid multiple doses: HR plot. Adjusted hazard ratios for association with 
severe infection for glucocorticoid exposure groups divided by the zero mg, 5 mg, 10mg and 20 mg 
thresholds are displayed. This is derived from a multivariable model including age, sex, SIMD, 
cancer, cerebrovascular disease, chronic heart failure, chronic respiratory disease, diabetes, liver 
disease and renal disease. See appendix for full model. 

 

 

Figure 3-5 | Glucocorticoid multiple doses: KM plot. This Kaplan-Meier plot shows the 
probability of first severe infection over time for glucocorticoid exposure groups divided by the zero 
mg, 5 mg, 10 mg and 20 mg thresholds. A log-rank test p-value is displayed. 
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3.5.3 Glucocorticoid dose: 0 mg vs 5-7.5 mg 

Table 3-4 shows baseline characteristics comparing individuals taking no 

glucocorticoid daily versus those taking daily prednisolone equivalents 5 mg to 

7.5 mg daily. Table 9-2 in the appendix shows the full univariable and 

multivariable models. The 5 mg to 7.5 mg group had HR 2.55 (95% CI 0.72 – 8.94, 

p = 0.145) for association with severe infection. Risk associated with this 

glucocorticoid exposure is displayed graphically in Figures Figure 3-6 and Figure 

3-7.
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Table 3-4 | Glucocorticoid 0 mg vs 5-7.5 mg: baseline characteristics (see page 35 for table 
legend) 

label Missing N Zero 5 to 7.5 mg 

Total N (%)  290 (93.5) 20 (6.5) 

Age; median (IQR) 0 61.3 (46.5 to 71.3) 64.2 (50.6 to 73.6) 

Female sex 0 166 (57.2) 14 (70.0) 

SIMD (deciles); median (IQR) <5 5.0 (3.0 to 8.0) 5.0 (2.8 to 8.0) 

Cardiovascular disease (all) 0 35-40 (12) <5 

Atherosclerotic disease (all) 0 30-35 (11) <5 

MI 0 5-10 (3) <5 

CVD 0 20-25 (7) <5 

PVD 0 5-10 (2) <5 

Chronic heart failure 0 5-10 (2) <5 

Hypertension 0 <5 <5 

Diabetes 0 15-20 (6) <5 

Renal disease 0 30-35 (11) <5 

Dementia 0 <5 <5 

Cancer (all) 0 15-20 (6) <5 

Cancer (localised) 0 16 (5.5) <5 

Cancer (metastatic) 0 <5 <5 

Chronic respiratory disease 0 49 (16.9) 6 (30.0) 

Rheumatic disease 0 20-25 (8) <5 

Peptic ulcer disease 0 5 (1.7) <5 

Liver disease 0 5-10 (2) <5 

Previous infection 0 86 (29.7) 7 (35.0) 

Charlson comorbidity index; median (IQR) 0 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 

Severe infection (outcome) 0 23 (7.9) <5 

Died 0 30-35 (11) <5 

Follow-up (days) 0 365.0 (365.0 to 365.0) 365.0 (365.0 to 365.0) 



42 

Table 3-4 legend 
CVD = cerebrovascular disease, IQR = interquartile range, MI = myocardial infarction, PVD = 
peripheral vascular disease, SIMD = Scottish index of multiple deprivation 

 

 

Figure 3-6 | Glucocorticoid 0 mg vs 5-7.5 mg: HR plot. The adjusted hazard ratio for association 
with severe infection for the 5 to 7.5 mg glucocorticoid exposure group is displayed. This is derived 
from a multivariable model including age, sex, SIMD, cancer, cerebrovascular disease, chronic 
heart failure, chronic respiratory disease, diabetes, liver disease and renal disease. See appendix 
for full model. 

 

 

Figure 3-7 | Glucocorticoid 0 mg vs 5-7.5 mg: KM plot. This Kaplan-Meier plot shows the 
probability of first severe infection over time for the zero mg and the 5 to 7.5 mg glucocorticoid 
exposure groups. A log-rank test p-value is displayed. 
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3.5.4 Glucocorticoid dose: continuous 

Table 9-4 in the appendix shows univariable and multivariable models 

incorporating glucocorticoid exposure as a continuous variable. Baseline 

characteristics for the components of the model are show in tables Table 3-2, 

Table 3-3i and Table 3-3ii. The multivariable model indicated that glucocorticoid 

dose in daily prednisolone equivalents had HR 1.01 (95% CI 1.00 – 1.02, p = 

0.047), meaning that for every 1 mg increment in glucocorticoid dose there is a 

one percent increase in the hazard of severe infection over the subsequent year. 

This is displayed graphically in Figure 3-8. 

 

Figure 3-8 | Glucocorticoid as a continuous variable: HR plot. The adjusted hazard ratio for 
association with severe infection for every 1 mg increase in glucocorticoid exposure is displayed. 
This is derived from a multivariable model including age, sex, SIMD, cancer, cerebrovascular 
disease, chronic heart failure, chronic respiratory disease, diabetes, liver disease and renal 
disease. See appendix for full model. 

 

3.6 Discussion 

3.6.1 Key results 

3.6.1.1 Glucocorticoid dose: 0 mg vs >0-10 mg vs >10 mg 

Comparison of baseline characteristics of the exposure groups in this model did 

not reveal major differences in terms of demographics, comorbidities or overall 

CCI. An unadjusted log rank test comparing the exposure groups gave a p value = 

0.092, but multivariable analysis showed there was a significant increased risk 

for severe infection for individuals taking greater than 10 mg glucocorticoid. 

Such individuals had a point estimate of 93% increased risk of suffering a severe 

infection over the course of one year (HR 1.93 (95% CI 1.19-3.13, p = 0.008)). 
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Due to a lack of power, it was not possible to make an estimate for individuals 

exposed to >0 to 10 mg glucocorticoid with a useful degree of precision. 

However, the point estimate and confidence intervals were compatible with the 

hypothesis that even lower doses of glucocorticoid confer increased risk for 

severe infection (HR 1.74 (95% CI 0.90-3.38, p = 0.102). This suggests that 

increased risk seen in other populations at similar dose thresholds also could 

occur in AAV (Walsh et al., 2020). 

3.6.1.2 Glucocorticoid dose: multiple dose thresholds 

Similarly, there were no substantial differences in terms of baseline 

characteristics across exposure groups in the multiple dose exposure groups. For 

the three exposure groups above 5 mg daily prednisolone equivalents, the point 

estimates for risk were relatively similar, suggesting that glucocorticoid at these 

dose ranges may predict a 73 to 122% increased risk of severe infection. The 

confidence intervals were wide however, therefore it was not possible to 

determine whether a clear dose-response relationship for glucocorticoids 

existed, though this remains possible. Point estimate risk for the >5 mg to 10 mg 

group was not lower than the higher exposure groups (HR 2.22 (95% CI 1.11 – 

4.46, p = 0.025)). It may be the case that such low dose glucocorticoid predicts 

substantial increased risk. The degree of precision was low however, therefore 

the association may be less strong than these data suggest. Overall, these data 

support the case for glucocorticoid exposure to be considered as an important 

prognostic factor for severe infection in AAV. Where the aim is to develop 

predictive models, such a variable should be incorporated. While the main aim 

of this study was to determine prognostic associations with severe infection, it is 

possible that the association revealed may represent a causal effect. This is 

biologically plausible given the recognised immunosuppressant effect of 

glucocorticoids (Stahn and Buttgereit 2008). The >0 mg to 5 mg group was 

smaller than other groups and had a wide confidence interval that crossed the 

line of no effect (HR 0.72 (95% CI 0.17 – 3.09, p = 0.659)). The point estimate 

suggested a 28% lower risk of severe infection compared to no glucocorticoid. 

Due to the significant imprecision, all that can be stated given the current data 

is that the true relationship between different glucocorticoid dose groups and 

future severe infection remains unclear; both a linear dose-response relationship 

and a threshold effect relationship are possible given the current data. It does, 
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however, seem clear that high doses of glucocorticoid are associated with a 

substantial increase in severe infection risk. 

3.6.1.3 Glucocorticoid dose: 0 mg vs 5-7.5 mg 

As for the above glucocorticoid exposure groups, with respect to baseline 

characteristics, there were no major differences apparent between the 5-7.5 mg 

dose range group and the zero mg group. Like previous models, the confidence 

intervals were wide with HR 2.55 (95% CI 0.72 – 8.94, p = 0.145), which could 

confer a wide range of true associations. However, a true association for severe 

infection at this dose threshold seems plausible and would have implications for 

future prediction models. If this represented a causal effect, then there would 

be significant implications for patient management. Many patients are 

maintained on doses around 5 mg prednisolone for several months following the 

induction period of therapy in AAV, in line with international guidelines 

(Hellmich et al., 2023). Anecdotally many patients remain on such doses for 

prolonged periods. It may be that a 5 mg dose for the second half of the first 

year of AAV therapy confers more risk than has been recognised and that the 

benefit of preventing relapse and preserving organ function at this stage does 

not outweigh the risk of adverse events such as severe infection. In this 

scenario, there may be a role for a prediction tool: by factoring in other 

variables that contribute to risk of adverse events, a more individualised 

approach could be achieved. For an individual at low risk of severe infection, the 

benefit of ongoing low-dose glucocorticoid may outweigh the risks, whereas for a 

high-risk individual the converse may be true. 

3.6.1.4 Glucocorticoid dose: continuous 

This final model evaluated the exposure of glucocorticoid dose as a linear 

continuous variable. This showed that for every 1 mg dose increase in 

glucocorticoid there is an average associated one percent increase in the risk of 

severe infection over the subsequent year (HR 1.01 (95% CI 1.00 – 1.02, p = 

0.047)). This observation provides further evidence for glucocorticoids being a 

prognostic factor for severe infection. Future models of this nature may benefit 

from non-linear modelling with cubic splines or multiple fractional polynomials. 

Such approaches would require a suitably powered dataset. This would inform 
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questions of whether increased glucocorticoid exposure is associated with the 

same increase in various patterns as described in section 3.3.4.  

3.6.2 Strengths 

Strengths and limitations of this study are assessed according to bias domains 

from the Quality in Prognosis Studies (QUIPS) Tool (Hayden et al., 2013), in 

addition to other important areas as identified by the study team. 

3.6.2.1 Study participation 

Given the real-world nature of the national administration health care data 

utilised in this study, study participation was not a significant source of bias – 

specifically selection bias. Aspects of study design may have contributed to an 

element of selection bias as participants were identified through hospital 

admissions data. This is not thought to have impacted the validity of the study 

and is discussed further in section 3.4.7. All theoretically eligible patients 

participated and the study sample was considered representative of a typical 

AAV population. Baseline characteristics were comprehensively described, 

though due to the nature of the data available, some potentially useful patient 

characteristics were not available for reporting or inclusion in the statistical 

models such as serum ANCA autoantibody positivity or serum immunoglobulins.  

3.6.2.2 Study attrition 

Attrition was not an issue due to study design. All data regarding hospital 

admissions subsequent to the index date and death data were captured at a 

national level. Only if events occurred outside Scotland would such data be 

missing. Such cases are likely to be minimal and would not affect the outcomes 

of this study. 

3.6.2.3 Prognostic factor measurement 

Glucocorticoid exposure, the prognostic factor (PF) of interest, was measured in 

a consistent manner for all study participants. Establishing medication exposure, 

including that of glucocorticoids, through large administrative sources of 

prescription data is an established methodology (Curtis et al. 2006; Grijalva et 

al. 2008; Sakellariou et al. 2022). Using a simple, intuitive formula it was 
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possible to determine mean glucocorticoid exposure in daily prednisolone 

equivalents over a three-month period. Cut points used for dichotomisation were 

designed to be clinically and/or biologically informative. Issues around the 

estimation of glucocorticoid exposure are described in section 3.4.4. Some PF 

studies measure multiple potential PFs which, where excessive, can lead to 

spurious results. Intentional or unintentional selective reporting due to 

publication bias can then lead to an over-representation of spurious PFs in the 

biomedical literature. Glucocorticoid exposure was the only prognostic factor 

measured and reported in this study, as a result selective reporting was not 

possible. 

An important question for the design of this study was: to what extent does the 

duration of glucocorticoid exposure contribute to severe infection risk. There 

was no previously established ideal time window defined in the AAV literature 

with respect to this question. Methodology in other studies in AAV patients was 

reviewed, as described in section 3.3.3. As a suitable definition could not be 

obtained from the AAV literature, literature from RA, an adjacent IMID, was used 

to inform this consideration. 

3.6.2.4 Outcome measurement 

This study used a reliable and valid means of identifying the outcome. A clear, 

appropriate definition of severe infection was used. The outcome was measured 

in the same way for all individuals in the study. Differential measurement of 

outcome in different study exposure groups is unlikely to have introduced 

significant bias in the current study: there does not seem to be a plausible 

reason why individuals with differing glucocorticoid exposure should be more or 

less likely for the severe infection outcome to be documented as having 

occurred. Similarly to the exposure, severe infection was the only outcome 

measured for this study, thus avoiding selective reporting. 

3.6.2.5 Statistical analysis and reporting 

Statistical models used were appropriate for time-to-event data. The model 

building strategy took the approach of using the ‘full model’ as opposed to 

automated variable selection. Automated variable selection can be useful to 

make a model more simple for clinical application, but can result in an a less 
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accurate model (Harrell 2015). Only six statistical models were developed, four 

are presented and the decision for presentation was made based on judgement 

regarding the models’ clinical and research relevance as opposed to model 

output. Each model was presented for a clear purpose. Various dose thresholds 

were evaluated to determine if 1) glucocorticoid exposure at different levels had 

comparable effects to other IMID populations, such as RA (zero mg versus >0-10  

mg versus >10 mg); 2) to assess for a dose-response (multiple dose model); 3) to 

evaluate a common clinical scenario of prolonged low-dose glucocorticoid (zero 

versus 5-7.5 mg); and 4) a model maximising power by using glucocorticoid dose 

as a continuous variable, in order to determine the effect per mg and also the 

overall biological impact of this exposure. 

3.6.2.6 Size 

This study was one of the largest studies in AAV evaluating the relationship 

between glucocorticoids and severe infection. Other studies with a similar aim 

are described in detail in the introduction, Chapter 1. The large majority of 

these studies are less than half the size of the current study and have 

comparatively insufficient power to detect important relationships whilst 

minimising the likelihood of detecting spurious associations. 

3.6.3 Limitations 

3.6.3.1 Prognostic factor measurement 

Whilst this study has considerable strengths with respect to prognostic factor 

measurement, there are some limitations. It seems a reasonable assumption that 

the calculated 90-day average glucocorticoid exposure according to the PIS 

prescribing dataset should approximate to the glucocorticoid exposure of an 

individual with AAV. The time window of assessment was specifically chosen to 

maximise likely reliability of the measure, as well as to limit confounding (see 

below): six to nine months following the index date is a time window when most 

AAV patients are on a stable dose of glucocorticoid. At this time glucocorticoid 

should be supplied from a community pharmacy and therefore should appear 

within the PIS dataset. Severe infections occur most frequently within the first 

year following AAV diagnosis. Therefore the follow-up period was not ‘too late’ 

in the natural history of AAV such that the frequency of the outcome would be 
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low. As a result, statistical power was maintained and the study evaluated a 

time-period that is highly clinically relevant for AAV patients. There may, 

however, be mechanisms by which inaccuracy of the exposure measurement may 

arise. AAV patients may be exposed to significant glucocorticoid out with that 

supplied by a community pharmacy. They may receive glucocorticoids from a 

hospital pharmacy, either as an inpatient or an outpatient. This may be more 

common if they were to suffer a relapse during the observation period. AAV 

patients may also keep a ‘backup’ supply of glucocorticoids in case they suffer a 

relapse and need immediate access to drug. Therefore, some patients may have 

been exposed to glucocorticoid, even if this was not evident based on their 

community prescriptions. Some patients may have been advised by their treating 

specialist to take a different dose of steroid over the course of the exposure 

window than what is represented by community prescriptions. 

Potential issues may be revealed with the 5-7.5 mg dose exposure group. This 

was selected as a common dose that many AAV patients would typically be 

receiving at the chosen exposure time-window. According to international 

guidance most would be expected to be at or approaching 5 mg at six months 

post index (Hellmich et al., 2023). However only 120 (12.3%) patients in the 

overall cohort had glucocorticoid exposure of >0 to 10 mg daily prednisolone 

equivalents – the dose range most likely to contain individuals receiving 5 mg 

exposure, if the glucocorticoid exposure is correct as per the methodology of 

this study. Also more patients that would be expected at this time point 

appeared to be receiving zero glucocorticoid. Three reasons can potentially 

account for these issues. Firstly, guidelines aspire to the ideal glucocorticoid 

weaning pattern and the reality of clinical practice may result in this being 

achieved in fewer cases than expected. A poor response to treatment may result 

in a slower glucocorticoid taper. Secondly, the study index date may not 

represent the date of diagnosis. As the index date is derived from the first 

SMR01 episode associated with an AAV code, patients diagnosed as outpatients 

may have had established AAV for many years at the ‘index date’. At the time of 

being entered into the current study they may have been admitted for a relapse 

or a non-vasculitis reason, but with a code for AAV representing this as a 

comorbidity. This may account for many individuals in the study not being on 

glucocorticoids according to PIS. These first two reasons should not have a 
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significant impact on the results of this study or the implications of the results 

for AAV patients: it was not an essential part of study design that the index date 

should represent the date of diagnosis. The third possible explanation is that the 

individuals in the 5-7.5 mg glucocorticoid exposure group are on a different dose 

for the some of the reasons described in the paragraph above. 

The comparison of 5-7.5 mg to no glucocorticoids was not significant. In 

retrospect there would have been a rationale for extending the range 

downwards – perhaps to 4 mg. This may have improved the power of this model 

to detect an effect for this low-dose exposure. 

3.6.3.2 Outcome measurement 

The code list for severe infections, derived from a published algorithm for acute 

admissions to hospital, was a list of codes likely representative of conditions 

where there is the potential for sepsis to develop (Inada-Kim et al., 2017). The 

authors had a comprehensive methodology for identifying these codes. While 

this represents a systematic approach to using administrative data to identify 

severe infections, it was not possible in our study to confirm how accurate these 

codes were. This would require a nested case note review validation study. Such 

work has previously been carried out by a colleague from the same research 

group for various comorbidities, but not for severe infection. 

We included not only the ‘main condition’ from hospital admissions episodes, 

but also ‘other conditions’ which can represent comorbid conditions or other 

current issues requiring management during the admission. We estimated that 

most infections listed as other conditions would likely be severe. Arguably this 

may result in some non-severe infections being including as outcomes, but it was 

considered that not including ‘other conditions’ for identifying infections would 

lead to greater inaccuracy, as this is the only way that hospital-acquired 

infections, which are often very severe, could be included in the analysis. 

3.6.3.3 Confounding 

Confounding was well addressed in this study, with variables in the models 

including age, sex, deprivation and multiple comorbid conditions. Confounding 

variables of interest, which may have value as potential prognostic factors 
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included age, chronic respiratory disease, renal disease and cardiovascular 

disease. These variables all have biological plausibility potentially supporting an 

aetiological role in relation to severe infection. The have also been identified as 

having predictive value in other studies of prognostic factors for infection in 

AAV, which are detailed in Chapter 1. Although important variables were 

included as potential confounders, the possibility of residual confounding 

remains. Two important potential sources of residual confounding include 

disease severity and frailty. 

Confounding by disease severity may occur where individuals with worse disease 

are more likely to receive higher doses of glucocorticoid but are also more likely 

to experience severe infection due to severe vasculitis independent of 

glucocorticoid dose. At the six-to-nine month time point, higher dose 

glucocorticoid may represent ongoing disease activity or relapse. The increased 

risk of infection due to disease severity is incompletely understood but is likely 

related to the altered immunity of autoimmune disease and vasculitis damage 

disrupting aspects of innate immunity, such as mechanical barriers to pathogens 

in the respiratory tract. Receiving other immunosuppressive therapies at this 

time, such as cyclophosphamide and / or rituximab may contribute to increased 

infection risk. Frailty may also have contributed to residual confounding as a 

form of ‘confounding by contraindication’. This arises where individuals who are 

considered too frail for certain therapies, such as cyclophosphamide or 

rituximab, are instead treated, arguably inappropriately, with more aggressive 

doses of glucocorticoid. In this scenario, frailty is a confounder as it contributes 

both to the likelihood of receiving higher doses of glucocorticoid and the 

likelihood of the occurrence of severe infection. Therefore, glucocorticoids may 

be partially or fully confounded in this regard, making them a marker of 

infection risk as opposed to a causal factor. This is not necessarily an issue for 

predictive modelling, as a variable need not be causative. However, one can 

envisage issues in the future where glucocorticoid regimens may be replaced by 

non-glucocorticoid based regimens. If a prediction model were applied to such a 

population, not being on glucocorticoid may falsely be seen as a protective 

factor against severe infection. It was not possible to incorporate these potential 

confounders with the current data set, therefore future studies should consider 

this as part of study design. 
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Comorbidities for this study were ascertained based on data prior to the index 

date. This was because the data set utilised for the current study was derived 

from the cleaned data sets for the study in Chapter 4. Some patients may have 

acquired additional comorbidities during the six-month period after the index 

date. Basing the presence or absence of comorbidities on data that was possibly 

less ‘up-to-date’ may have introduced some noise into the study, making the 

results more difficult to interpret. A future iteration of this study should identify 

confounding variables at the time of the exposure period. 

An important set of confounding variables not accounted for in this study were 

concomitant immunosuppressive therapies such as cyclophosphamide and 

rituximab. These medications are supplied by hospital pharmacies and therefore 

are not apparent in the community prescription database, PIS, that was used for 

this study. The study exposure period of six-to-nine months following the index 

date was partly selected to account for the lack of availability of this important 

set of confounding variables. Given that the index period will likely represent 

the approximate date of diagnosis for many patients, by the time of the 

exposure period, most individuals will not be receiving induction therapies, thus 

reducing the effect that these variables have on the outcome. 

3.6.3.4 Selection bias 

Participants for this study were identified via SMR01 – a routinely collected 

national admissions database. Therefore our study would not have identified 

patients with AAV who were not admitted to hospital during the VOICES study 

period. Individuals who were not admitted to hospital are likely to be younger, 

less frail and less sick with vasculitis than those admitted to hospital. Therefore 

the cohort identified for this study is likely sicker and frailer than the target 

population. If glucocorticoid use has a multiplicative relationship with frailty, 

then this selection bias may result in an exaggerated association between 

glucocorticoids and severe infection. This potential effect is difficult to 

quantify, but it is not thought to have substantially impacted the outcome of the 

study. It is also important to acknowledge the means of case ascertainment in 

this dataset. ICD-10 codes for AAV sub-diagnoses were sought in national, 

routinely-collected, healthcare administrative data. As discussed elsewhere in 

this thesis, each hospital admissions has different diagnoses coded as being 
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associated with the care episode. This includes the current main reason for 

hospital admission (“main condition”) and up to five “other conditions” which 

may be other active issues during the hospital stay or pre-existing comorbid 

conditions. If AAV was an active issue during the care episode, then it seems 

highly likely that it would be coded in the database, though it may be 

challenging for clinical coders to identify AAV conditions, where variable 

nomenclature is used, for example eponymous names for GPA and EGPA. Where 

AAV is a pre-existing comorbid condition and the individual has multiple 

comorbidities, then AAV may not be coded. This may be exacerbated by clinical 

coding guidelines that described “higher priority” conditions such as cancer 

(Public Health Scotland: Data and Intelligence, 2014). Ultimately this may not be 

an issue that introduces significant systemic bias to the data set, presuming the 

individuals not identified due to lack of an appropriate AAV code are not 

systematically different to those who are identified. While the issues discussed 

may contribute to worse sensitivity, it is also necessary to consider specificity – 

in this setting this would be an individual being coded as having AAV in the 

national data, where in reality they do not have AAV. This may occur when an 

individual presents with a vasculitis mimic condition, that is initially thought to 

be AAV, but transpires to be another condition. Anecdotally, this clinical 

scenario generally seems uncommon, so is unlikely to have caused significant 

issues with case ascertainment in this thesis. Ultimately, the presence and 

impact of these theoretical issues with clinical coding of AAV in routinely-

collected data are difficult to quantify without a nested data quality study, 

which was not possible for this thesis. 

3.6.3.5 Statistical power 

This study would have been more informative if estimates of precision were 

more accurate due to more statistical power. However, these data are still 

broadly compatible with the hypothesis that low doses of glucocorticoid are 

associated with subsequent severe infection. In the multiple dose threshold 

model, the >0 to 5 mg dose bracket had a point estimate suggesting lower risk 

than no steroids. If the point estimate were correct, this observation would not 

be compatible with the above-described hypothesis. However, as the confidence 

intervals for this comparison were wide (HR 0.72 (95% CI 0.17 – 3.09, p = 0.659)), 

a range of effects remains possible. Similarly for the multiple dose model, 
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although higher doses (i.e. 5 mg and above) generally appeared to be associated 

with increased risk, it was not possible to discern a pattern of changing risk with 

increased glucocorticoid dose due to the imprecision of estimates. Although the 

study was underpowered to demonstrate this, such a progression of risk remains 

possible. 

3.6.3.6 Continuous glucocorticoid modelling 

There are few completely linear phenomena in nature, therefore there is a 

strong case for exploring non-linear relationships between variables. For the 

continuous model which considered glucocorticoid dose as a linear variable, a 

non-linear transformation of the data as described in section 3.4.4.4 may have 

revealed interesting phenomena such as whether the magnitude of change in risk 

increases or decreases with increasing dose, or whether an inflection point in 

glucocorticoid dosing exists where risk sharply increases or, conversely, levels 

off. Non-linear exploration of dosing would require a larger dataset for increased 

power. 

3.6.4 Interpretation 

These studies demonstrate that glucocorticoids are strongly associated with 

severe infection in AAV patients. This effect was present across various dose 

thresholds examined including >5 to 10 mg, >10 mg and >20 mg. The >10 to 20 

mg group did not have a statistically significant hazard ratio (HR 1.73 (95% CI 

0.97-3.09, p = 0.065)), but given that the large majority of the confidence 

interval was located ‘above 1’ and that dose groups above and below were 

associated with severe infection, it seems plausible this effect is real. The >0 to 

5 mg group had a wide confidence interval and the point estimate did not seem 

biologically plausible, therefore this exposure group was difficult to interpret 

without greater statistical power. 

With respect to the ‘multiple doses model’, it was reasonable to have expected 

a dose response relationship whereby the risk of severe infection increased as 

the exposure to glucocorticoid increases. Possibly due to a lack of power, such a 

relationship was not clearly demonstrated. 
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Again underpowered, there is significant imprecision with respect to the HR 

assigned to the 5-7.5 mg dose group. However, most of the confidence interval 

sits above the line of null effect, suggesting a possibility that even this lower 

dose of glucocorticoid could be associated with substantially increased risk of 

severe infection. Should this be the case, and should there be further evidence 

that this effect is causal, this may have important clinical management 

implications for individuals with AAV. Similarly, the continuous variable model 

suggests that small differences in glucocorticoid dosing were associated with 

clinically important differences in severe infection rates, with a 1 mg higher 

glucocorticoid dose being associated with a one percent increase in severe 

infection risk. Ultimately it is clear that glucocorticoids were associated with 

increased infection risk at various levels of dosing, meaning that this variable 

should actively be considered for inclusion in risk prediction models relating to 

severe infection. 

As discussed in detail in the introduction, section 1.13.3.3, a link between 

glucocorticoid exposure and subsequent severe infection has been apparent for 

several decades. This was particularly prominent in an early French RCT where 

glucocorticoid exposure in both treatment arms was higher than other regimens 

at the time and is considerably higher than modern regimens. At 3 months in this 

trial the average daily prednisone exposure was 55 mg daily. Over mean follow-

up of approximately 28 months, 55% of participants had experienced an 

infection. The incidence of PCP was high at 20%, it was not stated whether 

antimicrobial prophylaxis was used. An important difference in this study 

population was disease severity – some participants in the trial were recruited 

from critical care, and 70% had renal involvement – both factors that would have 

increased propensity to infection (Guillevin et al., 1997). In the modern era, 

PEXIVAS provided compelling evidence that reduced glucocorticoid exposure was 

associated with fewer severe infections, as detailed above, with incident rate 

ratio 0.69 (Walsh et al., 2020). The smaller LoVAS RCT, performed in Japan, was 

consistent with this (Furuta et al., 2021). Apart from in the current study, lower 

doses in the maintenance phase have not been evaluated in AAV. Low dose 

glucocorticoid exposure has been explored in rheumatoid arthritis (RA), an 

adjacent IMID. George and colleagues found that the one-year cumulative 

incidence of severe infection was higher in those who received glucocorticoid at 
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less than 5 mg daily prednisolone equivalents, compared to those who were not 

treated with glucocorticoids (George et al., 2020). 

3.6.5 Generalisability 

As this study utilised routinely collected, real world, healthcare administrative 

data, its results are generalisable. Coverage of the Scottish population is 

effectively complete. The only feature of this study’s design which may lead to 

lower generalisability is the selection bias described above in section 3.6.3.4, 

whereby individuals were included in the study if they had an AAV code 

associated with a hospital care episode. Therefore, this data may not be 

generalisable to individuals who have never been admitted to hospital. 

3.7 Summary 

In this chapter, through utilising one of the largest known observational datasets 

of individuals with AAV, several glucocorticoid exposures were evaluated in 

cause-specific Cox models for association with severe infection. Particularly at 

higher doses, it was clear that glucocorticoids were associated with severe 

infection. This supports findings in the medical literature indicating that 

glucocorticoid exposure should be considered a prognostic factor for severe 

infection in IMID. This supports the inclusion of glucocorticoids as a prognostic 

factor in multivariable models seeking to predict the occurrence of severe 

infection. In the next two chapters, we will seek to build on the contribution 

made to the prognosis research literature in AAV by developing prognostic 

models relating to severe infection in AAV.
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4 Development and internal validation of a 
multivariable model to predict first severe 
infection in individuals with ANCA-associated 
vasculitis (AAV) 

4.1 Overview 

In the previous chapter, a series of prognostic factors based on glucocorticoid 

exposure were evaluated for their ability to predict severe infection in AAV 

patients. Prognostic factor research is crucial in any clinical domain, but the 

predictive characteristics of a single prognostic factor are typically lower than 

when combined with other factors in a prognostic model. The next two chapters 

will describe two such models, developed and internally validated using modern 

predictive statistical techniques. This chapter will build a model to predict 

severe infection events, while the model in chapter 5 will aim to predict early 

mortality after a diagnosis with severe infection. Following external validation 

and evaluation of clinical impact, such models could be used as both clinical and 

research tools to identify those at the highest risk severe infection and 

associated mortality. Such individuals could then participate in randomised 

controlled trials of novel strategies and therapies, leading to a personalised 

medicine approach to targeting a severe complication in this vulnerable 

population. 
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4.2 Abstract 

4.2.1 Background 

Severe infection is the most common cause of early mortality and overall excess 

mortality in AAV patients. Prediction of severe infection events would be of high 

utility to vasculitis clinicians and researchers. No prognostic models that aim to 

predict severe infection over the first year following AAV diagnosis have yet 

been developed. This chapter aims to develop and internally validate such a 

model. 

4.2.2 Methods 

A national Scottish dataset was developed using data linkage and routinely 

collected data. There was full coverage of the Scottish population. The study 

population was AAV patients identified through listed comorbidities associated 

with a hospital admission. Candidate predictors included demographics and 

comorbidities including a previous hospital admission with infection. The study 

outcome was occurrence of the first severe infection within one year, defined as 

a hospital admission associated with infection. A cause-specific Cox proportional 

hazards model was developed. The model incorporated a non-linear 

transformation of age, derived using fractional polynomials. Bootstrapping was 

used to determine optimism-adjusted performance measures. Pseudo-

observations accounted for censoring when assessing model calibration. 

4.2.3 Results 

2,078 individuals were included in the dataset, 428 (20.6%) of whom experienced 

the severe infection outcome. The competing outcome of death occurred in 138 

(6.6%) individuals. The final model included age (transformed as (age / 100)3), 

Scottish Index of Multiple Deprivation (SIMD), renal disease and diabetes. On 

internal validation, optimism-adjusted model performance statistics included 

calibration slope 0.94, calibration intercept -0.01, calibration in the large 1.01 

and concordance statistic 0.60. The scaled Brier score was 2.6%. 
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4.2.4 Conclusions 

This prognostic model is an important initial step in predicting severe infection 

events in individuals with AAV. 

4.3 Introduction 

4.3.1 Background to this study 

Individuals with ANCA-associated vasculitis (AAV) are at high-risk of severe 

complications including infection, malignancy and cardiovascular disease. The 

causes of these are multifactorial and can broadly be divided into disease-

related and therapy-related factors. The potent immunosuppressive therapy 

required to induce remission of active disease has a marked contribution to 

infection risk. It is well recognised that infections have a considerable impact on 

patients with AAV. Severe infections are responsible for substantial morbidity 

and are recognised as the most common cause of early mortality (Little et al., 

2010). Currently, clinicians and researchers do not have reliable means of 

predicting whether an individual with AAV will go on to suffer a complication 

such as severe infection. Such a tool could rely on a single biomarker, but it is 

more likely that a useful tool would incorporate multiple factors that are 

predictive of infection events. This likely related to the underlying multifactorial 

aetiology of clinical outcomes due to a complex interaction between biology and 

environment, and is evidenced by the multiple variables included in 

sophisticated prognostic modelling tools, such as those used in clinical practice 

(Wishart et al., 2010; Hippisley-Cox et al., 2017). This study will seek to develop 

such a predictive tool using national, routinely collected administrative data and 

modern clinical prediction model development methodology. 

4.3.2 Potential impact 

Predicting infections is an unmet clinical and research need in AAV patients. 

Offering clinicians and patients information regarding the likelihood of severe 

infection could assist with decisions around the timing and intensity of 

immunosuppression. Antimicrobial prophylaxis is widely used during the early 

stages of treatment of AAV. While this reduces risk of specific infections such as 

pneumocystis pneumonia, many individuals remain susceptible to other 
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infections. A predictive model could assist clinical researchers with selection of 

an at-risk clinical population for basic science and clinical studies. If patients 

who are at high risk for infection could be reliably identified then clinical trials 

could be designed which focus on this vulnerable group, either by allowing 

stratification by an a priori subgroup of interest or by requiring high infection 

risk, above a specific threshold, for inclusion. Through such an approach, 

individuals most likely to benefit from preventative therapy could be identified. 

4.3.3 What is currently known 

Prediction of infection is recognised as challenging in AAV. There are limited 

data available to assist with risk stratification for infection (Zeng et al. 2022). 

Many observation studies have been reported which describe predictive factors 

for severe infection in AAV. These are reviewed in detail in chapter 2. Most of 

these reports are retrospective. Many were underpowered to detect the true 

size of association of variables with outcome, given the number of variables 

relative to events under study. Very few studies had a stated objective of 

deriving a predictive model that would be testable in other populations and 

could theoretically be utilised in a clinical setting. They were typically 

underpowered and focused on a specific population not generalisable to most 

AAV patients. (Zhang et al., 2022; McClure et al., 2021) 

4.3.4 Aim 

The aim of this study was to develop a practical clinical prediction model on a 

real-world AAV population using routinely collected national administrative data, 

derived through a data linkage approach and using modern predictive analytical 

methods. The model sought to predict occurrence of first severe infection, 

starting from participant index date. 

4.4 Methods 

4.4.1 Study design and setting 

Reporting followed the TRIPOD (Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis) guidelines (Collins et al. 

2015). Vasculitis Outcomes in relation to Care Experiences (VOICES) is a services 
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mapping study of vasculitis care and outcomes with projects including both 

Scotland and the whole of the United Kingdom. Additional information regarding 

the study is available online (VOICES, University of Aberdeen 2022). VOICES 

includes a Scottish data linkage matched cohort study aiming to examine 

patterns of vasculitis care and outcomes. This dataset was utilised in the current 

study. A detailed description of the dataset is available in Chapter 3. The 

dataset identified all patients in Scotland with a relevant International 

Statistical Classification of Diseases and Related Health Problems 10th Revision 

(ICD-10) code for AAV and Giant Cell Arteritis (CGA) from the Scottish Morbidity 

Record admissions database (SMR01). SMR01 captures hospital admission data 

from all non-obstetric and non-psychiatric inpatient and day case care episodes. 

Ten controls were identified via SMR01, matched by age, sex and health board of 

residence. Patient identifiers were used to link to administrative health care 

data from multiple national datasets. These datasets are described in detail in 

chapter 3. An index date representing probable AAV diagnosis was defined as the 

earliest admission date associated with an AAV ICD-10 code. A look-back period 

of 5 years allowed comorbidities that occurred prior to the index date to be 

determined, according to established methodology (Quan et al. 2005). Data 

linkage was performed by PHS using a robust approach that has been 

demonstrated to result in highly accurate and complete data (Evans and 

MacDonald 1999; Scottish Public Health Observatory 2022).  

4.4.2 Participants 

The study period was defined from 1st April 1996, when ICD-10 was introduced, 

to the latest available record at the time of linkage, 31st October 2020. GCA 

patients and all matched controls were removed from the dataset to derive an 

AAV retrospective cohort. This cohort comprised all adults (aged 16 years or 

older) with an AAV code within SMR01. The following ICD-10 codes were used to 

identify patients: M31.1 (granulomatosis with polyangiitis), M31.7 (microscopic 

polyangiitis) and M30.1 (eosinophilic granulomatosis with polyangiitis). Patients 

were followed up from index date to death or the end of the study period, 

whichever occurred first. Baseline characteristics were reported including age, 

sex, SIMD, comorbidities, previous infection and Charlson comorbidity index for 

those who experienced the primary event, those who experienced the competing 

event, those did not experience either event and the total study population. To 
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protect against identification of participants, where a cell contained a low value 

(below five), the value was suppressed and represented as ‘<5’. Where the value 

of a low cell count could be inferred from other cells, values were suppressed to 

a range (e.g. ‘15–20’ as opposed to ‘16’). Continuous variables were reported as 

median and interquartile range. P-values were derived using Kruskal Wallis test 

for continuous variables and chi-squared test for categorical variables. 

4.4.3 Outcome 

The outcome of interest was occurrence of first severe infection, defined as an 

admission to hospital documented within SMR01 associated with a diagnostic 

code for infection. Death was incorporated in the analysis as a competing event. 

Death was extracted from the linked dataset derived from the National Records 

of Scotland (NRS) Central Register. As a measure to preserve pseudonymisation, 

date of death is recorded within PHS linked datasets as month and year only. For 

survival time calculation, ‘14’ was simply imputed as the day of the month. 

Where this resulted in a negative censor date, such individuals were removed 

from the dataset. 

4.4.4 Independent predictor variables 

Candidate predictors were selected based on published prognostic literature 

relating to infections in AAV and other autoimmune rheumatic disease, and 

clinical judgment of the study team. (Fine et al., 1997; Shapiro et al., 2003; 

Hespanhol and Bárbara, 2020; Bahlis et al., 2021) The selection of these 

predictors was carried out by the thesis author and presented to thesis 

supervisors, both academic clinicians, one nephrologist and one rheumatologist. 

One single demonstrator model was developed for illustrative purposes. 

Suggestions for inclusion of additional variables or exclusion of existing variables 

were incorporated. Following discussion there was no disagreement on variable 

selection but had this occurred it would have been resolved through further 

review of the published literature and consensus. Except for the single 

demonstrator model, variable selection was completed before the statistical 

modelling process began. Selected variables included age, sex, Scottish index of 

multiple deprivation in deciles (SIMD; as continuous variable), previous admission 

with infection and comorbidities including cancer (localised or metastatic), 
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cerebrovascular disease, chronic heart failure, chronic respiratory disease, 

diabetes, liver disease and renal disease. SIMD is a rank assigned to geographical 

‘data zones’ and is derived from multiple indicators (Scottish Government, 

2020).  

To identify comorbidities, each participant in the dataset had a five year ‘look 

back’ period of SMR01 hospital admission data. Comorbidities were derived from 

SMR01 episode codes as Charlson comorbidity items (Quan et al. 2005), with the 

exception of severe infection which was derived based on a set of infection 

related ICD-10 previously reported (S. H. Sarica et al., 2020). ICD-10 codes for 

severe infection were derived from work by Inada-Kim and colleagues. This study 

aimed to define codes consistent with “suspicion of sepsis” in order to identify 

patients in National Health Service (NHS) Hospital Episode Statistics data across 

eight NHS trusts. Clinical consensus regarding the relevant codes was reached 

with input from multiple relevant specialist clinicians. The approach was 

successful in identifying the target population of interest (Inada-Kim et al., 

2017). 

Other models described in this thesis incorporate national prescribing data. This 

was not applicable to this study as predictive variables for the model were 

derived using index date as the starting time point. For most patients this will 

equate to the approximate time of AAV diagnosis. At this time point, most 

patients receive at least some of their initial supply of medications from hospital 

and not community dispensaries. Data from hospital prescriptions is not 

available in linked datasets therefore medications were not incorporated into 

the model. Therefore it was not possible to include potentially relevant 

therapies such as immunosuppressive treatment and antimicrobial prophylaxis. 

