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Abstract

Biomedical Entity Linking (BEL), a crucial task in natural language processing,
involves mapping mentions of biomedical entities in free text to their corresponding
concepts in standardized and structured biomedical ontologies such as the Unified
Medical Language System (UMLS). The increasing volume of biomedical literature
and the complexity of medical terminologies present significant challenges for BEL,
including entity ambiguity, dynamic knowledge bases, evolving terminology, and the
need to maintain accuracy across diverse biomedical domain texts. Existing BEL
systems often struggle with disambiguation, especially in the face of minimal context
or sparse ontology descriptions, leading to reduced generalization ability in retrieval
performance.

To address these challenges, we propose OntolinkX model, a context-aware linking
approach that integrates SapBERT and a cross-encoder reranker using hard negative
sampling scenarios. It builds on SapBERT which is a state-of-the-art entity linking
approach that mainly focuses on synonym disambiguation and semantic alignment via
contrastive learning but does not take full contexts into account. We show that adding
a cross-encoder improves on SapBERT’s performance in entity linking tasks. We ex-
plored the impact of incorporating additional information into the representation of
both mention text and ontology concepts, two essential components in entity linking
tasks. We start by taking entity names to represent ontology entries, then progressively
augment the representations with semantic types and definitions. On the mention side,
we incorporate contextual information from surrounding tokens within a dynamic win-
dow size. Furthermore, we examine the combined effect of full contextualized mention
representations and enriched ontology representations.

Our two-stage pipeline begins with SapBERT retrieving potential entity candidates
for each mention text. In the second stage, a cross-encoder is trained with negative
sampling learning approach, starting from randomly generated negative samples and
progressing to challenging ”hard negatives”, which are closest incorrect candidates from
the retriever. Experiments show that incorporating richer information from both men-
tion context and ontology descriptions improves retrieval performance. These findings
suggest that our OntolinkX linking approach, alongside enriched representations from
hard negative sampling strategy, can substantially improve BEL in complex biomedical
texts.
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Chapter 1

Introduction

The volume of biomedical literature data such as published journal articles and
clinical trial reports, has grown rapidly over the recent years. This literature contains
valuable information about new discoveries and new insights that are continuously ad-
ded to the already overwhelming quantity of literature [19]. Text mining tools can
help researchers stay with the current latest discoveries by rapidly analysing those
literature and identifying hidden connections between them [39]. This significantly
boosts the speed of scientific knowledge discovery. Those tools automatically extract
valuable information from vast amounts of biomedical records, which can aid the de-
velopment in personalized treatment [38]. Furthermore, biomedical text mining helps
assess potential interactions among drugs and-targets and flag adverse drug reactions
by aggregating reports from different sources [5]. This simplifies complex search pa-
pers, making it easier for healthcare workers to grasp important insights. As a result,
there is increasingly more demand for accurate biomedical text mining tools to extract
meaningful information from this vast body of literature [34]. Among the key tasks
in biomedical text mining are biomedical named entity disambiguation, biomedical
relation extraction and biomedical question answering.

Biomedical entity linking, also known as named biomedical entity linking (BEL)
or named entity disambiguation (NED), is a pivotal task in natural language pro-
cessing (NLP) that involves identifying and disambiguating entities mentioned in text
by linking them to a knowledge base, such as Wikipedia, DBpedia, or Unified Med-
ical Language System (UMLS) which serves as a comprehensive knowledge base that
unifies various health-related terminologies, enabling effective communication, data
sharing, and information retrieval in the biomedical domain [4]. It can facilitate ap-
plications such as literature search, clinical decision making and relational knowledge
discovery [23]. There are some substantial benefits of high-quality biomedical entity
linking systems. Entity linking ensures clarity and accurate interpretation of inform-
ation so that mentions of the same entity are consistently recognized across different
sources [27]. Secondly, it enables the integration of data from multiple sources, which is
crucial for clinical setting where disparate sources need to be merged to form a coherent
knowledge base [32]. Furthermore, it improves search accuracy by bridging terms with
their correct entities, improving information retrieval from large-scale databases [31].
These tangible benefits will bring about less confusion, less conflicting knowledge bases,
less irrelevant retrieved results and even inaccurate and misleading outputs.

The entity linking problem can be addressed by framing it as a task of mapping
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CHAPTER 1. INTRODUCTION 6

entity mentions to unified concepts in a medical knowledge graph as shown in Figure
1.1. The input to this diagram is a document with biomedical mentions within it. The
right part of the figure is a knowledge base which contains a list of entities where each
entity’s detailed ontology information including name, sematic type and definition and
so on are downloaded from UMLS. The major goal of BEL is to disambiguate each
mention from a given document by linking it to an existing knowledge base [10].

Figure 1.1: A common diagram of Biomedical entity linking task.

Current BEL faces several key challenges, including the dynamic nature of know-
ledge bases, the emergence of new entities, and the need for improved generalization
ability, scalability and efficiency. Addressing these challenges requires ongoing research
and innovation to further enhance the robustness and applicability of BEL systems
in various NLP applications [22]. More specifically, BEL faces inherent difficulties
such as ambiguity, where a single term can denote multiple entities based on context
(e.g., ”ADA” for ”Adenosine Deaminase” or ”American Diabetes Association”), and
synonymy, where different terms can refer to the same entity (e.g., ”myocardial in-
farction” and ”heart attack”). Additionally, BEL methods have to contend with the
dynamic terminology in biomedical domains, which continuously introduces new terms
and concepts. Furthermore, achieving accurate entity linking requires a nuanced under-
standing of context, often necessitating information from the entire document rather
than isolated sentences.

These challenges underscore the ongoing need for sophisticated approaches and
technologies in BEL to effectively manage and interpret complex biomedical texts.
Moreover, the creation of high-quality biomedical datasets is labour-intensive and
resource-demanding. Many existing annotated datasets are limited in size, specificity,
and less cross-domain [37], hindering the development of robust models that gener-
alize well across diverse biomedical texts [40]. To a step further, the complexity and
volume of biomedical literature require substantial computational resources for efficient
processing and inference, posing scalability issues for entity linking algorithms [33].

