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Abstract

This thesis comprises three papers in Applied Microeconomic Theory. Chapter 1 is my

job market paper titled Repeated Signaling and Reputation.

Chapters 2 and 3 include two papers published during my Ph.D. studies:

• Chapter 2: Lei, X. (2023). Pro-rata vs User-centric in the Music Streaming In-

dustry. Economics Letters, 226, 111111.

• Chapter 3: Lei, X. (2023). Optimal Queue to Minimize Waste. Mathematical

Social Sciences, 123, 87-94.
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Introduction

This thesis presents three essays in Applied Microeconomic Theory, each exploring distinct yet

interconnected themes within applied game theory, mechanism design and information design.

These studies aim to deepen the understanding of (dynamic) interactions and decision-making

processes in economically relevant environments, such as influencer marketing, the music stream-

ing industry, and queue management for waste minimization. Collectively, the three essays con-

tribute to Applied Microeconomic Theory by modeling complex behaviors and equilibria under

varying informational asymmetries and incentive structures, which are prevalent in modern

digital and service-based economies.

The first chapter investigates repeated signaling and reputation, where an influencer repeat-

edly interacts with myopic customers, a setting common in social media marketing. Reputation

models, particularly those that integrate behavioral types, help explain how reputation evolves

and influences customer actions. Traditional literature on reputation models, such as Kreps

and Wilson (1982) and Milgrom and Roberts (1982), highlights how reputation can deter en-

try through long-term strategic incentives. However, existing models often assume customers

can fully observe history, which is unrealistic in real-world influencer marketing. This chap-

ter extends previous work by assuming that customers are limited to a single-period memory.

Consequently, the optimal signaling strategy becomes unique, with the influencer using a mixed

strategy to manage reputation while inducing purchases, contrasting with models that allow for

pure strategy equilibria in repeated games.

The second chapter addresses remuneration rules in the music streaming industry, compar-

ing the efficiency and fairness of pro-rata (P rule) versus user-centric (U rule) payment models.

Music streaming platforms like Spotify and Deezer face ongoing debates regarding equitable rev-

enue distribution, as demonstrated by empirical studies (Muikku, 2017; Hesmondhalgh, 2021).

While previous studies often treat the streaming matrix as exogenous, this chapter contributes

by developing an endogenous model where artists strategically adjust song quality to influence

streaming frequency. Using this model, the study shows that the P rule outperforms the U

rule in both efficiency and fairness when superstar artists’ marginal costs are lower. This find-

ing challenges current policy discussions that favor the U rule as inherently more equitable

and highlights the strategic responses of artists, which can shift the fairness and efficiency of

remuneration outcomes.

The third chapter explores queue management and waste minimization in service systems,

drawing on theories from queueing theory and social choice. Optimizing queues, especially in

contexts with significant waste potential (e.g., healthcare and food services), requires balancing

fairness of queuing service and resource allocation to minimize unused resources. This essay

contributes to queueing literature by proposing an optimal policy, which combines multiple

disciplines in allocation, that reduces waste while preserving service fairness. Building on classic

works in queue theory and social fairness (Naor, 1969), this optimization model offers insights

for both private and public service providers seeking to minimize allocation waste.
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Methodology

The methodologies employed across these chapters draw from game theory and microeconomic

modeling. In Chapter 1, a repeated signaling model is developed under a Markov Decision

Process framework to capture the influencer’s strategic behavior in a limited-memory envi-

ronment. The model is solved using elimination of dominated strategy to identify the unique

mixed-strategy equilibrium, supported by analytical derivations of customer belief updating

and posterior reputation calculations. Chapter 2 employs an endogenous modeling approach to

analyze artist behavior under different revenue-sharing rules, leveraging a comparative static

analysis to quantify equilibrium qualities and royalty distributions across remuneration models.

In Chapter 3, a queueing optimization framework is utilized to identify policies that prioritize

service order based on fairness and mathematically prove the theoretical model’s capacity for

waste minimization.

This research builds upon foundational theories in reputation modeling, revenue-sharing

rules, and queue management while addressing gaps in the literature by incorporating real-world

complexities such as memory constraints in reputation models and strategic quality adjustments

by agents. The theoretical advancements contribute to a nuanced understanding of strategic

decision-making and optimal policy design in scenarios marked by information asymmetry and

competitive incentives.

In conclusion, this thesis offers a comprehensive examination of strategic behaviors in mi-

croeconomic settings with practical implications. By integrating behavioral insights with rigor-

ous modeling, the three essays extend Applied Microeconomic Theory’s scope, providing both

theoretical advancements and policy-relevant recommendations for sectors grappling with asym-

metric information, reputation dynamics, and resource allocation challenges.
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Chapter 1

Repeated Signaling and Reputation
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Preface

The first chapter lays the theoretical foundation of this thesis by exploring the dynamics of

reputation in repeated information design interactions. Reputation, particularly in markets

with asymmetric information, is a critical mechanism through which individuals and firms build

trust and influence decisions. This chapter examines how a long-lived influencer’s reputation

evolves when interacting with a series of myopic customers who observe only limited historical

information. By introducing a bounded-memory assumption, this model reflects the practical

limitations of real-world settings like influencer marketing, where customers often lack perfect

recall of past interactions.

This analysis establishes key insights that resonate throughout real-world decision making

process: namely, that agents make intertemporal trade-offs between immediate rewards and

the potential for reputation-based gains in the future. The chapter’s findings highlight how

the influencer’s signaling strategy, shaped by these trade-offs, becomes strictly mixed in equi-

librium, contrasting with pure equilibria found in standard reputation models. The themes of

information asymmetry, bounded rationality, and strategic adaptation presented here provide a

conceptual bridge to the subsequent chapters, where different forms of asymmetric information

and competitive strategies are explored in applied settings.
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Abstract

The Markov decision process (MDP) framework is widely applied in the behavioral-

type-based reputation literature. A pure strategy stationary equilibrium can exist,

often resulting from the linear transition dynamics linked to players’ actions. In

this paper, we examine a reputation model with an information design stage game,

where the transition to the receiver’s action is non-linear. A relevant example is in-

fluencer marketing on social media, where information asymmetry exists regarding

both the product’s quality and the influencer’s type. The customer’s decision-

making process depends on the influencer’s signal and reputation. We demonstrate

that, with myopic customers, neither a separating nor a pooling equilibrium exists

in the steady state. Instead, the optimal stationary Markov persuasion strategy is

unique and strictly mixed. Finally, we capture the stochastic reputation dynamics

in the steady state.

1 Introduction

A reputation model with behavioral types is a form of a repeated game with incomplete infor-

mation, where Player 1’s type is private, and the history of past play reveals information about

his type, thereby influencing Player 2’s beliefs. Typically, Player 1 faces a trade-off between

choosing an action that yields a higher current payoff but harms future reputation—leading to

a lower future value—and choosing an action that results in a lower current payoff but improves

reputation, potentially generating higher future value.

We consider a new application of the reputation model in which the stage game is an informa-

tion design game. For instance, in influencer marketing, customers often struggle to distinguish

between low-quality and high-quality products and rely on influencers for information regard-

ing the product’s quality. The influencer is rewarded when a product is purchased, creating

an incentive to mislead customers if misreporting the product’s quality is profitable. However,

the influencer’s credibility diminishes if customers discover prior instances of dishonesty. Thus,

the influencer faces a trade-off between achieving a higher current payoff through less accurate

information, which lowers future value, and accepting a lower current payoff with more accurate

reporting, which increases future value. Reputation effects also arise in other contexts involving

information asymmetry, such as stock recommendations (Morgan & Stocken 2003), consulting

services (Glückler & Armbrüster 2003), and political signaling (Honryo 2018).

We use the influencer marketing context as an example, where the information design liter-

ature, starting from (Kamenica & Gentzkow 2011), applies widely. The key difference between

an information design game and a signaling game is that the influencer needs to commit to a

signaling plan before the realization of states rather than choosing a signaling strategy after

observing a realized state. We choose the information design game because it focuses on how

the sender maximizes utility through information manipulation, which is central to marketing

literature, and places less emphasis on the sender’s incentive compatibility constraints compared

to a signaling game by giving the sender commitment power.
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Our aim is to capture the long-term interaction between a long-lived influencer and short-

lived, myopic customers with limited capability to observe the history of past interactions. We

are interested in addressing the following questions:

1. In the steady state, how do different histories affect the influencer’s reputation, and what

are the dynamics of reputation evolution?

2. Can a separating or pooling equilibrium exist in the steady state? If yes, what are

the conditions for such an equilibrium? If not, what is the stationary Markov perfect

equilibrium, and is it unique?

The first result is that a matched history of high quality and high signal does not improve the

influencer’s reputation. This may seem counterintuitive, as one might expect that a matched

history would boost the influencer’s reputation. However, because customers know that the

influencer must send a high signal when the quality is high, this action is fully anticipated and,

therefore, does not contribute to increasing reputation. Reputation improves only when an

outcome is somewhat unexpected. For the same reason, a matched history of low quality and

low signal can actually benefit the influencer’s reputation, as the influencer has an incentive to

send a high signal to encourage purchasing.

The second result is that there is a unique stationary Markov perfect equilibrium in a mixed

strategy. It is characterized by a partially separating signaling strategy, where the influencer

sends a high signal when the quality is high and a strictly mixed signal when the quality is

low. The mixed strategy is essential for achieving the optimal outcome due to the non-linear

transition in the customer’s action. The inefficiency of a pure signaling strategy is evident:

when the quality is low, any pure signaling strategy cannot induce purchasing, resulting in

a zero instant reward. In contrast, a mixed strategy can induce purchasing and generate a

positive expected payoff for the influencer, which is not a simple linear combination of the two

zero rewards under pure strategies.

The uniqueness of the equilibrium arises from the assumption that customers are myopic and

have limited memory of past interactions. The one-period memory of the customers guarantees

that cheating has a very limited impact on future value, making cheating always beneficial

for the influencer. This situation may change when customers have greater capabilities for

observing longer histories or even perfect recall, which could allow cheating to have a longer-

lasting negative effect on the influencer’s reputation, making a separating equilibrium feasible.

Nevertheless, the myopic assumption is suitable for the real world and shows an important

result: all exogenous variables, such as the discount factor, the influencer’s ex-post reward, the

prior distributions of goods, and the influencer’s prior reputation, do not affect the uniqueness

of the stationary Markov perfect equilibrium. This is different from other reputation models

where multiple equilibria exist and whose attainment depends on exogenous parameters.

The structure of the paper is as follows. In Section 2, we review the most relevant research

in the literature on reputation and influencer marketing. In Section 3, we explain the setup

of the stage signaling game and demonstrate the effect of a fixed reputation. In Section 4, we

present the setup for the repeated version of the stage signaling game and derive the unique
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optimal stationary Markov signaling strategy for the influencer. In Section 5, we conclude with

a brief discussion on the game with perfect recall.

2 Literature Review

Reputation literature: Mailath & Samuelson (2006) provides a comprehensive collection of mod-

els related to reputation in repeated games. Here, we focus on the models, whose solution

concept is Markov perfect equilibrium (Maskin & Tirole 2001), where agents are rational and

Bayesian. In general, papers are discussing the existence of three types of reputation equilibria:

1. Reputation-building equilibrium, in which a sufficiently patient firm always playing a

strategy to build up its reputation (Höner 2002, Kreps et al. 1982, Kreps & Wilson 1982,

Mailath & Samuelson 2001). Although these papers usually have different model settings,

they usually assume that the customers have perfect recall of history play, which means that

a bad behavior can persistently harm the long-run player’s reputation, even with imperfect

monitoring. In contrast, in our model, the customers are myopic and have only a one-period

memory of history, meaning that cheating in the remote past is hidden. This assumption is

more realistic in real-world business cases.

2. Cyclic equilibrium, in which the firm may choose to build reputation for a while and

than exploit its reputation. Liu (2011) develops a model similar to ours. They also assume

that the short-lived players have limited memory, but they also consider the customer’s costly

information acquisition strategy, which determines how many periods of past outcomes to ob-

serve. They prove the existence of a reputation cycle in the steady state, where the long-run

player will build reputation when their reputation is low and cheat when their reputation is

sufficiently high. Our result shares the same insight, and we also show that the influencer has

a cyclic reputation in the steady state. The difference is that we do not consider the short-run

player’s information acquisition by imposing a strictly one-period memory restriction. This

allows us to derive the explicit Markov signaling strategy and show the probability of reaching

each reputation transition processes.

