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Abstract 

Malaria remains one of the most common life-threatening vector-borne diseases 

worldwide, with an estimated 263 million global cases and 597,000 deaths per 

year, 94% and 95% of which occur in sub-Saharan African countries, respectively. 

In sub-Saharan Africa, Tanzania accounts for approximately 3.3% and 4.3% of all 

malaria cases and deaths, placing it among the leading four countries responsible 

for just over half of global malaria deaths. Malaria is transmitted to humans 

through a bite by an infected female Anopheline mosquito. In Dar es Salaam, 

Tanzania, An. gambiae s.l. (i.e., An. gambiae s.s., An. arabiensis and An. merus) 

is the most important species in terms of malaria transmission, followed by An. 

funestus. Vector control remains the most effective strategy against malaria. The 

main malaria vector control interventions are insecticide-treated bed nets and 

indoor residual spraying; both were very successful but were not enough to 

eliminate transmission, so there is a continuous search for new tools and strategies 

for deployment.  

Development of interventions typically starts in the laboratory and then moves to 

the semi-field system before going to the field; thus, we need robust ways to 

assess them at all these levels. Experiments for testing vector control 

interventions in semi-field systems serve as a cost-effective link between 

laboratory and field trials, enabling researchers to evaluate interventions or their 

combinations in controlled conditions. One way to achieve reliable outcomes is to 

design semi-field experiments with adequate statistical power. Evaluating power 

is crucial for determining necessary resources, including finances, time, and 

participants. However, power analysis is rarely done, possibly due to limitations 

in technical skills and the availability of tools such as software.  

Furthermore, assessment of interventions in the field settings needs to not only 

determine the impact on population size but also regulatory processes (such as 

negative density dependence and positive density dependence known as Allee 

effect) that regulate populations. Negative density dependence is a regulatory 

process which typically operates in immature mosquitoes where growth rates 

decline at high densities, mainly caused by resource competition. Allee effect is 

another process operating in adult mosquitoes where population crash if density 

is low, mainly caused by mate limitation. Understanding the impacts on population 
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dynamics and how low populations are regulated in the field settings could provide 

critical insights into how to improve vector control strategies. This is because at 

low densities, regulatory  processes, particularly negative density dependence and 

Allee effects, have implications for vector suppression and elimination plans. 

However, the existence of Allee effects in the field settings with low mosquito 

population densities and their implications for vector control interventions is still 

unknown.  

The main aim of this PhD thesis was to improve the evaluation of malaria vector 

control interventions. This was done through a combination of theoretical and 

statistical modelling approaches applied to both semi-field and field settings. 

There were three specific research aims: 1) how can vector control experimental 

designs be improved in semi-field systems? 2) what are the trade-offs between 

mosquito population regulatory mechanisms at low densities? and 3) do key 

mosquito population regulatory processes emerge from large-scale vector control?  

To achieve aim 1, a simulation-based power analysis framework from a generalised 

linear mixed model was developed to assess how many chambers, sampling 

frequency and sampling size in semi-field systems would provide enough power to 

determine the impact of interaction between two tools, here pyriproxyfen 

autodissemination and the widespread insecticide-treated bed nets against 

malaria vector An. arabiensis across a range of commonly used semi-field 

experimental designs, such as single vs. combined interventions and short- vs. 

long-term experiments.  

Results showed that the higher the effect sizes, the higher the power, but power 

also increased with the number of chambers, sampling frequency, and number of 

mosquitoes, while high variation between chambers reduced power. a 

generalisable power analysis framework was provided and can be used widely for 

other vector control tools, experimental scenarios and also other vectors.  

For aim 2, a simulation model based on an age-structured population model was 

developed to quantify trade-offs between negative density dependence and the 

Allee effect and how these impact the outcomes of interventions.  

Results showed that while in isolation, these mechanisms are not able to drive the 

population into extinction, their co-existence can accelerate population 

extinction as populations become smaller. A combination of negative density 

dependence, the Allee effect, and sustained larvicidal intervention led to a 
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decline in mosquito populations to levels from which they could not recover. 

Conversely, the combination of negative density dependence, the Allee effect, 

and short-term larvicidal applications did not decrease mosquito populations to 

lower levels enough to prevent a rebound. Understanding regulatory processes like 

Allee effects can support vector control by highlighting resilient and vulnerable 

aspects of the mosquito’s life cycle stages to interventions, and potentially 

accelerating malaria elimination.  

To address aim 3, a population dynamics model was developed using the Bayesian 

state-space modelling approach. Initially, the model was fitted to simulated data 

to determine whether my framework would be able to quantify Allee effects if 

they exist in the wild. Results showed that the framework was indeed able to 

capture the life history traits, including negative density dependence and Allee 

effects. Subsequently, the model was fitted to female adult An. gambiae data 

from Dar es Salaam, Tanzania, to identify the presence of Allee effects in natural 

settings and quantify the impacts of a larvicide intervention.  

Results showed that there was no evidence of the Allee effect in the An. gambiae 

mosquito data from Dar es Salaam despite the larviciding having reduced the 

population by 60.92%. When planning for future malaria vector control strategies, 

it is essential to consider Allee effects, if they exist, fewer resources could result 

in better outcomes, similar to deploying more resources.  

In conclusion, the methods and findings presented in this thesis will help future 

research to evaluate vector control interventions or their combinations in SFS and 

field settings. This thesis contributed to a general understanding of the trade-offs 

between negative density dependence and Allee effects and how they can 

contribute to vector control and accelerate malaria elimination. The Bayesian 

state-space modelling framework developed in this thesis will aid further research 

in identifying Allee effects in different settings with low mosquito population 

densities.  
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Chapter 1 General Introduction  

1.1 The problem of malaria 

1.1.1 Malaria burden 

Malaria remains the most common life-threatening vector-borne disease 

worldwide. It causes high morbidity and mortality, with an estimated 263 million 

global cases and 597,000 deaths per annum, of which sub-Saharan African 

countries contributed 93.5% and 95.3% of cases and deaths, respectively (1). In 

sub-Saharan Africa, Tanzania accounts for around 3.3% of all malaria cases and 

4.3% of malaria-related deaths, placing it among the four countries experiencing 

just over half of all malaria deaths worldwide (1). There has been a decline in 

global annual malaria case incidence per 1000 population at risk from 79 in 2000 

to 60.4 in 2023 and annual mortality rate per 100,000 population at risk from 28.5 

in 2000 to 13.7 in 2023, with the proportion of deaths among children aged under 

five years, the most vulnerable group, declining from 86.7% in 2000 to 73.7% in 

2023 (1). This success in sub-Saharan African countries, including Tanzania, was 

primarily due to vector control, i.e., long-lasting insecticide-treated bed nets and 

indoor residual spraying (2–6). However, in recent years, global malaria cases have 

unexpectedly increased from 212 million in 2015 to 249 million in 2022 before 

rising again to 263 in 2023 (1,7,8). This increase was likely caused by a 

combination of factors, including widespread insecticide and behavioural 

resistance of malaria vectors that allow them to evade the control, COVID-19 and 

disruption of services from early 2020 due to COVID-19 or impacts from climate 

change (7–11). Given this current malaria landscape, there is a need for a deeper 

understanding of how current and new malaria vector control measures impact 

vector populations and also how those tools could be better used to control and 

eliminate malaria vectors. 

1.1.2 Malaria transmission and mosquito life cycle  

The protozoan parasite of the genus Plasmodium is the main cause of human 

malaria infections. There are five species of Plasmodium, i.e., P. falciparum, P. 

malariae, P. ovale, P. vivax and P. knowlesi, but among these, P. falciparum is 

the most predominant and important in terms of deaths in Africa (12,13). Malaria 

is a vector-borne disease transmitted by female anopheline mosquitoes of three 
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main species: Anopheles gambiae s.s., An. arabiensis and An. funestus. The 

mosquito carries malaria parasites and transmits the infections when feeding on 

humans; however, not all anopheline mosquitoes are regarded as malaria vectors 

(14,15). Epidemiologically, the intensity of malaria transmission is determined by 

various factors such as mosquito density (16), lifespan (17,18), biting behaviour 

(19,20), fitness and the overall capacity to transmit malaria parasites (21,22). 

Since the current malaria vaccine is not widely available and not effective for all 

age groups (23,24), reduction and/or elimination of vector populations remains 

the most efficient strategy for preventing malaria transmission (14).  

Mosquitoes undergo distinct life stages, starting from the aquatic phases of egg, 

larva and pupa to the terrestrial adult stage (25,26). Female adult mosquitoes lay 

50-200 eggs in breeding habitats such as water bodies, which then hatch into 

larvae (26). The larval stage is further divided into two main instar stages known 

as early and late instar larval stages. Over about two weeks, the larvae require 

resources such as temperature, which typically ranges between 23℃ and 31℃ 

(27), and feed on microorganisms such as bacteria, yeasts and protozoa (26). The 

late instar larvae transform into pupae, which takes approximately 2 to 4 days. 

During their brief life, pupae do not feed and finally emerge as adult mosquitoes 

(26). Initially, after emergence from pupae, both female and male adults feed on 

plant nectar. Subsequently, the female mosquitoes proceed to feed on blood (25). 

Adult female and male mate, and after mating, the female adult begins seeking a 

blood meal to develop and lay eggs (oviposition). The process from when the 

mosquito seeks and feeds on blood to the oviposition of eggs is referred to as the 

gonotrophic cycle, which normally takes 2-4 days (25,28,29). The entire life cycle 

of a mosquito takes roughly about a month (30); therefore, throughout the 

project, all the model developments will be assumed to take the same life cycle 

period. 

1.2 Malaria vector control 

1.2.1 Importance of malaria vector control 

Vector control is a highly effective method for preventing malaria transmission 

that works by directly targeting disease-transmitting vectors (14,31,32). Such 

control measures increase vector mortality, hence reducing vector abundance, 

and as a consequence, they bring a reduction in malaria incidence, prevalence, 
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morbidity, and mortality (33). There are multiple tools for malaria vector control, 

but currently, chemical control using insecticides against adult mosquitoes is by 

far the most widespread (34). The main two vector control tools are 1) insecticide-

treated bed nets (ITNs), which, in addition to the physical protection against 

mosquito bites, the chemical in them (typically pyrethroids) kills the mosquitoes 

upon contact with the net, and 2) indoor residual spraying (IRS) with insecticides, 

which kills mosquitoes that rest on interior house surfaces such as walls and roofs 

(14,35). In sub-Saharan Africa, where malaria is endemic, ITNs alone resulted in a 

68% decline in malaria transmission, while IRS alone contributed to a 13% decline 

between 2000 and 2015 (2). ITN is the most common and efficient vector control 

method in Tanzania, followed by IRS, but they are facing challenges because of 

insecticide resistance and changes in mosquito and human behaviours (36–39). The 

current Tanzania Demographic and Health Survey and Malaria Indicator Survey 

have shown that the use of ITNs in Dar es Salaam, Tanzania, is more widespread 

(whereby 71.8% of households have at least one ITN in their houses) (40) compared 

to other malaria vector control interventions including larviciding (41), mosquito 

repellents (36,42) and mosquito-proofed housing (43). However, the majority of 

the households in Dar es Salaam and other regions of Tanzania prefer mosquito 

nets during the rainy season because of more mosquitoes, and do not like to sleep 

under the net, or some even sleep outside during the dry season (especially when 

the weather is too warm) because of fewer or no mosquitoes (44–46). Additional 

supplementary control measures such as larviciding also exist, but mostly in urban 

areas (41,47,48). Instead of targeting adult mosquitoes, larvicide works by 

reducing larval survival and impairing larval development (49). Although 

larviciding can be effective in reducing the adult mosquito population, the 

population can rebound once the larviciding stops. For instance, a semi-field 

experiment for malaria mosquito control conducted in southern Tanzania in rice 

paddy farms used bio-larvicide mixed with fertiliser and revealed a significant 

reduction of mosquito larval density in areas with the intervention, although adult 

mosquitoes continued to exist in these settings at low densities (48). Despite the 

efforts to reduce malaria vector populations through ITN, IRS and larvicides, 

malaria persists due to difficulties in maintaining the populations under control 

and even eliminating them. These challenges may indicate that, as currently 

implemented, these interventions may not be as efficient in decreasing mosquito 

populations to extinction and achieving malaria elimination as one would hope 
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for. There are several reasons for this, including the lack of understanding of how 

widespread implementation of the intervention should be or how difficult it is to 

sustain it over a long time. Therefore, identifying problems such as population 

rebound and what is causing them is critical to enhancing vector control 

strategies, not only to take advantage of them but also to understand how to 

deploy the strategy and to prevent the evolution of resistance.  

1.2.2 Current, novel and future vector control tools 

To minimise the threats to the effectiveness of core malaria vector control 

interventions and target mosquitoes from multiple directions, supplementary, 

combined and innovative vector control interventions are highly recommended 

(35,50,51). Different deployment strategies, which are combined approaches for 

vector control include topical repellents to prevent mosquito bites, insecticide-

treated clothing to reduce exposure to mosquitoes, spatial or airborne repellents 

to create barriers against mosquitoes, space spraying to control adult mosquitoes, 

and housing modifications to prevent their entry (50). Other strategies for malaria 

vector control include Larval Source Management (LSM), a supplementary 

intervention which targets the immature,  aquatic stages of mosquitoes (i.e., the 

larvae and pupae) to reduce the abundance of adult mosquitoes. LSM comprises 

four types: habitat modification, habitat manipulation, larviciding and biological 

control (52). Still, there is a growing interest among researchers in using LSM as 

part of combined strategies for malaria vector control due to its effectiveness in 

various settings where it has been implemented (41,47,53–57). Several other 

innovations aiming to close gaps in anti-malaria efforts include improved nets with 

expanded chemistries to defeat insecticide resistance, such as new Interceptor® 

G2 nets treated with both pyrethroid and chlorfenapyr (58–60). Additional novel 

methods for malaria vector control include the use of mosquito nets treated with 

pyriproxyfen alone or in combination with pyrethroid (60–62). Moreover, a new 

method of vector control involves ivermectin, i.e., the use of animals or humans 

who can actively contribute by taking endectocides or drugs that, once ingested, 

affect mosquitoes that come into contact with them (63,64). Other novel vector 

control tools include the use of genetically engineered fungal pathogens of 

anophelines to kill wild mosquito populations (65) and natural Wolbachia 

infections to manipulate mosquito reproduction and immunity thereby limiting the 

spread of disease pathogens (66). Furthermore, gene drive, one of the most 
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promising technologies, is gaining interest for its implementation in semi-field and 

field conditions following successful results in laboratory settings (67). Despite the 

availability of various vector control tools, malaria persists, highlighting the need 

for more development of future vector control methods to target factors such as 

insecticide resistance, behavioural change by mosquitoes and impacts of climate 

change.  

1.2.3 Assessment of vector control tools  

Vector control tools (VCTs) have a significant role in preventing vector-borne 

disease, and their efficacy is typically assessed in different settings, including 

laboratory, semi-field, or field conditions (68,69). The assessment process 

typically commences in the laboratory, where experiments are carried out under 

controlled insectary conditions using colonised mosquitoes (70). These laboratory 

experiments are resource-intensive, i.e., they require substantial investments in 

terms of finances, time and specialised technical expertise. Typically, after 

successful initial testing in the laboratory, VCTs undergo further evaluation in 

semi-field systems. Semi-field experiments (SFEs) are conducted in simulated field 

conditions within semi-field systems, which can be self-contained habitats placed 

within the natural ecosystem of a disease vector. These can range in size and 

conditions and can contain all the requisites for the completion of the vector life 

cycle (71–75) or be clean rooms with bare grounds (76–82), where either field-

collected mosquitoes or those reared in the laboratory are used (68,70,83). SFEs 

provide researchers with an opportunity to closely and directly observe mosquito 

behaviours and their interactions with the environment. Various types of data that 

result from the SFEs include counts of mosquito abundances and the proportions 

or number of mosquitoes in different categories such as alive unfed, alive fed, 

dead unfed or dead fed. Ensuring reliable outcomes form SFEs requires careful 

design that includes adequate statistical power; however, power analysis is often 

neglected either due to lack of its importance among researchers, insufficient 

technical knowledge or lack of software tools to perform the analysis. Power 

refers to the probability of identifying a particular effect in a research study, 

assuming it exists (84). While standard analytical power analysis methods are 

available, they typically address only simpler analyses such as t-tests, ANOVA or 

chi-squared tests (85,86). Unfortunately, these standard methods are in adequate 

for analysing semi-field experiments as they typically do not accommodate 
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multiple levels of random variation (e.g., variation among observation within 

chambers or variation between chambers), of which are common in SFE. 

Consequently, there remains a need to develop power analysis  methods that can 

effectively address these levels of random variations as well as accommodate 

various types of response data. The semi-field assessment provides valuable 

insights into the behaviour and effectiveness of VCTs in conditions that closely 

emulate natural settings. Once VCTs have been successfully tested in SFEs, they 

are normally subjected to small- or large-scale evaluation in the field. Field 

studies encompass trials conducted directly in natural breeding habitats using 

natural vector populations (68), providing valuable insights into the effectiveness 

of control interventions in the natural settings where disease transmissions occur. 

By assessing VCTs in laboratory, semi-field, and field conditions, researchers gain 

a comprehensive understanding and data on the efficacy and practical 

applicability of these important tools in controlling vector-borne diseases. To 

ensure reliable results, experiments that are conducted to evaluate and assess 

VCTs should be rigorously designed. 

1.3 Importance of population dynamics for vector control 

Population dynamics, as a branch of ecology, examines the changes in population 

size or density over time and space for one or multiple species. In the context of 

vector control, population dynamics is important as it provides empirical data for 

quantifying population trends and addressing key research questions related to 

control efforts (87). For instance, population dynamics have been used to inform 

the types of interventions needed, the timing and the strategy for their 

implementation, the projected size of mosquito populations over time and how 

their stability and response to interventions or their combinations differ across 

species (63,88). More importantly, population dynamics can be used to explore 

causal processes influencing population variations, such as how environmental 

factors, vector controls, and ecological processes impact mosquito population 

sizes (63,87,88). Negative density dependence and positive density dependence 

(known as Allee effects) are two examples of ecological processes that regulate 

population dynamics (89). However, the relative importance of the Allee effects 

in regulating mosquito populations is largely unknown. Therefore, there is a need 

to have a deep understanding of the malaria vectors and their ecological processes 

to inform the design and evaluation of malaria vector controls as well as describe 
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the failure and success of the deployed control measures.  More detailed 

explanations of the two examples of ecological processes are provided in 

subsections 1.3.1 and 1.3.2 below. 

1.3.1 Negative density dependence  

Negative density dependence is a population regulation process that has been 

shown to exist in An. gambiae populations at the larvae stage (90–94), meaning 

their per capita growth rate increases as populations decline, for instance, 

through strong competition in larval habitats that is alleviated as population size 

declines. The evidence for this comes mostly from laboratory experiments with 

An. gambiae, showing that competition between larvae for food and other 

resources such as space affects their population densities (93,94). There have also 

been studies conducted in semi-natural conditions using artificial larval habitats 

to demonstrate the existence of negative density dependence in An. gambiae 

larvae (90,91). With less space (e.g., small water pools), the competition between 

larvae will increase. This competition will then result in a decrease in the larval 

population, which in turn will release some space again to accommodate more 

larvae. Modelling studies found that negative density dependence in larval 

development time is more significant than in survival, and models that ignore 

negative density dependence do not adequately capture the dynamics of mosquito 

abundance data (95). Ignoring endogenous regulatory processes (such as negative 

density dependence) may result in the exaggeration of predictions of the 

effectiveness of vector controls, for example believing that an intervention will 

have the same influence on destabilising malaria vectors in both low- and high-

density populations (96). A consequence of negative density dependence is that 

control measures may become proportionately less effective as mosquito 

populations decline because the surviving individuals have a much higher per 

capita growth rate than those in high density.  

1.3.2 Allee effects 

Even though malaria vectors are generally considered negative density-

dependent, there exists an opposing scenario where small vector populations may 

experience Allee effects, i.e. positive density dependence, in which the per capita 

population reproduction rate reduces with population size (89). In other words, if 



Chapter 1   26 
 
individual fitness is reduced as population size decreases, then the population is 

exhibiting an Allee effect, which decides the extinction or conservation of that 

population (97). Allee effects are common in animal populations and can increase 

the risk of stochastic extinction in small populations (89,97). Evidence of the Allee 

effects exists across multiple taxa such as birds (98–100), fish (101–103), mammals 

(104–106), reptiles or amphibians (107) and other aquatic (97,108,109) and 

terrestrial invertebrates (110–113). The primary mechanisms for Allee effects 

include mate-limitation (in mammals, reptiles or amphibians, invertebrates), 

cooperative defence, feeding and breeding (in birds, fish, terrestrial 

invertebrates, mammals), predation (in fish, mammals, terrestrial invertebrates), 

pollination failure and inbreeding (in plants) (97,108). For instance, Angulo et al. 

demonstrated that Allee effects played an important role in the conservation of 

endangered northern island fox populations on the California Channel Islands. 

Their research revealed that a predation-driven Allee effect significantly 

impacted adult fox survival, attributed to Golden Eagles (106). Consequently, the 

control of Golden Eagles was implemented to reduce predation and recover fox 

densities (114–117). In mosquitoes, Allee effects are expected to mainly operate 

at the adult level, where mating becomes limited at low population size. 

Consequently, female’s probability of mating declines due to fewer males 

available, leading to potential population crashes (118). There is still limited 

information on how other mechanisms such as cooperation, cannibalism or 

predation could lead to the Allee effects in mosquito populations. Understanding 

the mechanisms that lead to Allee effects in mosquitoes and account for their 

consequences are vital components in understanding the ecology of vector 

populations and improve vector control (119,120). However, it is not yet known 

whether Allee effects exist in vector populations or what are the implications for 

vector control.  

1.4 Modelling of vector population dynamics 

1.4.1 Theoretical models of population dynamics 

Mathematical models can be used to understand or predict population dynamics, 

e.g., vector populations, species communities, and ecosystems, as they enable 

defining the complexity of the system without directly disrupting it (121,122). 

Theoretical models provide a deeper mechanistic understanding, allowing 
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predictions into future population dynamics and parameter space where empirical 

data is limited or unavailable. For example, for vector populations, while 

experiments in laboratory settings using laboratory-colonised vectors are useful 

to explore single population parameters in detail (e.g., survival or fecundity) 

(68,88), modelling is a simplification of natural world phenomena. Field 

experiments are more realistic and capture the interacting population parameters 

not only within individuals and populations but within the ecosystem; however, 

they are challenging to track, cost more resources, and can risk changing or 

destroying the system’s ecology (121). Models describing vector population 

dynamics can be used to support malaria control programs (e.g., national malaria 

control programs and other stakeholders). For instance, Kiware et al. developed 

a mosquito population dynamics model (known as Vector Control Optimization 

Model) using systems of ordinary differential equations. They aimed to describe 

mosquito life and feeding cycles to assess and optimise the effectiveness of 

combined vector control interventions at varying coverages for suppressing 

dominant malaria vectors in sub-Saharan Africa. The model simulations indicated 

that utilising insecticide-treated nets at a coverage of 50% or 80%, in combination 

with larvicides, endectocide-treated cattle, and attractive toxic sugar baits at 

coverages of 80%, 50% and 50%, respectively, led to significant reduction in 

mosquito populations and effectively drove them to extinction (123). Wu et al. 

developed an advanced patch-based differential equation modelling framework 

that expands the Ross-Macdonald model to facilitate planning, monitoring, and 

evaluation of Plasmodium falciparum malaria control efforts. Within their model 

framework, they have devised innovative algorithms specifically for simulating 

adult mosquito demography, dispersal, and egg laying in response to resource 

availability. Through this framework, they have introduced new formulas to 

characterise mosquito parasite dispersal and spatial dynamics under steady-state 

conditions, encompassing human biting rates, vectorial capacity matrix, and 

threshold conditions (124).  Xing et al. developed and analysed a discrete-time 

model of a stage-structured mosquito population to investigate the impact of a 

constant birth rate (i.e., adult fecundity) on the mosquito population’s inherent 

net reproductive number (i.e., the expected number of female mosquitoes that a 

single female adult produces in her entire lifetime (125)), and how these factors 

contribute to population persistence or extinction. The results indicated that a 

per capita fecundity of 12 eggs led to an inherent net reproductive number greater 
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than 1, suggesting mosquito persistence. Their findings emphasised that 

continuous or seasonal persistence or extinction of the mosquito populations 

depends on the magnitude of the inherent net reproductive number. 

Consequently, controlling adult fecundity could potentially lead to the elimination 

of mosquito population (30). Ngwa formulated a deterministic differential 

equation model to analyse population dynamics of malaria vectors to understand 

conditions necessary for the existence and stability of a non-zero steady-state 

vector population density. The findings indicate that mosquito reproduction 

number is a determining factor for establishment and persistence of vector 

population, as it must exceed unity for this persistence to occur (126), consistent 

with the findings reported by  Xing et al. (30), Lu and Li (125). In their study, 

Lutambi et al. developed an ordinary differential equation model of the mosquito 

life cycle to explore the impact of dispersal and uneven distribution of resources 

on the distribution and dynamics of mosquito populations to inform vector control 

measures (127). Their findings indicated the association between resource 

heterogeneity, dispersal, spatial distribution, and mosquito population dynamics. 

Furthermore, they highlighted the potential of randomly distributing repellents to 

reduce the distance travelled by mosquitoes, offering a promising strategy for 

vector control (127). Depinay et al. presented a simulation model of African 

malaria vectors to gain insights into the dynamics of vector populations and the 

underlying key mechanisms. The study revealed that abiotic factors (i.e., 

temperature and rainfall) were pivotal in both aquatic and adult stages of 

mosquitoes, leading to an initial population peak following a dry period. Similarly, 

biotic factors (i.e., larval competition, predation and dispersal) significantly 

influenced fluctuations in mosquito population sizes, where temperature was 

identified as a key determinant in species dispersal (128). Okuneye et al. 

developed a deterministic, weather-driven model to examine the population 

dynamics of immature and mature mosquitoes for better vector control efforts. 

They sought to assess how temperature and rainfall impacted mosquito population 

abundance in three sub-Saharan African countries, i.e., South Africa, Nigeria and 

Kenya. Their findings revealed that mosquito abundance peaks at mean 

temperature and rainfall ranging between 22-25 ℃ and 98-121 mm in South Africa, 

24-27℃ and 113-255 mm in Nigeria, and 20.5-21.5 ℃ and 70-120 mm in Kenya. 

Their study highlighted the importance of intensifying vector control efforts during 

periods when weather conditions are conducive to mosquitoes (129). Despite their 



Chapter 1   29 
 
importance, theoretical models may be limited in offering practical and more 

actionable information because they do not necessarily utilise real world data 

although sometimes their parameter values can be informed by empirical data. 

Therefore, it is of great importance that while these models examine the dynamics 

of vector populations, they must also take into account various biological 

mechanisms that operate in varying vector densities. Incorporating both negative 

density dependence and Allee effects in the modelling of mosquito population 

dynamics has been limitedly explored in most of the models. Yet, it is unclear why 

both processes have been overlooked, but this could be due to a lack of knowledge 

of their importance, difficulties in setting density dependence models or a 

deficiency of empirical data that could help study them more explicitly. Failure 

to include regulatory processes such as negative density dependence and Allee 

effects is to potentially underestimate their impacts on the vector population 

dynamics, which in turn has an impact on vector control and elimination 

processes. 

1.4.2 Applied models of vector population dynamics  

Applied population dynamics models differ from theoretical models in that they 

are designed to use real-world data to provide insights into the dynamics of actual 

populations. However, the process is often simplified due to constraints such as 

computational power and data availability. By using data fitting techniques, these 

applied models can offer more practical and actionable information about how 

populations change over time. This approach allows researchers and policymakers 

to understand better and address real-world population dynamics and their 

implications. Applied models that explain vector population dynamics use data 

either from laboratory, semi-field or field trials. When fitted to data, models can 

be used to study and identify ecological behaviours related to population or 

disease dynamics. For example, Ngowo et al. developed Bayesian state-space 

models (SSMs) based on wild An. funestus life history traits to quantify the impact 

of negative density dependence and seasonal fluctuations. The results showed 

that the pattern of the adult survival and fecundity varied highly across the year, 

but negative density dependence had less importance on the survival of wild An. 

funestus mosquitoes compared to rainfall and temperature (88). In their study, 

Christiansen-Jucht et al. developed a model based on a system of differential 

equations to evaluate the temperature- and age-dependent survival and mortality 
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of Anopheles gambiae s.s. mosquitoes across their life cycle stages. The model 

was fitted to a longitudinal dataset of vector abundance spanning 36 months in 

sub-Saharan Africa, considering both data that incorporated age dependence and 

those that did not. The model fitting showed that both temperature and age 

significantly influenced the survival and mortality of mosquitoes at all stages. 

Notably, the model accounting for age dependence consistently provided a better 

fit to the data compared to the model that ignored age dependence (130). 

Abdelrazec and Gumel developed a stage-structured model based on a system of 

ordinary differential equations to analyse the population dynamics of mosquitoes. 