Recent advancements in deep learning models [18], such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and more recently transformers,
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CHAPTER 1. INTRODUCTION 7

have revolutionized the field of natural language processing (NLP). These models can
capture complex patterns in data through multiple layers of nonlinear processing units,
enabling them to learn hierarchical representations of text [29]. Many of them have
been successfully applied to various biomedical NLP tasks, including named entity
recognition (NER), relational extraction, and document classification, demonstrating
significant performance improvements. Transformers, particularly models like BERT
[8] and its biomedical variants (e.g., BioBERT [19]) have introduced a new paradigm for
contextual understanding and scalability in entity linking. This contextual awareness
is critical in biomedical texts where the meaning of entities can be highly dependent on
surrounding information. These models leverage self-attention mechanisms to consider
the full context of a sentence, which is essential for disambiguating terms that may
have multiple meanings depending on their usage [19]. On the other hand, information
retrieval (IR) has also contributed to many parts of different linking tasks. In the realm
of IR, there are typically two main stages: retrieval, which generates an initial set of
candidate entities, and reranking, where a more complex model is deployed to refine
these results by evaluating the relevance of each candidate with respect to the query.
It is notable that some leading methods for BEL do not follow this scenario. Therefore,
we aim to incorporate the advantageous aspects of recent models and IR scenarios to
enhance the BEL task.

To address above challenges, we propose a context-aware hybrid model named On-
toLinkX, which integrates SapBERT [23] and a cross-encoder architecture as a linker
to improve retrieval performance through re-ranking. This allows the model to capture
the fine-grained semantic interactions between the query and candidate documents,
making it more suitable for re-ranking tasks [28]. Using techniques from the field of
IR, where re-ranking is often used to refine initial retrieval results, the cross-encoder
model evaluates the relevance of each candidate document in relation to the query,
ensuring more accurate and context-aware linking of biomedical entities. To further
boost the model’s generalization ability and scalability, we adopted a negative sampling
scenario to better differentiate the most similar and tricky pairs. Our approach builds
upon the success of existing deep learning models in biomedical NLP while introducing
a more sophisticated re-ranking mechanism.

University of Glasgow



Chapter 2

Literature Review

2.1 Definitions and goals of Biomedical entity link-

ing

BEL involves identifying and linking entities such as genes, proteins, diseases and
drugs mentioned in biomedical texts to standardized entries in databases or ontolo-
gies [11]. This linking system helps unify diverse terminologies used across various
biomedical domains including research, literature, clinical practice and studies. To
take a specific instance, in the text of ”Mutations in BRCA1 are linked to an increased
risk of breast cancer,” entity linking would involve associating entities ”BRCA1” and
”breast cancer” with databases like Entrez Gene or Disease Ontology, and generating
possible candidates from them then disambiguating based on context to link ”BRCA1”
to the BRCA1 gene and ”breast cancer” to the disease [13].

The primary inputs to BEL models are typically mention text, optionally to include
the surrounding context (the windowed text), which is dependent on the window size
parameter [7]. This window size refers to the number of tokens added from both the
left and right of the mention text to form its final textual representation. In particular,
a window size of k tokens surrounding the mention text could include relevant words
that help clarify its meaning. In this scenario, it is typical to also add a [E] and [/E] to
the left and right side of the mention text so that the model would have different focus
between mention and its context. This setup helps distinguish between entities with
similar names by capturing more clues about the mention’s meaning in some particular
contexts.

During BEL, the mention text is mapped to entity ontologies, which are possible
matches from biomedical knowledge bases like UMLS. Candidate generation of entity
ontology involves selecting potential matches based on lexical similarity, semantic close-
ness, or other matching techniques. UMLS, as one of the large biomedical knowledge
bases, provides an aggregation of numerous large ontologies with standardized biomed-
ical concepts [25]. Each entity is comprised of a canonical name (the standard name),
synonyms that it is known by, a semantic type, a definition, and an identifier that
uniquely tags it within the database. Including these elements may collectively enrich
the linking process, helping to refine matches by providing comprehensive descriptors.
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CHAPTER 2. LITERATURE REVIEW 9

2.2 Commonly used datasets in BEL

Several datasets have become standard in the field of BEL and each of them offers
distinct advantages for evaluating and developing BEL systems.

One of the most widely used datasets is MedMentions, which includes over 350,000
entity mentions linked to the UMLS. It is derived from over 4000 PubMed abstracts and
supports tasks like mention disambiguation. The rich entity annotations and UMLS
linkage make MedMention a prime choice for BEL tasks, particularly when targeting
large-scale biomedical corpora [26].

Another commonly used dataset is BC5CDR (Biocreative V Chemical-Disease Re-
lation) dataset, which focuses on identifying chemicals, diseases and their relations.
It is particularly useful for extracting biomedical entities and has always been a key
component in both NER and BEL evaluations [21].

Other popular datasets also play a crucial role in this field, such as NCBI (National
Center for Biotechnology Information) Disease Corpus, OntoNotes and, BioCreative.
The NCBI disease dataset includes disease mentions from PubMed abstracts linked to
MESH (Medical Subject Headings) entries, providing a reliable foundation for disam-
biguating disease entities in biomedical text. For OntoNotes dataset, while not specific
to biomedical domains, includes a broad range of entity annotations across different
genres [30]. This pattern makes it useful for cross-domain entity linking tasks and it
has been often used in more general EL experiments, including biomedical applications.
Finally, the BioCreative dataset offers challenges focused on specific tasks like protein
and gene normalization [14]. These challenges have generated many corpora that are
regularly employed for BEL system evaluations, particularly in extracting relationships
between biological entities.

The above-mentioned datasets are pivotal in the field of BEL, enabling BEL models
to be measured and evaluated with regard to their accuracy, scalability, and ability to
generalize across varied biomedical texts.

2.3 Problem Definition

Biomedical entity linking (BEL) involves mapping entity mention text in biomed-
ical abstract or passage to standardized entities within a knowledge base, such as
UMLS. Formally, let D denote a text corpus, which consists of a set of documents
D = {d1, d2, . . . , dn}. Within each document di, there are a set of extracted mention
texts denoted by M = {m1,m2, . . . ,mk}. Each mj ∈ M is a biomedical terminology or
phrase (such as drug, disease, protein or so on) and has a start and end coordinates for
tagging its location relative to other mentions within the same document. Let C denote
a knowledge base, where C = {c1, c2, . . . , cN} represents a set of biomedical concepts
(e.g., CUIs). The goal of BEL system is to identify or link the mention text appearing
in each document di to a corresponding unique ontology concept ci in the knowledge
base, in our case, UMLS. Thus, we want to learn a function mapping f : M → C such
that each mention mi is linked to the correct concept ci based on the context of mi

within di.
A common setup uses a two-stage pipeline including retrieval and re-ranking stage.