4.4.5 Sample size 

Sample size was determined in a pragmatic manner by using all the available 

data. This resulted in a significantly larger sample size compared to similar 

studies in AAV populations. A crucial factor to consider in relation to sample size 

is the number of parameters of candidate variables. Notably this refers not only 

to the number of variables but to each potential β term in the eventual model. 

For example a variable with four categorical options would count as three 
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parameters for calculating sample size for a prediction model. Other important 

factors to consider are the total number of participants, the outcome incidence 

and the expected predictive performance of the model. Calculations have been 

developed to determine the minimal sample size for predictive models and 

associated statistical packages are available (Riley et al., 2019), but such tools 

are not currently available for models where competing risks are a 

consideration. There are also insufficient published models to provided 

indicative expected predictive model performance. As a guide, multiple sample 

size calculations were performed using a standard survival model approach to 

ensure that an appropriate number of candidate predictors were included in the 

model development step. 

4.4.6 Missing data 

Due to the administrative nature of the data, apparent missing data was 

minimal. SIMD was missing for a small number of individuals. A complete case 

analysis was carried out. Multiple imputation was not considered beneficial or 

necessary, as it was considered that deprivation would be difficult to ascertain 

based on other variables and impact on the eventual model was likely to be 

negligible. For the internal validation step of the model building process, it 

would have been necessary to include any imputation. This may have 

unnecessarily prolonged the compute time required for internal validation. This 

compute time was deemed to be more appropriately allocated to essential 

model building steps such as variable selection. Scottish administrative health 

data is recognised as having high data quality and minimal missing data (Public 

Health Scotland, 2023). This is difficult to quantify however, as distinguishing 

between data ‘not reported’ versus data ‘missing’ in a cohort study based on 

routinely collected administrative data is challenging, particularly where it is 

not possible to undertake a validation study. 

4.4.7 Model rationale and development 

When developing a model aiming to predict a non-fatal event, such as severe 

infection, it is usually appropriate to consider competing events. In this setting, 

the competing event in a population with AAV is death related to other causes. 

In this situation, prognostic models should describe absolute risk of the adverse 
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events, also described as the cumulative incidence. Cumulative incidence in this 

setting would be the risk of developing severe infection over one year, whilst 

acknowledging that individuals who die prior to a severe infection event can no 

longer experience that event. If one does not factor in a competing event during 

model building, then the cumulative incidence can be overestimated. The 

overestimation is larger where the risk of the competing event is greater. 

Additionally, where competing risks are not considered during the validation 

stage, model performance measures become inaccurate, particularly in relation 

of calibration. Survival models are able to take account of both censoring and 

competing risks, therefore such a model was selected for this study. A logistic 

regression model would not be able to account for these factors therefore it is 

not appropriate in this setting. Machine learning modelling techniques can be 

applied to competing risks data, however such approaches are less well 

described in the methodological literature and implementation can be 

complicated. When compared to more traditional regression methods, 

performance is not superior and machine learning models can be more poorly 

calibrated (Kantidakis et al. 2023). 

There are few non-linear phenomena in nature, therefore non-linear modelling 

of continuous variables is encouraged in the prognostic modelling literature. 

Restricted cubic splines are a commonly used approach to modelling non-linear 

data and have been employed for many decades. An alternative approach is to 

use multivariable fractional polynomial (MFP) modelling - this more recent 

technique was used in this thesis. Polynomial functions can be used to the 

curved relationship that exists between many variables, but for lower order 

polynomials the variety of shapes is limited and for higher order polynomials 

there may be poor fit at the extremes of variables. Fractional polynomials are an 

extended group of curves, defined by a limited predefined set of power terms, 

which provide a vast array of different curved shapes. Restricted cubic splines 

would have been a reasonable approach to use, but the FP approach was used as 

FP terms require fewer degrees of freedom than splines and therefore allow 

inclusion of more candidate predictors in prognosis models with less risk of 

overfitting (Royston and Altman 1994). Use of FPs has shown to improve model 

fit and discrimination (Baneshi et al. 2013). From a practical purpose, the thesis 

author had also had previous training which utilised the MFP approach. Backward 



66 

elimination was used as a selection technique. This is preferred by statisticians 

as it starts with a plausible model (the full model). Combined with parameter-

specific shrinkage, backward elimination often produces the most accurate 

models (Sauerbrei et al. 2020). 

A non-linear FP term was fitted to age. This was performed by incorporating age 

as a solitary variable into a cause-specific Cox proportional hazards model 

transformed by FP functions with a maximum of four degrees of freedom. A 

backward elimination procedure was used to update FP functions. The variable 

selection level was set at 0.1. The resultant two suggested FP functions for age 

were then compared for plausible fit graphically and for parsimony (i.e. 

simplicity of fractional polynomial term). The full Cox proportional hazards 

model was then developed using a backward elimination process with the 

threshold for inclusion being p < 0.1. A cause-specific model was developed 

using first-severe-infection as the primary event, with all-cause mortality being 

the competing event. Estimated baseline survival at 1 year was reported. Model 

apparent performance measures were calculated including observed-to-expected 

(O/E) ratio, calibration intercept, calibration slope, concordance statistic (C-

statistic), cumulative/dynamic area under the receiver operating characteristic 

curve (C/D AUCt), Brier Score and scaled Brier score. A calibration plot was 

created. Definitions for these performance measures and background to 

calibrations plots are given below. Pseudo-observations were used as a proxy for 

primary event indicators to account for censored observations with respect to 

the calibration plot, calibration intercept and calibration slope (van Geloven et 

al. 2022).  

4.4.8 Model performance measures 

4.4.8.1 Calibration 

Calibration assesses the agreement between predicted outcome proportions 

from the model and observed outcome proportions in data. Importantly, this is 

not just average calibration (“calibration in the large” or CITL), but also across 

the whole spectrum of predictions (van Geloven et al. 2022). 
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The observed-to-expected ratio (O/E ratio) is a simple measure of CITL or 

overall calibration, it indicates how close the overall estimated risk is to the 

overall actual outcomes of the population in question. It divides the proportion 

of the actual observed outcome by the expected proportion of the outcome 

based on the model. An O/E ratio of 1 demonstrates perfect CITL, greater than 1 

suggests on average model predictions are too high, while less that 1 suggests 

they are too low (van Geloven et al. 2022). 

The calibration slope and calibration intercept are both features of a best fit 

line fitted to the relationship between predicted risk from a model and the 

observed proportion that has the outcome.  The calibration slope describes 

estimated risk based on the model. A value of 1 suggested ideal calibration. Less 

than 1 indicated that the model has overly extreme risk estimates: for those at 

low risk of an outcome, the model estimates that risk is even lower; while for 

those at high risk of an outcome, the model estimates risk is even higher. Models 

that give extreme predictions are said to be “overfitted”. Overfitting is a 

common statistical problem. It results when a modelling approach is too complex 

for the available data, for example use of highly flexible machine learning 

algorithms, too many candidate predictors or variable selection based on 

statistical significance. The calibration intercept has an ideal value of 0. It is 

representative of CITL. Negative values suggest systematic overestimation of 

predicted risk, while positive values suggest systematic underestimation (Van 

Calster et al. 2019). 

A calibration plot is a visual check of whether predicted risks for a population 

derived from the model match actual observed outcomes. Estimated risks and 

actual observed outcomes are plotted against each other. A typical method is to 

divide a population into ten equal groups based on estimated risk, each group is 

then plotted with predicted risk on the x-axis and outcome proportion on the y-

axis. For example, a low-risk decile group might have a five percent severe 

infection estimated risk based on a model. One would expect the actual 

observed outcome proportion for this decile to be five percent. The plotted 

group will often have confidence intervals displayed. A smoothed line developed 

via a Loess regression is frequently added, further representing the relationship 

between estimated risk and observed outcomes. The smoothed line should only 

be displayed over the range of observed risks and not beyond. Deviations of the 
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decile groups or the smoothed line represent miscalibration – notably the 

diagonal line has intercept 0 and slope 1, equivalent to the calibration intercept 

and calibration slope. A significant challenge with survival data is how censored 

data and competing risks should be factored into calculating observed outcome 

proportions. One recommended method is to use pseudo-observations. These 

replace the primary event indicator with proxy observed event indicators for all 

patients, even those who were censored. Pseudo-observations are calculated as 

the weighted difference between the cumulative incidence estimate, at the 

chose time point, for the whole cohort and the same number but leaving out the 

individual in question. This permits straightforward calculation of observed 

outcome proportions, even where an observed outcome is unknown, as is the 

case with censored patients (Andersen and Perme 2010). Alternative techniques 

that deal with censoring include smoothing using a flexible regression model and 

inverse probability of censoring weighting (van Geloven et al. 2022). No one 

technique is preferred overall in the literature, therefore the pseudo-

observations methods was employed, as this has been used in prior well 

conducted prognosis modelling research and code was available making it 

practical to use. 

4.4.8.2 Discrimination 

This is the extent to which the model can differentiate between higher and 

lower risk patients. Patients who experience an event earlier should have a 

higher predicted risk from the model than those who experience an event later 

or who are censored. Technically, poor discrimination is more concerning than 

poor calibration, because calibration can be addressed by model recalibration 

(Royston and Altman 2013). 

The c-statistic, or concordance statistic (or c-index), assesses the ordering of 

predictions for all prediction pairs. It is a fraction where the numerator is the 

proportion of all possible pairs of patients where the model assigns appropriately 

lower or higher risk to each in the pair, while the denominator is the total 

number of possible pairs. The c-statistic ranges from 0.5, which indicates no 

discriminating ability (sometimes described as a “coin-toss” for assigning higher 

or lower risk to an individual) to 1.0, which indicates perfect discriminative 

ability. A model with perfect discrimination would always assign higher 
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predictive risk to the individual in a pair more likely to experience the outcome. 

In the setting of survival data, including competing risks, pairs can be compared  

such that if one individual has an event, that individual should be assigned 

higher risk than a paired individual that has an event later, or experiences a 

competing event (van Geloven et al. 2022). Notably, the c-statistic is 

mathematically the same as the area under the Receiver Operator Characteristic 

(ROC) curve. An ROC curve is a visual representation of the discriminative ability 

of a prognostic factor or model. It compares sensitivity on one axis to 1-

specificity on the other. 

The cumulative/dynamic area under the receiver operator characteristic 

curve (C/D AUCt) is very similar to the c-statistic, but represents the model’s 

ability to predict the event at particular time points. This can be determined for 

multiple time points and displayed graphically (van Geloven et al. 2022). 

4.4.8.3 Overall prediction error 

This characterises the overall predictive ability of the model, thus incorporating 

both calibration and discrimination. 

The Brier score is the mean squared difference between observed survival at a 

given time point (either 1 or 0) and the predicted risk at that time point. This 

score ranges from 0 for a perfect model to 0.25 for a non-informative model, 

where the population in question has a 50% event rate at the time point in 

question. If the event rate is lower, then the score at which a model is non-

informative becomes lower also. A scaled version has been developed to simplify 

interpretation across settings. The scaled Brier score is calculated as 1 – (model 

Brier Score / null model Brier score), the null model being one without 

covariates that predicts the same average risk for all individuals. A scaled Brier 

score of 100% suggests a perfect model, 0% an ineffective model and below 0% is 

a harmful model that is worse than the null model (van Geloven et al. 2022). 

4.4.9 Model validation 

Internal validation refers to using the dataset on which the model was developed 

to evaluate model performance. Different approaches are available, such as 

split-sample and cross-validation, but bootstrapping provides estimates of model 
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performance with low bias, low variability and efficient use of available data for 

model development (Steyerberg et al., 2001). The fundamental principal is 

“repeated sampling with replacement”. A sample drawn with replacement 

means that a subject’s data is randomly selected from the development data 

set. Further selection takes place from the data set, but the prior samples 

drawn are put back into the data set, such that they are available for random 

sampling again – thus replacement. For the current study, internal validation was 

performed using Harrell’s bias correction, a bootstrap method (Harrell et al. 

1996). This method has been evaluated against other bootstrap-based methods 

and it compared well (Iba et al. 2021). Bootstrapped samples were drawn with 

replacement from the original sample, until the bootstrapped dataset was the 

same size as the original dataset. Identical model building steps to the 

development of the initial model were then performed on the bootstrapped 

sample. Performance measures of this bootstrapped model were then calculated 

in the bootstrapped sample - such measures represent the apparent 

performance. Performance measures of the bootstrapped model were then 

calculated in the original sample - such measures represent the test 

performance. These steps were repeated with 1000 iterations. This process 

allows optimism to be considered. When a model’s performance is tested in the 

dataset in which it was developed, performance measures tend to be 

overestimated – the extent to which this is overestimated is known as optimism. 

Performance measures calculated in the initial sample without any established 

internal validation approach yields so-called “apparent” performance measures. 

“Optimism-adjusted” measures are calculated by subtracting mean optimism 

from apparent performance (Steyerberg 2019).  Mean optimism was calculated 

for each performance measure by subtracting mean test performance from mean 

apparent performance for all bootstrapped samples. Optimism-adjusted 

performance measures were calculated as above by subtracting optimism from 

the performance measures of the original model. Confidence intervals of 

optimism adjusted performance measures were calculated by the location-

shifted bootstrap confidence interval method (Noma et al. 2021). R version 4.2.0 

was used with packages including comorbidity, geepack, MASS, pec, 

riskRegression, survival and the tidyverse packages. 
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4.4.10 Patient and public involvement 

Collaboration with the Aberdeen Centre for Arthritis and Musculoskeletal 

Health’s user group and patients identified through national support groups 

(Vasculitis UK and the Lauren Currie Twilight Foundation) identified patient and 

carer priorities. This process informed the design and aims of the current study 

and the VOICES project overall. 

4.5 Results 

An AAV index cohort was derived from the VOICES cohort (Figure 4-1). The 

dataset comprised 2,078 individuals. Baseline characteristics are reported in 

Table 4-1. The developed cause-specific Cox model for first severe infection 

event prediction, for both the primary (severe infection) and secondary (non-

infection related mortality) events, is shown in Table 4-2. Model coefficients, 

hazard ratios, 95% confidence intervals (95% CI), p values and the estimated 

baseline survival at one year are shown. Table 4-3 shows model performance 

measures, both apparent and optimism-adjusted using bootstrapping as a form 

of internal validation. Performance categories covered are calibration, 

discrimination and prediction error. Figure 4-2 is a calibration plot comparing 

estimated risks of the model to observed outcome proportions in the 

development cohort. 
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Figure 4-1 | Derivation of AAV index cohort from VOICES cohort 

Total VOICES dataset 
n = 169,283 

AAV cases and controls 
n = 12,618 

AAV cases complete data 
n = 2,094 

AAV cases 
n = 2,103 

AAV cases complete data / non-negative censor date 
n = 2,078 

156,665 GCA cases and controls excluded 

10,515 AAV controls excluded 

9 with incomplete data excluded 

16 with negative censor date excluded 
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Table 4-1 | Baseline characteristics 

Variable No infection Infection Died 

Total (%) n = 1512 (72.8) n = 428 (20.6) n = 138 (6.6) 

Age; median (IQR) 58.5 (47.6 to 67.9) 65.9 (55.5 to 73.8) 71.0 (63.4 to 79.3) 

Female sex; n (%) 749 (49.5) 225 (52.6) 67 (48.6) 

SIMD (deciles); median (IQR) 6.0 (4.0 to 8.0) 6.0 (3.0 to 8.0) 5.0 (3.0 to 7.8) 

Cardiovascular disease (all) 130 (8.6) 68 (15.9) 31 (22.5) 

Atherosclerotic disease (all) 102 (6.7) 60 (14.0) 24 (17.4) 

MI 42 (2.8) 21 (4.9) 12 (8.7) 

CVD 49 (3.2) 26 (6.1) 9 (6.5) 

PVD 17 (1.1) 22 (5.1) 7 (5.1) 

Chronic heart failure 43 (2.8) 16 (3.7) 14 (10.1) 

Hypertension 9 (0.6) 5 (1.2) 0 (0.0) 

Diabetes 60-65(4) 38 (8.9) 5-10 (6) 

Renal disease 100 (6.6) 66 (15.4) 22 (15.9) 

Dementia < 5* < 5* < 5* 

Cancer (all) 59 (3.9) 20-25 (5) 10-15 (7) 

Cancer (localised) 48 (3.2) 15-20 (44) 5-10 (5) 

Cancer (metastatic) 11 (0.7) < 5* < 5* 

Chronic respiratory disease 196 (13.0) 77 (18.0) 20 (14.5) 

Rheumatic disease 56 (3.7) 15 (3.5) 5 (3.6) 

Peptic ulcer disease 26 (1.7) 13 (3.0) 6 (4.3) 

Liver disease 16 (1.1) 5-10 (2) * < 5* 

Previous infection 331 (21.9) 122 (28.5) 43 (31.2) 

Charlson comorbidity index; median 
(IQR) 

0.0 (0.0 to 0.0) 0.0 (0.0 to 1.0) 0.0 (0.0 to 1.0) 

CVD = cerebrovascular disease, IQR = interquartile range, MI = myocardial infarction, PVD = 
peripheral vascular disease, SIMD = Scottish Index of Multiple Deprivation.  
*Low count cells (<5) have been suppressed, where a low count cell could be inferred from 
other cells these have also been suppressed and percentages rounded.  
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Table 4-2 | First severe infection event prediction model 

Variable Coefficient Hazard ratio (95% CI) P 

Severe infection (primary event) 

Age (FP term)* 2.07 7.96 (4.41 to 14.35) <0.01 

SIMD deciles  0.06 0.95 (0.91 to 0.98) <0.01 

Renal disease 0.52 1.69(1.29 to 2.21) <0.01 

Diabetes 0.47 1.59 (1.14 to 2.24) <0.01 

Non-infection related mortality (secondary event) 

Age (FP term)* 4.85 127.25 (47.99 to 337.43) <0.01 

SIMD deciles  -0.078 0.93 (0.87 to 0.98) 0.011 

Renal disease  0.32 1.38 (0.87 to 2.20) 0.175 

Diabetes 0.20 0.82 (0.40 to 1.69) 0.589 

Estimated baseline survival at 1 year  0.807  

CI = confidence interval, FP = fractional polynomial, SIMD = Scottish Index of Multiple 
Deprivation 
*Age (FP term) refers to the fractional polynomial transformation performed on age: (age / 
100)3 

 

Table 4-3 | First severe infection event prediction: model performance 

Performance measure Values (95% CI) 

Apparent  

Calibration  

O/E ratio 1.01 (0.92 to 1.09) 

Calibration intercept 0.01 (-0.09 to 0.11) 

Calibration slope 1.05 (0.80 to 1.29) 

Discrimination  

C statistic 0.61 (0.59 to 0.64) 

C/D AUCt at 1 year 0.63 (0.60 to 0.66) 

Prediction error  

Brier score 0.157 (0.147 to 0.167) 

Scaled Brier score (%) 3.8 (2.0 to 5.4) 

Optimism adjusted  

Calibration  

O/E ratio 1.01 (0.92 to 1.09) 

Calibration intercept -0.01 (-0.10 to 0.09) 

Calibration slope 0.94 (0.70 to 1.18) 

Discrimination  

C statistic 0.60 (0.58 to 0.63) 

C/D AUCt at 1 year 0.62 (0.59 to 0.65) 

Prediction error  

Brier score 0.159 (0.149 to 0.169) 

Scaled Brier score (%) 2.6 (0.9 to 4.3) 

C statistic = concordance statistic, C/D AUCt at 1 year = cumulative over dynamic area 
under the receiving operator characteristic curve, CI = confidence interval, O/E ratio = 
observed-to-expected outcomes ratio. 
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Figure 4-2 | First severe infection event prediction calibration plot 

 

4.6 Discussion 

4.6.1 Key results 

This study is one of two infection prediction models in AAV reported in this 

thesis. The dataset is the largest in the medical literature to have been used to 

develop an infection clinical prediction model in AAV. It is one of the largest 

datasets that has been used to develop any prediction model in AAV. The data is 

real-world, national healthcare administrative data and theoretically has 

coverage of the whole Scottish population. Reported characteristics (Table 4-1) 

showed that this population had a high incidence of severe infection with 428 of 

2078 individuals (20.6%) experiencing the primary event by one year. This 

demonstrates the vulnerability of this population to infection. It highlights the 

need to understand the epidemiology of severe infection in AAV and emphasises 

the importance of being able to predict its occurrence and downstream effects. 

On a univariable analysis presented in Table 4-1, individuals who were older, had 

cardiovascular disease, diabetes, renal disease and a history of prior infection 

were more likely to have an infection during the observation period, as opposed 

to not have an infection or die before the end of the observation period. 

Through the application of modern prediction modelling techniques, a 

parsimonious four component model was derived. This comprised a non-linear 
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transformation of age (age/1003), a national deprivation index (SIMD in deciles), 

presence of prior renal disease and prior diabetes. These variables all have high 

levels of biological or socioeconomic plausibility for being associated with severe 

infection. As detailed in Chapter 1, age, diabetes and renal disease have been 

shown to be strong prognostic factors for severe infection across multiple 

observational studies in AAV. Known as immunosenescence, age-related changes 

in immune function lead to increase incidence and severity of infections in older 

people, as well as impaired efficacy of vaccination. Defects occur in the innate, 

cell-mediated and humoral immune systems (Weiskopf et al. 2009). For decades, 

diabetes has been recognised as leading to adverse effects on leukocyte biology 

(Robertson and Polk 1974). Vascular disease and neuropathy, in addition to 

attenuating an immune response, also lead to greater infection susceptibility in 

diabetes (Toniolo et al. 2019). Leukocyte dysfunction has also been identified in 

chronic kidney disease, with uraemia, renal anaemia and dialyser 

bioincompatibility being important causative factors (Vanholder and Ringoir 

1993). Socioeconomic status has not been identified in AAV populations as being 

a prognostic factor for infections, but this has been reported in the general 

population. A large UK biobank study showed that lower socioeconomic status 

was associated with infections and that this may be mediated by lifestyle factors 

and chronic disease, such as cardiovascular disease (Ye et al., 2023). A 

systematic overview of reviews highlighted that lower socioeconomic status 

carries an associated risk of increased incidence of a number of communicable 

diseases (Ayorinde et al. 2023). Performance measures were calculated for the 

prediction model. These were adjusted for optimism using a bootstrapping 

approach. Performance measures showed fair discrimination, very good 

calibration and reasonable prediction error. 

4.6.2 Novelty of findings 

This is the first reported clinical prediction model developed in AAV on a large 

dataset of routinely collected data. It utilised modern clinical prediction 

methodology. This report established that it is possible to develop an effective 

predictive model in the domain of AAV and severe infection. This represents an 

important first stage in developing a clinically applicable model. With additional 

work, such as using other datasets to refine the model and to identify additional 
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important predictors, followed by comprehensive external validation, a 

promising clinical prediction tool could be deployed in practice. 

4.6.3 Strengths 

The PROBAST risk of bias and applicability tool informed evaluation of the 

study’s strengths and limitations (Wolff et al., 2019).  

Through utilising advanced data linkage capability in Scotland, it has been 

possible to take advantage of routinely collected datasets rarely available in 

other countries. This data is recognised to have a high level of completeness and 

overall data quality (Public Health Scotland, 2023). Routinely collected data has 

the advantage of including participants who would not normally be able to 

participate due to social circumstances or frailty. In this way, the data is highly 

representative of the population of interest and thus this study is at low risk of 

selection bias. Due to the nature of the data it is likely that inclusion criteria, 

exclusion criteria, predictors and outcomes were assessed in a similar way, 

regardless of the occurrence of the outcome. However, some underlying 

variability may be present due to, for example, different approaches to clinical 

coding across health boards in Scotland. 

As the data was recorded prospectively, the recording of predictors could not 

have been influenced by a participant’s outcome. All predictors were present at 

the time that the model would be intended to be used, ensuring applicability of 

the model. The outcome was reliably determined, with all admissions 

documented to be associated with an infection included. This outcome could 

have occurred at any Scottish hospital and was not restricted to a specific 

hospital or health board. There is a risk for an individual in the study, that the 

identified infection may not qualify as severe, as it may have occurred during an 

admission for another reason and may not have merited hospital admission in its 

own right. However it seems unlikely that this would vary across different risk 

categories and clinical coding guidance mandates that actively managed ‘other 

conditions’ are those which require ‘significant investigation or management’ – 

therefore it is likely that such infections do represent severe infections as 

defined in this study (NHS National Services Scotland 2017). Due to lack of 

hospital-administered medicines data, it was not possible to include intravenous 
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antimicrobials in the outcome data. Predictors were not included in the 

definition of the outcome and the outcome was determined without awareness 

of the presence or absence of predictors – factors which lower risk of bias.  

Epidemiological studies in AAV often suffer from small sample sizes, making 

them susceptible to both detecting spurious associations and not detecting 

important true effects. As per the findings of the systematised review (Chapter 

2) smaller studies in AAV typically have a sample size between 100 and 200 

participants, with respect to investigations of the incidence of infection and 

infection prognostic factors. Only a few studies have a larger sample size, 

typically between 400 and 800 participants. It may be possible for such studies 

to detect important associations with some accuracy. However, they would be 

limited in the extent to which such effects could be rigorously examined, due to 

only being able to control for a limited number of variables in a statistical 

model. Spurious associations may be detected in such studies or important 

associations missed. Detected potential associations have wide confidence 

intervals, making it difficult to assess the relevance of a potential prognostic 

variable. Studies which have sought to develop clinical prediction models for 

infection in AAV have had a sample size between approximately 150 to 250 

participants. (McClure et al., 2021; Zhang et al., 2022) The current study has a 

sample size of 2,078 participants, substantially larger than both comparable 

prediction studies and larger epidemiological studies. Sample size calculation in 

the domain of clinical prediction models is, however, a complicated subject. 

(Riley et al., 2020) Multiple factors need to be taken into consideration including 

the total number of participants, the number of events, the number of predictor 

parameters and the potential discriminative ability of the model. For this model, 

sample size was carefully considered. Due to a lack of sufficiently powered 

similar models and resultant lack of availability of potential model 

discriminative ability, it was not possible to perform a single informative sample 

size calculation. Therefore, a series of sample size calculations were carried out 

under a plausible range of scenarios with varied calculation inputs. This gave an 

indication of the number of model parameters that could reliably be included in 

the development of the model. As a result, this model was developed with 

minimal risk of overfitting. Out-with the rare disease setting, well conducted 

clinical prediction model studies typically have tens, if not hundreds, of 
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thousands of participants. Traditionally this would be challenging to achieve in a 

rare disease setting. Future models should seek to utilise large, federated 

sources of data, such as the FAIRVASC infrastructure, to develop models in a rare 

disease such as AAV with a larger selection of potential model parameters. 

(McGlinn et al., 2022) 

Model development was performed using modern prediction methodology. 

Clinically relevant variables were carefully selected for this study. Studies 

identified for the systematised review (Chapter 1) were examined for important 

variables for inclusion, particularly with respect to comorbidity. This was 

because comorbidities were a readily available source of information given the 

study’s data linkage design. Other literature was examined to identify important 

variables that are recognised as predictive of infection, both in 

immunosuppressed, autoimmune populations and more general populations. 

(Luna et al., 2016; Bahlis et al., 2021; Dixon et al., 2012) Finally, the clinical 

domain knowledge of the study team (thesis author and supervisors) was drawn 

upon to identify important variables for inclusion. Altogether, this process 

represents a comprehensive approach to identifying a limited set of appropriate 

variables for inclusion, thus maximising the potential predictive power of the 

eventual model, whilst minimising the risk of overfitting. Another factor which 

substantially limited overfitting was that, after a single demonstrator model was 

developed, the model was developed in a single iteration. Other approaches 

which maximised power and minimised overfitting were the use of continuous 

variables as opposed to dichotomised continuous variables and non-linear 

transformations with fractional polynomials of continuous variables. Variable 

reduction strategies are recognised as being useful for making a model 

parsimonious. Where an automatic variable selection approach is desirable, 

backward elimination is recognised as the preferred model building technique. 

One major advantage of backward elimination is that it starts with the full 

model and therefore is able to assess joint predictive ability (Chowdhury and 

Turin 2020). Internal validation was performed using bootstrapping. This 

approach is recognised as resulting in stable estimates with minimal bias 

(Steyerberg et al., 2001). That internal validation revealed low levels of model 

optimism was promising. 
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4.6.4 Limitations 

As described above, this study is larger than any comparable studies in the AAV 

research literature, but significantly smaller than studies out-with the rare 

disease literature. As a result, confidence in the predictive ability of such a 

model would be lower than other predictive tools currently used in clinical 

practice. This is particularly the case prior to external validation of a model, 

which has not yet been carried out due to time constraints and lack of 

availability of a suitable dataset. Another theoretical limitation of the study, 

where it was technically hampered by sample size, was having to use a 

restricted set of initial potential predictive parameters. However, following the 

systematic approach taken to identify optimal predictive parameters, the study 

team was satisfied that appropriate variables were ultimately included in model 

development, given what variables were available from the national 

administrative linked datasets.  

While a novel and efficient approach, an ideal data source for a prediction 

modelling study would be a prospective cohort with predetermined, domain 

specific criteria with respect to inclusion criteria, exclusion criteria and outcome 

definition. Validated means of prospectively identifying participants would likely 

be more reliable than relying on clinical coders deriving this information from a 

potentially incomplete clinical record. Inclusion criteria for this study included 

all individuals with an ICD-10 code for an AAV sub-diagnosis in the SMR-01 

administrative database – a database of hospital care episodes. This may be 

prone to both false negatives and false positives. False negatives may occur 

where AAV is diagnosed in the outpatient setting and is not recorded as a 

significant “other condition” by clinical coders during subsequent inpatient 

admissions. Terminology is varied in AAV and clinical coders cannot be expected 

to identify all varieties of clinicians’ descriptions of AAV. False positives may 

occur where AAV was considered as a possible initial diagnosis, which was later 

found to be another condition. In Scotland there is a limit on the number of 

comorbidities that can be recorded for each hospital admission. A prospective 

design may be considered more likely to accurately identify outcomes, though 

prospective studies may also be limited in their capacity to identify all outcomes 

due to study design, lack of personnel, relying on participant self-reporting or 

not having access to clinical information sources. Prospective sources of data 
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also may be derived from randomised trials, which often comprise more 

homogenous populations and therefore have narrower predictor distributions 

with resultant models having worse discriminative ability. (Moons et al., 2019) 

Data from the national datasets is recognised as having high quality and 

reliability, although it would have been desirable to have been able to perform a 

data validation study to confirm that codes describing acute hospital admissions 

do indeed reflect an individual’s true comorbidities. Previous work of this nature 

performed for a similar study of individuals with AAV revealed that the accuracy 

of identified comorbidities was moderate to excellent, depending on the 

condition in question (Sarica 2018). A study of Singaporean administrative data 

in the setting of infection suggests that comorbidity ascertainment based on 

administrative data is as good as a medical chart review, although this study was 

based on a list of comorbidities obtained at the start of the hospital admission, 

whereas in Scotland administrative data for each hospital admission aims to 

identify the main reason for admission and up to five additional conditions which 

may be co-existing or may develop in hospital (NHS National Services Scotland 

2017). Available variables represented a further limitation. Due to the nature of 

the administrative data, certain variables which may have utility for predicting 

infection were not available, for example vasculitis disease activity, detailed 

immunosuppressive medication information and biological characteristics such as 

immune system parameters. This likely substantially limited the potential 

prognostic power of the model. Various prognostic factors identified in Chapter 1 

were not available for inclusion in this model. Induction and maintenance 

treatment regimens likely impact susceptibility to infection, but data on these 

therapies is not available in community prescription datasets, as these medicines 

are almost universally prescribed and administered in secondary care 

(Vassilopoulos et al. 2023). Biological parameters that are potentially prognostic 

of infection in AAV include the presence of leukopenia and 

hypogammaglobulinaemia (Lai et al., 2014; Morgan et al., 2016). Notably an 

important biological parameter, serum IgG level, was retained in the final 

infection prediction modelling in AAV by McClure and colleagues. It seems likely 

that such biological parameters would improve performance of the current 

model (McClure et al., 2021). 
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With respect to model development, coefficient shrinkage was not performed in 

this study. This may not be considered necessary due to the standard of 

optimism-adjusted model performance measures achieved but would be 

desirable in a future iteration of this study. There are two main modelling 

approaches for events where there are competing risks: cause-specific modelling 

and sub-distribution hazard approach. Cause-specific modelling was used in this 

study for practical reasons relating to availability to the thesis author of 

statistical programming code for modelling that was compatible with the 

approach to model performance evaluation. Both are considered acceptable, 

though the sub-distribution is considered preferable as it overestimates risk of 

events less frequently (Noordzij et al. 2013). Future work will ideally explore 

both modelling techniques. It was not possible to assess external validity or 

clinical utility due to a lack of an appropriate external dataset. These would be 

highly desirable studies to be performed in future. 

4.6.5 Place in the current literature 

Most reports in the published literature relating to identifying predictors of, or 

so-called ‘risk factors’ for, severe infection in AAV do not attempt to develop or 

validate a clinical prediction model. These reports are summarised in Chapter 1. 

Two recent reports do seek to develop prediction models: McClure et al. and 

Zhang et al.(McClure et al., 2021; Zhang et al., 2022) 

McClure et al. published the first prediction model for infection in AAV. This was 

specifically in individuals who had been treated with a maintenance course of 

rituximab. Follow-up was 5.3 years, as opposed to 1 year for the current study. 

The first year is the most high-risk period with respect to infections. Restricting 

follow-up to this time period was an intentional component of the current study. 

The McClure et al. sample consisted of 147 participants from a single academic 

centre. The outcome of interest was time-to-first serious infection or third non-

serious infection. The model had five predictors, developed using a backwards 

elimination procedure from a pool of 13 candidate parameters. Identified 

predictive variables were male sex, structural lung disease, diabetes, infections 

during therapy with rituximab and serum immunoglobulin G (IgG) level. There 

were 88 infection events. The optimism-adjusted C-statistic was 0.64, adjusted 

using a bootstrapping approach. Shrinkage was performed in this study by 
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multiplying model coefficients by a shrinkage factor, whereas shrinkage was not 

undertaken in the current report.  

There were significant differences between the variables identified in the 

McClure et al. report compared to the current study. Diabetes was identified as 

predictive in both. Male sex was not identified in the current study, whereas 

age, renal disease and deprivation were. Previous infection was a candidate 

parameter in the current study but this did not have an effect significant enough 

to be included in the model. As discussed, a limitation of the current study was a 

lack of variables such as biological parameters – the McClure et al. model 

included such a parameter in the form of IgG level. They note that their model 

was not fully congruent with previously identified prognostic factors such as 

older age and presence of renal disease, both of which were included in the 

current model. They highlight events per variable (EPV) as a method to 

determine adequate sample size. They state their model meets a commonly 

accepted threshold of EPV > 10. Presumably their calculation resulted in an EPV 

of 17.6 (88 events to 5 variables). This is flawed for two reasons. In the modern 

prediction literature, this ‘rule of thumb’ EPV threshold is increasingly 

recognised as an inappropriate method for assessing sample size. Sample size 

calculations as described in the current study should instead be utilised. 

Furthermore, an accurate EPV must incorporate all candidate variables, not just 

those included in the final model. The concept of EPV is actually better 

represented as events per (candidate) parameter (EPP) (Riley et al., 2020). For 

the McClure et al. study, this would be 6.8 (88 events to 13 candidate 

parameters). As described in the above methods, notably the number of degrees 

of freedom for each variable should be included in the count of parameters, i.e. 

for a categorical variable with four possible options, this would count as three 

parameters. The McClure et al. study authors highlight that their study is likely 

underpowered and is not suitable for individual risk prediction, however it is 

more underpowered than the discussion of EPV alludes to. A further limitation is 

that age was dichotomised, rather than included as a continuous, potentially 

non-linearly transformed, variable. As a result, information was unnecessarily 

lost and model performance potentially reduced. 

In comparison, relative strengths of the current study were the use of sample 

size calculations to carefully consider EPP, the relatively large sample size, use 
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of continuous variables with non-linear transformation and participants likely 

representative of a real-world population. Strengths of the McClure et al. study 

were excellent case ascertainment, use of shrinkage in the model development 

and wider availability of important biological variables. Ultimately the studies 

are complementary in that they sought to utilise similar, modern prediction 

methodology and both identify clinically and biologically plausible predictors. 

The report from Zhang et al. sought to predict bacterial infection, however it 

seems that this model was concerned with identifying bacterial infection in a 

diagnostic, as opposed to a prognostic, sense. While neither the presence of 

possible vasculitis symptoms, nor the time to bacterial infection, are described 

in the report, it seems clear that the authors sought to use biological parameters 

to attempt early identification of bacterial infection, prior to microbial culture 

results being obtained, where the alternative diagnosis could be active 

vasculitis. Therefore, despite being an important question, a comparison of the 

current study to Zhang et al. was not considered instructive given the differing 

study objectives. (Zhang et al., 2022) 

4.6.6 Future directions 

This work represents an initial exploration of the development of prediction 

models in the domain of severe infection in individuals with AAV. It uses a novel 

approach by repurposing routinely collected healthcare administrative data for 

developing a clinical prediction model. The ultimate aim is to develop a model 

that could be deployed in clinical practice in an efficient manner for busy 

clinicians, potentially via a web application. Such a model would seek to guide 

clinical decision making, to inform patients about what to expect and to 

augment the selection of appropriate research participants. 

Whilst representing a useful research development, model performance 

measures indicate that the reported model does not yet perform well enough to 

have a high level of clinical utility, even if the performance was confirmed in an 

external validation cohort. Adding additional clinical variables not available in 

the current dataset would likely improve model performance. Ideally such 

variables would have existing evidence supporting their ability to predict 

infection, biological plausibility for predicting infection or both. Additional 
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clinical variables which may improve the overall predictive ability of the model 

may be some of those which were found to be predictive in the McClure et al. 

report, such as structural lung disease and serum IgG level. Based on the wider 

literature explored in Chapter 1, it seems likely that age, structural lung 

disease, lymphopenia, renal function and smoking status may be predictive 

factors. Ideally this investigation would be undertaken in a large, well powered 

prospective cohort. Utilising different methodology such as the subdistribution 

hazard approach could be explored. External validation and assessment of 

clinical utility should be undertaken. 

At present it remains unproven whether it is possible to develop a model that 

will predict severe infection in AAV patients with sufficient accuracy for use in 

routine clinical practice. However, this report gives a strong indication that it 

will be possible to develop such a model. Unresolved questions remain, including 

identification of the most important predictive variables. A focus of future 

research should not only be the development and refinement of prognostic 

models, but also the identification of prognostic factors – a fundamental but 

sometimes overlooked area of research in the prognostic research sphere (Riley 

et al., 2013).  

4.7 Conclusion 

This work represents the largest study yet undertaken to develop a clinical 

prediction model for severe infection in individuals with AAV. It is the only 

reported model focused on all individuals with AAV. It uses modern prediction 

methods and the resultant model had good predictive ability. Future work should 

seek to build on this model, by adding additional predictive variables, 

undertaking external validation and investigating clinical utility. The ultimate 

aim is that such a model will provide clear clinical and research benefit to AAV 

patients. 

4.8 Summary 

This chapter reported the development and internal validation of a prognostic 

model for severe infection events in individuals with AAV, over the course of the 

first year following diagnosis. This is the first time such a model has been 
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described. Upon further development, models such as this will enable clinicians 

and researchers to identify individuals at the highest risk of severe infection. 

This will facilitate clinical trials aimed at reduced morbidity and mortality from 

infection in this vulnerable population. The next chapter will continue to apply 

modern prediction methodology by developing a prognostic model for early 

mortality following severe infection in individuals with AAV. 
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5 Development and internal validation of a 
multivariable model to predict early mortality in 
individuals with ANCA-Associated Vasculitis 
(AAV) and severe infection 

5.1 Overview 

In the previous chapter, a prognostic model that predicts severe infection events 

in ANCA-associated vasculitis (AAV) was developed and internally validated. As 

has previously been established, many individuals with AAV will experience a 

severe infection. This chapter will consider the time point of a severe infection 

episode. It will seek to develop a similar model aiming to predict early mortality 

after a severe infection using modern prognostic modelling methodology. Such a 

model, following external validation and assessment of clinical utility, could be 

used in both the clinical and research settings to identify those at the highest 

risk of death. This high-risk group could be studied in randomised controlled 

trials to explore novel therapies with the aim of reducing mortality due to 

severe infection. 
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5.2 Abstract 

5.2.1 Background 

Individuals with AAV are at high risk of infections which can lead to early 

mortality. No predictive models for mortality in this setting exist. This chapter 

describes the development and internal validation of such a model. 

5.2.2 Methods 

The data source was a linked, routinely collected dataset with full coverage of 

the Scottish population. All participants were AAV patients and had at least one 

admission to hospital associated with an infection. Candidate predictors included 

demographics, comorbidities and community prescribed medications. The study 

outcome was death occurring prior to hospital discharge or within 30 days of 

discharge. Logistic regression, with a backwards selection procedure which 

fitted fractional polynomials to continuous variables, was used to develop the 

model. Elastic net penalised logistic regression was used to shrink model 

coefficients. Optimism-adjusted performance measures were estimated using 

bootstrapping. 

