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Abstract

Industry 4.0 adopts Internet of Things (IoT) and service-oriented architectures to integrate Cyber-
Physical Systems (CPSs) and Enterprise Planning systems into manufacturing operations. Fur-
thermore, manufacturing processes typically involve the composition of various modular CPSs
that work as a whole, such as multiple Collaborative Robots (cobots) working together as a pro-
duction line, improving the production process’s flexibility and resilience. On the other hand, it
is still challenging to verify this kind of compositional process and take into account uncertain-
ties from IoT sensors and decision-making algorithms. For example, the trustworthiness of the
sensors is essential to guarantee performance, safety and product quality during operation. How-
ever, existing methodologies to test such systems often do not scale to today’s sensor networks’
complexity and dynamic nature.

Formal model verification techniques are a valuable tool that allows strong reasoning about
the high-level design of CPSs. However, the uncertainty exhibited by the underlying sensor
networks is often ignored. Moreover, existing model-checking tools are hard to adapt to the
dynamic environment of Industry 4.0 applications during the operation stage, such as an Auto-
mated Guided Vehicle (AGV) joining in accompanying the manufacturing process at run time.

This thesis proposes a novel run-time formal verification framework for modular CPSs that
combines sensor-level data-driven fault detection and system-level probabilistic model check-
ing. The resulting framework can quantify sensor readings’ trustworthiness, enabling formal
reasoning for system operation behaviour and reliability analysis.

The proposed approach is evaluated on three use cases, including an industrial turn-mill ma-
chine equipped with a sensor network to monitor its main components continuously, a passenger
lift with two sensor networks to monitor the door and cabinet car movements, and a two-cobot
painting process running with Robotic Operation System (ROS). The results indicate that the
proposed verification framework involving the quantified sensor’s trustworthiness enhances the
accuracy of the system failure prediction and potentially optimises manufacturing processes.

i



Contents

Abstract i

Acknowledgements viii

Declaration ix

1 Introduction 1
1.1 Background of Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges in Industry 4.0 Applications . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Research Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Research Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 State of the Art 11
2.1 Formal Verification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Theorem Proving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Formal Specification Language and Temporal Logic . . . . . . . . . . 16
2.1.4 Model Checking at Run time . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Available Model Checking Tools . . . . . . . . . . . . . . . . . . . . . 19
2.1.6 Model Checking Application of Industry . . . . . . . . . . . . . . . . 20

2.2 Uncertainty of Industry 4.0 Applications . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Uncertainty of Sensor Networks . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Uncertainties of Computation Algorithms . . . . . . . . . . . . . . . . 25

2.3 Model Verification for CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Challenges and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Run-time Verification for Industry 4.0 Applications 31
3.1 Quantification of Sensor Run-time Trustworthiness . . . . . . . . . . . . . . . 35

ii



CONTENTS iii

3.1.1 Categories of Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Identify Reading Distribution . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Trustworthiness of Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Run-time Model Verification with Trustworthiness . . . . . . . . . . . . . . . 42

3.3.1 Run-time Model Verification . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Compositional Modelling and Run-time Verification . . . . . . . . . . . . . . . 45

4 Run-time Model Checking with Sensor Trustworthiness 52
4.1 Architecture of Run-time Model Checking . . . . . . . . . . . . . . . . . . . . 53
4.2 Sensor Fault Detection (SFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 System Model Verification (SMV) . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Implementation and Experiment Design . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Sensor Fault Detection (SFD) Module . . . . . . . . . . . . . . . . . . 57
4.4.2 System Model Verification (SMV) Module . . . . . . . . . . . . . . . 58
4.4.3 Experiment Settings and Properties . . . . . . . . . . . . . . . . . . . 60

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Model Checking with Improved Quantification Method 65
5.1 Improved Sensor-Network Trustworthiness Quantification . . . . . . . . . . . 65
5.2 Verification of Passenger Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Experiment settings and configurations . . . . . . . . . . . . . . . . . 70
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Validation and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Compositional Modelling and Run-time Verification 76
6.1 Compositional Industry System . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Task Operation Layer Model (Child Model) . . . . . . . . . . . . . . . . . . . 78
6.3 Task Management Layer Model (System Model) . . . . . . . . . . . . . . . . 79
6.4 Temporal Logic Property Query . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.1 Settings and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.2 Task Operation model – Cobot Arm . . . . . . . . . . . . . . . . . . . 82
6.5.3 Task Management Layer Model - Painting System . . . . . . . . . . . 84
6.5.4 Evaluation of System Failure . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS iv

7 Discussion 90
7.1 Advantages of Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Possible use cases and deployment . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Limitations and Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Initialisation of Formal Models . . . . . . . . . . . . . . . . . . . . . 94
7.3.2 Quantification of Run-time Uncertainties . . . . . . . . . . . . . . . . 95

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Conclusion and Future Work 97
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A PRISM code 100

B Normal Behaviour of Sensors 105

C Full experiment result of six scenarios 107



List of Tables

2.1 Sensor faults and detection methods. . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Normal Behaviour (Sensor Profile) of current, temperature and vibration sensor 62
4.2 Sensor confidence score of CUT stage . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Sensor confidence score and failure probability. . . . . . . . . . . . . . . . . . 89

C.1 Sensor confidence score and failure probability. . . . . . . . . . . . . . . . . . 108

v



List of Figures

1.1 A typical Industry 4.0 manufacturing architecture. . . . . . . . . . . . . . . . . 3
1.2 Phases of overall research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Formal verification topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 A process of verifying software system using model checker technology. . . . . 14
2.3 Uncertainties of Industry 4.0 applications. . . . . . . . . . . . . . . . . . . . . 23

3.1 Architecture of run-time probabilistic model checker. . . . . . . . . . . . . . . 31
3.2 Overview of run-time probabilistic model checker (A) Run-time verification for

sensor-based systems, (B) Run-time verification for sensor network-based sys-
tems, and (C) Compositional modelling and run-time verification. . . . . . . . 34

3.3 Sensor trustworthiness quantification process. . . . . . . . . . . . . . . . . . . 35
3.4 Child model with interface extension. . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Interaction of child models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Interaction of child models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Structure of compositional modelling. . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Structure of models for Industry 4.0 applications. . . . . . . . . . . . . . . . . 50

4.1 Overview of the run-time probabilistic model checker. . . . . . . . . . . . . . . 53
4.2 Modules of the run-time probabilistic model checker. . . . . . . . . . . . . . . 54
4.3 Run-time probabilistic model checker. . . . . . . . . . . . . . . . . . . . . . . 56
4.4 The location of sensors in a CNC turn-mill machine. . . . . . . . . . . . . . . 58
4.5 The state transition model of CNC turn-mill machine. . . . . . . . . . . . . . . 59
4.6 The sensor readings of the main spindle. . . . . . . . . . . . . . . . . . . . . . 61
4.7 Comparison of system failure probability. . . . . . . . . . . . . . . . . . . . . 63

5.1 Run-time probabilistic model checker for sensor network-based system. . . . . 66
5.2 The sensor networks of a passenger lift. . . . . . . . . . . . . . . . . . . . . . 67
5.3 The probabilistic model of a passenger lift. . . . . . . . . . . . . . . . . . . . . 68
5.4 Sensor Network confidence score of Lift-Door and Lift-Car. . . . . . . . . . . 72
5.5 Comparison of system failure probability. . . . . . . . . . . . . . . . . . . . . 73

vi



LIST OF FIGURES vii

6.1 Structure of automated painting process. . . . . . . . . . . . . . . . . . . . . . 77
6.2 The experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 The collaborative workspace for painting process. . . . . . . . . . . . . . . . . 81
6.4 The cobot child model Mcobot . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 The painting system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Implementation of Run-time model checker for Industry 4.0 applications. . . . 86
6.7 Comparison of real sensor readings and drift simulation. . . . . . . . . . . . . 88

7.1 Gap analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Acknowledgements

I would like to express my heartfelt gratitude to all those who have contributed to the completion
of this thesis. Their support, guidance, and encouragement have been invaluable throughout this
journey.

First and foremost, I am deeply indebted to my supervisors, Dr Sye Loong, Dr Michele
and Dr Martin, for their unwavering support, expert guidance, and insightful feedback. Their
mentorship and belief in my abilities have been instrumental in shaping the direction of this
research.

I would like to acknowledge the support and assistance received from Dr Andreas, Dr Teck
Ping, Dr Hian Hian from TÜV SÜD Digital Service Singapore. Their commitment to the re-
sources made available has been instrumental in the successful completion of this thesis.

I am grateful to my colleagues and friends for their camaraderie and motivation during chal-
lenging times. Their encouragement and willingness to lend a helping hand have been a source
of strength throughout this research endeavour.

I extend my deepest appreciation to my family for their unwavering love, understanding, and
encouragement. Their belief in my abilities has been a constant source of inspiration.

I would also like to express my gratitude to all the research participants who generously gave
their time and insights, without whom this study would not have been possible.

Lastly, I acknowledge the financial support provided by the Singapore Economic Develop-
ment Board (EDB) and TÜV SÜD Asia Pacific Pte Ltd, which facilitated the execution of this
research.

In conclusion, I am thankful to all those who have been a part of this academic journey and
have contributed to the successful completion of this thesis.

viii



Declaration

I, Xin Xin, hereby declare that this thesis titled "Formal Verification of Safety-Critical Systems
with Uncertainty for Industry 4.0 Applications" submitted to the University of Glasgow for the
degree of Doctor of Philosophy is my original work, except where otherwise acknowledged. I
affirm that this work has not been submitted for any other academic degree or qualification.

I acknowledge and give credit to all sources of information, data, and ideas that have been
used in this thesis. All references and sources have been appropriately cited and included in the
bibliography section.

Any copyrighted material or substantial portions of work done by others included in this
thesis have been duly acknowledged, and permissions have been obtained as required.

I also declare that this thesis is the result of my independent research and effort, except for
specific portions mentioned in the text where collaborations with other researchers or institutions
are acknowledged.

Conflict of Interest: I declare that there are no conflicts of interest that might have influenced
the outcome of this research or the writing of this thesis.

Funding and Support: This research is partially funded by Singapore Economic Develop-
ment Board (EDB) through the Industrial Postgraduate Programme (IPP) Grant. Also, this re-
search is supported by TÜV SÜD Asia Pacific Pte Ltd—Digital Service Singapore.

I understand the significance of academic integrity and take full responsibility for the con-
tent, findings, and conclusions presented in this thesis.

ix



Chapter 1

Introduction

Industry 4.0, often called the "Fourth Industrial Revolution" or "I4.0", is a transformative move-
ment in the industrial sector by integrating digital technologies, automation, and data exchange
in manufacturing processes. It aims to create smarter, more efficient, and more interconnected
production systems [1]. Industry 4.0 applications are revolutionising how we operate modern
industrial systems, which are characterised by the increasing digitalisation and interconnection
of products, value chains, and business models. Compared to the third industrial revolution,
I4.0 focuses heavily on interconnectivity, automation, machine learning, and real-time data. It
brings together Cyber-Physical Systems (CPSs), the Internet of Things (IoT), cloud computing,
and cognitive computing to create a smart factory environment. Decentralised decision-making
is the key advancement that allows components to make simple decisions on their own and be-
come as autonomous as possible. For example, in a production process, when one machine fails,
another can take over its tasks automatically without manual intervention. Sensor technologies,
interoperability and robotics are fundamental to achieving the goal of Industry 4.0.

Sensor network-based systems and CPSs are foundational pillars for the Industry 4.0 paradigm
that enables the digital transformation of manufacturing and industry. Sensor network-based sys-
tems play a pivotal role by acquiring real-time data, including machine status, operation data and
environmental conditions. This is central to Industry 4.0, where data is harnessed from all parts
of the production process. With the recent advancement in embedded sensor systems [2–6],
there is a significant improvement in the modern smart manufacturing processes in terms of
intelligent controls, predictive analytics and system automation. The ability to collect a man-
ufacturing plant’s shop-floor data in real-time has enabled the learning of each machine’s state
information and deriving insights that can subsequently be translated into self-control functions,
hence automating the operations of the manufacturing plant. An automation program with initial
configuration parameters is typically pre-loaded into the machine. The data collected from the
machine, such as the machine status and work-piece qualities during run-time, are then used to
update the configuration parameters continuously. This forms a closed feedback-control loop to
maintain the smooth operation of the manufacturing plant. In such a situation, the quality and
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CHAPTER 1. INTRODUCTION 2

trustworthiness of the sensor readings are crucial to effective control of the production process.
CPS is a complex system which connects sensor data acquisition systems with computer

networks to utilise computer-based algorithms interacting with the physical world [7–10]. Com-
pared to sensor network-based systems, CPSs are dynamic systems with tight integration be-
tween computational algorithms and physical components, enabling real-time monitoring, decision-
making, and actuation. In contrast, sensor network-based systems primarily focus on data collec-
tion and monitoring without direct control over physical processes. Thus, safety-critical aspects
of CPSs in the context of Industry 4.0 are vital as CPSs directly interact with or are near human
operators. Malfunctions or unexpected behaviours from these systems can pose direct threats to
human safety. For instance, a robotic arm used in assembly could harm an operator if it does not
operate as intended. Moreover, a failure in a CPS can lead to shutdowns or damages, causing
significant economic losses. This could be in the form of production halts, damage to produced
goods, or the need for costly repairs.

With the increasing use of sensor network-based systems and CPSs, the reliability and safety
of these systems become of paramount importance. For safety-critical systems, any failure can
result in significant harm or loss, especially those used in transportation, healthcare, and energy
production, which are particularly susceptible to failures that can result in severe consequences,
including human injury, loss of life, and damage to the environment and infrastructure. To ad-
dress this problem, a monitoring and verification approach is needed to ensure the safety of the
deployment for Industry 4.0 applications. Hence, this research focuses on Industry 4.0 appli-
cations, especially sensor network-based systems and aims to provide a rigorous verification
framework to ensure behaviour correctness.

1.1 Background of Manufacturing Systems

In the era of Industry 4.0, smart manufacturing plants are revolutionising traditional produc-
tion processes that incorporate advanced technologies, automation, and intelligent systems to
streamline operations, enhance productivity, and ensure high-quality output. Figure 1.1 illus-
trates a typical four-layer architecture of such manufacturing processes [11, 12].

• Manufacturing Information System Layer is the layer for high-level manufacturing man-
agement systems. For instance, Enterprise Resource Planning (ERP), Advance Planning
and Scheduling (APS), Warehouse Management System (WMS) and Manufacturing Exe-
cution System (MES). These systems focus on production planning, material purchasing,
resource and order management.

• Task Management Layer is a software layer that mainly focuses on the manufacturing
process scheduling and dispatching tasks. Task management is crucial to ensure smooth
operations, increased productivity, and timely delivery of products.
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Figure 1.1: A typical Industry 4.0 manufacturing architecture.

• Task Operation Layer facilitates the execution and tracking of tasks. This layer operates
and coordinates multiple machines, hardware executors and control systems, including
distributing specific tasks to executors and monitoring their status.

• Hardware Device Layer contains all hardware equipment, including arm and dual-arm
robots, Automated Guided Vehicles (AGVs), automatic conveyors or other operation ma-
chines. Moreover, sensor networks are equipped to monitor and provide feedback on
working and environmental conditions.

All these components interact with each other and form a smart manufacturing plant. For
example, a painting plant involves an ERP system, robot operation management system, AGVs
and arm robots to process painting tasks for manufacturing automobile parts. In this case, firstly,
the ERP system receives an order for a batch of car doors to be painted. The WMS checks the
inventory and automatically triggers purchase orders to replenish the stock if any materials are
insufficient. Subsequently, AGVs transport a batch of car doors to the pre-painting zone from
the assembly line or warehouse. A robot arm moves car doors to painting booths. Another
robot arm equipped with painting tools and sensors positions itself to precisely paint the doors.
Meanwhile, the APS system optimises the painting sequence to minimise paint changeovers and
downtime. Throughout the process, the operation management system monitors the AGVs’ and
robots’ performance and adjusts parameters as needed for an effective paint process. By imple-
menting advanced technologies and intelligent decision-making algorithms, the painting process
streamlines the entire process, enhances productivity, and ensures consistent, high-quality man-
ufacturing outputs.

In order to ensure smooth machine operation in such a smart manufacturing plant, firstly,
there must be an efficient approach to accurately verify the machine’s behaviour such that it
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acts according to the expected behaviour over time. This significantly reduces the machine’s
downtime, and the replacement of faulty parts can be done at the right time, hence optimising
the machine’s utilisation. Secondly, the accurate prediction of machine behaviour depends very
much on the accurate data acquisition from the sensors in the machine. This implies that the
trustworthiness of the sensor readings is crucial. It is inevitable that inaccurate readings might
occur due to factory calibration issues and sensor wear and tear, as well as malicious tamper-
ing, leading to deviation from the actual value. When using these inaccurate or untrustworthy
readings in the production lines, it will significantly degrade the product outputs as well as af-
fect the performance of the manufacturing system as a whole. Thirdly, considering the dynamic
nature of the sensor networks as well as the possibility of unexpected sensor failures, the mod-
elling methodology needs to take into account the uncertainties of sensor networks in order to
represent the system accurately.

1.2 Challenges in Industry 4.0 Applications

Sensor network-based systems and CPSs play a crucial role in Industry 4.0 applications, as they
are fundamental components that enable smart, connected, and highly efficient manufacturing
environments. Sensor network-based systems are typically focused on gathering data from a net-
work of sensors deployed in a particular environment. The connected sensors aim to collect and
transmit sensory information from the physical world to a central processing unit or data centre
for analysis and drive intelligent decision-making. Aside from sensor network-based systems,
CPSs typically have a hierarchical architecture and integrate numerous physical components,
such as sensors, actuators, and controllers, with the computational units and communication in-
frastructure. They involve the interaction between physical processes and software-controlled
components to achieve desired functionalities. CPSs often exhibit real-time behaviour, feed-
back loops, and dynamic interactions between the physical and cyber components. Both kinds
of these systems need to emphasise safety, reliability, and performance optimisation.

However, despite the many advantages of sensor network-based systems and CPSs, data
accuracy and trustworthiness remain a major challenge. Sensor data can be susceptible to noise,
drift, or calibration issues, affecting the reliability of the system. Sensor networks collect a
vast amount of machinery operational data, and it is crucial to ensure that this data accurately
reflects manufacturing operation status during the entire processing time. Consequently, the
system’s behaviour might change unexpectedly during the operation period, especially since
the trustworthiness of the data quality is not well considered during the design phase. The
challenge is that safety-critical systems require high levels of reliability to ensure continuous
operation and fault tolerance. Sensor failures or communication breakdowns can have serious
implications. Additionally, the complexity of sensor networks and the interoperability between
different manufacturing work cells pose substantial challenges to maintaining the quality of
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manufacturing processes. The traditional verification methodologies often assume the inherent
trustworthiness of sensors and depend on the pre-defined models. However, these approaches
struggle to accurately capture the dynamic complexities of sensor networks during run-time,
particularly with regard to the trustworthiness of run-time sensor readings.

Two typical approaches are used to model and verify industrial applications, namely data-
driven and model-checking approaches. The data-driven approach [13–16] might not be a suit-
able solution due to the lack of good training datasets. The model-checking approach [17–19],
which requires prior specific domain knowledge of the process, that is not usually used in the
industry. Moreover, the traditional model-checking techniques tend to assume the sensor run-
time working conditions and depend on pre-defined static models, which makes it difficult to
reflect the actual behaviour of the systems during the operation stage. Thus, it is hard to verify
the run-time behaviour and feedback verification results to the physical systems. In Industry
4.0 systems, operations often involve interconnected components such as robots, sensors and
sensor networks, actuators and CPSs, all working in real time to meet production goals and
quality standards. These systems must adapt continuously to changes in environmental con-
ditions, sensor reliability, and operational constraints. Feedback from a model-checking tool
is crucial to provide actionable insights. For example, reconfiguring workflows, reallocating
resources, or adjusting control parameters to address emerging issues or optimise system perfor-
mance. Another example is in a smart factory, verification results could identify bottlenecks in
production and suggest task redistribution to mitigate delays. In contrast, CPSs often prioritise
static correctness and system safety, focusing on ensuring that the system behaves as intended
under predefined scenarios. While verification remains important in CPSs, the need for feed-
back is typically less critical because many CPSs operate under fixed conditions or predefined
control logic. This distinction highlights that while CPSs benefit from rigorous offline verifica-
tion, Industry 4.0 applications demand an additional layer of operational adaptability enabled by
feedback mechanisms from model-checking tools.

Additionally, it is a challenge to apply for run-time compositional structure systems. For in-
stance, an operation management system composes multiple components at run-time according
to the dynamic requirements, as shown in the example in Section 1.1, where a painting plant
forms an automatic painting process that incorporates robots and AGVs according to the actual
orders.

In summary, there is a need to verify the safety-critical manufacturing process at a system
level, which takes into account sensor networks’ trustworthiness and analysis of the impact
during the system operation phase.
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1.3 Thesis Statement

The aim of this research is to extend existing formal verification to develop a novel verifica-
tion framework suitable for safety-critical systems with uncertainty of Industry 4.0 applications.
Specifically, this work focuses on developing a novel run-time verification framework that can
handle uncertainty in the modelling, analysis, and synthesis of safety-critical systems. Mul-
tiple approaches are explored to quantify and represent uncertainty, for instance, probabilis-
tic models, compositional structures, or stochastic processes, and to evaluate their suitability
for different safety-critical systems. More investigations are carried out on how to integrate
uncertainty-aware verification with other aspects of the system lifecycle, including design, test-
ing, and maintenance, to ensure the verified system operates correctly and safely under various
conditions.

This resulting framework combines sensor-level fault detection and system-level model check-
ing that is able to rigorously verify the Industry 4.0 applications while incorporating the quan-
tified trustworthiness of sensor readings. The verification outcome can be utilised to inform
application operations or improve the quality of the process. This enables formal verification
of the system’s run-time behaviour and contributes to optimising the manufacturing processes
through the verification results.

The overall goal can be decomposed into the following three research questions:

RQ1 : How to quantify the trustworthiness of the sensor and sensor network at run-time?

RQ2 : How to model a sensor network-based system that reflects the impact of the changes in
the sensor’s trustworthiness?

RQ3 : How to verify an Industry 4.0 application by detecting reachability of error states to ensure
safety during the operation period, for example, a dynamic manufacturing process using
multiple CPSs?

The key contribution of this research is providing a novel run-time formal verification frame-
work, taking into account quantified sensor uncertainties to verify the correctness and behaviour
of Industry 4.0 applications. The learning- and rule-based approaches are employed to quantify
sensor trustworthiness during the system’s operation period to reflect actual system running be-
haviour. This improves the efficiency and accuracy of model verification results. The sensor’s
trustworthiness is continuously quantified and used to update the system model at discrete inter-
vals. The properties of the system model are checked at each update of the sensor trustworthiness
changes, and the property-checking results are used to guide physical system updates to ensure
the safety and quality of the Industry 4.0 applications. Moreover, this framework extends the
traditional model structure with a new type of state, namely interface states. With this extension,
the model can still be verified as usual during the design and operation phases. Subsequently,
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these extended models can be composed to model interaction between multiple sensor networks
using interface states to verify the higher-level system during the operation phase.

1.4 Research methodology

The objective of this research is to develop a run-time verification framework for applying for-
mal verification techniques to ensure the reliability and safety of Industry 4.0 systems. Formal
verification involves mathematical analysis and logical reasoning to provide a rigorous approach
to verifying the behaviour and the correctness of the systems. This research aims to bridge the
gap between existing formal verification methods and practical implementation for Industry 4.0
applications.

The initial phase of this research involves an extensive literature review of the uncertainty of
Industry 4.0 applications, such as sensor failure types, detection methods and the uncertainties
from soft computing algorithms. Subsequently, formal verification techniques and applications
are reviewed. Existing research on model checking, theorem proving, and run-time verification
methods are analysed to identify challenges and lessons learned.

The primary research components include:

• Formal verification techniques include symbolic model checking, parameterised model
checking and compositional model verification.

• Quantification of the uncertainty from sensor networks, which are the crucial components
of Industry 4.0 applications.

• Industry 4.0 applications cover manufacturing process, optional equipment and sensor
network-base systems.

The research adopts a mixed-methodology approach, combining qualitative analysis of in-
dustry case studies and quantitative evaluation of the proposed framework’s effectiveness in
verifying through the experiments and using real industry environments as the testbed. Data are
collected through literature reviews, interviews with industry experts, and experiments. Formal
verification tools are also used for the proposed verification framework. Quantitative data are
analysed using statistical methods.

1.5 Research Activities

Fig 1.2 shows an overview of the activities during the period of this research work. The research
work was carried out in four phases. In the first phase, a state-of-the-art analysis was performed
to understand the different techniques for sensor uncertainty detection and formal verification
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Figure 1.2: Phases of overall research.

techniques. These works were further analysed to identify the challenges and gaps. Based on
this, an overall research goal was developed.

In Phase 2, according to phase one research, a conceptual approach was formulated. A run-
time verification framework is proposed to verify a sensor-based system, taking into account
the quantified sensor uncertainties. An industrial turn-mill machine was used to evaluate this
proposed approach. The resulting approach was published in the proceedings of the IEEE Inter-
national Conference on Smart Internet of Things (SmartIoT) 2020 [20].