Each of them serves unique goals as follows:

University of Glasgow



CHAPTER 2. LITERATURE REVIEW 10

1. Retrieval: A set of candidate entities is retrieved from a knowledge base on the
basis of textual mention m.

2. Reranking: The retrieved candidates are re-ranked based on our pre-trained
cross-encoder model and the most appropriate match is selected.

2.4 Existing approaches

Historically, BEL systems were based on rule-based methods, dictionary lookups,
and classical machine learning models, which all associate with feature engineering [20].
Rule-based systems use handcrafted rules and heuristics to identify and link entities.
These systems rely on predefined patterns, regular expressions, and domain-specific
rules to match text with entity names. They were among the first methods used for
BEL and are still effective in certain scenarios, particularly when dealing with struc-
tured and predictable text. However, they struggle with the variability and complexity
of natural language, especially in unstructured biomedical literature. Dictionary-based
approaches use a predefined dictionary or lexicon of biomedical terms and their syn-
onyms. The text is scanned for matches against this dictionary to identify and link
entities. Dictionary-based approaches are a foundational technique in BEL, offering
simplicity and efficiency [35]. However, their effectiveness is heavily dependent on the
quality and comprehensiveness of the dictionary. They are often used in combination
with other methods to improve performance. Classical machine learning approaches
use supervised learning algorithms to train models on annotated datasets. Features are
extracted from the text and used to train classifiers that predict entity links. Classical
machine learning approaches brought significant improvements to BEL by leveraging
statistical learning [17]. However, they require substantial feature engineering and an-
notated data, making them resource-intensive. Despite these challenges, they remain
valuable, particularly when combined with modern techniques.

The advent of deep learning, particularly with the introduction of BERT (Bidirec-
tional Encoder Representations from Transformers) [8] and its variants has revolution-
ized the field by providing powerful contextual embeddings that improve entity dis-
ambiguation. Models like BioBERT further optimized this framework by pre-training
on large-scale biomedical corpora, significantly enhancing performance on BEL tasks.
Thanks to the prior knowledge incorporation of pre-trained language models, recent
state of the art BEL models have evolved quite rapidly, which are mainly in the lever-
age of deep learning and transformer-based pre-trained language models. For instance,
one of the leading models in this domain is BiomedBERT (formerly known as Pubmed-
BERT), which has shown large improvements in understanding biomedical texts due to
its pre-training on large biomedical corpora [12]. Categorically, there are broadly three
types of SOTA BEL models, namely Alias Matching EL, Contextualized EL and Auto
regressive EL. The differences of aforementioned categories lie on their methodologies
about how they handle semantic similarity, text matching, contextual reliance.

Alias Matching EL identify entities directly by comparing mention texts with known
aliases in a knowledge base, thus providing a straightforward way for exact string match
based on assessing the similarity between term embeddings. Some representative mod-
els in this type include SciSpacy [27], MetaMap [3], BioSyn [36] and SapBERT [23].
SciSpacy is complex biomedical text mining tool that evolved from the base NLP lib-
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CHAPTER 2. LITERATURE REVIEW 11

rary Spacy. It provides pipelines with pre-trained models for tasks like named entity
recognition (NER) and entity linking. SciSpacy includes domain-specific vocabularies
and supports linking entities to external biomedical databases like UMLS. It acts as
a comprehensive toolkit, tailored for analyzing biomedical text using various linguistic
and domain-specific resources. It also uses character n-grams for its entity linking, but
integrates this with other SpaCy NLP capabilities, such as tokenization and syntactic
parsing, to enhance the processing of biomedical data. MetaMap is one of the earliest
tool for BEL, developed by the National Library of Medicine (NLM). It incorporated a
combination of lexical and linguistic matching between input mention text and poten-
tial candidate terms from UMLS. The mapping search is computed based on string’s
similarity and its linguistic features. This model has made significant contributions on
being effective for well-defined biomedical terms and is highly configurable to adapt to
different biomedical subdomains. On the other hand, MetaMap lacks sufficient ability
in understanding the surrounding contexts of mention text and heavily relies on the
coverage and quality of UMLS. BioSyn is a synonym-based linking model for biomedical
texts, which leverages each mention surface form to the best alias seen at training time
to handle the nuanced terminology in biomedical literature. However, its effectiveness
depends on computational resources and high-quality biomedical data. SapBERT is
a transformer-based BEL model designed based on synonym-focused training object-
ive to better handle complex biomedical terminologies with many aliases. It is built
on BERT’s architecture but trained specifically to identify and link biomedical terms
using the UMLS database. During training, SapBERT pairs mention text with their
corresponding synonyms from UMLS and is encouraged to produce similar embed-
dings for them while maximizing the distance between non-synonyms, improving the
model’s discriminative power on BEL tasks. Furthermore, it is built on BioMedBert
that is pre-trained on large biomedical corpora like PubMed, allowing SapBERT to
capture specific language of the biomedical domain. However, its effectiveness has no
contextual understanding and is closely tied to the quality and comprehensiveness of
its pre-training corpora.