Their study aimed to investigate the impact of temperature and rainfall variability 

on mosquito abundance. The model incorporated two different functional forms 

of egg oviposition rate: the Verhulst-Pearl logistic and Maynard-Smith-Slatkin 

functions were used. The model was fitted to the mosquito surveillance and 

weather data from the Peel region of Ontario, Canada. The findings suggested 

that the Maynard-Smith-Slatkin function was more ecologically appropriate for 

modelling the egg oviposition process compared to the Verhulst-Pearl logistic 

function. Moreover, the results indicated a peak in mosquito abundance at 

temperature and rainfall values ranging from 20℃ to 25℃ and 15mm to 35mm, 

respectively (131). Ezanno et al. developed a weather-driven model based on a 

system of ordinary differential equations to predict and compare population 

dynamics of three mosquito species of Anopheles, Culex and Aedes in south 

France. The model was fitted to the longitudinal data on host-seeking adult female 

mosquitoes collected using CDC-light traps at two settings in southern France. The 

results have indicated that the predicted population abundance of Anopheles 

hyrcanus, Culex pipiens, and Aedes caspius differed, where Aedes caspius showed 

higher annual variations across settings. Moreover, adult mosquito emergence 

appeared to be an important factor in the population dynamics across species, 

suggesting that vector control measures must precisely target all aspects 

associated with mosquito emergence (132). Walker et al. developed a discrete-

time model of mosquito larval population dynamics to assess how larval density 

affects larval survival and development time. The model’s validity was verified 

using publicly available semi-field data on larval density and pupation time 

collected during a six-month experiment. The study revealed that negative density 

dependence in larval development time may be more significant than in survival. 

Furthermore, the results showed that models without negative density 



Chapter 1   31 
 
dependence do not adequately capture the trends in mosquito data (95). El 

Moustaid and Johnson developed a dynamical model of mosquito density using a 

system of ordinary differential equations to assess different methods for 

quantifying mosquito populations and suggest various dynamical system models 

that take into account mosquito life cycle traits at different temperature regimes. 

In their findings, models demonstrated different patterns at varying 

temperatures, and these patterns matched the observed population data (133). 

Biswas et al. developed and analysed a deterministic model for Zika to evaluate 

the impact of human awareness in combination with vector control measures. The 

model was calibrated, and parameters were estimated using reported Zika-

infected human data from Colombia. Their study results showed that as the rate 

of sexual transmission increased, the density of exposed and infected human 

populations also increased, suggesting that Zika virus transmission between 

humans could be controlled by controlling sexual transmissions (134). Abiodun et 

al. developed an ordinary differential equation model to analyse how temperature 

and water availability impact the population dynamics of Anopheles mosquito. 

The model was designed to evaluate the impact of climate on the gonotrophic 

cycle and abundance of populations by analysing the mosquito life cycle. The 

ambient temperature data used for the model was obtained from KwaZulu-Natal 

Province, South Africa, while mosquito abundance data was obtained from New 

Halfa town, eastern Sudan. The results indicated that larvae abundance reached 

its lowest level between October and June, increased between June and October, 

and peaked in August, reflecting dry and rainy seasons. High temperatures during 

the dry season had a significant impact on larvae and other immature mosquitoes, 

as breeding habitats dried up quickly during the summer (135). The studies above 

demonstrated the crucial role of using data in calibrating models to understand 

the dynamics of disease vectors. Population dynamics models are widespread, but 

none has investigated the role of Allee effects in malaria mosquitoes and the 

relative impacts on the overall population dynamics.  

1.4.3 Models to assess the impact of vector control tools 

Population models provide descriptions, explanations, and predictions of 

phenomena such as growth, reproduction or disease transmission from one stage 

to another. However, one of their powerful uses is the assessment of the impact 

of vector controls on population dynamics. There are not many such models for 
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Anopheles mosquito control. A couple of notable exceptions include White et al., 

who developed a simple model which accounted for both aquatic and adult stages 

of An. gambiae to explore the individual and combined impacts of long-lasting 

insecticidal nets (LLINs), IRS, larvicides, and pupacides. Their modelling work 

revealed that a combination of interventions that target both stages of the 

mosquito life cycle led to a substantial reduction in mosquito density (92). Ng’habi 

et al. developed SSMs fitted to data from replicated mesocosms to assess the 

impact on An. arabiensis of LLINs alone and in combination with insecticidal eave 

louvres or treatment of cattle with endectocide Ivermectin. According to their 

results, LLINs alone reduced mosquito survival by 91% and almost eliminated the 

mosquito populations when combined with Ivermectin (63). Marshall et al. 

developed a model to study the sugar-feeding behaviour of mosquitoes using field 

data from Mali. Their goal was to estimate sugar-feeding rates of adult mosquitoes 

at different ages and evaluate the potential of attractive toxic sugar baits (ATSB) 

in controlling mosquito populations. The model and fitted parameters were then 

incorporated into another larger integrated vector management (IVM) model that 

includes LLINs and IRS to assess the potential contribution of ATSB to future IVM 

programmes. Their findings indicated that younger mosquitoes had a higher 

estimated sugar-feeding rate compared to older mosquitoes. Additionally, they 

found that ATSB feeding rate of 50% or more had a greater impact than combining 

LLINs and IRS (136). Chitnis et al. developed a mathematical model to assess the 

comparative effectiveness of ITNs and IRS with dichlorodiphenyltrichloroethane 

(DDT) or bendiocarb, whether applied alone or in combination, in Namawala, 

Tanzania, where An. gambiae was the primary malaria vector. Their research 

indicated that the optimal use of ITNs was more effective in preventing 

mosquitoes and providing greater personal protection compared to IRS with DDT 

or bendiocarb. According to their findings, the combination of ITNs and IRS was 

more effective than ITNs alone only when IRS was implemented at high coverage 

levels (137). As examples, these studies have effectively highlighted the 

significance of using models to study the impacts of malaria vector controls in 

different settings. 

1.5 Description of the research gap and objectives 

Briefly, this PhD project focused on exploring two distinct approaches to making 

a vector control intervention readily available for public use. Firstly, the project 
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involved the evaluation of vector control interventions in semi-field systems. 

Secondly, the project entailed the assessment of the efficacy of vector control 

interventions in the field. Vector control experiments in semi-field systems serve 

as a cost-effective link between laboratory experiments and field trials, enabling 

researchers to evaluate the effectiveness of potential vector control interventions 

or their combinations in controlled conditions. However, for SFEs to be useful, 

they must be designed to provide reliable results; one way to ensure this reliability 

is by achieving adequate statistical power. Evaluating the statistical power of an 

experimental design is critically important to help determine the required 

resources, including finances, time and participants. Despite its importance, 

power analysis is rarely conducted for SFEs. Limitations to performing power 

analysis may include a lack of awareness of its importance, technical expertise, 

and availability of tools such as software for performing power analysis. The 

assessment of the efficacy of vector control intervention in the field involves 

assessing their impact on natural vector populations by taking into account the 

ecology of vector populations to see how interventions might be impacting 

particular regulatory processes of the mosquitoes and how we can use these 

processes to improve vector control in the field. Although it is accepted that 

understanding the impact of interventions on population dynamics is important 

for improving vector control strategies, there is still a lack of knowledge about 

how population regulatory mechanisms, such as Allee effects and density 

dependence act, interact with each and interventions and their implications for 

sustainability of vector control. Understanding the population regulatory 

mechanisms triggered by vector control when populations become smaller can 

provide useful insights into how they might impede or facilitate elimination of vector-

transmitted diseases such as malaria. 

This PhD project aimed to fill this knowledge gap by improving and determining 

the effectiveness of malaria vector control interventions on mosquito populations 

through a combination of theoretical and statistical modelling approaches. 

Specifically, there were the following three aims as described in subsections 1.5.1, 

1.5.2, and 1.5.3 below:  
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1.5.1 Aim 1) How can vector control experimental designs be 

improved in semi-field systems?  

This objective was addressed in Chapter 2 where a power analysis framework and 

tutorial were developed to inform the design of vector control experiments in 

semi-field systems. Generalised linear mixed-effect models were used to simulate 

and fit the data and quantify power of a single intervention or two in combination 

across a range of scenarios including short and long-term semi-field experimental  

experiments. Expected resulted results here include the amount of power versus 

number of chambers, sampling frequency and sampling size. The study described 

in this chapter has been submitted as an article to the Malaria Journal. 

1.5.2 Aim 2): What are the trade-offs between mosquito population 
regulatory mechanisms at low densities?  

This aim was addressed in Chapter 3 where the trade-offs between negative 

density dependence and the Allee effect and its implications for the malaria 

vector control and elimination processes were explored. This was done using a 

simulation technique based on a stage-structured population model adapted to a 

large-scale larviciding intervention in Dar es Salam as a case study. The expected 

outcomes from this objective include weekly larval, pupal and adult mosquito 

abundances, growth rates and probabilities of population extinction. 

1.5.3 Aims 3) Do key mosquito regulatory mechanisms emerge 
from large-scale vector control?  

This objective was addressed in Chapter 4. Here, the model developed in Chapter 

3 was adapted to a Bayesian SSM framework. First, this framework was tested with 

data from the simulation adapted in Chapter 3 and then fit it to the vector 

surveillance data from the Dar es Salam larviciding case study. The expected 

outcomes form this aim include posterior prediction means of the model 

parameters, predicted weekly average mosquito abundances across chains and 

iterations per individual wards and across wards as well as per intervention phase 

and across phases. 

 

In Chapter 5, a discussion was provided for the main topics covered in Chapter 2, 

Chapter 3 and Chapter 4, and their contribution to the wider research area, along 
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with the overall project implications, limitations, challenges, suggestions for 

future research, and conclusion. 

1.6 Case studies 

1.6.1 The  design of vector control semi-field experiments 

One of the important aspects of an experimental design is determining the sample 

size, which can be the number of chambers per treatment, the number of 

mosquitoes, the number of participants or the number of mosquito traps. There 

are multiple methods of sample size calculations, which may include random 

sampling or power analysis. Power refers to the probability of uncovering an effect 

if it exists (84). Underpowered experiments normally utilise small sample sizes, 

which may result in study failure to detect the target effect and ineffective 

statistical analyses. Overpowered experiments normally use large sample sizes, 

leading to statistically significant results but with an unnecessary number of 

samples, higher costs and ethical concerns (138). Power analysis is one of the 

robust methods to inform the designs of vector control experiments; however, it 

is rarely used, partly due to a lack of knowledge among researchers, for example, 

knowledge of what power analysis is, what information it can provide and how it 

works (139). The limited use of the power analysis methods highlights the need to 

develop a generalisable framework and provide a step-by-step guide on its use to 

improve the designs of vector control semi-field experiments. 

This first case study involves the use of power analysis methods to inform the 

designs of vector control experiments in semi-field systems. Specific Aim 1 in 

subsection 1.5.1 was addressed using this case study where a simulation-based 

power analysis framework using the generalised linear mixed-effect models 

(GLMMs) was developed and its use was step-by-step demonstrated and provided 

as a tutorial in an open-source software environment R. Here, power analysis 

methods were provided to inform the designs of a single vector control 

intervention (in this case, ITN alone) and in combination (in this case, ITN and 

autodissemination of pyriproxyfen (PPFa)). This framework is generalisable, 

meaning it can incorporate any other intervention apart from ITN and/or PPFa. 

Conducting a thorough power analysis to inform the designs of semi-field 

experiments (SFEs) is an important step of ensuring reliable results.  
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1.6.2 Large-scale larvicidal control in Dar es Salaam, Tanzania 

Dar es Salaam is the biggest city in Tanzania, located on the eastern coast of the 

country along the shores of the Indian Ocean. Malaria is considered one of the 

main serious health problems in Dar es Salaam, with a prevalence rate of 1% among 

children aged 6 to 59 months (40). Anopheles gambiae s.l. is the most important 

mosquito species in terms of malaria transmission in urban Dar es Salaam, whereas 

other key species such as An. funestus exists at a very low abundance (140). In 

Dar es Salaam, malaria transmission typically peaks in one or two weeks following 

the rainy season and eventually declines to very low levels during the dry period 

(47). Apart from the rainy season, where larval density increases, socio-economic 

activities and urban land use, such as small-scale farming in backyard gardens and 

irrigation by tap water, increase the chance of creating breeding habitats, 

especially during the dry season (141). In Dar es Salaam, a range of mosquito 

control measures, including installation of ceiling boards, window screening, coils, 

repellents, indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs), 

are usually being utilised by the community in their everyday lives. Larviciding 

was also one of the city’s control measures carried out under the supervision of 

the Urban Malaria Control Programme (UMCP). The choices over each of these 

measures are primarily influenced by factors such as affordability and community's 

knowledge and perception on the effectiveness and potential health risks 

associated with each intervention (47). 

A large-scale community-based larvicidal intervention was carried out in Dar es 

Salaam, Tanzania, from 2004 to 2008 as part of the UMCP with the primary aim of 

developing a sustainable larval control measure as one of the key components of 

malaria control strategy (41). The programme achieved substantial success, 

leading to a decrease in malaria prevalence from 28% to less than 2% between the 

years 2004 and 2008 (142). These low population densities are the main reason we 

are using this data and set up as a case study to investigate the presence of Allee 

effects.  

During this programme, trained community members were tasked with surveilling 

larval habitats, applying larvicides to these habitats, and collecting adult 

mosquitoes (143). At the time of implementation, Dar es Salaam was divided into 

three administrative municipalities, which were further unequally divided into 73 
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wards. Out of the total 73 wards, larviciding activities were undertaken only in 15 

specific wards across three distinct phases. The preparatory activities for the 

programme commenced in 2004, but weekly female adult mosquito collection only 

took place for 47 weeks (out of the total 193) between 2005 and 2006, before 

starting larvicides application to the larval habitats. The larvicides application 

began in 2006 by treating 3 wards in the first phase, followed by an additional 6 

wards making a total of 9 wards in the second phase, and the remaining 6 wards 

were included in the last phase, making a total of 15 wards all covered with 

larvicides (41,47).  
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Chapter 2 A power analysis framework to aid the 
design of robust semi-field vector control 
experiments  

This Chapter has been submitted as a research article and is currently under peer 

review in the Malaria Journal as: Andrea M. Kipingu, Dickson W. Lwatoejera, Kija 

R. Ng'habi, Samson S. Kiware, Mafalda Viana, Paul C.D. Johnson. (2024). A power 

analysis framework to aid the design of robust semi-field vector control 

experiments.  

A preprint of this manuscript was published in the Research Square 2024: 

https://doi.org/10.21203/rs.3.rs-4970151/v1  

Abstract 

Semi-field experiments are an efficient way of assessing the impacts of potential 

new vector control tools (VCTs) before field trials. However, their design is 

critically important to ensure their results are unbiased and informative. An 

essential element of the design of semi-field experiments is power analysis, which 

empowers researchers to ensure that only designs with adequate statistical power 

are adopted. In this study, a methodology was developed, and its use was 

demonstrated in a tutorial, to determine the required number of semi-field 

chambers, sampling frequency and the number of mosquitoes required to achieve 

sufficient power for evaluating the impact of a single VCT or two in combination. 

By analysing data simulated from a generalized linear mixed-effects model, power 

was estimated for various experimental designs, including short- (24 hours) vs. 

long-term (3 months) experiments and single vs. combined application of 

interventions (e.g., insecticide-treated nets combined with pyriproxyfen 

autodissemination). Although power increased with increasing number of 

chambers, sampling frequency and the number of mosquitoes, the number of 

chambers and variance between chambers were the dominant factors determining 

power relative to all other design choices. High variance between chambers 

decreased power, highlighting the importance of making conditions similar among 

chambers, by reducing variation if possible and by rotating variables if not. As 

compared to a single intervention, an additional intervention required an increase 

in the number of chambers, while short and long experiments were similar in 

https://doi.org/10.21203/rs.3.rs-4970151/v1
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terms of key aspects such as the number of chambers per treatment. Determining 

the most efficient experimental design for a semi-field experiment will depend on 

a balance of design choices and resource constraints. The power analysis 

framework and tutorial provided here can aid in the robust design of these widely 

used experiments and ultimately facilitate the development of VCTs.  
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2.1 Introduction  

Vector control remains one of the most efficient strategies against malaria. 

Widespread vector control tools such as insecticide-treated nets (ITNs) and indoor 

residual spraying (IRS), were major factors in the decline in malaria cases, 

responsible for 68% and 13% reductions in cases, respectively, across sub-Saharan 

Africa from 2000 to 2015 (2). However, due to changes in human behaviour (144), 

the development of mosquito behavioural and insecticide resistance (19,145,146), 

and changing mosquito species composition (147–150), these interventions have 

not been sufficient to continue or improve the trend of declining malaria cases, 

so they need to be complemented with other tools (52,151–153).  

New interventions are initially tested in the laboratory for safety and efficacy 

before moving to the field. Laboratory studies are relatively inexpensive but do 

not provide evidence of how well an intervention works in the field. In contrast, 

field studies can provide such evidence but generally require a substantial 

investment of resources such as time, effort and money. Semi-field experiments 

(SFE) provide a relatively inexpensive bridge between laboratory and field 

experiments. SFEs for malaria vector control are conducted within semi-field 

systems (SFS) (Figure 2.1), which can be self-contained habitats placed within the 

natural ecosystem of a disease vector. These can range in size and conditions and 

can contain all the requisites for the completion of the vector life cycle (71–75) 

or be clean rooms with bare grounds (76–82). Additionally, SFS can be partitioned 

into compartments (hereafter ‘chambers’) into which mosquitoes are released or 

emerge and from which they are recaptured or sampled following exposure to the 

intervention being trialled. Because of their size, the number of chambers 

available in a SFS typically ranges between 2 to 16 (Figure 2.1).  

SFE generally adopt one of two extremes of experimental designs: short-term, 

lasting 24 to 48 hours to investigate immediate effects on mosquito mortality; or 

long-term, >3 months to investigate dynamic effects that develop over several 

generations of the mosquito population. For example, interventions that are 

expected to have a large and fast impact on mortality such as pyrethroid or 

chlorfenapyr-based ITNs (154,155) could be tested as a short-term intervention in 

SFS, while those with slow or delayed impacts such as pyriproxyfen (an insect 

growth regulator typically used to control immature mosquitoes from growing into 
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adults) (156) or entomopathogenic fungi (65,157,158) might be better suited for 

long-term experiments. An additional important aspect of any experimental 

design is selecting designs that give adequate power (159,160). Power refers to 

the probability of identifying a particular effect in a research study, assuming it 

exists. In the case of SFE, design choices can mean the number of chambers, 

duration of the experiment, and number of mosquitoes to be recaptured or 

sampled (161). It can also mean the proportions or number of mosquitoes in 

different categories (for example, alive unfed, alive fed, dead unfed or dead fed) 

to be recovered. The ability to compare power between different designs allows 

researchers to make informed decisions about which of these designs is more likely 

to allow them to detect an effect of interest. More effective experimental design 

is crucial for optimising resources use, including finance and time. Enhanced 

experimental designs allow for the evaluation of vector control intervention in a 

shorter timeframe and in a more cost-effective way. By testing malaria vector 

interventions effectively, we can facilitate quicker field deployment and establish 

a pathway for novel interventions to transition swiftly from testing to field 

implementation. Ultimately, doing this will help increase availability of 

interventions for public use and in turn contribute to the global reduction in 

malaria cases. 

Standard analytical power analysis methods available from software packages 

often only deal with simple analyses such as t-tests, ANOVA or chi-squared tests 

(85,86). Unfortunately, these are not suitable for analysing semi-field experiments 

as they generally do not allow count data outcomes (e.g., number of mosquitoes) 

and multiple levels of random variation (e.g., variation among observation within 

chambers or variation between chambers), both of which are common in SFE. 

Although there are few standard methods for count data, count distributions such 

as Poisson and negative binomial distributions are often underutilised. Poisson and 

negative binomial models more effective in accounting for overdispersion or under 

dispersion. There is a need for a power analysis framework that reflects how the 

resultant data from SFE will be analysed. There has been no systematic review to 

date of the use of power analysis in SFE. For illustration, articles were surveyed 

in Malaria Journal and Parasites & Vectors using the search terms “semi-field” and 

“mesocosm”. A total of 38 articles (19 from Malaria Journal and 19 from Parasites 

& Vectors) published between 2020 to 2023 that comprise SFE studies (n=25) or 
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hut trials (n=13) which would have been eligible for power analysis were selected 

(see a list of selected articles in Appendix A.1).  

Furthermore, the review has also shown that data from SFEs are usually analysed 

using generalised linear models (GLMs; 26% of articles reviewed) or generalized 

linear mixed-effects models (GLMMs; 45% of articles reviewed). Therefore, a 

power analysis method that also incorporates a similar degree of complexity and 

flexibility as GLMs or GLMMs will give the most realistic power estimates. When 

conducting power analysis for GLMMs, it is usual to use an approach called Monte 

Carlo simulation because of the flexibility and accuracy it gives relative to 

analytical power analysis methods. Simulations are used to generate multiple 

datasets that are as similar as possible to the expected datasets resulting from 

the planned experiments. All simulated datasets are analysed, and the proportion 

of these datasets giving a significant result is our estimate of the probability of 

detecting an effect, i.e., the estimate of power. The use of simulation from 

GLMMs overcomes the limitations of traditional power analysis methods as GLMMs 

can account for multiple sources of random variation (84). The advantages of using 

simulation-based power analysis for overcoming the limitations of analytical 

methods are well-known and have been illustrated in several studies (84,162–164). 

However, these methods are little used in the design of vector control trials, 

specifically for SFE.  

From the review, eleven (29%) of the selected articles used power analysis to 

justify the sample size (five from Malaria Journal and six from Parasites & 

Vectors), of which six shared the same author. Of the eleven articles that used 

power analysis, 5 articles used the simulation-based power analysis method, 1 

article utilized a method for comparing proportions and 6 articles did not specify 

the power analysis methods used. Although this is a small sample, it suggests that 

power analysis is underutilized in vector control SFEs. This neglect may in part be 

attributed to the limitations associated with traditional power analysis approaches 

or lack of expertise. This study aims to address both of these obstacles by 

developing a power analysis framework for the design of SFE and providing step-

by-step instructions on how to apply it.  

To illustrate the value of power analysis to SFE design, guidance and tools are 

presented through reproducible examples that illustrate the trialling of two 
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malaria vector control interventions, applied independently or in combination 

(i.e., single and combined) under two experimental scenarios (short-term with 

static effects and long-term with dynamic effects). This study aimed to empower 

researchers conducting SFEs to estimate power across a range of experimental 

design scenarios. This knowledge of statistical power, in combination with 

knowledge of the costs and resource constraints specific to each design, will allow 

researchers to make informed choices between competing designs. Specifically, 

the objective was to develop a power analysis framework that can be used to 

explore the impact on power of varying (i) the number of chambers (i.e., SFS 

compartments) per treatment, (ii) the number of mosquitoes to be recaptured in 

the control chamber (for short-term SFEs, recaptured mosquitoes can be used as 

a proxy of how many mosquitoes should be released), or to be sampled after they 

emerge from a self-propagating population (for long-term SFEs), (iii) the 

frequency of sampling mosquitoes, (iv) the amount of variation between 

chambers, and (v) the chosen size of the intervention effect that can be detected 

(targeted effect size).   

 
Figure 2.1: Picture of a semi-field system at the Ifakara Health Institute (Tanzania) with (A) 
the replicated outdoor environment separated by nets keeping mosquitoes inside. Inside 
the semi-field system, there are the number of (B) chambers within which there are (C, D) 
artificial larval habitats and vegetation and (E) emergence traps for monitoring emerging 
mosquitoes. 
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2.2 Methods 

2.2.1 Overview of experimental design choices 

Here, the assumption is that the aim of a vector control experiment is to identify 

whether the single intervention is better than the control, or if the combined 

intervention (i.e., there is an interaction effect) is better than expected based on 

combining (multiplying) the separate effects (i.e., there is no interaction effect). 

Here, two typical SFE design scenarios, trialling single (i.e., ITN alone) and 

combined (i.e., ITN and pyriproxyfen autodissemination) interventions were 

explored. Pyriproxyfen autodissemination (PPFa) is mosquito-assisted larviciding 

where adult female mosquitoes transfer pyriproxyfen to their aquatic habitats 

(156). Although the power analysis framework developed here incorporates two 

malaria vector control tools (VCTs), namely ITN and PPFa, in practice, these could 

be any VCTs with similar characteristics. In the SFE trialling single intervention, 

only power analysis methods and estimates were presented solely for ITN alone. 

To minimise redundancy in methodology, power analysis methods for SFE trialling 

PPFa alone were not included because the same approach used for ITN would apply 

to PPFa or any other single vector control intervention. Additionally, two 

experiment durations were studied: short-term i.e., lasting 24 to 48 hours, which 

intended to investigate immediate effects on mosquito mortality; and long-term, 

i.e. ≥3 months, which intended to investigate dynamic effects that develop over 

several generations of the mosquito population. For all the scenarios, different 

SFE designs were tried as follows. First, a varying number of chambers, i.e. 2, 4, 

6, and 8 per treatment were used. Second, for frequency of sampling, the short-

term experiment had a single sampling point at 24 hours but for the long-term 

experiment (i.e., an experiment taking 3 months) we explored different 

frequencies namely, monthly sampling consisting of 3 sampling points, fortnightly 

sampling consisting of 6 sampling points, weekly sampling consisting of 12 

sampling points and daily sampling consisting of 90 sampling points. Third, 

different mosquito abundances recaptured in control chambers were set as 5, 10, 

20, 30, 40, 50, 60, 70, 80, 90 and 100 mosquitoes for the short-term experiments 

while 1, 5, 10, 20 and 40 mosquitoes were used for the long-term experiments. 

Throughout this paper, recaptured mosquitoes (or mosquitoes to be recaptured) 
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will be specifically used as a proxy of how many mosquitoes need to be released 

in the control chamber for a short-term SFE.  

In this power analysis framework, the target effect size for each intervention was 

defined as the proportion of mosquitoes remaining at the end of the experiment. 

E.g., for single interventions, assuming that ITNs result in an 80% reduction in 

mosquito populations and PPFa results in a 70% reduction, then 20% and 30% of 

mosquitoes will remain at the end of the experiment (Figure 2.2, purple and brown 

lines), respectively. For combined interventions, where ITNs and PPFa are 

implemented simultaneously but without interactions, the product of the final 

proportions, which results in 20% × 30% = 6% of mosquitoes remaining at the end 

of the experiment (Figure 2.2, blue line) was assumed. Finally, for combined 

interventions with interaction, an interaction effect of 50%, i.e., the 6% of 

mosquitoes remaining when no interaction occurred will be reduced to 3% when 

there is an interaction (Figure 2.2, red line). The example effect sizes given above 

for ITNs and PPFa are quite large; therefore, the power of our experimental 

designs to detect four smaller effect sizes and their combinations was explored. 

All scenarios and designs are summarized in Table 2.1. Here, zero intervention 

effect size (0% reduction in mosquito population)  represents the null hypothesis. 

The purpose of including the 0% scenarios in the study was to compare the 

estimated and nominal (i.e., 5% power) type I rates. 

Unexplained variation in abundance between chambers (here referred to as inter-

chamber variance) is one of the determinants of the statistical power of any SFE 

study. To quantify the impact of lower and higher inter-chamber variance on 

statistical power, we used an estimated variance (EV) of 0.1807 based on 

published SFE data (165) and varied it by factors of 0.5×, 1×, 2× and 5× (Table 

2.1). 

Table 2.1: Experimental design scenarios, study variables and simulated values for short- and 
long-term experiments. An estimated variance (EV) between chambers of 0.1807 was used in 
this study, estimated by fitting a negative binomial GLMM to the mesocosm experimental data 
(165).  

Experim

ental 

scenario

s 

Study variables R object 

names 

Simulated values 
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Short-

term 

experim

ent for 

single 

and 

combine

d 

interven

tions 

Number of chambers per 

treatment 

n.ch.per.trt 2, 4, 6, 8 

Expected number of mosquitoes 

recaptured in the control group  

lambda 5, 10, 20, 30, 40, 50, 

60, 70, 80, 90, 100 

Target effect sizes for single 

intervention (as % reduction)  

itn.effect, 

ppf.effect 

0%, 40%, 50%, 60%, 

80% 

Target interaction effect sizes for 

combined interventions (as % 

reduction in mosquito population) 

ixn.effect 0%, 40%, 50%, 60%, 

80% 

Inter-chamber variance, 𝜎!" chamber.var 0.0904, 0.1807, 

0.3614, 0.9035 

Experimental time period - 24 or 48 hours  

Long-

term 

experim

ent for 

single 

and 

combine

d 

interven

tions 

Chambers per treatment n.ch.per.trt 2, 4, 6, 8 

Sampling frequency (sampling 

points) 

sampl.freq Daily (90), weekly 

(12), bi-weekly (6), 

monthly (3) 

Expected number of mosquitoes to 

be sampled  

lambda 1, 5, 10, 20, 40 

Target effect size for a single 

intervention 

itn.time, 

ppf.time 

0%, 40%, 50%, 60%, 

80% 

Target interaction effect size for 

combined intervention 

ixn.ppf.itn.ti

me 

0%, 40%, 50%, 60%, 

80% 

Time variance, 𝜎#" time.var 0.2266 

Inter-chamber variance, 𝜎!" chamber.var 0.0904, 0.1807, 

0.3614, 0.9035 

Experimental time period - 12 weeks (i.e., 3 

months) 

Dispersion parameter of the 

negative binomial distribution, 𝜃 

theta 10 
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2.2.2 Approach for short-term experiments testing single and 

combined interventions 

This section covers the detailed statistical models for short-term SFE testing single 

and combined interventions where mosquitoes are trapped at a single time point. 

