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Abstract 
Though many vaccines exist to confer protection from Influenza A 
viruses, they remain viruses of great concern in both mammalian and 
avian species. Influenza A viruses circulate in many wild, domestic 
and human species; often with the potential to transmit between 
these populations. Emergence in these other populations can lead to 
widespread transmission and/or severe pathology and indeed has 
occurred multiple times over just the last century.  
As obligate pathogens, influenza viruses are only able to evolve during 
infection of hosts, as it is the only setting in which they can replicate. 
However, in addition to the local environment (i.e. the infected host) 
influenza viruses must also adapt to transmission between hosts. 
Differences between hosts can be minimal but may be as dramatic as 
alternative tissue tropism or even host species. This work aims to 
study how influenza viruses evolve both within infected hosts and 
across transmission events, and the interaction between these two, 
sometimes competing, ecological niches that viruses must adapt to. 
Integral to the continued success of influenza viruses is the ability to 
circumvent the host immune system. Host adaptive immunity places 
strong selective pressures upon viral populations. Transmission 
experiments were carried out in which mixed populations of horses 
(either vaccinated or unvaccinated) were sequentially exposed to one 
another to create a five-step chain of transmission. The first 
experiment mixed naive individuals with horses that had received a 
multivalent vaccine, the second mixed naive horses with hosts that 
had received a univalent vaccine. Horses were nasally-swabbed daily 
in order to collect shed virus particles which could then be quantified 
and deep-sequenced.  
137 qPCR values and 53 sequences of viral populations were 
collected. Differences in viral load, consensus genomes and low-
frequency mutations were observed across transmission chains and 
between vaccinated and unvaccinated hosts. Unvaccinated horses 
shed more virus than their vaccinated counterparts, though this 
difference was much greater when comparing naive hosts to those 
that received a multivalent vaccine. Conversely, genomic diversity at 
the consensus level appeared highest in hosts that received the 
monovalent vaccine - suggesting strong selective pressures that 
mutations are attempting to overcome. This genetic diversity 
however was not reflected in sub-consensus reads, where lessened 
selective pressures allowed for greater diversification of viruses 
replicating in unvaccinated hosts.   
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1 Introduction 1 

1.1 Impact & Importance of Influenza Viruses 2 

IAVs generally possess high transmissibility and moderate lethality and so these 3 
viruses can result in large losses of life and/or Disability-Adjusted Life Years (DALY) 4 
in a variety of species (Hicks et al., 2020). Global human influenza mortality was 5 
estimated at 290,000–645,000 (Iuliano et al., 2018), however this figure was 6 
calculated prior to the COVID-19 pandemic which is assumed to have drastically 7 
altered the landscape of infectious respiratory diseases. Accounting for the burden 8 
of illness without mortality, the European Centre for Disease Prevention and Control 9 
estimated 52.6 DALYs per 100,000 inhabitants of the European Union population 10 
(Cassini et al., 2018). This dwarfs the 15.5 DALYs estimated for the impacts of 11 
COVID-19 on the size-scaled population of Scotland by Wyper et al. (2022).  12 

IAVs cause disease through viral cytotoxicity and/or immunopathology (Belser et 13 
al., 2020). Innate immune involvement causes most of the commonly observed 14 
symptoms (fever, myalgia, malaise, rhinitis and dry cough) though seasonal influenza 15 
is generally self-limiting in the immunocompetent (Nicholson, 1992; Ryu & Cowling, 16 
2021). Mortality from seasonal influenza most commonly results from secondary 17 
bacterial infections (Cullinane & Newton, 2013; Klenerman & Zinkernagel, 1998; 18 
Wood & Grenfell, 2009). Emergence of novel influenza viruses (i.e. pandemic ’flu’) 19 
is often associated with higher morbidity and mortality due to a lack of adaptive 20 
immune memory in the population. IAVs expressing a substantially novel antigenic 21 
type can lead to the over-activation of innate immune cells and molecules causing 22 
severe, potentially life-threatening, immunopathology referred to as a Cytokine 23 
Storm. Additionally, IAV in domestic chickens is often classified based on its 24 
virulence into low- or high-pathogenicity avian influenza [L/HPAI] (Abdel-Moneim et 25 
al., 2010; Ganti et al., 2021; Monne et al., 2014). 26 

1.2 Influenza A Viruses 27 

1.2.1  Virus Structure 28 

Inside the virion, the eight genomic segments are complexed with the viral 29 
polymerase and surrounded by nucleoprotein. The envelope membrane is acquired 30 
from the host cell on exiting and is studded with three viral proteins: 31 
haemagglutinin, neuraminidase and matrix (M2) channels. While Figure 1.1 32 
represents the virion spherically, it should be noted that the morphology of influenza 33 
viruses is somewhat variable, ranging from spherical to bacilliform to filamentous 34 
(Chlanda et al., 2015; Seladi-Schulman et al., 2014). 35 
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 36 
Figure 1.1: Cartoon representation of an Influenza A virion, with an expanded view of a genomic 37 
segment. Adapted from Grant et al. (2014) and produced using BioRender.com 38 

Influenza A Viruses are differentiated through the subtyping of their two 39 
surface proteins: haemagglutinin (HA), with eighteen subtypes (H1-H18), and 40 
neuraminidase (NA), with eleven subtypes (N1-N11). As these proteins are exposed 41 
on the extracellular surface of the virion, they are the major antigens of the 42 
influenza virus. They facilitate viral entry into (HA), and release from (NA) the host 43 
cell and so their activities bracket the replication cycle. Classically, HA and NA are 44 
the targets of adaptive immunity and, consequently, vaccine development. Both 45 
proteins allow viral sub-classification based on sequence diversity (Figure 1.2): 46 
haemagglutinin sequences  may be divided into two groups, while neuraminidase 47 
sequences form three groups, one of which comprises the subtypes N10 and N11, 48 
which are substantially different from the other subtypes (Ekiert et al., 2011; Wu et 49 
al., 2014). 50 
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 51 
Figure 1.2: A) Haemagglutinin and B) Neuraminidase sequences are divided into 2 and 3 subtypes 52 
respectively. Both trees have shaded areas representing subtypes found exclusively in bats, to 53 
emphasise their stark divergence from other influenza viruses. Adapted from Wu et al. 2014 54 

 55 
1.2.2 Viral Genome Organisation 56 

The genomes of IAV are organised into eight distinct negative-sense RNA 57 
segments numbered in decreasing order of length in nucleotides (Figure 1.3). Their 58 
negative-sense, single stranded genome taxonomically places them within the family 59 
Orthomyxoviridae of the Negarnaviricota phyla, alternatively allocated within 60 
Group IV of the Baltimore classification system (Lefkowitz et al., 2018; Walker et 61 
al., 2022). Each RNA segment is tightly packed by the nucleoprotein , which in turn 62 
folds into a hairpin structure with the polymerase complex (Bera et al., 2017) holding 63 
both the 3’ and 5’ ends; overall this is known as the ribonucleoprotein (RNP). 64 
Noncoding sequences at the ends of each genome segment are conserved between 65 
all segments in all influenza viruses. 66 

The heterotrimeric polymerase complex is comprised of Polymerase Basic protein 67 
2 (PB2), Polymerase Basic protein 1 (PB1) and Polymerase Acidic protein (PA). The 68 
PB2 protein binds the cap of host pre-mRNA molecules in order to begin the cap-69 
snatching process (Gocnikova & Russ, 2007) while PB1 conjugates RNA bases together 70 
during replication of the viral genome. PA is integral to the replication cycle of IAV 71 
within the cell and acts by cleaving the cap from host mRNA (Rash et al., 2014). 72 
Additionally, the other proteins present in the polymerase complex are structurally 73 
secured by PA.  74 
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Figure 3: A) Haemagglutinin and B) Neuraminidase sequences are divided into two and three 
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 75 
Figure 1.3: Equine H3N8 Influenza A genomic organisation. Nucleotides of the eight genomic 76 
segments are annotated in green with corresponding amino acids on the coding regions of each 77 
segment. 78 

Haemagglutinin (HA) is a homotrimeric surface protein that mediates cell entry 79 
by binding to sugar moieties called sialic acids and initiating receptor-mediated 80 
endocytosis via endosome-acidification (Russell, 2021; Schotsaert & García-Sastre, 81 
2014). 82 

Nucleoprotein (NP) is involved in nuclear import & viral packaging (Abdel-Moneim 83 
et al., 2011). All viral RNA synthesis occurs in the nucleus, where trafficking of large 84 
molecules is tightly regulated by the cell. Viral RNPs are too large for passive 85 
diffusion across the nuclear membrane and thus rely on an active nuclear import 86 
mechanism. All proteins in the RNP complex possess nuclear localisation signals 87 
(NLSs). The transport of proteins across the nuclear membrane is an active process 88 
initiated by karyopherin α upon recognition of a protein presenting an NLS.  89 

Neuraminidase (NA), the second antigenic surface protein, is a homotetramer 90 
responsible for disassociation from the host cell during viral exit (von Itzstein, 2007). 91 
This carbohydrase cleaves sialic acids from host cell surface proteins so that 92 
emigrating virus does not get re-attached to a previously infected cell.  93 

Segment 7 encodes both Matrix 1 (M1) and Matrix 2 (M2) proteins, via splicing of 94 
primary transcripts (explored below: 2.3.4). M1 is the most abundant protein in the 95 
virion. It is situated just beneath the viral envelope where it binds both the 96 
cytoplasmic tails of membrane glycoproteins and RNPs, thus connecting inner core 97 
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Figure 1: Equine H3N8 IAV genomic organisation. Nucleotides of the eight genomic 
segments are annotated with corresponding amino acids on the coding regions of each. 
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components to surface proteins (Selzer et al., 2020). M1 interacts with both RNP and 98 
Nuclear Export Protein (NEP) and the cytoplasmic tail of M2. M1 may therefore also 99 
assist with packaging by recruiting virion components to the assembly site at the 100 
host cell’s plasma membrane. The M2 tetramer mediates viral unpackaging once the 101 
virion is endocytosed by enabling a proton gradient sufficient to cause membrane 102 
conformational changes that in turn allows membrane fusion and viral escape from 103 
the endosome (Ito et al., 1999). 104 
Segment 8 encodes 2 distinct proteins, again with the help of mRNA splicing. Non-105 
Structural protein 1 (NS1) down-regulates host RNA translation and instead causes 106 
the cell to favour production of viral proteins (Chauché, 2017; Clark et al., 2017). It 107 
also modulates host cell innate immunity, most notably as an antagonist of cellular 108 
interferon-mediated responses to viral infection. Nuclear Export Protein interacts 109 
with nuclear transport proteins (nucleoporins) of the host cell, enabling viral 110 
genomes to cross the nuclear membrane. 111 
 112 
1.2.3 Influenza A Virus Replication 113 

Like other Orthomyxoviruses, EIV utilises a fast, error-prone RNA polymerase 114 
throughout genomic replication (Lauring, 2020). The viral life-cycle can be sub-115 
divided into a number of processes, beginning with viral attachment and ending with 116 
the budding of new virions. 117 
1.2.3.1 Attachment  118 

Influenza viruses bind sugar moieties called sialic acids on the surface of 119 
epithelial cells to initiate infection. Viruses adapted to different species show 120 
specificity in the sialic acids to which their HA binds (Kuiken et al., 2006). 121 
Haemagglutinin does not exclusively bind a single type of sialic acid; yet preferential 122 
binding to certain sialic acid moieties can determine viral tropism and host range 123 
(von Itzstein, 2007). Mammalian and avian epithelial cells can present multiple forms 124 
of sialic acids in various proportions, across different tissues (Feng et al., 2015; Yang 125 
et al., 2022). Mammalian IAV most often has the greatest affinity for sialic acids 126 
which are attached to host cell surface carbohydrates by an α2,6 linkage (SAα-2,6-127 
Gal). Epithelial cells lining the upper respiratory tract of mammals usually have 128 
higher proportions of SAα-2,6-Gal moieties than cells deeper in the respiratory tree 129 
– hence shaping tropism of IAV infections.  130 

Conversely, avian viruses bind to sialic acids with an α2,3 linkage (SAα-2,3-Gal), 131 
more commonly found through the gastrointestinal tract of waterfowl than in the 132 
respiratory tract (Abdel-Moneim et al., 2010). Due to this, IAV infections in birds 133 
lead to GI symptoms & pathology. Moreover, this adaptation to strongly bind α2,3-134 
linked sialic acids presents additional risks if/when avian IAV jump species barriers 135 
(Lipsitch et al., 2016). As mentioned above, epithelial cells in mammalian upper 136 
respiratory tracts present SAα-2,6-Gal; however, cells deeper in the bronchi and 137 
lungs do have α2,3-linked sialic acids. For this reason, infection of mammals with 138 
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avian-adapted IAV can lead to more severe lower respiratory disease (Yan & Chen, 139 
2012). 140 
1.2.3.2 Fusion and Uncoating 141 

After haemagglutinin mediates binding to the cell surface, the virion is 142 
endocytosed. The low pH within the endosome activates fusion of the viral 143 
membrane with that of the endosome in order to remove the coat of the virus. Viral 144 
envelope fusion is induced by a structural change in haemagglutinin. Inside the 145 
acidic environment of the endosome, HA is cleaved into two proteins: HA1 and HA2. 146 
This exposes the fusion peptide at the N-terminus of HA2 which is able to insert itself 147 
into the endosome membrane, joining it to the viral envelope. Remaining 148 
haemagglutinin subunits then enter the endosomal membrane forcing open a 149 
channel, which releases viral RNPs (vRNP) into the host cell cytoplasm. M2 is located 150 
sparsely throughout the viral envelope enabling ion channel activity in acidic 151 
environs. An influx of protons from the acidic endosome into the virion denatures 152 
protein interactions, causing the release of RNP from the M1 matrix layer within the 153 
virion. 154 
1.2.3.3 Transcription 155 

After uncoating, genomic segments complexed with NP and the polymerase (viral 156 
ribonucleoproteins [vRNPs]) are actively transported into the nucleus by 157 
nucleoporins. Incoming negative-sense genomic segments are transcribed within the 158 
host cell nucleus. Frame-shifting during the transcription of segment 2 enables 159 
access to two alternate open reading frames, leading to the creation of PB1-F2 and 160 
PB1-N40 mRNA rather than the mature PB1 transcript. 161 
1.2.3.4 Splicing  162 

Orthomyxoviruses can increase the efficiency of their genomes by encoding 163 
multiple proteins from a single gene via an alternative splicing mechanism. Segments 164 
7 and 8 translate proteins from both spliced and unspliced mRNA transcripts. They, 165 
however, lack the efficiency of cellular splicing, and must express proteins from 166 
both spliced and unspliced mRNA transcripts simultaneously. Controlling the 167 
proportion of spliced to unspliced transcripts must be balanced, and there are 168 
limited ways in which the virus itself can regulate this. Transcripts can only be 169 
spliced inside the nucleus, so increasing the rate at which the unspliced mRNA is 170 
exported from the nucleus reduces the rate at which the transcripts are spliced. 171 
1.2.3.5 Regulating Gene Expression 172 

IAV does not need to express every protein at all stages of the replication cycle. 173 
Proteins can be produced at different proportions throughout the cellular replication 174 
cycle and can mark transitions between stages of replication. Much of the regulation 175 
of gene expression is controlled at the translational level and, in some cases, is 176 
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partly responsible for cytopathic effects of infection. IAVs can modulate translation 177 
of their own genes and suppress host cell protein synthesis. 178 
1.2.3.6 Translation 179 

Translation of viral proteins utilises cellular ribosomes, unlike replication of 180 
genome segments, and thus requires viral mRNA to be adapted for cellular 181 
translation processes. The heterotrimeric viral RNA-dependent RNA polymerase 182 
(RdRp, referred to as RNApol and also replicase) is composed of PB2, PB1 and PA 183 
proteins bound to the 5` and 3` ends of the genome-nucleoprotein complex (Dias et 184 
al., 2009).  185 