5.2.3 Results 

1,015 patients were included in the dataset, 157 (15.5%) of whom suffered the 

outcome. The final model included age, time since AAV diagnosis, presence of 

specific comorbidities (liver disease, metastatic cancer, renal disease and 

diabetes) and recent glucocorticoid exposure. On internal validation, optimism-

adjusted model performance statistics included calibration slope 0.967, 

calibration in the large 0.004 and concordance statistic 0.713.  

5.2.4 Conclusions 

This predictive model represents an important step in developing a prediction 

model for the risk of death for individuals with AAV who experience a severe 

infection. 
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5.3 Introduction 

Individuals with ANCA-associated vasculitis (AAV) require potent 

immunosuppressive therapy to prevent disease related morbidity and 

mortality.(Kitching et al., 2020) As a result of this therapy, and disease related 

factors, severe infection is a frequent adverse clinical outcome.(Sarica et al., 

2018) This has a major impact on AAV patients: within the first year of therapy, 

infection is recognised as the leading cause of death.(Little et al., 2010) 

Prognostic models for severe outcomes such as death have been developed in a 

wide range of conditions such as critical illness, cancer and cardiovascular 

disease.(Keuning et al., 2020; Phung, Tin Tin and Elwood, 2019; Damen et al., 

2016) Such models aim to improve risk stratification and guide clinical decision 

making. Prognostic models for mortality have been developed in populations 

with infection such as severe sepsis and community acquired pneumonia 

(Vincent et al., 1996; Shapiro et al., 2003; Fine et al., 1997; Lim et al., 2003) 

but, to the authors’ knowledge, no such prediction models have yet been 

developed in an AAV population. Such a prediction model would have important 

clinical and research applications. It could assist clinicians with management 

decisions such as whether to suspend or delay immunosuppressive therapy. 

Through quantifying risk of death, clinicians would be better able to 

communicate severity to patients and families. A predictive score could assist 

with risk stratification for clinical trials, enabling novel therapeutic strategies to 

be tested in those with the highest need. 

There has been a strong focus in the recent predictive research methodology 

literature on formal methods for sample size calculation for model 

development.(Riley et al., 2020) One issue that hampers advanced statistical 

modelling in AAV is sample size. Due the rarity of AAV, many cohorts on which 

previous epidemiological models have been developed have had an insufficient 

sample size to accurately quantify the association between prognostic variables 

and outcomes in multivariable models. The FAIRVASC project, described in 

Chapter 2, is an example of a large scale multinational collaboration aiming to 

pool data from multiple registries in order to achieve sufficient sample size for 

such analyses.(McGlinn et al., 2022) Another approach is to undertake data 

linkage studies which utilise routinely collected data. Such studies are possible 

in Scotland utilising infrastructure provided by Public Health Scotland (PHS). 
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Our aim was to develop and internally validate a predictive model for mortality 

within 30 days of discharge of an admission associated with infection in patients 

with AAV, utilising routinely collected data from a large data linkage study. 

5.4 Methods 

5.4.1 Study design and setting 

Reporting in the current study followed the TRIPOD (Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis) 

guidelines.(Collins et al., 2015) Vasculitis Outcomes in relation to Care 

Experiences (VOICES) is a services mapping study of vasculitis care and outcomes 

with projects including both Scotland and the whole of the United Kingdom. 

Further information regarding the study can be found in Chapter 3 and online 

(VOICES, University of Aberdeen, 2022). VOICES includes a Scottish data linkage 

matched cohort study aiming to examine patterns of vasculitis care and 

outcomes. This dataset was utilised in the current study. The dataset identified 

all patients in Scotland with a relevant International Statistical Classification of 

Diseases and Related Health Problems 10th Revision (ICD-10) code for AAV and 

Giant Cell Arteritis (CGA) from the Scottish Morbidity Record admissions 

database (SMR01). SMR01 captures admission data from all non-obstetric and 

non-psychiatric inpatient and day case care episodes. Ten general population 

controls were identified as part of the VOICES study, this control data was not 

utilised in this current chapter. The controls were matched by age, sex and 

health board of residence. Community health index (CHI) numbers were used to 

link to administrative health care data from multiple national datasets. CHI 

numbers are unique identifiers allocated nationally to patients in Scotland 

(Public Health Scotland, 2024). An index date representing AAV diagnosis was 

defined as the earliest admission date associated with an AAV ICD-10 code. A 

look-back period of 5 years allowed comorbidities that occurred prior to the 

index date to be determined, according to established methodology.(Quan et 

al., 2005) Data linkage was performed by PHS using a robust approach that has 

been demonstrated to result in highly accurate and complete data.(Evans and 

MacDonald, 1999; Scottish Public Health Observatory, 2022) 
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5.4.2 Participants 

The study period was defined from 1st April 1996, when ICD-10 was introduced, 

to the latest available record at the time of linkage, 31st October 2020. GCA 

patients and all matched controls were removed from the dataset to derive an 

AAV retrospective cohort. This cohort comprised all adults (aged 16 years or 

older) with an AAV code within SMR01. The following ICD-10 codes were used to 

identify patients: M31.1 (granulomatosis with polyangiitis), M31.7 (microscopic 

polyangiitis) and M30.1 (eosinophilic granulomatosis with polyangiitis). Patients 

were followed up from index date to death or the end of the study period, 

whichever occurred first. Patients who had not experienced an admission with 

infection during the follow-up period were excluded. 

5.4.3 Outcome 

The sole outcome in this study was mortality, defined as occurring either in-

hospital or within 30 days of discharge. As a measure to preserve 

pseudonymisation, date of death is recorded within PHS linked datasets as 

month and year only. As a result, for a small number of patients death could not 

be determined to be within the defined time frame. These patients were 

excluded from the final dataset. 

5.4.4 Independent predictor variables 

Candidate predictors were selected based on published prognostic literature on 

mortality in the setting of severe infection and clinical judgment of the study 

team.(Fine et al., 1997; Shapiro et al., 2003; Hespanhol and Bárbara, 2020; 

Bahlis et al., 2021) Variables included age, sex, Scottish Index of Multiple 

Deprivation in deciles (SIMD; as continuous variable – see below for discussion), 

time since diagnosis, prescribed glucocorticoids over prior 90 days to admission 

(prednisolone equivalents), cotrimoxazole taken in the prior 90 days, previous 

admission with infection and comorbidities including prior myocardial infarction, 

chronic heart failure, peripheral vascular disease, cerebrovascular disease, 

dementia, chronic respiratory disease, liver disease, diabetes, renal disease and 

metastatic cancer. SIMD is a rank assigned to small areas called data zones and 

derived from multiple indicators (Scottish Government, 2020). There are 6,976 

data zones in Scotland, the average data zone population in 784 people. 
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Deprivation is assessed in each data zone across seven indicators: income, 

employment, education, health, access to services, housing and crime. Each 

data zone is ranked from most deprived (rank 1) to least deprived (rank 6,976). 

Notably this rank is assigned to an area and not every person who lives in this 

area will experience deprivation. For analysis purposes, SIMD is often divided 

into quintiles or deciles. This study utilised SIMD in deciles, an ordinal variable 

but one with many categories. Particularly if the underlying data is likely to be 

normally distributed, it is reasonable to analyse data with multiple ordinal 

categories as if it were continuous data (Verhulst and Neale, 2021). As a 

complex trait, deprivation is likely to be normally distributed. An advantage of 

analysing data as a continuous variable is that fewer candidate parameters are 

‘used up’ in a prediction model. Entering a categorical variable with 10 

categories into a prediction model represents nine candidate parameters – one 

for each degree of freedom. Entering the same variable into a model, but as a 

continuous variable only represents one candidate parameter. This effectively 

lower the events per candidate predictor (EPP), discussed below, thus enhancing 

the statistical power of a study or increasing the number of alternate candidate 

predictors that may be included. Time since diagnosis was defined as the 

difference between the index date and the date of admission. Prescription data 

was linked from the national Prescribing Information System.(Public Health 

Scotland, 2022) The following conversion factors were applied to non-

prednisolone glucocorticoids as per the British National Formulary: 

betamethasone – 6.667, dexamethasone – 6.667, hydrocortisone – 0.25 (Joint 

Formulary Committee, 2022). Comorbidities were derived from SMR01 episode 

codes as Charlson comorbidity index (CCI) items (Quan et al., 2005), with the 

exception of severe infection. The derivation of severe infection codes used in 

this thesis was from previously published work and is described in more detail in 

Chapter 3, Section 3.4.6 (Inada-Kim et al., 2017). 

5.4.5 Sample size 

Sample size was calculated using recommended methodology (Riley et al., 

2020). Prediction models for similar populations were not available. Other 

models assessing mortality in the setting of infection report concordance 

statistics (c-statistics) typically between 0.7 and 0.9. Using an outcome 

prevalence in our data of 14.9%, we tested various scenarios with a range of c-
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statistics from a conservative range of 0.7 to 0.8 and model parameters from 4 

to 20. For a c-statistic of 0.7 and 7 parameters, the minimum required sample 

size was 940 individuals and 141 events, corresponding to an events per 

predictor (EPP) ratio of 20.01. For a c-statistic of 0.8 and 18 parameters, the 

minimum required sample size was 990 individuals and 148 events, 

corresponding to an events per predictor (EPP) ratio of 8.2. For the purposes of 

this exploratory analysis we selected 17 predictors, giving an EPP of 9.24 for our 

data. 

5.4.6 Missing data 

Due to the administrative nature of the data, there was no apparent missing 

data with the exception of SIMD for one individual. Carstairs index data was 

available, and SIMD was approximated based on this. 

5.4.7 Model development 

Multiple fractional polynomial (MFP) functions with a maximum of four degrees 

of freedom were fit to all continuous variables. MFP is a technique for modelling 

non-linear continuous variables and is described in greater detail in Chapter 4, 

Section 4.2.7. A backwards elimination procedure was used to update MFP 

functions and select variables. Variable selection level was set at 0.1. An elastic 

net logistic regression model was then fit on the variables selected with 

variables transformed as MFPs where appropriate. Elastic net regression is a 

form of linear regression, whereby penalty terms are used to “shrink” model 

coefficients. Coefficient shrinkage reduces the size of the coefficient and is an 

approach used to reduce model overfitting. It can reduce the coefficient of a 

variable to close to zero: effectively removing such a coefficient from, and thus 

simplifying, the model. This a form of feature selection. Such approaches are 

also known as regularisation techniques. Elastic net is a combination of two 

other forms of regularisation, least absolute shrinkage and selection operator 

(LASSO) and ridge regression, and has advantages of both. Parameters that 

require specification include Lambda, which determines the degree of shrinkage, 

and alpha, which determines where the formula sits between LASSO and ridge 

regression. Lambda can be determined using cross validation and for this study 

was selected as the minimum value following k-fold cross validation with 10 
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folds. Alpha can be prespecified, different values can be trialled or a cross-

validation selection procedure can be used. For this study a practical approach 

was used, with alpha being prespecified at 0.3. C-statistic, calibration-in-the-

large (CITL; calculated using logistic regression with the model linear predictor 

as an offset) and the c-slope (calculated as the coefficient of the linear 

predictor in a logistic regression model) were determined. A calibration curve 

was plotted, with the population divided into deciles of predicted probability 

and a LOESS curve fitted to all the data. A detailed discussion of prognosis model 

performance measures and calibration plots can be found in Chapter 4, section 

4.4.8. All analyses were conducted in R version 4.2.0 with packages including 

pmsampsize, mfp, rms, glmnet and pROC (R Core Team, 2022). 

5.4.8 Model validation 

The model was then fit to bootstrapped samples with 1000 iterations. A 

discussion of bootstrapping and optimism adjusted performance can be found in 

Chapter 4, Section 4.4.9. Apparent performance of each bootstrap model with 

calculated in the bootstrap sample and test performance calculated in the 

original sample for the above predictive performance statistics. Optimism was 

calculated by subtracting the mean test performance from the mean apparent 

performance. Optimism adjusted performance was calculated by subtracting 

optimism from the original performance. 

5.4.9 Bias 

There are several potential sources of bias in a cohort study that is derived from 

routinely collected administrative data, such as the current study. These include 

ascertainment bias, selection bias, medical surveillance bias and inflation bias. 

Such sources of bias, and approaches to mitigation, are addressed in Chapter 3, 

section 3.4.7 and Chapter 4, section 4.6. 

5.4.10 Patient and public involvement 

Collaboration with the Aberdeen Centre for Arthritis and Musculoskeletal 

Health’s user group and patients identified through national support groups 

(Vasculitis UK and the Lauren Currie Twilight Foundation) identified patient and 

carer priorities. This process informed the aims of the current study. 
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5.5 Results 

The AAV infection cohort was derived from the VOICES cohort, as shown in 

Figure 5-1. The dataset comprised 1,105 patients with AAV who had at least one 

admission with an infection following the index date. 157 (15.5%) of patients 

died in-hospital or within 30 days of discharge. Baseline demographic and 

clinical features are shown in Table 5-1. 

 

Figure 5-1 | Derivation of AAV infection cohort 
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Table 5-1 | Baseline characteristics of individuals who survived, who died and the whole 
cohort 

Variable Alive Deceased Total p 

Total N (%) n = 858 (84.5) 
n = 157 
(15.5) 

n = 1015  

Age (years); median (IQR) 
67.0 (56.6 to 
74.9) 

73.9 (65.0 to 
80.3) 

68.1 (57.3 to 
76.0) 

<0.00
1 

Female sex 434 (50.6) 72 (45.9) 506 (49.9) 0.317 

SIMD (deciles); median (IQR) 
6.0 (3.0 to 
8.0) 

5.0 (3.0 to 
8.0) 

6.0 (3.0 to 
8.0) 

0.661 

Cardiovascular disease (all) 227 (26.5) 54 (34.4) 281 (27.7) 0.052 

Atherosclerotic 
disease (all) 

192 (22.4) 42 (26.8) 234 (23.1) 0.274 

  Myocardial  
  infarction 

76 (8.9) 15 (9.6) 91 (9.0) 0.897 

 
 Cerebrovascular  
  disease 

85 (9.9) 17 (10.8) 102 (10.0) 0.835 

  Peripheral  
  vascular 

disease 

61 (7.1) 18 (11.5) 79 (7.8) 0.087 

 Chronic heart failure 92 (10.7) 21 (13.4) 113 (11.1) 0.404 

 Hypertension* 20-25 <5 27 (2.7) >0.9 

Diabetes (all) 122 (14.2) 37 (23.6) 159 (15.7) 0.004 

 Diabetes (without 
 complication) 

112 (13.1) 30 (19.1) 142 (14.0) 0.059 

 Diabetes (with 
 complication) 

10 (1.2) 7 (4.5) 17 (1.7) 0.009 

Renal disease 338 (39.4) 79 (50.3) 417 (41.1) 0.014 

Dementia* 15-20 <5 20 (2.0) >0.9 

Cancer (all) 98 (11.4) 21 (13.4) 119 (11.7) 0.572 

 Cancer (localised) 85 (9.9) 14 (8.9) 99 (9.8) 0.812 

 Cancer (metastatic) 13 (1.5) 7 (4.5) 20 (2.0) 0.033 

Chronic respiratory disease 268 (31.2) 46 (29.3) 314 (30.9) 0.698 

Rheumatic disease 78 (9.1) 11 (7.0) 89 (8.8) 0.487 

Peptic ulcer disease 39 (4.5) 8 (5.1) 47 (4.6) 0.924 

Liver disease (all) 22 (2.6) 10 (6.4) 32 (3.2) 0.024 

 Liver disease (mild) 18 (2.1) 8 (5.1) 26 (2.6) 0.056 

 Liver disease (mod-
 severe)* 

<5 <5 6 (0.6) 0.517 

Charlson comorbidity index; 
median (IQR) 

1.5 (1.6) 1.9 (1.9) 1.5 (1.6) 0.004 

Previous infection 503 (58.6) 85 (54.1) 588 (57.9) 0.338 

Time since AAV diagnosis 
(years); median (IQR) 

5.3 (5.2) 4.7 (5.1) 5.2 (5.2) 0.184 

GC exposure (mg daily); 
median (IQR)) 

5.0 (8.5) 5.3 (9.3) 5.0 (8.6) 0.701 

Co-trimoxazole prophylaxis 96 (11.2) 22 (14.0) 118 (11.6) 0.379 

* low count cells (<5) have been suppressed, where a low count cell could be inferred from 
other cells these have also been suppressed 
GC = glucocorticoid, IQR = interquartile range, SIMD = Scottish Index of Multiple Deprivation 
Glucocorticoid exposure was quantified in daily prednisolone equivalents 
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5.5.1 Model development and internal validation 

We identified 17 candidate predictors as described in section 5.4.4. To reduce 

model parameters and the potential for over-fitting, SIMD deciles were 

considered as a continuous variable. Model predictors were selected by 

backwards elimination and flexible polynomials functions were fit to continuous 

variables. These variables were then entered into an elastic net penalised 

logistic regression model. The selected variables were age, liver disease (any 

severity), diabetes (with or without complications), renal disease and metastatic 

cancer.  The final model is shown in Table 5-2. The model performance statistics 

described above are shown in Table 5-3. Figure 5-2 shows the model calibration 

plot which demonstrated minimal overfitting. 

Table 5-2 | Final model derived by fitting of fractional polynomials and backwards selection, 
followed by penalised logistic regression (elastic net) 

Model intercept and coefficients Coefficient Odds ratio 
Intercept -5.299 NA 

Age (years) / 100 4.208 64.9 

Liver disease (any severity) 0.925 2.5 

Metastatic cancer 1.315 3.7 

(Time since diagnosis (years) / 10) ^-2 0.000 1 

(Time since diagnosis (years) / 10) ^-1 0.016 1 

Renal disease 0.318 1.4 

Diabetes (with or without complications) 0.528 1.7 

Log((GC exposure + 1)/1000) 0.558 1.7 

Log((GC exposure + 1)/1000)^2  0.092 1.1 

GC = glucocorticoid. Glucocorticoid exposure was quantified in daily prednisolone 
equivalents. 

 

Table 5-3 | Model performance statistics 

Performance measure Apparent Optimism-adjusted Optimism 

Calibration slope 
1.084 
(0.835 - 1.345) 

0.967 
(0.727 - 1.217) 

0.117 

Calibration intercept 

(CITL) 

0.000 

(-0.180 – 0.174) 

0.004 

(-0.176 – 0.178) 
-0.004 

Discrimination:  
C-statistic 

0.730 
(0.686 – 0.773) 

0.713 
(0.668 – 0.757) 

0.017 

CITL = Calibration in the large 
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Figure 5-2 | Calibration plot 
A graphical assessment of the degree to which predicted risks for a population derived from the 
model match actual observed outcomes. Expected (estimated) risks and actual observed outcomes 
are plotted against each other. The data was divided into ten equal groups based on estimated 
risk, with each group then plotted with predicted risk on the x-axis and outcome proportion on the y-
access (red points, with green confidence intervals). A curved loess line was also applied to the 
same data. 

 

5.6 Discussion 

5.6.1 Key results 

This study is the second of two prognostic models relating to severe infection 

reported in this thesis. This study is the second largest on such a topic known to 

the thesis author, while Chapter 4 presents a model based on the largest known. 

It is the first model that predicts mortality in AAV patients with an established 

severe infection, in this study this population was defined as experiencing a 

hospital admission associated with infection. A routinely collected, national 

dataset was utilised. Reported characteristics revealed that a substantial 

proportion of individuals in this study experience the outcome, with 157 (15.5%) 

of 1,015 dying in hospital or within 30 days of discharge. This provides further 

evidence of the unmet need of the population understudy including tools that 

would help clinicians, researchers and patients determine who is at risk of 
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death. A univariable analysis, presented in Table 5-1, highlighted factors with 

potential prognostic qualities that were associated with the outcome. These 

factors included age, cardiovascular disease, diabetes, renal disease, metastatic 

cancer and liver disease. CCI was also associated with mortality, but was not a 

predetermined candidate parameter, therefore was not included in model 

development. Sex, SIMD, time since diagnosis, glucocorticoid exposure and co-

trimoxazole prophylaxis were predetermined candidate parameters, but were 

not associated with the outcome on univariable analysis. The final model, 

presented in Table 5-2, included seven parameters. Liver disease, metastatic 

cancer, diabetes and glucocorticoid exposure all had strong prognostic ability, 

however age appeared to be the strongest predictor by a substantial margin. 

Notably, the fractional polynomial method transforms variables in a variety of 

manners. Age was transformed in the model as age in years divided by 100 and 

carried an odds ratio of 64.9. If age were to be represented in a more clinically 

meaningful manner, the associated odds ratio would remain indicative of this 

variable being the strongest predictor. The model coefficients for time since 

diagnosis parameters were shrunk by the elastic net procedure to effectively 

zero, thus removing this variable from the model. Optimism-adjusted model 

performance statistics were derived through bootstrapping and reported in Table 

5-3. These showed excellent calibration and good discrimination. A calibration 

plot also reflected excellent calibration. 

5.6.2 Novelty of findings 

Alongside Chapter 4, this study represents one of the first clinical prediction 

models developed in AAV using healthcare administrative data derived though 

data linkage. It utilised advanced prediction statistical methodology. While 

mature clinical prediction tools for mortality in the setting of infection have 

been developed in the general population, this is the first focus on AAV. There is 

a necessity to develop such models in AAV because the underlying risk, biology 

and clinical outcomes related to severe infection are different in this condition 

to other populations. Chapter 2 and other related literature demonstrated the 

high risk of severe infection, which is considerably greater than the general 

population (S. H. Sarica et al., 2020). The model described in this chapter is an 

important first step in realising a clinically applicable model. Further refinement 

of the model in other settings, including external validation and evaluation of 
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clinical utility using decision curve analysis, may allow a model such as that in 

the current study to be used for patient and research benefit at the bedside 

(Vickers, Van Calster and Steyerberg, 2016). 

5.6.3 Strengths 

This study had several strengths. These were similar to those of the Chapter 4 

prognostic modelling study, but the following gives a brief overview. The 

PROBAST risk of bias and applicability tool was used to inform consideration of 

this study’s strengths and limitations (Wolff et al., 2019). 

Clinical studies in AAV are often hampered by sample size, while the present 

study was much larger by comparison. Few prognostic modelling studies exist in 

the AAV infection literature. The existing studies have had a sample size of 

approximately 150 to 250 individuals (McClure et al., 2021; Zhang et al., 2022). 

With a sample size of 1,015 participants, the current study is at least four-fold 

larger, which had a major impact with respect to model reliability. The result is 

a reduced propensity to overfitting and enhanced internal validity. This study is 

comparable in terms of size to studies of infection-related mortality in much 

larger populations. The Mortality in Emergency Department Sepsis (MEDS) score 

was developed using 2,070 patient visits, with some patients contributing more 

than one visit (Shapiro et al., 2003). The CURB-65 score, which is routinely used 

in clinical practice, was developed in a cohort of 718 individuals – substantially 

smaller than the current study (Lim et al., 2003). 

Due to the use of routinely collected administrative data, in theory our dataset 

covers the entire Scottish population, resulting in the results being highly 

generalisable. The data linkage required to facilitate the creation of such a 

dataset is possible in Scotland though the service of PHS, capabilities that are 

not routinely available in other countries. The data linkage is highly robust and 

applies a deterministic method using CHI numbers, which are allocated 

nationally to all patients in Scotland (Dusetzina et al., 2014). Such a population-

based study results in improved generalisability, as patients that may be 

excluded from traditional cohort studies are still represented. As a result, 

selection bias is minimised. PHS data is routinely audited and is recognised as 
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high quality (Public Health Scotland, 2023). Predictors and outcomes were 

therefore determined with high reliability. 

Various important methodological recommendations from the modern prediction 

modelling literature were applied: sample size calculations were performed, 

continuous variables were not dichotomised thus maximising information, a non-

linear approach was taken to modelling continuous variables, model parameters 

were restricted to reduce overfitting, internal validation was performed using 

bootstrapping and our approach to shrinkage applied elastic net penalisation. 

Elastic net regression has the advantage of the abilities to improve model fit and 

remove variables, resulting in a more parsimonious model and increased 

reliability when tested in other populations (Riley et al., 2021). The benefits of 

the other utilised aspects of prediction methodology are discussed in greater 

detail in chapter 4. 

5.6.4 Limitations 

Limitations of the current study include case ascertainment. Cases are identified 

though care episode ICD-10 codes. Whilst PHS data is known to have high 

standards of data quality, establishing that the identified cases had confirmed 

AAV would be reassuring. Sensitivity analyses could provide added confidence, 

for example by focusing on subpopulation of the AAV cohort with features 

consistent with having an AAV diagnosis, such as attendance at relevant 

speciality clinics and community prescription of appropriate medications. 

Unfortunately, such sub-studies were not feasible during time available. A 

nested data quality study would also have provided added reassurance regarding 

case ascertainment of AAV subjects. This was not possible given study 

permissions at the time of analysis. Ascertainment of comorbidities has similar 

issues, although is likely reliable due to current coding practices and quality 

checks (Public Health Scotland, 2023). A prospective cohort study may claim 

higher degrees of accuracy in measuring comorbidity. A more detailed discussion 

of case ascertainment issues and the potential impact can be found in Chapter 

3, section 3.6.3.4. 

Sample size assessment was challenging in the absence of similar studies. 

Recommended formulae for calculating sample size with respect to prognosis 
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modelling studies require the inclusion of performance measures from 

comparable studies (Riley et al., 2020). Indices from comparable studies in non-

immunosuppressed populations were utilised and a conservative approach with 

respect to the number of included predictors was therefore adopted. There was 

still the potential that too many candidate predictors were included, as there 

was incomplete information to reliably estimate required sample size. Elastic 

net regression was employed to address this concern. While sample size was 

substantially larger than other prognostic modelling studies in the AAV literature 

and comparable to infection mortality studies in larger populations, the current 

study remains much smaller than some other datasets used to develop clinical 

prediction tools used in routine clinical practice. The PREDICT tool for survival 

following surgery for breast cancer was developed on a population of 5,694 

individuals (Wishart et al., 2010). QRISK3, which predicts future cardiovascular 

disease, was derived from a population of 7.89 million patients (Hippisley-Cox et 

al., 2017). While a derivation cohort of several million would be impossible to 

achieve in AAV, it would be desirable to increase the size of future studies in 

AAV beyond that of the current study. 

Due to the nature of the administrative data, potentially useful candidate 

predictors were not present. Physiological variables, such as blood pressure and 

conscious level, and blood test information, such as kidney function and 

inflammatory markers, were not available and potentially could have improved 

model performance. Immunosuppressive medications are additional potentially 

important candidate predictors that, beyond glucocorticoids, were not possible 

to include in the current study. Immunosuppressive therapy used for induction is 

effectively universally prescribed, and administered, in secondary care settings. 

As a result, the administration of these medications is not apparent in the 

community prescription data. Given that many individuals in the study will have 

recently been treated with rituximab or cyclophosphamide, and therefore may 

be at higher-than-average risk of infection-related death, while some individuals 

may have been several years post any immunosuppressive therapy, and at much 

lower risk of infection-related death, is a significant limitation that must be 

acknowledged. Therefore, it seems likely that such variables may be important 

prognostic factors and should be strongly considered for future prognostic 

modelling studies in this setting. To some extent, glucocorticoid dose may act as 
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a marker of recency of other immunosuppressant exposure, given recommended 

therapeutic approaches for AAV (Geetha et al., 2018). As described in Chapter 1, 

the burden of infection-related death clusters near the period closely following 

induction treatment. A further related factor is that immunosuppression is 

frequently de-escalated or paused in the setting of severe infection. This aspect 

of therapy was also unknown in the current study and therefore was not possible 

to include in model development. Such medication changes may impact survival, 

therefore this may represent an area where the model could be improved, 

should such data be available. Medication changes are, however, difficult to 

categorise, with consideration needed for medication type, dose, change of 

dose, timing of change and duration of change. This may make inclusion of such 

a variable in future models challenging. A preferred study population for a 

future study would be from a prospective cohort with predetermined design for 

prognostic modelling of infection-related mortality, similar to that described in 

Chapter 4, section 4.6.6. 

5.6.5 Place in the current literature 

Other well-established models have been developed in more general 

populations. The MEDS score enabled stratification with a c-statistic of 0.78 in a 

validation cohort.(Shapiro et al., 2003) The CURB-65 score for mortality in the 

setting of community acquired pneumonia demonstrated strong positive 

predictive value for identifying individuals at low risk of death and has seen 

widespread clinical adoption.(Lim et al., 2003) Models relating to infection in 

immunosuppressed populations are less readily available. One published model 

exists to predict the occurrence of infections in AAV patients treated with 

rituximab.(McClure et al., 2021) A C-statistic of 0.64 was obtained for this 

model. This model was not aimed at predicting infection-related mortality. A 

similar model exists for SLE.(Tejera Segura et al., 2019) The performance of 

existing infection mortality prediction scores, developed in more general 

populations, in an AAV population is currently unknown. However it is plausible 

that performance of these scores could be enhanced with AAV specific 

information, particularly in relation to immunosuppressive therapies and to 

comorbidities, which AAV patients are known to accumulate at a faster rate than 

the general population.(Shifa H. Sarica et al., 2020) A major gap that remains in 

the literature is the lack of models which predict infection-related mortality and 
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are specific to immunosuppressed populations. The present study aims to 

address this issue by developing an initial model through a data linkage 

approach, enabling comorbidities to be captured and factored into the 

prediction model. The same applies to glucocorticoids, but other 

immunosuppressive therapies were not available in the administrative dataset. 

The reported model performance measures, including a C-statistic of 0.713, can 

be classified as ‘good’, however achievable performance statistics vary 

depending on clinical scenarios. In some areas a c-statistic of 0.7 is difficult to 

achieve, whereas other clinical settings can achieve c-statistics of 0.9 in 

external validation. (Smolyansky et al., 2021; Strijker et al., 2019) 

5.6.6 Future directions 

The model described in this chapter demonstrated good discrimination and 

excellent calibration, but there is potential for enhancement. Future efforts 

should utilise larger and varied datasets, such as those from different 

geographical settings. Ideally prospective data with should be used. Studies 

should be designed to collect predictor variables that are specific to, and are 

likely to have prognostic value for, AAV patients. Such variables include clearly 

ascertained comorbidities, exposure to immunosuppressant therapies and 

biological parameters such as kidney function and immunoglobulin levels. 

External validation of models and assessment of clinical utility is essential 

(Steyerberg and Harrell, 2016; Vickers et al., 2016). If models with sufficient 

utility can be developed, application in clinical and research settings should 

follow. The models could be used to identify populations at high risk of mortality 

and clinical trials of approaches to reduce mortality could be applied. Such 

approaches may include adaptation to immunosuppressive therapy at the time of 

severe infection, different antimicrobial regimens with consideration for 

microbes that AAV patients are susceptible to, and novel anti-infection 

therapies. Such novel therapies may include use of genetically enhanced 

bacteriophages – viruses that infect bacteria – or removal of bacteria and 

bacterial toxins using extracorporeal techniques (Al-Shayeb et al., 2020; Didar et 

al., 2015). When alternative therapeutic strategies are available, prognostic 

models should incorporate these therapies as predictors. This would enable a 

stratified medicine approach whereby clinicians recommend individualised 

therapies to patients on the basis of prognosis research (Hingorani et al., 2013). 
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5.6.7 Conclusion 

While this study demonstrates several strengths, due to its exploratory nature 

we would not recommend clinical application of the current model. Future 

studies should address external validity and clinical utility. They should 

incorporate a wider range of plausible candidate predictors, such as 

physiological and biochemical variables if available. The predictors identified in 

the current study could be incorporated using a model updating approach. 

Importantly, all future studies should include sample size calculation in their 

design. Routinely collected data and prospective cohort data both have 

respective strengths and both should be utilised to further refine predictive 

models in this setting. Ultimately, a prediction model to assess risk of mortality 

in AAV patients who experience a severe infection could help clinicians make 

more informed management decisions and enable high risk individuals to be 

identified for potential novel therapeutic strategies in clinical trials. This study 

is an important first step in achieving this important outcome for individuals 

with AAV, who remain at a much higher risk of severe infection, and related 

mortality, compared to the general population.(Sarica et al., 2018) 

5.7 Summary 

This chapter described the development and internal validation of a prognostic 

model which aimed to predict early mortality following severe infection. The 

resulting model performed well on bootstrapped assessment of calibration and 

discrimination. Such models may assist with the identification of high-risk 

patients for inclusion in clinical trials of novel therapies for severe infection. 

Until this point, this thesis has examined severe infection as caused by all 

possible microbes, whether bacterial, viral or otherwise. The focus of the next 

two chapters will turn to a specific, novel infectious disease – Covid-19. 

Fundamental prognosis research and prognostic factor research on this disease 

will be reported. 
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6 Prognostic factors for severe outcome in 
individuals with systemic vasculitis and Covid-
19 

6.1 Overview 

In the previous chapters, severe infection – a broad category of outcome in 

ANCA-associated vasculitis (AAV) – was evaluated. Incidence was reported, 

glucocorticoid exposure was assessed as a prognostic factor and prediction 

models were built. The remaining thesis chapters will focus on Covid-19, an 

infectious disease which caused a world changing pandemic. This will be done 

with continued focus on themes developed in earlier chapters of prognosis 

research methodology in AAV. As it transpired, Covid-19 was substantially more 

likely to cause severe disease in individuals with AAV and other systemic 

vasculitides. This chapter will summarise work undertaken early in the pandemic 

to report data on this group of special interest. An earlier iteration of this work 

was published in: Rutherford MA, Scott J, Karabayas M, et al. Risk Factors for 

Severe Outcomes in Patients with Systemic Vasculitis and COVID-19: A 

Binational, Registry-Based Cohort Study. Arthritis and Rheumatology 

2021;73:1713–9. 
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6.2 Abstract 

6.2.1 Background 

Early in the Covid-19 pandemic, it was clear that the disease caused a wide 

range of severity, ranging from asymptomatic infection to death. Individuals 

with systemic vasculitis are highly vulnerable to severe infection, therefore 

understanding the impact of this novel virus in this population was essential. At 

the outset of the pandemic, there were no studies delineating the frequency of 

presenting clinical features, rate of complications or prognostic factors for 

severe disease. This study sought to report such data, including the prognostic 

properties of immunosuppressive therapies. 

6.2.2 Methods 

A multicentre registry-based cohort was established across two nations, through 

collaboration between the UK and Ireland Vasculitis Registry (UKIVAS) and the 

Ireland Rare Kidney Disease Registry (RKD). Patients who developed Covid-19 

who had a pre-existing diagnosis of systemic vasculitis were included. Baseline 

clinical features and outcomes were reported. Individual logistic regression 

models were developed to identify prognostic factors for severe Covid-19 

outcome. This endpoint was a composite of the need of advanced oxygen 

therapy, the need for invasive ventilation and mortality. 

6.2.3 Results 

Data for 105 patients was reported. Median age was 69 years and 43.8% were 

female. The majority of the cohort, 84 (80.0%) patients, had ANCA-associated 

vasculitis (AAV). Severe Covid-19 was experienced by 38 (36.2) individuals. Most 

patients required admission to hospital (84 of 105 [80.0%]), 15 (15.2%) were 

admitted to a critical care unit and 27 (25.7%) patients died. Existing treatment 

with any immunosuppressive agent was associated with severe outcome with 

adjusted odds ratio (aOR) 5.93 (95% confidence interval [CI] 1.76 – 27.71). 

Glucocorticoid exposure and cyclophosphamide exposure were also associated 

with severe outcome, with aOR 2.85 (95% CI 1.08 – 8.36) and aOR 3.45 (95% CI 

1.08 – 11.98) respectively. 
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6.2.4 Conclusion 

Exposure to any immunosuppression, glucocorticoid exposure and 

cyclophosphamide exposure were identified as prognostic factors for severe 

outcome in individuals with systemic vasculitis who developed Covid-19. These 

data may be able to inform prognostic models aiming to predict severe outcome 

in such a population. 
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6.3 Introduction 

6.3.1 Background 

At the end of 2019, reports emerged of a cluster of severe pneumonia cases of 

unknown cause linked to a seafood and animal wholesale market in Wuhan, a 

city in the Hubei Province in central China (Zhu et al., 2020). Subsequently 

identified as being caused by a coronavirus, the disease rapidly spread 

throughout the world. In February 2020 the disease was labelled coronavirus 

disease 2019 (Covid-19) by the World Health Organisation (WHO). Covid-19 

resulted in a wide range of degrees of clinical severity, from asymptomatic 

infections to multiorgan failure and death (Zhou et al., 2020). In March 2020, 

WHO declared a global pandemic due to Covid-19. Widespread concern was 

evident within governments and reflected by the global media (WHO, 2020). 

With the knowledge that individuals with AAV were already at high risk of severe 

infection of any cause, the necessity to understand the impact of this novel virus 

on the AAV population was apparent. Data relating to clinical features, natural 

history, rates of complications and prognostic factors for severe disease in this 

subset of patients were considered of immediate importance. The study team 

designed a cohort study to address these questions but also to deliver real-time 

updates to the UK and Ireland vasculitis clinical communities. These updates 

took the form of, initially weekly, short reports that were disseminated to 

interested clinicians. 

Early reports described an excessive and dysregulated cytokine response, often 

described as a cytokine storm, in the setting of severe Covid-19 (Ye et al., 

2020). Given that vasculitis patients are treated with potent levels of 

immunosuppression and with regimens that vary in their underlying mechanism 

of action, it was considered that interaction of Covid-19 with vasculitis patients 

would not only be important from a clinical perspective, but may also elucidate 

aspects of underlying immunobiology. It may have been the case that vasculitis 

patients would be more vulnerable to severe disease than the general population 

or that perhaps they may have a milder disease course due to 

immunosuppressive treatment dampening down overactive cytokine pathways. 
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6.3.2 Covid-19 biology 

Coronaviruses are RNA viruses frequently encountered by humans and animals. 

Four coronaviruses are endemic in humans and typically result in symptoms of 

the common cold. Over the past 20 years, three zoonotic coronaviruses have 

crossed from animal reservoirs to cause transmissible infections in humans: 

severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle East 

respiratory syndrome virus (MERS-CoV) in 2012 and SARS-CoV-2, the causative 

virus of Covid-19 in 2019 (Lamers and Haagmans, 2022). 

The SARS-CoV-2 genome encodes structural proteins, such as spike protein (S) 

and nucleocapsid protein (N), non-structural proteins and accessory proteins. 

The structural proteins, together with host derived cell membrane, comprise the 

enveloped virion. Non-structural proteins are mostly involved in viral replication 

and transcription. Accessory proteins commonly have immunoevasive functions. 

The spike protein has two subunits: the S1 subunit which attaches to the 

angiotensin-converting enzyme 2 (ACE2) protein present on ciliated cells in the 

upper respiratory tract and alveolar type 2 cells in alveoli, the S2 subunit is then 

activated leading to fusion of virus and host bilipid layers. Viral RNA is then 

released into the host cell. Intracellular mechanisms can detect SARS-CoV-2 

resulting in a signalling cascade leading to interferon transcription. Local 

epithelial and immune cells undergo activation of interferon-stimulated genes 

with resultant direct antiviral effects and recruitment of further immune cells. 

An important feature of SARS-CoV-2 pathogenicity, is that the virus prevents the 

infected cells from detecting viral RNA by hiding replication within “membrane-

enclosed replication factories” within the cell. This can prevent a sufficient 

interferon response from occurring. Cytokine release facilitates the progression 

of adaptive B cell and T cell responses. Alveolar infection, where SARS-CoV-2 

primarily infects AT2 cells, causes local inflammation and limits gas exchange. 

Importantly AT2 cells are responsible for surfactant production, which reduces 

surface tension and prevents collapse of alveoli (Lamers and Haagmans, 2022). 

Transmission of the virus predominantly occurs via inhalation of droplets and 

aerosols containing virus (Comber et al., 2021). SARS-CoV-2 was highly 

transmissible compared to related human coronaviruses SARS-CoV and MERS-CoV. 

This is likely in part due to earlier peak viral titres in the upper respiratory tract 
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(Cevik et al., 2021). Sustained transmission in humans may have occurred due to 

the presence of the entry receptor (ACE2) in the upper respiratory tract 

epithelium. MERS was substantially less transmissible than SARS-CoV-2, this may 

be explained by the lack of expression of its respective entry receptor – 

dipeptidyl peptidase 4 (DPP4) – in the human upper respiratory tract (Meyerholz 

et al., 2016). (Lamers and Haagmans, 2022) 

SARS-CoV-2 initially infects the upper respiratory tract. In mild cases, the initial 

immune response clears the virus. In more severe cases, it may be that virus 

produced in the upper respiratory tract is inhaled deeper into the lung to infect 

lower respiratory tract cells. Where severe Covid-19 occurs, histological 

examination reveals a pattern of lung injury known as diffuse alveolar damage. 