The number of mosquitoes trapped in the chamber 𝑗, 𝑦$, were modelled as being 

drawn from a Poisson distribution, i.e., 𝑦$~𝑃𝑜𝑖𝑠(𝜆$). The natural log of expected 

mosquito counts in the chamber 𝑗, is given as  

𝑙𝑜𝑔1𝜆$2 = 𝛽% + 𝛽&𝐼𝑇𝑁$ + 𝑐$ . 
2.1 

where 𝛽% is the expected log abundance in an average control chamber where 

neither intervention is present. 𝐼𝑇𝑁$ represents a single ITN intervention that is 

static over time and is an indicator variable, i.e. 1 in chambers where the 

intervention is deployed and 0 otherwise. 𝛽& is the coefficient of the covariate 

𝐼𝑇𝑁$ and represents the multiplicative intervention effect size on the natural log 

scale. For example, if an intervention such as an ITN reduces mean vector 

abundance by 80%, the multiplicative effect is 𝑒'! = 0.2, and 𝛽& = log	(0.2). 𝑐$ is a 

normally distributed random effect representing variation between chambers that 

is not explained by the fixed effect of the intervention, such that 𝑐$~𝑁(0, 𝜎!") 

where 𝜎!" is an inter-chamber variance. The decision to use Poisson distribution in 

the short-term SFEs was based on the fact that, with only a single time point 

available, the variability observed within a single chamber is limited to the 

between-chambers variance. With experimental hut systems that allow entry of 

will mosquitoes, there will be more variability in mosquitoes trapped between 

huts and therefore overdispersed Poisson distribution will be appropriate to 

account for this overdispersion additional to between hut variation. 

To test the interaction between two interventions, Equation 2.1 was extended to 

add two predictor terms such that, 

𝑙𝑜𝑔1𝜆$2 = 𝛽% + 𝛽&𝐼𝑇𝑁$ + 𝛽(𝑃𝑃𝐹$ + 𝛽&,(𝐼𝑇𝑁$𝑃𝑃𝐹$ + 𝑐$. 
2.2 

where 𝛽& (as in Equation 2.1) and 𝛽( are the coefficients representing the effects 

of the covariates 𝐼𝑇𝑁$ and 𝑃𝑃𝐹$, respectively, which are indicator variables (i.e., 

0 or 1) representing the presence in chamber j of that specific intervention. 𝛽&,( 

is a coefficient of the covariate 𝐼𝑇𝑁$𝑃𝑃𝐹$ which represents an interaction between 
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ITN and PPFa. Because 𝐼𝑇𝑁$𝑃𝑃𝐹$ is the product of the ITN and PPFa indicator 

variables, it is also an indicator variable, which is 1 only when both interventions 

are present and 0 otherwise. The interaction coefficient 𝛽&,( indicates how much 

more rapidly mosquito abundances are reduced by the combined effect of ITN and 

PPFa compared to what would be expected by combining (multiplying) their 

individual effects.  

2.2.3 Approach for long-term experiments testing single and 
combined interventions 

This section provides a detailed model description of a more complex 

experimental design, a long-term semi-field experiment testing single and 

combined interventions where mosquitoes are trapped at multiple time points. 

The number of mosquitoes trapped at a time 𝑖 in the chamber 𝑗, 𝑦*,$, was modelled 

as being drawn from a negative binomial distribution, i.e., 𝑦*,$~𝑁𝐵(𝜆*,$ , 𝜃). The 

natural log of the expected number of mosquitoes trapped at a time 𝑖, in the 

chamber 𝑗, are given as 

𝑙𝑜𝑔1𝜆*,$2 = 𝛽% + 𝛽#𝑡*,$ +	𝛽&𝐼𝑇𝑁*,$ + 𝛽#,&𝑡*,$𝐼𝑇𝑁*,$ + 𝜏* + 𝑐$ . 
2.3 

where 𝛽% is the expected log count in a control chamber at the first time point. 

𝛽#,& is the effect of an interaction between time and ITN on mosquito abundance.  

𝛽# is the effect of time only on mosquito abundance in control chambers and 𝛽& is 

the effect of ITN only on mosquito abundance when time is zero. The effects of 

time and ITN (i.e., 𝛽# and 𝛽&) are assumed to be zero in the simulated data (Figure 

2.2, black and purple colour), this is to help simplify the setting of experimental 

design choices when simulating the data. However, those effects assumed zero 

must still be included in the model because in real data it should not be assumed 

that their effects are zero. 

𝜏* and 𝑐$ are normally distributed random effects of time and chamber, 

respectively, such that 𝜏*~𝑁(0, 𝜎+") and 𝑐$~𝑁(0, 𝜎!") where 𝜎+" and 𝜎!" are time and 

inter-chamber variances, respectively. 𝜏 is incorporated in Equation 2.3 because, 

for a long-term SFE, mosquito abundance is expected to vary randomly between 

time points. 
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The 𝜃 is the dispersion parameter of the negative binomial distribution and 

represents unexplained variation among observations within a single chamber at 

a single time point. The use of a negative binomial distribution in the long-term 

SFEs was due to the reason that, when data from multiple time points are 

available, it is possible to separate consistent variation between chambers from 

variation between observations within chambers. 

To test the interaction between multiple interventions that have dynamic effects 

over time (see Figure 2.2), Equation 2.3 was extended to add four predictor terms 

such that,  

𝑙𝑜𝑔1𝜆*,$2 = 𝛽% + 𝛽#𝑡*,$ +	𝛽&𝐼𝑇𝑁*,$ +	𝛽(𝑃𝑃𝐹*,$ + 𝛽#,&𝑡*,$𝐼𝑇𝑁*,$ + 𝛽#,(𝑡*,$𝑃𝑃𝐹*,$
+ 𝛽&,(𝐼𝑇𝑁*,$𝑃𝑃𝐹*,$ + 𝛽#,&,(𝑡*,$𝐼𝑇𝑁*,$𝑃𝑃𝐹*,$ + 𝜏* + 𝑐$ . 

2.4 

where 𝛽#,&𝑡*,$𝐼𝑇𝑁*,$ corresponds to the change in abundance over time due to ITN 

relative to changes occurring in the control chambers and 𝛽#,(𝑡*,$𝑃𝑃𝐹*,$ 

corresponds to the change in abundance over time due to PPFa relative to changes 

in the control chambers. 𝛽#,&,(𝑡*,$𝐼𝑇𝑁*,$𝑃𝑃𝐹*,$ corresponds to the change in the 

combined treatment chambers relative to what would be expected by combining 

(multiplying) the effects of change over time from the single treatment chambers. 

𝛽# is the effect of time only in the control chamber, 𝛽& is the effect of ITN only 

and 𝛽( is the effect of PPFa only on mosquito abundance. 𝛽#,& and 𝛽#,( are the 

effects of the interaction between time and ITN or time and PPFa on mosquito 

abundance, respectively, while 𝛽&,( is the effect of the interaction between ITN 

and PPFa only on mosquito abundance. The effects of time, ITN, PPFa and ITNxPPF 

(i.e., 𝛽#, 𝛽&, 𝛽(, and 𝛽&,() are assumed to be zero in the simulated data (Figure 

2.2), however, they must still be included in the model because in real data they 

should not be assumed that their effects are zero. 𝛽#,&,( is the effect of the 

interaction between time, ITN and PPFa on mosquito abundance.  

2.2.4 Power estimation 

Based on Equations 2.1-2.4 and the parameter values in Table 1, 1000 data sets 

for each experimental scenario were simulated. The simulated datasets were 

analysed by fitting the generalised linear mixed-effect models (GLMMs) from 

which they were simulated and testing for the intervention effect using the glmer 

function of the lme4 R package (166), which fits GLMMs using maximum likelihood. 
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Power was estimated as the proportion of simulated datasets in which the null 

hypothesis of no intervention effect was rejected using a significance threshold of 

p<0.05, where the p-value was calculated using Wald z-tests from the GLMMs. 

Sufficient power was defined as an estimated power of at least 80%. The number 

of simulated datasets of 1000 was chosen as a trade-off between adequate 

precision and feasible computation time (1000 data sets give a margin of error of 

± 2.5% when true power is 80%).  

2.2.5 Tutorial – practical application 

In this section, an R tutorial to illustrate a step-by-step estimation of the 

statistical power of a short-term SFE with a single intervention is provided. This 

tutorial is provided to empower researchers with little or no expertise in using a 

simulation-based power analysis for SFE. This tutorial covers a simple scenario 

only; however, one can expand this to accommodate more complex SFE scenarios 

such as additional interventions or long experiments with single or combined 

interventions. (see doi: 10.5281/zenodo.11186503) (167) 

In sub-sections (i)-(iv) below, simulation and power analysis methods for a single 

data set are illustrated. Sub-sections (v)-(vii) show how to simulate multiple 

datasets and estimate power based on experimental scenarios and parameter 

choices in Table 2.1. The data sets were simulated under the assumption that the 

alternative hypothesis (H1) is true, i.e., the intervention effect is not zero 

(excluding scenarios when 0% effect was simulated). Some of the parameters e.g., 

n.ch.per.trt and lambda (Table 2.1) were chosen based on my 

knowledge/experience and per communication with other scientists. Other 

parameters e.g., chamber.var  were estimated using the data from the previous 

SFE in Ng’habi et al (2018) (165).  

The total number of chambers per treatment, n.ch.per.trt, indicates how many 

chambers known as “replicates” are present per treatment. In the R code below, 

varying SFE design choices were set and simulated either single or multiple data 

sets based on the assigned design choices followed by fitting the GLMM model to 

the simulated data. After GLMM model fitting, power estimation is performed by 

calculating a proportion of the simulated data set whose p-values are less than 

0.05. The tutorial was implemented in R version 4.2.3 (168) using multiple libraries 

https://zenodo.org/doi/10.5281/zenodo.11186503
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including ggplot2 (169) for producing plots, lme4 for fitting GLMMs (166), and 

dplyr for data manipulations  (170). 

i) The setting of experimental design scenarios and parameter choices in 

R 

    # design choices  
    n.ch.per.trt <- 4 # number of chambers per treatment 
    itn.lev <- 0:1 # ITN levels: 0 means no ITN and 1 means there is ITN 
    # make template data set representing design  
    dat <-expand.grid(replicates = 1:n.ch.per.trt, itn = itn.lev) 
    # create chambers/replicates id 
    dat$chamber <- factor(paste(dat$itn, dat$replicates, sep="-")) 
    # rearranging data set in a useful order 
    dat <- dat[, c("replicates", "itn", "chamber")] 
    dat 
 
##     replicates itn chamber 
## 1            1   0     0-1 
## 2            2   0     0-2 
## 3            3   0     0-3 
## 4            4   0     0-4 
## 5            1   1     1-1 
## 6            2   1     1-2 
## 7            3   1     1-3 
## 8            4   1     1-4 

Assign values for all parameters for fixed and random effects:  

    # parameter choices - fixed effects 
    # mean recaptured mosquito count in the control group  
    lambda <- 50 
    # proportion remaining in ITN chambers relative to control chambers  
    itn.effect <- 0.2 # this corresponds to 80% mortality from ITN 
    # assign chamber variance  
    chamber.var <- 0.1807  

Calculate additive coefficients for fixed effect parameters by applying the log link 

function to the multiplicative effect of an intervention (i.e., log(0.2) for ITN). 

    # coefficients (parameter values) for all terms 
    b.0 <- log(lambda) 
    b.i <- log(itn.effect) 
 

ii) Simulation of a single data set.  

After setting experimental design scenarios and parameter choices, the inter-

chamber variance, a single data set can now be simulated. Using the simulated 

linear predictor (sum of terms which include coefficients e.g., 𝛽% as an intercept 
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and 𝛽& as a slope with its associated explanatory variable), expected mosquito 

counts will then be generated using a Poisson distribution. 

# simulate random effect variance per chamber 

chamber.re <- rnorm(nlevels(dat$chamber), sd = sqrt(chamber.var)) 
      names(chamber.re) <- levels(dat$chamber) 
      # simulate linear predictor (with fixed effects only) 
      # and add it to the dataset "dat" as a column named lin.pred 
      dat$lin.pred.fixed <- b.0 +  b.i * dat$itn  
      # add random effects (chamber.re) to the linear predictor 
      dat$lin.pred <-   
        dat$lin.pred.fixed + chamber.re[as.character(dat$chamber)]  
      # generate mosquito counts from a Poisson distribution  
      dat$mosquito.count <- rpois(nrow(dat), exp(dat$lin.pred)) 
      # output the new data table “dat”   
      dat 
##   replicates itn chamber lin.pred.fixed lin.pred mosquito.count 
## 1          1   0     0-1           3.91     3.97             66 
## 2          2   0     0-2           3.91     3.87             50 
## 3          3   0     0-3           3.91     3.37             38 
## 4          4   0     0-4           3.91     3.72             34 
## 5          1   1     1-1           2.30     3.03             19 
## 6          2   1     1-2           2.30     2.22             12 
## 7          3   1     1-3           2.30     1.67             10 
## 8          4   1     1-4           2.30     2.11             12 
 

iii) Perform a statistical test for a simulated data set to calculate the p-

value.  

Fitting to the simulated data in “dat” the GLMM model using the glmer function. 

The model named “model.itn“ will incorporate a response variable which is the 

expected mosquito counts denoted by “mosquito.count”, a fixed effect for a 

single intervention (i.e., ITN alone) and a random effect between chambers. From 

the model summary, the p-value is extracted using the coef() function. 

    # load the lme4 package to fit the model 
    library(lme4) 
    # outputting the parameter estimates and the p-values 
    model.itn <- glmer(mosquito.count ~ itn+(1|chamber), family="poisson",data=dat) 
     p <- coef(summary(model.itn))[2, "Pr(>|z|)"] 
     p 

## 3.327833e-07 

In this example, the p-value was 3.3 × 10-7, which is less than 0.05, therefore a 

significant intervention effect was detected. 

iv) Power estimation for a single data set  
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In sub-sections (i-iii), an illustration of how to simulate and calculate a p-value 

for a single data was provided. Since power cannot be estimated from a single 

simulation, there is a need to simulate multiple data sets as shown in subsequent 

sections (v-vii).  

v) Simulation of the multiple data sets. 

A function called “sim.dat.fun” was created to automate the simulation process 

described in subsection (ii) above. The "sim.dat.fun" function takes a design table 

“dat”, coefficients “b.0” and “b.i” and inter-chamber variance “chamber.var” as 

input parameters. The function then produces a table “dat” containing mosquito 

counts as an output.   

    # function for simulating the data 
    # assign a function to simulate data as sim.dat.fun 
    # beginning of the function "sim.dat.fun" 
    sim.dat.fun <- function(dat,b.0,b.i,chamber.var){ 
      # simulate random effects for chambers 
      chamber.re <- rnorm(nlevels(dat$chamber), sd = sqrt(chamber.var)) 
      names(chamber.re) <- levels(dat$chamber) 
      # simulate linear predictor (with fixed effects only) 
      # add the simulated data to dataset "dat" as a column named lin.pred 
      dat$lin.pred.fixed <- b.0 +  b.i * dat$itn  
      # add random effect (chamber.re) to fixed linear predictors above 
      dat$lin.pred <-   
        dat$lin.pred.fixed + chamber.re[as.character(dat$chamber)]  
      # generate mosquitoes counts as random data using Poisson     
     dat$mosquito.count <-                                                                                                    
        rpois(nrow(dat),exp(dat$lin.pred)) 
      # output the new data table “dat”   
      dat 
    } # end of data simulation function "sim.dat.fun" 
 
    # assign the function output as simdat for easy referencing  
    simdat <- sim.dat.fun(dat,b.0,b.i,chamber.var) 
    # output the “simdat” 
    simdat 
##   replicates itn chamber lin.pred.fixed lin.pred mosquito.count 
## 1          1   0     0-1           3.91     3.91             43 
## 2          2   0     0-2           3.91     3.62             45 
## 3          3   0     0-3           3.91     3.46             26 
## 4          4   0     0-4           3.91     3.66             47 
## 5          1   1     1-1           2.30     2.55             16 
## 6          2   1     1-2           2.30     1.87              5 
## 7          3   1     1-3           2.30     2.71             19 
## 8          4   1     1-4           2.30     2.94             17 

 

vi) Perform a statistical test for the simulated data sets to extract p-values. 
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In this case, a function called “sim.mos.pval” was created to automate the 

function “sim.dat.fun” and outputs p-values. The function “sim.mos.pval” will 

output the p-values from the GLMM model with a Poisson distribution. The fitted 

model denoted by “model.itn” will incorporate a response variable which is the 

expected mosquito counts denoted by “mosquito.count”, fixed effects which are 

ITN, and random effect between chambers.  

    # output the p-values 
    sim.mos.pval <- function(...){ 
      simdat2 <- sim.dat.fun(dat,b.0,b.i,chamber.var, theta) 
      model.itn <- glmer(mosquito.count ~ itn+(1|chamber),family="poisson",data=simdat
2) 
      p <- coef(summary(model.itn))[2, "Pr(>|z|)"] 
     c(p = p) 
    } 
 

vii) Power estimation for multiple data sets 

Here, a function “sim.pvals.list” was created to output power estimate by 

updating function “sim.mos.pval” multiple times based on the number of 

simulations “nsim” provided. Again, another function called “sim.pvals.list” was 

created to output a list of p-values by automating the function “sim.mos.pval” to 

simulate multiple data sets based on the number of simulations “nsim” assigned. 

Therefore, the percentage of the data sets whose p-values are less than 0.05 is 

the power estimate.  

    nsim <- 100  
    sim.pvals.list <-  

lapply(1:nsim, sim.mos.pval) 
    sim.pvals <- do.call("rbind", sim.pvals.list) 
    # estimate power as a proportion of datasets whose p-values p< 0.05.  
    n.sig <- sum(sim.pvals[, "p"] < 0.05) 
    power.estimate <- n.sig/nsim 
    # output power estimate 
    power.estimate 
## [1] 0.96 

For the simulations reported in the results sections, the power analysis methods 

illustrated in the tutorial above were used and expanded to estimate power for 

all combinations of scenarios, short- vs. long-term SFE and single vs. combined 

interventions. To promote reproducibility, the R codes used to produce the results 

and R tutorials for other SFE scenarios are freely available as R Markdown files for 

access on an online repository (see doi: 10.5281/zenodo.11186503) (167). Some 

of the parameter values were extracted using mesocosm experimental data from 

the previous study (see doi: https://doi.org/10.1038/s41598-018-31805-8) (165). 

https://zenodo.org/doi/10.5281/zenodo.11186503
https://doi.org/10.1038/s41598-018-31805-8
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Figure 2.2: Change in expected mosquito counts over 3 months (12 weeks), comparing the 
use of ITN and PPFa interventions in a semi-field experiment, showing how much faster the 
number of mosquitoes is reduced in the chambers combining both ITN and PPFa with (red) 
and without (blue) interaction than would be expected based on the single effects of  PPFa 
(dark red) and ITN (purple) or no intervention (black). 

2.2.6 Type I error rate  

Before reporting power estimates using GLMMs, it is recommended to check 

whether the estimated type I error rate (i.e. estimated power at zero effect size; 

Figure 2.3, dot-dashed lines) is equal to the nominal type I error rate, which here 

is 5%. Checking type I error rate estimates is useful for identifying inflated power 

estimates and more generally for identifying scenarios where GLMMs are 

unreliable. In our case study, some of the power estimates were inflated, 

particularly when the number of chambers per treatment was 2. For example, the 

type I error rate was 15% when there were 2 chambers per treatment for short-

term SFEs (Figure 2.3a, c). However, the estimated type I error rates were less 
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severe (slightly inflated) in long-term SFEs at less than 8% (Figure 2.4). Type I 

error rate estimates across all scenarios were averaged at 8%, 3% higher than the 

nominal type I error rate (Figure 2.3 & Figure 2.4). Generally, the type I error rate 

was more inflated in short-term SFEs with scenarios that involve fewer than 6 

chambers per treatment than in long-term SFEs testing single and combined 

interventions.   

2.3 Results 

2.3.1 Short-term experiments testing single and combined 
interventions 

Power increased with increasing number of experimental chambers per treatment 

and the number of mosquitoes to be recaptured from each experimental chamber 

(Figure 2.3). Additionally, the target effect size of the interventions also had a 

large impact on power in each scenario. Power increased initially with recaptured 

mosquitoes, then plateaued for single interventions with around 50 mosquitoes, 

and combined interventions with around 80 mosquitoes (Figure 2.3a and b). Power 

was 87% at four chambers per treatment, 50 mosquitoes recaptured and 60% 

reduction in mosquito population (Figure 2.3a, blue solid line). A minimum of 10 

mosquitoes would need to be recaptured in each treatment chamber to ensure at 

least 80% power assuming that the only interest is to detect effects at least as 

large as an 80% reduction in mosquito density (Figure 2.3b).  

The higher the targeted interaction effect size, the higher the power of the 

experimental design. However, within target interaction effect sizes (Figure 2.3c 

and d), although there was an increase in power with an increasing number of 

chambers per treatment, adequate (> 80%) power could only be achieved at the 

highest interaction effect size (i.e., > 80% reduction) with a minimum of 6 

chambers per treatment (Figure 2.3c). If a target interaction effect size results in 

a 60% or less reduction, none of the scenarios was sufficient to give enough power 

to detect the smallest effect of the intervention (Figure 2.3c). With four chambers 

per treatment, only designs recapturing at least 90 mosquitoes with a target 

interaction effect size of an 80% reduction in the mosquito population provided 

adequate power (Figure 2.3c). The increase in power above 80% at a minimum of 

6 chambers per treatment and high target interaction effect size indicates the 

necessity for the SFE studies to consider the use of a large number of treatment 
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chambers (at least 4 and preferably 6 chambers) to ensure that the target 

treatment effects are detected. By comparing the results in Figure 2.3, testing a 

single intervention would require fewer chambers than would be required when 

testing combined interventions i.e., the increase in the number of interventions 

increases the number of chambers to be used per treatment. It should also be 

noted that designs with four or fewer chambers gave the most inflated type I error 

rates, suggesting that even the low levels of power achieved in these scenarios 

are likely to be inflated. 

 
Figure 2.3: Statistical power obtained from different short-term SFE designs. Top panels (a 
and b) show the power expected when testing single interventions (ITN) and bottom panels 
when testing combined interventions (ITN and PPFa; c and d) with increasing (a and c) 
number of chambers per treatment or (b and d) number of mosquitoes recaptured. Different 
coloured lines correspond to varying effects or interaction sizes, i.e., % reduction in mosquito 
population. The dashed line is 80% power, and the dot-dashed shows a 5% power which is a 
type I error rate, which is the expected power when the effect size is zero. Error bars show 
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95% confidence intervals. Estimated variance (EV) was used in both (a-d) while 50 mosquitoes 
were used in (a) and (c), and 4 chambers per treatment in (b) and (d).  

2.3.2 Long-term experiments testing single and combined 
interventions 

Power was higher with more chambers, increased sampling frequency, and a 

higher number of mosquitoes to be sampled per chamber (Figure 2.4). Enough 

power was achieved at a minimum of 4 chambers per treatment (Figure 2.4a), 

weekly sampling (Figure 2.4b), and 10 mosquitoes to be sampled per week (Figure 

2.4c) with only a 60% reduction in mosquito population by ITN. More than 90% 

power was achieved at 4 chambers per treatment (Figure 2.4d), weekly sampling 

(Figure 2.4e), and 10 mosquitoes to be sampled per week (Figure 2.4f) with an 

80% reduction in population by ITN and PPFa interaction. The higher the ITN and 

PPFa interaction effect, the power of the experimental study was higher with the 

increased number of chambers per treatment, sampling frequency and mosquitoes 

to be sampled. 100% power was attained at the highest interaction effect (i.e., 

80% reduction in mosquito population) by maximising either the number of 

chambers, sampling frequency, or the number of mosquitoes sampled (Figure 

2.4d-f).  
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Figure 2.4: Statistical power obtained from different long-term SFE designs. Top panels (a, b 
and c) show the power expected when testing single interventions (ITN) and bottom panels 
when testing combined interventions (ITN and PPFa; d, e and f) with increasing (a and d) 
number of chambers per treatment or (b and e) frequency of sampling or (c and f) number of 
mosquitoes to sample. Different coloured lines correspond to varying effects or intervention 
sizes, i.e., % reduction in mosquito population. The dashed line is 80% power and the dot-
dashed shows 5% power which is a type I error rate, which is the expected power when the 
effect size is zero. Error bars show 95% confidence intervals. Estimated variance (EV) was 
used in both (a-f). A total of 10 mosquitoes and weekly sampling were used in (a) and (d), four 
chambers per treatment and 10 mosquitoes in (b) and (e), and four chambers per treatment 
and weekly sampling in (c) and (f). The main effects used for ITN and PPFa in (d-f) are 80% 
and 70%, respectively. 

2.3.3 Inter-chamber variance affects power 

The estimated type I error rate was 8% (i.e., 3% higher), except for when there 

were only 2 chambers per treatment for a short-term semi-field experiment (SFE) 
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testing combined interventions, which had a type I error rate >9%. For the short-

term SFE testing both single and combined interventions, the more variation 

between the treatment chambers the less power there was (Figure 2.5, dotted 

and dash-dotted red lines). In contrast, for the long-term SFE testing both single 

and combined interventions, different inter-chamber variances resulted in closely 

related power estimates. For estimated variance (EV, which corresponds to the 

red line in Figure 2.3c), power was 68.5% when 4 chambers per treatment were 

used and 50 mosquitoes recaptured, which increased to 84% and 91% at 6 and 8 

chambers per treatment, respectively (Figure 2.5, solid red line). When the inter-

chamber variance was halved to EV/2, 79% power was attained at only 4 chambers 

per treatment, but then increased to 90% and 97% at 6 and 8 chambers per 

treatment, respectively (Figure 2.5, dashed red line). In contrast, when inter-

chamber variance was doubled to EV × 2, power was 59.5%, 70.5% and 82% at 4, 6 

and 8 chambers per treatment, respectively (Figure 2.5, dotted red line). 

Additionally, a fivefold increase in inter-chamber variance lowered power to 

below 60% irrespective of the used number of chambers per treatment (Figure 2.5, 

dash-dotted red line).  
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Figure 2.5: The effect of varying inter-chamber variance on the relationship between power 
and the number of chambers per treatment. Inter-chamber variance was varied from the 
estimated variance of 0.1807 (EV, solid line which corresponds to a red line in Figure 2.3c) to 
half (dashed line), double (dotted), and quintuple (dash-dotted line) its original value. Error 
bars show 95% confidence intervals. The red colour represents the target non-zero 
interaction effect (80% was used here) and the blue colour type I error rate (0% interaction 
effect). The two-dashed line is the 80% power, and the long-dashed line (black colour) is the 
nominal type I error rate of 5%. In this case, a total of 50 recaptured mosquitoes were used 
and the main effects explored for ITN and PPFa were 80% and 70%, respectively. 
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This study provided guidance and a tool to empower semi-field experiment (SFE) 
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number released), the frequency of sampling adult mosquitoes, the amount of 

variation between chambers, and the size of the target intervention effect.  

Before reporting simulation-based power estimates using GLMMs, it is beneficial 

to check whether the estimated type I error (i.e., false positive) rate is correct. 

Type I error rates, which are equivalent to estimated power at zero effect size, 

were inflated (> 5%) for all experimental designs, suggesting that Wald z-tests 

from GLMMs fitted using maximum likelihood give inflated type I error rates. In 

our study, type I error rate inflation was particularly severe (> 8%) for designs with 

fewer chambers per treatment (£ 4), due to severely biased p-values generated 

from Wald z-tests. For a single analysis, this inflation problem can be resolved by 

adjusting p-values, for example using the function simulateLRT in the DHARMa R 

package which performs simulated likelihood ratio tests for GLMMs based on the 

parametric bootstrap (171,172). However, such simulation-based methods are too 

slow to be feasible as part of simulation-based power analysis. Therefore, in 

addition to identifying scenarios where power is likely to be over-estimated, 

estimating the type I error rate can also alert researchers to scenarios that 

generate potentially unreliable results from GLMMs, without this knowledge they 

might publish false positive results. On the other hand, simulation-based power 

analysis methods can be quite computationally intensive, especially when using 

standard computers such as laptops. However, there are potential effective 

strategies to alleviate these demands; two of the most commonly used  methods 

include the use of computing clusters to distribute the workload across multiple 

processors and the use of cloud computing services where instead of running 

simulations directly on your personal computer, you run them on virtual computers  

as they can be accessed remotely (173). 