Contextualized EL models, including MedLinker, ClusterEL, ArboEL [1], and KRISS-
BERT, utilize embeddings derived from language models that take into account the
context surrounding the entity mention for more accurate linking. MedLinker [24]
and ClusterEL [2] use sophisticated neural network architectures to understand and
disambiguate entities based on their contextual usage in the text. In contextualized
BEL systems, there are two major essential architectures, namely Bi-encoders and
Cross-encoders. They serve as efficient building blocks within aforementioned models
for initial retrieval and final disambiguation. They play distinct yet complementary
roles in contextualized models, enabling models to balance accuracy and efficiency ac-
cording to the patterns of different datasets [11]. In a Bi-encoder setup, it generates
embeddings for mention text and entities separately, typically with limited context
understanding, and calculate similarities in a shared embedding space. For Cross-
encoders, they are more context-sensitive as they encode mention-entity pairs together,
providing deeper contextual integration while being computationally expensive. Their
synergy has formed the foundation for multi-stage entity linking approaches. For Ar-
boEL, it uses a hierarchical, multi-stage approach to entity linking. It starts with a
bi-encoder to identify potential candidates and then refines them through hierarchical
filtering based on entity types or ontology levels. Moreover, it incorporates a training
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CHAPTER 2. LITERATURE REVIEW 12

scheme to identify hard negatives, which led to better model precision in BEL tasks [1].
KRISSBERT uses a contrastive learning strategy on distantly supervised entity men-
tions. They show that this can be extended to a supervised setting without additional
fine-tuning by simply swapping noisy prototypes for supervised ones, which achieves
performance on-par with the best supervised EL models [42].

Autoregressive EL models like BioGenEL and BioBART treat entity linking as a
sequence generation task, where the model generates the name or identifier of the entity
token by token, conditioned on the input text and previously generated tokens [41].
While still in the experimental stages, autoregressive models show potential in hand-
ling rare and novel entities by dynamically generating entity representations based on
context, thus overcoming some limitations of alias matching and contextualized mod-
els. However, these models are computationally intensive and require large amounts of
training data to achieve competitive performance, which can be a significant barrier to
their widespread adoption.

2.5 Research Questions

Given the challenges and progress of current approaches, Alias Matching EL mod-
els generally handles complicated jargon and various synonyms of the same concept
well. For instance, SapBERT has demonstrated strong performance on several bench-
marks, often outperforming other models [16], even without leveraging context. On
the other hand, its major downside lies in no incorporation of sequence-level contex-
tual understanding, which limits its capacity to disambiguate terms with similar or
matching surface forms but different contexts (e.g. MS as ‘multiple sclerosis’ or ‘mass
spectrometry’).

In light of the aforementioned aspects, this raises an important question: what if
a context-aware reranker were integrated a leading alias matching method (i.e. Sap-
BERT)? This would involve incorporating contextual understanding and re-ranking
top retrieval entity candidates generated from SapBERT. To be more specific, we will
explore and answer the four following research questions.

(1) RQ1: Will adding a cross-encoder based re-ranker after SapBERT retriever mod-
els improve entity linking in acc@k?

(2) RQ2: Could incorporating additional ontology information enhance its textual
representation, thus better connect ’mention text’ with its corresponding onto-
logy?

(3) RQ3: Will adding a window of tokens around the ”mention text” better link to
its corresponding ontology?

(4) RQ4: Will hard negative sampling strategies help the model differentiate correct
ontologies from wrong ones?
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Chapter 3

Methodology

3.1 Dataset used for our experiments

The dataset we’ve used for conducting and comparing experiments is MedMentions.
It currently has two released versions: full version and ST21pv subset versions. The full
MedMentions is a very large-scale entity linking dataset containing over 4,000 abstracts
and over 350,000 mentions across 200 semantic types linked to UMLS 2017AA. The
ST21pv subset reduces this to a more manageable set of mentions (around 200,000),
simplifying the data while preserving critical biomedical terminology. In our imple-
mentation, we adopted the ST21pv subset version.

The MedMentions ST21pv subset is a condensed version of full MedMentions,
tailored specifically for high-priority biomedical entity types. This subset version se-
lectively includes mention texts that fall into 21 semantic categories, which are chosen
based on their frequency in biomedical literature. This version was created for the
purpose of facilitating targeted research in biomedical NLP tasks like Named Entity
Recognition (NER) and entity linking. By narrowing down the scope of semantic types
to essential ones, the ST21pv subset simplifies data processing and allows models to
concentrate on entities with the most biomedical relevance.

Most importantly, all entities in ST21pv subset are aligned to UMLS, which facil-
itates effective testing and evaluation of different BEL models as each mention text
directly corresponds to an Standardized entry in the UMLS database. As a result, this
version is well-suited for both training and evaluating BEL systems, making it more
effective for conducting research in biomedical entity linking. The details of the dataset
are shown below in Table 3.1.

Table 3.1: MedMentions Dataset Overview

Dataset Split Number of annotated Mentions
Training 118,894
Validation 39,848
Testing 39,038
Total 197,780

13



CHAPTER 3. METHODOLOGY 14

3.2 Experimental setup

Data Preparation Details of UMLS. We firstly installed the full release of
UMLS 2017AA version. We then extract all entity names from the MRCONSO.RRF
raw file where duplicates are removed. Moreover, we extract both semantic types and
definitions of entity ontology from MRSTY.RRF and MRDEF.RRF respectively, and
add them as additional information for entities, which gives the model more under-
standing about the entity.

3.3 Baseline models

This section introduces the baseline models used to assess performance in BEL
tasks. Each model provides a unique approach to embedding language representations,
which allow us to leverage both general and domain-specific knowledge to improve
entity linking and disambiguation in biomedical texts.

BERT (Bidirectional Encoder Representations from Transformers) [8] serves as
foundational model for natural language processing. It is a pre-trained language model
developed by Google that captures both left and right context in text. This is achieved
through its training strategy of masked language modelling where random words in
a sentence are hidden and predicted and next-sentence prediction where the model
learns relations among sentences. These pretraining tasks equip BERT with a robust
understanding of language structure and meaning, making it a robust baseline model
for comparison in language understanding tasks, such as entity recognition and linking.

BioMedBERT [19] is a variant of BERT pre-trained specifically on PubMed ab-
stracts and full-text articles, designed to improve performance on biomedical and clin-
ical NLP tasks. It was originally known as PubMedBERT. This pretraining to biomed-
ical texts enable BioMedBERT to capture terminologies, syntax and semantic relations
within biomedical language, helping it outperform general-purpose BERT in biomed-
ical NLP tasks, such as entity recognition. By learning domain-specific texts, it could
generate embeddings that are more sensitive to nuances of biomedical terms, which
enhances its potentials in BEL.

SapBERT [23], discussed previously, is a BERT-based model fine-tuned with self-
alignment pretraining on UMLS (Unified Medical Language System) concepts, designed
for biomedical entity linking. Its pretraining strategy learns to align synonymous entit-
ies from UMLS to a shared vector space, focusing on distinguishing the relations among
similar or closely related biomedical terms. This is essential in BEL tasks where cor-
rect entity disambiguation are critical for accurate downstream applications in clinical
settings.