This pattern is characterised by features including alveolar oedema, 

microvascular thrombosis and pneumocyte death. Alveolar damage, whether 

caused directly by viral infection or local inflammation, leads to a “leaky state” 

of the alveolar epithelium and endothelium. This leaky state enhances 

inflammation and coagulation. Overactive coagulation is now well recognised as 

being present in severe Covid-19 and leads to systemic venous 

thromboembolism. Part of the underlying mechanism relates to neutrophil 

extracellular traps (NETs). In severe Covid-19 neutrophils express high levels of 

tissue factor and release NETs coated with tissue factor. NETs recruit platelets 

and in return platelets stimulate the formation of NETs – NETosis – this 

interaction further drives coagulation. In contrast to pneumonia caused by 

bacteria or other viruses, epithelial cell-derived IL-6 production has been 

identified as a phenomenon distinct to Covid-19. High levels of IL-6 is predictive 

of severe Covid-19 (Lamers and Haagmans, 2022). The RECOVERY platform trial 

showed the IL-6 blockade with tocilizumab reduced mortality (Abani et al., 

2021). Data from RECOVERY also showed that glucocorticoid administration in 

the form of dexamethasone reduced mortality in severe Covid-19, presumably 

via pleotropic immunosuppressive effects (RECOVERY Collaborative Group et al., 

2020). Overall, there is clear evidence that overactivation of inflammation, 

coagulation and the immune systems leads to severe Covid-19. 
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6.3.3 Covid-19 variants of concern 

The initial months of the pandemic were characterised by less genetic 

adaptation and phenotypic variation compared to later (Walsh et al., 2020). The 

first major change, a non-synonymous mutation in the spike protein gene 

(D614G), has retrospectively been identified as present in specimens sampled in 

China in late January 2020. It was first identified in the UK at the end of 

February (Volz et al., 2021). Known as PANGO lineage B.1, this mutation 

conferred an approximate 20% growth advantage. Later in 2020 more highly 

mutated forms of Covid-19 emerged. Where such genetic changes caused 

sufficiently enhanced transmissibility, WHO designated such variants as variants 

of concern (VOC). There are several possible explanations for the origin of VOCs, 

with evolution within a chronically infected immunosuppressed human host or 

multiple hosts seeming most plausible. 

Labelled as Alpha, Beta, Gamma, Delta and Omicron, these VOCs sequentially 

outperformed previous iterations of the virus and rapidly became dominant in 

the local, or global, population. Alpha and Delta VOCs respectively had 65% and 

55% increased transmissibility over the variants they replaced. Omicron’s 

evolutionary success can be attributed to more efficient viral entry, but also 

more efficient immune escape, resulting in effective infection of individuals 

with immunity to a previous variant. Disease severity was recognised as 

increased with Alpha, then further increased with Delta, but lessened with 

Omicron. Disease severity is, however, challenging to compare across variants 

due to variation in host factors such as increasing population immunity and 

individual severity factors such as comorbidities (Carabelli et al., 2023).  

6.3.4 Covid-19 outcomes and prognostic factors 

6.3.4.1 General population 

Disease severity varies drastically and ranges from asymptomatic infection with 

SARS-CoV-2 through to severe Covid-19 associated with multiorgan failure and 

death. In February 2020, the Chinese Centre for Disease Control and Prevention 

published a case series of Covid-19 including 44,672, the largest at that time. 

The case-fatality rate (CFR), the proportion of individuals who die with 

confirmed infection, varied significantly depending on age. The overall CFR was 
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2.3%, but individuals aged 70 to 79 years had an 8.0% CFR, while those aged 80 

years or over had a 14.8% CFR (Wu and McGoogan, 2020). However, many SARS-

CoV-2 infections are mild and those with mild Covid-19 may not receive a 

diagnosis. Therefore, a more informative metric to estimate is the infection 

fatality ratio (IFR) – the probability of death of an infected individual. A large 

systematic analysis matched seroprevalence data to Covid-19 mortality rates 

across 190 countries and territories. The data used was up to the end of 2020 – 

before the vaccination era and the extensive emergence of VOCs. There was 

considerable variation in IFR according to age, time and geography. With respect 

to age, the modelling revealed a J-shaped relationship with the lowest IFR at 

age 7 years (0.0023%). There was then an exponential increase: age 30 years was 

associated with IFR 0.057%, age 60 years with IFR 1.00% and age 90 years with 

IFR 20.33% (COVID-19 Forecasting Team, 2022). As described above in section 

6.3.3, different Covid-19 variants have varying disease severity, for example 

with the omicron VOC having a hazard ratio of 0.31 for death, when compared to 

delta (Nyberg et al., 2022). 

The severity of Covid-19 is substantially influenced by a wide range of prognostic 

factors. As alluded to above, age has been recognised as one of the most 

important. Best represented by the infection fatality ratio (IFR; the probability 

of death of an infected individual), there is an exponential increase in the risk of 

death with increasing age such that the IFR doubles as age increases every 6-7 

years. The strong influence of age is likely due to several factors associated with 

aging, with biological age and increased prevalence of comorbidities likely 

playing important roles  (Zsichla and Müller, 2023). 

Host genetics is recognised as contributing to Covid-19 severity. Relevant genes 

typically relate to aspects of Covid-19 pathogenesis: cell entry of SARS-CoV-2 

(ACE2, TMPRSS2), respiratory surface barrier proteins (MUC1, LTZFL1) and 

immune system function (HLA, DPP9, TLR7). Other associated genes code for 

proteins involved in blood pressure regulation (ACE1), lipid metabolism (ApoE) 

and blood group (ABO). With the exception of some rare genetic variants, overall 

culprit genes mostly have a small effect on outcome (Zsichla and Müller, 2023). 

Male sex increases the risk of severe Covid-19. There is some evidence however 

that post-menopausal women are at increased risk, independent of age. This 
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may be related to hormonal influence on viral entry into the host or host 

immunity. Pregnancy not only increases the risk of severe Covid-19 but also 

pregnancy-related conditions such as preeclampsia and adverse foetal outcomes 

such a intrauterine growth restriction, preterm birth and still birth (Zsichla and 

Müller, 2023). 

Certain comorbidities are highly associated with severe Covid-19 including 

chronic obstructive pulmonary disease (COPD), hypertension, cardiovascular 

disease, chronic kidney disease (CKD), diabetes, obesity and cancer. Conditions 

where there is conflicting evidence include asthma, liver disease and certain 

mental health conditions. CKD is amongst the most strongly associated 

prognostic factors for Covid-19 hospitalisation and mortality. Frailty is a 

syndrome characterised by impaired exercise tolerance and reduced ability to 

withstand acute stressors. Age and multimorbidity both contribute to this 

syndrome. Large clinical studies demonstrate a prognostic effect of frailty for 

severe Covid-19 (Zsichla and Müller, 2023). 

Various lifestyle factors appear to modify the effect of Covid-19. Regular 

physical activity and cardiorespiratory fitness are associated with attenuated 

disease severity. High levels of alcohol consumption are associated with severe 

Covid-19. The relationship between tobacco smoking and Covid-19 disease 

severity is complicated, with recent studies showing conflicting associations. The 

interaction between diet and Covid-19 is also complicated. Some studies show 

an association with a more benign course for the Mediterranean diet or plant-

based diets (Zsichla and Müller, 2023). 

Viral factors include the genetic variant, discussed above under Section 6.3.3. 

Various observations suggest that a high viral dose results in more severe disease 

(Zsichla and Müller, 2023). 

Lower socioeconomic status has been associated with severe Covid-19. Various 

factors have been considered which may account for this including access to 

healthcare, nutrition and air pollution exposure. Some ethnic groups have been 

noted to have higher Covid-19 mortality. Most large studies have not shown an 

independent association for ethnicity with outcome, suggesting that variability 

in comorbidity prevalence and socioeconomic status may account for this 
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observation (Zsichla and Müller, 2023). Ultimately complex interactions will take 

place between many of the above-described prognostic factors. 

6.3.4.2 Immune-mediated inflammatory disease 

Individuals with immune-mediated inflammatory disease (IMID) represent a 

heterogeneous group with common factors resulting in vulnerability to severe 

infections. This includes susceptibility to viral infections including Covid-19. 

Underlying reasons which contribute to this risk include abnormalities intrinsic to 

the pathogenesis of such disorders, such as altered host immune defence, and 

immunosuppressive therapies frequently required to modulate disease activity. 

The risk of SARS-CoV-2 infection in certain IMIDs, notably rheumatoid arthritis 

(RA), was elevated in a large population-based study of almost 500,000 

individuals with IMID from Ontario, Canada, while it was lower in others, namely 

inflammatory bowel disease and multiple sclerosis. This was despite an average 

20% increase in testing across all IMID groups (Eder et al., 2023). Individuals with 

IMID were more likely to be hospitalised with Covid-19, with an adjusted odds 

ratio of 1.23 in one study (Eder et al., 2022). A matched cohort study found that 

individuals with RA had a higher risk of severe Covid-19 compared to controls 

(England et al., 2021). A data linkage study that utilised national health 

administrative data covering the whole of England showed that individuals with 

rare autoimmune rheumatic diseases had over twice the rate of Covid-19 related 

mortality compared to the general population (Rutter et al., 2022). An 

nationwide cohort study in England which utilised the OpenSAFELY data linkage 

platform found that having an IMID increased the risk of Covid-19 related 

mortality by 23% after adjustment for confounding (MacKenna et al., 2022). 

Prognostic factors for severe Covid-19 in individuals with IMID reflect those 

described in the general population as described above in section 6.3.4.1. 

However important additional factors for this vulnerable population include 

immunosuppressive therapies such as disease-modifying antirheumatic drugs and 

glucocorticoids. The association with severe Covid-19 was only partially 

explained by comorbid conditions (Eder et al., 2022). Evidence from the COVID-

19 Global Rheumatology Alliance (GRA) physician-reported registry evaluated 

600 individuals with rheumatic disease and Covid-19 from 40 countries. This data 

showed that age and comorbidities, including hypertension or cardiovascular 
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disease, respiratory disease, diabetes and chronic kidney disease, were 

important prognostic factors for hospital admission. Certain immunosuppressive 

therapies were also associated with increased risk. Glucocorticoid at doses ≥10 

milligrams (mg) per day prednisone equivalents showed an adjusted odds ratio of 

2.05 for hospitalisation. Usefully it was reported that including disease activity 

in the model did not alter the direction or magnitude of this relationship in an 

important way. There was no association found for antimalarial therapy use or 

for non-steroidal anti-inflammatory drugs (NSAID). An inverse relationship was 

found for anti-TNF (tumour necrosis factor inhibitor) therapies, with an adjusted 

odds ratio of 0.40 (Gianfrancesco et al., 2020). Anti-TNF therapy with 

tocilizumab was also confirmed as a beneficial treatment for severe Covid-19 in 

the general population, with a reduction in the primary outcome of all-cause 

mortality, rate ratio 0.85 (Abani et al., 2021). In an analysis from the 

OpenSAFELY group, ‘targeted therapies’ were compared to ‘standard systemic 

therapies’ such as methotrexate, mycophenolate and ciclosporin in over a 

million individuals with IMID. They did not find evidence of differences in Covid-

19 outcomes with most targeted immune-modifying treatments, but rituximab 

was associated with increased risk of Covid-19 related mortality (MacKenna et 

al., 2022). 

6.3.4.3 Systemic vasculitis 

Individuals with systemic vasculitides, such as ANCA-associated vasculitis (AAV) 

and giant cell arteritis, are vulnerable to severe infection and are considered 

even more susceptible relative to other individuals with IMID (Kitching et al., 

2020). This is reflected in the data described in the thesis introduction. Reasons 

for this include altered host immunity, highly potent immunosuppressive therapy 

required to achieve control of disease activity, demographic factors and 

comorbid conditions. In the large Canadian population-based study of individuals 

with IMID above, individuals with vasculitis were noted to have the highest rate 

of hospitalisation with Covid-19 at 18 per 10,000 population. This corresponded 

to an odds ratio of 2.07 compared to matched controls (Eder et al., 2022). 

One factor which may skew the interpretation of this data is testing. Testing was 

noted to be highest among individuals with vasculitis in another analysis of the 

Canadian population data of individuals with IMID (Eder et al., 2023), with an 
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odds ratio of 1.42 compared to non-IMID controls. This represents a form of 

selection bias whereby due to the increased risk posed by infection to vasculitis 

patients, they will be more likely to receive a test for Covid-19, likely driven by 

the desire of both patients and clinicians to achieve optimal and safe 

management. This may increase the denominator of metrics such as the CFR, 

falsely attenuating the association with severe disease. A further form of 

selection bias that likely increased apparent disease severity relates to the non-

prospective nature of some reports, such as those from the Covid-19 Global 

Rheumatology Alliance (GRA) registry (Sattui et al., 2021). Patients were 

included in such datasets due to presenting to clinicians with significant 

symptoms, with the likelihood of patients presenting being associated with 

disease severity. For these reasons, case-series or registry data cannot give an 

accurate representation of a mortality metric such as IFR. 

The GRA systemic vasculitis data showed that similar prognostic factors to other 

groups were important in systemic vasculitis, such as older age and 

comorbidities. More active disease and treatment with glucocorticoid ≥10 mg per 

day prednisolone equivalents were also identified as associated with more 

severe outcomes. Of particular importance for systemic vasculitis, evidence of a 

strong relationship between therapies typically used in AAV management was 

apparent. Rituximab and cyclophosphamide treatments were both associated 

with substantially increased levels of severe disease, with odds ratios of 2.2 and 

4.3 respectively (Sattui et al., 2021). In the OpenSAFELY analysis, rituximab was 

associated with a 68% increased risk of death (MacKenna et al., 2022). 

6.3.5 Rationale for this investigation 

In early March 2020, there was widespread anxiety about the looming potential 

impact of the novel coronavirus. First reports of the virus spreading outside Asia 

were from the Lombardy region of Italy  (Cereda et al., 2021). Health care 

systems in the region were overwhelmed. Concern was particularly apparent 

with clinicians who care for significantly immunosuppressed patients, such as 

those with systemic vasculitis. Our research group was well placed to collect 

data nationally across both the UK and Ireland. We recognised a need for rapid 

data collection, both to inform the practise of clinicians in real time using 

regular data reports and case vignettes, and to subsequently conduct analyses to 
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establish potential prognostic factors. By this time, the considerable immune 

system overactivation which drives severe Covid-19 was apparent (Ye et al., 

2020). Due to the heterogeneous pattern of immunosuppression across the 

spectrum of systemic vasculitis, from interleukin-6 inhibition in GCA to B-cell 

depletion in AAV, we considered that prognostic factors identified could 

potentially also play a causal role in diminishing or augmenting Covid-19 disease 

activity. This may have informed the rapidly developing understanding of Covid-

19 biology and may have provided signals regarding potential therapies.  

One specific area of concern was the impact of the high doses of glucocorticoid 

commonly used to induce remission in vasculitis. The RECOVERY trial platform 

established that moderate-dose glucocorticoids had substantial benefit in 

patients from the general population admitted to hospital with Covid-19 and 

requiring oxygen therapy or mechanical ventilation, but showed potential 

deleterious effects when used in milder disease (RECOVERY Collaborative Group 

et al., 2020). However, glucocorticoids are also recognised as causing severe 

infections when used for more prolonged periods. This is most strongly 

evidenced in vasculitis in the PEXIVAS randomised controlled trial in AAV (Walsh 

et al., 2020). Taking into consideration these seemingly paradoxical effects, it 

was not known whether long-term glucocorticoid exposure would have a 

detrimental, neutral or protective effect in AAV patients with Covid-19. 

6.3.6 Aims 

The main aim of this study was to identify prognostic factors for Covid-19 

disease severity in individuals with systemic vasculitis and confirmed Covid-19 

in, what was at the time of initial analysis, the largest reported cohort of such 

patients (Rutherford et al., 2021). Additional aims were to describe the 

demographics of this cohort, the frequency of presenting symptoms, the 

frequency of complications and disease outcomes according to an international 

standard. 
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6.4 Methods 

6.4.1 Data source, study design and setting 

A registry-based multicentre cohort study was designed in March 2020. Clinical 

sites associated with the UK and Ireland Vasculitis Registry (UKIVAS; 

www.ukivas.org/) and the Irish Rare Kidney Disease Registry (RKD; 

www.tcd.ie/medicine/thkc/research/rare.php) were engaged. As of 2022, RKD 

was renamed the RITA-Ireland Vasculitis (RIV) Registry and Biobank after joining 

the Rare Immunodeficiency, AutoInflammatory and AutoImmune Disease (RITA) 

European Research Network. For consistency with the associated published 

article, it will continue to be referred to as RKD. UKIVAS had 89 participating 

centres while RKD had 8 participating centres. At the end of July 2020, there 

were approximately 7,400 individuals enrolled in the UKIVAS registry and 795 in 

the RKD registry. There was a small case overlap of four individuals across the 

registries. These figures are given to illustrate the scope of these registries, case 

ascertained for this study was not necessarily draw from the existing pool of 

subjects and cases could be submitted for inclusion without having previously 

been enrolled. Clinicians from these centres were asked to contribute cases. A 

vasculitis-specific Covid-19 digital case report form (CRF) was compiled. 

Collaborating clinicians returned the CRF by secure email to the study 

coordinators. A version of this document is attached as an appendix. Soon after 

this CRF was in use, new modules of the UKIVAS and RKD web-based data 

collection applications were designed to facilitate data capture. 

The design of the CRF was underpinned by standardized biomedical ontologies 

such as SNOMED CT (Musen et al., 2012). A detailed discussion of the role of 

ontologies in medical research can be found in Chapter 2. The CRF was also 

designed to be interoperable with other international data sets which were 

emerging at that time, such as the such as the COVID- 19 GRA physician-reported 

registry (The COVID-19 Global Rheumatology Alliance, 2020). This would allow 

future data linkage. 

For the UK, the Health Research Authority decision tool confirmed that ethical 

approval was not required for this study as the primary aim was to directly 

inform clinical care. The local sponsor determined the project represented 
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service evaluation (R&D reference no. GN20RH165). Ethical approval for the RKD 

registry had been previously confirmed by Tallaght University Hospital/St. 

James’s Hospital Joint Research Ethics Committee (reference no. 2019- 08 List 

29 [07]). All subjects in RKD provided informed consent for clinical data 

collection, therefore separate approvals were not required. 

6.4.2 Participants 

Subjects were eligible for inclusion if the individual had a clinician-confirmed 

diagnosis of systemic vasculitis and Covid-19. The vasculitis diagnosis was 

required to be consistent with the International Chapel Hill Consensus 

Conference Nomenclature of Vasculitides (CHCC2012) (Jennette et al., 2013). 

Covid-19 could be diagnosed by virology testing, radiologically or clinically. 

Recruitment began on 28 March 2020 and the last case was submitted in 

February 2021. The population sampling frame was made up of patients under 

the clinical care of centres represented in the UKIVAS and RKD registries.  

6.4.3 Baseline characteristic data 

A complete list of variables that were collected for this study is represented in 

the CFR in the appendix. With respect to baseline characteristic data, age in 

years at the time of Covid-19 diagnosis, sex and ethnicity data were gathered. 

Ethnicity was collected as subject-identified ethnicity according to standard NHS 

nomenclature, if available. Ethnicity was collapsed into broad categories – Asian, 

Black, White and Not stated. Smoking status was collected. The presence of 

various comorbid conditions was collected, detailed below in section 6.4.4. This 

was based on the Charlson Comorbidity Index (CCI) (Charlson et al., 1987). With 

respect to comorbid conditions, respiratory disease represents non-vasculitis 

related pulmonary conditions, however it was likely that some patients had 

additional pulmonary pathology caused by vasculitis. 

Vasculitis specific data included a clinician impression of the presence or 

absence of active disease, this was on a four point scale with options 

‘remission’, ‘minimal or low disease activity’, ‘moderate disease activity’, 

‘severe or high disease activity’ or ‘unknown’. Vasculitis disease duration in 

years was collected. Immunosuppressive therapy was ascertained as described in 
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the exposures section below. Data was collected exposure to angiotensin-

converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARB) and 

non-steroidal anti-inflammatory drugs. 

Covid-19 data included clinical features at the time of diagnosis. The list of 

options was derived from the Covid-19 GRA case report form. Adaptations were 

made to also collect data on symptoms which could represent Covid-19 

symptoms or vasculitis symptoms, such as haemoptysis. Laboratory data was 

gathered included creatinine, C-reactive protein (CRP) and lymphocytes at the 

time of Covid-19 diagnosis. Specific time windows for laboratory data were not 

set for simplicity of data collection. The methods for Covid-19 were collected, 

whether by polymerase chain reaction (PCR), radiological, clinical features or 

unknown. 

6.4.4 Exposures 

Variables selected as exposures for this study represented potential predictors of 

severe outcomes or already established predictors from other cohorts 

(Gianfrancesco et al., 2020; The OpenSAFELY Collaborative et al., 2020). 

Demographic factors incorporated included age and sex. Comorbid conditions 

investigated as exposures included: hypertension, cardiovascular disease (a 

collapsed variable consisting of atrial fibrillation, cerebrovascular disease, 

coronary heart disease, myocardial infarction, congestive cardiac failure and 

peripheral vascular disease), respiratory disease, diabetes, renal disease and 

end-stage kidney disease (ESKD). 

Vasculitis diagnosis was examined as an exposure with respect to the most 

common types of AAV: granulomatosis with polyangiitis (GPA) and microscopic 

polyangiitis (MPA). For AAV, where CHCC2012 diagnosis was not specified, but 

ANCA autoantibody subtype was specified, this was collapsed as into two AAV 

categories: anti-proteinase-3 (PR3) antibody associated AAV was included with 

GPA and anti-myeloperoxidase (MPO) antibody associated AAV was included with 

MPA.  

Detailed information on immunosuppressive therapy was collected. This included 

an overall immunosuppressive status with four categories: ‘Currently on 
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immunosuppression’, ‘Discontinuation of immunosuppression within 6 months 

prior to this encounter’, ‘Discontinuation of immunosuppression > 6 months prior 

to this encounter’ and ‘Treatment Naïve’. Presence of glucocorticoid was 

collected including dose in oral prednisolone equivalents. If individuals were 

exposed to glucocorticoid, any dose alteration at the time of the clinical 

encounter was collected. Other immunosuppressive treatments data included 

abatacept, cyclophosphamide (oral and intravenous), hydroxychloroquine, 

intravenous immunoglobulin, methotrexate, mycophenolate mofetil, rituximab, 

tocilizumab and calcineurin inhibitors such as ciclosporin and tacrolimus, and 

other immunosuppressive agents less commonly used in vasculitis. 

Immunosuppressants data collection was based on the GRA case report form with 

modifications to include typical immunosuppressants used in the treatment of 

systemic vasculitis. Intravenously administer immunosuppressants were labelled 

as “current” if the assessing clinician considered it likely that the drug was 

exerting a clinical effect at the time of Covid-19 diagnosis. For ease of data 

collection, specific guidance to estimate the clinical effect of IV 

immunosuppressants were not used. As for glucocorticoids, any dose change at 

Covid-19 diagnosis was sought. The immunosuppressive therapies that were 

ultimately evaluated for association with severe Covid-19 are shown in Table 

6-3. 

The referent for these exposures was typically the remainer of the cohort where 

the exposure was not present, for example the referent for the comorbid 

condition hypertension, was the group without reported hypertension. This is 

detailed in Table 6-3 and the rationale for this decision is elaborated on in the 

discussion. 

6.4.5 Covariates 

As described further in the statistical analysis section, age at Covid-19 diagnosis 

and sex were used as covariates in the models to determine association with 

severe Covid-19. Two covariates were chosen to limit the possibility of 

overfitting and therefore limit the chance of spurious associations. Notably age 

(in particular) and sex were emerging as important modifiers of the impact of 

Covid-19 at the time of study design. 
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6.4.6 Outcome  

The main outcome was occurrence of severe Covid-19. This was derived from the 

seven-point GRA scale which is detailed in Table 6-2. This was a composite 

outcome: a binary version of this scale to represent severe Covid-19. The three 

most severe points were combined: requirement for non-invasive ventilation or 

high flow oxygen device, requirement for invasive ventilation or extracorporeal 

membrane oxygenation (ECMO), or death. 

Occurrence of hospital admission and of intensive care unit (ICU) admission was 

collected. Potential complications collected in line with GRA data collection 

items included acute respiratory failure, acute kidney injury and disseminated 

intravascular coagulation. If admitted, date of hospital admission and discharge 

were collected. Length of stay was calculated. 

6.4.7 Other variables 

Other variables were collected that would inform the clinical phenotype of 

Covid-19 in vasculitis patients, that were possible outcomes of interest or that 

had the potential to inform future models. 

Basic demographic and vasculitis diagnosis data, such as country of birth, date of 

vasculitis diagnosis, presence of vasculitis on biopsy and vasculitis diagnostic 

confidence were collected in the same manner as the UKIVAS main data 

collection tool. The categories selected for past vasculitis organ system 

involvement were based on the categories from the Birmingham Vasculitis 

Activity Score (BVAS, version 3) (Mukhtyar et al., 2009). 

Covid-19 data collected included the date of Covid-19 symptom onset and the 

date of Covid-19 diagnosis. Data related to treatment of Covid-19 was based on 

the GRA data collection items. Data was collected relating to treatment of 

Covid-19 including antibiotics, antiviral therapy (such as remdesivir or 

neuraminidase inhibitors) or immunosuppressive agents (such as 

hydroxychloroquine or tocilizumab). 

A optional second part of the CRF was labelled “Additional Information” and was 

visually distinct from the first, more pertinent section of the CRF. The option for 
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retrospectively collecting this data was highlighted. Information in this section 

included any additional databases that the case had been registered with, this 

was aimed at avoiding duplication of cases in the event of future merging the 

data with other projects. Information regarding employment history and 

educational status was sought, this was aimed at understanding the impact of 

Covid-19 on work and lifestyle, if future longitudinal data collection were 

possible. 

Further data in the “Additional Information” section included vasculitis disease 

status at the time of Covid-19 diagnosis such as urinalysis results, last estimated 

glomerular filtration rate (eGFR) prior to diagnosis, weight and height. The 

formula used to calculate eGFR was not sought. Vasculitis disease activity was 

collected. This was recorded as the likelihood of relapse occurring at the time of 

diagnosis ranging from “high probability”, through “possibly” to not occurring. 

This was also intended to be adjudicated by a local senior clinician 

retrospectively, with options being “definite”, “high probability”, “possibly” and 

“not relapsing”. BVAS (version 3) and the vasculitis damage index (VDI) were 

requested, but were only expected to be returned if the completing clinician 

had undertaken training for these tools previously. Other data was gathered 

relating to Covid-19 diagnosis, laboratory investigations, secondary infections, 

requirement for acute dialysis and symptom resolution. These are detailed in the 

CRF in 9.4. 

6.4.8 Bias 

Ascertainment bias was recognised as an important consideration. Cases were 

identified by clinicians in secondary and tertiary care centres. Clinicians will 

have been more likely to encounter vasculitis patients with Covid-19 if the 

patient was unwell, given that the encounter may have taken place in hospital 

because the patient sought care due to their symptoms. Milder or asymptomatic 

cases may not have sought care and would have been less likely to be included. 

Therefore this study was does not provide an accurate indication of the 

frequency of severe Covid-19, either amongst diagnosed cases or all infected 

individuals. The outcomes are reported for the purpose of describing the study 

population, namely one with more severe disease. 
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Systemic vasculitis epidemiology is classically hampered due to the rarity of the 

conditions. This is more pronounced with a sub-population, such as individuals 

with both vasculitis and Covid-19. Spurious association of a potential exposure 

with the outcome may occur. This becomes less likely as sample size increases. 

To minimise spurious results the size of the cohort was maximised using multiple 

approaches. These included having three means of submitting data – manual 

completion of the CRF, digital completion of the CRF and submission of data to 

the UKIVAS web application. We publicised our project as much was deemed 

appropriate and feasible. We only undertook a preliminary analysis when the 

data set reached a reasonable size. Other issues relating to decisions around 

study size are discussed in section 6.4.9 below. 

Confounding is where an observed relationship between variables, or a lack of 

relationship, may be explained by another common variable. We limited 

confounding due to age and sex by including these variables in the logistic 

regression models developed to assess potential prognostic factors. Two 

variables only were used to limit over fitting as described in section 6.4.11. 

Residual confounding may have occurred. 

Due to the unknown biological interaction between systemic vasculitis and 

Covid-19, we may have failed to detect important findings purely due to not 

requesting certain data items. We attempted to mitigate against this by 

incorporating several options for inclusion of free text in the CRF. 

We were conscious that we should make efforts to avoid non-completion or non-

submission of cases. Specific effort was made to limit the number of data 

collection items and the complexity of data collection. This was intended to 

reduce the potential for bias where the busiest clinicians were unlikely to submit 

cases due to time pressure. 

6.4.9 Study size 

Formal sample size calculation was not undertaken for this study. Decision 

making with respect to required size for an initial analysis are explored in 

section 6.4.11. 
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6.4.10 Patient and public involvement 

Specific patient and public involvement (PPI) work was not undertaken in 

advance for this project due to the urgent nature of the clinical issue and need 

for rapid data collection. The initial, and a subsequent, iteration of this study 

have been presented at UKIVAS and other international meetings. These 

meetings have included patients and patient representatives from organisations 

including Vasculitis UK, Vasculitis Ireland Awareness and Vasculitis International. 

The project received overwhelming support and positive feedback from 

vasculitis patients and patient representatives. 

6.4.11 Statistical methods 

At the time of study design, for the objective of compiling a formal report 

including statistical models, it was decided that when the study reached a 

suitable size for a basic adjusted model that the first analysis would be 

undertaken. When the dataset reached 65 cases, 25 (38%) of whom had 

experienced a severe outcome, this threshold was met. A pragmatic “rule of 

thumb” was applied, by which the ratio of events per variable (EPV) was greater 

than 10, meaning that for every 10 occurrences of severe Covid-19, one 

additional covariate can be added to the model. At the time of the first analysis 

of the data, the above EPV “rule of thumb” was approaching being met and due 

to the perceived clinical need for data around Covid-19 prognostic factors in rare 

immune-mediated inflammatory diseases (IMID), the first analysis was performed 

and subsequently published. The subsequent analysis for this chapter meets this 

criteria. 

Continuous variables are reported as median and interquartile range (IQR). 

Discrete variables are reported as the number of individuals and percentage. 

Association between explanatory variables of interest and severe Covid-19 were 

calculated. Multiple unadjusted and age/sex-adjusted logistic regression models 

were used to determine the association for each explanatory variable. The 

output of these models was transformed to be reported as odds rations (ORs), P 

values and 95% confidence intervals (95% CIs). The adjusted odds ratios for age 

and sex were obtained from a single logistic regression model which included 

age and sex as the only explanatory variables. Potential interactions were 
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considered, if this may have accounted for a positive finding, then a logistic 

regression model including the explanatory and interacting variable was 

performed. When a subgroup may have had different overall findings, sensitivity 

analyses were performed in that group to check if results differed from the main 

findings. Missing data were acknowledged in the relevant tables. P values below 

0.05 were considered statistically significant. Data cleaning and statistical 

analysis was performed with R (version 4.2.2) and packages including tidyverse 

and final fit. 
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6.5 Results 

One hundred and five individuals were submitted as cases with a confirmed 

diagnosis of systemic vasculitis who developed Covid-19. Ninety-eight patients 

were registered as part of the UKIVAS registry and seven were registered as part 

of the RKD registry. There were no duplicate registrations. 

6.5.1 Baseline characteristics 

As described in Table 6-1, the median age of the study population was 69 years 

with interquartile range (IQR) 55 to 75. A minority of the cases were female at 

43.8%. Most study subjects (84 of 105 – 80.0%) had anti-neutrophil cytoplasmic 

antibody associated vasculitis (AAV): of these, 40 (38.1) had GPA or PR3-

associated AAV, 37 (35.2%) had MPA or MPO-associated AAV and 7 (6.7%) had 

eosinophilic granulomatosis with polyangiitis (EGPA). The baseline features of 

subjects with AAV were assessed and were similar to the full cohort (data not 

shown). Forty-seven subjects (50%) were considered by the submitting clinical 

team to have simultaneous active vasculitis at the time of Covid-19 infection. 

The median vasculitis disease duration was 2.7 years. Twenty-five subjects in 

the cohort had ESKD, this data was unknown/missing for 16 subjects (15.2%). 

Seventy-six subjects (72.4%) were diagnosed by polymerase chain reaction (PCR) 

or by serological methods. Five individuals (4.8%) did not have virologically 

confirmed diagnoses but instead had radiological confirmation of Covid-19. Four 

individuals (3.8%) were confirmed as having Covid-19 solely based on clinical 

features. Data relating to the means of diagnosis was unknown/missing for 20 

individuals (19.0%). The baseline characteristics of study subjects who received 

a PCR based diagnosis were similar to the full cohort (data not shown). 

Eighty-three individuals (79.0%) were receiving some form of immunosuppressive 

therapy at the time of Covid-19 diagnosis. Data relating to the presence or 

absence of immunosuppressive medications was missing in one individual (1.0%). 

The majority of subjects (71 of 105 [67.6%]) were treated with background 

glucocorticoid. Thirty subjects (28.6%) were treated with the equivalent of ≤5 

mg prednisolone per day while 40 (38.1%) were treated with >5 mg per day. Data 

relating to the dose of glucocorticoid was unknown/missing in eight subjects 

(7.6%). Other baseline features including the presence of specific comorbid 
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conditions, other immunosuppressive therapies, other medications of interest 

(such as ACE inhibitors, ARB and NSAID) and laboratory tests at the time of 

diagnosis (such as serum creatinine, CRP and lymphocyte count) can be found in 

Table 6-1. 
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Table 6-1 | Baseline characteristics of study subjects (n = 105) 

Characteristic Value Characteristic 

Age (years), median (IQR) 69.0 (55.0 to 75.0) Vasculitis, active disease 

Female sex 46 (43.8) Vasculitis disease duration, median (IQR) years 

Ethnicity   Unknown/missing data 

 Asian 10 (9.5) Current immunosuppressive therapy 

 Black 3 (2.9)  Any immunosuppressive therapy 

 White 73 (69.5)  Any immunosuppressive therapy and GCs 

 Not stated 11 (10.5)  Azathioprine 

 Missing data 8 (7.6)  GCs (any dose) 

Smoking    Prednisolone 1.0-5.0 mg/day 

 Current 4 (4.6)   Prednisolone >5.0 mg/day 

 Former 19 (21.8)   Unknown/missing data 

 Never 39 (44.8)  Cyclophosphamide 

 Unknown/missing data 25 (28.7)  Hydroxychloroquine 

Vasculitis diagnosis   IVIG 

 GPA (or PR3 AAV) 40 (38.1)  Mycophenolate 

 MPA (or MPO AAV) 37 (35.2)  Rituximab 

 EGPA 7 (6.7)  Tacrolimus 

 LVV 3 (2.9)  Unknown/missing data 

 Behçet’s 1 (1.0) Other medications 

 PAN 1 (1.0)  ACE inhibitor 

 Other 9 (8.6)  ARB 

 Unknown/missing data 7 (6.7)  NSAID 

Comorbidities*   Unknown/missing data 

 Diabetes 18 (17.1) Laboratory tests 

 Hypertension 38 (36.2)  Creatinine 

 Renal Disease 41 (39.0)  CRP 

 CV disease 28 (26.7)  Lymphocytes 

 Respiratory disease 27 (25.7) Method used for Covid-19 diagnosis 

End-stage kidney disease   PCR/antibody 

 Yes 25 (23.8)  Radiological 

 No 64 (61.0)  Symptoms only 

 Unknown/missing data 16 (15.2)  Unknown/missing data 

Organ transplant 3 (2.9)  

AAV = ANCA-associated vasculitis (AAV), ACE = angiotensin converting enzyme, ARB = 
angiotensin receptor blocker, CRP = C-reactive protein, CV = cardiovascular, EGPA = 
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eosinophilic granulomatosis with polyangiitis, GCs = glucocorticoids, GPA = 
granulomatosis with polyangiitis, IQR = interquartile range, IVIG = intravenous 
immunoglobulin, LVV = large vessel vasculitis, mg = milligram, MPA = microscopic 
polyangiitis, NSAID = non-steroidal anti-inflammatory drug, PAN = polyarteritis nodosa,  
PCR = polymerase chain reaction. 
Data  is reported as number (%), unless specified.
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6.5.2 Covid-19 symptoms 

The frequency of Covid-19 symptoms in this cohort at presentation is displayed 

in Figure 6-1. Complete data in relation to symptoms was missing from five 

subjects (4.8%), missing data were removed from the calculation for symptom 

frequency. Dyspnoea was the most common presenting symptoms of Covid-19 in 

systemic vasculitis patients with 61 individuals (61.0%) reporting this symptom. 

This was followed by fever, at 53 individuals (53.0%) and cough at 50 individuals 

(50%). Haemoptysis occurred in six subjects (6.0%) and epistaxis occurred in 

three (3.0%). One patient had both haemoptysis and epistaxis. Notably some of 

the patients with haemoptysis had active disease at the time of Covid-19 

diagnosis, as was the case for patients with epistaxis. 

6.5.3 Covid-19 complications 

The frequency of Covid-19 complications in this cohort is displayed in Figure 6-2. 

Complete data in relation to complications was missing from 10 subjects (9.5%). 

Respiratory failure was the most frequently reported complication in the cohort 

at 50 of 95 subjects (52.6%). The second most frequently reported complication 

was acute kidney injury at 16 of 95 (16.8%) subjects, followed by secondary 

infection at 14 of 95 patients (14.7%). 
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Figure 6-1 | Frequency of Covid-19 symptoms at first presentation 
 
 
 

 

Figure 6-2 | Frequency of Covid-19 complications 
ARDS = acute respiratory distress syndrome, DIC = disseminated intravascular coagulation. 
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6.5.4 Covid-19 outcomes 

This cohort represents a severely affected group of patients, many of whom 

were likely identified once they had already become unwell and may have 

already been admitted to hospital. Full outcome data is summarised in Table 

6-1, with unknown or missing data reported for each outcome. Most subjects 

were admitted to hospital (84 of 105 [80.0%]). Fifteen (15.2%) required 

admission to critical care. Twenty-seven (25.7%) subjects died. The median 

length of hospital stay was 11 days. The composite severe outcome was 

experienced by 38 of 105 subjects (36.2%). 

Table 6-2 | Covid-19 outcomes in study subjects 

Outcome Value n (%) 

Hospitalised 

 Yes 84 (80.0) 

 No 18 (17.1) 

 Unknown/missing data 3 (2.9) 

Critical care admission 

 Yes 15 (15.2) 

 No 77 (77.8) 

 Unknown/missing data 7 (7.1) 

Graded outcome (grade number) 

 Not hospitalized, no limitations on activities (1) 9 (8.6) 

 Not hospitalized, limitation on activities (2) 7 (6.7) 

 Hospitalized, not requiring supplemental oxygen (3) 12 (11.4) 

 Hospitalized, requiring supplemental oxygen (4) 33 (31.4) 

 Hospitalized, on non-invasive ventilation or high flow 
 oxygen devices (5) 

6 (5.7) 

 Hospitalized, on invasive mechanical ventilation or ECMO (6) 5 (4.8) 

 Death (7) 27 (25.7) 

 Composite severe outcome 38 (36.2) 

 Unknown/missing data 6 (5.7) 

Median length of hospital stay, days (IQR) 11 (5-22) 

 Length of hospital stay, unknown/missing data 74 (70.5) 
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6.5.5 Prognostic factors for severe outcome 

Exposures examined are summarised in Table 6-3, with the number of severe 

outcomes for each exposure, along with unadjusted and age/sex adjusted 

models for severe outcome. Receiving any immunosuppressive treatment, when 

compared to receiving none, showed an association with severe outcome with 

adjusted odds ratio (aOR) 5.93 (95% CI 1.76 – 27.71). Glucocorticoid at any daily 

prednisolone dose equivalent carried aOR 2.85 (95% CI 1.08 -8.36), while 

glucocorticoid at daily prednisolone dose equivalent greater than 5 mg per day 

had aOR 4.66 (95% CI 1.47 – 17.30). There was not a significant association for 

lower dose glucocorticoid at daily prednisolone dose equivalent between 1 to 5 

mg aOR 3.02 (95% CI 0.91 – 11.16). Treatment with cyclophosphamide was 

associated with severe outcome, aOR 3.45 (95% CI 1.08 – 11.98).  