3. Levine (2021) discusses a new type of equilibrium called trap equilibrium, in which the

firm’s actions depend on the realization of a public history that is imperfectly monitored. A

positive history signal induces high effort from the firm, while a negative history induces no

effort. Thus, the firm’s payoff depends on its luck in experiencing beneficial events. In our

model, the influencer has more control over the history realization, since they can commit to a

signaling plan before the quality is realized. Additionally, past actions of the firm are perfectly

monitored, so the influencer does not need to worry about the possibility that their honest

reporting will be ignored. In their model, the long-run player also has an exogenous type

replacement process, which is not very useful in our setting, since the customers usually knows

the influencer’s identity so that the replacement will always be known.

Dynamic Information Design: There is a vast literature on information design, starting with

Kamenica & Gentzkow (2011), and we focus on dynamic games here. Renault et al. (2017) and

Ely (2017) both study a dynamic Bayesian persuasion game without cost. In their model, the
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Markov transition of the state is exogenously given and publicly known. The information de-

signer maximizes payoff by altering the receiver’s autonomous belief updating. In our setting,

the product’s quality is independently and identically distributed (i.i.d.) across all periods.

The Markov transition of history is endogenously determined by the long-run player’s signaling

strategy. There is also research on costly dynamic persuasion that restricts the sender’s com-

mitment power (Henry & Ottaviani 2019, Che et al. 2023). To the best of our knowledge, this

paper is the first to combine dynamic information design with the reputation model.

Influencer Marketing : Here, we focus exclusively on economic theory papers. Fainmesser &

Galeotti (2021) use an extensive-form one-shot game to discuss the equilibrium of the interaction

between firms, influencers, and customers. They focus on the market as a whole and neglect

the dynamics of interactions, which is the main focus of our work. Additionally, the influencer

marketing discussion is more concerned with the influencer’s trade-off between providing organic

content, which generates more utility for customers but no income, and sponsored content,

which generates less utility for customers but provides income. However, we aim to capture the

repeated signaling and dynamic reputation evolution inherent in influencer marketing.

Mostagir & Siderius (2023) use a repeated game to model the dynamic interaction between

firms, influencers, and customers. However, they focus more on market equilibrium, aiming

to find market equilibria while neglecting the dynamic evolution of the influencer’s reputation,

which is one of the main goals of our work.

3 Stage Game

We characterize the influencer marketing story as a simple binary information design problem,

where the influencer has state-independent preferences. There are two players. Player 1 is an

influencer who tries to persuade Player 2 (the customer) to buy a good. The good has binary

quality q ∈ Q = {H,L}. The common prior distribution on quality is µ = {µ(H), µ(L)}, with∑
q µ(q) = 1 and µ(H) < 1

2 . The customer has a binary action a ∈ A = {0, 1}, where action 1

means to buy. The customer’s utility function is given by

u2(0, H) = u2(0, L) = 0, u2(1, H) = 1, and u2(1, L) = −1,

which depends only on the action and the quality of the good. Let u1(a) denote the reward of

the influencer, where u1(0) = 0 and u1(1) = r > 0. Here, we assume that the influencer’s payoff

depends only on the customer’s action. The customer chooses an action a after observing a

signal s ∈ S = {h, l} sent by the influencer. We assume the customer chooses to buy when his

expected payoff is non-negative.

Let α1(s|q) denote the influencer’s signaling strategy, which is the probability of sending

signal s when quality q is realized. The key difference between an information design model and

a signaling game is that, in the information design game, the influencer commits to a signaling

strategy α1 before quality q is realized.

The timing of the stage game is as follows:
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1. The influencer commits to a signaling strategy α1.

2. Nature selects the quality of the good q according to prior µ.

3. Signal s is realized based on q and α1.

4. The customer observes the signal s, updates his quality belief, and chooses an action a.

5. Payoffs are realized.

3.1 Equilibrium

Given the influencer’s strategy, the posterior belief of the customer is:

µ(q|s) = µ(q)α1(s|q)∑
q′

µ(q′)α1(s|q′)
.

The customer’s strategy α2(s) assigns a probability of choosing action 1 (to buy) after

observing signal s. Using backward induction, in stage 2, the customer obtains non-negative

expected utility when:

µ(H|s) ≥ 1

2
.

Therefore, the customer’s best response is determined by his posterior belief under signal s,

which is:

α∗
2(s) =

1, if µ(H|s) ≥ 1
2 ,

0, if µ(H|s) < 1
2 .

Given the customer’s best response, in stage 1, the influencer receives a positive payoff r

only when the customer chooses a = 1 under signal s. Since the prior belief µ(H) < 1
2 , the

customer cannot always buy the product under both signals h and l. Therefore, to induce

purchasing, the influencer must design information such that the customer would take different

actions under different signals. This results in two conditions:

µ(H|h) ≥ 1

2
, µ(H|l) < 1

2
.

(Here, we discuss the case where the customer only chooses to buy under signal h. The

other case is symmetric.)

As a result, the influencer’s utility maximization problem can be expressed as:

max
α1

∑
q∈{H,L}

µ(q)α1(h|q)r

subject to:

µ(H|h) ≥ 1

2
, µ(H|l) < 1

2
.

The resulting equilibrium signaling strategy is:

α∗
1(h|H) = 1,
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α∗
1(h|L) =

µ(H)

µ(L)
.

This generates 2µ(H)r expected payoff for the influencer. From here, we can see that the

influencer maximizes his utility by maximizing the realization probability of signal h while

ensuring that signal h is informative for high quality H.

3.2 Reputation Effect

Assuming that the influencer’s private type can be either honest or rational, an honest influencer

always truthfully reports the product’s quality, while a rational influencer maximizes expected

payoff and, hence, the realization probability of signal h. The customer has a prior belief γ

about the influencer being honest, which we refer to as the influencer’s reputation. We are

interested in the case where the influencer is rational; thus, when we refer to the influencer

without mentioning their type, we mean the rational influencer.

Let α1(s|q, γ) denote the signaling strategy of the influencer. After observing signal s ∈
{h, l}, the customer’s posterior belief about high quality is given by:

µα1(H|h, γ) = µ(H)(γ + (1− γ)α1(h|H, γ))

µ(H)(γ + (1− γ)α1(h|H, γ)) + µ(L)(1− γ)α1(h|L, γ)

µα1(H|l, γ) = µ(H)(1− γ)α1(l|H, γ)

µ(H)(1− γ)α1(l|H, γ) + µ(L)(γ + (1− γ)α1(l|L, γ))

For a similar reason as explained before, the influencer must induce different actions under

different signals. This results in the following conditions:

µ(H|h, γ) ≥ 1

2
, µ(H|l, γ) < 1

2
.

As a result, the influencer’s utility maximization problem is:

max
α1

∑
q∈Q

µ(q)α1(h|q, γ)r

subject to:

µα1(H|h, γ) ≥ 1

2
, µα1(H|l, γ) < 1

2
.

The optimal signaling strategy is given by:

α1(h|H, γ) = 1, α1(l|H, γ) = min

{
µ(H)

µ(L)

1

1− γ
, 1

}
.

Again, the influencer aims to maximize the probability of sending signal h, while ensuring

that signal h remains informative.

Comparing the equilibrium signaling strategy with the default case (where there is no repu-

tation), we find that the influencer’s expected payoff µ(H)
(
1 + 1

1−γ

)
r increases with reputation

γ until a reputation threshold γ = 1 − µ(H)
µ(L) . When reputation γ exceeds this threshold, the

optimal signaling strategy α1(l|H, γ) remains at 1, since it is a probability and cannot exceed
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1. The highest expected payoff achievable is r (see Figure 1).

Figure 1: Expected Reward and Reputation

4 Repeated game

The static information design game with reputation is repeatedly played between a long-lived

influencer and a short-lived customer. In each period, a new customer is born and leaves at

the end of that period, while the influencer has an infinite lifetime and a persistent type. To

allow past play to affect future reputation, we adopt a simple assumption that the short-lived

customer is myopic and can only observe the last period’s outcome. Let

Y = {{h,H}, {l,H}, {h, L}, {l, L}}

denote the set of all possible histories y. At period t, the customer t observes history yt =

{st−1, qt−1}, where st−1 and qt−1 denote the last period’s signal and quality. All players share

a common prior on the honest type γ0. We assume γ0 < 1− µ(H)
µ(L) so that the customers won’t

buy if the influencer sends the pure signal h. At period t, first, the public history yt is realized.

Then, the influencer commits to a signaling strategy α1t. The customer observes signal st and

history yt, then chooses an action at.

Timing of the supergame:

1. In each period t, the public history yt is realized.

2. A new customer t is born with prior belief γ0 and µ.

3. After observing history yt, both players update the influencer’s reputation to γyt .

4. The influencer commits to signaling strategy α1t.

5. A new product is independently realized with quality qt according to µ.

6. Signal st is realized based on α1t and qt.
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7. After observing the signal, the customer chooses an action at.

8. Payoffs are realized, and the customer leaves.

9. The history then changes to yt+1 = {st, qt} for the next period.

In this game, history yt ∈ Y is the state. The state transition from yt to yt+1 depends on

the realization of qt in period t and the signal st sent by the influencer in period t.

The Markov decision process (MDP) can be defined as a tuple (Y, S,A, P, u, δ):

1. A state space

Y = {{h,H}, {l,H}, {h, L}, {l, L}}

.

2. A finite space of signals S = {h, l} and a finite space of actions A = {0, 1}.

3. A 4× 4 transition matrix P , where each element represents a transition probability from

state

yt = {st−1, qt−1} to state yt+1 = {st, qt},

given by

p(yt+1|yt) = µ(qt)α1t(st|qt).

4. Reward functions:

u1(a) =

r if a = 1,

0 otherwise
, u2(a, q) =


1 if q = H, a = 1,

−1 if q = L, a = 1,

0 otherwise

5. A discount factor δ ∈ (0, 1) for the influencer to trade off between immediate and future

rewards.

Table 1 collects notations and corresponding meanings. The key difference between the

repeated information design MDP and other MDPs with simultaneous-move stage games (such

as the chain-store entrance game or firm effort game) is that the information design MDP has

nonlinear transitions into player 2’s actions. This means that the repeated information design

MDP is different from the standard MDP with linear transitions, as described in Blackwell

(1965), where the optimal stationary Markov policy is pure. In this paper, we will show that,

in the repeated information design MDP, the optimal strategy must be strictly mixed, which is

necessary to induce purchasing when quality is low.

4.1 Markov Perfect Equilibrium

We are interested in the long-term interaction between the influencer and the customer. Thus,

we do not need to specify the initial periods and can focus solely on the steady state of the
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Variable Meaning

S Signal space, S = {h, l}
A Action space, A = {0, 1}
Q Quality space, Q = {H,L}
Y History space, Y = {{h,H}, {l, H}, {h, L}, {l, L}}
st Signal sent by the influencer at period t
at Action chosen by the customer at period t
qt Current quality of the product at period t
yt History observed at period t, yt = {st−1, qt−1}
p(yt+1|yt) Transition probability from state yt to yt+1

r Influencer’s reward when the customer buys the product
µ Prior distribution of product quality
δ Discount factor for the influencer, δ ∈ (0, 1)
γ0 Prior reputation for the influencer, γ0 ∈ (0, 1)
u1(at) Reward function for the influencer
u2(at, qt) Reward function for the customer

Table 1: List of Variables and Their Meanings

Markov decision process. For any history y, a stationary strategy α1(y) of the influencer,

denoted as {α1(s|q, y)}s∈S,q∈Q, is a plan for sending signals, where each element maps the

current quality q and state y to a probability of sending signal s. A strategy of the customer,

denoted as α2(s, y), maps the history y and the observed signal s to a probability of choosing

action 1.

The customer’s best response: For any observed history y, the customer has the following

two beliefs:

1. With probability γ0, the influencer is honest and always reports the product’s true quality.

Thus, the distribution π0 of states is given by:

π0({h,H}) = µ(H) π0({h, L}) = 0

π0({l, H}) = 0 π0({l, L}) = µ(L)

2. With probability 1− γ0, the influencer is rational. Let πα1 denote the stationary distri-

bution of states induced by the rational influencer’s stationary signaling strategy α1.