One of the main findings of this study was that for most realistic SFE designs, the 

power estimate was below the conventional threshold for acceptability of 80%, 

except for experimental scenarios with an extremely large target effect size. That 

is to say, for the experimental scenarios covered in this study, current SFEs seem 

to be underpowered for more realistic effect sizes. It is perhaps one of the general 

limitations of SFE that unless we build a large-scale semi-field system with five or 

ten times as many chambers or, more realistically, repeat the experiment multiple 

times with rotated (e.g., using a Latin square design) or randomised chambers per 

treatment (which would effectively double or multiply the number of chambers), 
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it will be difficult to be able to detect anything less than very large effects. The 

power analysis framework presented here is intended to give SFE researchers the 

tools to decide how large a semi-field system would need to be, or how many 

repetitions of the experiment would be required, for a particular effect size of a 

given intervention.   

Power was expected to increase with more chambers, more mosquitoes, higher 

sampling frequency and lower inter-chamber variation, but the relative 

importance of these factors in a range of realistic SFE scenarios was unknown. In 

this study, a realistic SFE required a minimum of 4 chambers to detect single (non-

interaction) effects but may be underpowered for effects below a 40% reduction. 

To obtain adequate power and maintain an acceptable type I error rate, a 

minimum of 4 and preferably 6 chambers per treatment was required to detect 

higher interaction effects (i.e., ≥ 80% reduction), suggesting that using designs 

with fewer chambers would have resulted in an underpowered study for lower 

effects. In general, we found that two chambers per treatment are too few and 

insufficient to ensure the detection of the interaction effect between PPFa and 

ITN. However, several ways may help increase the number of chambers per 

treatment, that do not involve building a large-scale semi-field system or 

repeating the experiment multiple times (71). For example, one may consider 

whether both single interventions are needed in the same experiment and 

potentially exclude the negative control.   

Human Landing Catch (HLC) is one of the standard methods for sampling adult 

mosquitoes, however, it demands a lot of effort in terms of time, money, and 

logistics such as a trained supervisory team and supplies at the collection sites 

(174). Therefore, the selection of sampling frequency involves a balance between 

statistical power and the amount of resources to be invested in an experimental 

study, and our study illustrated how this balance point could be found. Although 

without providing scientific reasons, most studies with SFE consider weekly or bi-

weekly sampling of mosquitoes (175). Results from this study indicated power 

increases as sampling frequency increases from monthly to daily. Under our study 

scenarios, bi-weekly sampling did not improve power substantially compared to 

monthly sampling, although even this small increase could bring borderline designs 

above 80% power.   
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It is difficult to obtain enough mosquitoes for use in the SFEs because of the high 

operational cost of rearing them in insectaries. Additionally, other species such 

An. funestus is even more challenging to maintain in insectary settings, making it 

hard to establish laboratory colonies (88). Due to its importance, researchers need 

to determine the number of mosquitoes they are supposed to use for SFEs, which 

will provide them with successful and informative experiments. Since there is no 

standard way to identify the total number of mosquitoes to be released, especially 

in long-term experiments, understanding the expected number of mosquitoes to 

be recaptured can be a good proxy to help determine how many mosquitoes should 

be released to maximize the power of the study. In a recent semi-field study by 

Mbuba et al. (176) in Tanzania aimed to evaluate two topical repellents against 

Anopheles mosquitoes, a total of 25 mosquitoes were released in each of the three 

treatment chambers, and the experiment was repeated if fewer than 50% of the 

released mosquitoes were recaptured in the negative control (176). Our findings 

indicated that recapturing 50 mosquitoes in six chambers per treatment achieved 

adequate power (> 80%) to detect an effect size of 50% reduction in mosquito 

abundance. Increasing variation between chambers in the mean number of 

mosquitoes recaptured resulted in lower power in the short-term SFEs and 

reducing inter-chamber variation increased power. In contrast, for the long-term 

SFEs, different inter-chamber variances resulted in similar power estimates. It is 

suggested that conditions should be kept as similar as possible across all treatment 

chambers, which can be done, for example, by rotating volunteers who capture 

mosquitoes or hosts for mosquitoes’ blood meals.  

While the power analysis methods presented here provide valuable insights into 

optimising SFE design, they also have limitations. The framework relies on 

simulation-based power analysis with GLMM-fitting methods, which have higher 

computational demands than traditional power analysis methods. The focus of this 

study was to develop a statistical power analysis framework and produce an R 

tutorial to assist in the design of robust vector control experiments in semi-field 

systems. Results for two specific scenarios are shown, but these can be easily 

adapted and extended to other intervention scenarios including long-term SFE 

with non-dynamic effects, or effects changing over time. As we adapted the 

framework from a Poisson to a Negative binomial model for the long-term 

experiment, other adaptations might be required. For example, a binomial model 

might be preferred in the presence of high variability in the recaptured mosquitoes 
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(e.g., associated with chamber variance) or high recapture rates as we would expect 

larger numbers of mosquitoes. Alternatively, a multinomial model could be a good 

option for complex dependencies between modes of action (177,178) such as 

having number of mosquitoes in various categories such as alive unfed, alive fed, 

dead unfed and dead fed. In addition, this framework could be used for other 

widely used experimental systems such as hut trials, where instead of chambers, 

outdoor experimental huts are used. The uptake of power analysis methods will 

improve the quality of SFE and as a consequence provide a more robust evaluation 

of the impacts of new vector control interventions on mosquito populations. 

Future research directions may include adapting the framework to different 

vector control experimental scenarios or exploring alternative SFS experimental 

designs. Additionally, future work may focus on expanding this work to a web-

based application such as an R shiny application and R packages for an interactive 

power analysis framework.  

2.5 Conclusion 

Determining the most efficient experimental design for a semi-field experiment 

(SFE) will depend on a balance of design choices and resource constraints. The 

power analysis framework and tutorial provided here can aid researchers in the 

robust design of these widely used experiments and ultimately facilitate the 

development of new vector control tools. Due to its flexibility, this generic power 

analysis framework can be customised and adapted to inform designs of other 

vector control SFEs and experimental hut trials. The statistical power analysis 

framework presented here has already been successfully applied to inform the 

design of a vector control SFE in one of the semi-field systems at Ifakara, 

Tanzania. 
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Chapter 3 Implications of the trade-offs between 
negative density dependence and the Allee effect 
for the malaria vector control endgame 

Abstract 

Understanding the interplay between vector control and malaria mosquito 

population dynamics is critical to assessing and improving vector controls. 

Mosquito populations are regulated through a range of biotic and abiotic 

mechanisms, and among them, negative density dependence, where small 

populations grow more rapidly than large ones, is thought to be widespread. 

However, a positive density dependence at low population density, also known as 

the Allee effect where small populations die more rapidly, is also possible. 

Understanding the extent to which the Allee effect impacts mosquito populations 

is critical to predicting whether populations pushed close to extinction by 

interventions such as larvicide application will rebound or die out. Here, a 

stochastic simulation model based on a stage-structured population model was 

developed to investigate the roles of negative density dependence and the Allee 

effect, their impacts on the efficacy of sustained and short-termed larvicidal 

intervention, and their trade-offs in regulating mosquito populations. The model 

followed the stages of the mosquito life cycle, with life-history traits namely 

fecundity and larval, pupal, and adult survival defined as a function of density, 

larviciding, environmental variables and importantly the Allee effect. Negative 

density dependence was modelled as a modifier of larval survival and the Allee 

effect as a modifier of total fecundity. The model was iterated 100 times and 

calculated the quantiles of the key output measure, weekly adult mosquito 

abundance. While in isolation, varying density dependence and the Allee effect 

did not impact the population size in the long term, their combination seemed to 

accelerate population extinction. A combination of negative density dependence, 

the Allee effect, and sustained larvicidal intervention led to a decline in mosquito 

populations to levels from which they could not recover. In contrast, the 

combination of negative density dependence and the Allee effect, along with 

short-term larvicidal applications, did not result in a decline in mosquito 

populations to lower levels that would prevent rebound. Higher levels of the Allee 

effect, along with mid-level negative density dependence, led to a decline in the 

populations, and the risk of extinction increased as the duration of the 
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intervention increased. Understanding less studied regulatory processes like Allee 

effects can support vector control by highlighting both resilient and vulnerable 

aspects of the vector’s life cycle stages to interventions. If present, we can 

potentially harness Allee effects to accelerate malaria elimination.  
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3.1 Introduction 

Vector control remains one of the most efficient strategies against malaria 

(35,179). Implicitly, vector control reduces mosquito population sizes but 

maintaining the populations under control and even eliminating them remains 

challenging. A major reason is that as mosquito populations become smaller, a 

range of ecological changes, such as alterations in their per capita growth rate 

are likely to occur (180). These fluctuations in population size can occur naturally 

e.g., large seasonal fluctuations with the wet season or less pronounced and 

shorter-term fluctuations with changes in temperature or rainfall patterns (181), 

but understanding the population regulatory mechanisms triggered by vector 

control when populations become smaller can provide useful insight into how 

these mechanisms might impede or facilitate malaria elimination. Malaria vector 

control interventions might become proportionately less effective at low mosquito 

population density because the surviving individuals have a much higher per capita 

reproduction or growth rate than those in high densities. Settings with small 

mosquito population densities (e.g., Dar es Salaam and Zanzibar, Tanzania) 

reported a low level of persistent malaria transmission despite the effects of core 

and supplementary interventions. For instance, a large-scale larvicidal control in 

Dar es Salaam, Tanzania, led to a decline in the Anopheles gambiae mosquito 

population which typically prefer small and temporary breeding habitats, but 

there was still residual malaria (41,47). In Zanzibar, Tanzania, despite 77.8% of 

households having at least one insecticide-treated net (ITN), which is a core vector 

control intervention in the area (40), malaria transmission persisted but at low 

levels (184). With the use of key interventions, namely ITNs and Indoor residual 

spraying (IRS), mosquito populations are declining (2), but are difficult to knock 

down further or eliminate, allowing malaria to persist at low levels. 

Mosquito populations seem to be density-dependent at the larval stages (90), 

meaning that the per capita growth rate is fastest when density is low (Figure 3.1, 

black line). Laboratory experiments with Anopheles gambiae showed that 

competition for resources at the larval stage is the major source of negative 

density dependence (90). With less space (e.g., small water pools) competition 

between larvae increases, which leads to larval population decline, and in turn, 

releases some space again to accommodate more larvae allowing the population 

to recover again. Consequently, an intervention might become proportionately 
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less effective as a population declines because surviving individuals have a higher 

per capita growth rate compared to those in high density. However, an opposing 

scenario is also possible, where small mosquito populations experience Allee 

effects, i.e., population growth rate reduces as the population declines (Figure 

3.1, blue and red lines) (120). Allee effects arise from factors such as difficulty in 

finding a mate, limited cooperative behaviours, inbreeding and risk of predation, 

resulting in a higher risk of stochastic extinction as populations become smaller 

(89,97), and may operate at low or high levels. At low levels (corresponding to 

weak Allee effects), the per capita population growth reduces but remains positive 

(blue colour in Figure 3.1). In contrast, with higher levels of Allee effects, where 

the population growth rate falls below the threshold (critical population size) 

leading to extinction (185), the per capita population growth rate is negative and 

therefore the population is decreasing (Figure 3.1, red colour).  

The occurrence and relative importance of density dependence and Allee effects 

have been demonstrated in various animals, grouped by taxonomic categories such 

as fish, reptiles, birds, mammals and insects, as well as in plant systems (186,187). 

For instance, for a new plant population, the presence of few plants impedes the 

transfer of conspecific pollen to extend the generation. The failure to transfer 

pollen when the total number of founder individual plants is not large enough to 

attract pollinators to regularly service plants growing close to them may result in 

the extinction of the new population (188,189). Allee effects have also been 

identified in vertebrates, where goldfish population size was observed to increase 

faster due to cooperation when several goldfish were placed in a water tank 

containing other goldfish (190). Similarly, experiments in mammals including deer 

mice and red-backed voles have demonstrated that high population size may 

stimulate reproduction, guarantee their survival, and increase protection against 

toxic reagents or predators, as opposed to low population size where reproduction 

was suppressed (191,192). Studies of Allee effects in insects are sparser, but 

sexually reproducing insects such as Callosobruchus chinensis and Tribolium 

confusum showed that difficulty in finding mates is the primary mechanism 

affecting their population dynamics at low population density, which led to 

population extinction (193). Potential mechanisms for Allee effects identified in 

invertebrate insects such as gypsy moth populations are difficulty in locating 

mates and risk of predation (113,194–197). Importantly, Allee effects have played 

a role in the control of biological invasions through the establishment and spread 
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of non-native species. The control of biological invasions has often been possible 

by limiting the mating of biological invaders such as invasive flies, Philornis 

downsi, or red turpentine beetle, Dendroctunus valens, (97,198). It is important 

to understand biotic traits like density dependence and Allee effects that act on 

small populations and have the capacity to allow population persistence or 

extinction.  

There is currently no evidence from the field or laboratory experiments on the 

impacts of the Allee effects on malaria mosquitoes or any other vectors. However, 

previous modelling work predicted that gene drive would be more effective if a 

strong Allee effect exists in a low-density mosquito population where transgenic 

mosquitoes are released (199–203). Although the role of Allee effects in malaria 

vector population dynamics remains unknown, understanding how they might 

contribute to population regulation is critical for assessing vector control 

strategies, given their opposing implications for vector suppression and 

elimination plans. This study aimed to develop a stochastic simulation model 

based on a stage-structured population model to address the four research 

questions: (i) how is the mosquito population growth rate regulated over time? (ii) 

what are the roles of negative density dependence and the Allee effect in 

regulating mosquito populations at low densities? (iii) how do negative density 

dependence and the Allee effect impact the efficacy of the vector control 

interventions? and (iv) what are the trade-offs between density negative 

dependence and the Allee effect in regulating mosquito populations? 

Understanding the extent to which Allee effects might impact mosquito 

populations is critical to predicting whether populations can be pushed to 

extinction by interventions or if they will rebound. Simulations are useful because 

they allow us to explore a range of scenarios and identify which might be 

important to enhance our understanding of mosquito ecology to better design, 

assess and optimize vector controls.  
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Figure 3.1: Low-density population dynamics. The population growth rate is less than 1 above 
the carrying capacity K and below the critical population threshold K-. A black line indicates 
negative density dependence, whereas a blue and red line indicates positive density 
dependence (i.e., weak, and strong Allee effects, respectively). 

 

3.2 Methods  

To address the specific research questions, a stochastic simulation model was 

developed based on a stage-structured population model. Since the Allee and 

negative density dependence effects are expected to be most relevant when 

mosquito populations are low, the model emulated the study design of a large-

scale larvicidal intervention in urban Dar es Salaam, Tanzania, which was shown 

to have reduced mosquito population size by 94.4%. From the population model, 

the Leslie matrix was also developed to explore the growth rate of a stable 

population as regulated by negative density dependence and the Allee effect.  
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3.2.1 Study design 

Larvicide in urban Dar es Salaam (41) targeted 15 (out of 73) wards from 3 

municipalities (5 wards each) and was deployed in three different phases (time 

periods) for 193 weeks from early 2005 to late 2008. In phase one, only three 

wards received a larvicidal treatment; in the second phase another 6 wards were 

added and in the last phase, the intervention was scaled up to cover all 15 wards. 

The type and amount of larvicides applied and intervention durations are 

described elsewhere (41,47,204). The dynamics generated in the simulation model 

are similar to the data from the larvicidal intervention in Dar es Salaam (as shown 

in Appendix B.1). Daily rainfall and temperature data from 2005-2008 were 

obtained from an open-source repository called Soil and Water Assessment Tool 

(SWAT) (205) and aggregated to mean weekly data (as shown in Appendix B.2, 

Appendix B.3 and Appendix C.5) to match the time unit in the model (for further 

details see section 3.2.2, Appendix B.2, Appendix B.3 and Appendix C.5). Since 

the rainfall and temperature data are not specific for each ward, it was assumed 

that the mean weekly rainfall and temperature in all fifteen wards from the three 

municipalities of urban Dar es Salaam were the same. 

3.2.2 Stage-structured population model formulation  

A simulation model was developed based on a stage-structured population model. 

The model follows a simplified mosquito life cycle with adult female mosquitoes 

laying eggs that hatch into early instars that develop into late instars. Late instars 

develop into pupae which later emerge as adult mosquitoes. Each of these stages 

is then linked through or impacted by rates or probabilities such as fecundity, 

larvae, pupae or adult survival and development (Figure 3.2). 

Figure 3.2 illustrates the model, which is mathematically defined as follows: it is 

assumed that the larval (i.e., early instars, 𝑁,,-, and late instars, 𝑁,,") survival 

probabilities, 𝜌. (where 𝑥 are either early instar larvae, 𝑙, 1, or late instar larvae, 

𝑙, 2), are defined by binomial distributions, with linearised functions 𝑆., at ward 

𝑖, and week 𝑡, through an inverse logit transformations such that, 

𝜌.(𝑖, 𝑡) =
exp(𝑆.(𝑖, 𝑡))

1 + exp(𝑆.(𝑖, 𝑡))
. 

3.1 
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Survival probability of early instars, 𝜌,,-, was defined through an inverse logit 

transformation of linear function 𝑆,,-, described as a function of the number of 

total larval abundance (𝑁,,-+𝑁,,"), rainfall (𝑅), larvicides (𝐿𝐴) and temperature (𝑇) 

such that:  

 
𝑆,,-(𝑖, 𝑡) = 𝛽% − 𝛽-(1 − 𝛽"𝑅(𝑡))(𝑁,,-(𝑖, 𝑡) + 𝑁,,"(𝑖, 𝑡)) + 𝛽/𝑅(𝑡) − 𝛽0𝐿𝐴(𝑖, 𝑡) + 𝛽1𝑇(𝑡). 

3.2 

where 𝛽% is the mean logit (i.e., log odds) of larval survival when all covariates 

are 0 (e.g., centred rainfall = 0 mm, larvicide = 0 and centred temperature = 0 
0C). The parameters  𝛽-2" describe the impact of negative density dependence on 

early instar larval survival, which is mainly regulated by rainfall and larval density. 

Specifically, 𝛽- is the effect size governing the impact of total larval abundance 

(i.e., 𝑁,,- and 𝑁,,") on early instar larval survival and here assumed to regulate the 

magnitude of negative density dependence. 𝛽" is a fraction of 𝛽3 and 𝛽- 

(i.e.,	𝛽3 	𝛽-⁄ ) where 𝛽3 is the effect of the interaction between larval density and 

centred rainfall on early instar larval survival. 𝛽/ is the effect of centred rainfall 

(𝑅) on early instar larval survival. Parameters 𝛽0 and 𝛽1 are the effects of 

larvicides (𝐿𝐴) and centred temperature (𝑇) on early instar larval survival, 

respectively. Temperature and rainfall were centred at their mean values of 27 
0C and 56 mm respectively. That is, their means were subtracted so that each 

centred variable has a mean of zero, such that the intercepts of the survival and 

fecundity functions can be interpreted as logit survival probability conditional on 

mean temperature and rainfall. 

The survival probability of late instars, 𝜌,,", was defined through an inverse logit 

transformation of the linear function 𝑆,,", and was structured similarly to Equation 

3.1. Explicitly, the late instar linear function was written similar to the linear 

function of early larval instars (Equation 3.2) (i.e., 𝑆,,- =	𝑆,,"), hence, the 

parameter descriptions and values in functions 𝑆,,- and 𝑆,," were similarly used in 

this study. Since the larval stage lasts for two weeks, it was divided into two 

stages, each lasting for one week. Dividing the larval stage into two stages aligns 

with the model development, which assumes one week for each stage of the 

mosquito life cycle. Throughout the text, negative density dependence (i.e., 𝛽-) 

is regarded as a common parameter among the two larval stages. 



Chapter 3   74 
 
Survival probability of pupae 𝜌4 (structured similarly to Equation 3.1) in ward 𝑖 at 

week 𝑡 was defined through an inverse logit transformation of the mean logit pupal 

survival (𝜆%). On the other hand, weekly adult survival probability 𝜌5 in a ward 𝑖 

at week 𝑡 was defined through an inverse logit transformation of the mean logit 

adult survival (𝛼%); this implicitly assumes that there is exponential survival of 

adult mosquitoes.  

Mosquito fecundity was modelled as a Poisson process with mean 𝑏 in the ward 𝑖 

and week 𝑡 and linearised through an exponential transformation with 

temperature (𝑇) which then regulated by the Allee effect parameter 𝐶, such that: 

𝑏(𝑖, t) = 0.5 ∗ exp	(𝜔% + 𝜔-𝑇(𝑖, 𝑡)) ∗ 𝑁5(𝑖, t) ∗
𝑁𝑎(𝑖, 𝑡)

𝐶 + 𝑁5(𝑖, 𝑡)
 

3.3 

where 𝜔% is the mean log per capita fecundity when the centred temperature is 0 
0C and 𝜔- is the weekly effect of temperature on fecundity. The Allee effect is 

emulated as the probability of mating, where the number of female adults, 𝑁5, is 

scaled with a constant 𝐶. Specifically, the greater the value of 𝐶 relative to 𝑁5, 

the lesser the mating probability, leading to high impacts of the Allee effect (e.g., 

the mating probability will be less than 50% when 𝑁5 < 𝐶 and close to 100% when  

𝑁5 ≫ 𝐶). It was assumed that eggs do not have their own stage in the model, they 

are just a transition or a life path of larvae. Eggs hatch into early instar larvae, 

𝑁,,-, to the late instar larvae, 𝑁,,", and then to the pupae, 𝑁4, who then become 

adults, 𝑁5. To obtain the total number of male and female mosquitoes in the 

population, a 50:50 sex ratio was assumed. To model the female mosquito 

population only, the total number of mosquito eggs laid per week (total fecundity) 

was halved where only the proportion, ℎ6, hatches to early instars. The resultant 

survival probabilities (Equation 3.1) and the total fecundity (Equation 3.3) were 

used to obtain population abundances (which were used as one of the main 

outcomes) for both larvae, pupae and adult mosquitoes. Note that, the survival 

probability will also incorporate the development rate, meaning that all surviving 

individuals move to the next stage. 

The parameters mentioned in Equations 3.2 and 3.3 were given mean values based 

on literature, as shown in Table 3.1. The exceptions are the values for the 

parameters describing the Allee effect (𝐶) and the interaction between negative 

density dependence and rainfall (𝛽3), which were given the following values: 𝐶 = 
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360 (zero value was not included because 𝐶 = 0 did not have an impact on 

mosquito population dynamics) and 𝛽3 =	1e-06. The two values 360 and 1e-06 

were chosen because they gave stable population dynamics in the absence of 

larvicidal intervention. Without intervention, the population stabilised at an 

average of around 700 female adult mosquitoes. The interaction value 1e-06 is 

fixed throughout the simulation, therefore, when mentioning negative density 

dependence, it will mean the parameter 𝛽-, throughout the simulation. Similarly, 

the value for the Allee effect, 𝐶, was not informed by the literature, so, initially, 

its value was set at 360 because it seems to be the neutral value that does not 

interfere with the population dynamics and was later varied to address specific 

research questions as explained below in sections 3.2.4, 3.2.5, and 3.2.6. Since 

one important feature of the Allee effect is its potential increase in stochastic 

extinction, the model was iterated 100 times and calculated the probability of 

extinction and the quantiles of the weekly adult mosquito abundances. The model 

was implemented in R software version 4.3.3 (206) and codes used to produce 

results is available as supplementary information (see Appendix B.7). In the course 

of model analysis in R, different initial population sizes for all stages of the 

mosquito life cycle were used during the analysis. The initial population size for 

both larval stages was set at 1000 larvae, while for the pupal stage, it was 900 

pupae, and for the adult stage, it was 800 mosquitoes. These initial values were 

chosen based on the effect of negative density dependence (𝛽-), with a value of 

5.5e-05 (refer to Table 3.1) estimated from an abundance of 1000 larvae. 
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Figure 3.2: Schematic representation of the model showing stages of the mosquito life cycle 
together with the predictors of the life-history traits. Arrows correspond to the transition from 
one stage to another. Larvae I correspond to early instar larvae, while Larvae II correspond to 
late instar larvae. 

3.2.3 Leslie Matrix for estimation of adult mosquitoes’ population 
growth rate  

The Leslie matrix method is commonly used in ecological studies to predict sizes 

and growth rates of stable stage-structured populations by using individuals’ 

survival probabilities and fecundity rates in different life cycle stages (207). In 

this study, the Leslie matrix was utilised to assess the growth rates of the stable 

adult mosquito populations based on the stage-structured population model 

developed in subsection 3.2.2. Since it is difficult to observe the growth rate 

estimates directly from the simulation when the population stabilises because 

most values will be centred around the same point, the Leslie matrix helps to 

visualise the growth rate estimates as a smooth straight line. The results here will 

help to understand how negative density dependence and Allee effects regulate 

the growth rate of a stable mosquito population over time. 

When written in matrix form, 𝑁(𝑡 + 1) = 𝐿𝑁(𝑡) where L is a Leslie matrix and N 

is the stable population abundances over time such that: 
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3.4 

The maximum eigenvalue of the matrix L is the growth rate of a stable population 

over time. The variables from the system 3.4 are described below in Equations 

3.5-3.8.  

Briefly, the population abundance of new early instar larvae (Nl,1) over time is 

defined as 

𝑁,,-(𝑡 + 1) = 𝑏7𝑁5 
3.5 

Where 𝑏7 is the per capita fecundity rate (i.e., 𝒃𝒓 = exp	(𝜔% + 𝜔-𝑇(𝑖, 𝑡)) and Na is 
the total number of adult mosquitoes.  

Late instar larvae are determined by multiplying survival probability by the total 

abundance of the early instar larvae, such that: 

𝑁,,"(𝑡 + 1) = 𝜌,,-𝑁,,- 
3.6 

Pupae abundance is the product of survival probability and the total abundance 

of the late instar larvae, such that: 

𝑁4(𝑡 + 1) = 𝜌,,"𝑁,," 
3.7 

The number of adults results from multiplying the pupae survival probability by 

their total abundance plus the product of adult survival probability and their 

abundance, such that: 

𝑁5(𝑡 + 1) = 𝜌4𝑁4 + 𝜌5𝑁5 
3.8 

Population growth rate was also obtained directly from the simulation model as 

an average across 100 simulations using the abundance of adult mosquitoes in the 

formula below. 

𝐺𝑟(𝑡) =
𝑁(𝑡 + 1)
𝑁(𝑡)  

Whereby 𝐺𝑟(𝑡) is the population growth rate and 𝑁(𝑡) is the population size at a 

time 𝑡. The theoretical growth rate estimates was initially computed using the 

Leslie matrix and then compared the estimates with those generated directly at 
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each time step of the simulation model. A 5% proportion of female adult 

mosquitoes from the total population of early and late instar larvae (ranging 

between 0-16000) was used to compute the theoretical growth rate. This 

proportion was acquired by running Equations 3.1 and 3.2 at equilibrium, resulting 

in 0 to 800 adults. Since pupae are not density-dependent, their proportion is not 

necessary in the theoretical simulation. Adult mosquitoes are also not density-

dependent, but their proportion is essential for determining the Allee effect.  

3.2.4 Role of negative density dependence and Allee effect in 
regulating mosquito populations 

Given that negative density dependence (𝛽-) and the Allee effect (𝐶) are critical 

parameters for the mosquito population dynamics, they were varied in three ways. 

(i) To illustrate the potential impacts of these parameters on the population 

dynamics, 3 different values (low, medium and high) were set for negative density 

dependence (DD) and the Allee effect (AE) while maintaining the other parameters 

constant at the levels shown in Table 3.1, i.e. values that provide stable 

population dynamics. Negative density dependence was set based on the 

literature value of 5.5e-05 (Table 3.1), corresponding to mid-level (DD2). DD2 was 

then halved to lower level (2.75e-05; DD1) and increased four times to a higher 

level (2.2e-04; DD3). These values were chosen purely to illustrate the types of 

‘extreme’ impacts that high and low levels of DD might have on the population 

dynamics. Similarly, the Allee effect was initially set at 360 as mid-level (AE2, 

Table 3.1), and then AE2 was halved to lower level (180; AE1) and increased two 

times to higher level (720; AE3). AE was increased 2 times as opposed to the 4 

times increase in DD because the impacts of AE on population dynamics are much 

stronger, and extinction could be seen by doubling the effect. The table of D1-3 

and AE1-3 combinations is provided in the supplementary information (see 

Appendix B.4). (ii) To understand the independent effects of both DD and AE on 

population dynamics, the AE was set to 0 against the three levels of negative 

density dependence (i.e., DD1, DD2 and DD3). (iii) Finally, given the unknown 

values for these parameters, all other possible combinations were explored by 

investigating the impact of a wide range of values on the percentage of population 

change by varying negative density dependence and the Allee effect mid-levels 

(5.5e-05 and 360, respectively) across the range of values from 90% reduction 

(>zero effect) to 100% increase (double effect for AE) or 300% (quadruple effect 
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for DD) increase. The percentage of population change was calculated as an 

average across 100 simulations. To avoid confounding impacts with treatment, all 

larvicidal coefficients in Equation 3.2 were set to 0, indicating the absence of an 

intervention. All combinations of variations of negative density dependence vs the 

Allee effect are shown in a table as the supplementary information (see Appendix 

B.4).  