An associated for various exposures was not found. Age was not associated with 

severe disease in the adjusted model with aOR 1.02 (95% CI 1.00 - 1.06, p = 

0.10). Significant associations were not found for sex, vasculitis diagnosis 

(whether GPA or MPA), any specific comorbid condition or smoking status. Other 

immunosuppressive therapies evaluated included azathioprine and rituximab, 

significant associations were not found with respect to severe disease for either 

of these therapies. 
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Table 6-3 | Unadjusted and age/sex adjusted ORs for association with severe Covid-19  
Number of severe cases 
/ total cases (%) 

Unadjusted OR (95% CI) 

Sex 
  

Male (referent) 23/59 (39.0%) - 

Female 16/46 (34.8%) 0.88 (0.50 - 1.55) 

Age - 1.02 (1.00 - 1.06) 

Vasculitis diagnosis 
  

GPA (referent: not GPA) 15/41 (36.6%) 0.96 (0.42 - 2.16) 

MPA (referent: not MPA) 13/35 (37.1%) 1.00 (0.43 - 2.30) 

Comorbidities (referent: individual comorbidity not present) 

Hypertension 18/38 (47.4%) 1.59 (0.89 - 2.86) 

CV disease 13/28 (46.4%) 1.46 (0.78 - 2.72) 

Respiratory disease 14/27 (51.9%) 2.28 (0.94 - 5.64) 

Diabetes 9/18 (50%) 1.55 (0.75 - 3.24) 

Renal disease 17/41 (41.5%) 1.22 (0.68 - 2.16) 

End-stage kidney disease 11/25 (44%) 1.40 (0.54 - 3.59) 

Smoking status 
  

Ever smoker (referent: never) 11/23 (47.8%) 2.33 (0.80 - 6.97) 

Immunosuppressive therapy 
  

Any immunosuppressive therapy (referent: 
not receiving immunosuppressive therapy) 

36/83 (43.4%) 4.85 (1.51 - 21.78) 

GCs (referent: not receiving GCs) 
  

Prednisolone (any dose) 32/71 (45.1%) 2.58 (1.01 - 7.23) 

Prednisolone 1.0-5.0 mg/day 13/30 (43.3%) 3.36 (1.05 - 12.22) 

Prednisolone ≥5.1 mg /day 19/40 (47.5%) 3.98 (1.33 - 13.79) 

Other immunosuppressive therapy 
 

Azathioprine (referent: not receiving 
azathioprine) 

6/18 (33.3%) 0.80 (0.26 - 2.28) 

Cyclophosphamide (referent: not receiving 
cyclophosphamide) 

9/15 (60%) 2.95 (0.97 - 9.54) 

Rituximab (referent: not receiving 
rituximab) 

15/36 (41.7%) 1.31 (0.57 - 3.00) 

GCs = glucocorticoids, CV = cardiovascular, GPA = granulomatosis with polyangiitis, mg = 
milligram, MPA = microscopic polyangiits, OR = odds ratio
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6.6 Discussion 

6.6.1 Key results 

At the time of publication of the associated article, this cohort was the largest 

reported study of individuals with systemic vasculitis and Covid-19 (Rutherford 

et al., 2021). That report included 65 cases. This updated version of the same 

study reports 105 cases. A broad range of systemic vasculitides are represented, 

though with predominance of AAV – 79% of the reported cases had AAV. Twenty-

five individuals, 23.8%, had ESKD at the time of Covid-19 diagnosis. A high 

proportion of the cohort had active disease at the time of reporting – 47 

individuals, representing 50% of cases. A large majority, 79%, were actively 

treated with some form of immunosuppressive therapy. For most this included 

glucocorticoid, but other typical vasculitis therapies such as cyclophosphamide, 

rituximab, azathioprine and mycophenolate were also represented. Most of the 

cohort, 72.4%, had Covid-19 confirmed virologically. For the vast majority this 

was PCR-based diagnosis. 

The most common presenting symptoms were dyspnoea, fever and cough. 

Symptoms more specific to vasculitis such as haemoptysis and epistaxis were 

present at lower frequencies. The most common complications of Covid-19 in 

this cohort were respiratory failure, acute kidney injury and secondary infection. 

A large majority, 80%, of the cohort was hospitalised in the context of Covid-19, 

15.2% required critical care admission. The composite severe outcome was 

reached in 38 individuals (36.2%). This outcome comprised: requirement for 

advanced oxygen therapy, requirement for invasive ventilation or ECMO, or 

death. 

Multivariable analysis was conducted, with adjustment for age and sex, on 

exposures of interest. Age and sex were not statistically associated with the 

composite severe outcome, but our study was likely underpowered to detect 

these potential relationships. Similarly, the various comorbid conditions 

examined had positive point estimates for association with severe disease, but 

had wide confidence intervals, so a range of potential effects remain possible. 

When examined as a group, individuals receiving any immunosuppressive therapy 

appeared to have a higher risk of severe outcome when compared to those not 
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receiving any immunosuppressive therapy, with aOR 5.93 (95% CI 1.76 – 27.71). 

For those receiving glucocorticoid, the aOR for severe outcome was 2.85 (95% CI 

1.08 – 8.36). With respect to glucocorticoid exposure within specific dose ranges, 

there was no significant association but a wide confidence interval for daily 

prednisolone equivalents 1 mg to 5 mg (aOR 3.02 [95% CI 0.91 - 11.16]) and ≥5.1 

mg was associated with severe outcome (aOR 4.66 [95% CI 1.47 - 17.3095% CI). 

Cyclophosphamide was associated with severe outcome (aOR 3.45 [95% CI 1.08 - 

11.98]). Rituximab has a point estimate that suggested association with severe 

outcome, but was not statistically significant (aOR 1.57 [95% CI 0.66 - 3.79]). 

6.6.2 Strengths 

This was a multicentre study across two nations. Despite the early stages of the 

Covid-19 pandemic representing an unprecedented level of pressure on clinicians 

across healthcare systems, health care professionals submitted detailed reports 

on systemic vasculitis patients with Covid-19. This resulted in high quality data 

with low levels of missingness, given the circumstances. Centres covered a large 

spectrum of UK and Ireland clinical services with good representation from 

academic institutions and district general hospitals. Coverage included both 

urban and rural facilities. The high-quality nature of the data and wide coverage 

was facilitated by decisions made by the coordinating team, the UKIVAS Covid-19 

task force. Data could be reported by the CRF, whether completed manually or 

digitally, and via the standard web-based data collection tools of UKIVAS and 

RKD. Intentionally, the CRF left aspects of reporting to the discretion of the 

submitting clinician, for example we did not provide exhaustive criteria for the 

different comorbidities that had to be fulfilled to determine whether any 

specific condition was present or not. As well as an optional BVAS form, 

submitting clinicians were invited to submit an overall impression of the 

presence or absence of active disease, via four intuitive categories based on the 

likelihood of active disease. This was intended to minimise effort required on 

the part of the submitting clinician and to maximise submission and completion 

of CRFs. UK and Ireland vasculitis clinicians were engaged through, initially 

weekly, reports sent to individuals signed up to the UKIVAS mailing list. These 

reports included up-to-date statistics on the cohort as well as anonymised case 

vignettes with clinical reflections on how to manage Covid-19 in systemic 

vasculitis patients. Having more than one method of data submission was 
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pragmatic and the approach to keeping clinicians updated with useful clinical 

information was both valuable to clinicians and maintained a high level of 

engagement with case submission. 

As discussed, at the time of writing the earlier published iteration of this study, 

this cohort was the largest known of individuals with systemic vasculitis and 

Covid-19. Systemic vasculitides are rare, representing a significant challenge for 

all forms of research including vasculitis epidemiology. We used strategies 

described above to maximise case submission and engagement, balancing this 

with being mindful of the pressures that clinicians were facing in the early 

stages of the pandemic. Aiming for as large a study as possible in this setting 

maximised the chances of detecting important prognostic associations whilst 

minimising the chance of spurious results. Whilst a success for a novel virus in a 

set of rare diseases, the study remains small in the context of other similar 

studies in the general population such as the International Severe Acute 

Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical 

Characterisation Protocol UK (CCP-UK) study (Docherty et al., 2020). This is 

discussed further below. When developing multivariable models to evaluate for 

prognostic exposures, it is important to consider the appropriate number of 

covariates included in models to limit overfitting. The maximum number of 

parameters included in our model was three (the exposure – consistently a two-

level categorical variable, age and sex) and the number of events was 38. This 

equates to an EPV of 12.7. Whilst more complex means of calculating the 

required number of events and overall size of a data set required for sound 

development of a multivariable prediction model exist, simulation studies 

suggest that an EPV of the magnitude used in our study should result in reliable 

estimates of prognostic ability (Riley et al., 2020; Austin and Steyerberg, 2017). 

Given the challenge of achieving a large sample size in rare disease research, 

meeting expectations of a reasonable EPV in this setting is a significant strength 

of this work. It also allowed the inclusion of additional parameters, such as 

disease activity, in sensitivity analyses to confirm that the detected associations 

were not confounded by such factors. Adding an additional two-level categorical 

variable resulted in a EPV of 9.5. 

A wide variety of data points were available for most participants in this study. 

This advantage is derived from study design. Being able to prospectively design 
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the dataset enabled a wide range of variables to be included. This covered 

demographics, vasculitis diagnosis, comorbidities, smoking status, vasculitis 

disease activity, ANCA serological status and medications. This range of baseline 

characteristics would be difficult to obtain from a retrospective review of 

clinical records. It also would not have been possible for the study team to 

access clinical records retrospectively from other health care providers. There is 

no comparable data resource available from routinely collected data which 

might be accessible using a data linkage approach. We considered our approach 

optimal for achieving a rich data resource. 

As discussed below, ascertainment bias will have played a role in this study, in 

that individuals with more severe Covid-19 will have been more likely to have 

been included as subjects than individuals with milder disease. This has both 

beneficial and adverse impacts on the utility of the study. Reasons for this 

having occurred include that individuals who are more unwell are more likely to 

seek medical attention and are therefore more likely to encounter a clinician 

who might submit to a study. In one sense this is useful in that it results in this 

study being more likely to have a high number of clinical outcomes and 

therefore likely to be adequately powered to detect meaningful associations. 

There is ultimately greater utility in studying individuals more likely to have 

severe Covid-19, as by definition, they are a group who are more likely to have 

greater unmet need. One of the negative impacts of such ascertainment bias is 

that this data cannot be used to give an indication of the incidence of Covid-19 

outcomes for the whole systemic vasculitis population. For this reason it has 

been clearly specified that it would be incorrect to interpret this data in such a 

manner. If a study were to accurately quantify the incidence of severe Covid-19 

in a population, it would need to have a means of, ideally prospectively, 

identifying a sample of all cases of clinically identified Covid-19 to determine, 

for example, the CFR, or a means of identifying a sample of all individuals 

screened as positive for SARS-CoV-2, to determine the IFR. 

6.6.3 Limitations 

This study had a large preponderance of small vessel vasculitis (SSV), especially 

AAV, relative to other vasculitides, such as large vessel vasculitides (LVV) 

including GCA. GCA is the most common idiopathic systemic vasculitis, an 
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American study indicated a 1% lifetime risk of acquiring the condition in women 

with 0.5% life time risk in men (Crowson et al., 2011). The incidence of AAV is 

far lower, with approximately 20 cases being diagnosed per million person-years 

(Kitching et al., 2020). Therefore, it may have been expected that the frequency 

of GCA patients in this study would closer reflect the real-world frequency. 

However, 80% of the cohort in this study had AAV, while only 2.9% had LVV. This 

reflects a strong effect of ascertainment bias, likely secondary to a variety of 

causes. The centres affiliated with the UKIVAS registry are predominantly 

nephrology centres, traditionally nephrologists are not involved in the care of 

GCA patients. AAV patients typically are under more intense immunosuppression, 

this may have made them more susceptible to SARS-CoV-2 infection and also 

more susceptible to having significant Covid-19 symptoms and severe disease – 

all these factors would make them more likely to present to, or to come to the 

attention of, a clinician participating in data collection for this study. The 

ultimate effect of this type of ascertainment bias is mixed. A predominance of 

AAV patients results in this data being more generalisable for that population, 

while the implications of the data are less clear for the highly heterogeneous 

populations of non-AAV vasculitides. 

Regardless of any degree of ascertainment bias, the heterogeneous nature of 

this cohort remains a significant limitation. The vasculitides are a diverse range 

of conditions. They are challenging to define. Formal diagnostic criteria are 

lacking (Kronbichler et al., 2023). We did not provide strict criteria for inclusion, 

advising for vasculitides consistent with the CHCC to be included (Jennette et 

al., 2013). This was a pragmatic approach and due to the complexity of 

vasculitis diagnosis, it seems that adding extensive inclusion and exclusion 

criteria based on vasculitis diagnostic or classification criteria would have been 

unlikely to improve the correct identification of cases. While some common 

features are shared, such as a common immunosuppressant across most 

vasculitides being glucocorticoids, these diseases have varied pathogeneses and 

often affect completely different organ systems. The case can be made that 

collecting data on this heterogeneous cohort may have helped reveal specific “at 

risk” groups that would otherwise have gone unidentified. The study did indeed 

identify certain immunosuppressants associated with increased risk, but it was 

not possible to make this association for rarer vasculitides such as polyarteritis 
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nodosa (PAN) and Behçet’s, due to the low numbers of patients with these 

diagnoses included in this study.  

Lack of power is a recurrent challenge in the rare disease setting, including in 

systemic vasculitis research. We describe above strategies used to minimise the 

difficulty of case submission for contributing clinicians and to maximise 

engagement with the project, whilst being sensitive to the stress front-line 

clinicians were under at that time. Power was sufficient to allow pragmatic and 

statistically valid development of models to adjust for important confounders, 

namely age and sex, whilst aiming to minimise the risk of overfitting and 

spurious results. However due to the ultimate size of this cohort and the number 

of events, confidence intervals were typically wide, effect sizes may have been 

exaggerated and subtle associations may not have been detected. 

The choice of referents in this study had both strengths and limitations. In this 

setting the referent is synonymous with a “control group” for the individual 

model. In epidemiological studies, control groups should typically satisfy two 

criteria: the presence of potential confounding variables should be the same in 

both the exposure and unexposed group and ascertainment of the presence of 

the exposure should be accurate in both the exposed and unexposed groups 

(Coggon et al., 2003). As far as is practically possible, it is the case that these 

requirements are met for the selected referent groups in this study, though 

there are important considerations which impact interpretation. With respect to 

vasculitis diagnosis and specific comorbid conditions, the referent was those who 

did not have the specific condition. Similarly the referent category for 

immunosuppressive therapies was those individuals not exposed to that specific 

therapy. While this will have maximised statistical power and would permit any 

one condition or therapy to “stand out” from the pool of predictors, arguably 

the referent categories should have been different. For vasculitis and comorbid 

conditions, one can pose different research questions. In this study we compare 

a specific condition to all others in the study, not to a comparable control 

without that condition. For example, for the vasculitis diagnosis GPA, the 

question we posed was to determine the risk of severe disease when compared 

to a mix of other vasculitides, including MPA and EGPA. Arguably a more 

important question would be to explore the risk of severe disease in GPA when 

compared to a general population control without any form of vasculitis. 
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Unfortunately due to the nature of our study not including such controls this was 

not possible. Out approach is still valid, but must be interpreted as risk relative 

to a mixed group of other vasculitides. A similar position should be adopted to 

comorbidity association interpretation. It may have been possible in our study to 

have taken this alternative approach with respect to comorbid conditions, for 

example, instead of comparing individuals with hypertension to all those without 

hypertension, we could have compared those with hypertension to individuals 

with vasculitis but no additional comorbid conditions. This would potentially 

have allowed the odds ratio to be more generalisable for the specific 

comorbidity and may be easier to interpret, but would likely have been 

significantly hampered by a lack of events leading to low power and very wide 

confidence intervals. Similarly for treatment, the appropriate referent category 

would potentially be those in the cohort not receiving any immunosuppression. 

In general for this issue, adopting an interpretation where by the risk reported 

for each exposure is relative to the rest of the cohort rather than relative to no 

exposure being present is important. For example, being on azathioprine is 

unlikely to be a protective predictive factor for severe Covid-19 in this 

population, but is associated with reduce risk relative to the rest of the cohort. 

This approach was taken to maximise statistical power and to have clear, simple 

statistical models, although the case can be made that the interpretation 

becomes more difficult. 

6.6.4 Interpretation and generalisability 

The symptom distribution described in this cohort broadly reflects that of the 

general population. In the current study the most frequent presenting symptoms 

were dyspnoea, fever and cough. This was similar to the ISARIC WHO CCP-UK 

study – the largest UK study of individuals from the general population 

hospitalised with Covid-19 (Docherty et al., 2020). Notably 6% of our cohort 

experienced haemoptysis at the time of Covid-19 presentation. None were 

considered likely to have diffuse alveolar haemorrhage, a potentially life-

threatening feature of systemic vasculitis. Haemoptysis is a recognised feature 

of Covid-19 in the general population, with 3.5% of the ISARIC WHO CCP-UK 

experiencing it. It may be that the symptom was more common in our cohort 

due to pre-existing lung damage that was aggravated by SARS-CoV-2 infection or 

active pulmonary vasculitis that was not clinically apparent. Differentiating 
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Covid-19 related haemoptysis from active respiratory disease due to vasculitis is 

clinically challenging. It is also important to note that these presentations may 

coexist. Clinicians should ensure both causes are considered when assessing a 

patient with systemic vasculitis and possible, or confirmed, Covid-19. 

A substantial proportion of the cohort (50%) had concurrent active vasculitis at 

the time of Covid-19 diagnosis. Many of these individuals were considered to 

have acquired SARS-CoV-2 from a health care facility, as reported by submitting 

clinicians. Crucially, vasculitis disease activity occurred before Covid-19 in 

essentially all cases. This study therefore did not provide an indication that 

vasculitis activity could be triggered by Covid-19. There are reports of cases of 

systemic vasculitis in adults considered to have been triggered by Covid-19 but 

establishing the true underlying relationship between infection and subsequent 

vasculitis is challenging. A clearer phenomenon was the emergence of 

multisystem inflammatory syndrome in children (MIS-C). This was typically 

described as highly similar to an incomplete form of Kawasaki disease (KD), 

though it tended to occur in school-age children, as opposed to classic KD which 

tends to affect children below the age of five years (Mv et al., 2023). The 

frequency of active disease in the current study was higher than expected. UK 

cohorts have previously shown typical disease activity of approximately 20% 

(Basu et al., 2014). Disease actively was not shown to be associated with severe 

Covid-19 in this study, but it may be that those individuals with active disease 

are more susceptible to infection with SARS-CoV-2. This may be due to the 

underlying biology of active vasculitis but it could also be the case that clinicians 

or patients may have reduced immunosuppressive therapy to attempt to 

minimise the impact of Covid-19. Due to the nature of this study, the current 

data cannot address this question. 

When compared to studies of individuals with IMID described in the introduction 

to this chapter, the point estimates in the current student were consistent with 

respect to the prognostic associations for age, sex and comorbidities. The 

findings in our study were not statistically significant, but the direction and 

magnitude of the association was similar (Gianfrancesco et al., 2020). This study 

demonstrated that, when taken as a combined group, any immunosuppression 

was associated with substantially increased risk of severe Covid-19 compared to 

those not on immunosuppression. When compared to a similar study from Covid-
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19 GRA of individuals with systemic vasculitis or polymyalgia rheumatica, our 

results were consistent – although they did not report findings for any 

immunosuppression as a combined group, they did find increased risk for a broad 

range of immunosuppressive agents including glucocorticoid equivalent to 10 mg 

prednisolone daily or more, rituximab and cyclophosphamide. Our data was also 

compatible with that study with respect to individual immunosuppressants: 

azathioprine was not clearly associated with severe Covid-19, rituximab was 

likely associated (statistically significant association in GRA data, consistent 

point estimate but not significant in the current study) and cyclophosphamide 

was most strongly associated with severe disease (aOR 4.30 [95% CI 1.10-16.75] 

in GRA, aOR 3.45 [95% CI 1.08-11.98] in the current study). Interestingly, in the 

GRA systemic vasculitis or polymyalgia rheumatica study, higher doses of 

glucocorticoid were associated with severe Covid-19 in GCA and AAV, but not 

PMR. This may reflect underlying biology or more intense immunosuppressive 

with additional agents frequently required in GCA and AAV (Sattui et al., 2021). 

In the previous iteration of this study, published in 2021, comorbid respiratory 

disease and glucocorticoid use (at any dose) were found to be associated with 

severe Covid-19. In that earlier version of the study, which examined 65 cases, 

respiratory disease carried aOR 7.53 (95% CI 1.93-38.22) and glucocorticoid (at 

any dose) had aOR 3.66 (95% CI 1.09–14.9). With greater statistical power in the 

current study, the association for respiratory disease has been attenuated 

considerably to a non-statistically significant aOR 2.21 (95% CI 0.90-5.54) and 

glucocorticoid at any dose has been moderately attenuated to aOR 2.85 (95% CI 

1.08-8.36). This represents the importance of increased power to limit the 

impact of spurious findings (Rutherford et al., 2021). With added power in the 

current study, it was possible to establish that a dose threshold for 

glucocorticoids likely exists: risk was not clearly present at doses up to 5 mg per 

day prednisolone equivalents, but was present above this, though the precise 

threshold at which risk increases and the shape of such a relationship remains to 

be determined. 

For our study and others, it is important to view these findings as associations, 

which can also be considered prognostic. Determining causal associations was 

not a stated aim of the study, however it is possible that associations detected 

may represent causality. While these data may support this, studies with specific 
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causal inference methodology should be used to provide clearer evidence. For 

the immunosuppressants associated with increased risk, a clear potential 

confounder is disease activity, though including this in the models did not 

substantially change the direction or magnitude of any reported association. 

Glucocorticoids were reported in the current study as prognostic for severe 

disease. Glucocorticoids have a multitude of effects across the immune system 

and are considered to lead to infection susceptibility (Cain and Cidlowski, 2017). 

High dose glucocorticoids are reported to be associated with increased SARS-

CoV-2 viral shedding duration, similar to other coronaviruses (Johnson and 

Vinetz, 2020; Li et al., 2020). The glucocorticoid finding may appear to be in 

conflict with the results of the RECOVERY platform trial of dexamethasone 

(RECOVERY Collaborative Group et al., 2020). The RECOVERY trial showed that 

low-dose dexamethasone conferred reduced mortality risk in unwell patients 

hospitalised with Covid-19. Importantly, however, the groups that derived 

benefit in this trial were those who needed supplemental oxygen therapy. The 

point estimate for individuals who did not require additional oxygen indicated 

that dexamethasone treatment potentially could result in increased mortality, 

though this was not a statistically significant finding. It may be that, during the 

earlier stages of Covid-19, before excess immune system activation, that 

glucocorticoid are harmful, as reported in the current study and other cohorts of 

individuals with IMID. There is limited literature that elaborates on potential 

mechanisms for the contribution of cyclophosphamide to severe Covid-19, but 

this effect is not unexpected given the well-recognised risk of infections with 

cyclophosphamide-based treatment regimens in AAV (Kronbichler et al., 2015). 

These data are generalisable to individuals with systemic vasculitis, particularly 

AAV, and severe Covid-19. Important caveats include that the large majority of 

individuals in this study had AAV, so the implications of the data for those with 

non-AAV vasculitis are less clear. It is also necessary to take into consideration 

the severity of Covid-19 in this cohort. Many individuals, including some with 

systemic vasculitis, who experience Covid-19 will have a mild disease course. 

The severe disease experienced by this group is reflected in the high proportion 

of hospitalisation at 91%. Due to study design, it is not possible to determine the 

incidence of either Covid-19 in vasculitis patients or the incidence of severe 

disease following infection with SARS-CoV-2 in vasculitis patients. 
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6.7 Conclusion 

This study was the first to systematically describe a group of patients with 

systemic vasculitis who contracted Covid-19. The presenting clinical features 

reflected those of the general population without IMID. Glucocorticoids and 

cyclophosphamide were associated with severe Covid-19, but the impact of 

other immunosuppressants was less clear. Our findings were consistent with a 

possible effect of rituximab, reported in other subsequent studies. Azathioprine 

appears to be less significant in its association with severe Covid-19, also 

reflected by subsequently published literature. During the Covid-19 pandemic, 

governments worldwide advised those considered most vulnerable to severe 

Covid-19 to adhere to stringent social isolation guidelines. This included those 

with systemic vasculitis. These data highlight that predictive variables exist, 

which in combination with other data, could better inform individual risk. In 

future, risk stratification should be considered to help guide the management of 

vulnerable individuals with respect to their individualised risk of severe 

infections, such as Covid-19. 

6.8 Summary 

This chapter characterised Covid-19 in a severely affected group of individuals 

with an established diagnosis of systemic vasculitis. Data was collected by 

dedicated clinicians across the UK and Ireland. Symptom and complication 

profiles were established. Potential prognostic factors were identified: any 

immunosuppressive therapy, glucocorticoids and cyclophosphamide. The next 

chapter will seek to explore the underlying biology of a highly important and 

novel prognostic factor – SARS-CoV-2 vaccination in individuals with AAV. 
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7 Immunological response to SARS-CoV-2 
vaccination in individuals with ANCA-associated 
vasculitis treated with rituximab 

7.1 Overview 

In this thesis so far, it has been established that severe infections are common in 

individuals with AAV, certain parameters such as the presence of immune-

suppressing medication such as glucocorticoids have the potential to be utilised 

as predictive factors for severe infection and that multivariable predictive scores 

can be developed to predict severe infection related outcomes. In the previous 

chapter, the focus shifted to Covid-19, a novel infection with severe implications 

for individuals with vasculitis. Potential predictive factors for severe disease 

were explored. In this chapter, the antibody and cellular immune response to 

SARS-CoV-2 vaccination will be explored – factors with potential predictive 

ability in the vaccination era. 
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7.2 Abstract 

7.2.1 Background 

SARS-CoV-2 vaccination has been shown to be highly effective with respect to 

reducing Covid-19 incidence, severe Covid-19 and Covid-19 related death in the 

general population. The effectiveness of vaccination in vulnerable populations, 

such as those exposed to immunosuppressive therapies for chronic conditions, is 

unknown. Rituximab is frequently used for treatment of AAV, but impaired 

humoral response following influenza vaccines has been reported with this 

therapy and therefore concerns exist with respect to immunogenicity to SARS-

CoV-2 vaccines. In this study, the immune response to the ChAdOx1 (Astra 

Zeneca) vaccine in rituximab treated AAV patients was evaluated. 

7.2.2 Methods 

This study reports data from participants of the OCTAVE trial who had AAV, all of 

whom were exposed to rituximab. OCTAVE was a multicentre, multi-disease 

prospective cohort trial which included participants with various 

immunosuppressed diseases. All participants received a SARS-CoV-2 vaccination 

as part of routine NHS care. Blood was sampled for IgG response to SARS-CoV-2 

spike antigen (anti-S) and IFN𝞬 T cell responses to SARS-CoV-2 antigens at 

baseline (where possible), immediately before the second SARS-CoV-2 vaccine 

dose and 28 days post-second dose. A control group included participants from 

the UK PITCH (Protective Immunity from T cells in Healthcare workers) study. 

7.2.3 Results 

Of 2,686 cases recruited to OCTAVE, 30 had AAV and 225 were healthy controls. 

Median age of the AAV group was 55.3, 15 (50.0%) were female. After the second 

SARS-CoV-2 vaccine dose 27.6% (8/29) of AAV patients achieved anti-S 

seropositivity, compared to 98.7% (222/225) of healthy controls. Three (10.3%) 

individuals with AAV achieved a titre greater than that of the lowest decile of 

healthy controls. After the second dose, the median SARS-CoV-2 specific T cell 

response in AAV participants was 104 IFN𝞬 secreting T cells / 106 peripheral 

blood mononuclear cells (PBMC). The median T cell response was numerically 

higher in the AAV group when compared to healthy controls, but was not 
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significantly different (z-score -1.039, p = 1.00). Time since rituximab did not 

significantly influence immune response. Over the subsequent 12 months, 10 

(33.3%) individuals in the AAV group had a positive SARS-CoV-2 test. 

7.2.4 Conclusion 

Compared to a healthy population, participants in OCTAVE with AAV previously 

exposed to rituximab had a severely attenuated antibody response, but a 

comparable T cell response. Therefore, AAV patients have a partial immune 

response to vaccination. Enhanced vaccination schedules and additional self-

protective measures may be of value to this population. 

  



151 

 

7.3 Introduction 

7.3.1 SARS-CoV-2 vaccination 

From the start of the Covid-19 pandemic, national efforts were made to rapidly 

design and deliver vaccines against SARS-CoV-2. By late 2020, landmark trials of 

SARS-CoV-2 vaccination, which enrolled tens of thousands of participants, were 

reported. These demonstrated clear efficacy at reducing symptomatic Covid-19 

(Polack et al., 2020; Voysey et al., 2021). Subsequent national surveillance 

studies confirmed the success of SARS-CoV-2 vaccination as a mass public health 

intervention. Vaccination was shown to be highly effective in reducing the 

incidence of asymptomatic and symptomatic SARS-CoV-2 infection, severe Covid-

19 and Covid-19 related death (Haas et al., 2021; Pritchard et al., 2021). These 

efforts transformed the global experience of the Covid-19 pandemic, however 

subjects in the original SARS-CoV-2 vaccine trials did not have known chronic 

conditions and were not exposure to immunosuppressive therapies. Therefore 

the efficacy and effectiveness of SARS-CoV-2 vaccination in individuals with 

immune-suppressive conditions was not clear. 

7.3.2 Vaccination in AAV and other immune-suppressive 

conditions 

It is well recognised that individuals with immunosuppressive states are not only 

more susceptible to severe infections but also have attenuated vaccine 

responses (Agarwal et al., 2012). This is particularly true with respect to AAV, 

who are typically more intensely immunosuppressed than in other immune-

mediated inflammatory diseases (IMID). After the introduction of SARS-CoV-2 

vaccination, reports emerged of reduced antibody response in 

immunosuppressed individuals. One report found that 26% of individuals with 

autoimmune rheumatic disease did not mount a detectable antibody response 

(Boyarsky et al., 2021). Latterly a systemic review was performed to inform 

guidelines from the European Alliance of Associations for Rheumatology (EULAR) 

relating to management of rheumatic conditions in the context of Covid-19. This 

review found that the median detectable antibody response in populations of 
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individuals with rheumatic and musculoskeletal diseases was 88%, compared to 

the median response of 100% in control populations (Kroon et al., 2022). 

The importance of neutralising antibodies against SARS-CoV-2 for prevention of 

severe disease has become increasingly apparent (Khoury et al., 2021; Chvatal-

Medina et al., 2021). Of particular concern to AAV clinicians and patients is that 

the intense immunosuppression required to prevent early mortality due to active 

vasculitis suppresses the humoral immune system’s ability to produce antibodies. 

While this includes ANCA-autoantibodies which promote AAV disease activity and 

likely plays a role in controlling active vasculitis, it also included antibodies 

directed at fighting microbes, whether derived from natural infection or 

vaccination (Merino-Vico et al., 2021). AAV patients who have recently been 

treated with rituximab are likely most vulnerable. Rituximab is a chimeric 

monoclonal antibody which targets a key component of the humoral immune 

system – B-cells. Rituximab is directed against CD20, a cell surface protein 

present on immature and mature B-cells but not expressed on stem cells or fully 

differentiated plasma cells. Rituximab leads to substantial B-cell depletion 

through antibody dependent cell mediated cytotoxicity and complement 

dependent cytotoxicity, which result in CD20-positive B-cell lysis, and through 

augmentation of CD20-positive B-cell apoptosis (Shaw et al., 2003). Plasma cells 

are not directly targeted by rituximab, which can lead to maintenance of ANCA 

autoantibody production, however the mechanism by which rituximab 

ameliorates disease may relate to reducing the role of increased levels of B cell 

cytokines in AAV and the role of dysregulated B cell populations (Merino-Vico et 

al., 2021). Ultimately rituximab typically depletes ANCA autoantibodies 

substantially and there are data to suggest that other general antibodies are 

depleted to a much lesser extent (Ferraro et al., 2008). Given that neutralising 

antibodies are likely a crucial immune component in combating SARS-CoV-2, that 

rituximab depletes the humoral immune response was concerning for a 

diminished antibody response to SARS-CoV-2 vaccination. This phenomenon has 

been observed in rituximab treated patients with respect to other vaccines, such 

as influenza vaccines (Eisenberg et al., 2013). A more recent report of AAV 

patients previously treated with rituximab described immunological response to 

SARS-CoV-2 vaccination. This included 11 patients who remained B-cell depleted 

and 8 with recovered B-cell status. The authors found that none of the B-cell 
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depleted group mounted a humoral response, while all the B-cell recovered 

group did. Notably this study examined the immune response following the first 

vaccine dose only (Marty et al., 2022). One report of 15 AAV patients treated 

with rituximab which examined the response to booster doses after the initial 

vaccine course did not provide much additional reassurance. This showed that 

the majority (eight patients) did not mount an antibody response. Most of those 

individuals remained B-cell deplete, while most of the responders had B-cell 

reconstitution at the time of booster (Kant et al., 2022). Similarly, in the 

broader context of rheumatic and musculoskeletal diseases, the EULAR 

systematic review found consistent evidence across multiple studies that 

rituximab substantially impacted the antibody response to SARS-CoV-2 

vaccination. Two studies also showed that an increased time interval since 

rituximab administration was associated with an improved antibody response 

(Kroon et al., 2022). 

While evidence has emerged of reduced immunological response to SARS-CoV-2 

vaccination in immunosuppressed groups, many of these studies were limited by 

cross-sectional design, lack of a non-disease comparator group, heterogeneity in 

sampling timepoints, variation in immunological assays and small sample size. 

The EULAR systematic review found that individuals with rheumatic 

musculoskeletal disease did have a reduced antibody response to vaccination, 

however it highlighted that most of the studies had a high or unclear risk of bias 

(Kroon et al., 2022). 

7.3.3 Immunological response to SARS-CoV-2 vaccination 

SARS-CoV-2 engages with the host cell via the ACE2 receptor (Jackson et al., 

2022). Specifically, the receptor-binding domain (RBD) on the S1 subunit of the 

spike protein binds to ACE2 to gain entry (Wrapp et al., 2020). Antibodies 

directed at the RBD tend to be efficient with respect to viral neutralisation 

(Premkumar et al., 2020). SARS-CoV-2 vaccines aim to induce an immunological 

response to the whole spike protein, crucially including the RBD. Assays assessing 

anti-SARS-CoV-2 spike protein antibodies (anti-S) typically detect antibodies 

directed specifically at the RBD (Roche, 2023b). 
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Measuring immune response to specific individual SARS-CoV-2 antigens can 

determine whether the immune response is due to natural infection or 

vaccination. Natural Covid-19 infection results in an immune response to the 

main SARS-CoV-2 antigens including spike, nucleocapsid and membrane proteins. 

In immunocompetent hosts both a humoral and T cell response occur to these 

antigens. SARS-CoV-2 vaccines result in the recipient being exposed to spike 

protein, but not other SARS-CoV-2 antigens. Therefore, an immunological 

response to spike protein (either anti-spike antibodies (anti-S) or a spike specific 

T cell response), can be caused by either natural infection or vaccination. An 

immunological response to other antigens (whether antibody or T cell), can only 

be caused by natural infection. 

7.3.4 Aim 

Observational Cohort trial T cells, Antibodies and Vaccine Efficacy in SARS-CoV-2 

(OCTAVE), was a prospective, multicentre study undertaken to determine the 

immunological response to SARS-CoV-2 vaccination in immunosuppressed groups, 

across a wide spectrum of clinical conditions. AAV patients who had recently 

received rituximab were one of those disease groups, recruited by the OCTAVE 

team at University of Glasgow. This study aims to utilise the AAV subset of the 

OCTAVE study to characterise the humoral and cellular immune response to 

SARS-CoV-2 vaccination in AAV patients recently treated with rituximab, with 

comparison to a healthy control group from OCTAVE. We sought to evaluate the 

impact on immune response of recency of rituximab and to determine if there 

was a relationship between the magnitude of humoral response and cellular 

response. A secondary objective was to determine the number of AAV patients 

who went on to have virologically confirmed SARS-CoV-2 infection and to 

identify potential predictive factors. 

7.4 Methods 

7.4.1 OCTAVE study design and ethics 

This study is a sub-study of the OCTAVE trial. OCTAVE was a multicentre 

prospective cohort trial including participants from multiple disease groups, all 

of whom were immunosuppressed. It evaluated the immune response to SARS-

CoV-2 vaccination in individuals who were receiving this intervention as part of 
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regular care. The study was jointly led by teams from the Universities of 

Glasgow, Birmingham, Oxford, Sheffield and Imperial College London. The 

sponsor was the Cancer Research UK Clinical Trials Unit (CRCTU) at the 

University of Birmingham. Approvals were granted by the UK Medicines and 

Healthcare Products Regulatory Agency (MHRA) and by the London and Chelsea 

Research Ethics Committee (REC ref.: 21/HRA/0489) in February 2021. Study 

registration details are available on the International Traditional Medicine 

Clinical Trials Registry at the following link: ISRCTN12821688. The trial protocol 

was amended on eight occasions, although except for the first amendment, none 

of the amendments affected the current sub-study. The first amendment 

reflected an alteration to inclusion criteria which allowed participants to be 

included in the deep immunophenotyping group (described below), after 

receiving the first Covid-19 vaccination dose but before the third (booster) dose, 

as opposed to only recruiting those who had not received any vaccination dose. 

More detailed information regarding amendments is available in the initial 

published OCTAVE study article (Barnes et al., 2023). 

7.4.2 Study participants 

All individuals taking part in the study provided written, informed consent. A 

variety of disease groups were included, all of whom were immunosuppressed. 

This sub-study focused on the participants with AAV, all of whom were recruited 

by the team based at University of Glasgow (UofG). Only patients with AAV who 

had been treated with rituximab within the previous 12 months to the time of 

Covid-19 vaccination were recruited for this disease group. A detailed 

description of the other disease groups recruited as part of OCTAVE is available 

in the main OCTAVE article (Barnes et al., 2023). Adult and paediatric patients 

were recruited to the main study, however only adult clinical sites recruited as 

part of the UofG team. AAV patients were recruited in mid-February 2021. 

Inclusion criteria for the AAV disease group participating in OCTAVE were: 

• Covid-19 vaccination was planned as part of routine National Health 

Service (NHS) care 

• The second vaccine dose had not yet been administered 

https://www.isrctn.com/ISRCTN12821688
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• Expected to live for at least a further six months 

• Have a diagnosis of AAV according to international standards and had 

received treatment with intravenous rituximab within the previous 12 

months 

Exclusion criteria (for the deep immune phenotyping group) initially included 

having received an initial vaccination dose and had not had usable blood samples 

taken as part of another study available, however this was revised in line with 

the amendment described above in section 7.4.1. 

Across all disease phenotypes, the study recruited 2,686 participants. The deep 

immune phenotyping group (described further below) included 674 of these 

participants. All AAV participants were in the deep immune phenotyping group. 

The other group was labelled the ‘serology cohort’. 

7.4.3 Description of the deep immune phenotyping group 

All patients with AAV in the OCTAVE study were entered into the deep immune 

phenotyping group. This was characterised by more intensive sampling. The deep 

immune phenotyping group were sampled at the following time points: before 

the first vaccine dose (baseline – if logistically possibly), before the second 

vaccine dose, 28 days after the second vaccine dose (plus or minus 3 days), 6 

months after the second vaccine dose and 12 months after the first vaccine dose 

(with closest feasible proximity to these time points if not otherwise specified). 

Samples were taken for interferon gamma (IFNγ) T cell response to a selection 

of SARS-CoV-2 antigens (T-cell response, Oxford Immunotec assay) as well as 

samples for anti-SARS-CoV-2 antibodies (Roche Elecsys®) – these were the same 

as those taken for the serology group and are described below. Additional 

samples including blood and saliva were taken for assays which were to be 

decided upon as more information regarding the Covid-19 immune response 

emerged. The serology group was sampled at 28 days following the second 

vaccine dose, 6 months after the second vaccine dose and 12 months after the 

first vaccine dose. Sampling was performed in NHS clinical areas and samples 

were stored and transferred in line with local clinical policies and Human Tissue 

Authority guidance. 
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7.4.4 Baseline characteristics 

Data was collected locally on a paper format and then transcribed to a UofG 

clinical database held on a secure server in line with local data protection 

policies. The data was then submitted to the sponsor which captured the data 

using a REDCap (Research Electronic Data Capture) database held at the 

University of Birmingham CRCTU. Baseline data included age, sex, AAV diagnosis, 

ANCA autoantibody titre, AAV disease duration, previous or current renal 

involvement (defined as per the Birmingham Vasculitis Activity Score criteria), 

eGFR in mL/min/1.73 m2 (using the CKD-EPI formula), medication history and 

previous Covid-19 infection. Specific medication history reported for AAV 

participants included time since the last administration of rituximab, 

glucocorticoid dose in daily prednisolone equivalents and the presence of 

concomitant immunosuppressive treatment. Baseline data for health controls 

(HC) were derived from the main OCTAVE article. 

7.4.5 Vaccine 

SARS-CoV-2 vaccines were administered in this study as part of routine NHS care 

and in accordance with UK national legislation and guidance. The timing of 

vaccination was in line with routine care as per national guidance. This was done 

both either by NHS clinical staff or OCTAVE study investigators. For the current 

study UofG OCTAVE study investigators administered the vaccine in an NHS-ran 

facility. OCTAVE was registered with the UK Medicines and Healthcare products 

Regulatory Agency (MHRA; UK MHRA clinical trial authorization number: 

21761/0365/001) given that this healthcare intervention was being administered 

to new patient groups. Vaccines utilised in OCTAVE were BNT162b2 

(Pfizer/BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) vaccines. At UofG 

clinical study sites, only ChAdOx1 nCoV-19 vaccines were administered, 

therefore all participants in the current study received this vaccine. 