From these two distributions over history, the customer updates the influencer’s reputation

to γα1
y after observing history y:

γα1
y =

γ0π0(y)

γ0π0(y) + (1− γ0)πα1(y)

Then, after receiving a signal s, the customer chooses an action based on their updated

quality belief:
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µα1(H|h, y) =
µ(H)(γα1

y + (1− γα1
y )α1(h|H, y))

µ(H)(γα1
y + (1− γα1

y )α1(h|H, y)) + µ(L)(1− γα1
y )α1(h|L, y)

µα1(H|l, y) =
µ(H)(1− γα1

y )α1(l|H, y)

µ(H)(1− γα1
y )α1(l|H, y) + µ(L)(γα1

y + (1− γα1
y )α1(l|L, y))

The customer’s strategy α2(s, y) is a best response to α1:

α2(s, y) =

1 if µα1(H|s, y) ≥ 1
2

0 otherwise

The influencer’s optimal signaling strategy: Let Pα1 denote the transition matrix induced by

α1. The corresponding stationary distribution πα1 of states under strategy α1 can be computed

from the system of equations:

πα1 = πα1Pα1

1 = πα1e

Given the current state y ∈ Y , let Vy denote the influencer’s value function. Under signal s,

the influencer’s expected payoff at the current period is α2(s, y)r. Thus, the Bellman equation

is: for all y ∈ Y ,

Vy = max
α1

∑
q′∈Q

∑
s′∈S

µ(q′)α1(s
′|q′, y)

[
α2(s

′, y)r + δV ({s′, q′})
]

4.2 Stationary Equilibrium

We first eliminate dominated strategies to simplify the analysis of the equilibrium.

Lemma 1. The influencer must send the signal h when the current quality is H, which implies

that ∀y ∈ Y , α∗
1(h|H, y) = 1.

Proof. The reasoning is as follows: when high quality is realized,

1. Sending signal l decreases current expected payoff: For all y, the influencer’s expected

payoff in the current period is weakly increasing in the realization probability of signal h and

thus α1(h|H, y). In the current period, the customer either buys under signal h or does not

buy under signal h. If the customer does not buy under signal h, then it has no impact. If

the customer buys, the two constraints µα1(H|h, y) ≥ 1
2 and µα1(H|l, y) < 1

2 only restrict

the probability α1(h|L, y) of sending signal h under low quality, since a very high cheating

probability will make signal h uninformative. However, the two constraints do not restrict

α1(h|H, y), and the expected payoff in the current period is increasing in α1(h|H, y).

2. Sending signal l decreases future value: If α1(l|H, y) > 0, there is a probability that

the state y will transition to {l,H} in the next period. The updated history {l,H} contains a
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mismatch between the past signal and the quality, which clearly indicates that the influencer is

rational, generating a lower future value for the influencer.

Thus, any strategy with positive probability of sending signal l is dominated by the strategy

of sending pure signal h, which implies that the optimal stationary Markov signaling strategy

must be α∗
1(h|H, y) = 1 for all history y ∈ Y .

Also, the strategy ∀y, α∗
1(h|H, y) = 1 results in the following reputation updating process:

Proposition 1. Under the optimal stationary Markov signaling strategy, the history {h,H} does

not affect the influencer’s reputation. The history {h, L} decreases the influencer’s reputation

to zero, while the history {l, L} weakly increases the influencer’s reputation.

Proof. 1. For history {h,H}, its distribution is fixed as πα1({h,H}) = µ(H) under the optimal

signaling strategy, since the rational influencer will honestly report the true quality. Therefore,

in this case, the posterior reputation is:

γα1

{h,H} =
γ0π0({h,H})

γ0π0({h,H}) + (1− γ0)πα1({h,H})
= γ0.

2. The distribution of the history {h, L} depends on the signaling strategy α1(h|L, y). In

this case, the posterior reputation is 0, due to the mismatch between the past signal and past

quality:

γα1

{h,L} =
γ0π0({h, L})

γ0π0({h, L}) + (1− γ0)πα1({h, L})
= 0.

3. No matter what the signaling strategy α1(h|L, y) is, we have πα1({l, L}) ≤ µ(L). So, in

this case, the posterior reputation is:

γα1

{l,L} =
γ0π0({l, L})

γ0π0({l, L}) + (1− γ0)πα1({l, L})
=

γ0

γ0 + (1− γ0)
πα1 ({l,L})

µ(L)

≥ γ0.

The ineffectiveness of the history {h,H} comes from the fact that it is anticipated by the

customer, as the influencer always reports signal h when q = H. We can see that if the influencer

always sends signal l when the quality is L, i.e., ∀y, α1(l|L, y) = 1, his reputation also stays at γ0

with the history {l, L}. This demonstrates that if the influencer (rationally) honestly reports the

product’s quality and behaves like an honest influencer, it will not benefit his reputation. The

result may seem counterintuitive, as one might expect that honest reporting would improve the

influencer’s reputation. However, reputation can only improve when a somewhat unexpected

outcome is observed. For example, the history {l, L} can improve the influencer’s reputation

only when the influencer has an incentive to send signal h with low quality L.

Lemma 1 also results in a simplified expression for the customer’s posterior quality belief:

µα1(H|h, y) = µ(H)

µ(H) + µ(L)(1− γα1
y )α1(h|L, y)

µα1(H|l, y) = 0
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which means that the customer always chooses not to buy under signal l. Also, If the influencer

would like to induce purchasing in the current period, then there is a restriction on signal h:

α1(h|L, y) ≤ µ(H)

µ(L)(1−γ
α1
y )

, derived from µα1(H|h, y) ≥ 1
2 . From here, we show the influencer’s

optimal stationary signaling strategy must be mixed:

Proposition 2. Neither separating signaling nor pooling signaling can induce a stationary

Markov perfect equilibrium.

Proof. A simple intuition is that the optimal signaling strategy cannot exceed the restriction

value. The reason is as follows:

1. If α1(h|L, y) > µ(H)

µ(L)(1−γ
α1
y )

, there will be no purchase in the current period, resulting in a

zero reward for the influencer.

2. A high α1(h|L, y) increases the probability of transitioning to states {h, L}, where the

history clearly indicates that the influencer’s type is rational, leading to a lower future

discounted payoff.

Therefore, the optimal signaling strategy must lie within the range where the customer buys

in the current period: ∀y ∈ Y, α1(h|L, y) ≤ µ(H)

µ(L)(1−γ
α1
y )

. Note that the analysis here has proved

that a pooling equilibrium, where the influencer always sends signal h, does not exist.

Also, from the reputation updating process in Proposition 1, we know that γα1

{l,L} ≥
γα1

{h,H} = γ0 > γα1

{h,L} = 0. So, we have the the following ascending ranking of the restriction

values of α(h|L, y) for different states:

µ(H)

µ(L)
=

µ(H)

µ(L)(1− γα1

{h,L})
<

µ(H)

µ(L)(1− γ0)
=

µ(H)

µ(L)(1− γα1

{h,H})
≤ µ(H)

µ(L)(1− γα1

{l,L})
.

Firstly, we can eliminate the case where ∀y ∈ Y, 0 ≤ α1(h|L, y) ≤ µ(H)
µ(L) . In this case, a

marginal increase in α1(h|L, y) results in a marginal increase of µ(L)r in the current expected

reward and a decrease of

µ(L)δ
(
V{l,L} − V{h,L}

)
in the future value. This marginal analysis implies that if there is an internal solution, then

α1(h|L, {h,H}) = α1(h|L, {h, L}) = α1(h|L, {l, L}). However, this results in the decrease in

future value being zero since V{l,L} = V{h,L} when the three strategies are equal. Therefore, the

marginal increase µ(L)r is always higher than the marginal decrease of zero, and the influencer

will increase the probability α(h|L, y) until it hits the lowest restriction value µ(H)

µ(L)(1−γ
α1
{h,L})

=

µ(H)
µ(L) .

Thus, we have derived the optimal signaling strategy in state {h, L}: α∗
1(h|L, {h, L}) =

µ(H)
µ(L) .

Note that the analysis here has proved that a separating equilibrium, where the influencer sends

signal h under high quality and sends signal l under low quality, does not exist.
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The analysis implies that a stationary Markov signaling strategy must be a strictly mixed

strategy. Additionally, the optimal signaling strategies α∗
1(h|L, {h,H}) and α∗

1(h|{l, L}) must

be higher than µ(H)
µ(L) .

To find the optimal strategies that maximize the value function, we give the value function

system of the influencer:

V{h,H} = µ(H)(r + δV{h,H}) + µ(L)α1(h|L, {h,H})(r + δV{h,L}) + µ(L)α1(l|L, {h,H})δV{l,L})

V{h,L} = µ(H)(r + δV{h,H}) + µ(L)
µ(H)

µ(L)
(r + δV{h,L}) + µ(L)(1− µ(H)

µ(L)
))δV{l,L})

V{l,L} = µ(H)(r + δV{h,H}) + µ(L)α1(h|L, {l, L})(r + δV{h,L}) + µ(L)α1(l|L, {l, L})δV{l,L})

A marginal increase in α1(h|L, {h,H}) or α1(h|L, {l, L}) results in a marginal increase

of µ(L)r in the current reward, while inducing a marginal decrease in the future value of

δµ(L)(V{l,L} − V{h,L}), which equals:

δµ(L)(V{l,L} − V{h,L}) = µ(L)r
δ(µ(L)α1(h|L, {l, L})− µ(H))

1 + δ(µ(L)α1(h|L, {l, L})− µ(H))
.

Given that α1(h|L, {l, L}) > µ(H)
µ(L) , the expression is positive. We can easily check that this

expression increases with α1(h|L, {l, L}), but it is always less than µ(L)r, which represents the

marginal increase in the current reward. Therefore, internal solutions are not possible, and

the optimal value of α1(h|L, {h,H}) or α1(h|L, {l, L}) is achieved at their upper bound. We

have already derived that the posterior reputation in state L, {h,H} is γ0. Thus, the optimal

signaling strategy under state {h,H} is:

α∗
1(h|L, {h,H}) = µ(H)

µ(L)(1− γ0)
.

The remaining task is to find the upperbound for α1(h|L, {l, L}). We need to firstly derive

the steady-state distributions of states. Then, we can derive the endogenous upper bound of

α1(h|L, {l, L}), which needs to be weakly higher than α1(h|L, {l, L}). Afterward, the optimal

signaling strategy can be identified. The details are provided in the appendix. Here, we present

the main result:

Theorem 1. The unique optimal stationary Markov signaling strategy for the influencer is as

follows:

1. Sending a pure signal h when the current product’s quality is H.

2. Sending strictly mixed signals when the current product’s quality is L, with the following

specific strategies:

i. α∗
1(h|L, {h,H}) = µ(H)

µ(L)(1−γ0)
.

ii. α∗
1(h|L, {h, L}) =

µ(H)
µ(L) .
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iii. α∗
1(h|L, {l, L}) =

µ(H)(µ(L)−µ(H))
µ(L)((1−γ0)µ(L)−µ(H)) .

The theorem demonstrates that the optimal signaling strategy is unique for all exogenous

variables because the decrease in future value is always less than the increase in the current

reward. With myopic customers, one-period cheating behavior does not result in long-lasting

reputation damage for the influencer. Consequently, in each period with a low-quality product,

the influencer maximizes the probability of cheating while still maintaining the informativeness

of the high signal. Finally, we can derive the stochastic reputation dynamics under the unique

stationary equilibrium.

Proposition 3. Under the unique stationary equilibrium, the reputation dynamics is a stochas-

tic transition process among three increasing reputation values 0, γ0 and γ
α∗
1

{l,L}, in which a higher

reputation status corresponds to a higher probability of cheating.

The reputation evolution process is directly computed from the optimal signaling strategy

α∗
1 and the prior quality distribution µ. It gives a explicit capture of how influencer’s reputation

flows dynamically in steady state. We show the reputation dynamics in Figure 2.

Figure 2: Stationary Reputation Dynamics

The blue arrows show the reputation updating to γ0 when a high quality good is realized

currently and the influencer optimally sends high signal. The red arrows show the reputation

updating to 0 when a low quality good is realized and the influencer strategically sends signal

h. The green arrows show the reputation updating to γ
α∗
1

{l,L} when a low quality good is realized

and the influencer strategically sends signal l.