As vRNP are present within the host cell nucleus, the RdRp can bind nearby 186 
cellular transcripts. These host transcripts, produced by cellular DNA-dependent 187 
RNA polymerase II (RNAP2) have short (10-13 nucleotides) primers attached which is 188 
then cleaved by endonuclease activity in the PA portion of viral RdRp (De Vlugt et 189 
al., 2018). Primers are then attached to the viral mRNA, creating hybrid virus-host 190 
transcripts which are exported from the nucleus and passed to cellular translation 191 
machinery. A by-product of this is a suppression of host cell metabolic processes; as 192 
cellular transcripts lack the primers necessary for translation, host proteins become 193 
less likely to be produced than viral proteins. 194 
1.2.3.7 Genomic Replication  195 

Genomic RNA is replicated from the negative-sense ssRNA genome of infecting 196 
viruses. Within the nucleus of an infected cell, RdRp replicates each genomic 197 
segment. Complementary RNA (cRNA), a positive-sense ssRNA strand, is then 198 
transcribed which complements the original RNA of the genome segment. This cRNA 199 
then acts as the template strand for both generating transcripts and replication of 200 
the genome. 201 
1.2.3.8 Packaging  202 

Components of the new progeny virions congregate at the apical surface of 203 
infected epithelial cells. Transmembrane proteins associate with the cellular 204 
membrane in what will become the viral envelope. Non-structural viral proteins and 205 
vRNP complexes assemble near the cell membrane and are incorporated into the 206 
budding virion. 207 
1.2.3.9 Budding  208 

Once assembled, the virion pushes through the cell lipid bilayer, taking part of 209 
the latter to form the viral envelope. While the factors determining viral morphology 210 
are still not fully understood, the cellular cytoskeleton, actin filaments and viral M1 211 
and M2 proteins are all known to be implicated in influencing how spherical or 212 
filamentous each particle is. 213 



   
 

21 
 

1.3 Influenza Evolution 214 

Influenza virus evolution and diversity is underpinned by a number of features. 215 
In addition to a relatively high nucleotide substitution rate (Zhao et al., 2019), the 216 
segmented genome structure enables large-scale genomic reassortment. 217 
Interestingly, the evolutionary rates of the influenza A genome, as explored by clock 218 
models, is not consistent between sub-populations, over the course of infection or 219 
even between different segments of the same overall virus (Kühnert et al., 2011). 220 
Genomic segments range in size and in the number of proteins they encode. For 221 
example, non-synonymous nucleotide changes may be less well tolerated in regions 222 
encoding active sites in proteins than those encoding purely structural regions. 223 
Additionally, different Influenza proteins experience different selective pressures, 224 
the result of which is internal non-structural proteins being more conserved than 225 
surface-exposed antigenic proteins. It should also be noted that due to the unusual 226 
architecture of IAV genomes, mutations in the overlapping regions of coding 227 
sequences could potentially impact two separate proteins. 228 

1.4 Mechanisms of Viral Evolution 229 

1.4.1 Nucleotide Substitutions 230 

After entry into a host cell, IAV begins its replication cycle. The lack of proof-231 
reading capabilities in the viral RNA polymerase is an important source of genomic 232 
variation. Substitution rates of IAV vary substantially across hosts and viral strains 233 
with rates ranging from 1.35 x 10-3 substitutions/site/year in equine influenza 234 
viruses  (Murcia et al., 2011), 2.70 x 10-3 in swine IAV (Dunham et al., 2009) to 3.66 235 
x 10-3 in human IAV (Smith et al., 2009). The rapid, error-prone replication of IAV 236 
genome segments permits the misincorporation of nucleotides into genes by the viral 237 
RNA polymerase. In coding sequence, these point mutations can either be 238 
synonymous (with no amino acid change, due to codon redundancy), nonsynonymous 239 
(inducing an amino acid change) or nonsense (encoding premature stop codons). As 240 
they are more likely to have a minimal (if any) effect on viral fitness, synonymous 241 
mutations are less liable to be subject to selective pressures, and therefore less 242 
likely to be removed from the population. Nonsynonymous and nonsense mutations 243 
may lead to lethal mutations where proteins are made so inefficient that the virus 244 
cannot function competitively. The gradual accumulation of selectively neutral 245 
point mutations in a population contributes to the phenomenon known as genetic 246 
drift. 247 

These conclusions are however based the presupposition that mutations act 248 
independently; more complex interactions between multiple genomic mutations 249 
(genetic linkage) can affect the fate of mutations in unexpected ways. These 250 
epistatic relationships between mutations have been observed in both IAV 251 
nucleoprotein (Gong et al., 2013) and neuraminidase (Pedruzzi & Rouzine, 2021) 252 
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genes as well as across the entire genome (Lyons & Lauring, 2018); applying hitherto 253 
understudied constraints and/or allowances upon IAV evolution. Especially in regions 254 
subject to strong selective pressures (e.g. antigenic epitopes), mutations that may 255 
be otherwise detrimental can be “saved” by such epistasis and maintained in the 256 
genome without a decline in fitness (Kryazhimskiy et al., 2011; Lee et al., 2023). 257 
The complexity of separating mutations that happen to co-occur from those that 258 
display some level of interactivity is difficult but could unlock understanding of viral 259 
attempts to escape antiviral-therapeutics or to sustain them while they cross fitness 260 
valleys associated with cross-species transmission.  261 
1.4.2 Reassortment 262 

Another source of diversity in an IAV population is the capability for genetic 263 
shift, which is defined as the reassortment of influenza genomic information 264 
(Bountouri et al., 2011). Viral reassortment, the incorporation of genomic segments 265 
originating from a different parental viruses into a single progeny virus, allows for a 266 
substantial amount of genetic diversity to be generated very rapidly. Reassortment 267 
is viable in viruses with segmented genomes. Genetically distinct viruses co-infecting 268 
a host cell can mispackage genome segments from one variant into another creating 269 
a composite viral genome with one or more non-native genomic segment(s) (Marshall 270 
et al., 2013; Vijaykrishna et al., 2015). Reassortment allows viruses to surpass host 271 
adaptive immunity much faster than can be done by relying on the accumulation of 272 
point mutations alone (Ding et al., 2021). When reassortment leads to changes in 273 
haemagglutinin and/or neuraminidase activity of the virus, it is termed an ’antigenic 274 
shift’. Reassortment accounts for a large part of IAV pandemic potential; spillover 275 
into novel host populations may be possible with the incorporation of proteins with 276 
binding affinity to novel hosts (Lindstrom et al., 1998). However, observations of 277 
both experimental and natural infections show that diversifying reassortment events 278 
are rare (Rabadan et al., 2008). Furthermore, the viruses within a single host are 279 
usually sufficiently genetically similar that reassortment events may not lead to 280 
gross genomic change; even if, during the assembly and packaging process, gene 281 
segments from a non-parental virus can be incorporated into a progeny virus’ 282 
segments being genetically identical are overwhelmingly high (Lauring, 2020). 283 

Direct recombination of information between unrelated viral segments is 284 
possible and may be facilitated by the interruption of viral RNA polymerase during 285 
replication and the switch to an alternate template strand on resumption of 286 
transcription (Vijaykrishna et al., 2015). However, homologous (the polymerase 287 
switches to the same site on both templates) and non-homologous (the polymerase 288 
resumes transcription at a different site on the secondary template strand) 289 
recombination occurs rarely in vivo, if at all. In fact, reports of experimental IAV 290 
recombination are generally understood to instead be caused by laboratory 291 
contamination (Lefeuvre et al., 2009; Pérez-Losada et al., 2015). Due to lack of 292 
evidence both in vivo (De et al., 2016) and in vitro (Han & Worobey, 2011), 293 
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recombination in IAV is expected to have little to no impact on IAV evolution (Boni 294 
et al., 2010; Lauring, 2020). 295 

Both recombination and reassortment are predicated upon co-infection of a 296 
single host cell by multiple viral particles (Marshall et al., 2013), further decreasing 297 
the likelihood of in situ occurrences influencing influenza population evolution. As 298 
these evolutionary mechanisms depend strongly on co-infection, the viral population 299 
size, seeding dose and timing of infections may be considered risk factors for such 300 
dramatic evolutionary changes. 301 
1.4.3 Selection 302 

Each segment of the influenza genome is capable of mutational plasticity 303 
(that is, the ability to tolerate mutations with limited fitness consequences), and 304 
each step of the replication cycle provides an opportunity for nucleotide 305 
substitution.  306 

This broad range of plasticity is not without boundaries; genomes with 307 
excessive mutations run the risk of encoding unstable, or even wholly ineffectual, 308 
proteins leading to the evolutionary fitness of the virion plummeting. The principles 309 
of Müller’s Ratchet (Chao, 1990; Muller, 1932), displayed in Figure 1.4, show the 310 
necessary balance between genomic stability and plasticity. These limits on 311 
potential mutational plasticity, termed the error threshold (Domingo & Perales, 312 
2019), nudge mutational capacity into a classic gaussian distribution. 313 

 314 
Figure 1.4: A simple explanation of a fitness landscape, wherein fitness of the hypothetical viral 315 
feature in question is distributed normally. The blue area shows where in the landscape the virus 316 
can compete successfully, the grey tails show where Müller’s ratchet begins to remove viruses 317 
from the population. 318 
 319 
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Figure 1: A simple explanation of a fitness landscape, wherein fitness of the hypothetical viral feature in question 
is distributed normally. The blue area shows where in the landscape the virus is able to compete and reproduce 
successfully, the grey tails show where Müller’s ratchet begins to remove viruses from the population.
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Figure 4: A simple explanation of a fitness landscape, wherein fitness of the hypothetical viral feature in question is 
distributed normally. The blue area shows where in the landscape the virus can compete successfully, the grey tails 
show where Müller’s ratchet begins to remove viruses from the population.
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1.5 Antigenic Escape  320 

Influenza viruses most often cause acute infections of their hosts. A population 321 
of founder viruses colonises the host, establishes an infection of the respiratory tract 322 
and is then transmitted by the individual. Usually, IAV is cleared within 323 
approximately 14 days, the time taken to mount an adaptive immune response 324 
(Bonilla & Oettgen, 2010). Once B cells have undergone somatic hypermutation and 325 
affinity maturation of the B cell receptor, clonal expansion begins; this process 326 
usually eradicates all IAV particles from the host. Influenza A must overcome these 327 
selective pressures in order to survive. 328 
1.5.1 Protein Structure and Immune Recognition 329 

 Influenza A viruses have three transmembrane proteins embedded within the 330 
lipid bilayer envelope acquired from the host cell, namely haemagglutinin, 331 
neuraminidase and the M2 ion channel (Woodward et al., 2015). Due to its small size 332 
(Virmani et al., 2011), relatively conserved sequence (Ito et al., 1991), and 333 
positioning (as a transmembrane channel, spatially M2 barely reaches beyond the 334 
height of the envelope itself) M2 will be disregarded in the present discussion of 335 
antigenic extra-virion proteins. Both HA and NA have distinct ‘stalk’ domains 336 
embedding them within the viral envelope together with ‘head’ domains, which hold 337 
the active sites of both of these cleavage enzymes (DuBois et al., 2011). Classically, 338 
these head domains are the targets of cells and molecules of the host’s adaptive 339 
immune system (Tusche et al., 2012). Consequently, they are under strong selective 340 
pressures to change structurally in order to evade targeted neutralisation and 341 
removal by the host (Neverov et al., 2015). However, researchers are now seeking 342 
to develop immunogens targeting the more conserved stalk domains of these 343 
proteins (Arevalo et al., 2020). This approach is aimed at maintaining vaccine 344 
efficacy for multiple years, in contrast to the current vaccines which are updated 345 
annually in order to account for frequent structural changes in the HA and NA head 346 
domains (Flannery et al., 2016). 347 

As discussed above (1.3 Influenza A Virus Replication), HA begins the process 348 
of viral entry while NA facilitates release from the host cell. Mature haemagglutinin 349 
trimers bind sialic acids on the surface of epithelial cells (Boukharta et al., 2014). 350 
The distribution of cells with these carbohydrates differs between hosts. Classically, 351 
avian influenza presents as an enteric disease in wild birds since α-2,3-sialic acids 352 
are found in the highest concentration in the digestive tract (Lazniewski et al., 353 
2018). Mammalian infections are, instead, localised in the airways due to the 354 
abundance of α-2,6-sialic acids on epithelial cells of the upper respiratory tract 355 
(Righetto & Filippini, 2018). However, cells presenting α-2,3-sialic acids reside in 356 
the lower respiratory tract of mammals and for this reason a persistent IAV infection 357 
may broach deeper in the lungs and cause a viral pneumonia. 358 

The neuraminidase tetramer also cleaves sialic acid moieties, though at the 359 
terminals of the carbohydrate (Saito et al., 1993). This prevents the virus sticking 360 
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to the host cell; as the virion buds, HA will naturally begin to bind and attempt to 361 
re-enter the cell it just left. As NA is far less abundant than HA, and is organised 362 
with some polarity (Vahey & Fletcher, 2019), sialic acid removal is focused on the 363 
part of the virus closest to the progenitor cell. This ensures that the virus is likely 364 
to move away from the cell from which it has just budded without interfering with 365 
the next viral entry and replication cycle (Chen et al., 2018). 366 
1.5.1.1 Antigenic Drift 367 

The gradual accumulation of point mutations specifically in the epitopes of 368 
surface proteins is termed antigenic drift, as the epitope targets to which adaptive 369 
immunity was previously protective have now sufficiently changed in conformation 370 
as to make newly circulating strains unrecognisable to previously protective 371 
antibodies (Rouzine & Rozhnova, 2018). Antigenic drift is facilitated largely by the 372 
huge array of genetic variation in a viral population (Poon et al., 2016; Righetto & 373 
Filippini, 2018). Mutations within antigen genes encoding proteins such as HA or NA 374 
may cause epitopes to change to such a degree that they are unrecognisable, or at 375 
least far less liable to binding, by immune cells and molecules (Lee et al., 2016). 376 
Strong selective pressures from host adaptive immunity are exerted on HA and NA, 377 
leading to a higher evolutionary rate in these genes and particularly within the 378 
epitope regions compared to the other six genomic segments (Pauly et al., 2017). 379 
Antigenic drift is also responsible for seasonal influenza. Nonsynonymous mutations 380 
to surface proteins occur so rapidly that the binding affinity of adaptive immune 381 
cells and molecules originally developed against virus circulating in the previous year 382 
is weakened or entirely negated. This necessitates vulnerable populations to receive 383 
IAV vaccines annually, as there is no assurance that antibodies from the previous 384 
winter will be able to bind IAV sufficiently strongly to grant protective immunity. 385 
1.5.1.2 Antigenic Shift 386 

Antigenic shift is a particular form of reassortment, wherein segments four 387 
(HA) and/or six (NA) of the influenza A genome are contributed by a genetically 388 
distinct virus and are incorporated into a nascent virion. Thus, a reassortant virus is 389 
created with antigenic surface proteins distinctly different from those of the 390 
parental virion. If the changes to proteins are sufficiently different, the resulting 391 
virus could be completely unrecognisable to the immune memory of ensuing hosts. 392 
As the host in which the reassortant virus developed (sometimes referred to as the 393 
mixing host) must necessarily be co-infected by two or more distinct IAV subtypes, 394 
we would expect them to develop immune responses to both parental strains. On 395 
transmission to another host however, the presentation of unrecognisable surface 396 
proteins may require the development of completely novel adaptive immune 397 
responses; additionally, potentially contributing to the immunopathology and 398 
cytokine storm syndromes often reported in infections with newly-emergent IAV. 399 

Though antigenic shift events are rare, when they do occur it often involves 400 
a collision of host reservoir populations. For example, the 1918 H1N1 pandemic was 401 
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the result of reassortment of segments from avian-adapted IAV into human-adapted 402 
IAV, possibly within a swine intermediary host. Swine are susceptible to a range of 403 
influenza A viruses and so can act as ‘mixing vessels’ (Canini et al., 2020; Lewis et 404 
al., 2016). Following this reassortment event, the virus remained adapted to human 405 
hosts but now contained avian surface proteins that were unrecognisable by any 406 
previously existing adaptive immunity in the human population. 407 