7.4.6 Immunologic outcomes, sampling and assays 

Outcomes for this study included the magnitude of immunological response to 

SARS-CoV-2 vaccination, both humoral and T cell mediated, as described below. 
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7.4.6.1 Anti-SARS-CoV-2 Antibodies 

This included anti-SARS-CoV-2 IgG antibodies against the spike (anti-S) and the 

nucleocapsid (anti-N) antigens of SARS-CoV-2. The assay utilised for antibody 

testing was the Roche Elecsys® immunoassay. This electro-chemiluminescence 

immunoassay quantifies antibodies to SARS-CoV-2 spike protein RBD in serum or 

plasma. The assay employs a recombinant protein which mimics the antigen and 

utilises a double-antigen sandwich method. The range of detectability of the 

assay encompasses 0.4 – 250 U/mL. Less than 0.8 U/mL is considered non-

reactive, greater than or equal to this threshold is considered reactive (Roche, 

2023b). An anti-S sub-optimal response threshold was calculated as the upper 

bound of the lowest decile in a healthy control cohort as part of the main 

OCTAVE analysis, this threshold was 380 U/mL. Samples were collected in serum 

separator tubes. The methods relating to the anti-N assay are the same, though 

for result interpretation less than 1 U/mL is considered non-reactive, while 

greater than or equal to this threshold is considered reactive (Roche, 2023). For 

illustration purposes, a suboptimal response threshold for anti-N was estimated 

from published reports at 10 U/mL (Movsisyan et al., 2022). These assays were 

performed by the UK Health Security Agency laboratories at Porton Down. 

7.4.6.2 SARS-CoV-2 T cell response 

T cell response was quantified with the T-SPOT Discovery SARS-CoV-2 assay by 

Revvity (formerly Oxford Immunotec; https://www.revvity.com/). This assay is a 

modified ELISPOT assay. This chapter reports the T cell response to the spike 

protein (whole spike) and nucleocapsid protein. Other T-SPOT assays were 

performed but are not reported in detail in this study. The other assays 

performed included response to individual spike protein subunits (S1 and S2) and 

membrane protein.  Initially peripheral blood mononuclear cells (PBMCs) were 

isolated from whole blood. Then a specific quantity of PBMCs was stimulated 

with a pool of SARS-CoV-2 peptides, to which the cells release interferon gamma 

(IFNγ) if they are responsive to antigen stimulation. Labelled anti-IFNγ 

antibodies were then applied which react with released IFNγ. A detection 

reagent was then added which reacts with the labelled antibody. This reaction 

produces spots representing IFNγ secreting T cells which can then be quantified 

(Wyllie et al., 2021). The result was expressed as spot forming units (SFU) per 

https://www.revvity.com/
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106 PBMCs. Whole blood was collected for this assay in lithium heparin collection 

tubes.  

7.4.7 Clinical outcomes 

Death during follow-up was identified, this is reported alongside baseline 

characteristics, including stratification by time since rituximab. The occurrence 

of Covid-19 over the first year post vaccination was collated, defined as a 

positive SARS-CoV-2 test obtained as part of routine clinical care. The type of 

test for SARS-CoV-2 could include polymerase chain reaction (PCR) or point-of-

care antigen testing. Patient self-test data was not collected. 

7.4.8 Control group 

It was not possible for specific control data to be made available from the main 

OCTAVE study for the current sub-study, therefore references to control data 

are derived from the main OCTAVE published article. In the main study, non-

disease control data was obtained from the UK PITCH cohort and the UKHSA 

CONSENSUS cohort. This data was prospective, multi-centre and assessed 

immune response to both Covid-19 natural infection and SARS-CoV-2 vaccination. 

In PITCH, blood samples were obtained 28 days (plus or minus 7 days) after the 

second vaccine dose (Angyal et al., 2022). In CONSENSUS, blood samples were 

obtained at 0, 3, 6, 9, 12, 15 and 20 weeks following the first vaccine dose 

(Amirthalingam et al., 2021). OCTAVE participants were matched to controls by 

age, sex, previous Covid-19 and vaccine type. Matching was performed using a 

proportional matching method with four analysis groups created to match the 

following groups: the complete OCTAVE dataset, the deep immunophenotyping 

group, the serology group and participants recruited specifically with renal 

disease. Controls referred to in this study are from the deep immunophenotyping 

group controls, given that all AAV patients in OCTAVE were part of the deep 

immunophenotyping group. 

7.4.9 Bias 

Selection bias was an important consideration, as for any cohort study. The 

study protocol was such that patients were invited to receive the vaccination in 

a clinical facility that may have been more difficult for them to access. As a 
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result, some frail patients or patients with mobility issues may have been less 

inclined to participate. Efforts were made to minimise inconvenience to 

participants. Reimbursement was made for travel expense and transportation 

was arranged for participants where requested. Availability of reimbursement 

was clearly communicated to participants and included on study participant 

information documentation. Crucially, this study recruited only AAV patients 

who had recently (within the past year) been treated with rituximab. Therefore 

the results will not necessarily extrapolate to AAV patients not treated with 

rituximab.  

Due to the rarity of AAV, recruitment to clinical studies is typically challenging. 

Small numbers in an arm of a study increase the probability of type one and type 

two errors (detecting a spurious association and failing to detect a true 

association respectively). Due to anticipated relatively small numbers of 

participants, only univariable statistical analyses or analyses comparing two 

groups within the AAV cohort, without statistical adjustment for additional 

variables, were planned. As well as being statistically appropriate, this was also 

practically required due to individual level control data not being available for 

this sub-study. This lack of statistical adjustment would potentially result in 

certain confounding variables impacting upon the direction or magnitude of 

results. 

Information bias, where measurement of outcomes varies across groups, is 

potentially of relevance. As described above, there were differences with the 

timing of blood sampling for OCTAVE participants compared to controls. Some 

controls may have been tested earlier than OCTAVE participants, potentially 

resulting in a decrease in the magnitude of the control outcome. 

Confounding is a potential source of bias. In the main OCTAVE study, 

participants were matched to controls as described in section 7.4.8. It was not 

possible to do specific matching for AAV participants in the current study, 

therefore confounding may impact upon the magnitude of difference between 

groups. Potential important confounders include age, previous infection and 

kidney function. Age is now recognised as a major determinant of antibody 

response in SARS-CoV-2 infection and SARS-CoV-2 vaccination, but unusually with 

different effect directions. A systematic review found that in natural infection, 
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age was positively correlated with neutralising antibody response, while the UK 

REACT study found that for both BNT162b2 and ChAdOx1 vaccines antibody 

positivity decreased with age (Chvatal-Medina et al., 2021; Ward et al., 2022). 

Previous SARS-CoV-2 infection increased antibody response to vaccination (Ward 

et al., 2022). In OCTAVE, matching was not performed for kidney function. Low 

kidney function is recognised as having an adverse impact upon immune response 

to SARS-CoV-2 vaccination and upon the likelihood of occurrence of Covid-19 and 

severe Covid-19 following vaccination (Carr, Kronbichler, et al., 2021; Barda et 

al., 2021). 

The Hawthorne effect, whereby participant behaviour can be influenced by 

being observed as part of the study, may have impacted the SARS-CoV-2 

infection outcome. OCTAVE participants were informed that the reason for their 

participation was that they had an underlying condition which resulted in 

susceptibility to increased infection severity. As a result, participants may have 

taken additional protective measures on a personal basis to avoid potential 

exposure to SARS-CoV-2. The healthy control group would not necessarily have 

changed their behaviour in the same way as immunosuppressed individuals in 

OCTAVE. Furthermore, many of the control group were health care workers who 

would have had substantial and unavoidable occupational exposure risk relating 

to SARS-CoV-2. For this reason, comparisons between the AAV group and healthy 

controls are not drawn for SARS-CoV-2 infection in this study. Due to the 

potential Hawthorne effect the incidence of SARS-CoV-2 infection in this study 

should be interpreted with caution as it may underestimate the true population 

incidence of SARS-CoV-2 in vaccinated AAV patients. 

7.4.10 Study size 

Study size was determined by the maximal number of participants with AAV who 

had received rituximab within the prior 12 months who could be recruited to the 

sub-study. Specific sample size calculations were not performed.  

7.4.11 Patient and public involvement 

In the context of the Covid-19 pandemic, there was reduced time available for 

study development and approvals before patients received vaccination as part of 
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routine care. This resulted in a short window for recruitment and therefore 

limited opportunity for patient and public involvement prior to the study 

commencing. However, the Trial Management Group at the University of 

Birmingham includes patient and public representatives, who were involved in 

the development of the protocol. Specific local patient and public involvement 

was not possible for the current sub-study. 

7.4.12 Statistical methods 

Baseline characteristics were presented as number and percentage for 

categorical data. Continuous baseline data was presented as median (IQR). 

Immunological result data was presented as both mean and median in tabular 

form. For anti-S data, the number of individuals who achieved a titre above the 

suboptimal response threshold (≥ 380 IU/mL, described above in section 7.4.6.1) 

was displayed along with percentage. Relevant plots were annotated with this 

threshold. Similarly, a suboptimal dose threshold annotation was added to 

relevant plots for anti-N (≥ 10 IU/mL, see section 7.4.6.1). For pre second dose 

anti-N titres, most values (24) were undetectable. If zero was used as the value, 

this would have resulted in a distorted plot on the transformed log scale (as log 

of zero is undefined). Therefore, for plots with zero values, the lowest titre 

achieved before or after booster (0.0694 IU/mL) was used to replace zero 

values, zero on the non-log scale was used for all other purposes. Missing data is 

displayed in the relevant tables, either within the table or the table caption. 

Fisher’s exact test was used to compare proportions of categorical outcome 

between different groups. The Wilcoxon test was used to test for difference 

between two groups of continuous variable observations. Visual inspection, 

Quantile-Quantile (QQ) plots and Shapiro-Wilk tests were used to confirm that 

the data was not normally distributed. The Pearson correlation coefficient (PCC) 

and associated p-value was calculated to assess the relationship between two 

continuous variable observations. For plots comparing two groups of continuous 

variable observations, boxplots with overlying scatter plots were used. Two 

versions of each of these plots are presented – one with a jitter effect applied to 

the scatter points, this disperses the points laterally and allows all data points to 

be visualised. The second plot is not jittered, but instead has paired lines – this 

enables the reader to visualise the direction and magnitude of change for 

individual participant antibody titres before and after the second vaccine dose. 
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For survival data, Kaplan-Meier curves were used. Hazard ratios, confidence 

intervals and p-values were derived using univariable Cox proportional hazards 

models. The proportional hazards assumption was check using scaled Schoenfeld 

residuals. All analyses were conducted in R (R version 4.2.2, http://www.r-

project.org) with packages including tidyverse, survival and finalfit. 

  

http://www.r-project.org/
http://www.r-project.org/
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7.5 Results 

7.5.1 Baseline characteristics 

The OCTAVE study recruited 2,686 individuals, 30 of whom had AAV and had also 

received rituximab therapy within 12 months prior to Covid-19 vaccination. 

Recruitment for the AAV group was very high, with very few individuals declining 

participation (fewer than five individuals declined). Reasons cited for not 

participating included frailty and lack of mobility. The baseline characteristics of 

the group, including stratification according to recency of rituximab is shown in 

Table 7-1. Rituximab recency is divided into two groups: those who received 

rituximab within six months prior to vaccination (RTX 6 months) and those who 

received rituximab within six to twelve months prior to vaccination (RTX 6-12 

months). The median age of the whole AAV cohort was 55.3 years. Those who 

received rituximab more recently had a younger median age (46.4 versus 58.5). 

Half of the whole cohort were female. The group who received rituximab more 

recently had a lower percentage of females (38.5% versus 58.8%). In the whole 

cohort the majority of patients had a vasculitis diagnosis of GPA, the remainder 

were AAV not specified. Most (25 individuals, 83.3%) were anti-PR3 positive, 

three (10%) were anti-MPO positive, one (3.3%) was ANCA-autoantibody 

negative, while 1 (3.3%) had unknown ANCA autoantibody status. There was a 

large overlap between those who had GPA and those who were anti-PR3 positive 

(data not shown). The median disease duration was 3.1 years. Twelve individuals 

(40%) had renal involvement. The median time since rituximab was 175 days. 

The median glucocorticoid dose was 5 mg (daily prednisolone equivalents). Four 

patients (13.3%) were receiving concomitant immunosuppressive in addition to 

recent rituximab. Two patients (6.7%) died during follow-up, both of whom were 

in the group which received rituximab within 6 months prior to Covid-19 

vaccination. 

7.5.2 Antibody response 

Antibody response was evaluated before and after the second Covid-19 vaccine 

dose. The mean anti-SARS-CoV-2 spike antigen antibody response (anti-S) before 

the second dose was 5.15 IU/mL, compared to 172.15 IU/mL after the second 

dose (p=0.042, Wilcoxon test). The median anti-S response was 0.4 IU/mL before 
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and after, with 0.4 IU/mL essentially representing a completely negative test. 

Both before and after vaccination, the majority of study subjects had negative 

test results (i.e. below 0.8 IU/mL, represented by the thick grey line in the 

relevant figures). Only three (10.3%) patients of the 29 for whom data was 

available achieved a titre greater than the healthy control lower bound (380 

IU/mL = 2.58 on log scale in figures) after the second vaccine dose. None had 

achieved this titre before the second dose. These results are visualised in Figure 

7-1 A. and B. and tabulated in Table 7-2. When compared to the healthy control 

group from the main OCTAVE study, 8 of 29 (27.6%) AAV patients achieved 

seropositivity compared to 222 of 225 (98.7%) of healthy controls (p < 0.0001, 

Fisher’s exact test).  

Antibody response to anti-SARS-CoV-2 nucleocapsid antigen antibody (anti-N) 

was also evaluated before and after the second Covid-19 vaccine dose. The 

mean anti-N response before the second dose was 0.71 IU/mL, compared to 0.76 

IU/mL after (p<0.001, Wilcoxon test). The median anti-N before was 0.07 IU/mL 

and 0.09 IU/mL after. Notably, only six individuals had a detectable anti-N value 

prior to the second vaccine dose, five of whom were below the threshold for a 

positive test. The remainder of the cohort had a “not detected” value 

substituted with the lowest detected value in the study for anti-N to enable 

visualisation and hypothesis testing, this is discussed further in the methods and 

results sections. Crucially, while statistically significant these mean and median 

results are all negative meaning they are unlikely to be biologically or clinically 

significant. One patient had an anti-N response that was positive (greater than 1 

IU/mL, zero on the log scale in the figures) and also greater than 10 IU/mL (1 on 

the log scale in figures), an approximate figure representing the lower bound of 

a typical positive anti-N response for non-immunosuppressed individuals, 

discussed further in the methods section. These results are visualised in Figure 

7-1 C. and D. and tabulated in Table 7-3. 

7.5.3 T-cell response 

Mean IFNγ T cell response to full spike protein (T-cell response, Oxford 

Immunotec assay) was 118.13 T cells per 106 PBMCs before the second vaccine 

dose and 183.31 T cells per 106 PBMCs after the second vaccine dose (p = 0.239, 

Wilcoxon test). The median was 46 T cells per 106 PBMCs before and 104 T cells 
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per 106 PBMCs after. This is displayed graphically in Figure 7-2 A. and B. and 

tabulated in Table 7-4. The mean T-cell response to nucleocapsid was negative 

before and after the second vaccine dose in all participants (p = 0.188, Wilcoxon 

test). This is displayed graphically in Figure 7-2 C. and D. and tabulated in Table 

7-5. The T cell responses to the membrane protein and spike subunits were 

consistent with the above data and are not reported here. Individual level T cell 

response data for healthy controls was not available for the purposes of this sub-

study. In the main OCTAVE study, a z-score was calculated indicating that the 

AAV group had a numerically higher T-cell response compared to healthy 

controls, though this was not statistically significant (z-score -1.039, p = 1.00). 

7.5.4 Immunological response split by time since rituximab 

For the group which received rituximab within 0-6 months prior to Covid-19 

vaccination (RTX 0-6 months), the mean post-second vaccine anti-S response was 

6.7 IU/mL, while for the group which received rituximab 6-12 months prior to 

vaccination (RTX 6-12 months), the mean anti-S response was 289.0 IU/mL (p = 

0.187, Wilcoxon test). The median response was 0.4 IU/mL for both groups. This 

is displayed graphically in Figure 7-3 A. and B. and tabulated in Table 7-6. 

The mean full spike T-cell response for RTX 0-6 months was 252.3 T cells per 106 

PBMCs, with the mean RTX 6-12 response was 134.6 T cells per 106 PBMCs (p = 

0.138, Wilcoxon test). The median response was 126 T cells per 106 PBMCs for 

RTX 0-6 months and 76 T cells per 106 PBMCs for RTX 6-12 months. This is 

displayed graphically in Figure 7-3 C. and D. and tabulated in Table 7-7. 

7.5.5 Correlation of antibody and T-cell response 

No significant correlation was established between anti-S and full spike T-cell 

response for the whole cohort (R = -0.1, p = 0.59, Pearson correlation coefficient 

[PCC]). This was also not significant when the same relationship was examined 

for the RTX 0-6 months group (R = -0.17, p = 0.54, PCC) or the RTX 6-12 months 

group (R = 0.072, p = 0.81, PCC). This is displayed graphically in Figure 7-4. 
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7.5.6 SARS-CoV-2 positivity 

In the cohort overall, 10 individuals (33.3%) had a positive test for SARS-CoV-2 

taken as part of routine clinical care over one year. As described in Table 7-8, 

individuals who had a positive test were younger, tended to have better renal 

function and tended to have had rituximab more recently. They tended to have 

a poorer antibody response to vaccination, but a better T-cell response to 

vaccination. These differences were not necessarily statistically significant, 

univariate associations were determined by survival analysis in Table 7-9 and 

visualised in Figure 7-5 to Figure 7-9. Older people, namely those aged 50 years 

or older compared to those below the age of 50 years, were at lower risk of 

SARS-CoV-2 infection with univariable hazard ratio (HR) 0.16 (0.04-0.61, 

p=0.008). This was similarly reflected when age was considered as a continuous 

variable with HR 0.93 (0.89-0.97, p=0.001). Better renal function was associated 

with higher risk of contracting SARS-CoV-2. eGFR greater than or equal to 90 

ml/min/1.73m2 were carried a HR of 7.86 (1.66-37.24, p=0.009), with the 

referent being those with eGFR below 90 ml/min/1.73m2. There were no 

significant relationships identified between SARS-CoV-2 infection and the other 

examined variables which included sex, time since rituximab, anti-S level and T-

cell response. Both immunological variables were measured 28 days following 

the second vaccine dose. 
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Table 7-1 | Baseline characteristics and mortality stratified by time since rituximab 

  RTX within 6 months RTX within 6-12 months 

Total N (%)  13 (43.3) 17 (56.7) 

Age in years; median (IQR)  47.4 (37.8 to 57.6) 58.5 (53.7 to 74.9) 

Female sex; number (%) 5 (38.5) 10 (58.8) 

AAV diagnosis; number (%) GPA 11 (84.6) 14 (82.4) 

 AAV unspecified 2 (15.4) 3 (17.6) 

ANCA autoantibody; number (%) MPO 1 (7.7) 2 (11.8) 

 PR3 11 (84.6) 14 (82.4) 

 negative 0 (0) 1 (5.9) 

 unknown 1 (7.7) 0 (0) 

Disease duration; median (IQR)  5.3 (1.0 to 11.3) 3.0 (1.4 to 6.8) 

Renal involvement  5 (38.5) 7 (41.2) 

eGFR (CKD-EPI – mL/min/1.73 m2); 
median (IQR) 

 91.2 (75.1 to 116.8) 77.2 (59.9 to 101.3) 

Time since RTX; median (IQR)  90.0 (60.0 to 96.0) 214.0 (186.0 to 355.0) 

Glucocorticoid dose; median (IQR)*  5.0 (5.0 to 10.0) 5.0 (0.0 to 6.0) 

Concomitant immunosuppression; number (%) 3 (23.1) 1 (5.9) 

Previous Covid-19 infection 2 (15.4) 0 (0) 

Death occurred in follow-up; number (%) 2 (15.4) 0 (0) 

AAV = ANCA-associated vasculitis, eGFR = estimate glomerular filtration rate, GPA = 
granulomatosis with polyangiitis, HC = healthy controls, IQR = interquartile range, MPO = 
anti-myeloperoxidase antibody, PR3 = anti-proteinase 3 antibody, RTX = rituximab,  
*Data was missing for one patient with respect to glucocorticoid dose. There was no other 
missing baseline or mortality data. 
**Healthy control data was taken from the main OCTAVE manuscript (deep 
immunophenotyping control group), as described in the methods section. Age (years) was 
reported in categories: 15-44: 27 (13%), 45-64: 64 (30%), 66-74: 98 (47%), over 75: 21 (10%). 
eGFR data was not available for controls. There was no missing or unknown data for age, 
sex or previous Covid-19 infection.
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A.      B. 

 

C.      D. 

 

 
Figure 7-1 | Antibody response before and after second vaccine dose 
A. Individual titre (IU/mL) for anti-spike (anti-S) antibody. Anti-S antibody represents the antibody 
response to vaccination or natural infection. On logarithmic scale for improved visualisation. Jitter 
function applied to separate data points horizontally ensuring no overlap, therefore all data points 
are visible. The thick grey line represents the threshold for a positive test (0.8 IU/mL = -0.1 on 
logarithmic scale), the thick black line represents the upper limit of the lowest decile of antibody 
response achieved in the healthy control comparator (380 IU/mL = 2.58 on logarithmic scale). 
p=0.042, Wilcoxon test. 
B. As per Figure 7-1 A, but with paired lines to enable the change for individuals to be visualised. 
Jitter function not applied as this would distort the apparent magnitude of change. 
C. As per Figure 7-1 A for anti-nucleocapsid (anti-N) antibody. Anti-N antibody represents the 
response to natural infection but does not become positive in response to vaccination alone in the 
absence of prior natural infection. The thick grey and black lines again represent the threshold for a 
positive test and a typical lower threshold that a non-immunosuppressed individual would achieve, 
respectively. The threshold for a positive test for anti-N is 1 IU/mL (0 on logarithmic scale)). 
P<0.001, Wilcoxon test (though importantly there is no clinically significant difference between 
these groups). 
D. As per Figure 7-1 B for anti-N antibody.  
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Table 7-2 | Anti-spike antibody titre before and after second vaccine dose 

Timing with 
vaccination 

n Missing Mean 
Anti-S 
(IU/mL)* 

Median 
Anti-S 
(IU/mL) 

N (%), 
Titre >= 
380 IU/mL 

Pre-second dose 30 0 5.15 0.4 0 (0) 

Post-second dose 30 1 172.15 0.4 3 (10.3) 

*p=0.042, Wilcoxon test 

Table 7-3 | Anti-nucleocapsid antibody titre before and after second vaccine dose 

Timing with 
vaccination 

n Missing Mean  
Anti-N 
(IU/mL)* 

Median 
Anti-N 
(IU/mL) 

Pre-second dose 30 0 0.71 0.07 

Post-second dose 30 1 0.76 0.09 

*p<0.001, Wilcoxon test 
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A.      B. 

 

C.      D. 

 

Figure 7-2 | T-cell response before and after second vaccine dose 
A. IFNγ T cell response to full spike protein (Oxford Immunotec assay). T-cell response to full spike 
protein represents the T-cell response to natural infection or vaccination. Presented on a standard 
numeric (i.e. non-logarithmic) scale, units are spot-forming units (SFU) per 106 peripheral blood 
mononuclear cells (PBMCs). Jitter function applied to separate data points horizontally ensuring no 
overlap, therefore all data points are visible. p = 0.239, Wilcoxon test. 
B. As per Figure 7-2 A, but with paired lines to enable the change for individuals to be visualised. 
Jitter function not applied as this would distort the apparent magnitude of change. 
C. As per Figure 7-2 A for T-cell response to nucleocapsid protein. This represents the response to 
natural infection, but does not become positive in response to vaccination alone in the absence of 
prior natural infection. 
D. As per Figure 7-2 B, but for T-cell response to nucleocapsid protein. p = 0.188, Wilcoxon test. 

 

Table 7-4 | Full spike T-cell response before and after second vaccine dose 

Timing with 
vaccination 

n Missing Mean T cells  
per 106 PBMCs* 

Median T cells  
per 106 PBMCs 

Pre-second dose 30 0 118.13 46 

Post-second dose 30 1 183.31 104 

*p = 0.239, Wilcoxon test 
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Table 7-5 | Nucleocapsid T-cell response before and after second vaccine dose 

Timing with 
vaccination 

n Missing Mean T cells  
per 106 PBMCs* 

Median T cells  
per 106 PBMCs 

Pre-second dose 30 0 5.2 0 

Post-second dose 30 1 1.52 0 

*p = 0.188, Wilcoxon test 
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A.      B. 

 

C.      D. 

 

Figure 7-3 | Immunological response after second vaccination split by and correlated with 
time since rituximab 
A. Individual titre (IU/mL) for anti-spike (anti-S) antibody, grouped according to rituximab within 0-6 
months versus 6-12 months prior to vaccination. Anti-S antibody represents the antibody response 
to vaccination or natural infection. On logarithmic scale for improved visualisation. Jitter function 
applied to separate data points horizontally ensuring no overlap, therefore all data points are 
visible. The thick grey line represents the threshold for a positive test (0.8 IU/mL = -0.1 on 
logarithmic scale), the thick black line represents the upper limit of the lowest decile of antibody 
response achieved in the healthy control comparator (380 IU/mL = 2.58 on logarithmic scale). p = 
0.187, Wilcoxon test. 
B. Log anti-S antibody titre (IU/mL) correlated with time since rituximab (days). 
C. IFNγ T cell response to full spike protein (Oxford Immunotec assay), grouped according to 
rituximab within 0-6 months versus 6-12 months prior to vaccination. T-cell response to full spike 
protein represents the T-cell response to natural infection or vaccination. Presented on a standard 
numeric (i.e. non-logarithmic) scale, units are spot-forming units (SFU) per 106 peripheral blood 
mononuclear cells (PBMCs). Jitter function applied to give horizontal movement to data points 
ensuring no overlap, therefore all data points are visible. p = 0.138, Wilcoxon test 
D. T-cell response to full spike protein, as per Figure 7-3 C, correlated with time since rituximab 
(days). 
R = Pearson correlation coeficient. 
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Table 7-6 | Anti-spike antibody titre split by time since rituximab 

Time since RTX 
(months) 

n Missing Mean anti-S, 
IU/mL* 

Median 
anti-S, 
IU/mL 

n (%), titre 
>= 380 
IU/mL 

0-6 13 1 6.66 0.4 0 (0) 

6-12 17 0 288.96 0.4 3 (17.6) 

*p = 0.187, Wilcoxon test 

 

Table 7-7 | Full spike T-cell response by time since rituximab 

Time since RTX 
(months) 

n Missing Mean T cells 
per 106 PBMCs* 

Median T cells 
per 106 PBMCs 

0-6 13 1 252.33 126 

6-12 17 0 134.59 76 
*p = 0.138, Wilcoxon test 
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A. Full cohort    B. Rituximab 0-6 months prior 

 

C. Rituximab 6-12 months prior  

 

Figure 7-4 | Anti-spike antibody titre correlated with T cell response, split by time since 
rituximab 
A. Log anti-spike (anti-S) antibody titre (IU/mL) correlated with log T-cell response for the full 
cohort. T cell response is IFNγ T cell response to full spike protein (Oxford Immunotec assay). Anti-
S antibody represents the antibody response to vaccination or natural infection, units are spot-
forming units (SFU) per 106 peripheral blood mononuclear cells (PBMCs). On logarithmic scale for 
improved visualisation. 
B. As per Figure 7-4 A, but restricted to individuals who received rituximab within 0-6 months prior 
to vaccination. 
C. As per Figure 7-4 A, but restricted to individuals who received rituximab within 6-12 months prior 
to vaccination. 
R = Pearson correlation coeficient 
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Table 7-8 | Patient characteristics stratified by Covid-19 occurrence 

  No Yes 

Total  20 (66.7%) 10 (33.3%) 

Age (continuous) Median (IQR) 60.7 (54.5 to 72.2) 37.4 (32.3 to 48.4) 

Age (categorical) < 50 years 3 (15.0) 7 (70.0) 

 >= 50 years 17 (85.0) 3 (30.0) 

Sex Female 10 (50.0) 5 (50.0) 

 Male 10 (50.0) 5 (50.0) 

eGFR (CKD-EPI, 
ml/min/1.73m2) 

< 90 15 (78.9) 2 (20.0) 

 ≥ 90 4 (21.1) 8 (80.0) 

Time since rituximab < 6 months 9 (45.0) 7 (70.0) 

 6-12 months 11 (55.0) 3 (30.0) 

Anti-S (binary) negative 13 (68.4) 8 (80.0) 

 positive 6 (31.6) 2 (20.0) 

Anti-S (value) Median (IQR) 0.4 (0.4 to 63.0) 0.4 (0.4 to 0.4) 

 Mean (SD) 258.6 (761.1) 7.9 (17.1) 

T-cell response Median (IQR) 92.0 (34.0 to 178.0) 116.0 (63.0 to 138.0) 

Yes = SARS-CoV-2 positive test after one year, No = no positive test 
Anti-S = anti-S antibody level measured 28 days after the second vaccine dose, eGFR = 
estimated glomerular filtration rate, IQR = interquartile range, SD = standard deviation  
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Figure 7-5 | SARS-CoV-2 positivity in first year by age 
Test = univariate Cox proportional hazards model 

 

 

Figure 7-6 | SARS-CoV-2 positivity in first year by sex 
Test = univariate Cox proportional hazards model  
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Figure 7-7 | SARS-CoV-2 positivity in first year by eGFR 
Test = univariate Cox proportional hazards model 

 

 

Figure 7-8 | SARS-CoV-2 positivity in first year by time since rituximab 
Test = univariate Cox proportional hazards model  
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Figure 7-9 | SARS-CoV-2 positivity in first year by antibody response to vaccination 
Test = univariate Cox proportional hazards model 
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Table 7-9 | Association between patient characteristics and SARS-CoV-2 positivity 

Variable  n (%) HR (univariable) 

Age 
(continuous) 

Mean (SD) 54.4 (16.4) 0.93 (0.89-0.97, p=0.001) 

Age 
(categorical) 

< 50 years 10 (33.3) - 

 >= 50 years 20 (66.7) 0.16 (0.04-0.61, p=0.008) 

Sex Female 15 (50.0) - 

 Male 15 (50.0) 0.96 (0.28-3.32, p=0.949) 

eGFR (CKD-EPI, 
ml/ml/1.73m2) 

< 90 17 (58.6) - 

 ≥90 12 (41.4) 7.86 (1.66-37.24, p=0.009) 

Time since 
rituximab 

< 6 months 16 (53.3) - 

 6-12 months 14 (46.7) 0.46 (0.12-1.79, p=0.265) 

Anti-S (binary) negative 21 (72.4) - 

 positive 8 (27.6) 0.67 (0.14-3.18, p=0.618) 

Anti-S (value) Mean (SD) 172.1 (622.3) 0.99 (0.97-1.01, p=0.480) 

T-cell response Mean (SD) 183.3 (241.5) 1.00 (1.00-1.00, p=0.311) 

Anti-S = anti-S antibody level measured 28 days after the second vaccine dose, eGFR = 
estimated glomerular filtration rate, IQR = interquartile range, SD = standard deviation 
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7.6 Discussion 

7.6.1 Key results 

The primary aim of this sub-study of OCTAVE was to describe the immune 

response to SARS-CoV-2 vaccination in 30 AAV patients who had received 

rituximab within the previous 12 months. Baseline characteristics, incidence of 

virologically confirmed SARS-CoV-2 infection, mortality rates, antibody response 

and T cell mediated immune response before and after the second dose of 

vaccination are reported. Results are compared to healthy control responses 

from the main OCTAVE study report, though individual healthy control data was 

not available to allow detailed statistical comparison. 

Analysis of baseline characteristics in the current study shows a younger 

population compared to typical AAV populations reported in epidemiological 

studies. Typical age ranges at disease onset are reported as 45-65 years for GPA, 

55-75 years for MPA and 38-54 years for EGPA (Kitching et al., 2020). The 

population in the current study are likely to have been on average within a few 

years of diagnosis as they had all had recent treatment with rituximab. The 

median age at recruitment in the current study was 55.3 (IQR 39.2 – 68.2) years. 

This can be explained by a predominance of individuals with GPA, which has a 

lower age of onset compared to MPA. Fifty percent were female. Most of the 

participants in the study had GPA (25, 83.3%) and the same number had anti-PR3 

positivity (25, 83.3%) – there was almost complete overlap between these 

groups. 13 (43.3%) received rituximab within 6 months prior to inclusion in the 

study (RTX 0-6 months), 17 (56.7%) received rituximab between 6 to 12 months 

prior to inclusion (RTX 6-12 months). Those in the RTX 0-6 months group were 

typically younger and had better renal function than the 6 to 12 months group. 

Comparison to available data for healthy controls reveals that although AAV is a 

disease typically associated with older people, the median age of healthy 

controls was higher and a higher proportion had evidence of previous Covid-19. 

A substantially blunted humoral immune response was identified in AAV patients 

recently treated with rituximab. Although there was an increase in the mean 

anti-S antibody titre before and after the second SARS-CoV-2 vaccine (5.15 to 

172.15 IU/mL, p=0.042, Wilcoxon test), the median did not alter from an 
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undetectable level (<0.4 IU/mL). This is reflected by the proportion of AAV 

patients who achieved seropositivity after the second vaccine dose, at 8 of 29 

(28%) patients, compared to 222 of 225 (98.7%) of healthy controls (p < 0.0001, 

Fisher’s exact test). After the second vaccine dose, only three individuals 

(10.3%) of 29 had a titre greater than the healthy control lower bound (380 

IU/mL = 2.58 on log scale in figures) after the second vaccine dose. Anti-N was 

negative in all but one AAV patient, indicating that natural infection with Covid-

19 was unlikely to have occurred in these individuals prior to or during the study, 

although it may have been possible for a participant to have been infected with 

SARS-CoV-2 during the study but not yet have seroconverted for anti-N to 

become positive at the time of testing. 

The T-cell response showed a numerical, but not statistically significant, 

increase after the second dose of vaccine. The T-cell response was robust and 

comparable to that of healthy control data described in the main OCTAVE report 

(Barnes et al., 2023). There was no significant T-cell response to nucleocapsid 

antigen before or after the second vaccine doses. 

After the second vaccine dose, individuals in the RTX 6-12 months groups had a 

numerically higher anti-S response, though this was not statistically significant. 

Similarly, a moderate strength, but non-statistically significant positive 

correlation was identified between anti-S response and time since rituximab. 

The converse was identified for T-cell response in relation to time since 

rituximab: the RTX 6-12 months groups had a lower T-cell response after the 

second dose and there was a moderate strength, non-significant, negative 

correlation between T-cell response and time since rituximab. As highlighted 

above, there were potentially important differences in baseline characteristics 

between the rituximab groups; RTX 6-12 months group participants were 

typically older and had worse renal function. This may have confounded the lack 

of statistically significant association between time since rituximab and immune 

response. These potential confounders may have diminished the apparent 

relationship between anti-S response and time since rituximab. No relationship 

was found on an individual level between anti-S response and T-cell response, 

including when stratified according to RTX 0-6 months and RTX 6-12 months 

groups. 
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One third (10 of 30, 33.3%) of individuals in the AAV group tested positive for 

SARS-CoV-2 when tested as part of routine clinical care over the subsequent 12 

months following enrolment. Two factors were identified on univariate analysis 

as being associated with subsequent SARS-CoV-2 infection: younger age and 

better renal function. That such characteristics would be associated with 

increase susceptibility seems counterintuitive given that these are factors 

closely associated with improved immunity, as discussed above. It seems likely 

that these relationships are substantially confounded by self-protective 

measures. Older and frailer individuals would be far more likely to adopt self-

protective measures. In this setting worse renal function can be considered a 

marker of frailty (Chowdhury et al., 2017). Adopting strict self-protective 

measures would make an individual potentially far less likely to contract SARS-

CoV-2 (Talic et al., 2021). Similarly, younger and non-frail individuals may have 

been more likely to have occupational responsibilities that may have required 

them to have increased SARS-CoV-2 exposure. 

7.6.2 Strengths 

This study is one of the largest reported describing the immune response to 

SARS-CoV-2 vaccination in AAV patients receiving rituximab. The number of 

individuals in the AAV group was sufficiently large such that a clear difference 

was identified between the humoral response of that group and healthy controls, 

with a high degree of statistical confidence. It was prospectively designed and, 

while the sub-study was conducted in a single centre, had several advantages of 

a multi-centre study with study team expertise being drawn across multiple 

centres. The prospective design guards against potential conscious or 

unconscious selection bias on the part on study investigators whereby 

participants with a particular outcome are more or less likely to be included in 

the study due to that outcome. Prospective design also is more likely to achieve 

complete and accurate baseline data, which is crucial for an accurate 

description of the cohort and to allow statistical adjustment for confounders 

where appropriate. Patient participation was maximised through the availability 

of travel reimbursement and arranged transport for study subjects, thus 

minimising selection bias and enhancing generalisability. 
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Many of the initial studies of vaccine immune response in immune-suppressed 

individuals focused on the humoral immune response only (Carr, Wu, et al., 

2021; Alexander et al., 2022; Redjoul et al., 2021). The current study examined 

both the antibody and T-cell mediated immune responses to vaccination, across 

a broad range of SARS-CoV-2 antigens. It also reports key clinical outcomes, 

namely SARS-CoV-2 infection and death, which were often not reported in 

earlier studies. Many studies also focused on diverse cohorts such as 

haemodialysis patients or a broad range of rheumatic diseases (Carr, Wu, et al., 

2021; Boyarsky et al., 2021). The current study focuses on a clearly defined 

cohort within a disease area. Inclusion and exclusion criteria were explicit, thus 

enhancing generalisability to patient populations. Availability of a healthy 

control population is an additional key strength of the current study, an 

attribute not present in other studies. The studies from which the control 

population was derived, PITCH and CONSENSUS, followed methodology which 

was closely aligned to that of the immune-suppressed OCTAVE cohort. This 

enabled a clinically informative threshold to be established - the anti-S 

suboptimal response threshold. This was calculated as the upper bound of the 

lowest response decile in the healthy control group at 380 U/mL. This facilitated 

reporting in the current study that only three AAV patients (10.3%) of 29 

achieved an antibody titre after the second dose of SARS-CoV-2 vaccine that was 

comparable to healthy controls. 

Rare disease research is frequently hampered by small available sample size for 

clinical studies. A high participation rate was achieved in this study, as 

described above. Statistical analysis was carefully considered to avoid overfitting 

relating to the relatively small sample size in the AAV group: analyses were 

univariate and at most were only stratified by one additional variable. 

7.6.3 Limitations 

Though efforts were made to minimise its effects, selection bias is an issue for 

any prospective clinical study where recruitment occurs. High levels of 

participation amongst potential participants to the study were achieved, though 

some individuals did choose not to participate. Only a small number of 

individuals (fewer than five) declined, citing reasons including frailty and poor 

mobility. The results of this study are highly likely to be generalisable to most 
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individuals with AAV treated with rituximab in the prior 12 months, though a 

degree of caution should be used if generalising this data to significantly frail 

individuals. As noted above, the population in the current study had a 

moderately younger median age than what is considered typical for AAV onset. 

This may be representative of frail individuals declining participation, though 

this being a major effect was not apparent during recruitment. More likely is the 

predominance of individuals with GPA, which has a younger typical age of onset, 

as described above. The study focused on a clearly defined subset of individuals 

with AAV, those recently treated with rituximab. While this is advantageous for 

achieving clear results and helped identify a vulnerable group of individuals who 

had the poorest response to vaccination of all disease groups within OCTAVE, 

whether the results are generalisable to individuals with AAV who have not been 

recently treated with rituximab is less clear. 

Small sample size is a recurring challenge for rare disease research. Recruitment 

of AAV participants exceeded expectations despite the challenging environment 

of the Covid-19 pandemic, but the relative numbers of AAV patients in OCTAVE 

was small despite this. The risk of spurious results increases in the setting of 

small samples, but this is unlikely to be the case for the main finding of the 

current study of the substantially attenuated antibody response in AAV patients 

compared to healthy control data reported in OCTAVE, where 27.6% of AAV 

patients on rituximab had a serological response compared to 98.7% of controls 

(p < 0.0001). Other analyses were mostly negative, it is possible that this 

represents type II error (i.e. false negatives) for some of these analyses. 

Therefore, results that are numerically of potential interest, but fall short of the 

traditional threshold for statistical significance, could be viewed as questions 

that may be worth exploring in future studies where greater power may be 

available. 

Information bias, where measurement of outcomes varies systematically across 

different groups in a study, is an important consideration, though is unlikely to 

have significantly impacted on the current study. The pattern of blood sampling 

did vary across disease and control groups in OCTAVE. The main time point of 

interest for immunological outcomes in this study was following the second 

vaccination dose. In OCTAVE, this sampling was done 28 (plus or minus 3) days 

following the second vaccine. The healthy controls for OCTAVE were selected 



186 

from the UK PITCH and CONSENSUS studies. In PITCH sampling was done 28 (plus 

or minus 7) days after the second vaccine, while in CONSENSUS there was a fixed 

schedule with 3-4 week intervals, detailed in methods section 7.4.8. 