3.2.5 Impacts of negative density dependence and Allee effects on 
sustained and short-termed interventions 

As interventions are intended to change population sizes, the role of negative 

density dependence and the Allee effect were investigated on that change when 

an intervention is applied either in a sustained way (i.e., once application starts 

at week 48, it is continuously applied until the end of the simulation at week 193) 

or short-termed (i.e. single short application lasting 7 months or two short 

applications lasting 3 months each, separated by 3 months) (see supplementary 

information in Appendix B.4) . A short-term intervention regime was chosen 

because it is common for larvicide to be implemented for a few months, e.g., 4 

or 5 and then stop the implementation, with potential re-application again in the 

future. In contrast, the sustained intervention regime is not commonly used due 

to the high cost of resources but serves to illustrate whether the intervention 

would have the potential to eliminate the population by preventing the population 

from bouncing back after suppression. For this, the parameters 𝛽- and 𝐶 were set 

based on similar values as described in the previous subsection 3.2.4. The only 

difference from subsection 3.2.4 is that in this subsection, the larvicidal 

coefficient in Equation 3.2 was set to a non-zero value (as shown in Table 3.1). To 

illustrate the impacts of the intervention on the population dynamics, DD2 and 

AE2 were varied to explore the wider trade-offs between intervention and DD or 

AE by exploring the probability of population extinction through varying DD or AE 

and intervention from 90% reduction to 100% increase. The probability of 

extinction was calculated as an average across 100 simulations. All combinations 

of variations of negative density dependence vs the Allee effect, negative density 

dependence vs larvicides and the Allee effect vs larvicides are shown in separate 

tables as the supplementary information (see Appendix B.4). 
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3.2.6 Trade-offs between negative density dependence and the 

Allee effect 

Since the real values of negative density dependence and the Allee effect are 

unknown, negative density dependence and the Allee effect sizes were varied 

from 90% reduction to 100% increase on their values set in Table 3.1 (i.e., DD2 and 

AE2 as described in section 3.2.4), and estimate the population growth rates as 

an average over 100 simulations. That is to say, the simulation was iterated 100 

times, recording the average growth rate over these simulations for each 

combination of negative density dependence and the Allee effect. A heatmap was 

used to show the population growth rate across wards for each percentage change 

in both negative density dependence and the Allee effect. For illustration, the 

simulation was repeated under four intervention regimes as described in the 

previous subsection 3.2.5, i.e., (a) without an intervention, (b) double short-

termed, (c) single short-termed and (d) sustained intervention (as described in 

section 3.2.5 and Appendix B.4). Similar process as described in this subsection 

was repeated to calculate probability of extinction (see more details in Appendix 

B.6). 
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Table 3.1: Description and parameter values used in the simulation model, with respective literature sources. Only estimates per week were used during the 
simulation. How original biological values converted to per week values are shown in Appendix B.8. 

 

Paramet

er 

 Parameter descriptions Literature 

estimates 

Estimates 

per week 

Original 

(biological) values 

Reference 

𝛽% Logit larval survival when no rainfall and larvicide and 

centred temperature is 00C 

-1.39-1.39/7-

14days 

-0.16 0.955/day (165,208) 

𝛽- Effect of negative density dependence on larval survival  

i.e., DD per a thousand larvae 

5.5e-05/week 5.5e-05 5.5e-05/week (165) 

𝛽" Ratio of the interaction effect and negative density dependence 𝛽3 𝛽-⁄  𝛽3 𝛽-⁄  per week - 

𝛽/ Effect of rainfall on larval survival 0.0025/11days 0.0015 0.0025/11days (209) 

𝛽0 Effect of larvicides on larval survival 0.057/day 0.25 0.25/week (210) 

𝛽1 Effects of temperature on larval survival 0.0043/3days 0.01 0.0043/3days (211) 

𝛽3 Interaction effect between larvae and rainfall - 1e-06 1e-06/week - 

𝜔% Log fecundity when centred temperature is 0 0C 4.19-5.67/cycle 5.2 180/cycle (212,213) 

𝜔- Impact of temperature on the fecundity  - 0.01 - - 

𝜆% Logit pupal survival at centred temperature 00C  -6.2/day -0.4 0.97/2days (208,214) 

𝛼% Logit adult mosquito survival when temperature is 0 0C  -1.32/3days 0.04 0.95/day (215,216) 

ℎ6 Eggs hatching rate 0.1 per 3 days 0.23 0.78/day (217) 

𝐶 Strength of mate finding Allee effect (i.e., number of 
female adults per thousand larvae) 

- 360 - - 
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3.3 Results  

3.3.1 Adult mosquitoes’ population growth rate  

The stable population growth rate estimates from the Leslie matrix increased with 

the size of the mosquito population until it reached a maximum size, after which 

it declined as population size increased. When the population was less than 200 

mosquitoes, the growth rate remained below 1, indicating that the Allee effect 

would be expected below this population size. However, when the population 

increased between 200 and 600, the growth rate increased above 1, and as the 

population grew beyond 600, the growth rate decreased (Figure 3.3a). From an 

average of 100 simulations, the estimated population growth rate was initially 

inconsistent with the population size and unstable but was later stabilised for a 

population size bigger than 300. At low population sizes, the growth rate was quite 

high, with values up to almost 2, but it declined sharply as the population size 

increased and eventually stabilised at around 1.1 for population sizes above 300. 

When populations ranged between 150-300 mosquitoes, growth rate estimates 

were frequently below 1, which could be caused by either the Allee effect or the 

populations’ instability. Additionally, the growth rate seemed to stabilise more, 

around 1.1 for a population size between 650 and 800 mosquitoes (Figure 3.3b). 

The fluctuations in growth rates in Figure 3.3 may be due to the high variability 

in the simulation model, which arises as the current population is influenced by 

the previous population and unique weekly rainfall and temperature. In contrast, 

the Leslie matrix did not have this variability; instead, total larvae and adults 

were pre-defined, with consistent average rainfall and temperature across weeks, 

creating conditions to maintain stable populations. 
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Figure 3.3: Population growth as estimated through (a) a Leslie matrix method and (b) direct 
calculations from the simulation model (i.e., an average across 100 simulations all initialised 
at 800 female mosquitoes). The dashed line indicates the threshold of the population growth 
rate where the population declines when the rate is below this point.  

3.3.2 Role of negative density dependence and Allee effect in 
regulating mosquito populations 

While in isolation, lower levels of negative density dependence and the Allee 

effect did not impact the population size in the long term, their combination at 

higher levels tended to accelerate the population decline. With the constant Allee 

effect AE2, lower- and mid-levels of negative density dependence (i.e., DD1 and 

DD2) resulted in similar population trajectories with initial 104.6% and 29.2% 

increase followed by a 12.6% and 13.3% decrease before stabilising the population 

(Figure 3.4a, black and blue lines). However, higher levels of negative density 

dependence (DD3) and the Allee effect (AE2) resulted in a 100% reduction (i.e., 

extinction) in the mosquito population just after the 37th week (Figure 3.4a, black 

and blue lines). Moreover, at DD3 and without the Allee effect (i.e., AE=0), the 

population declined 90% before stabilising again to an average of 180 mosquitoes 

and could not decline to extinction by the end of the simulation (Figure 3.4a, red 

line).  
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Furthermore, the Allee effect levels AE1, AE2 and negative density dependence 

level (DD2) resulted in similar population dynamics with initial decreases of 7% 

and 6.9%, respectively, before populations stabilised at an average of 700 

mosquitoes (down from the initial population size of 800) (Figure 3.4b, black or 

blue lines). On the other hand, at AE3 and DD2, the population initially declined 

by 41.7% before stabilising at an average of 569 mosquitoes (Figure 3.4b, black or 

blue lines). In contrast, without negative density dependence (i.e., DD=0), 

population size increased and exploded irrespective of the Allee effect levels (as 

shown in Appendix B.5). When negative density dependence increased by more 

than 100% and the Allee effect by 50%, population size declined to extinction 

(Figure 3.4c, blue colour). Trajectories for DD1&2 at AE=0 were not shown here 

because they have the same dynamics as DD1&2 at AE=360, and for similar 

reasons, other combinations (i.e., DD1&2 vs. AE1&2) were not shown. 

 
Figure 3.4: Role of DD and AE in regulating mosquito populations without a larvicidal 
intervention. (a) Three DD levels, 2.75e-05, 5.5e-05 and 2.2e-04, were used, keeping Allee 
effects constant at 360. The red colour corresponds to DD3 when AE=0, (b) Three AE levels, 
180, 360 and 720, were used, keeping DD constant at 5.5e-05, and (c) Percentage of population 
change (relative to the initial size of 800 mosquitoes) after 193 weeks when DD and AE mean 
values 5.5e-05 and 360 were varied across a range of values from 90% reduction to 100% or 
300% increase. The percentage of population change was averaged over 100 simulations. 
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3.3.3 Impacts of negative density dependence and Allee effects on 

sustained and short-term interventions 

As the duration of intervention increased, the mosquito population decreased in 

all studied scenarios, but populations only tended to go extinct in the presence of 

the Allee effect. With the constant Allee effect (AE2) and short-termed 

intervention (i.e., single short application), the mosquito population was reduced 

by 39.2% and 74.6% at DD1 and DD2 but bounced back to similar or higher levels, 

respectively, while at DD3, the population was declined to extinction (Figure 

3.5c). With two short applications, the mosquito population was reduced by 39.5% 

and 55.9% in the first application and 23.6% and 46.7% in the second application 

at DD1 and DD2, respectively, while in at DD3, the population declined to 

extinction (Figure 3.5e). The bouncing-back behaviour of the population was 

solely caused by negative density dependence. When larvicide was applied in a 

sustained way from week 48 to the end of the simulation in week 193, the 

mosquito population initially declined by 35.6% at DD1 but then stabilised at an 

average of 1042 mosquitoes throughout the intervention; however, the population 

declined to extinction at DD2 and DD3 (Figure 3.5a). With sustained intervention 

and constant negative density dependence DD2, the mosquito population declined 

by 32.3% at AE1 before declining to extinction by the end of simulation at AE2 and 

AE3 (Figure 3.5b). With a single short application at AE1 and AE2, the population 

size declined by 38.9% and 76.3% but then bounced back to similar or higher levels 

(Figure 3.5d). In contrast, at AE3, population size declined to extinction, and there 

was no rebound. With two short applications, the population declined by 55.8%, 

60.4% and 99.3% at AE1-3 and bounced back to similar or higher levels in the first 

short application. Contrarily, in the second short application, population size 

declined by 16.1% and 46.6% at AE1 and AE2 before declining again to extinction 

at A3 (Figure 3.5f).  

Moreover, the probability of extinction increased with an increasing larvicidal 

effect, negative density dependence and the Allee effect. Keeping the Allee effect 

constant and varying negative density dependence and larvicidal effect across a 

range of values from 90% reduction to 100% increase, the probability of extinction 

ranged between 0 to 1 (Figure 3.6a). However, only increasing negative density 

dependence and larvicidal effect by 50% each while keeping the Allee effect 

constant drove the population to extinction. Similarly, keeping density 
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dependence constant and varying the Allee effect and larvicidal effect across a 

range of values from 90% reduction to 100% increase, the probability of extinction 

ranged between 0.25 to 1 (Figure 3.6b). Surprisingly, increasing the Allee effect 

by more than 50% while setting the negative density dependence constant would 

drive the population to extinction even if the larvicidal effect was reduced by 

50%. Similarly, given constant negative density dependence, the Allee effect at a 

100% increase would require a small larvicidal effort (intervention reduced by 90%) 

to drive the population to extinction.  

 
Figure 3.5: Mosquito populations regulated by (a, c, e) negative density dependence at levels 
2.75e-05, 5.5e-05 and 2.2e-04 setting the Allee effect (C) constant to 360 and (b, d, f) Allee 
effects at levels 180, 360 and 720 keeping negative density dependence constant at 5.5e-05. 
Larvicidal treatment was applied in three regimes, (a, b) sustained larvicidal application, (c, 
d) a single short application and (e, f) two short applications. 
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Figure 3.6: Heat maps showing the probability of extinction (averaged over 100 iterations) by 
week 193 after varying across a range of values from 90% reduction to 100% increase in 
sustained larvicidal effect size, 0.25, and (a) negative density dependence effect size, 5.5e-05, 
setting Allee effect constant or (b) Allee effect size, 360, setting negative density dependence 
constant.  

3.3.4 Trade-offs between negative density dependence and Allee 
effect in the mosquito population regulation 

As negative density dependence and the Allee effect increased, the population 

growth rates decreased, but the Allee effect tended to accelerate population 

decline (Figure 3.7). While negative density dependence with less Allee effect 

(i.e., 90% reduction) could not lead to population growth rates<1, higher levels of 

Allee effect with less negative density dependence (i.e., 90% reduction) caused 

mosquito population rates to decrease below one, especially with a sustained 

intervention (Figure 3.7b-d). With lower levels of both negative density 

dependence and the Allee effect (i.e., mean values 5.5e-05 and 360, respectively, 

reduced by 90%), the population was high, making the growth rates increase above 

1, with and without larvicidal intervention (Figure 3.7a-d). Without intervention, 

the population growth rate could not decrease below 1 unless negative density 

dependence and the Allee effect were both increased by at least 50% (Figure 

3.7a). With two short applications of intervention, only a 10% increase in negative 

density dependence and the Allee effect could drive the population growth rate 
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below 1 (Figure 3.7b). Similarly, with a single short application of intervention, 

only keeping negative density dependence and the Allee effect constant could 

drive the population down at a growth rate below 1 (Figure 3.7c). In Figure 3.7d, 

the mosquito population growth rate declined to less than 1 without any change 

in negative density dependence and the Allee effect (i.e., 5.5e-05 and 360, 

respectively). However, with nearly no negative density dependence, the 

population growth rate slowly declined below 1 if and only if the Allee effect was 

doubled in the presence of single or double short applications of intervention 

(Figure 3.7b, c). Moreover, when negative density dependence was increased by 

at least 50%, population growth rates declined below 1 even before reaching a 50% 

increase in the Allee effect if and only if there is an intervention (Figure 3.7b-d). 

Furthermore, when negative density dependence and the Allee effect were both 

increased by at least 50%, their combination drove the growth rate to 0 (Figure 

3.7b-d). However, the presence of a sustained intervention accelerated 0 growth 

rates and made the combination of negative density dependence and the Allee 

effect become a threat to mosquito populations (Figure 3.7d). 
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Figure 3.7: Heat maps showing the population growth rates averaged over 100 simulations 
for each percentage increase or decrease in negative density dependence and the Allee effect 
mean values, 5.5e-05 and 360, respectively; (a) without intervention, (b) with two short 
applications of intervention, (c) single short application of intervention and (d) with sustained 
intervention. 

 

3.4 Discussion 

Understanding the interplay between vector control interventions and malaria 

mosquito population dynamics is key to making informed decisions and 

accelerating malaria elimination. While in isolation negative density dependence 

and the Allee effect did not impact mosquito population in long run, their 

combination accelerated mosquito population decline. The role of biological 

processes (i.e., negative density dependence and Allee effects) in regulating 

mosquito populations may be useful in determining what kind of intervention is 

needed, how much (i.e., the intensity needed) and when the intervention should 

be deployed. Sustained application of interventions can activate Allee effects and 

increase the chance of mosquito populations to extinct while short application of 

intervention can lead to a population rebound driven by negative density 

dependence. As both negative density dependence and the Allee effect increase, 

population growth rates decrease but Allee effect tends to accelerate population 

decline with increase in duration of intervention. This trade-offs between 

negative density dependence and the Allee effect in the regulation of mosquito 

populations provide insights for optimising vector controls. Such insights include 

the possibility that vector control measures would require fewer resources to 

achieve large outcomes and the significance of the frequency and duration of 

larvicidal applications on mosquito population dynamics. To my knowledge, this is 

the first study to comprehensively evaluate the importance of negative density 

dependence and the Allee effect and their implications for vector control and 

malaria elimination. 

The estimated population growth rates from the Leslie matrix were low at lower 

densities and increased with an increase in population density before stabilising 

and then decreasing again at higher densities. The implications of the increase 

and decrease in growth rates due to densities suggest that a better time to target 

mosquitoes with interventions is when their density is lower or declining; this 

approach may help push the population closer to extinction, rather than waiting 
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until it stabilises. A reduction in population sizes at high densities is important for 

vector control as it may facilitate the conditions necessary for the Allee effect to 

occur. Typically, a population cannot grow indefinitely because the negative 

density dependence effect eventually regulates its growth, which is consistent 

with results from this study, where populations exploded when density 

dependence was set to zero. A population with no negative density dependence 

may be unrealistic (218,219), especially for mosquitoes, as the survival and 

development rates of some of their immature stages (e.g., larvae) depend on their 

population density (90). Zero negative density dependence clearly implies that 

population regulation is not feasible, whether through density or intervention 

measures. A modelling study aimed at quantifying the effect of negative density 

dependence and density independence on population growth rates and survival, 

utilising both simulated and empirical seabird data, has revealed that the model 

incorporating negative density dependence better explained the population 

fluctuations. In contrast, the model based on density independence resulted in 

biased estimates (220). Similarly, another modelling study examined the 

importance of negative density dependence on the development and survival of 

immature mosquitoes using empirical data from the semi-field. Their findings 

showed that models incorporating negative density dependence accurately 

reflected the trends in the data, while those without negative density dependence 

failed to explain the data effectively (95). Amongst the main population regulatory 

processes (i.e., negative density dependence and Allee effects), negative density 

dependence is the most studied (90,93,96,221) to understand its implications in 

regulating malaria mosquito populations at different population densities.  

A study reported that with higher larval density, survival declines (i.e., mortality 

increases) and the development time (time to reach pupal stage) increases (90); 

in turn, there are few survived larvae experiencing less competition, making the 

population size increase again. This aligns with the results of this thesis chapter, 

where populations initially declined to lower- or mid-levels due to negative 

density dependence and short applications of larvicides but subsequently 

rebounded to higher levels than before. These findings suggest that interventions 

such as larvicides should be applied frequently and consistently to effectively 

reduce mosquito populations. Simply applying interventions for a short period and 

then discontinuing the treatment is insufficient to drive populations down to 

extinction. A significant drawback of having short applications of interventions is 
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that when the intervention ceases, the remaining mosquitoes can recover quickly 

due to decreased competition for resources. While negative density dependence 

has been extensively studied (as an example, see these studies (90,93,95,218,222–

224)), Allee effects and their implications for regulating small malaria mosquito 

populations remain largely overlooked. This study is important as it demonstrated 

scenarios where the Allee effect could influence the effectiveness of larviciding, 

and the modelling framework developed here could be utilised to explore these 

effects. This study has shown that a population reduced to low levels can decline 

further to extinction if the Allee effect kicks in; however, without the Allee effect 

or an intervention such as larvicides, the population can recover quickly. Similar 

to what was reported by previous studies, due to less competition for resources, 

when the mosquito population is reduced to low levels (90,93,96), surviving larvae 

grow faster to adulthood, and in the end, mosquito populations bounce back to 

similar or higher levels than what was recorded before. On the contrary, the 

population declined and reached extinction in the presence of sustained 

intervention and higher levels of the Allee effect. However, given the low Allee 

effect, the population grew to similar levels regardless of whether the 

intervention was short-termed once or twice. These results suggest that the Allee 

effect requires lower population sizes to take effect, meaning that interventions 

must not be applied for short terms as doing so may not help to achieve low 

densities. 

Furthermore, without intervention, it was very unlikely to drive the population to 

extinction unless both negative density dependence and the Allee effect were 

strongly operating together (e.g., at DD3 and AE3). However, the presence of a 

sustained larvicidal intervention drove the population to extinction even by mid-

levels of negative density dependence and the Allee effect, which was likely to 

happen as the population declined below the threshold. As reported in (185), a 

population reduced below the threshold will be driven to extinction, assuming 

that this population will not strive to survive. It is important to note that negative 

density dependence or the Allee effect alone did not reduce the population to 

extinction, even when intervention was sustained for a long period. In contrast, 

their combination decreased the population to extinction, which was mainly 

accelerated by the presence of an intervention. Given negative density 

dependence and the Allee effect, sustained intervention was more effective in 

driving the population to extinction than short-term intervention. Generally, given 
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the Allee effect, the probability of population extinction increased with the 

duration of the intervention. This implied that an intervention such as larvicides 

could take advantage of these main regulatory mechanisms, specifically the Allee 

effect, to accelerate malaria elimination and wrap up the endgame. Additionally, 

it is important to note that findings from this study imply that the scale of 

regulatory processes is crucial, whereby only high levels of negative density 

dependence and the Allee effect can lead to smaller population sizes or even 

population extinction. 

Calibrating this model with empirical data is essential for obtaining reliable 

insights into the presence of Allee effects within wild mosquito populations. 

However, the calibration process, which seeks to adjust model parameters to 

accurately reflect real-world observations, faces challenges due to a scarcity of 

experimental data (225). This lack of data is particularly evident in studies focused 

on the Allee effect among mosquito populations, leaving a gap in our 

understanding of these regulatory processes and their implications for malaria 

vector control and elimination efforts. Since we do not know whether the Allee 

effect exists in natural mosquito populations, using empirical data collected from 

low-density settings or conducting Allee effect experiments in the lab, semi-field, 

or field conditions is suggested. Although it was not considered for this study but 

conducting a detailed sensitivity analysis to identify which parameters most 

influence model outcomes would help prioritize data collection and refine the 

model's accuracy. This study provided explanations, predictions, and estimations 

of how Allee effects might impact mosquito populations and their consequences 

on contemporary malaria vector control interventions. Findings from this study 

can also be used as a stepping-stone for researchers to develop more models 

incorporating more Allee effect mechanisms that might be operating in mosquito 

populations to help create ways to study these effects in laboratories, semi-fields, 

or field conditions. All these extensions are suggested for future considerations in 

malaria-related research. 

3.5 Conclusion 

It is crucial to understand the role of ecological dynamics in regulating mosquito 

populations and how interventions could harness these processes for malaria 

vector control and elimination efforts. Learning how to exploit the interplay 
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between vector control interventions and malaria mosquito population dynamics 

is critical to making the difference between mosquito population persistence and 

extinction. There is great potential in understanding these regulatory processes 

to help National malaria control programs and other stakeholders in their efforts 

to eliminate malaria. Therefore, understanding less studied regulatory processes 

like Allee effects can support vector controls by highlighting the resilient and 

vulnerable aspects of the vector’s life cycles to different interventions. If present, 

we can harness Allee effects to accelerate malaria elimination. 
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Chapter 4 Identifying the Allee effects impacting 
Anopheles gambiae populations in the field 

Abstract 
Population dynamics are crucial to understand when and how a population may 

decline and may be pushed to extinction by an intervention. Regulatory 

mechanisms such as Allee effects, are key factors that influence population 

dynamics. However, the presence of Allee effects in natural mosquito populations 

remains largely unknown. This study aimed to assess An. gambiae mosquito 

population dynamics and identify evidence of Allee effects in the field. This was 

achieved by fitting an age-structured population model developed under a 

Bayesian state-space modelling (SSM) framework first to simulated data to 

determine whether our modelling approach could identify Allee effects if they 

exist. Indeed, the model effectively detected Allee effects, with the true values 

falling well within the 95% CI of the posterior predictions. The same SSM was then 

fitted to female adult An. gambiae mosquito data from Dar es Salaam, Tanzania, 

to assess the population dynamics and identify evidence of Allee effects in a 

natural setting. The results showed no evidence of Allee effects, exhibiting a 0% 

decrease in total fecundity. The model defined key life history traits such as 

fecundity, larval and adult survivals and negative density dependence and was 

able to quantify the impact of larviciding on larval abundances, leading to a 10.5% 

reduction in larval survival, while negative density dependence resulted in a 7.4% 

decrease in larval survival at an abundance of 100 larvae. The lack of Allee effects 

could be because the intervention did not reduce the population enough to trigger 

it. Although we could not fully discard the existence of Allee effects, their absence 

may require more sustained control efforts when population sizes are small and 

difficult to measure. If Allee effects exist, fewer resources could result in better 

outcomes, similar to deploying more resources. 
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4.1 Introduction  

Despite the recent stagnation and increase in malaria cases, from 2000 to 2015, 

global malaria deaths decreased by 32% (8). This decline has been attributed 

primarily to vector control interventions such as insecticide-treated bed nets 

(ITNs) and indoor residual spraying (IRS) (2), but other supplementary tools, such 

as larviciding, have had a fundamental role in decreasing malaria infection 

prevalence, especially in urban settings (47). This has led to mosquito populations 

declining to low densities in many places (2,226), but it has been challenging for 

them to be pushed down further to extinction. Population dynamics play a vital 

role in our understanding of when and how the population can decline and be 

pushed to extinction stochastically or by an intervention. The two main population 

regulatory mechanisms are Allee effects, where individuals’ fitness reduces as 

population size declines, leading to a reduced per capita population growth rate 

(227–229), and negative density dependence, which regulates population by 

decreasing individual survival as density increases (90,230). Similar to studies on 

Allee effects in other systems such as mammals (106) and birds (100), the results 

presented in Chapter 3 have shown that sustained malaria control interventions 

can ‘activate’ Allee effects and increase the chance of mosquito populations going 

into extinction, while short application of these interventions has led to 

population rebound driven by negative density dependence. But if present these 

effects are likely to lead to complex trade-offs. Allee effect are difficult to 

directly estimate in the field and so even the existence of Alee effects remains 

unknown. 

It is reasonably well established (90,91,231) that mosquito population sizes vary 

due to competition for resources at the larval stage where the per capita growth 

rate decreases with increasing density, a process known as negative density 

dependence (95). Biological factors such as negative density dependence and the 

Allee effect also play an important role in the seasonal dynamics of vector 

populations as they influence seasonality in vector abundance or act on it through 

their interaction with abiotic factors (222). Understanding the biological 

mechanisms of malaria vectors, such as negative density dependence and the 

Allee effect, is crucial for effectively controlling malaria transmission (135,232). 

The evidence supporting the existence of Allee effects in other species, such as 

natural animal populations, is substantial and increasing. A systematic review 
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study indicated that 77%, 71%, 65%, 71% and 64% out of 25 studies published over 

three decades from 1976 to 2008 (187) for terrestrial arthropods (107,110–113), 

aquatic invertebrates (97,108,109), mammals (104–106), birds (98–100) and fishes 

(101–103), respectively, presented evidence of the existence of Allee effects in 

natural populations. Similarly, the percentage of Allee effects detected in plant 

populations was 82% out of 25 studies (187). The Allee effect, which typically 

operates at low population densities, is caused by various factors, but mate-

finding limitation is the most widespread factor (233), which may also be possible 

to operate in mosquito populations. Mate limitations may lead to a critical 

population size below which the population declines to extinction (193). Although 

quantifying the existence and the magnitude of Allee effects in natural systems 

has been challenging due to data availability and limitations of observing or 

sampling at low population sizes (102), various methods have been used, including 

quantifying fitness parameters (denoted as y): i) the proportion of breeding 

female adults to estimate the probability that a female successfully bred, ii) the 

number of offspring per adult female, (iii) adult or offspring survival and (iv) the 

per capita population growth rate, then use linear model (i.e., y=a + bD) to test 

the relationship of each parameter to the density (denoted as D). In the linear 

model, the parameter b scales the linear term of the fitness function, indicating 

the Allee effect when b>0 (106). Implicitly, similar model (i.e., y=a + bD) could 

be used to identify the Allee effect where y is mortality rates of the prey 

populations and D predator densities (234). Some of these techniques used for 

other species cannot be directly applied to mosquitoes, as they solely focused on 

density as the only factor affecting individual fitness. However, we can adapt 

these methods by incorporating additional factors determining mosquitos' life 

history, such as environmental factors (e.g., rainfall, temperature, and humidity) 

and interventions.  

Suppression of malaria vector populations is feasible if appropriate vector control 

technology is made available and deployed with sufficient coverage. A notable 

historical example is the Tanzanian Pare-Taveta study area in the 1960s, where 

Anopheles funestus disappeared completely after the application of IRS with 

dieldrin. However, five years after the spraying stopped, the mosquito populations 

rebounded and became stable in the region (232). Similarly, in the Santa Isabel 

province in the Solomon Islands, Anopheles koliensis was eliminated through four 

years of comprehensive malaria vector control interventions, including the use of 
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ITNs and IRS (148). In addition to the achievements of core malaria vector control 

interventions, supplementary measures such as larval source management (LSM) 

have contributed to the historic elimination of Anopheles gambiae in various 

regions over different periods. LSM involves the management of water bodies (i.e., 

aquatic habitats) to prevent immature stages (i.e., egg, larva, and pupa) from 

completing their development into adult mosquitoes (55,235,236). LSM 

encompasses four types: habitat modification (e.g., land reclamation), habitat 

manipulation (e.g., flushing of water streams), larviciding, and biological control 

(e.g., introducing predators into aquatic habitats) (236,237). Larviciding, which 

entails the regular application of biological or chemical insecticides into water 

bodies, is the most widely practised form of LSM. Larval control played a crucial 

role in eradicating An. gambiae in Brazil during the 1930s and early 1940s, Egypt 

from early 1942, and the Zambian copper belt between 1930 and 1950 (238). It 

was hypothesised by Killeen et al. that mosquitoes are subjected to the mate-

finding Allee effect, wherein individuals fitness is compromised at lower 

population density or size (232,239). The successful elimination of malaria vectors 

in different geographical settings (148,232,238) suggests that the effects of vector 

control interventions could have been enhanced by Allee effects (239). However, 

it is currently unknown whether Allee effects accompanied these malaria 

elimination instances in all these settings, but it is possible that these effects 

accelerated vector extinctions. 