5 Conclusion

In this paper, we model the interaction between a long-lived influencer and a sequence of myopic

customers using a repeated game with incomplete information. We define the Markov decision

process of the influencer and illustrate how the current persuasion strategy can affect future rep-

utation, thereby influencing the expected future payoff. Our first result addresses the reputation

effect of each history, particularly for histories with matched signals and quality. We show that

only when the history reflects that the influencer has sacrificed benefits does it positively impact

the influencer’s reputation. In contrast, histories that align with the influencer’s incentives can

only weakly decrease their reputation. Second, we derive the unique optimal stationary Markov
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signaling strategy for the influencer across all exogenous parameters and give the corresponding

stochastic reputation evolution process.

The limitation of our model is that the main theorem relies on the assumption that the

customer’s recall of history is limited. If customers had longer observation histories, a single

mismatched history would have a more prolonged negative impact on the influencer’s reputation,

potentially altering the optimal stationary Markov signaling strategy. For instance, with perfect

recall—where the customer can observe all past signal and quality pairs—any mismatched signal

would reveal the influencer’s type to all future customers. In this case, for a sufficiently patient

influencer, the optimal strategy would be honest reporting. However, perfect recall is unrealistic

due to limitations in customer attention, platform data storage, and information decay over

extended periods.

A Proof of Theorem 1

We know that the optimal signaling strategy at state L, {h, L} falls within the range

(
µ(H)

µ(L)(1−γ0)
, µ(H)

µ(L)(1−γ
α1
{l,L})

]
.

Since the range is endogenously determined, we need to find the steady-state distribution of

states to capture the domain of α1(h|L, {l, L}). The system of equations is:

πα1

{h,H} = µ(H)(πα1

{h,H} + πα1

{h,L} + πα1

{l,L})

πα1

{l,H} = 0

πα1

{h,L} = µ(L)

(
πα1

{h,H}
µ(H)

µ(L)(1− γ0)
+ πα1

{l,L}α1(h|L, {l, L}) + πα1

{h,L}
µ(H)

µ(L)

)
,

πα1

{l,L} = µ(L)

(
πα1

{h,H}

(
1− µ(H)

µ(L)(1− γ0)

)
+ πα1

{l,L}(1− α1(h|L, {l, L})) + πα1

{h,L}

(
1− µ(H)

µ(L)

))
.

The normalization condition is:

1 = πα1

{h,H} + πα1

{h,L} + πα1

{l,L}

Thus, the steady-state distribution is:

πα1

{h,H} = µ(H)

πα1

{l,H} = 0

πα1

{h,L} =
µ2(H) + µ2(L)(1− γ0)α1(h|L, {l, L})

(1− γ0)(1 + α1(h|L, {l, L}))

πα1

{l,L} =
µ2(L)(1− γ0)− µ2(H)

µ(L)(1− γ0)(1 + α1(h|L, {l, L}))

Note that we have assumed γ0 < 1 − µ(H)
µ(L) , ensuring that the distribution probabilities are

positive. The updated reputation γα1

{l,L} after observing history {l, L} is:

γα1

{l,L} =
γ0µ(L)

γ0µ(L) + (1− γ0)π
α1

{l,L}
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Substituting πα1

{l,L} into this expression, we get:

γα1

{l,L} =
γ0µ

2(L)(1 + α1(h|L, {l, L}))
γ0µ2(L)(1 + α1(h|L, {l, L})) + µ2(L)(1− γ0)− µ2(H)

Next, the endogenous upper bound for α1(h|L, {l, L}) is derived from:

µ(H)

µ(L)(1− γα1

{l,L})
=

µ(H)
(
γ0µ(L)(1 + α1(h|L, {l, L})) + µ(L)(1− γ0)− µ2(H)

µ(L)

)
µ2(L)(1− γ0)− µ2(H)

This upper bound is weakly higher than α1(h|L, {l, L}) if:

α1(h|L, {l, L}) ≤
µ(H)(µ(L)− µ(H))

µ(L) ((1− γ0)µ(L)− µ(H))

Therefore, the domain of α1(h|L, {l, L}) is:

µ(H)

µ(L)(1− γ0)
< α1(h|L, {l, L}) ≤

µ(H)(µ(L)− µ(H))

µ(L) ((1− γ0)µ(L)− µ(H))

Thus, we have derived the optimal signaling strategy in state L, {h, L}, which is just the

upper bound of α1(h|L, {l, L}).

B Proof of Proposition 3

From Theorem 1, we get the expression for optimal signaling strategy α∗
1(h|L, {l, L}), thus we

can derive the reputation when history {l, L} occurs:

γ
α∗
1

{l,L} =
γ0µ(H)µ(L)(µ(L)− µ(H))

γ0µ(H)µ(L)(µ(L)− µ(H)) + ((1− γ0)µ(L)− µ(H))((1− γ0)µ2(L)− µ2(H))

The transition probabilities are multiplications of signaling strategy α∗
1 and quality distribu-

tion µ, we show each transition probability from reputation A to reputation B in the following

table:

Transition from A → B Probability
0 → 0 µ(H)
0 → γ0 µ(H)

0 → γ
α∗
1

{l,L} µ(L)− µ(H)

γ0 → 0 µ(H)
1−γ0

γ0 → γ0 µ(H)

γ0 → γ
α∗
1

{l,L} µ(L)− µ(H)
1−γ0

γ
α∗
1

{l,L} → 0 µ(H)(µ(L)−µ(H))
((1−γ0)µ(L)−µ(H))

γ
α∗
1

{l,L} → γ0 µ(H)

γ
α∗
1

{l,L} → γ
α∗
1

{l,L} µ(L)− µ(H)(µ(L)−µ(H))
((1−γ0)µ(L)−µ(H))

Table 2: Reputation Transition Probabilities
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Chapter 2

Pro-rata vs User-Centric in the music streaming

industry
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Preface

Building on the foundational ideas of signaling and strategic behavior in Chapter 1, Chapter

2 turns to the digital economy, focusing on the music streaming industry. Here, the strate-

gic interaction shifts to a setting where artists compete for royalties through adjustments in

content quality. This chapter explores two dominant remuneration models—pro-rata and user-

centric—and models artist responses to these schemes within an endogenous framework. By

situating artists within a competitive, information-limited market, this chapter expands on the

strategic adaptation themes established in Chapter 1, illustrating how platform rules influence

agents’ incentives and ultimately the fairness and efficiency of outcomes.

This chapter’s findings on the role of endogenous responses in remuneration outcomes

underscore the broader importance of designing incentive-compatible rules in platform-based

economies, where agent behavior is shaped by the regulatory structure. The examination of

artists’ strategic quality adjustments under different payment schemes parallels the influencer’s

signaling strategy from Chapter 1, emphasizing that competitive environments and remunera-

tion schemes fundamentally influence agent behavior. These insights set the stage for Chapter 3,

where resource allocation and waste minimization are examined as part of a broader discussion

on minimizing allocation waste within a information constrained environment.
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An endogenous model, which allows the artists to determine the streaming times strategically, is used
to compare two remuneration rules in the music streaming industry: Pro-rata (P rule) and User-centric
(U rule). The two judgement criteria are 1. efficiency, in terms of no dominance on quality profile. 2.
egalitarian fairness, in terms of the lowest royalty among all artists. Our main result is that P rule
always outperforms U rule in efficiency and fairness when the superstar’s marginal cost is the lowest.
This means that the transition from P rule to U rule can not only enlarge the existing royalty gap but
also decrease the efficiency of the music streaming industry.
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1. Introduction

In October 2020, the House of Commons Digital, Culture,
Media and Sport Committee launched an inquiry into the music
streaming industry to deal with the long-lasting complaints on
unfair creator remuneration (The Digital, Culture, Media and
Sport Committee, 2021). While the methods based on Shapley
value from cooperative game theory provide a theoretical founda-
tion for revenue sharing, it requests stand-alone costs, which are
not observable or not simple to compute (Shiller and Waldfogel,
2013). There are two widely used payment methods in the music
streaming industry. Most industry heavyweights (e.g. Spotify and
Apple Music) use the pro-rata rule (P rule). Under P rule, the
subscription fees of all subscribers are aggregated at first as a
royalty pot and then proportionally divided. In contrast, under the
user-centric rule (U rule), which Deezer uses, the subscription fee
of each subscriber is first proportionally split and then aggregated
(See Example 1).

Example 1. P rule vs. U rule in 2 × 2 case

There are two songs A, B and two subscribers 1,2. The stream-
ing matrix is in Table 1. In each small cell, the number is the
streaming times for a song of a subscriber.

Suppose the subscription fee is £10, which is the same for all
subscribers. So, the total royalty pot is £20. Under P rule, the
royalty R for each artist are RP

A =
20+10

20+10+10+60 × £20 = £6 and
RP
B =

10+60
20+10+10+60 × £20 = £14. Under U rule, the royalty for

each artist are RU
A =

20
20+10 × £10 +

10
10+60 × £10 = £8.1 and

RU
B =

10
20+10 × £10 +

60
10+60 × £10 = £11.9.

There is a hot debate on how the royalty pot should be
allocated and what the properties of different rules are (Page

E-mail address: Xiaochang.Lei@glasgow.ac.uk.

and Safir, 2018a,b). There is an argument from empirical re-
search (Muikku, 2017; Pedersen, 2014; Hesmondhalgh, 2021),
Law (Dimont, 2018) and industry news (Dredge, 2021) that U
rule can benefit the specialists (unpopular artists with low total
streaming times) more than P rule by giving them more royalty
(as Example 1 shows). This may be true when the streaming ma-
trix is exogenously given. However, this relation reverses when
the streaming matrix is endogenously determined.

In this paper, we construct an endogenous model that allows
the artists to strategically change their songs’ quality to influence
the streaming matrix and maximize their payoff. Preferences
and quality profiles jointly determine the consumers’ streaming
time on each song, and the streaming matrix is endogenously
determined in equilibrium. By comparing equilibria, we aim to
answer two widely debated questions: 1. which is more efficient?
2. which is fairer? No dominance of quality profile captures
efficiency. Egalitarianism captures fairness since, in reality, the
specialists complain about their low royalty. Our main theorem
is that in the two-artist model, P rule outperforms U rule in
efficiency and fairness. We find the theorem still holds when
there are one superstar and two identical specialists. Although
the cases are special, our endogenous model does give a unique
result that contradicts the empirical research, which neglects the
artists’ strategic behavior.

The structure of the paper is as follows: we discuss other
related theoretical papers, and then, Section 2 shows the general
setting. Section 3 gives equilibrium and discusses the 2-artist
model and 3-artist model with identical specialists. Section 4
concludes the paper with limitations and contributions.

1.1. Literature review

To the best of our knowledge, the only theoretical paper
comparing the two rules is Alaei et al. (2020). They use an

https://doi.org/10.1016/j.econlet.2023.111111
0165-1765/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Table 1
Streaming matrix in 2 × 2 case.

Songs
A B

Subscribers 1 20 10
2 10 60

extensive-form game to capture the interactions between the
platform, the artists and the consumers. They focus on the plat-
form’s pricing strategy and how it can sustain a set of artists
(participation constraint). We do not consider these two since,
in reality, the artists can work part-time. Also, the subscription
fee has been fixed for decades due to intensive competition
among platforms with highly homogeneous content. We focus on
the incentive compatibility constraint that makes the streaming
matrix endogenously determined.

For other related stories, Ginsburgh and Zang (2003) considers
a problem of sharing the revenue from selling museum passes.
Their model can be extended to many real-life cases (e.g., travel
cards). Under their setting, the complex Shapley value has a very
simple form. However, their model cannot be used in the music
streaming industry. In the museum pass game, the consumers’
consumption for each museum is binary: 0 for non-visit and 1
for a visit. Here, consumers’ consumption of each song in music
streaming has intensity. Flores-Szwagrzak and Treibich (2020)
considers revenue sharing in teamwork. They use an individual’s
productivity in his stand-alone project as a proxy for his con-
tribution to teamwork. However, millions of songs are on the
platform in the music streaming industry, and it is impossible to
find every song’s stand-alone price. The last paper (Bergantinos
and Moreno-Ternero, 2020) considers the problem of sharing the
revenue from selling tickets between football clubs. Again, the
story differs from the music streaming industry due to the lack
of consumers’ consumption intensity.