Confounding likely impacted the magnitude of response relative to healthy 

controls. Older age is associated with lower antibody titres following vaccination 

(Ward et al., 2022). Although AAV is typically associated with older age, the AAV 

population in the current study was younger on average than the control 

population. The median age of the AAV group was 55.3 years, while the median 

age for the healthy control group was within the 66-74 years bracket (the 

available data for the OCTAVE control group was reported in four age brackets 

as per Table 7-1). Therefore, if it were possible for age to be controlled for, for 

example via a regression analysis or for an age-matched comparator to be 

available, an even greater difference for anti-S outcomes between AAV patients 

and controls may have been expected. This is because a younger control group 

could be expected to have a higher proportion of seroconversion and a higher 

average antibody titre. However, the reported results would have been unlikely 

to have differed as the percentage of those who seroconverted in the healthy 

control group was extremely high at 222 of 225 (98.7%) individuals and the 

median response was not specified in the OCTAVE main study report. The main 

OCTAVE report did describe a substantial difference in the median anti-RBD titre 

of the AAV group compared to the healthy control group, reported as a z-score 

of 8.42 (p<0.001). This z-score may have had a greater magnitude if controls in 

OCTAVE were directly matched to AAV participants on characteristics such as 

age on an individual basis (Barnes et al., 2023). 

The comparison between rituximab timing groups similarly may have been 

affected by confounding. This compared individuals in the AAV groups: those 

who received rituximab within 6 months (RTX 6 months) of enrolment into the 

study versus those who received rituximab within 6-12 months of enrolment (RTX 

6-12 months). The groups differed moderately on three potential confounders 

which are recognised as impacting the immune response to SARS-CoV-2 

vaccination: age, kidney function and concomitant immunosuppressive 

treatment. The RTX 6-12 months group was older (median age 58.5 years 

compared to 47.4 years) and had lower average kidney function (eGFR 77.2 

mL/min/1.73 m2 compared to 91.2 mL/min/1.73 m2). These are both factors 
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which have been demonstrated to be associated with limited seroconversion in 

response to SARS-CoV-2 (Chvatal-Medina et al., 2021; Barda et al., 2021). 

Conversely concomitant immunosuppressive treatments were present at a lower 

proportion in the RTX 6-12 months group, though the difference was moderate (3 

individuals [23.1%] on concomitant immunosuppression in RTX 6 months group 

compared to 1 individual [5.9%] in the RTX 6-12 months group) and there was not 

a statistically significant difference (p = 0.138, Wilcoxon test). Given that the 

relative impact of these potential confounders was difficult to quantify, 

accurately determining the effect was difficult. A multivariable model would not 

have been appropriate to use due to the small sample size of this subset of the 

AAV data. Given that age and renal function are recognised as having a 

substantial impact on humoral response to SARS-CoV-2 vaccination, it may be 

that the magnitude of the difference between this group was diminished and the 

true effect of time since rituximab is more clinically and statistically significant 

than the current data suggests. 

A strength of the main OCTAVE study was that it applied consistent methodology 

across multiple immunosuppressed disease groups, with heterogeneous 

pathophysiology, clinical phenotypes and immunosuppressive treatments. 

However this meant that some important clinical characteristics for some of 

these individual conditions were not likely to incorporated. One example with 

respect to AAV was that CD19-positive cell counts were not measured. CD19-

positive cell count depletion is well recognised as a biological marker of 

effective rituximab treatment. CD19-positive cells reconstitute at different rates 

across individuals following rituximab treatment and their suppression may be 

both a marker of decreased likelihood of AAV relapse and also of diminished 

immune response to natural infections and vaccination (Charles et al., 2018). It 

would have been of potential biological and clinical interest to determine if 

CD19-positive cell reconstitution was associated with improved immune response 

to SARS-CoV-2 vaccination. This may have provided clinicians with additional 

means of determining whether patients were likely to respond to vaccination. 

The approach used to determine occurrence of Covid-19 had limitations. For this 

sub-study, the presence in the clinical record of a positive laboratory or near-

patient test for SARS-CoV-2 was used as a proxy for Covid-19. For the purposes 

of the current study, it was not possible to determine whether such a test was 
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associated with significant Covid-19 and related symptoms, or whether the 

positive test was an incidental finding on asymptomatic screening. This approach 

may not have been optimal at identifying symptomatic Covid-19, which is 

ultimately a more clinically relevant outcome. If a stricter definition of Covid-19 

or severe Covid-19 were to be applied, different results may have been 

obtained. 

7.6.4 Interpretation and generalisability 

This study identified a considerably worse immune response to SARS-CoV-2 

vaccination in AAV patients recently treated with rituximab compared to a group 

of healthy controls. There was low risk that this difference was related to 

confounding due to age, as the comparator population was older than the AAV 

cohort, which, if anything, would have diminished the apparent difference 

between the groups. A small proportion of 8 of 29 (28%) AAV participants 

achieved seroconversion after the second dose of vaccine. This finding was of 

immediate relevance to AAV patients, clinicians and researchers. It highlighted 

that individuals with AAV on rituximab may have to consider different self-

protective measures to non-immunosuppressed individuals. Clinicians have had 

to be conscious of this when counselling AAV patients regarding vaccination and 

self-protective measures following vaccination. The findings of the current study 

have implications for subsequent studies. Basic scientists will wish to understand 

the underlying biology of the reduced vaccine response of individuals with AAV 

treated with rituximab. Clinical researchers will seek to discover strategies and 

other therapeutic options that may help reduce the risk of the severe sequelae 

of Covid-19 in immunosuppressed individuals, such as the group described here. 

This may involve enhanced vaccination schedules, evaluation of self-protective 

measures and novel SARS-CoV-2 treatments. The findings of the current study 

are likely to be highly generalisable to individuals with AAV recently treated 

with rituximab. Whether the findings are as relevant for individuals with AAV not 

treated with rituximab or for individuals who were treated with rituximab for 

different clinical conditions is less clear. 

Comparable studies with a significant representation of AAV patents are few in 

number. A retrospective analysis of 11 consecutive patients with immune-

mediated kidney disease was mostly comprised of individuals with AAV. All 
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participants in this study had recent treatment with rituximab. Of the nine 

patients who did not have detectable baseline anti-RBD antibodies, three (33%) 

achieved a humoral response to SARS-CoV-2 vaccination with two doses. Notably, 

of the three responders, two had detectable CD19-positive cells, whereas among 

the six non-responders only one had evidence of reconstituted CD19-positive 

cells (Demoulin et al., 2021). A prospective study of AAV patients receiving B-

cell depleting treatment examined both the humoral and T-cell responses to 

SARS-CoV-2 vaccination. The study included 19 AAV patients previously treated 

with rituximab and seven healthy controls. It found that, among CD19-positive 

cell deplete individuals, none mounted a detectable antibody response. All 

CD19-positive cell replete and all healthy controls mounted an antibody 

response. Somewhat reassuringly, 91% of CD19-positive cell depleted individuals 

mounted a detectable SARS-CoV-2 specific T-cell response (Marty et al., 2022). 

A study of 140 immune-suppressed patients with autoimmune rheumatic and 

glomerular disease included 45 patients with vasculitis (either AAV or anti-

glomerular basement membrane disease). Participants received either BNT162b2 

(Pfizer/BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) vaccines. A high 

proportion of the cohort, 114 (81.4%) had previously been exposed to rituximab, 

most had received treatment within the last six months and most were CD19-

positive cell deplete. Of the 34 individuals with vasculitis who had sampling 

performed following the second vaccine dose, 17 (50%) did not seroconvert. All 

healthy controls in this study seroconverted after the second vaccine dose. The 

authors found a significant difference among those exposed to rituximab in 

terms of time since exposure: 71% seroconverted if they had received rituximab 

over six months prior, while only 41% seroconverted if they had received 

rituximab within the prior six months. Rituximab did not appear to have a major 

impact on T-cell response. In the CD19-positive cell deplete group, 15 of 18 

(83.3%) had a detectable T-cell response (Prendecki et al., 2021). 

Considering a broader immunosuppressed population, a prospective cohort study 

of individuals with immune-suppressive conditions examined 632 patients. Only 

11 individuals had systemic vasculitis. A large majority of patients in the study 

only had baseline serology performed. Among those who had follow-up serology 

and who had not experienced prior Covid-19, the authors found that 92% of 

immune-suppressed participants seroconverted after two vaccine doses, 
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compared to 95% of healthy controls. It was not clear how many individuals with 

vasculitis were included in this part of the analysis (Boekel et al., 2021). 

A systematic review of SARS-CoV-2 mRNA vaccine response in immune-mediated 

inflammatory diseases examined 25 reports. Three studies described the 

response after two doses of mRNA vaccine in vasculitis patients. The meta-

analysis showed a substantially attenuated response in individuals with 

vasculitis, with 70% seroconverting. Eight studies evaluated the impact of anti-

CD20 therapies, of which rituximab is the most commonly used. This found a 

response rate of 39% after two doses of SARS-CoV-2 mRNA vaccine. These data, 

and those described above, are consistent with the findings of the current study 

that AAV patients recently exposed to rituximab have a severely attenuated 

antibody response to SARS-CoV-2 vaccination. 

Individuals with AAV on rituximab clearly have a blunted immune response to 

SARS-CoV-2 vaccination. There is also substantial variation within this population 

with respect to immune response. It may be that CD19-positive cell levels have a 

strong relationship with the antibody response. Having characterised the 

immune response to SARS-CoV-2 vaccination in AAV patients, it is clear that 

there is a high risk of some AAV patients remaining vulnerable to Covid-19, 

which may be severe. As well as highlighting this potentially important risk, it 

may be that the immune response to vaccination in this population can act as a 

predictor of further Covid-19 risk. 

The findings of the current study are generalisable to real-world populations 

with AAV, specifically those recently treated with rituximab. Findings may be 

relevant for other individuals with AAV. Notably substantial differences between 

rituximab and cyclophosphamide were not identified in clinical trials in terms of 

their impact on likelihood of severe infections, thus it seems that, in broad 

terms, both therapeutic strategies equally blunt the general immune response to 

infection (Stone et al., 2010). It must be borne in mind however, that rituximab 

specifically targets the humoral immune response, so there may be important 

differences in the underlying immune response to both infection and vaccination 

for individuals who receive rituximab compared to those who receive 

cyclophosphamide. Therefore, caution should be used in generalising these 

results beyond those exposed to rituximab. As described above, a small number 
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of potential subjects declined participation citing reasons such as frailty and 

poor mobility. The AAV group was also moderately younger than a typical AAV 

population. Therefore, the results of this study may be less easily generalised to 

individuals with AAV who are particularly frail or elderly. However it seems 

likely, based on knowledge of the relationship between vaccination response and 

age, that such individuals may be even more vulnerable to a limited vaccine 

response than younger, less frail AAV patients (Ward et al., 2022). 

7.7 Conclusion 

Taken in the context of existing literature, this study provides evidence that AAV 

patients treated with rituximab had a substantially blunted humoral immune 

response, but preserved T-cell response, to SARS-CoV-2 vaccination with 

ChAdOx1 nCoV-19. The antibody response for the RTX 6 months group was 

numerically lower than the RTX 6-12 months group, though this difference was 

not statistically different – perhaps relating to a lack of statistical power for this 

question. Other literature indicates that increased time since rituximab is 

closely linked to an increasingly normal humoral immune response. We did not 

detect an association between antibody titre and T-cell response, therefore 

based on the current data, there is no clear evidence supporting an enhanced T-

cell response compensating for a poor humoral response. This study and others 

described above, highlight a clear need for additional focus on individuals 

vulnerable to the impacts of a severely attenuated SARS-CoV-2 vaccine response. 

Such individuals will have likely benefited from enhanced self-protective 

measures such as physical distancing, mask wearing and handwashing (Talic et 

al., 2021). Research efforts should be directed to understand this phenomenon 

in greater depth and to identify potential strategies which may improve 

outcomes for this vulnerable group. This study described variability in terms of 

the immune response to SARS-CoV-2 in this AAV population. The immune 

response to vaccination may be a prognostic marker for future Covid-19 risk and 

poor outcomes and should be considered for inclusion in studies examining 

prognostic markers and developing prognostic scores in vulnerable populations 

such as those with AAV treated with potent immunosuppressive agents such as 

rituximab. 
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7.8 Summary 

In earlier chapters of this thesis the incidence of severe infection in AAV, 

glucocorticoids as a prognostic factor for severe infection and prognostic models 

relating to severe infection in AAV were explored. Covid-19 in systemic vasculitis 

patients was then examined, by identifying prognostic factors for severe disease. 

The current chapter explored the immune response to SARS-CoV-2 vaccination in 

a vulnerable group – AAV patients recently treated with rituximab. That the 

antibody response to vaccination was substantially attenuated compared to 

healthy controls has implications for future biological, clinical and predictive 

research in immune-suppressive populations. The next chapter will comprise an 

overall discussion of the findings presented in this thesis, themes present across 

chapters and implications for future work. 
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8 Overall thesis discussion 

8.1 Overview 

This chapter presents a discussion of the overall thesis. Research findings from 

Chapters 2 to 7 will be summarised. Themes relating to strengths and limitations 

across the included studies will be discussed. Research findings will be placed in 

the context of existing related literature. The implications of these findings will 

be considered across research, clinical and health policy domains. Finally, future 

directions relating to prognosis research in AAV will be presented. 

8.2 Summary of findings 

8.2.1 Data quality and incidence of severe infection in AAV 
registries (Chapter 2) 

This study implemented novel semantic web technology to harmonise and 

integrate AAV registry data as part of the EU FAIRVASC project. A data quality 

(DQ) analysis was undertaken at all seven participating pilot registries. Severe 

infection incidence was derived though registries which contain this data using 

the prototype data retrieval interface. 

FAIRVASC registry data was deemed to be high quality. Uniqueness assessed the 

degree of duplication of patient data. Uniqueness was 100% across registries 

when assessed using patient registry ID. Duplication of patients under different 

registry IDs was 0% across all registries, with the exception of the POLVAS 

registry at 3.6%. Consistency according to data format was 100% across all 

registries and variables. Consistency when evaluated by logic tests was typically 

100% and was 98% at lowest in one registry. Consistency when evaluated by 

plausibility tests was effectively 100%. Completeness was high for variables such 

as age, date of birth and date of death, but was low for some variables such as 

serum ANCA autoantibody status, which varied from 52% in one registry to 100% 

in several others. Correctness was high for most variables at 90 to 100%. 

Severe infection incidence was reported for the RKD and Skane registries, both 

separately and combined. The combined severe infection incidence over the first 
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year, the second year, years 3 – 5 and beyond 5 years was 179.2, 64.2, 41.5 and 

35.1 events per thousand person years, respectively. 

8.2.2 Glucocorticoids as a prognostic factor for severe infection 

in AAV (Chapter 3) 

Analysing individual prognostic factors with a targeted approach is important to 

gain understanding of pathophysiology and to determine variables that are 

important to consider for prognostic modelling studies. Glucocorticoid exposure, 

in daily prednisolone equivalent, was evaluated in multivariable survival models 

in a large population-based dataset from the VOICES study. Glucocorticoid 

exposure ≥10 mg was strongly predictive of severe infection, showing a 93% 

increased risk compared to zero mg (hazard ratio 1.93 [1.19-3.13, p=0.008]). 

Multiple dose thresholds were then examined. Thresholds of ≥5 mg to 10mg, ≥10 

to 20 mg, >20 mg all demonstrated similar associations with increased severe 

infection risk of 73 – 122% increased risk (see for hazard ratios). The >0 mg to 

5mg exposure group point estimate suggested decreased risk for severe 

infection, though confidence intervals were wide and therefore it remains 

unclear whether this dose range is predictive of increased or decreased risk 

(hazard ratio 0.72 [0.17-3.09, p=0.659]). It may be that some AAV patients have 

glucocorticoids prescribed in primary care for them to have available in case of 

relapse, as opposed to actually taking the drug. This may be due to patient or 

clinician concern. An additional exposure window of 5 mg to 7.5 mg was 

explored. Although not significant, the point estimate suggested a possible 155% 

increased risk for severe infection (hazard ratio 2.55 [0.72-8.94, p=0.145]). 

Lastly, glucocorticoid exposure was examined as a continuous variable. On 

average, every 1 mg increment predicts a 1% increase in severe infection risk 

over the subsequent year infection (hazard ratio 1.01 [1.00-1.02, p=0.047]). 

8.2.3 Prediction of first severe infection in AAV (Chapter 4) 

This study developed and internally validated a prediction model for first severe 

infection in individuals with AAV. There was a high incidence of severe infection, 

with 20.6% of the cohort experiencing this event within one year. A four-

component prognosis model was developed. Variables included in the final 

model were a non-linear transformation of age, socio-economic deprivation, 
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presence of prior renal disease and prior diabetes. Optimism-adjusted 

performance measures showed fair discrimination (C-index 0.60, C/D AUCt 0.62), 

very good calibration (O/E ratio 1.01, calibration intercept -0.01, calibration 

slope 0.94) and very low prediction error (scaled Brier Score 2.6%). A calibration 

plot showed that estimated risks derived from the model closely matched 

observed risks. 

8.2.4 Prediction of early mortality after severe infection in AAV 
(Chapter 5) 

This study developed and internally validated a prediction model for mortality 

prior to hospital discharge or within 30 days of discharge. The size of the study 

cohort was 1,015 individuals of whom 157 (15.5%) did not survive. The final 

model included age, time since AAV diagnosis, presence of specific comorbidities 

(liver disease, metastatic cancer, renal disease and diabetes) and recent 

glucocorticoid exposure. Optimism-adjusted performance measures included a 

calibration slope of 0.967, calibration-in-the-large of 0.004 and, representing 

discriminative ability, a c-statistic of 0.713. A calibration plot demonstrated 

good calibration. 

8.2.5 Prognostic factors for severe Covid-19 in systemic 
vasculitis (Chapter 6) 

This was a retrospective study of Covid-19 outcomes in systemic vasculitis 

patients. At the outset of the Covid-19 pandemic, cases with a history of 

systemic vasculitis and a diagnosis of Covid-19 were submitted to the UK and 

Ireland vasculitis registries using a prospectively designed case report form (CRF) 

or a registry web-app hosted version of the CRF. The total number of submitted 

cases was 105, 84 (80%) of whom had AAV. The frequency of Covid-19 symptoms 

and complications were reported. Dyspnoea was the most common symptom in 

61% and respiratory failure was the most common complication in 53%. The 

composite severe outcome consisted of hospitalisation requiring advanced 

oxygen therapy or invasive ventilation, or death. A severe outcome was 

experienced in 36% of the cohort. Glucocorticoid exposure greater than 5 mg 

daily prednisolone dose equivalents was predictive of the severe outcome with 

adjusted odds ratio 4.7 (95% confidence interval 1.5 – 17.3). Glucocorticoid 

exposure at any dose also was associated with adjusted odds ratio 2.9 (95% CI 
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1.1 – 8.4). Any immunosuppressive therapy, as opposed to none, had an adjusted 

odds ratio 5.9 (95% CI 1.8 – 27.7). Cyclophosphamide exposure was associated 

with severe outcome, adjusted odds ratio 3.6 (95% CI 1.1 – 12.0). Immune 

outcomes to vaccination were not associated with subsequent SARS-CoV-2 

positivity. 

8.2.6 SARS-CoV-2 vaccine immune response in AAV (Chapter 7) 

This sub-study of the UK multicentre, prospective OCTAVE study described the 

immune response to SARS-CoV-2 vaccination in 30 AAV patients who had 

received rituximab in the prior 12 months. The immune outcomes aspect of this 

study is a form of overall prognosis research, in that immune outcomes in 

response to vaccination are quantified in this group. Considering the association 

between baseline factors and immune response or SARS-CoV-2 infection 

represents prognostic factor research. A severely blunted humoral immune 

response was evident with only 8 of 29 (28%) of the AAV group achieving 

seropositivity for anti-spike antibody, while 99% of health controls were 

seropositive (p < 0.0001). This was after two vaccine doses. Only 3 of 29 

individuals (10%) had a titre above the lower bound of the healthy controls. The 

SARS-CoV-2 specific T-cell response was robust and comparable to healthy 

controls. There was a numerical, but not statistically significant, positive 

association between time since rituximab and antibody response on univariable 

analysis. There was no significant correlation between antibody and T-cell 

response. Positivity for SARS-CoV-2 was 33.3% over one year. Younger age was 

associated with infection with SARS-CoV-2. Age over 50 years had hazard ratio 

0.16 (0.04-0.61, p=0.008) compared to those below 50 years. Better renal 

function was predictive of SARS-CoV-2 infection, eGFR over 90 ml/min/1.73m2 

had hazard ratio 7.86 (1.66-37.24, p=0.009), compared to those below that 

threshold. Importantly these were unadjusted analyses. 

8.3 Strengths and limitations 

Strengths 

This thesis utilised real-world data to address several important epidemiological 

questions relating to AAV and severe infection. FARIVASC data in Chapter 2 
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comes from European vasculitis registries. By their nature, registries are 

typically more inclusive than RCTs or clinical studies involving multiple visits. 

Registries represented in FAIRVASC recruit patients from wide geographies, 

multiple centres and across specialities resulting in a highly representative 

sample of AAV patients. In Chapters 3, 4 and 5 the principal source of such data 

was the VOICES quantitative study. This dataset was derived through advanced 

data linkage capabilities available in Scotland, which are not present in many 

other countries. Part of Public Health Scotland, the Electronic Data Research 

and Innovation Service (eDRIS) has access to multiple health-related datasets 

with national coverage. This includes demographic, socioeconomic and hospital 

admissions data. Mortality data is obtained from the National Records of 

Scotland. A nationwide patient identifier, the Community Health Index (CHI) 

number, enables highly accurate data linkage to be performed. Such routinely 

collected data has the advantage of low levels of selection bias: individuals who 

may be poorly represented in clinical studies due to socioeconomic status, frailty 

or cultural reasons will typically be included in such data. The datasets are 

recognised as having high levels of completeness and data quality (Public Health 

Scotland: Data and Intelligence, 2014). Although these are technically 

retrospective studies, population-based research has the advantage of data 

being recorded prospectively, thus ensuring that the outcome could not 

influence the measurement of predictors and eliminating survival bias. 

Employing data linkage and real-world data allowed coverage of, theoretically, 

the whole Scottish population, with the resultant findings being highly 

generalisable to other similar populations. Chapter 6 included data submitted by 

centres affiliated with the UK and Ireland vasculitis registries. Similar to the 

other FAIRVASC registries, these centres are highly geographically distributed 

with representation from secondary and tertiary care. As a result, such data is 

likely to be generalisable to other AAV populations. 

This thesis aimed to address gaps in the AAV literature related to severe 

infection. There is a substantial need for clearly defined prognostic factor 

studies. Such studies should have an a priori design such that they aim to 

evaluate a specific individual prognostic factor for its ability to predict a specific 

outcome. Many studies in the AAV literature highlight specific prognostic factors, 

but often do so retrospectively, after the analysis has been done. Often the 
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factor has not been clearly defined in advance. This reduces confidence that 

such reports have not succumbed to publication bias. Chapter 3 examined the 

prognostic value of glucocorticoids in relation to severe infection. It had clear 

prespecified objectives including to evaluate novel thresholds of glucocorticoid 

exposure, not yet considered in the AAV literature. Chapter 5 leveraged the 

mature networks associated with the UK and Ireland national vasculitis registries 

to examine prognostic factors in a novel disease, Covid-19. Evaluating the 

prognostic effects of immunosuppressive therapy was a predetermined 

objective. The relative lack of prognosis factor research in AAV presents a 

challenge in the development of prognostic models. Candidate predictors for a 

prognostic modelling study are best identified from previous literature that has 

confirmed a specific prognostic factor is predictive of the outcome in question 

and from the knowledge and experience of expert clinicians. This thesis utilised 

the best available studies of predictive factors for severe infection and 

infection-related mortality, as well as expert clinician knowledge. 

AAV is a rare disease where adequate samples for epidemiological research are 

challenging to construct. An important strength of this thesis was that the 

studies included were typically larger than all comparable research. Sufficient 

sample size is crucial to enable the detection of important effects, minimise 

spurious findings and to produce accurate estimations of effect sizes. Study size 

is of substantial importance in predictive epidemiology, with established tools to 

determine the necessary sample size in prognosis modelling studies (Riley et al., 

2020). While sample size was effectively fixed in this thesis for the described 

studies, such sample size estimation tools were utilised to ensure that an 

appropriate number of candidate predictors were included in the development 

of prognostic models. A lack of comparable studies made estimation of 

parameters to enter into sample size calculations somewhat challenging, thus 

studies with similar objectives in other populations were used. Multiple sample 

size calculations were also performed under a range of different assumptions to 

provide added confidence that study power was being appropriately considered. 

While larger than many comparable studies, study power was limiting to aspects 

of the prognostic modelling studies, this is discussed further below. In Chapters 

6 and 7, which focused on severe Covid-19 and SARS-CoV-2 vaccination 
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respectively, the data reported has among the highest described sample sizes for 

studies on these areas in AAV. 

Prediction models in this thesis used modern techniques, reported results 

according to accepted frameworks and considered bias using a validated tool. 

Modern prediction modelling approaches adopted in this thesis included utilising 

a large data set and carefully considering study size with recommended sample 

size calculations (Riley et al., 2019). This resulted in the number of candidate 

parameters that were entered into the modelling process being appropriately 

limited and carefully selected. Continuous variables were appropriately handled 

to maximise power and minimise overfitting by avoiding dichotomisation and 

using fractional polynomials for non-linear modelling. The recommended 

automatic variable selection procedure of backward elimination was used. 

Internal validation was done by bootstrapping, which is recognised as resulting in 

stable estimates with minimal bias (Steyerberg et al., 2001). It could be 

considered a weakness of the prognostic models that external validation was not 

carried out. As Steyerberg and Harrell state, “independent validation of previous 

research findings is a general scientific principle”. However, they go on to 

clarify that if an external validation dataset is available at the time of model 

development, then it is more appropriate to incorporate this data into 

development of the initial model using an “internal-external” cross-validation 

procedure by which one centre is excluded, a model is developed in the 

remaining centres, validated in the excluded centre and then the process is 

repeated for all centres. The final model is derived from the full dataset. Later, 

when new data is available, the same or different authors can perform external 

validation. Arguably, internal-external validation could have been performed in 

the current study using different health boards to represent different centres, 

but given that data for the VOICES study was obtained by the same methodology 

through data linkage at a national level, it seems reasonable that internal 

validation using bootstrapping was done without attempts at internal-external 

validation or a somewhat forced notion of external validation (Steyerberg and 

Harrell, 2016). To assess clinical utility, an analysis of net benefit can also be 

carried out using decision curve analysis, however this is appropriate to do at 

the stage of formal external validation (Van Calster et al., 2018). 
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Well-conducted epidemiological studies involve careful consideration of 

potential sources of bias and this thesis has sought to minimise bias wherever 

possible. Confounding is a major source of bias in studies of disease aetiology. 

Through a focus on prognosis research, where confounders do not impact 

predictions, confounding was not a concerning source of bias in this thesis. 

Selection bias, where study associations are biased relating to procedures for 

selecting patients or factors affecting participation, was minimised through a 

focus on population-level data or maximising participation. Chapter 5 was likely 

affected by a form of selection bias, but this was addressed in the study 

question, discussed further below. A focus on novel or statistically significant 

results can lead to bias and subsequent publication bias. A particular form of this 

is “p-hacking”. This is where multiple or repeated statistical analyses are 

conducted and “significant” results are selectively retained for reporting (Head 

et al., 2015). For all analyses in this thesis, the approach was prespecified and 

all results were treated in the same manner, whether positive or negative, 

statistically significant or otherwise. In the prognosis factors and prognostic 

modelling studies, consideration was given to potential sources of bias specific 

to such studies, as described in QUIPS, a tool for assessing bias in prognostic 

factor studies, and in PROBAST, a tool for assessing bias and applicability in 

prediction model studies (Hayden et al., 2013; Moons et al., 2019). Importantly, 

all predictors and outcomes were defined and ascertained in a highly similar way 

for all participants. Assessment of the presence of predictors and outcomes was 

made independently of each other, ensuring no bias was introduced by the 

researchers in question. This ensures that a prognostic association between 

predictors and outcomes is more reliable if detected. Advice related to 

statistical methodology was applied to maximise internal and external validity. 

Bias relating to subject participation, study attrition, predictor measurement 

and outcome measurement were all minimised via the population-based study 

design. In the Covid-19 study in Chapter 5, ascertainment bias, a form of 

selection bias, was a potential risk were it not appropriately addressed. 

Ascertainment bias occurs when some members of the target population are 

systematically less likely to be included in the final study sample (Freedman and 

Pfeiffer, 2017). This potentially leads to the study population having important 

differences to the target population, reducing generalisability. In Chapter 5, it 

was considered highly likely that more severe cases of Covid-19 would come to 
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the attention of submitting clinicians and therefore be more likely to be 

included in the study sample. For this reason, it was decided prior to data 

collection that outcome frequencies would not be reported as generalisable to 

the wider population with systemic vasculitis. A beneficial effect of this bias was 

a form of enrichment – as more severely affected individuals were more likely to 

be included in the study, the number of events will have been increased, thus 

increasing the power to accurately detect prognostic effects. 

Limitations 

A wide range of data quality dimensions were assessed in the FAIRVASC study in 

Chapter 2. One area where only limited checks were possible was correctness. 

Correctness was assessed across six registries for eight variables, if the variable 

was present, with at least 10 records sampled for each registry. Registry data 

was directly compared to a local “gold standard” source of information, such as 

the clinical record. In total, at least 370 data points were sampled. Given 

limited resources available for this task, this was a satisfactory initial check of 

correctness, but a more comprehensive assessment would be desirable, 

particularly when a research question relies upon correctness of specific 

variables. For example, the DQ assessment process was not designed to check 

data related to infection and its associated severity. For the subsequent study of 

severe infection incidence, it would have been useful to have had a specific 

assessment of correctness of severe infection data. In Chapter 2, this limitation 

was addressed by focusing on two registries where it was known that recent 

extensive data collection relating to clinical outcomes had been performed. 

Chapters 3, 4 and 5 utilised the VOICES study linkage data derived from Scottish 

national routinely collected administrative data. While the data linkage studies 

in these chapters represent a novel and efficient approach to prognosis research 

studies, a preferred source of data for such studies may be a prospective cohort 

specifically designed to address the study question. Such a study would have a 

rigorously defined inclusion and exclusion criteria to ensure the sample 

represents the population of interest. Similarly, predictors and outcomes would 

be carefully defined. Residual confounding is a challenge in epidemiology, most 

prominently in aetiological research. Retrospective studies are unlikely to be 

able to collect all important known confounders. For prognostic studies, where 



202 

confounding is not a specific issue, the analogous concern would be missing 

variables that allow a specific prognostic factor to appear to have more 

predictive qualities, but only in the absence of other important factors. 

Potentially important variables of interest that were not available in this thesis 

include vasculitis disease activity, immunosuppressive medication data and 

biological characteristics such as immune system parameters. Unknown 

confounders or important predictors by definition will not be accounted for, 

though this is the case regardless of whether a study is prospective or 

retrospective. Prospective studies may also have weaknesses. Limited human 

resource, lack of access to important clinical information systems and reliance 

on participant self-reporting outcomes may all significantly diminish data 

completeness and correctness. In some circumstances, routinely collected 

administrative data may have more detailed and extensive data than a 

prospective study would be able to compile. It leads to better representation of 

real-world populations as discussed above. Using routinely collected data is also 

substantially more efficient and cost-effective. While having broad 

representation of important variables is important in all modelling, this thesis 

limited the impact of residual confounding through a clear and predefined focus 

on predictive research, which does not require all confounders to be included in 

models. Nevertheless, predictive research can still be improved upon by 

inclusion of a wide range of potentially important predictors. 

Correctness, or accuracy, of data is crucial in epidemiological research and the 

retrospective design of studies in this thesis may have impacted upon this. Case 

ascertainment was a potential limitation in this thesis. AAV cases were identified 

using ICD-10 codes assigned in a national administrative data by trained clinical 

coders. Hospital admission data that listed an AAV code as a relevant condition 

was used to identify AAV cases. The first such admission was used as an index 

date, deemed likely to represent the time of diagnosis of a substantial 

proportion of study subjects. While this may suitably identify all true AAV cases, 

this is difficult to quantify, as it was not possible to perform a nested data 

quality check. Comorbid conditions were identified by similar means, which 

again relies on a hospital admission to pick up the condition. Data quality checks 

of such clinical coding is performed at a national level with such data deemed to 

be of high quality by national DQ processes. Glucocorticoid exposure was a key 
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predictor explored in the data linkage studies in this thesis. There was 

availability of a rich source of community prescribed medication from the PIS 

data set. Notably this records medications that are dispensed from community 

pharmacies, not the exact intended prescription from primary or secondary 

care. Differences between what is intended and what is dispensed may arise. 

AAV patients may keep a ‘backup’ supply of glucocorticoids in case they suffer a 

relapse and need immediate access to drug. Patients also may have very high 

glucocorticoid exposure that is not documented on community data, as the drug 

is supplied by secondary care. As some patients may have been exposed to 

glucocorticoid, even if this was not evident based on their community 

medication data, it raises the possibility of systemic bias in the correctness of 

glucocorticoid exposure data utilised in Chapters 3, 4 and 5. 

Epidemiology studies often utilise factors that are more easily ascertained or 

measured as markers to represent exposures or outcomes of interest. This 

occurred in the VOICES study. Due to the nature of routinely-collected data, 

accuracy of some data derived for the VOICES dataset may be diminished. 

National administrative datasets currently utilise dedicated personnel to code 

data surrounding hospital admissions. Currently for hospital admissions data, 

clinical information relating to patients’ background comorbid conditions is not 

optimally collected for public health or research purposes. When an individual’s 

hospital admission is coded, one main condition and up to five additional 

conditions are documented. The main condition is the medical or social 

condition primarily responsible for the patient’s need for investigation or 

treatment. Other conditions are those which coexist or develop during the 

health care episode. Therefore, it may be difficult for investigators to 

distinguish between new or pre-existing conditions. Many patients will have 

multiple issues during the health care episode. Being only able to document a 

maximum of five coexisting conditions means that relevant comorbid conditions 

may be missed. Furthermore, certain disease groups are prioritised above others 

for inclusion. For example, cancer and cardiovascular disease are higher priority 

than renal disease or hypertension (Public Health Scotland: Data and 

Intelligence, 2014). Where a condition is included in the data, using this data to 

define study populations, exposures or outcomes may still be problematic. For 

example, an important condition in this thesis was severe infection. A hospital 
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admission associated with infection was to define severe infection. This varies 

from the commonly used definition of “infection requiring hospital admission or 

requiring intravenous therapy” that is frequently used in epidemiological 

studies. If coded as an “other condition”, it is not possible to determine if the 

infection event in question was the principal reason for hospital admission or if 

it simply occurred around the time of the care episode and was not actually a 

severe event. An approach to address this could be a sensitivity analysis where 

only infections coded as “main condition” are used to define the outcome. A 

further instance of using an available measure to represent an outcome of 

interest was in Chapter 8. SARS-CoV-2 positivity in the clinical record was used 

as a marker of possible Covid-19 occurring during follow-up. While informative, 

it remains unclear whether a positive test for SARS-CoV-2 represented an 

important event for a given individual or whether the test result was an 

incidental finding on “routine screening”. 

Adequate statistical power is crucial in clinical research to detect important 

signals, to limit the occurrence of spurious findings and to provide accurate 

estimate of effects. Although the prediction modelling studies in this thesis are 

substantially larger than any comparators in the AAV literature, they are still 

substantially smaller than high quality prediction models published in other 

settings with access to more data. For example, the PREDICT breast cancer 

survival model was developed on a dataset of 5,694 individuals and the QRISK3 

model for cardiovascular event prediction was derived from a data set of 7.9 

million individuals (Wishart et al., 2010; Hippisley-Cox et al., 2017). As a result, 

the thesis models had to limit the included number of predictors to minimise 

vulnerability to overfitting. The Covid-19 study in Chapter 6 was limited by 

sample size, despite substantial efforts to maximise case submission. As a result, 

it was only possible to perform multivariable analysis with a small number of 

covariates. Similarly, the immunological study in Chapter 7 was limited by a 

small sample, resulting in only basic univariable analyses being performed. A 

principal objective of the study, to quantify the humoral immune response in 

AAV patients treated with rituximab, was none the less achieved. Despite 

challenges around study power, biologically plausible and informative prognostic 

factors were still identified in these studies. 
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In the immunological data reported in Chapter 7, older age and better renal 

function were both associated with increased infection with SARS-CoV-2 over 12 

months following vaccination on a univariable analysis. Crucially, this should not 

be interpreted as either a causative or prognostic factor, as the analysis was 

unadjusted. Important confounders were not possible to include, both due to the 

sample size being inadequate for multivariable analysis and due to lack of data 

on certain confounders. Older age and worse renal function are both markers of 

frailty. An important confounder, that would be particularly challenging to 

measure, is propensity towards self-protective measures against viral infection. 

Older, more comorbid and frail individuals would have been far more likely to 

adopt strict self-protective measures, which are known to reduce incidence of 

Covid-19 (Talic et al., 2021). 

8.4 Place in literature 

This thesis makes a significant contribution to the literature surrounding AAV and 

severe infection. The findings discussed above will be considered in the context 

of important related work. 

Chapter 2 included an analysis of DQ in European AAV registries. High levels of 

DQ were found across most registries, domains and variables evaluated. DQ in 

FAIRVASC registries was comparable to other published reports, such as an 

analysis of heart failure data which found DQ scores above 95% across a range of 

DQ domains similar to those evaluated in Chapter 2 (Aerts et al., 2021). An 

analysis of the Italian National Rare Disease registry showed 100% completeness 

for most variables, but substantial missing data for some such as orphan drug use 

at 85% and date of disease onset at 53% (Taruscio et al., 2014). Methods used in 

the thesis study were similar to these studies. DQ in FAIRVASC registries is likely 

at least of as high quality as other similar registries. 

Chapter 2 reported the incidence of severe infection across two major European 

AAV registries, across different time periods. The incidence was comparable to 

other reports in the published literature and reflected the predominance of 

severe infections in the early period after AAV diagnosis. The institute which 

hosts the Swedish data recently published data relating to the incidence of 

severe infection. Reassuringly, the Swedish incidence rates derived from the 
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FAIRVASC infrastructure, and reported in Chapter 2, yield highly similar results 

to that published on the same question from the group that hosts the southern 

Swedish data as part of FAIRVASC. The study in question utilised the same data 

as FAIRVASC and their analysis had comparable, but not identical, methodology 

(Rathmann et al., 2021). 

Chapter 3 investigated glucocorticoid exposure across a range of dose 

thresholds, many of which have not been explored in the AAV literature. As 

detailed in Chapter 1 (section 1.13.2), dose thresholds have been examined in 

adjacent IMIDs such as RA. George and colleagues found that low-dose 

prednisone exposure up to 5 mg conferred a clinically important increased risk 

for severe infection (George et al., 2022). While this may be assumed to apply to 

AAV also, AAV has substantially different underlying disease processes, 

therapeutic strategies and propensity to severe infection. The results presented 

in Chapter 3 confirm that low-dose glucocorticoid exposure between 5 mg to 7.5 

mg may confer substantially increased severe infection risk. It also adds to the 

body of literature that supports glucocorticoid exposure at higher doses as a 

major contributor to severe infection risk (Lai et al., 2014; Walsh et al., 2022). 

Chapter 4 described the first clinical prediction model developed in AAV using a 

large routinely collected data set. It reported that 20.6% of AAV patients 

experienced a severe infection event, consistent with reports detailed in the 

introductory chapter that 15 to 22% will have this outcome. Only one other 

study, by McClure and colleagues, reported a comparable prediction model for 

severe infection. That study examined a different question, aiming to predict 

severe infections or three non-serious infections over five years following 

maintenance treatment with rituximab. The study sample size was 147 patients, 

whereas the study in Chapter 4 included 2,078 patients. The McClure study 

yielded an optimism-adjusted C-index of 0.64, comparable to the study in this 

thesis. An advantage of the McClure study was access to useful biological 

parameters such as serums IgG levels. A limitation was consideration of sample 

size. Their modelling included 13 candidate parameters, while only having 88 

clinical events (Events per candidate predictor (EPP) = 6.7). This leaves the 

study vulnerable to overfitting. The study in this thesis had 11 candidate 

predictors and 438 events (EPP = 39.8), however non-linear modelling was used 

for continuous variables which will substantially decrease the effective EPP. Age 
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was also unnecessarily dichotomised in the McClure study, thus losing 

information and potentially degrading model performance, as opposed to the 

non-linear approach used in this thesis. 

Chapter 5 derived the first known prognosis model that predicts mortality in 

individuals with AAV and severe infection. The optimism adjusted c-statistic for 

this model was 0.71. Similar models exist for the general population such as the 

Mortality in Emergency Department Sepsis (MEDS) score and the Pneumonia 

Severity Index and CURB-65 scores for community acquired pneumonia. The 

MEDS score was derived in 2,070 patients and had a c-statistic of 0.78 in a 

validation data set (Shapiro et al., 2003). The Pneumonia Severity Index had a c-

statistic of 0.81 in a validation cohort, while CURB-65 had a c-statistic of 0.76 in 

the same cohort. The model in this thesis has not yet been validated in an 

external data set, however internal validation was performed using 

bootstrapping. Our model is the only known to be targeted at a highly 

immunosuppressed population, such as AAV. 

Chapter 6 examined the immune response to SARS-CoV-2 vaccination and 

occurrence of subsequent SARS-CoV-2, in an AAV population treated with 

rituximab. Only other small studies have been reported. A study of 11 AAV 

patients treated with rituximab found that only three seroconverted (Demoulin 

et al., 2021). A similar study of 19 AAV patients found that among CD19-positive 

cell deplete individuals, none mounted a detectable antibody response. All 

CD19-positive cell replete individuals did however mount an antibody response 

(Marty et al., 2022). 

