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Abstract 
 

 

 

 

 

 

Asset price bubbles are associated with exuberant trading and unsustainable price increases, 

eventually culminating in abrupt collapses, causing widespread socioeconomic and financial 

devastation. Such phenomena have become increasingly frequent across various asset 

classes in recent times, and given the interconnectedness of global markets, the potential 

damage from bubbles bursts has significantly amplified. This is evidenced by the enduring 

repercussions of the Global Financial Crisis from nearly two decades ago. 

 

This research is motivated to enhancing efficiency of bubble detection from option prices by 

employing neural networks, such that exuberance in the underlying asset is examined more 

comprehensively. Following an exhaustive overview of historical occurrences and detection 

methods, a three-step approach under the framework of the local martingale theory of 

bubbles was preferred. It captures forward looking expectations of market participants, and 

overcomes joint-hypothesis related issues, as opposed to traditional methods. The three-step 

approach relies on calibrating a sophisticated stochastic volatility jump diffusion model to 

market put observations, prior to testing for exuberance in call option prices. However, 

computational inefficiencies during calibration, limit its ability in extracting crucial 

information from option prices.  
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To overcome this roadblock, a deep calibration framework is constructed such that an 

optimally trained neural network is employed as a numerical solver for the desired stochastic 

process. This framework boosts computational efficiency by orders of magnitude, without 

sacrificing accuracy. It enables the extraction of crucial information regarding the formation 

of bubbles from the entire surface of option prices, without any compromises. Such 

calibrations further allow for exploration of bubbles within different maturity groups, and 

even across the lifetime of call options. At first, the deep calibration framework is applied to 

observe bubbles in the S&P 500 index, and then for a more recent case study on selected 

technology stocks. Finally, factors influencing the formation exuberance are examined, 

which also doubles down as a robustness test for the methodology.  

 

Construction of the deep calibration framework, improves tractability of the three-step 

approach, making it more attractive for practitioners. Typically, despite possessing greater 

sophistication, inefficient stochastic processes are overlooked due to their computationally 

cumbersome nature, creating a trade-off between accuracy and efficiency. This trade-off is 

overcome with the application of neural networks, allowing for a deeper exploration and 

subsequently, greater comprehension of call option and underlying price bubbles. The 

significant boost in efficiency ensures that practitioners are able to extract real-time 

information regarding bubble formations, repeatedly, at superior speeds. The contributions 

of this research are important for policymakers and institutions seeking to properly manage 

risk and adjust positions in abidance with the ever-fluctuating essence of financial markets. 
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1 Chapter 1: 

Introduction 
 

 

 

 

Asset price bubbles, often fuelled by investor speculation, occur when the market price 

deviates from its fundamental value. Historical examples range from Tulipmania in the 17th 

century; to the relatively more recent U.S. housing bubble, which caused the Global 

Financial Crisis, 2008. Initially, bubbles are associated with a joyous period of investors 

revelling in profitable trade, till prices reach an unsustainable level. At this stage, even the 

minutest of notions can trigger widespread panic sales, causing prices to rapidly collapse, 

leaving behind a wake of socioeconomic and financial devastation. Despite such 

consequences, the frequency of bubbles over the past few decades, across various asset 

classes, has significantly increased.  

 

Given the constantly growing interconnectedness of global financial markets, potential 

damages from bubble bursts, could be beyond fathomable. To this date, several economies 

are yet to entirely recover from the detrimental effects of the Global Financial Crisis, which 

occurred nearly two decades ago. Hence, with great emphasis, there is an urgent need for 

developing a robust and accurate early warning detection system, such that timely measures 

can be implemented for damage control. This has piqued the interest of several academics 

and practitioners, including a certain famous victim of the South Sea bubble, Sir Isaac 
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Newton, who declared in defeat,  “I can calculate the motions of heavenly bodies, but not 

the madness of people.” Several scholars have debated the rationality of investor behaviour 

during the initial phases of such events. Regardless, the identification of bubbles is crucial, 

considering the damage they are capable of inflicting.  

 

Traditional methods aim to identify and date the presence of asset price bubbles by 

attempting to model fundamental values. The fundamental value of an asset is largely 

unknown, and therefore difficult to compute/validate. Consequently, traditional methods, 

including the popular regression techniques (Phillips et al., 2011, 2015) and LPPLS models 

(Johansen et al., 1999, 2000), suffer from a joint-hypothesis issue. The inconclusiveness of 

findings from these methods creates adverse implications for the implementation of 

appropriate and timely risk management measures. Furthermore, traditional methods require 

a large timeseries of historical data and focus on deriving information from spot markets. 

The former results in vulnerabilities towards structural breaks, whereas the latter prevents 

capturing the forward-looking nature of bubbles (Fusari et al., 2024). 

 

The local martingale theory of bubbles is designed to identify exuberance over short time 

horizons, without computing the asset’s fundamental value. It overcomes joint hypothesis 

related concerns and eliminates vulnerabilities to structural breaks by not requiring large 

timeseries of data. Moreover, the theory provides a mathematical and economic framework 

for exploring the existence of bubbles in the underlying, by extracting information from 

option prices. In contrast to spot instruments, derivatives reveal information about the 

forward looking expectations of market participants. Bubbles are forward looking in nature, 

as they reflect preferences for purchasing an asset for the sole purpose of reselling it at a 

higher price, as opposed to holding it till liquidation. Therefore, capturing forward looking 

expectations from derivative markets is crucial for enhancing the ability to detect the 

formation of asset price bubbles.  

 

In consistency with the local martingale theory of bubbles, Jarrow et al. (2010) provide a 

framework for detecting bubbles from option prices. The foundations of the framework are 

based on put options not revealing bubbles due to their bounded payoffs, in contrast to call 

options having unbounded payoffs and being capable of exhibiting exuberance. Fusari et al. 
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(2024) took advantage of these properties and proposed a three-step approach for detecting 

asset price bubbles. The method involves calibrating a sophisticated stochastic process to 

market put options for successfully capturing relevant forward looking information 

regarding the formation of call option bubbles, without suffering from a joint-hypothesis 

issue. Moreover, the three-step approach only requires real-time information, making it 

immune to structural breaks. However, given the need for calibrating a sophisticated 

stochastic process, the method suffers from large computational inefficiencies, which force 

its application to a single volatility smile, to strike a balance between efficiency and 

robustness. Furthermore, coupled with poor tractability, the associated inefficiencies make 

practitioners averse towards implementing the method for real-time bubble detection.  

 

This research favours the three-step approach over other bubble detection methods, given its 

ability to overcome the joint-hypothesis issue, capture forward looking expectations of 

market participants, and reveal immunity to structural breaks. The method allows for 

accurate and robust bubble detection, but displays weaknesses with respect to efficiency and 

tractability, with the former restricting application to a single volatility smile. The 

computational burden arises during calibration of a stochastic volatility jump diffusion 

process. Nevertheless, this process is highly sophisticated and plays a crucial role in 

capturing relevant market information, given its ability to address price jumps, volatility 

mean-reversion and strict local martingale tendencies. Therefore, motivated by the 

continuously growing need for an accurate and robust approach, which is also efficient and 

tractable enough to meet practical requirements, this study proposes the application of neural 

networks. A deep calibration framework is suggested in attempts to answer the following 

research question: How to improve the efficiency and tractability of the three-step approach 

and subsequently extend its application for bubble detection?  

 

The deep calibration framework is the main contribution of the thesis. Its importance is 

cemented during this research, through the comparison of various stochastic volatility 

processes during market turmoil periods. This comparison is the second contribution of the 

thesis, as it reveals processes capable of capturing price jumps and strict local martingale 

tendencies to be superior for bubble detection, despite the inefficiencies associated with their 

calibration. The sophistication of a stochastic process must not be sacrificed for efficiency, 
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as this would create vulnerabilities to the joint hypothesis issue. Therefore, the application 

of neural networks is recommended. According to the universal approximation theorem 

(Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) neural networks are capable of 

estimating any function, with a given level of accuracy. They mimic the functions of an 

animal’s central nervous system to understand complex non-linear relationships between 

input and output variables. Furthermore, given modern computational advancements, neural 

networks are capable of pricing thousands of option contracts, over thousands of underlying 

instruments, at high frequencies (De Spiegeleer et al., 2018).  

 

The motivation behind proposing a deep calibration framework is to employ neural networks 

as numerical solvers for the stochastic process. The intention is to boost efficiency and 

tractability, without sacrificing accuracy, such that the three-step approach becomes more 

favourable amongst practitioners. The deep calibration framework is revealed to bolster 

efficiency by several large orders of magnitude and approximately double the accuracy of 

fitting market put options. This provides further certainty over the method not suffering from 

the joint-hypothesis issue. Moreover, improvements in both areas, allow for an additional 

contribution by expanding the application of the three-step approach to extract information 

from all traded options. Given calibrations to the entire surface of daily options, this research 

proposes the exploration of asset price bubble formations across various call option 

maturities, and the lifetime of certain call contracts. The former is inspired from Jarrow & 

Kwok (2021, 2024) but original with respect to the application of the three-step approach, 

whereas the latter is an entirely novel approach for examining the presence of exuberance. 

Both avenues enhance the comprehension of bubbles and improves the ability to implement 

timely and appropriate risk management measures during periods of exuberance. The 

remainder of this thesis is structured in the following manner, with relevant contributions 

from each chapter being highlighted.  

 

Bubbles in literature are explored in Chapter 2, by detailing their existence, evaluating 

traditional methods, and arguing the superiority of the three-step approach from Fusari et al. 

(2024), given its ability to overcome the joint-hypothesis issue, reveal immunity to structural 

breaks and capture the forward-looking expectations of market participants from option 

prices. However, computational costs associated with calibrating a highly sophisticated 
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stochastic volatility process, limit the extraction of information to a single volatility smile. 

The abundant information present in the various smiles across the option price surface is 

overlooked. To address these computational costs, neural networks are proposed. Literature 

regarding their application to option pricing is discussed, which is followed by evaluating 

two approaches of calibrating stochastic volatility models. First, the one-step approach, 

which directly outputs model parameters, is computationally efficient but lacks output 

validity. Next, the two-step approach, involving an optimizer to match output with market 

observations, calibrates parameters from the input layer, allowing for real-time validation. 

In favour of the latter and inspired by Liu et al. (2019) and Horvath et al. (2021), a deep 

calibration framework is proposed to enhance the three-step approach for bubble detection.  

 

Chapter 0 begins by introducing the three-step approach, with each stage being thoroughly 

explained. The first step reveals preference for a generalised stochastic volatility jump 

diffusion (GSVJD) process, that is capable of detecting strict local martingale tendencies. 

The GSVJD model, in the second step, is calibrated to market put options, prior to 

statistically testing for the presence of exuberance in call options. Given the lack of a closed 

form solution, estimations of the GSVJD model must rely on Monte Carlo simulations. It is 

a highly sophisticated process, nevertheless, given its computational cumbersome nature, 

the GSVJD is likely to be overlooked, in favour of tractability. Hence, in order to allow for 

efficient, accurate and robust real-time bubble detection, inspired by  Liu et al. (2019) and 

Horvath et al. (2021), a deep calibration framework is proposed for the GSVJD model, as 

the first and main contribution of this thesis. The construction of this framework, and 

integration into the three-step approach, along with a detailed explanation regarding the 

mechanisms of neural networks, are also provided.  

 

The application of the deep calibration framework is empirically tested in Chapter 4. This 

chapter compares performances of various stochastic processes, with each being calibrated 

to the S&P 500 options data using Monte Carlo simulations, over a period comprising of the 

COVID-19 induced market crash. This comparison is the second contribution of the thesis, 

as it reveals the GSVJD model to be the most accurate but least efficient. It contributes to 

relevant literature by demonstrating the superiority of stochastic volatility jump diffusions 

models, during period of market crashes, when identifying bubbles. The ability to capture 
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jumps and strict local martingale tendencies in the underlying price improves accuracy, and 

therefore, sophistication of the GSVJD model must not be sacrificed for efficiency, 

especially during a market crash period. Hence, an optimal neural network architecture for 

learning the dynamics of the process is identified through 3-fold cross-validation across a 

broad range of hyperparameters, using an extensive random search. Performances of the 

deep calibration framework are compared against those from Monte Carlo simulations. It 

nearly doubles accuracy and provides a 254-fold improvement in efficiency. The deep 

calibration framework for estimating the GSVJD model forms the second contribution of 

this chapter. Furthermore, due its flexibility and computational speed, the framework was 

applied towards calibrating from the entire daily option price surface. This allowed for 

bubble detection to be conducted by capturing the forward-looking expectations of market 

participants to a greater extent. This broader calibration approach, across a wide range of 

daily option maturities, for bubble detection marks the third contribution of the chapter. 

 

Chapter 5 is dedicated to the detection of bubbles in the S&P 500 index. Parameters of the 

GSVJD model are calibrated from the daily most liquid cross sections, and surfaces of put 

options, using the deep calibration framework. Its first contributions focus on identifying 

exuberance within the most liquid call options, with respect to each parametric set. Next, 

parameters obtained from daily surfaces are used to observe bubbles in call options 

belonging to three maturity groups, marking the third contribution. This chapter further 

contributes by employing the same parameters towards revealing exuberance over the 

lifetime of call options. The expansion of the three-step approach to GSVJD calibrations 

from the daily surface of put options, acknowledges exuberance during the COVID-19 

induced crash, and immediate recovery period. Identified bubbles in regard to the latter are 

captured better when examining various call option maturities and option lifetimes. 

However, the findings associated with the former provide a novel contribution, as 

exuberance is detected in association with circuit breakers, displaying consistency with the 

local martingale theory of bubbles.   

 

A case study is conducted in Chapter 6, applying the deep calibration framework to selected 

technology stocks. It contributes by detecting bubbles, from calibrating GSVJD parameters 

to the most liquid maturity and entire surface of put options. In addition, following Fusari et 
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al. (2024), factors influencing the formation of bubbles are explored, along with the 

robustness of the methodology. A negative relationship between bubble magnitudes, and call 

option volume is discovered. This contribution suggests that the presence of bubbles may 

signal an upcoming bearish period, given the drop in call option volume. Furthermore, the 

proximity to earnings announcements and high underlying volumes, positively impact the 

occurrence of exuberance. Finally, in Chapter 7, the thesis is summarised and concluded, 

with Appendix A providing additional information on the training and testing of the deep 

calibration framework. It is on this note, that the research proceeds to providing a 

comprehensive overview of relevant literature.  
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2 Chapter 2: 

Literature Review 
 

 

 

 

 

Asset price bubbles reflect deviations in market prices from the fundamental value. A large 

section of economic and financial literature is dedicated towards comprehending and 

timestamping such phenomena. The identification of bubbles is crucial, as their existence is 

often followed by a crash, which more often than not causes severe crises. Initially, asset 

prices rise to unsustainable levels, and upon realizing this, market participants take 

corrective measures, causing prices to plunge, subsequently bursting the bubble. Depending 

on the severity of the price plunge, a financial crisis could be triggered. There are several 

well-documented historical bubble episodes, which are carefully examined next, to stress 

the importance of requiring a robust detection methodology.  

 

2.1 Historical Overview of Bubbles 

 

The earliest occurrence of an asset price bubble, as documented in Mackay (1841), can be 

traced back to ‘Tulipmania’, during the 17th century Dutch Golden age. A massive spike in 

demand for a rare species of Tulips was experienced by 1634, as they became symbolic of 
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luxury and status. Tulips typically bloom in April and May, however, producers realized that 

their bulbs could be uprooted and sold. In response to the growing demand, speculators 

entered the market, offering forward contracts on the bulbs. A bubble formed, contracts were 

purchased, with expectations of selling the bulbs at higher prices in the future. At the peak 

of the bubble, these contracts had exchanged hands multiple times. Eventually, the bubble 

collapsed in 1637, since buyers were unable to pay the exuberant prices initially agreed upon 

when entering into the contract. The ‘Tulipmania’ episode did not have any significant long 

term impacts on the Dutch economy, barring the breaking of trust between participants. 

However, in contrast to current times, financial markets across nations, and various asset 

classes, were not as heavily integrated.  

 

Consider two basic theories regarding asset pricing, from Malkiel (1985). First, the ‘firm-

foundation’ theory, which attempts to define an intrinsic value based on an analysis of 

fundamentals.  Second, the ‘greater fool’ theory, that states the worth of the asset is 

determined by whatever another investor is willing to pay. The latter was evident during 

‘Tulipmania’, as individuals purchased contracts, at high prices, solely under the perception 

of selling at even greater valuations to a bigger fool. The South Sea and Mississippi bubbles 

from the early 18th century document similar investor behaviour, which eventually resulted 

in significant economic loss (Scherbina & Schlusche, 2014). Additionally, both reveal the 

growing economic risks of financial bubbles within integrated markets1.  

 

Upon taking a government IOU of nearly £10 million in 1711, an English Firm, South Sea 

Company was granted a monopoly over trade to the Southern Seas. Initially, profits were 

made from providing shares to the public in exchange of government securities, that were 

undertaken by the company. There was a strong demand for the stock, and despite failed 

quests, deceptive public appearances to reveal prosperity kept prices stable. In 1720, the 

company offered to fund the entire national debt, which drove the public into a buying 

frenzy. Nevertheless, as the true value of the company was realised, a widespread panic 

caused the share price to collapse. Given the promise to finance national debt, indirectly, the 

 
1 See Malkiel (1985) and Scherbina and Schlusche (2014) for more details on the respective events.  
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company was funding the war against France. Its collapse put the entire national economy 

under major threat.  

 

Similarly, an effective marketing programme combined with exaggeration of wealth in 

Louisiana, the French based Mississippi Company, experienced a massive hike in its share 

price. In 1719, it obtained rights to collect most of France’s taxes, and to trade outside 

Europe, in addition to absorbing the entire nation’s debt. Stock sales were used to fund, 

company operations and national bonds. Approaching January 1720, share prices started to 

fall, as investors started to sell their equity. However, sellers were made to accept paper 

notes, instead of gold coins. As the bubble collapsed, more notes were printed, and the excess 

money supply left the economy in a state of hyperinflation.  

 

Evidence of such behaviour continued to plague the economic wellbeing of nations 

overtime, and given the growing integration of financial markets, even that of the globe was 

not spared during more recent events. The ‘Roaring Twenties’ witnessed by the U.S. 

economy, experienced significant growth, following an expansion in the construction and 

consumer goods sectors. Stock market growth was supported by the introduction of 

purchasing shares on margin, which fuelled speculative behaviour. Eventually, in October 

1929, the boom period suddenly halted, with the collapse of stock and real estate markets. 

The crash severely drained household wealth, kick-starting the Great Depression period. 

Likewise, Japanese stock and real estate markets experienced massive growth at the end of 

the 1980s.  Prior to the bubble bursting, all of the land in Japan, was valued at 4 times greater 

than that in the  U.S. (Scherbina & Schlusche, 2014). The collapse was devasting, resulting 

in Japan’s lost decade.    

 

Not shortly after, in the final decade of the 20th century, U.S. stock markets experienced a 

major boom, following rapid growth in the internet sector, and closely linked fields. Given 

the excessive demand for internet stocks and IPOs, the Dot-com bubble was fueled by banks 

reducing standards for taking such companies public. A large number of firms were yet to 

record profits, whereas several revealed identical business models whilst competing in the 

same market. The firms were destined to fail, and when the eventual crash occurred, the U.S. 

economy was forced into a recessionary period, for approximately 8 months (Quinn & 
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Turner, 2020). The dot-com bubble did not have any large scale global impacts; however, it 

changed the perceptions of academics about the formation of bubbles . 

 

Previously, academia rarely entertained the notion of asset price bubbles, with some rare 

instances arguing the ‘rationality’ of such phenomenon. Bubbles are deemed rational, given 

investors willingly purchase overvalued assets to resell at higher prices. Alternatively, when 

such actions are driven by herd behaviour or psychological factors, bubbles are considered 

irrational. The irrational behaviour of agents prevents new information from being entirely 

incorporated into prices. However, it is difficult to determine the rationality, as the concept 

is not clearly defined. For instance, some participants could favour non-financial gains and 

invest due to social or environmental benefits provided by a certain company. Furthermore, 

if the definition of rationality is extended to include misinformed and ideological 

investments, then no behaviour can be considered irrational. The reader is referred to Quinn 

& Turner (2023) for a more detailed debate regarding rational and irrational bubbles. 

Nevertheless, this debate is futile for the focus of the current study, aligning with relevant 

recent literature. Since the Global Financial Crisis, 2008, the existence of bubbles was no 

longer questioned, with disputes over rationality taking a backseat. Moreover, scholarly 

efforts urgently shift towards developing an early detection system.  

 

The Subprime Mortgage Crisis, and subsequent Global Financial Crisis in 2008 were 

triggered by the collapse of a U.S. housing bubble. Exuberance in housing prices was created 

by homeowners gaining easy access by collateralizing their properties. The U.S. housing 

sector experienced massive growth, and to meet demands, banks imposed lose standards for 

mortgage recipients. Furthermore, innovative debt instruments attracted heavy international 

investments. The collapse of the housing market forced several borrowers to miss mortgage 

payments, with approximately $7 trillion in home equity being erased (Quinn & Turner, 

2020). The subsequent global crisis left long-lasting global effects, with several European 

nations entering a deep recession. For instance, between 2007 and 2009, the GDP per capita 

for Ireland, Spain and United Kingdom fell by 11.2%, 4.9% and 6.1%, with youth 

unemployment rates peaking at 30.8%, 55.5%, and 21.3%, respectively (Quinn & Turner, 

2020). Furthermore, Spain’s GDP per capita continued to fall till 2013. This raised large 

concerns about the risk of tightly integrated global financial markets. Consequently, central 
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banks increased their interest in risk management. The crisis revealed the capability of 

bubbles causing enormous and long-lasting harm to global economies. Additionally, it raised 

fears over their more frequent occurrences than previously perceived. After the Dot-com 

bubble and Global Financial Crisis, Quinn & Turner (2023) highlight more recent 

occurrences in the Chinese Stock market and Bitcoin prices. 

 

The aftermath of bubble bursts is commonly associated with financial crisis periods, along 

with fractured trust within banking and regulatory systems. Alternatively, Quinn & Turner 

(2023) highlight that bubbles can result in the development of transformative technology, 

and financial innovation, which stimulate a foundation for future technological 

developments and economic growth. Consider the Dot-com bubble, a period during which 

internet companies received tremendous capital investments. It is well established that 

majority of the firms failed, however, those that survived, paved that path for modern internet 

applications. Such developments would not have been possible without the capital received 

during the bubble period. Furthermore, financial innovations from such periods, contribute 

significantly to future economic growth prospects. Venture capitalism, which fuelled the 

Dot-com bubble, continues to be the beating heart of Silicon Valley. However, when 

regulatory standards drop, such innovations are abused to cater to the purely speculative 

demand of investors. Subsequently, asset prices reach unsustainable levels, prior collapsing 

and triggering socioeconomic and financial devastation. For example, companies being 

issued IPOs without proper vetting during the Dot-com bubble, or construction and trading 

of Mortgage-Backed Securities in the build up to the Global Financial Crisis. 

 

Naturally, timely and strict regulatory measures, along with proper risk management 

practices are capable of halting such unethical practices and controlling the formation of 

bubbles. However, timely detection has proven to be great challenge. It is crucial to 

distinguish between growth in asset prices that are driven by fundamentals, as opposed to 

those purely fuelled by speculation. The requirement of an accurate early detection warning 

system has motivated academics and practitioners. Given the frequent occurrence of asset 

price bubbles, which possess a major threat to the wellbeing of closely integrated global 

financial markets, it is vital to evaluate the approaches designed for their identification.  
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2.2 Traditional Bubble Detection Methods 

 

The existence of bubbles is attributed to the willingness of investors to pay in excess of the 

fundamental value, believing that the asset can be sold at an even greater price. Hence, the 

traded asset price comprises of two components: the fundamental value, and bubble. Several 

methods have been developed for capturing the latter by computing the former. However, 

these methods attribute failure of validating the model to the existence of bubbles 

(Gürkaynak, 2008), making findings inconclusive, given vulnerability to joint-hypothesis 

related issues (Jarrow, 2015; Fusari et al., 2024).  

 

For further comprehension, abiding by Gürkaynak (2008), the following methods are 

evaluated Variance Bounds Test (Shiller, 1981; LeRoy & Porter, 1981), West’s two-step Test 

(West, 1987), Integration/Cointegration Tests (Diba & Grossman, 1988a, 1988b), and 

Intrinsic Bubbles (Froot & Obstfeld, 1991; Driffill & Sola, 1998). Each approach tests the 

null hypothesis of the asset price equating its fundamental value, implying the absence of 

bubbles. The Variance Bounds Test acknowledges bubbles, when the variance of the actual 

price exceeds its bound computed from that of the fundamental value. Whereas West’s two-

step Test rules out model misspecification in favor of revealing an existing bubble. Both tests 

seek to reject the null hypothesis by a process of elimination, with respect to low price 

volatility of model misspecification. However, they fail to consider any theoretical properties 

of bubbles.  

 

The Integration/Cointegration Test incorporates non-observant fundamentals, and a 

theoretical property, that rational bubbles cannot start, and if observed, they must have 

always existed. A Dickey-Fuller (DF) test is implemented to assess stationarity of price and 

dividends, along with a cointegration test. Bubbles are non-existent in the presence of 

stationarity and cointegration. However,  the non-stationarity of bubbles holds, only because 

they are unable to restart after a collapse. Evans (1991) reveal that bubbles are capable of 

growing, even after collapsing to a small non-zero positive value. This discloses the 

weaknesses of implementing standard unit root tests for identifying exuberance. Finally, the 

Intrinsic Bubbles approach considers the potential of bubbles not being correlated with 

fundamentals and growing exogenously. Exuberance is non-existent in the presence of a 
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linear relationship between price and dividends. Alternatively, a non-linear relationship 

signals an explosive divergence between the two factors. Froot & Obstfeld (1991) modelled 

dividends using a random walk, whereas Driffill & Sola (1998) considered a regime-

switching approach. The results were contradictory, as the former observes exuberance, 

whereas the latter reasons non-linearity to regime shifts. Regardless of the justification, both 

Froot & Obstfeld (1991) and  Driffill & Sola (1998) find some form of non-linearity. This 

reinforces the claim that traditional methods suffer from a joint-hypothesis related issue. The 

inability to distinguish between misspecified fundamentals and bubbles makes findings 

about exuberance inconclusive. All that is revealed is the present value model fails to fit 

market data, given the exclusion of stylized factors (Gürkaynak, 2008). This leaves the 

interpretation of the result to the perception of practitioners. Naturally, having a less 

restrictive fundamental pricing model, incorporating either stylized factors or sophistication 

of the process would improve fitting. However, it could also result in a high rate of false 

negative detection. Hence, the root of the problem is identified as the estimation of the 

fundamental value. 

 

Traditional methods face several challenges with the accurate identification and 

timestamping of bubbles. Nevertheless, over time, the quality of bubble detection techniques 

has improved, and the existence of such a phenomena started to receive more acceptance 

amongst academics and practitioners. A major contributing factor was the increased global 

frequency of asset price bubbles and crash events since the penultimate decades of the 20th 

century.  Previously, economic and financial literature debated the existence of bubbles, and 

if so, whether they could be classified as rational or irrational (Quinn & Turner, 2023). 

However, since their existence is questioned less, over the last two decades literature has 

been streamlined towards developing early warning detection systems that allow timely 

intervention for effective risk management. Next, two popular methodologies, employed by 

academics and practitioners for empirical analysis, are discussed. 

 

2.2.1 SADF and GSADF Tests 

 

The difficulties faced by standard unit root tests have been well documented in Evans (1991). 

Phillips et al. (2011) suggest using recursive regression techniques on right-tailed unit root 
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tests for detecting mild explosive behavior in asset prices. The forward recursive regressions 

involve repeated estimations of an autoregressive model. The ADF test coefficient is 

computed over a subset of the sample period, which is incremented by an observation at 

each pass. If the supremum of the ADF (SADF) coefficient exceeds respective critical 

values, the null hypothesis of a unit root process is rejected in favour of a mildly explosive 

one. The SADF test can reveal presence of explosiveness but cannot timestamp bubbles. For 

timestamping, ADF statistics computed over the sample are considered. Chronologically, if 

the ADF statistic exceeds its critical value, the origination date of the bubble is marked. 

Whereas termination is acknowledged, when for the first time, following origination, the 

critical values are greater.  

 

In the presence of multiple bubbles, the Phillips et al. (2011) approach was found to be 

inconsistent, and with reduced power. The inconsistency stems from recursive estimations 

of the autoregressive coefficient for identifying the second bubble, being dominated by 

presence/lack of explosiveness from prior periods. Specifically, if the duration of the first 

bubble is greater (smaller) than that of the second, the latter is overlooked (detected with a 

delay). The aspirations of developing a robust warning system for identifying financial 

bubbles, inspired Phillips et al. (2015) to propose a Generalised SADF (GSADF) test for 

detecting explosiveness, and a recursive backward regression technique for dating bubbles. 

In contrast to the SADF, the GSADF test records supremum of ADF statistics, across 

windows with varying start and end points.  Additionally,  Phillips et al. (2015) timestamp 

bubbles using a backward SADF (BSADF) test. The ADF regression is estimated over 

backward expanding windows, with their supremum being compared to critical values, for 

acknowledging the start/end of bubbles, similar to  Phillips et al. (2011). The BSADF 

approach improves flexibility and is consistent with the timestamping of bubbles, as it 

considers various properties from even within the subsample. It is revealed superior to 

methods from Phillips et al. (2011), and Homm & Breitung (2012), in addition to a sequential 

version of the former.  

 

The  methodology is popular amongst scholars for detecting bubbles across a wide range of 

asset classes.  Su et al. (2017), Perifanis (2019) and Khan et al. (2021) applied the approach 

to crude oil prices, whereas Corbet et al. (2018), Park & Yang (2024) and Osman et al. 
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(2024), used it to explore the formation of bubbles across multiple cryptocurrencies. Zhao 

et al. (2021) implemented the test on Chinese stock indices, whereas Nguyen & Waters 

(2022) concentrated on the S&P 500 index. The latter acknowledged the dot-com and 

housing bubble periods, along with more recent occurrences in December 2020 and January 

2021, but also provided evidence of the method being sensitive to sample and time series 

selection. Kwong & Wong (2022) paired the dating of bubbles with Value-at-Risk (VaR) 

models, and Demmler & Fernández (2024) tested for bubbles in the NASDAQ index. 

Furthermore, Acharya (2024) considered individual constituents of the S&P 500 index that 

recorded returns in excess of a certain threshold. Interestingly, Zhang & Yao (2016) 

examined S&P 500 index data over two centuries, and revealed the LPPLS method to be 

more consistent with fewer false signals, in comparison to the BSADF method.  

 

2.2.2 LPPLS Model 

 

The Log-Periodic Power Law Singularity (LPPLS) model was established by Johansen et 

al. (1999, 2000). It identifies bubbles and crashes by capturing the faster-than-exponential 

growth and accelerating log-periodic oscillations in asset price trajectories. The former 

characteristic addresses unsustainable growth (with a finite crash time), stemming from 

positive feedback, and is represented by the power law singularity component. When 

singularity is reached, the bubble bursts/crashes, and the regime shifts away from super-

exponential growth. The latter acknowledges competition between traders exhibiting 

herding behavior and fundamental valuation investors, which respectively align with 

positive and negative mean-reverting feedback (Shu & Song, 2024). It is depicted by the 

log-periodic function, which regards the hierarchical flow of accelerated panic that 

eventually terminates the bubbles. 

 

The asset price is assumed to follow a standard diffusion process with a drift and 

discontinuous jumps. The coefficient of the latter quantifies the amplitude of the crash, with 

jumps being governed by the hazard rate. The hazard rate mimics the behavior of noise 

traders and measures the probability of a crash occurring in the next instance, given that it 

is yet to be experienced. Essentially, providing the probability of a large group of agents 

placing sell orders at the same time. The drift component increases with hazard rate to 
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compensate investors for growing crash risk. A two-step calibration approach is presented 

in Filimonov & Sornette (2013) that stabilizes, and improves efficiency of fitting LPPLS 

parameters to market observations for bubble detection. Furthermore, Sornette et al. (2015) 

introduce confidence indicators that measure sensitivity of bubble patterns to the fitting 

window interval time.  

 

The application of the LPPLS model for bubble detection over a wide range of assets, is 

frequently seen across literature. Zhang & Yao (2016) identify bubbles in crude oil prices, 

whereas Shu & Zhu (2020) discovered multiple clusters in the CSI 300 index. The Russell 

2000, Wilshire 5000, S&P 400 and S&P 500 indices are analyzed by Shu et al. (2021) to 

determine if the 2020 market crash was caused by exogenous factors. It is important to 

indicate that the LPPLS method is notorious for overlooking the impact of exogenous 

factors. Furthermore, Song et al. (2022) extended this analysis to 10 global indices, whereas 

Shu & Song (2024) examined the S&P 500 index after March 2020.  

 

2.2.3 Criticism of the GSADF Test and LPPLS Model 

 

It is well documented that the LPPLS model is unable to detect bubbles caused by exogenous 

events such as monetary, fiscal, geopolitical shocks, or those occurring due to a global 

pandemic (Shu et al., 2021; Song et al., 2022; Shu & Song, 2024). Park & Yang (2024) reveal 

the over sensitive nature of the method to initial conditions, with even the smallest of 

changes reducing detection accuracy. Additionally, it has a requirement for the expected 

asset price to be increasing throughout a bubble period, which is not always the case (Brée 

& Joseph, 2013; Karimov, 2017).  

 

A bubble can persist, even though expectations are decreasing, as traders fail to synchronize 

their positions (Abreu & Brunnermeier, 2003). A similar interpretation can be made for the 

methods from Phillips et al. (2011, 2015), which consider the bubble component to be a 

submartingale, with explosive expectations. Both, the recursive regression tests and LPPLS 

models, make assumptions over the existence of bubbles, with respect to the drift of the price 

process (Protter, 2013). Furthermore, the approaches attempt to model the fundamental 
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value, and despite improving on traditional methods, are still vulnerable to the joint-

hypothesis issue.  

 

In the former, Protter (2013) reveal that Phillips et al. (2011, 2015) do not take into account 

the terminal payoff when computing the fundamental value. Whereas there is a lack of 

empirical importance towards the LPPLS fit to market observations, in comparison to the 

attention given to its parametric values. Calibrating parameters to market prices, which 

potentially exhibit bubbles, for determining the fundamental value can be erroneous, and 

adversely impact the conclusiveness of results. It is therefore suggested to explore the local 

martingale theory of bubbles, which does not require estimation of the fundamental value 

for detecting exuberance in asset prices.  

 

2.3  Local Martingale Theory of Bubbles 

 

A bubble is observed when the market price of the asset, exceeds its fundamental value, 

making the latter a vital component for identification. However, the fundamental value of an 

asset is vague, and ultimately unknown (Protter, 2016), making it difficult to spot bubbles 

prior to bursting (Cox & Hobson, 2005). Furthermore, the estimation of this component 

requires forecasting of future cash flows and risk-free rates, which as indicated by Chaim & 

Laurini (2019), can be impacted by exacerbated (disappointed) expectations during bubble 

(crash) periods. Traditional methods attempt to model the fundamental value and suffer from 

joint-hypothesis related issues.  

 

The local martingale theory of bubbles overcomes this issue, making computation of the 

fundamental value redundant. Recall, the recursive regression and LPPLS methods, focus 

on the drift of the price process and model bubbles as submartingales, with explosive 

characteristics. In contrast, the local martingale theory concentrates on the diffusion 

component,  and its growth with respect to the asset price. In the presence of bubbles, the 

asset price process would display strict local martingale tendencies (Delbaen & Shirakawa, 

2002; Kotani, 2006; Mijatović & Urusov, 2012). The behavior of a strict local martingale 

processes reveals typical traits of bubbles, as they spike to a high value prior to collapsing 

and settling at a lower one. Economically, it can be interpreted as an asset price deviating 
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from its fundamental value, highlighting the willingness of investors to overpay for a 

potential upside (Stahl & Blauth, 2024). Hence, the aim is to detect bubbles by identifying 

whether or not asset prices reveal strict local martingale tendencies, as opposed to being a 

true martingale.  

 

Bubbles are categorised by Jarrow et al. (2007) as Type I, II and III, in accordance with the 

liquidation time of the asset. Traditional methods aim to capture type II bubbles, which occur 

in assets with finite lives over infinite horizons. Given the infinite horizon, a large time series 

of data is required, which is problematic when financial markets experience structural breaks 

(Choi & Jarrow, 2022; Fusari et al., 2024). Additionally, Fusari et al. (2024) acknowledge 

the reliance of these methods to concentrate on extracting backward looking information 

from historical prices. Alternatively, type III bubbles prevail within assets with bounded lives 

in a finite horizon and are not impacted by structural breaks. They arise when the price 

process is a strict local martingale and can be estimated over shorter time periods. Such 

bubbles capture the willingness of investors to purchase an asset with the sole purpose of 

reselling it at a higher price in the future. The local martingale theory of bubbles is 

engineered towards detecting type III instances.  

 

2.3.1  Theoretical Background 

 

The foundations of the theory were built in the works of Loewenstein & Willard (2000a, 

2000b), Cox & Hobson (2005), Heston et al. (2007), and Jarrow et al. (2007, 2010).  In 

abidance to these papers, an overview of the theoretical background, is provided. The reader 

can be referred to Protter (2013) and Jarrow (2015) for a more detailed synopsis. 

Furthermore, for simplicity and convenience, notations are consistent with Jarrow (2015) 

and  Fusari et al. (2024). 
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2.3.1.1  Economy: Fundamental Value and Bubbles  

 

A continuous or discrete time model may be considered with interval [0, 𝑇]. For simplicity 

and consistency with the related literature, a finite horizon continuous time model2 is 

presented. The randomness in the economy is characterized by (𝛺, ℱ, 𝔽, ℙ), with filtration 

𝔽 =  (ℱ𝑡)𝑡 ≥ 0, satisfying the usual hypotheses3. The sigma-algebras, ℱ𝑡 are subsets of the 

sample space, 𝛺 with probability measure, ℙ, determining the occurrence of each. The 

market comprises two traded assets: a risky asset (stock) and locally riskless4 money market 

account (MMA). Markets are assumed to be competitive and frictionless, implying that 

traders are price takers5, with trading costs and constraints being non-existent. At time 𝑡, 

given a nonnegative default-free rate of interest, 𝑟𝑡, value of the MMA can be denoted by 

𝐵𝑡  =  𝑒∫ 𝑟𝑠𝑑𝑠
𝑡
0 .   

Considering liquidation time 𝑢 ≤ 𝑇, let 𝐷 = (𝐷𝑡)0 ≤ 𝑡 ≤ 𝑢, represent a nonnegative càdlàg 

semimartingale process of cumulative cash flows obtained from holding the risky asset.  The 

market price of the risky asset is defined as a nonnegative càdlàg semimartingale, 𝕊, with 

𝕊𝑢  =  𝕏, at 𝑢. There are no further cash flows, and the value of the risky asset is invested 

in the MMA, such that 𝕊𝑡 = 𝐵𝑡
𝕏

𝐵𝑢
,  and cumulative gains are defined by 𝐺𝑡, 𝐺𝑡  ≥ 0. The 

asset does not exist beyond the liquidation date, hence each process is stopped prior to 𝑢, 

shifting focus to the [0, 𝑢] horizon (Jarrow et al., 2010). Intuitively, considering the risky 

asset to be a stock, it could potentially cease to exist on a future date, given bankruptcy, a 

buyout/merger, or the company being broken up by antitrust laws. Hence, the lifetime of an 

asset is a stopping time (Protter, 2013). 

 
2 A discrete model can be procured by setting the price process to be constant between consecutive time periods 

(Jarrow, 2015; Fusari et al., 2024). 

3 The usual hypothesis is met when 𝔽 is right-continuous, and the probability space is complete (P. E. Protter, 

2005).  

4 An asset locally riskless when its returns over the next time step are known with probability = 1.   

5 Traders believe their actions do not have a quantity impact on the market price.  

𝐺𝑡 = 𝕊𝑡  + 𝐵𝑡 ∫
1

𝐵𝑠

𝑡

0

𝑑𝐷𝑠 (1) 



 42 

 

 

 

2.3.1.2  No Free Lunch Vanishing Risk  

 

The semimartingale property of the stock price process, is a necessary, however not 

sufficient condition for eliminating arbitrage (Protter, 2013). Therefore, the economy must 

be assumed to satisfy No Free Lunch Vanishing Risk6 (NFLVR) conditions. It is a technical 

extension of the minimal structure provided by the standard no arbitrage definition (Jarrow, 

2015). Both exclude self-financing trade strategies with nonnegative liquidation values that 

require no investment, whereas NFLVR additionally discards limiting arbitrage 

opportunities7 (Jarrow et al., 2007, 2010; Jarrow, 2015). Hence, only admissible trade 

strategies are considered. A self-financing trade strategy bound from below, is admissible, 

presenting as a lower bound on the wealth process of an individual (Jarrow et al., 2007, 

2010). Individuals are prevented from borrowing, if their debt becomes excessive, resulting 

from constraints on negative wealth (Loewenstein & Willard, 2000a, 2000b), limiting the 

replication of asset payoffs, and ruling out arbitrage opportunities in the form of doubling 

strategies8.  

 

Shorting the bubble payoff, and purchasing a cheaper replicating trade strategy would imply 

presence of an arbitrage opportunity (Heston et al., 2007). However, given the unbounded 

nature of losses that could potentially stem from a short position, and constraints on negative 

wealth, arbitrage is ruled out.  Short selling an asset with a bubble is not admissible, given 

that losses could violate the lower bound (Cox & Hobson, 2005; Heston et al., 2007). The 

lower bound for admissible trade strategies can be interpreted as constraints enforced by 

regulators/traders, given rational price expectations. Most importantly, it is the reason behind 

the existence of bubbles (Jarrow et al., 2007, 2010). Consider short constraints being non-

existent, then if a bubble were to occur, the dramatic increase in prices, will be entirely offset 

by short positions. The formation of bubbles would be prevented given that traders possess 

 
6 The NFLVR condition is assumed to hold, not directly applied during pricing (Protter, 2013). 

7 Limits of sequences of self-financing trade strategies, requiring zero investment, which have a small loss 

probability. 

8 Strategies that generate positive returns on borrowed funds, with a probability of 1, during a finite time period 

(Jarrow et al., 2007). 
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unbounded wealth process with no borrowing limitations9.  Shorting constraints10 make 

taking such positions inadmissible as the trade would be terminated if losses cross a certain 

threshold. This relieves the downward selling pressure on the asset, allowing for the 

existence of asset price bubbles (Cox & Hobson, 2005; Heston et al., 2007; Jarrow et al., 

2007).  

 

2.3.1.3  Fundamental Value and Bubble Detection  

 

NFLVR is crucial condition for the existence of price bubbles. In accordance with the first 

fundamental theorem of asset pricing (Delbaen & Schachermayer, 1994), if and only if a 

probability measure, ℚ equivalent to ℙ, exists, such that 𝐺𝑡 𝐵𝑡⁄  is a local martingale, NFLVR 

holds.  Hence, ℚ is referred11 to as an equivalent local martingale measure (ELMM).  A 

stochastic process, 𝑋𝑡, is considered a local martingale if and only if,  when stopped on a 

sequence of stoppage times, 𝓉𝓃, for lim
𝓃→∞ 

𝓉𝓃 = ∞, is a martingale. Such a process can either 

be a uniformly integrable martingale, a true martingale or strict local martingale (Jarrow, 

2015). In the latter, 𝐺𝑡 would not be a true martingale, rather supermartingale, as it is 

expected to decrease over time (Laurini & Chaim, 2021).  

The fundamental value of the risky asset 𝐹𝑉𝑡,  is the price a trader is willing to pay to 

purchase the asset, such that it is held till liquidation (Jarrow et al., 2007, 2010). It 

incorporates the expectation, under ℚ, of the discounted liquidation value and sum of cash 

flows. A bubble, 𝛽𝑡 reflects a trader’s preference to sell the risky asset at a higher price in 

the future, rather than holding it till liquidation. It reveals the difference between the market 

price and fundamental value and occurs when the latter is exceeded.  The existence of a 

 
9 In such scenarios traders would not face issues meeting the requirement of maintaining the unbounded 

marked-to-market losses.  

10 There two types of shorting constraints relevant to the argument; Structural limitations (limited ability and/or 

costs of borrowing the asset), and those associated risks with short positions (Jarrow et al., 2007). 

11 It is also commonly referred to as the risk neutral measure.  

𝐹𝑉𝑡  = 𝐸ℚ (
𝕊𝑢

𝐵𝑢
 +  ∫

1
𝐵𝑠

𝑢

0
𝑑𝐷𝑠 |ℱ𝑡) 𝐵𝑡 (2) 

𝛽𝑡  =  𝕊𝑡  −  𝐹𝑉𝑡 (3) 
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bubble emphasizes that the resale price of the risky asset is superior to that paid for holding 

it till liquidation. It captures the bigger fool belief (Jarrow, 2015), as the investor (the fool) 

purchases the asset, believing in the possibility of reselling in the future at a greater price to 

another (the bigger fool).  

 

The second fundamental theorem of asset pricing reveals that if markets are complete, there 

exists a unique ELMM, ℚ, in contrast to the infinite possibilities prevalent in incomplete 

markets (Jarrow et al., 1999). In either case, the fundamental value is determined under the 

ℚ measure, assuming a unique one is selected by the market, when incomplete (Jarrow et 

al., 2010). The theorem can be mathematically represented with respect to 𝐺𝑡, in abidance 

with Jarrow et al. (2010). Let ℳ𝑙𝑜𝑐(𝐺𝑡) denote a set of ELMMs, then |ℳ𝑙𝑜𝑐(𝐺𝑡)|  =  1 and 

|ℳ𝑙𝑜𝑐(𝐺𝑡)|  ≥  2, for complete and incomplete markets, respectively, with | ∙ | representing 

cardinality. Furthermore, consider ℳ𝑈𝐼(𝐺𝑡) and ℳ𝑁𝑈𝐼(𝐺𝑡) to be mutually exclusive non-

empty subsets of ℳ𝑙𝑜𝑐(𝐺𝑡), in the given order,  comprising of Equivalent Uniformly 

Integrable Martingale Measure (EUIMMs) and Equivalent Not Uniformly Integrable 

Martingale Measures (ENUIMMs). Therefore, if markets are complete, ℳ𝑙𝑜𝑐(𝐺𝑡) will 

contain a single element, either from ℳ𝑈𝐼(𝐺𝑡) or ℳ𝑁𝑈𝐼(𝐺𝑡).  

 

2.3.1.4  Asset Price Bubbles: Complete Markets 

 

The second fundamental theorem reveals that |ℳ𝑙𝑜𝑐(𝐺𝑡)|  =  1, comprising of either an 

EUIMM or ENUIMM. The presence of bubbles in the prices of risky assets, and derivatives 

written on them, have been documented in (Cox & Hobson, 2005; Heston et al., 2007). 

However, it is Jarrow et al. (2007) that characterise a theorem for asset price bubbles under 

the NFLVR condition in complete markets. Given the characteristics of the asset’s 

liquidation values, if 𝛽𝑡  ≠  0, then there are three and only three possibilities. 

1. 𝛽𝑡  is a local martingale, possibly a uniformly integrable martingale, under ℚ, if 

𝑃(𝑢 =  ∞)  >  0. 

2. 𝛽𝑡  is  a local martingale but not a uniformly integrable martingale when unbounded, 

if 𝑃(𝑢 <  ∞)  =  1.  

 



 45 

 

 

3. 𝛽𝑡  is a strict local martingale under ℚ, if 𝑢 is a bounded stopping time.  

The final possibility is the most economically interesting, as 𝛽𝑡 must be a strict local 

martingale for its existence (Protter, 2013). Given  the asset price comprises of two 

components; the fundamental value, which is a true martingale, and the bubble; if 𝛽𝑡  is a 

strict local martingale, by extension so would the asset price. Hence, if and only if the asset 

price process is a strict local martingale a bubble exists. Considering the three types of 

bubbles, 𝕊𝑡 reveals the following decomposition.  

The bubble component is further split to depict type I, II, and III occurrences, such that 𝛽𝑡  =

 𝛽𝑡
1  +  𝛽𝑡

3  +  𝛽𝑡
3.  Type I bubbles (𝛽𝑡

1) are a càdlàg non-negative uniformly integrable 

martingale, occurring when the asset has an infinite life, with a payoff at 𝑢 =  ∞. Jarrow et 

al. (2007) consider the example of fiat money and state such bubbles to be economically 

uninteresting. Given the asset does not expire, nor pay cashflows, its fundamental value is 

equivalent to 0, then 𝛽𝑡
1 converges to 𝕊𝑢 = ∞ , almost surely. Hence, the entire value of the 

asset comes from a bubble, making it trivial from an economic perspective. Contrastingly, 

type II and III bubbles have strong economic relevance. 

 

Type II bubbles (𝛽𝑡
2) are witnessed as càdlàg non-negative non-uniformly integrable 

martingales in assets with unbounded finite lives, with 𝛽𝑢
2  =  0 (𝛽𝑢

2 converges to 0, almost 

surely). Non-uniformly integrability is a critical threshold for such bubbles. A bubble is 

observed when the market price exceeds the asset’s fundamental value, therefore an arbitrage 

opportunity can exist when shorting the former and longing the latter of the price 

components. Jarrow et al. (2007) highlight that such trading strategies must be terminated 

prior to 𝑢, at some finite point. There is a possibility that the bubble can exist after the 

termination date, making the strategy ‘risky’ and therefore, not an arbitrage. Whereas, for 

type III bubbles (𝛽𝑡
3), it is the admissibility condition that prevents arbitrage. Type III 

bubbles, classified as càdlàg non-negative supermartingales (and strict local martingales), 

with 𝛽𝑡
3 converging to 0, almost surely, materlise in asset with bounded lives. At maturity, 

𝛽𝑢
3  =  0, for an asset with a bounded life. Taking a short position in the asset is inadmissible, 

therefore given NFLVR, type III bubbles are allowed to exist.  

𝕊𝑡  =  𝐹𝑉𝑡  + 𝛽𝑡  =  𝐹𝑉𝑡  +  (𝛽𝑡
1  +  𝛽𝑡

2  +  𝛽𝑡
3) (4) 
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The time horizon [0, 𝑢] considered is finite, with 𝑃(𝑢 <  ∞)  =  1, as the asset does not 

exist beyond its liquidation date. Therefore, only type II and III bubbles exist in the current 

framework.  

i) 𝛽 ≥ 0. 

 

ii) If the bubble has a finite maturity (𝑢 <  ∞), then it must burst on or before 𝑢, hence 

𝛽𝑢1{𝑢 < ∞}  =  0.  

 

iii) If  𝛽𝑡  = 0, then 𝛽𝑣  = 0, for 𝑣 ≥  𝑡, stating that bubbles cannot restart after bursting, 

and must be present in the start of the model to be existent.  

The non-negativity12 of the bubble component is revealed in i), indicating that the 

fundamental value of the asset is the lower bound to its market price, since traders have the 

option to retrade (Jarrow, 2021). If not traded, the fundamental value will equate to the 

market price since the asset is held till liquidation. However, if retraded, then the market 

price will exceed the fundamental value, with the bubble component capturing willingness 

of traders to sell at a higher price, instead of holding till liquidation. The final condition 

poses as a weakness to this model, preventing the birth/restart of bubbles, since there is only 

one ELMM. Additionally, given the presence of bubbles in the stock price, the put-call 

parity, which is almost never empirically violated, does not hold (Cox & Hobson, 2005; 

Heston et al., 2007). Hence, Jarrow et al. (2007) introduced the No Dominance (ND) 

condition from (Merton, 1973).   

 

2.3.1.5  No Dominance 

 

The ND condition13 is satisfied, when there are no dominated assets, implying that given all 

things equal, financial agents have preference for more over less. An asset is dominated if a 

 
12  Protter (2013) reveal bubbles can be negative for foreign exchange. For instance, assume the USD is in a 

bubble with respect to EUR, then the EUR is in a negative bubble specific to the USD.  

13 View Jarrow et al. (2007) for the extended definition. 
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trade strategy with lower cost exists, such that its cashflows and liquidation value are always 

greater or equal (and strictly greater with a positive probability) to that of the asset (Jarrow, 

2015).  In contrast to NFLVR, which is a mispricing opportunity that can be exploited14, ND 

compares two investments, ensuring equivalence of demand and supply (Jarrow, 2015, 

2021). For instance, if an asset is dominated, it will not be held by traders and therefore be 

in excess supply. Moreover, it rules out the possibility of suicide strategies (Jarrow et al., 

2010).   

 

The satisfaction of ND ensures that the put-call parity holds by definition (Merton, 1973; 

Jarrow et al., 2007, 2010). Given NFLVR and ND are satisfied, according to the third 

fundamental theorem of asset pricing (Jarrow, 2021), there exists an equivalent probability 

measure, such the 𝐺𝑡 would be a martingale. In complete markets, since |ℳ𝑙𝑜𝑐(𝐺𝑡)|  =  1, 

𝐺𝑡 will be a martingale and not a strict local martingale under ℚ, ruling out the possibility 

of bubbles. Initially this conclusion was arrived at by (Jarrow et al., 2007), by considering 

two approaches for obtaining cash flows. The first involves purchasing and holding the asset, 

whereas in the second, an admissible trade strategy is entered to replicate the fundamental 

value. If a bubble (type II or III) were to exist, then the fundamental value would be exceeded 

by the market price, making the cost of the trade strategy cheaper. Since both approaches 

provide similar payoffs, the trade strategy would be dominant. Therefore, the existence of 

type II and III bubbles would be a direct violation of the ND condition. Hence, in a complete 

market, satisfying NFLVR and ND asset price bubbles are non-existent15.  

 

2.3.1.6  Asset Price Bubbles: Incomplete Markets 

 

Given infinitely many ELMMs within incomplete markets, it is not feasible to rule out the 

presence of bubbles across all possibilities. The selection of ELMMs determines the 

fundamental value, subsequently the existence of bubbles. Considering NFLVR and ND 

conditions are satisfied, the third fundamental theorem states that an equivalent martingale 

measure must exist (Jarrow, 2021). Complete markets comprise of a single measure, within 

 
14 Eventually prices adjust, and the opportunity disappears.  

15 In complete markets, satisfying NFLVR and ND, type I bubbles exist, however they are not economically 

important (Jarrow et al., 2007), and not visible in the finite horizon framework.  
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which the asset price process must be a martingale. However, incomplete markets reveal 

infinite possibilities, with just one  required to be an equivalent martingale measure. 

Therefore, the existence of bubbles distinguishes between martingale and local martingale 

measures cannot be ruled out.  

 

In contrast to complete markets, different ELMMs are exhibited across time, resembling 

regime shifts (or alternatively, changing perceptions about the fundamental value), in the 

economy (Jarrow et al., 2010; Protter, 2013; Biagini et al., 2014). The fundamental value is 

determined by a selected local martingale measure, resembling the market chosen regime 

(given sufficient number of traded derivatives). Jarrow et al. (2010) investigated such 

occurrence by considering random stopping times (representing a regime switch), and 

stochastic processes to respectively signify the  number of shifts and characteristics of 

regimes. Recall ℳ𝑈𝐼(𝐺𝑡) and ℳ𝑁𝑈𝐼(𝐺𝑡) to be mutually exclusive non-empty subsets of 

ℳ𝑙𝑜𝑐(𝐺𝑡), comprising of EUIMMs and ENUIMMs, respectively. Consider a dynamic 

market to have selected the 𝒬𝑈𝐼 ∈  ℳ𝑈𝐼(𝐺𝑡) measure, under a particular regime. If a switch 

to ℛ𝑈𝐼  ∈  ℳ𝑈𝐼(𝐺𝑡) would occur, the fundamental price would be independent16 of the 

change,  as 𝐺𝑡 is a uniformly integrable martingale in both measures. However, if the 

measure were to shift to  ℛ𝑁𝑈𝐼  ∈  ℳ𝑁𝑈𝐼(𝐺𝑡), then the fundamental value of the asset would 

decrease. When bubbles are absent, the fundamental value of the asset is equivalent to the 

arbitrage-free market price. However, under ℛ𝑁𝑈𝐼 that need not be the case, as the 

fundamental value would be less than or equal to the market price, resulting in the birth of a 

bubble. 

 

The ELMM is selected by the market, depending on the state of the economy, and number 

of regime shifts (Jarrow et al., 2010).  Any shift in the ELMM would capture random 

structural shifts in the economy that correspond to  “changing beliefs, preferences, 

endowments, institutional structure, market clearing mechanisms, or political/regulatory 

considerations”, and  potentially give birth to bubbles (Jarrow et al., 2010; Jarrow, 2015). 

Protter (2013) and Biagini et al. (2014) provide alternative economic interpretations for the 

shifting of measures. The former comments on bubbles being born due to ‘easy money’, 

 
16 Fundamental value of other assets could change. 
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with the changing measure capturing increased liquidity due to speculators gaining access 

to large pools of funds. Whereas in the latter, the switch resembles a change in investor 

perceptions, from optimism to pessimism, reflecting that the market price is exceeding the 

fundamental value of the asset. Even in the case of static incomplete markets, which do not 

have regime shifts (in contrast to dynamic markets), Jarrow et al. (2010), reveal the 

possibility of bubbles. In complete markets, ND rules out such occurrences, given the 

possibility to create dominant admissible replicating trade strategy. Static markets are the 

first natural generalization of complete markets but are not entirely complete. Hence, such 

strategies may not exist, therefore, the presence of bubbles cannot be excluded. 

 

Despite the satisfaction of NFLVR and ND conditions, bubbles are existent within 

incomplete markets, due to shifting ELMMs corresponding to regime shifts in economy. 

Similar to complete markets, if 𝛽𝑡  ≠  0, then there are three and only three possibilities: 

Type I (𝛽𝑡
1), II (𝛽𝑡

2), and III (𝛽𝑡
3 ) bubbles. However, since the time horizon considered is 

finite, only the latter two are prevalent with the following conditions (Jarrow et al., 2010).  

i) 𝛽𝑢  = 0.  

 

ii) 𝛽𝑢1{𝑢 < ∞}  =  0.  

 

iii) If  𝛽𝑡  = 0, then 𝛽𝑣  = 0, for 𝑣 ≥  𝑡.  

 

iv) In the scenario of no cashflows,  𝕊𝑡  =  𝐸ℚ (
𝕊𝑇

𝐵𝑇
 |ℱ𝑡)𝐵𝑡  + 𝛽𝑡

3  − 𝐸ℚ (
𝛽𝑡

3 

𝐵𝑇
 |ℱ𝑡)𝐵𝑡, for  

𝑡 ≤  𝑇 ≤  𝑢.  

The first three condition are similar to those witnessed when markets are complete. Bubbles 

are non-negative and must burst before/on maturity, 𝑢, and cannot restart indicating that they 

should be present at the start of the model to prevail. Recall, condition iii) was a major 

weakness from Jarrow et al. (2007), and is only valid when the market is static, with no 

regime shifts. In dynamic markets, since there are infinite ELMMs across time, along with 

the likelihood of regime shifts, the birth/restart of bubbles is possible, provided a decrease 

in the fundamental value of the asset, due to a switch from 𝒬𝑈𝐼 ∈  ℳ𝑈𝐼(𝐺𝑡) to  ℛ𝑁𝑈𝐼  ∈

 ℳ𝑁𝑈𝐼(𝐺𝑡). The final condition reveals market price, 𝕊𝑡 to vary from its conditional 
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expectation, due to a type III bubble component, since the fundamental value, 𝛽𝑡
1, and 𝛽𝑡

2 

are martingales. Hence, 𝕊𝑡 is not a martingale, consistent with bubbles existing if and only 

if it is a strict local martingale. The NFLVR conditions rules out bubbles as arbitrage 

opportunities, and given ND, the put-call parity holds (Jarrow, 2021). The characteristics 

regarding the presence of bubbles in a single asset can be extended to a vector containing 

multiple (Jarrow et al., 2010). Therefore, bubbles can exist in market indexes, along the same 

theorem and conditions17.  

 

2.3.1.7  Empirical Application 

 

According to the local martingale theory, a bubble exists if and only if the asset price process 

is a strict local martingale (Jarrow et al., 2007, 2010). The difference between a true 

martingale and strict local martingale are observed by analysing volatility behaviour. If the 

volatility integral from Delbaen & Shirakawa (2002), Kotani (2006), and Mijatović & 

Urusov (2012) is finite, the price process reveal strict local martingale tendencies, indicating 

the presence of type III bubbles. A bubble exists if the volatility grows faster than the stock 

price. The employment of non-parametric estimators for computing volatility over 

observable stock prices was considered by Jarrow et al., (2011). However, estimates only for 

visible price points can be gather, making it difficult to examine the volatility tail. Hence, 

the authors proposed implementation of parametric and non-parametric extrapolation 

techniques. The former comprises of selecting a parametric function form for the diffusion 

coefficient and calibrating it to volatility estimations prior to extrapolating. The non-

parametric method implements a reproducing kernel function in a Hilbert space to 

extrapolate, by fitting over the estimated volatility values from observed stock prices.  

 

Chaim & Laurini (2019) and  Laurini & Chaim (2021) explore the formation of bubbles in 

across various asset classes, using non-parametric and parametric methods. The non-

parametric approach is similar to Jarrow et al., (2011), whereas the parametric method 

calibrates a stochastic volatility process from Andersen & Piterbarg (2007) to market 

observations. Its parameter space can be partitioned into two mutually exclusive sets, which 

 
17 Just because a constituent reveals a bubble, that does not imply the same for the index (Jarrow et al., 2010). 
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respectively indicate the absence or presence of strict local martingale properties. Building 

on Jarrow et al., (2011), Choi & Jarrow (2022) propose a technique based on a modified 

convex hull of estimated volatilities. Following the estimation of volatility from observed 

price intervals, a power function is selected to fit lower and upper convex hulls. Next, 

parameters from the respective hulls are examined to reveal the rate at which volatility is 

rising with respect to the price. Choi & Jarrow (2024) improve on the method by 

incorporating cash flows, unequal price observation times and intervals during variance 

computations, along with corrections for small sample bias in the volatility estimator. 

Moreover, a strong robustness check was implemented, standard errors during the estimation 

of volatility bounds were adjusted for heteroskedasticity and autocorrelation, and 

probabilities of bubbles during an inconclusive outcome were provided.  

 

Aforementioned methods identify bubbles within a selected period; but shape of the asset’s 

volatility curve can change (Protter, 2013). Therefore, a bubble could exist during one 

period, burst and disappear, and even be reborn. The issue with Jarrow et al., (2011) and 

related works, is the inability to date specific instances of bubbles. Whilst a predefined 

period is a must for non-parametric methods, it is not required when calibrating parameters 

from market observations. Daily calibrations of stochastic processes allow for timestamping 

short-term bubbles. However, Chaim & Laurini (2019) and Laurini & Chaim (2021) conduct 

annual calibrations. Recall, strict local martingale tendencies capture short-term trading 

profits investors seek to make by purchasing for reselling at a higher price. Several works of 

literature (Piiroinen et al., 2018; Stahl & Blauth, 2024; Biagini et al., 2024; Fusari et al., 

2024) in this area, document the existence short term bubbles to be more frequent than 

perceived. In addition to the inability of capturing such occurrences, the calibration over a 

long-time duration creates vulnerabilities to structural breaks.  