2. Setting

There are m + 1 artists on the platform, and each artist pub-
lishes one song. The set of the artists is M = {0, 1, 2, . . . ,m}. The
artist 0 is a superstar, and all subscribers like him. The artists 1 ∼

m are specialists and have their fan base. There are n subscribers
with private preferences who have paid a subscription fee of p.
Let π0 ∈ (0, 1) denote the probability that a subscriber only likes
the song 0. let πk ∈ (0, 1) denote the probability that a subscriber
likes song k ∈ {1, 2, . . . ,m} as well as song 0. The distribution of
subscribers’ types π = {π0, π1, π2, . . . , πm} is common knowl-
edge. Our assumption that consumers are interested in only one
specialist is realistic. For example, we can imagine that artists
1 ∼ m are the ones who create songs in different styles: classic,
jazz, folk, etc. Each of them attracts a small group of consumers
with special tastes. While as a superstar, the artist 0 publishes
popular music, which is widely accepted. Another explanation is
that the superstar publishes songs in English, while the specialists
publish songs in their languages like Dutch, Japanese, German,
etc.

Given the quality profile q = {q0, q1, q2, . . . , qm}. Each con-
sumer determines his streaming times for each song. If a user
likes the song k then his utility for streaming song k is uk(tk) =

qktk − 1
2 t

2
k . Else, his utility for streaming song k is 0. The quadratic

and additive utility function allows the simplest linear marginal
utility function: MU(qk) = qk−t . So the streaming time for song k
is tk = qk for its fans and 0 for the other consumers. So, given any
quality profile q, the streaming matrix is given in Table 2. In each
cell, there is a corresponding streaming time (equal to quality) for
a song of a subscriber.

Table 2
The general streaming matrix.

Songs/Artists
0 1 2 m

Subscribers

π0 q0 0 0 · · · 0
π1 q0 q1 0 · · · 0
π2 q0 0 q2 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

πm q0 0 0 · · · qm

The artist k can only control quality qk while taking other
quality q−k as given. So, under P rule, his royalty is:

RP
k (qk, q−k) =

⎧⎨⎩
q0

q0+
∑m

j=1 πjqj
np k = 0

πkqk
q0+

∑m
j=1 πjqj

np k > 0

Under U rule, the artist k’s royalty is:

RU
k (qk, q−k) =

{
π0np +

∑m
j=1

q0
q0+qj

πjnp k = 0
qk

q0+qk
πknp k > 0

Taking the first derivative on qk, we can find first-order con-
dition MRP

k (qk, q−k) = ck under the P rule or MRU
k (qk, q−k) = ck

under the U rule. Equilibrium can be found by combining all
artists’ best response functions. The formal definition of this static
game is (M, π, c, n, p). A royalty distribution rule r is a partition
of total royalty pot np among the artists in M .

Definition (Efficiency). A royalty distribution rule r1 is more effi-
cient than rule r2 if r1 can induce a weakly higher quality profile
for all songs and at least one song’s quality should be strictly
higher:

∀k ∈ M, q1k ≥ q2k
∃k ∈ M, q1k > q2k

Definition (Fairness). Fixed the royalty pot, a royalty distribu-
tion rule r1 is egalitarian fairer than rule r2 if r1 can induce a
higher lowest royalty: let R1∗

= min{R1
0, R

1
1, . . . , R

1
m} and R2∗

=

min{R2
0, R

2
1, . . . , R

2
m}. Rule r1 is fairer than r2 if R1∗ > R2∗.

3. Equilibrium

To express the equilibrium under P rule, we first define a
m + 1 × m + 1 matrix with marginal costs and consumer’s type
distribution:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
c0 −

c1
π1

c0 −
c1
π1

c0 −
c1
π1

· · · c0 −
c1
π1

c0 c0 −
c2
π2

−
c2
π2

c0 −
c2
π2

· · · c0 −
c2
π2

c0 c0 −
c3
π3

c0 −
c3
π3

−
c3
π3

· · · c0 −
c3
π3

...
...

...
...

...
...

c0 c0 −
cm
πm

c0 −
cm
πm

c0 −
cm
πm

· · · −
cm
πm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix A is derived from the linear system of the FOCs

under P rule. The first row is special due to the superstar’s
popularity in 1. Also we define a group of matrix: Ak, which
replace the (k+1)’th column of A with a m+1-dimension vector:
v = (1, 0, . . . , 0). Then by using Cramer’s rule, the equilibrium
can be found.

2
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Proposition 1. Under P rule, the equilibrium quality profile and
the royalty profile are:

∀k > 0, q∗P
k =

|Ak|

πk

np
c0

∑m
j=1 |Aj|

(
∑m

j=0 |Aj|)2

q∗P
0 = |A0|

np
c0

∑m
j=1 |Aj|

(
∑m

j=0 |Aj|)2

∀k, R∗P
k =

|Ak|∑m
k=0 |Ak|

np

Proposition 2. Under U rule, the equilibrium quality profile and
the royalty profile are:

∀k > 0, q∗U
k = np

∑m
j=1

√
πjcj∑m

j=0 cj
(
√

πk

ck
−

∑m
j=1

√
πjcj∑m

j=0 cj
)

q∗U
0 =

np(
∑m

j=1
√

πjcj)2

(
∑m

j=0 cj)2

∀k > 0, R∗U
k = np(πk −

∑m
j=1

√
πjcj∑m

j=0 cj

√
πkck)

R∗U
0 = π0np + np

(
∑m

j=1
√

πjcj)2∑m
j=0 cj

There is no easy way to mathematically compare the quality
profile and the royalty gap. We discuss two special cases: the
2-artist and 3-artist models with identical specialists.

Theorem 1. In the two-artist model, P rule is better than U rule in
efficiency and fairness.

The intuition for better performance of efficiency is from
the competition. Under P rule, the artists must compete on
the streaming of all subscribers. Under U rule, the artists only
compete on the streaming of their fans. The intuition for the
dominance of fairness is that the P rule can significantly increase
the incentive for the specialists to increase their songs’ quality. In
contrast, the superstar’s incentive increase is not that significant.

Theorem 1 can be easily checked. From Propositions 1 and 2,
in this 2-artist model, under P rule, the equilibrium quality profile
is q∗P

0 =
c1
c0

π1np
c0(

c1
c0

+π1)2
and q∗P

1 =
π1np

c0(
c1
c0

+π1)2
. The royalty profile is

R∗P
0 =

c1
c0

c1
c0

+π1
np and R∗P

1 =
π1

c1
c0

+π1
np. Under U rule, the equilibrium

quality profile is q∗U
0 =

c1
c0

π1np
c0(

c1
c0

+1)2
and q∗U

1 =
π1np

c0(
c1
c0

+1)2
. The

royalty profile is R∗U
0 = π0np + π1np

c1
c0

c1
c0

+1
and R∗U

1 = π1np 1
c1
c0

+1
.

Given π1 < 1, both equilibrium qualities under P rule are higher
than that under U rule (q∗P

0 > q∗U
0 and q∗P

1 > q∗U
1 ). Also, R∗P

1 > R∗U
1 ,

the specialist gets more under P rule.

3.1. Extension: Model with one superstar and two identical special-
ists

To give a mathematically tractable extension, we assume that
there are only two types of artists: one superstar and 2 homoge-
neous specialists. The superstar 0 has low marginal cost cL, and
the specialists have uniform high marginal cost cH . The marginal
costs satisfy cH ≥ cL > 0. Also, all the specialists share the
same popularity. To make the notation coherent, we assume the
specialists share uniform popularity πH (πH ≤

1
m ). We find that:

Proposition 3. In the 3-artist with identical specialists model,
Theorem 1 still holds.

Fig. 1. Best Response functions and Equilibrium Quality Profile.

Fig. 2. Royalty profile and egalitarian fairness.

We give a numerical example. Considering the case πH =
1
3 ,

cH = cL = 10, n = 100, p = 8. Let B0 denote the best response
function of the superstar and BH denote the best response func-
tion of the homogeneous specialists. The result is shown in Figs. 1
and 2. Obviously, P rule induces a higher equilibrium quality
profile. Also, the royalty profile closer to the 45◦ line is more
egalitarian.

4. Discussion and conclusion

This paper proposes an endogenous model, which shows P
rule outperforms U rule in efficiency and fairness. It contradicts
the results from other exogenous models. Our result indicates

3
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that the current transition from P to U rule can reduce efficiency
and fairness in the music streaming industry. So, instead of using
U rule, the platforms should increase the exogenous variables
(e.g., expanding the market and attracting more subscribers).
Although the theorems are compelling, there are some limitations
to the model. First, we assume the consumers have uniform
marginal utility functions on streaming, which can be heteroge-
neous. For example, some people are more addicted to music.
Second, our analysis can only be limited in some special cases
for mathematical tractability.

Data availability

No data was used for the research described in the article.

Appendix A. Proof of propositions

Proof of Proposition 1. The marginal royalty under P rule is:

MRP
k (qk, q−k) =

⎧⎪⎨⎪⎩
∑m

j=1 πjqj
(q0+

∑m
j=1 πjqj)2

np k = 0

πk(q0+
∑m

j̸=k|j>0 πjqj)

(q0+
∑m

j=1 πjqj)2
np k > 0

To solve the FOC system, let ∀k > 0, πkqk = xkq0 and x0 = 1.
The linear system is:

∀k > 0, q0 =
πknp
ck

∑m
j̸=k xj

(
∑m

j=0 xj)2

q0 =
np
c0

∑m
j=1 xj

(
∑m

j=0 xj)2

x0 = 1

First, we solve the linear system for x and then the equilibrium
quality profile can be found. The linear system for x is:∑m

j̸=0 xj
c0

=
π1

∑m
j̸=1 xj

c1
= · · · =

πm
∑m

j̸=m xj
cm

x0 = 1

In the matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
c0 −

c1
π1

c0 −
c1
π1

c0 −
c1
π1

· · · c0 −
c1
π1

c0 c0 −
c2
π2

−
c2
π2

c0 −
c2
π2

· · · c0 −
c2
π2

c0 c0 −
c3
π3

c0 −
c3
π3

−
c3
π3

· · · c0 −
c3
π3

...
...

...
...

...
...

c0 c0 −
cm
πm

c0 −
cm
πm

c0 −
cm
πm

· · · −
cm
πm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
x3
...

xm

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦
The size of the parameter matrix is m+1×m+1. The solution

x can be found using Cramer’s rule. □

Proof of Proposition 2. The marginal royalty under U rule is:

MRU
k (qk, q−k) =

{∑m
j=1

qj
(q0+qj)2

πjnp k = 0
q0

(q0+qk)2
πknp k > 0

The FOC linear system is:
m∑
j=1

πjqj
(q0 + qj)2

np = c0

π1q1
(q0 + q1)2

np = c1

...

πmqm
(q0 + qm)2

np = cm

From the equation 1 ∼ m, there is a relation between qk(k >

0) and q0:

qk =

√
π2

c2
npq0 − q0

Substituting the relation into the equation 0, q∗U
0 can be found.

Then, all the other equilibrium quality q∗U
k can be found. □

Proof of Proposition 3. From Propositions 1 and 2, under U rule,
the equilibrium quality profile and royalty profile are:

∀k > 0, q∗U
k = np

2πH

cL + 2cH
(1 −

2cH
cL + 2cH

)

q∗U
0 = np

4πHcH
(cL + 2cH )2

∀k > 0, R∗U
k = npπH (1 −

2cH
cL + 2cH

)

R∗U
0 = np((1 − 2πH ) + πH

4cH
cL + 2cH

)

In equilibrium, under the P rule, the quality profile and royalty
profile are:

∀k > 0, q∗P
k =

c2L
( 2cLcH

πH
+ c2L )2

2npcL
πH

q∗P
0 =

2cLcH
πH

− c2L
( 2cLcH

πH
+ c2L )2

2npcL

∀k > 0, R∗P
k =

cL
2cH
πH

+ cL
np

R∗P
0 =

2cH
πH

− cL
2cH
πH

+ cL
np

To check the efficiency property, for the superstar, we have
the following:

q∗P
0 − q∗U

0 = 2npc3L
( 8
πH

− 12)c2H − c2L + ( 1
πH

− 2 − πH )2cHcL

(cL + 2cH )2(
2cLcH
πH

+ c2L )2

The check the sign, the denominator is:

(
8
πH

− 12)c2H − c2L + (
1
πH

− 2 − πH )2cHcL

≥ 4c2H − c2L − cHcL (Since πH ≤
1
2
)

≥ 4c2H − c2H − c2H (Since cL ≤ cH )

= 2c2H ≥ 0

For the specialists:

∀k > 0, q∗P
k − q∗U

k = 2npc3L
4( 1

πH
− 1)cLcH + ( 1

πH
− πH )c2L

(cL + 2cH )2(
2cLcH
πH

+ c2L )2
> 0

4
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To check the fairness property, we compare the specialist’s
royalty under two rules:

∀k > 0, R∗P
k − R∗U

k = np
(1 − πH )c2L

(cL + 2 cH
πH

)(cL + 2cH )

Since πH ≤
1
2 and cH ≥ cL > 0, the gap is always positive. □
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Optimal Queue to Minimize Waste
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Preface

Chapter 3 shifts the focus to a new application area—queue management—while maintaining the

overarching theme of strategic decision-making in environments with competing incentives and

informational constraints. This chapter applies the lessons from Chapters 1 and 2 on optimizing

outcomes in strategic settings to the problem of waste minimization in service systems. Here,

service providers must balance the competing objectives of maintaining fairness and reducing

waste.