Most of the four human influenza pandemics which have occurred since the 408 
turn of the 20th century (“Spanish Flu (H1N1)”: 1918, “Asian Flu (H2N2)”: 1957, 409 
“Hong Kong Flu (H3N2)”: 1968 and “Swine Flu (H1N1pdm09)”: 2009) have been as a 410 
consequence, at least in part, of antigenic shift (Figure 1.5). A novel H1N1 virus 411 
emerged in humans in the US around 1918 which contained avian genomic segments. 412 
Reassortment of this virus with other avian IAV resulted in virus with novel segments 413 
4 and 6 (H2N2) leading to the pandemic of 1957, which later shifted in 1968 with 414 
another novel haemagglutinin gene (H3N2). Finally, the 2009 “swine flu” outbreak 415 
originated with an entirely novel H1N1 reassortant virus composed of swine, avian 416 
and human genomic segments. 417 

 418 
Figure 1.5: Viruses from human influenza pandemics since the beginning of the 20th Century. To 419 
highlight the importance of reassortment, viral genomes are shown as grids; with genomic 420 
segments 1-8 coloured according to the host from which they originated.  421 
1.5.1.3 Original Antigenic Sin 422 

The anti-IAV host immune response may also be hampered by previous exposure 423 
history, according to the theory of Original Antigenic Sin (OAS). This theory, put 424 
forward initially by Francis et al. (1960), concerns adaptive immune recognition of 425 
influenza A virus strains. When first exposed to IAV, immunocompetent individuals 426 
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will mount innate and subsequently adaptive immune cascades resulting in the 427 
development of (among others) memory B cells with corresponding epitope-binding 428 
antibodies specific to the infecting influenza strain. These memory responses enable 429 
rapid re-activation of adaptive immunity should the immunogen appear in the body 430 
again. Original Antigenic Sin hypothesis then contrasts the over-simplification that 431 
novel memory responses are generated for each new pathogen encountered. Rather 432 
than undergoing new clonal selection processes, OAS holds that the “good enough” 433 
binding of previous influenza memory cells will forego generation of a novel B cell 434 
repertoire and instead reactivate an adaptive memory cascade reusing existing 435 
memory cells (Monto et al., 2017). This set of imperfectly matched antibodies would 436 
then be capable of binding to pathogen epitopes, but at a reduced efficiency 437 
compared to antibodies generated during the primary exposure to influenza. 438 
Humoral immune responses, such as opsonisation and neutralisation, would be 439 
unable to bind altered viral proteins with the same strong affinity as they did to the 440 
Original Antigen. 441 

OAS is sometimes referred to as “antigenic seniority’ (Henry et al., 2018), 442 
indicating the bias of the immune system towards the first IAV strain encountered. 443 
Original Antigenic Sin theory predicts that the strength of an adaptive immune 444 
response to a completely novel influenza strain may in fact be stronger and more 445 
protective than the response to an IAV strain that only moderately differs from one 446 
to which the individual has pre-existing immunity. The theory has been contentious 447 
since its proposal, but evidence by Rioux (2020), Gostic (2016, 2019) and Simonsen 448 
et al. (2004), among others, sought to associate first influenza exposure (the 449 
eponymous Original Antigen) with weakened responses to related but distinct 450 
influenza strains. The effects of OAS also apply to vaccine-mediated immunity; hosts 451 
primed with a vaccine immunogen may be granted protection from that specific 452 
strain, but may have a weaker response to similar IAV. 453 

1.5.2 Within-Host Evolution 454 

The viral population infecting a single host is rarely genetically homogeneous 455 
(Rozek et al., 2021). Though an overall consensus genomic sequence may be 456 
established, virions containing variant sequences will likely be present, be they 457 
replication-competent or not. In an individual host, the viral diversity may be purely 458 
entropic or be biased towards certain genotypes. As the viral population diversifies 459 
in the course of an infection, variants will be subjected to competition (Bessière & 460 
Volmer, 2021) and must be able to either outcompete or survive alongside other IAVs 461 
descended from the original donor population. Within-host variance of pathogens 462 
(Duxbury et al., 2019; Grubaugh et al., 2019) generates genetic plasticity of the 463 
virus, and host-pathogen interactions shape this plasticity to influence viral 464 
population demographics (De Fine Licht, 2018).  465 

Influenza viruses must surpass multiple host barriers in order to establish an 466 
infection; these in turn shape viral evolutionary patterns by providing selective 467 
pressures (Balasuriya, 2020; Diskin et al., 2020). Initially, the virus must find a 468 
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suitable environment in which to replicate. Beyond the spatial elements of 469 
establishing an infection, viruses must also counteract or avoid the host immune 470 
responses (Xue et al., 2017, 2018). The resultant pressure which is exerted on the 471 
virus represents a significant driver of selection for antigenic escape of viral surface 472 
proteins. Except in cases of cross-species spillover, viruses generally demonstrate at 473 
least moderate adaptation to their hosts and specificities for tissues, which is 474 
mediated by the range of competent cells (Mendenhall et al., 2019; Moustafa et al., 475 
2017). This enforces a spatial structure within the host; influenza viruses adapted 476 
to mammalian hosts often have a tropism for the respiratory tract in contrast to 477 
many avian influenza viruses which may instead infect cells of the waterfowl 478 
digestive tract (Kratsch et al., 2016). As different viruses which have established 479 
successful infections of their hosts are in the same spatial environment, they may 480 
experience evolutionary processes such as gene reassortment (Wasik et al., 2019).  481 

One of the biggest selective pressures acting on populations of viruses within 482 
an infected host is that of immune responses, classically those of the adaptive cell-483 
mediated and humoral responses, but also potentially from innate immune cells 484 
(Oxburgh & Klingeborn, 1999). Individuals vaccinated against IAV may still be 485 
capable of hosting asymptomatic infections, as reported for humans in the FluWatch 486 
study which recorded almost 75% of infected persons display no symptoms (Hayward 487 
et al., 2014), and the viral population within these hosts is subject to immune 488 
pressures that are likely to drive antigenic escape. Additionally, antiviral therapies 489 
often attempt to interrupt viral replication cycles, and vaccines are designed to 490 
stimulate immune responses much faster than natural immune activation cascades 491 
(Spielman et al., 2019). Antivirals place powerful selective pressures on viral 492 
communities, stimulating them to evolve evasion mechanisms (Sunayana, 2019). 493 
Most IAV antivirals, such as zanamivir and oseltamivir, are competitive inhibitors 494 
acting on neuraminidase (Das et al., 2010). Like the selective pressures caused by 495 
host immunity, conformational changes to viral proteins can arise as viruses attempt 496 
to evade impediment by antiviral drugs (Lazniewski et al., 2018; Magori & Park, 497 
2014; von Itzstein, 2007). 498 
1.5.3 Between-Host Evolution & Transmission Bottlenecks 499 

With the development of high-throughput sequencing and metapopulation 500 
genetics, the level of genetic diversity of both intra- and inter-host pathogen 501 
populations can be more clearly determined than with previous sequencing 502 
techniques. The genetic diversity generated in multiple hosts is conducive for global 503 
antigenic drift among other potentially beneficial mutations (Rodríguez-Nevado et 504 
al., 2018; Simmonds et al., 2019). Selective pressures experienced by viruses 505 
undergoing transmission bottlenecks shape the overall epidemic viral population and 506 
help determine which mutations become fixed in the broader viral population. Work 507 
on vesicular stomatitis virus (VSV) (Elena et al., 2001), however, has shown that 508 
though VSV population size increases with the number of susceptible hosts in the 509 
environment, the size of bottlenecks in each transmission event remains relatively 510 
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consistent. Characteristics of transmission bottlenecks are shaped by both genetic 511 
and ecological host-pathogen interactions including, but not limited to, host contact 512 
patterns, mode of transmission and the presence of a competing microbiome 513 
(Armero et al. 2021, Bendall et al. 2023). 514 

Though the mutational spectrum within an infected host is broad, inter-host 515 
diversity is highly dependent on the transmission bottleneck. A donor host will shed 516 
a finite quantity of viral particles and, even in directly transmitted infections, only 517 
a limited number of these particles establish infection in a recipient host (Poon et 518 
al., 2016). Maintaining a fully representative picture of population diversity through 519 
this bottleneck is difficult, but the mutational spectra from a donor host and in a 520 
recipient host can be observed and compared to understand the viral genomes that 521 
survived transmission intact and infer characteristics of the bottleneck itself (Sobel 522 
Leonard et al., 2017). Comparing the population diversity before and after a 523 
transmission event can highlight the challenges that viruses must overcome in order 524 
to establish new infections. If the genomes of viruses in the donor and recipient 525 
share significant levels of identity, this implies that only a few viral particles were 526 
able to survive the transmission event. This is further complicated, however, by the 527 
fact that the viral seeder population can be unrepresentative of the viral population 528 
within the donor host. 529 

Furthermore, the size of transmission bottlenecks can have strong influences 530 
on the forces of evolution acting upon viral populations. Smaller viral populations 531 
are much more susceptible to stochastic changes than larger populations, which may 532 
maintain some of their diversity through a transmission event (Lauring, 2020). 533 
Studies have shown that while bottlenecks can preserve transient variants (Stack et 534 
al., 2013), transmission bottlenecks themselves are unlikely to drive viral evolution, 535 
unless the transmission event itself applies strong selective pressures (i.e. 536 
encountering vastly different host environments, as in host jumps) (Varble et al., 537 
2014). Instead, selection is proposed to occur in infected recipients. The impacts of 538 
severe bottleneck restrictions mirror Müller’s ratchet, wherein the stochastic loss of 539 
IAV virions is most likely to remove the most virulent genomes from the viral 540 
population (Bergstrom et al., 1999).  541 

To conclude, viruses face within-host challenges, such as competition and 542 
immune evasion, punctuated by population re-structuring caused by (possibly 543 
unrepresentative) sub-sampling during transmission events. 544 
1.5.4 Mutant Spectra 545 

Next-generation sequencing technologies and genome assembly bioinformatic 546 
processes are increasingly sensitive, able to detect and exclude the majority of 547 
sequencing errors; this enables sub-consensus mutations to be recognised with 548 
sufficient confidence that the variation detected is not generated by erroneous 549 
sampling (McCrone et al., 2020). However, distinguishing viral mutations present at 550 
very low frequencies from sequencing errors will likely remain problematic until a 551 
100% accurate sequencing methodology is developed. Variant genomes present at 552 
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only 1% proportion within a single host can be reliably detected and analysed (Xue 553 
et al., 2018). Following these variants throughout the course of disease in an 554 
infected individual can help infer transmission trees (Campbell et al., 2018; De Maio 555 
et al., 2018). As genetic sequencing technologies further improve, the ability to 556 
explore the dynamics of viral diversity within hosts is expanding, constrained only 557 
by the capacity to distinguish technical errors from true mutations. Methods to track 558 
the evolution of viral populations in a single infected host primarily rely on serial 559 
sampling and sequencing of genetic material (Watson et al., 2011). 560 

A mutant spectra, alternatively termed a ‘viral cloud’, describes the total 561 
range of genetic variants within a particular viral population. Note, this is distinct 562 
from the ‘Pan Genome’ concept of bacterial genetics which details a shared genetic 563 
structure with additional ‘disposable’ genes that are not present in all individuals 564 
across a species (Rouli et al., 2015; Tettelin et al., 2005). However, in rapidly 565 
evolving viral populations (usually, but not limited to, RNA viruses) an array of point 566 
mutations can emerge. While many of these may be neutral or even deleterious, 567 
some have the chance to be beneficial.  568 

The mutant spectra present in an infected individual can have a range of 569 
clinical and public health repercussions. The genetic diversity generated in multiple 570 
hosts provides the tools for global antigenic drift among mutations causing other 571 
potential phenotypic changes that can then be selected for/against (Rodríguez-572 
Nevado et al., 2018; Simmonds et al., 2019). Selective pressures enacted upon 573 
viruses undergoing transmission bottlenecks shape the overall epidemic viral 574 
population and determine which mutations become fixed in the broader viral 575 
population.  576 

Pathogenicity is one of the key issues to consider when discussing viral 577 
evolutionary and population dynamics (Oakeson et al., 2017). To quote Holland et 578 
al. (1992), “The acute effects, and subtle chronic effects, of infection will differ not 579 
only because we all vary genetically, physiologically and immunologically, but also 580 
as we all experience a different array of quasispecies challenges”. The emergence 581 
of bacterial anti-microbial resistance (AMR) provides a clear example of the clinical 582 
impact of broad mutant spectra in a pathogen population. AMR and other related 583 
phenomena, such as anthelminthic resistance, originates when a challenge (i.e. an 584 
antimicrobial) is applied to a pathogen population. The two-fold effects of placing 585 
pathogen populations under such strong selective pressures and simultaneously 586 
eradicating the majority of competing strains creates an ’easy to exploit’ ecological 587 
niche for any mutant strains able to resist the antimicrobial compound. Examples of 588 
this are perhaps best displayed in the field of HIV and the Highly-Active Anti-589 
Retroviral Treatment (HAART) required to combat the emergence of drug-resistant 590 
strains. Though unlike influenza, HIV causes chronic infections, the breadth of 591 
diversity generated in sub-consensus mutants within both viral populations presents 592 
a range of variants with possible drug-resistance phenotypes capable of emerging. 593 
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1.5.5 The Ever-Elusive Quasispecies 594 

Quasispecies theory in viral population dynamics contends that the broad 595 
array of genotypes that comprise the overall pathogen population within an infected 596 
individual work in concert to generate genomic plasticity (Domingo & Perales, 2019). 597 
Rather than considering the range of co-infecting viral genomes as being 598 
independent entities, quasispecies theory dictates that all these genomes are the 599 
subject upon which the mechanisms of selection act (Gregori et al., 2016) and that 600 
intra-host genomic diversity is necessary for virus survival and evolution. 601 
Quasispecies theory depends on the infecting population behaving as a singularly 602 
evolving unit, a concept which has hitherto been difficult to prove. To date, no 603 
empirical evidence has been found that the mutational spectrum, that is to say the 604 
range of replication-competent genomes within a system (whether in a single host 605 
or a group of epidemiologically-linked hosts, as long as the viruses are able to 606 
interact and compete with one another), substantially impacts the fitness of a viral 607 
population (Geoghegan & Holmes, 2018) and so quasispecies dynamics in IAV 608 
infection remains a conceptual notion. The influenza viruses within a host contain 609 
naturally stochastic mutations which are subject to selection; this does not mean 610 
that the population as a whole is experiencing selective pressures as a single 611 
evolutionary unit. Sub-consensus variants of IAV reflect and provide evidence for 612 
within-host diversity, which in turn facilitates the creation of further diversity 613 
thereby shaping the overall viral population. Importantly, these impacts upon viral 614 
populations are likely caused by evolutionary forces acting independently on viral 615 
genomes rather than cohesive forces acting upon the population in its entirety. 616 
The literature on the concept of quasispecies is ever-expanding as sequencing 617 
technologies improve in terms of read length and depth of coverage. We have come 618 
to recognise that a single consensus sequence is often unrepresentative of a 619 
measurably evolving population of pathogens (Biek et al., 2015; Meinel et al., 2018). 620 
Though helpful for observing epidemic-scale dynamics of pathogens, the simplifying 621 
assumptions of a consensus sequence approach prohibits us from comprehensively 622 
evaluating population dynamics on both an inter- and intra-host scale (Hapuarachchi 623 
et al., 2016). While a diverse viral genetic composition can now easily be observed 624 
within-host, the causal relationship between this mutational spectra and population-625 
level selection remains to be demonstrated. 626 