In Phase 3, the proposed framework was enhanced to handle a sensor network-based system
instead of a sensor-based machine. The enhancement mainly focuses on the quantification of
sensor networks’ uncertainties. An actual working passenger lift was used to evaluate the en-
hanced framework. The resulting approach was published in the proceedings of the IEEE 8th
World Forum on Internet of Things (WF-IoT) 2022 [21].

Finally, the proposed verification framework was generalised to a compositional scenario
to verify a simulated Industry 4.0 manufacturing process using two collaborative arm robots
(cobots). The resulting improved approach was published in the journal of IEEE Access 10
(2022) [22].

Apart from the above research works, as the second author, another workshop paper about
run-time risk analysis for sensor-based Unmanned aerial vehicles (UAV) was published in the
proceedings of the IEEE 8th World Forum on Internet of Things (WF-IoT) 2022 [23]. This ac-
tivity enriched the knowledge and experience of sensor-based systems, which helped to develop
a more generalised verification framework for sensor network-based systems.

1.6 Thesis Structure

This thesis is organised as follows:
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Chapter 2 provides background information and existing works that are related to this thesis.
Firstly, it describes the types of sensor failure in the actual industry deployment. Furthermore,
some failure detection methods are provided to identify and diagnose the sensor status. Subse-
quently, the existing system verification techniques are studied to analyse the impact according
to the sensors’ trustworthiness changes.

Chapter 3 presents a run-time verification framework that integrates data-driven methodolo-
gies and model-checking techniques to incorporate the trustworthiness of sensors and sensor
networks into the run-time verification of system behaviour. Unlike traditional static model ver-
ification approaches, which rely on predefined models and assumptions about sensor accuracy,
this framework enables run-time quantification of sensor trustworthiness and continuously up-
dates models accordingly. By leveraging probabilistic model checking, the proposed framework
addresses the limitations of static verification and provides actionable feedback from run-time
verification results, thereby improving the operational decision-making process.

Chapter 4 demonstrates the process of applying the proposed run-time verification frame-
work to a practical sensor-based system. The evaluation was conducted using an industrial CNC
turn-mill machine as the experimental platform. The experiment was integrated with the algo-
rithms designed to quantify the trustworthiness of sensor readings, as well as the model checker
to verify the run-time system properties.

In Chapter 5, another use case is introduced, wherein the proposed run-time verification
framework is applied to handle sensor networks rather than individual sensors. In this scenario,
the aggregation of related sensors into a network aims to enhance the accuracy of trustworthiness
quantification for the sensor network. The experiment employed a working passenger lift in a
commercial building, which was equipped with two sensor networks to monitor its operation.
Data from these networks was collected and processed to assess the performance of the run-time
verification framework.

A more complex scenario within the context of Industry 4.0 applications is presented in
Chapter 6. This scenario involves a manufacturing process that includes a painting process
management system and two cobot arms. This manufacturing process was abstracted into a
system model to evaluate the effectiveness of the proposed run-time verification framework.
A mock-up physical system was set up as the experimental platform, and six test cases were
designed to validate the property-checking results in a physically working environment.

Chapter 7 discusses the limitations of the proposed verification framework and the possibility
of actual deployment for the manufacturers. The summary of the contribution of this thesis,
answers to the research questions and future possible improvements are discussed in Chapter 8.
Additionally, in the Appendix, detailed experiment data is provided.
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1.7 Research Publications

The proposed verification framework has resulted in the following publications:

• Xin, Xin, Sye Loong Keoh, Michele Sevegnani, and Martin Saerbeck. ‘Dynamic Prob-
abilistic Model Checking for Sensor Validation in Industry 4.0 Applications’. In 2020
IEEE International Conference on Smart Internet of Things (SmartIoT), 43–50. Beijing,
China: IEEE, 2020.
https://doi.org/10.1109/SmartIoT49966.2020.00016.

• Xin Xin, Sye Loong Keoh, Michele Sevegnani, and Martin Saerbeck. ‘Run-Time Proba-
bilistic Model Checking for Failure Prediction: A Smart Lift Case Study’. In 2022 IEEE
8th World Forum on Internet of Things (WF-IoT), pages 1–7, October 2022.
https://doi.org/10.1109/WF-IoT54382.2022.10152177.

• Xin, Xin, Sye Loong Keoh, Michele Sevegnani, Martin Saerbeck, and Teck Ping Khoo.
‘Adaptive Model Verification for Modularized Industry 4.0 Applications’. IEEE Access
10 (2022): 125353–64.
https://doi.org/10.1109/ACCESS.2022.3225399.

• Yong Zhi Lim, Xin Xin, and Teck Ping Khoo. ‘Enhancing UAV Flight Safety through
Sensor-based Runtime Risk Assessment’. In 2022 IEEE 8th World Forum on Internet of
Things (WF-IoT), pages 1–5, October 2022.
https://doi.org/10.1109/WF-IoT54382.2022.10152064.



Chapter 2

State of the Art

Formal verification, by definition, is a rigorous method used in the field of computer science
to ensure the correctness of a system or software [24]. It involves mathematical techniques
and logical reasoning to verify a system adheres to the specifications and requirements. An
extensive amount of literature work has been done, and multiple formal verification techniques
are used for verifying sensor network-based systems and CPSs [25, 26]. An elaborate survey
of formal verification approaches was presented by Clarke et al. [27]. This paper discusses
two well-established approaches to verification: model checking and theorem proving. Model
checking involves building a finite model of a system and checking if desired properties hold.
Theorem proving involves expressing the system and its desired properties as formulas in math-
ematical logic and finding proof of the properties. Both approaches have been successfully
used in hardware and software verification. The paper highlights several successful case studies
using formal methods. For instance, IBM [28] used formal specifications to improve the qual-
ity of its Customer Information Control System (CICS), resulting in a reduction in errors and
improved system quality. Another example is distributed fault-tolerant software for London’s
airspace using formal description and refinement techniques. Moreover, Lockheed [29] used
formal methods to analyse and verify the avionic software for the Lockheed C130J, resulting in
an improvement in software quality.

Compared to existing verification for hardware and software, Industry 4.0 application refers
to integrating advanced digital technologies into various aspects of manufacturing and indus-
trial processes, including hardware and software, such as sensors, conveyors, control systems
and scheduling systems. It aims to create intelligent manufacturing and optimise operations by
leveraging technologies such as sensor networks, artificial intelligence (AI), CPSs, and other
automation systems. Typically, these technologies are soft computing-based and deal with prob-
lems that are complex, vague, and uncertain in nature. They are widely applied in many Industry
4.0 domains [30–34], such as 3d printing, optimising and scheduling manufacturing systems,
analysing pharmaceutical hierarchy processes and so on so forth. Compared to traditional com-
puting, in which problems are well-defined and precise, soft computing techniques are designed

11
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to handle imprecision, ambiguity, and partial truth, for instance, in machine learning, fuzzy
logic, genetic algorithms and neural networks. As a result, soft computing exhibits uncertainties
during run time according to the working conditions.

In this chapter, formal verification techniques are discussed in section 2.1 that focus on
model-checking techniques and applications. Categorisation and detection of uncertainty from
sensors are presented in section 2.2. Finally, the applications of formal verification techniques
about CPSs are in section 2.3.

2.1 Formal Verification Techniques

Formal model verification plays a crucial role in ensuring the correctness and reliability of sensor
network-based systems. It is a rigorous and automated technique used to verify the correctness
of a given system’s specifications. Typically, formal verification provides a high level of as-
surance by exhaustively analysing all possible system behaviours, considering different input
scenarios, and proving properties using formal methods [35]. Fig 2.1 illustrates a high-level
model-checking technique to tackle the challenges, and below are the major techniques of for-
mal verification.

• Model Checking is a popular technique for system verification as it exhaustively explores
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the system’s state space to verify desired properties. It is effective for small to medium-
sized systems but faces challenges with scalability when dealing with large and continuous
state spaces due to state space explosion [36, 37].

• Theorem Proving, on the other hand, provides a rigorous mathematical approach to prov-
ing correctness properties using logical reasoning. It allows for detailed and fine-grained
analysis but requires significant expertise and effort in constructing formal proofs.

• Symbolic Model Checking allows for the analysis of systems by constructing symbolic
representations of the system’s state space. It can handle large state spaces effectively and
supports verifying complex temporal properties.

• Probabilistic Model Checking extends the analysis to systems with probabilistic behaviours
and is useful for reliability analysis and performance evaluation.

2.1.1 Theorem Proving

Theorem Proving, also known as Automated Deduction (AD), is a deductive method that applies
mathematical logic to prove the correctness of a system. Bibel [38, 39] introduced the history
and perspective of research of automated deduction and proposed a revised transition logic for
a broad formal platform for reasoning about actions and change in general. By using AD, the
system and properties are presented by logic formalism, and the goal is to construct a proof that
the system satisfies the specification for all possible inputs and states. This technique widely uses
for safety-critical applications to verify the correctness of software controlling critical systems,
such as the aerospace and automotive industries [40–45].

Rashid et al. [46, 47] discusses the use of formal methods, specifically theorem proving,
for modelling, analysis, and verification of CPSs, and presents case studies from the automo-
tive, avionics, and healthcare domains. The authors present the application of formal methods
for functional, performance, and dependability analysis of CPS, which includes formalising
complex concepts such as Laplace and Fourier transform, dynamic dependability analysis, and
probabilistic analysis. This paper suggests the need for formal libraries and dedicated theorem
provers to support the analysis of hybrid systems within CPS, which involve both discrete and
continuous dynamics. It highlights the growing importance of accurate analysis and verification
of CPS due to their safety-critical nature and presents examples of formalisation and verification
of various components and systems.

While theorem proving is extremely powerful, it comes with a set of challenges that can
make its application in real-world industry scenarios quite difficult. It can handle very complex
systems and specifications, but creating the necessary proofs is a difficult and time-consuming
task. It requires the expertise of logic and formal methods, which are specialised skills uncom-
mon in many industries. Moreover, Industry 4.0 applications often have a level of complexity
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that is difficult to capture in a formal proof. This is particularly the case for legacy manufacturing
systems, which might have been developed over many years and may have poorly documented
or even unknown behaviours.

2.1.2 Model Checking

Model checking is also a formal verification technique used to analyse a system’s behaviour
and properties systematically. It is widely used to verify modern system behaviour and analyse
system reliability. Model checking relies on formal specification languages and temporal logic
to abstract system models and properties [48]. A formal specification language is a finite state-
transition graph that provides an adequate abstraction for finite-state systems, such as software
systems, communication protocols, or hardware systems. Additionally, temporal logic provides
a framework for the description of correctness of properties for the state-transition systems.
Model checking is especially valuable for safety-critical and mission-critical systems, where
even small defects or failures can have severe consequences.

Figure 2.2 illustrates a process of verifying software systems using model checking, which
typically has the following steps.

1. The first step in model checking is to define the formal specification of the software sys-
tem. The specification describes the desired behaviour, properties, and requirements that
the system should satisfy. It may include safety properties, for example, the system shall
never enter an unsafe state, or the system will eventually reach a desired state.

2. A formal model of the software system is created based on the specifications. This model
represents the system’s behaviour using formal languages or mathematical notations, such
as state transition graphs, finite automata, or temporal logic formulas. The model abstracts
away unnecessary details while capturing essential aspects of the system’s behaviour.

3. The properties specified in the first step are also formalised using suitable logical formulas.
These formulas express the expected behaviour of the system in a language that the model
checker can understand and analyse.
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4. The core step of model checking is that the state space of the formal model is explored
using suitable algorithms. The state space represents the system’s possible states and how
it can transit from one state to another based on its behaviour and the specified rules.

5. During state space exploration, the model checker systematically checks whether the ex-
pected properties hold true in all reachable states of the model. It checks if the system
can violate safety properties, for example, reaching an error state, and verifies if aliveness
properties are satisfied, such as eventual termination.

Some model-checking techniques have gained popularity and widespread use in the field of
software and systems verification.

• Symbolic Model Checking is a formal verification technique used to verify whether a
model or system satisfies specified properties rigorously. It involves mathematically prov-
ing the correctness of a model or system based on its formal specification [49].

• Bounded Model Checking (BMC) is a technique that focuses on verifying properties within
a bounded number of steps or transitions in the system’s state space. It is particularly
useful for finding bugs and errors in software systems with large state spaces [50–52].

• Explicit State Model Checking (EMC) involves enumerating and storing individual states
explicitly during the verification process. This approach is suitable for systems with a
relatively small state space [53–56].

• Satisfiability Modulo Theories (SMT) Solvers are automated tools that can decide the
satisfiability of logical formulas over theories such as arithmetic, bit-vectors, and ar-
rays [57–59].

• Quantitative Model Checking is also a model-checking technique that performs quanti-
tative model verification. A quantitative model checker focuses on assessing the perfor-
mance, accuracy, and uncertainty of system models in terms of numerical measures [60–
62].

• Probabilistic Model Checking deals with systems that involve probabilistic or stochastic
behaviour. It verifies the properties of the system’s probabilistic behaviour, making it
suitable for modelling and verifying systems with uncertainty.

Clark et al. [63] demonstrated that model checking, an automatic verification technique for
finite-state hardware and software systems, faces the "state explosion problem" as the number
of state variables in the system increases, causing the system state space to grow exponentially.
The lecture notes explain how the model-checking algorithms work, approaches to the state
explosion problem, and focus on BMC. Ensuring correctness in software and hardware is crucial
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for safety-critical systems, which has increased the interest in applying formal methods and
verification techniques like model checking.

Beyer et al. [64] introduced a general approach to formal verification of software using
model-checking techniques. The authors gave an overview of the history of formal verification
theory and presented the development of software verification tools. The authors also introduced
an important scientific method, competitions, to provide regular comparative evaluations of au-
tomatic tools for software verification. Moreover, this research work emphasises the maturity of
software model checking as a research area, showcasing the development of numerous verifica-
tion tools, their participation in competitions, and the integration of various verification systems
and technologies. It highlights the continuous interest and community activity in the field, with
an emphasis on areas of future research, including verification witnesses, concurrent programs,
unbounded parallelism, termination, cooperative verification, machine-learning-based invariant
generation, hyper-properties, and quantum programs.

2.1.3 Formal Specification Language and Temporal Logic

A formal specification language is a mathematical or formal language used to precisely describe
the behaviour, properties, and requirements of a system. Temporal logic is a mathematical logic
used to reason about the behaviour and properties of systems over time. It provides a formal lan-
guage for expressing temporal relationships, constraints, and properties of system executions.
Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) are two prominent formal
languages for expressing and reasoning about temporal properties. LTL is a widely used tem-
poral logic that allows reasoning about sequences of states or events over time. It consists of
temporal operators describing the states’ ordering and relationship in a system’s execution trace.
The common LTL operators are:

• G (Globally): Specifies that a property holds in all future states. For example, G(p)

indicates property p is always true in the entire execution trace.

• F (Eventually): Specifies that a property holds at some point in the future. For example,
F(p) asserts that property p will eventually become true.

• X (Next): Specifies that a property holds in the next state. For example, X(p) indicates
that property p will be true in the next state.

• U (Until): Specifies that a property p holds until another property q becomes true. For
example, pUq states property p holds until property q becomes true.

CTL is another widely used temporal logic that allows reasoning about temporal properties
in branching execution paths or system behaviours. It introduces path quantifiers to express
properties over all possible paths of a system. Below are operators commonly used by CTL:
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• AG (All Global): Specifies that a property holds in all states along all possible paths. For
example, AG(p) states that property p holds in all states in all possible paths.

• EF (Exists Eventually in a Future path): Specifies that a property will eventually hold in
some future state along at least one path. For example, EF(p) indicates that property p

will eventually become true in at least one future path.

• AX (All Next): Specifies that a property holds in the next state along all possible paths.
For example, AX(p) states that property p holds in the next state along all possible paths.

• EU (Exists Until): Specifies that a property p holds until another property q becomes true
along at least one path. For example, pEUq asserts that property p holds until property q

becomes true along at least one path.

Probabilistic Temporal Logic (PTL) is an extension of traditional temporal logic that in-
corporates probabilistic aspects into reasoning about system behaviour over time. Probabilis-
tic Computation Tree Logic (PCTL) extends CTL to allow for expressing and reasoning about
temporal properties in systems where uncertainty or probabilistic behaviour is present. The
following are two probabilistic operators that enable the verification of properties that involve
probabilities and likelihoods.

• P (Probability): Specifies the probability of a property holding along a path. For example,
P > 0.5(p) states that property p has a probability greater than 0.5 of being true along a
path.

• S (Probability Operator): Specifies the probability of a property holding until another
property becomes true. For example, pS >= 0.7q states that property p holds with a
probability greater than or equal to 0.7 until property q becomes true.

With formal specification languages and temporal logic, a system can be modelled and ab-
stracted with respect to the system specifications. Subsequently, this abstraction can be rigor-
ously verified using a formal framework with probabilistic or uncertain behaviours.

A research work [65] demonstrates the model verification approach to address the challenge
of the trustworthiness of sensor-driven systems. The paper introduces two concepts, frames of
reference and frames of function, to organise models of sensor-based systems. These frames
facilitate communication between modellers, analysts, and stakeholders, distinguishing the pur-
pose of each model and contributing to the overall trust that the system should fulfil the require-
ments, such as geographic, economic, uncertainty or failures. The authors provide an example
of a smart water distribution network to illustrate how different combinations of frames can al-
low the reduction of multiple dimensions of focus to make analysis more manageable. However,
further developments are still needed to cover comprehensive frames and include sensor-driven
systems’ failure scenarios.
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2.1.4 Model Checking at Run time

Run-time verification constitutes a methodology intent on analysing system behaviour and veri-
fying properties during system execution. It focuses on monitoring and checking system execu-
tions against specified properties. Calinescu et al. [66] introduced Formal Method @ Runtime
(FM@R) and Model Checking @ Runtime approaches. The FM@R methodology accomplishes
two primary objectives. Firstly, it guides the system to satisfy objectives by assessing feasible
configurations. Secondly, it addresses the major concern of the correctness of system objec-
tives. Two main activities of run-time verification are execution monitoring and the evaluation
of traces against the system specification. It provides a lightweight model-finding approach to
specify system requirements using mathematical notation. An experiment with virtual machine
consolidation shows acceptable overheads for systems comprising up to 30-40 components.
However, the proposed approach highly depends on the expertise of the system specification,
and the scalability is another challenge.

César Sánchez, et al. [67] summarised the frameworks, tools and challenges of Run-time
Verification (RV) from multiple application domains, for instance, hardware verification for
precise timing and non-disruptive operation, security and privacy protection in the context of
European General Data Protection Regulation (GDPR). The authors categorised RV approaches
and challenges into different categories, such as distributed systems, hybrid systems and huge,
unreliable or approximated domains. In the context of hybrid and embedded systems, the pa-
per identifies the coexistence of continuous and discrete behaviours as a challenge, along with
constrained monitoring resources. In the hardware domain, precise timing and non-disruptive
operation of monitors are identified as critical needs. Security and privacy domains require a
suitable combination of static and dynamic analysis. Transactional information systems pose
challenges related to monitoring modern information system behaviours and the compromise
between expressivity and non-intrusiveness in monitors. The connection between legal and
technical aspects of contracts and policies presents paramount challenges. Lastly, the paper
discusses challenges related to monitoring systems that are unreliable or require aggregation or
sampling due to large amounts of data.

For safety-critical systems, such as collaborative CPSs, run-time assurance is essential. Bar-

tocci, Ezio et al. [68] summarised the techniques for qualitative and quantitative monitoring of
CPS behaviours. Moreover, the authors also presented applications and tools supporting CPS
monitoring using formal specification languages and temporal logic, such as LTL and STL for
CPSs. Junges, Sebastian et al. [69] presented a tractable algorithm based on model checking that
combines nondeterminism and probabilities to monitor running CPSs. Forejt et al. [70] intro-
duced incremental verification techniques to address the evolution of adaptive software systems
during the system operation period. With the ever-increasing autonomy of CPSs, Faymonville et

al. [71] introduced a stream-based monitoring framework to ensure the safety of the system at
run time, namely StreamLAB. The authors demonstrated the capability of StreamLAB on typi-
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cal monitoring tasks for CPSs, such as sensor validation and system health checks, by analysing
the specifications, including the computation of memory consumption and run-time guarantees.

2.1.5 Available Model Checking Tools

Model checking is a broad technique that can be used for multiple domains, such as software
verification, hardware design, protocol, cybersecurity analysis and concurrent control systems.
Some model checker tools are also available that can be used directly. Following are some
popular tools that focus on the formal verification of the systems.

• SPIN [72] is a widely used software model checker tool that helps in the verification of
concurrent systems. It was developed at Bell Labs by Gerard J. Holzmann in the 1980s
and has since become one of the most influential tools in the field of formal methods.

• PRISM [73, 74] is designed to analyse and verify probabilistic models, including both
discrete- and continuous-time Markov chains, Markov decision processes, and stochastic
timed automata. The tool uses model-checking techniques to automatically explore the
state space of these models and verify various properties specified in probabilistic tempo-
ral logics.

• UPPAAL [75] provides a modelling and verification environment for real-time systems
that can be described using timed automata, especially for the formal verification of real-
time systems. It is designed to analyse systems that involve both discrete and continuous
behaviours with precise timing constraints.

• NuSMV (New Symbolic Model Verifier) is a powerful model-checking tool used in the
formal verification of hardware and software systems [76, 77]. NuSMV is an extension
of SMV that can process files written in the SMV language and supports various model
construction modalities, reachability analysis, fair CTL model checking, quantitative char-
acteristics computation, and counterexample generation. It is an open-source tool widely
used in academia and industry for verifying the correctness of designs, protocols, and
systems, including hardware designs, communication protocols, distributed systems, and
software.

• Storm is designed to handle probabilistic systems [78], including discrete- and continuous-
time Markov chains and Markov decision processes, which are explicit states and fully
symbolic model checking, as well as a modular set-up for easy exchange of solvers and
decision diagram packages. It also provides a Python API for prototype development.

• KeYmaera X [79] is a formal verification tool that focuses on the analysis and verification
of hybrid systems. Hybrid systems are systems that exhibit a combination of continuous



CHAPTER 2. STATE OF THE ART 20

dynamics, described by differential equations or differential inclusions, and discrete tran-
sitions, represented by automata or state machines. KeYmaera X is designed to reason
about such systems’ safety, stability, and other properties while considering both continu-
ous and discrete behaviours.

• VERIFAI [80] for the formal verification of artificial intelligence (AI) systems, specifically
those used in autonomous systems and robotics. VERIFAI is designed to analyse the
behaviour of AI algorithms and ensure their safety and correctness under various operating
conditions and environmental uncertainties.

Meenakshi et al. [40] present a case study of applying formal verification methods to verify
the requirements of a generic aircraft flight control system, specifically focusing on the Mode
Transition Logic (MTL) of an autopilot. The mode transition logic specifies the system’s mode
and functions, and the paper describes the modelling and verification of the autopilot’s mode
transition logic using three open-source model-checking tools: SPIN, NuSMV, and Symbolic
Analysis Laboratory (SAL). These tools are used to evaluate the design of the MTL against a set
of functional requirements, with each tool offering distinct benefits and techniques for verifying
the system. This paper also highlights the challenges of state space explosion for explicit state
model checkers like SPIN and the limitations of symbolic model checking. It introduces the
concept of bounded model checking as an alternative, noting its effectiveness in managing time
and memory consumption. Additionally, the paper discusses the benefits of formal verification,
including the ability to provide thorough coverage of system behaviours and the generation of
counterexamples in case of errors.

2.1.6 Model Checking Application of Industry

Calder et al. [81] introduced a stochastic probabilistic model checking framework for failure
prediction of a critical communication system. It defines three status categories for each compo-
nent within the system, working, reduced-redundancy and no-service. The model predicts not
only the probability of system failure based on each component’s status but also predicts future
service availability. This methodology helps the operators to allocate resources optimally in the
presence of component failures. This framework is based on a discrete space model and tempo-
ral logic to predict the likelihood of service failure within a given time bounds and quantify the
impact of lower-level components on service availability. However, the proposed framework is
hard to model run time behaviours due to the unreliable readings from sensors.

Kwiatkowska et al. [82] used the probabilistic model checker PRISM to abstract an Internet-
of-Things (IoT) system with a probabilistic model. The resulting model is used to evaluate the
performance and reliability of a sensor-network-based system with the injection of one or more
sensor failures.
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Sevegnani et al. [83] demonstrated a modelling and verification framework of a large-scale
sensor network system on Bigraphical Reactive Systems (BRS) [84]. This paper proposes an
extension to standard bigraph to allow overlap or intersect locations, which are essential in In-
dustry 4.0 domains such as wireless signalling, social interactions, and audio communications.
The proposed approach is able to capture not only the spatial operational aspects but also the
temporal evolution to represent the dynamic behaviour of the sensor network. The paper also
discusses an implementation called BigraphER, which provides an efficient implementation of
computation, simulation, and visualisation for bigraphs with sharing. The authors present a case
study based on real-world deployments of urban environmental monitoring to demonstrate the
proposed approach. The experimental evaluation involves the generation of simulated events
from a Cooja network simulator replaying actual data streams. The evaluation shows the pro-
posed framework is capable of handling online verification of large-scale sensor network-based
systems. However, to verify live Industry 4.0 systems, further research work is still needed.