By modeling an optimal policy for waste minimization in queuing allocation, this chapter ex-

tends the thesis’s examination of competitive environments to include public and private sectors

where resource allocation is critical. The framework developed here connects to the incentive

design issues highlighted in Chapter 2, as the queueing policies and prioritization rules influence

agent actions and system-wide expected waste of resource. The theme of managing trade-offs

for optimal outcomes—whether for maximizing marketing income, remuneration, or resource

efficiency—ties together the chapters, underscoring a consistent narrative that explores how

economic agents navigate complex incentive structures in diverse settings. This final applica-

tion reinforces the thesis’s contribution to understanding strategic adaptation in environments

shaped by information and incentive constraints.
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a b s t r a c t

We study an application of stochastic games in the dynamic allocation of two types of goods when
agents have deferral rights. If all individuals strictly prefer one good to the other, the worse good can
be wasted by successive rejections. We allow different goods to be allocated in different ways and
study the combinations of three popular disciplines in an overloaded waiting list: FCFS (first-come-
first-serve), LCFS(last-come-first-serve) and RP(random-priority). The first result is that the LCFS–FCFS
queue (the better good allocated under LCFS and the worse good allocated under FCFS) does result
in zero waste, but it is unfair. To restore fairness, the agent’s age matters and the older agent has a
weakly higher probability of receiving goods. Our second result is that RP–FCFS is fair and induces less
expected waste than FCFS when the waiting cost is uniformly distributed.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Using a queue is very popular in dynamic matching, especially
when there is a supply shortage and a lack of a price mechanism
(e.g. allocating donated food, organ, public house, etc.). In this
paper, we consider how the social planner can reduce the waste
of free goods. For example, the planner allocates two types of
vaccines (A and B). Suppose scientists have announced that A has
milder side effects and is more powerful than B. Then, B is wasted
when all individuals in the queue reject it and prefer to wait for
A. Then, it comes to the question: What is the optimal queue
discipline to minimize the expected waste? Is the optimal queue
feasible in reality?

The intuition for finding the optimal queue to minimize waste
is simple. There are two reasons for agents’ rejections. 1. A offers
them a strictly higher utility than B. 2. Although waiting is costly,
their expected waiting times for A are short enough to make
rejections more attractive. Since goods’ utilities are fixed, the
only way to reduce the expected waste is to increase the agents’
expected waiting times, thus reducing the probability of rejection
and letting them be less selective. As a result, the optimal queue
discipline should induce the longest expected waiting time. Be-
sides that, it also needs to match some social norms to be feasible
in reality. A pilot study on queue fairness is Larson (1987), which
shows from a psychological perspective that an agent is more
willing to join the queue if the front agents have a relatively
smaller waiting time. So, in this paper, we assume that a longer
waiting time in the queue must correspond to a weakly higher
probability of receiving goods. We will define it in the model.

E-mail address: Xiaochang.Lei@glasgow.ac.uk.

Our main contribution to the literature on dynamic allocation
in queuing systems is introducing the complex queue disciplines,
which allow different goods to be allocated differently. Otherwise,
if both goods are allocated similarly, we call it a simple queue
discipline. For example, a simple FCFS queue means both A and B
are allocated under FCFS, while a complex RP–FCFS queue means
that A is allocated under RP, but B is allocated under FCFS. The
complex queue is allowed since we assume that the good’s type
is common knowledge after its realization. We show that LCFS–
FCFS can result in zero expected waste when there are at least
two agents since the first agent has an infinite waiting time for A.
However, this queue is not feasible since LCFS will cause reneging.
To restore fairness, we establish a criterion that the probability of
receiving A can only (weakly) decrease on positions in the queue.
We will show the intuition that with fairness guaranteed, the best
the planner can do is RP–FCFS. Also, we prove that RP–FCFS is
better than FCFS when the waiting cost is uniformly distributed.

We first establish how agents act in the simple FCFS over-
loaded queue. We show there is a rejection threshold of the
agent’s private waiting cost at each position. An agent at a specific
position will reject B if his private waiting cost is below the
corresponding threshold. Both LCFS–FCFS and RP–FCFS queues
dramatically increase the expected waiting times for all agents,
thus reducing the thresholds and rejection areas at all positions
(See Fig. 1).

Besides the rejection probability, we also need to find the
steady-state expected waste. This is not straightforward since
agents’ past rejections can change the probability of waste in
the future. Under an overloaded queue, if an agent rejects B, his
expected waiting time for A can only weakly decrease in the
future. So, whenever the planner observes a rejection, he knows
the corresponding agent will still reject it whenever he gets an
offer B (See Example 1).

https://doi.org/10.1016/j.mathsocsci.2023.03.001
0165-4896/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Fig. 1. Thresholds and rejection areas under different disciplines with fixed-length 4.

Fig. 2. Waste depends on the actions of all agents in the queue.

Fig. 3. Waste only depends on the actions of the last two agents, since an
rejection is observed.

Example 1. Given a simple FCFS queue with 3 agents: {a1, a2, a3},
we assume the production realization in period 1 and 2 is {B, B}.
Suppose when offered with B, a1 will reject it, but a2 will accept it.
The planner does not know the agents’ actions at the beginning.
Before the allocation in period 1, waste probability depends on
the actions of all three agents. The allocation finishes after a1
rejects B; a2 accepts B and leaves the queue; a3 moves up one
position; and a new agent a4 is born at position 3. At the begin-
ning of period 2, the new queue is {a1, a3, a4}. Now, the planner
knows a1 will still reject B. So, waste probability only depends on
the decisions of a3 and a4. Here, the probability of waste in period
2 is different from that in period 1 due to an observed rejection
of agent a1 (See Figs. 2 and 3). □

The structure of the paper is as follows. We first list some
relevant papers. In Section 2, we construct the benchmark model
when the allocation of B is fixed under FCFS. We first capture the
model in a simple FCFS queue and then show how the planner
can control the discipline and explain why LCFS–FCFS can result
in zero waste. After that, we introduce the fairness criterion and
show the intuition that RP–FCFS is fair and waste-minimizing.
In Section 3, we model the evolution of observed rejections in
a one-step transition matrix and find expected waste. We show
that RP–FCFS can induce lower expected waste than FCFS when

the waiting cost is uniformly distributed. In the last section, we
conclude with the limitations and contributions.

1.1. Literature review

There is a huge amount of literature from operations research
on dynamic matching in queuing systems. A detailed review
is Ashlagi and Roth (2021). Here, we just list recent papers that
incorporate agents’ dynamic tradeoffs. The most relevant research
to our paper is Bloch and Cantala (2017). They analyze the welfare
and waste in a constant size overloaded probabilistic queue when
agents’ have heterogeneous or homogeneous valuations. They
show that FCFS is Pareto-superior to the lottery but can generate
more expected waste. The main difference in settings is that
goods in different periods are independent in their setting, while
we assume the goods are the same if they belong to the same
type. The difference results in a much more difficult ex-ante
waste expression in our model.

Su and Zenios (2004, 2005) analyze the effects of offer rejec-
tion in M/M/1 dynamic kidney transplant. They compare FCFS
and LCFS queues and show that FCFS makes agents more selective
and induces a higher organ discard rate. By contrast, LCFS can
maximize the expected life years, but it is practically infeasible.
Our model also has the same intuition, and we innovatively
combine different queue disciplines and make one step forward
to find the optimal discipline when fairness is restored.

Leshno (2022) investigates dynamic allocation in minimizing
misallocation under thresholds strategies. The way to reach that
is similar to ours: to let the agents be less selective. He introduces
a Loaded Independent Expected Waits (LIEW) queue, which can
balance the expected waiting time for all agents. Compared with
FCFS, the LIEW queue sacrifices the front agents and benefits the
agents in the end. In his model, the agents have heterogeneous
preferences but a homogeneous waiting cost. Instead, we model
the agents with homogeneous preferences and heterogeneous
waiting costs. We aim to minimize the expected waste and show
that under the RP–FCFS queue, all agents’ expected waiting times
will increase.

Baccara et al. (2020) studies bilateral dynamic matching in
general queuing systems. They aim to capture the utilitarian
welfare maximizing mechanism by the number of remaining
agents. Arnosti and Shi (2020) compares matching welfare and
quality under different versions of lotteries and waiting lists
in dynamic matching. Schummer (2021) discusses whether the
social planner should give deferral rights to the agents on the
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Fig. 4. The simple FCFS queue.

FCFS waiting list. He finds that the agents’ welfare depends on the
type of agents’ preferences. Instead, we focus on how the planner
should design the optimal mechanism when the deferral rights
have been given to the agents. Thakral (2016, 2019) analyzes
queuing systems from an axiomatic view. He discusses strate-
gyproofness, efficiency and envy-freeness in different queues.

2. Benchmark model

One good is produced in each discrete period and has to
be allocated within that period. Otherwise, it is wasted. Before
realization, it can be one of two types: A with probability p or
B with probability 1 − p. After realization, the type is known by
all agents. A batch of (at least 2) agents forms the initial queue
with length n. Each agent waits to get one good and then leaves.
The agents have a homogeneous preference: A ≻ B (e.g., vaccine
A has higher efficacy than B). They all get instantaneous utility
1 from accepting A or instantaneous utility u (0 < u < 1) from
accepting B. Agents have deferral rights, which means that when
an agent is offered the worse object B, he can reject the offer,
keep his position in the queue, and wait for the better good A.
However, waiting is costly. A cost is subtracted from his utility
if an agent stays in the queue for one more period. Each agent i
has his private waiting cost ci. Costs are i.i.d. distributed on (0, 1)
with CDF F (·) and will linearly decrease agents’ utility. We assume
that all agents’ reservation values are sufficiently low (e.g. −∞)
so that no one will opt out. For example, no one will leave the
queue for a vaccine and put himself at high risk of death. This
means that when an agent’s utility is zero or even negative, he
will still stay until he gets a good.

We follow the tradition of calling that the position i is higher
than the position j if i < j. When an agent accepts an offer, he
leaves the queue, and all agents positioned behind will move one
step forward. Also, a new agent is born at the last position. If no
one accepts the realized item, the good is wasted, and no new
agent is born in this period. This arrival process guarantees that
the length of the queue is always n. The only private information
is the waiting cost of each agent. Initially, the planner only knows
the distribution of waiting costs F (·) and aims to find a discipline
to minimize the steady-state expected waste.

2.1. Agents’ strategies under the simple FCFS queue

We first show the story under the benchmark simple FCFS
queue (See Fig. 4). An agent offered A will accept it since waiting
is costly, and there is no better offer in the future. So, in the
simple FCFS queue, when A is realized, it can only be offered
to and accepted by the agent at position 1. However, an agent
faces a binary choice when offered B: accept or reject it. Given
the fixed instantaneous utilities of the two goods, the decision
depends on his expected waiting time and private waiting cost.
The intuition is that under simple FCFS, an agent positioned ahead
faces a shorter expected waiting time, so he is more likely to be
selective. Also, a more patient agent is more likely to reject B since
waiting is not a big deal for him. The formal expression is that
an agent i at position k faces an optimal stopping problem when
offered B: If he accepts B now, he gets utility u. If he rejects B, he

gets expected utility 1− ciwk. wk is the expected waiting time for
A at position k.