In this Chapter, the overall aim was to assess An. gambiae mosquito population 

dynamics and identify the existence of Allee effects in the field by investigating 

key regulatory mechanisms that might emerge from a large-scale vector control 

intervention in Dar es Salaam, Tanzania. The dataset from this larviciding control 

programme in Dar es Salaam is ideally suited for this aim because vector 

abundance in these settings was low, but malaria transmission persisted at low 

levels. Additionally, throughout this larviciding programme, malaria prevalence 

decreased from 28% to less than 2% (41,142), indicating a reduction in vector 

population abundance, thus, suggesting that Allee effects could be identified from 

this dataset from Dar es Salaam. Specifically, the aim was to address the following 

research questions: (i) Can the Bayesian modelling framework adapted from 

Chapter 3 identify Allee effects, given the available field data characteristics? (ii) 

Do Allee effects exist in natural An. gambiae mosquito populations in Dar es 
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Salaam? (iii) How does a larvicidal intervention impact the population dynamics of 

An. gambiae mosquitoes in Dar es Salaam? To address the research aims, a 

Bayesian state-space model (SSM) was first fitted to simulated data and then to 

field data. The simulated data was used to test if the SSM can identify Allee effects 

while the field data was consequently used to identify the existence of Allee 

effects in natural mosquito population and assess the impact of larvicidal 

intervention on population dynamics of An. gambiae mosquitoes in Dar es Salaam.  

 

4.2 Methods 

4.2.1 Large-scale larvicidal control programme in Dar es Salaam 

The programme targeted 15 wards across 3 municipalities over three phases (time 

periods) spanning 193 weeks from early 2005 to late 2008 (Figure 4.1a). Baseline 

data was collected over a total of 47 weeks, with larvicide applications 

commencing in the 48th week. Larviciding activities took place in the lowest 

administrative unit known as “ten-cell” (even though it may consist of more than 

ten houses, the name “ten-cell” has been commonly used). Several ten-cell units 

form a higher administrative unit called mtaa (the plural is mitaa, a Swahili word 

for streets), and the ward is made up of more than one mtaa. In the first phase, 

larvicidal treatment was administered in three wards, which increased to nine 

wards in the second phase and ultimately expanded to cover all 15 wards in the 

final phase (Figure 4.1b). The specific larvicides used, their quantities, and the 

duration of the intervention are detailed elsewhere (41,47,240). In the model, 

larvicide is represented as a binary variable where 1 indicates the presence of 

larvicide and 0 indicates its absence. 

4.2.2 Longitudinal surveillance of An. gambiae in Dar es Salaam 

Adult female An. gambiae were collected weekly. Each week, Human Landing 

Catches (HLCs) (82,241), the gold standard method for catching female adult 

mosquitoes seeking humans for blood feed, were conducted in each mtaa across 

wards to sample female adult mosquitoes before and during the intervention. The 

total number of mtaa for each ward is provided in Appendix C.2 as supplementary 
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information. Figure 4.1 shows the total number of mosquitoes caught in all traps 

(a) per ward and (b) across wards. 

4.2.3 Simulated data: adult female An. gambiae population 
abundance 

The stage-structured population model developed in Chapter 3 was adapted to 

generate adult female mosquito population abundance data mimicking the 

dynamics of the long-term entomological surveillance data collected in Dar es 

Salaam, Tanzania. To simulate the data, the parameter values were fixed to those 

in Table 4.1. As in the previous chapter, most of these were taken from the 

literature, including negative density dependence. The exception was Alee 

effects, which was given a neutral value that does not interfere with the 

population dynamics (i.e., a value that gave stable population dynamics in the 

absence of larvicidal intervention). For the time period, the number of wards and 

larvicidal phases, see more descriptions in subsection 4.2.2 and Figure 4.1. From 

this model, several datasets were generated (while keeping the ‘observed data’ 

constant to match with real observed data from the field) with varying proportions 

of observations (pobs) from 0.0001 to 1. For illustration, results section will 

include pobs values of 0.01, 0.1, 0.5 and 1. True population abundances were 

allowed to vary with pobs, while negative density dependence and the Allee effect 

were also scaled to maintain consistency with data to observe from the simulation. 

These selections in the pobs were made due to our lack of knowledge regarding 

the actual mosquito population size, which also prevents us from determining the 

proportion we observe during surveillance. Since population size is a crucial factor 

for understanding negative density dependence and Allee effects, it was aimed to 

ensure that these parameters could be quantified irrespective of the pobs. 

4.2.4 Environmental data 

Daily rainfall and temperature data per ward from 2005-2008 were acquired from 

the Soil and Water Assessment Tool (205). This rainfall data was used to generate 

two rainfall variables for each ward: i)  average weekly rainfall to account for 

‘current’ conditions, and ii) 2-week cumulative rainfall to account for the 

availability of larval habitats due to the amount of water. Similarly, the daily 

temperature was averaged into the weekly temperature to match the time unit in 

the model (see subsection 4.2.5.1). Since there was little to no difference in 
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temperatures between wards the mean weekly temperature was assumed to be 

equivalent across all fifteen wards in urban Dar es Salaam. 

 
Figure 4.1: Monthly mosquito population abundance data showing (a) the sum of all traps per 
ward and (b) the sum of all traps across wards before and during a large-scale larvicidal 
control programme conducted from 2004 to 2008 in three administrative municipalities of Dar 
es Salaam, Tanzania.  

4.2.5 Bayesian state-space models (SSMs) 

To explore the mosquito population dynamics, a structured population model was 

used to implemented under a Bayesian state-space modelling (SSM) framework. 

The SSM has two components: the process model and the observation process 

model. The process model of the SSM describes the population dynamics of the 

mosquitoes through a simplified mosquito life cycle (see Figure 4.2) and is an 

extension of the stage-structured population model developed in Chapter 3. The 

observation model of the SSM describes the stochastic process of the female adult 

mosquito data collection per trap (i.e., mtaa) per ward. 

4.2.5.1 Biological process: Mosquito life cycle 

A simple mosquito life cycle was defined where adult female mosquitoes lay eggs 

that hatch into early instars, which then develop into late instars. Late instars 

become pupae and eventually emerge as adult mosquitoes. Each life cycle stage 
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is linked through or influenced by factors such as fecundity and larval and adult 

survival, as illustrated in Figure 4.2, and lasts one week. This is an approximation 

that results in a full life cycle (from being eggs to laying eggs) lasting 4 weeks. 

Specifically, 

Adult survival 

Adult female (𝑁5) survival follows a binomial process and is defined using a linear 

function 𝑆5, at ward 𝑖 and week 𝑡. The weekly survival probabilities (r5) were 

defined through an inverse logit transformation of a linear function 𝑆5(𝑖, 𝑡) such 

that: 

𝜌5(𝑖, 𝑡) =
exp(𝑆5(𝑖, 𝑡))

1 + exp(𝑆5(𝑖, 𝑡))
. 

4.1 

Specifically, 𝑆5(𝑖, 𝑡) is written as a linear function of weekly mean log odds of adult 

survival and a random effect such that: 

𝑆5(𝑖, 𝑡) = 𝛼% + 𝜀* . 
4.2 

𝜀*~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎9). 
4.3 

where 𝛼% is the mean logit (i.e., log odds) of adult survival. The prior distribution 

of adult survival (i.e., inverse logit of 𝛼%) was beta with shape values 12.2 and 

11.8. Throughout the text, mean survival values were set as shown in Table 4.1 

(which were obtained from literature) and then assigned beta priors to these 

values before transforming them into log odds (refer Appendix C.6 for a more 

detailed description of this transformation). The same prior means and variance 

ere then used to calculate shape and rate parameters for beta and gamma 

distributions as detailed in Appendix C.6. The prior distribution of error term 𝜀 at 

ward 𝑖 was normal with a mean of 0 and a precision 𝜎9. The prior distribution of 

𝜏9 was gamma with a shape and rate of 0.01. The random effect was added in 

Equation 4.2 to account for unknown variability in the longitudinal surveillance 

data of adult female An. gambiae mosquito abundance between wards such as 

HLC volunteers, environmental factors, or source of blood meal. The prior 

distributions for all parameters in the model, as well as their biological 

explanations, are provided in Table 4.1. 
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Pupal survival  

Pupae survival follows a binomial process, where the weekly pupal survival 

probability (r4) was determined through an inverse logit transformation of 𝜆%, 

which is structured similarly to Equation 4.1. Specifically, 𝜆% is the mean logit of 

pupal survival. The prior distribution of mean larval survival (i.e., inverse logit of 

𝜆%) was beta with shape values 9.2 and 13.8. The random effect was not included 

due to the absence of field abundance data for pupae, which would have required 

a random term to capture the variations between wards and also to avoid over-

parameterisation.  

Early instar larval survival 

The survival of early instars follows a binomial process and is defined using a linear 

function 𝑆,,-, in ward 𝑖 at week 𝑡. The weekly early instar larval survival probability 

(r,,-) was defined through an inverse logit transformation of a linear function 

(𝑆,,-(𝑖, 𝑡)) and was structured similarly to Equation 4.1. Specifically, 𝑆,,-(𝑖, 𝑡) is 

written as a function of cumulative rainfall (Q), the total larval density (𝑁,,-+𝑁,,"), 

current rainfall (𝑅), larvicides (𝐿𝐴) and temperature (𝑇) such that:  

𝑆,,-(𝑖, 𝑡) = 𝛽% − 𝛽-(1 −
𝛽"𝑄(𝑖, 𝑡)
max(𝑄) )(𝑁,,-

(𝑖, 𝑡) + 𝑁,,"(𝑖, 𝑡)) − 𝛽/𝑅(𝑡) − 𝛽0𝐿𝐴(𝑖, 𝑡)

+ 𝛽1𝑇(𝑡). 
4.4 

where 𝛽% is the mean logit of larval survival. The prior distribution of mean early 

instar larval survival (i.e., inverse logit of 𝛽%) was beta with shape values 22.4 and 

26.3. The parameters 𝛽- and 𝛽" described the impact of negative density 

dependence on larval survival, which is mainly regulated by cumulative rainfall 

and larval density. Specifically, 𝛽- is the effect of larval density (𝑁,,-+𝑁,,") on 

larval survival, with survival declining at higher densities. The prior distribution 

of 𝛽- was gamma with shape 3.03 and rate 5500. These larval densities are driven 

by the amount of cumulative rainfall, with 𝛽" representing a probability that 

captures a potential interaction between the availability of larval habitats and 

larval density. Here, larval habitat availability is defined as cumulative rainfall 

(𝑄) over the past week. For example, if both 𝑄 (i.e. 331 mm of rain) and 𝛽" (i.e., 

equals 1) are at maximum, the term 1 − '":(*,<)
>?@(:)

 becomes zero, meaning there are 
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plenty of habitats available, leading to no negative larval density dependence. To 

allow a positive impact on the strength of negative density dependence, the prior 

distribution of 𝛽" was beta with shape values 14 and 6. The effect of current 

rainfall (R) denoted by 𝛽/ was quantified under the assumption that higher R leads 

to flooding, which in turn leads to a wash effect on larvae. The prior distribution 

of 𝛽/ was gamma with shape 1 and rate 100. The parameters 𝛽0 and 𝛽1 are the 

effects of larvicides (𝐿𝐴) and temperature (𝑇) on larval survival, respectively. The 

prior distribution of 𝛽0 was gamma with shape 6.3 and rate 25 while the prior 

distribution of 𝛽1 was normal with a mean of 0.01 and standard deviation of 0.07. 

Late instar larval survival 

The survival of late instars follows a binomial process and is defined using a linear 

function 𝑆,,", in the ward 𝑖 at week 𝑡. The weekly late instar larval survival 

probability (r,,") was defined through an inverse logit transformation of a linear 

function (𝑆,,"(𝑖, 𝑡)) and was structured similarly to Equation 4.1. Specifically, the 

late instar linear function is written similarly to the linear function of early larval 

instars (Equation 4.4) i.e., 𝑆,,-(𝑖, 𝑡) = 	 𝑆,,"(𝑖, 𝑡). The larval development stage 

(which roughly lasts for a maximum of two weeks) was divided into two one-week 

stages to align with the model development that assumes one week for each stage 

of the mosquito life cycle. This division allows for the assumption that the survival 

functions of early and late instar larva stages are the same. This means that early 

and late larval survival rates share all parameters. 

Fecundity  

The adult mosquito fecundity makes the transition from adult mosquitoes to eggs 

and follows a Poisson process with a mean of the number of eggs laid (𝑏) in a ward 

𝑖 at week 𝑡, defined through an exponential transformation and regulated by total 

adult mosquitoes (𝑁5(𝑖, 𝑡)) such that: 

𝑏(𝑖, t) = 0.5 ∗ exp	(𝜔%) ∗ 𝑁5(𝑖, t) ∗
𝑁𝑎(𝑖, 𝑡)

𝐶 + 𝑁5(𝑖, 𝑡)
. 

4.5 

where 𝜔% corresponds to the log of per capita fecundity, i.e., log of number of 

eggs laid per female mosquito. The prior distribution of 𝜔% was gamma with shape 

4.59 and rate 0.02. The term A5(*,<)
BCA#(*,<)

 corresponds to the Allee effect, which here 
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is constructed as a probability of mating, where the number of female adults 𝑁5, 

was scaled by a constant 𝐶 (hereafter Allee effect parameter). This means that, 

the greater the value of 𝐶 relative to 𝑁5, the lesser the mating probability, leading 

to a lower number of total eggs being laid (i.e., large Allee effects). The prior 

distribution of 𝐶 was gamma with shape 1.44 and rate 0.04.  

Transitions between life cycle stages 

Briefly, the mosquito life cycle begins with eggs hatching into early instar larvae, 

which then develop into late instar larvae and eventually into pupae before 

emerging into adult mosquitoes (Figure 4.2). To determine the total number of 

male and female mosquitoes in the population, a 50:50 sex ratio was assumed. To 

model the female mosquito population specifically, the total number of mosquito 

eggs laid per week (total fecundity) was halved. It was also assumed that only a 

proportion (ℎ6) of eggs hatch into early instars. The prior distribution of ℎ6 was 

beta with shape values 7.9 and 26.5. The resultant survival probabilities (Equation 

4.1) and total fecundity (Equation 4.5) were used to obtain population abundances 

(which were used as one of the key model outcomes) for larvae (Equations 

4.6&4.7), pupae (Equation 4.8) and adult mosquitoes (Equation 4.9). Note that 

the survival probabilities will also incorporate the development rate, meaning that 

surviving individuals move to the next stage. 

Specifically, abundances of early instar larvae (Larvae I) were from Poisson 

distribution with mean ℎ$ ∗ 𝑏 such that: 

𝑁,,-(𝑖, 𝑡 + 1)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(ℎ6 ∗ 𝑏(𝑖, 𝑡)). 
4.6 

Abundances of late instar larvae (Larvae II) were from a binomial distribution 
with mean 𝑁%,' and probability 𝜌%,' such that: 

𝑁%,((𝑖, 𝑡 + 1)~𝐵(𝑁%,'(𝑖, 𝑡), 𝜌%,'(𝑖, 𝑡)). 
4.7 

Abundances of pupae were from a binomial distribution with mean 𝑁%,( and 

probability 𝜌%,( such that: 

𝑁)(𝑖, 𝑡 + 1)~𝐵/𝑁%,((𝑖, 𝑡), 𝜌%,((𝑖, 𝑡)0. 
4.8 

Total abundances of female adult mosquitoes were from binomial distribution 

with means 𝑁) and 𝑁* and probabilities 𝜌4 and 𝜌5, respectively, such that: 
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𝑁5(𝑖, 𝑡 + 1)~𝐵(𝑁5(𝑖, 𝑡), 𝜌5(𝑖, 𝑡)) + 𝐵(𝑁4(𝑖, 𝑡), 𝜌4(𝑖, 𝑡)). 

Probability 𝜌5 defines adults that remain in the system after surviving, and these 

individuals join those transitioning into adulthood from the pupal stage. 

 
Figure 4.2: Schematic of the life cycle model. At each life stage (i.e., adults, Larvae I, Larvae 
II and Pupae) mosquitoes transition from one stage to another (arrows) by surviving and some 
of these transitions (i.e., Larvae I to Larvae II and Larvae II to Pupae) are influenced by 
ecological factors. The Greek letters reflect the parameters in the model.  

4.2.5.2 Observational processes 

The observed adult mosquito abundance (dat𝑁5) was modelled as a Poisson process 

with the mean defined as the number of adults 𝑁5 in the ward i at time t weighted 

by the sampling effort such that 

dat𝑁5(𝑖, 𝑡)~𝑃𝑜𝑖𝑠1𝑝𝑜𝑏𝑠 ∗ 𝑛_𝑡𝑟𝑎𝑝𝑠(𝑖) ∗ 𝑁5(𝑖, 𝑡)2. 
4.9 

Where pobs refer to the proportion of mosquitoes caught from the true population 

size of female adult mosquitoes in each ward. Here, only a proportion of female 

adult mosquitoes are typically trapped. In the field data, pobs (i.e., probability 

of observation or the ratio between observed and simulated population size) were 

fixed at 0.1, meaning we observed 10% of the true field population. Unfortunately, 

we do not know the true size of the population, so this number was chosen to 

minimise pobs impact on model convergence and goodness of fit (i.e., we observe 
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the dynamics better with pobs=0.1). While highest values (pobs>0.1) could 

enhance convergence and overall model fit, they might not be realistic in the field 

(e.g., if pobs=1 indicates that we observed entire field population, which is 

unrealistic). Conversely, setting low values (pobs≤0.01) results in poorer model 

convergence and fit. Although this is a shortcoming of this approach, our key 

results do not seem to be very sensitive to this. In addition, for some results, such 

as relative change in life history traits, this becomes less important. The remaining 

variable, n_traps, is the number of traps per ward. In the field data, negative 

density dependence and the Allee effect were not scaled for pobs (which is 

different from the approach taken with the simulated data) because we do not 

know the actual size of the field population, as we are sampling from an unknown 

population: however, they were both assigned wider priors, which would include 

the scaled values. 
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Table 4.1: Description of prior and posterior distributions. For each parameter in the model, a brief description of its biological meaning, the mean values 
obtained from the literature, and how these were transformed first into weekly values (the time unit of the SSM model) and then as parameters of their 
corresponding prior distribution are provided. Finally, for the posterior distributions, the mean and 95% credible intervals (CIs) are provided, and to maintain 
biological meaning, parameter values representing mean survival were transformed into logit (i.e., log odds of survival) using logit function.  

Parameter  Prior distribution  Posterior distribution 

No

tat

ion 

 Description Distributio

n 

Original 

(biologica

l) values 

Mean  

(per 

week) 

SD Refer

ence  

Additional information regarding the 

choice and selection of prior 

distributions 

Mean SD 95% CI 

𝛽% Logit of larval 

survival  

Beta(22.4, 

26.3) 

0.95/day 0.46 0.07 (165) Provides survival information from 

the same An. gambiae complex 

0.377

1 

1.597

e-2 

[0.3487,0.4

115] 

𝛽- Negative density 

dependence on larval 

survival i.e., DD per 

a hundred larvae 

Gamma(3.

03, 5500)  

5.5e-

04/week 

5.5e-4  3.2e

-4 

(88,1

65) 

Two sources provide information 

regarding resource competition 

within Anopheles mosquitoes 

1.211

e-3 

1.886

e-4 

[8.816e-

4,1.614e-3] 

𝛽" Effect of cumulative 

rainfall on negative 

density dependence 

Beta(14,6) 0.9601/d

ay 

0.7 0.1 (88)  Taken from An. funestus because of 

scarcity of same information for An. 

gambiae mosquitoes 

0.977

0  

2.509

e-2 

[0.9095,0.9

997] 

𝛽/ Effect of current 

rainfall on larval 

survival 

Gamma(1,

100)  

0.0025/1

1days 

0.01 0.01 (209,

242) 

Quantify how current rainfall 

influences flushing, mortality, and 

ejection on different larvae stages of 

An. gambiae 

7.094

e-5 

7.106

e-5 

[1.662e-

6,2.530e-4] 
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𝛽0 Effect of larvicides 

on larval survival 

Gamma(6.

25,25)  

0.25/wee

k 

0.25  0.1 (210) Provide information on An. gambiae 

and how larvicide affects the survival 

0.172

7 

3.266

e-2 

[0.1114,0.2

398] 

𝛽1 Effect of 

temperature on 

larval survival 

Normal(0.0

1,0.07) 

0.487/da

y 

0.01  0.07 (88,2

11) 

Temperatures used correspond to 

ones in Dar and describe direct and 

indirect impact on larval survival 

2.985

e-2 

5.247

e-3 

[0.0196,0.0

401] 

𝜔% Log of per capita 

fecundity  

Gamma(4.

6,0.02) 

300/cycl

e 

300  140 (212,

213) 

Used in temperature-dependent 

model to better understand how 

climate determines risk 

164 1.157

2 

[122,215] 

𝜆% Logit of pupal 

survival  

Beta(9.2,1

3.8)  

0.97/2da

ys 

0.4  0.1 (214) Among few studies with information 

regarding An. gambiae pupae survival 

0.205

4 

1.796

e-3 

[0.2025,0.2

096] 

𝛼% Logit of adult 

mosquito survival  

Beta(12.23

, 11.76) 

0.95/day 0.51  0.1 (215) Provides same mean survival of adult 

An. gambiae from two different sites 

0.363

8 

5.491

e-2 

[0.2711,0.4

797] 

ℎ6 Eggs hatching 

probability 

Beta(7.92, 

26.50) 

0.78/day 0.23  0.07 (217) Among few studies with information 

on egg hatching probability 

0.173

3 

1.349

e-2 

[0.1511,0.2

024] 

𝐶 Strength of mate 

finding Allee effect 

i.e., number of 

female adults per a 

hundred larvae 

Gamma(1.

44, 0.04) 

- 36 30 - Provides stable population when 

there is no larvicidal intervention 

0.010

1 

8.480

e-3 

[0.0007,0.0

323] 
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4.2.6 Model fitting and outputs.  

The model was fitted to simulated data and then to field data of An. gambiae 

mosquitoes from Dar es Salaam using JAGS software (243) within R software 

through the R2jags and jagsUI packages (244,245) (JAGS codes are provided in 

Appendix C.15 as supplementary information). To achieve convergence, the model 

was run with 3 chains for 2M iterations, a burn-in of 1M, keeping every 1250th 

iteration for memory-saving reasons. Chain convergence was visually assessed 

using trace plots, histograms of prior and posterior distributions, effective sample 

sizes and the Gelman-Rubin convergence diagnostic using Rhat (where Rhat<1.1 

means convergence; see Appendix C.7, Appendix C.8, Appendix C.11 and Appendix 

C.12) (245,246). Prior and posterior means and 95% credible intervals for all 

parameters are provided in Table 4.1. Posterior predictive check was conducted 

using autocorrelation as a summary statistic by comparing the autocorrelations of 

observed (i.e., the simulated data) and posterior predictions (predNa). 

Autocorrelation is an important summary statistic for time series analysis because 

it shows repeating trends within the data. The autocorrelations were computed 

using the R function “acf()”. Autocorrelation shows the relationship between a 

variable (here, the weekly adult female mosquito abundance) and itself over a 

certain period of time. When plotted together, a good model fit would be achieved 

if the autocorrelations of observed data fall within that of predicted data. The 

model can estimate parameters if true parameter values used in the simulation 

(which were also used in the SSM as the mean of the prior distributions) fall within 

the 95% credible interval of the posterior distributions. To monitor mosquito 

population abundances, posterior predictions (predNa) of the adult mosquito 

abundances in the ward 𝑖 at the time 𝑡 were obtained similarly to the observation 

process in equation 4.9 and averaged across the total number of iterations, such 

that: 

predN?(𝑖, 𝑡)~𝑃𝑜𝑖𝑠1𝑝𝑜𝑏𝑠 ∗ 𝑛_𝑡𝑟𝑎𝑝𝑠(𝑖) ∗ 𝑁5(𝑖, 𝑡)2. 
4.10 
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4.3 Results 

4.3.1 Allee effects are identifiable with simulated data  

Overall, the model fitted to simulated data was able to estimate all parameters 

regardless of the probability of observations (pobs), with the means of the prior 

distributions (which were also used in the simulation as true parameter values) 

being within 95% credible intervals (CIs) of the posterior distributions (Figure 4.3), 

indicating that the model is appropriate and can learn information from the data. 

This suggests that, if present, the model can effectively identify Allee effects. 

Unsurprisingly, the most difficult parameter to estimate was the negative density 

dependence, which was scaled with pobs, and required longer runs to converge.  

 
Figure 4.3: An illustration of prior (black) and posterior (red) estimates of (a) negative density 
dependence, (b) Allee effect, (c) per capita fecundity and (d) adult survival in the y-axis for 
each of the probability of observations (pobs) in the x-axis. The error bars represent means 
and 95% CIs of the prior and posterior distributions. 

Regardless, the model was able to estimate both negative density dependence 

and Allee effects. For pobs of 0.1, the true value for the negative density 

dependence used in the simulation was 5.5e-04 (Figure 4.4a, red line) and the 

estimated median of the posterior distribution was 6.5e-04 (95% CI: 4.37e-04, 

9.65e-04, Figure 4.4a, solid blue and dashed grey lines); both falling well within 

the prior distribution (Figure 4.4a, grey histograms) and the true value also fall 

within the 95% CI of the posterior distribution. Similarly, the true value of the 

Allee effect used in the simulation was 36 (Figure 4.4b, red line) and the estimated 

median of the posterior distribution was 39.8 (95% CI: 26.8, 59.0, Figure 4.4b, 
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solid blue and dashed grey lines); both falling well within the prior distribution 

(Figure 4.4b, grey histograms) and the true value also fall within 95% CI of the 

posterior distribution. The histograms showing the true values falling within the 

95% CI of posterior distributions for the rest of the parameters are provided in the 

supplementary information (see Appendix C.8).  

 
Figure 4.4: Accuracy of model estimates using pobs of 0.1. Histograms of prior (grey) and 
posterior (light blue) distributions for (a) negative density dependence and (b) the Allee effect 
with lines indicating the true values (red), median of the posterior distribution (blue) and 95% 
CIs of the posterior distributions (dashed grey).  

4.3.2 Population dynamics of An. gambiae mosquitoes in Dar es 
Salaam 

The Bayesian state-space model (SSM) developed here converged well (Rhat and 

examples of trace plots are provided in Appendix C.11 as supplementary 

information) and adequately reconstructed the observed population dynamics of 

female adult An. gambiae mosquitoes across all wards (Figure 4.5) and individually 

for each ward (Figure 4.6). Generally, the seasonal patterns of the data, i.e. peaks 

in the rainy season and troughs in the dry season, including the timing of starts of 

the seasons, was relatively well captured by the model as seen by comparing the 

observed data with the estimated abundances over time across all wards (Figure 

4.5 & Figure 4.6). However, the model underestimated some of the highest 

abundances, especially towards the second half of the data. This was particularly 

evident when observed data were plotted against mean posterior predictions, 
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showing that some of the highest numbers (>80) of observed mosquitoes were 

found to be below the linear line (Figure 4.5b). Additionally, an estimated 

(predNa) average number of female adult An. gambiae mosquitoes across wards is 

52. In part, this might be because of the averaging across all wards. Although, this 

underestimation is less frequent per ward (Figure 4.6), but for wards with strong 

peaks this remains a challenge.  

 
Figure 4.5: (a) Illustration of the reconstruction of the total population abundances of An. 
gambiae adult mosquitoes across all wards: The y-axis is observed (black), predicted mean 
mosquito population abundance (predNa) (red), 2.5% and 97.5% quantiles (sky blue) of 
predicted population abundance, while the x-axis is the time in weeks. (b) Goodness of fit: 
observed vs. predicted total population abundances of An. gambiae adult mosquitoes across 
wards, where the diagonal solid line corresponds to the 1:1 line.  