Filieri et al. [85] introduced a run-time probabilistic model checking approach to evalu-
ate the conformance of reliability requirements at run time. The authors defined two phases,
namely, the design-time phase and the run-time phase. At design time, a Discrete-Time Markov
Chain (DTMC) model is pre-computed, and a set of symbolic expressions is defined to repre-
sent satisfaction of the requirements. As this model transition values are known only at run time
and may change over time, a set of variables is used to represent the transition probabilities.
Subsequently, the verification is performed at run time by replacing the transition variables with
the real values gathered by a monitoring system. However, the performance of this approach
is not only dependent on the DTMC model itself, but also depends on the monitoring system
inputs which is hard to apply to more general scenarios. Li et al. [86] presented a dynamic
adaptation probabilistic model checker approach to improve self-adaptive systems’ utility. They
define a Markov Decision Process (MDP) [87] model as the system abstraction, and the operator
provides initial transition parameters according to experiment results and experience. Subse-
quently, the transition parameters are updated onto the MDP model according to the operation
parameters at run time. Over time, the MDP model adapts itself to the self-adaptive system’s
behaviour. This approach relies on the operator’s actions and the effect on the system model that
can be accurately measured. Epifani et al. [88] proposed another novel dynamic probabilistic
model-checking framework based on KAMI (Keep Alive Models with Implementations). This
framework is based on the Bayesian Estimation Theory (BET) to estimate the transition matrix
according to the run-time system. Subsequently, the estimated transition matrix is applied to a
DTMC model to increase the accuracy of failure prediction. Even so, quantifying the run-time
variables, e.g., the trustworthiness of system-embedded sensors, is still a challenge.
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2.2 Uncertainty of Industry 4.0 Applications

Uncertainty refers to epistemic situations involving imperfect or unknown information, includ-
ing accuracy, reliability, ignorance, precision and clearness. In the domain of Industry 4.0,
uncertainty is described as a state in which the future outcome is unpredictable or not deter-
minable. Uncertain behaviour of Industry 4.0 applications is categorised into two types, namely
known uncertain behaviour and unknown uncertain behaviour. Known uncertain behaviour in-
cludes faulty behaviour resulting from known potential faults during design time and sporadic
behaviour with no occurrence pattern. Unknown uncertain behaviour includes emergent be-
haviour only known at run time and run-time faulty behaviour due to unknown failures [89].

Asmat et al. [90] provided a survey of the state-of-the-art approaches, tools, and causes for
handling uncertainty in CPSs. The research result also applies to Industry 4.0 applications. This
paper summarised that uncertain behaviour typically occurs at three levels and is categorised
into three processes.

• Application-level uncertainties that occur due to user interactions and human behaviour
impact the quality and reliability of the operating systems. For instance, incorrect user
input or lack of knowledge about technical and environmental processes.

• Infrastructure-level uncertainties due to dependencies among physical units and cyber
services. The main cause of this type of uncertainty could be communication failure, un-
reliable sensing and computational algorithm issues. For instance, network failure causes
sensors and actuators not to function consistently and results in a loss, de-calibrated sen-
sor leads to poor data collection that harms production quality or the lack of real-time
computation leading to severe damages.

• Natural process is another root cause of uncertainty in Industry 4.0 applications, such as
a sudden change in the environment leading to application unreliable.

Industry 4.0 applications’ key characteristics are integrated connected sensors, streaming
of real-time data, and leveraging artificial intelligence to operate and optimise manufacturing
processes. In this combination, the connected sensors and real-time computation algorithms are
two major sources of uncertainty.
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Figure 2.3: Uncertainties of Industry 4.0 applications.

Figure 2.3 illustrates uncertainty sources and structures.

2.2.1 Uncertainty of Sensor Networks

Sensor data is essential for making decisions and ensuring the overall reliability of systems.
Researchers have made progress in categorising sensor failure types and detection methods to
address sensor trustworthy issues.

Failure Types

Sensor faults are very common in sensor network-based systems, thus producing unreliable data
that does not reflect the true state of the machine or environment. Ni et al. [91] defined a system-
atically characterised taxonomy of sensor data faults into three categories, namely environment

features, system features or specifications, and data features. Such classification helps to iden-
tify and develop fault detection methods.

• Environment Features capture context and operational conditions of a sensor, including
where the sensor is placed, temperature and humidity of the environment. It also includes
the measured modality of the sensor and its boundary conditions. These features are
crucial in determining the expected behaviour, which can then be used to determine sensor
or system faults.

• System Features or Specifications include hardware components and calibration features.
Hardware components describe the abilities of a sensor. Calibration describes the uncer-
tainty of the mapping from input to output. For example, clipping may be a hardware or
software limitation exhibited by a sensor when it maxes out due to operating conditions
exceeding its limits or calibration conditions.
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• Data Features are usually statistical in nature and calculated in either the spatial or tem-
poral domain. For example, sensors are expected to retain similar characteristics as other
co-located sensors and operate reliably for a period of time.

The data features is of particular interest as it includes two groups of typical sensor failures.
One is observable from a data-centric point of view, where outliers, spikes and “stuck-at” faults
can be identified statistically. The other group of sensor faults requires taking a system-centring
view, including calibration faults, connection or hardware failures, low battery, out-of-range
failures, and clipping.

Failure Detection

Sharma et al. [92] summarised four methods of sensor fault detection, which are rule-based,
time series analysis-based, learning-based and estimation methods.

• The Rule-based approach is a common method that uses domain knowledge of sensor
behaviour to develop heuristic rules to ensure that the sensor readings are in accordance
with the modelled expectation.

• The Time series analysis-based approach uses temporal correlation in measurements to
build a normal behaviour sensor model. Subsequently, data collected from the sensors
in operation is compared against this normal behaviour model, often using time series
forecasting to determine whether they are faulty.

• The Learning-based approach builds a sensor module to analyse the normal and faulty
behaviours from historical data using statistical modelling or machine learning techniques.
It often attempts to perform a root cause analysis.

Based on the resulting inference models, sensor faults can be detected, and the reason for
the fault can be inferred as well.

• The Estimation approach exploits spatial and temporal correlations in measurements from
different sensors to generate the normal sensor behaviour.

Although this can help provide a guideline to detect sensor faults, it is still a challenge to quantify
the impact of faulty sensors on the system as a whole.

Ramanathan et al. [93] introduced an application which applied sensor-level fault detection
methods in an environmental monitoring sensor network. The authors discuss the challenges
of calibration and fault detection in environmental sensor networks and present a procedure and
fault detection system for addressing these issues. After forty-eight sensors were deployed in the
field for twelve days to collect groundwater chemistry data, they found that a significant number
of sensor readings were uninterpretable due to the prevalence of anomalous patterns. In order to
identify the faults, a fault detection system was developed, which applied pre-configured rules
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Table 2.1: Sensor faults and detection methods.
Fault Type Description Detection Method
Outlier Outliers are the most common sensor faults. The sen-

sor readings are out of range according to expecta-
tions.

Rule-based

Spike The readings changed much greater than expected
over a short period of time. And it may or may not
return to normal afterwards.

Rule-based

Stuck-at /
Constant

The readings are kept the same or almost the same for
a period of time greater than expected.

Rule-based

Intermittent Deviations from normal readings appear and disap-
pear several times, the frequency of this signature is
generally random.

Rule-based

High Noise /
Variance

noise are common and expected in the sensor’s data.
However, unusually high noise is caused by hardware
failure or low batteries, and the data may not present
the expected behaviour.

Rule-based

Bias A constant offset from the ground truth. The govern-
ing equation shall be Yreading = X + b+ noise, where
X is the ground truth, and b is the constant offset.

Correlation-based

Drift A time-varying offset from the ground truth of the
sensor’s signal. The equation should be Yreading =
X + f (t)+noise, where X is the ground truth and f(t)
is the time-varying offset.

Time series
analysis-based

Scale A time-varying offset from the ground truth of the
sensor’s signal. The equation should be Yreading =
X × f (t)+noise, where X is the ground truth and f(t)
is the time-varying offset.

Time series
analysis-based

to detect invalid data and identify faulty sensors. The paper also emphasizes the importance
of rapid deployment and portable, reusable sensor networks in addressing environmental issues
like arsenic contamination in groundwater. While the proposed system helps to verify the data
integrity at the sensor level, it does not reflect the impact of the sensor faults at a higher level to
highlight the potential risks.

2.2.2 Uncertainties of Computation Algorithms

The uncertainty sources in Industry 4.0 applications can be classified into two categories [94],
namely Aleatory uncertainty and Epistemic uncertainty.

• Aleatory uncertainty is caused by natural variability, which is inevitable and irreducible.
For instance, there is variability in material properties and working environment condi-
tions. This intrinsic uncertainty can be quantified by fitting a probability distribution.

• Epistemic uncertainty is normally caused by limited historical data, lack of knowledge,
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or model simplifications and assumptions. These uncertainties are reducible when more
information or data becomes available. For example, Machine Learning (ML) models may
have high predictive uncertainty if the training data set comes with bias or small volumes
of the samples. This model uncertainty can be quantified by incorporating known physical
monitoring data for physics-based analysis [94].

Hu et al. [95] provided an approach to modelling various uncertainty sources in the context
of Additive Manufacturing (AM). The authors reviewed and summarised Uncertainty Quan-
tification (UQ) and Uncertainty Management (UM) in the area of AM. The paper reviews the
current research state of UQ/UM in AM processes, with a focus on laser powder bed fusion
AM. It summarises the major methods and models then presents insights into how current UQ
and UM techniques can be applied to AM to improve product quality. The paper concludes by
using laser sintering of metal nanoparticles as an example to illustrate the application of UQ and
UM in AM. This research work emphasises the importance of UQ and UM in addressing the
variation in the quality of manufactured parts in metal-based AM processes and highlights the
potential for improving product quality through the integration of UQ techniques.

Moreover, Artificial Intelligence (AI) and Machine Learning (ML) have gained significant
traction in Industrial 4.0 applications and are transforming various sectors. They are used to au-
tomate tasks, improve decision-making, enhance product quality and optimise operations. While
AI and ML offer tremendous opportunities, there are several challenges that industry applica-
tions face. Dreossi et al. [80] presented a software toolkit for the formal design and analysis
systems that incorporate AI and ML components, namely VERIFAI. The paper addresses three
key challenges in applying formal methods to AI/ML-based systems: perception, learning, and
environment modelling. VERIFAI aims to address these challenges through its approach to
simulation-based verification and synthesis guided by formal models and specifications. VER-
IFAI focuses on several use cases, including temporal-logic falsification, model-based system-
atic fuzz testing, parameter synthesis, counterexample analysis, and data set augmentation. This
toolkit offers novelty in addressing these challenges through the integration of formal methods
to provide a suite of use cases in an integrated fashion, unified by a common representation of an
abstract feature space and accompanied by a modelling language and search algorithms. VER-
IFAI is structured to provide efficient communication with simulators, allowing for seamless
integration and interoperability.

Fremont, Daniel J. et al. [96] proposed a new probabilistic programming language for the
design and analysis of CPSs, especially machine learning-based systems, namely SCENIC.
SCENIC is a domain-specific language describing scenarios distributed over scenes and the
behaviours of the systems over time. It provides the syntax for spatial and temporal relation-
ships, such as geometric relationships, which require non-linear expressions and constraints and
parallel and sequential composition and interrupts for dynamic behaviours. Scenic allows speci-
fying scenes, objects, and agents, as well as their temporal and spatial relationships in a concise
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and flexible manner. This paper details the syntax, semantics, and various features of Scenic,
including specifiers, behaviours, and composition of modular scenarios. Scenic provides func-
tionalities for generating synthetic data, composing scenarios, defining and enforcing temporal
and spatial constraints, and specifying complex behaviours for dynamic agents. It also inte-
grates domain-specific algorithms for efficient sampling and provides the ability to monitor and
interrupt scenarios. Additionally, Scenic allows the selection of scenarios based on predefined
conditions or random selection under specific constraints. The language’s features are demon-
strated, including the capability to specify distributions, object definitions, and the manipulation
of geometric and spatial entities. These features collectively enable the creation, analysis, and
testing of complex scenarios for CPSs, which are the pillars of Industry 4.0 applications.

Torfah, Hazem et al. [97] presented a use case that uses VERIFAI and SECENIC to model
and run-time assurance of an autonomous aviation application, where VerifAI was used to learn
monitors for an experimental autonomous aircraft taxiing system developed by Boeing for De-
fence Advanced Research Projects Agency (DARPA) Assured Autonomy project. The study
demonstrates the effectiveness of run-time monitors in improving the system’s performance and
ensuring its safe operation. This paper emphasises the role of run-time monitors in ensuring
the safety of AI/ML-based autonomous systems within their operating environments. It out-
lines the challenges in constructing run-time monitors for capturing safe operating conditions
for AI/ML-based components and highlights the importance of understanding how these com-
ponents behave in complex operating environments. The paper also discusses the integration
of the monitors into an architecture for run-time assurance and highlights the importance of
implementing trustworthy and efficient run-time assurance modules. Additionally, the authors
outline a wish list for run-time monitors and suggest prospects for using alternative learning
methods, such as oracle-guided inductive synthesis [98,99] and introspective environment mod-
elling [100, 101], further to enhance the construction of monitors for autonomous systems.

Along with the new technologies that have been applied and deployed for Industry 4.0 ap-
plications, an integrated and comprehensive approach is needed to address and quantify uncer-
tainties to ensure safety and verify the behaviour of manufacturing processes.

2.3 Model Verification for CPSs

Considering the complexity and tight interactions of CPSs, Statistical Model Checker (SMC)
is proposed [102] to tackle two obstacles [103] of modern CPSs. SMC is a simulation-based
approach to sample the behaviours and check conformance to the temporal formula. Younes

et al. [104] compared two probabilistic model checking techniques, Numerical- and Statistical-
probabilistic model checking. The result showed that both techniques have similar performance,
but the statistical approach scales better with the size of the state space and requires less memory.
Zarei et al. [105] proposed another SMC approach to verify learning-based CPSs. This kind of
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CPSs employs machine learning algorithm-based controllers, e.g., Neural Network, which in-
creases complexity and non-linearity. Traditional verification techniques face state-space search
and scalability challenges. Thus, they built the SMC based on the Clopper-Pearson confidence
levels and defined specifications using Signal Temporal Logic (STL) to verify the reachability,
safety and performance. The results showed that it is feasible to use statistical verification for
learning-based CPSs. Even so, determining the CPS’s run-time characteristics is still a chal-
lenge as the sensor readings are unreliable, which will significantly affect the reliability of the
verification.

Apart from the SMC approach, ModelPlex [106] provides correctness guarantees for CPSs at
run time. It combines Model Monitor to check the previous state and current state for compliance
with the model, Controller Monitor checks the output of a controller implementation against the
controller model, while Prediction Monitor checks the impact of deviation from the model to
predict the eventual state that might cause failures. ModelPlex is based on differential dynamic

logic dL [107] and has been applied in robotic applications [108–110] using the tool KeYmaera
X [111, 112]. However, the run-time trustworthiness of the sensors’ readings is not reflected
through the Controller monitor and Prediction monitor.

Together with model checking, temporal logic is a popular formalism language for specify-
ing reactive system behaviours. Temporal logic language has traditionally been used for formal
verification, such as LTL, to capture safety and reachability requirements over Boolean pred-
icates defined over the state space. Computation Tree Logic (CTL) allows the expression of
requirements overall computations branching from a given state [48]. Kamide et al. [113] in-
troduced a sequential Linear Temporal Logic (sLTL) and a sequential Computation Tree Logic
(sCTL) by extending LTL and CTL to represent hierarchical information and structures. This
research work defined the translations from sLTL and sCTL into LTL and CTL to verify hierar-
chical systems by reusing the standard LTL- and CTL-based model-checking algorithms.

Over the last few years, the Robot Operating System (ROS) has become a popular software
framework for distributed robotics and CPSs. A ROS-based Run-time Verification (ROSRV)
framework is an approach that incorporates a middle layer to intercept messages in order to
verify the run-time system behaviour [114, 115]. The ROSRV provides a functional layer to
intercept all messages between the slave layers to master layers, and by understanding the com-
munication between them, the system is able to enforce the desired system behaviour based on
safety policies. However, such verification systems only result in the system conforming to the
behaviour and safety policies, but it has no ability to predict failures in advance. Furthermore,
the middle layer is actually incurring overheads, and it can become a bottleneck when a large
number of messages are exchanged in a large-scale deployment.

Ferrando et al. [116] introduced another ROS-based runtime verification framework, ROS-
Monitoring. This framework automatically verifies messages against formally specified proper-
ties by adding a monitor through ROS node instrumentation instead of creating a middle layer. It
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provides the flexibility to scale up and choose the specification formalism, such as Linear Tem-
poral Logic (LTL) or Signal Temporal Logic (STL). However, the ROSMonitoring approach can
only be applied to ROS-based CPSs.

To describe and analyse distributed systems rigorously, Paul et al. [117] presented a Dy-
namic Input/Output Automata (DIOA) that allows the creation and destruction of components
dynamically. Civit et al. [118] extended DIOA to a probabilistic framework to model a dynamic
probabilistic system, for instance, an Industry 4.0 application using multiple CPSs to work on
one manufacturing process. However, the DIOA models analyse a system only. It lacks an
approach to verify such dynamic systems.

2.4 Challenges and Limitations

A significant challenge is that existing model-checking tools, such as PRISM or SPIN, handle
probabilistic events or logical correctness effectively, but they lack the integration of dynamic
trust metrics associated with run-time factors. These tools excel in handling probabilistic events
and logical correctness but fall short when applied to real-world Industry 4.0 systems, where
sensor trustworthiness is inherently dynamic. Factors such as ageing hardware, insufficient
maintenance, environmental interference, or miscalibration can significantly impact sensor re-
liability over time. Without mechanisms to compute and update trustworthiness to pre-defined
system models dynamically, the validity of verification outcomes in such contexts is limited,
potentially leading to incorrect system behaviour being deemed “safe” or “correct”.

Another fundamental limitation lies in the passive nature of current verification frameworks.
These tools are designed primarily to check properties like safety and correctness, generating
outputs such as property satisfied or counterexample found. However, they rarely translate these
results into actionable insights for the physical system. In dynamic environments like smart
factories or industrial robotics, this disconnect limits the ability to adapt system behaviours or
configurations in run-time based on verification outcomes. For instance, property checking re-
sults could inform operational adjustments, such as redistributing workloads to reduce the strain
on unreliable components or recalibrating sensors to improve measurement accuracy. Addi-
tionally, the insights from verification models could provide invaluable evidence for refining
control algorithms or optimising processes to enhance overall system performance and quality.
This feedback mechanism is particularly critical in Industry 4.0 applications, where systems
are expected to not only monitor operations but also actively adapt and optimise themselves
in response to evolving performance metrics and working conditions. The absence of such
mechanisms in existing model-checking frameworks creates a significant gap between formal
verification processes and the real-world requirements of dynamic, interconnected Industry 4.0
applications.

To address these challenges, this research introduces an extended framework that bridges
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the gap between sensor trustworthiness, run-time verification, and operational feedback. The
proposed approach integrates sensor fault detection algorithms to monitor and update sensor
trustworthiness during run-time. By dynamically computing quantified confidence values and
embedding them into probabilistic models, the framework enables continuous updates to the ver-
ification process, ensuring that logical correctness is assessed with current and realistic system
states. Furthermore, by incorporating these run-time verification results into actionable system
adjustments and process improvements, this research not only enhances the accuracy and effi-
ciency of verification outcomes but also aligns verification with the adaptive, optimisation-driven
philosophy of Industry 4.0.

This approach is essential for advancing the state of the art in model-checking for Indus-
try 4.0 applications, as it provides a comprehensive solution to evolving system conditions at
run-time, strengthens the reliability of sensor networks, and promotes continuous operational
improvement, all of which are critical to realising the full potential of Industry 4.0.



Chapter 3

Run-time Verification for Industry 4.0
Applications

This chapter proposes a new verification framework that combines the advantages of data-driven
modelling and model-checking techniques to provide a run-time verification solution that can be
used to verify the behaviour of sensor network-based Industry 4.0 applications. This approach
leverages the data-driven learning ability to quantify sensors’ trustworthiness at run-time and
offers a model-checking advantage regarding rigorous verification capability.

Figure 3.1: Architecture of run-time probabilistic model checker.

As illustrated in Figure 3.1, the current verification approaches are made statically in that a

31
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formal model representing the system behaviour is first defined according to system specifica-
tions and expert knowledge. The formal model is essentially a static abstraction of the under-
lying sensor-based system with assumptions about their accuracy and reliability. These sensors
are normally responsible for collecting data that reflects various operational metrics required for
the system’s function, such as temperature of working environment, pressure or motion. Sub-
sequently, verification of the formal model through techniques such as model checker explores
possible states and scenarios to identify violations or confirm adherence to the expected proper-
ties. If successful, the process produces a correctness verification result, which is an assurance
that the system is operating within defined parameters. The sensor-based system is then de-
ployed into the real world once the formal model has been verified. In this case, the verification
of the formal model is done before the actual deployment. While the system is in operation, its
behaviour will likely deviate from the formal model due to the underlying sensor malfunction,
sensor reading drift and inaccuracy over time. Static verification assumes that all conditions
remain constant and does not accommodate changes in sensor trustworthy or unexpected envi-
ronmental impacts. This implies that the sensor-based system deployed in the field no longer
conforms to the behaviour of its formal model, which was model-checked or verified prior to
deployment.

This research extends the static verification approach by parameterising the initially veri-
fied system model as a run-time system model that is able to model the sensor-based system’s
behaviour based on run-time sensor readings. Once the sensor-based system is deployed, the
sensors begin to collect run-time readings that reflect actual conditions, and the sensor readings
are stored in a historical data repository. This repository serves as a point of comparison for
identifying deviations in sensor readings. Through learning-based statistical analysis, the sys-
tem uses historical data to detect trends, anomalies, or outliers during the sensor operation time.
A statistical sensor model is built for each sensor to compare run-time readings against histor-
ical data. These statistical models identify patterns in sensor data that may indicate abnormal
behaviour, such as sensor drift, malfunction, or environmental interference. This learning-based
component thus helps to quantify the trustworthiness of each sensor by detecting changes in
sensor behaviour that could impact system reliability. The sensor’s trustworthiness is evaluated
and assigned a score, representing its reliability at that moment. For instance, a sensor that
frequently deviates from expected patterns may receive a lower trust score. When a sensor’s
trustworthiness drops below a certain threshold, this information is flagged, signalling a poten-
tial abnormality. Such feedback enables the system to handle unreliable data, maintaining model
integrity despite sensor inconsistencies. The run-time system model, which is essentially a prob-
abilistic state transition matrix of the system behaviour, gets updated, and the model is verified
each time a sensor’s quantified trustworthiness changes. Property Checking is applied to this
run-time system model to ensure ongoing compliance with system specifications. In contrast to
the one-time static verification, this real-time property checking continuously validates system
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behaviour against specifications, taking current sensor trust levels into account. If the property
checking process detects a violation or unexpected behaviour, it generates feedback indicating
potential system errors or sensor malfunctions. A critical feature of the run-time verification
framework is the adaptive feedback loop, which guides real-time updates to the physical system
based on the results of property checking and sensor trust assessments. For example, if a sensor’s
readings are found to be unreliable, the system may initiate recalibration, increase redundancy
by cross-referencing with other sensors, or adjust decision-making algorithms to mitigate the
impact of unreliable data.

With the quantification of sensors’ trustworthiness and its integration with model-checking
methodologies, a run-time verification model is continuously adapted based on the results from
property checking and sensor trustworthiness assessments. By recalibrating the model dynami-
cally, the system maintains a closer alignment with real-world conditions, enhancing resilience
against unforeseen sensor errors or environmental changes.

This chapter further proposes that although each individual sensor reading’s trustworthiness
can be quantified and evaluated, all the sensors in a sensor network also represent the collec-
tive reliability of interconnected sensors and, hence, feed into the broader trustworthiness of
the entire sensor network. With this, a run-time model consisting of multiple sensor networks
can be defined to monitor and verify Industry 4.0 applications that involve interactions between
multiple sensor networks. Based on each sensor network’s trustworthiness, the run-time model
checking process is performed to verify the overall system behaviour in real-time. Finally, the
run-time verification approach compositional modelling is proposed to support run-time model
checking and ensure that system verification processes continuously adapt to sensor status up-
dates, enhancing the robustness and accuracy of system monitoring. In summary, the following
are the four key contributions of this run-time model-checking approach.

• Quantify the run-time sensor’s trustworthiness using learning-based algorithms from his-
torical data.

• Take into account the quantified sensor’s trustworthiness to update the system model at
discrete intervals to reflect run time system behaviour.

• Continually checking properties of the system model at each update of the sensor trust-
worthiness changes.

• The property checking results guide physical system updates to ensure the safety and
quality of Industry 4.0 systems.

Figure 3.2 presents a more detailed and structured framework for understanding and analysing
the runtime modelling and verification of critical sensor-based systems, gradually increasing in
complexity from sensor-based to network-based systems, and followed by compositional mod-
elling for multiple connected systems.
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Figure 3.2: Overview of run-time probabilistic model checker (A) Run-time verification for
sensor-based systems, (B) Run-time verification for sensor network-based systems, and (C)
Compositional modelling and run-time verification.