The first agent’s expected waiting time for A follows a geo-
metric distribution with parameter p. So, the expected waiting
time of the first agent is 1/p. Considering the agent at position
k, when offered with B, he knows all front agents have already
rejected B. Otherwise, B must have been accepted by one of them.
He can also infer that they will reject B whenever B is realized
since their expected waiting time for A can only weakly decrease.
As a result, if he rejects B now, he can only get A after all front
agents have been served with A. So, the expected waiting time
of an agent at position k is k/p. We know rejection happens only
when 1 − ciwk ≥ u. Given the expression wk =

k
p , we can find

a rejection range for agent i’s private waiting cost at position
k: ci ≤ (1 − u)p/k. Let Ck =

(1−u)p
k denote the threshold at

position k. For any agent at position k, he will reject B if his private
waiting cost is below the threshold Ck. Although the waiting cost
is private, the threshold is common knowledge. Ck is a decreasing
function on position k, which means that a more patient agent is
required to reject B at a lower position (see Fig. 5).

After finding the rejection thresholds, the probability of waste
can be easily found. Let i denote the number of agents who have
rejected B, the probability of waste is:

PW FCFS
i = Πn

k=i+1F (Ck)

Next, we show how LCFS–FCFS and RP–FCFS can reduce the
rejection thresholds, thus reducing the expected waste.

2.2. Waste minimization

We assume that the planner can arbitrarily control the prob-
ability ϕk that the good A is allocated to an agent at position
k when it is realized. However, for simplicity, the way of B’s
allocation still follows the FCFS (See Fig. 6). For example: FCFS
queue of A is captured by: ϕ1 = 1 and ∀2 ≤ k ≤ n, ϕk = 0. LCFS
queue of A is captured by: ϕn = 1 and ∀1 ≤ k ≤ n−1, ϕk = 0. RP
of A is captured by ∀1 ≤ k ≤ n, ϕk =

1
n . Let ϕ = {ϕ1, ϕ2, . . . , ϕn}

denote the set of probabilities, we have:
∑n

k=1 ϕk = 1.
We fix the allocation of B in FCFS since it is difficult to capture

how B can be wasted once we allow randomization in the alloca-
tion of B. The planner has to record which agent has rejected it.
Under randomization, these agents can be separately positioned,
which results in a complicated expression for the probability
of waste. Also, adding randomization of A has already changed
the expected waiting time of all agents. Under this setting, the
planner aims to find an optimal ϕ to minimize the expected
waste.

Theorem 1. LCFS–FCFS induces zero expected waste, but it is unfair.

Intuitively, the LCFS–FCFS queue does minimize the expected
waste since the expected waiting times for A of the agents are
infinite (except the last one). Suppose the agent at position 1
rejects B. Since A is allocated under LCFS, it will be allocated to
the agent at position n whenever it is realized. After getting A,
the agent at position n will leave the queue, and a new agent will
join the queue at position n. So, the agent 1 will never get A. As
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Fig. 5. Thresholds and rejection areas under simple FCFS queue with fixed-length 4.

Fig. 6. The general complex queue discipline.

a result, the first agent will always accept B, even if he is very
patient. This implies there is no waste.

Since the expected waiting times for the front agents are
infinite under LCFS–FCFS, the corresponding rejection thresholds
are zero for the front agents. Also, the last agent will never get
an offer B, so he has no rejection area (See Fig. 1). However,
LCFS is unfair to the front agents, who should be rewarded for
their long waiting time in the queue. Despite that, it gives us an
intuition that waste can be reduced if the planner makes ϕk of
the agents at the lower positions (larger k) as high as possible
to increase the expected waiting time of the agents positioned
ahead. To restore fairness, we assume that probability ϕk must
satisfy: ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn. So, every agent is not treated
worse than anyone positioned behind him. This gives a range of
ϕn: 0 ≤ ϕn ≤

1
n . From the LCFS–FCFS queue, we know that to

minimize the waste, ϕn should be as large as possible (ϕn =
1
n ).

So, RP–FCFS is both fair and waste-minimizing.

2.3. Agents’ strategies under RP–FCFS

Since the allocation of B still follows FCFS, once B is offered to
an agent i at position k, he still knows that all agents positioned
ahead have rejected B and will reject B in the future. Good A′s
probability of realization is p, and the probability of getting A after
realization is 1/n, which does not depend on his position. So, the
probability that an agent is offered with A is p/n, and his expected
waiting time for A is n/p. The agent i will reject B if 1 − ci np ≥ u,
else, he will accept B. Since the expected waiting time is inde-
pendent of position, there is a uniform threshold under RP–FCFS

for all positions: C =
(1−u)p

n . Comparing the uniform threshold
under RP–FCFS with the thresholds under simple FCFS, we find
that RP–FCFS weakly reduces the thresholds for all positions (See
Fig. 7).

After finding the rejection thresholds, the probability of waste
can be easily found. Given the number of observed rejections i,
the probability of waste is:

PW RP−FCFS
i = Πn

k=i+1F (C) = F (C)n−i

We know that the threshold under RP–FCFS is always below
the thresholds under simple FCFS: ∀k, C ≤ Ck. So, for any real-
ization of the number of observed rejections i, the probability of
waste under RP–FCFS is less than the probability of waste under
simple FCFS: ∀i ≤ n, PW RP−FCFS

i ≤ PW FCFS
i .

Proposition 1 (Ex-post Improvement). For any number of observed
rejections, RP–FCFS induces less probability of waste than FCFS.

3. Steady state

3.1. Steady state under simple FCFS

As mentioned above, the agent at position k will reject B
if his waiting cost is below Ck. Else, he will choose to accept
B immediately. Although we assume that initially, the planner
only knows the distribution of waiting costs, he can infer its
range from observing the agent’s decision. When an acceptance is
observed, the planner knows that the agent’s waiting cost exceeds
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Fig. 7. Thresholds and rejection areas in different queue disciplines with fixed-length 4.

his position’s threshold. When the planner observes rejection, the
agent’s waiting cost is below his position’s threshold. This infor-
mation disclosure process is vital in calculating the probability of
waste. For example, when B is realized if the planner observes
rejection at position k (1 ≤ k ≤ n − 1), he knows the agent (at
position) k’s private waiting cost is below Ck. Also, he knows all
front agents’ (1 ∼ k − 1) private waiting costs are below their
corresponding threshold since they must have already rejected
B under FCFS. So, the probability of waste is the probability of
successive rejection for the agents behind: Πn

i=k+1F (Ci). If k = n,
the expected waste is 1. Since when all agents reject B, B is
automatically wasted after realization.

Now, we use a Markov chain to capture this information
disclosure process. In period t , the number of agents who have
rejected B, is a stochastic process {X (t), t = 1, 2, 3, . . .} with
a finite state space M = {0, 1, 2, . . . , n}. We define the one-
step transition probability as Pij = P(X (t+1)

= j|X (t)
= i) with

0 ≤ Pij ≤ 1 and
∑

j∈M Pij = 1, i = 1, 2, 3, . . ., since any state in
period t must transit into a state in period t+1. Let π t denote the
distribution of X (t) and P denote the one-step transition matrix,
we have:

Pπt
= πt+1

The aim is to find the stationary distribution π = {π0, π1, π2,
. . . , πn} of the number of information-disclosed positions. The
linear system is:

Pπ = π

eπ = 1

e is a vector of {1, 1, 1 · · · , 1}. By solving the system of equa-
tions, the steady state can be found.

Proposition 2. In the steady state of the simple FCFS queue, π is:

π FCFS
k =

Qk∑n
i=0 Qi

, k = 0, 1, 2, . . . , n

where ∀k ≥ 1, Qk =
1−p
pk

Π k
i=1F (

(1−u)p
i ), and Q0 = 1.

Qk is the coefficient of π0 in the equation πk = Qkπ0. Obvi-
ously, Qk is decreasing on k, so π FCFS

k is also decreasing. The intu-
ition is simple: one more rejection is less possible. The probability
that The expected waste under FCFS queue is:

EW FCFS
=

n∑
k=0

π FCFS
k ∗ PW FCFS

k

=

Πn
i=1F (

(1−u)p
i )(1 +

1−p
p +

1−p
p2

+ · · · +
1−p
pn )

1 +
1−p
p F ((1 − u)p) +

1−p
p2

Π2
i=1F (

(1−u)p
i ) + · · · +

1−p
pn Πn

i=1F (
(1−u)p

i )

3.2. Steady state under RP–FCFS

Under RP–FCFS, the information disclosure process is similar
to the simple FCFS queue above. To find the steady-state expected
waste, we only need to know the distribution of the disclosed
information. Again, we can solve it by using a Markov chain.

Proposition 3. In the steady state of the RP–FCFS queue, the number
of observed rejections is distributed as:

πRP−FCFS
k =

Rk∑n
i=0 Ri

, ∀k = 0, 1, 2, . . . , n

where ∀k ≥ 2, Rk = Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F ( (1−u)p

n )k, and
R1 = n 1−p

p F ( (1−u)p
n ), and R0 = 1.

Rk is the coefficient of π0 in the equation πk = Rkπ0. Obvi-
ously, Rk is decreasing on k, so πRP−FCFS

k is also decreasing. Under
uniform distribution Q1 = R1 and ∀k ≥ 2, Qk ≥ Rk. This means
πk can decrease faster under the RP–FCFS queue. The expected
waste is:

EW RP−FCFS
=

n∑
k=0

πRP−FCFS
k ∗ PW RP−FCFS

k

=

F ( (1−u)p
n )n(1 + n 1−p

p +
∑n

k=2 Π k−1
i=1

(n−(n−i)p)n
k!

1−p
pk

)

1 + n 1−p
p F ( (1−u)p

n ) +
∑n

k=2 Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F ( (1−u)p

n )k

The direct comparison between the two expected wastes is
intractable, let alone proof of RP–FCFS’s optimality. We only
find a tractable comparison when the waiting cost is uniformly
distributed.

Theorem 2 (Ex-ante Improvement). When F (x) = x, RP–FCFS
induces less expected waste than FCFS.

Theorem 2 is much stronger than Proposition 1. The ex-post
improvement does not necessarily implies ex-ante improvement
since the expected waste also depends on the stationary distri-
bution of the number of observed rejections.
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4. Conclusion

This paper investigates the waste minimization problem in
dynamic queuing allocation. We find that the expected waiting
time for the better good should be maximized to decrease the
probability of rejection, thus reducing the steady-state expected
waste. Our main theoretical contribution is to allow different
goods to be allocated under different queue disciplines. This can
be achieved when the goods’ type is public information after its
realization. Our first result is that LCFS–FCFS generates zero waste
by inducing infinite expected waiting times for the front agents.
However, it is unfair and impossible to be used in reality. A basic
fairness criterion is that the agent must be prioritized (weakly)
higher than anyone behind him. In other words, he should have
a higher probability of receiving goods than the agents arriving
later. Our second result is that RP–FCFS is both ex-post and
ex-ante better than FCFS when fairness is restored.

While the paper only discusses the fixed-length deterministic
queue, our results can be easily extended into M/M/1 environ-
ment. Since, given any queue’s length, the rejection thresholds
under RP–FCFS are always below the thresholds under simple
FCFS. The only difference under M/M/1 environment is that the
queue length can change. So, there are two elements in the one-
step transition matrix under M/M/1: 1. The number of observed
rejections. 2. The queue’s length. Also, the expected waiting time
for A of the agents under RP–FCFS will change when the queue’s
length changes. Despite the differences, the intuition on waste
minimization is the same as in the fixed-length deterministic
environment. Also, the waiting cost in our model is different
from the discount factor. The discount factor exponentially de-
creases the utility, while the waiting cost linearly decreases the
utility. We adopt the waiting cost since it is more mathematically
tractable. There is not much difference in the main results when
using the discount factor.