3.4 Our model

We design a context aware two-stage learning framework that considers contextual
information, synonym disambiguation and refining retrieved results for biomedical en-
tity linking task. It consists of candidate retrieval using SapBERT embeddings and
candidate reranking with a trained crossencoder using a negative sampling scenario.
This pipeline enables efficient narrowing of potentially correct entities from large on-
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tology knowledge base and further refines ranking based on their contextual relevance
and resemblance.

3.4.1 Candidate Retrieval with SapBERT

In the initial stage, we represent both mention texts and entity ontologies in a
shared vector space using SapBERT embeddings. Specifically, we denote a mention
text and an entity ontology term as m and e respectively. Then we encode the mention
m by SapBERT to get its vector representation vm = SapBERT(m). Each entity e in
UMLS is also pre-encoded in the form of its vectorization as ve = SapBERT(e), where
e contains only the entity name. To retrieve the candidate entities for m, we compute
the cosine similarity between vm and each vector ve as:

cos sim(vm,ve) =
vm · ve

∥vm∥∥ve∥

The top k entity candidates with the ranked highest similarity scores are retrieved,
which serves to minimize the searching space during the reranking stage and maintain
computationally effective. The detailed diagram of this whole procedure is shown below
in Figure 3.1.

Figure 3.1: The retrieval stage using SapBERT in our whole pipeline.
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3.4.2 Faiss: High-Dimensional Vector Search in BEL

Faiss [9] stands for Facebook AI Similarity Search and is an open-source library spe-
cifically designed for efficient similarity search. It is widely utilized in large-scale ma-
chine learning applications and deals with dense vector embedding in high-dimensional
spaces. This library implements a variety of optimized algorithms that enable fast in-
dexing and querying of vectors, such as product quantization, optimized GPU support
etc [15]. These capabilities make Faiss particularly effective for tasks involving vast
collections of embeddings within high retrieval speeds. In the context of BEL, we first
initialize a Faiss index and store vectors of UMLS entities on it where each entity from
UMLS is sent to SapBERT and we took the output [CLS] as its vector representation.
This index is created for the nearest-neighbor search in the follow-up operation. When
a query vector is sent to this Faiss index, it quickly retrieves the top k nearest entity
vectors by computing the cosine similarity score, narrowing down the entity candid-
ates for subsequent reranking process. This initial retrieval phase using Faiss reduces
computational demands by largely filtering out irrelevant entities.

3.4.3 Candidate Reranking with Cross-Encoder

After we get the retrieved entity candidates in the first stage, we then refine them
through a cross-encoder model fθ, designed to assess and capture the semantic relevance
between mention text along with its context and entity ontology pair. For a given
mention text m, we denote a windowed text around the mention as its contextual
information by context (m). The model encodes the mention text including its context
as a vector

vm = SapBERT(left context(m), [E]m[/E], right context(m))

where context (m) is the contextual background tokens surrounding the mention text
from both left and right sides under a specific window size. [E] and [/E] are two special
tags that we have used to highlight to the model that the content within middle of
those two tags are the important input mention. We then treat the mention text m
and entity candidate e (including its name, semantic type and definitions) as a single
sentence

s = concat(left context(m), [E]m[/E], right context(m), [SEP ], e)

where we put a [SEP] special token in the middle and take the whole sequence a sentence
classification task. We model fθ by BERT-based model and adopted the output [CLS]
token regarded as the representation of the input. The cross-encoder, acting as binary
classifier, outputs a probability score P (y = 1 | s), representing the likelihood that e
is the correct entity for m:

P (y = 1 | s) = σ(fθ(s))

where σ is the sigmoid activation function. Our cross-encoder is trained with binary
cross-entropy loss:

LBCE = − 1

N

N∑
i=1

[yi log(P (yi = 1 | si)) + (1− yi) log(1− P (yi = 1 | si))]
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where yi is the ground truth label (1 if e is the correct entity, 0 otherwise) for the i-th
mention-entity pair si. This loss function enables our model to learn discriminative
features of both positive and negative data sample pairs.

3.4.4 Negative Sampling Scenario

The input to the cross-encoder model is an entity mention from a document paired
with a candidate ontology term. To train the model, we created positive pairs from the
MedMentions training data and used sampling techniques to generate negative pairs. In
the initial setup, we generated randomly selected negative samples along with original
positive samples to form a balanced training framework for cross-encoder reranker.
Each random negative sample pair is comprised of mention text and a random entity
ontology where this entity ontology must not be the corresponding correct entity of
input mention. The number of random negative samples that we have generated is the
same as the number of positive samples which equal to the quantity of mention texts in
MedMentions datasets.We tested how difficult negative samples influence the model’s
decision making during inference. We pair up the mention text with incorrect candidate
entities retrieved by SapBERT that are semantically similar or textually close to the
ground-truth entity. This technique allows the cross-encoder reranker to be able to
distinguish the minor differences between closely similar but incorrect entities with the
authentic one. Formally, for a mention m, the set of hard negative samples Nhard(m)
is defined as:

Nhard(m) = {e ∈ C \ c | cos sim(vm,ve) is high}

where C represents all the entity ontologies in UMLS and c is the correct entity for the
given mention m. The hard negative samples may help push the cross-encoder model
to assign low similarity score for these incorrect but highly confusing entities during
training, thereby improving the model’s discriminative understanding ability.

3.4.5 Model training details

During training, we use SGD [6] with a learning rate of 3e−4 to update the trainable
parameters within the model. It is trained on the prepared MedMentions data samples
with a batch size of 52 and with a range of 10-20 epochs. For early stopping, we monitor
the model’s performance on the validation set where we take the loss value of every
epoch as the indicator of whether the model is trained towards the expected direction.
If the validation loss stops decreasing for 3 epochs, the training is stopped early. This
helps ensure the model generalizes well to new data by avoiding excessive training that
could lead to overfitting on the training data. For the maximum length of each data
sample pair, we set up the full length to 50 tokens as it is enough to cover the whole
textual sequence of vast majority of data samples. Finally, the implementation is done
under Python version 3.10 with PyTorch 2.2.1 and it takes approximately 6 hours on
our machine for each experiment.