 

Given stock prices evolve globally, Obayashi et al. (2017) highlight the need to consider 

some form of time dependence. If not, upon entering a bubble, the stock will remain in one 

till all of time. The authors expand on Jarrow et al. (2011) by proposing daily volatility 

estimation within a rolling window. The bubble signals are smoothened out by employing a 

Hidden Markov model, aiming to correct false positive occurrences corresponding to flash 

instances of high volatility. Furthermore, to deal with the occasional minor signals indicating 



 52 

 

 

isolated bubbles, the start  (death) of exuberance is marked by a certain threshold for rising 

(falling) prices. Empirically, there might be greater instances of short bubbles, when 

accounting for the bias created by the latter filter. A long short term memory (LSTM) neural 

network is trained by Bashchenko & Marchal, (2020) to comprehend the approach from 

Obayashi et al. (2017), such that it can output classifications of either true martingale or 

strict local martingale, after receiving price inputs. 

 

 Despite addressing the issue of dating bubbles, the approach, similar to those discussed, 

utilises information from the spot market for detection. The selection of instrument is vital 

for the kind of information the practitioner is attempting to extract. Spot markets comprise 

of backward-looking information, as opposed to the forward-looking type, prevalent in 

derivative markets (Han & Kuo, 2017). The forward-looking nature of options, allow prices 

to reflect future expectations of market participants, regarding several economic factors 

(Funahashi, 2023), making them ideal for bubble detection (Fusari et al., 2024).  

 

2.3.2  Bubble Detection using Option Prices  

 

Bubbles are forward-looking in nature and reveal the expectations of traders that purchase 

only to resell at a higher price. Such information cannot be captured in spot markets, as 

opposed to those for options. The growth of trading activity within options over a wide range 

of strike prices and maturity durations has increased their employment for signaling towards 

the existence of bubbles in the underlying prices. Options are abundant in information, on 

the forward-looking expectations of market participants, and even more, across varying 

contract durations. Incorporating the foundations of local martingale theory of bubbles, 

methods utilising option prices, are focused on capturing forward-looking expectations, 

instead of historical occurrences/trends, and require only current market observations. Such 

approaches are less vulnerable to hindsight bias and subsequently improve real time bubble 

detection. Furthermore, as acknowledged by Jarrow (2015), Jarrow (2016) and Fusari et al. 

(2024), within a specific framework, bubble detection using option prices can entirely over 

the joint-hypothesis related issue. 
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2.3.2.1  Theoretical Background 

 

Option contracts comprise of bubbles, when the underlying price process reveals strict local 

martingale tendencies (Cox & Hobson, 2005; Heston et al., 2007; Jarrow et al., 2007). This 

resembles that market price of the option exceeding its fundamental value, or cheapest initial 

cost of replication trade strategy, obtained from market prices of the underlying risky asset. 

Therefore, exuberance in the underlying, impacts options prices, and could potentially result 

in the contingent claim exhibiting a bubble (Jarrow et al., 2007).  Options have bounded 

lives and display only type III bubbles. Nevertheless, even the presence of type I and II 

bubbles in the underlying price can impact on the option price (Jarrow et al., 2007).  

 

Focusing on complete markets, Cox & Hobson (2005) explore the impact of bubbles on 

option prices. When the price process is a true martingale, put-call parity holds, as opposed 

to when exuberance is exhibited. Put options have bounded payoffs, hence the static 

arbitrage conditions are not violated. Alternatively, call options have unbounded payoffs, 

which could result in large fundamental values during bubble periods. In such scenarios, 

traders are required to post collateral for shorting strategies. These collateral requirements 

ensure the put-call parity holds, as arbitrage through short positions would violate the 

admissibility condition. The fair price of the call option is equivalent to its fundamental 

value, plus the collateral requirement. The latter is interpreted as the bubble component. If 

there is no collateral requirement, then the option price is equivalent to its fundamental value. 

Therefore, when the underlying displays a bubble, standard option pricing methods are only 

applicable to put options, not call contracts. Given that the put-call parity holds, and the asset 

price process is a strict local martingale, then bubbles in the underlying would signal towards 

the exuberance in the call option price (Heston et al. 2007).  

 

The NFLVR condition considers only admissible trade strategies, ruling out type III bubbles 

as arbitrage. The admissibility condition makes strategies that short options revealing 

bubbles (e.g. Covered Calls) unfeasible, given limitations on marked-to-market losses faced 

by investors. Under NFVLR, Cox & Hobson (2005) and Heston et al. (2007) reveal option 

price bubbles in complete markets. However, arbitrage can still exist in the form of suicide 

strategies, only if the trader is willing to take up the losses (Heston et al., 2007). The presence 
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of bubbles in the underlying or option prices would result in the violation of the put-call 

parity. Hence, Jarrow et al. (2007) introduced the ND condition, to ensure that the put-call 

parity holds, and suicide strategies are prevented. Suicide strategies let agents to throw 

wealth away by engaging in a reverse doubling strategy and therefore allow for the existence 

of bubbles in riskless assets, subsequently within prices of those that have bounded payoffs. 

When NFLVR and ND conditions are met, such assets cannot display bubbles, which is 

critical for empirical testing (Jarrow, 2015; Fusari et al., 2024).  

 

Given the satisfaction of both conditions, Jarrow et al. (2007) show bubbles to be absent in 

complete markets. Hence, motivating Jarrow et al. (2010) to reveal their existence with 

incomplete markets. The framework from Jarrow et al. (2007, 2010) enables using option 

prices to overcome the joint-hypothesis issue during bubble detection. It takes advantage of 

put options not exhibiting bubbles and recommends capturing market features by accurately 

estimating traded prices, since market and fundamental values must align. Next, using this 

information from put option estimations, the fundamental value of call options can be 

computed and compared to market observations for bubble detection. Under the ND 

condition, call option price bubbles signal towards exuberance in the underlying, with the 

magnitude of the former acting as the lower bound to that of the latter. There are two benefits 

from fitting the model to put option prices, instead of those associated with the underlying. 

First, the option market, comprises of forward-looking information on expectations of 

market participants. Second, underlying and call option prices are capable of revealing 

bubbles, therefore, directly fitting a model to their market observations could provide 

inconclusive results.  

 

2.3.2.2  European Option Bubbles 

 

Options have bounded lives and therefore are capable of revealing only type III bubbles, 

when the market is incomplete, and satisfying NFLVR and ND conditions. Put options 

cannot display bubbles as their payoffs are bounded from above, by strike prices. In contrast, 

call options have unbounded payoffs, and are capable of reveal bubbles. Consider European-

style call and put options, with strike price, 𝕂, and maturity 𝜏, at 𝜏 <  T. Let the payoffs at 

𝜏, be represented by 𝐶𝜏(𝕂, 𝜏)  =  𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0} and 𝑃𝜏(𝕂, 𝜏)  = 𝑚𝑎𝑥{𝕂 − 𝕊𝜏, 0}, along 
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with prices of the respective options, 𝐶t(𝕂, 𝜏), and 𝑃t(𝕂, 𝜏), assuming that the risky asset 

has no cash flows18. 

Prior to exploring bubbles in put and call options, one must examine the instance of zero-

coupon bonds, with fundamental value, 𝑝∗(𝑡, 𝜏)  =  𝐸𝑡 [
1

𝐵𝜏
] 𝐵𝑡. Given nonnegative interest 

rates, the market value 𝑝(𝑡, 𝜏)  ≤  1, for all 0 ≤  𝑡 ≤  𝜏 ≤  𝑇, is bounded from above. 

Under NFLVR, 𝑝(𝑡, 𝜏) 𝐵𝜏⁄ , is a local ℚ −martingale. Given 𝐵𝜏  ≥  0,  𝑝(𝑡, 𝜏)  ≤  1, 

𝑝(𝑡, 𝜏) 𝐵𝜏⁄  is bounded, and hence a martingale. Bubbles exist when rational traders have the 

incentive to purchase an asset, for the sole purpose of reselling at a greater price in the future. 

This incentive is lost for assets with bounded prices, as through backward induction, traders 

will realise that it cannot be purchased only for reselling at a higher price, resulting in 

𝑝∗(𝑡, 𝜏)  =  𝑝(𝑡, 𝜏) (Jarrow et al., 2010; Jarrow, 2015; Fusari et al., 2024). Similarly, for 

𝑝(𝑡, 𝜏)  ≤  1, put options have payoffs that are bounded from above, and hence, their prices 

do not exhibit bubbles. Put option prices are uniformly integrable ℚ −martingales, with 

fundamental value, 𝑃𝑡
∗(𝕂, 𝜏) equivalent to market price, 𝑃𝑡(𝕂, 𝜏). Importantly, when the 

underlying asset displays a bubble, put options can be priced using standard option pricing 

methodologies (Jarrow et al., 2010; Protter, 2013; Jarrow, 2015). Contrastingly, call options 

have unbounded payoffs, and can exhibit price bubbles.  

 

Consider  𝑉𝑡
𝑓
 as the market price of a forward contract, with maturity, 𝜏 and payoff, {𝕊𝑡 −

𝕂}, at 𝑡. Defining  𝑉𝑡
𝑓∗

,  𝑃𝑡
∗(𝕂, 𝜏) and 𝐶𝑡

∗(𝕂, 𝜏) to be the fundamental values of the forward 

contract, put option and call option respectively, it can be shown that the put-call parity 

holds; 𝑉𝑡
𝑓∗

 =  𝐶𝑡
∗(𝕂, 𝜏) − 𝑃𝑡

∗(𝕂, 𝜏). However, under the presence of bubbles, this need not 

be necessarily true for market prices. The ND condition by definition allows for the put-call 

parity to hold, even in the presence of bubbles. Therefore, in an incomplete market, 

 
18 This assumption has been placed for simplicity, and consistency with previous literature. It will be relaxed 

during the empirical testing of bubbles. 

𝑃𝑡(𝕂, 𝜏)  = 𝐸ℚ (
𝑚𝑎𝑥{𝕂 − 𝕊𝜏, 0}

𝐵𝜏
 |ℱ𝑡)𝐵𝑡 (5) 

𝐶𝑡(𝕂, 𝜏)  = 𝐸ℚ (
 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}

𝐵𝜏
 |ℱ𝑡)𝐵𝑡 (6) 
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satisfying NFLVR and ND, call options inherit the underlying risky asset’s bubble.  At 

maturity, 𝜏, for 𝑡 ≤  𝜏 ≤  𝑇,   

taking conditional expectations under ℚ, where  𝑝(𝑡, 𝜏) = 𝐸ℚ (
 1

𝐵𝜏
 |ℱ𝑡)𝐵𝑡, given 𝑟𝑡  ≥ 0: 

𝐸ℚ (
𝕊𝜏

𝐵𝜏
 |ℱ𝑡)𝐵𝑡  −  𝐸ℚ (

𝕂
𝐵𝜏

 |ℱ𝑡)𝐵𝑡

= 𝐸ℚ (
 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}

𝐵𝜏
 |ℱ𝑡)𝐵𝑡  −   𝐸ℚ (

 𝑚𝑎𝑥{𝕂 − 𝕊𝜏, 0}
𝐵𝜏

 |ℱ𝑡)𝐵𝑡 

 

𝐸ℚ (
𝕊𝜏

𝐵𝜏
 |ℱ𝑡)𝐵𝑡  =  𝐸ℚ (

 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}
𝐵𝜏

 |ℱ𝑡) 𝐵𝑡  −   𝑃𝑡(𝕂, 𝜏)  +  𝑝(𝑡, 𝜏)𝕂 

from condition iv) from 1.3.1.6, 𝕊𝑡  =  𝐸ℚ (
𝕊𝜏

𝐵𝜏
 |ℱ𝑡)𝐵𝑡  + 𝛽𝑡  − 𝐸ℚ (

𝛽𝜏 

𝐵𝜏
 |ℱ𝑡)𝐵𝑡, hence  

using the definition of the put-call parity,  𝕊𝑡 −  𝑝(𝑡, 𝜏)𝕂 + 𝑃𝑡(𝕂, 𝜏)  =  𝐶𝑡(𝕂, 𝜏):  

It can be witnessed in (9) that European call options depict bubbles,  when its market price, 

𝐶𝑡(𝕂, 𝜏) exceeds its fundamental option value, 𝐶𝑡
∗(𝕂, 𝜏), implying 𝛿𝑡(𝜏) ≥  0, where 

𝛿𝑡(𝜏)  =   𝛽𝑡 − 𝐸ℚ (
𝛽𝜏 

𝐵𝜏
 |ℱ𝑡)𝐵𝑡, is a supermartingale with 𝛿𝜏(𝜏)  =  0. Under the NFLVR 

𝕊𝜏  −  𝕂 =  𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}  −   𝑚𝑎𝑥{𝕂 − 𝕊𝜏, 0} (7) 

𝕊𝑡 − 𝛽𝑡  + 𝐸ℚ (
𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡   =  𝐸ℚ (
 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}

𝐵𝜏
 |ℱ𝑡) 𝐵𝑡 − 𝑃𝑡(𝕂, 𝜏)  +  𝑝(𝑡, 𝜏)𝕂  

𝕊𝑡 −  𝑝(𝑡, 𝜏)𝕂 + 𝑃𝑡(𝕂, 𝜏)  =  𝐸ℚ (
 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}

𝐵𝜏
 |ℱ𝑡)𝐵𝑡 + 𝛽𝑡  − 𝐸ℚ (

𝛽𝜏 
𝐵𝜏

 |ℱ𝑡) 𝐵𝑡 

𝐶𝑡(𝕂, 𝜏) =  𝐸ℚ (
 𝑚𝑎𝑥{𝕊𝜏 − 𝕂, 0}

𝐵𝜏
 |ℱ𝑡)𝐵𝑡 + 𝛽𝑡  − 𝐸ℚ (

𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡 (8) 

𝐶𝑡(𝕂, 𝜏) = 𝐶𝑡
∗(𝕂, 𝜏) + 𝛽𝑡 − 𝐸ℚ (

𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡 (9) 

ℬ𝑡(𝕂, 𝜏)  =  𝛽𝑡 − 𝐸ℚ (
𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡 = [𝐶𝑡(𝕂, 𝜏)  − 𝐶𝑡
∗(𝕂, 𝜏)]  × ℕ (10) 
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and ND conditions, bubbles in the underlying and call options are linearly related19. The 

bubble magnitude, ℬ𝑡(𝕂, 𝜏)  =  [𝐶𝑡(𝕂, 𝜏)  − 𝐶𝑡
∗(𝕂, 𝜏)]   × ℕ (ℕ resembles the lot size of the 

option), is independent of 𝕂, and vanishes as 𝜏 approaches 0, with 𝐸ℚ (
𝛽𝜏 

𝐵𝜏
 |ℱ𝑡)𝐵𝜏 = 𝛽𝜏. 

Hence, the bubble can be estimated by employing an appropriate pricing model to compute 

𝐶𝑡
∗(𝕂, 𝜏), given 𝐶𝑡(𝕂, 𝜏) observed in the market. However, in the presence of bubbles, 

standard option pricing techniques are not valid for computing the call option price (Cox & 

Hobson, 2005; Heston et al., 2007; Jarrow et al., 2007, 2010).  

 

2.3.2.3  American Option Bubbles 

 

American-styled option contracts, in contrast to their European counterparts, allow for early 

exercise, any time prior to maturity. Given this possibility, they do not exhibit bubbles, even 

if witnessed in the underlying price. Considering 𝑆𝑡 as the price of the underlying risky asset 

denoted in units of the MMA and stopping time 𝜁, the fundamental value of an American 

call can be defined by 𝐶𝑡
𝐴∗(𝕂, 𝜏).  

The supremum would incorporate price bubbles, with 𝜁 being stopped early, with a strictly 

positive probability (Protter, 2013). Assume the existence of a bubble, and the ability to 

purchase a European call option. It would be advantageous to enter into a short maturity 

contract, and enjoy rewards earned from the explosive price hike. However, when entering 

into a longer contract, if the price collapses, the investor is subjected to plummeting payoffs, 

and a subsequent drop in option prices.  It would be beneficial to have the choice of an early 

exercise. Therefore, American call options, will be exercised early in the presence of an 

underlying bubble, which adds value to the stopping time and creates a difference between 

the price of American and European call options, as revealed in (12). If absent, then the 

stopping time would have no value, resulting in 𝐶𝑡
𝐴(𝕂, 𝜏) = 𝐶𝑡

𝐴∗(𝕂, 𝜏) = 𝐶𝑡
𝐸(𝕂, 𝜏) =

 
19 If the ND condition, is violated, the linear relation between call option and underlying price bubbles does 

not hold, with the possibility of each displaying separate bubbles. Furthermore, suicide strategies would exist, 

allowing for bubbles in put options, and riskless assets.  

𝐶𝑡
𝐴∗(𝕂, 𝜏) =  

𝑠𝑢𝑝
𝜁 ∈ [𝑡, 𝜏] 𝐸ℚ (𝑚𝑎𝑥 {𝑆𝜁 −

𝕂
𝐵𝜁

, 0} | ℱ𝑡) (11) 
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 𝐶𝑡
𝐸∗(𝕂, 𝜏), with 𝐶𝑡

𝐴(𝕂, 𝜏) and 𝐶𝑡
𝐸(𝕂, 𝜏) being the respective market prices of American and 

equivalent European call options.  

American call options, as opposed to their European correspondents are unable to reveal 

bubbles, hence 𝐶𝑡
𝐴(𝕂, 𝜏) = 𝐶𝑡

𝐴∗(𝕂, 𝜏). The early exercise value reflects the bubble 

component, which along with the 𝐶𝑡
𝐸∗(𝕂, 𝜏) make up the constituents of 𝐶𝑡

𝐴(𝕂, 𝜏). The 

bubble component is a nonnegative supermartingale that is expected to decline. It has a 

similar impact on the price of the underlying stock, and the subsequent decision of an early 

exercise, as a continuous dividend payout20. Therefore, in accordance with (14) for American 

call options, the fundamental value of a corresponding European call can be utilised detect 

bubbles in the underlying price (Jarrow et al., 2007, 2010). Furthermore, it must be 

highlighted that American put options, similar to their European counterparts, due to 

bounded payoffs, do not display bubbles.  

 

2.3.2.4  Empirical Testing of Bubbles with Option Prices 

 

A bubble is observed when the fundamental value of an asset is exceeded by its market price. 

Under NFLVR and ND conditions, if a bubble exists in the underlying, there is no ELMM, 

such that 𝐶𝑡(𝕂, 𝜏) = 𝐶𝑡
∗(𝕂, 𝜏). Hence, standard risk-neutral measures of pricing may not be 

favorable (Jarrow et al., 2010). Computing the fundamental value of call options for bubble 

detection can result in inconclusive results, similar to traditional methods. A joint hypothesis 

issue would arise from attempts to model asset prices that display bubbles.  

 

For  𝕊𝑢  =  0, Jarrow (2015) highlight this problem using the null hypothesis in (15), which 

reveals the nonexistence of type II bubbles. Market prices are observable, whereas the 

 
20 If the underlying does not pay a dividend, the value and incentive of an early exercise would be non-existent 

(Merton, 1973).  

𝐶𝑡
𝐴∗(𝕂, 𝜏)  − 𝐶𝑡

𝐸∗(𝕂, 𝜏)  =  𝛽𝑡 − 𝐸ℚ (
𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡  >  0 (12) 

𝐶𝑡
𝐴(𝕂, 𝜏) =  𝐶𝑡

𝐴∗(𝕂, 𝜏) = 𝐶𝑡
𝐸∗(𝕂, 𝜏) + 𝛽𝑡 − 𝐸ℚ (

𝛽𝜏 
𝐵𝜏

 |ℱ𝑡) 𝐵𝑡 (13) 

ℬ𝑡(𝕂, 𝜏)  =  𝛽𝑡 − 𝐸ℚ (
𝛽𝜏 
𝐵𝜏

 |ℱ𝑡)𝐵𝑡 = [𝐶𝑡
𝐴(𝕂, 𝜏)  − 𝐶𝑡

𝐸∗(𝕂, 𝜏)]  × ℕ (14) 
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fundamental value must be determined by a particular model for {𝑟, 𝐷,ℚ}. This gives rise to 

the joint hypothesis issue, given difficulty in testing for fundamental values, independent 

from evaluating bubbles. Similarly, despite migration to a continuous-time framework, for 

the null hypothesis in (16) the joint hypothesis problem persists, when a stochastic model 

for {𝑟, 𝐷, 𝕊𝑢, 𝑢, ℚ} is employed. However, two other approaches for bubble detection within 

this framework that overcome the joint-hypothesis issue, exist (Jarrow et al., 2010; Jarrow, 

2015; Jarrow, 2016).  

First, a stochastic process for 𝕊𝑡 can be defined by segregating parameters into two mutually 

exclusive and exhaustive sets, that respectively do and do not exhibit bubbles. Given that it 

is significantly less challenging to independently test for the hypothesis of 𝕊 over a historic 

time series, in comparison to that of {𝑟, 𝐷, 𝕊𝑢, 𝑢, ℚ}21, the problem can be overcome as 

witnessed in  Chaim & Laurini (2019) and Laurini & Chaim (2021). However, both works 

fail to capture forward looking expectations, given the practice of fitting to underlying 

prices.  Alternatively, option prices can be investigated to test the presence of bubbles in the 

underlying.  

 

Recall, call options, in contrast to their put counterparts, have unbounded payoffs, and can 

reveal price bubbles. Furthermore, given the ND condition, bubbles in the option price are 

linearly related to those in the underlying. Such an approach would require the estimation of 

{𝐷𝑡, 𝕊𝑡, 𝑃𝑡 , 𝐶𝑡}. Since put options do not exhibit price bubbles, they can be priced using 

standard option-pricing methods, with precision to market quotes, used to validate models.  

The validated model would automatically specify {𝐷𝑡, 𝕊𝑡, ℚ}, while computing 𝑃𝑡
𝐸∗, such 

that 𝐶𝑡
𝐸∗ can be priced and compared with either 𝐶𝑡

𝐸  or 𝐶𝑡
𝐴 to test for bubbles in the call 

option and underlying prices, in accordance with (10) or (14), respectively. This approach 

provides for a stronger, and importantly, a real-time simultaneous validation for identifying 

 
21

 {𝕊𝑢 , 𝑢, ℚ} are almost not observable for all asset price processes. 

𝛽𝑡  =  𝕊𝑡 − ∑ 𝐸ℚ (
∆𝐷𝑣

𝐵𝑣
 |ℱ𝑡)𝐵𝑡

∞

𝑣 = 𝑡

 =  0 (15) 

𝛽𝑡  =  𝕊𝑡 − 𝐸ℚ (
𝕊𝑢

𝐵𝑢
 +  ∫

1
𝐵𝑠

𝑢

0
𝑑𝐷𝑠 |ℱ𝑡)𝐵𝑡  =  0 (16) 



 60 

 

 

bubbles. Given the forward-looking characteristics of bubbles, options of similar nature, are 

best equipped to test for their existence (Fusari et al., 2024).  

 

2.3.2.5  Empirical Application  

 

The key for detecting bubbles from option prices is selecting a stochastic process that reveals 

strict local martingale tendencies in the underlying price22.  Sophisticated stochastic 

volatility processes, revealing strict local martingale tendencies (see Sin, 1998; Andersen & 

Piterbarg, 2007; Lions & Musiela, 2007) can be calibrated to daily market observations. 

Protter (2016) make the case for the inclusion of price jumps, especially when considering 

illiquid instruments, as the price process of such assets would reveal changes only in the 

form of jumps.  The operation of fitting model parameters of such stochastic processes to a 

time series of historical asset prices makes detection reliant on backward-looking 

information. This has adverse impacts on the quality of real-time identification.   

 

The Stochastic Alpha Beta Rho (SABR) model is a popular choice amongst practitioners for 

robust estimation of implied volatility surfaces. It has a closed form solution and can 

successfully capture the forward variance curve. Furthermore, by fixing the lognormality of 

forward prices, the correlation parameter is adept of revealing strict local martingale 

tendencies in the underlying price process. Piiroinen et al. (2018) takes advantage of this 

property and introduce a martingale defect indicator23 for bubble detection. The indicator is 

computed from calibrating SABR parameters from market volatility smiles by 

acknowledging risk preferences of market participants. Stahl & Blauth (2024) adopted the 

SABR model and martingale defect indicator, to conduct a two-fold analysis for bubble 

detection. First, the model was calibrated to 1-month volatility smiles, followed by 

evaluation of the entire surface. The monitoring of surfaces for martingale defects allows 

investors to adjust their positions by identifying irrationally priced stocks. Furthermore, 

 
22 The reader is referred to Sin (1998), Andersen and Piterbarg (2007) and Lions and Musiela (2007) for more 

information on these processes.  

23 The indicator signals for bubbles when the correlation parameter is positive, implying that stock prices and 

volatility are positively correlated. In other words, options become more expensive with increasing underlying 

prices, revealing optimistic risk-seeking preferences of market participants.  
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regulators are better equipped for improving market monitoring and protecting retail 

investors. Calibrating to a full surface generates more frequent bubble instances, with greater 

persistence. The larger number of datapoints reduces the likelihood of calibration errors and 

prevents breaks in the continuity of the event. However, it also smoothens anomalies within 

the lower maturity smile components of the surface, resulting in greater false negative 

signals.  

 

Call options across different strike prices and maturities are capable of revealing full 

information about the underlying price distribution. Biagini et al. (2024) propose a model 

independent deep learning methodology for estimating the probability of a bubble, from 

examining all available daily call options prices. The network is trained to classify dynamics 

of the underlying as either strict local martingale, or true martingale. It was successful in 

learning the Sin (1998), displaced-CEV, and SABR processes, individually and collectively. 

Although, neural networks can be trained to learn more sophisticated stochastic process, 

such as those in Andersen & Piterbarg (2007) and Fusari et al. (2024) for bubble detection. 

The feed-forward nature of the approach makes it vulnerable to the joint-hypothesis issue. 

Parametric calibration of the selected process, as witnessed in Piiroinen et al. (2018) and 

Stahl & Blauth (2024), assist with this problem. However, both consider out-of-the-money 

(OTM) call options during calibrations, which results in the same problem.  

 

In accordance with Jarrow (2015), the joint-hypothesis issue is overcome by calibrating to 

market put options, as their prices do not reveal bubbles. The fundamental value of put 

options is equivalent to market price. Hence, such calibrations reveal the fullest extent to 

which the model captures underlying dynamics, without suffering from the joint-hypothesis 

issue. The three-step approach from Fusari et al. (2024) is designed to specifically cater 

towards this requirement. It uses a stochastic volatility jump diffusion model, capable of 

capturing strict local martingale tendencies in the underlying process. Parameters of the 

model are calibrated to put options, prior to pricing call contracts. The final step involves a 

statistical test designed to identify significant call option bubbles. Based on the linear 

relationship between call and underlying price bubbles, the statistical test reduces the 

reliance on observing bubbles through the parametric conditions of the stochastic model.  
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Alternatively, Jarrow & Kwok (2021) propose a non-parametric approach to infer bubbles 

in the underlying from options data, without imposing the ND condition. The method 

involves constructing bounds for the bubble magnitude, based on the strike range and 

maturity of daily traded options. The bounds are expressed as weighted linear combination 

of put and call options. However, the bubble is only identified up to an interval, as the state 

price distribution is not entirely revealed beyond the available strike range. It is important to 

consider the less frequently traded extreme moneyness options, as they comprise the most 

information on the tails of the distribution. A tail-truncated state price distribution is 

introduced to compute fundamental values. The fundamental value comprises of a truncation 

bias, which vanishes with the expansion of the strike intervals. Jarrow & Kwok (2024) 

implement the approach for differing between quadratic variation or autoregressive related 

explosiveness during bubbles, within the S&P 500 index, and several selected stocks. As 

opposed to the non-parametric method, the three-step approach (Fusari et al., 2024) is built 

on the foundations of the NFLVR and ND assumptions, ensuring that the put-call parity is 

not violated. Furthermore, it does not suffer from the truncation bias and also allows for an 

independent real-time validation of the put option’s fundamental value.  

 

The three-step approach (Fusari et al., 2024) overcomes three major issues with respect to 

bubble detection. First, traditional methods focus on type II bubbles and require a large 

sample, creating a trade-off between model asymptotic and possible structural breaks. Next, 

such methods lack consensus for estimating the fundamental value, giving rise to a joint-

hypothesis issue. Even under the local martingale theory, those from Piiroinen et al. (2018),  

Stahl & Blauth (2024), and Biagini et al. (2024) are vulnerable. Methods relying on 

estimating finiteness of the volatility integral, are immune to this issue, but struggle with 

timestamping bubbles. Third, the forward-looking nature of price bubbles are captured by 

options, in contrast to the backward-looking information from spot markets. All three issues 

are overcome by calibrating a stochastic volatility jump diffusion process to daily market 

observations of put options. Therefore, the three-step approach has been selected for bubble 

detection in this study. However, the stochastic process relies on Monte Carlo simulations, 

making daily calibrations a computationally cumbersome task. Therefore, Fusari et al. 

(2024) compromised by using on the daily most liquid put option smile, to strike a balance 
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between robustness and efficiency. Nevertheless, considering the entire surface is important, 

as seen in Stahl & Blauth (2024), and Biagini et al. (2024).  

 

2.3.3 Option Price Surface for Bubble Detection 

 

The three-step approach has been established as the method of choice for bubble detection 

in this study, due to its superior ability in overcoming the joint-hypothesis issue, whilst 

capturing the forward-looking nature of bubbles. However, daily parameter calibrations of 

the desired stochastic process, are computationally cumbersome, forcing Fusari et al. (2024) 

to strike a balance between robustness and efficiency by considering only the daily most 

liquid volatility smiles. Even though this is common industrial practice, Stahl & Blauth 

(2024) and Biagini et al. (2024), highlight the benefits of considering the entire surface 

during bubble detection.  

 

Selection of instruments depends heavily on the type of information required by the 

practitioner. When attempting to capture future expectations regarding economic factors, the 

forward-looking nature of options, make them an ideal candidate (Funahashi, 2023). This 

further reveals the benefits of examining option prices for identifying bubbles in the 

underlying. An implied volatility surface is constructed from all traded options on a given 

day and plays a crucial role in obtaining such information. Its shape and level are 

conventionally stable, however, large movements in either reveal important changes in 

market conditions (Ackerer et al., 2020). The surfaces are heavily impacted by option 

demand and supply, which are alter in abidance with market expectations. Therefore, 

calibrating pricing models to the surface is detrimental for extracting forward-looking 

information (Funahashi, 2023). Hence, implied volatility surfaces play a key role in 

observing exuberance, and investment and risk-management related decision-making.  

 

The surfaces are subjected to stochastic alterations over time, and a non-flat instantaneous 

profile, which is depicted by the presence of  a ‘smile’, and ‘skew’ (Cont et al., 2002). They 

reveal individual components to comprise of high positive autocorrelation and mean-

reverting behaviour, with the latter occurring more frequently over shorter maturities. Given 

dependence on market demand and supply, and the stochastic nature of surfaces, volatilities 
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could possibly exhibit jumps and/or heavy-tail increments. A negative relationship exists 

between implied volatilities and the returns of the underlying asset, with respect to the strike 

price (Romo, 2014). This is referred to as a volatility skew, and if the OTM put and call 

options have greater implied volatilities than the ATM counterpart, a ‘smile’ occurs. The 

shape is important for understanding underlying returns (Ackerer et al., 2020). If the smile, 

is U-shaped, then the tail of underlying returns distribution is thicker. Alternatively, a skew 

indicates to a distribution being thicker on one-side. If that side is the left, underlying prices 

are more likely to experience larger losses than gains. Recall, Jarrow et al. (2011) 

emphasised on the extrapolation of the tail, in attempts to capture the presence of such 

important information.  

 

The negative relationship between returns from the underlying, and implied volatilities are 

well documented in literature.  Cont & da Fonseca (2002) display the two to be negatively 

correlated, whereas Poulsen et al. (2009) show a stronger negative correlation between ATM 

implied volatilities and returns. Cao et al. (2020) provide evidence supporting volatility 

feedback, where increased volatility has a positive effect on the required rate of return 

causing prices to fall. Furthermore, change in equity return does not cause all components 

of the implied volatility surface to alter with the same magnitude. In relevance to bubble 

detection, each smile of the surface corresponds to a different maturity, hence participants 

with different investor horizons have varying perceptions about current equity returns. This 

hints towards the potential variety in the formation of bubbles, with respect to each 

individual smile. Implied volatilities and underlying returns are not perfectly correlated 

(Cont et al., 2002). Shifts in global implied volatilities are negatively correlated with 

underlying returns, whereas relative movements have a small correlation.  

 

An abundance of information, regarding the underlying asset, and future expectations on 

market and economic conditions, can be extracted by calibrating to the entire surface. The 

smiles and skewness displayed by implied volatilities over varying maturity, can be 

explained by stochastic volatility models (Funahashi, 2023). The parameters of such models 

reveal large amounts of information regarding market expectations and option metrics such 

as; risk-neutral variance, skewness, and variance risk premium, when calibrated from 

implied volatility surfaces (Ulrich & Walther, 2020). Despite the effectiveness of stochastic 
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volatility models, Hoshisashi et al. (2023) state that estimation of volatility is complex due 

to limited input data, low liquidity, and the prevalence of noise. Furthermore, the most liquid 

option cross-section does not provide enough information on the underlying asset for the 

calibration of local volatility, jump-diffusion, and stochastic volatility (with/without jumps) 

models. In such instances even if the models are calibrated, they cannot guarantee realistic 

future scenarios (Cont et al., 2002). Calibration from implied volatility surfaces allows to 

capture information on predictive signals and expectations regarding the underlying asset 

(Guidolin & Wang, 2023). However, such information can differ substantially across the 

surface (Ulrich & Walther, 2020), over the various levels of maturity. Therefore, the entirety 

of the information obtained from the surface is only partially acknowledged when utilising 

options with the highest cumulative volume.  

 

It is precisely due to this reason that this study emphasises on applying the three-step 

approach to option contracts over several maturities. The three-step approach employs a 

stochastic volatility jump diffusion model, with the ability to capture strict local martingale 

tendencies in the underlying price. It is a highly sophisticated process, engineered to extract 

information regarding the underlying dynamics, to a maximum extent. Its high-dimensional 

parametric vector excels at doing so but reliance on Monte Carlo simulations, given a lack 

of a closed form solution, creates a massive computational burden. Hence, Fusari et al. 

(2024) had opted for considering the most liquid option cross-section. However, provided 

preference of capturing forward-looking expectations of market participants from the entire 

available surface, a necessity to tackle the issue of computational efficiency, without 

sacrificing robustness, is created. Therefore, this study seeks the assistance of artificial 

neural networks. 

 

2.4  Neural Networks: Option Pricing and Calibration 

 

The three-step approach (Fusari et al., 2024) exploits the forward looking nature of option 

markets, and overcomes the joint-hypothesis issue during the real-time bubble detection. It 

implements a stochastic volatility jump diffusion model for pricing options. However, there 

exists a major bottleneck in its practical application. Given the unavailability of an analytical 

solution, Monte Carlo simulations are employed as a numerical solver for pricing. Such 
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computational heavy inefficiencies would force practitioners to overlook the obvious 

qualities of the three-step approach.   

 

As an alternative, one could consider fitting a stochastic volatility model with fewer 

parameters, as in Andersen & Piterbarg (2007). However, once again, Monte Carlo methods 

must be relied upon, due to an unavailability of closed form solution. Additionally, the 

process is unable to capture the possible instances of jumps in the underlying price. Other 

stochastic volatility models with or without jumps, that possess analytical solutions, such as 

those in Merton (1976), Heston, (1993), and (Bates 1996), are unable to detect strict local 

martingale  properties in the underlying price process. Alternatively, the SABR reveals this 

trait (Piiroinen et al., 2018; Stahl & Blauth, 2024), but fails to address the mean-reverting 

nature of volatility, making it only suitable for pricing short-term options (Gatheral 2012). 

Solely from a quality-based stance, the process from Fusari et al. (2024) is superior, however 

given the computational burden during calibrations, practitioners would be reluctant towards 

its application. Generally, common industrial practice prefers tractability over quality and 

accuracy, hence, despite its flaws, the Black & Scholes (1973) model is remains popular 

(Horvath et al., 2021). Given the computational inefficiency of highly sophisticated models, 

it is common to settle for striking a balance between robustness and efficiency. It is with the 

motivation of preventing practitioners from being forced to sacrifice quality over tractability, 

that this research turns to artificial neural networks, for efficient real time bubble detection 

using option prices.  

 

2.4.1 Artificial Neural Networks  

 

Artificial Neural Networks (ANNs) are sets of interconnected nodes, that determine given 

output(s) for a set of input(s) by mathematically imitating the functions of the human nervous 

system. The nodes, also known as neurons, like their biological namesake, are the building 

blocks of the system. They are grouped together, in stacked layers, to allow for the flow of 

information, such that complex relationships between inputs and outputs can be learned. The 

analogy from Culkin & Das (2017) of a ‘a child touching a hot plate, and learning not to go 

near one’ can be resorted to for explaining the basic structural mechanisms of neural 

networks, via understanding those of the nervous system.  Decisions in the nervous system 
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are made by considering a wide range of stimuli and passing them through layers of neurons. 

Narrowing down to the stimuli of pain from touching a hot plate; upon contact, information 

is passed through neurons to the brain and, back such that the child instantly pulls away. 

Additionally, that information is stored, and the child learns not to repeat the action.  

 

The extension of this mechanism for decision making by learning from financial data, is the 

foundation to the contributions within this research. McCulloch & Pitts (1943) were the first 

to reveal the universal computational capabilities of ANNs formed from simple 

mathematical representations of a neuron. The Universal Approximation theorem (Cybenko, 

1989; Hornik et al., 1989; Hornik, 1991) confirmed this by proving neural networks with a 

single hidden layer and sigmoid activation can approximate any function, within a given 

level of accuracy. For ANNs the wide range of stimuli that need to be understood, exist in 

the form of datasets with several input and output variables. The relationship between these 

variables is learned by passing information through the layer(s) of neurons and stored as 

weights and biases associated with each node. Given sufficient data, the network can be 

trained to deliver successful outputs, repeatedly (Culkin & Das, 2017).  

 

Nearly a boundless number of calculations are required at high frequent intervals in the 

financial derivatives market, giving rise to a desperate need for speed (Culkin & Das, 2017; 

De Spiegeleer et al., 2018).  There exists a continuous demand for calculating and updating 

model parameters, hedge positions, and instrument prices for risk management and 

profitability purposes. These metrics are relevant only over a short period of time due to the 

fluctuating nature of market dynamics. Given the availability of big datasets, and superior 

computational power, practitioners can take advantage of deep learning networks, for 

improved speed and pattern recognition (Culkin & Das, 2017). The latter stems from neural 

networks, unlike traditional econometric models being able to capture nonlinearities within 

inputs and outputs. In line with the universal approximation theorem, it is possible for neural 

networks, to replicate and at times,  better the actions of analysts, risk-mangers, and traders.  

 

In the context of the current research, options are the most crucial derivative for bubble 

detection, and subsequently for risk management. Since the emergence of the Black & 

Scholes (1973) model, the popularity of option contracts amongst traders has significantly 
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grown. The drawbacks of the model are well documented given its assumptions of constant 

volatility and lognormality of the underlying price. Stochastic volatility models 

(with/without jumps) overcome these issues, however, are computationally cumbersome, 

given reliance on iterative optimization techniques for parametric calibrations. It was 

towards the end of the 20th century, during which the contributions of  Malliaris & 

Salchenberger (1993, 1996) and Hutchinson et al. (1994), pioneered the path of using ANNs 

for estimating options prices/implied volatilities. The authors reveal the pricing effectiveness 

of a simple single layer feedforward networks in modelling nonlinear dependencies. Since 

then, given the level of computational innovations experienced over time, several scholars 

have experimented with complex network architectures to bolster option pricing24.  

 

The stochastic nature of asset pricing requires nonlinear and multivariate functions, which 

makes option pricing a complicated task (Ivașcu, 2021). Hutchinson et al. (1994) highlight 

three characteristics possessed by neural networks, in contrast to traditional parametric 

approaches, that make them advantageous for option pricing. First, they do not rely on 

parametric restrictions or assumption but rather determine the relationship between inputs 

and outputs solely from data. Second, they are adaptive and responsive to structural change, 

as a consequence of directly learning from data. Finally, neural networks are simple to 

implement, and capable of entailing a wide range of derivatives and asset price dynamics. 

This final trait is vital for obtaining an estimation speed that is greater by orders of 

magnitude. De Spiegeleer et al. (2018) paint a vivid picture for the relevance of the previous 

statement with regards to options. The calculations for pricing such contracts on a given day, 

are very similar. A synopsis of such instruments can be revealed by a few parameters such 

as strike price, and maturity. The same applies to the market, which can be represented by 

interest rates, or even the parameters of a stochastic volatility model. This is ideal for 

machine learning tasks as the low dimensional input parameters can be summarized for the 

model to learn the actual function for pricing even thousands of instruments in seconds, with 

a strong level of accuracy.  

 

 
24

 Refer to Ruf & Wang (2020), for a comprehensive overview of this literature. 
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It is these remarkable advancements and capabilities,  that inspired the exploitation of neural 

networks for improving the efficiency of the three-step approach. The model calibration to 

daily put options is a tedious task. Furthermore, given the frequent nature of market 

fluctuations, calibrated parameters rapidly become obsolete, demonstrating the need for 

quick and repetitive estimations, to capture frequently varying market features. Monte Carlo 

simulations are unfit to meet such demands and reduce favourability of the approach. Neural 

networks, when employed as numerical solvers, are capable to calibrating stochastic 

volatility models, in seconds, with a high degree of accuracy (Liu et al., 2019; Horvath et 

al., 2021). Therefore, a deep calibration framework for the stochastic volatility jump 

diffusion model, is explored to improve the efficiency of the three-step approach for real-

time bubble detection.  

 

2.4.2 Calibrating Stochastic Volatility Models with Neural Networks 

 

An option pricing model is calibrated when the value of set of benchmark instruments, 

correspond to their market counterparts (Cont, 2010). In the absence of analytical solutions, 

this procedure is heavily reliant on iterative computationally expensive optimisation 

techniques. In general, calibration of asset pricing models to option prices, across different 

levels of moneyness and maturities, is crucial for the approximating the risk neutral measure 

(Dimitroff et al., 2018). It is vital operation for maintaining the value of trading books, in 

correspondence to updated market prices. Innumerable calculations are required for 

determining the risk neutral measure at very frequent intervals for real-time risk management 

(portfolio simulations, stress tests, and hedge position adjustments), pricing of exotic 

derivatives (De Spiegeleer et al., 2018; Dimitroff et al., 2018; Liu et al., 2019), or real-time 

bubble detection. 

 

Despite supreme quality of stochastic volatility models, the computational burden associated 

with implementation, makes practitioners favour the inferior Black & Scholes (1973) model 

on the grounds of tractability (Bayer & Stemper, 2018; Horvath et al., 2021).  An asset 

pricing model is selected by balancing efficiency and accuracy (Büchel et al., 2022). The 

efficient runtime of stochastic volatility models is hampered by the number of parameters 

needed to be calibrated, along with reliance on Monte Carlo simulations. Hernandez (2016) 
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highlight that from a computational point of view, such models can be accepted, by making 

certain compromises. As with the three-step approach, poor tractability restricted Fusari et 

al. (2024)  to most liquid options. This is consistent with common industry practices, 

however vulnerable to not capturing all relevant information regarding forward looking 

expectations of market participants.   

 

It is difficult to attain analytical solutions for multi-dimensional high quality stochastic 

volatility models (Liu et al., 2019), which are forced to rely on Monte Carlo simulations. A 

large body of literature is dedicated towards improving this facet, most notably by 

implementing Fourier transformations (Carr & Madan, 1999; Fang & Oosterlee, 2009). 

Significant success has been witnessed in attempts to boost efficiency. However, the sheer 

volume of the task makes it computationally inefficient to use such models, even if they 

possess analytical solutions. There is need to update calculations at high-frequencies due to 

their tendencies of becoming obsolete due to changing market dynamics (Bayer et al., 2019; 

Karatas et al., 2019). These calculations need to be conducted thousands of times, for 

thousands of derivatives, which are written on thousands of underlying assets, at high 

frequency of intervals (De Spiegeleer et al., 2018). Therefore, the key to computational 

feasibility of stochastic volatility models, relies on the ability of a numerical solver to 

compute values of a large range of derivatives, simultaneously.  This can be achieved by 

implementing neural networks as numerical solvers during option pricing operations.  

 

Neural networks are successful at extracting features and detecting patterns from large 

datasets, given their strong ability to approximate non-linear functions. Hence, they can be 

implemented as universal function approximators, without assuming a mathematical 

relationship between inputs and outputs (Liu et al., 2019). When applying neural networks 

as high-dimensional approximators, computational efficiency can be obtained with 

simultaneous estimation of the desired output, within seconds, across several moneyness and 

maturity levels (Liu et al., 2019; Horvath et al., 2021). The ease in parallel processing 

provides for superior computational efficiency, by orders of magnitude, over a wide range 

of inputs, in comparison to Monte Carlo simulations (Hernandez, 2016; Liu et al., 2019). 

This allows neural networks to meet the frequent calibration requirements in derivative 

markets and additionally ensure improved efficiency of the three-step approach. 
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Calibration with the assistance of neural networks is centred around taking advantage of the 

universal approximation theorem by replacing expensive Monte Carlo simulations with 

cheap pricing runs. The expedition of option price/implied volatility estimations allows for 

rapid parametric calibration. A fully connected neural network is capable of producing model 

parameters to map market implied volatilities (Bayer & Stemper, 2018). Once trained, the 

network can be optimized to provide minimal output losses at super-fast processing speeds 

(Karatas et al., 2019). For a given set of parameters, implied volatility surfaces can be 

directly generated, without defining the stochastic dynamics of the underlying asset (Horvath 

et al., 2021). Neural networks can improve calibration, regardless of the asset pricing model 

(Hernandez, 2016).  

 

Neural networks are shown to map market data to the existing market regime (Dimitroff et 

al., 2018).  Additionally, though the choice of architecture might vary, using the machine 

learning approach as numerical solvers during calibrations is robust to the choice of model 

(Hernandez, 2016; Horvath et al., 2021). A vital component in the application of neural 

networks for calibration is the training phase, during which dynamics of the selected asset 

pricing model are learned. It is a highly computationally cumbersome task, especially with 

regards to creating the training dataset (market/synthetic), and seeking an optimal network 

architecture. However, this phase is a one-off procedure conducted offline. Once trained, 

calibrations are performed online, within a matter of seconds, using options spanning over 

several moneyness and maturity levels.  

 

There are two kinds of approaches considered across literature, for calibrating asset pricing 

models with neural networks (Bayer et al., 2019). First, the one-step approach, which trains 

the network on market inputs to obtain parameters as an output of a feedforward network. 

Second, the two-step approach, which implements the neural network as a numerical solver, 

to learn the mapping of parameters onto prices/implied volatilities. An optimizer it utilised 

to calibrate parameters from market quotes. Both approaches follow the ideology of a one-

time computationally intensive training period, succeeded by rapid calibration from market 

data.  
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2.4.3 One-Step Calibration Approach 

 

The one-step calibration approach is motivated by the ability of neural networks to be a 

universal functional approximator. It aims to estimate parameters of an asset price model,  

as outputs of a fully trained network. Hence, an additional optimisation step is made 

redundant, providing significantly improved computational efficiency, in comparison to 

traditional calibration methods.  

 

Traditional parametric models lack analytical solutions, therefore a strong reliance on 

optimisation techniques is observed for solving high-dimensional calibration problems. This 

hurdle can be overcome at substantial boosted levels of computational efficiency, by 

exploiting the expertise of neural networks in determining mathematical relationships 

between input and outputs variables. A well-trained network develops the ability to 

accurately map inputs to parameters of the desired stochastic volatility model. Training is a 

computationally heavy procedure as it requires the creation of a sufficiently large training 

dataset to avoid overfitting, along with the determination of the optimal neural network 

architecture, via a search over a wide range of hyperparameters. On the bright side, training 

can be conducted off-line, and once completed, real-time calibrations are carried out 

simultaneously, at lightening speeds, for options across several maturities and moneyness 

levels, without requiring an additional optimisation step. The estimation of parameters is 

simplified to the basic task of matrix-multiplication within a trained network, that are 

feasible even on personal computers.  

 

The concept of calibrating asset price models using neural networks was pioneered by 

Hernandez (2016), when considering the Hull and White model for GBP swaptions. A 

feedforward network, with input nodes corresponding to ATM volatilities and discretely 

sampled yield curve components, along with output nodes representing the respective 

parameters of the model, was constructed. The training dataset was constructed over 

historical data and hence required the Hull and White model to be calibrated to market quotes 

to obtain parameters. During testing on out-of-sample data, performance was strong only up 

to a period of 6 to 12 months beyond the training period. This is a direct consequence of 

training being conducted on historical data, as the network only learns market scenarios from 
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the selected period. Hence, robustness is adversely affected, requiring regular updates to the 

training dataset, and network, to learn the frequently fluctuating dynamics of the market. 

Therefore, the computationally intensive training procedure would no longer be a one-time 

ordeal.  

 

It was hinted that convolutional neural networks could be beneficial when dealing with 

equity implied volatility surfaces (Hernandez, 2016). This was explored by Dimitroff et al.  

(2018) in attempts to calibrate the Heston stochastic volatility model.  The motivation 

stemmed from the 2D shape of implied volatility surfaces, and corresponding inputs such as 

moneyness, strike prices, and forward values. When stacked into a 3D tensor, in resemblance 

with an image, each input represents a channel25. The network transforms input data into the 

most relevant features required for parametric estimation. Once trained, a single forward 

pass would produce fitted Heston parameters, at high levels of efficiency. Training data was 

constructed from daily calibration of the pricing model from historical stock data. Despite 

considering a large equity dataset for calibration, the proposed method suffers from 

overfitting, providing weak performances on out-of-sample (unseen) data. This signals for 

caution during forecasting, amongst real-time applications. The overfitting is caused by the 

poor quality of training data, highlighting the need to possess the characteristics representing 

various market scenarios.  

 

A case for eliminating the additional calibration step was further continued by Itkin (2019), 

with the suggestion of inverse mapping for training neural networks to estimate the Black 

and Scholes model. First, a map of European call options prices to model inputs (including 

implied volatilities) was created. Next, variables were rearranged, to create an inverse map, 

for generating implied volatilities, with the call options prices as inputs. In this order, the 

network was trained, such that implied volatilities from market variables could be obtained. 

As witnessed with the earlier  approaches, a high degree of computational efficiency was 

obtained. However, there are two concerns with regards to this approach, when considering 

stochastic volatility models. First, when assessing robustness, an additional validation step 

would be required. Second, and most importantly, the inverse mapping procedure was 

 
25 Continuing with the image analogy, each channel would represent colours along the red, green, and blue 

(RGB) spectrum.  
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conducted for calibrating a single parameter. It is not flexible enough to calibrate multiple 

parameters. This can be confirmed by Liu et al. (2021), who used inverse mapping for 

training neural networks to obtain American option implied volatilities. However, they prefer 

a two-step approach from Liu et al. (2019), for determining implied volatility and dividend 

yields. 

 

In related work, Stone (2020) propose convolutional neural networks for calibrating the 

Hölder regularity of the rough Bergomi model from market volatility observations. 

Simulated sample paths of the asset pricing model were used for training the network, 

instead of calibrating parameters from historical data. It is faster to create a synthetic training 

set. Moreover, the practitioner, via choice of parametric combinations, can control the 

inclusion and exclusion of extreme market scenarios. Roeder & Dimitroff (2020) made direct 

evaluation with the two-step approach presented in Horvath et al. (2021), using similar 

synthetic training datasets. A feedforward network was trained to calibrate rough Bergomi 

and Heston model parameters from implied volatilities. It was found to be superior with 

regards to the former, but struggled during the latter, due to the presence of various parameter 

sets corresponding to extremely similar implied volatility surfaces26. Once again, in both 

cases, computational efficiency is successfully obtained, but at the cost of sacrificing the 

ability to perform real-time validation. Implied volatility surfaces are required to be 

generated separately to assess the accuracy of calibrations.  

 

The one-step approach does provide substantial efficiency in comparison to traditional 

parametric calibration methods, by eliminating the optimisation step. After the one-time off-

line, computationally expensive training of the network is complete, a simple forward pass 

delivers parametric estimates within seconds. However, the removal of the optimisation step 

creates more issues that it is intended to resolve. Bayer (2019) reveals that the ‘black box’ 

nature of the one-step approach does not sit well with regulatory bodies, given its application 

for risk management. The ambiguity of the network design leaves parametric calibration 

unexplained, as the approach concentrates on reducing estimation errors, rather than 

accurately computing observed market features, such as implied volatilities or options 

 
26 This is issue was not faced by Horvath et al. (2021). 
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prices.  The issue with generalization is a direct consequence of eliminating the optimisation 

step, forcing a separate action for validation. There is a lack of control during calibration, 

and hence, mapping to unseen market data cannot be entirely trusted.  

 

Real-time validation is crucial for bubble detection, as it provides an instantaneous insight 

on overcoming the joint-hypothesis issue. Therefore, the one-step approach is not ideal for 

such applications. However, not all is lost, as the method reveals the superior ability of neural 

networks to be universal functional approximators, at high levels of efficiency. It is only a 

matter of control that is required to take advantage of such capabilities. The two-step 

approach adds an additional optimisation step, which provides control by ensuring real-time 

validation with respect to observed market features.  

 

2.4.4 Two-Step Calibration Approach 

 

The three-step approach for bubble detection overcomes the joint-hypothesis issue by 

calibrating a stochastic volatility jump diffusion model to market quotes of put options. 

However, it faces a major bottleneck for industrial applications. The one-step method for 

using neural networks to calibrate parameters of stochastic processes, improves 

computational efficiency but does not provide for real-time validation. The desire for 

improved efficiency could force the practitioner to sacrifice accuracy, which would be 

catastrophic for hedging and risk management applications. Therefore, a strong need arises 

for controlled computational efficiency during calibration.  

 

Conceptually, the one-step and two-step approaches are similar, with the neural network 

undergoing a one-time offline computationally cumbersome training procedure, followed by 

rapid online calibrations. The two-step approach trains the network with model parameters 

as inputs, such that dynamics of the asset pricing process are well learned to accurately 

estimate implied volatilities/option prices. Once trained, optimal weights and biases at each 

node are frozen and used during calibration. An optimiser is employed to obtain parameters 

by using the trained network as a numerical solver to minimise the loss function 

corresponding to market observations. Since the network is trained, the second step 

comprises of iterative, but rapid matrix multiplications between optimal weights and biases, 
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and parametric inputs. This approach is built on the foundation of neural network capabilities 

in accurately estimating option prices and implied volatilities. Furthermore, when trained on 

synthetic dataset, it can deliver strong performances even during extreme scenarios. 

 

2.4.4.1  Option Pricing with Neural Networks 

 

Applying neural networks for solving problems related to option markets grew significantly 

over the past three decades. Malliaris & Salchenberger (1993, 1996) and  Hutchinson et al. 

(1994), inspired by the universal approximation theorem used a single small hidden layer 

network. Malliaris & Salchenberger (1993) challenged the Black and Scholes model, using 

a network of similar inputs, in addition to lags of closed option and underlying prices. 

Implied volatilities were estimated without making assumption on the underlying model, 

distribution and correlation between variables, in Malliaris & Salchenberger (1996). In 

Hutchinson et al. (1994) neural networks were trained to learn Monte Carlo simulations of 

the Black and Scholes model.  

 

Despite success of neural networks, Malliaris & Salchenberger (1993) and Hutchinson et al. 

(1994), highlighted certain flaws. The former reveal issues regarding computational power, 

and a missing theorem for developing optimal architectures, given the sensitivity of 

performances towards hyperparameter combinations. Over time, computationally efficiency 

has improved, allowing for testing hyperparameter search theorems, by experimenting with 

deeper (more hidden layers) and wider (more nodes) networks.  In the latter, neural networks 

were found to be highly data-intensive, and vulnerable to shortage of historical data for 

training. Furthermore, it was revealed that if the underlying price model is well understood, 

it will be preferred over the neural network.  

 

The data-intensive issue can be tackled by improving training with the consideration of 

deeper/wider approach. Additionally, it is common practice to utilise synthetic datasets, 

which can be constructed without an upper size limit. The second issue highlighted by 

Hutchinson et al. (1994) is relevant to the modern application of neural networks. Jang & 

Lee (2019) tested various machine learning models, including neural networks, against 

econometric jump models, across different option maturities. The latter were found to be 
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superior, given their ability to address volatility smiles, fat tails, and volatility clustering with 

jumps, which allow for accurately capturing the risk-neutral measure in the market. Ivașcu 

(2021) compare various machine learning models against parametric approaches while 

pricing crude oil call options, highlighting preference for XGBoost and LightGMB models, 

followed by neural networks.  

 

The poor performance of neural networks in these instances arise from two sources. First, 

Ivașcu (2021) focused on using market data for training the network. A synthetic training 

dataset can overcome this issue by providing the practitioner with control over what 

scenarios the network should learn. Second, neural networks are tested against benchmark 

models, which have already been established to have superior quality. The aim should not 

be to compete, but rather train the network to learn the dynamics of high-quality stochastic 

volatility models. Ivașcu (2021) reveal that neural networks learn the relationship between 

input and output variables from market data and lack economic interpretation. If the network 

is trained on a synthetic dataset created by a selected pricing approach, in addition to learning 

the model, it will receive an economic and mathematical foundation. The superiority of such 

asset pricing models should not be considered as a flaw, but rather an inspiration to exploit 

the universal approximation theorem by using neural networks as numerical solvers. This 

would improve the computational efficiency of such models and make them attractive for 

industrial practice.  The universal approximation theorem, according to Telgarsky (2016) 

would hold, if the hidden layer is exponentially large. Given the computational 

advancements over the past couple of decades, scholars began experimenting with both 

deeper and wider networks. Culkin & Das (2017) expanded on work of Hutchinson et al. 

(1994) by training a deeper feedforward neural network to learn the dynamics of the Black 

and Scholes model. The increased depth allowed for the capturing of subtle non-linearities 

in the relationship between inputs and outputs.  Karatas et al. (2019) took this a step further 

by synthetically training deep networks to learn diffusion and jump processes, with and 

without stochastic volatility models for pricing European, American and Barrier options.  

 

In McGhee (2018), a single layer neural network was able to learn the dynamics of the SABR 

model, and estimate implied volatilities, when fed model parameters, maturity and strike 

prices as inputs. Computation was 10,000 (65) times faster than the finite-difference 
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(numerical integration) schemes. This application of neural networks can be extended to any 

asset pricing model, as witnessed in Liu et al. (2019). The intention was to replace the models 

with a computationally efficient numerical solver. Implied volatility surfaces corresponding 

to stochastic volatility models, were generated at rapid pace, with high levels of accuracy. 

Neural networks were trained to learn the Heston and Black and Scholes models, 

respectively. Price outputs from the former, were further used as inputs in another network 

to generate implied volatility surfaces. Several other works in literature have documented 

the capabilities of neural networks in estimating option prices/implied volatilities. The reader 

is recommended to see Ruf & Wang (2020) for a comprehensive overview of  literature on 

the topic. The ability of neural networks to learn dynamics of high-dimensional top-quality 

asset pricing model, and provide outputs with superior computational efficiency, is the 

inspiration behind the two-step calibration approach.  

 

2.4.4.2  Two-Step Calibration  

 

The two-step calibration approach begins with training a neural network to learn the 

dynamics of a given asset pricing model. The first step comprises of training, which is 

computationally heavy and conducted offline. The network learns to estimate option 

price/implied volatilities from inputs. In contrast to the one-step approach, there is a 

preference for synthetically generated training datasets. Hence, the practitioner has the 

freedom to select sampling distributions (Bayer & Stemper, 2018). Given that prior to 

calibration, little is known about model parameters, synthetic datasets allow for 

experimentation over a wide range of combinations, without size restrictions. Additionally, 

synthetic datasets are faster to create, as parameters do not require estimation. In the second 

step, the trained network is saved and paired with an optimizer for rapid online calibration 

from market observations. The major advantage of this approach is that calibration takes 

place by minimising the error between market observations, rather than parameters. It 

overcomes concerns over generalization and the ‘black-box’ nature of neural networks, by 

providing a calibration approach that can be controlled and validated in real-time (Bayer et 

al., 2019).  A combination of the Levenberg-Marquardt optimizer with neural networks was 

proposed by Bayer & Stemper (2018) for calibrating the Heston and rough Bergomi asset 
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pricing models. Training datasets comprised of options priced using the Fourier method and 

Monte Carlo simulations, respectively, before computing implied volatilities.  

 

There are two-different approaches to training neural networks for parametric calibrations: 

pointwise and grid-based (Bayer et al., 2019). In the former, as witnessed in Bayer & 

Stemper (2018), strike prices (or moneyness) and maturity are fed as inputs, with a single 

output node, corresponding to respective implied volatilities/prices. Alternatively, within the 

latter, the output layer comprises of multiple nodes, resembling a grid. Each node represents 

a unique strike-maturity pair, therefore only model parameters are required as inputs. Bayer 

et al. (2019) use a grid-based network and compare it to an inverse-mapping convolutional 

neural network one-step approach, for calibrating the rough Bergomi model. Calibration 

from implied volatility surfaces with both approaches was rapid, with the latter being slightly 

faster. However, the two-step approach provided real-time validation, and robust parameters. 

Grid-based approaches reduce the input dimensions and allow for exploiting the data 

structure by incorporating updates from neighbouring outputs into the learning process 

(Horvath et al., 2021). Nevertheless, they are not flexible and heavily reliant on interpolation 

and extrapolation techniques for estimating missing implied volatilities.  

 

The flexibility of the pointwise approach allows for considering all traded options during 

daily calibrations. Even though the output layer consists of a single node, Liu et al. (2019) 

reveals that it is possible to simultaneously price an array of options during parametric 

calibration. The Calibration artificial Neural Network (CaNN) framework is popular 

amongst practitioners, being applied to calibrate Heston and Bates models (Liu et al., 2019), 

implied volatilities and dividend yields from American Options (Liu et al., 2021), and the 

Trolle and Schwartz model from market European swaptions (Büchel et al., 2022). In the 

latter, it ensures simultaneous pricing across 3 dimensions, strike prices, option expiry and 

swap tenors. On the other hand, a similar deep grid-based approach was applied by Horvath 

et al. (2021), for calibrating parameters of the Heston and Rough Bergomi models from daily 

implied volatility surfaces. It reveals that a network, trained over significantly fewer epochs, 

with much lesser nodes, can obtain accurate calibrations at rapid speeds, even on a standard 

personal computer. Both respective methods from Liu et al. (2019) and Horvath et al. (2021) 

act as a source of inspiration for the main contribution of this research.  
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In both works, networks are first trained on synthetic datasets, to learn the selected asset 

pricing process for estimating implied volatilities across a wide range moneyness and 

maturity terms. Liu et al. (2019) use the COS-method, whereas Horvath et al. (2021) employ 

Monte Carlo simulations to price options for training datasets. In the latter instance, neural 

network estimation makes it redundant to calculate payoffs of the option during calibration, 

despite the model lacking a closed-form solution. The first step also comprises of a validation 

phase, during which performance of the trained network is tested on its ability to fit a 

synthetic test dataset. Büchel et al. (2022) take this a step further, by using market calibrated 

parameters of the benchmark while testing. The eradication of overfitting concerns with the 

implementation of such validation phases is vital in determining the optimal architecture, 

and subsequently the weights and biases, within the hidden layers, that are crucial for the 

calibration phase.  