 

 
Figure 4.6: Illustration of the reconstruction of the population abundances of An. gambiae 
adult mosquitoes for selected wards. The y-axis is the number of adult mosquitoes, and the 
x-axis is the time in weeks. The black colour shows the observed data collected in the field 

0 50 100 150 200

0
50

10
0

15
0

Time (Weeks)

N
um

be
r o

f m
os

qu
ito

es Observed data
Predicted data
Quantiles predicted

a

0 50 100 150

0
50

10
0

15
0

Observed number of  mosquitoes

Pr
ed

ic
te

d 
nu

m
be

r o
f  

m
os

qu
ito

es b

0 50 100 150 200

0
10

20
30

40
50

60
70

Time (Weeks)

N
um

be
r o

f m
os

qu
ito

es

Observed data
Predicted data
Quantiles predicted

0 50 100 150 200

0
20

40
60

80

Time (Weeks)

N
um

be
r o

f m
os

qu
ito

es

0 50 100 150 200

0
20

40
60

Time (Weeks)

N
um

be
r o

f m
os

qu
ito

es

0 50 100 150 200

0
10

20
30

40

Time (Weeks)

N
um

be
r o

f m
os

qu
ito

es



Chapter 4   113 
 
for 193 weeks from April 2005 to December 2008. The red shows the mean mosquito 
population abundance (predNa) estimated by SSM for a similar time interval with 
corresponding 2.5% and 97.5% quantiles of estimated population abundance (predNa) (sky 
blue).  

The Bayesian state-space model used here was able to describe the population 

dynamics of the female adult An. gambiae mosquitoes from Dar es Salaam. All key 

life history traits including, the Allee effect, negative density dependence, 

environmental variables, and hatching probability were estimated (summaries of 

the posterior predictions are presented in Table 4.1). The prior vs posterior 

distribution plots of the life history parameters, negative density dependence, 

Allee effect, rainfall and temperature are shown in Figure 4.7, while distributions 

for the rest of the parameters and a complete set of trace plots are provided in 

Appendix C.11 and Appendix C.12 as supplementary information. Specifically, the 

estimated mean weekly survival (Figure 4.7, grey histograms) for larvae, pupae 

and adult mosquitoes are 0.38 (95% CI, 0.35,0.42) (Figure 4.7a), 0.21 (95% CI, 

0.20,0.21) (Figure 4.7b), 0.37 (95% CI, 0.27,0.48) (Figure 4.7c), respectively. Of 

these, mean pupae survival was the least confident parameter as seen by its 

posterior going against the lower boundary of the prior distribution. The estimated 

mean weekly per capita fecundity is 164 (95% CI, 122,215) (Figure 4.7d).  

The effect of the environmental variables showed that there is no flushing effect 

on larval survival, while temperature had a positive impact on the overall mean 

larval survival, where survival increased with increased temperatures. 

Specifically, estimated mean effect of current rainfall was 7.094e-05 (95% CI, 

1.662e-06, 2.530e-04) (Figure 4.7f), which is equivalent to 0.004% (95% CI, 0%, 

0.016%) decrease in mean larval survival due current rainfall alone. On the other 

hand, estimated mean effect of temperature was 0.0299 (95% CI, 0.0196, 0.0401) 

(Figure 4.7g), which is equivalent to 1.87% (95% CI, 1.20%, 2.53%) increase in mean 

larval survival due to temperature alone. 
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Figure 4.7: Histograms of prior and posterior distributions of selected parameters showing 
mean (a) larval survival, (b) pupal survival, (c) adult survival, (d) per capita fecundity, the effect 
of (e) negative density dependence, (f) current rainfall (g) temperature on larval survival and 
(h) the Allee effect. The grey colour is the prior distribution, and the light blue colour is the 
posterior distribution. 

As expected, the most influential parameter was the effect of negative density 

dependence on larval survival. The parameter seems to have converged well 

within the posterior with a mean value of 1.2108e-03 (95% CI, 8.8158e-4, 1.6136e-

3), but depending on the level of rainfall and larvae density, its impact on larval 

survival varies. For the mean larval survival of 0.3771/week and larval (early + 

late instar) abundances of 100 and 500 larvae, negative density dependence 

reduced mean larval survival by 7.41% (95% CI, 5.44%, 9.75%) and 34.01% (95% CI, 

25.75%, 43.45%), respectively (Figure 4.8a). However, this reduction was highly 

regulated by cumulative rainfall. Across all wards of Dar es Salaam, the amount 

of minimum cumulative rainfall was 0 mm, maximum (peak during the rainy 

season) was 331 mm, and medium (lower during the rainy season) rainfall was 31 

mm. See rainfall and cumulative rainfall amounts in Appendix C.3 and Appendix 

C.4. To illustrate how rainfall impacted negative density dependence and overall 

mean larval survival, here details of the impacts of these two amounts for 

cumulative rainfall are provided as follows: at a medium cumulative rainfall for 

Dar es Salam (i.e., 31 mm), an abundance of 100 larvae reduced mean larval 

survival by 6.74% (95% CI, 4.94%, 8.87%), while an abundance of 500 larvae 

decreased mean larval survival by 31.24% (95% CI, 32.50%,40.05%) (Figure 4.8b). 

At a maximum cumulative rainfall (i.e., 331 mm), an abundance of 100 larvae 

reduced mean larval survival by 0.17% (95% CI, 0.002%, 0.67%), while an 

abundance of 500 larvae decreased the larval survival by 0.85% (95% CI, 0.01%, 
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3.33%) (Figure 4.8c). The impact of negative density dependence alone on mean 

larval survival was assessed by using average of 100 larvae (and its fivefold 

increase) because of the probability of observations of 0.1 (pobs=0.1), which 

indicates that we maintain an average of 10 larvae by sampling 10% from an 

unknown average population of 100 mosquitoes. In general, lower cumulative 

rainfall resulted in higher density dependence, while maximum rainfall resulted 

in lower or no density dependence. Although we were able to estimate well the 

density dependence parameter, we found it very sensitive to the probability of 

observations (pobs). This means that lower pobs lead to low peaks of abundance 

and poor convergence of the negative density dependence parameter, which in 

turn affects overall model convergence. 

 
Figure 4.8: Effects of negative density dependence on mean larval survival as regulated by 
cumulative rainfall of (a) 0 mm (no rainfall), (b) 31 mm (medium across the year or lower during 
the rainy season), and (c) 331 mm (maximum/peak during the rainy season), all at different 
larval abundances. The grey colour is the mean larval survival, the brown colour is survival 
at 100 larvae, and the dark golden colour is survival at 500 larvae. 

4.3.3 Allee effects could not be identified from the Dar es Salaam 
field data 

There were no Allee effects identified in female adult An. gambiae mosquito data 

from Dar es Salaam, Tanzania. This is reflected by posterior predictions of the 

Allee effects parameter (C), which was pushed against 0 with a median of 0.0101 

(95% CI, 0.0007, 0.0323) (Figure 4.9a, light blue colour). It is also reflected in the 

unchanged total fecundity, where the estimated total fecundity per week was 

8528 ( i.e., a per capita fecundity of 164 multiplied by a total of 52 female adult 
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mosquitoes) without the Allee effect (Figure 4.9b, grey colour): this was similar 

to the estimated total fecundity in the presence of the Allee effect (Figure 4.9b, 

red colour). The percentage decrease in total fecundity due to the Allee effect 

was 0. These results show that there is no evidence supporting the presence of 

the Allee effect in the mosquito population data from Dar es Salaam. 

 
Figure 4.9: The evidence of whether Allee effects exist in the An. gambiae mosquito 
population in Dar es Salaam. Panel (a) shows priors in grey colour and posterior predictions 
in light blue colour for the Allee effect, C. Panel (b) shows the predicted overall mean 
fecundity in grey colour and overall predicted fecundity after the Allee effect in red colour, all 
based on an estimated average number of female adult mosquitoes across wards and weeks 
(i.e., N=52).  

4.3.4 Larvicidal in Dar es Salam decreased mosquito abundance 
through reductions in larval survival 

The introduction of larvicides in Dar es Salam successfully reduced female adult 

An. gambiae mosquitoes across all wards of Dar es Salaam across the different 

intervention phases, with 22.41% fewer mosquitoes by the end of the first phase 

(i.e., 107th week, Figure 4.10b), 62.07% by the end of the second phase (i.e., 154th 

week, Figure 4.10b) and 98.28% by the end of the third phase (i.e., 193rd week, 

Figure 4.10b). This reduction was driven by a decrease in larvae survival of 10.5% 

(95% CI, 6.88%, 14.47%; Figure 4.10a) from mean larval survival of 0.38 (95% CI, 

0.35, 0.41; grey colour in Figure 4.10a) without larvicides effect compared to 

mean larval survival of 0.34 (95% CI, 0.31, 0.37; red colour in Figure 4.10a) due to 

larvicides.  

Allee effect (C)

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

Prior
Posterior

a

0 5000 10000 15000 20000 250000.
00

00
0

0.
00

01
0

0.
00

02
0

0.
00

03
0

Total fecundity

Baseline, N= 52
Allee effect, N= 52

0 %
b



Chapter 4   117 
 

 
Figure 4.10: The effects of larvicides alone on larvae: (a) Histogram of estimated mean 
survival with (red) and without (grey) larvicides and (b) the estimated female adult mosquito 
abundance averaged across wards before (black) and during (red) the larvicidal programme, 
where each line represents the abundance per each phase of larvicide application which 
included a total of 3, 6, and 6 wards in the first, second and third phase, respectively. 
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4.4 Discussion 

Regulatory mechanisms such as negative density dependence and Allee effects are 

fundamental for regulating population dynamics. However, the presence of Allee 

effects and their importance in regulating natural malaria mosquito populations 

remain largely unknown. Understanding Allee effects is important as it would help 

to enhance the effectiveness of vector control interventions and accelerate 

malaria elimination efforts by increasing the risk of stochastic vector extinction. 

To address this, a Bayesian state-space modelling framework (SSM) was developed 

and fitted to simulated data to identify whether the model can effectively 

determine the Allee effect. The framework was then fitted to field surveillance 

data from Dar es Salam collected during the successful large-scale larvicidal 

intervention to assess population dynamics and identify the presence of Allee 

effects in the field.  

To our knowledge, this study is the first to test for the existence of Allee effects 

in malaria-transmitting mosquitoes in natural field settings. The developed model 

framework effectively identified the Allee effect in simulated data but did not 

find evidence of it in the field data from Dar es Salaam, Tanzania. Unlike in species 

such as wild animal populations where Allee effects exist (104,187), to date, no 

study has demonstrated evidence of Allee effects in any malaria vector species. 

Of course, this might be true because this is the first study to look for evidence of 

Allee effects in the natural mosquito population and it did not find such evidence 

in the Dar es Salaam setting. However, there are also other reasons for why Allee 

effects were not detected here. It is possible that in Dar es Salaam the population 

was not reduced enough to create necessary conditions for Allee effects to occur. 

Intrinsic or extrinsic factors, such as negative density dependence, environmental 

factors and vector control measures, led to a decline in mosquito population 

abundance (88), but the population persisted at low levels. There is still 

uncertainty about the amount of intervention and effort needed to reduce the 

natural mosquito population to levels low enough to trigger Allee effects. Although 

there was no Allee effect evident in Dar es Salaam data, this study laid a 

foundation for future research in investigating and identifying Allee effects in 

natural settings with low mosquito population abundance. Section 5.2 below 

provides a detailed information suggesting ways on how we can adapt present and 
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future malaria vector control programmes based on the presence or absence of 

regulatory mechanisms particularly Allee effects. 

The absence of Allee effects is regrettable for malaria control. It will not only 

means that population will not stochastically go into extinction but that sustained 

control efforts will be required even at very low population sizes. With 

surveillance being increasingly complicated at low population sizes, rebounds 

could occur frequently. Since we cannot completely exclude the existence of Allee 

effects, there is a need to design studies that can support detection of Allee 

effects in malaria vectors. This can be achieved through more controlled 

experiments in semi-field systems (SFS) that would facilitate assessing various 

mechanisms underlying Allee effects, such as mate limitation and predation. In 

these controlled environments, monitoring of population regulation processes will 

be more straightforward; for example, we can track the number of males in 

female chambers and observe how often mating occurs between males and 

females. Moreover, introducing predators could provide us with an opportunity to 

assess whether predation leads to Allee effects in malaria mosquitoes. Developing 

a framework to identify types of data necessary for detecting Allee effects would 

be beneficial, as there is currently no consensus on the required data or 

established experimental design for its collection. It is also proposed to divide 

adult stage into gravid (i.e., egg-laying) and non-gravid mosquitoes, setting that 

Allee effects only impact gravid mosquitoes (i.e., the development rate from non-

gravid to gravid is affected by Allee effects). Additionally, to identify the presence 

of Allee effects using data from settings that eliminated mosquitoes, specifically 

focusing on periods just before elimination occurred (i.e., periods immediately 

preceding the elimination events): this will help to determine whether the 

elimination was influenced by Allee effects.   

It is well known that Anopheles mosquito populations tend to increase during the 

rainy season and decrease or nearly disappear during the dry season (247–250), 

but the mechanisms and life history strategies behind these observed patterns are 

less studied. The population dynamics of An. gambiae mosquitoes in Dar es Salaam 

are believed to be mainly influenced by environmental factors such as rainfall and 

temperature due to the hot and humid climatic conditions (140,141). This study 

further supported these findings and provided some mechanistic insights for them. 

Specifically, cumulative rainfall and temperature positively impact larval survival, 
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while current rainfall leads to a flush-out effect that reduces larval survival, 

similar to what reported elsewhere (242,251–253).  

The Bayesian state-space model (SSM) fitted to field female mosquito data from 

Dar es Salaam successfully predicted life history parameters of mosquitoes, 

including larval, pupal and adult survivals, as well as per capita fecundity. 

However, some of the life history parameters, particularly mean pupae survival, 

produced lower estimate that was pushed towards lower bound. This could be due 

to trade-offs in some parameters for which we were not able to capture the full 

mechanism. For example, with the SSM fitted to the simulated data, trade-offs 

existed between parameters related to Allee effects and negative density 

dependence versus population abundance and probability observations (pobs). 

Although, other parameters linked to larvae, pupae, and adult survival and 

fecundity remained consistent with changes in population abundance and pobs, 

other trade-offs between total mosquito fecundity and mean larval survival, 

where an increase in fecundity led to a decrease in larval survival are also well 

known (254). This reduction in larval survival occurred because a higher fecundity 

leads to a greater number of larvae, which are then subject to negative density 

dependence regulation. Conversely, lower fecundity leads to a smaller number of 

larvae, which are then associated with an increase in their survival because they 

experience less negative density dependence. These findings are consistent with 

previous studies that have shown a negative correlation between the number of 

eggs laid by female mosquitoes and the subsequent survival of larvae (254). 

It was also found in this study that larvicidal control in Dar es Salam reduced the 

population size by an average of 60.92%. Importantly, this reduction was driven 

by a reduction in larval survival of 10.50%. Other studies have also demonstrated 

a notable decrease in the population of An. gambiae in urban Dar es Salaam due 

to similar large-scale community-based larvicidal control intervention (41,47). 

Effectiveness of vector control interventions, such as larviciding, is normally 

influenced by the ecology of a particular mosquito species, implying that the same 

intervention may not have a similar impact on multiple species (88). While 

larviciding effectively reduced larval survival as expected, quantifying this impact 

beyond population abundance is challenging. Being able to quantify mechanisms 

that regulate population dynamics paves the way to evaluate whether 

interventions in the field are typically performing as expected in laboratory 
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conditions or semi-field systems. The World Health Organisation (60), recommends 

tools with combined or dual-action interventions such as new nets treated with 

pyrethroid-pyriproxyfen or pyrethroid-chlorfenapyr. While in this chapter we 

assessed the impact of a single intervention, it provides a foundation to which we 

can assess the mechanisms of multi-action tools.  

The results of the model showed that negative density dependence plays a critical 

role in population dynamics of An. gambiae mosquitoes. This has also been shown 

in a modelling study by White et al. which revealed the importance of the 

presence of negative density dependence during the larval stages of An. gambiae 

mosquitoes in the Garki District of Nigeria (92) for the overall dynamics of the 

population (92). However, measuring the magnitude of negative density 

dependence continues to be a challenge without knowing population sizes. Here, 

the trade-offs with the probability of observations (pobs), where the mean 

estimates increased with increasing pobs, were problematic. However, the overall 

dynamics matching the data, the ability of the model to converge all parameters 

and also because the estimates are consistent with other studies such as (88) and 

(255), provide some support. Unlike in other Anopheles species such as An. 

funestus, where little is known about the effect of negative density dependence 

due to their ecology and reliance on large and semi or permanent breeding 

habitats (88,256), negative density dependence in An. gambiae (90), which prefer 

temporary or small larval habitats (e.g., small water pools, which tend to appear 

and disappear frequently in time and space, particularly in urban settings (204)), 

is well known. 

The findings align with a previous study that larval habitat availability increases 

with higher cumulative rainfall, leading to reduced or no negative density 

dependence (257). On the other hand, a possible reason for the absence of impact 

from current rainfall could be that it was neither heavy nor persistent enough to 

cause flooding, which is consistent with previous studies (258,259). Again, this 

study aligns with the previous studies that Anopheles mosquito development and 

survival are temperature-dependent (212,251). Since mosquitoes do not persist at 

temperatures below 16 ℃ (212,260,261), this study did not consider the negative 

impact because data had no such low values and typically in Dar es Salaam 

temperature ranges 24-28 ℃ (262), which favours mosquito survival. 
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There was generally poor model fit associated with low probability of observations 

(pobs≤0.01), at a regional level. However, when looking individually at each ward, 

some wards fit better than others, suggesting a lot of variation in the dynamics 

between wards. This between-ward variability might be one of the reasons for a 

less good fit at the population level. The poor model fitting might also be caused 

by the trade-offs between pobs and negative density dependence, especially when 

observing from a large unknown population. This trade-off affected estimation of 

female adult mosquito population sizes, with abundance decreasing at lower pobs 

and increasing at higher pobs. Additionally, the lack of a close match might be 

because we are comparing mean across multiple predictions with a single observed 

data series. In general, pobs are linked with negative density dependence, yet we 

don’t know well what their relationship is, whether it is a linear or non-linear 

relationship. Understanding this relationship is important, as it will help us 

understand how to develop surveillance programmes that will capture populations 

at the levels we want. To improve model fit and increase estimates in population 

abundance, we need to increase pobs, which would allow sampling from a small 

unknown population and consequently increase model performance, but we need 

to be cautious not to increase pobs to a level that might be unrealistic. We can 

also improve model performance by increasing the number of iterations where 

lower pobs would require more iterations for better model convergence. 

Alternatively, additional mechanics such as the influence of environmental factors 

like rainfall can improve the model fitting; thus, this requires further work. It is 

also suggested that future work to incorporate performance curves for each of the 

mosquito life history parameters to visually represent and assess model 

performance. We note that the estimate of the Allee effect does not seem to 

change regardless of pobs. 

One of the limitations of this study is that it only used a dataset from a single 

setting, which may not be sufficient to provide evidence of Allee effects. 

Therefore, it is suggested to fit the model to data sets from multiple settings with 

low mosquito population densities. Another limitation is that the study only 

focused on a single malaria mosquito species, i.e., An. gambiae, therefore, it is 

suggested to take into account other species with similar characteristics. 

Additionally, the study only fitted the model to adult mosquito abundances, so it 

is suggested to incorporate fitting the model to data from other stages of the 

mosquito’s life cycle, particularly the larval abundance data. On the other hand, 
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it is suggested to treat pobs as a parameter of the model, so that the model can 

be given enough freedom to feasibly select from the distribution of pobs. Lastly, 

while the study focused on the impact of a single intervention, this modelling 

framework is generalisable and can be further used to incorporate more data on 

combined interventions, such as insecticide-treated nets or indoor residual 

spraying. 

4.5 Conclusion 

The model’s capability to detect Allee effects using the simulated data could be 

fundamentally important for identifying the presence of Allee effects when fitted 

to data from various low-density settings. At present, there is no evidence of Allee 

effects in the entomological surveillance data from Dar es Salaam, Tanzania. It is 

possible that the intervention did not reduce the population enough to a level at 

which Allee effects could kick in (i.e., to trigger Allee effects) or that there are 

no Allee effects in Anopheles populations. This modelling study provided a 

valuable framework that can be used for identifying Allee effects but also the 

mechanistic impacts of interventions using routine surveillance data collected 

from different settings with low mosquito population densities.   
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Chapter 5 General Discussion and Conclusions 

Malaria is the leading vector-borne disease worldwide, claiming the lives of over 

a million individuals, with more than 75% of these deaths occurring in children 

under five years old (1,8,263). While malaria vaccines are available, they are not 

yet widely implemented (264). Consequently, vector control remains the most 

effective method for reducing malaria transmission and plays a crucial role in 

malaria control and elimination strategies (35). Through a combination of 

computer simulations and modelling of field data, my PhD research has provided 

valuable tools that can improve malaria vector control and enhance elimination 

efforts by informing the evaluation and assessment of interventions in semi-field 

and field settings; but also, by highlighting potential impacts of some key 

population regulatory mechanisms such as Allee effects and the trade-offs might 

have with negative density dependence as population declines. The developed 

tools are advantageous not only to improving malaria vector control but also can 

be more widely utilised to inform the control of vectors responsible for other 

diseases such as dengue fever, yellow fever, and chikungunya.  

5.1 The role of simulations for evaluating vector control 
interventions. 

My PhD research contributed a simulation-based power analysis framework to 

enhance the design of vector control experiments in SFS and used simulations to 

understand the role of understudied population regulatory mechanisms in 

Anopheles mosquitoes and the impact their trade-offs might have for vector 

control. More generally for the malaria field, simulation approaches have many 

advantages, such as providing support for decision-making and guiding policy 

directions, understanding vector ecology and population dynamics in mosquito 

research, or predicting transmissions in vector-borne disease. Some examples 

include Runge et al. who used simulations to assess council-specific impact of anti-

malaria interventions to support malaria strategic planning efforts in Tanzania 

(265). Depinay et al. developed a simulation model focused on the ecology and 

population dynamics of African Anopheles to predict malaria transmission (128). 

In western Kenya, Stuckey et al. simulated malaria epidemiology and vector 

control strategies to facilitate planning for malaria control and elimination 

processes (266). While all these simulation-based studies were targeted against 
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malaria vector control and elimination strategies, simulations can also effectively 

be utilised in planning for control of other vector-borne diseases such as Dengue 

(267,268), Zika (269,270) and lymphatic filariasis (271,272). Simulations have 

played a significant role in historical and contemporary research activities because 

of their ability to predict outcomes across diverse quantitative research fields, 

including ecology (273), epidemiology (274) and entomology (275). For malaria 

vector control, simulations can help identify what kinds of data are needed from 

field experiments to assess the impact of population regulation mechanisms or the 

effectiveness of interventions or their combinations.  

Similar to data-driven approaches such as the Bayesian state-space models used 

in this PhD thesis, which are typically important as they help us to learn anything 

about the real world (although they are computationally intensive as they require 

powerful computers and typically suffer from parameter estimation problems 

(276)), simulations are also important in terms of availability of computers and 

software needed for their implementation. In addition to determine sample sizes, 

combining simulations (since simulations can help to generate data that mirror 

dynamics of real experiments) with experimental approaches throughout all stages 

of field trials can also increase the quality and quantity of data by helping identify 

variables and potential challenges before data collection begins, e.g., through 

sensitivity analysis. Conducting sensitivity analysis is fundamental as it directs 

data collection efforts toward the most sensitive parameters by assessing how 

variations in these parameters influence the simulation output (277). 

Contemporary malaria vector control interventions, such as new generations of 

bed nets treated with pyrethroid-pyriproxyfen, pyrethroid-chlorfenapyr, or 

piperonyl butoxide-pyrethroid combinations (278,279), necessitate rigorous 

testing in the SFS before any small or large-scale field trials. This iterative testing 

process in SFS underscores the need for well-designed semi-field experiments 

(SFEs) to produce reliable results, and one way of doing this is by ensuring that 

experiments are adequately powered. The application of power analysis in SFEs is 

quite uncommon; this trend is attributed to the insufficient knowledge among 

researchers to perform necessary statistical calculations (280) and lack of 

software (84). Additionally, simulation results derived from mosquito population 

dynamics models could be used as the power analysis to inform experiments in 

both SFS and field settings, for instance, guiding sample size calculations or 
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intervention effects estimations. While other power analysis tools exist, they are 

often underutilised; however, as new and innovative vector control interventions 

emerge and the interest in eliminating malaria continues to grow, it is anticipated 

that these tools will become increasingly prevalent among researchers. Moreover, 

the power analysis framework developed in this PhD project is expected to play a 

crucial role in both contemporary and future research studies.  

5.2 Implications of vector population regulation for 
malaria vector control efforts  

Being able to consider mosquito population regulation factors in malaria vector 

control strategies is important not only to support short-term reductions of 

mosquito populations but crucially to ensure sustainable and effective 

interventions that would adapt to the naturally varying dynamics of mosquitoes. 

(92,281). As it was showed in Chapter 3 and Chapter 4, this is because 

understanding population regulation can help disentangle underlying mechanisms 

such as negative density dependence and Allee effects that have consequences 

for how we perceive each stage of the mosquito life cycle. However, their 

quantification using empirical data remains quite difficult (230). Partly this may 

be because there is an interplay with abiotic factors such as temperature and 

rainfall that can also play a crucial role in regulating populations and driving 

seasonal patterns, as well as influencing individual life history traits (282,283). 

From a control perspective, this interplay is important because it allows us to 

decide how and when to intervene, along with determining the type of 

intervention. My work has shown that Allee effects, despite being understudied, 

are important as they can profoundly impact population dynamics, and if we can 

learn how to leverage it, we can enhance elimination efforts, especially when 

vector control interventions such as larvicides decrease the population to a level 

where Allee effects can kick in and stochastically collapse the population. When 

planning present and future malaria vector control programmes, it is essential to 

consider Allee effects as fewer resources might achieve outcomes compared to 

huge investments. Exploring diverse approaches, such as modelling data from 

diverse ecological settings or targeting gravid mosquitoes, is essential to better 

understand Allee effects in malaria mosquitoes. Despite these promising 

theoretical findings, empirically the presence of the Allee effect could not be 

determined in the local mosquito population from Dar es Salaam. However, it is 
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important to note that it is too early in drawing a definitive conclusion about the 

absence of the Allee effect at this stage because only data from a single setting, 

where the population might not have been small enough, was tested. Finding ways 

to monitor and assess low mosquito population abundances becomes ever more 

important as we achieve control success, for example in Zanzibar (284–286) and 

Rwanda (287–290). These circumstances can create an opportunity to detect Allee 

effects more readily. 

The World Health Organisation suggests incorporating vector biology into vector 

control, as successful vector control depends much on a comprehensive 

understanding of vector ecology (291); consequently, population regulatory 

mechanisms should become a key component of this approach. For instance, we 

know that in the absence of negative density dependence, population sizes would 

be much larger. Therefore, it is essential to start planning when to intervene 

relative to these regulatory mechanisms, particularly when the population is 

unstable, just before it reaches its peak, or during a decline. Although surveillance 

becomes challenging as the population decreases, this moment might be most 

important because two scenarios might happen: (i) further declines could occur, 

potentially leading to Allee effects, or (ii) the population might recover due to 

negative density dependence, something that we want to prevent. Allee effects 

have been documented across a range of biological systems, including birds (98–

100), fish (101–103), mammals (104–106), reptiles or amphibians (107) and other 

aquatic (97,108,109) and terrestrial invertebrates (110–113). We can learn lessons 

for malaria vector control from these systems where they could identify Allee 

effects. Examples of lessons include introducing predators in both immature and 

adult stages, discouraging female mosquito feeding success and releasing 

transgenic mosquitoes. Beyond negative density dependence and Allee effects, 

other mechanisms regulating mosquito populations exist, including ageing, 

predation (sometimes categorised as one of the causative mechanisms of Allee 

effects (292)) and migration. There is potential and need to explore other 

mechanisms of how populations are regulated in natural environments and the 

implications this has for malaria vector control and elimination efforts. For 

example, ageing is the gradual decline in the physical condition of the body which 

leads to the decrease in immune proficiency and alters key life stages such as 

reproduction output (293,294). Together these affect overall population dynamics 
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but also vectorial capacity and transmission of diseases (294–296). Similarly, 

migration; movement of mosquitoes over long distances can be accelerated by 

wind patterns, which can carry them from one geographical location to another, 

seeking suitable conditions for breeding and feeding (297–299). For example, a 

study has shown that persistence of malaria in the Sahel where surface water is 

absent for up to eight months is due to Anopheles mosquitoes migrating over long 

distances (298). Therefore, identifying and controlling sources of migratory 

mosquitoes is necessary for successful vector control programmes and elimination 

efforts (298). 