Though the quasispecies theory was first put forward in the late 1990s 627 
(Domingo et al., 2017; Kim et al., 2016), the scope of research on this issue was 628 
limited until Next-Generation Sequencing enabled deep-sequencing strategies to 629 
reliably detect a range of minority variants, including single nucleotide 630 
polymorphisms (SNPs), within a sample (Baele et al., 2016; Jones & Good, 2016). As 631 
viral evolution has come to be better understood on both a small, within-host scale 632 
and a large, epidemic scale, it has become apparent that the evolutionary dynamics 633 
that act upon mutant spectra can shape the pathogenicity of viral populations (De 634 
Maio et al., 2018; Hidano & Gates, 2019). 635 
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Influenza A viruses are renowned for their relentless evolution together with 636 
their proficiency for host immune evasion. However, the potential for cross-species 637 
transmission drives the fearsome reputation of these viruses; already broadly 638 
disseminated through avian and mammalian host species, the homogenising effect 639 
of globalisation opens new opportunities for different hosts to mix in close quarters 640 
thereby creating a conducive environment for novel host adaptations. 641 

1.6 Viral Ecology 642 

Influenza A Viruses have a known propensity for their wide host range and 643 
cross-species transmission potential. Their ubiquitous association with a broad range 644 
of birds and mammals is well documented (Chen et al., 2009). Understanding the 645 
consequences of mutations is challenging, however, as even apparently ‘neutral’ 646 
mutations that fix in the population may have some unknown property that 647 
encourages their maintenance in a population. As hinted at in the discussion of virus 648 
sub-typing (Figure 1.2), although highly distinct IAV can be found in bats, host-649 
specialisation may be observed in a range of species. Although almost all non-650 
chiropteran influenza strains have been recorded in, and are believed to have 651 
originated within, waterfowl, influenza viruses have been found in many other 652 
endotherms. 653 

Birds may be the source of many IAV strains and are expected to be involved 654 
in maintaining the virus as a viral reservoir (Cleaveland et al., 2007; Haydon et al., 655 
2002). While seasonal influenza of humans does not require constant re-introduction 656 
from avian hosts, a spillover event from any non-human host may be considered a 657 
risk factor for pandemic emergence of influenza strains novel to humans. The 658 
interconnectedness of IAV host populations is likely to be even more complicated 659 
than currently understood; for example, H3N8 viruses circulate in avian, equine and 660 
canine hosts. Sometimes viruses transmit between these hosts, such as equine-661 
canine transmission, while at other times they circulate exclusively in a single host. 662 
It should be noted that, in addition to the above-mentioned hosts, H3N8 viruses have 663 
also been detected spuriously in swine, phocine and human populations, suggesting 664 
the possibility of viral spillover, distinct and unrelated to transmission cycles to 665 
those of endemic equine or canine H3N8. 666 

1.7 Viral Ecological Interactions 667 

Importantly, like all biological processes, the viral evolutionary mechanics 668 
discussed above do not happen in a vacuum. IAV is not only interacting with host 669 
cells but also with other microbes present in the host respiratory system. Spatially, 670 
IAV spread within hosts is localised, meaning that virions are in constant 671 
communication with the rest of the local influenza A population (Gallagher et al., 672 
2018), thus enabling co-infection at the single-cell level. Experiments with H3N2 673 
influenza variants showed that highly distinct variants benefitted from virions more 674 
closely related to the population consensus. If a rare variant infects a host cell, the 675 
secondary, co-infecting virion is likely to be distantly related to the rare variant and 676 
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thus, any defects or less-competitive mutations in the rare variant are “rescued” by 677 
the fitter, more conserved secondary superinfecting virion (Leeks et al., 2018). This 678 
negative frequency dependence can actually facilitate the maintenance of high 679 
levels of diversity and even the persistence of unfit variants in the population. 680 

A study of swine influenza observed nonsense mutations of IAV genotypes 681 
within pigs which could still be transmitted from animal to animal (Murcia et al., 682 
2012). The authors suggested this maintenance of presumably deleterious mutations 683 
was possible through trans-complementation. Replication of viral RNA begins with 684 
complementary positive-strand RNA (cRNA) which serves as the template strand in 685 
genome replication. Experiments have shown that non-parental polymerases can 686 
replicate genomic RNA in trans and become incorporated into progeny vRNPs, 687 
however transcription was only reported in cis (Jorba et al., 2009). Effectively, 688 
during co-infections viral genomic material can be replicated by the polymerase 689 
complexes of any other IAV – but the capping and polyadenylation processes (and 690 
therefore transcription) can only be carried out by polymerases closely resembling 691 
(or originating from) those of parental virions. 692 

Hence, otherwise deleterious mutations, which would severely impede viral 693 
fitness, could arise if complementary proteins from co-infecting viruses are present. 694 
This, however, would only occur with any regularity if co-infection of single host 695 
cells during infection was a frequent event. 696 

Hosts co-infected with IAV and other pathogens can support a range of 697 
interactions. Virus-virus relations can be competitive; for example, Dee et al. (2021, 698 
2022) showed that IAV inhibits SARS-CoV-2 replication. Influenza infections can also 699 
suppress common cold viruses by activating host immune systems. This has even 700 
been implicated in disconnecting the seasonal circulation of rhinovirus from that of 701 
IAV. There is also emerging evidence of the hybridisation of viral particles during IAV 702 
and Respiratory Syncytial Virus co-infections (Haney et al., 2022). This mutually 703 
beneficial relationship shows very different viruses interacting not just ecologically, 704 
but molecularly and structurally.  705 

Virus-bacterial interactions can also be mutualistic. As discussed above, much 706 
of the mortality associated with influenza A infections in immunocompetent people 707 
is caused by secondary bacterial pneumonia. In samples from hosts infected with 708 
Streptococcus pneumoniae, those individuals co-infected with a respiratory virus 709 
had consistently higher S. pneumoniae loads (Shrestha et al., 2013). This is not to 710 
suggest any symbiosis, but to highlight the multiple viral, bacterial and host players 711 
in the ecological system. 712 

A phenomenon enabled by population-level evolution is that of the 713 
maintenance of unfit, or even ‘lethal’, mutations. Whereas a single viral particle 714 
may suffer due to these detrimental mutations, or even be replication-incompetent, 715 
piggybacking on fitter viruses within the same infection locus may allow defective 716 
viruses to fulfil replication cycles. Additionally, not all ‘fatal’ mutations actually 717 
prevent the virus from replicating, since these otherwise nonsense stop codons may 718 
be substituted by correct, functioning copies of the genes from co-infecting viral 719 
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particles (McCrone et al., 2018; Schönherz et al., 2016). Clearly the full complexity 720 
of understanding the genetic diversity of even a small viral outbreak can reveal a 721 
great deal of information about the interplay of viral populations within and across 722 
hosts (and potentially vector) populations. 723 

Even potentially deleterious mutations in antigenic regions may be 724 
complemented by replication competent viruses, enabling otherwise lethal 725 
mutations to persist in the population and grant additional immune escape 726 
functionality to the mutant spectra. In this way detrimental, uncompetitive 727 
mutations can be maintained in a population without being purged – they effectively 728 
escape selection. Fatal mutations prevent the virus from replicating independently, 729 
however co-infecting viruses, may provide correct, functioning copies of the genes 730 
which defective viral particles can use to substitute their own fatally-flawed 731 
proteins. (McCrone et al., 2018; Murcia et al., 2012; Schönherz et al., 2016). 732 
1.7.1 Impacts of Transmission Bottlenecks 733 

Transmission bottlenecks of acute viral diseases can vary greatly in size and 734 
composition; this may impact epidemic and clinical outcomes across a range of 735 
scales. At the individual scale transmission bottlenecks can be a large determinant 736 
of whether the recipient becomes infected or not. A key determinant of the size of 737 
a transmission bottleneck is the transmission route of the pathogen. Aerosol 738 
transmission for example, is associated with more stringent bottlenecks whereas 739 
pathogen spread through direct contact via blood generally allows for a greater 740 
number of viral particles to pass to the recipient host (Varble et al., 2013, 2014). 741 
Vaccines place significant selective pressure on pathogens and therefore the 742 
transient bottleneck population can be shaped or distorted through this specificity 743 
funnel (Bessière & Volmer, 2021).  744 

When observing bottlenecks at epidemic scales, SNV that appear transiently 745 
can be used to reconstruct transmission chains (Klinkenberg et al., 2017; Skums et 746 
al., 2018). Conversely, if viral populations in two hosts both developed the same 747 
point mutation despite no epidemiological contact, we infer that the site of this 748 
mutation is hypervariable and/or phenotypically relevant (Biek & Real, 2010). 749 
Furthermore, with descriptions of the sub-consensus variants present across cohorts, 750 
features of the transmission bottleneck such as size (how many viral particles pass 751 
through) and stringency (how diverse are the viral particles that pass through) can 752 
be characterised (Ghafari et al., 2020). 753 

Anthropogenic behaviour surrounding host movements may disconnect 754 
epidemic network associations from geographic networks, establishing global 755 
transmission chains as seen in detail during the SARS-CoV-1 epidemic (Riley et al., 756 
2003). At local levels, transmission bottlenecks are at least partly shaped by the 757 
viral population and the density of virions in infected hosts (Zwart & Elena, 2015). 758 
A greater number of viruses present in tissues, especially tissues related to 759 
transmission (such as nasal mucosa for droplet transmission), simply increases the 760 
chances that any transmission event will include more infectious viruses and thus 761 
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broadens the size of bottleneck populations. Interference from human activities can 762 
also establish contact links that were otherwise impossible, enabling unexpected IAV 763 
spread. Alternatively, globally-reaching organisations such as WHO (World Health 764 
Organisation) or WOAH (World Organisation for Animal Health) make concerted 765 
efforts to manage diseases in humans and animals, providing similar challenges to 766 
viruses around the world. 767 
1.7.2 Transmission Phenotypes 768 

In addition to the array of mutations generated entropically through 769 
replication, some viruses display phenotypic shifts before, during and after 770 
transmission events. Recorded in some highly host-specified viruses, such as HIV, the 771 
transmission population differs from the general phenotype present through the rest 772 
of the course of infection (Kariuki et al., 2017; Maeda et al., 2020). Once a new 773 
infection has been seeded, the transmission phenotype of the virus may not be 774 
suitable for continued infection of the host (Domingo et al., 2017). Indeed, the 775 
recipient host may present novel selective pressures to the virus that weren’t 776 
present in the donor host (Illingworth et al., 2020; Theys et al., 2018); potentially 777 
causing viral populations between donor and recipient hosts to diverge drastically 778 
(Yu et al., 2018). 779 

Studies of HIV spread between hosts have shown that the viruses involved in 780 
the transmission event have a significantly different demographic composition 781 
(Lazarus et al., 2016). The biased transmission populations have an increased 782 
resistance to type-I interferons and preferentially bind CCR5 receptors on host cells, 783 
both adaptations to initiating an infection which are downregulated later in the 784 
infection process (McCrone & Lauring, 2018). Though such stark adaptations have 785 
not yet been discovered in influenza viruses, the density-dependent spread of IAV 786 
(opposed to HIV’s frequency-dependence) could understandably be assumed to drive 787 
similarly selective processes for phenotypic differences depending on the stage of 788 
influenza infection.  789 

Though a distinct transmission phenotype has not been recorded for EIV (or 790 
any other IAV) studies show (Domingo, 2020) that the genotype composition of a 791 
viral population may distinctly specialise around transmission events. Assumptions 792 
of consensus sequences can often ignore mutations that occurred within an 793 
individual host but also neglects the non-random emphasis of certain phenotypes to 794 
be chosen in transmission processes, as seen in HIV and parvoviruses (Voorhees et 795 
al., 2019). Transmission-specific phenotypes have not been reliably observed in 796 
acute IAV infections. However, studies into the morphology of influenza virions have 797 
suggested structural pleomorphism to coincide with different stages of tissue 798 
colonisation, tissue infection and viral replication (Seladi-Schulman et al., 2014; 799 
Vahey & Fletcher, 2019). 800 
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1.7.3 Genomic Memory 801 

Memory genomes have also been reported alongside quasispecies in viral 802 
populations (Domingo et al., 2017). Experimentally passaged FMDV will non-803 
stochastically revert from a diverse genomic population back to a population more 804 
closely resembling the initial inoculating population (Morelli et al., 2013). Some have 805 
proposed a hitherto unseen selective force driving the quasispecies away from 806 
endlessly divergent mutations (Firestone et al., 2020). The statistically significant 807 
proclivity of a FMDV quasispecies to converge back towards the genomes of previous 808 
lineages prompts further investigation into the causes and effects of this biased 809 
evolution (Xue & Bloom, 2020). It is however yet to be seen in influenza viruses. 810 
Further, as discussed above, IAV antigenic proteins change so rapidly that hosts are 811 
able to be re-infected on an annual basis – a function to continually revert back to 812 
previously circulating genomes would deprive influenza viruses of one of their 813 
greatest adaptations, and so would be expected to be quickly purged from the 814 
population. 815 

1.8 Equine Influenza 816 

Equine influenza is a veterinary disease of global importance. Economic losses, 817 
mainly from racehorses & thoroughbred breeding, can be dramatic (Yongfeng et al., 818 
2020). As an example, the initial detection & isolation of H3N8 EIV in Australia, 2007 819 
was estimated to cost AUD$3.35 million per day (Callinan, 2008); adjusted for 820 
inflation, AUD$5.26 million daily at time of writing. Globally, horses fulfil a variety 821 
of economic purposes, an example of this is shown in Figure 1.6, where the net 822 
import-export numbers of horses are shown (as a proxy for economic importance) 823 
for each country. Outbreaks in other equids can also burden communities; donkeys 824 
are working animals with critical socio-economic roles in West and Central Africa so 825 
reports of EIV spreading across the region are alarming for many (Adeyefa et al., 826 
1996; Diallo et al., 2021).  827 
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 828 
Figure 1.6: Distribution of horse imports and exports in 2021. These trade records approximate 829 
the economic importance of horses globally (www.fao.org/faostat/en/#data/TCL). 830 
1.8.1 Impacts of Equine Influenza 831 

Much like human influenza, seasonal endemic EIV occasionally breaks out to 832 
epidemic or pandemic proportions (Yondon et al., 2013). In 2019, a large EIV 833 
epidemic occurred in the UK, causing millions of lost income (Oladunni et al., 2021). 834 
Furthermore, the infection of vaccinated horses indicates that vaccine efficacy is 835 
insufficient to wholly prevent infection.  836 
Equine Influenza Virus (EIV) is also capable of jumping into other species, most 837 
notably canines but may have additional cross-species potential (Zhu et al., 2019). 838 
As seen in other epizootics of livestock, human-mediated transport and events can 839 
facilitate and streamline the spread of pathogens (Biek et al., 2015; Theys et al., 840 
2018). EIV displays many characteristics of IAVs in other mammals, and to date the 841 
dynamics seen at all scales of equine influenza pathogenesis are broadly applicable 842 
to IAVs in other mammalian hosts.  843 

Clinically, equine influenza presents similarly to human infection including 844 
fever & respiratory difficulties (Toh et al., 2019), characterised by a high morbidity 845 
but a low mortality rate which is driven almost exclusively by secondary bacterial 846 
pneumonia (Dunning et al., 2020). Transmission is droplet-mediated and in close-847 
quarter stables, EIV can easily spread between horses. Numerous outbreaks have 848 
documented infection of vaccinated horses, implicating insufficiently protected 849 
horses as potential spreaders, even when asymptomatic (Back et al., 2016). 850 
Important to acknowledge are the sampling and recording procedures around 851 
reporting EIV outbreaks. Symptomatic horses are over representative of current EIV 852 
sequence samples. Like many sub-clinical, acute infections overcoming this sampling 853 
bias is currently unrealistic; regular collection of high-quality viral genomes from 854 
horse populations would require intense manual labour and constant sequencing 855 

Horses
Traded

0

105.5

Figure 6: Global distribution of horse imports and exports (www.fao.org/faostat/en/#data/TCL). These trade 
records approximate the economic importance of equids for economies across the world. 