3.4.6 Performance Metric

BEL evaluation aims to assess the performance of EL systems in correctly identi-
fying and linking entity mentions in text to their corresponding entries in a knowledge
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base or ontology. The evaluation process typically involves measuring how accurately
and completely the system can identify entities and link them to the correct entries in
a given reference or gold standard dataset.

Accuracy@k measures the proportion of cases where the correct entity is among the
top-k ranked candidates returned by the system. Its mathematical equation is defined
as below:

Acc@k =
Nk

N

where:

• Nk = Number of instances where the correct entity appears in the top k candid-
ates.

• N = Total number of instances evaluated.

3.4.7 Inference and Evaluation

During inference stage, for a given mention m, we first encode its vector repres-
entation vm using SapBERT. Then we compute cosine similarity of this query vector
with all entities from UMLS to retrieve top k potential candidates. After that, each
candidate e is paired up with the input mention text and passed through our pretrained
cross-encoder reranker. The model will output a relevance score and recommend the
linking to entities with the highest score:

ĉ = arg max
e∈{e1,...,ek}

P (y = 1 | concat( left context(m), [E]m[/E], right context(m), [SEP ], e))

We evaluate the model’s performance using top-k accuracy metrics, more specifically
acc@1 and acc@5. These metrics reflect the frequency with which the correct entity
is ranked first or among the top five candidates, respectively. It demonstrates the
model’s ability in linking biomedical mention text to its corresponding accurate UMLS
concepts.
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Results

4.1 RQ1: Will adding a cross-encoder based re-

ranker after SapBERT retriever models improve

entity linking in acc@k?

For the first experimental setup, we explored how a cross-encoder based re-ranker
would impact the entity linking system. Firstly, we employ SapBERT to generate
dense embeddings for all biomedical entities in UMLS. Specifically, each entity is
passed through the SapBERT model to obtain its vector representation. Here, we
used the output [CLS] as the final representation of inputs. These embeddings are
subsequently stored in a FAISS index, a library designed for efficient similarity search
in high-dimensional spaces.

In our task, each mention text (from MedMentions dataset) is also encoded us-
ing SapBERT to obtain its corresponding embedding. We then calculate the cosine
similarity between the query embedding and the pre-indexed entity embeddings to as-
sess their similarity score by FAISS. The candidate entities with the highest similarity
scores are retrieved, and the top-k candidates are ranked based on this score. Many
approaches stop at this stage, without applying a reranker, and compute the acc@k
to get the final performance. However, in our scenario, we expand one step further
beyond this procedure which is to retrieve k+n more candidate entities instead of k.
We then deploy the pre-trained cross-encoder model to re-rank k+n potential entity
candidates to get top k ones. After that, we calculate the acc@k performance. Simil-
arly, Bert, Pubmed-Bert and Sap-Bert have also been applied using the same strategy.
The results are shown below in Table 4.1 and Table 4.2. The (5) and (10) on the Table
4.1 represent we retrieved 5 and 10 potential entity candidates in both tasks waiting
for the re-ranking process, respectively.

Models acc@1 acc@5
Bert 29.3 33.8

Pubmed-Bert 35.3 41.2
Sap-Bert 54.9 71.6

Reranker model A (only mention text – only entity name) 60.1 (5) 74.6 (10)

Table 4.1: Comparison between three baselines and our re-ranker model A

19



CHAPTER 4. RESULTS 20

Retrieved entity candidates 1 5 10
Reranker model A (only mention text – only entity name) 54.9 60.1 67.0

Table 4.2: The effect of the number of retrieved candidates on final acc@1

Based on the results, we could observe that our re-ranker model A achieved rel-
atively better performance on both tasks than SapBERT with roughly 5% higher in
acc@1 and 3% higher in acc@5. Given the results, we believe the larger improvement
for acc@1 is caused by two reasons. Firstly, finding the top 1 correct entity candidate
is a slightly more difficult task than the top 5. In consequence, every model got lower
values in acc@1 than acc@5. Second of all, cross-encoder based re-ranking process
does help the BEL pipeline with some slight improvements as it increases the chance
of finding the most correct entity by introducing more potential candidates, which is
consistently reflected by the result of Table 4.2. However, this extra re-ranking process
does add more computational and algorithmic complexity on the whole pipeline.

4.2 RQ2: Could incorporating additional ontology

information enhance its textual representation,

thus better connect ’mention text’ with its cor-

responding ontology?

In the second experimental setup, we examined whether including additional onto-
logy information from the ontology would have an impact on its bridging with mention
texts. More specifically, we have adapted four different training information to be
included for either mention text or entity ontology or for both. In detail, model A
represents only ”mention text” and only entity name from UMLS have been paired
as samples to train the cross-encoder reranker. Model B takes ”mention text” and
additional ontology information including semantic type and definitions along with its
name to train the cross-encoder. For the current setup, all results are shown below on
Table 4.3. The other two training scenarios will be explained in detail later in RQ3
part.
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Models acc@1 (re-
trieve 5)

acc@1 (re-
trieve 10)

acc@5 (re-
trieve 10)

acc@5 (re-
trieve 15)

SapBERT 54.9 54.9 71.6 71.6

Reranker model A
(only mention text –
only entity name)

60.1 67.0 74.6 78.4

Reranker model B
(only mention text –
full entity informa-
tion)

66.0 67.2 76.3 78.4

Table 4.3: Comparison between re-ranker model B with additional ontology informa-
tion and re-ranker model A with only entity name and baseline SapBERT

We observe that re-ranker model B has achieved the best performance on both
acc@1 and acc@5, which indicates adding more ontology information for entity candid-
ates into the textual representation for mention text would boost the model’s under-
standing about the relevance between two inputs (mention text and entity ontology).
However, the improvement on metric acc@5 is relatively smaller compared with acc@1.
Another clue is reranker model B achieves similar performance on acc@1 as model A
when we increased the number of retrieved entity candidates from 5 to 10. It implies
adding more information from the ontology is particularly useful when the number of
retrieved entity candidates for re-ranking process is small. When the retrieved candid-
ate set is larger, the model remains relatively unchanged.