 

For the second stage, Differential Evolution is heavily favoured as the optimiser in the 

aforementioned works. Given a well-trained neural network from the previous stage, the 

hidden layers are frozen, market data is fed into the output layer, and nodes corresponding 

to parameters in the input layer become learnable. The speed of calibration is heavily 

dependent on the rate at which implied volatilities/option prices are estimated. The iterative 

nature of optimisers, along with slow evaluations conducted by the Monte Carlo simulations, 

created a major computational burden, when calibrating stochastic volatility models. Liu et 

al. (2019) revealed benefits of combining the differential evolution optimiser with neural 

networks. This allowed the entire population during the selection stage to be addressed 

simultaneously, taking advantage of the ability possessed by a neural network to estimate 

wide ranges of market observations. Büchel et al. (2022) suggested the use of parametric 

estimation from the previous day, as initial values for the optimiser. Both techniques reduced 

the task of calibration to a matter of seconds. However, the approach from Horvath et al. 

(2021) shows that such levels of efficiency can be attained by simply considering a smaller 

(fewer nodes) network.  

 

The two-step approach is a deterministic calibration framework, that relies on the existing 

knowledge and experience of the practitioner, with respect to traditional methods (Horvath 
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et al., 2021). Its performances are not dependent on the market period, but rather on the 

selected asset pricing model (Büchel et al., 2022). The method benefits from cheap and 

instantaneous forward runs of the network during the estimation of market observations, 

significantly boosting the iterative optimisation step. Even though it is marginally slower 

than its one-step counterpart, the two-step approach is favourable amongst regulators (Bayer 

et al., 2019; Ruf & Wang, 2020;, Büchel et al., 2022), so much so that it can be treated on 

par with stochastic volatility models. The additional optimisation ensures real-time testing 

and interpretation of outputs, with respect to benchmark, making it simpler to explain results 

or any form of deviations.  

 

Neural networks are solely employed as tools for improving computational efficiency of 

high-quality asset pricing models. Hence, regulators are not concerned about the ‘black box’ 

nature, notoriously associated with them. Furthermore, synthetic datasets ensure more robust 

training and testing stages, reducing the probability of over-fitting. The practitioner is 

flexible to decide size and distribution of variables in the dataset, possessing the ability to 

include several scenarios that are not necessarily captured by historic data. Hence, 

performances of the two-step approach are not dependent on the market regime, but instead 

on the selection of the model, in contrast to the one-step approach. Finally, improved 

robustness, and reduced overfitting tendencies, can ensure that the network does not require 

frequent/any retraining.  It is with these benefits in mind that a pointwise two-step approach 

inspired by the works of Liu et al. (2019) and Horvath et al. (2021) is proposed for calibrating 

the sophisticated stochastic volatility jump diffusion model, within the three-step approach 

(Fusari et al., 2024) for real-time bubble detection.  

 

2.5 Summary and Discussion 

 

Bubbles are revealed when the price deviates from its fundamental value. This phenomenon 

captures willingness of investors to purchase the asset, even at exaggerated valuation, for 

the sole purpose of reselling it at an even higher price. There are several well documented 

historical price bubbles, across various asset types, dating back to Tulipmania, in the 17th 

century, which eventually collapse, causing mass socioeconomic and financial losses. 

Alarmingly, in recent times, the frequency at which these events occur, has significantly 
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increased. Moreover, the growing integration of global financial markets, and interlinkage 

across different asset classes, has vastly scaled the potential of devastation incurred from 

bubbles bursting. This was witnessed during the Global Financial Crisis, 2008, which 

imprinted long-lasting effects economies worldwide, to the extent that some are yet to 

recover. Hence, with great emphasis, there is an urgent need for developing a robust and 

accurate early warning detection system, such that timely measures can be implemented for 

damage control. This has piqued the interest of several academics and practitioners, 

contributing to the growing literature of bubble detection methods.  

 

Traditional methods identify bubbles by modelling the fundamental value of the asset. 

However, these approaches suffered from a joint-hypothesis related issue, which made 

findings inconclusive. Over the past decade, popularity of implementing recursive 

regression techniques (Phillips et al., 2011, 2015) and the LPPLS model (Johansen et al., 

1999, 2000) grew, given their improved ability to detect and timestamp bubbles. 

Nevertheless, similar to traditional methods, they are plagued by joint hypothesis issues, 

given focus on modelling the fundamental value. Additionally, the LPPLS model is unable 

to consider the impact of exogenous factors on bubble formation. Akin traditional methods, 

both techniques seek out type II bubbles, which exist on an infinite horizon. Large timeseries 

of data are required, which create vulnerability to potential structural breaks within the 

sample. Therefore, preferences shifted towards exploring the local martingale theory of 

bubbles.  

 

The local martingale theory is designed to detect type III bubbles by focusing on the 

diffusion component of the asset price process. Such bubbles exist within assets with 

bounded lives, capturing short-term trade strategies developed by investors, for making a 

quick profit. In accordance with the theory, bubbles are revealed when the asset price is a 

strict local martingale. This property captures the deviation from fundamentals, and is 

observed when volatility grows at a rate, in excess of that experienced by the price. 

Therefore, exuberance is only detected by modelling the asset’s volatility, making the need 

to estimate fundamental values, entirely redundant, and eradicating the notion of a joint-

hypothesis related issue. Furthermore, since type III bubbles exist within short horizons, 

large timeseries of dataset are not required, eliminating vulnerability towards structure 
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breaks, and reducing heavy reliance on extracting backward-looking information from 

historical data. The estimation of the volatility function for bubble detection was witnessed 

in Jarrow et al. (2011), inspiring several future works. However, it was only till the 

application of a Hidden Markov Model (Obayashi et al., 2017), that allowed for the date-

stamping bubbles.  

 

An alternative approach for detecting bubbles, as observed at annual frequencies in Chaim 

& Laurini (2019) and Laurini & Chaim (2021), is the calibration of stochastic volatility 

models. These large timesteps increased vulnerability to structural breaks. Moreover, the 

model was calibrated to spot markets, which are not capable of revealing forward-looking 

information. In contrast option prices excel at capturing these characteristics. The literature 

exploring option prices for detecting bubbles in the underlying price has been gaining 

substantial attention from scholars. Put option prices are unable to reveal bubbles, given 

bounded payoffs, however, call options have unbounded payoffs, allowing their prices to 

reflect exuberance. Additionally, call option bubbles signal towards exuberance in the 

underlying price, with the magnitude of the former, acting as the lower bound for that of the 

latter.  

 

The SABR model was calibrated to daily volatility smiles in Piiroinen et al. (2018) and Stahl 

& Blauth (2024), with the latter extending its application to the entire surface. A deep neural 

network was trained in Biagini et al. (2024) to learn various stochastic volatility models for 

identifying bubbles in the underlying, from call option prices. Whereas, Jarrow & Kwok 

(2021, 2024) employed a nonparametric method to infer bubbles from option data. However, 

the three-step approach (Fusari et al., 2024) stands out in comparison to its counterparts. It 

provides a solid foundation for overcoming the joint-hypothesis issue by calibrating a 

sophisticated stochastic volatility jump diffusion model to market put option prices. Also, 

reliance on parametric conditions for detecting strict local martingale tendencies is reduced, 

due a statistical test designed to observe call options bubbles, signally towards the presence 

of similar phenomena in the underlying price. Hence, this study proposes the implementation 

of the three-step approach for detecting asset price bubbles, on the grounds of its superior 

ability to overcome the joint-hypothesis issue and capture forward-looking expectations of 

market participants.  
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The three-step approach calibrates parameters for a stochastic volatility jump diffusion 

model, by fitting it to market put observations. The lack of a closed form solution forced 

reliance on Monte Carlo simulations for estimation. This created a large computational 

burden, and in order to strike  balance between robustness and efficiency, Fusari et al. (2024) 

were forced to calibrate parameters from, only the daily most liquid option smile. Despite 

being common practice, such calibrations fail to capture the full extent of information 

present across the entire surface. Biagini et al. (2024) and Stahl & Blauth (2024) shows 

benefits of utilising the entire option price surfaces for bubble detection. The abundance of 

information present across various option maturities improves comprehension of forward-

looking expectations, especially with regards to changes in the underlying price, and 

subsequently, betters the quality of bubble detection. Biagini et al. (2024) directly examine 

bubbles from call prices, whereas Stahl & Blauth (2024) use the SABR model, for which a 

closed form solution exists. Nevertheless, the three-step approach is preferred.  

 

In comparison to the method from Biagini et al. (2024), it provides an additional validation 

step by calibrating to put options. Furthermore, as opposed to the SABR, the stochastic 

process employed in the three-step approach, captures price jumps and mean-reverting 

characteristics of volatility. Therefore, the focus shifts towards improving the computational 

efficiency of the three-step approach, especially during the calibration phase. The industrial 

application of stochastic processes reveal strong preference for tractability over accuracy 

(Horvath et al., 2021). However, compromising on accuracy during bubble detection can 

result in devastating consequences due to inadequate and untimely risk management. Hence, 

to improve efficiency of the three-step approach, without sacrificing accuracy, this study 

proposes the application of neural networks.  

 

The universal approximation theorem (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) 

reveals that neural networks can be exploited for estimating any function, with a given level 

of accuracy. This pursued several works to tackle pricing problems in the derivative markets, 

given the highly frequent need for thousands of calculations, across thousands of contracts, 

written over thousands of underlying instruments (De Spiegeleer et al., 2018). Two forms of 

neural network operations have been employed to overcome the trade-off between accuracy 
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and tractability during calibrations. First, the one-step approach, directly estimate parameters 

as outputs, from market observations. Second, the two-step approach trains the network to 

estimate market observations and employs an optimizer for calibration.  

 

The additional step provides real-time validation to the calibrated parameters, which is 

satisfactory for regulatory bodies. In context to bubble detection, it ensures real-time testing 

of potential joint-hypothesis issues. The two-step calibration also allows training and testing 

on synthetic datasets, giving the practitioner control over its size, and distribution of input 

parameters. This improves the robustness, reducing or even eliminating the need for 

retraining. Furthermore, it ensures performances of the two-step approach to be solely 

dependent on the selected model. Therefore, inspired by the works of Liu et al. (2019) and  

Horvath et al. (2021) a two-step neural network calibration framework is proposed for 

improving the computational efficiency of the three-step approach, and subsequently 

expanding its application for asset price bubble detection.  

 

The neural network calibration framework is employed towards estimating the stochastic 

volatility jump diffusion process from market put options data. Given, the massive boost is 

computational efficiency and flexibility, the stochastic process can be calibrated from daily 

put option surfaces, instead of being restricted to the most liquid cross section. Furthermore, 

the study proposes the employment of parameters from surface calibrations to explore 

bubble formations within different call option maturity groups, and over the lifetime of 

option contracts, respectively. In brief, this research proposes a neural network calibration 

framework to enhance the computational efficiency of the three-step approach, such that it 

can be applied over a vast range of option maturities. In doing so, the ability to capture 

forward looking expectations of market participants for bubble detection, is improved. 

Additionally, the computational boost provided to a highly sophisticated stochastic process, 

makes the three-step approach more attractive for  real-time bubble detection. Hence, 

improving capabilities towards implementing timely and appropriate risk management 

measures, for reducing socioeconomic and financial damages, consequent of a crash.  
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3 Chapter 3: 

Methodology  
 

 

 

 

 

In the previous chapter, following an in-depth examination of asset price bubble detection 

methods, preference for the three-step approach (Fusari et al., 2024) was revealed. The 

method identifies bubbles in the underlying from option prices, in accordance with principles 

from the local martingale theory of bubbles. Recall, in contrast to traditional methods, it 

overcomes the trade-off between model asymptotics and structural breaks; eliminates the 

joint-hypothesis issue and captures the forward-looking nature of bubbles. Nevertheless, 

given the computational burden associated with its applications, a deep neural network 

calibration framework is required. The current chapter delves into discussing the three-step 

approach and construction of the deep calibration framework, in abidance with the 

theoretical background of the local martingale theory from (2.3), bubble detection using 

option prices (2.3.2).   
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3.1  Three-Step Approach 

 

A three-step approach was designed by Fusari et al. (2024) under the framework of the local 

martingale theory, for bubble detection using option prices. Options display type III bubbles, 

which capture short-term trade strategies, intended to perceive the future resale value of the 

underlying. Therefore, such bubbles can be identified and quantified using real-time prices, 

with reliance on historical data and backward looking time windows made redundant. 

Furthermore, the three-step approach provides a real-time validation of the modelling 

process and overcomes the notorious joint-hypothesis issue that has plagued traditional 

methods.  

 

Under the assumption that markets are incomplete and satisfying NFLVR and ND, options 

are priced using a stochastic volatility jump diffusion model, which relies on Monte Carlo 

simulations for computation. It is important that the selected model is capable of detecting 

strict local martingale tendencies in the underlying price process. Therefore, the first step is 

focused on selecting the appropriate model for option pricing. Next, the chosen process is 

calibrated to daily market put option observations, such that estimated parameters are used 

for pricing call options. It is in this step that the joint hypothesis is overcome in real-time, 

without requiring independent testing. Finally, the bubble is estimated and tested for 

statistical significance by examining the difference between the prevailing market and 

model-estimated (fundamental) call option prices. 

 

3.1.1  Step I: Model Selection 

   

The specification of the correct parametric model for the underlying price process is vital, 

requiring it to admit martingale and strict local martingale tendencies. Therefore, popular 

processes such as those from Merton (1976), Heston (1993) and Bates (1996), are ruled out. 

The SABR model (P. S. Hagan et al., 2002) is a viable candidate, as revealed in Piiroinen et 

al. (2018) and Stahl & Blauth (2024). However, it is unable to capture the mean-reverting 
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nature of volatility, hence making it unsuitable for pricing long-term options (Gatheral, 

2012).  

𝑑𝑆𝑡

𝑆𝑡
=  √𝑉𝑡𝑑𝑊𝑡 +  𝑑𝐽𝑡 −  𝜆𝑀𝑑𝑡 (17) 

𝑑𝑉𝑡 =  𝜅(�̅� −  𝑉𝑡)𝑑𝑡 +  𝜎𝜐𝑉𝑡
𝑝𝑑𝑍𝑡 (18) 

Stochastic volatility processes, that capture strict local martingale tendencies, such as those 

from Sin (1998) and Andersen & Piterbarg, (2007), have been previously witnessed in the 

works of Biagini et al. (2024), and, Chaim & Laurini (2019) & Laurini & Chaim (2021), 

respectively. In contrast to the SABR, these models are capable of addressing the mean-

reverting nature of volatility. However, Fusari et al. (2024) suggest an improvement by 

taking into account price jumps, and recommend the Generalised Stochastic Volatility Jump 

Diffusion (GSVJD) model, as revealed in (17) and (18).  

 

The model is represented under the ELMM ℚ, which according to the assumptions of 

NFLVR and incomplete markets, is allocated by the market to determine the fundamental 

value of the asset. The price of the underlying is normalised with respect to the MMA. 

Hence, through integration by parts, (17) and (18) represent a process for discounted prices 

by eliminating the riskless drift component. The GSVJD captures strict local martingale 

tendencies in the underlying price, conditional to values of parameters ρ and 𝑝.  For 𝑝 ≤ 0.5 

or 𝑝 ≥ 1.5, the underlying process is a martingale. When 0.5 < 𝑝 < 1.5, the underlying 

price process is a martingale, if 𝜌 ≤ 0, but is a strict local martingale for 𝜌 > 0. In the latter 

scenario, explosive behaviour is present in the volatility is greater, relative to the underlying 

asset’s price hike. It abides by the same intuition revealed in Delbaen & Shirakawa (2002), 

Kotani (2006), and Mijatović & Urusov (2012), where bubbles to existing if and only if, 

∫
𝑠

𝜎(𝑠)
 <  ∞,

∞

𝜖
 for 𝜖 >  0.  

 

The parameter vector  𝜃 =  {V0, υ̅,  κ, συ,  ρ, p,  μy,  σy,  λ}, has 9 constituents27. The 

martingale jump term is denoted by (𝑑𝐽𝑡 −  𝜆𝑀𝑑𝑡), where 𝑑𝐽𝑡 = 𝑑(∑ (𝑌𝑗 − 1)
𝑁𝑡
𝑗=1 ) =  (𝑌𝑡 −

 
27

 Parameters are explained in the order of representation in 𝜃; initial volatility, long-term mean of the variance, 

mean-reversion speed of variance, volatility of volatility, correlation coefficient between standard Brownian 



 90 

 

 

1)𝑑𝑁𝑡; with jump size 𝑌𝑖 ~ ℒ𝒩 (𝜇𝑦,  𝜎𝑦), counting process represented by 

𝑁𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡), 𝜆 being the intensity of total number of jumps till time 𝑡, and 𝐽𝑡 −  𝜆𝑀𝑑𝑡 

is a martingale, with jump-compensator 𝑀 = 𝐸[𝑌𝑗 − 1] = 𝑒(𝜇𝑦+0.5𝜎𝑦
2) − 1. In addition, the 

GSVJD model nests the stochastic processes from Heston (1993), Bates (1996), and 

Andersen & Piterbarg (2007). When λ = 0, it resembles the process from Andersen & 

Piterbarg (2007). Whereas, with 𝑝 = 0.5, for  λ = 0 and  λ > 0, it represents the Heston 

(1993) and Bates (1996) model, respectively. Notice, in the latter instance, the given the 

fixed condition on parameter 𝑝, the processes are unable to capture strict local martingale 

tendencies.   

 

3.1.2  Step II: Model Calibration and Estimation  

 

The selection of the sophisticated GSVJD model is justified by its ability to reflect strict 

local martingale tendencies in the underlying prices, via specific combinations of 𝑝 and 𝜌 

parameters. In addition, it includes jumps in the stochastic processes, which have been found 

to improve option pricing as documented in the well renowned works of (Merton, 1976; 

Bates, 1996). A major drawback is that the GSVJD lacks a closed form solution, and 

therefore, computation is reliant on Monte Carlo simulations.  

𝑉𝑖, 𝑡+∆𝑡 =  𝑉𝑖,𝑡 +  𝜅(�̅� −  𝑉𝑖,𝑡)∆𝑡 + 𝜎𝜐𝑉𝑖,𝑡
𝑝
√∆𝑡 𝐵𝑖,1 (19) 

S̃i, t+∆t =  S̃i,t exp [−(λM + 0.5 ∙ Vi,t)∆t +  √Vi,t∆t (ρBi,1 +  √1 − ρ2Bi,2) +  𝒥] (20) 

For  i = 1,…,𝑀𝐶, and ∆𝑡 = 
1

365 × 5
, the value of the stock (S̃) with accumulated dividends (𝛿) 

from 𝑡, till maturity (𝑡 + 𝜏), is computed in accordance to the discretised versions of the 

GSVJD model, in (19) and (20). Estimation is conducted in abidance with Broadie & Kaya 

(2006), with 𝐵𝑖,1 and 𝐵𝑖,2 representing independent standard normal variables. Given jump 

size, 𝑌𝑖  ~ ℒ𝒩 (𝜇𝑦,  𝜎𝑦), at first (20) can be computed, by ignoring the jump component, 𝒥,  

to obtain Śi,t+τ. Next, number of jumps occurring during the time horizon, 

 

motions 𝑊𝑡 and 𝑍𝑡, parameter 𝑝 (impacts the volatility of volatility), the moments of 𝑌𝑖, and intensity of total 

number of jumps till time 𝑡.  
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𝑁𝑖,τ ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝜏) are simulated along with independent jump sizes. Finally,  by 

multiplying �́�𝑖,𝑡+𝜏 with the jump sizes, �̃�𝑖, 𝑡+𝜏  can be determined, where �̃�𝑖, 𝑡+𝜏 =

�́�𝑖,𝑡+𝜏 ∏ 𝑌𝑖,𝑛
𝑁𝑖,𝜏 

𝑛 = 1 . Since option holders do not receive dividends, the fundamental values the 

European-styled put and call options from both models, are calculated as per (21) and (22), 

respectively, where 𝐾 =  𝕂 𝐵𝑡 + 𝜏 ⁄  represents the strike price denoted in terms of the MMA, 

and 𝑆𝑖, 𝑡+𝜏 = �̃�𝑖, 𝑡+𝜏 𝑒
−𝛿(𝑡+ 𝜏 −𝑡).   

Since put option prices do not reveal bubbles, the objective is to calibrate 𝜃, such that 

𝑃𝑡
∗(𝜃, 𝐾, 𝜏) is aligned with its American-/European-styled market  counterpart, 𝑃𝑡

𝐴/𝐸(𝐾, 𝜏). 

This ensures that the three-step approach does not suffer from the joint-hypothesis related 

issues. Prices are converted to implied volatilities for 𝑗 strikes, 𝜎𝑡(𝜃𝑡 ,  𝐾𝑡,𝑗  ,  𝜏𝑡), and 

𝜎𝑡(𝐾𝑡,𝑗 ,  𝜏𝑡), respectively, such that the root mean squared error, 𝑅𝑀𝑆𝐸𝜎,𝑡, is minimised. 

Implied volatilities are preferred over prices, as the objective function is normalised, and 

errors can be interpreted in terms percentage  (Fusari et al., 2024). 

The objective function is minimised over 𝑁𝑡
𝑝

 put options to obtain the GSVJD parametric 

vector, corresponding to the selected model, where 𝜃𝑡  =  𝜃𝐺𝑆𝑉𝐽𝐷,𝑡.  Recall, as shown in (14), 

even for American options, the fundamental value of a European call counterpart, is required 

for detecting and quantifying bubbles. Therefore, option fundamental values required for 

bubble detection in this study, will be computed in accordance with (21), (22), and (23), 

𝑃𝑡
∗(𝜃, 𝐾, 𝜏) =  

1

𝑀𝐶
∑(

𝑀𝐶

𝑖 =1 

𝐾 − 𝑆𝑖, 𝑡+𝜏)
+ (21) 

𝐶𝑡
∗(𝜃, 𝐾, 𝜏) =  

1

𝑀𝐶
∑(

𝑀𝐶

𝑖 =1 

𝑆𝑖, 𝑡+𝜏  −  𝐾)+ (22) 

𝑅𝑀𝑆𝐸𝜎,𝑡 = 𝑚𝑖𝑛𝜃𝑡√
1

𝑁𝑡
𝑝 [𝜎𝑡(𝐾𝑡,𝑗 ,  𝜏𝑡) −  𝜎𝑡(𝜃𝑡 ,  𝐾𝑡,𝑗,  𝜏𝑡)]

2
 (23) 
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using Differential Evolution28 (Storn & Price, 1997). Even though local optimisers are faster, 

they require an initial value, which makes their performance dependent on quality of the 

guess, and vulnerable to insufficient knowledge from the practitioner’s behalf. Upon 

completion of calibration, 𝜃𝑡 will be used to compute the fundamental value of call options, 

as per (22). 

 

3.1.3  Step III: Estimation and Testing of Call Option Bubbles  

 

Model-implied call option prices, 𝐶𝑡
𝐴/𝐸

(𝐾𝑡,𝑗 , 𝜏𝑡), across 𝑁𝑡
𝑐 available strikes corresponding 

to maturity 𝜏𝑡, are computed using 𝜃𝑡 obtained from calibrating to 𝜎𝑡(𝐾𝑡,𝑗,  𝜏𝑡). The 

estimation and testing of bubbles, in both the underlying and call option prices, is robust and 

free of the joint-hypothesis problem. Call options display bubbles when their fundamental 

value is exceeded by that quoted in the market. For a given strike price, {𝐾𝑡,𝑗}𝑗 = 1,..,𝑁𝑡
𝑐, the 

bubble in an option is denoted by ℬ𝑡(𝐾𝑡,𝑗, 𝜏𝑡), with ℕ representing the option lot size. 

Options trade within the bid-ask spread, rather than precisely at the mid-point, and given 

that the determination of the true market price is vague, Fusari et al. (2024) suggest setting 

ℬ𝑡(𝐾𝑡,𝑗, 𝜏𝑡)  =  0, when 𝐶𝑡
𝐵𝑖𝑑(𝐾𝑡,𝑗, 𝜏𝑡) ≤ 𝐶𝑡

∗(𝜃𝑡 , 𝐾𝑡,𝑗 , 𝜏𝑡) ≤ 𝐶𝑡
𝐴𝑠𝑘(𝐾𝑡,𝑗, 𝜏𝑡). If 

𝐶𝑡
𝐵𝑖𝑑(𝐾𝑡,𝑗, 𝜏𝑡)  >  𝐶𝑡

∗(𝜃𝑡 , 𝐾𝑡,𝑗, 𝜏𝑡), or 𝐶𝑡
∗(𝜃𝑡, 𝐾𝑡,𝑗, 𝜏𝑡)  <  𝐶𝑡

𝐴𝑠𝑘(𝐾𝑡,𝑗, 𝜏𝑡), ℬ𝑡(𝐾𝑡,𝑗 , 𝜏𝑡) is 

computed according to (24). Since there are 𝑁𝑡
𝑐 call options,  average of ℬ𝑡(𝐾𝑡,𝑗, 𝜏𝑡) across 

the various strike prices is considered, prior to normalising with respect to 𝕊.  

The average magnitude of the call option bubble 𝔹�̂�, can be interpretated as a percentage of 

𝕊𝑡, acting as a lower bound to the size of that in the underlying price. After the estimation 

 
28 Differential Evolution was implemented as per the scipy.optimize library in Python 

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html), with default 

functional values being utilised. 

ℬ𝑡(𝐾𝑡,𝑗 , 𝜏𝑡)  =  [𝐶𝑡
𝐴/𝐸

(𝐾𝑡,𝑗, 𝜏𝑡)  − 𝐶𝑡
∗(𝐾𝑡,𝑗, 𝜏𝑡)]  × ℕ (24) 

𝔹�̂� =
1

𝕊𝑡
∑

ℬ�̂�(𝐾𝑡,𝑗, 𝜏𝑡)

𝑁𝑡
𝑐

𝑁𝑡
𝑐

𝑛

 (25) 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
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stages, only call options, that adhering to the ND29 condition (Merton, 1973) are considered. 

This ensures that the put-call parity, and hence a linear relationship between bubbles in the 

option and underlying prices is established. If so, the presence of a bubble in call option 

prices would signal exuberance in the underlying, and vice versa. This acts as the key 

motivation behind the development of the conditional test by Fusari et al. (2024).  

The conditional test is built on the foundations that negative bubbles (𝔹�̂�  < 0) occur due to 

potential model misspecifications or observation errors. According to the local martingale 

theory, the fundamental value of an asset acts as the lower bound for its market price. The 

null hypothesis, 𝔹t = 0, reveals a non-existent bubble, 𝜀𝑡 represents the model error and 

noise, with 𝜎𝑡 being utilised to construct a time-varying threshold. The construction of the 

threshold relies on 𝔹�̂�  < 0 observations. Negative bubbles exist due to two reasons. First, 

observation error in market prices, especially in context to OTM options with large bid-ask 

spreads, along with asynchronous trading, and potential trading constraints. Second,  

measurement error due to model misspecification, given that call option bubble 

measurements rely on the difference between the market and fundamental price.  

The negative bubbles are utilised to construct the threshold for testing the null hypothesis. 

From (26) it can be deducted that if 𝔹�̂�  < 0, then 𝔹𝑡 + 𝜀𝑡  <  0, and given that bubbles are 

nonnegative, 𝔹t  >  0,  𝜀𝑡 will be negative and larger in magnitude, 𝜀𝑡 < − 𝔹𝑡 ≤  0. Under 

the null, given 𝔹t = 0, 𝔹�̂� = 𝜀𝑡  < 0, implies that the observed bubble is an error. On these 

foundations, an estimator for the unbiased variance is created, by considering a small 

window, before 𝑡. Daily bubble estimates, at observation times 𝑖 =  𝑡 −  𝑘, . . . . , 𝑡, where 

𝔹�̂�  < 0, are collected and stored in  Υ_, which consist of N_ elements, such that the unbiased 

estimator, 𝜎𝑡
2 is obtained from (27). Under the null, even instances of 𝔹�̂� > 0, are considered 

as an error, implying that when 𝔹t  >  0, it must be larger than 𝜀𝑡, which are negative. Hence, 

 
29 European Call options must adhere to 𝑃𝑡

𝐸(𝐾, 𝜏)  + 𝕊𝑡 −  𝐾𝐵𝑡,𝜏   ≥  𝐶𝑡
𝐸(𝐾, 𝜏), whereas for American styled 

contracts, the condition implied 𝐶𝑡
𝐴(𝐾, 𝜏)  ≤  𝕊𝑡. 

𝔹�̂� = 𝔹𝑡 + 𝜀𝑡;  𝜀𝑡 ∼ 𝒩(0, 𝜎𝑡) (26) 

𝜎𝑡
2̂  =  ∑

𝔹𝑡
2̂

N_𝑖 ∈Υ_

 (27) 
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including such observations in the construction of 𝜎𝑡
2, would generate a bias30. The null 

hypothesis is rejected, if 𝔹�̂�  >  𝛼𝜎�̂�, with the latter being the time-varying threshold, 

comprising of level of significance (𝛼), and the unbiased estimator (𝜎�̂�). The latter permits 

using all available information on a given day and hence allows for real-time bubble 

detection. In contrast to Fusari et al. (2024), who consider the 10% level of significance and 

a window size of 180 days for constructing the unbiased estimator, each of the two variables 

are explored over a range of values, in this study.  

 

3.2  Deep Learning Calibration Framework 

 

The three-step approach (Fusari et al., 2024) exploits the forward looking nature of option 

markets for bubble detection. Additionally, in contrast to traditional methods, it overcomes 

the joint hypothesis issue in real time to provide relevance and robustness to findings. The 

approach implements the GSVJD model for pricing options by considering the stochastic 

nature of volatility, along with jumps in the underlying price process.  

 

The GSVJD process possesses high quality capabilities in pricing and capturing information 

across various option maturities. However, there exists a major bottleneck in industrial 

application of the model. Due to the unavailability of an analytical solution, Monte Carlo 

simulations are employed as a numerical solver. Hence, Fusari et al. (2024) were forced to 

strike a balance between robustness and efficiency, by calibrating the GSVJD parameters 

from only the daily most liquid option maturities. The benefits of considering the entire 

surface of prices for bubble detection have been highlighted in Stahl & Blauth (2024) and 

Biagini et al. (2024). Calibrating the GSVJD to the entire surface, allows bubble 

identification to take place using greater quality of information regarding the forward-

 
30

  Fusari et al. (2024) highlight that pricing American option without considering early exercise, adds a model 

misspecification in the form of inflated put option prices. This results in higher put implied volatilities, and 

subsequently, those associated with the fundamental value of call options, to suffer a similar faith. Therefore, 

the magnitudes of bubbles are underestimated, hampering the likelihood of identifying significant instances of 

exuberance in call options. If so, this phenomenon would resemble a similar impact as the presence of stock 

lending fees, which raise the cost of shorting, and therefore, inflate put option prices.  
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looking expectations of market participants. Therefore, this study employs neural networks 

to boost computational efficiency, without adversely affecting accuracy.  

 

Inspired by the two-step methodology from Liu et al. (2019) and  Horvath et al. (2021), a 

deep calibration of the three-step approach for real-time bubble detection is proposed. In this 

approach, neural networks are applied as numerical solvers with the sole purpose of 

expediting calculations. First, the optimal architecture of the network must be determined, 

and trained on a synthetically generated dataset. The training and validation process is 

referred to as the forward pass, similar to CaNN framework (Liu et al. 2019). It ensures that 

the dynamics of the GSVJD model are well learned by the network. In line with Liu et al. 

(2019), Horvath et al. (2021), and  Büchel et al. (2022), a Multi-Layer Perceptron (MLP) 

model will be employed. The forward pass is computationally cumbersome but fortunately, 

a one-time offline operation. During the second step, backward pass, the trained network is 

frozen and paired with an optimiser for rapid online calibrations. It is due to such efficiency, 

that the calibration of the GSVJD model can be extended to the entire available option price 

surface. The goal is to employ neural networks towards calibrating the GSVJD model, such 

that the need for Monte Carlo simulations is made redundant. For the remainder of the 

research, the two-stages of the calibration approach will be referred to as the forward and 

backward pass, respectively.  

 

3.2.1  Neural Networks: Multi-Layer Perceptron (MLPs) 

 

Artificial neural networks (ANNs) lie in the realm of machine learning, between the 

engineering and artificial intelligence disciplines (Lek & Park, 2008). Corresponding to the 

former, error functions are utilized for optimisation, whereas for the latter, they rely on 

heuristic methods that lack theoretical background to support decision making. This provides 

ANNs with the ability to comprehend complex non-linear dependencies between financial 

variables, by mimicking the biological nervous system. The connection of neurons, allows 

flow of information, similar to the power of synaptic links within the biological structure 

(Pothina & Nagaraja, 2023). The simplest of architectures prevail in the form of feedforward 

networks, characterized by the direction of information flow. The addition of a hidden layer 



 96 

 

 

with an appropriate activation function makes them capable of general modelling (Lavine & 

Blank, 2009), abiding by the universal approximation theorem.  

 

A Multi-Layer Perceptron (MLP) is a form of feedforward neural network, comprising of at 

least a single hidden layer, sandwiched between input and output layers. An MLP is the most 

popular neural network deployed in practice, given its ability to extract nonlinear input-

output relationships without requiring prior knowledge on specific functional forms, and 

simplistic nature of execution. It comprises of two steps: forward-propagation, and 

backward-propagation. First, inputs enter the network, and pass through hidden layers, to 

generate output(s). All nodes, barring those within the same layer, are interconnected, 

allowing for such unidirectional flow of information. Hidden layers play a crucial role, 

assigning weights, and biases, and transforming inputs by using nonlinear activation 

functions. The provision of output(s) by relying on the heuristic of an activation function, 

aligns with the artificial intelligence discipline. Next, estimated output(s) is compared to the 

target(s), via a loss function. The iterative calculations of output by updating weights and 

biases at each neuron to minimize the loss function is known as backward-propagation, 

linking to the engineering discipline. A combination of elements from both disciplines 

ensures the neural network is capable of making decisions based on a particular training 

dataset. Obviously, the workings of MLP networks are not as straightforward, comprising of 

several mathematical operations. Hence a detailed explanation of each step is provided 

below. Furthermore, given preference for a pointwise two-step calibration approach, the 

neural network will comprise of a single output node.  

 

3.2.1.1  Forward Propagation 

 

The forward propagation step is classified by unidirectional flow of information, from 

feeding the neural network inputs, to the estimation of outputs. All nodes in consecutive 

layers are interconnected, building a pathway, via constituents of hidden layers for 

determining the relationship between input and output variables. A basic artificial node that 

receives input to produce output via transformative operations is known as a perceptron. It 

is the mathematical representation of a biological neuron, capable of making decisions by 

analysing data.  
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The mechanisms of a perceptron receiving 𝑛 inputs (𝑥), and producing output, 𝑧, is 

illustrated in Figure 3.1. Inputs entering the neuron are assigned an individual weight, 𝑤𝑖 for 

𝑖 =  1, 2, . . . , 𝑛. A constant term, 𝑏, known as the bias, is added to the weighted sum of 

inputs, prior to being passed through an activation function 𝜙 (∙) for computing output. 

Activation functions play a crucial role in comprehending the complex input-output 

dependencies. They are activated for performing non-linear transformations on input values 

(or not), in relevance to the received data (Jindal et al., 2022). The adjustment of weights 

only permits movement of output along the activation curve, whereas a bias acts as an 

anchor, allowing for upward/downward shifts to improve representation of the input space 

(Hagan et al., 2014). The generation of output, by feeding a perceptron, n inputs, is 

represented in (28). 

 

Figure 3.1: Mechanisms of a Perceptron. 

 

Perceptrons mimic biological neurons, whereas the MLP network imitates the entire nervous 

system. A neural network has multiple layers (at least one hidden),  each consisting of several 

stacked perceptrons. The nodes across successive layers are interconnected, creating a link 

between associated input and output patterns. Furthermore, the output node in the final layer,  

is connected to all neurons within the network. In the hidden layers, neurons are stacked and 

𝑧 =  𝜙 (∑ 𝑤𝑖 ∙ 𝑥𝑖

𝑛

𝑖 = 1

 + 𝑏 ) (28) 

𝑦(𝑥) = 𝐹(𝑥|𝜑),    𝜑 = (𝑊1, 𝐵1,𝑊2, 𝐵2, … ,𝑊ℎ, 𝐵ℎ) (29) 

𝑧𝑚,1 =  𝜙 (∑ 𝑤𝑖,𝑚,1 ∙ 𝑥𝑖

𝑛

𝑖 = 1

 + 𝑏𝑚,1 ) (30) 
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arranged in parallel (Lavine & Blank, 2009), allowing for decision making based on multiple 

tests on input parametric combinations. Therefore, the activation function at each perceptron 

aims to produce output, as inputs for nodes in the next layer.  

 

The forward propagation stages of an MLP network comprising of ℎ-hidden layers, is 

illustrated in Figure 3.2. An input layer, with 𝑛 nodes is considered, such that mechanisms 

of all neurons from the first hidden layer, are consistent with Figure 3.1. A minor adjustment 

of adding two subscript indices is required, to ensure the output from a particular node, 

within a certain hidden layer can be identified. For instance, 𝑧1,1 would denote output of the 

initial node, in the first hidden layer. The extension to subsequent layers is straightforward, 

which consider outputs from the previous, as inputs. Overall, there are 𝑗 neurons within each 

hidden layer, that can develop an understanding of relationship between input and output 

variables, by assigning weights and biases. This forward flow of information can be 

mathematically rendered by considering the output (𝑦), to be a function of inputs (𝑥), and 

MLP parameters (𝜑).  The latter comprises of  weight matrices (𝑊𝑙) and bias vectors (𝑏𝑙) 

associated with the 𝑙𝑡ℎ hidden layer, for 𝑙 =  1, 2, … , ℎ.  

 

Figure 3.2: Multi-Layer Perceptron (MLP) Framework. 

 

Note: Representation of the forward-flow of information from 𝑛 inputs to the output node, via ℎ hidden layers, 

each consisting of 𝑗 neurons. 
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It is worth revealing the process of obtaining outputs from each layer, to illustrate the 

determination of the final output (𝑦) value. Consider the first hidden layer (𝑙 =  1), where 

inputs of the network are directly received and processed at each neuron, such that the layer 

produces a vector of outputs, 𝑍1, where 𝑧𝑚,1 ∈  𝑍1, for 𝑚 =  1, 2, . . . , 𝑗.  Upon closer 

inspection, output at the 𝑚𝑡ℎ node is obtained by allocating weights, 𝑤𝑖,𝑚,1 ∈  𝑊1, 

corresponding inputs 𝑥𝑖 ∈  𝑋, for 𝑖 =  1, 2, . . . , 𝑛, and adding a bias 𝑏𝑚,1  ∈  𝐵1, prior to 

passing it through an activation function,  𝜙 (∙).  

The entire mathematical operation of output generation from the first hidden layer, is 

revealed in (31) and simplified in (32), with respect to vector and matrix notations. Neurons 

of the next hidden layer, receive 𝑍1 as inputs, such that outputs, 𝑍2 are obtained as depicted 

in (33). This process of using outputs from the previous layer as inputs, continues to till the 

final layer31. In the output layer, results from all the hidden layers are combined and 

evaluated (Lavine & Blank, 2009). The knowledge accumulated in weights and biases 

associated with each neuron, is utilised to produce the final output, 𝑦, so it can be tested 

against the actual target value. Testing is conducted by considering the distance between the 

estimated and actual values, with the assistance of a loss function. The network aims to 

minimise the loss function by iteratively calculating output from adjusting weights and 

biases, at every neuron, during the backward propagation step.   

 

 
31 Given ℎ hidden layers, since the output layer is in succession of the last, weights and biases allocated are 

indexed as (ℎ +  1).  

[
 
 
 
 
𝑧1,1 

𝑧2,1 
𝑧3,1 

⋮
𝑧𝑗,1 ]

 
 
 
 

 = 𝜙

(

  
 

 

[
 
 
 
 
𝑤1,1,1

𝑤1,2,1
𝑤1,3,1

⋮
𝑤1,𝑚,1

𝑤2,1,1

𝑤2,2,1
𝑤2,3,1

⋮
𝑤2,𝑚,1

𝑤3,1,1

𝑤3,2,1
𝑤3,3,1

⋮
𝑤3,𝑚,1

⋯
⋯
⋯
⋮
…

𝑤𝑛,1,1

𝑤𝑛,2,1
𝑤𝑛,3,1

⋮
𝑤𝑛,𝑚,1]

 
 
 
 

 

[
 
 
 
 
𝑥1 

𝑥2 
𝑥3 

⋮
𝑥𝑛 ]

 
 
 
 

 +  

[
 
 
 
 
𝑏1,1 

𝑏2,1 

𝑏3,1 

⋮
𝑏𝑗,1 ]

 
 
 
 

)

  
 

 (31) 

𝑍1 =  𝜙(𝑊1 ∙  𝑋 + 𝐵1 ) (32) 

𝑍2 =  𝜙(𝑊2 ∙  𝑍1 + 𝐵2 ) 

⋮ 

𝑦 =  𝜙 (𝑊(ℎ+1) ∙  𝑍ℎ + 𝐵(ℎ+1) ) 

 

(33) 
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3.2.1.2  Backward Propagation 

 

Weights (biases) emphasise (deemphasise) the influence of individual input variables 

(Lavine & Blank, 2009). They resemble the most important determinants of the MLP 

network for comprehending the relationship between input and output variables. Once 

established, the knowledge of the MLP can be tested by assessing distance, between 

estimated output, 𝑦(𝑥|𝜑), and targeted/actual output, 𝑦(𝑥), via the loss function, 𝐿(𝜑). The 

most popular variant of 𝐿(𝜑) is the mean squared error (MSE) function, seen in (34). In the 

backpropagation stage, gradient decent techniques are utilised to re-adjust parameters, 𝜑, 

such that 𝐿(𝜑) is minimised.  

Gradient descent methods work towards seeking the steepest gradient to find an optimum 

point, for a given function (Christensen & Bastien, 2016). The method is performed on the 

entire error surface by modifying 𝜑, in proportion to the gradient at a given location (Lek & 

Park, 2008). Since the goal is to minimise 𝐿(𝜑); 𝜑 is altered such that the search moves in 

the direction of negative gradients, for obtaining the minimum value (Pothina & Nagaraja, 

2023). The gradients are computed by taking the partial differential of 𝐿(𝜑), with respect to 

each parametric component in 𝜑. To comprehend the mechanisms of the approach, consider 

the analogy of an individual stuck at the top of a mountainous terrain (close resemblance to 

the input surface) on a foggy night, searching for a way down (descent). The heavy fog 

restricts vision, preventing the individual from seeing beyond the next step. By assessing all 

available information at the current position, a step towards the steepest decline is taken, 

with the aim of moving closer to being downhill. This process is repeated at each successive 

step in attempts to reach the bottom of the mountains (global minimum). Naturally, there is 

a strong preference for reaching ground-level with the fewest steps.  

 

There are three-variants of the optimisation technique: Batch-Gradient Descent (BGD), 

Stochastic Gradient Descent, and Mini-Batch Gradient Descent (MBD). The BGD computes  

gradients with respect to network parameters, by considering the entire dataset, in contrast 

to SGD, which uses each pair of actual and estimated outputs (Ruder, 2017; Tiwari & Young 

𝑎𝑟𝑔
𝑚𝑖𝑛
𝜑

𝐿(𝜑)  =   
1

𝑁
∑ (𝑦𝑘(𝑥) − 𝑦𝑘(𝑥|𝜑))

2
𝑁

𝑘 = 1

 (34) 
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Chong, 2020). BGD ensures stable convergence for convex and non-convex surfaces, to 

global minimum and local minima, respectively. However, using an entire dataset for each 

parametric update, makes the approach slow and intractable, especially for large datasets 

that do not fit memory requirements. The SGD is faster and capable of performing frequent 

updates, resulting in improved convergence. It eradicates repeated calculations across 

similar targets, that cause computational inefficiencies in the BGD (Ruder, 2017). 

Alternatively, the frequency of updates can induce noise, and potentially result in poor 

quality loss function approximations (Bonetto & Latzko, 2020; Tiwari & Young Chong, 

2020). Such noise can cause jumps to new and potentially better local minima, but 

overshooting could prevent the global convergence (Ruder, 2017)32.  

 

The selection between SGD and BGD optimisation methods, comprises of a trade-off 

between accuracy and efficiency. The MBD incorporates the best of both and overcome the 

aforementioned issues. It splits the training dataset into fixed-size mini-batches, and 

performs parametric updates on each (Ruder, 2017; Tiwari & Young Chong, 2020; Izadkhah, 

2022). Typically, MBD is preferred, and commonly referred to as SGD33, given the 

effectiveness of their combination. The term ‘stochastic’ refers to the behaviour of the 

learning process, where the actual gradient is replaced by that obtained from random samples 

during each iteration (Izadkhah, 2022; Zhou et al., 2022). A neural network is usually trained 

on large dataset, which may not be computationally feasible with BGD (Zhou et al., 2022). 

Instead, the SGD with mini batches can be employed for updating weights and biases. 

Variance during updates is reduced, providing stable convergence, without facing major 

computational problems (Bonetto & Latzko, 2020).  

 
32 Ruder (2017) also highlight that a slow decreasing learning rate, can make the SGD provide similar 

convergence as the BGD.  

33 From here onwards, MBD will be referred to as SGD, in abidance with common convention.  

𝑊𝑙,𝑞+1  =  𝑊𝑙,𝑞  −  𝜂
𝜕𝐿(𝜑)

𝜕𝑊𝑙
 (35) 

𝐵𝑙,𝑞+1  =  𝐵𝑙,𝑞  −  𝜂
𝜕𝐿(𝜑)

𝜕𝐵𝑙
 (36) 
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Once output is estimated and compared to the actual value, the iterative process of 

minimising the loss function, starts. The backpropagation step is based on the assumption 

that the parameters contribute to some portion of the error (Lavine & Blank, 2009). Consider 

the 𝑞𝑡ℎ iteration (epoch) of the network, during which 𝑊𝑙,𝑞 and 𝐵𝑙,𝑞, representing the current 

weights and bias from the 𝑙𝑡ℎ hidden layer, are utilised for generating an output, and 

subsequently approximating the loss function. Weight and biases for the next epoch (𝑞 + 1) 

are updated by the product of the learning rate (𝜂) and partial derivative of the loss function 

(gradient), as revealed in (35) and (36), respectively. In context to the SGD, the process is 

repeated across all batch samples of the training dataset, taking into account the average 

gradient (Izadkhah, 2022). Such iterations continue till a limit, or an acceptable value of the 

loss function has been reached.  

 

The issue with using gradient descent optimisation is that good convergence is not 

guaranteed (Ruder, 2017). The learning rate plays a big role in the updating of parameters, 

as it explains how many units should be moved from the current position to improve the 

pace at which the loss function is minimised (Pothina & Nagaraja, 2023). Adhering to the 

mountain analogy, it would be equivalent to the range of visibility, which impacts the size 

of the step taken, in the selected direction.  It is rather difficult to settle on an optimal learning 

rate value (Lek & Park, 2008; Lavine & Blank, 2009; Ruder, 2017). Smaller values are 

beneficial for narrowing down a minimum, however such convergence can be extremely 

computationally cumbersome. Larger learning rates, on the other hand, improve efficiency, 

but could cause the loss function to fluctuate around the minimum, or even diverge, resulting 

in unsatisfactory and instable learning. Scheduled learning rates (e.g. declining learning rates 

after certain number epochs) can improve performance, however, they have to be defined 

prior to training, and may fail to adapt to the properties of the dataset (Darken et al., 1992). 

Regardless, the same learning rate at a given epoch would apply for all updates, which might 

not be preferable, as those occurring rarely should receive larger gradients.  

 

In addition to the issues regarding selection of the learning rate, the network is vulnerable to 

getting trapped in a suboptimal local minima (Ruder, 2017). This is a consequence of the 

presence of saddle points, where the dimensions move in opposing directions (Dauphin et 

al., 2014). In such instances, training can be excruciating, with no improvements, given the 
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small gradient. Recall the analogy of the mountain, where the fog limits vison to only the 

next step. If the individual were to get stuck in a saddle point, based on current information, 

it would be extremely difficult to find the next step with the steepest descent, to improve the 

current position. In such instances, the steepness of the successive step will slowly disappear, 

and the individual will be stuck at the same position. Returning to the training of neural 

networks, this is referred to as the vanishing gradient problem, as the size of updates, tends 

to 0, with each passing iteration. It is very difficult to escape such scenarios, hence large 

learning rates should be considered (Lavine & Blank, 2009), however, setting a desired 

schedule prior to training is not possible.  

 

Adaptive learning rate algorithms, such as Adagrad (Duchi et al., 2011) and RMSProp 

(Tieleman & Hinton, 2012) improve the robustness of SGD optimisation by computing 

adaptive learning rates for each parameter. The former is favoured when gradients are sparse, 

whereas the latter is preferred in on-line and non-stationary settings. The Adaptive Moment 

Estimation (Adam) optimiser (Kingma & Ba, 2017) combines benefits from both methods, 

and eliminates the selection trade-off. Bias-correction and momentum are added to the 

RMSProp such that performances improve during the presence of sparse gradients (Ruder, 

2017). It is favourable amongst practitioners in the domain of option pricing (Liu et al., 2019; 

Horvath et al., 2021). For conciseness in its mathematical representation, let parameters from 

the 𝑞𝑡ℎ epoch and 𝑙𝑡ℎ hidden layer be represented by 𝜑𝑙,𝑞, where 𝜑𝑙,𝑞  =  {𝑊𝑙,𝑞 , 𝐵𝑙,𝑞}.  

The gradients at each epoch, 𝜑𝑙,𝑞+1 are obtained from computing adaptive learning rates 

with respect to each parameter. The estimates of first (mean) and second (variance) moments 

of gradients at each epoch, with exponentially decaying rates of 𝛽1 and 𝛽2, are represented 

by 𝑚𝑞 and  𝑣𝑞,  respectively.  Similar to RMSProp, 𝑣𝑞 resembles an exponentially decaying 

average of squared gradients from previous iterations. Furthermore, Adam also considers 

𝑚𝑞, which alike momentum, denotes the exponentially decaying average updates from 

𝜑𝑙,𝑞+1  =  𝜑𝑙,𝑞  −
 𝜂

√𝑣𝑞  +  𝜖
�̂�𝑞 (37) 

�̂�𝑞  =  
 𝑚𝑞

1 − 𝛽1,𝑞
 , 𝑣𝑞  =  

 𝑣𝑞

1 −𝛽2,𝑞
 (38) 

𝑚𝑞  =  𝛽1𝑚𝑞−1  +  (1 − 𝛽1)
𝜕𝐿(𝜑)

𝜕𝜑𝑙,𝑞
,  𝑣𝑞  =  𝛽2𝑣𝑞−1  + (1 − 𝛽2) (

𝜕𝐿(𝜑)

𝜕𝜑𝑙,𝑞
)
2

 (39) 
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former epochs. The moments 𝑚𝑞 and  𝑣𝑞 are biased towards 0 during the initial time-steps, 

when 𝛽1 and 𝛽2, were close to 1 (small decay rates). This is corrected by estimating of �̂�𝑞 

and 𝑣𝑞, providing an adaptive learning rate, for gradient estimation34.    

 

The Adam optimizer reduces chances of the network being stuck at saddle points and 

subsequently improves convergences. Nevertheless, the goal of the MLP network is not 

necessarily to reach the global minimum, as this would result in overfitting. The network 

would be overtrained, by only learning features that are specific to the training dataset (Lek 

& Park, 2008), instead of general characteristics regarding the relationship between input 

and output variables. Overfitting occurs due to excessive weight growth in overly flexible 

networks, or training on noisy data (Lavine & Blank, 2009).  The MLP must obtain a solution 

for weights and biases, such that it can fit training and test data, without a loss of 

generalization. This is possible by paying careful attention during the determination of 

network architecture via hyperparameter tuning, and the creation of the training dataset with 

a wide distributional range of inputs and outputs. Hence, the forward pass stage of the 

network-based calibration process is crucial. It prevents overfitting by ensuring the 

employed optimal MLP architecture vividly understands the dynamics of the GSVJD model.  

 

3.2.2  Step I: Forward Pass  

 

The first stage of the two-step calibration process is the forward pass. It is a one-time 

computationally intensive procedure, during which the MLP network is trained offline. The 

aim of this step is to seek an MLP architecture, such that the dynamics of the GSVJD model 

are well understood by the neural network. This is crucial, as weights and biases from the 

hidden layer, are employed in the backward pass stage for calibrating parameters of the 

GSVJD from market data. In order to prevent overfitting, a detailed random search for 

hyperparameter tuning is conducted, with each architecture undergoing a k-fold validation.  

  

 
34 The proposed default values of 𝛽1, 𝛽2, and 𝜖 for best performances by  Kingma & Ba (2017) are met by the 

Keras library (https://keras.io/api/optimizers/adam/). 

https://keras.io/api/optimizers/adam/
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3.2.2.1  Random Search: Hyperparameter Optimisation 

 

In their pioneering work within the domain of applying neural networks for estimating 

option prices, Malliaris & Salchenberger (1993) revealed the sensitivity of performances to 

the selection of hyperparameters and compositions of training data. Concerns over the latter, 

are diminished by constructing a synthetic training dataset. At the time of the groundbreaking 

work, computational powers were at their infancy, making it tedious to explore with varying 

ranges of hyperparametric combinations. Moreover, there was no formal theory or developed 

methodology for making such practices efficient. However, times have changed, the decades 

since have witnessed tremendous growth in computational capabilities, which enhanced 

research in the field of machine learning. Furthermore, a large quantity of literature is 

dedicated towards developing and improving hyperparameter optimisation to better 

application of machine learning models.  

 

Figure 3.3: Grid vs. Random Search 

 

Note: The initial search space for configurations of hypothetical hyperparameters,  𝛤1 and 𝛤2, with respect to 

the Grid (Left) and Random (Right) search methods.   

A comprehensive evaluation of various methods dedicated to this purpose was undertaken 

by Yang & Shami (2020). The most basic hyperparameter optimisation approach, 

Babysitting, also commonly referred to as the ‘Trial and Error’ or ‘Grad Student Descent’, 

is implemented based on guesses, and prior knowledge/experience. A model is created, and 
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the hyperparameter search process is only stopped when a satisfactory result is obtained, or 

when the ‘grad student’ approaches a deadline. The challenge is to possess sufficient 

knowledge such that the optimal combination is recognised, otherwise the process can be 

extremely long and exhaustive, with only a ‘deadline’ coming to the mercy of the 

practitioner. The desperate need for structure is met by the traditional Grid Search method 

(LaValle et al., 2004). It is a brute-force method that assesses all combinations within a 

specific grid. At the start, a large search space and step size is considered, which are 

narrowed based on previous results, till the optimal configuration is found. This approach is 

simple to implement, and easy to parallelize for reducing computational costs. However, the 

method can be extremely inefficient, over high-dimensional parametric spaces, due to the 

curse of dimensionality (Lorenzo et al., 2017). 

 

The random search (Bergstra & Bengio, 2012) is similar to the grid search, but instead of 

testing across all hyperparameter combinations, it considers configurations, selected at 

random. A range of parametric vectors are determined, within which all candidates are 

trained (Yang & Shami, 2020). The exploitation of large parametric spaces with 

straightforward parallelization is possible, as a pre-determined range improves efficiency by 

ensuring that resources are not wasted on poorly performing combinations. However, even 

with expertise in determining a range for parameters, there might exist several unnecessary 

independent explorations over weak architectures. As with the case of the grid search 

method, the random search cannot independently direct itself to well-performing regions. 

An iterative algorithm for their hyperparameter optimisation, Bayesian Optimisation (Snoek 

et al., 2012) allows for such direction by using a surrogate model and acquisition function. 

The former aims to fit all observation points into the objective function for producing a 

predictive distribution. Various versions of surrogate models have been observed, using 

Gaussian Process, Random Forest, and tree-Parzen estimators (Yang & Shami, 2020). The 

latter selects points on the hyperparameter space by assessing those that have not been 

sampled, and those that are likely to obtain global minimum based on the posterior 

distribution. Similar benefits are observed with the application of Genetic Algorithms, which 

are favourable over the grid and random search methods, for large parametric spaces 

(Liashchynskyi & Liashchynskyi, 2019).  
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The Bayesian Optimisation and Genetic Algorithms approaches significantly improve 

computational efficiency when exploring large parametric spaces. However, they are not 

favourable for training under the forward pass. Considering the dependence on previous 

results for determining the direction to the global minimum, parallelization is prevented, 

translating  to be a burden, rather than a boon for the practitioner. The various network 

architectures would be trained in parallel, with the search space of hyperparameter 

configuration being constructed in accordance with expert knowledge obtained from Liu et 

al. (2019), Horvath et al. (2021) and Büchel et al. (2022). The union of expert knowledge 

and the random search method, has be found favourable by Liu et al. (2019) for 

hyperparameter tuning, and would therefore be used to seek the optimal forward pass 

architecture. Selecting the random search is further justified by strong parallel processing 

abilities, and the availability of expert knowledge from past literature.  

 

The optimal MLP architecture for the forward pass, is determined by an extensive search 

over 720 unique hyperparametric combinations. The aim is to discover an architecture that 

provides a balance between both computational efficiency and accuracy (Büchel et al., 

2022). The output layer activation and optimiser for the loss function, are fixed to ‘linear’ 

and ‘Adam’, respectively. Furthermore, number of epochs, which resembles the number of 

iterations during the training process, are set to 200. This contradicts the preference for 8,000 

and 5,000 iterations in Liu et al. (2019) and Büchel et al. (2022), respectively. The choice of 

200 epochs is motivated by not wanting to overtrain the network, and reducing 

computational burden, with the scaling of inputs and outputs providing a further 

performance boost (Horvath et al., 2021). The random search will be conducted over six 

varying parameters: neurons, hidden layers, batch size, learning rate, (hidden layer) 

activation function, and L2 regularisation, with the range for each displayed in Table 3.1.  

 

The primary architecture of a network is determined by its width and depth. The former 

refers to the number of neurons, whereas the latter alludes to the amount of layers. Both 

dimensions play a vital role in influencing the capacity and performance of the model. A 

neuron holds crucial information, regarding the understanding of a given relationship 

between input and output variables. Hence, increasing the width of the model would improve 

its ability to comprehend complex data patterns. On the other hand, a deep network is capable 
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of better understating the intricate structure (LeCun et al., 2015) or hierarchical 

representation (Tomasini & Wyart, 2024) in high-dimensional data.  

 

Table 3.1: Hyperparameter Random Search Range. 

Note:  Hyperparameter range comprising of 720 unique architecture combinations for the random search to 

determine the optimal neural network for the forward pass.   

Hyperparameter Range 

Neurons [10, 20, 30, 40] 

Hidden Layers [2, 3, 4] 

Batch Size [2048, 4096, 8192] 

Learning Rate (𝜂) [1.0 ×  10−6, 1.0 × 10−2, 10−1] 

Hidden Layer Activation ReLU, ELU 

Output Layer Activation Linear 

Optimiser Adam 

𝐿2 regularization (λ) [0, 1.0 ×  10−3] 

Epochs 200 

 

Theoretically, according to the universal approximation theorem, neural networks with a 

single hidden layer can learn any function to a certain level of accuracy. However, as 

witnessed in McGhee (2018), a large number of neurons might be required, risking the 

ability to learn and generalize the function (Goodfellow et al., 2016). Increasing the width 

of a network, also worsens computational inefficiency, given the exponential rise in the 

number of parameters to be estimated. Shallow networks are notoriously subjected towards 

the curse of dimensionality, (Poggio & Liao, 2018; Wojtowytsch & Weinan, 2020). Deep 

networks are capable of not only improving prediction accuracy, but also computational 

efficiency (Goodfellow et al., 2016). However, Zagoruyko & Komodakis (2017) highlight 

the problem of diminishing feature reuse arises from making the network too deep. It was 

discovered that a wider network with 16 layers outperformed one with 1000, and doubling 

of layers, only improved performances slightly, hence not justifying the increased 

computational burden.  
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Naturally, balance between the network depth and width is required. Inclusion of an 

additional layer, beyond the already existing four, does not better performances (Bayer et al., 

2019). Therefore, only networks with 2, 3, or 4 hidden layers are considered for the random 

search. Regarding the width, to avoid computational inefficiencies, the range of neurons 

experimented upon vary between 10 and 40, at increments of 10. This selection is consistent 

with the number of nodes found for a two-step calibration process in Horvath et al. (2021). 

Another source of motivation stems from the operations of the backward pass, during which 

the network is merely a numerical solver for calibrating the GSVJD parameters. This task 

boils down to matrix operations, and if the network were to suffer from the curse of 

dimensionality, given the high-dimensional nature of GSVJD parameters, calibration would 

be slow and deter the practitioner from preferring the suggested approach.  

 

Given the general architecture of the network has been established, focus can shift to a the 

remaining hyperparameters. A key stage of information processing within each neuron is the 

passage through a nonlinear activation function. It allows the network to understand complex 

data patterns, by transforming  the output at each neuron within a certain range (Tharsanee 

et al., 2021; Subah & Deb, 2023; Ravikumar et al., 2024). Activation functions are the main 

reason behind successful application of neural networks to financial variables. As witnessed 

within the early works of Malliaris & Salchenberger (1993, 1996) and Hutchinson et al. 

(1994), the popular choice of activation function for neurons in the hidden layers was 

Sigmoid. Given its restrictive range between 0 and 1, when the neuron provides outputs at 

each tail, the function saturates, and gradient during backpropagation tends to 0 (Subah & 

Deb, 2023). This phenomenon is also known as the vanishing gradient issue and slightly 

improves by using the hyperbolic tangent (Tanh) function, given the extended -1 to 1 output 

range. However, at a slightly increased computational cost, the outputs when close to both 

tails make the network vulnerable to vanishing gradients (Tharsanee et al., 2021). 

ReLU:  𝜙 (𝑥)  =  𝑚𝑎𝑥 (𝑥, 0) (40) 

ELU:  𝜙(𝑥) = {
𝑥, 𝑥 ≥  0 

𝛼(𝑒𝑥  −  1), 𝑥 ≤  0
 (41) 

The rectified linear unit (ReLU) improves computational efficiency and convergence by 

overcoming the vanishing gradient issue (Glorot et al., 2011). However, given the 

deactivation of neurons that provide negative outputs, the employment of the ReLU function, 
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can result in a dead ReLU situation, during which weights are updated without any activated 

neurons (Subah & Deb, 2023). Despite this issue and the proposal of several alternatives, it 

remains a popular choice amongst practitioners, even during the application of the two-step 

calibration approach (Liu et al., 2019; Büchel et al., 2022). The inclusion of negative 

activation output is required to improve upon the drawbacks of the ReLU function. 