- sourced from the Food and Agriculture Organisation of the United Nations
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procedures. However, semi-regular sampling of a small but representative 856 
subpopulation from a herd is theoretically possible though may again be biased 857 
towards higher income farms 858 
where non-emergency 859 
veterinary work can be 860 
afforded.  861 
1.8.2 History of Equine 862 

Influenza 863 

Equine influenza has a 864 
surprisingly long association 865 
with humanity since the 866 
domestication of the horse. 867 
Though the medical 868 
historiography is sparse, 869 
records of outbreaks of 870 
disease in military, economic 871 
or agricultural horse 872 
populations are consistent 873 
throughout European 874 
chroniclers (as illustrated in 875 
Figure 1.7); influenza-like 876 
illness in horses has been 877 
noted since antiquity (Khan et 878 
al., 2021). Additionally, the 879 
links between horse outbreaks 880 
preceding spread of human 881 
influenza were remarked 882 
upon as early as 1688 (Morens 883 
& Taubenberger, 2010) with 884 
chroniclers noting “In October 885 
an influenza began among 886 
horses and then attacked men as usual’’. The previously proximity of horses and 887 
humans in rural European life may have explained these now uncommon zoonotic 888 
transmission dynamics. Despite the recognition of co-occurrence of equine and 889 
human influenza outbreaks in many instances across European history, these 890 
outbreaks never display the sociological impact or lasting memory observed with 891 
many other epidemics through history (Cohn, 2020; Rosenberg, 1992).  892 
1.8.3  EIV Evolution 893 

EIV was first isolated in the mid-20th century in Prague, then the 4th 894 
Czechoslovak Republic, after notice in the equine population (Sovinova et al., 1957, 895 
1958). Three IAV subtypes have been transmissible between equid populations: 896 

Equine Influenza-like Disease Throughout History

"About the middle or latter 
end of December, the most 
epidemic and universally 
spreading disease among 
horses that anyone living 
remembered [and] 
analogous to [human 
epidemic] influenza... 
now particularly attacked 
the horses [and] spread 
through all England in 
almost an instant...there 
was scarce an instance of 
a horse in town or country 
but had it" Rutty 1770

‘‘...an epidemic 
catarrh followed all 
over Europe, 
beginning among 
horses and ending 
with men as is 
frequently the 
case’’ Forster (1829) 
describing an 
epidemic in 1688.

1688

Boston Fire: With 
horses disposed due to 
influenza outbreaks, 
horse-drawn fire carts 
were unavailable 
leading to severe 
damage and loss of life

1873

Major equine flu 
epidemic across the US 1901

Major European 
outbreak of equine flu 2019

3 European equine flu 
epidemics coincided 
closely with human flu 
epidemics

1299

1328

1404

Flu-like disease in men 
& horses followed 
Charlemagne's Army 
into Italy

776

Trojan War: A 9-day 
epidemic first affected 
horses & dogs, then men

BCE 
1194

Figure 7: Some notable EI-like outbreaks through history - data 
sourced from Morens (2010). Quotes from Forster (1829) and 
Rutty (1770) describe recorded associations between outbreaks 
of equine and human respiratory disease.

Figure 1.7: Some notable EI-like outbreaks through history 
- data sourced from Morens (2010). Quotes from Forster 
(1829) and Rutty (1770) describe recorded associations 
between outbreaks of equine and human respiratory 
disease. 
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H7N7, H3N8 and a divergent H3N8 subclade localised to Jilin, China (Daly et al., 897 
1996; Lai et al., 2001; Lewis et al., 2011). However only H3N8 has been seen in 898 
natural environments since the 1970s; H7N7 presumed to be extinct (Harvey et al., 899 
2016). Hence, unless otherwise stated, throughout this review all mentions of EIV 900 
will refer to the global H3N8 subtype only. Indeed, H3N8 has endemically seeded 901 
almost every country with equine populations except for Iceland and New Zealand; 902 
with Australia having cleared EIV after a brief introduction (Olguin-Perglione & 903 
Barrandeguy, 2021).  904 

Modern, currently circulating EIV is assumed to be an avian-origin virus and 905 
the MRCA is estimated to have emerged in the middle of the 20th Century (Chambers, 906 
2020; Murcia et al., 2011). Though unproven, this is a sturdy assumption; almost all 907 
IAVs can be phylogenetically traced back to avian influenza viruses (Yoon et al., 908 
2014). From initial detection in 1963, H3N8 fell into either a Eurasian or American 909 
clades. Globally, EIV has now split into 4 clades: South American, Kentucky, Florida 910 
1, and Florida 2 (Nemoto et al., 2021). Florida clade 2 has now further diverged into 911 
European and Asian subclades (Landolt, 2014; Legrand et al., 2015; Müller et al., 912 
2009). Readers are encouraged to look to the explanatory figure in Chambers’ (2020) 913 
discussion of Equine Influenza evolution, adapted here as Figure 1.8.  914 

 915 
Figure 1.8: Proposed ancestry of current EIV strains. Strains representing H3N8 divergence 916 
events are given in italics with their associated GenBank accession numbers. 917 

Much like the human IAV vaccine, the World Organisation for Animal Health 918 
(https://www.oie.int/en/disease/equine-influenza-2) regularly updates the 919 
antigenic composition of commercially available EIV vaccines. Currently, the World 920 
Organisation for Animal Health (WOAH) recommends that the EIV vaccine contains 921 
representative strains from both Eurasian (Florida 1) and North American (Florida 2) 922 
subclades (Olguin-Perglione & Barrandeguy, 2021). Vaccines are recommended to be 923 
administered routinely and boosted every 6-12 months, though in outbreak scenarios 924 
boosters may be given pre-emptively. Much like human IAV vaccines, the exact 925 
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composition of epitopes needed to elicit contemporarily protective antibodies is 926 
decided by the OIE’s Expert Surveillance Panel on Equine Influenza Vaccine (OIE-927 
ESP) on an annual basis (Bryant et al., 2011). The constant escape of vaccine-strain 928 
antigens by EIV evolution in vivo means that vaccines need to be regularly updated 929 
to maintain efficacy.  930 

However, antigenic drift and epitope structural changes to epitopes do not 931 
fully explain EIV evolution. The role of internal viral proteins may have been 932 
previously overlooked in understanding the emergence of endemic EIV and 933 
circulating EI epidemics. For instance, some determinants of host-range are situated 934 
in internal or non-structural proteins of the virus, like the polymerase complex 935 
(Cauldwell et al., 2014; Min et al., 2013).  936 
1.8.3.1 Evolution Between Infected Cohorts 937 

Within a cohort of horses, usually a single herd or farm unit, EIV can spread 938 
rapidly through droplets or fomites, making control of the disease difficult once an 939 
infected horse has been introduced (Adeyefa et al., 1996; Karamendin et al., 2014). 940 
The transfer of horses globally, for racing and breeding, provides critical 941 
opportunities for pathogen transmission and introduction into non-endemic areas 942 
(Daversa et al., 2017). Additionally, global movement of horses is not random but is 943 
often concentrated and anthropogenic which grants opportunities for many horses 944 
from across the world to be in proximity for a brief period before returning to their 945 
original cohort. On a regional or national scale, individuals can be moved between 946 
premises or cohorts frequently – especially for breeding and competition purposes.  947 

Sporadic EIV outbreaks can be seeded by a small number of horses after their 948 
travel (Newton et al., 2006; Whitlock et al., 2018). Additionally, the individuals most 949 
likely to be moved  (racehorses and studs) usually also have the best veterinary care 950 
and closest observation. Horses moved for breeding or competitive purposes are 951 
more likely to be up to date with vaccine regimens than other non-special horses, 952 
or indeed even obliged by regulatory bodies, and so are likely to provide heavy 953 
selective pressures on incoming viruses from vaccine-boosted immune challenge. 954 

As expected, the probability of a successful transmission event increases 955 
dramatically as the spatial distance between donor and recipient hosts decreases 956 
(Ostfeld et al., 2005). Managed athletic and breeding horses are provided with 957 
unusual population structures due to their high exposure to numerous other horses 958 
and their wide, sometimes intercontinental, travel. The evolutionary and ecological 959 
structure of pathogen populations can provide clues as to the factors required to 960 
maintain the populations of that pathogen (Parker et al. 2015). This maintenance 961 
includes both pathogen (replicative speed, immune avoidance strategies) and host 962 
(immunity, contact networks) factors. 963 
1.8.3.2 What Drives Global Evolution? 964 

Like all pathogens, the evolution of EIV is driven by the interplay of 965 
deterministic (selective pressures) and stochastic (genetic drift) processes (Lauring, 966 
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2020). The international movement of subclinically-infected horses is the most likely 967 
predictor of viral dissemination, much as that observed in swine influenza A viruses 968 
(Lee et al., 2021; Nelson & Hughes, 2015). Not only does this movement provide 969 
opportunities for spread over a further geographic range, but it increases the 970 
possibilities for exchange with endemically circulating EIV. This introduction of new 971 
viruses into a population may co-opt endemic viruses, using them as stepping-stones 972 
to better adapt to the new range of hosts. Surveillance of EIV epidemics show that 973 
global outbreaks occur roughly every 2-8 years, mostly associated with the 974 
emergence of new antigenic variants (Koelle et al., 2010). 975 

Insufficiently protected hosts (i.e. immunocompromised or unvaccinated) can 976 
provide a fitness landscape that is easier to traverse for viruses. This in turn can 977 
allow viruses to diversify in the face of lower selective pressures, potentially even 978 
adapting into a strain better able to infect. This is seen in the dissociation of viral 979 
evolutionary relationships to geographic locations (Lai et al., 2001, 2004). Equine 980 
influenza provides an interesting case of heterogeneous host populations: individuals 981 
that travel internationally (sport horses) are also the most likely to be vaccinated 982 
and closely observed; meaning that a traditional risk factor for “super-spreader” 983 
status is potentially avoided due to the heightened immunity and medical 984 
observation. Conversely, horses that are more geographically stationary and limited 985 
to national or local travel may receive less frequent veterinary visits and are not 986 
subject to the same vaccine requirements as sport horses. Understanding how the 987 
immune status and vaccination history of these opposing equid populations can 988 
affect the evolution of EIV is thus key avenue for further animal health practices. 989 

Additionally, though not unique to EIV, outbreaks of influenza are seen to 990 
propagate even in individuals with up-to-date vaccination routines. Antigenically 991 
similar viruses are also able to spread through populations with limited prior 992 
immunity (Lumby et al., 2020). These weaknesses in individual immunity may 993 
explain the occasionally low presentation of symptomatic individuals seen in most 994 
outbreaks. Indeed, the proclivity of asymptomatic infections may be responsible for 995 
dramatic underreporting of EIV.  996 

Analysis in the US showed a regular fixation of amino acid substitutions 997 
distancing circulating wild strains from vaccine strains (Lee et al., 2021). Antigenic 998 
shift, at least inter-subtype, has being not detected or associated to equine 999 
outbreaks. The origin of the currently circulating virus is unknown, though with 1000 
cross-species transmission from avian donors and into a wide range of canine 1001 
recipients since 2004 (Rivailler et al., 2010), H3N8 EIV clearly has the potential for 1002 
cross-species transmission. Despite multiple historical records recognising links 1003 
between outbreaks of equine and human influenza-like disease, there is very limited 1004 
evidence of H3N8 transmission to humans from horses.  Infection is possible 1005 
however, Alford et al. (1967) tested the responses of 33 humans to EIV A/Miami/1/63 1006 
(H3N8) and found moderate influenza-like symptoms in four patients. Though 1007 
notably virus could be recovered from 21 of the 33 participants, so sub-clinical 1008 
infections with H3N8 are viable in humans. 1009 
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Whether direct equid-human transmission of IAV was previously possible with 1010 
contemporarily circulating influenza strains or both populations were infected by a 1011 
third reservoir population (e.g. waterfowl), equine influenza has coincided with 1012 
outbreaks of human influenza for centuries (Forster, 2021; Rutty, 1770). 1013 
Additionally, due to the difficulty in sampling both wild and domesticated horses, 1014 
most genomic sequences publicly available for EIV are of segment 4; of these a 1015 
considerable number focus exclusively on the HA1 chain of the segment 4 coding 1016 
gene (Russell, 2021). This can skew the overall view of EIV evolution, though 1017 
evolution in antigenically available HA1 epitopes is undoubtedly important.  1018 
1.8.3.3 Frozen Evolution 1019 

Through longitudinal observation of EIV, detection of decade-old virus strains 1020 
infecting hosts can confound the reputation of rapid influenza A evolution. After 1021 
having explored the myriad ways in which diversity can be generated and maintained 1022 
in fitness equilibria, the preservation of a viral lineage over decades contradicts 1023 
everything I have discussed so far. Records, mostly in Western Europe, have detailed 1024 
the collection of EIV samples that much more closely resemble strains that circulated 1025 
in previous years before being supposedly outcompeted (Lindstrom et al., 1998; 1026 
Manuguerra et al., 2000). Termed ‘frozen evolution’ by Endo et al. (1992) viruses 1027 
that had circulated over a 25-year period were recognised with a shockingly low 1028 
amount of antigenic or genomic change. Viral samples from German EI outbreaks 1029 
(Borchers et al., 2005) in 2002 resembled genomes isolated from viruses circulating 1030 
in Europe in the early 1990s. This lack of diversification has been documented in 1031 
many outbreaks (Manuguerra et al., 2000). As to how stagnant genomes can compete 1032 
with viruses circulating in subsequent years, experiments to compare the 1033 
reproductive fitness of these frozen genomes could elucidate whether these viruses 1034 
are able to replicate independently or not. 1035 

These papers evidencing frozen evolution however display some notable 1036 
oversights. Primarily, analyses from Endo (1992), Manuguerra (2000) and Borchers 1037 
(2005) rely solely on the short HA1 coding sequence (939 bases) for their claims of 1038 
abnormally slow evolution; the first two utilise amino acid sequences (328 residues) 1039 
exclusively. This alongside the small sample size of these studies (never more than 1040 
15 sequences) does detract from the validity of their findings. Finally, and I admit 1041 
speculatively, the context of these evolutionary dynamics cannot be overlooked; all 1042 
three of these studies explored why unusually old EIV sequences appeared in Europe 1043 
through the mid-to-late 1990s. I cannot help but note that the fall of the Berlin wall 1044 
was concurrent with these findings; shifting trade policies across Europe may be an 1045 
unexciting explanation, but the simple facts of the environs in which this ‘frozen 1046 
evolution’ took place can easily be understood using the context of larger-scale 1047 
ecological changes surrounding viral spread. 1048 
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1.8.4 EIV as a Model of Influenza Phylodynamics 1049 

EIV displays many characteristics of IAVs in other mammals, and to date the 1050 
dynamics seen in equine influenza pathogenesis are broadly comparable to IAVs in 1051 
other mammalian hosts. Hence, I use H3N8 EIV here to model the evolutionary 1052 
processes within- and between-hosts as well as the larger epidemic population 1053 
dynamics of influenza A viruses. Research on the phylodynamics of influenza in horse 1054 
populations is used here as a model system to investigate key drivers of mammalian 1055 
influenza A virus evolution, and the ways in which evolution between- and within-1056 
hosts can lead to vaccine escape, seasonally-recurrent outbreaks and even cross-1057 
species adaptation or pandemic potential.  1058 

Understanding the causes and consequences of viral mutant spectra is 1059 
obviously important for virologists, public health workers and clinicians; but how do 1060 
we detect and observe them? By definition, variant viruses are a small minority of 1061 
the overall population and so conventional genome amplification, and sequencing 1062 
techniques cannot necessarily be relied on. Many bioinformatic procedures were 1063 
designed specifically to exclude spurious outliers, so how then do we obtain this 1064 
information from a viral sample such as a clinical specimen (e.g., nasal swab or 1065 
sputum sample)? Further developing EIV surveillance techniques will be key as 1066 
globalisation increases; horses are already the most internationally moved domestic 1067 
animal (Oladunni et al., 2021) and so having up-to-date records of viruses causing 1068 
symptomatic and asymptomatic infections will help track the evolution of the 1069 
globally intertwined EIV population. 1070 