Run-Time Model for Sensor-Based Systems The System Under Test (SUT) consists of mul-
tiple individual sensors, from Sensor 1 to Sensor N. These sensors continuously collect data
from the physical environment. The sensor data is evaluated to provide a measure of Quantified

Trustworthiness, which serves as an essential input for the abstracted run-time system model.
The system is abstracted into a formal model, represented as Msystem = (S,sinit ,Pruntime,L),

where S denotes the set of system states. sinit represents the initial state of the system. Pruntime

indicates the probabilistic transitions between states. L is a labelling function that associates
observable properties with states.

The state transition diagram, denoted as S0, S1, S2, S3 in Figure 3.2, provides a graphical
representation of how the system evolves over time, capturing the run-time behaviour of sensor
and evaluating the effects at the system-level during the operation period.

Run-Time Model for Sensor Network-Based Systems The modelling framework is further
extended to support a sensor network-based system. The SUT now comprises multiple sen-
sor networks, each network containing several individual sensors, e.g., Sensor Network 1 with
Sensors 1 to N. These interconnected sensor networks collectively monitor the system’s envi-
ronment, providing a richer, more complex dataset than a single sensor.

The abstraction process again results in the formation of an overarching run-time system
model Msystem with the same components (S,sinit ,Pruntime,L). In this context, Msystem captures
the behaviour and interactions of multiple sensor networks. The inclusion of sensor networks
introduces a higher level of complexity, requiring more sophisticated modelling to accurately
represent the run-time behaviour and trustworthiness of the system.
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Compositional Modelling and Verification at Run Time The final component demonstrates
the compositional modelling and verification approach for sensor- and sensor-network-based
systems at runtime. Composition allows two distinct models, Model 1 and Model 2, to commu-
nicate and exchange data through defined interfaces, sin and sout , each with its own set of states,
S0 to S3. These models represent modular components of the overall system.

The System Model Msystem is an integrated representation that combines individual models
into a unified structure. It includes Child Model nested within the larger system structure, which
captures detailed internal behaviour. This compositional approach allows for scalable and mod-
ular verification, enabling the system to handle increased complexity while ensuring that both
local (component-level) and global (system-level) properties are validated.

This chapter presents the run-time verification framework consisting of the following:

1. Quantification of Sensor Run-time Trustworthiness

2. Quantification of Sensor Network

3. Run-time model checking for sensor-based and sensor network-based systems

4. Compositional modelling and run-time model checking

3.1 Quantification of Sensor Run-time Trustworthiness

In order to quantify the trustworthiness of the sensors, Figure 3.3 illustrates a structured method-
ological framework for the profiling of sensors, encapsulating four primary stages.

Figure 3.3: Sensor trustworthiness quantification process.

The first step of the process is the Categorisation of Sensor Type, which involves the sys-
tematic classification of sensors based on their functional characteristics, data output, or specific
application domains. This step is critical as it sets the foundation for subsequent analysis by
profilling the sensor within its appropriate category.
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The second stage, Identification of Reading Distribution, entails a rigorous examination of
the sensor’s data output to discern the underlying statistical distribution of the readings. This in-
volves the application of statistical tools and techniques to determine whether the data conforms
to a known distribution model, such as a normal, uniform, or skewed distribution. Identifying
the distribution pattern is essential in understanding the variability and central tendencies of the
sensor data.

Following the identification of the distribution, the process advances to the Aggregation of

Readings according to distribution. In this phase, the sensor readings are systematically ag-
gregated based on the identified distribution model. This aggregation could involve summaris-
ing the data through statistical measures such as mean, median, or variance or applying more
complex data aggregation techniques suited to the identified distribution. This process aims to
consolidate the sensor data into a coherent form that accurately reflects the distribution charac-
teristics.

The final stage is the Profiling of the Sensor, where a comprehensive sensor profile is de-
veloped based on the aggregated data. This profile encompasses various performance metrics,
including accuracy, reliability, and consistency of the sensor’s output. The sensor profile serves
as an evaluative tool, providing insights into the sensor’s normal behaviour and its overall oper-
ational availability.

This methodological approach ensures a thorough and systematic analysis of sensor be-
haviour, quantifying sensor trustworthiness during run time in sensor network-based industrial
applications.

3.1.1 Categories of Sensors

In the industry context, a sensor is a device that detects and measures specific physical properties,
such as temperature, pressure, humidity, or motion and converts these measurements into signals
that can be interpreted by electronic systems. Sensors play a pivotal role in industry applications,
serving as the primary interface between physical phenomena and digital systems. Sensors can
be categorised into several types based on the nature of the data they produce, such as real
number readings, enumerate readings, or binary readings. This research begins with a specific
scenario, for instance, one type of sensor, to ground the discussion in a specific context before
moving toward broader generalisations. Sensors used in industrial manufacturing are typically
categorised into the following types:

• Real Number Readings: These readings provide continuous, quantitative values repre-
senting precise measurements. For example, temperature, humidity, pressure, and ac-
celerometer sensors frequently produce real-number outputs to capture high resolution
and accuracy that can represent slight variations in the measured phenomenon.
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• Enumerate Readings: Enumerated readings represent discrete states or predefined cate-
gories, often used when sensors classify or detect types of objects, scenes, or environmen-
tal conditions. Enumerate sensors are typically used when the exact measurement is not
critical, but rather the category or range of measurement is more relevant. For example,
detecting positions such as "closed, open, intermediate" or level detectors, such as "empty,
half-full, full".

• Binary Readings: The binary output is usually a sequence of bits processed that represents
complex data, such as audio, visual, or other signal-based inputs. For instance, image
sensors produce binary data that is processed to form digital images, while audio sensors
may output binary data corresponding to sound waveforms.

In this research, time series readings are particularly focused. Time series sensor readings
are sequences of data points collected or recorded at successive points in time, typically at
uniform intervals. They capture how a particular measurement changes over time. Time series
data can originate from any type of sensor, including real number sensors, enumerate sensors
and binary sensors, as long as the readings are taken over time. They are commonly used in
monitoring, predictive maintenance, trend analysis, and forecasting. These types of sensor data
are the foundation of various industries, and the choice of data type significantly affects the
methods used to quantify trustworthiness.

3.1.2 Identify Reading Distribution

Typical sensor failure types and detection methods have been discussed in Section 2.2. Data-
driven techniques, such as statistical analysis, are commonly used to measure the trustworthiness
of sensors and sensor networks at runtime, distinguishing between normal operational variations
and sensor failures.

Two typical approaches are employed to detect the distribution of sensor readings in the
manufacturing industry for sensor reading analysis, namely Visual Inspection and Automated

Statistics Calculation.

• Visual Inspection involves using graphical methods to understand a dataset’s shape, central
tendency, spread, and other characteristics. By examining visual representations of data,
one can gain insights into its underlying structure, identify patterns, detect anomalies, and
make inferences about its distribution. Common tools for visualising data distributions in-
clude Histograms, Kernel Density Estimation (KDE) plots, and Quantile-Quantile (Q-Q)
plots. Each method offers a unique perspective on the data, allowing for a comprehensive
understanding of its distributional properties.

Histogram is a type of bar chart representing a dataset’s frequency distribution. It is con-
structed by dividing the data into intervals, known as "bins", and counting the number of
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observations that fall into each bin. To create a histogram, the range of data is divided
into consecutive, non-overlapping intervals or bins of equal width. The bins represent the
range of values, and each bin’s height corresponds to the number of data points within that
range. The area of each bar in a histogram represents the frequency of data within each
bin. Histograms provide a visual summary of the data’s distribution, helping to identify
its central tendency, including mean, median, mode, spread (range, variance, standard de-
viation), and overall shape, e.g., normal, skewed, and bimodal. The shape of a histogram
reveals information about the distribution of the data. For example, if the histogram is
roughly symmetrical with a peak in the centre, the data may be normally distributed. In
case the histogram has a long tail on one side, the data may be skewed to the left or right.
In another scenario, there are multiple peaks, the data may have various modes, indicating
the presence of subgroups or a mixed distribution.

KDE plot is a non-parametric way to estimate the Probability Density Function (PDF) of
a continuous random variable. It smothens the data points to produce a continuous curve
that represents the data’s distribution. KDE is constructed using a kernel function, e.g., a
Gaussian function, applied to each data point. The kernel function spreads out each data
point into a curve, and these curves are then summed to create a smooth density estimate.
The bandwidth parameter controls the width of the kernel, affecting the smoothness of
the KDE plot. KDE plots are used to visualise the distribution of a dataset in a smooth,
continuous manner, making it easier to identify the underlying shape and structure of the
data distribution without the binning artefacts present in histograms. The KDE plot shows
peaks where data points are concentrated and valleys where data points are sparse. A
smoother KDE plot can indicate a general trend, while a more rugged plot may reveal
more detailed features of the data. A small bandwidth may result in a very wiggly plot
with a lot of noise, while a large bandwidth can oversmooth the data, masking impor-
tant features. KDE Provides a smooth and continuous estimate of the data distribution.
Moreover, it reduces the artefacts and discontinuities introduced by histograms and pro-
vides flexibility in adapting to various data shapes with appropriate kernel and bandwidth
choices. However, choosing the proper bandwidth is critical. If the bandwidth is too small
or too large, it can misrepresent the data.

Q-Q plot is a graphical tool used to compare the distribution of a dataset to a theoretical
distribution, often normal distribution or another dataset. It helps in assessing whether the
data follows a particular distribution. Q-Q plots are created by plotting the quantiles of the
data against the quantiles of a theoretical distribution or another dataset. If compared to a
normal distribution, the data exhibits similar quantiles to a standard normal distribution. If
the data follows the theoretical distribution, the points will approximately lie on a straight
line. Q-Q plots are mainly used to visually assess the normality of a dataset, but they can
be applied to compare any two distributions. The closer the points are to the reference line
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(usually the 45-degree line), the more closely the data matches the theoretical distribution.
The points will closely follow the reference line if the data is normally distributed. In
another case, if the points curve away from the reference line at the ends, this indicates
heavier tails than the theoretical distribution. Furthermore, a deviation in the middle or
ends of the Q-Q plot may indicate skewness or other deviations from normality. Q-Q plot
is more informative than a histogram or KDE when assessing normality and is effective
for comparing the distribution of a dataset to a theoretical distribution. However, on the
downside, the Q-Q plot can be subjective, especially for small sample sizes and does not
measure the distribution’s shape, spread, or central tendency.

• Automated Statistics Calculation refers to the process of programmatically computing
key descriptive statistics and applying statistical tests to a dataset. This approach removes
manual calculations and visual inspection, allowing for rapid, objective, and consistent
analysis across large or multiple datasets. There are five key components of automated
statistics calculation.

Descriptive Statistics summarise sensor reading’s main features through numerical calcu-
lations. These statistics offer a way to quickly understand the reading’s central tendency,
spread, and overall distribution, which is essential for extracting the sensor’s working be-
haviour.

Goodness-of-Fit Tests are statistical tests used to determine how well a sample data fits
a distribution from a population with a specific theoretical distribution. These tests help
decide whether the data follows a hypothesised distribution and whether deviations are
statistically significant.

Automated Distribution Fitting involves using algorithms to fit various statistical distribu-
tions to the data to determine which distribution best matches the observed data. This step
is crucial for understanding the underlying patterns and modelling the data appropriately.

Automated Parameter Estimation involves determining the parameters of the chosen sta-
tistical model or distribution that best describes the observed data. It is a critical step in
modelling and helps summarise the data succinctly.

Model Comparison Metrics are used to evaluate and compare multiple statistical models
to determine which one provides the best fit for the data while balancing complexity and
goodness-of-fit.

Both approaches are employed to quantify sensor trustworthiness for the proposed run-time
verification framework. Comparing these two approaches, Visual Inspection is an intuitive initial
step in data analysis that uses graphical methods to understand sensor readings distribution and
identify patterns. In contrast, Automated Statistics Calculation provides an objective and con-
sistent approach to analysing the readings through the programmatic computation of descriptive
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statistics and the application of statistical tests. Together, both methods form a comprehen-
sive approach to reading analysis, combining human intuition with computational efficiency and
rigour.

In Industry 4.0 applications, the trustworthiness of the sensors refers to the degree to which
they reliably provide accurate, consistent, and timely data. Each of these factors, reliability,
accuracy, and consistency, plays an interdependent role in ensuring that sensors contribute to
safe, efficient, and predictable industrial operations. According to ISO/IEC 25012 data quality

model, the following are the considerations to quantify sensor trustworthiness.

• Reliability R(S): The probability of sensor Si’s ability to function without failure over a
specified period under predefined conditions.

• Accuracy A(S): The degree to which the sensor data aligns with the true values it is
intended to measure under similar conditions. The resulting values are normalised to a
range between 0 and 1, ensuring that the sensors’ results are scaled proportionally within
this interval. This normalisation process preserves the relative magnitude of the original
data while constraining it to a standardised scale, facilitating comparative analysis and
improving the stability of subsequent computations.

• Consistency C(S): The degree to which the attributes of sensor data are free from contra-
diction and are coherent with other data in a specific context of use. In the industrial sensor
context, it refers to the stability of sensor readings over time, for example, the absence of
significant variance in measurements and reading drift.

Thus, for an individual sensor, trustworthiness is expressed as:

T (S) = con f (R(S),A(S),C(S)) (3.1)

The function con f involves a weighted sum, where each factor is assigned a weight based
on its importance to the specific application of the sensor network. For example, in real-time
monitoring systems, low latency is prioritised, while in environmental monitoring, long-term
accuracy and consistency are more critical. These weights quantify the influence or confidence
of each factor in the decision-making process. Typically, the weight of each factor is decided by
the following methods.

• Expert Judgment: Domain experts assign weights based on the perceived importance or
reliability of each factor. This approach relies on human expertise and intuition. This is
the most common way in the industry because it is hard to capture sufficient historical
data to represent all possible scenarios and derive the weights using algorithms.

• Statistical Analysis: Historical data is analysed to determine how often each incoming
reading leads to the ground truth. The reading data sets that have a higher trust rate are
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assigned greater weights. This is the case after the system is deployed in the field and
the reading is captured. This method is powerful enough to continue to optimise function
con f to desire an accurate representation of the sensor’s trustworthiness.

• Machine Learning Techniques: Algorithms adjust the weights based on training data.
Methods like reinforcement learning or optimisation algorithms can also fine-tune the
weights to improve the performance of the function con f . Compared to statistical analysis,
machine learning is better suited when the volume of sensor data is large and requires
automation and handling of complex patterns that are difficult to model with traditional
statistical methods.

With these two steps, the first is to quantify three factors of each sensor and, subsequently,
assign a weight to each factor, the trustworthiness of the sensor can be computed at run time to
reflect its real-world working conditions.

3.2 Trustworthiness of Sensor Network

A sensor network is a collection of spatially distributed sensors that collaboratively monitor and
record working conditions over a particular area or system. The reliability of the data collected
by sensor networks is crucial, as even a single sensor failure can lead to significant errors, im-
pacting the accuracy and behaviour of the entire sensor network. Extending the quantification
of the sensor’s trustworthiness thus becomes an essential aspect of sensor network management.
The ability to trust each sensor’s data is essential for the overall reliability and efficiency of the
sensor network and the entire system.

A relationship function is involved in quantifying the sensor contextual correlations within
a sensor network. To define a relationship function that reflects the trustworthiness of a sen-
sor network, the concept of sensor-network reliability is formalised as a function of individual
sensor performance and overall network dynamics. Let T (Si) represent the trustworthiness of
an individual sensor Si within the network. The trustworthiness of the network, Tnet , can be
represented as an aggregate function of all n individual sensors’ reliability, data accuracy, and
consistency:

Tnet = agg(T (S1),T (S2), . . . ,T (Sn)) (3.2)

To reflect the trustworthiness of the overall sensor network, a function agg is performed to
aggregate the trustworthiness of each individual sensor. A common approach is to use weighted
averages or other data fusion methods, accounting for redundancy and correlation between sen-
sor readings. The following are three common approaches proposed.

• Statistical Correlation measures the strength and direction of the relationship between two
variables. It quantifies how one variable tends to change when the other variable changes.
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Correlation is typically expressed by the correlation coefficient, which ranges from −1
to 1. Common methods to calculate correlation include Pearson Correlation Coefficient,
Spearman’s Rank Correlation and Mutual Information. Pearson Correlation Coefficient

measures the linear relationship between two sensors’ data. If the correlation coefficient
is close to 1 or −1, the sensors are strongly correlated. Spearman’s Rank Correlation

is a non-parametric measure of rank correlation, it is useful when the relationship is not
linear. Mutual Information quantifies the amount of information obtained about one sensor
through another and is also widely used for non-linear relationships.

• Regression Models are statistical tools used that help in understanding relationships be-
tween multiple variables. In Industry 4.0, sensor networks are used to consolidate multiple
sensor readings when making a decision. The following are several common regression
models. Linear Regression assumes a straight-line relationship between the variables, Lo-

gistic Regression is used for binary readings, where the sensor reading is categorical, such
as on/off, Polynomial Regression extends linear regression to model non-linear relation-
ships by including powers of the independent variable(s) and Multivariate Regression is
similar to linear regression. However, multiple dependent multivariate-sensors are con-
sidered simultaneously.

• Machine Learning Models are algorithms that enable computers to learn patterns from
data for understanding the relationships between individual sensors. For instance, Neu-

ral Networks can model complex non-linear relationships between multiple sensors, Long

Short-Term Memory (LSTM) networks are useful for time-series data, Random Forest can
be used to model relationships by treating sensor data as features and finding patterns or
correlations and Support Vector Machines (SVM) are useful for finding complex relation-
ships in multi-dimensional data.

In summary, the relationship function Tnet = agg(T (S1),T (S2), . . . ,T (Sn)) aggregates the
trustworthiness of individual sensors to provide a comprehensive measure of the network’s trust-
worthiness, which is crucial for ensuring the validity and resilience of sensor network-based
systems.

In the next chapters, three experiments are presented to demonstrate the quantification pro-
cess of sensor and sensor-network trustworthiness.

3.3 Run-time Model Verification with Trustworthiness

Industry 4.0 applications involve extending traditional verification techniques to address the
complexities of highly interconnected, automated, and data-driven systems. In Industry 4.0,
sensor network-based systems are characterised by dynamic interactions, uncertainty, and real-
time data flows between devices, machines, and human operators. The proposed run-time prob-
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abilistic model checking approach addresses these stochastic behaviours by modelling the sen-
sor’s uncertainties and incorporating these uncertainties to verify aspects such as system perfor-
mance, potential failures, or decision-making processes. This involves creating formal models
that embed the quantified trustworthiness of sensor-based devices and networked systems and
composing multiple system models to verify at run time.

3.3.1 Run-time Model Verification

The proposed run-time model verification process involves three main steps, including defining
the system model according to system specifications, defining property specifications using spe-
cific language, and verifying the system continuously when the sensor trustworthiness changes.
The system model includes states and transitions, where transitions are associated with proba-
bilities and actions.

Define run-time system model In line with the traditional formal model, the system states
and transitions are defined according to the system specification, which means that they should
not change during the operation according to the actual running environment. However, with
the ability to quantify each sensor’s and the sensor network’s trustworthiness through T (S) and
correlation Tnet , the transition probability can be updated dynamically. In this case, the run-time
system model should employ the sensor network trustworthiness to form the run-time transition
matrix during the system working stage. Below is the model definition of a run-time system
model.

Mruntime = (S,sinit ,Pruntime,L) (3.3)

where Mruntime is the run-time probabilistic model, S is a finite set of machine states of the
system, sinit ∈ S is the initial state, Pruntime : S×S → [0,1] is the run-time transition probability
matrix where ∑s′∈S P(s,s′) = 1 for all s ∈ S and L : S → 2AP are function-labelling states with
atomic propositions.

Property specification In the Industry 4.0 context, the properties to be verified are typically
expressed using temporal logic, such as Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL), which can specify requirements like safety or expected behaviours. Probabilistic
Computation Tree Logic (PCTL) is an extension of Computation Tree Logic (CTL) designed
to express and verify properties of systems that exhibit probabilistic behaviours. It is widely
used in the verification of stochastic models such as Markov Decision Processes (MDPs) and
Discrete-Time Markov Chains (DTMCs). PCTL extends the expressiveness of traditional tem-
poral logic by incorporating probability thresholds, enabling reasoning about the likelihood of
specific states occurring. The logic allows for the specification of quantitative properties, such
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as the probability of reaching a certain state or the likelihood of a sequence of events occurring
within a given time period. Below are some example use cases of PCTL specification.

Example 1: The following expression specifies that the probability of eventually reaching the
state target_state is at least 0.95:

P≥0.95[F target_state]

This means that with a probability of at least 95%, the system will eventually reach the state
where the property target_state holds. For instance, in industry applications, the final completion
state is defined as the target state, this property checking can be used to verify the system’s 95%
availability to ensure the whole process quality.

Example 2: The probability that a system eventually moves to an error state:

P=?[F error_state]

This computes the exact probability that the system will reach the error state at some point in
the future. For example, an automated passenger lift relies on algorithms to make real-time
decisions. A critical error state, such as door movement to stop a passenger from entering or
colliding with an obstacle, could lead to accidents. This property checking helps calculate the
probability of such an error state occurring, factoring in sensor failures, communication delays,
and software bugs. Furthermore, this probability assessment helps manufacturers improve safety
measures, reduce accident risks, and meet regulatory standards for autonomous systems.

Example 3: The specifies that the probability of reaching state goal within 10 steps is at least
0.9:

P≥0.9[F≤10 goal]

This means the system will reach the goal state within ten steps with a probability of at least
90%. Consider a robotic assembly line in a manufacturing plant that produces electronic compo-
nents. The assembly process has several stages, each with specific tasks that must be completed
in sequence. For the production line to operate efficiently, the system needs to reach a goal
state where a component is fully assembled and quality-checked within ten operational steps.
By using this property checking, manufacturers can assess whether their production line meets
target efficiency and reliability metrics. Ensuring a high probability of reaching the goal state
within a specified number of steps supports consistent production output, reducing downtime
and minimising costs associated with rework and delays.
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This means that with a probability of at least 80%, state A will hold continuously until state B

eventually holds.

Verification The model verification process involves exhaustively exploring all possible states
of the system to determine whether the model satisfies these properties using model checker
tools. In the case that the system does not meet the specified property, the model checker pro-
vides a counterexample, which is a sequence of states leading to the violation of the property.
The proof of correctness is automated through algorithms that systematically explore the state
space of the model, ensuring both completeness and correctness. PRISM is the robust proba-
bilistic model-checking tool that supports various models, including DTMCs, CTMCs, MDPs,
and PTAs, enabling the verification of probabilistic properties using logic like PCTL and CSL. In
the following experiences, PRISM is used for quantitative analysis of the proposed verification
approach.

In chapter 4, an experiment was set up to evaluate this approach using an actual sensor-based
machine.

3.4 Compositional Modelling and Run-time Verification

To handle the probabilistic nature of such run-time industrial processes, the proposed run-time
model is extended to two types, namely Child model and System model. Child model aims to
abstract minimum and completed working unit, e.g., a turn-mill machine that can work indepen-
dently to complete a designated work. System model targets modelling the system at a higher
level, for instance, manufacturing management systems or scheduler systems, which is shown
in Figure 1.1, where it coordinates multiple working modules (child models) to complete a more
complex job. These two types of models work together and are capable of abstracting Industry
4.0 applications on a modular basis and composing at run time to represent an operation process.

Child Model In order to support the verification of compositional structure, a new type of
state of the system model is introduced as interfaces with other models. This new state type is
a special state that acts as the edge of a model to interact with not only internal states but also
other models. These interface states have only one direction for the transitions. For instance,
the interface state Sin only accepts incoming transitions from external and outgoing to internal
states. Conversely, the interface Sout transits internal states to external models only.

Figure 3.4 shows the model with interface states. On the left side is the traditional model
representing a basic isolated system with four states: S0, S1, S2, and S3. S0 is the initial state,
and transitions are defined between the states. Arrows between states represent transitions,
showing how the system can move from one state to another. S3 features a self-loop, indicating
an internal or recurring process within this state. On the right side is an extended model, named
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Child Model, where additional states (Sin and Sout) have been introduced. The core states S0, S1,
S2, and S3 from the original model are retained, with the same transition relationships as before.
The addition of sin and sout introduces an interface layer for the child model, allowing it to be
integrated with other models in a larger system. Sin acts as an entry point for interactions from
an external or parent system. It connects to state S0 as an incoming synchronisation or message
receipt mechanism. Sout provides an exit mechanism to interface with external systems. It
connects to S3, indicating that this state can lead to an external synchronisation or signal that the
process is complete or requires interaction outside the child model.

Figure 3.4: Child model with interface extension.

Meanwhile, the traditional verification approaches are still applicable as per normal with the
definition of states and transitions. With this, extended child model interacts with other models,
the internal states are transparent to external models and only interface states are exposed and
represent this child model.

The child model is defined as a six-tuple to provide the capability to be integrated with other
models.