5.3 Leveraging population dynamics modelling for 
effective malaria vector control 

Population dynamics models provide an understanding of how populations change 

over time, e.g., vector populations, species communities, and ecosystems, as they 

define the system's complexity without directly disrupting it (121,122). They can 

also be used to identify the ecological behaviours of a population, provide 

predictions of current and future trends of populations and estimate parameter 

space where empirical data is absent or limited. Because of their strength in 

providing descriptions, explanations, and predictions of phenomena (such as 

growth, reproduction, or disease transmission from one stage to another), 

population dynamics models have been used to estimate the impact of vector 

control interventions (e.g., (92,123,300)). Consequently, they have been used by 

researchers, national malaria control programs, and policymakers to inform 

decision-making for malaria control programs (301,302). In this thesis, a 

framework has been developed, that quantified mosquito life histories and, 

importantly, the impacts of interventions on these life history parameters. This 

framework provides underlying mechanisms of action of interventions. While these 

mechanisms are often well known from laboratory studies, in semi-field and 

especially field settings, the environments and local ecologies interact, thus, what 

we observe in the laboratory might not translate in the field. However, with 

larviciding, the mechanisms were very well known, in that it leads to the reduction 

of larval survival, for other interventions; the mode of action is not as clearly 

defined. These models were developed before to determine the impact of 

intervention in the semi-field systems (255); however, they have never been tried 

for a similar objectives in field settings. In addition, an overall reduction in 
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mosquito population was generally quantified by assessing the mechanisms leading 

to that reduction. This framework is generalisable for any intervention but could 

be even more useful for combined or dual-action interventions as it has the ability 

to quantify effects on different life history parameters. Beyond determining the 

mechanism of action of interventions, understanding variation in the life history 

of populations could provide insights into population vulnerabilities, which we can 

leverage for vector control strategies. The same modelling framework developed 

here can be used to quantify the impact of these factors in controlled laboratory 

settings or semi-field systems. Recent advancements in innovative technologies, 

such as gene drive, are emerging as promising measures for vector control and 

malaria elimination (303,304). By integrating these innovative technologies with 

population dynamics modelling, we can better predict their substantial outcomes, 

identify essential information for their improvement, and inform the optimal 

implementation strategies for these technologies. Apart from malaria vector 

control, population dynamics models have also been used to inform control of 

other vectors, including agricultural pest management (305,306), tick control 

(307), tsetse fly management (308,309), and control of Simulium damnosum s.l 

which causes onchocerciasis (also known as river blindness disease) (310). 

5.4 Future work 

The development of a unified pipeline to inform the design of interventions and 

guide the collection of data across all levels of intervention testing (i.e., from 

laboratory to semi-field and field settings), and then analyse the data to assess 

the efficiency of the interventions would be an important step change in how we 

conduct interventions and assessments. Additionally, it is essential to develop a 

dynamic feedback framework where different types of simulations provide 

feedback to the field, and field trials, in turn, offer insights back into the 

simulations. This iterative feedback loop is vital for enhancing the quality, 

accuracy, effectiveness and continuous improvement of simulations while 

simultaneously optimising the deployment of interventions in the field.  

Developing a framework to identify types of data necessary for detecting Allee 

effects would be beneficial, as there is currently no consensus on the required 

data or established experimental design for its collection. It is also proposed to 

divide adult stage into gravid (i.e., egg-laying) and non-gravid mosquitoes, setting 
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that Allee effects only impact gravid mosquitoes (i.e., the development rate from 

non-gravid to gravid is affected by Allee effects). Additionally, to identify the 

presence of Allee effects using data from settings that eliminated mosquitoes, 

specifically focusing on periods just before elimination occurred (i.e., periods 

immediately preceding the elimination events): this will help to determine 

whether the elimination was influenced by Allee effects.  

Moreover, it is proposed that future research explore mosquito’s life history 

parameters and their potential non-linear relationships with environmental 

variables. Considering non-linear relationships reflects the complexities of 

ecological and climatic interactions necessary for vector control and control 

interventions. Due to the increasing potential of new technologies, it is proposed 

the use of population dynamics models to inform the impact of gene drive 

technology in malaria and malaria vector control. Lastly, it is proposed to create 

awareness at the stakeholder levels, including researchers, communities and 

policymakers, about the effect of population regulation factors that can 

contradict predictions and outcomes of field trials. 

5.5 Conclusions  

This PhD work covered multiple aspects, from the evaluation to the assessment of 

malaria vector control interventions through the use of theoretical and statistical 

modelling approaches. Ways to improve the designs of vector control semi-field 

experiments through the use of simulation-based power analysis methods were 

demonstrated. Since power analysis methods are not commonly used due to a lack 

of technical knowledge and software, the framework and R tutorials developed 

here will help researchers better understand and investigate step-by-step the 

trade-offs between the power of their studies and resource allocation. 

Additionally, the work involved modelling the population dynamics of An. gambiae 

mosquitoes will help researchers to understand the trade-offs between negative 

density dependence and Allee effects and their underlying consequences for 

malaria vector control. Lastly, Bayesian state-space models have been developed 

and fitted to the field data to assess the evidence of the Allee effect in natural 

An. gambiae mosquito populations. Although interventions are very important in 

regulating vector population dynamics, it has been demonstrated that negative 

density dependence alongside sustained interventions also play a paramount role 
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in reducing vector abundances. While there was no evidence of the Allee effect 

in the An. gambiae mosquito populations in Dar es Salaam, this study cannot 

generalise that Allee effects never exist in malaria mosquitoes; instead, it 

suggests that more data from different settings with low densities must be tested. 

The methods and findings presented in this PhD will help future research to 

evaluate vector control interventions in semi-field systems and assess their 

efficacies in field settings by determining the trade-offs between statistical power 

and resource allocation, as well as identifying the mechanisms that regulate 

mosquito populations. 
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Chapter 6 List of Appendices  

Appendix A Supplementary materials for Chapter 2 

Appendix A.1  List of articles selected for a simple review 
of the use of power to justify the sample size. 
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Appendix B Supplementary materials for Chapter 3 

Appendix B.1 Dynamics of female adult An. gambiae 
mosquito data from the field  

This figure was brought here because it represents the dynamics that was 

mimicked in the development of state-structured population model in Chapter 3. 

 
Figure B.1: An illustration of the adult An. gambiae mosquito population abundances 
aggregated monthly from 2005-2009 (a) per ward and (b) across wards before and during 
large-scale larvicidal control in Dar es Salaam, Tanzania. 
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Appendix B.2 Weekly rainfall across wards during the 

large scale larvicidal control programme in Dar es 
Salaam 

This figure brought here to show how dynamics of data simulated from the model 

in Chapter 3 match the dynamics of the rainfall (none centred). 

 
Figure B.2: Average weekly rainfall across wards (black) and population dynamics without 
intervention (blue) during the large-scale larvicidal control in Dar es Salaam, Tanzania. 

Appendix B.3 Figure showing centered average weekly 
rainfall across wards (black) and population dynamics 
without intervention (blue) during the large-scale 
larvicidal control in Dar es Salaam, Tanzania 

 
Figure B.3: Illustration of how dynamics of data simulated from the model in Chapter 3 match 
the dynamics of the centred rainfall. 
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Appendix B.4 Tables of selected combinations of negative density dependence (DD), the 

Allee effect variations (AE) and Larvicides application (LA) 

Table B.4.1: Study variables and scenarios used for sustained and short-termed intervention 
Study variables and scenarios Simulated values 
Sustained larvicidal intervention  48th to 193rd week 
Short-termed larvicidal intervention (single short application) 48th to 130th week 
Short-termed larvicidal intervention (two short applications) 48th to 80th and 121st to 150th week 
Negative density dependence levels i.e., DD1, DD2 and DD3 (when Allee effect set to 360) 0, 2.75e-05, 5.5e-05, 2.2e-04  
The Allee effect levels i.e., AE1, AE2 and AE3 (when negative density dependence set to 
5.5e-05) 

0, 180, 360 and 720 

 
All combinations of negative density dependence and the Allee effect variations (AE,DD) 

The Allee effect 
(AE) 

Negative density dependence (DD) 
 0 2.75e-05 5.5e-05 2.2e-04 
0 (0,0) (0, 2.75e-05) (0, 5.5e-05) (0, 2.2e-04) 

180 (180,0) (180, 2.75e-05) (180, 5.5e-05) (180, 2.2e-04) 
360 (360,0) (360, 2.75e-05) (360, 5.5e-05) (360, 2.2e-04) 
720 (720,0) (720, 2.75e-05) (720, 5.5e-05) (720, 2.2e-04) 

 

 

Table B.4.2: Table of all combinations of variations in negative density dependence and the Allee effect varied from 100% increase to 100% decrease 
AE 

DD 
0 36 72 108 144 180 216 252 288 324 

 
360 396 432 468 504 540 576 612 648 684 720 
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Table B.4.3: Table of all combinations of variations in negative density dependence and the larvicides varied from 100% increase to 100% decrease 
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Table B.4.4: Table of all combinations of variations in the Larvicides and the Allee effect varied from 100% increase to 100% decrease 
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Appendix B.5 Population without negative density 

dependence 

 
Figure B.5: This figure shows a population that exploded to infinity size when there was no 
negative density dependence (i.e., beta1=0). 

Appendix B.6 Trade-offs between the negative density 
dependence and the Allee effects by probability of 
extinction 

Since the real values of negative density dependence and the Allee effect are 

unknown, negative density dependence and the Allee effect sizes were varied 

from 100% reduction to 100% increase (Appendix B.4, Table B.4.2) on their values 

set in Table 3.1 (i.e., DD2 and AE2 in Appendix B.4, Table B.4.1) and estimated 

the probability of extinction. A heatmap was used to show the probability of 

extinction across wards for each percentage change in both negative density 

dependence and the Allee effect. For illustration, the simulation was repeated 

under three intervention regimes as described in the previous subsection i.e., (a) 

without an intervention, (b) single short-termed, (c) double short-termed and (c) 

sustained intervention (see Appendix B.4, Table B.4.1). 

As negative density dependence and the Allee effect increased, the probability of 

extinction also increased but the Allee effect seemed to accelerate population 

extinction (Figure B.6). While negative density dependence in the absence of the 

Allee effect cannot lead the population to extinction, the Allee effect without 

negative density dependence can drive the mosquito population to extinction, 

especially with a sustained intervention (Figure B.6). In the absence of negative 
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density dependence and the Allee effect (i.e., mean values 5.5e-05 and 360 

respectively reduced by 100%), the probability of extinction was 0 with and 

without larvicidal intervention (Figure B.6a-d). Without intervention, the 

population could not go extinct unless negative density dependence and the Allee 

effect are both increased by at least 50% (Figure B.6a). With a single short-term 

intervention, only a 30% increase in negative density dependence while keeping 

the Allee effect constant could drive the population to extinction with a 

probability of extinction ranging between 0.75 and 1.0 (Figure B.6b). Similarly, 

with two short-term interventions, only a 10% increase in negative density 

dependence while keeping the Allee effect constant could drive the population to 

extinction with a probability of extinction equalled to 1 (Figure B.6d). In Figure 

B.6d, the mosquito population declined to extinction with a probability of 

extinction starting from 0.75 when both negative density dependence and the 

Allee effect (i.e., 5.5e-05 and 360, respectively) increased by at least 5% with a 

sustained intervention. However, with nearly no negative density dependence, 

population size slowly declined to extinction if and only if the Allee effect was 

increased by 50% in the presence of larvicidal intervention (Figure B.6c,d). 

Moreover, if negative density dependence is increased by at least 50%, population 

size declines to extinct even before reaching a 50% increase in the Allee effect 

given there is an intervention (Figure B.6b-d). Furthermore, when negative density 

dependence and the Allee effect were both increased by at least 50%, their 

combination drove the population to extinction (Figure B.6b-d). However, the 

presence of a sustained intervention accelerated extinction and made the 

combination of negative density dependence and the Allee effect become a threat 

to mosquito populations (Figure B.6d).  
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Figure B.6: Heat maps showing the probability of extinction for each percentage increase or 
decrease in negative density dependence and Allee effect mean values, 5.5e-05 and 360, 
respectively; (a) without intervention, (b) with single short application of intervention, (c) two 
short applications of intervention and (d) sustained intervention. 

Appendix B.7 R script for a simulation model in Chapter 3 

tmax=193 #Maximum time 
Nwards=15 #Number of compartments i.e,. wards in our case 
#Read rainfall and temperature data  
rainfall = read.csv("weekly_rainfall.csv") #Read rainfall data 
temperature = read.csv("weekly_Temperature.csv") #Read temperature data 
R = as.data.frame(rainfall[,2]-56, drop=TRUE) #Write rainfall as a data 
frame 
Te = as.data.frame(temperature[,2]-27, drop=TRUE) #Write rainfall as a d
ata frame 
#State vectors 
Na<-matrix(0, Nwards, tmax) # Adult state vectors 
Nl1<-matrix(0, Nwards, tmax) # Early instars state vectors 
Nl2<-matrix(0, Nwards, tmax) # Late instars state vectors 
Np<-matrix(0, Nwards, tmax) # Pupae state vectors 
#Growth rate 
Gr <- matrix(0,Nwards, tmax) 
#Observation process 
#Create empty matrix with Nas in datNaPois for Poisson process 
datNaPois <- matrix(NA,Nwards, tmax) 
datNaPois[1:Nwards]<-800 
#Create empty matrix with Nas in datNaNB for negative binomial process 
datNaNB <- matrix(NA,Nwards, tmax) 
datNaNB[1:Nwards]<-800 
# #Define initial values 
Nl1[1:Nwards]<-1000       #Initialisation with earrly instars 
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Nl2[1:Nwards]<-1000      #Initialisation with late instars 
Np[1:Nwards]<-900       #Initialisation with pupae 
Na[1:Nwards]<-800       #Initialisation with female adults 
# Definition and duration of experimental treatments 
 LA<-matrix(0, Nwards, tmax)  
 LA[1:3, 48:tmax]<-0 #First phase of larviciding 
 LA[4:9,108:tmax]<-0 #Second phase of larviciding 
 LA[10:15,155:tmax]<-0 #Third phase of larviciding 
simulation_function <- function( 
  beta0, #Logit of baseline early instar larval survival   
  beta1, #Negative density dependence on early instar larval survival 
  beta2, #constant defining sensitivity to rainfall in early instar larv
al survival 
  beta3, #Interaction between late instars and rainfall on the survival 
early instars 
  beta4, #Effect of larvicides on early instar larval survival 
  beta5, #Sensitivity of temperature to early instar larval survival 
  beta6, #Ratio between beta3 and beta1 i.e., beta3/beta1 
  lambda0, #Logit of baseline pupa survival 
  omega0, #Log per capita fecundity    
  omega1,#Constant defining sensitivity of temperature to fecundity rate 
  alpha0, #Logit of baseline adult survival       
  he, #Hatching rate 
  C, #Population size that scale Allee effect 
  stochastic #Runs the simulation as stochastic when TRUE and determinis
tic when FALSE 
){ 
  require("abind") 
  #Define a loop for survivals and fecundity for total larvae, pupae and 
adults 
  for(t in 2:tmax) 
  { 
    #Survival rates of early and late instars, pupae and adults 
    sl1<-plogis(beta0-beta1*(1-beta6*R[t-1,])*(Nl1[,t-1] + Nl2[,t-1])-be
ta4*LA[,t-1]+beta5*Te[t,]) 
    sl2<-plogis(beta0-beta1*(1-beta6*R[t-1,])*(Nl1[,t-1] + Nl2[,t-1])-be
ta4*LA[,t-1]+beta5*Te[t,]) 
    sp<-plogis(lambda0) 
    sa<-plogis(alpha0) 
    #Survivors 
    #Late instar larvae: Early to late instars 
    Nl2[,t]<-  
      if (stochastic) { 
        rbinom(Nwards,Nl1[,t-1],sl1)  
      } else{ 
        Nl1[,t-1]*sl1 
      } 
    #Pupae: Late instars to pupae 
    Np[,t]<-  
      if (stochastic) { 
        rbinom(Nwards,Nl2[,t-1],sl2) 
      } else{ 
        Nl2[,t-1]*sl2 
      } 
    #Total adults: from survived adults plus emerged from pupae 
    Na[,t]<-  
      if (stochastic) { 
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        rbinom(Nwards,Na[,t-1],sa)+rbinom(Nwards,Np[,t-1],sp)  
      } else{ 
        Na[,t-1]*sa + Np[,t-1]*sp 
      } 
    #Fecundity rate: total number of eggs laid 
    b<-exp(omega0+omega1*Te[t,])*Na[,t-1]*(Na[,t-1]/(C+Na[,t-1]))  
    #Early instars: Eggs hatched to early instar larvae 
    Nl1[,t]<-  
      if (stochastic) { 
        rpois(Nwards, 0.5*he*b)  
      } else{ 
        0.5*he*b 
      } 
    Gr[,t-1] <- Na[,t]/(Na[,t-1]+1) #growth rate 
  } # End of time t loop 
  abind(LA=LA, Nl1=Nl1, Nl2=Nl2, Np=Np, Na=Na, Gr=Gr, along = 3) 
} #End of simulation function  
 

Appendix B.8 Conversion of original parameters values to 
values per week 

One common challenge in calculating parameter values is the conversion of their 

observed or original values to a standardized time base e.g., values per week. This 

can be done as follow: 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑣𝑎𝑙𝑢𝑒	𝑝𝑒𝑟	𝑤𝑒𝑒𝑘 = (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑣𝑎𝑙𝑢𝑒)
D	F5GH
<+	F5GH 

Where 𝑡% is the original or observed time interval such as per one, two or three 

days etc. 



Supplementary materials  152 
 

Appendix C Supplementary materials for Chapter 4 

Appendix C.1 Female adult mosquito data from data from 
Dar es Salaam, Tanzania, aggregated weekly 

 
Figure C.1: An illustration of adult Anopheles gambiae mosquito population abundances 
aggregated weekly for a total of 193 weeks from 2005-2009 for each ward before and during 
large-scale larvicidal control in Dar es Salaam, Tanzania. 

 

 

 

Appendix C.2 Total number of traps per each ward 

Table C.2: Total number of Human Landing Catches (HLC) traps (i.e., mitaa) for each of the 
wards before and during large-scale larvicidal control in Dar es Salaam 
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Appendix C.3 Weekly current rainfall per ward 

 
Figure C.3: Showing weekly current rainfall data per ward used during the large-scale 
larvicidal control intervention in Dar es Salaam, Tanzania. 

Appendix C.4 Weekly cumulative rainfall for each ward 

 
Figure C.4: weekly cumulative rainfall data per ward used during the large-scale larvicidal 
control intervention in Dar es Salaam, Tanzania. 
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Appendix C.5 Average weekly temperature across wards 

 
Figure C.5: An average temperature across wards during the large-scale larvicidal control in 
Dar es Salaam, Tanzania 

Appendix C.6 Representation of statistical distributions 
shape or rate parameters of priors using means and 
variances 

Mean log odds of survival (L) are transformed into probability of survival through 

time step inverse logit (P) (i.e., P = inv.logit(L)). The prior distribution of P was 

beta with shape parameters 𝛼 and 𝛽. The shape parameters are determined by 

using P and variance (V) such that:  

𝑃~𝐵𝑒𝑡𝑎(𝛼, 𝛽). 
where 𝛼 = w(

I
x (𝑃 − 𝑃" − 𝑉) and 𝛽 = w-2(

I
x (𝑃 − 𝑃" − 𝑉). Then P is changed into L 

such that: 
L = 𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑜𝑔 w (

-2(
x. 

 
Given P and V are mean and variance, respectively, shape and rate parameters of 

gamma distribution parameters were calculated as follows: 
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Appendix C.7 Trace plots of model fitting using the 

simulated data 

 
Figure C.7: Trace plots after model fitting using the simulated data and pobs of 0.1. Note that 
plot beta2 should be named beta3 and plot beta3 should be named beta2.  

Appendix C.8 Prior and posterior distributions of model 
fitting using the simulated data  

Figure C.8: Goodness of fit: Histograms showing prior (gey) and posterior (sky blue) 
distributions of the model fitting using the simulated data and pobs of 0.1. Red and blue 
colours are means of the prior (which are also true parameter values) and posterior 
distributions while grey dashed lines show the 95% CI of quantiles of the posterior 
distribution. 
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Appendix C.9 Observed vs. predicted adult mosquito 

averaged across wards 

 
Figure C.9: Goodness of fit: Observed (i.e., simulated) vs. estimated data averaged across 
wards for each probability of observations (pobs) after the Bayesian state-space model was 
fitted to the simulated data. 
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autocorrelation function (ACFs) of the observed adult mosquitoes (black colour) 

mostly falls within the ACFs of the predicted adult mosquitoes  
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Figure C.10: Goodness of fit: Observed versus posterior predicted ACF values for weekly 
detrended adult mosquito densities for 22 lags. The black lines and points are the ACF for 
observed mosquitoes from the human landing catches while the red lines and points show 
ACF values for predicted mosquitoes.   

Appendix C.11 Trace plots of model fitted to field data 

 
Figure C.11: Panels showing trace plots after model was fitted to the female adult An. gambiae 
data from a large-scale larvicidal control in Dar es Salaam, Tanzania. Note that plot beta2 
should be named beta3 and plot beta3 should be named beta2. 
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Appendix C.12 Prior vs. posterior distribution of model 

fitting using field data  

 

 
Figure C.12: Histograms showing prior vs posterior distributions after the model was fitted to 
the female adult An. gambiae data from large-scale larvicidal control in Dar es Salaam, 
Tanzania. 

Appendix C.13 Observed vs. estimated mosquitoes for 
each ward 

 
Figure C.13: Panels showing observed (black) vs. estimated (red) adult female An. gambiae 
mosquito population dynamics for each of 15 wards in Dar es Salaam, Tanzania, for pobs of 
0.1. 
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Appendix C.14 Observed vs. estimated mosquitoes across 

wards 

 
Figure C.14: Illustration of the reconstruction of the total population abundances of An. 
gambiae adult mosquitoes across all wards for pobs of 0.01: The y-axis is observed (black), 
predicted mean mosquito population abundance (predNa) (red), 2.5% and 97.5% quantiles 
(sky blue) of predicted population abundance, while the x-axis is the time in weeks. (b) 
Goodness of fit: observed vs. predicted total population abundances of An. gambiae adult 
mosquitoes across wards, where the diagonal solid line corresponds to the 1:1 line. 

Appendix C.15 Bayesian state-space model JAGS code 

#Model starts here 

model{ 
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        #Set initial conditions  
        Nl1[i,1]<-round(30/pobs); Nl2[i,1]<-round(30/pobs); Np[i,1]<-
round(28/pobs);  
     Na[i,1]<-round(28/pobs); predNa[i,1]<-Na[i,1];   
     pNa[i,1]<-round(14/pobs); aNa[i,1]<-round(14/pobs); 
    
     #Add uncertainty in adult survival at each ward 
     saE[i]~dnorm(0,tau.saE) 
   for(t in 2:tmax){ 
#Early instar larval survival is density, raifall, temperature and treatment 
dependent 
    logit(sl1[i,t])<-beta0-beta1*(1-beta3*datRcum[i,t-
1]/330.8189)*(Nl1[i,t-1]+Nl2[i,t-1]) - beta2*datR[i,t-1] - beta4*LA[i,t-1]  + 
beta5*datT[t,]   
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dependent 
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    logit(sl2[i,t])<-beta0-beta1*(1-beta3*datRcum[i,t-
1]/330.8189)*(Nl1[i,t-1]+Nl2[i,t-1]) - beta2*datR[i,t-1] - beta4*LA[i,t-1] + 
beta5*datT[t,]  
    # Pupal survival probability 
    logit(sp[i,t])<-lambda0 #+ spE[i] 
       # Adult survival probability 
    logit(sa[i,t])<-alpha0 + saE[i] 
        # SURVIVORS 
    # Late instar larvae: from survived early instars 
     Nl2[i,t]~dbin(sl1[i,t], Nl1[i,t-1]) 
    # Pupae: from survived late instars 
     Np[i,t]~dbin(sl2[i,t], Nl2[i,t-1]) 
    # Adults: pupae that survive this stage become adults 
     pNa[i,t]~dbin(sp[i,t], Np[i,t-1])  
    # Adults: that were in the system and survived 
     aNa[i,t]~dbin(sa[i,t], Na[i,t-1]) 
    # Total adults: adults that were in the system and 
survive, plus those coming into adulthood from pupal state  
    Na[i,t]~ dsum(pNa[i,t],aNa[i,t]) 
    # Total fecundity is dependent on Allee effects  
    b[i,t]<-exp(omega0)*Na[i,t-1]*(Na[i,t-1]/(C+Na[i,t-1])) 
#Total eggs laid  
    # Female eggs hatched to early instar larvae at a 
hatching probability of "he" 
    Nl1[i,t]~dpois(0.5*he*b[i,t])  
        #Stochasticity in the observation of adults in the experiment 
        #Observation process model: Observation likelihoods against real data 
        #Poisson process 
        datNa[i,t] ~ dpois(pobs*mitaa[i]*Na[i,t]) 
        #Posterior predictions 
        predNa[i,t] ~ dpois(pobs*mitaa[i]*Na[i,t])         
    } #End of time t loop 
         
  } #End of ward i loop 
 
#Priors on early and late instar LARVAL SURVIVAL: Mean larval survival 
mu.beta0<- 0.46  
var.beta0<- 0.005 
alpha.beta0<- (mu.beta0/var.beta0)*(mu.beta0-pow(mu.beta0,2)-var.beta0) 
beta.beta0<- ((1-mu.beta0)/var.beta0)*(mu.beta0-pow(mu.beta0,2)-var.beta0) 
beta0line~dbeta(alpha.beta0,beta.beta0) 
beta0<- log(beta0line/(1-beta0line)) 
 
#Negative density dependence in early and late instar larval survival 
mu.beta1<-  0.0055*pobs    
var.beta1<- 0.00001*pobs*pobs    
alpha.beta1<- pow(mu.beta1,2)/var.beta1 
beta.beta1<- mu.beta1/var.beta1 
beta1~dgamma(alpha.beta1,beta.beta1)  
 
#Effect of rainfall on early and late instar larval survival 
mu.beta2<-  0.01    
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var.beta2<- 0.0001 
alpha.beta2<- pow(mu.beta2,2)/var.beta2 
beta.beta2<- mu.beta2/var.beta2 
beta2~dgamma(alpha.beta2,beta.beta2)  
 
#Effect of interaction between early and late instars and rainfall  
mu.beta3<- 0.7  
var.beta3<- 0.01  
alpha.beta3<- (mu.beta3/var.beta3)*(mu.beta3-pow(mu.beta3,2)-var.beta3) 
beta.beta3<- ((1-mu.beta3)/var.beta3)*(mu.beta3-pow(mu.beta3,2)-var.beta3) 
beta3~dbeta(7.2,0.8) #dbeta(alpha.beta3,beta.beta3)  
 
#Effect of larvicides on early and late instar larval survival 
mu.beta4<- 0.25  
var.beta4<- 0.03  
alpha.beta4<- pow(mu.beta4,2)/var.beta4 
beta.beta4<- mu.beta4/var.beta4 
beta4~dgamma(alpha.beta4,beta.beta4)  
 
#Effect of temperature on early instar larval survival 
mu.beta5<- 0.01 
sd.beta5<- 0.07 #0.05 #0.1  
beta5~dnorm(mu.beta5,1/(sd.beta5)^2)  
 
#Priors on PUPAL SURVIVAL: Mean pupal survival 
mu.lambda0<- 0.4 
var.lambda0<- 0.01   
alpha.lambda0<- (mu.lambda0/var.lambda0)*(mu.lambda0-pow(mu.lambda0,2)-
var.lambda0) 
beta.lambda0<- ((1-mu.lambda0)/var.lambda0)*(mu.lambda0-
pow(mu.lambda0,2)-var.lambda0) 
lambda0line~dbeta(alpha.lambda0,beta.lambda0) 
lambda0<- log(lambda0line/(1-lambda0line)) 
 
#Priors on ADULT SURVIVAL: Mean adult survival 
mu.alpha0<- 0.51 
var.alpha0<- 0.01  
alpha.alpha0<- (mu.alpha0/var.alpha0)*(mu.alpha0-pow(mu.alpha0,2)-
var.alpha0) 
beta.alpha0<- ((1-mu.alpha0)/var.alpha0)*(mu.alpha0-pow(mu.alpha0,2)-
var.alpha0) 
alpha0line~dbeta(alpha.alpha0,beta.alpha0) 
alpha0<- log(alpha0line/(1-alpha0line)) 
 
#Priors on FECUNDITY: Mean per capita fecundity 
mu.omega0<- 300  
sd.omega0<- 140  
alpha.omega0<- pow(mu.omega0,2)/pow(sd.omega0,2) 
beta.omega0<- mu.omega0/pow(sd.omega0,2) 
omega0line~dgamma(alpha.omega0,beta.omega0)  
omega0<- log(omega0line) 
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#Eggs hatching probability 
mu.he<- 0.23 
var.he<- 0.005  
alpha.he<- (mu.he/var.he)*(mu.he-pow(mu.he,2)-var.he) 
beta.he<- ((1-mu.he)/var.he)*(mu.he-pow(mu.he,2)-var.he) 
he~dbeta(alpha.he,beta.he) 
 
#Prios of ALLEE EFFECTS 
mu.C<- 3.6/pobs  
sd.C<- 3/pobs  
alpha.C<- pow(mu.C,2)/pow(sd.C,2) 
beta.C<- mu.C/pow(sd.C,2) 
C~dgamma(alpha.C,beta.C) 
 
#Uncertainty in adult survival at each ward 
tau.saE<- 1/pow(sigma.saE,2) 
sigma.saE~dgamma(0.01,0.01)  
} #END model 
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