The trends of EIV evolution mirror those of other IAVs, especially with the 1071 
anthropocentric movement of horses around the globe for sports. Racehorses may 1072 
become super-spreaders and seed infections acquired from hyper-mixing populations 1073 
into home pastures on return from competitions. At large-scale epidemiologic levels, 1074 
this shows the clear “ignition spark” introduction à la SARS-CoV-2 emergence. As 1075 
international travel only accelerates, the future of EIV is sure to have ample 1076 
opportunities for further dissemination.  1077 

1.9 Study Aims 1078 

Hence the importance in understanding evolutionary processes within- and between-1079 
hosts as well as the larger epidemic or pandemic population dynamics. In examining 1080 
the impact of host heterogeneities on viral populations, I sought to understand: 1081 
• The role of prior exposure to influenza viruses in affecting viral population size 1082 

and evolution at within-host and outbreak scales 1083 
• Differences in viral load between vaccinated and naïve hosts; whether a primed 1084 

immune system causes reduced viral shedding and consequently lowers the 1085 
infectivity of vaccinated hosts 1086 

• The spread of EIV in transmission chains comprised of hosts with differing 1087 
histories of immunological exposure, as seen in real EIV outbreaks 1088 
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• The fate of consensus-level mutations and whether they are impacted by the 1089 
vaccination status of a host; if so, does immunological history matter 1090 

• Putative impacts of nonsynonymous mutations on 3D protein structures based on 1091 
in silico modelling and experimentation 1092 

• The role of sub-consensus diversity in shaping viral populations over an outbreak 1093 
• What drives diversification and selection of viral variants in a host 1094 
Characteristics of viral bottlenecks in tightly controlled transmission chains; their 1095 
size and how much variation they permit passing from one host to the next. 1096 
Epidemiology and pathogen evolution influence each other, yet overwhelmingly, 1097 
research focuses on the ways in which evolution alters epidemic dynamics. Obtaining 1098 
pathogen sequence data at high resolution is still relatively rare across whole viral 1099 
genomes.  1100 
The use of mixed, vaccine-exposed and immunologically naïve individuals in 1101 
transmission experiments aims to represent real populations of horses with differing 1102 
levels of immune exposure to naturally-circulating influenza viruses. Where EIV is 1103 
endemic, horse populations are regularly exposed to IAV and thus many individuals 1104 
will have some level of prior exposure; the majority of individuals without any prior 1105 
IAV exposure will be young. However, populations will be heterogeneous in respect 1106 
to their levels of immunity and their history of exposure to pathogens; older 1107 
individuals are more likely to have encountered multiple different strains of IAV 1108 
during their lifetime. Including heterogeneity in host immune statuses enables us to 1109 
explore questions of viral evolution from many different angles, under varying 1110 
situations. 1111 
Additionally, despite the plethora of work on IAV proteins, comparatively little has 1112 
been done explicitly on EIV proteins. Consequently, many of the specifics relating 1113 
to EIV proteins, from numbering to regional annotations, are inferred from work on 1114 
other (often avian) viruses. As discussed above, EIV is a direct descendant of avian 1115 
IAV and we can therefore assume that many of the protein characteristics are 1116 
shared. Comparative analysis of orthologous IAV proteins may therefore inform on 1117 
the structure and function of equine influenza viruses. 1118 

2 Methodology 1119 

2.1 Experimental Design 1120 

To investigate the impact of prior host immunity on IAV viral diversity and 1121 
population size, data collected from two transmission experiments were obtained 1122 
for the present study. Both experiments involved the use of naïve and vaccinated 1123 
Welsh Mountain Ponies challenged with the A/equine/Newmarket/5/2003 strain of 1124 
IAV (txid:568375). This study was carried out following animal care guidelines of the 1125 
Animal Health Trust Ethical Review Committee, under Home Office project licence 1126 
80/1871. Each transmission chain included six pairs of animals (individuals A and B 1127 
in pairs 1-6). Pairs 2, 3 and 4 had previously been immunised with H3N8 inactivated 1128 
(non-adjuvanted, formalin-inactivated egg grown) virus prior to the experiment to 1129 
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allow the development of adaptive immunity; finally, pairs 5 and 6 in the chain of 1130 
transmission were immunologically naïve. The first pair of each transmission chain 1131 
(seeders, which had been experimentally inoculated) were excluded from further 1132 
analyses as they did not represent infection by the natural route of transmission.  1133 

Week Vaccine 
Dose 

Vaccine Antigen 

Multivalent NCBI 
txid Monovalent NCBI 

txid 

0 1 A/Equine/Miami/63 
387223 

A/Equine/Newmarket/3/05 

568375 

4 2 A/Equine/Miami/63 A/Equine/Newmarket/3/05 

16 3 A/Equine/Newmarket/79 1334814 A/Equine/Newmarket/3/05 

28 4 A/Equine/Newmarket/1/93 159470 A/Equine/Newmarket/3/05 

40 5 A/Equine/Newmarket/3/05 568375 A/Equine/Newmarket/3/05 

 Transmission experiment ran from 
Week 68 to Week 71 

Transmission experiment ran from 
Week 80 to Week 83 

Table 2.1: Vaccination schedules of each transmission chain. 1134 
The difference between transmission chains was the vaccination schedule of 1135 

the horses (Table 2.1): horses in the multivalent vaccine group received five doses 1136 
of four different antigens, while horses in the monovalent vaccine group received 1137 
five doses of the same antigen. The antibody levels of vaccinated horses were 1138 
measured using single radial haemolysis (SRH) until they reached a value low enough 1139 
(<60 mm2) to allow natural infection as previously described (Murcia et al., 2010, 1140 

2013). To initiate each transmission chain, a pair of immunologically naive "seeder" 1141 
horses were experimentally inoculated via nebulised aerosol (20 ml of log10 106.5/ml 1142 
of 50% egg infective dose [EID50]) of A/equine/Newmarket/5/2003 (H3N8). This 1143 
challenge virus is also the strain used in vaccines to which vaccinated horses were 1144 
exposed. To allow natural transmission by direct contact, seeder horses were 1145 
cohoused in the same stable with a pair of recipient horses until at least one of the 1146 
latter started shedding virus, which was confirmed using an enzyme-linked 1147 
immunosorbent assay (ELISA)-based assay. At this point seeder horses were removed 1148 
and replaced by a new pair of recipient horses, i.e. ‘Pair 2’. This procedure of 1149 
sequential mixing of pairs was repeated a further four times down to ‘Pair 6’ (Figure 1150 
2.1). At no time were more than two pairs of horses sharing a stable. Nasal swabs 1151 
were collected daily in 5ml of virus transport media (VTM) and stored at -80°C until 1152 
further processing. Samples that contained >2960 viral copies/µl of transport media 1153 

Seeder Vaccinate Naïve

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

Figure 1: Transmission chain layout. Both experiments had the same structure, the only difference was in the regiment of 
the vaccinated horses. Pair 1 is greyed out to signify their role in being the first natural transmission of EIV, but are 
excluded from further analysis.

Figure 2.1: Schematic representation of transmission chains. Both experiments had the same 
structure, the only difference being the use of two different exposure regimes. Pair 1 horses 
were infected by inoculation rather than by natural transmission; for this reason they are not 
included in the analysis and so are greyed-out. 
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as measured by a PCR assay (see section 2.3) were subject to full genome PCR 1154 
amplification and sequencing using the Illumina platform (see section 2.4). 1155 

The multivalent vaccination schedule was planned to simulate individuals 1156 
with a life history of multiple previous exposures to a range of antigenically distinct 1157 
viruses. Alternatively, horses that received the univalent vaccine were expected to 1158 
model an individual that has developed specific immunity to a currently circulating 1159 
strain via vaccination. The schedules of the whole experiment, including the 1160 
exposure history of vaccinated hosts, are shown below in Figure 2.2, using 1161 
abbreviated names for the virus strains that match those in Table 2.1. Horses within 1162 
this vaccinated class received one dose of inactivated virus at each vaccination point 1163 
(V1-5).  1164 

 1165 

After each vaccination point, horses were bled in order to test serum adaptive 1166 
immune responses to the inactivated viruses. Exposures were staggered to allow for 1167 
a return to sera norms before exposure to the next immunogen.  1168 

The two transmission chains were used to observe whether differences could 1169 
be observed between a specific and a generalised adaptive immune response in 1170 
terms of viral load, virus diversity and/or viral phylodynamic processes. Hence, two 1171 
transmission chains were studied, each containing five pairs which fell into one of 1172 
four immunological statuses: vaccinated or naïve, in transmission chain one 1173 
(vaccinate-multivalent chain VM or naïve-multivalent chain NM) or two (vaccinate-1174 
univalent chain VS or naïve-univalent chain NS). 1175 
2.1.1 Transmission Experiment 1176 

Seeder horses were experimentally infected with 106.5 egg infectious doses 50 1177 
(EID50) of A/equine/Newmarket/5/2003. Nasopharyngeal swabs were collected on a 1178 
daily basis and virus shedding was detected using a rapid nucleoprotein (NP) enzyme-1179 
linked immunosorbent assay (ELISA) test. If the assay was positive for at least one 1180 
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Figure 2: Diagram of the exposure regiment, the inactivated virus used at each time point (V1-5) and the time 
each experimental transmission chain began. Figure 2.2: Diagram of the exposure regimen, and the time each experimental transmission 
chain began. Inactivated viruses were administered at dates V1-5, referencing the Table 1 
schedule.  
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of the two recipient ponies, these ponies would become the new donor ponies; two 1181 
new vaccinated recipients would be co-housed in the transmission room and the 1182 
previous donors would be removed.  1183 

Once at least one of the new recipient ponies were positive for virus shedding, 1184 
the original donors would be removed to the recovery room, where they would 1185 
continue to be swabbed for up to seven days, or as long as they were positive by NP-1186 
ELISA, whichever was the longest. The transmission room would be thoroughly 1187 
cleaned and disinfected  between movements of pairs to avoid environmental and 1188 
fomite transmission of virus. 1189 
2.2 Data Collection 1190 

2.2.1 Viruses and vaccines.  1191 

A/equine/Newmarket/5/2003 was passaged in ovo to generate a stock of 1192 
challenge virus. Vaccine viruses were cultivated in embryonated chicken’s eggs, 1193 
followed by clarification, sucrose purification and inactivation using 0.02% 1194 
formaldehyde.  Vaccines were tested by passaging in embryonated chicken’s eggs 1195 
(two passages) to ensure they were no longer infectious. 1196 
2.2.2 Nasal Swabs 1197 

Nasopharyngeal swabs were collected for up to eight days after a horse tested 1198 
positive with a rapid Nucleoprotein ELISA test. Swab tips were immersed in viral 1199 
transport medium (5ml) and stored at -80°C. Daily nasal swabs were used to quantify 1200 
viral loads, 137 swabs giving positive qPCR values were collected: 68 from the Single 1201 
group (42 from vaccinates [VS], 26 from naïves [NS]) and 69 from the Multi group (41 1202 
from vaccinates [VM], 28 from naïves [NM]).1203 
2.2.3 Virus Quantification via qPCR1204 

RNA was extracted from nasal swabs by the team that carried out the original 1205 
transmission study in order to quantify the amount of virus present. The team then 1206 
used qPCR as described in Murcia et al. (2010, 2013), with full multi-segment reverse 1207 
transcription-PCR (M-RTPCR), the details of which are available in Deng et 1208 
al. (2009). Viral RNA from nasal swabs was isolated from 280µl aliquots using the 1209 
QIAamp viral RNA minikit (Qiagen) according to the manufacturer’s instructions, 1210 
eluting in a volume of 50µl. 1211 

To calculate the number of virus genome copies present in each sample, cDNA 1212 
was generated using Superscript III (Invitrogen) and primer Bm-M-15. Reverse 1213 
Transcription was performed at 55°C for 90 min, followed by incubation at 70°C for 1214 
10 min. Viral copy numbers were estimated by qPCR, performed using the 1215 
QuantiTect Probe PCR kit (Qiagen) according to the manufacturer's instructions and 1216 
using the same primers and probe as in both Murcia and Hughes (2012; 2010, 2013), 1217 
which had been designed using Beacon designer (Premier Biosoft). Standard curves 1218 
were generated using 10-fold dilutions of a plasmid containing the matrix segment 1219 
(cloned from an egg-grown Equine/Newmarket/1/1993 isolate), ranging from 1×102 1220 
to 1×108copies/µl. For each run, all samples, no-template controls, plasmid 1221 
standards, and positive and negative controls were run in triplicate and expressed 1222 
as the mean number of viral RNA (vRNA) copies of cDNA per µl. 1223 
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Samples that exhibited >2960 viral copies/µl of transport media were subject 1224 
to full genome PCR amplification as described by Zhou et al (2009). Swabs with fewer 1225 
genomes were unable to be amplified without the introduction of stochasticity in 1226 
sequences. PCR amplification was performed using Platinum Pfx DNA polymerase 1227 
(Invitrogen) and segment non-specific primers as designed by Zhou et al (2009): 1228 
MBTuni-12 [5′-ACGCGTGATCAGCAAAAGCAGG] and MBTuni-13 [5′-1229 
ACGCGTGATCAGTAGAAACAAGG]. As IAV genomic segments have conserved 12nt and 1230 
13nt sequences at the 3’ and 5’ ends respectively, these universal primers can be 1231 
used to amplify genomes irrespective of virus subtype. PCR amplification was 1232 
performed for 40 cycles (94°C for 30s, 55°C for 1 min, and 68°C for 1 min), followed 1233 
by a final extension at 68°C for 10 minutes. 1234 

 1235 
Figure 2.3: The mean copy numbers of plasmid standards used to generate standard curves for 1236 
qPCR validation. Known numbers of plasmids are input for amplification (blue). The resulting 1237 
output (green), gives the number of cDNA copies counted after the amplification. When the two 1238 
figures mismatch, the threshold of detection is reached. 1239 

With PCR amplification outputs, known and calculated concentrations of 1240 
plasmid standards were compared to validate and determine a cut-off point. This 1241 
point denotes the upper limits of detection, and represent a concentration too low 1242 
to correctly match the known input concentration (Figure 2.3). This was initially 1243 
determined at a Cycle threshold (Ct) of 34.81, matching that reported in Murcia et 1244 
al. 2010. However, on re-analysis, a more conservative Ct was declared at 32.25 as 1245 
this is the first introduction of stochasticity in amplification of known concentrations 1246 
of plasmid standards.  1247 
 1248 
2.2.4 Sequencing & Sequence Assembly 1249 

DNA was diluted to a concentration of 175ng in 50µl of sample prep then 1250 
acoustically sheared using a Covaris S220 sonicator. Sequencing was carried out at 1251 
The Genome Analysis Centre (TGAC) in Norwich, UK. Illumina GA2x sequencing was 1252 
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then performed in one lane with 100bp paired-end reads. Illumina libraries were 1253 
then constructed from 200-300 bp fragments. 1254 

53 sequence libraries were generated from forward and reverse reads: 24 1255 
from the Single group (11 from vaccinates [VS], 13 from naïves [NS]) plus 29 from 1256 
the Multi group (13 from vaccinates [VM], 16 from naïves [NM]). Forward and Reverse 1257 
reads were aligned to the genome sequence of the virus challenge strain 1258 
(A/equine/Newmarket/5/2003, NCBI Taxonomy ID: 568375) using the Burroughs-1259 
Wheeler Algorithm (Li et al. 2009). Adaptor sequences were removed with 1260 
Trimmomatic v0.4 (Bolger et al., 2014). Sequences with a mean quality score <30 1261 
were also removed. Functions within the ‘samtools’ package array v1.12 (Danecek 1262 
et al., 2021) sorted, indexed and compiled the reads into useable fastq & fasta files, 1263 
the code for which is shown below. 1264 