Mchild = (S,sinit ,Pruntime,L,Sin,Sout) (3.4)

where S, sinit , Pruntime and L are defined as in the run-time probabilistic model, Mchild and two
new elements, Sin and Sout are added. Sin ⊂ S is a set of the entry states of the model, while
Sout ⊂ S is a set of the exit states of the model. Moreover, the existing property specifications
are still applicable to the Mchild .

Figure 3.5: Interaction of child models.
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Figure 3.5 shows two child models that interact with each other through extended interface
states. In this scenario, Model 1 and Model 2 all come with Sin states and Sout states. The key as-
pect of this diagram is the bidirectional synchronisation between Model 1 and Model 2 through
their shared Sin and Sout states. Model 1’s Sout connects to Model 2’s Sin, indicating that Model
1 can send a signal to trigger state changes in Model 2. This interaction represents a compo-
sitional model where different subsystems communicate through well-defined interface states,
allowing verification of their individual behaviours in the context of the overall system. This
extended model is capable of representing normal Task Operation (c.f. Chapter 1) of Industry
4.0 applications, which is able to work and complete a task independently.

Figure 3.6: Interaction of child models.

Figure 3.6 shows another scenario in which two additional transitions form an interface be-
tween states: Sin and Sout . These transitions Sin, Sout serve as entry and exit transitions between
the two systems, establishing a synchronised communication mechanism. For instance, Sin con-
nects S0 to the initial state of Model 2, Sout is connected from S1 in Model 2 and connects to
the Sin of Model 1. This model represents a scenario where external inputs or synchronisation
points are introduced to enable inter-model communication in a distributed or compositional
system. This case is suitable for the workflow of a manufacturing process in that one work cell
completes the task and informs the next work cell.

System Model For higher-level management or scheduler systems, the traditional model or the
child model makes it hard to abstract the interactions. Figure 3.7 represents another improvement
of the traditional system model to represent the system from the system management level,
which needs to manage and coordinate sub-systems to work as a process. Using the interface
state, the system model is capable of representing both management systems and task operation
sub-systems, which is defined in Figure 1.1. This management system model is named system

model, and the task operation layer model is child model. The system model interacts with the
child model through the child model’s interface states.
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Figure 3.7: Structure of compositional modelling.

Figure 3.7 shows both the child model and the system model. These two models collaborate
through interfaces of input and output states such that they can be integrated with each other
easily. In the upper part of the figure, the system model is represented, which contains its own
sequence of states: S1 through S6. Within this system model, the previously defined child model
is embedded as a modular component. In the lower part of the figure, a child model is defined as
an independent state machine consisting of four states: S0, S1, S2, and S3. Transitions between
these states define the internal behaviour of the model. The transition system also includes two
additional states, Sin and Sout , which serve as input and output interaction points for integrating
this child model with the larger system, enabling the larger system model to interact with the
internal states of the child model. This composition structure allows for localised verification
of the child model’s correctness independently while still ensuring that its interactions within
the system model are consistent with the overall system requirements. The figure highlights
the composition approach in model verification, where smaller, independently verifiable models
are composed into a complete system model. Such an approach is used in probabilistic model
checking, where the state space of large systems can be reduced by verifying sub-components
individually. This method facilitates modular verification, enhancing scalability and reducing
the complexity of system-wide property checking.

The system model is defined as below:

Msystem = (S,sinit ,Pruntime,L,Mchild1||...||Mchildk) (3.5)

where Msystem is the top level system model, S, sinit , Pruntime and L are defined as in Mruntime,
while Mchild1 ||...||Mchildk is a set of the child models as defined in Equation 3.4) representing the
sub-system of the top-level system. The operator || represents the connection using the interface
states of the child models.

Considering the relationship between the child models and the system model, the following
requirements must be satisfied:

1. Ssystem ∩Schildi = Sini ∪Souti ∀ i ∈ {1, ...,k}
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2. Sini ∩Souti = /0 ∀ i ∈ {1, ...,k}

3. Schildi ∩Schild j = /0 ∀i ̸= j

4. Psystem(s,s′, t) = 0
∀ s ∈ Sini,s

′ ∈ S, t ∈ T and i ∈ {1, ...,k}

5. Psystem(s,s′, t) = 0
∀ s ∈ S, s′ ∈ Souti, t ∈ T and i ∈ {1, ...,k}

The conjunction of system model Ssystem and child models Schildi should be the only interface
states Sini and Souti . Also, there should not be overlap states between Sini and Souti , similarly for
all the child models with no overlap states between child models. No transition of the system
model is from Sini states or to Souti states at any time t ∈ T, and the child model i ∈ {1, ...,k}.

At the top level of the system model, there should not be input state(s) and output state(s) to
ensure the system has finite states.

The semantics of the proposed approach are stated as follows:

1. S = Ssystem ∪Schildi ∀ i ∈ {1, ...,k}

2. P(s,s′, t) = Psystem(s,s′, t)

∀s ∈ (Ssystem/Sini),s
′ ∈ S, t ∈ T, and i ∈ {1, ...,k}

3. P(s,s′, t) = Pchildi(s,s
′, t)

∀s ∈ (Schildi/Souti),s
′ ∈ S, t ∈ T, and i ∈ {1, ...,k}

In order to verify the system as a whole, the global state space is represented as S, which is
the union set of all the system model’s states Ssystem and child models’ states Schildi . The global
transition matrix P concatenates the transitions of both the system model and child models.

With the semantics of the proposed approach and the three constraints above, the design
guarantees that there are no overlapped states between the system-level model and the child
models except the interface states.

Figure 3.8 shows the proposed approach that can be applied to industry 4.0 applications.
With both types of child model and system model, the proposed approach allows child modules
to be modelled and verified separately, the high-level system can be composed during operation
stage.
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Figure 3.8: Structure of models for Industry 4.0 applications.

Task Management Layer : The topmost layer represents the Task Management System,
which is responsible for managing high-level tasks and system states. The state machine within
this layer consists of several states ( S1 through S6 ), which capture the progression of tasks from
initialisation to completion. The transitions between these states encapsulate the logic of task
sequencing at a management level.

Task Operation Layer : Beneath the Task Management Layer, the Task Operation Layer is
composed of two subsystems: Task Operation System 1 and Task Operation System 2. These
systems operate in parallel and interface with the Task Management System through input and
output states (Sin and Sout), which allow them to communicate with the higher-level management
layer. Each operation system includes its own internal state machines, consisting of multiple
states, S1 through S4, to handle the operational sub-tasks. This layer manages specific actions
required for completing the high-level tasks managed by the top layer.

Hardware Device Layer : At the lowest layer, the Hardware Device Layer interfaces with
physical components of the system, such as CPS and sensor networks. The state machines within
this layer represent the physical devices’ interactions, which may include hardware components
like sensors or actuators. These devices communicate with the Task Operation Layer through
states like Sin and Sout , bridging the gap between software operations and hardware-level actions.
Multiple CPS components, CPS1 through CPSk, are shown interacting with the task operation
systems and sensor networks, enabling real-world data collection and control.
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Figure 3.8 demonstrates how this multi-layer system can be decomposed for modular veri-
fication. Each layer can be verified individually for internal correctness using model-checking
techniques, ensuring that transitions between states within a layer conform to the desired prop-
erties. Once the individual layers are verified, the interactions between layers—specifically
through states, such as Sin and Sout , can be verified to ensure that the task management system,
task operation systems, and hardware devices operate cohesively.

This compositional structure supports modular verification, a technique that improves scala-
bility by enabling localised reasoning about sub-systems. In the context of CPSs, this approach
is crucial for managing the complexity of verifying both the software, task management and
operation layers, the physical devices, and the hardware device layer.

In summary, the proposed approach supports modularity in that the top-level system model
can be decomposed into lower-level child models to provide flexibility in verifying the system
at different levels of abstraction. Each child model can be verified independently through tradi-
tional model checking during the design phase and they can be composed into a system model
and then verified through model checking at run-time using the proposed approach to update
its transition probability matrix. An experiment was set up using this scenario described in
Chapter 6.

In summary, this methodology provides a comprehensive structure for capturing, analysing,
and verifying the trustworthiness, reliability, and run-time behaviour of critical sensor-based
systems in Industry 4.0 applications.



Chapter 4

Run-time Model Checking with Sensor
Trustworthiness

This chapter explains how the proposed run-time verification model is applied in an Industry
4.0 context by modelling a turn-mill machine to facilitate continuous real-time verification of its
behaviour. A turn-mill machine is a multi-functional machine tool that combines the capabilities
of both turning and milling in a single setup. Turn-mill machines are widely used in Industry
4.0 applications due to their integration into smart manufacturing systems. These machines con-
tribute to enhanced productivity, precision and flexibility, aligning with the goals of Industry 4.0,
which emphasises automation, real-time data exchange and interconnectivity. A turn-mill ma-
chine is typically equipped with sensors, advanced control systems and data analytics functions
to perform continuous monitoring and optimisation of the production process. The turn-mill
machine’s correct operations rely on accurate sensor data as its control actions are triggered
based on the machine’s sensor reading in real time. Therefore, any inaccurate sensor reading in
the turn-mill machine may cause the machine to receive faulty feedback, leading to improper
tool adjustments or incorrect machining parameters being provisioned. Consequently, this can
potentially result in dimensional inaccuracies, defective parts and reduced product quality. Fur-
thermore, faulty or inaccurate sensor readings could disrupt predictive maintenance algorithms
thus causing missed maintenance schedules, as well as increasing the risk of unexpected ma-
chine failures or downtime. By modelling the turn-mill machine using the proposed run-time
verification approach, the sensor reading’s trustworthiness can be computed at run-time and fed
into a probabilistic verification model, such that the system behaviour can be modelled more
accurately based on the trustworthiness of the sensor readings real-time. With the model’s veri-
fication output, the operators can then plan and take actions in advance if the turn-mill machine
is predicted to fail, hence guaranteeing the manufacturing process quality.

The turn-mill machine was set up as the test bed that serves as an environment to explore run-
time trustworthiness metrics under variable conditions. By incorporating the proposed run-time
probabilistic model checking, the resulting analysis not only highlights the trust levels associ-
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Figure 4.1: Overview of the run-time probabilistic model checker.

ated with sensor readings but also informs decision-making processes for real-time adjustments
to maintain the efficiency of industrial operations.

4.1 Architecture of Run-time Model Checking

Figure 4.1 illustrates the architecture of the proposed run-time probabilistic model checker,
which integrates model checker and data-driven sensor trustworthiness quantification approaches.

The SUT is a sensor-based system that consists of several sensors. The sensors collectively
monitor certain conditions or parameters in an environment. During the run-time, all the sen-
sors are continuously evaluated to quantify sensor trustworthiness using data-driven algorithms,
resulting in a confidence score that represents each sensor’s trustworthy level. Subsequently,
these confidence scores are fed to the probabilistic system model to compute the transition prob-
ability between machine states, reflecting the real-time behaviour of the system. Due to the
decision-making algorithms highly depending on the sensor outputs [119–121], the trustworthy
level of the sensor affects the probability of transition of machine states, which affects the sys-
tem behaviours accordingly. The confidence from each sensor influences the system model’s
probability of reaching certain states.

In this process, two crucial modules are designed and implemented, namely Sensor Fault De-

tection (SFD) and System Model Verification (SMV). SFD is used to profile sensor behaviour and
quantify run-time sensor trustworthiness. Meanwhile, the SMV module handles the probabilistic
model checking and module evolution. Figure 4.2 illustrates the process of the implementation.

SFD is a data-driven approach following the proposed method in section 3.1 to profile sensor
readings based on the historical dataset, namely the sensor’s normal behaviour. The historical
dataset is first collected with human supervision to ensure the sensor operates correctly. For
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Figure 4.2: Modules of the run-time probabilistic model checker.

instance, this dataset can be collected just after the sensor’s regular maintenance or calibration.
Subsequently, while the machine is in operation, the run-time sensor’s readings are continuously
compared against the sensor’s normal behaviour using time series analysis and estimation meth-
ods so that any deviation from the norm can be detected at run-time. The result is the quantified
sensor trustworthiness, termed as the sensor run-time confidence. Whenever a sensor fault or
deviation is detected, the state transition matrix of the base model is updated with a lower sensor
confidence. Conversely, once the sensor turns back to normal working condition, the sensor
confidence will be increased accordingly.

SMV is responsible for updating the model by performing property checking based on run-
time sensor confidence. Firstly, a system-based model is defined according to the system spec-
ification or requirements to provide a system abstraction. This means manually specifying the
initial transition probability matrix of the system model. Typically, this model is used to verify
the system design at design time. Secondly, the sensors’ confidence scores are fed into SMV, and
SMV updates the transition matrix accordingly to reflect run-time system behaviour. Finally, the
updated model is employed to verify system properties, with the verification results fed back to
the physical system to guide operational processes or enhance overall quality.

With the combination of SFD and SMV, the system model evolves over time as the system
continuously updates the sensor’s behaviour through profiling and analysis of past sensor data.
Essentially, this means that the model is updated continuously, taking into account run-time sen-
sor data to derive the appropriate probability of state transitions. Hence, the proposed framework
tracks both the sensor readings and the system expectation for verification and quantification. It
enables the verification of the system’s behaviour at run-time and, at the same time, assesses the
system’s reliability.
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4.2 Sensor Fault Detection (SFD)

SFD is based on a set of quality evaluation metrics that are built from historical sensor data. In
combination with a rule engine, SFD is able to quantify the trustworthiness of the sensor data
at run-time. As shown in Figure 4.2, the SFD consists of two major modules, namely Sensor

Behaviour Analyser (SBA), and the Rules Engine.
SBA periodically learns about sensor behaviour from historical data, for instance, on a daily

basis. In addition, SBA analyses run-time data obtained from the sensor reading pipeline in order
to determine data patterns. The resulting normal behaviour profile for each sensor comprises
the following three elements:

• Statistical characteristics — calculated over a window of samples. Windowing is done
over the temporal domain on an individual sensor basis. The mean and standard deviation

are the basic statistical measures often used to measure the reliability of a sensor. When
the standard deviation is high (relative to expectation), it adds evidence to be classified as
faulty data.

• Estimation model — uses data mining techniques, e.g., machine learning methods, to
forecast data range and reading patterns. This process does not require knowledge from
domain experts, the system learns from sensor data and machine states.

• Drift trend — is the direction in which the sensor reading is moving, usually away from
its normal behaviour. Drift is typically a result of sensor wear and tear and calibration
errors. As the sensor’s readings are in time series format, an ARIMA [122] model is
used to calculate the trend component in order to determine whether there are consistent
deviations (in increasing or decreasing order) in the sensor readings over time.

The Rules Engine determines a sensor’s confidence score based on the run-time sensor read-
ings obtained from the pipeline by evaluating the degree of deviation from the sensor normal

behaviour. As the ground truth is unknown, this deviation is usually termed as fault. Table 2.1
shows a list of fault types that are defined and can be detected by SFD. In order to detect faults,
Equation 3.1 is applied with a set of rules defined based on the domain expert’s knowledge.
The sensor’s normal behaviour includes the factors representing reliability, accuracy and con-
sistency that are calculated by SBA and each rule is mapped to the factor. All incoming run-time
readings are evaluated against these pre-configured rules and the sensor’s normal behaviour to
derive the confidence score. A sensor’s confidence score is thus calculated as follows:

Con fsensor =
n

∑
i=0

f actori ×weighti (4.1)

where n is number of the rules defined, f actori is the output of each rule i, and weighti is the
weight of the factor of the rules.
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Note that the sensor’s normal behaviour comprises the three elements, reliability, accuracy

and consistency, that are used to compute the sensor’s confidence score, which is a representation
of the trustworthiness of the sensor readings. This confidence score is subsequently fed into the
SMV to update the transition matrix of the model during the system operation period.

4.3 System Model Verification (SMV)

SMV is a module of a probabilistic model-based model checker that verifies the working be-
haviour of SUT at run-time. Figure 4.3 illustrates the processing steps.

Figure 4.3: Run-time probabilistic model checker.

During the system operation phase, a system base model is first loaded into SMV. As defined
in section 3.3, the system base model Mbase as follows:

Mbase = (S,sinit ,Pinit ,L) (4.2)

where Mbase is the probabilistic model of SUT, S is a finite set of machine states of SUT.
With this definition, the states and transitions of the model are fixed according to the system

specification and should not be changed during run-time. Only the probability of state transition
in the model may be dynamically updated due to the uncertainty of run-time sensor status and its
working conditions, e.g. unexpected sensor failure or drifted sensor readings. The initial prob-
ability of state transitions in the model must be defined based on the domain expert knowledge
and the system specification. Subsequently, the transition probability matrix P evolves over time
according to the sensor’s confidence score obtained from SFD. The system model evolves to a
run-time system model Mruntime as follows:

Mruntime = (S,sinit ,Pruntime,L) (4.3)

where S is a finite set of machine states of the system, sinit ∈ S is the initial state, Pruntime :
S×S×T → [0,1] is the run-time transition probability matrix that the transition keeps updating
over the finite time period T ⊂ {0, ...,n}, where ∑s′∈S P(s,s′, t) = 1 for all s ∈ S, t ∈ T , and
L : S → 2AP are function-labelling states with atomic propositions.
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This effectively models the behaviour of the overall system more accurately whenever faults
are detected in the sensor readings, thus leading to better prediction of system failure.

In the next section, an experiment was set up to describe how the sensor confidence score is
computed and how it updates the transition probability matrix.

4.4 Implementation and Experiment Design

A Computer Numerical Control (CNC) turn-mill machine is modelled using the proposed run-
time probabilistic model checker. CNC machines, which rely on pre-programmed software to
control the movement of tools and machinery, are widely utilised in industrial processes such as
cutting, milling, turning, and drilling. Equipped with sensors, these machines generate substan-
tial volumes of operational data that can be analysed to improve processes, enhance machine
utilisation, and optimise energy consumption. As key components of Industry 4.0, CNC ma-
chines integrate traditional manufacturing with modern digital technologies. Verifying the oper-
ational behaviour and the trustworthiness of the sensors of CNC machines is crucial for ensuring
the quality and reliability of the manufacturing process. Figure 4.4 shows a CNC turn-mill ma-
chine NTX1000 that is equipped with a sensor network to monitor its main spindle and cutting
tool. Each monitored machine part consists of three types of sensors, namely current sensors,
vibration sensors and temperature sensors. These sensors are connected to a data acquisition
system, and the extracted sensor readings are streamed to the server via the Open Platform
Communications-Unified Architecture (OPC-UA) protocol.

The proposed run-time probabilistic model checker was implemented to verify the CNC
turn-mill machine based on the data flow. Specifically, the software modules implementation is
presented with details of SFD (Section 4.4.1) and SMV (Section 4.4.2) as well as the system
and environment properties (Section 4.4.3).

4.4.1 Sensor Fault Detection (SFD) Module

SFD was implemented using Python, and the interfaces were developed following RESTful
architecture patterns. Historical data and configurations were provided through a web-based
interface. Based on the historical readings, the sensor’s normal behaviour was derived on a
daily basis. During the system operation phase, the sensor readings were generated by SUT
and published to run-time readings pipeline. With this, all processing modules subscribed to
the readings pipeline to obtain the sensor data at run-time. SFD received the run-time readings
to compute a confidence score for each sensor against its normal behaviour. Afterwards, this
confidence score was fed into SMV to update the model’s transition matrix.
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Figure 4.4: The location of sensors in a CNC turn-mill machine.

4.4.2 System Model Verification (SMV) Module

The SMV was implemented using PRISM 4.5 with a Java wrapper. In order to interact with the
SFD, a web server was set up as a container to run the SMV module and exchange parameters.

A system probabilistic model was developed by domain experts based on domain knowl-
edge and operating experiences. An actual machine operation case is illustrated to evaluate the
proposed approach. Figure 4.5 shows the CNC machine model, which includes five states:

S = {idle,mount,cut,unmount,error} (4.4)

and the initial transition matrix is defined as:

Pinit =


0 0.999 0 0 0.001
0 0 0.999 0 0.001
0 0 0.6995 0.2995 0.001
1 0 0 0 0
0 0 0 0 0

 (4.5)

where the probability of each state transition in the matrix was defined according to expert
knowledge and historical data. The initial probability of the transition matrix, Pinit , assumes
that the sensors are new and that they behave normally. The probability of system failure is
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Figure 4.5: The state transition model of CNC turn-mill machine.

expressed by the following PCTL formula:

Perror =? [F≤60×60×24×7 (S4)] (4.6)

where Perror is the probability of system error in seven days. The error state S4 is defined in the
machine state in Figure 4.5. Industry typically operates on a weekly schedule, from Monday
to Sunday, aligning maintenance activities with the end or start of a production week. Seven
days minimise disruption to production and allow for systematic planning, facilitating resource
allocation and staff scheduling. The typical failure cases that happen during idle, mounting and
cutting stages, such as continuous operation without maintenance, lead to the spindle or bearing
overheating if lubrication is insufficient.

Ideally, the system model should accurately reflect the system state at all times. In practice,
however, the sensor-based system might be different, such as the unexpected sensor readings
drift. To reflect run-time sensor trustworthiness is a crucial step that existing methods tend to
ignore. As discussed, the deviation may be explained, among others, by the wear and tear of the
sensors or sensor readings drift. In order to make the system model reflect the run-time system
behaviour (updating evaluation and expectation in unison), the probability of each transition
is updated according to the run-time confidence score of each sensor from the SFD. As each
machine state is monitored by a set of sensors, the probability of transition to the error state, S4

in Figure 4.5 should be derived based on the sensors’ confidence score. The failure rate of each
state is updated according to the following:

R f ailure =
n

∑
i=0

(1− con fi)×λi ×wi (4.7)

where the transition to error state depends on the trustworthiness of n sensors, con fi is the
confidence score of sensor i obtained from SFD, λi is the Mean-Time-To-Failure (MTTF) of
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sensor i, and wi is the weight assigned to sensor i in the current state.
Consequently, by knowing R f ailure, the system’s initial probability model, Pinit can be dy-

namically updated whenever sensor faults are detected. The Pruntime is a continuously updated
probability transition matrix according to the actual running status of the system. The matrix is
defined as follows:

Pruntime =


0 1−R f ailure 0 0 R f ailure

0 0 1−R f ailure 0 R f ailure

0 0 0.7× (1−R f ailure) 0.3× (1−R f ailure) R f ailure

1 0 0 0 0
0 0 0 0 0


where the coefficients 0.7 and 0.3 were defined based on the domain expert’s experience for this
specific turn-mill machine. Hence, domain expertise is not only used for the initial model but
also to guide the update of expectations. With the run-time sensor’s confidence score, the system
failure probability of the whole system should reflect the real system states more accurately.

4.4.3 Experiment Settings and Properties

The proposed run-time probabilistic model for the turn-mill machine was implemented based
on the settings defined below:

1. The initial transition probability matrix, Pinit was first defined by experienced operators.
After the system started its operation, the probability of transition, Pruntime, was updated
dynamically based on the sensor’s confidence score.

2. The system model of this implementation was based on two modules only, which are the
main spindle and cutting tool.

3. Each machine part was monitored by three types of sensors: current, vibration and tem-

perature sensor.

4. An experienced operator sets the weights of the three sensor contributions of the module
as

(a) Current sensor: 0.3

(b) Vibration sensor: 0.5

(c) Temperature sensor: 0.2

5. Initial sensor confidence score was set as 0.99 for all sensors.

6. To simplify the complexity of the model, all sensors’ MTTF were assumed to be 1,000,000
hours.
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4.5 Experimental Results

Figure 4.6: The sensor readings of the main spindle.

Three machine states were observed, MOUNT, CUT and UNMOUNT, to evaluate the pro-
posed framework. Figure 4.6 shows the readings of current sensor, temperature sensor and
vibration sensor from the main spindle. It is clear that the sensors exhibited different patterns at
different machine states. During the transition from MOUNT to CUT and then to UNMOUNT

state, three different patterns of the sensors’ readings were observed. At the MOUNT stage,
the temperature and vibration readings were relatively stable, while the current was almost zero.
Subsequently, when the machine started the cutting operation, the temperature reading increased
consistently, and the vibration amplitude was much greater. Once the cutting job was completed,
the machine moved to the UNMOUNT state, and it was observed that the vibration re-stabilised.
The temperature reading remained elevated while the current returned to zero.

In this implementation, the sensor readings were segregated according to the machine states
in order to determine the sensor’s normal behaviour. Each sensor’s normal behaviour according
to the machine states was analysed using the same algorithm. Table 4.1 shows the snapshots of
two machine states: MOUNT and CUT, where all three sensors’ readings were analysed. For
each sensor and stage, the table shows the mean value and standard deviation, which highlights
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the central tendency and variability of the readings at the different machine states. Additionally,
the estimated reading range, represented by upper and lower bounds, provides insight into the
expected readings under normal operating conditions. A drift trend metric quantifies deviations,
indicating potential changes in sensor behaviour over time. A value of 0.0000 signifies no drift
was detected in the respective stage, which is particularly evident for the current sensor in both
the MOUNT and CUT stages. This suggests that these sensors remained stable without any
noticeable long-term deviation in their readings during these periods. Notably, the vibration
readings exhibit increased mean values and variability during the CUT stage, likely reflecting
intensified mechanical activity, with significant drift trends along the x and z axes of 0.8095 and
0.8263 during the MOUNT stage, which could suggest wear or misalignment. Similarly, cur-
rent readings during the CUT stage display increased variability slightly from 0.1561 to 8.3310,
while the temperature remains relatively stable but shows a minor drift trend value of 0.3184
during this stage. These findings provide a quantitative basis for detecting anomalies and calcu-
lating the sensor confidence scores.