Therefore, in abidance with Horvath et al. (2021), the exponential linear unit (ELU) is also 

explored during the random search. ELU considers negative outputs, by taking the 

exponential, and scaling them with a scaled parameter, 𝛼 >  0. It has been found to further 

bolster efficiency and accuracy (Clevert et al., 2016).  

 

The selection of ReLU and ELU activation functions, assist in protecting against the 

vanishing gradient issue. To ensure smoother optimisation during training, it is vital to have 

a closer look at the learning rate (𝜂), batch sizes and 𝐿2 regularisation hyperparameter 

ranges. As discussed earlier, the learning rate explains the amount of units moved along the 

error surface, from the current position, such that the neural network function is optimized. 

There exists a trade-off, whilst assigning a value to 𝜂, as smaller rates slow convergence, 

whereas larger ones instable learning. Hence, a wide range of learning rates, between 

1.0 ×  10−6 and  1.0 ×  10−2 are considered, at increments of 10−1.  The Adam optimiser 

provides further improvements to training, by adapting learning rates, with respect to 

weights and biases during each epoch. This feature is a galvanization of the SGD35 optimiser, 

which performs parametric updates by considering mini batches of training data.  

 

A similar trade-off exists when selecting the batch size hyperparameter. The best form of 

generalization is achieved from considering a batch size of 1, however, given large 

dimensions of the training dataset, it would be computationally unfeasible to proceed in such 

a manner. Smaller batch sizes boost convergence towards flat sections of the error surface, 

allowing for improved generalization (Keskar et al., 2017), but worsen training time, and are 

prone to have high variances during gradient estimation (Goodfellow et al., 2016). Larger 

batch sizes, on the other hand, improve computational efficiency, and provide more accurate 

 
35 In this context, the stochastic gradient descent (SGD) is combined with the Mini-Batch Gradient Descent 

(MBD) approach, such that batches of training data are considered for parametric updates, rather than 

individual components.   
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gradients. They ensure information extraction features of a neural network are not 

underutilized. Although, at the cost of a loss of generalisation, given tendencies to converge 

to local minima (Keskar et al., 2017). Overall, selection of batch sizes boils down to the size 

of the training dataset, and available processing power. In regard to the latter, following a 

general rule of thumb36, it is recommended to opt for power of 2 batch size values 

(Goodfellow et al., 2016). Keeping in mind a requirement for a large training dataset, due to 

memory related issues, training would be unfeasible or highly inefficient on smaller values. 

Therefore, batch sizes of 2048, 4096 and 8192 were selected, to ensure a balance between 

gradient estimations, generalisation, and computational efficiency.   

 

The final hyperparameter is the regularization term (λ), during 𝐿2 regularisation37. The goal 

of regularisation is to prevent overfitting by reducing the generalisation error (Goodfellow 

et al., 2016). It modifies the loss function, by adding a penalty term, with respect to either 

the weights or biases values. To stay clear of any issues related to underfitting, the penalty 

term is obtained from the neural network weights. The concept focuses on taking the network 

from a potential overfitting regime, towards matching the true data-generating process. The 

penalty term comprises of a parameter, λ, which controls the degree to regularisation, and is 

tested for two values, 0 (no regularisation), and 1.0 × 10−3. Given the implementation of 

𝐿2 regularisation, with respect to weights, at each hidden layer, batch normalization and 

dropping rates were not considered for tackling overfitting38.  

 

3.2.2.2  K-Fold Cross Validation 

 

During the random search, each of the 720 unique neural network architectures are trained 

to determine the most optimal combination of hyperparameters for the forward pass. To 

further reduce overfitting, inspired by Liu et al. (2019), a k-fold cross validation training 

approach, with 𝑘 =  3 is considered, as illustrated in Figure 3.4. The mechanisms are 

 
36 The rule stems of the provision of GPUs, even on personal computers.  

37 In comparison with 𝐿1 regularisation, 𝐿2 regularisers use squared values within penalty terms, allowing them 

to be smooth and continuous, resulting in smoother, stable, and robust optimisation (Hastie et al., 2009).  

38 Upon experimenting with Batch normalization and dropping rates, these hyperparameters were not 

considered during the training of the optimal forward pass in Liu et al. (2019).   
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straightforward, beginning with splitting the training dataset into 𝑘 subsets. During each fold 

(experiment), a subset will be allocated for validation, whereas the remaining 𝑘 − 1 sets are 

used to train the selected network architecture. The final metrics for the given architecture 

are computed by averaging the errors over the k-folds. This procedure is repeated across all 

hyperparameter combinations, with each architecture being ranked based on the averaged 

performances. 

 

A major advantage of the validation approach is its simplicity, however, given the size of the 

training dataset, and number of hyperparametric combinations, concerns regarding 

computational inefficiency arise. Additionally, error metrics obtained from each fold, can 

have a high degree of variability, especially when the dimensions of the training subsets are 

small (Lavine & Blank, 2009; Refaeilzadeh et al., 2009; Shobha & Rangaswamy, 2018). 

Small datasets, especially those constructed on historical data, could suffer from overlapping 

of training data. Hence, the training dataset should be large enough, such that when split into 

3 equivalent subsections, and there is sufficient data for each fold. 

 

Figure 3.4: Illustration of a 3-fold cross validation. 

 

Note: The training dataset is split into 3 components, with each acting as the validation set, in correspondence 

to the respective fold. 

 

Since there is a preference for synthetically generated training datasets, there are no concerns 

over the overlapping of training data. Finally, computational costs arising from training each 

of the 720 network architectures, over 3 folds, can be daunting. Nevertheless, a significant 

proportion of the costs are reduced by opting for 200 epochs. Moreover, the simplicity of 
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parallelizing the random search, along with access to GPU hardware and High-Performance 

Computing clusters, assists in overcoming this issue. 

The aim of the training procedure is to determine optimal weights and biases, such that the 

Mean Squared Error (MSE) metric between estimated output, 𝑦𝑘(𝑥|𝜑) and actual output, 

𝑦𝑘(𝑥) is minimised. Additionally, the Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE) metrics are considered for assessing the performance of the each 

hyperparametric combination. The MSE metric averages the squared difference between 

𝑦𝑘(𝑥|𝜑) and 𝑦𝑘(𝑥), and places greater emphasis on larger errors. The RMSE penalizes 

larger errors to an even greater extent, with respect to smaller deviations. In addition, it is 

obtained within the same units, as the target variable, hence allowing for simpler 

interpretation. Both these metrics are suitable, when a greater emphasis is required on large 

errors. On the other hand, MAE measures the average absolution deviation between 𝑦𝑘(𝑥|𝜑) 

and 𝑦𝑘(𝑥). In contrast to the MSE and RMSE, penalization of large errors is no different 

from that of smaller ones, making the metric robust to outliers. The average value of all three 

metrics will be taken, across the 3-fold of validation, for each architecture explored in the 

random search. While assessing the performances based on all these metrics, more emphasis 

will be placed on the RMSE, given its stellar ability to deal with outliers.  

 

3.2.2.3  Training and Validation: Optimal Architecture 

 

The optimal neural network hyperparametric combination is determined by a random search, 

conducted over 720 architectures. Each unique combination undergoes a 3-fold cross-

validation to improve robustness and reduce the likelihood of overfitting. The main goal of 

𝑀𝑆𝐸 =    
1

𝑁
∑(𝑦𝑘(𝑥) − 𝑦𝑘(𝑥|𝜑))

2
𝑁

𝑘 = 1

 (42) 

𝑅𝑀𝑆𝐸 =  √ 
1

𝑁
∑ (𝑦𝑘(𝑥) − 𝑦𝑘(𝑥|𝜑))

2
𝑁

𝑘 = 1

 (43) 

𝑀𝐴𝐸 =    
1

𝑁
∑|𝑦𝑘(𝑥) − 𝑦𝑘(𝑥|𝜑)|

𝑁

𝑘 = 1

 (44) 
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the training procedure is to formulate weights and biases through iterative efforts at 

minimising the loss function between actual and estimated output values. The optimal 

computation of these parameters is crucial, as they are responsible for storing the extent to 

which a network understands the relationship between input and output variables. It is this 

level of understanding that will be stored and exploited in the backward pass during rapid 

online GSVJD parametric calibrations, for real time bubble detection.   

 

Simply working with a training dataset for hyperparametric optimisation is not sufficient to 

prevent overfitting. Recall, it is not necessarily favourable to reach the global minimum of 

the error function surface during training. If so, the network would have learned to estimate 

the outputs from the training data, rather than understanding the general 

dynamics/characteristics of the relationship between input and output variables. In such 

situations, when tested on unseen market data, the neural network will suffer from 

overfitting, which resembles joint-hypothesis concerns during bubble detection. Therefore, 

it is advisable to assess the performance of the network, at each iteration during training, on 

an unseen dataset.  

 

The computations of weights and biases by minimising the loss functions with respect to 

both datasets, provides validation. These datasets are known as ‘Validation Datasets’ and 

have been utilised to prevent machine learning models from overfitting. They are 

constructed by splitting and separating a proportion of the training data, at random. By doing 

so, the validation dataset would comprise of unseen data, with similar characteristics to that 

used for training. It is also conventional among scholars to split the training dataset into three 

components for training, validation, and testing. As noted, the first two are employed during 

the training procedure, whereas the latter is utilised to test the performance of the trained 

network. Intuitively, it conducts a similar practice (on different data) as validation on the 

final epoch. Given the implementation of the K-fold cross validation, and additional 

assessments conducted during the backward pass for selecting the optimal measure, testing 

datasets are not considered. Performances of all neural network architectures in the random 

search during training (and validation), are evaluated on average RMSE across the 3-fold 

cross validation. 
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3.2.2.4  Input and Output Variables  

 

The primary focus is to improve computational efficiency of calibrating the GSVJD model 

parameters from market observations. The neural network is proposed as a numerical solver 

in place of the computationally cumbersome Monte Carlo simulations in the three-step 

approach (Fusari et al., 2024). In the three-step approach, the GSVJD model was calibrated 

to daily market put option implied volatilities to overcome the joint-hypothesis issue. Recall, 

put option have bounded payoffs, due to which their prices cannot reveal bubbles. The 

accurate calibration to market put implied volatilities would ensure that the fundamental and 

market values of the option are aligned, consistent with the scenario during which asset price 

bubbles are absent. The obtained parameters would correctly resemble the current market 

regime (ELMM) and can be utilised for pricing call options for bubble detection.  

 

Table 3.2: Inputs and Outputs of the Forward Pass. 

Inputs (𝑥) Output (𝑦) 

𝜃 =  {𝑉0, �̅�,  𝜅, 𝜎𝜐,  𝜌, 𝑝,  𝜇𝐽,  𝜎𝐽,  𝜆𝐽} 
𝜎𝑃(𝜃, 𝛺) 

𝛺 = {𝑚𝑜𝑛 =  (𝕂 𝐹⁄ ), 𝜏} 

For a moment, consider only the computation of implied volatilities from Monte Carlo 

simulations of the GSVJD. The model is fed inputs in the form of 9 parametric values, the 

underlying and strike price, risk-free rate, dividend yield and the option’s time to maturity, 

to compute price. The price is then passed through an iterative solver to generate the 

corresponding implied volatility. The entire purpose behind being meticulous with each 

aspect of the training stage was to ensure that the neural network learns such dynamics of 

the GSVJD model, for computing implied volatilities. The network directly estimates the 

output from inputs, making the need of two solvers for the separate generation of prices and 

implied volatilities redundant. This provides a massive computational boost during the 

optimisation process, considering random parameters are inserted into the model for 

estimation, at each iteration, in attempts to minimise the objective function, with respect to 

market observations.  The input and output characteristics of the forward pass are revealed 

in Table 3.2.  
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Universally, during calibration procedures, parameters are considered as inputs, whereas the 

variable needing estimation for comparison to actual observations, the output. Similarly, the 

network is fed all components of the GSVJD parametric vector, 𝜃 and 𝛺 =  {𝑚𝑜𝑛 𝑎𝑛𝑑 𝜏}, 

as inputs, such that put implied volatilities, 𝜎𝑃(𝜃, 𝛺), are generated as the output. Training 

is conducted to ensure that the nonlinear relationship between these variables is well 

understood by the neural network. The selection of 𝜎𝑃(𝜃, 𝛺) as the output variable ensures 

that calibration during the backward pass would be conducted,  to overcome the joint-

hypothesis issue during bubble detection. 

 

Recall, the calibration of stochastic volatility models can be conducted using two structural 

forms: pointwise or grid-based. In the latter, implied volatilities from options over a wide 

range of strike prices and maturities are considered in a fixed-grid structure. The output layer 

comprises of multiple neurons, each resembling a location on the grid, corresponding to a 

unique combination of strike prices and maturity. This allows for simultaneous computations 

of all  implied volatilities that have been considered by the grid. Given the economic 

resemblance of each output node, the need to include strike prices and maturities as inputs 

is made redundant. However, the output nodes are fixed, and those options with differing 

characteristics cannot be examined. This is a major drawback, especially during the 

application of the three-step approach for bubble detection. 

 

When calibrating GSVJD parameters, Fusari et al. (2024) use daily options corresponding 

to maturities with the highest cumulative volume. The maturities and number of options 

selected, vary over each day. In order to accommodate these changes, the output layer 

structure would require altering, which translates to re-training the network. The 

computational costs of such a practice significantly outweigh the benefits obtained from 

reducing the dimensions of the input layer, and simultaneous estimation of implied 

volatilities. Alternatively, given the computational boost from the deep calibration 

framework, it would be possible to include all daily put options during calibrations, as 

recommended by the current study. A grid can be formed over the components of daily 

implied volatility surfaces, constructed over a fixed range of strike prices and maturities see 

Horvath et al. (2021). However, these surfaces would require using interpolation and 

extrapolation techniques, which would induce an additional error during the calibration 
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procedure. Moreover, calibrating parameters to all traded options on a given day would also 

not be possible, given the varying values of strike prices, maturities, and number of options 

across time.  

 

In the pointwise structure, the output layer comprises of a single node, allowing the network 

to only estimate the implied volatility of one option. This adds to the calibration time, when 

applied to several contracts during an iterative optimisation process. Furthermore, the single 

output node does not hold any economic resemblance with respect to the strike price and 

maturity of the corresponding option. Hence, these two characteristics must be fed as inputs, 

increasing the dimension of the first layer. Ironically, the single output node is the main 

advantage of this structure, as it allows for a great amount of flexibility, which is crucial for 

bubble detection, when considering daily options over a large sample period. Since the strike 

price and maturity are inputs, minor alterations in their values allow for the consideration of 

any desirable option contracts. Therefore, the pointwise structure can simply be utilised to 

accommodate contracts from, both the daily highest cumulative volume maturities, and 

entire price surface. This superior flexibility creates a preference for this structural form, 

when utilising the two-step calibration approach on the GSVJD model. Hence, the neural 

network will comprise of a single output node, with two additional input nodes, 

corresponding to moneyness (𝑚𝑜𝑛) and maturity (𝜏).  

 

Computing implied volatility requires the following inputs: underlying, option and strike 

prices, along with the risk-free rate, maturity, and dividend yields. Therefore, in addition to 

the GSVJD parameters, the pointwise neural network would need inputs that can capture 

impact of these variables for the accurate generation of implied volatilities. Ruf & Wang 

(2020) reveal that the underlying and strike price can be considered as either individual 

inputs, or collectively in the form of moneyness. Scholars have been found to prefer the 

latter, as it reduces the likelihood of overfitting, in addition to decreasing the dimensions of 

the input layer. Overall, the generalisation ability of the neural network is improved. 

Therefore, moneyness, 𝑚𝑜𝑛 =  (𝕂 𝐹⁄ ), consistent with the requirements of the pointwise 

approach, is included as an additional input, but with a slight alteration. Instead of computing 

it with respect to the underlying price, the forward price, 𝐹 =  𝑆𝑒(𝑟−𝑞)𝜏, is utilised. This is 

common industrial practice, given the greater consistency with the Black and Scholes 
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formula. Additionally, the forward price accommodates the impact of the risk-free rate and 

dividend yields, over the remaining life of the option.  

 

An option contract is defined by its strike price and time to maturity (𝜏). The 𝑚𝑜𝑛 input 

variable takes the former characteristic under consideration, which leave the requirement of 

defining the latter as the final network input. In contrast to the risk-free rate and dividend 

yield, maturity is specific to each contract and has a significant impact on the price of the 

option. Hence, despite its involvement in computing moneyness, maturity must be accounted 

for as a separate input. This ensures that implied volatilities are well defined and estimated, 

in accordance to their unique moneyness and maturity combinations. Therefore, the neural 

network will be trained, such that it understands the dynamics of the GSVJD model by 

learning the complex relationships between inputs, 𝑥 = {𝜃,𝑚𝑜𝑛, τ} and  put option implied 

volatility output, y = 𝜎𝑃(𝜃, 𝛺). 

 

Figure 3.5: Illustration of the Forward Pass. 

 

Note: The neural network learns dynamics of the GSVJD model to estimate normalised output, 𝜎𝑃(𝜃, 𝛺)’, from 

scaled inputs:  𝜃′,𝑚𝑜𝑛′, 𝑎𝑛𝑑 𝜏′. 

The  forward pass step seeks to best learns the features of the GSVJD model. As illustrated 

in Figure 3.5, this is achieved by feeding it the following inputs, 𝑥 =  {𝜃,𝑚𝑜𝑛, 𝜏} to 

compute implied volatilities, 𝑦 =  𝜎𝑃(𝜃, 𝛺). Observe, the input variables are scaled, 𝑥′ =

 {𝜃′,𝑚𝑜𝑛′, 𝜏′}, prior to entering network for the computation of normalised output, 𝑦′ =

 𝜎𝑃(𝜃, 𝛺)′. This operation boosts overall estimation and performance of the network and 

prevents it from being stuck at local minima. The selected inputs add strong economic 
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interpretation to the estimation of implied volatilities during the forward pass. However, it 

must not be forgotten that a neural network relies heavily on data for comprehension of the 

relationship between input and output variables. In such instances, Büchel et al. (2022) warn 

the practitioner about sensitivity of networks towards diverging dimensions of input 

variables, especially with respect to parameters of stochastic volatility models. If not 

carefully dealt with, the neural network would face overfitting issues. This would hamper 

both,  the accuracy of estimating implied volatilities in the forward pass, and calibration of 

parameters in the backward pass.  

The solution lays with scaling  input and output variables, based on a pre-defined range. 

Inspired by Horvath et al. (2021) and Büchel et al. (2022), all input variables are scaled as 

per (45), ensuring 𝑥′  ∈ [−1, 1]. Whereas output is normalised in (46) by subtracting the 

mean (𝑦𝑚𝑒𝑎𝑛) and dividing by standard deviation (𝑦𝑆𝐷). These operations make the loss 

function more symmetrical, allowing for easier and faster convergence, such that the neural 

network overcomes the vanishing gradient problem. Additionally, Büchel et al. (2022) reveal 

the scaling of model parameters to be  beneficial during the calibration step. The guess range 

of the optimizer is restricted between -1 and 1, allowing for fast and more accurate 

calibrations.  

 

It must be documented that all scaling operations of input and output variables are conducted 

with respect to the training dataset. Therefore, during inverse-scaling to obtain calibrated 

parameters and implied volatilities, all estimates will be within the range on which the 

network was trained. This further appreciates using a synthetic dataset during training. In 

historical datasets, all parameters are scaled according to observations from past market 

scenarios. If the backward pass were to stumble upon an extreme regime, the calibrated 

parameters would not be reliable, given restrictions from scaling bounds. When employing 

a synthetic dataset, the practitioner controls the range of scaling bounds, by choice of 

including various scenarios, ensuring the benefits of such operations are experienced to the 

𝑥′ = 
2𝑥 − (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 (45) 

𝑦′ = 
𝑦 − 𝑦𝑚𝑒𝑎𝑛

𝑦𝑆𝐷
 (46) 
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fullest. On this note, the random search for hyperparametric optimisation can be conducted 

with each combination undergoing a 3-fold validation. Upon completion the forward pass 

step would present an optimally trained network, the hidden layers of which would be frozen, 

and implemented for calibrating GSVJD parameters during the backward pass step. 

 

3.2.3  Step II: Backward Pass  

 

Consider the one-step approach, which calibrates parameters of an asset pricing model, by 

estimating them as outputs. This would allow for the simultaneous calibrations from market 

observations over a vast time period, in a matter of seconds. However, given that parameters 

are estimated as outputs, and not calibrated to fit market data using an optimizer, the 

approach is highly vulnerable to overfitting and robustness related issues. The one-step 

method trains the network to minimise the error function between actual and estimated 

parameters, by taking market observations as inputs. Hence, the dynamics of the chosen 

model are not understood, but rather the network learns to fit the training dataset.  

 

Additionally, there is a need to utilise historical data for training, which results in the network 

performing poorly when applied to unseen time periods, especially those with extreme 

market scenarios. The performances of the network are not captured by the parametric 

output, but instead by the ability of such estimations to compute option prices/implied 

volatilities. A separate validation step is required, which reduces efficiency. If skipped, 

regulatory concerns regarding the black box’ nature of neural network approximations would 

arise. In regards, to bubble detection, the method is vulnerable to the joint-hypothesis issue.  

 

The desire for real-time validation to overcome the joint hypothesis issue during bubble 

detection is satisfied by the two-step approach. The backward pass is dedicated to pairing 

an optimizer with the trained neural network (from the forward pass) for calibrating 

parameters to market put option implied volatilities. The additional optimisation step, though 

inefficient, adds extra validation to retrieved parameters, and relaxes regulatory concerns 

over the ‘black box’ nature of neural network approximations. A well-trained neural network 

from the forward pass step is crucial for assuring a strong and reliable backward pass. It 
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ensures that the neural network has developed a concrete understanding of the GSVJD model 

dynamics.  

 

3.2.3.1  Backward Pass: Framework 

 

During the forward pass, networks were trained to estimate put option implied volatilities, 

𝜎𝑃(𝜃, 𝛺) from receiving the GSVJD model parameters (𝜃), moneyness (𝑚𝑜𝑛) and option 

maturity (𝜏), as inputs. The trained hidden layers comprise of weights and bias parameters, 

at each node, that store crucial information regarding the comprehension of the GSVJD 

model. This information builds the core foundation of the backward pass stage, allowing the 

network to transition from an estimator for implied volatilities, into a simple, yet extremely 

rapid numerical solver for parametric calibrations from market observations.  

 

Figure 3.6: Illustration of the Forward and Backward Pass. 

 

Note: During the forward pass (top), the neural network is trained to estimate normalised output, 𝜎𝑃(𝜃,𝛺)’, 

from scaled inputs:  𝜃′,𝑚𝑜𝑛′, 𝑎𝑛𝑑 𝜏′. Once trained, the hidden layers are frozen and carried to backward pass 

(bottom), for calibrating 𝜃′, from market put option implied volatilites, 𝜎𝑃(𝑚𝑜𝑛, 𝜏 )’. The remaining inputs, 

𝑚𝑜𝑛′, 𝑎𝑛𝑑 𝜏′, are obtained from the market, set in correspondence to 𝜎𝑃(𝑚𝑜𝑛, 𝜏)′. 

The trained hidden layers from the forward pass are frozen and carried on to the backward 

pass, for parametric calibrations, as illustrated in Figure 3.6. In this phase, the neural 

network is paired with an optimizer, such that the inverse problem of calibration is tackled 
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with respect to the given market output. The network is already trained, so weights and biases 

within its hidden layers are known. Hence, the backward pass becomes deterministic, with 

only simple matrix multiplications required to map parameters to market observations 

(Büchel et al., 2022). Furthermore, it can be conducted online, at high levels of 

computational efficiency, such that the time for calibrations is reduced to a matter of seconds. 

This ensures that the frequent recalibration requirements of the high-dimensional GSVJD 

parametric vectors, cater to the consistently changing nature of markets. Therefore, 

improving the tractability and overall preference of the practitioner, for utilising the three-

step approach  for real-time bubble detection.  

 

The calibration operations are conducted in the following manner. At first, market put option 

implied volatilities are introduced as targeted outputs in the loss function. Alternatively, they 

can be interpreted as fixed components of the output layer, that are connected to the loss 

function. The optimizer works towards minimising the loss function, by feeding parameter 

combinations into the network, for estimating implied volatilities. These combinations are 

received in the input layer, at the 9 nodes corresponding to each component of the scaled 

GSVJD parametric vector, 𝜃′. Hence, these 9 input nodes, that were previously fixed during 

the forward pass training, become learnable. The remaining 2, designated to 𝑚𝑜𝑛′, and 𝜏′, 

are fixed to relevant market information, corresponding to the observed implied volatility at 

the output node.  

 

At each optimising iteration, the parameter guess enter the input layer, and along with the 2 

observable inputs, get transferred to the hidden layer. Recall, all weights and biases have 

already been determined during the forward pass, hence, a simple series of matrix 

multiplications, within each layer provides an output for the next. At the final layer, the 

network estimates an output, which is then fed into the loss function for computing the error, 

with respect to its market counterpart. The iterative optimisation continues, with fresh 

parametric guesses, until the loss function is minimised or tolerance with respect to the 

error/number of trials, is reached. Essentially, the forward propagation phase of the neural 

network is exploited for rapid computations to estimate implied volatilities, to allow for 

superior efficiency during optimisation of the loss function.  
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The parameters calibrated from the backward pass would be obtained in the scaled form, 

and require an inversing operation, to be utilised for pricing and subsequent bubble 

detection. The scaling of the parameters is advantageous, as it improves the efficiency and 

convergence quality of the optimizer. Notice, the structure of the network comprises of a 

single output node, given preference for the flexibility provided by the pointwise approach. 

This indicates that during calibrations, implied volatilities are estimated one at a time, rather 

than simultaneously as witnessed during the selection of the grid-based approach. However, 

given its lack of flexibility, the latter is not an ideal candidate for real-time bubble detection. 

Though the approach is marginally more inefficient, the selection of the differential 

evolution optimizer, with superior parallel computing abilities when paired with neural 

networks,  allow to overcome this issue.  

 

3.2.3.2  Backward Pass: Optimisation 

 

The selection of the optimisation algorithm is crucial for achieving accurate calibrations of 

the GSVJD model. The Levenburg and Marquardt algorithm is a popular choice of gradient-

based optimisation methods, amongst Hernandez (2016), Bayer & Stemper (2018); and 

Bayer et al. (2019), for calibrating stochastic volatility models. Whereas Differential 

Evolution is a gradient-free optimiser. It has also been employed by Liu et al. (2019) during 

the calibration of the Heston and Bates option pricing models. The abilities of both 

techniques, when paired with a deep two-step approach for calibrating implied volatility 

surfaces, were compared by Horvath et al., (2021). Though the Levenburg and Marquardt 

approach was found to be more balanced in regard to accuracy and computational efficiency, 

it was inferior to the differential evolution optimiser. In general, gradient-based methods are 

quicker at converging, however, provide sufficient, rather than necessary conditions for 

doing so. Hence, they struggle when applied to non-convex functions, requiring the 

assistance of superior initial guess. Alternatively, gradient-free methods are relatively 

slower, but make up for the computational inefficiency by being capable of finding a global 

solution, regardless of the characteristics of the objective function.  

 

Gradient-based approaches struggle with non-convex functions, due to the presence of 

multiple local-minima, and performances could be limited to the knowledge of the 



 124 

 

 

practitioner. It is common to utilise parameters from the previous time period, as an initial 

guess, however, this practice might not be suitable for volatile phases. The differential 

evolution optimiser does require an initial guess, however due to its stochastic nature, it is 

not reliant on the quality of initial values provided to find the global minimum. The 

algorithm generates initial values at random, hence, it has no issues dealing with non-convex 

functions. Furthermore, Liu et al. (2019) reveal a two-fold speed achieved from pairing 

neural networks with differential evolution.  

 

These benefits of the differential evolution algorithm are explained with respect to GSVJD 

calibrations. First, implied volatilities, corresponding to a set of parameters, are computed 

at once. Even though there is one output node, all input sets, each comprising of the 

parameters that prevail in the rest, and a unique moneyness-maturity combination, are fed 

into the network simultaneously to estimate implied volatilities. Second, during the 

backward pass, at each iteration of the optimiser, the generated parameter candidates enter 

the network at once, resulting in the estimation of all analogous output simultaneously. In 

contrast, Monte Carlo simulations estimate output for each candidate, individually.  Büchel 

et al. (2022) suggest using parameters from the previous day to further enhance efficiency, 

however, this is avoided given their unsuitability to volatile periods/sudden market crashes.  

Differential evolution is selected for optimizing the loss function, given its superior parallel 

computation abilities, when paired with a neural network, and independence from the quality 

of initial guess, regardless of the loss function. There are two loss functions considered, 

separately, during the backward pass; 𝑅𝑀𝑆𝐸𝜎,𝑡 and inspired by Liu et al. (2019), sum of 

squared error (𝑆𝑆𝐸𝜎,𝑡) with a penalty term, 𝜆 =  1 𝑥 10−6. The backward pass not only to 

calibrates the GSVJD model at high speeds but will also be used to select the best 

architecture for bubble detection. The latter alludes to selecting top performing architectures 

from the forward pass and employing them to calibrate GSVJD parameters from market 

data. The parameters from the best performer will be selected for computing the fundamental 

𝑅𝑀𝑆𝐸𝜎,𝑡  =  √ 
1

𝑁𝑝
∑ (𝜎𝑃(𝜃, 𝛺)’ − 𝜎𝑃(𝑚𝑜𝑛, 𝜏 )’)2

𝑁𝑝

𝑘 = 1

 (47) 

𝑆𝑆𝐸𝜎,𝑡  = ∑ (𝜎𝑃(𝜃, 𝛺)’ − 𝜎𝑃(𝑚𝑜𝑛, 𝜏)’)2𝑁𝑝

𝑘 = 1  +  𝜆 (48) 
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value of call options, and subsequently detecting bubbles. Therefore, the evaluation of these 

architectures, using two loss functions, adds robustness to the selection process. As observed 

in (47) and (48), the Differential Evolution optimiser works towards minimising the both 

loss functions, with respect to normalised implied volatilities. Upon reversing of the scale, 

the performances of each architecture are assessed using 𝑀𝑆𝐸𝜎,𝑡, 𝑅𝑀𝑆𝐸𝜎,𝑡, and 𝑀𝐴𝐸𝜎,𝑡 

metrics, see (42), (43), and (44).  

 

3.3 Summary and Discussion 

 

The foundation of the three-step approach is based on the local martingale theory of bubbles, 

which reveals that a risky asset can exhibit bubbles, when an incomplete market satisfies the 

NFLVR and ND conditions. Due to their bounded maturity, options exhibit type III bubbles, 

which under the ND condition, share a linear relationship with exuberance in the underlying 

asset. Put options have bounded payoffs, and cannot display a bubble, and hence their market 

and fundamental prices must align. However, call options have unbounded payoffs, and are 

capable of revealing bubbles, as investors are willing to purchase them for the sole purpose 

of reselling in the future, at a higher price. The three-step approach examines option prices 

and exploits the linear relationship between call option and underlying price bubbles. 

Options reveal expectations regarding the future value traders are willing to pay for the 

underlying asset, and hence apprehend the forward looking nature of bubbles. Furthermore, 

type III bubble address short term trade strategies, intended for this purpose, can be identified 

using real-time data, without relying on historical prices or backward-looking windows. It 

is crucial for the option pricing methodology to highlight strict local martingale tendencies 

in the underlying. Hence, the GSVJD model is employed for pricing options.  

 

The joint hypothesis problem is overcome by calibrating the GSVJD model to market put 

option implied volatilities and using those parameters to estimate the fundamental value of 

call options. Accurate calibration ensures that the fundamental and market values align, such 

that put option prices do not display bubbles. Finally, a statistical test it employed for 

detecting call options bubbles, which under the ND condition would signal the presence of 

exuberance in the underlying price. The GSVJD process is impressive, as it is capable of 

capturing strict local martingale tendencies, mean-reverting volatility, and price jumps. 
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However, it lacks a closed form solution, hence forcing the practitioner to rely on Monte 

Carlo simulations. The computational cumbersome nature of such numerical solvers make 

it unfeasible to consider the entire daily option price surface, restricting the application to 

only a single volatility smile. In order to overcome this issue, the application of neural 

networks was suggested.  

 

Neural networks are a set of interconnected nodes, that mathematically mimic the biological 

nervous system. According to the universal approximation theorem, they can estimate any 

function, to a certain degree of accuracy. The advancements in computational software and 

hardware over the past couple of decades have allowed the machine learning approach to 

price thousands of derivative contracts, at rapid speeds. It is this property, that is exploited 

during proposed calibration of the GSVJD model. There are two methods for calibrating 

such asset pricing models. First, the one-step approach, which estimates parameters as 

outputs of the networks. Second, the two-step approach that trains the neural network to 

estimate market observations and then pairs the model with an optimiser for calibration. The 

optimisation step allows for real-time validation, which is not only satisfactory for 

regulators, but also beneficial for practitioners, when attempting to overcome any potential 

instance of a joint-hypothesis issue during bubble detection. Therefore, the two-step 

approach is favoured for the motives of this research.  

 

A two-step neural network calibration framework was proposed. It comprises of an MLP, 

which estimates implied volatilities from taking parameters of the GSVJD, moneyness and 

option maturities, as inputs. The first stage,  forward pass, focuses on training the network 

to learn the dynamics of the GSVJD model for computing implied volatilities. An extensive 

random search, with a 3-fold cross validation over 720 hyperparameter combinations is 

initiated to determine the optimal neural network architecture for the forward pass. The 

second stage, backward pass, is engineered to calibrate the parameters from market 

observations.  

 

The backward pass pairs the pre-trained network architecture from the forward pass, with 

an optimizer for calibrating GSVJD model parameters from market data. The trained hidden 

layers of the network store vital information regarding the understanding the GSVJD model 
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dynamics. The hidden and output layers are frozen, with the latter being allocated market 

data on put option implied volatilities. Additionally, input nodes designated to moneyness, 

and maturity values that correspond to implied volatilities in the output node, receive market 

observations. The only neurons in the network that are learnable are those from the input 

layer, assigned to each GSVJD parameter. Since hidden layers are already trained, the 

network solely operates as a numerical solver. The superior parallel processing abilities of 

the Differential Evolution in combination with neural networks, are heavily exploited. 

Furthermore, in contrast to the gradient-based techniques, there is no reliance on the quality 

of initial parameter guesses during optimisation.  

 

The obvious benefit of the neural network framework is the massive computational boost 

received from making Monte Carlo simulations redundant during the calibration phase, 

allowing for rapid real-time bubble detection. Furthermore, the pointwise structure 

comprises of a single output node, in contrast to the fixed grid-based alternative. It provides 

the framework with flexibility to consider a varying number of options during daily 

calibrations, rather than being restricted to a fixed maturity-moneyness combination. 

Additionally, in contrast to the one-step approach, the additional optimization step enables 

instantaneous validation, which is crucial for overcoming the joint-hypothesis issue. Finally, 

training using synthetic data makes the network robust to the ever-changing fickle nature of 

markets. In the next chapter, calibration performances of the GSVJD model, using Monte 

Carlo simulations, and the optimal neural network architecture are compared on S&P 500 

index data. Though a boost in efficiency by a large scale of magnitude is appreciated, it is 

also vital to ensure calibration accuracy is not sacrificed.  
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4 Chapter 4:    

Model Estimation 
 

 

 

 

 

 

The following chapter focuses on calibrating the GSVJD model, using both Monte Carlo 

simulations, and the proposed deep neural network calibration framework. The calibrations 

are conducted and compared on daily S&P 500 index data, between January 2019 and 

December 2022. The benefits of detecting bubbles from option prices, using the three-step 

approach (Fusari et al., 2024) have been well documented in the previous two chapters. The 

method incorporates a generalised stochastic volatility jump diffusion model (GSVJD) for 

option pricing, which captures strict local martingale tendencies in the underlying price 

process. The sophistication of the model allows it to address characteristics of asset prices 

to a greater extent but at a major computational cost. Hence, the application of neural 

networks was suggested. However, prior to indulging in the estimation of the deep 

calibration framework, the GSVJD model is compared to other stochastic volatility 

processes, to examine the tradeoff between efficiency and accuracy. The comparison reveals 

the superiority of the GSVJD model. Hence, justifying its consideration as the benchmark 

for training the neural network. Next, after intensive training and testing of the two-step deep 
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calibration framework39, it is revealed to outperform the benchmark, with regard to both 

accuracy and efficiency. Upon providing a boost in computational estimation and accuracy, 

the deep neural network calibration framework is applied for estimating the daily GSVJD 

parameters from the entire option price surface.  

 

4.1 Research Hypotheses  
 

The three-step approach, despite overcoming issues associated with traditional methods, can 

be unfavourable amongst practitioners given the poor efficiency and tractability associated 

with GSVJD calibration. The GSVJD excels at capturing forward looking expectations of 

market participants, however, to strike a balance between efficiency and robustness, Fusari 

et al. (2024) restricted calibration to the most liquid volatility smile. As highlighted in 2.3.3, 

using the entire surface of options enhances the ability to capture market characteristics that 

are crucial for bubble detection. This is a direct consequence of calibrating GSVJD 

parameters from various option maturities, rather than just the one. Therefore, a deep 

calibration framework is proposed to answer the following research question: How to 

improve the efficiency and tractability of the three-step approach and subsequently extend 

its application for bubble detection? 

 

The motivation behind the research question stems from the need for an accurate and robust 

bubble detection method, which is also efficient and tractable enough to meet practical 

requirements. Issues regarding efficiency and tractability arise from the required GSVJD 

calibrations; hence the proposal for employing neural networks. However, prior to 

proceeding with the construction of the deep calibration framework, this research explores 

a potential solution in the form of an alternative stochastic process. It is crucial that the 

selected process must capture strict local martingale tendencies. Therefore, the GSVJD 

model is compared to the stochastic volatility process from Andersen & Piterbarg (2007). 

Both processes possess the ability to address strict local martingale tendencies but only the 

former considers price jumps. Furthermore, the Heston (1993) and Bates (1996) models, 

which do not capture strict local martingale characteristics, are considered to reveal the 

importance of this property within stochastic processes.  It is hypothesised that the GSVJD 

 
39 Refer to Section A, in the Appendix for more details.  
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model will outperform its counterparts, however, since it requires the greatest number of 

parameters to be calibrated, the process will also be the least efficient. Consequently, this 

would create a demand for the deep calibration framework in order to ensure substandard 

stochastic processes are not utilised for bubble detection, for the mere reason of efficiency.  

 

The deep calibration framework is trained to learn the dynamics of the GSVJD model and  

compared to the benchmark calibrations that require Monte Carlo simulations. It is 

hypothesised that the former would significantly boost efficiency, without sacrificing 

accuracy. The latter component is vital for overcoming the joint-hypothesis issue during 

bubble detection. Moreover, the improved efficiency and tractability of GSVJD calibrations, 

enable parametric estimations from all daily traded put options. Consequently, the 

application of the three-step approach can be extended to detecting underlying price bubbles 

from examining various call option maturity groups, and even from exploring the lifetime 

of selected options. This is possible since parameters obtained from calibrating to daily 

option surfaces are applicable for pricing call options with various maturities. The extended 

application of the three-step approach, using the deep calibration framework, is tested over 

daily S&P 500 options data from 2019 – 2022.  

 

The selection of the time period plays a crucial role in the examination of exuberance. During 

the market crash in March 2020, the S&P 500 experienced 4 circuit breakers. In accordance 

with the NFLVR assumptions, the shorting constraints, artificially ensured that market prices 

remained above the fundamental value. Despite the dire state of the economy, the S&P 500 

erased its losses and reached record highs by August 2020, with strong support from the 

technology sector. The recovery was fuelled by large monetary and fiscal provisions, which 

created an imbalance, resulting in severe inflationary pressure over the next year. However, 

the S&P 500 continued to surge, even throughout 2021. Therefore, this research hypothesises 

the index to reveal bubbles between 2020 and 2021, especially during the crash in March 

2020, and subsequent recovery period. Furthermore, the difference between detecting 

bubbles from calibrating to the most liquid smile, and parametric estimation from the entire 

surface, are explored. Initially, daily parameters obtained from the most liquid put options, 

and entire surface are used to price the most liquid call options for bubble detection. Next, 

parameters estimated from the entire surface are used explore bubbles across various call 
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option maturities, and the lifetime of certain selected contracts. This extended application of 

the three-step approach is examined over the S&P 500 index, in accordance with the 

hypothesised presence of exuberance. Nevertheless, prior to testing the various hypotheses 

presented in this section, this chapter proceeds with a discussion of the relevant market data, 

and applied cleaning and filtering techniques, required for calibrations.  

 

4.2 Market Data: S&P 500 Index 

 

In the three-step approach, Fusari et al. (2024) highlight the importance of calibrating to 

market put option observations, in order to overcome the joint-hypothesis issue associated 

with bubble detection. Hence, calibration comparisons conducted in this chapter are carried 

out on market put options data. The following section details various cleaning and filtering 

procedures utilised to create the required dataset. Given computational inefficiencies 

associated with Monte Carlo simulations, all comparisons of the different stochastic 

processes, are conducted on the most liquid daily volatility smile. This approach provides a 

balance between efficiency and robustness, making it well suited for examination over a 

large time period. The calibration comparison, along with empirical analysis of bubble 

detection is conducted over daily S&P 500 Index European-styled options, between January 

2, 2019, and December 30, 2022. The study period spans over 4 years, comprising of 1,000 

trading days, with all market-related data being collected from Refinitiv Eikon.  

 

The selection of the study period allows for examining the existence of bubbles prior to, 

during and after the COVID-19 induced market crash in March 2020. As a direct 

consequence of the economic impacts of the global pandemic, the S&P 500 experienced 

massive volatility, with fear fuelling massive selloffs. Consequently, circuit breakers were 

triggered on March 9, 12, 16, and 18, 2020. These events are relevant for the empirical 

analysis of detected bubbles, as given the implementation of such shorting constraints, the 

market price is prevented from collapsing to the fundamental value. Furthermore, the study 

period allows for analysing the robustness of various stochastic process, across different 

market scenarios. It is crucial to utilise a stochastic process, that can accurately calibrate to 

various market scenarios, including those with extreme fluctuations. This would be 
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beneficial for overcoming joint hypothesis related issues and subsequently improve the 

effectiveness of timely risk management practices.  

 

4.2.1  Filtration and Cleaning  

 

The following section is dedicated to comprehending the filtration and cleaning procedures 

implemented on options data. The steps of the procedure are described in Table 4.1 and 

further explained below. Moreover, these steps are also applied to the call options utilised 

for bubble detection (see 5.1). Option prices were collected over a wide range of strikes, at 

increments of $5.00. For each contract, the mid-price is considered, by computing the 

average of  bid and ask values. Given the 15 minutes delay in the closing of option markets, 

with respect to the cash market for equity indices, despite best efforts of credible data 

sources, such as Refinitiv Eikon, an issue of price asynchrony could exist (Almeida et al., 

2023; Fusari et al., 2024). Therefore, the first step in Table 4.1 focuses on computing  spot 

prices for the S&P 500 index, from forward prices of ATM options, via the put-call parity. 

 

Table 4.1: Options Data Filtration and Cleaning Procedures. 

Filtration and Cleaning Steps Procedure 

Step 1 Estimating Implied Spot Prices (St). 

Step 2 Applying Time to Maturity (τ) Conditions. 

Step 3 
Filtrating Illiquid Options using Moneyness, 

Implied Volatility and Trading Volume Conditions. 

 On a given day, 𝑡, using prices from put and call option pairs, corresponding to the same 

maturity, 𝜏; forward prices,  𝐹𝑡,𝜏  = 𝕂 + 𝑒𝑟𝜏(𝐶𝑡(𝕂, 𝜏)  − 𝑃𝑡(𝕂, 𝜏)), are computed. Next, 

across the five most at-the-money (ATM) options, the median of 𝐹𝑡,𝜏 is considered, for 

determining the implied spot price, 𝑆𝑡  =  𝐹𝑡,𝜏𝑒
−(𝑟−𝑞)𝜏, where 𝑟 and 𝑞, respectively represent 

the risk-free rates and continuously compounded dividend yields. ATM options tend to be 

the most liquid, providing an increased likelihood of the put-call parity being satisfied, and 

subsequently, consistency with the NFLVR and ND assumptions. Risk-free rates are 
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determined by linearly interpolating the Zero-Coupon Yield Curve provided by Eikon, 

following Hagan and West (2006), as denoted in (49). In the equation, 𝑟(𝜏) resembles the 

rate matched to 𝜏, and 𝑟𝑖 (𝑟𝑖+1) corresponds to the yield curve component with the closest 

maturity 𝑡𝑖 (𝑡𝑖+1), that is less (greater) than 𝜏.  

𝑟(𝜏) =  
𝜏 − 𝑡𝑖

𝑡𝑖+1  −  𝑡𝑖
𝑟𝑖+1 + 

𝑡𝑖+1 −  𝜏  

𝑡𝑖+1  −  𝑡𝑖
𝑟𝑖 (49) 

𝐶𝑡,𝑏𝑖𝑑(𝕂, 𝜏)  − 𝑃𝑡,𝑎𝑠𝑘(𝕂, 𝜏)  =  𝑏0  +  𝑏1𝕊 + 𝑏2𝕊𝜏 + 𝑏3𝕂 + 𝑏4𝕂𝜏 + 𝑏5𝐷𝐵,𝐴 (50) 

The constituents of the S&P 500 index pay dividends, and hence a daily yield must be 

calculated. It is common practice to compute implied dividend yields from the put-call parity 

forward prices (Hull, 2014; Ulrich & Walther, 2020; Almeida et al., 2023). However, this 

approach is vulnerable to facing price asynchrony, given that the implied yield would be 

obtained from matching forward prices to the close index price. Although Refinitiv Eikon 

provides a timeseries of daily yields, option maturities are ignored during computation. 

Hence, the methodology provided by OptionMetrics40, in (50) is implemented, under the 

assumption of the put-call parity holding. The regression considers difference between bid-

call and ask-put prices, 𝐶𝑡,𝑏𝑖𝑑(𝕂, 𝜏)  − 𝑃𝑡,𝑎𝑠𝑘(𝕂, 𝜏) , as the dependent variable, with 𝐷𝐵,𝐴
41 

taking the value of 1. The remaining independent variables comprise of the underlying price 

(𝕊), strike price (𝕂), and time to maturity (𝜏). Dividend yields, on a given day, are estimated 

by utilizing data on all traded options over the past three months, excluding those with 

maturities of less than 15 days. In accordance with the put-call parity, the continuously 

compounded dividend yield is the negative of computed 𝑏2 parameter value.  

 

After computing the implied spot prices, the next step from Table 4.1 focuses on the maturity 

condition. Bubbles within short maturity options reveal insight on larger occurrences in the 

underlying over longer horizons (Fusari et al., 2024). Recall, call option bubble magnitudes 

provide a lower bound for that in the underlying. For short option contracts, potential bubbles 

would disappear, as the magnitude reduces with tenor. Therefore, options with maturities 

below 7 days were discarded. Fusari et al. (2024) also drop options with maturities greater 

 
40 View IvyDB_US_v5.4_Reference_Manual.pdf.  

41 𝐷𝐵,𝐴  =  1, if 𝐶𝑡,𝑏𝑖𝑑(𝕂, 𝜏)  is used, and 0, otherwise.  

https://optionmetrics.com/united-states/
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than 50 days, due to the concentration of liquidity over shorter contracts. In contrast, given 

the dependence of the bubble magnitude on option maturity, to enhance detection, contracts 

with durations up to 365 days are included. Furthermore, despite having higher trading 

volumes, due to their relatively shorter lives, weekly options are overlooked by preference 

for monthly contracts42.  

 

Highly illiquid contracts impose challenges during calibration; hence they were filtered out 

in the final step, on the ground moneyness, implied volatilities and trading volume (Piiroinen 

et al., 2018; Stahl and Blauth, 2024; Fusari et al., 2024). Options with no trading volumes, 

and those corresponding to market implied volatilities greater than 1, were discarded. It is 

common practice to calibrate parameters of asset pricing models to only OTM options, due 

to their highly liquid nature. Bubble detection approaches, notoriously suffer from a joint 

hypothesis issue, and when considering option prices, Jarrow (2015) suggested the accuracy 

in pricing put options. Two criteria were considered for moneyness43: standardised 

moneyness (𝑚), and log-moneyness (𝑘), with options meeting −10 <  𝑚 <  5, and 𝑘 <

 0.5, being retained. The standardised moneyness and log-moneyness conditions ensure 

disregarding deep in-/out- of-the-money options and allow for the vital consideration of 

contracts over a wide range of moneyness in the study, without illiquidity concerns. 

 

4.2.2  Summary Statistics  

 

To balance the trade-off between computational efficiency and robustness, Fusari et al. 

(2024) use daily most liquid options corresponding to maturities with the highest cumulative 

volume (HCV). Despite being highly liquid, these options cover only a single slice of the 

implied volatility surface. However, they provide a great environment for comparing 

calibration performances. The calibration of various stochastic processes, along with that of 

the two-step neural network approach are conducted on the HCV put options dataset. The 

entire option price surface comprises a wide range of maturities, and hence contains excess 

 
42 Preference for monthly options on the S&P 500 index is consistent with Fusari et al. (2024). 

43 Standardised moneyness (𝑚)  =  
𝑙𝑛(𝕂 𝑆⁄ )

𝜎𝐴𝑇𝑀 √𝜏
,  where 𝜎𝐴𝑇𝑀, represents the implied volatility of the ATM option, 

Log-moneyness (𝑘)  =  𝑙𝑛 |𝕂 𝐹𝜏
⁄ |.  
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information, on future expectations of the underlying price, and market conditions (Ulrich 

& Walther, 2020). Given the calibration boost from neural networks, it will be possible to 

compute daily GSVJD parameters from the entire option surface. The summary statistics of 

put options belonging to the HCV and Entire Surface dataset are revealed in Table 4.2.  

 

Table 4.2: Summary Statistics of S&P 500 Put options from HCV and Entire Surface datasets. 

Note: Summary Statistics of S&P 500 put options across the HCV and Entire Surface datasets, are displayed 

in Panel A and B, respectively.  The statistics are computed across each maturity, 𝜏, on a particular day. Volume 

and Open Interest (000s) report accumulated values across daily contracts with similar 𝜏.  Bid-, Ask-, and Mid-

prices are denoted in $, whereas 𝜎𝐴𝑇𝑀 , represents implied volatilities of the most ATM option and 𝑁𝑃 reveals 

number of put options. Standardized- and  log-moneyness are depicted by 𝑚 and 𝑘, respectively, along with 

𝑚𝑜𝑛 = 𝕂 𝕊⁄ .  

 Mean SD P25 P50 P75 

Panel A: HCV      

Bid 56.99 99.84 5.00 20.70 67.20 

Ask 58.36 101.75 5.40 21.40 68.70 

Mid 57.67 100.79 5.20 21.05 68.00 

Volume 90.68 42.78 63.23 81.85 105.89 

Open Interest 1357.46 510.13 938.59 1337.78 1722.96 

𝑚 -2.13 2.41 -3.38 -1.55 -0.35 

𝑘 -0.11 0.13 -0.18 -0.09 -0.02 

𝑚𝑜𝑛 0.90 0.11 0.83 0.92 0.98 

𝜏 42.91 26.98 23.00 37.00 59.00 

𝑁𝑃 161.08 45.47 128.00 155.00 188.00 

𝜎𝐴𝑇𝑀 19.06% 7.69% 13.47% 17.55% 23.14% 

Panel B: Entire Surface      

Bid 94.03 125.77 13.90 50.20 125.30 

Ask 95.91 127.88 14.40 51.40 127.50 

Mid 94.97 126.81 14.15 50.80 126.40 

Volume 24.50 33.62 3.17 10.60 32.69 

Open Interest 414.38 483.32 57.12 228.13 601.81 

𝑚 -1.59 1.95 -2.42 -1.09 -0.23 

𝑘 -0.12 0.14 -0.20 -0.10 -0.02 

𝑚𝑜𝑛 0.89 0.12 0.82 0.91 0.98 

𝜏 167.60 101.67 80.00 156.00 253.00 

𝑁𝑃 72.82 58.42 29.00 51.00 105.00 

𝜎𝐴𝑇𝑀 20.03% 6.09% 15.63% 19.47% 23.48% 
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Daily most liquid options have accumulated volumes that are approximately 4 times greater 

than those across maturities within the Entire Surface, as seen in Table 4.2. A wide range of 

strike prices are considered from each day, with two moneyness criteria implemented for 

filtering out illiquid contracts. The 𝑚𝑜𝑛 statistic reveals more than 75% of put options are 

OTM. Recall, only option contracts expiring within 7 and 365 days were considered. The 

mean maturity in the HCV dataset is approximately 43 days, with a median of 37.00 days. 

In contrast, across the Entire Surface, the average and median contract durations are 167.60 

and 156.00 days, respectively.  As opposed to a single maturity in the HCV dataset on a given 

day, the Entire Surface comprises of 9 unique maturities, on average.  This shows that the 

Entire Surface dataset is significantly larger, consisting of an impressive range of moneyness 

spanning over multiple volatility smiles, with respect to each day. Furthermore, Table 4.2 

reveals approximately 73 daily put contracts traded across each maturity, in comparison to 

161 for the most liquid maturity. Hence, on average, calibration to the entire surface, would 

be conducted on approximately 677 daily put options. For the GSVJD model, this would be 

computationally infeasible with Monte Carlo simulations, given the current resources at 

hand.  

 

4.3 Comparing Calibration of Stochastic Processes 

 

Prior to proceeding with the neural network framework, it is important to examine 

calibration performances of various stochastic processes. The following four model are 

analysed: Heston (Heston, 1993),  Bates (Bates, 1996) , Andersen and Piterbarg (Andersen 

& Piterbarg, 2007), and GSVJD (Fusari et al., 2024). Recall, from (17) and (18), it can be 

shown that the GSVJD nests, these three processes. When jumps are not considered (λ = 0), 

the GSVJD resembles the Andersen and Piterbarg process, which can acknowledge strict 

local martingale tendencies within the price of the asset. However, for 𝑝 = 0.5, such 

tendencies cannot be captured. Under this condition, for  λ = 0 and  λ > 0, the GSVJD 

reveals Heston and Bates models, respectively, with the latter addressing price jumps.  
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The stochastic processes are computed using 1,000 Monte Carlo simulations44, with a 

timestep of 
1

365  × 5
. They are calibrated to daily most liquid S&P 500 put options, with the 

objective of minimising 𝑅𝑀𝑆𝐸(𝜎,𝑡), using Differential Evolution. The study opts against the 

predetermination of parametric values, despite it being common practice to reduce 

computational costs. A system with an Intel-i7 processor was not practical for daily 

calibrations, over the large study period. Hence, the High-Performance Compute Clusters, 

at the University of Glasgow were accessed45.  

 

Table 4.3: Calibration Performances of Stochastic Processes. 

Note: Summary Statistics of calibration performance, 𝑅𝑀𝑆𝐸(𝜎,𝑡), and time (hours), across the entire sample 

period, for each stochastic process, are displayed in Panel A and B, respectively.  

 mean std P25 P50 P75 max 

Panel A: 𝑅𝑀𝑆𝐸(𝜎,𝑡)       

Heston 4.53% 3.64% 2.36% 3.40% 5.20% 31.19% 

Bates 0.36% 0.34% 0.18% 0.28% 0.41% 3.96% 

Andersen and Piterbarg 3.60% 3.09% 1.79% 2.64% 4.13% 30.26% 

GSVJD 0.31% 0.35% 0.12% 0.18% 0.33% 3.96% 

Panel B: Time       

Heston 0.66 0.36 0.40 0.59 0.82 2.92 

Bates 1.42 0.68 0.89 1.27 1.80 5.40 

Andersen and Piterbarg 1.38 0.39 1.15 1.35 1.60 3.32 

GSVJD 3.56 1.20 2.67 3.34 4.19 9.54 

The calibration performance and time metrics from Table 4.3, reveal a trade-off between 

computational efficiency and accuracy. The average 𝑅𝑀𝑆𝐸(𝜎,𝑡) values are significantly 

larger for the Heston and Andersen and Piterbarg models, which do not take jumps into 

account. The calibration error from both models, peak on April 9, 2020, at 31.19% and 

30.26%, respectively. Contrastingly, the worst performance from the Bates and GSVJD 

models, is lower than the sample period average from Heston error metrics, and only 

 
44 The Heston and Bates models, possess various closed form solutions, however, to maintain consistency with 

remaining models, Monte Carlo simulations were employed.  

45 For more information, refer to: University of Glasgow - MyGlasgow - IT - High Performance Compute 

Clusters. 

https://www.gla.ac.uk/myglasgow/it/hpcc/
https://www.gla.ac.uk/myglasgow/it/hpcc/
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marginally higher than that from the Andersen and Piterbarg stochastic process. In the 

respective order, these performances46 were witnessed on March 11, 2020, and January 27, 

2021. It is evident that the inclusion of jumps, significantly improves calibration 

performances. Furthermore, the ability to capture strict local martingale tendencies, by not 

fixing 𝑝 = 0.5, enhances calibration. The GSVJD provides an average 𝑅𝑀𝑆𝐸(𝜎,𝑡) of 0.31%, 

across the sample period, compared to 0.36% from the Bates model. The difference is 

marginal, but the former excels with respect to the 25th, 50th (median) and 75th percentiles 

values. However, despite performing best, the GSVJD consists of the greatest number of 

parameters, and is therefore associated with the largest computational cost. It requires 3.56 

hours, in comparison to the 0.66, 1.38, and 1.42 hours needed by the Heston, Andersen and 

Piterbarg, and Bates models, respectively.  

 

Figure 4.1: Calibration Performances of Stochastic Processes. 

 

Note: Calibration performances of the GSVJD, Andersen and Piterbarg, Bates, and Heston stochastic 

processes, over daily S&P 500 put options between 2019 and 2022. The Box Plot (left) illustrates the 

distribution of log 𝑅𝑀𝑆𝐸(𝜎,𝑡), whereas the historical performances (right) are revealed over the sample period.   

The computational inefficiencies associated with the GSVJD model justifies why 

practitioners might want to stay clear of it. However, it possesses superior quality in 

capturing crucial market price characteristics during calibration.  The box plot, along with 

that of historical performances for the log 𝑅𝑀𝑆𝐸(𝜎,𝑡) metric, illustrated in Figure 4.1, reveal 

 
46 The Bates model delivered a very similar metric on January 27, 2021, whereas the GSVJD documented an 

𝑅𝑀𝑆𝐸(𝜎,𝑡) value of 1.84% on March 11, 2020. 
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strong and reliable calibration performances from the GSVJD model. Specifically, these 

plots highlight preference over the Bates, maintaining consistency with Table 4.3. Observe, 

the median performance of the GSVJD model is equivalent to that at the 25th percentile of 

the Bates process.  

 

The performances of the GSVJD model in Figure 4.2, reveal approximately 95% of the error 

metrics to be below 1%, which further cements the pricing strength of the model. Naturally, 

across a sample of 1,000 trading days, there are bound to be exceptions in the form of sharp 

spikes, with two such instances standing out. First, the period aligning with the start of the 

COVID-19 induced lockdown, and subsequent market crash (March 9 – 16, 2020), 

experienced an average 𝑅𝑀𝑆𝐸𝜎,𝑡 of 1.56%. Second, the highest error metric of 3.96% was 

encountered on January 27, 2021, a day corresponding with the short squeeze on the 

GameStop stock. Fusari et al. (2024) resort to dropping days beyond the 95th percentile of 

𝑅𝑀𝑆𝐸𝜎,𝑡, however, this practice is ignored to provide a holistic analysis of bubble detection, 

especially during the COVID-19 induced market crash period.  

 

Figure 4.2: GSVJD Calibration Performances: S&P 500 Index (2019 – 2022). 

 

Note: GSVJD Calibration performances measured by 𝑅𝑀𝑆𝐸(𝜎,𝑡) (%), over daily S&P 500 put options during 

the study period, along with the mean, median and P95 (95th percentile) values.   

The superiority of the GSVJD model, in comparison to its counterparts, has been depicted 

within this section. The ability to capture volatility mean-reversion, jumps and strict local 
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martingale tendencies, make it effective accurately price options, in order to detect bubbles 

without suffering from a joint-hypothesis related issue. However, it is plagued with a major 

computational cost, which can be unattractive for practitioners preferring tractability. 

Therefore, to make the three-step approach more attractive for real-time bubble detection, a 

deep calibration neural network framework is required.  

 

4.4 Deep GSVJD Calibration 

 

The deep calibration framework is engineered to replace Monte Carlo simulations, during 

estimation of the GSVJD model, to boost efficiency without sacrificing accuracy. The 

framework comprises of two steps: forward pass and backward pass. The former is devoted 

to making the network comprehend dynamics of the GSVJD process, whereas the latter 

calibrates parameters from market data, using trained hidden layers from the first step. In 

3.2, it was revealed that the optimal network architecture would be found by  an extensive 

random search over 720 hyperparametric combinations, with each undergoing a 3-fold cross 

validation, over a synthetic dataset.  

  

The intensive training and testing procedures for determining the optimal architecture for 

bubble detection are briefly summarized below. For more information, the reader is referred 

to Section A of the Appendix. Initially, all architectures underwent a 3-fold cross validation, 

when being trained on the Random Search dataset, such that the top performing networks 

were selected for optimal training. The Random Search dataset comprised of 1 million 

options, diminishing concerns regarding the availability of sufficient data during each 

validation fold. The latter phase included training over the significantly larger, Optimal 

Training dataset, constructed from 10 million options. The performances of all architecture 

during the optimal training phase are strong. A firm preference for hyperparameters 

resembling deeper and wider networks, with smaller batch sizes, is revealed. Given the close 

proximity of training performances, and the need to overcome the joint-hypothesis issue 

during bubble detection, the optimal architecture is selected based on calibrations to market 

data, during the backward pass. 
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The hidden layers from each optimally trained architecture are frozen and carried to the 

backward pass. Since the weights and biases within these layers are already determined, the 

network solely operates as a numerical solver during the calibration process. When applied 

to the HCV dataset, each network delivered strong and stable performances, with all but one 

being superior to the benchmark Monte Carlo calibrations of the GSVJD. The best 

performing architecture was the deepest and widest, with the smallest batch size. It consisted 

of 4 hidden layers, 40 nodes, with ELU activation and a batch size of 2048, improving 

computational efficiency and accuracy by the approximate respective magnitudes of 254 and 

2, in comparison to the benchmark.  

 

This enables application of the deep framework, for calibrating the GSVJD model to the 

entire surface. Hence, allowing for bubble detection, using the three-step approach, with an 

improved ability to capture the forward-looking expectations of market participants. Recall, 

the goal for the deep calibration framework is to replace Monte Carlo simulations, as a 

numerical solver. This section proceeds with comparing GSVJD calibrations from both 

methods, over the daily most liquid options. Next, deep framework is employed towards 

calibrating the stochastic process to the entire surface, prior to highlighting the wide-scale 

application of this practice during bubble detection.  