2.2.5 Variant Calling 1265 

Utilising the 53 consensus genomes, sub-consensus variants were called from 1266 
BAM files using iVar v1.4.2 (Grubaugh et al., 2019),  LoFreq v2.1.5 (Wilm et al., 1267 
2012), vSensus (Orton, 2022) and FreeBayes v1.3.6 (Garrison & Marth, 2012). Each 1268 
tool employs different algorithms, processing requirements and filtering procedures. 1269 
Datasets detailing the frequency of sub-consensus mutations at each nucleotide 1270 
position were then associated with sample metadata. 1271 

Following the creation of consensus sequences, sub-consensus variants may 1272 
be detected and analysed. Due to the sheer volume of viral genomes in most viral 1273 
samples, most minority variants fall below a set threshold and thus are excluded 1274 
from analysis. This threshold varies depending on the efficacy of the genome 1275 
amplification technique and the specificity of the sequencing procedure, but as a 1276 
standard, most laboratories (Koel et al., 2020; McCrone & Lauring, 2016) place a 1277 
cut-off value at genomes that constitute less than 1% of the total viral population 1278 
meta-genome after amplification. With genomes annotated and aligned, the mutant 1279 
spectra can then be analysed as with any phylogenetic dataset, the only exception 1280 
being the scale of both time and relatedness are much smaller than in traditionally 1281 
multi-species/multi-strain phylogenetic trees.  1282 

Where variant calling tools did not present a conclusive list of variants (as in 1283 
Diversitools), outputs were manually filtered. Any site in which fewer than 99% of 1284 
reads were congruous (i.e. 1% or greater variant frequency threshold) was flagged 1285 
as a site of low-frequency variation. Filtering was performed using R scripts. 1286 

Box 1: Example of the code used for adaptor trimming, read compilation, genome assembly 
and finally creation of FASTQ files for subsequent genomic analyses. 

prinseq-lite.pl -trim_left 7 -trim_right 7 -min_qual_mean 30 -ns_max_n 0 
-lc_method dust -lc_threshold 7 -fastq File1_R1.fastq -fastq2 File1_R2.f
astq -out_good File1_good_reads -out_bad File1_bad_reads; 
bwa mem Reference.fa File1_R1_001.fastq File1_R2_001.fastq > File1.sam; 
samtools sort -@10 File1.sam -o File1.bam; 
samtools index File1.bam; 
samtools idxstats File1.bam; 
samtools mpileup -uf Reference.fa File1.bam | bcftools call -c | vcfutil
s.pl vcf2fq > File1_clean.fastq 
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2.2.5.1 Variant Caller Selection 1287 

The variant calling tool on which to base subsequent analyses was selected 1288 
on the basis of performance benchmarks, including specificity and sensitivity. Ten 1289 
tools were compared in total (Table 2.2A): those mentioned above together with 1290 
VarScan (Koboldt et al., 2012), DeepSNV (Gerstung et al., 2012) and Diversitools 1291 
(Hughes, 2016). Box 2.2 shows the pipeline used to produce each low-frequency 1292 
variant array.  1293 
Table 2.2: A) Bioinformatic tools selected for comparative analysis and B) the datasets containing 1294 
the sequences which were used to compare and assess them. 1295 
A)   

Tool Reference    

DeepSNV Gerstung et al., 2012    

DiversiTools Hughes, 2016  B) 

FreeBayes v1.3.6 Garrison & Marth, 2012  Dataset Repository 

iVar v1.4.2 Grubaugh et al. 2019  SimData N/A 

LoFreq v2.1.5 Wilm et al., 2012  McCrone 2016 PRJNA317621 

VarScan Koboldt et al., 2012  McCrone 2018 PRJNA412631 

vSensus Orton, 2022  Han 2021 PRJNA722099 

V-Phaser2 Yang et al., 2013  Poelvoorde 2022 PRJNA692424 

QuasiBAM Manso et al., 2017    

VirTools Verbist et al., 2014    

Testing began with previously published sequence data, with corresponding 1296 
records of the sub-consensus variant frequencies found by the original authors (Table 1297 
2.2B). These five control datasets were then used to compare each in terms of True-1298 
Positive Rates (sensitivity) and True-Negative Rates (specificity).  Thus, the known, 1299 
published results were taken as a gold standard, and assumed to be the absolute 1300 
truth - as the aim of this testing was deciding upon a reliable, repeatable 1301 
bioinformatic tool the actual values are less important than aligning with the 1302 
performance of the tool. Processing times for each sample were also recorded, for 1303 
measuring performance efficiency. Ultimately, a combination of LoFreq and 1304 
FreeBayes provided the most comprehensive results. 1305 
 1306 
 1307 
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2.2.5.2 Variant Call Analysis 1308 

Variants from each sample’s BAM assemblage were called using LoFreq v2.1.5 1309 
with reference to the consensus of that sample, rather than using the consensus of 1310 
the entire dataset for each variant call. The use of this dynamic consensus, specific 1311 
to the read library in question, was chosen to avoid spurious variants; a base in 1312 
disagreement with the consensus of the entire dataset may have become fixed at 1313 
the consensus level in one host and thus by definition would no longer be a sub-1314 
consensus variant. Low-frequency variant arrays were then associated with sample 1315 
metadata. 1316 

2.3 Data Analyses 1317 

2.3.1 Analyses of Viral Shedding 1318 

Throughout the thesis, various statistical methods were used to explore the 1319 
patterns and impacts of variables, all of which were performed in R v4.2.0 (2022). 1320 
Correlations between viral copy numbers and numeric variables, such as sequence 1321 
diversity, were assessed using a Spearman correlation test. Tests for the normality 1322 
of shedding values relied on Shapiro-Wilk tests. Comparisons between stratified 1323 
datasets were implemented with non-parametric Kruskal-Wallis and Wilcoxon Rank-1324 
Sum tests; this included assessing whether host variables, i.e. transmission group 1325 
and/or vaccination status, significantly differentiated viral copy numbers. All of the 1326 
above tests incorporated a Bonferroni correction for multiple testing.  1327 

Finally, the impact on viral shedding of variables such as transmission group or 1328 
days post-contact was quantified using an array of linear and additive general 1329 
models, all of which were performed under a Bayesian prior-parameterisation 1330 
process. These models were created and estimated by the rstan package (2022). 1331 
MCMC chains were examined for 50,000 samples to ensure proper mixing of posterior 1332 
values and sufficient sample sizes from which to draw inferences. Mean posterior-1333 

for f in *.bam 
do echo $f ",iVar" >> time.txt; 
{time (samtools-1.12/samtools mpileup -aa -x -B -d 0 -A -q 0 -Q 0 -C 0 -
f ref.fasta $f | ivar variants -p ivar -q 0 -t 0 -m 0 -r ref.fasta -g 
Ref.gff) ; } 2>> time.txt; 
mv ivar.tsv $f.tsv; 
echo "\n" $f ", Diversitools" >> time.txt; 
{time (diversiutils_macosx -bam $f -ref ref.fasta -orfs CodingRegions.txt 
-stub $f) ; } 2>> time.txt 
echo "\n" $f ",LoFreq" >> time.txt; 
{time (lofreq call -f ref.fasta -o $f.vcf $f);} 2>> time.txt; 
echo "\n" $f ", FreeBayes" >> time.txt; 
{time (freebayes -f ref.fasta $f > $f-FreeBayes.vcf);} 2>> time.txt 
done 
 
for i in *.mpile.txt;         
do echo "\n" $i ",vSensus" >> time.txt; 
{ time (java -jar VSENSUS.jar $i > $i_log.txt);} 2>> time.txt; 
echo "\n" $i ", VarScan" >> time.txt; 
{time (java -jar VarScan.v2.3.9.jar mpileup2snp $i --min-var-freq 0.02 -
-p-value 0.05 > $i-VarScan.tsv);} 2>> time.txt; 
done 
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predictive density (meanPPD) was used to qualify certainty of coefficient estimations 1334 
and was deemed informative when representing over half of the trialled models.  1335 

To note, in creating statistical models, vaccinated hosts were nested within each 1336 
transmission chain to which the host belonged. Care was taken to uncouple these 1337 
variables when making inferences and so models were created in triplicate, initially 1338 
to observe host vaccination status and their transmission chain (m1: VaccS + VaccM + 1339 
Naïves), then to compare with models that only account for transmission chains (m2: 1340 
XSingle + YMulti) and a totally null model (m0: Host). Individual animal was not included 1341 
as a random effect. Further, as samples were collected daily, the data are time-1342 
serial and so individual animals were incorporated as random factors in order to 1343 
account for non-independence of variables. Model regression tables and raw data 1344 
are presented in appendices (Supplementary Figure 2.1). To incorporate time-serial 1345 
samples, Generalised Additive Models were created with the use of the ‘Day Post-1346 
contact’ variable (abbreviated to DPC), opting to smooth days 0-8 over an eight-fold 1347 
kernel. This enables flexibility of predictions without the constraints of assuming 1348 
linearity between variables. Overall, best-fit models were constructed with the 1349 
following foundation: 1350 

𝑙𝑜𝑔!"(𝑚𝑒𝑎𝑛	𝑐𝑜𝑝𝑦	𝑛𝑢𝑚𝑏𝑒𝑟)	~		𝑆𝑡𝑎𝑡𝑢𝑠	 + 	𝐺𝑟𝑜𝑢𝑝 + 𝑠(𝐷𝑃𝐶, 𝑘	 = 	8) 1351 
 1352 

2.3.2 Phylogenetic analysis 1353 

2.3.2.1 Sequence Alignment 1354 

Labelled with their corresponding metadata: individual sampled, day of 1355 
sampling, transmission group and vaccination status, fasta sequence files were then 1356 
imported into Geneious Prime v2023.1.2 where they were aligned using the Clustal 1357 
Omega multiple sequence aligner (Sievers et al., 2011, 2020; Sievers & Higgins, 1358 
2018). Mutations were called from the consensus of this alignment. As a convention 1359 
throughout this thesis, when discussing mutations, a lowercase letter indicates 1360 
nucleotides (e.g. a101g) while an uppercase letter indicates amino acids (e.g. 1361 
Ser101Asp). 1362 
2.3.2.2 Substitution Model  1363 

The most parsimonious evolutionary model was selected by opening sequence 1364 
alignments with ModelFinder, embedded in the IQTree2 package (Kalyaanamoorthy 1365 
et al., 2017). Substitution models were assessed and chosen based on Akaike and 1366 
Bayesian Information Criteria (AIC and BIC). Finally, a model with unequal 1367 
transition/transversion rates and unequal base frequencies was selected (HKY) 1368 
(Hasegawa et al., 1985) with the additional assumption of empirical base 1369 
frequencies (+F); ultimately an HKY+F substitution model was declared the best-fit 1370 
for this alignment. Though reassortment is undoubtedly a feature of IAV evolution, 1371 
it was ignored in the ensuing analyses since the high homogeneity at the consensus 1372 
level precluded its examination. At the sub-consensus level, detecting reassortment 1373 
would be even more of a challenge to detect and would involve using bioinformatic 1374 
programmes at the forefront of development, beyond the scope of this project. 1375 
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2.3.2.3 Maximum Likelihood 1376 

Maximum Likelihood (ML) trees were estimated using IQTree2 (Minh et al., 1377 
2020) with the eight genomic segments being concatenated to make a single 13kb 1378 
sequence for each sample. Trees were generated for each individual segment and 1379 
for all segments concatenated together. All trees were validated using 1000 1380 
bootstrap replicates. 1381 
2.3.2.4 Maximum Clade Credibility 1382 

Trees were estimated in Beast v10.4 with the help of the BEAST suite and 1383 
auxiliary programmes such as BEAUti v10.4 (Drummond & Rambaut, 2007; Suchard 1384 
et al., 2018) and Tracer v1.7.1 (Rambaut et al., 2018). Two monophyletic trees were 1385 
estimated, as both shared the ancestral Newmarket/5/03 strain as the initial 1386 
challenge inoculum. Each of the eight genomic segments had independent locally 1387 
random clock models and HKY substitution models giving a total of 17 evolutionary 1388 
models to analyse, including the shared tree model. 1389 

MCMC chains for tree estimation ran for 100 million iterations, with 10% burn-1390 
in, on the CIPRES (https://www.phylo.org/portal2) server. Constant and SkyRide 1391 
coalescent models were tested, but for such a small, homogeneous population the 1392 
differences between final MCC estimations proved negligible. The tree sampling 1393 
process was repeated four times independently in order to ensure proper mixing and 1394 
convergence of MCMC chains. After BEAST runs concluded, model parameters and 1395 
goodness-of-fit were assessed in Tracer via Effective Size Sampling before finally 1396 
TreeAnnotator was used to compile tree estimations into a single parsimonious 1397 
Newick file. 1398 
2.3.2.5 Phylogenetic Trees 1399 

Tree visualisations were created in FigTree v1.4.4 (Rambaut, 2018) or R with 1400 
the ‘ggtree’ package (Xu et al., 2022). Tree topologies and other properties were 1401 
analysed using R packages such as ape (Paradis & Schliep, 2018), PopGenome (Pfeifer 1402 
et al., 2014) and, specifically for MCC trees, Tracer (Rambaut et al., 2018). Mean 1403 
substitution rates of each genomic segment were calculated in BEAST using the 1404 
median Rate statistic. 1405 
2.3.3 Analyses of Sequence Diversity 1406 

At both the consensus and sub-consensus levels, sequence diversity was 1407 
measured with multiple metrics (Gregori et al., 2016), ranging in complexity and 1408 
representativeness. Most of these metrics are here applied at the consensus and per-1409 
site, sub-consensus scales granting an insight to the diversity of sequences as a whole 1410 
and on a site-by-site basis. All calculations of within-host diversity utilised the 1411 
variant call data from LoFreq. 1412 
2.3.3.1 Mutation Abundance 1413 

Mutation frequency (Mf) is an estimation of diversity based on comparing all 1414 
haplotypes to the most frequent haplotype in a population. It is the average number 1415 
of mutations observed in all haplotype sequences relative to the most frequent 1416 
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haplotype: Mf = mutations
reads × nucleotides

 . Simply, it is the proportion of sequences/reads that 1417 
do not match the consensus sequence/nucleotide. 1418 

At the sub-consensus level, the number of different mutations together with 1419 
their respective frequencies is referred to as the site frequency spectrum and can 1420 
be used as a measure of evenness of the population. A population can be said to be 1421 
very even if all mutations or haplotypes have a similar prevalence in the population. 1422 
Finally, we considered richness of mutant sequences/reads, which is the number of 1423 
polymorphisms per alignment/kilobase. 1424 
2.3.3.2 Simpson’s Index 1425 

Having been adapted from ecological studies, Simpson’s Index gives the 1426 
likelihood that two sequences, randomly selected from a viral population, are 1427 
identical (Gregori et al., 2016). With the mutational frequency pk, the probability 1428 
of two randomly sampled sequences having identical nucleotides at a given position 1429 
(k) is given by: 𝑃# = 	∑ 𝑝$%$ . This is then averaged across the entire genome. 1430 
Simpson’s index is therefore bound between 0 (no chance of finding identical 1431 
sequences) and 1 (lack of diversity in the population). This was carried out in R by 1432 
summing the mean mutational frequencies (pk) of each genomic segment.  1433 

To note, Simpson’s index is strongly skewed by the most abundant sequence 1434 
in the population. Further, squaring the mutation frequencies (𝑝$%) means that rarer 1435 
mutations become quickly lost in the analysis. This can have the detrimental effect 1436 
of biasing results, by enriching the mutations that are already present in high 1437 
abundance; whereas our aim in this study needed observation of mutations present 1438 
in very small proportions of genomes. 1439 
2.3.3.3 Shannon Entropy 1440 

Shannon Entropy (HS) is another diversity metric used commonly in ecological 1441 
studies which has been adapted for use in virology. Shannon Entropy is known to be 1442 
sensitive to the size of the sample under study. Shannon’s Entropy (Shannon, 1948) 1443 
of consensus sequences was calculated using the entropy function of Bios2cor 1444 
(Taddese et al., 2022).  1445 