Table 4.1: Normal Behaviour (Sensor Profile) of current, temperature and vibration sensor
Sensor Stage Statistical Characteristics Estimated Reading Range Drift Trend

Mean Std Dev. Upper Lower
Current MOUNT 0.0781 0.1561 0.2296 -0.1894 0.0000

CUT -0.1910 8.3310 15.3485 -15.6400 0.0000
Temperature MOUNT 24.8901 0.0158 24.9203 24.8618 0.0019

CUT 24.9440 0.0440 24.9303 24.8694 0.3184
Vibration(x) MOUNT 0.0033 0.0077 0.0202 0.0103 0.8095

CUT 0.0064 0.0452 0.0771 -0.0821 0.0000
Vibration(y) MOUNT 0.0034 0.0071 0.0167 0.0068 0.5780

CUT -0.0051 0.0466 0.0645 -0.0715 0.01953
Vibration(z) MOUNT 0.0064 0.0099 0.0222 0.0090 0.8263

CUT -0.0065 0.0568 0.0971 -0.1010 0.0008

In SFD, there is a Rules Engine that is responsible for detecting sensor faults. Having defined
the sensor’s normal behaviour in Table 4.1, the following rules were configured in line with
the domain of the case study to evaluate the concept. The exact parameter values are of less
importance and, hence, were chosen conservatively. It was expected that the performance could
be improved by fine-tuning the values. To illustrate the methodology, the following example
rules suffice:

1. If there is zero variation (standard deviation) in the sensor readings for more than 30
seconds, the sensor is deemed as having Stuck At fault.

2. According to the experiences, if more than 50% of the readings are missing, the sensor
is deemed as having an Intermittent fault. Otherwise, the percentage ratio of received
readings and the total number of expected sensor readings is returned.
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3. Compute the deviation from the run-time sensor readings to the expected reading range,
which is derived from the sensor’s normal behaviour.

4. If the drift trend is greater than 0.5, the sensor is deemed as having a Drift fault.

Table 4.2: Sensor confidence score of CUT stage
Time Current Temperature Vibration

2020-02-21 10:20:43 0.9543 0.7306 0.7113
2020-02-21 10:21:13 0.9474 0.7424 0.8530
2020-02-21 10:21:43 0.9154 0.6834 0.8540
2020-02-21 10:22:13 0.9547 0.7387 0.8483
2020-02-21 10:22:43 0.9464 0.7180 0.8677
2020-02-21 10:23:13 0.9217 0.6077 0.8747
2020-02-21 10:23:43 0.9381 0.5849 0.7699

Table 4.2 shows a snapshot of a sensor confidence score during the CUT stage. Based on
the confidence score, it is rather easy to identify the working condition of each sensor. Further-
more, with the proposed run-time probabilistic model checker, the resulting confidence scores
were used to update the transition matrix of the model. The deviation of the sensor’s working
condition was reflected in the machine’s overall working status.

Figure 4.7: Comparison of system failure probability.

As shown in Figure 4.7, a traditional static model is assumed to have a constant confidence
score of 0.9 for all sensors. This translated to a seven-day machine failure probability of 1.94E-4,
which is constant at all times.
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With a run-time model based on the dataset collected, sensor uncertainties were detected in
the system, which resulted in the degradation of the sensor’s confidence score. As shown in
Figure 4.7, this had an effect on the overall system’s failure probability, in that depending on
the weight and the corresponding sensor’s confidence score, the failure probability of the ma-
chine changed dynamically. The result shows a strong correlation between the system’s failure
probability and the sensor’s confidence score is effectively established. Compared to the tradi-
tional static model with a constant failure rate of 1.94E-4, the proposed run-time model checker
demonstrates the worst failure rate, which is 2.89E-4. It is about 1.5 times higher than the tradi-
tional static model. The proposed run-time probabilistic model checker is perceived as a better
reflection of the turn-mill machine’s behaviour as compared to a static model. This improve-
ment helps the operator to manage the system more efficiently to avoid unexpected failure. For
instance, identify the impact of a sensor failure to maintain or calibrate sensors in advance.

4.6 Summary

In this chapter, a run-time model checking approach is proposed that integrates a data-driven sen-
sor failure detection and a system probabilistic model to form a run-time probabilistic model.
The evaluation results highlight the importance of quantifying sensor trustworthiness in the do-
main of Industry 4.0, especially because all consequential decisions will be driven by automat-
ically collected data. Moreover, the proposed methodology explicitly models the SUT with
sensor uncertainties and verifies the system behaviour effectively at run time.



Chapter 5

Model Checking with Improved
Quantification Method

In Chapter 4, the proposed run-time probabilistic model-checking approach is evaluated using
an industrial CNC turn-mill machine as an experiment to monitor and verify the machine’s
behaviour during the operation period. The experiment result shows a strong correlation between
sensor trustworthiness and the system failure probability. However, in real-world deployment,
sensor networks are more commonly used [123–125], which compose correlated sensors in
order to have comprehensive readings compared to a single sensor to improve process quality.
For instance, a lift is equipped with a sensor network with a barometric air pressure sensor and
an accelerometer sensor to monitor the lift’s movement and stability. The barometric pressure
sensor is used to measure the vertical movement of the lift, while the accelerometer measures the
vibration of the lift car to determine the state of the lift system, whether it is in a moving or idle
state. In this scenario, unreliable readings from the accelerometer sensor affect the entire sensor
network’s trustworthiness, regardless of the pressure sensor’s accuracy. Thus, it further affects
the lift system’s behaviour. Therefore, to reflect the actual impact, the probabilistic run-time
model has been extended to consider the trustworthiness of the sensor network.

5.1 Improved Sensor-Network Trustworthiness Quantification

Figure 5.1 shows an enhanced run-time probabilistic verification framework with an interme-
diate layer representing sensor network trustworthiness between SUT and the system model.
This intermediate layer consolidates related sensors’ confidence scores and calculates the cor-
responding sensor network confidence at run-time. Similar to Chapter 4, a base model is first
defined according to the system specification, and the SFD (c.f. Section 4.1) module of the
proposed framework starts to learn each sensor’s behaviour and calculates confidence scores for
each sensor during operations. Instead of feeding the sensor’s confidence score to the system
model directly, an intermediate layer is introduced to aggregate the confidence scores according
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Figure 5.1: Run-time probabilistic model checker for sensor network-based system.

to the sensor network structure and the relationship of the sensors within the network.

Con fnetwork =
n

∑
i=0

Con fsensor_i × coe fi (5.1)

where the confidence score of a sensor network Con fnetwork depends on the conformance of the
sensors’ confidence score and relationships within the network, Con fsensor_i is the confidence
of each sensor i, coe fi is the coefficient variable of sensor i in the network, e.g., if a linear
correlation of the sensors in the network, the coe fi will be a constant number represents the
weight of the sensor in this network.

With this definition, if any deviation from the sensor’s normal behaviour is detected, the
sensor’s confidence score will be lowered at run-time. Consequently, this sensor network’s
confidence score will be affected simultaneously according to the sensor’s relationship to the
network. For instance, if a primary sensor fault is detected, regardless of whether other related
sensors are working normally or not, the sensor network’s confidence score will be degraded
accordingly. Subsequently, the transition probability matrix of the base model is updated based
on the sensor network’s confidence scores to reflect the impact of this sensor’s failure. The
confidence score of the sensor network leads to the continual updating of the transition matrix
of the base probabilistic model to reflect the system behaviour at run time. Essentially, the
model continually evolves over time through this process, considering the trustworthiness of
run-time sensor networks to derive the appropriate probability of state transitions. It allows the
verification of the system’s behaviour at run-time and, at the same time, assesses the reliability
of the system.

The enhanced approach is evaluated by an experiment using a passenger lift with two sensor
networks and the probabilistic model checker PRISM.
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5.2 Verification of Passenger Lift

Modern lifts are equipped with sensors to capture and process real-time data to monitor load
conditions, detect abnormal behaviour and estimate when maintenance should be performed.
An operational passenger lift system is used as an experiment to demonstrate how the sensor
network’s confidence score is computed and influences the probability model during the opera-
tion period.

The lift is modelled using the proposed run-time probabilistic model-checking framework to
evaluate the proposed runtime verification approach. Internal institutional lift experts provided
a list of lift parameters to be monitored, with the lift motion status and door states having the
highest priorities. Hence, two sensor networks for a passenger lift were set up. One monitors the
door’s state, while the other is responsible for the car’s movement. The door module comprises
two sensors, namely accelerometer sensor and magnetometer sensor. The car module includes
accelerometer sensor and barometric air pressure sensor. Figure 5.2 shows the sensor network
structure of the lift model.

Figure 5.2: The sensor networks of a passenger lift.

These sensors were connected to a gateway located in the lift cabin. The extracted sensor
readings were streamed to the back-end data processing pipeline via Advanced Message Queuing

Protocol (AMQP).
The SFD module was re-used from the experiment of the CNC turn-mill machine, but it

was extended with an aggregation function to calculate the sensor network’s confidence score.
Historical data and configurations were provided through a web-based interface. SFD inspects
historical readings to extract the sensor’s normal behaviour on a monthly basis. During run-time,
the sensor readings were generated by the lift and published to a cloud-based AMQP service.
With this, all processing modules subscribed to the service to obtain the data to be processed
in five-minute intervals. SFD received the run-time readings to compute a confidence score for
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Figure 5.3: The probabilistic model of a passenger lift.

each sensor against its normal behaviour. Subsequently, the sensor network’s confidence score
was aggregated according to the network structure and relationships. Afterwards, the sensor
network’s confidence scores were fed to SMV to update the transition probability matrix.

Utilising an operational lift, a probabilistic system model was derived following the method-
ology outlined in [126], employing the Evidence-Driven State-Merging (EDSM) algorithm [127]
using the lift’s historical operation data. Subsequently, domain experts assigned labels to each
derived state based on their domain knowledge and operational experience. Figure 5.3 shows the
lift model with the derived transition matrix, which includes five working states and two error
states:

1. fully-open — The doors of the passenger lift are fully opened. As advised by the operators,
this is the initial state of the passenger lift. The sensors’ readings are most stable at this
stage.

2. door-closing — The doors start to close until they are fully closed. At this stage, any inter-
ruption to the door movement will result in the doors turning open again. The lift’s state is
then moved to door-opening. During this stage, the door’s sensor network readings reflect
the movement behaviour. However, the car sensor network’s readings remain stable.

3. door-opening — The doors start to open until they are fully opened. During this stage,
the door’s sensor network readings reflect the movement behaviour, but the car sensor
network’s readings remain stable.

4. idle — The doors are fully closed, and the lift cabin car is stationary. During this stage,
both door and car sensor networks’ readings are stable.

5. car-moving — The doors are fully closed, and the lift cabin car is moving. During this
stage, the door sensor network’s readings are stable, while the car sensor networks’ read-
ings demonstrate the moving behaviour.
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6. non-critical failure — The lift is working in an unexpected condition. However, it can be
recovered automatically.

7. failure — This is a state that indicates the lift is working with unexpected behaviour that
may cause subsequent hazard or injury.

With this, the probabilistic lift base model is defined as the following:

Li f tbase = (S,sinit ,Pinit ,L) (5.2)

where Li f tbase is the probabilistic model of the passenger lift, S is the set of lift states, sinit ∈ S is
the initial state, Pinit is the initial transition probability matrix that derived from historical data:

Pinit =



0 0.999 0 0 0 0.001 0
0 0 0.3487 0.6405 0 0.0108 0

0.9724 0 0 0 0 0.0276 0
0 0 0.1969 0 0.7629 0.0402 0
0 0 0 0.9793 0 0.0207 0
0 0 0 0.9862 0 0 0.0138
0 0 0 0 0 0 1


and L : S → 2AP are function-labelling states with atomic propositions:

S = { f ully-open,door-closing,door-opening, idle,car-moving,non-critical f ailure, f ailure}

The probability of system failure is expressed by the following PCTL formula:

Pf ailure =? [F≤24×30 (S10)] (5.3)

where Pf ailure is the probability of lift failure in thirty days. The failure state S10 is defined in
the lift model in Figure 5.3.

Each lift state is monitored by two sets of sensors as presented in Figure 5.2, and one set is
independent of the other. With this, a sensor network’s confidence score is calculated as a whole
to represent the set of sensors. And the individual sensor’s confidence score can be computed
according to Equation 4.1. In this lift context, the confidence scores of two sensor networks are
calculated, i.e., the door network and car network as follows:

Con fdoor = {Con fm ×wm}+{Con fa ×wa} (5.4)

Con fcar = {Con fb ×wb}+{Con fa ×wa} (5.5)

where the Con fm, Con fa and Con fb are the confidence scores of the magnetometer, accelerome-
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ter and barometric sensor, respectively. In the networks, all the sensors have a linear relationship
to the network. And, wm, wa and wb are the weights assigned to the sensors in the current net-
work. Subsequently, the probability of each transition can be updated according to the run-time
sensor network confidence score based on the following:

Pruntime =


Pinit ×Con fdoor state ∈ {S1,S2,S3}

Pinit ×{Con fdoor,Con fcar} state ∈ {S4}

Pinit ×Con fcar state ∈ {S5}

(5.6)

where the run-time probability of transition between states depends on the confidence scores
of two sensor networks, Con fdoor and Con fcar are sensor networks’ confidence scores obtained
from Equation 5.4 and Equation 5.5, Pinit is the initial probability matrix.

Consequently, by knowing Pruntime, the system’s initial lift probabilistic model, Pinit is dy-
namically updated whenever sensor trustworthiness has changed. The probability transition
matrix Pruntime is continually update, the definition is as follows:

Pruntime =



0 0.999×Cd 0 0 0 1−0.999×Cd 0
0 0 0.3487×Cd 0.6405×Cd 0 1−0.3487×Cd −0.6405×Cd 0

0.9724×Cd 0 0 0 0 1−0.9724×Cd 0
0 0 0.1969×Cd 0 0.7629×Cc 1−0.1969×Cd −0.7629×Cc 0
0 0 0 0.9793×Cc 0 1−0.9793×Cc 0
0 0 0 0.9862 0 0 0.0138
0 0 0 0 0 0 1


where Cd and Cc represents door (Con fdoor) and car (Con fcar) sensor network’s confidence score
respectively. The confidence coefficients are defined based on a domain expert’s experience for
this specific lift model. Hence, domain expertise is not only used for the initial model but also
guides the update of expectations. With the run-time sensor confidence score, the system failure
probability of the whole system should reflect the real system states more accurately.

5.2.1 Experiment settings and configurations

The enhanced run-time probabilistic model for the passenger lift was implemented based on the
settings configured as below:

1. The initial transition probability matrix, Pinit , was first derived using Evidence-Driven
State-Merging (EDSM) algorithm. Subsequently, the experienced operators fine-tuned
this matrix according to the actual running status.

2. An experienced lift engineer sets the weights of all sensors in the network. The weights
of sensors in the door sensor network:

(a) Magnetometer sensor: 0.6

(b) Accelerometer sensor: 0.4
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The weights of sensors for the car sensor network:

(a) Barometric air pressure sensor: 0.5

(b) Accelerometer sensor: 0.5

3. The initial sensor’s confidence score was set as 0.99 for all individual sensors.

The rules were configured in consonance with the domain of lift management to validate the
concept. The actual parameter values were related to the individual lift’s characteristics and,
hence, were chosen conservatively. They were generally fine-tuned during the deployment stage
to improve performance. The following rules were sufficient to evaluate the proposed approach:

1. If the lift status is not idle, but there is no variation (standard deviation) in the sensor
readings for more than thirty seconds, the sensor is considered as having Stuck At fault.

2. According to the experiences, in case more than 50% of the readings are missing in the
window of five minutes, the sensor is deemed as having an Intermittent fault. Otherwise,
the normalised ratio of the received readings and the total number of expected sensor
readings are returned.

3. Compute the distance between the actual sensor reading pattern and the sensor’s normal
behaviour model. This distance is used as the factor to detect out of range faults.

4. If the drift trend value is greater than 0.5, which should be close to 0, the sensor is deemed
as having a Drift fault.

5.3 Experimental Results

Five lift operation states were observed, fully-open, door-closing, door-opening, idle and car-

moving and used to evaluate our implementation.
In this implementation, the sensors were grouped into two sensor networks: the door network

and the car network. Each sensor network’s normal behaviour was calculated based on the
individual sensors according to equation 4.1, 5.4, and 5.5. For the confidence score of sensors
and sensor networks in each lift state, the same algorithm (c.f. Section 4.4.1) was used to
analyse the readings. Appendix B shows the snapshots of five lift states, where all sensors’
readings were analysed.

Figure 5.4 presents a snapshot of the confidence scores of two sensor networks over a typi-
cal working day. Both networks exhibit a similar trend, maintaining greater stability during the
early morning hours compared to standard working hours (approximately 08:00 to 16:00). As
ride activity increased, the resulting vibrations were detected by the sensor networks, thus lead-
ing to fluctuations in the sensor confidence scores. However, these variations did not result in
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Figure 5.4: Sensor Network confidence score of Lift-Door and Lift-Car.

permanent sensor or network degradation, as the confidence scores stabilised during off-working
hours.

While the overall patterns for the car sensor network and the door sensor network were
similar, the car sensor network exhibited greater fluctuations. This suggests that operators should
prioritise inspections of the lift’s car sensor network and its associated components, such as the
electric motor, pulleys, and metal cables, particularly if the confidence score of the car sensor
network continues to deteriorate.

It is relatively straightforward to identify the working condition of each sensor according
to the confidence score. However, it is quite challenging to determine the impact of the lift’s
overall operating situation in line with the sensor’s working condition. With the proposed run-
time probabilistic model checking approach, the resulting confidence scores are employed to
update the transition matrix of the model at run-time.

Subsequently, both sensor networks’ confidence scores are fed into run-time probabilistic
model checking to demonstrate the reflection of the passenger lift’s behaviour compared to a
static model. Figure. 5.5 shows a static model that assumes all sensor networks retain a steady
confidence score of 0.9. The resulting model provided a thirty-day failure probability of 0.0432,
which is constant at all times.

In the actual situation, sensor faults are detected based on the collected dataset, leading to a
degradation in the sensor confidence score, as illustrated in Figure 5.4. This degradation directly
impacts the overall system’s failure probability. Figure 5.5 presents the variation in the failure
probability of the passenger lift when the model is updated at run-time. A strong correlation
is observed between the system’s failure probability and the confidence score of the sensor
network.



CHAPTER 5. MODEL CHECKING WITH IMPROVED QUANTIFICATION METHOD 73

5:
00

6:
12

7:
24

8:
36

9:
48

11
:0

0

12
:1

2

13
:2

4

14
:3

6

15
:4

8

17
:0

0

0.04

0.06

0.08

0.10

0.12

Time

Pr
ob

ab
ili

ty

Dynamic
Static

Figure 5.5: Comparison of system failure probability.

5.4 Validation and Insights

In this experiment, validating the system model against the operational passenger lift presents
significant challenges when failure injection is impractical due to safety constraints. In such
cases, validation relies on indirect yet rigorous methodologies. One effective approach is run-
time monitoring, where the lift’s live operational status is compared with the model’s predicted
failure to detect discrepancies. Additionally, operational data is systematically recorded to fa-
cilitate failure analysis, allowing past fault scenarios to be replayed on the model for assessing
its ability to accurately capture and represent failure states. By integrating both run-time mon-
itoring and historical data analysis, the validation framework enables continuous evaluation of
the proposed approach’s performance under real-world conditions. Furthermore, the collected
operational data can be leveraged to optimise the computation algorithm for confidence scoring
and refine the transition matrix of the system model periodically.

The proposed approach has established a correlation between sensor network confidence and
failure reachability. The results demonstrate that a degradation in sensor network confidence
will lead to an increased probability of failure. Although it was not possible to inject faults
into the operational passenger lift system, the SFD module (c.f. Section 4.4.1) ensures accurate
data aggregation from the sensor network when actual faults occur. By computing a confidence
score that reflects the operational conditions of the sensor network, this will have an effect
on the model’s probability of reaching the failure state. Typically, maintenance teams aim to
replace components or sensors within the sensor network before they fail. Thus, the probability
of reaching a failure state can serve as a guideline for system maintenance, ensuring smooth
operation rather than relying solely on a fixed maintenance schedule. The experimental results
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were reviewed and discussed with the domain experts and experienced operators, who validated
the findings and concurred with the outcomes.

This experiment has also provided valuable insights. A detailed analysis and discussion of
the experimental results are presented as follows:

1. The system failure probability is in inverse proportion to the sensor’s confidence score.
When the sensor’s confidence score is low, this results in a high probability of failure. In
the case of passenger lift, a linear function is applied to the sensor-network confidence
score to the transition probability matrix. The choice of function depends very much on
the logical relationship between the sensors and the system, and this can be configured and
customised accordingly. Extensive discussions are held with the passenger lift domain
experts, and it is appropriate to define a linear function for this use case. Nonetheless,
machine learning might be another great option if the necessary dataset is available.

2. As the sensor is dynamic in nature, a transient fault in the sensor leading to the system
failure will recover automatically. Thus, the overall system failure probability is observed
to fluctuate over time and does not show a trend towards high failure probability. For
instance, when unexpected interference happened, this caused abnormal fluctuation in the
sensor readings. Whenever this interference has stopped, the environment is back to nor-
mal, which means that the sensor reading is back to normal behaviour as well. Naturally,
the overall system’s failure probability will be reduced accordingly. In fact, some recov-
erable failures are captured, e.g., an obstacle blocking the cabin doors, which had led to
a door closing failure. Once the obstacle had been removed, the lift recovered automati-
cally. A general state named non-critical failure is used as in Figure. 5.1 to capture these
transient faults, with the assumption that there is a high probability of recovery. Even
so, the operator should pay more attention to such non-critical failures in case the lift is
misused, or the ageing parts need to be replaced. However, if abnormal fluctuation is very
frequent, sensor tear and wear issues might be the cause. The operator should reserve the
spare parts or re-calibrate the sensor accordingly.

3. Throughout the 2-month monitoring of the passenger lift, there is no persistent sensor
failure observed, and no actual lift failure has occurred. Hence, the probability of the
system failure is rather low. This could be attributed to the frequent maintenance and the
replacement of sensors to ensure the reliability of the lift. With the proposed verification
framework, the maintenance schedule can be optimised by examining the system failure
probability such that when a threshold is reached, it triggers the maintenance process to
take place.

The experiment result shows a strong correlation between the sensor network’s trustworthi-
ness and the probability of system failure. Considering the dynamic nature of the sensor net-
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work, this framework provides a novel approach for monitoring and maintaining sensor network-
based systems, especially for safety-critical systems.

5.5 Summary

An enhanced run-time verification framework is constructed for sensor network-based systems
using the passenger lift as an evaluation use case. This framework can be used to predict poten-
tial system failure probability dynamically, model the sensor network’s behaviour, and quantify
the trustworthiness of a sensor network at run-time. The proposed approach is demonstrated
by combining a data-driven sensor failure detection module for quantifying the sensor trust-
worthiness and a probabilistic system abstraction from a run-time probabilistic model. A base
probabilistic model can be updated at run time with the sensor network’s confidence scores that
explicitly reflect sensor uncertainty during the operation stage. The methodology forms a unified
run-time model that presents more accurate prediction results of impending system failures, even
while the system is running, explicitly modelling sensor uncertainty and updates expectations
on sensor readings with the system under test. The evaluation results highlight the efficiency
of explicitly modelling sensor trustworthiness, especially because all consequential decisions in
the domain of sensor network-based systems will be driven by automatically collected sensor
data.



Chapter 6

Compositional Modelling and Run-time
Verification

In Chapter 4 and Chapter 5, the run-time model verification framework is introduced and applied
to use cases involving multiple sensors and sensor networks within a single system. Specifically,
these include a turn-mill machine and a passenger lift. In a real-world Industry 4.0 environment,
manufacturing processes are significantly more complex, typically comprising multiple sensor
network-based systems or CPSs.

Sensor network-based systems are primarily employed for sensing and communication tasks,
emphasising on monitoring and data collection. In contrast, CPSs integrate computation, net-
working, and physical processes, facilitating bidirectional interactions between the physical and
cyber domains. CPSs often incorporate sensors, actuators, control mechanisms, and compu-
tational models to enable real-time decision-making. These systems are typically application-
specific and work in coordination to complete production processes. For example, in a manufac-
turing context, in Industry 4.0, AGVs transport workpieces between different operational areas,
while collaborative robots (cobots) perform tasks on these workpieces to complete production
activities. Once tasks are finished, AGVs then transfer the completed workpieces to storage
facilities. This process demonstrates the interplay of multiple CPSs, where the quality of the
final output relies on both the accuracy of sensor inputs and the performance of each CPS. Ad-
ditionally, CPSs are designed for distinct purposes, including painting cobots, welding cobots,
and logistic AGVs. Completing an entire production process generally requires the integration
and coordination of multiple CPSs.