The limitation of this paper is that while the intuition of RP–
FCFS’s optimality is easy, the proof is intractable. Also, we mainly
discuss the complex queues under which B′s allocation is fixed
under FCFS. There are other possible combinations (e.g., LCFS–RP
and FCFS–RP). Although this direction of extension is interesting,
the information disclosure process is hard to capture when the
discipline of B moves away from the FCFS. The main reason is
that the agents need to know which agent in front of them has
rejected B before calculating their expected waiting times. So,
adding randomization in the allocation of B will complicate the
story.
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Appendix. Proof of theorems and propositions

Proof of Theorem 1. Under LCFS–FCFS, for any n > 2, suppose
at period t , B is realized. If the agent at position 1 rejects it, his
expected waiting time is −∞. ∀c1 ∈ (0, 1), his expected utility
under rejection is 1 − ∞ ∗ c1 = −∞. His expected utility under
acceptance is u ∈ (0, 1). So, he will accept B. This means no
rejection will happen, and there is no waste. □

Proof of Theorem 2. If F (x) = x, the expected wastes are:

EW FCFS
=

(1−u)npn
n! (1 +

1−p
p +

1−p
p2

+ · · · +
1−p
pn )

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2! + · · · +
(1−p)(1−u)n

n!

EW RP−FCFS
=

(1−u)npn
nn (1 + n 1−p

p +
∑n

k=2 Π k−1
i=1

(n−(n−i)p)n
k!

1−p
pk

)

1 + (1 − p)(1 − u) +
∑n

k=2
Π

k−1
i=1 (n−(n−i)p)n

nk
(1−p)(1−u)k

k!

When n = 2, the above expressions are reduced to:

EW FCFS
=

(1 − u)2p2( 12 +
1
2
1−p
p +

1
2
1−p
p2

)

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2!

EW RP−FCFS
=

(1 − u)2p2( 14 +
1
2
1−p
p +

(2−p)
2

1
2
1−p
p2

)

1 + (1 − p)(1 − u) +
(2−p)

2
(1−p)(1−u)2

2!

Since p > 0, 2−p
2 < 1, EW FCFS > EW RP−FCFS .

Suppose when n = m − 1, EW FCFS > EW RP−FCFS . Then, when
n = m, we have equation given in Box I

Proof of Proposition 2. The one-step transition probability needs
to be presented separately for different situations: If 0 < i < n,
conditional on X (t)

= i, X (t+1) can be i − 1, i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= i)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p if j = i − 1

(1 − p)(1 − F (Cj+1)) if j = i

(1 − p)(1 − F (Cj+1))Π
j
k=i+1F (Ck) if i + 1 ≤ j ≤ n − 1

(1 − p)Π j
k=i+1F (Ck) if j = n

If i = n,

P(X (t+1)
= j|X (t)

= n) =

{
p if j = n − 1
(1 − p) if j = n

If i = 0, conditional on X (t)
= i, X (t+1) can be i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= 0)

=

⎧⎪⎨⎪⎩
p + (1 − p)(1 − F (C1)) if j = i = 0

(1 − p)(1 − F (Cj+1))Π
j
k=i+1F (Ck) if 0 < j < n

(1 − p)Π j
k=i+1F (Ck) if j = n

Then, we have a system of equations:

π0 = π0(p + (1 − p)(1 − F (C1))) + π1p

πk =

k−1∑
i=0

πi(1 − p)(1 − F (Ck+1))Π k
j=i+1F (Cj)

+ πk(1 − p)(1 − F (Ck+1)) + πk+1p, ∀1 ≤ k ≤ n − 1

πn =

n−1∑
i=0

πi(1 − p)Πn
j=i+1F (Cj) + πn(1 − p)

We can derive:

π1 =
1 − p
p

F (C1)π0

π2 =
1 − p
p2

F (C1)F (C2)π0

π3 =
1 − p
p3

F (C1)F (C2)F (C3)π0

· · ·

πn =
1 − p
pn

Πn
i=1F (Ci)π0
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EW FCFS
=

(1−u)mpm
m!

(1 +
1−p
p +

1−p
p2

+ · · · +
1−p
pm )

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2! + · · · +
(1−p)(1−u)m

m!

=

(1−u)p
m ( (1−u)m−1pm−1

(m−1)! (1 +
1−p
p + · · · +

1−p
pm−1 )) +

(1−p)(1−u)m
m!

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2! + · · · +
(1−p)(1−u)m−1

(m−1)! +
(1−p)(1−u)m

m!

>
( (1−u)mpm

m(m−1)m−1 (1 +
(m−1)(1−p)

p +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−(m−1−i)p)(m−1)

k!
1−p
pk

)) +
(1−p)(1−u)m

m!

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

>

(1−u)mpm
mm (1 + m 1−p

p +
∑m−2

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

) +
(1−p)(1−u)m

m!

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

=

(1−u)mpm
mm (1 + m 1−p

p +
∑m

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

) +
mm

m!

(1−p)
pm

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

>

(1−u)mpm
mm (1 + m 1−p

p +
∑m

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

)

1 + (1 − p)(1 − u) +
∑m

k=2
Π

k−1
i=1 (m−(m−i)p)m

mk
(1−p)(1−u)k

k!

= EW RP−FCFS □

Box I.

Given that F (Ci) = F ( (1−u)p
i ), so ∀k > 0:

πk =
1 − p
pk

Π k
i=1F (Ci)π0

=
1 − p
pk

Π k
i=1F (

(1 − u)p
i

)π0

∀k ≥ 1, let Qk =
1−p
pk

Π k
i=1F (

(1−u)p
i ), and Q0 = 1. Since π is

a probability distribution, then
∑n

i=0 Qiπ0 = 1. So, we have the
stationary distribution π :

πk =
Qk∑n
i=0 Qi

, k = 0, 1, 2, ·, n □

Proof of Proposition 3. If 0 < i < n, conditional on X (t)
= i,

X (t+1) can be i − 1, i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= i)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p i

n if j = i − 1

p n−i
n + (1 − p)(1 − F (C)) if j = i

(1 − p)(1 − F (C))Π j
k=i+1F (C) if i + 1 ≤ j ≤ n − 1

(1 − p)Πn
k=i+1F (C) if j = n

If i = n,

P(X (t+1)
= j|X (t)

= n) =

{
p if j = n − 1
(1 − p) if j = n

If i = 0, conditional on X (t)
= i, X (t+1) can be i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= 0)

=

⎧⎪⎨⎪⎩
p + (1 − p)(1 − F (C)) if j = i = 0

(1 − p)(1 − F (C))Π j
k=i+1F (C) if 0 < j < n

(1 − p)Π j
k=i+1F (C) if j = n

Then, we have a system of equations:

π0 = π0(p + (1 − p)(1 − F (C))) + π1
p
n

πk =

k−1∑
i=0

πi(1 − p)(1 − F (C))Π k
j=i+1F (C)

+ πk(p
n − k
n

+ (1 − p)(1 − F (C))) + πk+1p
k + 1
n

,

∀1 ≤ k ≤ n − 1

πn =

n−1∑
i=0

πi(1 − p)Πn
j=i+1F (C) + πn(1 − p)

We can derive:

π1 = n
1 − p
p

F (C)π0

π2 = (n − (n − 1)p)n
1 − p
2!p2

F (C)2π0

π3 = (n − (n − 2)p)(n − (n − 1)p)n
1 − p
3!p3

F (C)3π0

· · ·

πn = Πn−1
i=1 (n − (n − i)p)n

1 − p
n!pn

F (C)nπ0

∀k ≥ 2, let Rk = Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F (C)k, R1 = n 1−p

p F (C)
and R0 = 1. We have the steady state distribution of X t in
RP–FCFS queue:

πk =
Rk∑n
i=0 Ri

, k = 0, 1, 2 · · · , n □
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Conclusion

This thesis has explored Applied Microeconomic Theory across three interrelated areas: repu-

tation and signaling dynamics, remuneration schemes in digital platforms, and efficient queue

management. Each chapter addressed a distinct application, yet together, they advance our

understanding of strategic interactions in environments characterized by information asymme-

try, competing incentives, and decision-making under constraints. This concluding synthesis

will highlight the theoretical contributions of the thesis as a unified project, acknowledge its

limitations, and suggest avenues for future research.

A common theme across the chapters is the investigation of strategic behaviors in envi-

ronments with asymmetric information and (intertemporal) trade-offs. Chapter 1’s model of

repeated signaling and reputation provides insight into how information asymmetry affects long-

term interactions, particularly when one party (the customer) can only observe recent behavior.

This assumption deviates from traditional reputation models by introducing bounded memory

and signalling stage game, making it particularly applicable to real-world contexts where limited

historical knowledge influences decisions, as seen in influencer marketing. This approach pro-

vides a more realistic account of reputation evolution, diverging from classical reputation models

that assume perfect recall and thereby overestimate the potential for sustained cooperation or

reputation enhancement.

In Chapter 2, the focus shifts to how strategic responses within an endogenous framework

can shape equity and efficiency in digital platform markets. By modeling the music streaming

industry as a competitive environment where artists adjust song quality to maximize their

payoffs, the study challenges conventional beliefs about the equity of user-centric (U) versus

pro-rata (P) remuneration models. This finding demonstrates the potential for strategic quality

adjustments to shift the perceived fairness and efficiency of different payment schemes. These

results inform ongoing policy debates, particularly those advocating for user-centric payment

models as inherently fairer.

Chapter 3 further contributes to the literature on resource allocation and queue manage-

ment, offering a novel framework to minimize waste in service systems by using complex queuing

disciplines. The study’s queue optimization model addresses a critical need in industries where

Non-pricing allocation can result in significant waste of public goods, such as healthcare or food

services. This model demonstrates that efficient resource allocation policies can substantially

reduce waste while maintaining high service fairness. By integrating queueing theory with waste

minimization principles, this chapter provides valuable insights for managers in both public and

private sectors seeking to improve service delivery while minimizing costs.

The methodological contributions across the chapters reflect a versatile approach to model-

ing complex interactions and equilibria. Chapter 1’s use of a Markov Decision Process (MDP)

framework underpins a mixed-strategy equilibrium for influencer signaling that accounts for

bounded memory. Chapter 2 employs comparative statics within an endogenous model, enabling

nuanced assessments of quality and remuneration across different payment schemes. Chapter

3’s queueing model blends social choice principles with optimization techniques to balance com-

peting priorities of fairness and minimal waste. This diversity in methodologies allows for a
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comprehensive analysis across contexts, each benefiting from tailored approaches that address

their unique structural characteristics. Together, these methodological choices underscore the

thesis’s contribution to Applied Microeconomic Theory, highlighting versatile frameworks that

address dynamic behaviors in competitive environments.

While these contributions are significant, the thesis also has limitations that suggest po-

tential directions for future research. In Chapter 1, the assumption of bounded memory in

the reputation model captures realistic customer behavior but limits the analysis of long-term

strategic equilibrium effects. Extending the model to include varying degrees of customer mem-

ory or even imperfect recall could yield insights into how different memory structures impact

reputation dynamics and equilibria. Chapter 2’s endogenous model assumes that artists adjust

only song quality in response to remuneration rules, which simplifies the strategic space. Incor-

porating additional dimensions, such as marketing effort or song release frequency, could offer

a more comprehensive view of how artists respond to competitive pressures in a platform econ-

omy. Also, the mathematical intractability limits our discussion with limited number of artists.

Finally, Chapter 3’s model for queue optimization assumes a single service type, which might

limit applicability in settings where multiple services compete for prioritization. Expanding

the model to a multi-queue or multi-service framework could enhance its relevance to complex

service environments.

The synthesis of these chapters into a coherent whole is justified by their shared focus on

strategic interactions within economically relevant contexts of asymmetric information, compet-

itive incentives, and (intertemporal) decision-making. While each chapter addresses a specific

application—signaling in reputation, remuneration in digital content, and queueing in service de-

livery—the common theoretical foundation unites them. Each chapter contributes to a broader

understanding of how agents balance (immediate) payoffs with (long-term) incentives, adapt-

ing their strategies based on others’ actions, beliefs, and the economic environment’s structural

characteristics. These insights are not only relevant within their respective fields but also under-

score a broader theme of strategic adaptation in response to incentives, a fundamental concern

in Applied Microeconomic Theory.

In conclusion, this thesis advances Applied Microeconomic Theory by developing models

that capture (dynamic)incentive-driven behaviors across diverse yet interconnected contexts.

By contributing theoretical insights relevant to real-world scenarios, the research highlights the

importance of adapting traditional economic models to reflect the evolving realities of digital

and service-based economies. Future research that builds on these findings will further enhance

our understanding of complex economic interactions, helping policymakers and practitioners

navigate the challenges of asymmetric information and strategic decision-making in increasingly

interconnected markets.
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