8.5 Implications 

8.5.1 Research implications 

Ensuring high quality data for clinical research is clearly important, but there 

are challenges in applying data quality concepts and methodology. 

Interpretation of DQ results is also challenging, as often the relative importance 

of DQ domains such as completeness and correctness is unknown. Different 

epidemiological studies and different areas of clinical research likely require 

different thresholds of DQ and the importance of DQ domains may vary across 
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studies. The field would benefit from work that quantifies the effect of differing 

data quality in studies with different objectives and across clinical domains. 

Researchers should be aware of DQ and apply principles and methodology from 

the field in their work. Starting with high quality data is crucial and Chapter 2, 

section 2.6.3, contains suggestions for optimising this. 

One of the main objectives of FAIRVASC was to develop semantic web-based 

technology to make rare disease registry data “FAIR” – findable, accessible, 

interoperable and reusable. AAV was selected as the exemplar condition. The 

EU-funded consortium has demonstrated that the FAIRVASC infrastructure gives 

“proof of concept” that semantic web technology can be used effectively to 

federate registry data and achieve FAIR objectives. This role of this type of 

infrastructure can now be expanded to other rare disease settings and beyond, 

to make registry, biobank and other biomedical data increasingly FAIR. This is 

compatible with data protection legislation and would increasingly allow 

researchers to harness research data to improve patient outcomes. The study in 

Chapter 2 described incidence rates of severe infection. By combining two 

registries with high quality severe infection data, these results are based on the 

largest data set yet published on the topic. This provides highly accurate 

estimates of incidence, which will facilitate future prognosis research. 

There is a greater need for clearly defined prognostic factor research in the 

medical literature in general and AAV is no exception. Many studies are 

performed without clearly stating that the objectives are aetiological research 

or predictive research. The PROGRESS framework, whose themes are 

incorporated into this thesis, serves as an excellent structure on which 

researchers can clearly define and report high-quality prognosis research 

(Hemingway et al., 2013). 

Glucocorticoid exposure has been established as strongly predictive of severe 

infection both in this thesis and in other studies (McGregor et al., 2012). It also 

has an aetiological role, most clearly evidenced in the PEXIVAS therapeutic trial 

and other randomised data (Walsh et al., 2022). There is a need to study 

glucocorticoid exposure as a prognostic factor with greater statistical power and 

an aim to determine dose thresholds that impact risk. Risk may not be linear, 

therefore modern approaches to non-linear continuous variable modelling should 
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be utilised. Understanding the underlying mechanisms by which glucocorticoids 

confer increased risk could pave the way for novel therapeutic strategies to 

decrease severe infections and their associated mortality. A more 

comprehensive understanding of the impact of glucocorticoid dose will provide a 

strong foundation for subsequent prognosis modelling studies and stratified 

medicine research. 

The prognostic modelling studies in this thesis apply modern statistical 

methodology to highly generalisable real-world data sets with careful 

consideration of sample size. These studies have not undergone external 

validation or assessment of clinical impact. Future prognostic modelling studies 

in these areas should seek to add additional prognostic factors which were not 

available in this thesis. In their current form, the models are not appropriate to 

deploy in clinical practice. This work does, however, represent important first 

steps in developing the prognostic modelling field in the setting of AAV and 

severe infection. Such models could be used in therapeutic trials to identify 

patients at risk of serious infection. Novel therapies or approaches to clinical 

care could be evaluated in RCTs examining such high-risk populations. 

8.5.2 Clinical implications 

Many AAV patients are maintained on long-term low-dose glucocorticoid, 

particularly in EGPA (Hellmich et al., 2023; Kitching et al., 2020). While this may 

be an appropriate strategy for some patients to control disease activity, it 

should not be routinely employed for all patients. Chapter 2 raised concern that 

low-dose glucocorticoid between 5 mg to 7.5 mg may be associated with a 

clinically important risk of severe infection. When making decisions with 

patients about ongoing glucocorticoid therapy, the risk of severe infections 

should be considered. 

As described above, the models reported in this thesis are not appropriate for 

deployment in routine clinical care. In future, models informed by this thesis 

will ideally be used in the routine care of AAV patients which could inform 

patients about what to expect in the future and could assist with the application 

of stratified medicine: the selection of individualised treatments to maximise 

effectiveness and minimise adverse events. 



210 

Chapter 7 demonstrated the substantially diminished humoral immune response 

to SARS-CoV-2 vaccination in rituximab treated AAV patients. This had direct 

clinical implications for AAV patients. Based on this data, it was not possible to 

reassure such patients that their immune response to vaccination was normal. It 

was important for many patients to know that protection afforded by 

vaccination may be limited. As a result, they were able to consider adopting 

stricter self-protection measures. There was, however, a partially reassuring 

message from the data, that the T-cell response appeared to be functioning 

similarly to healthy controls. 

An important message from this thesis is that AAV, and importantly its therapy, 

confer a high risk of severe infection. While adverse outcomes in this setting are 

many, infection does not have a prominent place in communication with 

patients, whether in the clinical setting or in patient information literature. 

Communication around what patients can expect following a diagnosis should be 

patient centred and based on the best available data. Severe infection may need 

more prominence in discussions with patients and in information given to them. 

8.5.3 Health policy implications 

Prognosis research tools have a wide range of potential applications such as 

helping clinicians and patients make treatment decisions based on individualised 

risk, communicating prognosis to patients and families and for selecting patients 

at high risk of a given outcome for therapeutic trials aiming to ameliorate that 

risk. Applications in health policy can also be envisioned. Prognostic tools could 

be applied to specific groups to forecast the likelihood of clinical events at a 

population level. This could enable optimisation of the structure and funding of 

services by taking future events into account. In general, as the quality and 

predictive ability of prognostic tools improve, their integration into routine 

clinical practice should be considered and facilitated. Incorporating useful 

clinical prognosis tools into electronic health care applications in a convenient 

and intuitive manner would be highly valuable for clinicians and patients. In 

order to facilitate future delivery of such tools, consideration should be given to 

optimising routinely collected data for population-based research, including 

prognosis research. Administrative data sets could be altered, even in subtle 

ways, to enable better population research, which in turn could provide direct 
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clinical benefit in a relatively short time frame. An example of such a potential 

change is the number of comorbid conditions that is possible to derive from a 

care episode in the current Scottish administrative data. As detailed above in 

section 8.3, there are limitations to the number of comorbid conditions that 

existing clinical coders are able to document for a given care episode. Artificial 

intelligence (AI) tools are under development aiming to summarise medical 

records (Zhang et al., 2023). Utilising such tools in future could enable more 

comprehensive documentation of patient’s health conditions, while existing 

human resource could be deployed to adjudicate cases where an AI tool’s results 

have low certainty and for auditing of clinical coding. Ultimately, clinical coding 

and data linkage should be adequately resourced to maximise the utility of data 

for patient benefit, clinical research and policy making. 

8.6 Future directions 

An objective of the FAIRVASC consortium is to expand use cases for federated 

research data such that advance statistical techniques can be used to analyses 

the data in greater depth. At present semantic web technology typically only 

allows basic arithmetic operations to be performed. The FAIRVASC consortium is 

investigating the use of novel encrypted federated learning techniques that will 

allow such statistical techniques, including machine learning, to be performed 

on distributed data, meaning that the underlying data will not be transferred out 

of the host institution for the analysis. Crucially this allows any concerns around 

data protection to be comprehensively addressed. More complex predictive 

models will be able to be developed on suitably large datasets to better predict 

outcomes for patients. The FAIRVASC infrastructure is highly scalable, therefore 

can be extended to other AAV data sets, other rare disease settings and beyond. 

Chapter 2 highlighted glucocorticoids as a prognostic factor for severe infection 

in AAV. Multiple observational studies and randomised data support an 

aetiological role for glucocorticoids in this regard. Research into the underlying 

biological mechanisms underlying development of severe infection in AAV, 

including the biology of the glucocorticoid effect, is warranted. This could 

reveal biomarkers for severe infection risk that could be incorporated into 

increasingly powerful prognostic tools. Severe infections represent a huge global 
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burden in terms of morbidity and mortality. Understanding the biology could 

have beneficial effects far beyond AAV. 

It is clear that severe infections are common in AAV and can lead to a 

substantial impact on morbidity and mortality. However, quantification of the 

morbidity impact is lacking and the mechanisms by which it leads to or predicts 

mortality in AAV are not understood. It is not clear whether a non-fatal severe 

infection simply predicts other severe infections, which could be fatal, or 

impacts aspects of physiology, vasculitis treatment or other disease processes 

that leads to early mortality in a causative fashion. Quality of life (QOL) is highly 

likely to be impacted be severe infection, in the very least due to excess time 

spent in hospital and patient anxiety. However, it is unclear if other aspects of 

QOL are impacted. Prospective studies of patients with AAV who have suffered 

infections could address these questions by assessing aspects of biology, clinical 

care and outcomes. Comparison to controls, including AAV patients who have not 

suffered infections would be important. 

Prognosis research will be of increasing importance in all disease settings, 

including AAV. Adverse clinical events in AAV include cardiovascular disease, 

malignancy, venous thromboembolism and severe infection, which this thesis has 

presented as an important, unmet clinical need. There is a clear requirement for 

adequately powered, prospective prognosis research in these areas. This would 

include thorough assessment of known, and novel biomarkers; prognostic 

factors; prognostic modelling studies executed using modern methology 

described in this thesis; external validation and clinical impact studies of these 

models, which is often missing from the wider medical literature; and stratified 

medicine research to help patients use prognostic tools to choose treatment 

strategies that maximise clinical benefit while minimising adverse effects. 

Many studies have demonstrated that the most common cause of early mortality 

in AAV is severe infection. Other work has highlighted the severe increase in 

excess mortality in AAV due to infection. More patients die of severe infection 

than active vasculitis. It is clear that our treatment strategies are not 

adequately tailored to minimise this risk. Individuals with AAV have benefitted 

considerably from the international vasculitis research community’s ability to 

execute therapeutic trials despite the rarity of the disease. Future 
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interventional trials should be focused therapies and strategies to reduce 

adverse outcomes, such as severe infection and infection-related mortality. This 

may include tailoring therapy according to individualised data from prognostic 

tools or enhanced antimicrobial prophylaxis in those at the highest risk. 

8.7 Conclusion 

It is well recognised that individuals with AAV are vulnerable to the potentially 

devastating impacts of severe infection. Based on a structure provided by the 

prognosis research literature and the PROGRESS framework, this thesis has 

explored the high incidence of severe infection in AAV, the potential for 

glucocorticoid exposure as a prognostic marker for severe infection and 

prognostic modelling of both the occurrence of severe infection and early death 

after the event. A novel infectious disease, Covid-19, was the subject of 

chapters which investigated prognostic factors for severe disease and the 

immunological impact of SARS-CoV-2 vaccination in this high-risk population. 

Prognosis research has the potential to deliver immense health benefits to 

individuals with rare diseases. Its increased application, in aiming to predict 

severe infection in AAV, is no exception. 
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9 Appendices 

9.1 Literature search 

Embase 1947-Present, updated daily 
 
1 exp ANCA associated vasculitis/ 7788 
2 (Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis or Anti 
Neutrophil Cytoplasmic Antibody Associated Vasculitis or ANCA-Associated 
Vasculitis or ANCA Associated Vasculitis or Pauci-Immune Vasculitis or Pauci 
Immune Vasculitis or Pauci-Immune Vasculitides or ANCA-Associated Vasculitides 
or ANCA Associated Vasculitides or ANCA-Associated Vasculitide or Churg-Strauss 
Syndrome or Churg Strauss Syndrome or Churg-Strauss Vasculitis or Eosinophilic 
Granulomatous Vasculitis or Eosinophilic Granulomatous Vasculitides or 
Granulomatosis with Polyangiitis or Granulomatosis with Polyangiitides or 
Wegener Granulomatosis or Wegener's Granulomatosis or Wegeners 
Granulomatosis or Microscopic Polyangiitis or Microscopic Polyangiitides or 
Necrotizing vasculi$ or antineutrophil cytoplasmic antibody-associated vasculitis 
or Anti-neutrophil cytoplasmic antibody ANCA associated vasculitis or 
Antineutrophil cytoplasmic autoantibody-associated vasculitis).mp. [mp=title, 
abstract, heading word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword heading word, floating 
subheading word, candidate term word] 29491 
3 1 or 2 29491 
4 exp infection/ 4159535 
5 (Infectio$ or Antibiotic$ or Antimicrobial$ or antivi$ or Pathogen$ or 
Bacter$ or Sepsis or Septic$ or Microbe$ or Fungus or Fungal or Fungemia or 
Fungaemia or Parasite or Parasitic or Virus$ or Viral).mp. [mp=title, abstract, 
heading word, drug trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword heading word, floating subheading 
word, candidate term word] 6751809 
6 4 or 5 7737736 
7 3 and 6  12125 
8 (Epidemiol$ or retrospective or Case-Control or Matched$ or case control 
or case-control or (Cohort and study) or Matched-cohort$ or Observ$ or 
Longitudinal or cross sectional or cross-sectional or predict$ or scor$ or Data 
Linkage or Risk$ or Incidence or Prevalence or Multivaria$ or Regression or 
Population$).mp. [mp=title, abstract, heading word, drug trade name, original 
title, device manufacturer, drug manufacturer, device trade name, keyword 
heading word, floating subheading word, candidate term word] 15737462 
9 7 and 8  5529 
10 (animals/ not humans/) or comment/ or editorial/ or exp review/ or meta 
analysis/ or consensus/ or exp guideline/ 5151934 
11 hi.fs. or case report.mp. 2860812 
12 10 or 11 7902305 
13 9 not 12 3350 
  
Ovid MEDLINE(R) and In-Process, In-Data-Review & Other Non-Indexed Citations 
<1946 to February 25, 2022> 
 
1 exp Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/ 11518 
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2 (Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis or Anti 
Neutrophil Cytoplasmic Antibody Associated Vasculitis or ANCA-Associated 
Vasculitis or ANCA Associated Vasculitis or Pauci-Immune Vasculitis or Pauci 
Immune Vasculitis or Pauci-Immune Vasculitides or ANCA-Associated Vasculitides 
or ANCA Associated Vasculitides or ANCA-Associated Vasculitide or Churg-Strauss 
Syndrome or Churg Strauss Syndrome or Churg-Strauss Vasculitis or Eosinophilic 
Granulomatous Vasculitis or Eosinophilic Granulomatous Vasculitides or 
Granulomatosis with Polyangiitis or Granulomatosis with Polyangiitides or 
Wegener Granulomatosis or Wegener's Granulomatosis or Wegeners 
Granulomatosis or Microscopic Polyangiitis or Microscopic Polyangiitides or 
Necrotizing vasculi$ or antineutrophil cytoplasmic antibody-associated vasculitis 
or Anti-neutrophil cytoplasmic antibody ANCA associated vasculitis or 
Antineutrophil cytoplasmic autoantibody-associated vasculitis).mp. [mp=title, 
abstract, original title, name of substance word, subject heading word, floating 
sub-heading word, keyword heading word, organism supplementary concept 
word, protocol supplementary concept word, rare disease supplementary 
concept word, unique identifier, synonyms] 16490 
3 1 or 2 16490 
4 exp Infections/ 2883889 
5 (Infectio$ or Antibiotic$ or Antimicrobial$ or antivi$ or Pathogen$ or 
Bacter$ or Sepsis or Septic$ or Microbe$ or Fungus or Fungal or Fungemia or 
Fungaemia or Parasite or Parasitic or Virus$ or Viral).mp. [mp=title, abstract, 
original title, name of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism supplementary concept word, 
protocol supplementary concept word, rare disease supplementary concept 
word, unique identifier, synonyms] 4927623 
6 4 or 5 5756114 
7 3 and 6  4748 
8 (Epidemiol$ or retrospective or Case-Control or Matched$ or case control 
or case-control or (Cohort and study) or Matched-cohort$ or Observ$ or 
Longitudinal or cross sectional or cross-sectional or predict$ or scor$ or Data 
Linkage or Risk$ or Incidence or Prevalence or Multivaria$ or Regression or 
Population$).mp. [mp=title, abstract, original title, name of substance word, 
subject heading word, floating sub-heading word, keyword heading word, 
organism supplementary concept word, protocol supplementary concept word, 
rare disease supplementary concept word, unique identifier, synonyms]
 11372668 
9 7 and 8  1887 
10 (animals/ not humans/) or comment/ or editorial/ or exp review/ or meta 
analysis/ or consensus/ or exp guideline/ 9076672 
11 hi.fs. or case report.mp. 660103 
12 10 or 11 9648633 
13 9 not 12 1301 
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9.2 FAIRVASC ontology 

Screenshots of interactive ontology visualisation from 

http://ontologies.adaptcentre.ie/fairvasc/index-en.html: 

 

 

Example of FAIRVASC ontology coded in JSON format: 

[ { 

  "@id" : "_:genid1", 

  "@type" : [ "http://www.w3.org/2002/07/owl#Restriction" ], 

  "http://www.w3.org/2002/07/owl#hasValue" : [ { 

    "@id" : "http://identifiers.org/ncit:C64548" 

  } ], 

  "http://www.w3.org/2002/07/owl#onProperty" : [ { 

    "@id" : "http://w3id.org/FAIRVASC#testType" 

  } ] 

}, { 

  "@id" : "_:genid10", 

  "@type" : [ "http://www.w3.org/2002/07/owl#Restriction" ], 

  "http://www.w3.org/2002/07/owl#hasValue" : [ { 

    "@id" : "http://identifiers.org/ncit:C67255" 

  } ], 

  "http://www.w3.org/2002/07/owl#onProperty" : [ { 

    "@id" : "http://w3id.org/FAIRVASC#testUnit" 

  } ] 

}, { 

http://ontologies.adaptcentre.ie/fairvasc/index-en.html
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  "@id" : "_:genid11", 

  "@type" : [ "http://www.w3.org/2002/07/owl#Restriction" ], 

  "http://www.w3.org/2002/07/owl#hasValue" : [ { 

    "@id" : "http://identifiers.org/ncit:C64848" 

  } ], 

  "http://www.w3.org/2002/07/owl#onProperty" : [ { 

    "@id" : "http://w3id.org/FAIRVASC#testType" 

  } ] 

}, { 

  "@id" : "_:genid12", 

  "@type" : [ "http://www.w3.org/2002/07/owl#Restriction" ], 

  "http://www.w3.org/2002/07/owl#hasValue" : [ { 

    "@id" : "http://identifiers.org/ncit:C64783" 

  } ], 

  "http://www.w3.org/2002/07/owl#onProperty" : [ { 

    "@id" : "http://w3id.org/FAIRVASC#testUnit" 

  } ] 
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9.3 Glucocorticoid dose exposure: full models 

Table 9-1 | Glucocorticoid 0 mg vs >0-10 mg vs >10 mg: full model 
  n (%) HR (95% CI): univariable 

Glucocorticoid: 0mg vs >0 to 10mg vs >10mg Zero 290 (29.7) - 
 >0 to 10 mg 120 (12.3) 1.61 (0.84-3.08, p=0.153) 
 >= 10 mg 568 (58.1) 1.67 (1.04-2.67, p=0.032) 

Age Mean (SD) 59.7 (15.3) 1.03 (1.01-1.04, p<0.001) 

Sex Female 513 (52.5) 1.51 (1.03-2.22, p=0.034) 

Diabetes  65 (6.6) 1.68 (0.90-3.14, p=0.101) 

Cancer (all)  54 (5.5) 1.35 (0.66-2.77, p=0.412) 

Chronic respiratory disease  180 (18.4) 2.17 (1.46-3.24, p<0.001) 

Chronic heart failure  31 (3.2) 2.28 (1.06-4.90, p=0.035) 

Liver disease  15 (1.5) 1.93 (0.61-6.08, p=0.262) 

Renal disease  92 (9.4) 3.50 (2.27-5.41, p<0.001) 

CVD  47 (4.8) 2.42 (1.30-4.51, p=0.005) 

SIMD (deciles) Mean (SD) 5.6 (2.8) 0.98 (0.92-1.05, p=0.611) 
95% CI = 95 percent confidence interval, CVD = cerebrovascular disease, mg = milligrams, 
SD = standard deviation, SIMD = Scottish Index of Multiple Deprivation. 
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Table 9-2 | Glucocorticoid multiple dose thresholds: full model 
  n (%) HR (95% CI): univariable 

Glucocorticoid: 0mg vs >0 to 10mg vs >10mg Zero 290 (29.7) - 
 >0 to 5 mg 38 (3.9) 0.64 (0.15-2.70, p=0.540) 
 >5 to 10 mg 82 (8.4) 2.10 (1.06-4.14, p=0.033) 
 >10 to 20 mg 198 (20.2) 1.64 (0.93-2.89, p=0.088) 
 >20 mg 370 (37.8) 1.68 (1.02-2.77, p=0.040) 

Age Mean (SD) 59.7 (15.3) 1.03 (1.01-1.04, p<0.001) 

Sex Female 513 (52.5) 1.51 (1.03-2.22, p=0.034) 

Diabetes  65 (6.6) 1.68 (0.90-3.14, p=0.101) 

Cancer (all)  54 (5.5) 1.35 (0.66-2.77, p=0.412) 

Chronic respiratory disease  180 (18.4) 2.17 (1.46-3.24, p<0.001) 

Chronic heart failure  31 (3.2) 2.28 (1.06-4.90, p=0.035) 

Liver disease  15 (1.5) 1.93 (0.61-6.08, p=0.262) 

Renal disease  92 (9.4) 3.50 (2.27-5.41, p<0.001) 

CVD  47 (4.8) 2.42 (1.30-4.51, p=0.005) 

SIMD (deciles) Mean (SD) 5.6 (2.8) 0.98 (0.92-1.05, p=0.611) 
95% CI = 95 percent confidence interval, CVD = cerebrovascular disease, mg = milligrams, 
SD = standard deviation, SIMD = Scottish Index of Multiple Deprivation. 
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Table 9-3 | Glucocorticoid 5-7.5 mg dose: full model 
  n (%) HR (95% CI): univariable HR (95% CI): multivariable 

Glucocorticoid: 0mg vs 5-7.5 mg Zero 290 (93.5) - - 
 5 to 7.5 mg 20 (6.5) 1.98 (0.59-6.59, p=0.267) 2.55 (0.72-8.94, p=0.145) 

Age Mean (SD) 58.4 (17.1) 1.03 (1.00-1.05, p=0.053) 1.02 (0.99-1.05, p=0.152) 

Sex Female 180 (58.1) 1.17 (0.53-2.57, p=0.704) 0.74 (0.32-1.70, p=0.476) 

Diabetes  20 (6.5) 1.31 (0.31-5.53, p=0.716) 0.56 (0.12-2.55, p=0.457) 

Cancer (all)  21 (6.8) 0.54 (0.07-3.97, p=0.544) 0.42 (0.06-3.20, p=0.405) 

Chronic respiratory disease  55 (17.7) 2.18 (0.95-5.02, p=0.067) 2.00 (0.80-4.99, p=0.137) 

Chronic heart failure  7 (2.3) 4.53 (1.07-19.20, p=0.040) 2.81 (0.60-13.11, p=0.188) 

Liver disease  7 (2.3) 0.00 (0.00-Inf, p=0.997) 0.00 (0.00-Inf, p=0.996) 

Renal disease  31 (10.0) 4.48 (1.95-10.31, p<0.001) 4.44 (1.78-11.07, p=0.001) 

CVD  20 (6.5) 3.80 (1.43-10.08, p=0.007) 3.96 (1.37-11.44, p=0.011) 

SIMD (deciles) Mean (SD) 5.4 (2.9) 1.02 (0.89-1.16, p=0.823) 0.97 (0.84-1.12, p=0.708) 
95% CI = 95 percent confidence interval, CVD = cerebrovascular disease, mg = milligrams, 
SD = standard deviation, SIMD = Scottish Index of Multiple Deprivation. 



221 

Table 9-4 | Glucocorticoid dose - continuous variable: full model 

  n (%) HR (95% CI): univariable HR (95% CI): multivariable 

Glucocorticoid dose (mg) Mean (SD) 20.3 (23.1) 1.00 (1.00-1.01, p=0.314) 1.01 (1.00-1.02, p=0.047) 

Age Mean (SD) 59.7 (15.3) 1.03 (1.01-1.04, p<0.001) 1.02 (1.00-1.04, p=0.010) 

Sex Female 513 (52.5) 1.51 (1.03-2.22, p=0.034) 1.28 (0.86-1.91, p=0.216) 

Diabetes  65 (6.6) 1.68 (0.90-3.14, p=0.101) 1.10 (0.58-2.11, p=0.767) 

Cancer (all)  54 (5.5) 1.35 (0.66-2.77, p=0.412) 1.09 (0.52-2.27, p=0.820) 

Chronic respiratory disease  180 (18.4) 2.17 (1.46-3.24, p<0.001) 1.85 (1.22-2.80, p=0.004) 

Chronic heart failure  31 (3.2) 2.28 (1.06-4.90, p=0.035) 1.25 (0.57-2.76, p=0.574) 

Liver disease  15 (1.5) 1.93 (0.61-6.08, p=0.262) 1.77 (0.55-5.69, p=0.338) 

Renal disease  92 (9.4) 3.50 (2.27-5.41, p<0.001) 2.87 (1.80-4.57, p<0.001) 

CVD  47 (4.8) 2.42 (1.30-4.51, p=0.005) 2.21 (1.17-4.18, p=0.015) 

SIMD (deciles) Mean (SD) 5.6 (2.8) 0.98 (0.92-1.05, p=0.611) 0.99 (0.92-1.06, p=0.700) 
95% CI = 95 percent confidence interval, CVD = cerebrovascular disease, mg = milligrams, 
SD = standard deviation, SIMD = Scottish Index of Multiple Deprivatio
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9.4 Example UKIVAS Covid-19 case report form 
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3 
Matthew Rutherford, Jennifer Scott 2020 

Immunosuppressive Medication  
* Medication questions relate to those taken at time of COVID-19 diagnosis (or up to 2 weeks prior) 
* For medications with prolonged duration of action (e.g. rituximab), the patient should be considered ‘on’ 
this medication if this medicine is thought to be still having its clinical effect 

Immunosuppressive status 
(please check one) 

 Currently on immunosuppression 
 Discontinuation of immunosuppression within 6 months prior to this 

encounter 
 Discontinuation of immunosuppression > 6 months prior to this encounter 
 Treatment Naïve 

If above answer ‘Treatment Naïve’ please move to next section ‘Other medication’ 

On corticosteroids?             Yes                        No 

If on corticosteroids,  
current corticosteroid dose: 
 

 
                      mg (in oral prednisolone equivalents) 
 

On other immunosuppressive 
medication? 
 
(please check all that apply) 

 Abatacept 
 Alfa1 antitrypsin 
 Anakinra 
 Apremilast 
 Azathioprine 
 Belimumab 
 Bevacizumab 
 Ciclesonide 
 Ciclosporin 
 Chloroquine 
 Cyclophosphamide - Oral 
 Cyclophosphamide - IV 
 Hydroxychloroquine 
 IVIG: Immunoglobulins 
 Leflunomide 
 Mepolizumab 
 Methotrexate 
 Mycophenolate mofetil 

 Rituximab 
 Secukinumab 
 Sulfasalazine 
 Tacrolimus (including Advagraf, 

Prograf, etc.) 
 Thalidomide 
 Tocilizumab 
 Tofacitinib 
 Tumor necrosis factor alpha (TNF-) 

inhibitors 
 Ustekinumab 
 None 
 Other (please specify): 

             
 
 
 

If on corticosteroids, dose 
change in response to this 
clinical encounter/episode 

 Increased 
 No change  
 Reduced  

 Stopped  
 Unknown 

If on other 
Immunosuppressive 
medication, dose change in 
response to this clinical 
encounter/episode 
 

Immunosuppressive 1 name:       

 

 

 Immunosuppressive increased 
 No change in Immunosuppressive 
 Immunosuppressive reduced 
 Immunosuppressive stopped 
 Unknown 

If on 2nd other 
Immunosuppressive 
medication, dose change in 
response to this clinical 
encounter/episode 
 

Immunosuppressive 2 name:       

 

 

 Immunosuppressive increased 
 No change in Immunosuppressive 
 Immunosuppressive reduced 
 Immunosuppressive stopped 
 Unknown 

If on > 2 immunosuppressive 
please provide details 
regarding dose change in 
response to this encounter / 
episode  here: 
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4 
Matthew Rutherford, Jennifer Scott 2020 

 
 

Other medication (please check one box for each drug class) 

Angiotensin-converting-enzyme 
inhibitor (ACE-i) at C19 diagnosis 

 Yes                       No                      Unknown 

Angiotensin II receptor blocker 
(ARB) at C19 diagnosis 

 Yes                       No                      Unknown 

Non-steroidal anti-inflammatory 
drug (NSAID) at C19 diagnosis  

 Yes                       No                      Unknown 

 
 

COVID-19 – initial assessment 

Date of C-19 symptom 
onset (if known) 

      

Date of C-19 diagnosis        
 

Admission to hospital 
required (check one box) 
 
If Yes: 
Date of admission 

 Yes                       No                      Unknown 
 
 
      

Admission to ICU during 
admission (check one box) 
 
If Yes: 
Date of admission 

 Yes                       No                      Unknown  
 
 
      

Clinical features at outset 
 
(check all that apply) 
 

 Fever  
 Malaise  
 Headache  
 Irritability or confusion  
 Arthralgia  
 Myalgia  
 Conjunctivitis  
 Rhinorrhea  
 Sore Throat  
 Cough  
 Sputum production  
 Shortness of Breath 
 Chest pain 

 

 RR >24 breaths/min 
 Abdominal pain  
 Nausea  
 Vomiting  
 Diarrhoea  
 Altered taste  
 Altered smell 
 Haemoptysis  
 Epistaxis 
 None (asymptomatic) 
 Unknown 
 Other: (please specify) 
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5 
Matthew Rutherford, Jennifer Scott 2020 

COVID-19 – treatment and outcomes 

Were antibiotics 
administered? 

 Yes                       No                      Unknown  
 

Was treatment 
administered for C-19 
infection (other than best 
supportive care)? 
 
(check all that apply) 
 

 No treatment except supportive 
care  

 Kaletra (Lopinavir/ritonavir) 
 Remdesivir 
 Chloroquine 
 Hydroxychloroquine 
 Neuraminidase inhibitors, direct 

acting antivirals (e.g. Oseltamivir) 
 Azithromycin 
 Tocilizumab 

 Bevacizumab 
 Tofacitinib 
 Ciclesonide 
 Plasma (from recovered patients) 
 Other (please specify):            

 
 

Complications / Disease 
Course 
 
(check all that apply) 

 Acute Respiratory Distress 
Syndrome (ARDS) 

 Acute respiratory failure  
 Pneumothorax  
 Acute liver injury  
 Acute heart failure  
 Myocarditis  
 Cardiac arrhythmia  
 Cardiac ischaemia  
 Acute Kidney Injury (AKI)  
 Sepsis  
 Vasopressor dependence at any 

time  
 Disseminated Intravascular 

Coagulation  

 Severe anaemia (below 80 g/L) 
 Gastrointestinal haemorrhage  
 Encephalitis  
 Pregnancy-related complications  
 Hyperglycaemia  
 Hypoglycaemia  
 Rhabdomyolysis  
 Metabolic acidosis  
 Secondary infection  
 Macrophage activation syndrome  
 None 
 Unknown 
 Other (please specify):         

 
 

C-19 Outcome  1. Not hospitalized, no limitations on activities 
 2. Not hospitalized, limitation on activities 
 3. Hospitalized, not requiring supplemental oxygen 
 4. Hospitalized, requiring supplemental oxygen 
 5. Hospitalized, on non-invasive ventilation or high flow oxygen devices 
 6. Hospitalized, on invasive mechanical ventilation or ECMO 
 7. Death 
 8. Unknown 

If C-19 outcome = ‘7. Death’ 
Date of death 

 
      

If C-19 outcome = ‘7. Death’ 
Cause of death  

 COVID-19 / presumed COVID-19 / complication of COVID-19 
 other (please specify):       

 

 

Learning 

Would you like to share 
any lessons or other 
aspects from this case? 
Please include as much 
information as desired, this 
will greatly help patients 
and colleagues. 
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7 
Matthew Rutherford, Jennifer Scott 2020 

 

 
Vasculitis / Disease status at time of C-19 diagnosis 

Urinalysis Done  Yes                       No                      Unknown 
 

If Urinalysis = Yes: 
Urinalysis Protein 

 Negative             +1            +2            > = +3 

If Urinalysis = Yes: 
Urinalysis Blood 

 Negative             +1            +2            > = +3 

End-stage Kidney Disease 
(ESKD) prior to C-19 diagnosis? 

 Yes                       No                      Unknown 
 

If ESKD = Yes 
Type of Renal Replacement 
Therapy (RRT) 

 Functioning renal transplant  
 Haemodialysis  
 Peritoneal Dialysis  
 Sustained CKD V 

If ESKD = Yes 
Date of onset of ESKD 

      

Last eGFR prior to C-19 
diagnosis 
 

      
 
Please enter NA if the patient was dialysis dependent at that time 
 

Weight (kg)       

Height (m)       

Do you think vasculitis is 
relapsing in this encounter? 

 High probability       Possibly       No       Unknown 

Adjudicated probability of 
relapse? (completed 
retrospectively by senior 
clinician) 

 Definite       High Probability       Possibly       No 
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8 
Matthew Rutherford, Jennifer Scott 2020 

Birmingham Vasculitis Activity Score (at time of C-19 diagnosis) – only complete if training 
undertaken 
 

Tick an item only if attributable to active vasculitis. If there are no 
abnormalities in a section, please tick ‘None’ for that organ-system. 
 

 

 None Active disease  None Active  
disease 

1. General   6. Cardiovascular   

Myalgia  Loss of pulses  

Arthralgia / arthritis  Valvular heart disease  

Fever ≥38° C  Pericarditis  

Weight loss ≥2 kg  tIschaemic cardiac pain  

2. Cutaneous   tCardiomyopathy  

Infarct  tCongestive cardiac failure  

Purpura  7. Abdominal   

Ulcer  Peritonitis  

tGangrene  Bloody diarrhoea  

Other skin vasculitis  tIschaemic abdominal pain  

3. Mucous membranes / eyes   8. Renal   

Mouth ulcers  Hypertension  

Genital ulcers  Proteinuria >1+   

Adnexal inflammation  tHaematuria ≥10 RBCs/hpf  

Significant proptosis  Creatinine 125-249µ/L(1.41-2.82mg/dl)*  

Scleritis / Episcleritis  Creatinine 250-499 µ/L(2.83-5.64mg/dl)*  

Conjunctivitis / Blepharitis / Keratitis  tCreatinine ≥500 µ/L (≥5.66mg/dl)*  

Blurred vision 
Sudden visual loss 

 

 

tRise in serum creatinine >30% or fall 
in creatinine clearance >25% 

 

Uveitis  *Can only be scored on the first assessment 

tRetinal changes (vasculitis / 
thrombosis / exudate / haemorrhage) 

 

9. Nervous system 
Headache 
Meningitis 

 

 
 

 

 

 

4. ENT   Organic confusion  

Bloody nasal discharge / crusts / ulcers / 
granulomata 

 Seizures (not hypertensive) 
tCerebrovascular accident 

 

 

Paranasal sinus involvement  tSpinal cord lesion  

Subglottic stenosis  tCranial nerve palsy  

Conductive hearing loss  Sensory peripheral neuropathy  

tSensorineural hearing loss  tMononeuritis multiplex  

5. Chest     

Wheeze  10. Other   

Nodules or cavities  a.  

Pleural effusion / pleurisy  b.  

Infiltrate  c.  

Endobronchial involvement  d.  

tMassive haemoptysis / alveolar 
haemorrhage 
tRespiratory failure 

 

 

 

BVAS Score – not necessary to add up for COVID-19 
data collection, will be done centrally 

 
t Major items highlighted 
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9 
Matthew Rutherford, Jennifer Scott 2020 

Vasculitis Damage Index (at time of C-19 diagnosis) – only complete if training undertaken 
 
This is for recording organ damage that has occurred in patients since the onset of vasculitis.  Patients often have co-morbidity before they develop 
vasculitis, which must not be scored. Record features of active disease using the Birmingham Vasculitis Activity Score (BVAS). A new patient 
should usually have a VDI score of zero, unless: (a) they have had vasculitis for more than three months of onset of disease and (b) the damage 
has developed or become worse since the onset of vasculitis 

 

1. Musculoskeletal No Yes   

None    

Significant muscle atrophy or weakness    

Deforming/erosive arthritis    

Osteoporosis/vertebral collapse     7. Peripheral vascular disease No Yes 

Avascular necrosis    None   

Osteomyelitis    Absent pulses in one limb   

2. Skin/Mucous membranes    2nd episode of absent pulses in one limb   

None    Major vessel stenosis   

Alopecia    Claudication >3 mths   

Cutaneous ulcers    Minor tissue loss   

Mouth ulcers    Major tissue loss   

3. Ocular    Subsequent major tissue loss   

None    Complicated venous thrombosis   

Cataract    8. Gastrointestinal   

Retinal change    None   

Optic atrophy    Gut infarction/resection   

Visual impairment/diplopia    Mesenteric insufficiency/pancreatitis   

Blindness in one eye    Chronic peritonitis   

Blindness in second eye    Oesophageal stricture/surgery    

Orbital wall destruction    9. Renal   

4. ENT    None   

None    Estimated/measured GFR ≥ 50%   

Hearing loss    Proteinuria ≥ 0.5g/24hr   

Nasal blockage/chronic discharge/crusting    End stage renal disease   

Nasal bridge collapse/septal perforation    10. Neuropsychiatric   

Chronic sinusitis/radiological damage    None   

Subglottic stenosis (no surgery)    Cognitive impairment   

Subglottic stenosis (with surgery)    Major psychosis   

5. Pulmonary    Seizures   

None    Cerebrovascular accident   

Pulmonary hypertension    2nd cerebrovascular accident   

Pulmonary fibrosis    Cranial nerve lesion   

Pulmonary infarction    Peripheral neuropathy   

Pleural fibrosis    Transverse myelitis   

Chronic asthma    11. Other   

Chronic breathlessness    None   

Impaired lung function    Gonadal failure   

6. Cardiovascular    Marrow failure   

None    Diabetes   

Angina/angioplasty    Chemical cystitis   

Myocardial infarction    Malignancy   

Subsequent myocardial infarction    Other   

Cardiomyopathy     
 

Total VDI Score – not necessary to add up for COVID-19 
data collection, will be done centrally 

Valvular disease    

Pericarditis ≥ 3 mths or pericardectomy    

Diastolic BP ≥ 95 or requiring antihypertensives    
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10 
Matthew Rutherford, Jennifer Scott 2020 

 
COVID-19 – diagnosis 

Location at which C-19 
diagnosis was made 
 
(please select one) 

 1, Home or standalone testing 
 2, Nursing home or assisted living facility  
 3, Outpatient facility  
 4, Emergency Department  
 5, Inpatient/Hospital  
 6, Other (free text):        
 7, Unknown 

 

Method of C-19 testing 
 
(select the most objective 
option) 

 1, symptoms (presumptive)  
 2, PCR  
 3, antibody  
 4, metagenomic testing  
 5, CT scan  
 6, other (free text):        
 7, Laboratory assay, type unknown 

 

If Method = PCR: 
 
Level of Sars-CoV-2 (COVID-
19) PCR 

 
 
      

If antibody testing done: 
 
Sars-CoV-2 (COVID-19)  
IgM level 
 
Sars-CoV-2 (COVID-19) 
IgG level 

 
 
      
 
 
      

Infection Acquisition   High-risk travel to endemic area  
 Contact of known or suspected person  
 Attendance to a healthcare facility/ward where C-19 infections are managed  
 None of the above (community acquired)  
 Unknown 

 

Presumed infection 
acquisition date (if known) 
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12 
Matthew Rutherford, Jennifer Scott 2020 

 

 

 

 

 

 

 

 

 

 

 

COVID-19 – additional infection / outcome data 

Concomitant respiratory 
pathogens detected 
 
(select all that apply): 
 

 Influenza A 
 Influenza B 
 NON-COVID-19 Coronavirus 
 Respiratory syncytial virus (RSV) 
 Adenovirus 
 None 
 Other (free text):       

 

If Secondary Infection 
present: 
 
Type of Infection (in 
addition to those selected 
above) 

 Bacteraemia 
 Pneumonia 
 Pyelonephritis 
 Gastroenteritis 
 Encephalitis 
 Cellulitis 
 Osteomyelitis 
 Other (free text):       

 

If Secondary Infection 
present: 
 
Organism(s) (if known) 

 
      
 

If AKI present: 
Dialysis required 

 
 Yes                       No                      Unknown 

If dialysis required: 
Date of dialysis start 

      

If dialysis required: 
Date of dialysis stop 

                  or       remains dialysis dependent 

Date of symptom resolution 
(if known) 

      
 
Note: first date patient is asymptomatic, signifying recovery 

Have patient’s symptoms 
resolved at time of initial 
report? 

 1 yes  
 2 no  
 3 unknown  
 4 Asymptomatic patient (just tested positive) 

 

Date of hospital discharge 
(if known) 
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