 

4.4.1  Monte Carlo Simulations vs. Neural Networks 

 

Initially, during the benchmark calibration of the GSVJD model, given the large 

computational burden associated with Monte Carlo simulations, a trade-off between 

robustness and efficiency was experienced. In abidance with Fusari et al. (2024), to strike a 

balance, only the daily most liquid option maturities were considered. To maintain 

consistency during comparisons, the same practice was utilised when employing the deep 

calibration framework. Both approaches were applied to the HCV dataset (Table 4.2), with 

the goal of minimising 𝑅𝑀𝑆𝐸𝜎,𝑡 using Differential Evolution, for daily estimation of GSVJD 

parameters. Hence, the sole purpose of the neural network is to replace the computational 

cumbersome Monte Carlo simulations, as a numerical solver. The summary statistics of 

performance and calibration time, with respect to the deep calibration framework, are 

reported in Table 4.4.  
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As seen in Table 4.3, the GSVJD model provided superior performances in comparison to 

the Heston, Andersen and Piterbarg, and Bates stochastic processes, by recording an average 

𝑅𝑀𝑆𝐸𝜎,𝑡 of 0.31%, over the entire sample period.  However, reliance on Monte Carlo 

simulations created a large computational burden, motivating the recommendation of the 

deep calibration framework. On average, the neural network required 0.014 hours (nearly 50 

seconds) for daily calibrations, in contrast to the 3.56 hours needed by the benchmark47. It 

increased efficiency by an order of magnitude of 254 and was also 48 times faster than the 

Heston model, despite estimating 4 additional parameters. Therefore, the need for heavy 

computational resources is entirely diminished, when the three-step approach for bubble 

detection is enhanced by the deep calibration framework. Nevertheless, the boost in 

efficiency would be futile if the deep calibration framework is unable to at least match the 

accuracy of the benchmark.  

 

Table 4.4: Performance of Deep Calibration to HCV put options. 

Note: Summary Statistics of GSVJD calibration performance, 𝑅𝑀𝑆𝐸(𝜎,𝑡), and time (hours) using the Deep 

Calibration Framework, across the entire sample period.  

 mean std P25 P50 P75 

𝑅𝑀𝑆𝐸𝜎,𝑡 0.17% 0.23% 0.06% 0.10% 0.20% 

Time 0.014 0.005 0.010 0.013 0.017 

The application of machine learning models is typically associated with a trade-off between 

accuracy and efficiency, in abidance with their respective benchmarks. It is common practice 

across literature to aim for improving efficiency, with the condition of at least matching the 

performances of the benchmark model. The deep calibration framework does one better, and 

outperforms its benchmark, on both grounds. As witnessed in Table 4.4, the neural network 

approximately doubled the calibration accuracy by reporting an average 𝑅𝑀𝑆𝐸𝜎,𝑡 of 0.17%. 

Interestingly, its median and 75th percentile values, 0.10% and 0.20%, are lesser than the 

respective 25th percentile and mean 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics, 0.12% and 0.31%, from the Monte 

 
47 These calibrations were conducted on a personal computer with an i7-processor, in contrast to requiring 

High-Performance Computer Clusters, when using Monte Carlo simulations. 



 144 

 

 

Carlo simulations. Naturally, the deep calibration framework also outperforms the metrics 

of the other stochastic process, as it is trained to learn the dynamics of the GSVJD model.  

 

Figure 4.3: GSVJD Calibration Performances: Benchmark vs. Deep Calibration Framework. 

 

Note: GSVJD Calibration performances measured by 𝑅𝑀𝑆𝐸(𝜎,𝑡) (%), over daily S&P 500 put options between 

2019 and 2022, using Monte Carlo Simulations (left) and the Deep Calibration Framework (right).  

Large credit is due to the intensive training step dedicated towards selecting the optimal 

forward pass architecture. The random search, coupled with 3-fold cross validation training 

over a synthetic dataset, ensures that the best selected hyperparameter combination is robust 

to various market scenarios. Recall, the network is trained on a large synthetic dataset, such 

that it becomes aware of various market regimes. The benefits of this practice are observed 

when comparing the standard deviations of both approaches. The benchmark provides an 

𝑅𝑀𝑆𝐸𝜎,𝑡 standard deviation of 0.35% (see Table 4.3), whereas Table 4.4 reveals 0.23% for 

its counterpart. This indicates strong capabilities of the neural network to calibrate 

parameters, by comprehending the various market regimes, across the large sample period. 

Furthermore, given the forward pass is a one-time requirement, the creation of the synthetic 

dataset used 10,000 Monte Carlo simulations, compared to the 1,000 employed by the 

benchmark calibration. The number of simulations in the latter instances was restricted, 

given the high computational cost associated with calibration.  

 

Performances of the deep calibration framework can be further examined and compared to 

those of the benchmark in Figure 4.3. A quick glance reveals  𝑅𝑀𝑆𝐸𝜎,𝑡 metrics over the 

entire sample from the deep calibration framework, to be more stable, with fewer spikes. 



 145 

 

 

Furthermore, remarkably, it can be observed that the calibration error across 95% of the 

sample period does not exceed 0.46%, compared to 1.02% when using the benchmark. 

However, similar to its counterpart, the neural network struggled during the period 

corresponding to the COVID-19 induced market crash lockdown (March 9-16, 2020) and on 

January 27, 2021, a day synonymous with the GameStop stock short squeeze. During the 

former period, the neural network recorded an average metric of 1.29%, whereas on latter 

day, revealed 3.94%. In both instances, the benchmark provided larger errors of 1.56%, and 

3.96%, respectively. The performance of the deep calibration framework between March 9-

16, 2020, are very appreciative, considering the extreme volatile nature of the market during 

this period.  

 

4.4.2  GSVJD Calibration to the Entire Surface 

 

The development of the deep calibration framework for estimating GSVJD parameters was 

motivated by improving computational efficiency. It is engineered to replace Monte Carlo 

simulations as numerical solvers within the three-step approach, such that daily option price 

surfaces can be considered for bubble detection. Information regarding the underlying price, 

varies substantially across different levels of maturity, within the entire surface (Ulrich & 

Walther, 2020). Hence, to capture forward looking expectations of market participants to the 

fullest extent possible, the GSVJD model is calibrated to the entire surface. During previous 

calibrations using the daily most liquid option prices, such information was only partially 

acknowledged.  

 

The deep calibration framework is applied to the Entire Surface dataset (see Table 4.2), and 

the summary statistics of the 𝑅𝑀𝑆𝐸𝜎,𝑡 metric and computational time, are displayed in Table 

4.5. Not all options belonging to the fixed moneyness-maturity grids of implied volatility 

surfaces are necessarily traded. In such instances, the practitioner would be forced to rely on 

interpolating a selected model to market data, followed by extrapolating to the required 

moneyness-maturity combination. This practice would be ideal, when implementing the 

grid-based two-step neural network calibration approach, as witnessed in Horvath et al. 

(2021). However, it, would induce an additional error, which could hamper the 

conclusiveness of the detected bubbles. Therefore, this study opted to directly calibrate to 
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all traded options on a given day. Nevertheless, the motivation remains the same, as one 

would expect from using implied volatility surfaces.   

 

Table 4.5: Performance of Deep Calibration to Entire Surface put options. 

Note: Summary Statistics of GSVJD calibration performance, 𝑅𝑀𝑆𝐸(𝜎,𝑡), and time (hours) using the Deep 

Calibration Framework, across the entire sample period. 

 mean std P25 P50 P75 

𝑅𝑀𝑆𝐸𝜎,𝑡 0.75% 0.39% 0.53% 0.69% 0.86% 

Time 0.013 0.004 0.010 0.013 0.016 

As revealed previously, the optimal deep calibration architecture outperformed the 

benchmark, on the ground of efficiency and accuracy. Hence, it was applied to calibrating 

from the entire daily surface of S&P 500 put options, between 2019 and 2022. Similar to the 

HCV dataset calibration, the network was paired with a Differential Evolution optimizer, and 

all computations were conducted, with the aim of minimising 𝑅𝑀𝑆𝐸𝜎,𝑡, on a personal 

computer, with an Intel i7 processor. Despite comprising of on average 9 maturities, daily 

calibrations to such an extent are no longer a computational burden, as a result of the massive 

efficiency boost provided by the neural network. 

 

Observe from Table 4.5, the speed of calibration, is marginally faster than that witnessed 

during calibrations to the most liquid smiles. The additional consideration of maturities 

increases the computational time exponentially. When paired with neural networks, the 

Differential Evolution optimiser provides a two-fold speed up (Liu et al., 2019). Recall, the 

neural network computes all option implied volatilities simultaneously, without requiring an 

additional solver. Therefore, the deep calibration framework requires only approximately 

0.013 hours (46.8 seconds) for daily parameter estimation. On average, in comparison to the 

benchmark, despite calibrating from a significantly larger number of put options, it provides 

a speed up with a magnitude of 273.  

 

The average calibration 𝑅𝑀𝑆𝐸𝜎,𝑡 metric is 0.75%, much greater than those observed from 

calibrating to the HCV dataset. However, given that the Entire Surface dataset comprises of, 

on average 9 maturities for each day, these performances are justifiable. There are several 

relatively illiquid options presents in the sample, which create difficulties during model 
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fitting. The calibrations performances are still strong, given a median error of 0.69%. 

Additionally, the 𝑅𝑀𝑆𝐸𝜎,𝑡 does not respectively exceed 0.86% and 1.25%, for at least 75% 

and 95% of the days within the sample period.  

 

Figure 4.4: Deep Calibration Framework to the Entire Surface. 

 

Note: GSVJD Calibration performances measured by 𝑅𝑀𝑆𝐸(𝜎,𝑡) (%), over daily S&P 500 put option surfaces 

between 2019 and 2022, using the Deep Calibration Framework.  

From Figure 4.4, it can be observed that the error is stable across majority of the period, 

barring two instances. As witnessed with previous GSVJD calibrations, these instances 

correspond to the COVID-19 induced lockdown, and subsequent crash period, and January 

27, 2021, a day that experienced the GameStop stock short squeeze. During that latter, 

𝑅𝑀𝑆𝐸𝜎,𝑡 was measured at 3.21%, lower than that from earlier application of neural 

networks. Alternatively, regarding the former, poor performances were noticed between 

March 3, 2020, and April 6, 2020, with an average error metric of  2.30%. Within this period, 

March 9, 11, and 12, 2020 reveal 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics of 4.01%, 4.41% and 4.11%. The extreme 

volatile nature of markets on these days, along with the first and last of them experiencing 

circuit breakers, induced pricing difficulties.  

 

These difficulties were further exacerbated by considering several maturities, plagued with 

relatively illiquid options, during calibrations. In comparison with calibrations to the HCV 

dataset, this particular period of poor performances, is extended. However, it is consistent 

with the reasoning of extreme volatility, given the  COVID-19 induced market crash. 

Nevertheless, on average, across the sample period, calibration performances are strong and 
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stable, enabling the use of estimated parameters for pricing call options, to proceed with 

bubble detection. The standard deviation of 𝑅𝑀𝑆𝐸𝜎,𝑡 in Table 4.5, is only marginally higher 

than that observed in Table 4.3, corresponding to benchmark calibrations.  

 

4.4.3  GSVJD Calibration for Bubble Detection 

 

The superiority of the deep calibration framework in comparison to Monte Carlo simulations 

has been acknowledged in 4.4.1. Furthermore, the efficiency boost allowed for GSVJD 

parametric estimations from across the entire surface. Calibrations in  4.4.1 and 4.4.2 were 

conducted on the same differential evolution seed for direct comparisons. However, such a 

practice can hamper the robustness of bubble detection, given that optimizers are vulnerable 

to the problem of obtaining non-unique solutions (Wshah et al., 2020).  

 

A common practice is to employ parameters from the previous day as initial values (Büchel 

et al., 2022), but this could be problematic when the market experiences extreme scenarios. 

Hence, it is difficult to rely on the 𝜌 and 𝑝 conditions for detecting bubbles. Naturally, this 

raises a question regarding the employment of specialized stochastic processes, capable of 

identifying strict local martingale tendencies, over conventional methods such as Heston and 

Bates models. Although computational efforts are reduced, as revealed in Table 4.3, accuracy 

is sacrificed. The GSVJD method is still better equipped for pricing options during potential 

periods of exuberance, making the three-step approach less vulnerable to a joint-hypothesis 

related issue. The impressive sophistication of the GSVJD process is preciously why a deep 

calibration framework was engineered to overcome its computational issues. Taking 

advantage of the efficiency boost provided by the deep calibration framework, daily GSVJD 

parameters are computed over 10 different seeds48. Summary statistics of average parameters 

estimated from the most liquid cross section of options, along with the 𝑅𝑀𝑆𝐸𝜎,𝑡 performance 

metric, are reported in Table 4.6.  

 

 
48 Given the need for calibrating the entire sample over multiple seeds, the High Performance Computer 

Clusters, at the University of Glasgow were accessed.  
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The average calibration performance across all seeds from Table 4.6, strongly resembles 

those reported in Table 4.4. Moreover, all seeds display their worse performance on January 

27, 2021, with a mean 𝑅𝑀𝑆𝐸𝜎,𝑡 metric of 3.94%. Whereas, during the period between March 

9 – 16, 2020, performance averages at 1.24%. The consistency across the seeds, reveals 

robustness of the deep calibration framework, when calibrating to put option implied 

volatilities. However, as observed from Table 4.6; the mean of standard errors over all seeds, 

associated with the estimation of each parameters are large, especially for 𝑝 and 𝜌. This is 

consistent with Fusari et al. (2024), who acknowledge the high standard errors corresponding 

with daily parametric calibrations. It is due to such reasoning; conditional tests were 

integrated into the final phase of the three-step approach.  

 

Table 4.6: Summary Statistics of Deep Calibration to HCV put options. 

Note: Summary Statistic for average daily calibrated GSVJD parameters computed from the most liquid cross 

section, error metric (𝑅𝑀𝑆𝐸𝜎,𝑡), using the Deep Calibration Framework, across 10 seeds. The table reports 

the mean, standard deviation (std), 25th, 50th and 75th percentile (P25, P50, and P75) values, and standard 

errors (SE). 

 mean std P25 P50 P75 SE 

𝜅 1.598 1.111 0.808 1.435 2.099 0.324 

𝜎𝑣 1.309 0.549 0.917 1.327 1.712 0.149 

�̅� 0.093 0.076 0.034 0.072 0.131 0.016 

𝑉0 0.036 0.029 0.014 0.026 0.050 0.003 

𝜌 -0.628 0.249 -0.830 -0.644 -0.464 0.066 

𝑝 0.631 0.241 0.470 0.640 0.775 0.073 

𝜆 0.192 0.303 0.080 0.116 0.180 0.046 

𝜇𝑦 -0.231 0.137 -0.316 -0.209 -0.138 0.038 

𝜎𝑦 0.295 0.127 0.203 0.278 0.377 0.023 

𝑅𝑀𝑆𝐸𝜎,𝑡 0.17% 0.23% 0.06% 0.11% 0.19% - 

The ND condition ensures that the call option and underlying price bubbles share a linear 

relationship, with the magnitude of the former acting as the lower bound to that of the latter. 

Therefore, the presence of type III bubbles in call option prices admit strict local martingale 

tendencies in the underlying process. Furthermore, through a robustness check, Fusari et al. 

(2024) reveal that strict local martingale conditions for parameters 𝜌 and 𝑝, have a positive 

impact on the magnitude and probability of bubbles.  Hence, in the latter stages of the study, 
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an identical robustness check is implemented to examine the consistency of bubbles 

identified from parameters estimated by the deep calibration framework, and the strict local 

martingale condition.   

 

A similar trend is witnessed with respect to Entire Surface calibrations over the various 

seeds. The distribution of calibration performances, measured by 𝑅𝑀𝑆𝐸𝜎,𝑡 in Table 4.7 are 

near identical to those from Table 4.5. Moreover, during the period of March 3, 2020, and 

April 6, 2020, error averaged at 2.32%, whereas on the day of the GameStop short squeeze, 

it recorded 3.21%. Even calibrations to the Entire Surface reveal large standard errors for 

parameters 𝜌 and 𝑝; hence the detection of bubbles must rely on the statistical test, in the 

final phase of the three-step approach.  As proposed for HCV calibrations, a robustness check 

is conducted to examine the impact of the strict local martingale conditions for parameters 

𝜌 and 𝑝 (obtained from the entire surface) on the formation of bubbles. 

 

Table 4.7: Summary Statistics of Deep Calibration to Entire Surface put options. 

Note: Summary Statistic for average daily calibrated GSVJD parameters computed from the Entire Surface, 

error metric (𝑅𝑀𝑆𝐸𝜎,𝑡), using the Deep Calibration Framework, across 10 seeds. The table reports the mean, 

standard deviation (std), 25th, 50th and 75th percentile (P25, P50, and P75) values, and standard errors (SE). 

 mean std P25 P50 P75 SE 

𝜅 2.849 1.238 1.894 2.698 3.606 0.436 

𝜎𝑣 1.590 0.535 1.234 1.674 1.997 0.145 

�̅� 0.065 0.033 0.040 0.061 0.089 0.006 

𝑉0 0.045 0.061 0.015 0.029 0.057 0.001 

𝜌 -0.691 0.203 -0.846 -0.712 -0.561 0.048 

𝑝 0.725 0.258 0.567 0.687 0.830 0.074 

𝜆 0.113 0.127 0.054 0.078 0.114 0.030 

𝜇𝑦 -0.354 0.217 -0.485 -0.320 -0.192 0.064 

𝜎𝑦 0.327 0.170 0.191 0.292 0.433 0.038 

𝑅𝑀𝑆𝐸𝜎,𝑡 0.74% 0.39% 0.53% 0.70% 0.86% - 

Despite revealing large standard errors, proceeding with the average GSVJD parameters 

improves robustness during bubble detection. Overall, application of neural networks for 

calibrating the GSVJD model are favourable over the alternative reliance on Monte Carlo 

simulations. The improved accuracy of calibrating to market put options reveals strong 
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capabilities of overcoming the joint hypothesis issue during bubble detection. Furthermore, 

highly efficient nature of practice makes the three-step approach more tractable, and 

therefore attractive to practitioners for real-time bubble identification. The deep calibration 

framework is integrated only to replace Monte Carlo simulations as a numerical solver when 

estimating parameters of the GSVJD model. Inspired by Biagini et al. (2024), parameters 

from each seed are employed for pricing call options using (19), (20) and (22), with average 

modelled prices being considered for bubble detection. This practice is implemented for both 

sets of parameters, attempting to improve the robustness of the deep calibration framework 

during bubble detection.  

 

It is crucial to empirically analyse the bubbles detected from integrating the deep calibration 

framework into the three-step approach. This action is undertaken in the next chapter, with 

respect to options from the daily most liquid cross section, and entire surface. Calibrating 

GSVJD model for bubble detection, to the entire surface, is beneficial, as it allows to capture 

the forward-looking expectations of market participants to a larger extent. Since these 

parameters are obtained from all traded options on a given day, they are applicable towards 

detecting bubbles across various call option maturity groups, instead of being restricted to 

the most liquid one. Furthermore, the presence of a bubble, across the lifetime of an option 

can also be examined, given the historical calibration of parameters. In real-time such 

applications are difficult to implement, however the massive computational boost received 

from the deep calibration framework, make them an exciting avenue to explore. In all 

instances, average modelled call option prices, across all 10 seeds are considered. 

 

4.5 Summary and Discussion 

 

After constructing a deep framework for calibrating the GSVJD model in the previous 

chapter, the focus shifted to computing its parameters from market put options. Daily 

European-styled options, written on the S&P 500 index, between January 2, 2019, and 

December 30, 2022, were selected for this purpose. The sample includes 1,000 trading days, 

over a span of 4 years. In this chapter, two datasets are introduced, with both undergoing 

intensive filtering and cleaning procedures to limit issues with respect to pricing. The first, 
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HCV, consists of options that correspond to the most liquid maturity, whereas the second, 

Entire Surface, considers all traded options, on a given day.  

 

The HCV dataset allows for a balance between robustness and efficiency during calibration, 

which is crucial when employing Monte Carlo simulations. It is utilised for comparing the 

accuracy and efficiency of the benchmark calibrations to other stochastic processes, in 

addition to those from the neural network framework. The Entire Surface dataset, on average 

considers daily options across 9 maturities, as compared to the singular inclusion within the 

HCV. This roughly translates to the daily calibrations over 677 options when employing the 

former, as opposed to 161 with respect to its counterpart. Calibrations to all traded options 

enabled capturing the forward looking expectations of market participants to a greater extent. 

However, such practices are also plagued with a large computational cost, motivating a need 

for improving efficiency. First, the GSVJD model is compared to other stochastic processes, 

on the grounds of calibrating to market put options, in order to seek for a more efficient 

process, with a similar range of accuracy.  

 

The GSVJD process is compared against the Heston, Bates, and Andersen and Piterbarg 

models, all of which are nested within it, subject to some parametric adjustments. Recall, 

the GSVJD is capable of addressing strict local martingale tendencies and jumps within the 

asset price process. In regard to the others, the former characteristic is solely acknowledged 

by the Andersen and Piterbarg model, whereas the latter is only captured by the Bates 

process. The Heston process does not reflect either and has the least number of parameters 

required to be computed. Hence, it is the most efficient in comparison to the other processes. 

The comparison reveals advantages for methods that capture jumps, and address strict local 

martingale tendencies, with the former providing greater benefits. Overall, as hypothesised 

(4.1) the GSVJD process outperformed its counterparts, when calibrated to the HCV dataset. 

Nevertheless, the supreme performances came at a cost, given the need for estimating 9 

parameters during daily calibrations, on average, 3.56 hours were required. The highly 

inefficient nature of calibrations makes the GSVJD process unattractive to practitioners, who 

prefer tractability. However, its quality cannot be ignored during real-time bubble detection. 

Selecting an alternative process would improve efficiency, but could hamper the 

conclusiveness of identified bubbles, given the potential existence of a joint-hypothesis 
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related issue. Therefore, a requirement for applying the deep calibration framework to the 

GSVJD process, for parametric estimations arose.  

 

The deep calibration framework significantly boosted computational efficiency while even 

improving accuracy. It operates in two phases: forward pass, where neural networks learn 

the GSVJD dynamics, and backward pass, during which parameters are calibrated from 

market data. The architecture for the forward pass was determined from a random search, 

with the best performing networks being selected for optimal training. In the backward pass, 

frozen hidden layers from each optimally trained network were used as numerical solvers, 

achieving calibration speeds up to 542 times faster than Monte Carlo simulations, with most 

networks also outperforming the benchmark, in regard to accuracy49. The top architecture 

featured 4 hidden layers, 40 nodes, with ELU activation and batch size of 2,048, 

demonstrating a 254-fold increase in efficiency and approximately doubling the calibration 

accuracy. The significant enhancement in efficiency is consistent with the hypothesis from 

4.1, but in regard to accuracy it outperforms the original requirements of preventing large 

scale sacrifices. A detailed comparison of GSVJD model calibrations from Monte Carlo 

simulations, and the optimal neural network framework, was conducted. Performances of 

the latter were already established as superior, but were also revealed to be stabler, consisting 

significantly fewer error metric spikes, across the sample period. Interestingly, both 

approaches performed poorly at similar instances, which corresponded to the COVID-19 

induced market crash, and GameStop stock short squeeze.  

 

The improved calibration accuracy and efficiency enabled the application of the deep 

calibration framework to the Entire Surface dataset. Remarkably, despite considering a 

larger number of options, the speed of calibration was not impacted. This could be credited 

to the benefits of parallel processing achieved from pairing the Differential Evolution 

optimiser with neural networks. The average error metric was much higher, in comparison 

to the HCV dataset calibrations. Additionally, calibrating to the Entire Surface delivered poor 

performances over a greater period during the COVID-19 induced market crash. However, 

this is justifiable given the extreme volatile nature of markets, and the potential presence of 

 
49 See Appendix (Section A) for more information on the performance of neural networks during  the 

backward pass stage.  
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relatively illiquid options, across multiple maturities considered during calibrations. Overall, 

the error metric was stable, building a strong case for continuing with the detection of 

bubbles, following calibration of the GSVJD model to all daily traded options. Furthermore, 

it allows for examining the presence of bubbles within various option maturities, and during 

the lifetime of options. Such applications are difficult to implement in real-time, however 

the deep calibration framework, enabled their exploration in the next chapter, to test the 

remaining hypotheses from 4.1.  
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5 Chapter 5: 

Empirical Analysis 
 

 

 

 

In Chapter 4, the deep calibration framework was applied to estimate GSVJD parameters 

from daily S&P 500 put options. Over a four-year period, calibration to the most liquid 

options, revealed a boost in accuracy and computational efficiency by 2 and 254 orders of 

magnitude, respectively. The improved accuracy demonstrated the neural network’s strong 

comprehension of GSVJD dynamics. Whereas superior efficiency allowed for calibrating 

from the entire daily put option surfaces. When applied to the entire surface, despite 

considering a remarkably greater number of option contracts, average calibration time, 

remained unchanged over the sample period.  

 

The primary purpose of the deep calibration framework is to replace Monte Carlo 

simulations in the three-step approach. In this approach, the GSVJD is calibrated to daily 

put options to ensure alignment between fundamental values and market prices. Given that 

such options cannot display bubbles, accurate calibrations overcome the joint-hypothesis 

issue, which has notoriously plagued the conclusiveness of traditional methods. Proceeding 

from this stage, parameters are utilised to compute the fundamental value of call options for 

bubble detection. If the fundamental value is exceeded by the market price, a call option 

bubble is witnessed, which signals the underlying process to be a strict local martingale. The 
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final stage of the three-step approach is dedicated to statistically testing the difference 

between the fundamental values and market prices.  

 

Recall, under ND, call options with maturity 𝜏, can reveal bubbles in the underlying. Since 

𝜏 < 𝑇, Fusari et al. (2024) admit the underlying bubble cannot be observed to its fullest 

extent. It is only possible to capture the entire bubble via call options prices, when 𝜏 = 𝑇, 

however, as the model horizon is unknown, this is not achievable in practice.  Therefore, 

examining call options can only signal the presence of an underlying bubble. Specifically, 

for 𝜏 < 𝑇, the magnitude of call option bubbles, act as a lower bound to those in the 

underlying. Bubble magnitude grows with 𝜏, and reaches 0 at option expiry. On a given day, 

the size, potential existence of a call option bubble, and the ability to address it in the 

underlying, varies over contract maturities. In Stahl & Blauth (2024) and Biagini et al. 

(2024), bubbles have been identified by making use of option surfaces. These works 

motivated this study to calibrate GSVJD parameters from the entire put option surface, such 

that information on forward-looking expectations of market participants is captured to a 

greater extent. However, these studies do not examine and differentiate between the 

magnitude (and existence) of call option bubbles, over different maturities. The current 

chapter contributes to existing literature by employing GSVJD parameters computed from 

daily put options within the HCV and Entire Surface datasets (Table 4.2), to identify, analyse 

and compare, the presence of S&P 500 index price bubbles, according to various call option 

maturity categories. 

 

The deep calibration framework plays a massive role in detecting bubbles across various call 

option maturities. It is due to the computational boost provided by neural networks, that 

GSVJD parameters can be calibrated from the Entire Surface dataset. Moreover, the ability 

to calibrate a sophisticated stochastic volatility jump diffusion model, such as the GSVJD, 

within seconds; makes the application of the three-step approach for real time bubble 

detection more attractive to practitioners. Daily model parameters are calibrated from all 

traded options, and hence applicable to computing the fundamental call option value, across 

various maturities. Furthermore, over the sample period of 4 years, daily parameters can be 

applied to estimating a time series of fundamental values for specific call contracts. 
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Therefore, creating the possibility of examining the formation of bubbles over the lifetime  

of options. This is an additional contribution to the asset pricing bubble detection literature.  

 

The following chapter begins with GSVJD parameters calibrated from the HCV (Table 4.6) 

and Entire Surface (Table 4.7) being utilised to observe bubbles in the daily most liquid cross 

section of call options. Next, the latter set of parameters are considered for identifying 

exuberance within short (8 ≤  𝜏 <  60), medium (60 ≤  𝜏 <  180), and long (180 ≤

 𝜏 <  364) call option maturity groups. The categorisation of these call option maturities for 

bubble detection, is inspired by Jarrow & Kwok (2021, 2024). Finally, those most liquid call 

options revealing exuberance, according to GSVJD parameters from the entire surface, are 

selected for examining the formation of bubbles over the option’s lifetime. Market analysis 

of detected bubbles is conducted in reference to reports published by Zacks Investment 

Research, Inc., unless specified. Prior to delving into the detection of daily S&P 500 bubbles, 

an overview of required call option datasets, is provided.  

 

5.1 Call Options Data: S&P 500 Index 

 

Bubbles in the S&P 500 index are identified by examining European-styled call option 

contracts, across various maturity groups. In alliance with daily put options from Table 4.2, 

contracts over a wide strike range at increments of $5.00, were selected, and filtered using 

similar moneyness and maturity criteria, with computation of relevant risk-free rates and 

dividend yields using (49) and (50), respectively (see 4.2.1 for more details). The sample 

period spans over 4 years between January 2, 2019, and December 30, 2022, comprising of 

1,000 trading days, with all market related data being collected from Refinitiv Eikon. Since, 

call options are utilised for bubble detection all selected contracts satisfy the ND condition 

from Merton (1973). It is only when this condition is met that bubbles in the underlying and 

call option prices share a linear relationship, with the magnitude of the latter, acting as a 

lower bound to that of the former. 

  

The summary statistics of the HCV call option dataset is presented in Table 5.1. This dataset 

comprises of the daily most liquid cross section of call options over the sample period. 

Similar to HCV put options from Table 4.2, the call HCV dataset revealed 75% of its 
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contracts were due to expire within 59 days, showing relatively higher levels of liquidity 

amongst shorter contracts. A comparison between put and call options, showed the former 

as, more liquid by an approximate factor of 1.54, and OTM by a greater extent. If the 

maturity filtering were stricter, as in Fusari et al. (2024), and dropped options with maturity 

exceeding 50 days, then more than 25% of the study period would not comprise of the most 

liquid option maturity. The first task of this chapter is to utilise GSVJD parameters calibrated 

to put options from HCV and Entire Surface datasets (see Table 4.2), to identify for bubbles 

in the call HCV dataset. Next, parameters from the Entire Surface are employed for detecting 

bubbles across various maturity groups.  

 

Table 5.1: Summary Statistics of Deep Calibration to HCV call options. 

Note: Summary Statistics of S&P 500 Call options across the HCV dataset. The statistics are computed across 

each maturity, 𝜏, on a particular day. Volume (000s) reports accumulated values across daily contracts with 

similar 𝜏.  Bid-, Ask-, and Mid-Prices are denoted in $, along with 𝑚𝑜𝑛 = 𝕂 𝕊⁄ .  

 Mean SD P25 P50 P75 

Bid 98.87 166.17 3.60 35.10 125.80 

Ask 100.59 167.77 4.00 36.10 128.10 

Mid 99.73 166.96 3.80 35.60 126.95 

Volume 58.59 29.93 38.02 51.94 72.12 

𝑚𝑜𝑛 1.03 0.09 0.99 1.03 1.08 

𝜏 42.91 26.98 23.00 37.00 59.00 

The examination of bubbles across various maturity groups is conducted by dividing daily 

call contracts into three categories; short, medium, and long, with summary statistics for 

each reported in Table 5.2. The short group corresponds to options with 8 ≤  𝜏 <  60 days. 

Since potential bubbles disappear over very small maturities, options with 𝜏 ≤ 7 days were 

discarded. The upper bound for this group was set at 60 days to abide by the average maturity 

of HCV call options (see Table 5.1). The bounds for the medium (60 ≤  𝜏 <  180) and long 

(180 ≤  𝜏 <  365) maturity groups, are set in the accordance to  (Jarrow & Kwok, 2021, 

2024). Throughout the study, given low liquidity, option contracts with 𝜏 >  365 days were 

discarded. Additionally, since bubbles are dependent on the option maturity, a single cross-

section must be selected for each day. Therefore, for each group, only the daily cross-

sections of call options, belonging to the maturity with the highest cumulative volume were 

considered.  
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Table 5.2: Summary Statistics of daily most liquid call options from each Maturity Group. 

Note: Summary Statistics of the daily most liquid call options from each maturity group are displayed in 

respective panels. Volume (000s) reports accumulated values for daily contracts, across a single 𝜏, on a given 

day. Bid-, Ask-, and Mid-Prices are denoted in $, along with 𝑚𝑜𝑛 = 𝕂 𝕊⁄ .  

 mean std P25 P50 P75 

Panel A: Short (8 ≤  𝜏 <  60)      

Bid 146.10 179.38 35.70 93.30 185.60 

Ask 148.65 181.02 37.00 95.40 189.20 

Mid 147.38 180.19 36.35 94.40 187.45 

Volume 45.43 29.04 26.15 38.84 57.39 

𝑚𝑜𝑛 0.99 0.07 0.96 0.99 1.02 

𝜏 30.81 14.07 18.00 30.00 42.00 

Panel B: Medium (60  ≤  𝜏 <  180).       

Bid 213.46 218.78 84.70 154.90 254.20 

Ask 216.05 220.45 86.10 156.70 257.60 

Mid 214.76 219.61 85.40 155.80 255.85 

Volume 24.93 25.33 6.49 16.49 36.61 

𝑚𝑜𝑛 0.99 0.09 0.96 1.00 1.02 

𝜏 93.59 24.48 74.00 87.00 108.00 

Panel C: Long (180 ≤  𝜏 <  365).      

Bid 324.92 272.80 147.80 255.30 409.35 

Ask 329.72 274.48 150.93 260.55 415.08 

Mid 327.32 273.61 149.66 257.80 412.25 

Volume 4.46 5.21 1.40 2.83 5.31 

𝑚𝑜𝑛 0.98 0.12 0.93 0.99 1.04 

𝜏 253.50 54.74 205.00 240.00 302.00 

The average maturity of contracts in the short group is 30.81 days, compared to 42.91, 93.50 

and 253.50 days for the respective HCV, medium, and long call options. The accumulated 

volume over the daily cross section of options depicts liquidity. As expected, the short 

maturity group has the most liquid call contracts. The average accumulated volume is 

approximately 2 and 10 times greater than that within the medium and long groups, 

respectively. In comparison to the HCV dataset (Table 5.1), mean volume is only 1.29 times 

smaller, showing close resemblance. Overall, the liquidity of the option decreases with its 

maturity, which is prominently observed over the remaining two groups. Furthermore, the 
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distribution of moneyness is similar across the three maturity groups, heavily concentrated 

around ATM options.  

 

Table 5.3: Summary Statistics of characteristics over the lifetime of Call Option contracts.  

Note: Summary statistics of daily historical time series of call options that revealed bubbles, in accordance 

with GSVJD parameters calibrated from the Entire Surface. Bid-, Ask-, and Mid-Prices are denoted in $, 

whereas maturity, 𝜏, is stated in days, along with 𝑚𝑜𝑛 = 𝕂 𝕊⁄ . Since the study only considers monthly S&P 

500 contracts, all options expire on the third Friday of each month. Call options are categorized by their RICs 

in respective panels, which resemble the month and year of the contract’s maturity.  

RIC (Maturity)  mean std P25 P50 P75 

Panel A: C20 (March 2020)      

Bid 150.96 169.28 43.20 103.20 193.00 

Ask 153.34 171.27 44.20 104.90 195.00 

Mid 152.15 170.27 43.70 103.85 193.55 

𝑚𝑜𝑛 0.99 0.08 0.95 0.99 1.02 

𝜏 186.12 103.35 98.50 186.00 274.50 

Panel B: E20 (May 2020)      

Bid 145.91 153.72 41.05 104.00 195.00 

Ask 149.81 155.95 44.25 106.90 199.25 

Mid 147.86 154.82 42.65 105.60 197.27 

𝑚𝑜𝑛 1.03 0.11 0.98 1.02 1.09 

𝜏 99.60 40.71 70.00 100.00 133.00 

Panel C: F20 (June 2020)      

Bid 198.48 183.67 70.50 155.30 264.40 

Ask 201.62 185.56 72.80 157.00 268.80 

Mid 200.05 184.61 71.55 155.90 266.80 

𝑚𝑜𝑛 0.99 0.11 0.94 0.99 1.03 

𝜏 185.43 103.83 94.75 185.50 275.25 

Panel D: G20 (July 2020)      

Bid 178.57 180.29 66.00 128.10 224.10 

Ask 181.40 181.86 68.20 129.80 228.10 

Mid 179.98 181.07 67.15 129.05 226.05 

𝑚𝑜𝑛 0.99 0.09 0.95 0.99 1.03 

𝜏 91.60 48.99 49.75 91.50 133.25 

Table 5.3 continued… 
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Table 5.3 continued… 

Panel E: I20 (September 2020)      

Bid 230.15 207.46 96.98 170.35 296.42 

Ask 233.03 208.75 99.00 172.60 300.00 

Mid 231.59 208.10 98.21 171.52 298.19 

𝑚𝑜𝑛 0.98 0.11 0.93 0.99 1.01 

𝜏 182.71 102.83 94.00 182.00 270.00 

Panel F: L20 (December 2020)      

Bid 263.44 238.15 106.45 190.90 334.75 

Ask 267.43 239.76 109.10 194.20 340.05 

Mid 265.43 238.93 108.05 192.50 337.55 

𝑚𝑜𝑛 0.98 0.12 0.93 0.99 1.02 

𝜏 184.73 102.22 97.25 184.50 273.25 

Panel G: C21 (March 2021)      

Bid 236.12 202.59 105.20 185.00 299.83 

Ask 240.35 204.90 107.00 188.05 306.75 

Mid 238.24 203.70 106.10 186.50 303.86 

𝑚𝑜𝑛 0.97 0.08 0.94 0.98 1.01 

𝜏 186.11 103.25 98.50 186.00 274.50 

Panel H: D21 (April 2021)      

Bid 196.15 173.77 83.05 154.50 254.83 

Ask 199.41 175.78 84.60 156.35 259.50 

Mid 197.78 174.73 83.76 155.40 257.25 

𝑚𝑜𝑛 0.97 0.06 0.95 0.98 1.01 

𝜏 90.70 49.16 49.00 91.00 133.00 

Panel I: F21 (June 2021)      

Bid 243.72 213.96 97.80 194.70 315.30 

Ask 247.66 216.47 99.20 198.10 322.05 

Mid 245.69 215.17 98.58 196.95 317.95 

𝑚𝑜𝑛 0.97 0.07 0.94 0.98 1.01 

𝜏 185.49 103.85 94.75 185.50 275.25 

Panel J: I21 (September 2021)      

Bid 226.72 220.09 88.30 168.90 283.20 

Ask 228.74 221.45 89.10 170.70 286.10 

Mid 227.73 220.76 88.65 169.95 284.55 

𝑚𝑜𝑛 0.97 0.07 0.95 0.99 1.00 

𝜏 181.75 102.06 93.75 180.50 269.25 

Table 5.3 continued… 



 162 

 

 
Table 5.3 continued… 

Panel K: L21 (December 2021)      

Bid 304.14 312.49 105.00 197.50 367.10 

Ask 307.00 314.33 106.40 199.50 370.50 

Mid 305.57 313.40 105.85 198.85 368.65 

𝑚𝑜𝑛 0.96 0.09 0.94 0.98 1.01 

𝜏 184.76 102.23 97.25 184.50 273.25 

Panel L: A22 (January 2022)      

Bid 238.77 244.67 95.28 170.55 294.30 

Ask 241.16 246.27 96.60 172.50 297.92 

Mid 239.96 245.47 95.89 171.58 295.50 

𝑚𝑜𝑛 0.98 0.07 0.96 0.99 1.01 

𝜏 184.66 102.78 96.50 184.00 271.50 

Panel M: C22 (March 2022)      

Bid 215.50 261.76 60.00 143.95 261.33 

Ask 217.80 263.37 61.30 145.70 264.55 

Mid 216.65 262.56 60.68 144.80 262.71 

𝑚𝑜𝑛 0.99 0.08 0.97 1.00 1.03 

𝜏 185.65 103.14 97.25 185.50 274.25 

Panel N: L22 (December 2022)      

Bid 256.06 257.45 88.80 184.70 331.60 

Ask 259.47 259.69 90.40 187.30 336.20 

Mid 257.76 258.56 89.60 186.00 334.15 

𝑚𝑜𝑛 1.00 0.10 0.96 1.00 1.05 

𝜏 185.55 102.84 97.25 185.50 274.25 

An entirely novel contribution of examining bubbles over the lifetime of call options is 

proposed in this chapter. The examination of such phenomena requires construction of a 

dataset, with historical contract prices, that revealed bubbles when applying GSVJD 

parameters from the entire surface to HCV call options (see 5.2). The summary statistics 

cross section of call option contracts that reveal bubbles on a given day, are displayed in 

Table 5.3. They are categorised according to expiry dates and classified by corresponding 

expiry RICs  (Refinitiv Identification Code)50. For example, consider the RIC ‘C20’, where 

 
50 All S&P 500 index option contracts in this study, expire on the third Friday of the relevant month. For more 

information, please refer to RIC RULES – THOMSON REUTERS SPEED GUIDE. This can be accessed by 

typing ‘RULES2’ in the Eikon Search bar. 
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‘C’ and ‘20’ resemble an option expiring in the month and year of March, and 2020, 

respectively. The time series prices of call contracts aligning with the expiry RICs, are 

collected whilst abiding by 7 <  𝜏 <  365 days condition.  

 

There are 14 unique RICs, each comprising of a wide range of strike prices, as noticed by 

the 𝑚𝑜𝑛 range in Table 5.3. The RICs categorize daily cross-sections of call options that 

have the same expiry date. Over time for each RIC, call contracts reveal decreasing 

maturities. Hence, 𝜏 in Table 5.3, not only provides information on the number of days, 

within the sample period for each RIC. On most occasions, 𝜏 ranges between 8 and 364 days, 

as implied by the imposed maturity conditions. However, there are some exceptions due to 

the consideration of only call options that abide by the ND condition. It is crucial for ND to 

be satisfied, as it ensures a linear relationship between call option and underlying price 

bubbles. Following the examination of relevant call option datasets, this study proceeds with 

the detection of bubbles.   

 

5.2 Call Option Bubbles: Most Liquid Cross Section 

 

The optimal deep calibration framework architecture was employed towards estimating the 

parameters of the GSVJD model, from the HCV and Entire Surface put option datasets. From 

now onwards, those parameters are respectively denoted as 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Daily 

calibrations were conducted within seconds, at high levels of accuracy, improving 

attractiveness of the three-step approach to practitioners. Furthermore, accurate calibrations 

to market put options, provided strong evidence of overcoming the joint hypothesis issue. In 

this section, fundamental values of the most liquid call options are computed for detecting 

daily bubbles in the S&P 500 index. A comparison is made amongst exuberance observed 

from capturing forward looking expectations for the most liquid smile or entire surface.  

 

A bubble is revealed when the market price of the call option exceeds it fundamental value. 

Following comparing modelled and market prices, the magnitude of the call option bubble, 

as a percentage of the underlying price, 𝔹�̂�, is computed (see 3.1.3), such that exuberance 

on a given day, is significant, if 𝔹�̂�  >  𝛼𝜎�̂�, where 𝛼 corresponds to the level of significance, 

and 𝜎�̂� is dependent past information over a given number of days. A significant call option 
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bubble signals the presence of strict local martingale behavior in the underlying price. 

Recall, under the ND condition bubbles in call option and underlying prices share a linear 

relationship, with the magnitude of the former acting as the lower bound to that of the latter. 

The empirical analysis of daily exuberance observed in the S&P 500 index, during January 

2019 and December 2022, is initiated by selecting four different window sizes: 30, 60, 90, 

and 180 days, over three levels of significance, 𝛼 =  {10%, 5%, 1%}.  

 

The window size determines the extent to which information from historical observations 

are considered, whilst examining the significance of the bubble. This might make the method 

seem backward looking, however, past information required is with respect to call option 

prices, which by nature are forward-looking. A trade-off is prevalent during the selection of 

window sizes, which control the quantity of past information utilised for assessing the 

significance of exuberance. The probability of false detection increases with smaller 

windows, whereas larger ones improve on this issue due to their more conservative nature. 

However, the conservative property possessed by longer window lengths, could downplay 

the impact of volatile periods, raising the probability of false negative errors.  

 

The selection of a window length can be interpretated as being analogous to the risk-appetite 

of investors, or alternatively the strictness in authority imposed by regulators (when 

demanding capital reserves in accordance with the observed period of exuberance). For 

instance, a more conservative detection approach would signal lower regulatory pressure on 

capital requirements, and a riskier outlook from investors, who would reveal looser 

preferences towards protecting positions from the potential  presence of bubbles. Hence, it 

is integral to consider different window sizes, and levels of significance, when constructing 

the time-varying threshold, 𝛼𝜎�̂�, during real-time bubble detection.  

 

5.2.1  Key Statistics 

 

Traditional methods directly estimate the fundamental value and provide no consensus of 

assessing the validity of detected bubbles. Alternatively, the three-step approach gives 

validity by estimating the fundamental value of call options using GSVJD parameters, 

calibrated from market put option prices. Recall, due to their bounded payoffs, put options 
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cannot display bubbles, and therefore their fundamental and market values must align. By 

ensuring this, bubble detection does not suffer from the joint hypothesis issue. The 𝑅𝑀𝑆𝐸𝜎,𝑡 

metric measures the degree of accuracy between modelled and market put option implied 

volatilities during calibrations. It is an important metric for assessing the presence of joint-

hypothesis related issues that could plague the conclusiveness of observed bubbles.   

 

As witnessed in Table 4.6 and Table 4.7, 𝑅𝑀𝑆𝐸𝜎,𝑡 was used to evaluate the overall accuracy 

of the deep calibration framework, when applied to the respective HCV and Entire Surface 

datasets. Similarly, the error metric is utilised to examine the performance of the GSVJD 

model, on days that display exuberance (𝔹�̂�  >  𝛼𝜎�̂�) in the S&P 500 index. Along with the 

𝑅𝑀𝑆𝐸𝜎,𝑡 metric, the number of significant bubbles (ℕB) between January 2019 and 

December 2022, with respect to each combination of window sizes and levels of 

significance, are reported in Table 5.4, after considering a burn-in period.  

 

Table 5.4: GSVJD Performances on days with significant HCV call bubbles.  

The 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) error metric, along with number of significant bubbles (ℕ𝐵), and percentage of the sample 

period (excluding burn-in) revealing exuberance, ℕ𝐵(%), reported for days displaying bubbles within HCV 

call options for different levels of significance (𝛼) and windows sizes in respective panels, with regard to 𝜃𝐻𝐶𝑉 

and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  

 𝛼 ℕ𝐵 ℕ𝐵  (%) 𝑅𝑀𝑆𝐸𝜎,𝑡   (%) 

Panel A: 30 days     

HCV 

10% 53.00 5.46% 0.14% 

5% 31.00 3.19% 0.17% 

1% 11.00 1.13% 0.31% 

Entire Surface 

10% 39.00 4.02% 0.95% 

5% 28.00 2.88% 1.05% 

1% 19.00 1.96% 1.06% 

Panel B: 60 days     

HCV 

10% 45.00 4.78% 0.18% 

5% 24.00 2.55% 0.21% 

1% 10.00 1.06% 0.33% 

Table 5.4 continued… 



 166 

 

 
Table 5.4 continued… 

Entire Surface 

10% 34.00 3.61% 0.98% 

5% 21.00 2.23% 1.09% 

1% 13.00 1.38% 1.29% 

Panel C: 90 days     

HCV 

10% 36.00 3.95% 0.19% 

5% 25.00 2.74% 0.21% 

1% 11.00 1.21% 0.31% 

Entire Surface 

10% 32.00 3.51% 1.05% 

5% 25.00 2.74% 1.08% 

1% 15.00 1.65% 1.24% 

Panel D: 180 days     

HCV 

10% 32.00 3.90% 0.18% 

5% 19.00 2.31% 0.23% 

1% 6.00 0.73% 0.24% 

Entire Surface 

10% 31.00 3.78% 1.00% 

5% 23.00 2.80% 1.07% 

1% 17.00 2.07% 1.19% 

The frequency of bubbles observed from calibrating to HCV put options is greater, especially 

over smaller window sizes and more lenient levels of significance. As the strictness of 

detection increases, the difference between number of significant days of exuberance from 

both parameter sets reduces. Moreover, at the 1% level, Entire Surface calibrations capture 

bubbles to a greater extent. Such parameters also reveal low variability in identified 

occurrences, across all windows. This indicates that the bubble detected from Entire Surface 

calibrations are more robust, and not victims of the trade-off associated with the selection of 

window lengths. Unfortunately, the same cannot be concluded about HCV calibrations, and 

hence, a comprehensive market analysis is required to examine robustness.  

 

Alternatively, 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics corresponding to 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 seem to paint a concerning 

picture, despite robustness across windows. The error metric on days of exuberance, across 

the window size are larger than those associated with HCV calibrations. Furthermore, in all 

scenarios, 𝑅𝑀𝑆𝐸𝜎,𝑡 are greater than the 75th percentile of 0.86% (Table 4.7) from over the 

entire sample. The metrics from 𝜃𝐻𝐶𝑉 are significantly lower but do tend to exceed their 

respective 75th percentile (Table 4.6) as well. Although, this could raise concerns about a 
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joint-hypothesis issue, both parameters set reveal bubbles during the COVID-19 induced 

crash period, when the GSVJD performances poorly. This is especially relevant to 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, 

as a large proportion of its identified instances occur between March 13, and April 30, 2020, 

a period during which 𝑅𝑀𝑆𝐸𝜎,𝑡 averaged at 1.41%. Nevertheless, these events are 

economically justifiable in consistency with the local martingale theory of bubbles. 

 

The  identification of such occurrences is actually reflected as a strength capturing forward 

looking expectations of market participants from the entire surface (see 5.2.2). Given the 

varying number of options used during calibrations, the 𝑅𝑀𝑆𝐸𝜎,𝑡 error metrics 

corresponding to 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are not necessarily comparable to those obtained from 𝜃𝐻𝐶𝑉. 

Recall, the Entire Surface, on average, comprises of 9 daily maturities including several 

relatively illiquid contracts.  Regardless, calibration performances are strong, with bubbles 

detected being robust over the different windows. However, for further comparison and 

comprehension of identified exuberance, a market analysis is required.  

 

5.2.2  Market Analysis  

 

Bubble detection in the S&P 500 index prices, between 2019 and 2022, is conducted through 

inspecting HCV call options. Under the ND condition, a significant call option bubble reveals 

presence of strict local martingale tendencies in the underlying price process. The linear 

relation between the two holds, such that the magnitude of the former acts as the lower bound 

to that of the latter. Call option bubbles are estimated by assessing the difference between 

market prices and fundamental values, with the latter being computed from GSVJD 

parameters. The construction of the deep calibration framework significantly reduced 

computational inefficiency and enabled the determination of 𝜃𝐻𝐶𝑉, and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The market 

analysis of bubbles is tailored towards investigating exuberance detected by using 𝜃𝐻𝐶𝑉, 

followed those corresponding to 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Furthermore, the appearance of significant 

bubbles, 𝔹�̂�  >  𝛼𝜎�̂�, over varying levels of significance and window sizes, is analysed 

chronologically.  
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5.2.2.1  Bubble Detection: HCV Calibration   

 

Significant call option bubbles (𝔹t̂  >  ασt̂) identified across all window sizes and levels of 

significance, using 𝜃𝐻𝐶𝑉, are illustrated in Figure 5.1. In the figure (top), bubbles are 

timestamped and displayed alongside daily S&P 500 index prices. The remaining subplots 

(bottom) demonstrate daily call bubble magnitudes (𝔹t̂) against the time-varying threshold 

(ασt̂), with respect to different window sizes and levels of significance, for each day in the 

sample period. Recall, the magnitude is normalised with respect to the underlying price. The 

accumulation of past information for estimating the time-varying threshold begins at the start 

of the sample. However, bubble detection initiates after a burn-in period, analogous to the 

selected window size. The time-varying threshold cannot be computed during this period; 

hence this initial component of the sample has been acknowledged as an empty space. In the 

timestamping plot (top), significant bubbles from all window sizes are displayed, therefore 

the initial burn-in period resembles that of the smallest (30-day) window.  

 

The market analysis of observed bubbles in Figure 5.1, is conducted chronologically. The 

first group of events are witnessed on March 6, 8, 22 and April 10, 2019. This minor cluster 

is also singled out to explain the interpretation of Figure 5.1. Consider exuberance on March 

6, which is detected at 10% significance when employing a 30-day window.  Corresponding 

to the latter, it is timestamped (top) in indigo. Its magnitude is 0.13% of the underlying price, 

$2,771.45, which approximates to $3.60. This value resembles the lower bound for the size 

of the underlying price bubble, and when scaled by 100 (≈ $360.29), provides magnitude of 

the call option bubble (ℕ = 100). The events on March 8 and 22 are both revealed within the 

same window, as well. However, the bubble on April 10, is acknowledged by 30- and 60-

day windows. Hence, it is timestamped (blue), in accordance with the largest window that 

reveals significance. Therefore, timestamping of exuberance in Figure 5.1 also highlights 

robustness across various conservative levels of detection. 
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Figure 5.1: S&P 500 Call Option Bubbles (HCV Calibration). 

The aforementioned 4 bubbles coincided with growing uncertainty over U.S. and China 

reaching an agreement to curb the on-going trade-war. The deteriorating relations between 

both nations, along with a global economic slowdown, significantly hurt investor sentiments 

throughout the year. A cluster of 7 bubbles was observed between May 9, and 22, as strong 

 

Note: Daily S&P 500 bubbles detected in HCV call options using 𝜃𝐻𝐶𝑉. Bubbles are timestamped (top) and 

assessed at various levels significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%), with respect to each window size (bottom). 
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earning boosted markets. However, China placing retaliatory measures in response to U.S. 

raising tariffs on Chinese goods, along with weak economic data from the Asian nation, 

dampened investor confidence. The exuberance on August 19 and 21, coincided with central 

banks of both nations favouring interest rate cuts to tackle economic slowdown. 

Alternatively, the bubbles on October 9, 10, 16, and 23, aligned with improving trade 

relations between two countries, and a strong earnings quarter. The final bubble of 2019 was 

detected on December 16, marking the U.S. and China signing the first phase of a trade deal, 

and clearance of the USMCA.  

 

A cluster of 8 bubbles was observed between January 14 and February 24, 2020. Investor 

sentiments were dominated by rising fears over travel and trade disruptions, as the spread of 

coronavirus cases in China accelerated. Nevertheless, strong corporate earnings, especially 

those from technology companies, bolstered markets. The occurrences detected on January 

30, 31 and February 5 are noteworthy. The S&P 500 closed 1.77% lower on January 31, as 

the U.S. documented its first coronavirus case. Alternatively, the index rose by 1.50% on 

February 4, 2020, given increased manufacturing activity due to eased trade tensions with 

China. However, the exuberance on February 24, coincided with a 3.35% collapse in the 

S&P 500 index, as the global coronavirus pandemic worsened and demands for safe assets, 

such as gold and government bonds heightened. This cluster reflected the willingness of 

investors seeking short-term gains, especially during earnings seasons, among times of 

building anxiety.  

 

Eventually, the global pandemic induced a market crash, and a cluster of 8 bubbles was 

identified between March 11 and April 3, 2020.  A circuit breaker was implemented in the 

opening hours of March 12, as the S&P 500 closed 9.51% below. Exuberance was recorded 

on March 13, after a 9.29% rebound, but investors lost complete confidence on March 16, 

2020, causing the index to crash by approximately 12%, triggering a circuit breaker. An 

additional circuit breaker was experienced on March 18, but bubbles were detected on March 

17 and 19, with the former corresponding to a 6.00% gain. The capturing of these bubbles is 

partially consistent with the research hypothesis (see 4.1). During this period, the S&P 500 

experienced 4 circuit breakers, which ensured that the market price did not crash to the 

fundamental value. The exuberance detected by 𝜃𝐻𝐶𝑉 parameters occur prior to/after days 
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witnessing circuit breakers, indicating traders possessing the ambition to purchase only for 

reselling at higher prices. Nevertheless, bubbles were not detected on the days of circuit 

breakers. Additionally, exuberance was observed on March 24 and 25, as the S&P 500 gained 

9.38%, and 1.15%, respectively. The conclusion of the crude oil price war between Russia 

and Saudi Arabia, coincided with bubbles on April 2 and 3, with respective returns of 2.28% 

and -1.51%. However, two days prior, the S&P 500 suffered consecutive losses of 1.61% 

and 4.41% due to the extension of lockdown measures.   

 

The S&P 500 index was also hypothesised to reveal exuberance during it post-crash recovery 

phases. However, 𝜃𝐻𝐶𝑉 parameters displayed very few instances till the end of the year. Most 

notably, bubbles were spotted on June 12 and 15, as the S&P 500 gained 1.31% and 0.83%, 

respectively, following a 5.89% crash on June 11, 2020. Furthermore, individual instances 

were captured on July 14, and 21, in addition to that on August 26. The latter is of particular 

interest as the S&P 500 reached an all-time high. However, consumer confidence levels fell 

to a 6-year low in August, due to pessimism about the short-term economic outlook. The 

technology sector drove market recovery, and upon receiving encouragement over COVID-

19 treatments, the S&P 500 rose by 1.27% on September 14. Nevertheless, exuberance was 

identified amid concerns over the overvaluation of technology stocks and delayed fiscal 

stimulus. Similarly, despite gaining 1.05% on September 22, the index reflected a bubble, as 

sentiment dropped due to rising coronavirus cases in Europe. The final bubble of 2020, 

occurred on December 24, coinciding with rising cases of a new variant, falling consumer 

confidence, and even more delays in expected fiscal stimulus.  

 

At the turn of the year, bubbles were detected on January 25, and February 23 and 25, 2021, 

with the latter day experiencing a large equity sell-off due to rising treasury bond yields, 

causing the S&P 500 to close 2.45% below. Next, a cluster of 7 bubbles was observed 

between May 6 and 25, a period during which, solid job market data and indications of faster-

than-expected recovery from the pandemic losses, boosted market sentiments. However, 

concerns remained about the existing high levels of unemployment, growing inflationary 

pressure, and potential interest rate hikes. The escalation of such fears triggered a large 

selling spree of technology stocks, and subsequently exuberance on May 18. Furthermore, 

bubbles were exhibited over the next three consecutive days, and May 25. The technology 
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sector took a massive hit following China providing warnings over the issuance of 

cryptocurrencies, rising inflation, and the Federal Reserve hinting at tightening of the 

monetary policy. Moreover, the European Central Bank raised concerns over market 

exuberance due to the imbalance created by monetary and fiscal stimuli.  

 

Consistent with the research hypothesis from 4.1, bubbles were observed in 2021, as the 

S&P 500 surged, despite growing concerns over inflation and rising coronavirus cases. The 

next instances occurring on June 18, July 16 and 27, and September 17, were individualistic 

in nature. However, towards the end of the year, a larger concentration of bubbles was 

observed. Strong earnings from major corporations and rallying technology stocks lifted 

market sentiments to reveal instances on November 12 and 16. Furthermore, bubbles were 

spotted on November 23, 26 and 29. The S&P 500 dropped by 2.72% on November 26, as 

WHO declared the Omicron variant as a source of concern. However, it recovered by 1.32%, 

on November 29, after assurance of the non-lethal characteristics of the variant. Finally, the 

exuberance on December 10, 16, 17, and 22 coincided with the expected increase in tapering 

of the quantitative easing programme, unexpected interest rate hikes from the Bank of 

England and implementation of lockdown measures in Europe.  

 

In 2022, the S&P 500 exhibited 3 bubbles on January 11, September 14 and October 20, 

according to 𝜃𝐻𝐶𝑉 calibrations. The former corresponded to rising treasury yield hurting 

technology stocks, and concerns over policymakers signalling at least 3 interest rate hikes in 

the upcoming year. Nevertheless, following the announcement of such measures only being 

implemented after completion of the tapering programme, technology and growth stocks 

rallied. The S&P 500 collapsed by 4.32% on September 13, amid increased inflationary 

concerns, despite the Federal Reserve continuing to hike rates. Exuberance on the next day 

captured fears of an upcoming third consecutive 75 bps rate hike. The final instance 

coincided with the 10-year Treasury yield reaching a 14 year peak.  

 

5.2.2.2  Bubble Detection: Surface Calibration 

 

The study proceeds with identifying significant call option bubbles (𝔹t̂  >  ασt̂) in 

accordance with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The days of exuberance are displayed in Figure 5.2, which follows 
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similar interpretation as Figure 5.1, with bubbles being timestamped (top) and their 

magnitudes revealed, along with time-varying thresholds across difference window lengths 

(bottom). The initial sample period corresponding to the selected window size, is burned and 

acknowledged as an empty space.  

 

Figure 5.2: S&P 500 Call Option Bubbles (Surface Calibration). 

 

Note: Daily S&P 500 bubbles detected in HCV call options using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Bubbles are timestamped (top) 

and assessed at various levels significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%), with respect to each window size 

(bottom).  
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Exuberance was first spotted on December 16, and 19, 2019, coinciding with U.S. and China 

reaching a trade-agreement, along with progression of USMCA. The former instance was 

captured by 𝜃𝐻𝐶𝑉, amongst the several others across 2019 that addressed concerns over a 

global economic slowdown and continuous failed negotiations between both nations. 

Moreover, in January and February 2020, 𝜃𝐻𝐶𝑉 revealed exuberance, following boosted 

sentiments due to a strong earnings season, despite building fears over the coronavirus 

outbreak. During the week commencing on February 24, the S&P 500 lost 11.89%, with the 

largest loss of 4.41% occurring on February 27, 2020. A bubble was revealed by 𝜃𝐻𝐶𝑉 on 

February 24, whereas 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 identified exuberance on February 28, acknowledging 

concerns of the global pandemic forcing the closure of factories in Japan, South Korea and 

Italy.  

 

The coronavirus pandemic entirely crushed investor sentiment, inducing a market crash in 

March 2020. Bubbles were detected on March 13, 16, 17, 19 and 20, with all barring those 

from March 16, and 20 being acknowledged by 𝜃𝐻𝐶𝑉. Circuit breakers were implemented 

on March 12 and 16, as the index closed lower by 9.51% and 11.98%, respectively. The 

instances on March 13, and 17 coincided with respective gains of 9.29% and 11.98%, 

respectively. Moreover, another circuit breaker was experienced on March 18, with 

exuberance being observed on March 19 and 20. Once again consistency with the research 

hypothesis (4.1) was maintained, as immediate days following circuit breakers exhibited 

bubbles. This revealed strong willingness of traders to purchase for the sole purpose of 

reselling at a higher price, in search of a quick buck. However, in contrast to 𝜃𝐻𝐶𝑉, a bubble 

was detected on March 16, a day that experienced a circuit breaker, and the largest losses 

during this period.  