To achieve greater flexibility, an Industry 4.0 application is dynamically configured based on
run-time requirements and overseen by a higher-level management system. Therefore, the pro-
posed run-time model verification framework is crucial for supporting use cases with a composi-
tional structure in Industry 4.0 applications, which frequently involve both sensor network-based
systems and CPSs.

76
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Figure 6.1: Structure of automated painting process.

6.1 Compositional Industry System

This chapter employs an automated industrial painting process to demonstrate the application
of the proposed approach to a real-world industrial system. In contemporary industrial painting
operations, the integration of various automation systems, including AGVs and cobots, facili-
tates efficient and synchronized workflows. Within this process, an AGV initially transports a
workpiece from its storage location to the designated working area. Cobot 1 then transfers the
workpiece from the AGV platform to the painting station, where Cobot 2 carries out the paint-
ing operation. Upon completion, Cobot 2 returns the workpiece to the AGV, which subsequently
transports it back to the warehouse.

Figure 6.1 illustrates the layered structure of an industrial painting process management sys-
tem. Each layer serves distinct functions to ensure smooth operation and coordination of tasks
among hardware devices, control systems, and high-level management. This layered structure
allows each component to be developed, managed and verified independently while still working
cohesively in the system. The primary layers in this diagram are as follows.

• Task Management Layer is the top layer, responsible for overseeing the entire workflow of
the painting process. The Painting Process Management System at this layer handles task
scheduling, resource allocation, and high-level decision-making. It manages the workflow
from the arrival of a workpiece in the working zone to the painting operation and final
move back to the warehouse. By controlling and directing tasks at a high level, this layer
ensures that the operations performed by lower layers are aligned with production goals
and quality standards.

• Task Operation Layer is positioned below the management layer, and Task Operation

Layer houses the control systems responsible for the execution of specific tasks. It in-
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cludes the Conveying Cobot Control System, Painting Cobot Control System and Shipping

AGV Control System. Each control system in this layer acts as an intermediary between the
management layer’s commands and the physical devices in the hardware layer, translating
high-level instructions into specific operations. This layer plays a vital role in coordi-
nating the activities of different devices, for example instructing Cobot 1 to pick up the
workpiece from the AGV, directing Cobot 2 to carry out the painting process, and guid-
ing the AGV to transport the workpiece between locations. By isolating the control logic
from the hardware, this layer allows flexibility in device management and enables easier
updates or replacements of control systems without impacting the overall workflow.

• Hardware Device Layer is the foundational layer that contains the physical devices re-
quired to perform the painting operation. It includes Cobot 1, Cobot 2, and the AGV.
These devices carry out the physical actions, including moving, handling, and painting the
workpiece, based on instructions from the control systems in the Task Operation Layer.
The AGV is responsible for shipping the workpiece from the warehouse to the painting
zone and back. Cobot 1 handles the transfer of the workpiece from the AGV to the paint-
ing area, and Cobot 2 performs the actual painting process. The actions of these hardware
devices are essential for the realisation of tasks set by the upper layers, and they must
operate reliably to ensure the overall efficiency and accuracy of the process.

Although hardware verification can be handled by manufacturers to ensure the general relia-
bility of physical devices, these verification results do not fully address the operational accuracy
of the entire process. This is primarily due to the fact that the control systems that manage the
interactions between AGVs and cobots are often developed and operated by different vendors.
Thus, to ensure the integrity and reliability of the automated painting process, the proposed
verification approach that encompasses the task control layer and the task management layer is
essential.

In the subsequent discussion, the automatic painting system is presented as a use case to
illustrate the proposed run-time verification process. Initially, the task management layer of the
system is abstracted and modelled, referred to as the System Model or Parent Model. This system
model is then further decomposed into task operation layer models, referred to as Child Models.
This compositional modelling approach offers flexibility in verifying the system at different
levels of abstraction and effectively managing the complexities associated with Industry 4.0
applications.

6.2 Task Operation Layer Model (Child Model)

The child model refers to the model of a control module in the task operation layer that is capable
of completing single tasks independently. Also, it can be embedded in the manufacturing process
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as a working module as the process requires, for instance, the operation systems of AGVs and
cobots or a turn-mill machine if it is part of a processing pipeline.

As proposed in Chapter 3, the run-time probabilistic model is enhanced with input states and
output states as a child model (Section 3.4). In this case, the child model is an abstraction of
a minimum fully functional system in the automated painting process to represent the cobot or
the AGV control systems. Typically, this is defined during the design phase to verify all system
behaviours that satisfy the specification. The child model is defined as below:

Mcobot = (S,sinit ,Pruntime,L,Sin,Sout) (6.1)

where Mcobot is the model of the cobot control system, S is the state set of cobot working states,
sinit is the initial state and Pruntime is the run-time probability matrix of the cobot state transition.
L is the labelling function for the transition, and two interface states for composing with external
systems, Sin and Sout . Sin ⊂ S is the entry state of the model, while Sout ⊂ S is the exit state of
the model.

6.3 Task Management Layer Model (System Model)

The task management layer typically involves the management system itself and sub-modules to
control working tasks. The proposed System Model (Section 3.4) is capable of representing this
structure. The sub-modules are abstracted using child models. Multiple child models and the
task management system can be composed to form a task management layer system model. This
fits well with Industry 4.0 applications as the manufacturing process is formed dynamically by
multiple fully functional sub-systems with a centralised management system. In this case, two
cobots and one AGV with a central management system form an automated painting system.
With this context, the cobot is defined as a child model, and the central management system is
abstracted as a system model. This system model is defined as:

Msystem = (S,sinit ,Pruntime,L,Mcobot1||Mcobot2) (6.2)

where Msystem is the task management system model, S, sinit , Pruntime and L are the states and
transition matrix of Msystem, while Mcobot1||Mcobot2 is the set of the cobot models (Equation 6.1)
representing the Task Operation systems, cobots for task operations.

6.4 Temporal Logic Property Query

Once the system model has been defined, the properties of the model could be verified and
then queried to predict the system’s potential failure at run-time. PCTL is used to evaluate the
model properties for this experiment. For example, the probability of eventually moving to a
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Figure 6.2: The experiment setup.

failure state. For instance, the probability of system failure is expressed by the following PCTL
formula:

Pf ailure =? [F≤t (S f ailure)] (6.3)

where Pf ailure is the system failure in the next t time. The failure state S f ailure is defined in the
system model.

6.5 Experiment Design

The experiment was designed to simulate a real-world industrial painting process using two
cobot arms. These cobots were programmed to autonomously synchronise their actions to com-
plete the painting task for a single workpiece. In this experiment, one cobot was responsible for
preparing the workpiece while the other applied the paint, simulating the actual manufacturing
process.

Figure 6.2 illustrates the experimental setup in the lab, showing the cobots in action within
a controlled environment designed to replicate the constraints and requirements of an actual
industrial painting system. This setup serves as a physical system to validate the proposed run-
time verification approach.
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Figure 6.3: The collaborative workspace for painting process.

Figure 6.3 illustrates three working zones in the collaborative workspace. Cobot I is in
charge of moving the workpiece from the pending zone to the painting zone, while Cobot II
executes the painting work at the painting zone. When the painting work is completed, Cobot I
must then move the workpiece to the ready zone. During the painting process, one cobot must
be in the standby zone with a standby position when another cobot is working. Each cobot is
equipped with a depth camera to detect the working zone and workpiece using image processing
techniques.

The electrical current in Amperes (A) of the cobots is the key indicator to determine the
machine’s working condition. For instance, if the cobot is obstructed, the current reading will
be much higher than the normal reading range. The current readings of the base joint, shoulder
joint, elbow joint and wrist joint were observed in this experiment. Firstly, the cobot’s Sensor

Normal Behaviour was profiled, and then the Sensor Confidence Score was determined.

6.5.1 Settings and Properties

In order to focus on the main actions and to simplify the painting process model, the following
assumptions were defined according to the expert:

• All cobots were working in the collaborative workspace, including pending zone, ready

zone, painting zone and standby location.

• There was no shared space between pending zone, ready zone, painting zone and standby

location.

• The three critical parameters, zone detection accuracy, workpiece detection accuracy and
current readings of cobot’s joints, were fetched through the painting system and cobot
systems’ Application Programming Interfaces (APIs).

• Five sensor fault types were used to compute the Sensor Confidence Score at run time. In
addition, the following weights for each fault type derived based on the occurrence and
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severity were assigned based on the advice from the expert.

– Intermittent fault: 0.1

– Stuck-at fault: 0.1

– Spike fault: 0.1

– Follow estimated reading range: 0.1

– Sensor data pattern match: 0.6

• The servicing cycle was twenty days.

• The cobot’s safe working range was defined according to ISO/TS 15066:2016. The pres-

sure should be within 160 N/cm2 of quasi-static contact and 2 N/cm2 of transient contact.
Additionally, the force should be within 210 N of quasi-static contact and 2 N of transient
contact.

6.5.2 Task Operation model – Cobot Arm

As shown in Fig. 6.4, an operating cobot can be represented by eleven states to illustrate its
working status.

S1 : Standby is the entry state in which a cobot is ready for duty. In this state, the force and
pressure should be in the safe working range.

S2 : Idle is the state that the cobot prepares to move its arm from standby location to the
working zone, e.g., painting zone, pending zone. In this state, the force and pressure are
kept in a safe range. The cobot turns on the camera and triggers its image-processing
engine to determine the position of the workpiece.

S3 : Zone detection detects and confirms the target zone location. The cobot should move the
gripper to a more precise position.

S4 : Workpiece detection detects and calculates the precise location and the size of the work-
piece. The cobot operates its gripper to grip and pick up the workpiece accordingly.

S5 : Execute mission means that the cobot performs the task as instructed.

S6 : Controlled parking is the state that the cobot reduces the Tool Centre Point (TCP) speed
safely, stops working and moves as commanded by the controller. In this state, the force

and pressure are kept in the safe range.

S7 : Stop is an exit state in which the cobot is stationary and does not work for any purpose. In
addition, the force and pressure are in a safe range.
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Figure 6.4: The cobot child model Mcobot .

S8 : Out of safety barrier is the state that one or both force and pressure is out of the safe range.
In this state, the cobot must stop working immediately.

S9 : Low-level e-stop means the cobot triggers the emergency-stop function.

S10 : Error is a state indicating that there is a zone or workpiece detection error.

S11 : Collision is a state that cobot stopped and one or both force and pressure is still out of the
safe range.

The child model (c.f. Eq. 6.1) is used to verify the cobot system behaviour individually.
Three factors according to the run-time conditions, namely zone detection accuracy represented
by zoneacu, workpiece detection accuracy represented by wpacu and sensor confidence score

represented by sncon f are derived at run time to update the transition matrix, Pcobot , which reflects
the run-time behaviour of the cobot during the operation stage.

Pcobot =



0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 zoneacu 0 0 0 0 0 1− zoneacu 0
0 0 0 0 wpacu 0 0 0 0 1−wpacu 0
0 0 0 0 0 sncon f 0 0 1− sncon f 0 0
0 0 0 0 0 0 sncon f 0 1− sncon f 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 sncon f 0 0 0 0 1− sncon f

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0



(6.4)
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6.5.3 Task Management Layer Model - Painting System

The system model is an abstraction of the painting process that includes five machine states and
is composed of two instances of the cobot model as the child models. In particular, Cobot I is
responsible for moving the workpiece between the pending zone, painting zone, and ready zone,
while Cobot II paints the workpiece only in the painting zone. In this system, both cobots should
not execute their tasks concurrently in order to avoid a potential collision. For example, while
Cobot I is moving a workpiece to the painting zone, Cobot II should be stationary at the standby
location with a safe standby pose.

Fig. 6.5 illustrates the parent model that defines the five system states and two child cobot
models:

S1 : Idle is the initial state of the painting process, the system checks all the modules’ statuses
and waits for the task to be executed.

S2 : Plan is the state that the system retrieves the task details, plans the steps, and adjusts
running parameters.

S3 : Waiting workpiece is a state that keeps detecting the workpiece in the pending zone. If a
workpiece is detected, the system should trigger the planned action.

S4 : Confirm status is a state that ensures all modules are ready to move to the next step. It
is assumed that there may be a random error with this state leading to the transition to
S5 Failure state since the painting system checks with cobot systems and process control
modules at this stage. According to the empirical rule and statistical studies of indus-
trial processes [128], it is assumed to be a quarterly failure event, which approximates to
0.9875 (µ ±2.5σ ).

S5 : Failure means the painting system works with an unexpected behaviour that may cause
subsequent hazard or injury.

C1 : C1in and C1out are the input and output states of a sub-task assigned to a dedicated cobot
to shift the workpiece to the working zone.

C2 : C2in and C2out is the action to paint the workpiece. This task is allocated to the second
cobot in the system.

The painting process is abstracted using an extended MDP. The symbol Mpainting represents
the system-level model as follows:

Mpainting = (S,sinit ,P,L,Mc1||Mc2)

where Mpainting is the compositional system model, S is a five-state set of the system, sinit ∈ S is
the initial state S1, P : S → 2Act×Dist(S) is the transition probability function, where Act is a set of
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Figure 6.5: The painting system model.

actions and Dist(S) is the set of discrete probability distributions over the set S. L : S → 2AP is
a labelling with atomic propositions. Mc1||Mc2 are two cobot models, and operator || represents
the connection using the interface states of these two child models. In this model, the cobot
model is considered as a special state machine, in which the Sin and Sout of the cobot model
are the interfaces to integrate with the other four standard machine states S1, S2, S3, S4 and the
Failure state S5.

The initial transition matrix is defined as below, where the probability of Cobot I and II
completing the task are represented using c1comp and c2comp, respectively. The notation "/" is
used to indicate nondeterministic choices in the state transition.

Ppainting =

S1 S2 S3 C1 S4 C2 S5



0 1 0 0 0 0 0 S1

0 0 1 0 0 0 0 S2

0 0 1/0 0/1 0 0 0 S3

0 0 0 0 0 c1comp 1− c1comp C1

0/0.9875 0 0 0 0 0.9875/0 0.0125 S4

0 0 0 0 c2comp 0 1− c2comp C2

0 0 0 0 0 0 1 S5

(6.5)

Similar to the cobot child model, the initial transition matrix of the system model is defined
according to the system specification and updated at run time based on the sensor confidence
score.
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6.5.4 Evaluation of System Failure

Experiments were conducted to verify the safety and reliability of the painting process at run
time using real sensor readings and working conditions. The probability of system failure is
expressed by PCTL as below,

Pf ailure =? [F≤20 (S5)]

where Pf ailure is the probability of eventual system failure state, S5 : , in the next 20 days, i.e.,
the service cycle of the cobot.

6.6 Implementation and Results

Two cobots were used to evaluate and validate the proposed compositional model verification
framework. One was a UR10e that worked as the workpiece moving cobot C1 : . The other
was a Franka Emika, which was used for workpiece painting cobot C2 : . The sensor readings
and cobot states were retrieved through Modbus protocol for the UR10e and a low-level C++
interface, libfranka, for the Franka.

Figure 6.6: Implementation of Run-time model checker for Industry 4.0 applications.

Figure 6.6 shows the compositional run-time model checker implementation. Firstly, this
implementation loaded the base model for the painting system along with all the initial child
models. Subsequently, the child models were updated with quantified run-time sensors’ confi-
dence scores, which used the approach as described in Chapter 5 and derived the run-time model
probabilistic transition matrix for interface states. Finally, the updated child models, along with
the run-time sensor confidence scores, contributed to the formation of the higher-level paint-
ing system model for verification purposes. The child models and painting system model were
evaluated using a probabilistic model checker tool, PRISM.

Six test cases were developed to evaluate the proposed approach.

TC1 This test case adheres to the conventional approach, which assumes that sensor readings
are fully reliable and 100% trusted. The results obtained from this test case serve as a



CHAPTER 6. COMPOSITIONAL MODELLING AND RUN-TIME VERIFICATION 87

baseline, representing traditional methodologies, and are utilised for comparison with the
proposed framework.

TC2 This test case employs the proposed approach, which incorporates a dynamic sensor con-

fidence score to assess the probability of failure of the painting system at run-time. It is
designed to evaluate the performance of the proposed framework. By accounting for the
run-time trustworthiness of sensors, the system model in this test case evolves continu-
ously in response to the actual operating conditions of the sensors.

TC3 This test case involves manually increasing sensor readings by 10% to simulate drift events
over time, aiming to validate the effectiveness of the proposed framework. Through these
manual interventions, the test case evaluates the performance of the proposed approach in
detecting and addressing sensor uncertainties.

TC4 Similar to TC3, this test case involves manually decreasing sensor readings by 10% to
simulate drift events, with the objective of evaluating the proposed approach and assessing
its performance.

TC5 This test case involves a controlled manual intervention to disrupt the cobot’s movement
by temporarily obstructing its arm under safety guidance. It is designed to validate the
proposed approach in a real-world physical working environment and assess its perfor-
mance.

TC6 This test case utilises a defective firmware that returns only signed integers, leading
to incorrect decoding of sensor readings originally intended as unsigned integers. The
firmware is integral to the sensor module, responsible for converting the sensed analogue
signals into digital form and transmitting the digital readings for subsequent processing.
While the defective firmware performs adequately in most scenarios, it encounters an
overflow error when the variable exceeds 32,768 during the conversion process. This test
case aims to validate the proposed approach on a physical machine and assess its perfor-
mance under these conditions.

A single test result from each case TC1 and TC5 was recorded for comparison purposes. To
evaluate performance under dynamic changes in sensor trustworthiness over time, nine cycles
were executed for TC2 , TC3 , and TC4 . TC6 was designed to run for one hundred cycles in
order to capture the failure events within the physical working environment. Each cycle required
approximately three minutes to complete the painting process.
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Figure 6.7: Comparison of real sensor readings and drift simulation.

Initially, a dataset of machine states and sensor readings was collected under the super-
vision of an experienced operator to ensure that the painting system functioned as intended.
This dataset was subsequently processed to establish the sensor normal behaviour profile of the
cobots, providing a baseline for quantifying sensor trustworthiness throughout the experiments
conducted in all test cases.

As the first test case TC1 assumed that the sensor readings are 100% trusted, a system failure
probability of 0.0125 was obtained at all times, which is not realistic as it is so close to perfect
operation with zero failure. However, in real-world deployment, it is a challenge to get such a
perfect result. In TC2 , the run-time sensor readings were monitored and then computed the
sensor confidence score of 0.88 – 0.90, thus resulting in a system failure probability of 0.09 –
0.11. This effectively reflects the real situation of the painting system, that it was not always
working in the perfect condition. As for TC3 and TC4 , the simulated drift events of ±10% of
the real data that was captured, it is observed that the sensor confidence score dropped about 10%
to 0.80, thus causing an increase in the failure probability to 0.15 and 0.18. Fig 6.7 summarises
the comparison of test results of TC2 , TC3 and TC4 , comparing the real sensor values and
the drift simulation results to evaluate their impacts on the failure probability with respect to the
sensor confidence score. The horizontal axis indicates the cycle of the test cases, and the vertical
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Table 6.1: Sensor confidence score and failure probability.
Test Case Sensor Confidence Score Failure Probability

TC1 1.000 0.0125
TC5 0.6735 0.3635
TC6 0.3814 0.7905

axis represents the sensor confidence score and the failure probability.
Test cases TC5 and TC6 were utilised to validate the proposed approach under the ac-

tual operating conditions of the physical machine. Test case TC5 was executed by blocking the
cobot’s action under safety guidance. This intervention triggered the cobot to halt with an excep-
tion status. In this case, the resulting sensor confidence score dropped to 0.6735 was observed,
which was about 25% lower than the normal situation. With this, the 20-day failure probability
had thus increased to 0.3635. Lastly, TC6 , the defective firmware was employed to assess the
impact on the system failure probability. The defective firmware caused errors by retrieving
incorrect sensor readings due to the improper decoding of unsigned integers. This experiment
was prematurely terminated because the control system failed to properly handle these erro-
neous sensor readings. Consequently, the sensor confidence score dropped to its lowest value
of 0.3814, leading to a significantly high failure probability of 0.7905, as shown in Table 6.1.
These two test cases, TC5 and TC6 , are designed to check the system’s property using the
abstracted system model. Based on the property-checking of the system model, the behaviour
of the mock-up physical system was observed and then validated against the run-time system
model, thereby closing the Physical → Model → Physical validation loop. The full results are
listed in Appendix C, Table C.1.



Chapter 7

Discussion

This section discusses the implications of this research in the realm of the formal verification
of Industry 4.0 applications and highlights the significance of the proposed approach and the
processing framework.

The primary objective of this research is to develop a formal verification framework that con-
siders uncertainties of Industry 4.0 applications, for instance, taking into account the run-time
sensor failure probability when verifying a manufacturing process. The experiments and evalua-
tion are demonstrated in Chapter 4 and 5. Moreover, this proposed framework is also capable of
handling complex scenarios of actual Industry 4.0 applications using the compositional model
approach, which is introduced in Chapter 6. The following sections discuss the advantages of
the proposed approach compared to existing techniques, possible use cases and deployments
of the proposed framework and limitations that should be addressed by the following research
work.

Figure 7.1 illustrates an overview of the model verification in the industry with current prac-
tices, the contribution of this research work and the gaps to the desired final goal.

Currently, the typical process to rigorously verify a system in the industry is in the following
steps:

1. Begin by creating a formal model of the system according to the specification. This model
can represent an abstraction of the system that captures the relevant aspects of the system’s
behaviour.

2. Specify the properties that the system to satisfy. These properties can include safety re-
quirements, functional correctness, or other critical characteristics. The properties are
typically expressed in temporal logic or formal language.

3. Choose an appropriate model-checking tool based on the nature of the model and proper-
ties. The tools of model checkers may be better suited for hardware verification, software
analysis, or specific types of systems according to the verification purpose.

90
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Figure 7.1: Gap analysis.

4. Run the model checking tool on the formal model and provide the specified properties.
The tool exhaustively explores the state space of the model, checking if the properties
hold for all possible states or scenarios. If the model checker finds a scenario where the
properties are not satisfied (i.e. counterexample), the tool provides diagnostic informa-
tion. This information helps identify the source of the problem, allowing the operator to
understand and work out a solution to address the issue.

5. Based on the results of the initial model checking, refine the model and/or properties
as needed. This may involve adding more details to the model, adjusting properties, or
making other modifications to improve the accuracy of the verification.

According to the current process, most of the steps are manual and highly depend on expertise.
Moreover, the existing process is relatively static compared to the requirement of Industry 4.0
applications, which requires the process to be flexible and agile. This presents an obstacle to
applying model verification techniques in the industry. The proposed verification framework
partially addresses this challenge, as described in the previous chapters, by taking into account
uncertainty from underlying sensors and composing multiple models through interface states to
assemble system models at run-time to verify as a whole. However, further research work is also
required to achieve the final goal of automating model generation and evolution.

In this chapter, the advantages of the proposed framework are discussed in Section 7.1. The
possible use cases are shown in Section 7.2. Section 7.3, analysis the gaps and limitation of this
research work.
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7.1 Advantages of Proposed Approach

The experiments in Chapter 4, Chapter 5 and Chapter 6 demonstrated the effectiveness of the
proposed framework and highlighted its ability to identify the run-time uncertainties from un-
derlying sensors. Subsequently, these quantified uncertainties are dynamically adapted to the
verification mechanisms to verify the correctness during the operation periods. As a result, the
proposed framework is capable of reflecting run-time uncertainty in model verification results.
The impact of these uncertainties is hard to quantify using existing formal verification tech-
niques. Compared to traditional model checking approaches, the proposed framework targets
Industry 4.0 applications and comes with advantages for the industry as below:

• The proposed framework provides the capability to compose multiple system models dur-
ing the operation period by extending traditional model interface states. This advantage
adopts industry verification for a dynamic manufacturing process, which is common in
Industry 4.0 applications. For instance, a robot-based manufacturing process involves
conveyors, robot arms, AGVs and a control system. Each component can be verified indi-
vidually using traditional model-checking techniques. In order to optimise the efficiency
of all working components, each component serves multiple manufacturing processes ac-
cording to its working status. In this scenario, the proposed framework composes the
process model using component models with the interface states to verify the process dur-
ing the operation period. This approach verifies the system efficiently to guarantee its
safety and correctness.

• Another advantage of the proposed framework is that it takes into account uncertainties of
underlying sensors during the operation period. Leveraging the data-driven approaches,
each sensor confidence score is calculated and fed to the system model to verify the sys-
tem’s behaviour. This improves traditional formal verification approaches to reflect the
sensor network-based system’s behaviour more accurately, which is important for the in-
dustry to ensure safety and manage the quality of production lines.

The resulting framework is particularly promising when compared to traditional run-time
verification tools. While some tools have shown promise in identifying certain types of errors,
our framework goes beyond handling a broader range of industrial-level applications, including
process management systems (Chapter 1.1 Task Management Layer) and robot operating sys-
tems (Chapter 1.1 Task Operation Layer). The flexibility of our approach, combining formal
methods with lightweight instrumentation, strikes a balance between precision and efficiency,
allowing for effective verification even at run time in operation environments. With these advan-
tages, the proposed framework combines data- and model-driven approaches to help advanced
manufacturers monitor and verify the systems’ efficiency and correctness, especially in the In-
dustry 4.0 context.
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7.2 Possible use cases and deployment

Similar to the scenarios in Chapter 4, Chapter 5 and Chapter 6, the proposed verification frame-
work can be easily applied in the industry to verify the behaviour and correctness of the automa-
tion equipment, monitor the safety and reliability in the safety-critical production process, and
so forth. In the actual industry environment, the following applications can be the possible use
cases.