4.3 RQ3: Will adding a window of tokens around

the ”mention text” better link to its corres-

ponding ontology?

In the third experimental setup, we observe whether contextualized mention text
would help the model better understand the relatively dynamic meaning of mention
text, thus improve the entity linking system. Contextualized mention text involves in-
cluding a window of tokens around the mention (e.g. “patients were given [E]aspirin[/E]
to take for”). Apart from the trained re-ranker model A and model B in the previous
experiment, we trained re-ranker model C and model D in this part. Regarding model
C, we take the contextual information of the mention text to represent the textual
mention while only keeping entity name as its ontology text. And we set up the win-
dow size of 15 to incorporate the contextual information for the mention text during
training model C. For model D, we take mention text with contexts and additional
ontology information together to train this cross-encoder re-ranker. For this setup, all
results are shown below on Table 4.4
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Models acc@1 (re-
trieve 5)

acc@1 (re-
trieve 10)

acc@5 (re-
trieve 10)

acc@5 (re-
trieve 15)

SapBERT 54.9 54.9 71.6 71.6

Reranker model A
(only mention text –
only entity name)

60.1 67.0 74.6 78.4

Reranker model B
(only mention text –
full entity informa-
tion)

66.0 67.2 76.3 78.4

Reranker model C
(full mention text
with context – only
entity name)

66.2 68.7 76.4 78.5

Reranker model D
(full mention text
with context – full
entity information)

63.5 64.7 76.3 78.3

Table 4.4: Comparison between four different reranker models and baseline SapBERT

Observing the results from Table 4.4, model C (based on contextualized mention
text) outperformed any other models and improved 0.2% and 1.5% on acc@1 when
respectively retrieving 5 and 10 potential entity candidates beyond the second best
model B. This implies that contextualized information either for mention text or entity
ontology would contribute more than simply adding more entity information from the
ontology.

Another observation is the comparison between model A, model B and model C in
Table 4.4. Both model B and C have got nearly the same performance on acc@5 while
model A only catches up with them when the number of retrieved entity candidates is
large enough to cover the correct ones. It indicates that it is possible for models that are
trained with limited contextual and additional information to achieve relatively good
performance as other more complex counterparts, and it is likely to be the case when
the searching pool for potential entity candidates is big enough. As a result, people
could choose to setup their model scenarios between incorporating more information
to the model and increasing the retrieved potential candidates based on their specific
experimental cases.

Lastly, by comparing the four columns of Table 4.4, it indicates that all models do
get sequentially better scores on both metrics with an increased number of retrieved
potential entity candidates. Model D outperformed model A on both acc@1 and acc@5
metrics given 10 retrieved entity candidates. However, model A beat back model D
when we expand the re-ranking search by increasing the retrieved count to 15. Our
suspicion is that adding much information including contexts either on mention text
or entity ontology would make the model better understand the entity linking task.
However, too much information may lead to noise that could overwhelm the model as
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different models have their maximum extent or limitations of complexity in figuring
out the entity linking task.

4.4 RQ4: Will hard negative sampling strategies

help the model differentiate correct ontologies

from wrong ones?

Lastly, we explore how different negative sampling strategies impact the ability of
our trained cross-encoder re-rankers. We compared randomly negative sampling scen-
ario with hard negative sampling approach. Since we have observed that re-ranker
model C (which is trained based on contextualized mention text and entity name)
generally outperformed any other models in previous experimental settings, in con-
sequence, we adopted the same training information of model C for training the hard
negative sampling model. Here, we trained the last two re-ranker models (model D
and model E). For model E, we firstly generated the hard negative samples based on
the SapBERT retriever. Then we combine them with the original positive samples
together and shuffle all of them to train the cross-encoder to get the model E where
the ratio of negative ones vs positive samples is 3 : 1. The results are shown below in
Table 4.5.

We observe that model E achieved the best performance among all models in acc@1
with 0.4% and 0.3% higher than model C when retrieving 5 and 10 entity candidates.
This is because the model E retrieved more correct results on some mention texts
linking task on which previously model C sometimes retrieve wrong entity candidates
(hard negative entities) that are closely similar to the ground-truth entity ontology.
In addition, it has a small difference in acc@5 with model C. It suggests that hard
negative samples make the cross-encoder re-ranker model slightly better understand
the small patterns among most similar retrieved entity candidates, thus improving the
performance after re-ranking process.
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Models acc@1 (re-
trieve 5)

acc@1 (re-
trieve 10)

acc@5 (re-
trieve 10)

acc@5 (re-
trieve 15)

Reranker model A
(only mention text –
only entity name)

60.1 67.0 74.6 78.4

Reranker model B
(only mention text –
full entity informa-
tion)

66.0 67.2 76.3 78.4

Reranker model C
(full mention text
with context – only
entity name)

66.2 68.7 76.4 78.5

Reranker model D
(full mention text
with context – full
entity information)

63.5 64.7 76.3 78.3

Reranker model E
(hard negatives) (full
mention text with
context – only entity
name)

66.6 69.0 76.3 78.3

Table 4.5: Comparison of re-ranker models on different negative sampling strategies

Another observation is by comparing re-ranker model B, model D and model E
on Table 4.5, it suggests that the performance of different re-ranker models regarding
acc@5 is minor compared to their gaps in acc@1. This finding is consistent with the
observation from RQ1 that finding the top 1 entity candidate appears to be a more
difficult task than top 5 so that changes either in the model or training would have a
larger impact in acc@1 than acc@5.

4.5 Discussion

The experimental results illustrate that our proposed model, which incorporates a
cross-encoder reranker following SapBERT retriever and takes contextual information
into account along with using hard negative samples, substantially enhances the accur-
acy of biomedical entity linking task. The specific performance on acc@1 and acc@5
show improvements over existing baseline models. These enhancements can be attrib-
uted to the combinatorial impacts of leveraging synonym disambiguation, semantic
representation and contextual understanding afforded by our two-stage pipelines using
hard negative sampling strategy.