 

Applying 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 revealed greater consistency with the research hypothesis (4.1), as it 

acknowledged exuberance during the immediate recovery of the S&P 500 index. Bubbles 

were observed on March 31, April 2, 3, 6, 8 and 13, 2020, with only those on April 2 and 3, 

being addressed by 𝜃𝐻𝐶𝑉. Following consecutive losses of 1.61% and 4.41%, the S&P 500 

experienced a 2.28% rise on April 2, after the conclusion of the crude oil price war. 

Moreover, hikes of 7.03% and 3.41% were witnessed on April 6 and 8, respectively, as the 

Federal Reserve doubled down on its commitment to a dovish stance. Furthermore, bubbles 
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were seen on all days between April 23 and 30, barring April 28. The index experienced 

respective gains of 1.47% and 2.66% on April 27 and 29, given strong possibilities of 

reopening the economy, positive news regarding drug trials, and commitment towards a 

dovish monetary policy. However, rising unemployment and inflation, falling consumer 

spending and poor quarterly earnings from major corporations continued to weigh heavy on 

investor sentiment.  

 

During the S&P 500 recovery phase, till the end of 2020, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 detected few instances of 

exuberance, as opposed to the research hypothesis (4.1). Nevertheless, a likewise 

observation was made to the application of 𝜃𝐻𝐶𝑉. Bubbles were identified on June 12 and 

15, after a 5.89% crash on June 11. However, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 also spotted instances on June 18 and 

22, with investor sentiments were dampened by warnings from the WHO over acceleration 

of the pandemic. Next, exuberance was witnessed on August 14 and 17, as the technology 

sector continued to bolster market recovery, such that all COVID-19 induced losses were 

erased by August 18, 2020. The last bubble of 2020 appeared on October 7, as President 

Trump signed off an individual stimulus package. The S&P 500 rose by 1.74% on this day, 

following a 1.40% loss from the previous. 

 

The first bubble episodes in 2021 were observed on all days between February 16 and 19, 

and  February 23. The S&P 500 underwent a 5-day losing streak which ended on February 

23, as rising treasury yields and increased concerns over inflation triggered a large equity 

sell-off. The rising treasury yields caused a large bond sell-off, further harming technology 

stocks. Consequently, exuberance on March 3 coincided with a 1.31% dip. Nevertheless, 

following the passing of a long awaited coronavirus relief package, the S&P 500 gained 

1.04% and revealed a bubble on March 11. Next, occurrences were spotted on March 29 and 

30, as consumer confidence reached a post pandemic high, and technology stocks received 

a massive boost from the vaccination drive. However, the 10-year Treasury yield reached a 

14 year high, indicating great concerns over inflation and equity overvaluation.  

 

At the immediate turn of the year, exuberance was detected on January 6 and 10, 2022. The 

former coincided with expectations that the Federal Reserve might hike rates, sooner than 

expected. However, upon confirmation that it would occur after the tapering programme, 



 176 

 

 

technology stocks rallied. The latter corresponded to rising treasury yields adversely 

impacting growth stocks. Recall, 𝜃𝐻𝐶𝑉 captured formation of exuberance due to similar 

reasons, on January 11, 2022. The final bubble occurred on October 6, 2022, as the S&P 500 

fell by 1.03%. It aligned with rising treasury yields, as despite aggressive interest rate hikes, 

inflation remained high. The Federal Reserve doubled down on its aggressive stance, even 

though strong job market numbers made market participants expect a tamer approach.  

 

5.2.3  Model Performance  

 

The identification of daily bubbles using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 reflected investor sentiments 

over market prices exceeding the fundamental value. These bubbles were short-lived, and in 

most instances followed, and preceded days that experienced large negative returns. This 

reflected the intentions of traders to purchase shares for the sole purpose of reselling at a 

higher price, with sales occurring at the slightest indication of panic. The detection of 

bubbles relied on a statistical test (see 3.1.3), designed to exhibit significant exuberance in 

call option prices. Under the ND condition, bubbles in the call option and underlying prices 

are linearly related, such that the magnitude of the former acts as the lower bound that of the 

latter.  

 

The 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics, with respect to the test, are observed in Table 5.5. In abidance with 

Fusari et al. (2024) they are examined to assess the robustness of bubbles detected from 𝜃𝐻𝐶𝑉 

and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The local martingale theorem of bubbles highlights that negative bubbles do 

not exist, since the price of the asset is bound from below by its fundamental value. However, 

they can be present in the three-step approach framework as a result of model 

misspecification introducing a measurement error (Fusari et al., 2024). A key component to 

assess validity of bubbles would be the evaluation of 𝑅𝑀𝑆𝐸𝜎,𝑡 on days where  𝔹t̂  <  0. The 

negative magnitudes would occur due to noise in the model, and are expected to display 

larger error values, in comparison to days with 𝔹t̂  >  0. This would provide evidence that 

the identified days of exuberance are less affected by the noise.  
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The 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics corresponding to the 𝜃𝐻𝐶𝑉 are greater for 𝔹t̂  <  0, revealing 

calibrations of the GSVJD to be less impacted by noise for days with 𝔹t̂  >  0. Overall, the 

strong calibration performances on HCV put options, provide validation for bubbles. 

Alternatively, the error metrics, across all three-categories are larger, when considering the 

Entire Surface. Furthermore, the 𝑅𝑀𝑆𝐸𝜎,𝑡 metric for such calibrations, is observed to be 

greater for days with 𝔹t̂  >  0. However, as seen in Table 5.5, the difference is small, at most, 

not exceeding 0.11%, across all window sizes.  It is important to recollect that daily 

calibrations on this dataset are conducted across, on average 9 volatility smiles. This 

approximately translates to increasing the number of options from 161 to 677, with the 

inclusion of several relatively illiquid contracts.   

 

Table 5.5: Model Performance.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) metrics with respect to 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, corresponding to the entire sample (excluding 

burn-in), along days with negative (𝔹�̂�  <  0) and positive (𝔹�̂�  >   0) bubble magnitudes, across all window 

sizes.  

 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Window Size Entire 𝔹�̂� < 0 𝔹�̂�  > 0 Entire 𝔹�̂� < 0 𝔹�̂�  > 0 

30 0.167% 0.182% 0.150% 0.750% 0.713% 0.825% 

60 0.168% 0.184% 0.151% 0.757% 0.722% 0.829% 

90 0.171% 0.187% 0.152% 0.763% 0.728% 0.831% 

180 0.171% 0.188% 0.151% 0.794% 0.769% 0.835% 

The greater values of 𝑅𝑀𝑆𝐸𝜎,𝑡 from Entire Surface calibrations, are attributed to the 

detection of bubbles during the peak of the COVID-19 induced market crash, between March 

13 and April 30, 2020. During this period, the error metric averaged at 1.41%, nearly twice 

the mean performance across the entire sample. Concerns over the presence of a joint-

hypothesis related issue could be raised, however, the exhibition of these bubbles has 

comprised of an economic justification, especially since they occur close to/on days that 

have experienced circuit breakers. They are consistent with the NFLVR condition, which 

only considers admissible strategies. This provides validation to the detection of bubbles in 

the S&P 500 index calibrating the GSVJD model to all traded options, with the assistance of 

the neural network framework. Recall, even 𝜃𝐻𝐶𝑉 calibrations struggled during this period, 

and captured almost the same events between March 13 and April 3, 2020.  
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Compared to 𝜃𝐻𝐶𝑉, bubble detection from HCV call options using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 has revealed 

more consistency with the hypothesis from 4.1. Both exhibited bubbles on immediate days 

following circuit breakers in March 2020, capturing the willingness of traders to purchase 

for the sole purpose of reselling at a higher price to earn quick profit. Nevertheless, only the 

latter captured exuberance on a day that experienced a circuit breaker. Furthermore, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

also addressed exuberance at the end of April 2020, as the S&P 500 index started to recover, 

despite large levels of unemployment. However, beyond this date, barring individualistic 

instances, neither set of parameters revealed bubbles when the S&P 500 surged throughout 

the rest of 2020 and 2021, despite the dire condition of the economy. Hence, this creates 

motivation to explore the application of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on various call options for bubble detection. 

 

Options reflect the future expectations of market participants regarding the value of the 

underlying asset. Each cross-section of daily contracts belongs to a unique maturity and 

reveals forward-looking expectations over the corresponding duration. Daily calibrations to 

the Entire Surface dataset, have been beneficial for detecting bubbles, as estimated 

parameters capture this information to the fullest extent possible. It is well documented that 

call options bubble magnitudes act as the lower bound to those present in the underlying.  

Derivative contracts expire prior to the future liquidation date of the risky asset and hence 

cannot capture the entire underlying bubble. However, even in such circumstances, if 

bubbles are observed over small durations, they are capable of reflecting the presence of 

exuberance over larger periods of time (Fusari et al., 2024). Hence, as seen in Jarrow & 

Kwok (2021, 2024), it is worth exploring the presence of bubbles across various call option 

maturity groups. This is possible due to the availability of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, that are applicable to all 

option maturities.  

 

5.3  Call Option Bubbles: Maturity Groups 

 

The deep calibration framework improved accuracy and efficiency of estimating GSVJD 

model parameters from market put options data for bubble detection via the three-step 

approach. This allowed for the consideration of information from all traded put options on a 
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given day. Calibrations to several daily volatility smiles, ensured the inspection of a more 

complete market, enabling the capturing of forward-looking expectations to a greater extent, 

without relying on interpolation and extrapolation methodologies.  

 

Calibration of the GSVJD model to the Entire Surface dataset has been beneficial, in 

reflecting information, obtained from several daily volatility smiles. For a given maturity 

(smile), corresponding options capture forward-looking expectations of market participants 

over the remaining contract life. Such call contracts expire before the future liquidation date 

of the underlying and hence cannot capture the full extent of exuberance in the underlying 

price. As highlighted by Fusari et al. (2024), bubbles in option prices are observed over small 

durations, and can indicate towards exuberance over larger time periods. These bubbles can 

be explored by analysing call option across various maturity groups. Since 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 are 

obtained from the daily surface of put options, the parameters are applicable for estimating 

the fundamental values of call options across various maturity cross sections. The 

exuberance in S&P 500 index are detected by examining three maturity groups of call 

options (see Table 5.2): short (8 ≤  𝜏 <  60), medium (60 ≤  𝜏 <  180), and long 

(180 ≤  𝜏 <  365). Only the daily most liquid cross-section of call options (within each 

group), that abide by the ND condition, are selected.  A bubble is considered significant if 

𝔹t̂  >  ασt̂, with the latter being the time-varying threshold estimated over the same window 

sizes and levels of significance, as in 5.2.2. 

 

5.3.1  Key Statistics 

 

The 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, were applied towards pricing call options for identifying 

exuberance, across three different maturity groups: short, medium, and long. Recall, the 

𝑅𝑀𝑆𝐸𝜎,𝑡 metric measures calibration performance whilst obtaining 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, and plays an 

important role in examining the presence of joint-hypothesis related issues. The average 

error metric across days exhibiting significant bubbles over various combinations of window 

sizes and levels of significance are reported for each maturity group, in Table 5.6.  

 

Across all three maturity groups, the number of observations increase and decrease, with 

significance levels and window sizes, respectively. Detection at the 10% and 5% levels of 
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significance, within the short group provide exception of the latter. Moreover, Table 5.6 

reveals the 𝑅𝑀𝑆𝐸𝜎,𝑡 metric to be greater with significance in all scenarios, barring the 

implementation of a 180-day window on long maturity contracts. This maturity group 

identifies the least instances, maintaining consistency with type III bubbles arising due to 

short-term trade strategies that reveal the forward-looking nature of investor expectations. 

Furthermore, exuberance must be significantly larger for it to be flagged by long term 

investors. Alternatively, the largest number of occurrences are associated with the medium 

maturity group. Once again, maintaining consistency with the local martingale theory, given 

that bubble magnitude disappears as the options tends to maturity (Fusari et al., 2024).  

 

Table 5.6: Calibration performances on days with significant bubbles across maturity groups.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) error metric, along with number of significant bubbles (ℕ𝐵), and percentage of the sample 

period (excluding burn-in) revealing exuberance, ℕ𝐵(%), reported for days displaying exuberance within most 

liquid cross section of call options, from short, medium and long maturity groups, in accordance with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  

Window Size (days) 𝛼 ℕ𝐵 ℕ𝐵  (%) 𝑅𝑀𝑆𝐸𝜎,𝑡 

Panel A: Short (8 ≤  𝜏 <  60)     

30 

10% 25.00 2.68% 0.79% 

5% 18.00 1.93% 0.81% 

1% 7.00 0.75% 0.95% 

60 

10% 27.00 2.99% 0.80% 

5% 13.00 1.44% 0.91% 

1% 7.00 0.77% 1.02% 

90 

10% 21.00 2.40% 0.82% 

5% 15.00 1.72% 0.84% 

1% 4.00 0.46% 1.32% 

180 

10% 27.00 3.44% 0.80% 

5% 16.00 2.04% 0.88% 

1% 3.00 0.38% 1.27% 

Panel B: Medium (60 ≤  𝜏 <  180)     

30 

10% 83.00 8.55% 0.90% 

5% 65.00 6.69% 0.92% 

1% 44.00 4.53% 0.94% 

60 

10% 73.00 7.76% 0.94% 

5% 55.00 5.84% 0.94% 

1% 34.00 3.61% 1.03% 

Table 5.6 continued… 
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Table 5.6 continued… 

90 

10% 65.00 7.14% 0.99% 

5% 48.00 5.27% 1.04% 

1% 28.00 3.07% 1.14% 

180 

10% 57.00 6.94% 0.96% 

5% 32.00 3.90% 0.99% 

1% 11.00 1.34% 1.33% 

Panel C: Long (180 ≤  𝜏 <  365)     

30 

10% 16.00 1.76% 1.56% 

5% 11.00 1.21% 1.83% 

1% 5.00 0.55% 1.98% 

60 

10% 11.00 1.25% 1.95% 

5% 7.00 0.80% 2.33% 

1% 5.00 0.57% 1.98% 

90 

10% 11.00 1.30% 1.94% 

5% 7.00 0.82% 2.33% 

1% 4.00 0.47% 2.34% 

180 

10% 8.00 1.05% 1.69% 

5% 4.00 0.53% 2.34% 

1% 2.00 0.26% 1.76% 

Since calibrations are conducted on the Entire Surface dataset, the error metrics can be 

compared those with similar correspondence, displayed in Table 5.4. The days exhibiting 

exuberance within the short and medium maturity groups, provide smaller 𝑅𝑀𝑆𝐸𝜎,𝑡 values 

in comparison to those from bubbles detected within HCV call options. In regard to both 

groups, detection at 1% significance using a 180-day window, in addition to a 90-day 

window on the former, act as exceptions.  These exceptions are justified by majority of 

detected bubbles occurring during the COVID-19 induced market turmoil between March 

and April 2020. Alternatively, long maturity group comprise of larger error metrics, with 

respect to its counterparts, and those from Table 5.4. As observed in 5.2.1, calibration to the 

Entire Surface raised concerns over the presence of a potential joint-hypothesis related issue. 

Once again, a major contributor to this observation, is the capturing of exuberance during 

the COVID-19 induced market crash period, especially over higher levels of significance 

and greater window periods. Majority of bubbles captured using the long maturity group 

occurred between March and April 2020, explaining its alliance with high error metrics in 

Table 5.6. However,  these instances are consistent with the local martingale theory of 
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bubbles and are closely analysed in the next subsection. Hence, asserting importance of 

statistical analysis being accompanied by market evaluation to assess the validity of the 

bubbles.  

 

5.3.2  Market Analysis  
 

A significant call option bubble is detected when 𝔹t̂  >  ασt̂, with the latter being the time-

varying threshold, estimated over different levels of significance (α) and window sizes. The 

detection of exuberance is conducted by inspecting the most liquid daily cross section of call 

options, within the three maturity groups. For each group, fundamental call values are 

computed using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, and compared with market observations. The identified bubbles, 

across 𝜏𝐶  ∈ (short, medium, long) in the S&P 500 between January 2, 2019, and December 

31, 2022, are displayed in Figure 5.3. 

 

Market analysis of exuberance is conducted in chronological order, with the interpretation 

of Figure 5.3 being different to those witnessed earlier. The timestamping of bubbles is 

revealed (top) along with the underlying price. Only two episodes were observed in 2019, 

both witnessed by 𝜏𝑀 (60 ≤  τ < 180 days) call options, on December 11, and 12. In Figure 

5.3, exuberance is dated with respect to maturity groups, regardless of the window size, and 

levels of significance. Consider the former instance, dated in golden, since it was seen only 

by the medium maturity group. The subplots (bottom) display magnitude of call bubbles (𝔹t̂) 

against the time-varying threshold from all window sizes, at a certain level of significance, 

for each maturity group. Continuing with the example, the exuberance has a magnitude of 

0.25% and was observed using a 30-day windows at 10% significance.  

 

Bubbles observed by short and long maturity groups are depicted in red and teal, 

respectively.  Consider the exuberance on March 17, 2020, which was visible in all three 

groups. It is timestamped in teal, in association with the largest maturity group that 

acknowledged the event. Interestingly, the bubble magnitudes, 0.74%, 0.82%, and 0.83%, 

were documented to increase with call maturity. This property held for daily bubbles that 

were detected across various maturity groups. It is consistent with the local martingale 

theory, as the size of exuberance increases with the option’s remaining life. Hence, 
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examining bubbles across various maturity levels, on a given day, allows to quantify their 

presence in the underlying price, to a greater extent.  

 

Figure 5.3: S&P 500 Call Option Bubbles (Surface Calibration). 

 

Daily bubbles detected in the short (8 ≤  𝜏 <  60), medium (60 ≤  𝜏 <  180), and long (180 ≤  𝜏 <  365) 

call option maturity groups, written on the S&P 500 index (2019-2022), using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Bubbles are 

timestamped (top) and assessed at each combination of window sizes (30, 60, 90, and 180 days) and levels 

of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%), with respect to each maturity group (bottom). 

The detection of bubbles across various call option maturity groups shows strong 

consistencies with the research hypothesis (see 4.1).  A cluster of 13 episodes, between 

March 9 and April 9, 2020, is captured across all categories. During this period, 𝜏𝑆 (8 ≤  𝜏 < 

60 days) call options identified bubbles only on March 17, 19, and April 6, with the latter 

corresponding to a 7.03% hike. Alternatively, 𝜏𝑀 contracts detected bubbles on April 2 and 

9. Furthermore, the same group exhibited bubbles on all days between March 13 and 30, 

whereas 𝜏𝐿 (180 ≤  𝜏 < 365 days) contracts observed instances on March 9, 16, 17, 18, and 

19. Previously, using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV call options, highlighted bubbles on days 
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succeeding those that experienced circuit breakers; March 13, 17 and 19. Moreover, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

also acknowledged exuberance on March 16. Nevertheless, 𝜏𝑀 and 𝜏𝐿 observe episodes on 

days that experienced circuit breakers; March 16 and 18, in addition to March 9 being 

addressed by the latter. The benefits of extending the application of the three-step approach 

to various maturity groups, reveals more consistency with the local martingale theory of 

bubbles. Finally, 𝜏𝐿 options flagged exuberance on March 24, 25, and 26, as the S&P 500 

rallied by 9.38%, 1.15% and 6.24%, respectively.  

 

The exploration of bubbles within the various call option maturity groups, continued to 

reveal consistency with the research hypothesis. During the recovery period, 31 instances 

were reported between April 17 and June 26, 2020. At first 10 episodes were witnessed 

between April 17 and May 1, 2020, with all barring that on April 29, being captured by 𝜏𝑀 

options. The exception, along with that on April 23, was detected by the 𝜏𝑆 group. Recall, 

exuberance on April 23, 24, 27, and 30, were also acknowledged by HCV call options, when 

using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. All trading days between April 21 and May 1, 2020, revealed exuberance. 

The S&P 500 experienced gains of 2.29%, 1.39%, 1.47% and 2.66% on April 22, 24, 27 and 

29, respectively. However, in the aftermath of the pandemic, investor sentiment was 

dominated by the massive unemployment levels, and weak corporate earnings.  

 

The 15 events of exuberance between May 7 and June 3, 2020, were not observed in HCV 

call options. Once again, majority of the instances were acknowledged by 𝜏𝑀, with those 

seen on May 14; and May 15, 26 and 28, also spotted by 𝜏𝑆 and 𝜏𝐿 options, respectively. In 

addition, the 𝜏𝑆 group uniquely identified exuberance on May 12 and 20. Investor confidence 

was recovering as the economy underwent a month and half long partial lockdown period, 

despite several warnings being received over the easing of restrictive measures. A hike of 

3.15% was noticed on May 18, following assurance from the Federal Reserve about 

economic recovery, and the FDA providing approval to a vaccine. However, worsening 

geopolitical relations with China, and increased unemployment continued to dampen market 

optimism. 

 

An additional 6 days of exuberance were spotted between June 12 and 26, 2020. The event 

on June 16 was only seen in 𝜏𝑆 options, whereas that on June 23, was acknowledged by 𝜏𝑀 
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and 𝜏𝐿 contracts. Moreover, the bubble on June 18, was detected across all three maturity 

groups, while the remaining occurrence were identified by 𝜏𝑀 call options. Recall, the 

application of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 (𝜃𝐻𝐶𝑉) on HCV call options spotted exuberance on June 12, 15, 18, 

and 22 (June 12 and 15), as well. The episodes reflected concerns over a second coronavirus 

wave, weak earnings from major corporations, and restricted business activity. Furthermore, 

3 instances were observed by 𝜏𝑀 options, in July 2020.  A massive technology stock rebound 

aligned with exuberance on July 8, as the coronavirus spread continued to intensify. The 

bubbles on July 28 and 29, corresponded to weak investor sentiment derived from 

disappointing earnings, falling consumer confidence, and rising cases; despite the Federal 

Reserve maintaining interest rates, and on-going negotiations over new fiscal stimuli.  

 

Previously, as observed with HCV call options, exuberance episodes during the recovery 

period of the S&P 500 index in 2020, were sparse. However, that is not the case when 

considering call options across various maturity groups. Between August 5 and September 

10, 2020; 25 bubbles were identified, with all but the first being detected by 𝜏𝑀 call options. 

In addition to the occurrence on August 5, those of August 10, 14, 17, and 19, were also 

acknowledged by 𝜏𝑆 contracts. The bubbles on August 14, and 17, were even revealed by 

HCV call options, using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Initially, market sentiments were boosted by developments 

over the vaccine front, strong optimism regarding a fiscal stimulus agreement, and fiscal 

provision for airline companies. Furthermore, the S&P 500 index had erased all of its 

COVID-19 losses by August 18, 2020. The technology sector gained further momentum as 

the Federal Reserve remained committed to its expansionary policy. However, consumer 

confidence index dropped to a 6-year low, and weekly jobless claims began to cross 1 

million. The index crashed by 3.51% on September 3, 2020, triggered by Dr. Anthony 

Fauci’s comments from the previous day, stating that the vaccine will not be prepared till the 

year end. The technology sector faced a massive sell-off and lost approximately 11% of its 

value by September 8, 2020. The exuberance on September 9 and 10, coincided with 

respective returns of 2.02% and -1.76%.  

 

The remaining bubble episodes in 2020, were captured by 𝜏𝑀 call options and witnessed 

between September 22, and November 12. Exuberance on the September 22, and October 7, 

were acknowledged by applying the respective 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV contracts. 
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Bubbles were detected on September 22, 25, and 28, as the S&P 500 index grew by 1.05%, 

1.60% and 1.61%, respectively. Despite rising coronavirus cases across Europe, and the 

possibility of implementing fresh lockdown measures, investor sentiments were lifted by a 

rebound of technology stocks and unveiling of the long awaited $2.2 trillion new coronavirus 

aid package. The reopening of negotiations over the latter, did boost markets and aligned 

with exuberance on October 5, 7, and 8. The S&P 500 fell by 1.40% on October 6, as 

President Trump decided to postpone negotiations. However, with immediate effect, an 

individual stimulus package was passed. Finally, the occurrence on November 12, coincided 

with rising coronavirus cases, that made investor fearful over re-imposition of business 

restrictions. 

 

The first episodes in 2021 were revealed between February 10 and March 29, with 

occurrences on February 10, 12, 24, and March 29 (February 22, March 9 and 10) being 

addressed solely by 𝜏𝑠 (𝜏𝑀) call options. Both 𝜏𝑠 and 𝜏𝑀 captured exuberance on February 

11, 16, 18 and 19, as all barring the former were detected by pricing HCV contracts with 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Moreover, HCV call options acknowledged instances of February 23 and March 

11 and 29; and February 23 and 25, using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 and 𝜃𝐻𝐶𝑉, respectively. The S&P 500 

went on a 5-day losing streak till February 23. A large sell-off was triggered by rising 

treasury yields, as inflationary and equity overvaluation concerns grew, forcing technology 

and other growth stocks to take a dive. On March 10, the coronavirus relief package was 

passed by the House of Representatives. The S&P 500 benefited from improving consumer 

confidence, and technology sector, both supported by a strong vaccination drive. However, 

in the background, inflation and overvaluation fears were creeping up as the 10-year 

Treasury yield reached a 14 year peak. 

 

Inflationary concerns, in addition to fears over rising unemployment and the Federal Reserve 

potentially raising interest rates, 𝜏𝑠, similar to 𝜃𝐻𝐶𝑉, reflected exuberance on May 6, 2021. 

The 𝜏𝑀 call option exhibited a bubble on June 3, as economic activity and employment levels 

started to pick up, but inflation reached its highest since September 2008. Next, 6 episodes 

were spotted between July 8 and August 20. Those on July 8 and August 18 were detected 

by 𝜏𝑀 and 𝜏𝐿 groups. Furthermore, exuberance on July 30 and August 18; and August 20, 

were respectively identified by 𝜏𝑆 and 𝜏𝑀, whereas both groups revealed bubbles on August 
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4 and 19. The bubble on July 8, coincided with growing concerns over global economic 

recovery as Asian nations experienced a resurgence in coronavirus cases. On August 18, the 

S&P 500 fell by 1.08%, marking a 6-consecutive day in red. Investors expressed concerns 

over rising coronavirus cases and the Federal Reserve prematurely pulling back the 

quantitative easing programme and harming recovery. However, over the next two days, 

technology stocks rebounded following a drop in treasury yields. 

 

The inflationary pressure and concerns over rising coronavirus cases continued to build over 

the next month. The 𝜏𝐿 group observed exuberance on September 2, whereas both 𝜏𝑆 and 𝜏𝑀 

options addressed bubbles on September 10, similar to pricing HCV contracts with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. 

Individually, in respective order, the maturity groups identified exuberance on September 13 

and 15. The S&P 500 rebounded after undergoing a 5-day losing streak that ended on 

September 10. Furthermore, 𝜏𝑆 contracts acknowledged an event on November 10, and the 

𝜏𝑀 group revealed one on November 24, whereas both, along with 𝜃𝐻𝐶𝑉 highlighted 

exuberance on November 29. Investors regained confidence over the new coronavirus 

variant and uncertainty over the monetary policy stance. The 𝜏𝑆 and 𝜏𝐿 call option detected 

a bubble on December 7 to coincide with a 2.07% spike. Aligning with rallying markets 

being held back by anxiety over inflation, 𝜏𝑀 spotted an instance on December 9. As 

technology stocks dipped following indications of faster quantitative easing tapering, and 

potentially earlier than expected rate hikes, 𝜏𝑆 contracts noticed a bubble on December 14. 

The final episode of 2021 was captured by 𝜏𝐿 call options, on December 31.   

 

The only 3 bubble episodes observed in 2022, occurred on February 1, 2 and 25. The former 

was detected by 𝜏𝑆 options, whereas the instance on February 2 (25) were acknowledged by 

𝜏𝑆 and 𝜏𝑀 (𝜏𝑀 and 𝜏𝐿) options. Technology stocks suffered throughout January 2022, as 

market participants feared interest rates to be hiked, as early as March. Nonetheless, rising 

treasury yields provided bank stocks with momentum, and along with strong corporate 

earnings, supported the market rally. The final exuberance coincided with the S&P 500 rising 

by 1.50% and 2.24% on February 24 and 25, respectively, despite Russia initiating its attack 

on Ukraine. Investor confidence stemmed from Russia agreeing to send delegates to 

Ukraine, and the collective decision of the U.S., U.K. and European Union, to sanction 

Russia.  
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5.3.3  Model Performance  

 

Bubble detection across different maturity groups, was possible due to the efficiency 

provided by the deep calibration framework in computing 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Across the entire 

sample, τS, τM and τL revealed exuberance to be short-lived, however, to last longer than 

that exhibited by HCV call options. Furthermore, bubble magnitudes increased with time to 

maturity, providing more insight on the potential size of exuberance in the underlying.  

 

Table 5.7: Model Calibration Performances over Maturity Groups.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) metrics of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, corresponding to the entire sample (excluding burn-in) period, along 

days with negative (𝔹�̂�  <  0) and positive (𝔹�̂�  >   0) bubble magnitudes, for each maturity group (short, 

medium and long), across all window sizes.  

Window Size Entire 𝔹t̂ < 0 𝔹t̂ > 0 

Panel A: Short (8 ≤  𝜏 <  60)    

30 0.748% 0.719% 0.808% 

60 0.756% 0.728% 0.812% 

90 0.761% 0.734% 0.814% 

180 0.793% 0.776% 0.821% 

Panel B: Medium (60 ≤  𝜏 <  180)    

30 0.750% 0.699% 0.842% 

60 0.757% 0.707% 0.847% 

90 0.763% 0.712% 0.848% 

180 0.794% 0.751% 0.856% 

Panel C: Long (180 ≤  𝜏 <  365)    

30 0.740% 0.723% 0.784% 

60 0.748% 0.732% 0.789% 

90 0.753% 0.734% 0.806% 

180 0.785% 0.772% 0.818% 

 

As seen in 5.2.3, the statistical validity of the approach can be inspected by examining the 

RMSEσ,t metric, presented in Table 5.7. The local martingale theory of bubbles prevents 

existence of negative magnitudes, given that the fundamental value acts as the lower bound 

to market price. Hence, Fusari et al. (2024) documented the presence of such occurrences as 

potential model misspecification. Overall, the 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics highlight strong 
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resemblance to those from Table 5.5, as calibration is conducted over the Entire Surface 

dataset, and bubbles are observed around similar dates. Error on days with 𝔹t̂  >  0, is 

marginally greater, with the maximum difference not exceeding 0.14%. This minor 

inferiority can be attributed to the identification of call option bubbles during the COVID-

19 induced crash period, between March and April 2020. These days of exuberance are 

consistent with the local martingale theory. Hence, eliminating any concerns over the 

presence of any potential joint hypothesis related issues, and justifying the pioneering of the 

GSVJD calibration framework such that existence of bubbles can be examined from the 

perspective of various call option maturities. Given call option bubbles signal strict local 

martingale tendencies in the underlying price, such phenomena can be examined to a greater 

extent by capturing the various duration of the forward-looking expectations from the market 

participant’s preference of option maturity.  

 

5.4 Call Option Bubbles: Option Lifetime 

 

In the previous sections, S&P 500 bubbles were examined by exploring daily call options 

across various maturity groups. It allowed to perceive the existence of such phenomena, with 

respect to the forward-looking expectations of market participants, over different time 

durations that were associated with the expiry of call contracts. This practice was possible 

due to the computational boost provided by the deep calibration framework, in regard to 

estimating 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Since daily calibrations were conducted across all traded options, 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 are capable of computing fundamental values of call options across various 

maturities.  

 

Though call option bubbles, under ND, signal towards exuberance in underlying prices, they 

are unable to reflect the entirety of the occurrence. However, the analysis across various 

maturity groups revealed, to a greater extent, the size and presence of bubbles. This ability 

relies on the selection of call option maturities, alternatively, the duration over which the 

forward-looking expectations of market participants are to be examined.  In the current 

section, it is proposed to explore bubbles within specific call option contracts. This allows 

for capturing forward-looking expectations regarding the formation of bubbles, over the 

option life, without being restricted by maturity or liquidity classifications. Once again, such 
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practice is possible due to the superior computational abilities of the deep calibration 

framework, as 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, is used to estimate the required fundamental values. The daily cross 

section of HCV call options that reveal bubbles when using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are selected and 

categorized by maturities, with the assistance of RICs (see  5.1).  

 

A combined 14 unique RICs are considered, with all historical call prices of each being 

examined in abidance to the ND and 7 <  𝜏 <  365 days conditions being satisfied. The 

former is to ensure that call option bubbles are linearly related to those in the underlying, 

whereas the latter is consistent with filtering of datasets throughout the study. Furthermore, 

the maturity condition also ensures that the selected call options are explored, till at most, 1 

year prior to their expiry.  This allows for studying the evolution of a call option bubble, and 

its indication towards the presence and magnitude of that in the underlying price.  

 

5.4.1  Key Statistics 

 

The 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters are utilised for computing fundamental values of call options, 

within each of the 14 RIC categories. Specific to each category, daily cross-sections of call 

options are utilised in the construction of the time-varying threshold for identifying 

significant bubbles (𝔹�̂�  >  𝛼𝜎�̂�). Since the 7 <  𝜏 <  365 days condition is implied, each 

RIC covers a period of approximately 1 year, within the entire sample (January 2, 2019 - 

December 31, 2022). Hence, to prevent loss of a large data portion, bubbles are detected 

using only 30- and 60-day windows, within three levels of significance. Finally, the ND 

condition ensures that call option bubbles signal towards strict local martingale tendencies 

in the underlying.  

 

The key statistics in relation to bubbles detected over the lifetime of the various options are 

reported in Table 5.8. Prior to analysing them, it is important to acknowledge that only 11 

RICs are included, as no days of exuberance were identified within the historical prices of 

call options expiring in May (E20) and July (G20), 2020 and April 2021 (D21). Furthermore, 

in the remaining contracts, bubble detection occurs over different time periods, making it 

difficult to compare error metrics across the RICs. However, 𝑅𝑀𝑆𝐸𝜎,𝑡 values, corresponding 

to exuberance displayed within contract with 2020 maturity, standout. The C20, F20, I20 
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and L20  RICs reveal relatively larger average error values, in comparison to their 

counterparts.  

 

Table 5.8: Surface Calibration Performance over Call Option Lifetimes.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) error metric, along with number of significant bubbles (ℕ𝐵), and percentage of the sample 

period (excluding burn-in) revealing exuberance ℕ𝐵(%), reported for days displaying 𝔹�̂�  >  𝛼𝜎�̂�, in 

respective panels for various RICs.  

Window Size (days) 𝛼 ℕ𝐵 ℕ𝐵 (%) 𝑅𝑀𝑆𝐸𝜎,𝑡 

Panel A: C20 (March 2020)     

30 
10% 4.00 1.87% 2.14% 

5% 3.00 1.40% 2.12% 

60 10% 1.00 0.54% 3.09% 

Panel B: F20 (June 2020)     

30 

10% 9.00 4.19% 1.47% 

5% 6.00 2.79% 1.81% 

1% 5.00 2.33% 1.90% 

60 

10% 7.00 3.78% 1.71% 

5% 6.00 3.24% 1.81% 

1% 4.00 2.16% 1.83% 

Panel C: I20 (September 2020)     

30 

10% 13.00 6.13% 1.14% 

5% 8.00 3.77% 1.17% 

1% 4.00 1.89% 1.58% 

60 

10% 7.00 3.85% 1.50% 

5% 4.00 2.20% 1.67% 

1% 2.00 1.10% 1.95% 

Panel D: L20 (December 2020)     

30 

10% 36.00 16.74% 1.03% 

5% 30.00 13.95% 1.04% 

1% 17.00 7.91% 1.10% 

60 

10% 20.00 10.81% 1.04% 

5% 13.00 7.03% 1.15% 

1% 7.00 3.78% 1.27% 

Table 5.8 continued… 
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Table 5.8 continued… 

Panel E: C21 (March 2021)     

30 

10% 5.00 2.34% 0.74% 

5% 2.00 0.93% 0.68% 

1% 1.00 0.47% 0.65% 

60 
10% 1.00 0.54% 0.65% 

5% 1.00 0.54% 0.65% 

Panel F: F21 (June 2021)     

30 

10% 13.00 6.05% 0.72% 

5% 10.00 4.65% 0.70% 

1% 2.00 0.93% 0.58% 

60 

10% 3.00 1.62% 0.81% 

5% 1.00 0.54% 0.87% 

1% 1.00 0.54% 0.87% 

Panel G: I21(September 2021)     

30 
10% 4.00 1.90% 0.78% 

5% 3.00 1.42% 0.75% 

60 
10% 1.00 0.55% 0.84% 

5% 1.00 0.55% 0.84% 

Panel H: L21 (December 2021)     

30 
10% 6.00 2.79% 0.72% 

5% 1.00 0.47% 0.84% 

Panel I: A22 (January 2022)     

30 
10% 3.00 1.40% 0.81% 

5% 3.00 1.40% 0.81% 

Panel J: C22 (March 2022)     

30 
10% 3.00 1.40% 0.76% 

5% 2.00 0.93% 0.73% 

60 10% 1.00 0.54% 0.69% 

Panel K: L22 (December 2022)     

30 10% 1.00 0.47% 1.12% 

Similarly, L22 call options displaying higher 𝑅𝑀𝑆𝐸𝜎,𝑡 but since only a single occurrence is 

detected, it cannot be categorised with 4 aforementioned RICs. The group of RICs coinciding 

with large 𝑅𝑀𝑆𝐸𝜎,𝑡 values, all expire in 2020, and since the sample period does not exceed 

365 days, their error metrics are justified by the detection of exuberance within the COVID-

19 induced market crash period, during which the GSVJD provides weaker calibration 
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performances. This is consistent with previous findings and eases concerns over the presence 

of potential joint-hypothesis related issues, given alliance with the local martingale theory 

of bubbles. The frequency of exuberance is the most within call options maturing in 

December 2020 (L20).  Over the various combinations of window sizes and levels of 

significance, bubbles cover 3.78% to 16.74% of its specific sample period.  In comparison 

to the rest, the proportion of the sample period depicting exuberance, ranges from 0.47% to 

6.13%. The width of the range, especially at the lower end can be attributed to the lesser 

number of bubbles detected over stricter levels of significance and larger windows. Overall, 

in most instances, fewer occurrences of exuberance are detected, with average 𝑅𝑀𝑆𝐸𝜎,𝑡 

metrics, being below 1% and close to those from  𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 calibrations (Table 4.7).  

 

5.4.2  Market Analysis  

 

Recall, significant call option bubbles (𝔹t̂  >  ασt̂) reveal the presence of exuberance in the 

underlying price. The magnitude of the former, which increases with time to maturity, acts 

as the lower bound to the size of the latter. The bubble within historical prices of daily cross-

section of selected call options (categorized by a similar expiry date), over a period are 

studied. This allows for comprehending the forward-looking expectations regarding bubble 

formation, over the lifetime of call option contracts. Additionally, it enables the examination 

of factors and various market scenarios that impact investor perceptions. Such perceptions 

are heavily influenced by the option’s remaining time to maturity. The market analysis of 

bubbles over the lifetime of call options is conducted chronologically for each RIC and 

presented in order of corresponding expiry dates, categorised by years. The RICs were 

selected based on the condition that they revealed bubbles when applying 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 to HCV 

call options.  

 

5.4.2.1  Call Options Expiring in 2020 

 

The application of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV call options revealed bubbles in 4 call contracts, that 

expire in 2020. The respective C20, F20, I20, and L20 RICs indicate March, June, September 

and December 2020 maturities. The identified bubbles, across the different levels of 
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significance and window sizes are seen in Figure 5.4.  Bubbles are timestamped (top), and 

their magnitudes are examined against the time-varying thresholds (bottom), constructed 

over past information, with respect to the selected window size. For each RIC, timeseries of 

the cross-section of call option prices are considered, such that the 7 <  𝜏 <  365 condition 

is satisfied. Accordingly, following a 30-day initial burn-in period, for the C20 call options, 

the sample ranges between May 3, 2019, and March 12, 2020.  

 

The C20 call options, as seen in Figure 5.4 (Panel A), reveal 4 instances of exuberance. The 

first on December 12, 2019, coincides with progression of the USMCA trade deal, along 

with U.S. and China being close to signing a trade agreement. It was observed using a 30-

day window and therefore is timestamped in indigo. Moreover, a similar bubble was 

acknowledged by 𝜏𝑀 call options. Next, occurrences were detected on February 27 and 28, 

2020, addressing concerns over the spread of global coronavirus pandemic, and forced 

closure of factories across major European and Asian nations. The latter instance was 

identified by employing 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV call options. A circuit breaker was triggered on 

March 9, as the S&P 500 collapsed by 7.60%. The 𝜏𝐿 contracts observed exuberance on this 

day, however, C20 RIC captured a bubble on March 10, as the S&P 500 gained 4.94%. This 

instance was witnessed using the 30-and 60-day window and hence is timestamped in blue.  

 

All three remaining RICs (F20, I20, and L20) detected exuberance on March 16, 17, 18 and 

April 8, 2020. In addition, F20 call options revealed bubbles on March 19, 20 and April 3, 

whereas the latter, along with those on April 7 and 9, were identified by I20 contracts.  The 

application of 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, respectively addressed occurrences on March 17, 19 and 

April 3; and March 16, 17, 19, 20, April 3 and 8. All three maturity groups acknowledged 

instances on March 17, and 19, while 𝜏𝑀 and  𝜏𝐿 contracts captured those on March 16, and 

19. The medium maturity group, even witnessed the bubbles on March 20, and April 9. The 

detection of exuberance reveals consistency with the research hypothesis (4.1) and previous 

findings during this period. It is interesting to examine the magnitude of exuberance captured 

across the various option expiries. Consider, the bubble on March 16, which is quantified at 

0.89%, 1.33% and 1.59%, respectively, in accordance with C20, I20, and L20 RICs. This is 

consistent with local martingale theory of bubbles, the previous analysis of bubbles within 
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various maturity groups, and across the remainder of similar events corresponding to the 

lifetime of different options, indicating towards increasing magnitude with maturity.  

 

Figure 5.4: S&P 500 Bubbles in the Lifetime of Call Options expiring in 2020. 

 

Panel A: C20 

 

Panel B: F20 

 

Figure 5.4 continued… 
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Figure 5.4 continued…  

 

Panel C: I20 

 

Panel D: L20 

Note: Daily bubbles detected in the C20, F20, I20, and L20 call options written on the S&P 500 index, using 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, displayed in Panel A, B, C, and D, respectively. Bubbles are timestamped (top) and assessed at 

each combination of window sizes (30, and 60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 
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The F20 and I20 contracts revealed exuberance on April 23, and May 14, with both being 

addressed by 𝜏𝑀 contracts. Moreover, the former was also acknowledged by applying 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 to HCV and 𝜏𝑆 call options. The final bubble detected by F20 was witnessed on 

May 19, and also captured by 𝜏𝑀. The S&P 500 gained 2.29% on April 22, but continuously 

rising unemployment hampered investor sentiment. The bubbles on May 14 and 19, 

corresponded to recovering investor confidence, as the economy continued in a partial 

lockdown phase, with proposals for new fiscal stimuli, and developments on the coronavirus 

treatment front providing a further boost. Subsequently, the index hiked by 1.15% and 3.15% 

on May 14, and 18, respectively, prior to falling by 1.05% on May 19.  

 

Similar to HCV and 𝜏𝑀 contracts, L20 options witnessed exuberance on June 12, 2020. 

Moreover, it identified bubbles on June 19, 25, and 26, with the latter two also being 

addressed by the medium maturity group. The I20 RIC, in respective alignment with 𝜏𝑆 and 

𝜏𝑀 call options, detected bubbles on June 16 and 23. Furthermore, both RICs captured 

exuberance on June 17 and 18. The latter bubble was even acknowledged by applying 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 to HCV and 𝜏𝑆 options. Prior to the start of the cluster, on June 11, the S&P 500 

plummeted by 5.89%, following panic over a second coronavirus wave. Investor sentiments 

received a lift from the Federal Reserve committing to its dovish stance, and the index closed 

in green over the next three days, recording respective wins of 1.31%, 0.83% and 1.90%. 

Nonetheless, the S&P 500 fell by 2.59% on June 24, before gaining 1.10%, and then 

dropping by 2.42%, on subsequent days. Markets were hurt from restricted business activity 

due to rising coronavirus cases, and weak earnings from major corporations. The L20 

contracts further revealed exuberance on July 28, similar to 𝜏𝑀, coinciding with falling 

consumer confidence, and rising cases dominating investor sentiments. 

 

The L20 contracts, next reveal 20 instances of exuberance between August 3, and September 

9, 2020. During this period, the I20 RIC observed bubbles on August 10, and 14. The latter, 

along with that on August 17, were also captured by using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV and 𝜏𝑠 call 

options. Additionally, 𝜏𝑠 addressed bubbles on August 10, and 19, whereas all occurrences 

barring those on August 3 and 12, were acknowledged by 𝜏𝑀 contracts. The discovered 

cluster strongly resembles that observed across the various maturity groups. It was not 

exhibited in HCV call options and therefore shed light on the importance of calibrating to 
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the entire surface and examining bubbles amongst call options with expiries. Furthermore, 

the capturing of these episodes, also reveals greater consistency with the research hypothesis 

(4.1). The initial days of the cluster witnessed a boost in market sentiments following 

developments on the coronavirus vaccination front, optimism over new fiscal stimulus 

package, and further provisions for airline companies. All COVID-19 induced losses were 

erased by August 18, 2020, as technology stocks that supported the market recovery, 

significantly benefited from the Federal Reserve’s dovish outlook. Nevertheless, the S&P 

500 crashed by 3.51% on September 3, following news about the highly anticipated vaccine 

solution not being attainable till the end of year. By September 8, the technology sector shed 

close to 11% of its value. The S&P 500 rose by 2.02% the next day, prior to dropping 1.76% 

on September 10, as a stalled labour market signalled towards slow economic recovery.  

 

The final bubbles detected by options expiring in 2020, were observed by the L20 RIC, on 

September 25, and October 1, 6, and 7. The first and last instances, were respectively 

identified by the application of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on 𝜏𝑀 and HCV call options. Technology stocks 

rebounded towards the end of September but alternatively, a large spike in coronavirus 

infection was experienced across Europe. In addition to weak labour market reports, failed 

negotiations over the fiscal relief package, dented investor sentiments. The S&P 500 gained 

1.80% on October 5 following the restart of negotiations over the fiscal stimulus package. 

However, it lost 1.40% the next day, as President Trump postponed such talks to after the 

election. Nonetheless, the index hiked by 1.74%, upon passing of an individual stimulus 

package with immediate effect.  

 

5.4.2.2  Call Options Expiring in 2021. 

 

There are 4 RICs of call options expiring in 2021, C21, F21, I21, and L21, that revealed 

bubbles when applying 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters to HCV call options. In respective order, these 

RICs adhere to March, June, September, and December contract terminations, and exhibited 

5, 13, 4 and 6 days of exuberance over their lifetime. The bubble occurrences for each RIC 

are illustrated in corresponding panels, are revealed in Figure 5.5, which can be interpreted 

as its predecessor, Figure 5.4. Exuberance was first witnessed by F21 options on January 

29, 2021, coinciding with the S&P 500 dropping by 1.93% as market participants expressed 
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concerns over continued purchases of stocks similar to, and inclusive of GameStop, despite 

it experiencing a short squeeze two days prior.  

 

Figure 5.5: S&P 500 Bubbles in the Lifetime of Call Options expiring in 2021. 

 

Panel A: C21 

 

Panel B: F21 

Figure 5.5 continued… 
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Figure 5.5 continued… 

 

Panel C: I21 

 

Panel D: L21 

Note: Daily bubbles detected in the C21, F21, I21, and L21 call options written on the S&P 500 index, using 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, displayed in Panel A, B, C, and D, respectively. Bubbles are timestamped (top) and assessed at 

each combination of window sizes (30, and 60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 
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The F21 RIC exhibited bubbles on February 11, 16, 17, 18, 19, 22, and 23, 2021. The 

instance on February 24 was captured, in addition to those on February 16, 18, 22, and 23, 

by C21 contracts. All occurrences between February 16 and 19, along with that on February 

23, were acknowledged by using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV call options, with the latter also being 

addressed by employing 𝜃𝐻𝐶𝑉. Additionally, each bubble between February 11 and 19 were 

seen within 𝜏𝑆 and 𝜏𝑀 contracts, barring that on February 17. The maturity groups also 

highlighted exuberance on February 24 and 22, respectively. Moreover, F21 options 

revealed exuberance on March 1, 2, 10, April 26 and May 3, 2021, while only that on March 

10, was noticed by the 𝜏𝑀 group. The S&P 500 index entered a 5-day losing streak, starting 

February 16, as a spike in treasury yields reflected growing concerns over inflation and 

equity valuation. Fears over the former were eased by the Federal Reserve maintaining an 

expansionary stance. Technology and other growth stocks received a boost, as the S&P 500 

finished 2.37% higher on March 1. The exuberance on March 10 captured passing of the 

long-awaited coronavirus relief package. Furthermore, despite strong earnings from major 

corporations, the bubble on May 3, 2021, corresponded to growing fears over the resurgence 

of coronavirus infections in major emerging nations.  

 

Next, bubbles observed on June 2, July 8 and 31, and August 4, 2021, are revealed by I21 

contracts. The instance on July 8 was also acknowledged by employing 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 on HCV, 

𝜏𝑀 and 𝜏𝐿 call options. Furthermore, exuberance on July 31, was detected by 𝜏𝑆 and L21 

options. The latter RIC even identified an episode on August 19, which along with the event 

on August 4, was captured by the 𝜏𝑆 and 𝜏𝑀 maturity groups. The bubble on June 2, coincided 

with improvements in global demand, signalled by boosted manufacturing activity, and a 

spike in crude oil price. Concerns over global economic recovery resurfaced, and were 

exhibited on July 8, after Asian nations experienced a spike in coronavirus cases. The next 

two days of exuberance reflected anxiety over dropping consumer sentiment, rising 

inflationary pressure, and increased coronavirus spread. Investor sentiments remained 

dampened, despite strong earnings from major corporations, and signs of economic recovery.  

The S&P 500 closed 1.08% below, marking a 6-day losing streak on August 18, as rising 

coronavirus cases and premature tapering of the quantitative easing programme threatened 

the pace of economic recovery. Nonetheless, technology stocks rallied over the next two 

days, consequent to falling treasury yields.  
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The final 4 bubble episodes within options expiring in 2021, were captured by L21 options, 

on September 14, November 10 and 29, and December 7. The former corresponded to rising 

inflationary pressure, along with the rapid spread of coronavirus cases hampering hiring and 

consumer confidence. The exuberance on November 10, also detected by 𝜏𝑆 contracts, 

captured investors shift from technology and growth stocks, following a spike in treasury 

yields. Both 𝜏𝑆 and 𝜏𝑀, in addition to applying 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 to HCV call options, 

acknowledged the occurrence on November 29, as the S&P 500 gained 1.32%. Technology 

stocks received a massive boost from the omicron coronavirus variant being deemed as not 

a source for panic. Finally, the last episode, which was even addressed by employing  

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 for pricing HCV, 𝜏𝑆 and 𝜏𝑀 call options, aligned with a 2.07% rise in the S&P 500 

index. It reflected investors regaining confidence by overcoming uncertainty regarding the 

monetary policy and fears over the omicron variant. 

 

5.4.2.3  Call Options Expiring in 2022. 

 

The final three HCV call options, that revealed bubbles when using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, 

expired in January, March, and December 2022, respectively represented by A22, C22, and 

L22 RICs. The exuberance occurring over the lifetime of these contracts are timestamped 

(top), and quantified (below), within each of the corresponding panels of Figure 5.6 which 

can be interpretated, in similar capacity to Figure 5.4 and Figure 5.5.  It can be observed that 

several bubbles detected by 2021 expiry contracts, were also noticed within A22 and C22 

prices. For instance, the former addresses events on July 30, November 29,  and December 

7, 2021, whereas only that on November 29, was captured by the latter. The A22 call options 

revealed exuberance on July 30, 2021, as visible in Panel A of Figure 5.6, coinciding with 

fears over rising inflation, increased coronavirus spreads, and dropping sentiments, even 

though major corporations reported strong earnings. Similar to 𝜏𝐿, C22 contracts captured a 

bubble on September 2, as sentiments received a boost from improvements in manufacturing 

and labour market activity. 
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Figure 5.6: S&P 500 Bubbles in the Lifetime of Call Options expiring in 2022. 

 

Panel A: A22 

 

Panel B: C22 

Figure 5.6 continued…  
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Figure 5.6 continued… 

 

Panel C: L22 

Note: Daily bubbles detected in the A22, C22, and L22 call options written on the S&P 500 index, using 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, displayed in Panel A, B, and C, respectively. Bubbles are timestamped (top) and assessed at each 

combination of window sizes (30 and 60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 

 

Next, occurrences were observed on November 29, and December 7, in correspondence to 

investors regaining confidence by overcoming coronavirus and inflation related concerns. 

At the turn of the year, exuberance was first exhibited on February 2, 2022. It was 

acknowledged by C22, along with 𝜏𝑆 and 𝜏𝑀 options. Momentum from bank stocks and 

strong corporate earnings bolstered the index, despite a struggling technology sector. The 

final episode was detected on May 5, by the L22 RIC, reflecting interest rate hikes hindering 

economic growth, rather than combating supply-side inflation. Consequently, a technology 

sell-off triggered the S&P 500 index to fall by 3.57% lower.  
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5.4.3  Model Performance  
 

Identification of exuberance across the lifetime of call options, allowed for capturing the 

forward-looking expectations of market participants over future durations. The call options 

were categorized in accordance with their maturity dates, and historical prices of only those 

associated with HCV call options, that revealed exuberance when applying 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

parameters, being selected. As observed previously, the 𝑅𝑀𝑆𝐸𝜎,𝑡 metric displayed in Table 

5.9, is utilised for testing the statistical validity of the approach.  Recall, the entire sample 

for each RIC, refers to the period over which historical call prices, adhere to the 7 <  𝜏 <

 365 days condition. 

 

Table 5.9: Model Calibration Performance over Call Option Lifetime.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) metrics from 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 calibration corresponding to the entire sample (excluding burn-in) 

period, along days with negative (𝔹�̂�  <  0) and positive (𝔹�̂�  >   0) bubble magnitudes, for  each RICs, are 

reported in respective panels. 

Window Size (days) Entire 𝔹t̂ < 0 𝔹t̂  > 0 

Panel A: C20 (March 2020)    

30 0.640% 0.595% 0.768% 

60 0.652% 0.602% 0.768% 

Panel B: F20 (June 2020)    

30 0.816% 0.740% 0.957% 

60 0.868% 0.807% 0.957% 

Panel C: I20 (September 2020)    

30 0.925% 0.808% 1.014% 

60 0.988% 0.882% 1.055% 

Panel D: L20 (December 2020)    

30 0.970% 0.886% 1.033% 

60 0.893% 0.800% 0.949% 

Panel E: C21 (March 2021)    

30 0.745% 0.724% 0.778% 

60 0.745% 0.711% 0.804% 

Panel F: F21 (June 2021)    

30 0.740% 0.726% 0.782% 

60 0.693% 0.654% 0.781% 

Table 5.9 continued… 
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Table 5.9 continued… 

Panel G: I21(September 2021)    

30 0.647% 0.630% 0.680% 

60 0.677% 0.664% 0.702% 

Panel H: L21 (December 2021)    

30 0.710% 0.736% 0.680% 

60 0.693% 0.714% 0.672% 

Panel I: A22 (January 2022)    

30 0.706% 0.723% 0.671% 

60 0.691% 0.707% 0.668% 

Panel J: C22 (March 2022)    

30 0.711% 0.713% 0.708% 

60 0.704% 0.707% 0.700% 

Panel K: L22 (December 2022)    

30 0.874% 0.853% 0.941% 

60 0.882% 0.852% 0.983% 

 

The existence of negative bubbles is prevented by the local martingale theorem by 

considering the fundamental value of the asset, as the lower bound to its market price. Hence, 

the occurrence of such phenomena is justified by the possible presence of model 

misspecification Fusari et al. (2024). As documented in Table 5.9, across both windows, the 

𝑅𝑀𝑆𝐸𝜎,𝑡 metric is lower during 𝔹t̂  > 0 days, for L21, A22 and C22 RICs. The error 

associated with I21 options is marginally higher for 𝔹t̂  > 0.  A likewise trend in the 

𝑅𝑀𝑆𝐸𝜎,𝑡 values is witnessed for C21, F21, and L21 call contracts, with a difference between 

average values on with positive and negative magnitudes not exceeding 0.13%. This gap 

reduces, with respect to both windows sizes, as the maturity of the option increases. It is a 

direct consequence of the 𝜏 < 365 days condition, as historical prices of later expiring RICs 

become clear of the COVID-19 induced crash period.  

 

Observe, for call options expiring in 2020, not only does the gap between 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics 

increase, but so does the absolute magnitude of average errors. As witnessed over previous 

practices of bubble detection in this study, such errors arise due to relatively weaker GSVJD 

calibration performances during the COVID-19 induced market crash period. The days of 

exuberance between March 16, and April 23, 2020, align with higher GSVJD calibration 
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errors. More specifically, due to greater detection of bubbles during this period, the F20, I20, 

and L20 RICs reveal greater 𝑅𝑀𝑆𝐸𝜎,𝑡 values on 𝔹t̂  > 0 days. However, such events 

coincide with the triggering of circuit breakers, which act as a lower bound to admissible 

trade strategies, making the existence of exuberance consistent with the local martingale 

theory of bubbles. This justification eliminates any concerns over the potential existence of 

joint-hypothesis related issues. Overall, performance of the 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 are consistent and 

robust in the detection of bubbles, throughout all RICs. They provide the ability to 

comprehend the signalling of exuberance in the S&P 500 index, according to forward-

looking expectations of market participants, over different future durations, captured by the 

horizon of various option contracts. 

 

5.5 Summary and Discussion 
 

The deep calibration framework for computing GSVJD parameters was previously applied 

to the HCV and Entire Surface datasets. When compared to the benchmark Monte Carlo 

simulations, it provided a large boost in computational efficiency, along with a 2-fold 

improvement in calibration accuracy. In the current chapter, 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 were utilised 

for estimating the fundamental value of call options for bubble detection. Recall, under the 

ND condition, exuberance in the underlying and call option prices, share a linear 

relationship, such that the magnitude of the latter, acts as a lower bound to that of the former. 

The identification of bubbles was conducted over different window sizes, and various levels 

of significance.  

 

First, HCV call options were examined using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The former captured 

exuberance coinciding with growing trade tensions between U.S. and China, along with 

concerns over an economic slowdown, throughout 2019. Whereas, towards the end of 2019, 

both addressed the signing of a trade agreement between the two nations.  As opposed to 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, bubbles, to a greater extent, were witnessed during late January and early February, 

prior to the global coronavirus pandemic. The pair further acknowledged occurrences in 

March 2020, that aligned with the COVID-19 induced crash. Bubbles during this period, 

across days that experienced large losses and gains, addressed the dynamic prices 
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movements driven by speculative buying, with the slightest indication of panic, resulting in 

greater selloffs. Interestingly, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 displayed exuberance on March 16, which coincided 

with a circuit breaker, maintaining consistency with the local martingale theorem of bubbles. 

Moreover, calibration to the entire surface, identified more bubbles during the immediate 

recovery period.  

 

In 2021, the S&P 500 index was supported mostly by economic recovery and the technology 

sector, even though inflationary pressure and coronavirus cases were on the rise. These 

concerns remained throughout their year, with the former severely impacting technology 

stocks, and raising questions about their overvaluation. Large technology stock sell-offs 

contributed towards 𝜃𝐻𝐶𝑉 revealing exuberance in February and May 2021, with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

capturing a much greater extent of the former cluster. However, unchanged interest rates, 

continued to bolster technology stocks. In general, bubbles captured negative sentiment of 

investors, hinting towards market prices exceeding the fundamental value. Overall, the 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 was better equipped, given the use of information across several volatility smiles, 

to detect bubbles during dramatic price periods that were fuelled by speculative behaviours 

linked to clear economic triggers. A relatively larger error metric was associated with 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 calibrations. This was a direct consequence of detecting several bubbles between 

March and April 2020, a period synonymous with the coronavirus induced crash. 

Nevertheless, concerns over the presence of joint-hypothesis issues were eliminated, as these 

days of exuberance were consistent with the local martingale theory of bubbles. 

 

Next,  𝜃𝑆𝑢𝑓𝑎𝑐𝑒 were employed to examine days of exuberance, associated with call options 

from three maturity groups:  short (𝜏𝑆), medium (𝜏𝑀), and long (𝜏𝐿). This practice allowed 

the detection of bubbles by comprehending forward looking expectations of market 

participants, over various investment horizons. This was possible as 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 was calibrated 

from the entire daily surface, allowing to compute the fundamental value of call options from 

various maturity groups. Collectively, across all three groups, the identified exuberance 

closely resembled those within HCV call options, when using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. However, a key 

difference of bubbles being spotted in larger groups was revealed. For instance, the 

revelations of exuberance between March and October 2020, provided more insight on 

investor sentiments throughout the crash and instantaneous recovery period, and revealed 
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greater consistency with the research hypothesis. Furthermore, bubbles were acknowledged 

in February, and March 2021, as the S&P 500 reached a record high, despite technology 

stocks suffering from rising inflation, and investors expressing concerns over the long-

lasting pandemic induced effects on the economy. The overall impact of rising inflationary 

concerns, along with lingering impacts from the pandemic, continued to plague investor 

sentiments, as the S&P 500 surged with support from technology stocks. This was well 

captured by detected exuberance between July 2021 and February 2022. 

 

Taking advantage of 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters being able to compute fundamental values of daily 

call options, across various maturities, bubbles were examined over the lifetime of certain 

contract cross-section. This provided an even deeper comprehension of investor perceptions 

regarding the formation of such phenomena. The identified bubbles were very close to those 

within the different maturity groups, especially with respect to the clusters in March, June, 

August and September 2020, aligning closely with research hypothesis. In both practices, 

bubbles observed on similar days, either by various call option RICs or maturity groups, 

were found to increase with  remaining duration of the contract. This is consistent with the 

local martingale theory of bubbles, that reveals the magnitude of such events to nullify as 

the option expires. Recall, that the size of the call option price bubbles acts as the lower 

bound to that in the underlying. Therefore, by exhibiting a greater magnitude of the same 

events in call options with longer remaining lives, a larger extent of that present in the 

underlying can be acknowledged. Furthermore, exuberance was more often spotted towards 

the end of the contract, as it would have to be significantly larger for it be present during the 

earlier stages. This indicates towards the variation in investor perceptions that hold contracts 

of different durations. Such bubbles would symbolise the willingness of traders to purchase 

closer to maturity contracts, with aspirations of making a short-term profit.  