• Run-time monitoring is a technique using a pre-defined model of the expected system and
continuously comparing it to the actual behaviour of the system during run time. If any
discrepancies or violations are detected, appropriate actions can be taken to handle or mit-
igate them. Compared to the traditional approaches, the proposed framework considers
uncertainties of the system and updates the model during run time to reflect the actual sit-
uation of the system. Moreover, to deal with increasingly complex systems, the proposed
framework provides compositional model verification and adaptively verifies the system.

• Model-based Testing (MBT) is useful for complex systems and commonly used in indus-
try. Traditional MBT approaches focus on the industry software, generating test cases
according to the system model and transitions [129]. The proposed framework extends
the existing approaches to the sensor network-based systems and CPSs, considering sen-
sor uncertainties during run time and providing more flexibility to handle compositional
structure systems.

• Digital Twin is a virtual representation that mimics the behaviour and characteristics of
real-world systems [130, 131]. Applying the proposed framework can verify the digital
twins faithfully replicate real-world systems and respond appropriately to various inputs
and scenarios, enhancing the reliability of decision-making processes and the value of
digital twin applications in fields like manufacturing, IoT, and smart infrastructure.

Testing and verification are crucial steps in the manufacturing industry. As the leading inde-
pendent Testing, Inspection and Certification (TIC) company, TÜV SÜD1 is from Germany and
has more than 150 years of history that provides professional testing and verification services to
the manufacturing industry. Adaptive Safety and Security System (AS3) is the system that is de-
veloped by TÜV SÜD Product Service (PS) team. This system targets dynamic risk assessment
of both virtual environments and real-world applications for Industry 4.0 manufacturers. This
research work is also planned to be embedded into AS3 to take into account sensors’ uncertainty
at run-time to improve system accuracy and efficiency. Additionally, the proposed framework
also provides the capability to predict the potential failure probability of the system monitored.

1https://www.tuvsud.com/en-sg/about-us
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7.3 Limitations and Gaps

Despite the advantages and possible use cases, there are still gaps in achieving the final goal
that Industry 4.0 requires. For instance, the proposed framework depends on the expertise,
experience and manual work to define the system model and specify the properties that the
system satisfies. By leveraging the advantage of AI techniques, such as the Large Language
Model (LLM) [132–134], it is possible to be used to assist in initialising system formal models
according to the specifications. Another gap is that quantifying the sensor’s uncertainty also
depends on expertise and experience. As further research work, systematically defining rules
and weight for the quantification is an enhancement to the proposed verification framework.

7.3.1 Initialisation of Formal Models

Two approaches were used to initialise a formal model for the target systems in the experiments
of this research: expertise-based and data-driven approaches.

• In Chapter 4 and Chapter 6, the initial models of the experiment were built based on exper-
tise. It is common for domain experts to define the initial model according to the system
specification and the experience of traditional model verification approaches. However,
this is a challenge for the new Industry 4.0 applications that lack the domain knowledge of
operators and experts. As Industry 4.0 applications continue to mature and find increased
deployment across various fields, this challenge will progressively be overcome.

• The data-driven approach is another popular approach and was used for the experiment in
Chapter 5. The initial model was derived from the historical data set that was collected
during the passenger lift operation period. From this data set, an EDSM algorithm was
employed to derive lift operational states and transition matrix. However, similarly to
typical data-driven approaches, having a good data set to derive an accurate system model
is a challenge. Moreover, the algorithms only summarise statistics or characteristics of the
observed data. Post-processing is needed to provide more meaningful labels to each state
and transition according to the domain knowledge. This identifying and labelling work
must also depend on the domain experts.

• Learning-based model synthesis is also a powerful approach that can be used to ini-
tialise a formal model and parameters of state transitions. This approach helps to re-
duce dependency on expert knowledge, for instance, learn a model from system obser-
vations [135], [136], [137] or learn the specifications that the system meets from system
observations [68], [138]. For instance, supervised learning approaches can be used to in-
fer temporal logic formulas with labelled system outputs [139] and derive system normal
behaviours. The learning-based approach is an active research field that can be used to
tackle the challenge of lack of experience in the Industry 4.0 domain.
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To initialise a formal model of an actual system is always a challenge that consumes time
and requires deep domain knowledge, especially in a new domain, such as Industry 4.0 manu-
facturing applications. However, some research work has been established to target to resolve
this challenge, which is also a part of this research in future work.

7.3.2 Quantification of Run-time Uncertainties

The quantification algorithm of the proposed framework depends on the assumptions that manu-
facturer experts provide the knowledge to define the rules and the weight of each rule manually.
For example, in Chapter 4, the weighti in equation 4.1 and the settings in Section 4.4.3 are
assumed to be defined by experienced operators. Having domain experts is common in the in-
dustry to configure and supervise the manufacturing processes. However, two potential risks
may occur:

• The quantification result is only good when experienced operators provide suitable and
accurate definitions of the weight for each sensor and each rule. In the traditional in-
dustry environment, experienced operators or domain experts optimise and fine-tune each
manufacturing process by adjusting configurations and parameters continually over the
operation period. However, it may be a challenge in Industry 4.0 manufacturing due to
the lack of expertise to define the rules and the weights of each rule for the quantification
algorithms. The data-driven approach is another method to derive the weights of each
sensor and each rule from historical data sets. Similarly, the quantification result is only
good if high-quality data sets are provided. However, providing a fine-grained data set in
this new domain is also a challenge.

• The proposed quantification approach is good for the sensors that deliver numerical read-
ings, but it may not be efficient for image sensors that generate binary readings and Near
Infrared/Mid-Infrared (NIR/MIR) sensors that produce multivariate readings. As the read-
ings from image and multivariate sensors are more complex than normal numerical read-
ings, typically, pre-processing algorithms are involved before delivery. The concept of
quantifying such readings is the same as the proposed quantification approach to first gen-
eralise the sensor’s normal behaviour and quantify run-time readings against the normal

behaviour subsequently. However, the implementation of the quantification algorithm
may need further evaluation to prove its efficiency and accuracy.

The proposed formal verification approach takes into account sensors’ and algorithms’ un-
certainties. However, it is still manual or subjective to define the rules and weight of quantifica-
tion calculation. Nonetheless, further research will be carried out to address these challenges in
the field.
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7.4 Summary

This research extends traditional model-checking techniques to take into account the uncertain-
ties of sensors and is capable of composing multiple system models using the proposed interface
states. However, due to a lack of domain experts and experience with the latest technologies in
the industry, creating the system models is still a challenge. The resulting framework has the
ability to verify complex manufacturing systems to make Industry 4.0 successful and for stake-
holders to reap maximum value from Industry 4.0.



Chapter 8

Conclusion and Future Work

In this thesis, a novel run-time verification framework is proposed that takes into account un-
certainties from sensor networks and decision-making algorithms. This framework is evaluated
with three industrial scenarios. The main objective of this research is to verify Industry 4.0
applications rigorously.

8.1 Conclusion

A comprehensive analysis of the research question has been conducted through the proposed
verification framework and experiments with the industrial scenarios and environments.

RQ1. How to quantify the trustworthiness of the sensor and sensor network at run-time?

This question is addressed by developing a sensor behaviour analyser to profile a sensor’s normal
behaviour and quantify the reverse of sensor readings against its normal behaviour at run time.
In Chapter 4, a sensor reading processing framework was provided to profile the sensors and
quantify sensors’ trustworthiness, namely Sensor Confidence Score. This architecture was also
evaluated using an industrial CNC turn-mill machine. The results indicated the effectiveness of
the proposed approach and framework.

RQ2. How to model a sensor network-based system that reflects the impact of the changes
on the sensor’s trustworthiness?

As an answer to this question, a traditional formal model is extended with run-time Sensor

Confidence Scores. As the uncertainty of sensors affects the transition of system states only
during the operation period, these Sensor Confidence Scores are used to reflect the run-time
system behaviour in order to analyse the impact of the changes on the sensors’ trustworthiness.
In Chapter 4 and 5, two actual sensor network-based systems, CNC turn-mill machine and a
passenger lift, are used to evaluate the proposed approach.
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RQ3. How can an Industry 4.0 application be verified by detecting the reachability of error
states to ensure safety during the operation period, for example, a dynamic manufacturing
process using multiple CPSs?

Reaching an error state signifies a disruption in the system’s behaviour, rendering it non-operational.
If the system enters an error state, it indicates that safe operation is no longer assured. Lever-
aging probabilistic model checking techniques, a higher probability of transitioning to an error
state indicates a greater likelihood of system failure, necessitating the cessation of operation.
Therefore, assessing the reachability of an error state serves as a critical safety measure, as it
provides an indication of potential hazards. Moreover, the proposed approach and framework are
designed for generalisability in Industry 4.0 applications by integrating multiple sub-modules
within complex industrial systems. In Chapter 6, a two-cobot-based testbed was introduced to
simulate an industrial use case, demonstrating the effectiveness of the proposed approach in
evaluating system safety by quantifying the probability of reaching error states.

To summarise, this research employs a data-driven approach to derive the sensor’s normal
behaviour and quantify the trustworthiness of sensor network readings. Additionally, a model-
driven approach is utilised to verify run-time system behaviours. The evaluation results pre-
sented in Chapters 4, 5, and 6 demonstrate the efficiency of the proposed framework. These
findings offer valuable insights into run-time verification for Industry 4.0 applications and con-
tribute to the existing body of knowledge in the field.

8.2 Future Work

One of the most noteworthy findings of this thesis is a novel approach proposed to verify Industry
4.0 applications using a compositional model checker and take into account the uncertainties of
the operation period. This approach opens up new avenues for future exploration and has the
potential to impact modern manufacturers to guarantee operation safety and maintain systems
more efficiently.

The research questions posed at the beginning of this thesis have been addressed, and the
conclusions are in alignment with the initial hypotheses. The data supports our claims, and
statistical analysis confirms the validity of our results.

Additionally, certain limitations in the research design that may have influenced the out-
comes are acknowledged. These limitations include:

1. Initial model creation highly depends on the expertise or a good quality historical dataset.

2. The sensor profiling process is not generic enough to be practical in the industry.

Despite these challenges, we believe the results remain robust and insightful.
As a conclusion of this thesis, there will always be new questions and unexplored areas

waiting for future researchers. They are encouraged to build upon this work and take it to new
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heights for future research in this evolving field. The possible future work includes the following
three directions:

1. The rules for deriving sensor network confidence scores are manually defined according
to expertise on a specific system basis. This should be generalised so that the proposed
approach can be applied to a wider range of systems.

2. A context-awareness adaptive algorithm is needed to reflect more general scenarios, e.g.,
the lift moves with and without passengers.

3. A hierarchical or structural probabilistic model is required to model more sophisticated
sensor network-based systems. For instance, to verify a modern building with smart lifts
and intelligent power control systems.

This study would not have been possible without the cooperation and participation of support
from industry partners, and we express our gratitude for their invaluable contributions. Further-
more, we acknowledge the support received from the Singapore EDB IPP grant and TÜV SÜD
Digital Service that made this research financially feasible.

In conclusion, this thesis has achieved its objectives by providing a comprehensive under-
standing and a novel formal verification approach to verify the Industry 4.0 applications’ run-
time behaviours and predict potential failures. The results have shed light on various aspects
and implications, contributing to the broader knowledge in the field, such as predicting a CNC
turn-mill machine failure rate in a certain period or providing predictive maintenance for an
operating lift.

I hope that this research will inspire and stimulate further investigations in this area. The in-
sights gained from this study can be applied in modern manufacturers, leading to advancements
and improvements in Industry 4.0 applications.

Once again, I extend my sincere gratitude to all those who have supported and encouraged
me throughout this academic endeavour.
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PRISM code

Following is the source code of individual cobot. It aims to verify the cobot’s behaviour accord-
ing to the requirements and specifications.

1 // Collaborative Robot

2 dtmc

3

4 // Parameterised rates by sensor confidence input

5 // assume sensor failure rate is failed one second per day

6

7 const double zone_confidence = 0.9893;

8 const double qr_confidence = 0.9999;

9 const double sensornetwork_confidence = 1;

10

11 //****** Above parameters will be input dynamically *******/

12 // Cobot states of cobot:

13 // standby -- 0.

14 // idle -- 1.

15 // zone detection -- 2.

16 // workpiece detection -- 3.

17 // execution -- 4.

18 // parking -- 5.

19 // stop -- 6.

20 // out of barrier -- 7

21 // e-stop -- 8

22 // error -- 9

23 // collision -- 10

24

25 module cobot

100
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26 cobot_status: [0..10] init 0;

27

28 [cob_start] cobot_status=0 -> 1:(cobot_status' = 1);

29 [] cobot_status=1 -> 1:(cobot_status' = 2);

30 [] cobot_status=2 -> (zone_confidence):(cobot_status' = 3)

+ (1-(zone_confidence)):(cobot_status' = 9);↪→

31 [] cobot_status=3 -> (qr_confidence):(cobot_status' = 4) +

(1-(qr_confidence)):(cobot_status' = 9);↪→

32 [] cobot_status=4 ->

(sensornetwork_confidence):(cobot_status' = 5) +

(1-(sensornetwork_confidence)):(cobot_status' = 7);

↪→

↪→

33 [] cobot_status=5 ->

(sensornetwork_confidence):(cobot_status' = 6) +

(1-(sensornetwork_confidence)):(cobot_status' = 7);

↪→

↪→

34 [cob_end] cobot_status=6 -> 1:(cobot_status' = 0);

35 [] cobot_status=7 -> 1:(cobot_status' = 8);

36 [] cobot_status=8 ->

(sensornetwork_confidence):(cobot_status' = 6) +

(1-(sensornetwork_confidence)):(cobot_status' = 10);

↪→

↪→

37 [cob_err] cobot_status=9 -> 1:(cobot_status' = 0);

38 [cob_err] cobot_status=10 -> 1:(cobot_status' = 0);

39 endmodule

40

41 label "complete" = cobot_status = 6;

42 label "detection_error" = cobot_status = 9;

43 label "collision" = cobot_status = 10;

44

Below is the process program to verify the behaviour of the painting process including two
cobots.

1 // Collaborative Robot

2 mdp

3

4 // Parameterised rates by sensor confidence input

5

6 const double sensornetwork_confidence = 0.3479727139406982;

7 const double lidar_confidence = sensornetwork_confidence;

8 //****** Above paremeters will be input dynamiclly *******/

9
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10 // Process states of painting system:

11 // idle -- 0.

12 // plan -- 1.

13 // workpiece detection -- 2.

14 // C1 -- 3.

15 // confirm state -- 4.

16 // C2 -- 5.

17 // failure -- 6

18

19 module process

20 process_status: [0..6] init 0;

21 move_done: bool init false;

22 painting_done: bool init false;

23

24 [] process_status=0 -> 1:(process_status' = 1);

25 [] process_status=1 -> 1:(process_status' = 2);

26 [] process_status=2 -> 1:(process_status' = 2);

27 // [c1_start] cobot_status=2 ->

(idar_confidence):(cobot_status' = 3) +

(1-lidar_confidence):(cobot_status' = 6);

↪→

↪→

28 [c1_start] process_status=2 -> 1:(process_status' = 3);

29 [c1_end] process_status=3 -> 1:(process_status' = 4) &

(move_done' = true);↪→

30 [c1_err] process_status=3 -> (process_status' = 6);

31 // confirm status of all devices

32 [c2_start] process_status=4 -> 1:(process_status' = 5);

33 [] process_status=4 & move_done & painting_done ->

(0.9875):(process_status' = 2) +

(1-0.9875):(process_status' = 6);

↪→

↪→

34 // [] process_status=4 ->

(sensornetwork_confidence):(process_status' = 2) +

(1-sensornetwork_confidence):(process_status' = 6);

↪→

↪→

35

36 [c2_end] process_status=5 -> 1:(process_status' = 4) &

(painting_done' = true);↪→

37 [c2_err] process_status=5 -> (process_status' = 6);

38 endmodule

39
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40 label "failure" = process_status = 6;

41

42 // Parameterised rates by sensor confidence input

43 // assume sensor failure rate is failed one second per day

44

45 const double zone_confidence = 0.9893;

46 const double qr_confidence = 0.9999;

47

48 //****** Above paremeters will be input dynamiclly *******/

49

50 // Cobot states of lift:

51 // standby -- 0.

52 // idle -- 1.

53 // zone detection -- 2.

54 // workpiece detection -- 3.

55 // execution -- 4.

56 // parking -- 5.

57 // stop -- 6.

58 // out of barrier -- 7

59 // e-stop -- 8

60 // error -- 9

61 // collision -- 10

62

63 module cobot1

64 cobot1_status: [0..10] init 0;

65

66 [c1_start] cobot1_status=0 -> 1:(cobot1_status' = 1);

67 [] cobot1_status=1 -> 1:(cobot1_status' = 2);

68 [] cobot1_status=2 -> (zone_confidence):(cobot1_status' =

3) + (1-(zone_confidence)):(cobot1_status' = 9);↪→

69 [] cobot1_status=3 -> (qr_confidence):(cobot1_status' = 4)

+ (1-(qr_confidence)):(cobot1_status' = 9);↪→

70 [] cobot1_status=4 ->

(sensornetwork_confidence):(cobot1_status' = 5) +

(1-(sensornetwork_confidence)):(cobot1_status' = 7);

↪→

↪→

71 [] cobot1_status=5 ->

(sensornetwork_confidence):(cobot1_status' = 6) +

(1-(sensornetwork_confidence)):(cobot1_status' = 7);

↪→

↪→
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72 [c1_end] cobot1_status=6 -> 1:(cobot1_status' = 0);

73 [] cobot1_status=7 -> 1:(cobot1_status' = 8);

74 [] cobot1_status=8 ->

(sensornetwork_confidence):(cobot1_status' = 6) +

(1-(sensornetwork_confidence)):(cobot1_status' = 10);

↪→

↪→

75 [c1_err] cobot1_status=9 -> 1:(cobot1_status' = 0);

76 [c1_err] cobot1_status=10 -> 1:(cobot1_status' = 0);

77 endmodule

78

79 module cobot2 = cobot1[cobot1_status=cobot2_status,

c1_start=c2_start, c1_end=c2_end, c1_err=c2_err]↪→

80 endmodule

81

82 label "detection_error" = (cobot1_status = 9|cobot2_status =

9);↪→

83 label "collision" = (cobot1_status = 10|cobot2_status = 10);

84



Appendix B

Normal Behaviour of Sensors

STATE SENSOR READINGS ESTIMATE RANGE

Open Pressure 101112.7222 ± 49.3098 [ 101127.7463, 101070.2508 ]

Accelerometer (x) 0.2471 ± 0.0493 [ 0.2492, 0.2421 ]

Accelerometer (y) 0.1291 ± 0.0411 [ 0.1358, 0.1278 ]

Accelerometer (z) 9.8495 ± 0.0476 [ 9.8531, 9.8458 ]

Door Accelerometer (x) 0.2284 ± 0.0507 [ 0.2339, 0.2230 ]

Door Accelerometer (y) -0.1401 ± 0.0573 [ -0.1355, -0.1456 ]

Door Accelerometer (z) 9.8909 ± 0.0610 [ 9.8961, 9.8847 ]

Door Magnetometer (x) 361.3239 ± 60.7937 [ 426.4904, 358.8167 ]

Door Magnetometer (y) -255.4435 ± 41.0223 [ -203.3242, -248.9581 ]

Door Magnetometer (z) -1012.8542 ± 49.6644 [ -979.2021, -1036.7485 ]

Opening Pressure 101111.6576 ± 50.7321 [ 101133.1830, 101080.1530 ]

Accelerometer (x) 0.2455 ± 0.0569 [ 0.2482, 0.2420 ]

Accelerometer (y) 0.1293 ± 0.0680 [ 0.1346, 0.1271 ]

Accelerometer (z) 9.8497 ± 0.0520 [ 9.8539, 9.8465 ]

Door Accelerometer (x) 0.2293 ± 0.1694 [ 0.2414, 0.2195 ]

Door Accelerometer (y) -0.1312 ± 0.4005 [ -0.0964, -0.1596 ]

Door Accelerometer (z) 9.8884 ± 0.4878 [ 9.9223, 9.8525 ]

Door Magnetometer (x) 407.1049 ± 302.7329 [ 463.3033, 333.9414 ]

Door Magnetometer (y) -286.1824 ± 679.9266 [ -277.3579, -579.8120 ]

Door Magnetometer (z) -1400.7753 ± 854.3010 [ -1204.0743, -1712.1645 ]

Closing Pressure 101113.1610 ± 50.6397 [ 101131.2448, 101072.1170 ]

Accelerometer (x) 0.2446 ± 0.0606 [ 0.2481, 0.2401 ]

Accelerometer (y) 0.1286 ± 0.0785 [ 0.1356, 0.1256 ]

Accelerometer (z) 9.8498 ± 0.0447 [ 9.8527, 9.8471 ]

Door Accelerometer (x) 0.2309 ± 0.1465 [ 0.2429, 0.2224 ]

Door Accelerometer (y) -0.1423 ± 0.3177 [ -0.1293, -0.1557 ]
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Door Accelerometer (z) 9.8939 ± 0.3541 [ 9.9126, 9.8706 ]

Door Magnetometer (x) 357.0492 ± 290.4521 [ 380.1966, 231.0807 ]

Door Magnetometer (y) -401.9241 ± 703.2059 [ -302.0236, -701.4637 ]

Door Magnetometer (z) -1643.3087 ± 769.1128 [ -1259.9963, -1755.2282 ]

Idle Pressure 101096.9727 ± 49.8653 [ 101127.5304, 101057.3916 ]

Accelerometer (x) 0.2465 ± 0.0376 [ 0.2498, 0.2414 ]

Accelerometer (y) 0.1299 ± 0.0352 [ 0.1354, 0.1246 ]

Accelerometer (z) 9.8497 ± 0.0396 [ 9.8533, 9.8452 ]

Door Accelerometer (x) 0.2332 ± 0.0376 [ 0.2385, 0.2277 ]

Door Accelerometer (y) -0.1610 ± 0.0368 [ -0.1531, -0.1699 ]

Door Accelerometer (z) 9.8905 ± 0.0390 [ 9.8984, 9.8846 ]

Door Magnetometer (x) 291.4004 ± 56.5600 [ 351.4418, 259.9940 ]

Door Magnetometer (y) -641.2680 ± 30.8843 [ -578.3093, -685.0291 ]

Door Magnetometer (z) -1617.2318 ± 87.5608 [ -1475.7214, -1665.2511 ]

Moving Pressure 101121.6097 ± 43.8236 [ 101134.5944, 101071.3317 ]

Accelerometer (x) 0.2405 ± 0.2321 [ 0.2540, 0.2293 ]

Accelerometer (y) 0.1277 ± 0.0946 [ 0.1338, 0.1213 ]

Accelerometer (z) 9.8502 ± 0.5205 [ 10.2128, 9.6135 ]

Door Accelerometer (x) 0.2316 ± 0.0550 [ 0.2365, 0.2263 ]

Door Accelerometer (y) -0.1562 ± 0.0687 [ -0.1422, -0.1685 ]

Door Accelerometer (z) 9.8908 ± 0.4942 [ 10.3320, 9.7330 ]

Door Magnetometer (x) 259.6374 ± 93.3942 [ 352.2076, 231.3671 ]

Door Magnetometer (y) -717.7221 ± 56.9472 [ -670.6700, -738.6191 ]

Door Magnetometer (z) -1448.2481 ± 152.1316 [ -1366.2226, -1591.3664 ]
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Full experiment result of six scenarios
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Table C.1: Sensor confidence score and failure probability.
Test Case Sensor Confidence Score Failure Probability

TC1 1.000 0.0125

TC2 dataset#1 0.883 0.1054
TC2 dataset#2 0.8999 0.093
TC2 dataset#3 0.8776 0.1097
TC2 dataset#4 0.8862 0.1029
TC2 dataset#5 0.9006 0.0925
TC2 dataset#6 0.8796 0.1081
TC2 dataset#7 0.8815 0.1066
TC2 dataset#8 0.8995 0.0933
TC2 dataset#9 0.9029 0.091

TC3 dataset#1 0.8183 0.1671
TC3 dataset#2 0.8311 0.1532
TC3 dataset#3 0.817 0.1685
TC3 dataset#4 0.8183 0.1671
TC3 dataset#5 0.8241 0.1607
TC3 dataset#6 0.8152 0.1706
TC3 dataset#7 0.8253 0.1594
TC3 dataset#8 0.8183 0.1671
TC3 dataset#9 0.8279 0.1567

TC4 dataset#1 0.8055 0.1817
TC4 dataset#2 0.802 0.1858
TC4 dataset#3 0.8106 0.1758
TC4 dataset#4 0.811 0.1754
TC4 dataset#5 0.8059 0.1812
TC4 dataset#6 0.8043 0.1831
TC4 dataset#7 0.7992 0.1891
TC4 dataset#8 0.8122 0.174
TC4 dataset#9 0.8046 0.1828

TC5 0.6735 0.3635

TC6 0.3814 0.7905
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