In addressing our research questions, we find some evidence supporting the hypo-
thesis that the incorporation of additional ontology information and contextual features
could lead to more precise and accurate entity linking. The pair of mention text with
entity ontology where either mention text takes its contexts or entity ontology com-
prising entity name, semantic type, and definitions provides a richer understanding for
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the model to facilitate accurate linking.
Another critical component of our framework is the implementation of generating

difficult, similar yet incorrect negative samples. By selecting challenging incorrect
entities retrieved by SapBERT during training, we have equipped the cross-encoder
reranker with differentiation capability among semantically and contextually similar
samples. Results on the last table has demonstrated this is an effective strategy and
suggested that the model has gained a robust ability to identify relevant entities while
minimizing false positives.

Overall, the findings underscore the importance of advanced entity linking tech-
niques in improving biomedical text mining and information retrieval. Biomedical
entity linking have far-reaching implications, facilitating better knowledge extraction,
and supporting clinical decision-making.
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Conclusion

In conclusion, we proposed a robust learning framework for biomedical entity linking
task, which employs SapBERT for candidate retrieval and a pre-trained cross-encoder
for raranking. This approach effectively enhances the model’s ability to accurately dis-
ambiguate entities in complex biomedical texts. As demonstrated in our experimental
evaluations, adding a cross-encoder reranker would substantially improve the model’s
performance than just synonym-focused SapBERT. Moreover, incorporating additional
contextual information either for mention text or entity ontology can contribute some
improvements for the whole BEL pipeline. Lastly, hard negative sampling strategy
also helps model better understand the different patterns of data samples especially
the ones that share similar contexts, thus enhancing the the model’s ability for BEL.
This two-stage pipeline’s success is largely due to the integration of contextual under-
standing for mention text and the use of hard negative sampling in the training process.
Together, these techniques equip the model with an optimized capability to distinguish
closely relevant entities, a crucial factor in achieving higher accuracy in BEL.

As the volume of biomedical texts continues to expand rapidly, the accuracy and
efficiency of BEL become increasingly critical. Our research contributes to the ongoing
efforts to refine these techniques by providing a framework that not only enhances BEL
accuracy but also being a comparable foundation for future advancements in biomedical
text mining.

5.1 Limitations of our approach

Despite its promising results, our approach is not without its limitations. One
primary concern is the reliance on the MedMentions dataset. It may be biased, par-
ticularly in the representation of biomedical entities, as it may focus on biomedical
entities that are not relevant for other biomedical text mining tasks. While it is the
largest dataset for entity linking, our experiments and their conclusions may not gen-
eralize across diverse biomedical texts. Expanding the diversity of datasets in future
work may increase the model’s applicability to a wider array of biomedical tasks.

In addition, though our method showed promising accuracy performance on the
entity linking task, the computational resources required to apply this framework into
large scale applications may face challenges for real-time implementation, particularly
in other domains beyond biomedical ones.
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5.2 Future Work

In the future, we would focus on expanding the proposed framework to address these
limitations. Alternative candidate retrieval methods, such as coreference-based meth-
ods, could be explored to further optimize the initial entity candidate selection. Ex-
perimenting with different vectorization models and architectures for the cross-encoder
could also enhance the whole pipeline’s accuracy and adaptability.

Exploring innovative sampling techniques, particularly for negatives, may further
improve the discriminative power of the model for closely similar entities. Moreover,
incorporating broader and more specialized biomedical vocabularies could make our
model become applicable across various biomedical subdomains, enhancing its exclusive
values in fields, such as genomics, clinical diagnostics and pharmacology.

The significance of accurate biomedical entity linking cannot be overstated, as it
plays a crucial role in enhancing numerous applications, including clinical decision
making, facilitating biomedical knowledge discovery and so on. In consequence, con-
tinued innovation in BEL will be essential for maximizing the tangible benefits that
biomedical data could bring to us and ultimately improving outcomes in healthcare
and research.
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[24] Daniel Loureiro and Aĺıpio Mário Jorge. Medlinker: Medical entity linking with
neural representations and dictionary matching. In European Conference on In-
formation Retrieval, pages 230–237. Springer, 2020.

[25] Nicolas Matentzoglu, Damien Goutte-Gattat, Shawn Zheng Kai Tan, James P
Balhoff, Seth Carbon, Anita R Caron, William D Duncan, Joe E Flack, Melissa
Haendel, Nomi L Harris, et al. Ontology development kit: a toolkit for building,
maintaining and standardizing biomedical ontologies. Database, 2022:baac087,
2022.

[26] Sunil Mohan and Donghui Li. Medmentions: A large biomedical corpus annotated
with umls concepts. arXiv preprint arXiv:1902.09476, 2019.

[27] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. Scispacy: fast
and robust models for biomedical natural language processing. arXiv preprint
arXiv:1902.07669, 2019.

[28] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv
preprint arXiv:1901.04085, 2019.

[29] N Patwardhan, S Marrone, and C Sansone. Transformers in the real world: A
survey on nlp applications. information, 14 (4), 242, 2023.

[30] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders
Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust lin-
guistic analysis using ontonotes. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 143–152, 2013.

[31] Wei Shen, Yuhan Li, Yinan Liu, Jiawei Han, Jianyong Wang, and Xiaojie Yuan.
Entity linking meets deep learning: Techniques and solutions. IEEE Transactions
on Knowledge and Data Engineering, 35(3):2556–2578, 2021.

[32] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base:
Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering, 27(2):443–460, 2014.

[33] Jiyun Shi, Zhimeng Yuan, Wenxuan Guo, Chen Ma, Jiehao Chen, and Meihui
Zhang. Knowledge-graph-enabled biomedical entity linking: a survey. World
Wide Web, 26(5):2593–2622, 2023.

[34] Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina, Raul Puri, Mostofa Patwary,
Mohammad Shoeybi, and Raghav Mani. Biomegatron: larger biomedical domain
language model. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 4700–4706, 2020.

[35] Bosheng Song, Fen Li, Yuansheng Liu, and Xiangxiang Zeng. Deep learning meth-
ods for biomedical named entity recognition: a survey and qualitative comparison.
Briefings in Bioinformatics, 22(6):bbab282, 2021.

[36] Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jaewoo Kang. Biomedical entity
representations with synonym marginalization. arXiv preprint arXiv:2005.00239,
2020.

University of Glasgow



BIBLIOGRAPHY 31

[37] Maya Varma, Laurel Orr, Sen Wu, Megan Leszczynski, Xiao Ling, and Christopher
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