 

The efficiency of the deep calibration framework, along with the improvement in accuracy, 

allowed for the GSVJD parameters to be computed from the entire surface of daily put 

options, within a matter of seconds. Firstly, this significantly bolstered the tractability of the 

three-step approach amongst practitioners indulging in real-time bubble detection. Next, the 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 comprises of information regarding the forward-looking expectations of market 

participants extracted from various volatility smiles, in contrast to solely focusing on the 
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most liquid maturity. Hence, these parameters were more equipped to capture the direct 

impact of speculative behaviour fuelled by economic triggers. Furthermore, they allowed for 

examining the presence of bubbles across various call option maturity groups, and even 

within the lifetime of several contract cross-sections, which revealed more consistency with 

research hypothesis in capturing exuberance during the COVID-19 induced crash, and 

immediate recovery periods. This developed a deeper understanding regarding the formation 

of bubbles, in addition to revealing a greater extent of their magnitude in the underlying 

price.  
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6 Chapter 6:      

Case Study 
 

 

 

 

 

 

The widespread application of enhancing the three-step approach with neural networks, was 

thoroughly explored in the previous chapter. Next, this study proceeds with extending the 

implementation of the methodology towards identifying exuberance in various technology 

stocks that have American-styled option written on them. Recall, in abidance with the local 

martingale theory of bubbles (see 2.3.2), American calls do not exhibit bubbles. However, 

difference between their market prices, and the fundamental value of equivalent European-

styled options, capture the bubble component, similar to reflecting the early exercise value. 

Therefore, the deep calibration framework can be applied to calibrate the GSVJD model to 

American styled market put options.  

 

Since put options do not reveal bubbles, market prices must align with their fundamental 

values. Moreover, the bubble component is similar to reflecting the early exercise value, and 

given non-existence of the former, the fundamental value of American- and European-styled 

put options are considered to align. This validates the application of the deep calibration 

framework, without having to retrain the optimal neural network. The computed parameters 

are used to estimate fundamental call option values from (19), (20), and (22). The difference 
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between the modelled, and equivalent American-styled market call prices represents the 

bubble, similar to an early exercise premium. The case study provides a great opportunity to 

express the robustness of the neural network framework in calibrating the GSVJD model to 

various equities. This stellar capability is a direct consequence of the optimal 

hyperparameter search, and the network being trained on a synthetic dataset, rather than 

historical prices. The latter prepares the deep calibration framework to adjust to new markets 

scenarios, and different equity instruments.  

 

Market analysis of bubbles in the S&P 500 from Chapter 5 revealed the index, or more 

generally U.S. markets to recover from the devastations of the COVID-19 induced crash by 

receiving major support from technology stocks. The share prices of these companies 

continued to rally throughout the low-interest rate environments of 2021. Moreover, even 

after the following year, despite the Federal Reserve altering its expansionary stance, a 

peaked interest in the development of artificial intelligence tools for a wide variety of tasks 

bolstered this sector. This attracted interest in examining five particular technology stocks. 

Specifically, the selection of these companies is justified by the following reasons. Microsoft 

Corporation (MSFT) and Meta Platforms, Inc. (META) have been heavily focused on 

incorporating the benefits of these tools into everyday lives, by making them accessible 

across various domains. Machine learning and artificial intelligence algorithms require high 

speeds and efficiency, making them reliant on super performing graphic processors and 

chips. Nvidia Corporation (NVDA) and Advanced Micro Devices, Inc. (AMD), indulge in 

the business of manufacturing such products. In both respective fields, the aforementioned 

companies have experienced significantly varying magnitudes of gains in stock prices over 

the sample period (August 1, 2022, to April 30,  2024). They have been included in the case 

study, such that bubble formations in competitors experiencing different degrees of benefits 

from the AI boom, are examined. Additionally,  Amazon.com, Inc. (AMZN) is included, as 

it is a technology stock, which does not direct beneficiary of the boom.   

 

Alternatively, this chapter conducts a robustness check on the application of the three-step 

approach. Strict local martingale tendencies in underlying prices could not be revealed by 

relying on parameters 𝑝 and 𝜌, given the non-unique nature of the optimiser. Therefore, 

signals indicating the presence of exuberance in the underlying were obtained from using a 
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statistical test to examine the significance of call option bubbles. Essentially, relying on the 

linear relationship between call option and underlying price bubbles, under ND. Given large 

standard errors being obtained during GSVJD calibrations, Fusari et al. (2024) revealed a 

robustness check for the three-step approach, via examining factors that influence the 

formation of bubbles, in abidance with the local martingale theory. The current chapter 

begins with an overview of relevant data associated with the selected technology sector 

stocks, prior to examining the performance of the deep calibration framework. The 

framework is applied to the most liquid cross section (HCV), and entire surface of daily put 

options. However, bubble detection is restricted to HCV call contracts, given the short-term 

lives of stock options. Finally, a robustness check is conducted, by examining factors that 

influence the formation of bubbles.  

 

6.1  Market Data 
 

The case study is geared towards assessing the robust application of the deep neural network 

framework for applying the three-step approach to five technology stocks: MSFT, NVDA, 

AMZN,  META, and AMD. Empirical analysis is initiated over daily American-styled options 

written on each stock, during a period of 437 trading days. All market observations between 

August 1, 2022, and April 30, 2024, were collected from Refinitiv Eikon. Bubbles are 

detected by calibrating the GSVJD model to the daily most liquid cross section and surface 

of put options, for examining HCV call options. The summary statistics of options data for 

each company is provided in Table 6.1. Mid-prices of weekly options were computed by 

taking the average between bid and ask quotes. The strike increments varied with respect to 

the price range of the stocks. NVDA, META and MSFT options were selected at increments 

for $2.50, whereas for AMZN and AMD, the difference between consecutive strike prices 

was $1.00. Given the synchronization in the trading of the equity and option markets, the 

need to compute implied spot prices is made redundant. Risk-free rates were obtained from 

linearly interpolating the Zero-Coupon Yield Curve from Eikon, to corresponding option 

maturities, using (49). Moreover, in abidance with Stahl & Blauth (2024), dividend yields 

were assumed to be constant as per their last known payment. Finally, only options with 

nonzero trading volumes, satisfying −10 <  𝑚 <  5, and 𝑘 <  0.5, and expiring between 7 

and 365 days are retained (refer to 5.1 for more information).  
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Table 6.1: Summary Statistics of Options relevant to the Case Study.  

Note: Summary statistics of HCV and Entire Surface put options, and HCV call options for each stock. For a 

single 𝜏, Volume (000s) reports accumulated values for daily contracts, and 𝑁𝑃/𝑁𝐶 reveals the number of 

put/call contracts, on a given day. Bid-, Ask-, and Mid-Prices are denoted in $, along with 𝑚𝑜𝑛 = 𝕂 𝕊⁄ .  

 Put  Call  

 HCV Entire Surface HCV 

 mean std P50 mean std P50 mean std P50 

Panel A: MSFT          

Bid 10.44 20.15 1.26 12.58 22.95 3.70 19.77 28.73 5.70 

Ask 11.11 20.92 1.48 13.30 23.61 4.05 20.72 29.64 6.05 

Mid 10.78 20.53 1.35 12.94 23.28 3.85 20.24 29.19 5.88 

𝑚𝑜𝑛 0.93 0.17 0.94 0.89 0.19 0.90 1.02 0.17 1.01 

Volume 25.84 16.79 21.30 6.12 9.30 2.65 32.29 22.21 26.77 

𝑁𝑃/𝑁𝐶 40.57 6.59 40.00 30.79 9.45 31.00 41.14 7.42 40.00 

𝜏 22.18 25.04 16.00 96.96 86.54 58.00 22.18 25.04 16.00 

Panel B: NVDA          

Bid 21.33 36.76 3.75 27.04 46.87 8.35 39.88 59.51 13.30 

Ask 22.02 37.64 3.95 27.82 47.80 8.75 40.89 60.52 13.80 

Mid 21.68 37.20 3.85 27.43 47.33 8.55 40.38 60.01 13.55 

𝑚𝑜𝑛 0.94 0.24 0.93 0.87 0.29 0.86 1.05 0.28 1.01 

Volume 55.29 30.49 49.48 12.18 18.81 5.05 64.17 47.28 53.39 

𝑁𝑃/𝑁𝐶 61.76 23.00 64.00 52.15 24.22 48.00 64.85 21.46 63.00 

𝜏 17.97 17.58 11.00 92.14 85.69 50.00 17.97 17.58 11.00 

Panel C: AMZN          

Bid 8.07 15.25 1.22 8.65 14.87 2.86 9.61 13.68 3.05 

Ask 8.31 15.49 1.30 8.96 15.17 3.05 9.91 13.97 3.20 

Mid 8.19 15.36 1.26 8.81 15.01 2.95 9.76 13.83 3.12 

𝑚𝑜𝑛 0.95 0.24 0.93 0.93 0.25 0.92 1.06 0.26 1.02 

Volume 53.91 67.89 35.76 12.36 26.92 4.67 58.44 42.65 47.82 

𝑁𝑃/𝑁𝐶 47.55 19.44 45.00 32.77 17.55 30.00 47.67 17.31 46.00 

𝜏 25.33 28.41 16.00 94.85 90.07 50.00 25.33 28.41 16.00 

Panel D: META          

Bid 18.92 37.38 2.85 19.55 34.52 6.00 23.65 36.55 5.90 

Ask 19.27 37.66 2.96 19.97 34.89 6.25 24.11 37.06 6.10 

Mid 19.09 37.52 2.90 19.76 34.70 6.13 23.88 36.80 6.00 

𝑚𝑜𝑛 0.98 0.32 0.94 0.92 0.31 0.90 1.09 0.35 1.03 

Volume 30.01 30.72 20.79 6.59 13.56 2.46 31.38 23.89 25.41 

𝑁𝑃/𝑁𝐶 42.67 12.38 42.00 32.61 12.57 32.00 47.82 14.08 46.00 

𝜏 25.51 30.85 14.00 93.57 89.98 49.00 25.51 30.85 14.00 

Table 6.1 continued… 
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Table 6.1 continued… 

Panel E: AMD          

Bid 6.64 11.11 1.65 7.61 11.82 2.93 8.18 11.83 2.58 

Ask 6.84 11.36 1.71 7.82 12.05 3.05 8.43 12.16 2.65 

Mid 6.74 11.24 1.68 7.72 11.93 3.00 8.31 11.99 2.61 

𝑚𝑜𝑛 0.96 0.21 0.95 0.93 0.24 0.93 1.07 0.27 1.03 

Volume 33.73 21.32 27.37 8.19 12.48 3.65 44.30 31.02 36.73 

𝑁𝑃/𝑁𝐶 37.73 12.44 38.00 25.82 11.40 22.00 41.59 12.78 42.00 

𝜏 20.05 22.96 11.00 80.17 75.79 44.00 20.05 22.96 11.00 

In Table 6.1,  the daily average volume of HCV put options is approximately 4.5 times larger 

across all stocks. Majority of liquidity is concentrated within short-term options, given HCV 

contracts, on average expire between 17 – 25 days, compared to 80 – 96 days from the Entire 

Surface dataset. In respective order, median maturity ranges for the datasets are 11 – 16 and 

44 – 58 days. Both ranges are significantly lower than those seen for S&P 500 index options 

(view Table 4.2 and Table 5.1). Furthermore, as opposed to S&P 500 options, call contracts 

written over equity reveal more liquidity. The selection of weekly options in Table 6.1, 

makes it is difficult to examine bubbles across various maturity groups, and over historical 

call prices. Hence, bubbles are only detected within daily HCV call options.  

 

The options span over a wide range of moneyness, on average reflecting OTM 

characteristics. The inclusion of a wide range of strike prices, ensures a sufficient number of 

option contracts for calibration and bubble detection. Overall, stocks within the HCV dataset 

reveal, on average 37 – 61 and 41 – 64 daily put and call contracts, respectively. Whereas, 

for each maturity, the mean number of put options ranged between 25 and 52 in the Entire 

Surface dataset. Finally, call option prices must abide by the ND condition, 𝐶𝑡
𝐴  ≤  𝕊𝑡 

(Jarrow et al., 2010). This ensures that call option and underlying price bubbles share a linear 

relationship, with presence in the former, signalling towards strict local martingale 

tendencies in the latter. 

 

6.2 GSVJD Calibration for Bubble Detection  
 

The deep calibration framework is paired with the Differential Evolution optimiser to 

calibrate GSVJD parameters. The network was trained on the GSVJD model, for pricing 

European options, and its application is consistent with the local martingale theory of bubble 
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detection. Similar to the approach in 4.4.3, GSVJD parameters are estimated over 10 

different seeds. The summary statistics of average parameters, 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, for each 

stock, are presented in Table 6.2, along with respective calibration performance measures. 

The average 𝑅𝑀𝑆𝐸𝜎,𝑡 ranges between 1.37% – 2.14%, and 2.29% – 3.50%, over the 

constituents of the HCV and Entire Surface datasets, respectively. These metrics are higher 

than those seen when calibrating to the S&P 500 index. However, in consistency with Fusari 

et al. (2024), this is due to equity options revealing significantly larger implied volatilities. 

Furthermore, calibration is vulnerable to non-unique solutions, hence a statistical test is 

relied upon to detect call option exuberance for signaling such behaviour in the underlying.  

 

Table 6.2: Summary Statistics of GSVJD parameters relevant to the Case Study.  

Note: Summary Statistic and standard errors (SE) for daily calibrated GSVJD parameters, and 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) 

from HCV and Entire Surface put options of each stock, are represented in respective panels.    

 𝜃𝐻𝐶𝑉  𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  

 mean std P25 P50 P75 SE mean std P25 P50 P75 SE 

Panel A: MSFT             

𝜅 2.058 1.688 0.814 1.619 2.744 0.438 2.734 1.438 1.756 2.419 3.540 0.269 

𝜎𝑣 1.463 0.530 1.078 1.469 1.842 0.121 1.243 0.643 0.680 1.202 1.769 0.030 

�̅� 0.174 0.112 0.089 0.158 0.238 0.038 0.091 0.057 0.046 0.093 0.129 0.008 

𝑉0 0.060 0.035 0.034 0.054 0.078 0.003 0.070 0.040 0.038 0.065 0.092 0.000 

𝜌 -0.569 0.385 -0.875 -0.643 -0.345 0.083 -0.586 0.326 -0.895 -0.632 -0.292 0.020 

𝑝 0.696 0.397 0.423 0.623 0.912 0.072 0.564 0.337 0.338 0.498 0.755 0.008 

𝜆 0.286 0.364 0.080 0.143 0.323 0.011 0.094 0.076 0.054 0.073 0.099 0.008 

𝜇𝑦 0.038 0.230 -0.022 0.086 0.169 0.066 0.103 0.131 0.036 0.110 0.185 0.003 

𝜎𝑦 0.529 0.220 0.359 0.516 0.681 0.061 0.668 0.135 0.588 0.666 0.759 0.018 

𝑅𝑀𝑆𝐸𝜎,𝑡 2.14% 1.41% 1.13% 1.85% 2.76% - 2.29% 0.86% 1.64% 2.13% 2.76% - 

Panel B: NVDA             

𝜅 5.658 2.429 4.088 5.628 7.268 1.196 3.733 2.240 2.001 3.708 5.269 0.168 

𝜎𝑣 1.412 0.576 0.972 1.410 1.878 0.128 1.287 0.496 0.927 1.254 1.630 0.045 

�̅� 0.404 0.137 0.320 0.406 0.494 0.060 0.178 0.108 0.091 0.195 0.248 0.007 

𝑉0 0.191 0.123 0.103 0.150 0.251 0.014 0.251 0.117 0.162 0.234 0.312 0.001 

𝜌 -0.568 0.448 -0.960 -0.686 -0.345 0.056 -0.584 0.459 -0.975 -0.712 -0.366 0.030 

𝑝 0.646 0.457 0.317 0.537 0.893 0.099 0.724 0.499 0.328 0.675 1.059 0.045 

𝜆 0.311 0.433 0.121 0.197 0.352 0.040 0.102 0.080 0.062 0.078 0.112 0.005 

𝜇𝑦 0.008 0.202 -0.090 0.038 0.151 0.015 -0.104 0.183 -0.192 -0.079 0.017 0.007 

𝜎𝑦 0.594 0.210 0.457 0.557 0.703 0.034 0.909 0.151 0.879 0.980 1.000 0.008 

𝑅𝑀𝑆𝐸𝜎,𝑡 2.09% 1.55% 1.22% 1.71% 2.52% - 3.00% 1.18% 2.17% 2.64% 3.60% - 

Table 6.2 continued… 
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Table 6.2 continued… 

Panel C: AMZN             

𝜅 3.090 2.380 1.252 2.522 4.522 0.740 3.221 1.795 1.788 2.823 4.888 0.100 

𝜎𝑣 1.526 0.570 1.083 1.471 1.986 0.132 1.466 0.567 1.128 1.436 1.903 0.044 

�̅� 0.248 0.147 0.133 0.244 0.342 0.041 0.111 0.081 0.039 0.115 0.150 0.005 

𝑉0 0.111 0.071 0.058 0.095 0.150 0.008 0.141 0.088 0.069 0.136 0.195 0.001 

𝜌 -0.614 0.336 -0.903 -0.670 -0.402 0.061 -0.542 0.352 -0.860 -0.570 -0.301 0.025 

𝑝 0.661 0.414 0.345 0.570 0.927 0.080 0.591 0.328 0.339 0.517 0.827 0.028 

𝜆 0.284 0.395 0.077 0.155 0.354 0.043 0.121 0.132 0.060 0.083 0.111 0.006 

𝜇𝑦 0.040 0.138 -0.012 0.055 0.123 0.014 0.040 0.132 -0.032 0.059 0.134 0.005 

𝜎𝑦 0.587 0.220 0.423 0.583 0.736 0.035 0.727 0.181 0.607 0.757 0.861 0.011 

𝑅𝑀𝑆𝐸𝜎,𝑡 1.42% 0.97% 0.81% 1.20% 1.69% - 2.54% 1.21% 1.62% 2.23% 3.19% - 

Panel D: META             

𝜅 4.004 2.659 1.670 3.606 5.919 0.846 3.054 1.837 1.564 2.880 4.412 0.130 

𝜎𝑣 1.481 0.582 1.048 1.482 1.925 0.124 1.642 0.498 1.295 1.745 2.003 0.034 

�̅� 0.302 0.165 0.181 0.300 0.423 0.049 0.142 0.089 0.051 0.164 0.211 0.008 

𝑉0 0.139 0.107 0.067 0.104 0.187 0.010 0.185 0.125 0.095 0.163 0.239 0.001 

𝜌 -0.579 0.362 -0.895 -0.623 -0.349 0.061 -0.562 0.375 -0.919 -0.594 -0.320 0.031 

𝑝 0.699 0.452 0.331 0.601 1.013 0.090 0.727 0.381 0.390 0.723 1.048 0.032 

𝜆 0.255 0.249 0.092 0.145 0.331 0.032 0.096 0.079 0.053 0.077 0.105 0.004 

𝜇𝑦 -0.014 0.175 -0.106 0.024 0.105 0.014 -0.027 0.156 -0.117 -0.004 0.075 0.006 

𝜎𝑦 0.589 0.257 0.388 0.560 0.804 0.029 0.856 0.157 0.791 0.897 0.988 0.009 

𝑅𝑀𝑆𝐸𝜎,𝑡 1.37% 0.87% 0.81% 1.17% 1.72% - 3.50% 1.43% 2.26% 3.28% 4.56% - 

Panel E: AMD             

𝜅 5.359 2.367 3.807 5.461 7.065 1.267 3.559 2.242 1.630 3.472 5.472 0.139 

𝜎𝑣 1.450 0.580 1.037 1.450 1.908 0.140 1.174 0.511 0.756 1.183 1.528 0.030 

�̅� 0.370 0.129 0.284 0.374 0.456 0.069 0.136 0.115 0.012 0.129 0.215 0.006 

𝑉0 0.185 0.093 0.117 0.161 0.234 0.014 0.239 0.087 0.178 0.219 0.289 0.001 

𝜌 -0.484 0.504 -0.895 -0.600 -0.248 0.067 -0.518 0.431 -0.970 -0.541 -0.206 0.016 

𝑝 0.674 0.440 0.324 0.618 0.948 0.110 0.547 0.458 0.199 0.407 0.845 0.027 

𝜆 0.378 0.324 0.160 0.266 0.496 0.048 0.144 0.114 0.079 0.106 0.165 0.008 

𝜇𝑦 -0.031 0.193 -0.111 0.010 0.092 0.015 -0.057 0.175 -0.156 -0.031 0.067 0.004 

𝜎𝑦 0.583 0.219 0.416 0.543 0.740 0.037 0.828 0.166 0.731 0.872 0.989 0.011 

𝑅𝑀𝑆𝐸𝜎,𝑡 1.61% 0.92% 0.97% 1.46% 2.03% - 2.40% 0.90% 1.70% 2.24% 2.92% - 

Overall computational superiority and accuracy of the framework allow it to successfully 

boost the tractability of the GSVJD model and subsequently make the three-step approach 

attractive for real time bubble detection. Once obtained, daily parameters are inserted into 

(19), and (20), to price the fundamental call option values using (22). Given the network is 

trained on synthetic data, it can be applied to different stocks, within various market 

scenarios. The neural network framework simply replaces Monte Carlo simulation during 

the calibration of the three-step approach. The mean standard errors from Table 6.2, averaged 

across all seeds are relatively large. This increases reliance on the statistical test from the 
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three-step approach, as opposed to focusing on parametric conditions. Hence, the ND 

condition is vital as it ensures that bubbles in call options and underlying prices share a linear 

relationship. This allows the statistical test to signal for strict local martingale behaviour in 

the stock price process. Therefore, only call options that abide by the ND condition are 

selected for estimating and testing of bubbles. Finally, the fundamental value from call 

options, is computed by averaging modelled prices, across the different seeds.  

 

6.3 Call Option Bubbles: Most Liquid Cross Section 
 

A bubble exists when the market price of the call option exceeds its fundamental value, and 

is considered significant, if 𝔹�̂�  >  𝛼𝜎�̂� (see 3.1.3). Under the ND condition, call option and 

underlying price bubbles share a linear relationship, with identification in the former 

implying strict local martingale tendencies in the latter. Daily bubbles within each of the 

stock prices are detected over the sample period ranging from August 1, 2022, to April 30, 

2024. The time-varying threshold, 𝛼𝜎�̂�, given the relatively small sample size is computed 

over 30- and 60-day window sizes, and three levels of significance. Recall, the difference 

between the market prices of American call options and the fundamental value of their 

European-styled counterpart, capture the bubble similar to revealing the early exercise value. 

It is under this capacity, in correspondence to the local martingale theory of bubbles, the 

neural network enhanced three-step approach is utilised for identifying exuberance in the 

aforementioned stocks. The 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters are applied for detecting bubbles 

in HCV call options. This section begins by examining the key statistics, prior to conducting 

a market analysis and evaluation of model performance. Each of these steps are crucial 

towards overcoming any potential joint-hypothesis related issues.    

 

6.3.1  Key Statistics 
 

The significant call options bubbles, indicating towards strict local martingale tendencies in 

each of the selected stocks, are examined using two window sizes, and three levels of 

significance. The HCV call options are priced using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters obtained 

from the application of the deep calibration framework. The key statistics corresponding to 

exuberance, for each parameter set, window size, and levels of significance, are presented 
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in Table 6.3 for the respective stocks. The performances are measured by 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics, 

across the various window sizes and levels of significance. The 𝜃𝐻𝐶𝑉 reveal better 

performances, in comparison to those from 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, on days displaying exuberance. 

Additionally, across all stocks, average 𝑅𝑀𝑆𝐸𝜎,𝑡 from 𝜃𝐻𝐶𝑉, is lower than the entire sample 

(Table 6.2).   

 

Table 6.3: GSVJD Performances relevant to the Case Study.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) error metric, along with number of significant bubbles (ℕ𝐵), and percentage of the sample 

period (excluding burn-in) revealing exuberance ℕ𝐵(%), are reported for days displaying 𝔹�̂�  >  𝛼𝜎�̂� 

according to HCV and Entire Surface put options, in respective panels for various stocks. 

 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Window 𝛼 ℕ𝐵 ℕ𝐵 (%) 𝑅𝑀𝑆𝐸𝜎,𝑡 ℕ𝐵 ℕ𝐵 (%) 𝑅𝑀𝑆𝐸𝜎,𝑡 

Panel A: MSFT 

30.00 

10.00 27.00 6.62% 1.63% 31.00 7.60% 2.13% 

5.00 19.00 4.66% 1.77% 26.00 6.37% 2.15% 

1.00 12.00 2.94% 1.64% 16.00 3.92% 1.90% 

60.00 

10.00 7.00 1.85% 1.96% 6.00 1.59% 2.44% 

5.00 6.00 1.59% 1.91% 5.00 1.32% 2.12% 

1.00 1.00 0.26% 0.73% 3.00 0.79% 1.81% 

Panel B: NVDA 

30.00 

10.00 13.00 3.19% 1.52% 12.00 2.94% 4.04% 

5.00 10.00 2.45% 1.71% 5.00 1.23% 3.77% 

1.00 5.00 1.23% 1.09% - - - 

60.00 

10.00 8.00 2.12% 0.93% 3.00 0.79% 5.70% 

5.00 4.00 1.06% 0.72% 2.00 0.53% 6.67% 

1.00 1.00 0.26% 1.14% - - - 

Panel C: AMZN 

30.00 

10.00 23.00 5.64% 1.34% 8.00 1.96% 4.98% 

5.00 19.00 4.66% 1.10% 5.00 1.23% 4.18% 

1.00 13.00 3.19% 1.19% 1.00 0.25% 4.47% 

60.00 

10.00 20.00 5.29% 1.36% 6.00 1.59% 4.65% 

5.00 15.00 3.97% 1.02% 2.00 0.53% 2.95% 

1.00 12.00 3.17% 1.01% 2.00 0.53% 2.95% 

Table 6.3 continued... 
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Table 6.3 continued... 

Panel D: META 

30.00 

10.00 17.00 4.17% 0.89% 14.00 3.43% 3.30% 

5.00 11.00 2.70% 0.88% 10.00 2.45% 2.86% 

1.00 4.00 0.98% 0.91% 8.00 1.96% 2.23% 

60.00 

10.00 11.00 2.91% 0.96% 7.00 1.85% 4.76% 

5.00 8.00 2.12% 0.97% 5.00 1.32% 4.98% 

1.00 5.00 1.32% 1.01% - - - 

Panel E: AMD 

30.00 

10.00 26.00 6.37% 1.34% 10.00 2.45% 3.23% 

5.00 18.00 4.41% 1.36% 7.00 1.72% 2.86% 

1.00 12.00 2.94% 1.72% 4.00 0.98% 2.93% 

60.00 

10.00 12.00 3.17% 1.38% 5.00 1.32% 3.05% 

5.00 11.00 2.91% 1.48% 4.00 1.06% 2.67% 

1.00 6.00 1.59% 1.03% 2.00 0.53% 2.31% 

Calibration to the entire surface does not detect bubble episodes at the 1% significance level 

in NVDA price. Similarly, absence of exuberance, at this level, when employing a 60-day 

window, is documented for META. The 𝑅𝑀𝑆𝐸𝜎,𝑡 performances being inferior for 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

parameters, is consistent with the trend observed during calibrations to the S&P 500 put 

options. Recall, the Entire Surface dataset comprises of daily option contracts over a wide 

range of maturities, a large amount of which are significantly less liquid in contrast to those 

in the HCV dataset. In comparison to the average metric from the entire sample, the 𝑅𝑀𝑆𝐸𝜎,𝑡 

for MSFT and META is lower across all window sizes and significant level combinations, 

with application of a 60-day window, at the respective 10%; and 10% and 5% levels of 

significance acting as exceptions. Whereas 𝑅𝑀𝑆𝐸𝜎,𝑡 corresponding to days revealing 

exuberance in NVDA, AMZN, and AMD, prices are significantly higher in comparison to 

average calibration performance across the entire sample. In regard to AMD, this holds 

throughout, barring the application of a 60-day window at the 1% level. Concerns over joint-

hypothesis related issues are raised; however, it is also preciously the reason behind requiring 

a market analysis to examine validity of the detected bubbles.  

  



 221 

 

 

6.3.2  Market Analysis  

 

A brief chronological analysis of the exuberances detected, in correspondence to the 

respective applications of 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, follows. In contrast to the market 

analysis of S&P 500 bubbles, it is difficult to reason the formation of exuberance in 

individual stocks. Hence, in the next section of the chapter, an analysis regarding the price 

implication of bubbles, similar Fusari et al. (2024) is conducted. Bubbles observed in the 

NVDA stock, are displayed in Figure 6.1, with each panel corresponding to the set of 

parameters utilised for computing the fundamental value of call options. The days of 

exuberance are timestamped (top), along with the underlying price. Moreover, bubble 

magnitude and time-varying thresholds over different window sizes and levels of 

significances are revealed (bottom). Exuberance within each of the selected stocks are 

presented individually, with all illustrations having likewise interpretation.   

 

Figure 6.1: NVDA Bubbles in HCV Call Options. 

 

Panel A: 𝜃𝐻𝐶𝑉 

Figure 6.1 continued…  
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Figure 6.1 continued… 

 

Panel B: 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Note: Daily bubbles detected in NVDA call options using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are displayed in Panel A and 

B, respectively. Bubbles are timestamped (top) and assessed at each combination of window sizes (30, and 

60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 

After eliminating the initial burn-in period, between September 12, 2022, and April 30, 

2024, the NVDA stock gained 495.67%. Despite the monumental gains, within 

approximately 20 months, very few instances of exuberance were identified. Both sets of 

parameters revealed an instance on September 21, 2022, with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 also highlighting 

occurrences on September 28 and 30. Interestingly, the stock lost 5.28% and 4.05% on 

respective days, following the bubbles on September 21 and 29. Next, 𝜃𝐻𝐶𝑉 parameters 

spotted exuberance on February 9, 16 and May 23, 2023. The NVDA stock lost 6.53% 

between February 8 and 21, before rebounding by 14.02% on February 23, 2023. A loss 

of 1.53% was observed on May 23, after which, a rally of 31.34% was experienced during 

May 25 and 30, 2023.  

 

The NVDA stock peaked at $950.02 on March 25, 2024, gaining 91.83%, since the start 

of the year. During this period, exuberance was first revealed on January 8 and 16, by 

𝜃𝐻𝐶𝑉 parameters. These dates, respectively experienced price rises of 6.43% and 3.06%. 
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In addition, calibration to the most liquid maturity exhibited a bubble on February 16, 

whereas 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 acknowledged instances on February 13 and 15. By this time, since the 

start of the new year the stock has risen by 46.63%. Next, a cluster of 5 bubbles, between 

March 8 and 25, 2024, were captured by 𝜃𝐻𝐶𝑉. Furthermore, three-consecutive days of 

exuberance, between March 11 and 13, were identified by using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  All but that on 

March 11, were exhibited by the former calibration approach, as well. Ironically, during 

the cluster, the stock only experienced a hike of 2.52%. After a 7.16% rise on March 12, 

2024, the next day coincided with a 1.12% drop. The stock lost 7.44% of its value two 

days prior to the hike, including 5.55% on March 8, 2024.   

 

 

Figure 6.2: META Bubbles in HCV Call Options. 

 

Panel A: 𝜃𝐻𝐶𝑉 

Figure 6.2 continued…  
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Figure 6.2 continued… 

 

Panel B: 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Note: Daily bubbles detected in META call options using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are displayed in Panel A and 

B, respectively. Bubbles are timestamped (top) and assessed at each combination of window sizes (30, and 

60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 

The META stock experienced a 154.60% price increase over the sample period, with detected 

exuberance displayed in Figure 6.2. First, a bubble was detected on April 21, 2023, using 

𝜃𝐻𝐶𝑉 parameters, 3 trading days prior to a 13.93% hike. The same set of parameters went on 

to observe occurrences on October 13, 20 and 23, 2023. Losses of 2.92% and 1.33%, were 

experienced on the respective first two occasions, which were followed by gains of 2.05% 

and 1.74%. The exuberance on October 20 was even captured by 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  

 

Moreover, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters report a cluster of 8 bubbles between November 28 and 

December 11, 2023, with the final episode being acknowledged by 𝜃𝐻𝐶𝑉. During this cluster, 

the stock price reduced by 2.81%, with each day closing in red, barring those on December 

7 and 8. In respective order, the two exceptions experienced spikes of 2.88% and 1.89%, 

with only the former exhibiting exuberance.  At the turn of the year, both sets of parameters 

signalled towards exuberance in January 2024, however neither acknowledged the 20.32% 

hike experienced on February 2, 2024. Next, 𝜃𝐻𝐶𝑉 detected bubbles on March 11, 13, and 

18, 2024, similar to those experienced in NVDA prices. The former coincided with losses of 
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4.42% and 0.84% respectively, whereas the latter witnessed a 2.66% gain. In the following 

month, 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 captured instances on April 12 and 18, as the stock respectively 

changed by -2.15% and 1.54%. Additionally, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 revealed bubbles associated with 

losses on April 16 and 17, whereas 𝜃𝐻𝐶𝑉 exhibited occurrences coinciding with gains, on 

April 10 and 23. The META stock witnessed a 2.98% hike on April 23, marking a 49.03% 

rise from the beginning of 2024. However, it crashed by 10.56% on April 25, as a direct 

consequence of comments from CEO Mark Zuckerberg regarding the need to increase 

spending on AI products prior to making revenue from them (Milmo, 2024). 

 

Next, exuberance in MSFT prices, as seen in Figure 6.3, is examined. Over the sample 

period, the stock gained 46.01%. Though highly promising, the returns are significantly 

lower than those experienced by NVDA and META. Initially, 𝜃𝐻𝐶𝑉 revealed bubbles on 

September 12, and 21, 2022, with the latter, and that on September 22, being spotted by 

calibrating to the entire surface. Moreover, 𝜃𝐻𝐶𝑉 captured occurrences on February 10, and 

March 7, 2023. In all instances, barring that on September 22, the stock closed in red. Each 

parameter set addressed instances on May 17, 23, and 24, with 𝜃𝐻𝐶𝑉 also acknowledging 

that on May 19, 2023. The two trading days following May 24, experienced respective spikes 

of  3.85% and 2.14%. Additionally, according to 𝜃𝐻𝐶𝑉, exuberance was exhibited on 

November 21, 24, and 28, with each day revealing losses, barring the latter. Alternatively, 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 identified a cluster of 13 bubbles, between November 21, and December 26, 2023, 

during which MSFT prices fell by 0.74%.  

 

In 2024, MSFT prices exhibited exuberance on January 16, and February 16; and January 

22, according to 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, respectively. The former parametric set 

further acknowledges bubbles on each day between March 8 and 21, 2024, in addition to 

that on March 25. Similarly, all episodes, but for those on March 18, and 21, are addressed 

by the latter. Moreover, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 captured a bubble on March 26, 2024. During this period, 

the MSFT stock increased by 3.06%. On March 12, it rose by 2.66%, after closing in red 

during 5 out of the last 6 days, losing approximately 2.61%. The stock went on to gain 2.44% 

on March 14, prior to dropping by 2.07% on March 15, 2024. Recall, that bubbles in the 

early stages of the cluster, were similarly timestamped in NVDA and META prices. Finally,  

𝜃𝐻𝐶𝑉 revealed bubbles on April 1, 4, 12, and 15, whereas 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 captured instances on 
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April 12, 16 and 17. Overall, from the start of the year, till the final bubble, on April 17, 

2024, MSFT prices increased by 9.52%.   

 

Figure 6.3: MSFT Bubbles in HCV Call Options. 

 

Panel A: 𝜃𝐻𝐶𝑉 

 

Panel B: 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Note: Daily bubbles detected in MSFT call options using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are displayed in Panel A and 

B, respectively. Bubbles are timestamped (top) and assessed at each combination of window sizes (30, and 

60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 
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The prices of AMZN experienced growth of 28.25% during the sample, the lowest amongst 

the selected stocks. Initially, as witnessed in Figure 6.4, both forms of calibrations revealed 

bubbles on January 30 and May 23, 2023, coinciding with losses. In regard to the former, 

after the bubble, the stock gained 10.44%, prior to crashing by 8.43% and kick-starting 5-

day losing streak on February 3. The 𝜃𝐻𝐶𝑉 parameters further revealed four consecutive 

bubbles between October 23 and 27, including the occurrence on October 26 being captured 

by 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The AMZN stock finished 5.58% and 1.50% below on October 25 and 26, 

respectively, prior to gaining 6.83% the next day.  

 

 

Figure 6.4: AMZN Bubbles in HCV Call Options. 

 

Panel A: 𝜃𝐻𝐶𝑉 

Figure 6.4 continued… 
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Figure 6.4 continued… 

 

Panel B: 𝜃𝑆𝑟𝑓𝑎𝑐𝑒  

Note: Daily bubbles detected in AMZN call options using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are displayed in Panel A and 

B, respectively. Bubbles are timestamped (top) and assessed at each combination of window sizes  and levels 

of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 

Nevertheless, all days closed in red, between December 22, 2023, and January 4, 2024, 

expect December 28. 2023. Calibration to the most liquid maturity allowed for capturing 

exuberance on December 27 and 28, 2023; and January 3, and 8, 2024. The latter 

corresponded to a 2.66% hike, and was followed by bubbles on January 16, 19, 23 and 24, 

2024, with the occurrence on January 22, which was revealed by 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. Moreover, 𝜃𝐻𝐶𝑉 

addressed exuberance on April 12, corresponding to a 1.54% loss. However, as of April 11, 

2024, share prices grew year-on-year by 89.20%, and marked a 26.09% increase, since the 

start of 2024. From this day, till April 30, 7.49% of the value was lost, despite a spike of 

3.43% on April 26, 2024. The last two bubbles were identified on April 25 and 30, 2024, by 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, coinciding with losses of 1.65% and 3.29%, respectively. Although heavy losses 

were experienced towards the close of April 2024, AMZN prices provided a 71.48% year-

on-year return.  
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Figure 6.5: AMD Bubbles in HCV Call Options. 

 

Panel A: 𝜃𝐻𝐶𝑉 

 

 

Panel B: 𝜃𝑆𝑟𝑓𝑎𝑐𝑒  

Note: Daily bubbles detected in AMD call options using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, are displayed in Panel A and 

B, respectively. Bubbles are timestamped (top) and assessed at each combination of window sizes (30, and 

60 days) and levels of significance (𝛼 = 10%, 5%, 𝑎𝑛𝑑 1%). 
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The exuberance within prices of AMD, which gained 87.12% over the sample period are 

illustrated in Figure 6.5. The stock lost 21.67% from the start of the sample, till September 

26,  2022; with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 detecting exuberance on September 21. Alternatively, after a 6/16% 

loss on November 9, share prices rose by 14.27% and 7.39% over the next consecutive days, 

with a bubble being timestamped on November 14, 2022. A 5-day winning streak ended on 

May 3, 2023, with a 9.22% crash, as exuberance was identified on May 1. Furthermore, 

sandwiched between crashes of 5.64% and 1.35%, a bubble was observed on June 1, 

coinciding with a 1.07% rise. Occurrences on August 11 and 22, witnessed respective losses 

of 2.41% and 2.37%, but were followed by gains in excess of 3.55%. The latter of the two 

was spotted by 𝜃𝐻𝐶𝑉. 

 

A collective of episodes, similar to those in AMZN prices was spotted by 𝜃𝐻𝐶𝑉, between 

October 24 and 27, 2023. Additionally, bubbles were revealed on October 13 and 31, with 

the former, along with that on October 25, addressed by 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. During this period, the 

stock lost 9.46%, prior to rebounding by 9.69% on November 1, 2023. At the turn of the 

year, exuberance on January 8, 19, and 23, 2024, coinciding with respective returns of 

5.48%, 7.11% and 0.14%, were detected by 𝜃𝐻𝐶𝑉. Whereas 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters 

acknowledged occurrences on January 24, and 25, corresponding to the following gains: 

5.86% and 1.14%. Interestingly, a similar cluster to that seen in NVDA, META, and MSFT 

prices was revealed by 𝜃𝐻𝐶𝑉, as all days between March 8 and 19, 2024 displayed bubbles. 

Despite the cluster period witnessing a 14.17% drop in value, hikes of 2.20% and 2.14% 

were observed on March 12 and 15, respectively. Furthermore, 𝜃𝐻𝐶𝑉 addressed a bubble on 

April 12, as the share price plummeted by 4.23%. Finally, 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 identified bubbles on 

April 24, and 25, 2024. Even though the stock experienced a large growth over the sample 

period, AMD prices rose by only 7.44% since the start of 2024.  

 

6.3.3  Model Performance  

 

The deep calibration framework was applied to the respective HCV and Entire Surface 

datasets of NVDA, META, MSFT, AMZN, and AMD. The identification of call option bubbles 

revealed presence of strict local martingale tendencies within the equity prices, across 

several days between August 1, 2022, and April 30, 2024. Furthermore, bubbles in stock 
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prices occurred, more frequently over shorter periods of time, in comparison to those 

witnessed in the S&P 500 index. Once again, statistical validity of the observed bubbles, is 

examined by 𝑅𝑀𝑆𝐸𝜎,𝑡. The performances of the GSVJD model across the entire sample 

(initial window period is burned), days with positive and negative bubble magnitudes, are 

presented in Table 6.4.   

 

Table 6.4: Model Performance relevant to the Case Study.  

Note: 𝑅𝑀𝑆𝐸𝜎,𝑡 (%) metrics with respect to 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 from each stock, corresponding to the entire 

sample (excluding burn-in), along days with negative (𝔹�̂�  <  0) and positive (𝔹�̂�  >   0) bubble magnitudes, 

across all window sizes. 

 Window Entire 𝔹t̂ < 0 𝔹t̂  > 0 

Panel A: MSFT     

𝜃HCV 
30.00 2.15% 2.16% 2.14% 

60.00 2.16% 2.19% 2.13% 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 
30.00 2.34% 2.36% 2.32% 

60.00 2.35% 2.37% 2.32% 

Panel B: NVDA     

𝜃HCV 
30.00 2.03% 2.16% 1.91% 

60.00 1.97% 2.10% 1.85% 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 
30.00 3.01% 3.20% 2.82% 

60.00 3.02% 3.22% 2.82% 

Panel C: AMZN     

𝜃HCV 
30.00 1.40% 1.33% 1.47% 

60.00 1.36% 1.28% 1.43% 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 
30.00 2.61% 2.80% 2.42% 

60.00 2.61% 2.82% 2.40% 

Panel D: META     

𝜃HCV 
30.00 1.37% 1.38% 1.37% 

60.00 1.35% 1.35% 1.35% 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 
30.00 3.58% 4.00% 3.11% 

60.00 3.56% 4.03% 3.06% 

Panel E: AMD     

𝜃HCV 
30.00 1.60% 1.56% 1.64% 

60.00 1.55% 1.51% 1.58% 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 
30.00 2.43% 2.51% 2.36% 

60.00 2.40% 2.49% 2.33% 
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According to the local martingale theorem, occurrence of negative bubbles, can be 

interpreted as potential model misspecification. Since, the fundamental value of the stock, 

acts as the lower bound to its market price, negative bubbles cannot exist. In the sample, 

days associated with 𝔹�̂� <  0, on average should coincide with larger error metrics. This 

ensures most of the error within the model is concentrated away from 𝔹�̂�  >  0 or 𝔹�̂� > 𝛼𝜎�̂�, 

hence eliminating concerns over the occurrence of a potential joint-hypothesis related issue. 

Although, 𝑅𝑀𝑆𝐸𝜎,𝑡 metrics, across the entire sample are relatively larger, than those 

associated with the S&P 500 index, when using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, the average errors are lower for  

𝔹�̂�  >  0. Alternatively, application of 𝜃𝐻𝐶𝑉 provide larger 𝑅𝑀𝑆𝐸𝜎,𝑡, when 𝔹�̂�  >  0, for 

AMZN, and AMD, but by very small margins across both windows.  

 

6.4   Factors Influencing the Formation of Bubbles  
 

Throughout this study, presence of exuberance in the S&P 500 index (SPX), and 5 stocks; 

MSFT, NVDA, AMZN, META, and AMD, have been thoroughly examined. Next, in abidance 

with Fusari et al. (2024), implications of bubbles detected in HCV call options are explored, 

providing economic intuition to the exhibition of exuberance. Additionally, this acts a 

robustness check for applying the deep calibration framework constructed to calibrate 

GSVJD parameters within the three-step approach. The impacts of underlying price 

volatility, trading volume, earnings announcements, and GSVJD parameters (ρ and 𝑝) on 

the formation of bubbles are examined. Given smaller sample sizes for each individual stock, 

the analysis is conducted by pooling together data of all the assets. Furthermore, detection 

of stock price bubbles, though not displayed in 6.3.2, are considered over the 90- and 180-

day, to maintain consistency with S&P 500 observations.  

 

The presence of bubbles is governed by explosive behaviour in underlying volatility, with 

respect to the drift, which can be measured by taking the expectation of the risk-neural 
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quadratic variations51. The correlation between the quadratic variation and call option bubble 

magnitudes are documented in Table 6.5, over all window sizes, in correspondence to 

parameters from each dataset. In all instances, the correlation coefficient is positive, and 

much larger when associated with 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. The strength of positive correlation between the 

quadratic variations and bubble magnitudes is not a strong one, which could possibly hint at 

the presence of explosiveness in underlying price (Jarrow & Kwok, 2024). 

 

Table 6.5: Correlation between Quadratic Variation and Call Option Bubbles. 

Note:  Correlation  coefficients (%) between risk-neural quadratic variation and call option bubbles, across 

various window sizes (days), when using 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  

Window 𝜃HCV 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

30.00 12.80% 16.14% 

60.00 13.16% 15.53% 

90.00 13.50% 14.92% 

180.00 17.18% 19.37% 

The importance of explosive behaviour in volatility, stems from Delbaen & Shirakawa 

(2002), who indicate a bubble to exist if and only if, ∫
𝑠

𝜎(𝑠)
 <  ∞,

∞

𝜖
 for 𝜖 >  0. This intuition 

is similar to the strict local martingale condition on parameters 𝜌 and 𝑝 (Andersen & 

Piterbarg, 2007; Fusari et al., 2024). Rising volatility is typically accompanied by increased 

trading activity, and subsequently a greater likelihood of exuberance being exhibited. 

Several factors govern the trading activity associated with the underlying and its options, 

however, earning announcements, which are prescheduled, present a greater opportunity to 

comprehend the motive of solely purchasing an asset to resell it at a higher price. Trading 

activity analogous to the options and underlying are driven by expectations regarding 

earnings, prior to the date of announcement, which contribute towards explosive behaviour 

in volatility. Therefore, inspired by Fusari et al. (2024) the impact of trading volume and 

earning announcements, on the formation of bubbles, is explored through (51) and (52). 

�̂�𝑖,𝑡
+  =  𝛾0  +  𝛾1 𝑙𝑛(𝑉𝑜𝑙𝑖,𝑡) + 𝛾2 𝑙𝑛(𝐶𝑎𝑙𝑙 𝑉𝑜𝑙𝑖,𝑡)  + 𝜖𝑡 (51) 

 
51 The estimation of quadratic variation, 𝑄𝑉𝑡,𝑡+ 𝜏 = 

1

𝜏
 (∫ 𝑉𝑠𝑑𝑠

𝑡 + 𝜏 

𝑡
 +  ∑ 𝒥𝑠

2
𝑡 < 𝑠 ≤ 𝑡 + 𝜏 ) ≈ 𝑉0,𝑡 +

2𝜆𝑡 (𝑒𝜇𝑦,𝑡 + 0.5𝜎𝑦,𝑡
2

− 𝜇𝑦,𝑡 − 1), depends spot variances as the volatility tends to be strongly persistent (Fusari 

et al. 2024). 
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�̂�𝑖,𝑡
+  = 𝜔0  + 𝜔1𝐷1−14,𝑖,𝑡  +  𝜔2𝐷15−28,𝑖,𝑡 + 𝜔3𝐷29−42,𝑖,𝑡  

+ 𝜔4 𝑙𝑛(𝑉𝑜𝑙𝑖,𝑡) + 𝜔5 𝑙𝑛(𝐶𝑎𝑙𝑙 𝑉𝑜𝑙𝑖,𝑡) + 𝜖𝑡 
(52) 

The impact of daily trading activity on the formation of positive call option bubbles, �̂�𝑖,𝑡
+ , is 

examined in (51). The coefficient, 𝛾1 and 𝛾2, respectively, document change in �̂�𝑖,𝑡
+ , for a 

1% increase in daily traded volume of the underlying (𝑉𝑜𝑙𝑖,𝑡), and within the accumulated 

volume of the most liquid call options (𝐶𝑎𝑙𝑙 𝑉𝑜𝑙𝑖,𝑡). The regression is estimated over two 

versions of the HCV and Entire Surface pooled dataset, with the former comprising of 𝑖 =

{𝑀𝑆𝐹𝑇,𝑁𝑉𝐷𝐴, 𝐴𝑀𝑍𝑁,𝑀𝐸𝑇𝐴, 𝐴𝑀𝐷}, whereas the latter is inclusive of the SPX. The S&P 

500 index, unlike its constituents, is not applicable for examining the impacts of earning 

announcements on bubble formations. Hence, its exclusion ensures the possibility to reveal 

the robust impact of volume by controlling for earnings announcements, and vice versa, on 

the presence of stock bubbles. In equation (52), 𝐷𝑡1−𝑡2 = 1, if the announcement is within 

the next  𝑡 +  𝑡1 𝑎𝑛𝑑  𝑡 +  𝑡2 days, and, 0, otherwise. Since, �̂�𝑖,𝑡
+  represents positive bubble 

magnitudes, normalised by the underlying price, the coefficients of (51) and (52) are 

interpreted as percentages (%). 

 

Table 6.6: Results for Regression (51). 

Note: Results from regression (51), corresponding to 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, along with estimated 

coefficients (𝛾0, 𝛾1, 𝛾2),  and their levels of significance (in parentheses) are reported. The following, ‘*’, ‘**’, 

and ‘***’, represent significance at the respective, 1%, 5%, and 10%, levels. Additionally, the model  p-value 

(F-stat), and 𝑅2 values are displayed. Results reported in Panel A are associated with 𝑖 =

{𝑀𝑆𝐹𝑇,𝑁𝑉𝐷𝐴, 𝐴𝑀𝑍𝑁,𝑀𝐸𝑇𝐴, 𝐴𝑀𝐷}, whereas those Panel B are inclusive of SPX.  

Window Size 30.00 60.00 90.00 180.00 

 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  

Panel A         

𝛾0 
0.105 

(**) 

0.185 

(*) 

0.097 

(**) 

0.160 

(*) 

0.101 

(**) 

0.193 

(*) 

0.115 

(**) 

0.198 

(*) 

𝛾1 
0.009 

(*) 

0.018 

(*) 

0.007 

(*) 

0.014 

(*) 

0.007 

(*) 

0.012 

(*) 

0.011 

(*) 

0.016 

(*) 

𝛾2 
-0.020 

(*) 

-0.040 

(*) 

-0.017 

(*) 

-0.031 

(*) 

-0.016 

(*) 

-0.031 

(*) 

-0.023 

(*) 

-0.038 

(*) 

𝑅2 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 6.6 continued… 



 235 

 

 
Table 6.6 continued… 

Panel B         

𝛾0 
0.110 

(*) 

0.176 

(*) 

0.092 

(**) 

0.132 

(**) 

0.093 

(**) 

0.151 

(*) 

0.119 

(*) 

0.173 

(*) 

𝛾1 
0.008 

(*) 

0.017 

(*) 

0.006 

(*) 

0.014 

(*) 

0.006 

(*) 

0.013 

(*) 

0.007 

(*) 

0.015 

(*) 

𝛾2 
-0.018 

(*) 

-0.037 

(*) 

-0.014 

(*) 

-0.029 

(*) 

-0.014 

(*) 

-0.029 

(*) 

-0.018 

(*) 

-0.033 

(*) 

𝑅2 0.016 0.031 0.010 0.020 0.008 0.018 0.012 0.024 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

The estimated coefficients of regression (51) are presented in Table 6.6, with Panel A 

displaying results corresponding to the consideration of only stocks, whereas Panel B 

illustrates those associated with the inclusion of SPX. In both cases, across all window sizes 

and datasets utilised for calibrating GSVJD parameters, 𝛾2 is negative at 1% significance. 

This translates to a drop in the bubble magnitude, when daily accumulated call option 

volume across the most liquid maturity increases. Falling volume, could indicate bearish 

sentiments, signalling towards the market price of the stock exceeding its fundamental value. 

The examination of Panel A reveals 𝛾1 to be positive at 1% significance, in all situations. 

Hence, the size of exuberance is found to rise with trading activity of the underlying asset. 

This is consistent with the intuition that rising trading volumes are associated with growing 

volatility, and subsequently the formation of bubbles. The robustness of the findings is 

maintained in Panel B, with respect to the impact and significance of 𝛾1 and 𝛾2 coefficients. 

Moreover, observe that the magnitude impact associated with both underlying and call 

options volumes, is greater when detecting bubbles using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒. 

 

Next, results from (52) are depicted in Table 6.7. The coefficients reported in Panel A 

correspond solely towards examining the impact of earnings announcements, whereas those 

in Panel B are associated with controlling for underlying and options trading activity. In 

both panels, 𝜔1 has a positive impact on the formation of bubbles, whereas 𝜔2 and  𝜔3 have 

a negative effect. The latter coefficients are statistically insignificant for exuberance 

observed using 𝜃𝐻𝐶𝑉, with the exception of the 90-day window length in Panel A. 

Alternatively, the negative impact of 𝐷15−28,𝑖,𝑡 is significant at 1% in association with 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒.  
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Table 6.7: Results for Regression (52). 

Note: Results from regression (52), corresponding to 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, along with estimated 

coefficients (𝜔0, 𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5), and their levels of significance (in parentheses) are reported. The 

following, ‘*’, ‘**’, and ‘***’, represent significance at the respective, 1%, 5%, and 10%, levels. Additionally, 

the model  p-value (F-stat), and 𝑅2 values are displayed. Results reported in Panel A are associated with only 

earnings announcements, whereas those Panel B, control for volume, when considering 𝑖 =

{𝑀𝑆𝐹𝑇,𝑁𝑉𝐷𝐴, 𝐴𝑀𝑍𝑁,𝑀𝐸𝑇𝐴, 𝐴𝑀𝐷}. 

Window Size 30.00 60.00 90.00 180.00 

 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 

Panel A         

𝜔0 
0.055 

(*) 

0.083 

(*) 

0.054 

(*) 

0.081 

(*) 

0.055 

(*) 

0.079 

(*) 

0.057 

(*) 

0.083 

(*) 

𝜔1 
0.019 

(**) 

0.087 

(*) 

0.022 

(*) 

0.089 

(*) 

0.019 

(**) 

0.092 

(*) 

0.019 

(**) 

0.090 

(*) 

𝜔2 
-0.012 

- 

-0.056 

(*) 

-0.012 

- 

-0.060 

(*) 

-0.014 

(***) 

-0.061 

(*) 

-0.013 

- 

-0.069 

(*) 

𝜔3 
0.002 

- 

-0.008 

- 

-0.003 

- 

-0.018 

(***) 

-0.004 

- 

-0.017 

- 

-0.007 

- 

-0.020 

(***) 

𝑅2 0.005 0.053 0.007 0.061 0.006 0.069 0.006 0.084 

p-value 0.014 0.000 0.005 0.000 0.012 0.000 0.041 0.000 

Panel B         

𝜔0 
0.098 

(**) 

0.148 

(**) 

0.089 

(**) 

0.127 

(**) 

0.094 

(**) 

0.151 

(**) 

0.109 

(**) 

0.153 

(**) 

𝜔1 
0.015 

(**) 

0.081 

(*) 

0.019 

(**) 

0.084 

(*) 

0.016 

(**) 

0.087 

(*) 

0.014 

- 

0.083 

(**) 

𝜔2 
-0.011 

- 

-0.054 

(*) 

-0.011 

- 

-0.058 

(*) 

-0.013 

- 

-0.059 

(*) 

-0.011 

- 

-0.067 

(*) 

𝜔3 
-0.001 

- 

-0.014 

- 

-0.005 

- 

-0.021 

(***) 

-0.006 

- 

-0.021 

(***) 

-0.011 

- 

-0.025 

(**) 

𝜔4 
0.009 

(*) 

0.017 

(*) 

0.007 

(*) 

0.013 

(*) 

0.007 

(*) 

0.011 

(*) 

0.010 

(*) 

0.013 

(*) 

𝜔5 
-0.020 

(*) 

-0.035 

(*) 

-0.015 

(*) 

-0.026 

(*) 

-0.015 

(*) 

-0.025 

(*) 

-0.022 

(*) 

-0.029 

(*) 

𝑅2 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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It can be comprehended that as the earnings announcement nears, especially when being 

between 1 to 14 days away, the motive to purchase the stock for the sole purpose of reselling 

at a higher price, and subsequent bubble magnitude, increases. This reflects in the trading 

volume of the underlying, which signals towards potential explosive behaviour in volatility. 

The impact of earning announcements remains the same, even when controlling for volume. 

Notice, the signs of coefficients and significance of  𝜔4 and  𝜔5 are similar to their 

counterparts observed in Panel A of Table 6.6. It implies that increased underlying and 

reduced accumulated call option volumes, have a positive impact on bubble magnitudes, 

even when controlling for earnings announcements. To further, assess for this claim, the 

impact of GSVJD parameters 𝜌 and 𝑝 are examined.  

�̂�𝑖,𝑡
+  =  𝛽0  +  𝛽1𝜌 𝑖,𝑡  +  𝛽2𝐷𝑝,𝑖,𝑡  + 𝛽3(𝐷𝑝,𝑖,𝑡 × 𝜌 𝑖,𝑡) + 𝜖𝑡 (53) 

ℙ(1{�̂�𝑖,𝑡
+  > 0}) = 𝛽0 + 𝛽1𝜌 𝑖,𝑡 + 𝛽2𝐷𝑝,𝑖,𝑡 + 𝛽3(𝐷𝑝,𝑖,𝑡 × 𝜌 𝑖,𝑡) + 𝜖𝑡 (54) 

The intuition behind the underlying price process revealing strict local martingale 

tendencies, when 0.5 <  𝑝 <  1.5, and 𝜌 >  0, stems from the exuberance being observed 

due to explosive behaviour in volatility (Delbaen & Shirakawa, 2002; Fusari et al., 2024). 

The motive behind estimating regressions (53) and (54), inclusive of the S&P 500 findings,  

is to provide robustness for the test utilized to detect significant call option bubbles. In both 

equations, following Fusari et al. (2024) the 21-day moving average of �̂�𝑖,𝑡
+ , 𝜌 and 𝑝 are 

considered, with 𝐷𝑝,𝑖,𝑡  =  1, if  0.5 <  𝑝 <  1.5, or 0, otherwise. The variable 𝐷𝑝,𝑖,𝑡 × 𝜌 𝑖,𝑡 

captures the interaction between the parameters, and subsequent effect on call option 

bubbles. Furthermore, in (54), the probability of a bubble occurring is examined, hence a 

logit regression in implemented, whereas for (53) an OLS model is used. 

 

The examination of an increase in 𝜌 is crucial, as by itself, 0.5 <  𝑝 < 1.5, is not sufficient 

enough for volatility to exhibit explosive behavior. The explosiveness is only possible when, 

in addition to the condition on 𝑝, 𝜌 > 0. Therefore, the practitioner is requested to thread 

carefully, in the aforementioned scenario. Overall, during instances when the coefficients 

have a significant impact on the exhibition of bubbles, the average effect of a 0.1 increase in 

𝜌, for when  0.5 <  𝑝 <  1.5, can be examined. In Panel A, ∆𝔹 indicates the average change 

in bubble magnitude, whereas ∆ℙ (Panel B) reveals the variation in the probability of 
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identifying a bubble. Across, all instances, the overall impact of an increase in 𝜌 is positive, 

resulting in a greater bubble magnitude and probability of detection. To illustrate this, 

consider the bubbles observed using 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters, within the 30-day window. For a 

0.1 increase, in 𝜌, the magnitude of the bubble rises by close to 0.80%, whereas the average 

probability52 of detection spikes by approximately 1.50%. 

 

Table 6.8: Results for Regression (53) and (54). 

Note: Results from regression (53) and (54), for 𝑖 = {𝑀𝑆𝐹𝑇,𝑁𝑉𝐷𝐴, 𝐴𝑀𝑍𝑁,𝑀𝐸𝑇𝐴, 𝐴𝑀𝐷, 𝑆𝑃𝑋}, are reported 

in Panel A and B, respectively. The estimated coefficients (𝛽0, 𝛽1, 𝛽2, 𝛽3), and corresponding levels of 

significance (in parentheses), are reported in accordance with 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters. The following, 

‘*’, ‘**’, and ‘***’, represent significance at, 1%, 5%, and 10% levels respectively. Furthermore, Panel A 

displays model  p-value (F-stat), 𝑎𝑛𝑑 𝑅2 metrics, whereas Panel B reveals p-value (LLR), pseudo 𝑅2 figures. 

In accordance, the average change in bubble magnitude (∆𝔹) and probability of occurrence (∆ℙ) , for a 0.1 

units increase in 𝜌 are documented.  

Window Size 30 60 90 180 

 𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  𝜃𝐻𝐶𝑉 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒  

Panel A: OLS         

𝛽0 
-0.085 

(*) 

0.052 

(*) 

-0.122 

(*) 

0.049 

(*) 

-0.137 

(*) 

0.044 

(*) 

-0.188 

(*) 

0.030 

(*) 

𝛽1 
-0.093 

(*) 

0.160 

(*) 

-0.154 

(*) 

0.143 

(*) 

-0.175 

(*) 

0.114 

(*) 

-0.283 

(*) 

-0.004 

- 

𝛽2 
0.123 

(*) 

-0.069 

(*) 

0.153 

(*) 

-0.077 

(*) 

0.164 

(*) 

-0.077 

(*) 

0.207 

(*) 

-0.080 

(*) 

𝛽3 
0.200 

(*) 

-0.076 

(*) 

0.241 

(*) 

-0.090 

(*) 

0.246 

(*) 

-0.082 

(*) 

0.323 

(*) 

-0.024 

- 

𝑅2 0.095 0.078 0.077 0.074 0.064 0.064 0.070 0.091 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

∆𝔹 0.011 0.008 0.009 0.005 0.007 0.003 0.004 -0.003 

Panel B: Logit         

𝛽0 
-0.912 

(***) 

1.694 

(*) 

-1.685 

(*) 

1.698 

(*) 

-2.157 

(*) 

1.632 

(*) 

-3.886 

(*) 

1.146 

(*) 

𝛽1 
-0.660 

- 

3.340 

(*) 

-1.927 

(**) 

3.273 

(*) 

-2.537 

(*) 

2.988 

(*) 

-6.319 

(*) 

0.336 

- 

Table 6.8 continued… 

 
52 It is obtained by computing the average difference between probabilities obtained from considering 𝜌 =

 [−1, 1), at increments of 0.1, and adding 0.1 to each 𝜌 value.   
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Table 6.8 continued… 

𝛽2 
1.717 

(*) 

-2.357 

(*) 

2.407 

(*) 

-2.354 

(*) 

2.831 

(*) 

-2.342 

(*) 

4.451 

(*) 

-1.957 

(*) 

𝛽3 
2.860 

(*) 

-2.682 

(*) 

3.885 

(*) 

-2.678 

(*) 

4.325 

(*) 

-2.606 

(*) 

7.592 

(*) 

-0.447 

- 

𝑃𝑠𝑢𝑒𝑑𝑜 𝑅2 0.041 0.080 0.034 0.080 0.030 0.075 0.031 0.082 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

∆ℙ 0.039 0.015 0.037 0.013 0.035 0.008 0.027 -0.002 

 

Recall, under the ND condition, the put-call parity holds, therefore bubbles in call options 

have a linear relationship, with those in the underlying price. Even though the entire size of 

the bubble is not captured, the exuberance within call options is capable of signalling 

towards strict local martingale tendencies in the underlying price process. This is the 

foundation of the three-step approach, which relies upon a statistical test for identifying call 

option bubbles. The calibration of parameters are prone to non-unique solutions (Wshah et 

al., 2020) and high standard errors (Fusari et al., 2024). Thus, the statistical test was relied 

upon for acknowledging exuberance in the underlying prices. However, bubbles identified 

by the three-step approach, in combination with the deep neural network framework, align 

with the conditions associated with parameters 𝜌 and 𝑝. Both the probability of observing, 

and magnitude of exuberance increase with 𝜌, for 0.5 <  𝑝 <  1.5, indicating to the 

existence of bubbles due to explosive behaviour in volatility. Hence, providing robustness 

towards the implementation of the three-step approach, especially over the Entire Surface 

dataset, for bubble detection in call option and underlying prices.  

 

6.5 Summary and Discussion 
 

The current chapter builds on the previous exploration of bubbles in the S&P 500 index, by 

applying the deep calibration framework to five technology stocks: AMZN¸ AMD, META, 

MSFT, and NVDA. The options written on these stocks are American-styled and cannot 

reveal exuberance within their prices. However, in abidance with the local martingale theory 

of bubbles, exuberance can be detected by examining the difference between market price 

of American-styled call options, and the fundamental value of their European-styled 

counterparts. Since, American put options cannot reveal bubbles, the deep calibration 

framework is applicable for computing GSVJD model parameters from market observations. 
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Parameters were calibrated from the HCV and Entire Surface datasets of each stock, during 

the sample period between August 1, 2022, and April 30, 2024.  

 

The exuberance in stock prices occurred more frequently over shorter time, reflecting the 

existence of such instances in clustered periods. Despite substantial increases witnessed in 

NVDA and META prices, relatively, very few days of exuberance were noticed. It highlighted 

that the appearance of bubbles was not necessarily associated with rapid price rises and also 

acknowledged the benefits of using smaller time frequencies during detection. The latter 

prevents the false classification of stocks exhibiting bubbles over larger periods, due to 

overestimation of explosiveness in the price process. Majority of bubble episodes coincided 

with days preceding/succeeding those that experienced relatively large losses/gains. 

Additionally, days witnessing monumental returns were not always dated for exuberance. 

 

 A similar cluster of bubbles was observed for NVDA, META, AMD and MSFT, between 

March 8 and 19, 2024. Despite strong performances over the course of 2024, technology 

stocks remained volatile. Overall, exuberance in 2024, coincided more frequently with 

profitable days. However, in regard to the cluster, traders sought to book profits, as rising 

inflation and treasury yields sparked concerns regarding overvaluation, with semiconductor 

stocks being hit the most. This is consistent with the local martingale theory of bubbles, 

which states bubbles to capture the willingness of trades to purchase for the sole purpose of 

reselling the asset at a higher price. Especially, in the case of NVDA, massive price hikes do 

not necessarily reveal exuberance, as they could simply resemble strong fundamentals, and 

traders wanting to purchase the stock for reciprocating gains from holding it.  

 

Next, in abidance with Fusari et al. (2024), factors influencing the formation of bubbles were 

explored. Exuberance was discovered to be positively influenced by increased trading 

activity in the underlying, and proximity to earning announcements. The latter indicated 

towards motives of investors purchasing the stock, for the sole purpose of reselling, in 

anticipation of a price hike. Whereas, trading activity in the underlying is associated with 

high levels of volatility, following the same intuition as Delbaen & Shirakawa (2002). When 

observations in the S&P 500 index, were considered, the impact of trading volume remained 

robust. Moreover, it was revealed that reduced call option volume, which signal towards 
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bearish sentiment, and subsequently, the market price exceeding the perceived fundamental 

value, increased the bubble magnitude.  

 

Finally, a robustness check for bubbles identified by the enhanced three-step approach was 

conducted. Recall, given the non-unique nature of the differential evolution optimiser, it was 

difficult to rely on the strict local martingale conditions associated with the 𝑝 and 𝜌 

parameters. Instead, signals of exuberance in the underlying price were identified from call 

option prices, with the assistance of a statistical test. Hence, upon estimating the OLS and 

Logit regressions from Fusari et al. (2024), the magnitude and detection probability of 

bubbles, was revealed to respectively increase, with 𝜌 increases, given that 0.5 <  𝑝 <  1.5. 

Therefore, bubbles identified by the three-step approach, with application of the deep 

calibration framework, were consistent with the strict local martingale conditions, associated 

with the parameters. This provided strong support to the implementation of the enhanced 

three-step approach, especially with respect to using the Entire Surface dataset for detecting 

bubbles in call options and underlying prices.  
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7 Chapter 7: 

Conclusion 
 

 

 

 

 

This thesis thoroughly explores the phenomenon of asset price bubble detection, and the 

importance of timely interventions to mitigate the devastating financial and socioeconomic 

consequences associated with their bursts. Given the increasing integration of global 

financial markets, and the frequent occurrence of exuberance in recent times, this research 

highlights the detrimental need for an accurate, robust and efficient detection method. The 

current chapter summarises the research, whilst highlighting contributions and discussing 

future implications.  

 

7.1 Summary, Contributions and Future Implications 

 

Traditional bubble detection approaches are largely focused on estimating the fundamental 

value of the asset and identifying deviations in market prices. Whilst recursive regression 

techniques (Phillips et al., 2011, 2015) and the LPPLS model (Johansen et al., 1999, 2000) 

have gained traction, they suffer from the joint-hypothesis issue, making results 

inconclusive. Furthermore, these methods require large time series data, making them 
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vulnerable to structural breaks, with the latter, failing to consider exogenous factors that 

could influence the formation of bubbles. To overcome these challenges, preference for the 

local martingale theory of bubbles was revealed. It focuses on the detection of type III 

bubbles, which are short-term, and observed in the prices of assets with bounded lives. By 

examining for strict local martingale tendencies in the asset price, the local martingale theory 

does not rely on the estimation of fundamental values and hence avoids the joint-hypothesis 

problem. Moreover, it provides a mathematical and economic framework for the detection 

of asset price bubbles from option prices, which allows for capturing the forward looking 

expectations of market participants.  

 

One of the key features of this research is the adaptation of the three-step approach developed 

by Fusari et al. (2024), under the tutelage of the local martingale theory. The method 

significantly improves detection by using option prices for capturing forward looking 

expectations regarding the formation of bubbles. It relies on the calibration of the GSVJD 

model to market put options, prior to detecting bubbles in the prices of call options for 

overcoming the joint-hypothesis issue. Put options have bounded payoffs, and cannot reveal 

bubbles, implying that their market price and fundamental values must align. Alternatively, 

call options have unbounded payoffs, making them desirable to purchase for selling at a 

higher price. Under the ND condition, exuberance in call option prices share a linear 

relationship with those in the underlying and hence signal towards strict local martingale 

tendencies in its process.  

 

Despite its robustness, the three-step approach relies on the computationally expensive 

Monte Carlo simulations during calibrations, that limit its application during real-time 

bubble detection. Fusari et al. (2024) were forced to comprise by considering only the most 

liquid cross section of daily put options, for striking a balance between robustness and 

efficiency. Such calibrations are unable to capture the full extent of forward looking 

information prevalent across the variety of option maturities within the entire surface. The 

abundant information within the surface, especially with respect to changes in the underlying 

prices, significantly improves the quality of bubble detection. Furthermore, even a highly 

sophisticated model such as the GSVJD with capabilities of capturing mean-reverting 

volatility, jump and strict local martingale tendencies in the underlying price process, can be 

easily overlooked by practitioners due to its poor tractability. Compromising accuracy for 
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tractability during bubble detection can make the method suffer from a joint-hypothesis 

issue, and provide inadequate and untimely risk management, which could be devastating. 

To address this limitation, a deep calibration framework was proposed to answer the 

following research question: How to improve the efficiency and tractability of the three-step 

approach and subsequently extend its application for bubble detection? 

 

Neural networks possess universal approximation capabilities and can estimate any function 

to a certain level of accuracy, making them ideal for pricing options, and handling the 

computational demands of the three-step approach. They mimic the functions of an animal’s 

nervous system, to comprehend the complex non-linear relationship between input and 

output variables. There are two types of neural network based approaches for calibrating 

parameters of a given stochastic process. First, the one-step approach, which directly 

estimates parameters from market data. Second, the two-step approach, which trains the 

network to learn dynamics of the process and uses an optimiser to calibrate parameters from 

market observations. The latter is favoured, as it provides real-time validation and ensures 

robustness across different market regimes. Furthermore, given the provision of real-time 

validation, it is favourable amongst regulators for dismissing the ‘black-box’ nature of neural 

networks. By leveraging the computational power of neural networks, the proposed 

framework makes the need for Monte Carlo simulations redundant. Hence, the three-step 

approach is made more attractive for real-time applications, allowing for efficient bubble 

detection.  

 

The deep calibration framework is the main contribution of this research. It significantly 

improves the computational efficiency and accuracy of bubble detection, making the three-

step approach suitable for real-time applications. Given the lack of a closed form solution, 

the network was trained using Monte Carlo simulations. Even though 10,000 simulations, 

with a timestep of 
1

365 × 5
 were considered, the accuracy and efficiency of calibration could 

potentially benefit from the availability of a closed form solution. Furthermore, it could 

improve the reliance on parameters 𝑝 and 𝜌 for detecting strict local martingale tendencies. 

Nevertheless, deriving a closed-form solution is beyond the scope of the current study and 

left for future research. However, most importantly, the boost in efficiency and accuracy 

provided by neural networks, enables the three-step approach to utilise the entire surface of 
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daily option prices, rather than being limited to a single volatility smile. This improves the 

ability to capture forward-looking market expectations across various maturities and betters 

the overall accuracy of bubble detection. 

 

Prior to applying the deep calibration framework, the GSVJD model was tested against 

various stochastic processes, over daily S&P 500 index data. The comparison provides 

another contribution, especially with respect to market turmoil periods, such as the COVID-

19 induced crash. It reveals the GSVJD process to be superior, as it possesses capabilities of 

capturing price jumps and strict local martingale tendencies, despite being the most 

inefficient amongst the considered models. This cemented the importance of considering the 

GSVJD model in the three-step approach, and further motivated the requirement for 

improved efficiency, without sacrificing accuracy. For achieving the latter, the deep 

calibration framework is required to develop a comprehensive and robust understanding of 

the GSVJD dynamics. This is accomplished by conducting an extensive random search over 

a broad range of hyperparameters, with each architecture undergoing 3-fold cross validation. 

Next, the top performing networks are selected for optimal training and tested on market 

data and compared to calibration results obtained from Monte Carlo simulations. The most 

optimal architecture was found to nearly double the accuracy and improve efficiency by a 

254 order of magnitude.  

 

When comparing to the benchmark, the GSVJD was calibrated to the most liquid daily S&P 

500 index put options. However, the boost in efficiency obtained from the deep calibration 

framework, enabled parametric estimation from the entire surface. Initially, the respective 

parameters, 𝜃𝐻𝐶𝑉 and 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒, were utilised to detect exuberance from the most liquid cross 

section of call options. Notably, calibrating to the daily surface excelled at identifying 

exuberance in the S&P 500 index during the COVID-19 induced crash, and subsequent 

recovery phase. It captured speculative-driven bubbles, coinciding with circuit breakers and 

major price fluctuations. These findings were consistent with the local martingale theory, 

especially with respect to the NFLVR condition. The 𝜃𝐻𝐶𝑉 documented similar occurrences, 

however failed to acknowledged exuberance on March 16, as the S&P 500 index collapsed 

by 11.98%, and experienced a circuit breaker. Moreover, it was not able acknowledge 

instances during the immediate recovery period. Both sets of parameters addressed 
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exuberance in mid-2021, amidst rising inflation and spread of coronavirus cases. Overall, 

𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 demonstrated superior ability in detecting bubbles linked to speculative behaviour 

and economic triggers, by leveraging information from several volatility smiles.  

 

Calibrating to the entire surface allowed for capturing a broader range of market 

expectations. It enhanced the identification of bubbles, by extending the application of the 

three-step approach to examining their existence and formation across various call option 

maturity groups, and over the lifetime of certain contracts. Similar instances of exuberance 

were identified as in the most liquid cross section, however, in larger clusters. Most notably 

in regard to the COVID-19 induced crash, and subsequent recovery period in 2020. The 

examination of bubbles over the lifetime of options provided important revelations about 

their characteristics. Options with greater maturities, in consistency with the local martingale 

theory, displayed larger bubbles, providing further insight into the potential size of the 

phenomenon in the underlying prices. Bubbles, though smaller, were more pronounced near 

the end of contract lifetimes, highlighting the desires of traders to purchase the options for a 

short-term profit. This reflected bubble formations to be more frequent than previously 

perceived. Moreover, it reflects differing investor perceptions across maturities, with long-

term holders viewing bubbles to be larger, and a consequence of more prominent events.  

 

The detected bubbles in the S&P 500 bare resemblance to the findings from Song et al. 

(2022) and Shu & Song (2024), especially for those observed during the post-crash recovery 

period, when employing 𝜃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 parameters. However, the neural network enhanced three-

step approach does not reveal a strong presence of exuberance in 2021, as opposed to the 

application of the LPPLS model in the aforementioned works. Recall, type III bubbles are 

short-lived, in contrast to the type II episodes observed by the LPPLS method. Hence, as 

suggested by Fusari et al. (2024), methods such as the LPPLS and recursive regression 

techniques can be used to complement the three-step approach in future research. This would 

allow for capturing bubbles by modelling both the drift and diffusion components of the 

asset price process. Nevertheless, it is crucial to highlight the application of the deep 

calibration framework, discovered exuberance during the COVID-19 crash period, when the 

S&P 500 experienced multiple circuit breakers. This novel revelation is a major contribution 
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of the thesis, as it is consistent with the local martingale theory of bubbles and strongly 

justifies the requirement for a deep calibration framework.  

 

The proposed framework captures forward-looking market expectations more effectively 

and provides a deeper understanding of speculative behaviour in financial markets, by 

expanding the calibration process to include the entire option price surface. The ability to 

detect bubbles across different option maturities and over the lifetime of options offers 

valuable insights into the formation and evolution of exuberance. As the frequency of 

occurrences increase, with growing interconnectedness of global financial markets, the need 

for robust detection systems becomes ever more critical. The deep calibration framework for 

enhancing the three step approach, provides a powerful tool for detecting asset price bubbles 

in real-time, enabling financial institutions and regulators to implement timely interventions 

for mitigating the potential damage of future market crashes, associated with exuberance.  

 

The computational efficiency provided by the deep calibration framework makes the three-

step approach more feasible for practitioners who seek to implement timely risk management 

practices. Furthermore, the flexibility of the neural networks allows it to handle a wide range 

of option maturities, providing a deeper understanding of bubbles formations across different 

investment horizons. The robustness of the enhanced three-step approach was tested by 

applying it to five major technology stocks: AMZN, AMD, META, MSFT, and NVDA. The 

case study revealed that stock bubbles, occur more frequently over short durations, however, 

their appearance is not necessarily associated with massive prices increases. This finding 

underscores the importance of distinguishing between rapid price rises driven by strong 

fundamentals and speculative hikes. Furthermore, it was established that stock bubbles 

occurred in clusters, often around periods of heightened trading activity and with close 

proximity to earnings announcements. Bubble magnitudes and call option volume were 

found to share a negative relationship, suggesting the presence of exuberance to signal 

bearish investor sentiments.  

 

The case study revealed the flexibility of the deep calibration framework for bubble 

detection, using different option contract styles. Furthermore, it can be applied over several 

asset classes, even if each requires a different stochastic process. For instance, the GSVJD 
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model, which already excels at capturing mean-reverting volatility, jumps and strict local 

martingale tendencies in the underlying price; can be extended to incorporate attention 

factors, as in Cretarola et al. (2018, 2020), and applied to various cryptocurrencies. This 

enables novel identification of exuberance in cryptocurrencies, by capturing forward looking 

expectations to the fullest extent, from respective derivative markets. As witnessed in Liu et 

al. (2019) and Horvath et al. (2021), the two-step network calibration approach can be 

trained to learn several stochastic processes, even within a single architecture. Hence, a 

robust deep calibration framework could be designed, for implementing the three-step 

approach over various financial instruments by using the most favourable stochastic 

processes. The work of Biagini et al. (2024) explores this with several processes, capable of 

capturing strict local martingale tendencies. The deep calibration framework can be further 

extended in a similar manner, for parametric estimation of various stochastic process under 

the three-step approach.  

 

A key component of the stochastic processes must be their ability to capture strict local 

martingale tendencies in the underlying process. This research revealed that bubbles occur 

more frequently than previously perceived, and do not necessarily coincide with large price 

hikes. Instead, they capture the eagerness of traders seeking to make a quick profit. It is 

important to take this observation into consideration. Recall, stochastic processes addressing 

strict local martingale features, outperformed their direct counterparts, and better captured 

market characteristics. Therefore, it is suggested to explore the pricing of options or 

generation of implied volatility surfaces, with a model that possess the ability to 

acknowledge strict local martingale characteristics. The recommendation is not necessarily 

implied for detecting bubbles, but rather to incorporate their possible existence when pricing 

instruments or computing key market metrics. From a regulatory perspective, it can boost 

the ability to implement timely, and most importantly accurately devised risk management 

practices.  

 

The timely implementation of risk management techniques is crucial, relying heavily on the 

ability to accurately detect bubbles. Kwong & Wong (2022) revealed the benefits of  pairing 

of Value-at-Risk (VaR) models, with recursive-regression bubble detection techniques. 

However, such methods suffer from a joint hypothesis issue and are unable to capture 
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forward looking expectations of market participants. The three-step approach overcomes 

such issues associated with traditional methods, and when enhanced with the deep 

calibration framework, enables capturing forward looking expectations to the full extent. 

Therefore, it is recommended to explore the pairing of VaR models, with the neural network 

enhanced three-step approach, possibly applicable across various asset classes and desired 

stochastic processes, to improve the timely implementation of risk management measures. 

It is on this note that the reader’s patience and interest is deeply appreciated, and the thesis 

is concluded.  
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9 Appendix 
 

 

 

 

 

 

The Appendix is dedicated to providing supplementary material, supporting the findings of 

this research. Section A provides detailed information of the training and testing procedures 

applied to the deep calibration framework, such that the optimal architecture is determined 

for bubble detection.   

 

A.   Deep Calibration Framework: Training and Testing 

 

Previously in 4.3, superior calibration performances from the GSVJD model, in comparison 

to other stochastic processes were revealed. However, the task was associated with a large 

computation burden, which further exemplifies over the sample period. During this 

operation, only options corresponding to the most liquid maturities were considered. Despite 

such attempts towards improving efficiency, on average, daily calibration required 3.56 

hours, creating a major bottleneck for employing the three-step approach. Additionally, 

quality of the method is hampered, as daily calibrations are conducted over a single volatility 

smile, rather than the entire available surface. Therefore, it is crucial to improve the speed 

of GSVJD parameter estimation, without sacrificing accuracy.  
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The two-step calibration framework comprises of an MLP neural network. During the first 

stage, forward pass, the network is trained to learn dynamics of the GSVJD model. The 

training phase consists of a random search over 720 hyperparameter combinations, with each 

undergoing a 3-fold validation. Next,  top performing architectures are further trained over 

a much larger dataset and carried to the backward pass. The latter step utilises the trained 

hidden layers, and calibrates GSVJD parameters from market observations, with the 

assistance of the Differential Evolution optimizer. Parameters from the best architecture are 

selected for pricing call options for bubble detection. This section proceeds with examining 

the training and testing phase of the forward pass, followed by analyzing calibrations to 

market data during the backward pass. 

 

A.1  Forward Pass 

 

In the forward pass phase, the neural network is trained to learn the dynamics of the GSVJD 

model. The goal of the extensive random search, across the vast range of hyperparametric 

combinations, is to seek the best performing architectures, for further training. First, each 

network architecture is trained on a smaller Random Search Dataset. Next, the top 

performing hyperparametric combinations are selected to be trained on a significantly larger 

Optimal Dataset. Once trained, each of the optimal architectures are carried to that backward 

pass phase, to test calibration performances on S&P 500 data. Both training datasets are 

synthetically generated and therefore is important to understand the reasoning and method 

behind their creation.  

 

A.1.1  Synthetic Training Data 

 

The implementation of neural networks for option pricing are plagued with the following 

interlinked concerns; unavailability of sufficient historical data, and a lack of economic 

interpretation (Hutchinson et al., 1994; Bayer et al., 2019;  Ivașcu, 2021). The latter refers 

to the lack of generalistion during output estimation, catering to the notorious ‘black-box’  

nature of machine learning models. A major source of such problems is identified as the 

training dataset quality. These concerns are widely observed with the one-step calibration 
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method53. The approach trains networks on stochastic model parameters corresponding to 

the historical market observations. Such information is not readily available; hence, the 

practitioner is required to conduct calibrations off-line for creating the training dataset. An 

additional burden is created during this computationally intensive stage. Furthermore, a 

network trained on such a dataset is vulnerable to overfitting, and weak performances during 

unseen market scenarios (Hernandez, 2016; Dimitroff et al., 2018). Therefore, one must 

frequently indulge in the computationally cumbersome task of retraining the network to 

accommodate the latest market trend. This reveals a loss of generalization during the 

estimation of output, given the absence of economic interpretation54.  

 

Such issues, even though on a lesser extent, could arise when training the two-step 

calibration approach on historical data. Therefore, creating a synthetic training dataset is 

favourable. This ensures that the inclusion of various market scenarios is controlled by the 

practitioner deciding the distribution range of input and output variables. In addition, there 

are no size restrictions, making it extremely beneficial when catering to instruments lacking 

sufficient historical data. Given flexibility in construction, inclusion of market scenarios are 

only restricted by the practitioner’s imagination. Training on such datasets is robust, 

reducing the chances of overfitting, and most crucially making the need for re-training, 

redundant (Bayer et al., 2019). The term ‘synthetic’ arises from the random generation of 

inputs, which resemble their behaviour under various market conditions. The selected asset 

pricing model is applied to determine implied volatilities corresponding to each combination 

of inputs. This ensures the availability of sufficient amounts of data, across various possible 

market scenarios, such that training is robust.  

 

The generation of the synthetic training dataset, as illustrated in Figure A.1, is a fusion of 

utilising randomly generated parameters and option contracts related input data, to estimate 

option prices and subsequently implied volatilities. The contract characteristics data,  𝛺 =

 {𝑚𝑜𝑛, 𝜏}, comprises of information on stock prices (𝑆), risk-free rates (𝑟), dividend yields 

 
53 These explanations are relevant and can be extended for to the general utilization of neural networks in 

financial derivative markets. 

54 This issue can also be attributed to the absence of real-time validation, which is dealt with by the two-step 

calibration approach.  



 270 

 

 

(𝑞) and option maturities (𝜏). Forward prices, 𝐹 =  𝑆𝑒(𝑟−𝑞)𝜏, are obtained from all 

constituents Ω, to compute strike prices, 𝕂. First, a respective lower and upper bound of 0.4, 

and 1.6, was set for moneyness,  𝑚𝑜𝑛 =  (𝕂 𝐹⁄ ). Next, from the range and given forward 

prices, 𝕂 values were generated at increments of $25.00.  

 

Figure A.1: Creation of Synthetic Dataset. 

  
 

In the pointwise two-step approach, since moneyness and maturity are employed as inputs, 

the generation of Ω, does not impact the robustness of the network. The strike price and 

expiry date of an option are fixed and specified as constituents of the contract and can be 

similar for options written on other underlying instruments. There might be concern with the 

generation of 𝑆, and subsequently, computing 𝐹, however this is eliminated by considering 

moneyness as an input. Moneyness describes the degree of extent to which an option is 

profitable and therefore is not particular to individual contracts. The GSVJD parameter 

values, are not calibrated but sampled at random. The components of Ω merely represent 

contract details of options on a given day, or even over a time period. The motivation behind 

creating such a dataset is derived from wanting to train the neural network over various 

market regimes, representing unique ELMMs, defined by each synthetic parametric 

combination.  

 

For to each 𝛺, 50 different parameter combinations,  𝜃 =  {𝑉0, �̅�,  𝜅, 𝜎𝜐,  𝜌, 𝑝,  𝜇𝑦,  𝜎𝑦 ,  𝜆}, 

abiding by Feller’s condition (2𝜅𝜐 ≥ 𝜎𝜐
2) were generated. The spawning of parameters 

requires a sampling technique with good space-filling properties (Liu et al., 2019). Latin 

Hypercube Sampling (LHS), introduced by Mckay et al. (1979), is considered due to its 

ability to well represent the parameter space by simulating random multidimensional 

distributions. Additionally, the approach is independent to number of dimensions, and has a 

memory, providing the closest representation of realistic variability (Li & Yang, 2023). Once 
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the number of samples required are decided, LHS remembers the location of the taken point, 

to prevent repetition55, analogous to having a chessboard with 𝑁 rooks that do not threaten 

each other.  

 

Traditionally, 𝜃 is calibrated to recognise the existing ELMM, and accordingly used for 

pricing options. By assigning each Ω set, 50 unique parametric combinations, the neural 

network will be trained on a large number of  market regimes, to prevent overfitting. It will 

be equipped with the understanding of accurately identifying the prevalent ELMM for a 

given day, during the backward pass. Since the neural network will be trained to learn the 

dynamics of the GSVJD model, the stochastic process is used to price put (𝑃(𝜃, 𝛺)) and call 

(𝐶(𝜃, 𝛺)) options, which will be used to compute implied volatilities. Given, the 

unavailability of a closed form solution, Monte Carlo simulations are relied upon, for 

pricing.  

 

The lack of a closed form solution can be problematic, giving rise to two error sources, when 

training the network (Liu et al., 2019). First, errors arise from Monte Carlo simulations, 

implemented for pricing. As a solution, Horvath et al. (2021) resorted to the spot martingale 

control variate method for reducing noise. However, to remain consistent with the practice 

implemented during the benchmark model calibration, variance reduction or control 

variance techniques were not adopted. Instead, Monte Carlo simulations, consisting of 

10,000 sample paths, with time steps of 
1

365 × 5
 are used. A time-step equivalent to one-fifth 

of a day helps in significantly reducing the noise. Furthermore, options revealing prices less 

than $0.01, in addition to those with implied volatilities greater (less) than 100% (1%), were 

dropped. The second error occurs during optimisation of the network in the training and 

calibrating phases. Regarding the former, presence of some error is appreciated, as it implies 

that overtraining has not taken place (Lek & Park, 2008; Lavine & Blank, 2009). For the 

latter, concerns over the error are relevant, which is precisely why the two-step calibration 

approach includes an optimizer, to ensure real-time validation. In context of bubble 

detection, it is equivalent to the real-time testing of a potential joint-hypothesis issue. 

 
55

 In contrast, random sampling generates outputs without taking previous points under consideration (Li & 

Yang, 2023).  
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Table A.1: Summary Statistics of the Random Search and Optimal Training Datasets. 

Note: Summary statistics of the Random Search (left) and Optimal Training (right) datasets.  𝑉(𝜃, 𝛺)/𝕂  

represents option (call and put) prices, scaled by 𝕂, across a large range of 𝑚𝑜𝑛 =  (𝕂 𝐹⁄ ) and 𝜏 (days), for 

L.H.S. generated random 𝜃 =  {𝑉0, �̅�,  𝜅, 𝜎𝜐,  𝜌, 𝑝,  𝜇𝐽,  𝜎𝐽,  𝜆𝐽}  vectors. 

Random Search Dataset Optimal Training Dataset 

 Mean SD P25 P50 P75 Mean SD P25 P50 P75 

𝜅 7.07 3.12 4.65 7.31 9.75 7.07 3.12 4.65 7.31 9.75 

𝜎𝑣 1.00 0.66 0.43 0.90 1.49 1.00 0.66 0.43 0.90 1.49 

υ̅ 0.38 0.18 0.24 0.39 0.53 0.38 0.18 0.24 0.39 0.53 

V0 0.46 0.28 0.22 0.43 0.68 0.46 0.28 0.21 0.43 0.68 

ρ -0.01 0.58 -0.51 -0.02 0.50 -0.01 0.58 -0.51 -0.02 0.50 

p 1.00 0.57 0.50 0.99 1.50 1.00 0.57 0.50 0.99 1.50 

λ𝐽 1.47 1.29 0.43 1.05 2.22 1.47 1.29 0.43 1.05 2.21 

μ𝐽 -0.13 0.44 -0.45 -0.13 0.17 -0.13 0.44 -0.45 -0.13 0.17 

σ𝐽 0.36 0.26 0.14 0.30 0.53 0.36 0.26 0.14 0.30 0.53 

𝜏 163.63 99.01 80.00 150.00 242.00 163.71 98.99 80.00 150.00 242.00 

𝑚𝑜𝑛 1.04 0.33 0.77 1.04 1.32 1.04 0.33 0.77 1.04 1.32 

𝑉(𝜃,Ω)/𝕂 0.25 0.25 0.08 0.19 0.34 0.25 0.25 0.08 0.19 0.34 

𝜎(𝜃, Ω) 76.81% 13.61% 68.27% 78.82% 87.58% 76.82% 13.62% 68.27% 78.84% 87.58% 

It is well documented that the performances of neural networks improve, with the size of  

training datasets, given the greater range of distribution among input and output variables. 

During their respective calibration attempts with neural networks, Liu et al. (2019) and 

Büchel et al. (2022), resorted to creating a large training datasets, comprising millions of 

data points. The generation of such sizeable datasets can be computationally cumbersome, 

especially when using the GSVJD model with Monte Carlo simulations. It would be 

preferred to endure the one-time computational expense of simulating millions of synthetic 

option prices, and corresponding implied volatilities.  

 

Synthetic datasets provide the ability to train the network on various market regimes, 

allowing for robust performances. Adhering to this stream of reasoning, a large number of 

option prices and implied volatilities were simulated, out of which 10 million, were selected 

at random for constructing a dataset. It is tasked with the purpose of training optimal neural 

networks, and hence will be referred to as the  ‘Optimal Training Dataset.’ The optimal 

architectures are determined by initiating a random search, in union with the 3-fold cross 
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validation approach, over a wide range of hyperparameter combinations. Each architecture 

undergoes training and validation, and it would be efficient to conduct these practices the 

‘Random Search Dataset.’ The secondary dataset is one-tenth of the size of its counterpart, 

comprising of 1 million option contracts. Hence, even when split into 3 equivalent folds, 

during cross validation, sufficient data exist to ensure robust training.  

 

As observed from Table A.1, all components, across both datasets have very similar 

distributions. This ensures that the quality of the Random Search dataset has not been 

compromised, despite being reduced for efficiency.  Since these datasets are synthetically 

created, there are no concerns regarding the overlapping/leaking of timeseries data between 

training and testing phases. After conducting a comprehensive analysis of literature on the 

application of neural networks for option pricing, Ruf & Wang (2020) highlight the ease of 

working with such datasets. An error exists from the pricing method used to create the 

dataset, however, on the plus side, training can be targeted towards learning a specified 

relationship between input and output variables. Recall the goal is to calibrate the GSVJD 

model, therefore such targeted training is preferable. It adds economic interpretation to the 

neural network and reduces regulatory concerns over ‘black-box’ operations.  

 

A.1.2  Random Search 

 

The optimal architecture of the forward pass is determined by a random search over 720 

hyperparameter combinations. Each one undergoes a 3-fold cross validation, to ensure 

robustness during the selection process. Performances, over the Random Search dataset, are 

evaluated using the average of error metrics, across the 3 folds. Given its superior ability to 

deal with outliers, the RMSE metric will be the key determinant, along with MSE and MAE. 

Instead of proceeding with the singular best architecture, the top 10 from the random search 

qualify for further training on the Optimal Training dataset.  

 

The architectures in Table A.2 are arranged in accordance with the 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 metric. All 

reported combinations reveal a strong preference for λ =  0, and ELU activation in the 

hidden layers. The performance of the neural network is adversely impacted by the 

L2 regularisation penalty term. This can be highlighted by the 50th ranked architecture, which 

is the best for λ =  1.0 ×  10−3. Keeping the remaining hyperparameters unchanged, and 
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only adjusting the L2 regularisation term to λ =  0, the performance of this particular 

architecture would significantly improve, climbing up to the 2nd rank. Therefore, 

L2 regularisation is not employed during the optimal training of neural networks.  

 

Table A.2: Top Performing Architectures from the random search. 

Note: Top 10 performing hyperparametric combinations from the random search over 720 neural network 

architectures, each uniquely identified by Arch ID. For the given values of hyperparameters, Layers, Nodes, 

Batch Size, Act. Fun. (hidden layer activation function), 𝜆 (𝐿2 regularisation term), and 𝜂 (learning rate), MSE 

and MAE metrics from the training (𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′ , 𝑇𝑟𝑎𝑖𝑛𝑀𝐴𝐸

′ )  and validation (𝑉𝑎𝑙𝑀𝑆𝐸
′ , 𝑉𝑎𝑙𝑀𝐴𝐸

′ ) of the normalised 

output, along with RMSE from the validation of the original output (𝑉𝑎𝑙𝑅𝑀𝑆𝐸), are reported.  

Arch ID Layers Nodes Batch Size Act. Fun. 𝜆 𝜂 𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′  𝑇𝑟𝑎𝑖𝑛𝑀𝐴𝐸

′  𝑉𝑎𝑙𝑀𝑆𝐸
′  𝑉𝑎𝑙𝑀𝐴𝐸

′  𝑉𝑎𝑙𝑅𝑀𝑆𝐸  

610 4 30 2048 ELU 0 0.01 0.011 0.075 0.010 0.073 0.014 

430 3 40 2048 ELU 0 0.01 0.011 0.075 0.011 0.076 0.014 

670 4 40 2048 ELU 0 0.01 0.010 0.072 0.011 0.077 0.014 

710 4 40 8192 ELU 0 0.01 0.012 0.079 0.011 0.076 0.014 

450 3 40 4096 ELU 0 0.01 0.011 0.075 0.011 0.077 0.015 

370 3 30 2048 ELU 0 0.01 0.012 0.078 0.012 0.078 0.015 

470 3 40 8192 ELU 0 0.01 0.013 0.085 0.012 0.079 0.015 

671 4 40 2048 ELU 0 0.001 0.012 0.079 0.012 0.078 0.015 

650 4 30 8192 ELU 0 0.01 0.013 0.084 0.013 0.081 0.015 

690 4 40 4096 ELU 0 0.01 0.011 0.076 0.013 0.083 0.015 

A collective preference for deeper and wider networks, with smaller batch sizes is revealed 

in Table A.2. Amongst the top 10 architectures, a close to even split is witnessed between 

choices for 3 or 4 hidden layers, with the larger value being slightly favoured. A similar 

observation can be made over preference for 30 or 40 neurons. For batch sizes, half the 

architectures, including the top 3 prefer 2,048, whereas the rest favour 8,192. Smaller batch 

sizes improve the generalistion of the network by bettering convergence to flat sections of 

the error surface, but also increase computational inefficiency and the variance during 

gradient estimation (Goodfellow et al., 2016; Keskar et al., 2017). Furthermore, recall that a 

balance between the depth and width of the neural network is crucial, given the trade-off 

between accuracy and efficiency. Selecting shallow and narrow networks would worsen the 

performance but boost efficiency by reducing the computations required during the 

optimizations phase.  
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There exists a trade-off between estimation accuracy and computational efficiency, during 

the selection of hidden layers, neurons, and batch sizes. Therefore, it is important to look 

beyond the top 10 architectures and examine the extent to which neural network 

performances are impacted due to adjustments within these structural features. The extended 

examination analyses the distribution range of such hyperparameters, amongst the top 10th 

percentile of architectures, in Figure A.2. Furthermore, the average ValRMSE metric, across 

the hyperparameter ranges, is investigated in Figure A.3. Examining number of neurons and 

hidden layers, display a similar picture to that in Table A.2. Amongst the 72 architectures, 

Figure A.2 reveals only 11 networks that have 2 hidden layers, whereas the rest are split 27 

to 33, in favour of possessing 4. A preference for deeper networks is observed in Figure A.3, 

as those with 4, 3, and 2 layers, provide average ValRMSE metrics of 1.74%, 1.77%, and 

1.90%, respectively. Similarly, there is an inclination towards wider networks, as those 

comprising of 20, 30, and 40 neurons, appearing 7, 24, and 40 times, give respective average 

performances of 1.87%, 1.77%, and 1.76%.  

 

Figure A.2: Hyperparameter Range of Architectures in the top 10th percentile. 

  

Panel A: Hidden Layers Panel B: Nodes 

  

Panel C: Batch Size Panel D: Learning Rate 

Note: The count of Hidden Layers, Nodes, Batch Sizes and Learning Rate values, amongst the top 10th 

percentile (72) performing architectures from the random search, are displayed in Panel A, B, C, and D 

respectively.  
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Neural networks, using 2048, 4096 and 8192 batch sizes during the optimisation, appear 18, 

24, 29 times, providing mean 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 metrics of 1.75%, 1.79%, and 1.80%, respectively. 

Smaller batch sizes provide superior convergence to flat section of the error surface, hence 

revealing better average performances. Their presence is dominant within the highly ranked 

networks. Alternatively, they are vulnerable to high variances when estimating gradients, 

hence reducing favourability in comparison to the largest batch size. However, this problem 

is overcome, by pairing small batch sizes with deeper and wider networks, as witnessed with 

architectures in Table A.2. In contrast to the other hyperparameters, the learning rate, η, can 

be altered during the training phase. It controls the pace of optimisation by deciding the 

number of units moved, along the error surface. Initially, during the random search, η ranged 

from 10−6 to  10−2, at an interval of 101. However, in the top 10th percentile of architectures, 

the lower bound of the range is cut-off at 10−4. In ascending order, from Figure A.3, 

corresponding average 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 metrics, to η values of  1e − 4, 1e − 3, and 1e − 2,  are 

disclosed as 1.97%, 1.85%, and 1.70%, respectively. Regarding frequency of appearance, 

Figure A.2 exhibits 2 architectures, amongst the 72 to possess a learning rate of 1e − 4, 

whereas 32 and 37 encompass 1e − 3, and 1e − 2, respectively. 

 

In practice, it is difficult to select an optimal learning rate, given the trade-off between small 

and large values. A smaller η, increases the computational burden during training, however, 

is extremely beneficial when narrowing down to a minimum on the error surface. 

Alternatively, larger rates speed up the optimisation of the loss function but could cause the 

network to fluctuate around a minimum, or even worse, diverge from it. An argument to 

improve performance is put forward for scheduled learning rates, those decaying after 

certain number of epochs.  Starting with a larger η, can improve efficiency in narrowing 

down towards a minimum. Furthermore, the large movements along the error surface would 

also prevent the network from being stuck as a local minima. To prevent fluctuations or 

divergence, η can be reduced, therefore improving the ability of the network to navigate 

towards the minimum. The computational burden would not be a source of concern, as 

majority of the navigation towards the minimum are done with a larger η.  
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Figure A.3: Performances of top 10th percentile architectures across various Hyperparameters. 

  
Panel A: Hidden Layers 

 

Panel B: Nodes 

 

  
Panel C: Batch Size 

 

Panel D: Learning Rate 

 
Note: Average 𝑉𝑎𝑙𝑅𝑀𝑆𝐸  metric across Hidden Layers, Nodes, Batch Sizes and Learning Rate values, amongst 

the top 10th percentile (72)  performing architectures from the random search, are displayed in Panel A, B, C, 

and D respectively.  

Though appealing, two flaws prevented the use of scheduled learning rates during the 

random search. First, the η values must be defined prior to training, and hence could fail to 

adapt to characteristics of the dataset. Second, regardless of the changes during training, the 

same learning rate, within each epoch, would be applied to all network parameter updates, 

even for those that occur rarely. The latter concerns are dealt with by employing the Adam 

optimizer. It is a galvanized version of the SGD, that employs adaptive learning rates, with 

respect to the weights and biases, whilst updating them at each epoch. The doubts over pre-

determination of learning rates for the scheduled decline, are overcome by the information 

obtained from the random search. The extensive search was conducted on the Random 

Search dataset, which shares strong resemblances with the Optimal Training dataset. Hence, 

the scheduled learning rate is obtained from examining performances of the top 10th 

percentile of architectures. For optimal training decaying learning rate is proposed, starting 

at 10−2 and halved after every 50 epochs, such that throughout the course of training, η will 
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be within the 10−2 to 10−4 range. This range is consistent with that observed amongst the 

top 10th percentile  of architectures from the random search. It must be acknowledged that, 

η will approach, but never equal  10−4, given the lower frequency of appearances and 

relatively worser error metrics, designated with this value.  

 

A.1.3  Optimal Neural Network Training 

 

The random search concluded a preference for deeper and wider network architectures, with 

smaller batch sizes and learning rates. Upon a 3-fold cross validation investigation, 

employed on each of the 720 hyperparametric combinations trained over the Random Search 

dataset, the 10 best performing networks, from Table A.2, are selected for optimal training.  

 

The optimal training is conducted on a much larger, Optimal Training dataset. It shares the 

same characteristics as the Random Search dataset but is 10 times larger, comprising of 10 

million synthetically priced options, approximately half of which correspond to put 

contracts. For boosting performances, input and output variables were scaled using  (45) and 

(46), respectively. Such operations make the loss function more symmetrical, causing 

simpler and quicker convergence, and protecting the network from the vanishing gradient 

issue. Hence, requiring a large number of epochs is made redundant, with the optimal 

training being conducted over only 200. Efficiency and convergence are further boosted by 

the implementation of a scheduled decaying learning rate, with an initial value of 10−2 

halved, after 50 epochs. The network is further shieled from being stuck at a local minima, 

by the larger learning rate. When narrowing down to a minimum, to avoid fluctuations or 

divergence, the learning rate is reduced to better convergence.  

 

The aim is to seek out a neural network architecture, that can best learn the GSVJD model 

for estimating 𝜎𝑃(𝜃, 𝛺), from inputs (𝜃,𝑚𝑜𝑛, 𝜏). The architectures considered for optimal 

training vary with respect to three hyperparameters: hidden layers, neurons, and batch sizes. 

The rest are set constant, in accordance with findings from the random search. The activation 

function in the hidden and output layers are fixed at ‘ELU’ and ‘linear’, respectively. The 

decaying learning rate that halves after 50 epochs, with an initial value of 10−2, applied all 

architectures, in addition with the decision to opt against 𝐿2 regularisation, by setting 𝜆 =
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 0. Under these circumstances, neural networks with Arch IDs 670 and 671, are identical in 

Table A.2. They were differentiated between, solely based on their respective learning rates 

of 10−2 and 10−3. To avoid repetition, the network with Arch ID56 671 is selected to undergo 

optimal training.  

 

In the random search a 3-fold cross validation was conducted, which split the Random 

Search  dataset into 3 components. While being trained, the networks were validated on each 

component, during the respective fold. Recall, the optimal training procedure is undertaken 

to determine the forward pass, such that its hidden layers are utilised in the backward pass. 

If the 3-fold cross validation technique were to be implemented, then there would be 3 sets 

of weights and biases, each corresponding to a respective fold of the Optimal Training 

dataset, and the hidden layers from best performing fold will be selected. This practice would 

be inadequate and computationally inefficient. The latter is a consequence of 3 training 

cycles required to complete the cross validation. The former stems from the best performing 

fold being selected without maximizing the utility of the entire dataset. Given hidden layers 

from only one-fold can be considered in the backward pass, splitting the dataset into 3-folds 

reduces the distributive range of the training dataset. Alternatively, the training dataset can 

be split into a greater number of folds, but this would reduce training efficiency. Therefore, 

it is preferred not to continue with the implementation of  k-fold cross validation for optimal 

training.  

 

The Optimal Training dataset undergoes a 90:10 random split to create training of validation 

subsets. As opposed to conventional practices, a third subset for additional testing is not 

considered. This is justified by the selection process for the optimal architecture, continuing 

into the backward pass. The purpose of this research does not end at calibrating the GSVJD 

model but rather at detecting bubbles from option prices. Hence, the architecture selected 

for bubble detection must display the best performances to fit market put options. This 

provides a strong economic background when selecting an optimal neural network for 

calibration, which assists in putting regulatory concerns regarding the ‘black-box’ nature of 

the model to bed.  

 
56 Arch ID 671 was allocated a learning rate of 10−3 during the random search and allows to better capture the 

new implementation of the scheduled decaying learning rates, starting at 10−2.  



 280 

 

 

 

The performance from each architecture considered for optimal training are reported in Table 

A.3. Similar to the random search, 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 plays a crucial role in determining the best 

architecture. The ranking of network architectures varies in comparison to those from the 

random search. Observe, the finest of margins separate the trained networks, during 

estimation of 𝜎𝑃(𝜃, 𝛺). For instance, 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 of the best and worst performing models, are 

separated by 0.104%. In regard to  𝑉𝑎𝑙𝑀𝐴𝐸, the proximity of reported values is even closer, 

with near identical values obtained across all architectures. Therefore, to analyse the 

performances of these models, given the minute differences amongst them, 𝑉𝑎𝑙𝑀𝑆𝐸 becomes 

useful. Furthermore, a closer look should be taken at examining the difference between 

𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′  and 𝑉𝑎𝑙𝑀𝑆𝐸

′  metrics to ensure the networks do not suffer from overfitting. 

 

According to 𝑉𝑎𝑙𝑀𝑆𝐸 from Table A.3, the first and second ranked candidates, comprise of 

the deepest and widest networks, across the whole hyperparameter search. These networks 

also provide an exception to the preference for smaller batch sizes. In all other instances, 

when comparing neural networks with the same width and depth, those with larger batch 

sizes perform worse. The next three ranking positions are occupied by networks comprising 

of 40 nodes within their hidden layers. A batch size of 2048 makes Arch ID 430 triumph 

over 710, and 450, even though the former is deeper. Overall, wider architectures are 

noticeably ranked higher, barring Arch ID 470, possibly due to a larger batch size. There is 

a preference for smaller batch sizes, but the depth of the neural network also plays a vital 

role in its performance. Consider networks with Arch ID 710 and 450,  which have the same 

width, but the deeper one performs better despite having a larger batch size. A similar 

conclusion can be arrived at following the comparison of Arch IDs 650 and 690, with 370 

and 430, respectively.  

 

The optimal training reveals preference for wider networks, amongst which, those that are 

deeper with smaller batch sizes, perform even better, consistent with the findings of the 

random search. A strong case for exploring even deeper and wider neural network 

architectures can be put forward. However, proceeding down this route would make the 

network suffer from the curse of dimensionality, as the number of weights and bias 

parameters would increase exponentially, worsening the efficiency of the model. The 
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increase in computational burden of training the forward pass, is not a major source of 

concern, compared to potential additional seconds required during calibrations in the 

backward pass. The calibration task can be simplified to matrix operations, which would 

become even higher-dimensional in nature, if the network were to become wider or deeper. 

This might discourage the practitioner from implementing the framework, given the frequent 

requirements of calibrating parameters due to volatile essence of markets. 

 

Table A.3: Optimal Training Performance. 

Note: Optimal training summary of the best performing hyperparametric combinations from the random 

search, each uniquely identified by Arch ID. For each combination of Layers, Nodes, and Batch Size, MSE and 

MAE metrics from the training (𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′ , 𝑇𝑟𝑎𝑖𝑛𝑀𝐴𝐸

′ )  and validation (𝑉𝑎𝑙𝑀𝑆𝐸
′ , 𝑉𝑎𝑙𝑀𝐴𝐸

′ ) of the normalised 

output, along with MSE, RMSE, and MAE metrics from the validation of the original output 

(𝑉𝑎𝑙𝑀𝑆𝐸 , 𝑉𝑎𝑙𝑅𝑀𝑆𝐸 , 𝑉𝑎𝑙𝑀𝐴𝐸), are reported.  

Arch ID Layers Nodes Batch Size 𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′  𝑇𝑟𝑎𝑖𝑛𝑀𝐴𝐸

′  𝑉𝑎𝑙𝑀𝑆𝐸
′  𝑉𝑎𝑙𝑀𝐴𝐸

′  𝑉𝑎𝑙𝑀𝑆𝐸 𝑉𝑎𝑙𝑅𝑀𝑆𝐸  𝑉𝑎𝑙𝑀𝐴𝑒  

690 4 40 4096 0.007 0.058 0.007 0.058 1.22e-04 0.011 0.008 

671 4 40 2048 0.007 0.058 0.007 0.059 1.25e-04 0.011 0.008 

430 3 40 2048 0.007 0.060 0.007 0.059 1.29e-04 0.011 0.008 

710 4 40 8192 0.007 0.059 0.007 0.059 1.29e-04 0.011 0.008 

450 3 40 4096 0.007 0.060 0.007 0.060 1.33e-04 0.012 0.008 

610 4 30 2048 0.007 0.060 0.007 0.060 1.33e-04 0.012 0.008 

650 4 30 8192 0.007 0.061 0.007 0.061 1.38e-04 0.012 0.008 

470 3 40 8192 0.008 0.062 0.008 0.062 1.40e-04 0.012 0.008 

370 3 30 2048 0.008 0.063 0.008 0.064 1.46e-04 0.012 0.009 

The 𝑉𝑎𝑙𝑀𝑆𝐸 metric allows for assessing the ranking of network architectures, given 

negligible differences observed within their  𝑉𝑎𝑙𝑅𝑀𝑆𝐸 and 𝑉𝑎𝑙𝑀𝐴𝐸 values. Each of these 3 

error metrics reveal performances on the validation dataset, ensuring robustness, and 

diminishing concerns over overfitting. This can be further established by examining the plots 

in Figure A.4, that reveal the history of training (𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′ ) and validation (𝑉𝑎𝑙𝑀𝑆𝐸

′ ) loss 

functions over 200 epochs for each network. It is important to witness convergence of both 

loss functions at the final epoch, as this would resemble similar performances of the neural 

network on two different datasets. In other words, convergence confirms the network having 

learned the complex non-linear dynamics of the GSVJD model.  
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Figure A.4: History of Loss during Optimal Training. 

  

Panel A: Arch ID 690 

 

Panel B: Arch ID 671 

 

  

Panel C: Arch ID 430 

 

Panel D: Arch ID 710 

 

  

Panel E: Arch ID 450 

 

Panel F: Arch ID 610 

 

  

Panel G: Arch ID 650 

 

Panel H: Arch ID 470 

 

Figure A.4 continued… 
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Figure A.4 continued… 

 

Panel I: Arch ID 370 

Note: The history of loss over 200 epochs, measured by the 𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′  and 𝑉𝑎𝑙𝑀𝑆𝐸

′  metrics, for all architectures 

from the training and validation of the forward pass, are respectively displayed in each panel.  

All architectures experience convergence between 𝑇𝑟𝑎𝑖𝑛𝑀𝑆𝐸
′  and 𝑉𝑎𝑙𝑀𝑆𝐸

′  metrics. The 

values of these metrics at the last epoch, along with those of 𝑇𝑟𝑎𝑖𝑛𝑀𝐴𝐸
′  and 𝑉𝑎𝑙𝑀𝐴𝐸

′ , are 

documented in Table A.3. This convergence reveals an economic foundation for an approach 

that is heavily criticized by regulators for its ‘black box’ nature and over reliance on data. 

The improved robustness of the neural network should prevent it from facing difficulty in 

mimicking such performances on unseen market data and boost its ability to calibrate 

GSVJD parameters. Recall, the three-step approach required the GSVJD model to accurately 

price put options, such that their fundamental and market values align, indicating the absence 

of a bubble. This is crucial for overcoming the joint-hypothesis related issue, when 

attempting to detect bubbles in call option/underlying asset prices.  Therefore, each 

optimally trained architecture is carried to the backward pass, such that their hidden layers 

are frozen and utilised for calibrating from daily market put option implied volatilities.  

 

A.2 Backward Pass 

 

The optimal training of the forward pass illustrated a preference for deeper and wider 

networks, with smaller batch sizes. The selection of a single best neural network was 

hindered by the discovery that all provided nearly identically strong performances. 

Furthermore, the approval of the network architecture for bubble detection also stems from 

its ability to accurately calibrate the GSVJD parameters to market put option prices/implied 

volatilities. Subsequently, the superior network is one that is least likely to suffer from the 



 284 

 

 

joint hypothesis issue, by possessing best capabilities in identifying the true market regime. 

Therefore, the backward pass must not only be viewed as the calibration phase, but also one 

for testing the quality of the network architecture for bubble detection.  

 

A.2.1 Backward Pass: Optimal Architecture 

 

The backward pass is designed to incorporate the trained hidden layers from the optimal 

forward pass and improve the computational efficiency of calibrating the GSVJD model. 

The benchmark for accuracy is set by using Monte Carlo simulation for calibrating the 

GSVJD model. Since both approaches, utilise the Differential Evolution optimiser to 

minimise the 𝑅𝑀𝑆𝐸𝜎,𝑡 between market and estimated implied volatilities, comparisons 

between daily accuracy and computational time are straightforward. However, prior to 

comparisons being made, the optimal architecture of the forward pass must be determined.  

 

The secondary purpose of the backward pass is to assess the performance of each 

architecture that has undergone optimal training. This is conducted by calibrating the GSVJD 

model, on the same dataset as employed during the benchmark model, HCV put options (see 

Table 4.2), to maintain consistency with 4.2 and 4.3. Daily S&P 500 put options, 

corresponding to the most liquid maturity between January 2019 and December 2022, are 

considered. The Differential Evolution optimiser is utilised to minimise the 𝑅𝑀𝑆𝐸𝜎,𝑡, and 

for additional robustness, the 𝑆𝑆𝐸𝜎,𝑡 loss functions, between 𝜎𝑃(𝜃, 𝛺)′ and 𝜎𝑃(𝑚𝑜𝑛, 𝜏 )’. 

Therefore, the deep calibration framework is further validated over market data, prior to 

being utilised for bubble detection. The additional procedure reduces regulatory concerns, 

by eliminating the presence of joint-hypothesis related issues, that could arise from selecting 

a suboptimal architecture. Finally, given that the choice of asset pricing models in industrial 

practice is heavily governed by tractability, it is vital to investigate the time required by each 

architecture for daily calibrations.   

 

The 𝑅𝑀𝑆𝐸𝜎,𝑡 values, between the estimated and market put option implied volatilities, 

across the entire sample period, are plotted for each of the architectures in Figure A.5. These 

plots illustrate the performance of the backward pass, when using 𝑅𝑀𝑆𝐸𝜎,𝑡 for calibrating 

the GSVJD model. The performances of the architectures are assessed by the average MSE, 
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RMSE, and MAE, error metric values. Along with the mean time for daily calibrations, 

depicted in Table A.4, with respect to 𝑅𝑀𝑆𝐸𝜎,𝑡 and 𝑆𝑆𝐸𝜎,𝑡. Overall, the backward pass 

delivers strong, stable, and most remarkably rapid calibrations of the GSVJD model to 

market data, across the entire study period, for all architectures.   

 

The performance trends over the sample, of all neural network architectures, are similar to 

those displayed by using Monte Carlo. There are two noticeable instances, consistent with 

the benchmark, over the considered period, during which concerns regarding the calibration 

to daily S&P 500 options, are raised. First, a clustered rise in the 𝑅𝑀𝑆𝐸𝜎,𝑡, can be observed 

at the start of March 2020, across all architecture plots in Figure A.5. Several instances of 

relatively larger errors, peaking close to 2%, are witnessed in the respective plots of each 

network architecture. This period corresponds to the start of the COVID-19 induced 

lockdown and subsequent crash when great amounts of turmoil and uncertainty clouded 

market expectations. Second, all neural networks deliver their worst performance on January 

27, 2021, a day corresponding to the massive price hike experienced by the GameStop stock 

due to a short squeeze. A singular, yet towering 𝑅𝑀𝑆𝐸𝜎,𝑡 values, close to 4%, is noticed in 

all panels of Figure A.5. Barring these two scenarios corresponding to exceptional 

circumstances, all neural networks, deliver strong performances.  

 

Figure A.5: Backward Pass Calibrations using Optimal Architectures. 

  

Panel A: Arch ID 690 

 

Panel B: Arch ID 671 

 

Figure A.5 continued… 
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Figure A.5 continued… 

 

  

Panel C: Arch ID 430 

 

Panel D: Arch ID 710 

 

  

Panel E: Arch ID 450 

 

Panel F: Arch ID 610 

 

  

Panel G: Arch ID 650 

 

Panel H: Arch ID 470 

 

 

Panel I: Arch ID 370 

 
Note: Backward pass calibration of the GSVJD model by minimising 𝑅𝑀𝑆𝐸𝜎,𝑡 between 𝜎𝑃(𝜃, 𝛺) and 

𝜎𝑃(𝑚𝑜𝑛, 𝜏), using all architectures that underwent optimal forward pass training.  
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The performance of architectures during the optimal training phase of the forward pass were 

very similar. However, Table A.4 reveals noticeable differences, with respect to accuracy and 

computational time. The network architectures are reported in order of their average 

performances over the study period, measured by the σRMSE metric. Upon closer inspection, 

a clear favorability for deeper and wider architectures is revealed, which automatically 

highlights the dreaded trade-off between accuracy and computational efficiency. The 

backward pass experimented by calibrating all architectures, using two loss functions, 

𝑅𝑀𝑆𝐸𝜎,𝑡 and 𝑆𝑆𝐸𝜎,𝑡. The difference between the impact on accuracy is very minor, as both 

loss functions present the same ranking of architectures, with former being marginally 

superior in the estimation of put option implied volatilities. However, regarding 

computational efficiency, the latter is on average 9.5 seconds faster during the daily 

calibration of the GSVJD parameters from market data. The inclusion of the penalty term, 

𝜆 =  1 𝑥 10−6 in the 𝑆𝑆𝐸𝜎,𝑡 function, improves convergence, and hence computational 

speed, without having a major impact on calibration performances. It is on these grounds 

that the practitioner is strongly encouraged to utilise the 𝑆𝑆𝐸𝜎,𝑡 loss function with a penalty 

term, when attempting to calibrate high-dimensional asset pricing models, using neural 

networks. However, despite the additional computational cost, the 𝑅𝑀𝑆𝐸𝜎,𝑡 loss function is 

selected for bubble detection, in order to maintain consistency with the benchmark.  

 

In general, regardless of the loss function, considering all architectures, on average, 

calibration is sped up by a magnitude ranging between 253-542, when employing the neural 

network-based two-step calibration approach, compared to Monte Carlo simulations. 

Furthermore, excluding the Arch ID 610, the remaining architectures display superior 

performances, when examined against the benchmark. Thus, the application of neural 

networks not only boosts computational efficiency, but also calibration accuracy. As a result, 

a large potential for enhancing the precision of three-step approach, along with its tractability 

for real time bubble detection exists, such that it can be exploited to make the method 

favourable amongst practitioners. The selection of the optimal architecture for bubble 

detection is conducted by analysing the 𝜎𝑅𝑀𝑆𝐸  metric. The ranking of architectures is similar 
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across the 𝑅𝑀𝑆𝐸𝜎,𝑡 and 𝑆𝑆𝐸𝜎,𝑡 loss function, and in order to maintain consistency with the 

benchmark, will be examined only in accordance with the former.  

 

Table A.4: Calibration Performances during Backward Pass. 

Note: Average performance and time (seconds) of the backward pass, for each optimal architecture from the 

forward pass phase, are displayed with respect to 𝑅𝑀𝑆𝐸𝜎,𝑡 (Panel A) and 𝑆𝑆𝐸𝜎,𝑡 (Panel B). The performances 

are reported by MSE, RMSE and MAE metrics between estimated and observed implied volatilities (𝜎).  

 𝜎𝑀𝑆𝐸  𝜎𝑅𝑀𝑆𝐸  𝜎𝑀𝐴𝐸  Time 

Panel A: 𝑅𝑀𝑆𝐸𝜎,𝑡     

671 7.94E-06 0.17% 0.0011 50.371 

690 9.39E-06 0.19% 0.0014 48.169 

710 9.95E-06 0.22% 0.0016 50.556 

650 1.12E-05 0.23% 0.0015 44.626 

470 1.53E-05 0.28% 0.0020 35.086 

370 1.69E-05 0.28% 0.0021 35.679 

450 1.69E-05 0.29% 0.0021 34.154 

430 1.65E-05 0.30% 0.0022 34.803 

610 2.64E-05 0.38% 0.0028 34.090 

Panel B: 𝑆𝑆𝐸𝜎,𝑡     

671 8.01E-06 0.17% 0.0011 43.177 

690 9.64E-06 0.20% 0.0014 41.879 

710 9.93E-06 0.22% 0.0016 36.039 

650 1.12E-05 0.23% 0.0015 32.224 

470 1.52E-05 0.28% 0.0020 29.466 

370 1.67E-05 0.28% 0.0021 24.355 

450 1.71E-05 0.29% 0.0021 27.062 

430 1.69E-05 0.31% 0.0022 24.531 

610 2.79E-05 0.39% 0.0029 23.606 

 

It can be observed from Table A.4 that the Arch ID 671, with 4 hidden layers, each 

comprising of 40 neurons, and a batch size of 2048, is the best performing architecture. It 

provides 𝜎𝑅𝑀𝑆𝐸  value of 0.17%. Furthermore, it is the deepest and widest network, with the 

smallest batch size, giving a vindication to the random search findings.  In fact, the top three 

networks measured by the 𝜎𝑅𝑀𝑆𝐸 , are equally as deep and wide, with the following two, in 

order of performance, Arch ID 690 and 710, having respective batch sizes of 4096 and 8192. 

Arch ID 610, is the worst performing network, even being inferior to the benchmark. 
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Ironically, it is also the most computationally efficient architecture for the backward pass. 

Even though practitioners favour tractability, accuracy must not be overlooked when 

determining the optimal architecture for bubble detection. The application of neural 

networks for calibrating the GSVJD has significantly boosted computational accuracy, and 

even improved efficiency, in comparison to the Monte Carlo simulations. From Table A.4,  

preference for speed, comes at a cost of accuracy, with the best performing network being 

the slowest, whereas the fastest, Arch ID 610, being inferior to the benchmark.  

 

Naturally, one can arrive at the conclusion that deeper and wider networks require more 

calibration time. This is a fair perception, given the curse of dimensionality results in an 

exponential increase in the number of weights and bias parameters within the hidden layers. 

However, Arch ID 610 comprised of 4 hidden layers and 30 neurons and was even faster 

than shallower and narrower networks. The possibility of the optimiser being stuck at a local 

minimum, and stopping given the lack of improvement,  due to the drawbacks of the 

architecture, must not be ignored. Therefore, it is preferable to curb the greed for speed and 

select a network with better accuracy. Hence, the optimal architecture selected for bubble 

detection is Arch ID 671, comprising of 4 hidden layers, 40 neurons and a batch size of 2048. 

It provides speed up with a magnitude of 254, in addition to being approximately twice as 

accurate as the benchmark. Finally, all calibrations during the backward pass stage were 

computed on a personal computer, with an i7-processor, and 16 GB RAM, over a single CPU 

unit.  
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