To compare the genetic diversity between multiple samples, the mean 1446 
entropy across all sites is used. Shannon entropy can be computed as:  1447 

𝐻# = − A 𝑝&'
'∈{*,,,-,.}

× 	𝑙𝑜𝑔(𝑝&') 1448 

In this expression, i represents each base position and piα is the proportion of 1449 
nucleotide α at position i. This was carried out in R using the ‘entropy.Dirichlet’ 1450 
function from the R package ‘entropy’ (Hausser & Strimmer, 2008, 2021). 1451 
2.3.3.4 Tajima’s D  1452 

Tajima's D is a population genetic test computed as the difference between 1453 
two measures of genetic diversity (Tajima, 1989), the mean number of pairwise 1454 
differences between sequences and the number of polymorphic sites. This was 1455 
calculated using the PoPoolation package (Kofler et al., 2011) which was ran locally 1456 
in perl for each read library. 1457 

Tajima's D test aims to distinguish between a genetic sequence evolving 1458 
randomly (neutrally) and one evolving non-randomly. A randomly evolving genetic 1459 
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sequence is expected to contain mutations with no effect on fitness and survival. 1460 
The purpose of Tajima's test is to identify sequences which do not fit the neutral 1461 
theory model at equilibrium between mutation and genetic drift. Tajima's statistic 1462 
measures the total number of polymorphic sites in the sampled genome and the 1463 
average number of mutations between pairs in the sample, both of which are 1464 
estimates of the population genetic parameter θ. If the difference between these 1465 
two parameters (θ1 and θ2) could be reasonably explained by chance, then the null 1466 
hypothesis (H0 = neutrality) cannot be rejected. Otherwise, the null hypothesis of 1467 
neutrality is rejected. 1468 

Under the theory of neutral evolution, for a population of constant size at 1469 
equilibrium, the following equation is applicable: 1470 

E CS÷A
1
i

n-1

i=1

D =2µNeff=θ 1471 

In this expression, S is the number of segregating sites, n is the number of 1472 
samples, Neff is the effective population size, µ is the mutation rate at the locus in 1473 
question, and i is the index of summation. 1474 
dTajima is calculated by taking the difference between the population genetics 1475 
parameter θ of two samples (d= θ1 - θ2). D is then calculated by dividing dTajima by 1476 
the square root of its variance EVar(d) (its standard deviation, by definition). Thus, 1477 

D = 
d

EVar(d)
 1478 

Tajima demonstrated in silico that D could be modelled using a β distribution 1479 
(Tajima 1989), work which was then built upon by Kim et al. (2016) in their 1480 
exploration of chicken and human IAV diversity. If the D value for a sample of 1481 
sequences lies outside the confidence interval of this distribution, then the null 1482 
hypothesis, i.e. neutral evolution, is rejected for that sequence. However, in real 1483 
world uses, past population changes, such as a population bottleneck, can bias the 1484 
value of D. 1485 
2.3.3.5 Pairwise Distance Indices  1486 

Nucleotide diversity (π) is used to quantify the distance between two samples 1487 
through the proportion of sites that they do not have in common. Population 1488 
nucleotide diversity, or index π, measures the average number of nucleotide 1489 
differences between any two genomes of the quasispecies (Nei & Gojobori, 1986). 1490 
Pairwise differences have been traditionally evaluated using the Hamming distance, 1491 
which is the number of mutations that distinguish a pair of sequences, although any 1492 
substitution model (JC69, K80, F81, etc) or subsets of differences (transitions or 1493 
transversions, synonymous or non-synonymous mutations) may be considered. Index 1494 
π provides more valuable information than Mf because it takes into account the 1495 
differences between any two genomes in the population. 1496 
Consensus π Diversity 1497 
Nucleotide π diversity measures genetic variation within a population. Overall, π 1498 
diversity counts the net number of nucleotide differences between sequences, 1499 
ultimately giving the average number of differences between two randomly selected 1500 
sequences from the dataset. In the present study, it was calculated using the 1501 
‘diversity.stats’ function, which is based on original methods from Nei (1988), 1502 
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Hudson (1992) and Wakeley (1996), within the PopGenome R package (Pfeifer et al., 1503 
2014). π is calculated by:  1504 

πJ=
n

n-1
A xi xj πij

ij

 1505 

where xi and xj are the respective frequencies of the ith and jth sequences, πij is the 1506 
number of nucleotide differences per nucleotide site between the ith and jth 1507 
sequences, and n is the number of sequences in the sample. The term in front of the 1508 

sum K 0
01!

L guarantees an unbiased estimator, making the π value comparable across 1509 

any dataset, regardless of the number of sequences. 1510 
Sub-consensus Nucleotide Diversity 1511 

Nucleotide π diversity quantifies the distance between two samples through 1512 
the proportion of sites that they do not have in common. The π diversity is calculated 1513 
with the SAMFIRE tool by Illingworth (2016). To summarise, π may be calculated as 1514 
the probability of two random sequences (sequencei and sequencej) having different 1515 
nucleotides at a specific position (d), averaged over all positions throughout the 1516 
entire genome sequence (n). 1517 

π	=A
2dij

n(n-1)
i<j

 1518 

This is then normalised against the population size (in this case the number of 1519 
genome copies) in much the same way as Shannon Entropy, giving: Effective π 1520 
Diversity (πe) = π

copy numbers
 1521 

2.4 Evolutionary Selection Analysis 1522 

The following algorithms within the HyPhy package were used to examine 1523 
evidence of selection or directional evolution: 1) Mixed Effects Model of Evolution 1524 
(MEME); 2) Fixed Effects Likelihood (FEL); 3) Single Likelihood Ancestor Counting 1525 
(SLAC); 4) Fast Unconstrained Bayesian Approximation for Inferring Selection 1526 
(FUBAR); 5) Branch-site Unrestricted Statistical Test of Episodic Diversification 1527 
(BUSTED) and 6) Adaptive Branch-Site Random Effects Likelihood (aBS-REL). To note, 1528 
segments 7 and 8 were excluded from the analysis as they did not have enough 1529 
diversity to measure any kind of evolution at the consensus level. Evolutionary 1530 
process calculations were carried out by the HyPhy software package wrapped in 1531 
DataMonkey’s web server (Delport et al., 2010; Pond et al., 2005). 1532 
2.5 Protein Structure Analysis 1533 

Consensus nucleotide sequences were translated into protein sequences using 1534 
the ‘ape’ package in R, following which protein properties were estimated via 1535 
ProtParam tools (Duvaud et al., 2021; Gasteiger et al., 2005). These tools allow for 1536 
the estimation of a range of physiochemical properties such as weight, 1537 
hydrophobicity and charge. Surface accessibility and protein localisation, though 1538 
already well-understood for influenza A viruses, were confirmed in EIV using online 1539 
tools such as the Deep-learning Transmembrane Hidden Markov Model (Hallgren et 1540 
al., 2022) and the Emini surface accessibility scale (Emini et al., 1985). 1541 
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2.5.1 Surface Accessibility 1542 

For a given amino acid sequence, the accessibility score of residue n is a 1543 
normalised product of the surface probabilities of amino acids in positions n-2 to 1544 
n+3, using experimentally qualified amino acid accessible surface probabilities 1545 
(Janin et al. 1978). A surface residue is defined as one with >2.0nm2 of water-1546 
accessible surface. Utilising the surface probabilities for amino acids, a surface 1547 
probability (S) at residue n is defined as: 1548 

𝑆0 = MN𝛿0231&

4

&5!

P × 0.3714 1549 

where δn is the fractional surface probability for the amino acid at position n. Sn 1550 
probabilities greater than one indicate an increased likelihood that the residue and 1551 
its immediate surroundings are accessible. 1552 
2.6 Estimation of Immunogenic Sites 1553 

The Immune Epitope Database (Vita et al., 2019) hosts the Kolaskar-1554 
Tongaonkar Antigenicity (Kolaskar & Tongaonkar, 1990) scale, which is used to 1555 
estimate possible immunogenic sites from protein sequences. This is coupled with 1556 
the Linear Epitope Prediction 2.0 tool (Jespersen et al., 2017) in order to highlight 1557 
putative epitopes based on the properties of amino acids in a sliding window of seven 1558 
residues. EIV haemagglutinin and neuraminidase protein sequences were examined 1559 
in the current work in order to assess whether any non-synonymous mutations would 1560 
affect protein antigenicity. 1561 

The semi-empirical method by Kolaskar & Tongaonkar predicts the 1562 
antigenicity of heptapeptide strings across whole proteins, making use of physio-1563 
chemical properties of amino acids and their abundance in experimentally-qualified 1564 
epitopes to estimate and score how antigenic a sequence is. Each residue is scored 1565 
from 0.77-1.41, and the average of this score together with that of the three 1566 
residues before and after, gives the probability of a heptapeptide being recognisably 1567 
antigenic by cells and molecules of the adaptive immune system. 1568 

Parameters such as hydrophilicity, flexibility, exposed surface and polarity of 1569 
polypeptide chains have been correlated with the location of continuous epitopes. 1570 
This has led to a search for empirical rules that would allow the position of 1571 
continuous epitopes to be predicted from certain features of the protein sequence. 1572 
All prediction calculations are based on propensity scales for each of the 20 amino 1573 
acids. Each scale consists of 20 values assigned to each of the amino acid residues 1574 
on the basis of their relative propensity to possess the property described by the 1575 
scale. 1576 

When computing the score for a given residue i, the amino acids in an interval 1577 
of the chosen length, centred around residue i, are considered. In other words, for 1578 
a window size n, the 𝑖 − 01!

%
 neighbouring residues on each side of i were used to 1579 

compute the score for residue i. Unless specified, the score for residue i is the 1580 
average of the scale values for these seven amino acids. In general, a window size 1581 
of five to seven residues is appropriate for finding regions that may potentially be 1582 
antigenic. 1583 
Application to a variety of proteins has shown that this method can predict per-1584 
residue antigenicity with about 75% accuracy (Kolaskar and Tongaonkar 1990). 1585 
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Indeed, this tool has been referenced in 46 publications (at time of writing) 1586 
regarding SARS-CoV2, highlighting its relevance and ease-of-use. In the present study 1587 
both consensus (denoted haplotype A) and mutant forms of EIV haemagglutinin 1588 
(haplotypes E and G) and neuraminidase (haplotypes H, L and M) proteins were 1589 
analysed to observe any potential differences non-synonymous mutations have on 1590 
protein antigenicity. 1591 
2.6.1 Epitope Prediction 1592 

BepiPred Linear Epitope Prediction 2.0 tool was applied to known surface 1593 
proteins, with B-cell epitopes predicted from putative antigen sequences (Jespersen 1594 
et al. 2017). B-cell epitopes are predicted from a protein sequence using a Random 1595 
Forest algorithm trained on amino acids from both epitopes and non-epitopes, as 1596 
determined from crystal structures; sequential prediction smoothing is performed 1597 
afterwards. 1598 
This epitope prediction tool has been used for research of MPox, SARS-CoV2 and 1599 
many other pathogens; since published in 2017 it has been cited 904 times (at time 1600 
of writing). Simply, it qualifies the probability of a residue to be the centre of a 1601 
heptapeptide with epitope presentation; a score above 50% indicates likely epitope.  1602 
 1603 
2.7 Structural Modelling 1604 

Protein structural analysis was undertaken as part of the present study. The 1605 
first step in this process was finding analogous structures in the Protein Data Bank 1606 
(Berman et al., 2000; Gore et al., 2017) by searching with the EIV protein fasta 1607 
sequences. Putative matches were then uploaded to ChimeraX suite (Pettersen et 1608 
al., 2021) for structural and spatial examination. Initially, non-synonymous 1609 
mutations detected at the consensus level were simulated in silico on homologs 1610 
(with the ‘swapaa’ command) to observe possible impacts of mutant amino acids on 1611 
local protein topography, as measured by changes to surrounding Ramachandran 1612 
angles. Additionally, the likelihood of amino acid replacements by point mutations 1613 
was quantified by a general PAM250 matrix to roughly estimate how costly and 1614 
unlikely non-synonymous mutations would be. 1615 

Beyond using homologous protein crystal structures, protein sequences were 1616 
used to predict the structures of each EIV protein. As the HA trimer is the only 1617 
resolved structure for equine IAV, creating models of the other major proteins of 1618 
EIV allowed observation of changes caused by non-synonymous mutations detected 1619 
throughout our experimental transmission chain, as well as comparative analyses 1620 
between predicted EIV proteins and those of other IAVs. Protein sequences were 1621 
inputted to AlphaFold (Abbas et al., 2023; Evans et al., 2021; Varadi et al., 2022) 1622 
both locally and on the online API provided by Google Code (Mirdita et al., 2022) 1623 
which resulted in the return of predicted structures. These predictions were then 1624 
post-processed in AlphaPickle v1.4.1 (Arnold, 2021) for quality control and 1625 
prediction confidence. 1626 
2.7.1 Validation of Structural Predictions 1627 

The accessory tool AlphaPickle (Arnold 2021) allows for structural model 1628 
validation with two main statistics: Predicted Aligned Error (PAE) and the Local 1629 
Distance Difference Test (LDDT) (Mariani et al. 2013) which measures the local 1630 
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distance differences between all atoms in a structure estimating confidence in the 1631 
predicted model. 1632 

AlphaFold2 reports the quality of a structural model as a per-residue pLDDT 1633 
score, which assesses prediction confidence. pLDDT ranges from 0 to 100, with 1634 
higher scores indicating higher quality predictions. Accuracy of AlphaFold 1635 
predictions is generally allocated into one of four confidence levels based on the 1636 
pLDDT scores: high (pLDDT ≥ 90), medium (pLDDT < 90), low (pLDDT < 70) or very 1637 
low (pLDDT < 50) (Abbas et al. 2023; Varadi et al. 2022). AlphaFold2 calculates the 1638 
pLDDT score by comparing the distance between pairs of atoms in the predicted 1639 
structural model with the corresponding distances reported in experiments using 1640 
actual protein structures. This comparison of distances is performed for each 1641 
individual residue, giving a final score reflecting the similarity between the 1642 
predicted and experimental reference structures at each residue (Tejera-Nevado et 1643 
al. 2023). 1644 
2.7.2 Comparing and Analysing Structures 1645 

In silico modelling of proteins with both consensus and mutant residues was 1646 
used to explore the impact of nonsynonymous mutations on proteins. At the per-1647 
residue scale, changes to the polypeptide backbone can show the impacts of a 1648 
specific point-mutation and so rotational changes may be quantified through 1649 
Ramachandran or Dihedral angles. 1650 

Two torsion angles in the polypeptide chain (Sobolev et al., 2020) describe the 1651 
rotations of the polypeptide backbone around the bonds between alpha carbons (Cα) 1652 
and the amino group (N-Cα) called Phi, φ and secondly, the carboxyl group (Cα-C) 1653 
called Psi, ψ. These φ and ψ angles are shown as green and blue respectively in 1654 
Figure 2.4, adapted from Lennox et al. (2009). The range of the Phi & Psi 1655 
Ramachandran angles accessible to a polypeptide chain defines the flexibility of the 1656 
backbone and its ability to adopt a certain fold. 1657 

 1658 

Residue i Residue i+1Residue i-1

Ri+1

Ri+1

Ri-1

ψi

φi

Figure 2: Protein backbone with labelled Ramachandran angles (Ψ and Φ) around a 
dihedral bond. White circles represent amino acid side chains. Adapted from Figure 1 of 
Lennox et al. (2009) and created using the Chemical Sketch Tool hosted by PDB.

Figure 3: Protein backbone with labelled Ramachandran angles (and) around a dihedral bond. White 
circles represent amino acid side chains. Adapted from Figure 1 of Lennox et al. (2009) and created 
using the Chemical Sketch Tool hosted by PDB.

Ri

Figure 2.4: Protein backbone with labelled Ramachandran angles (ψ and φ) around a dihedral 
bond. White circles represent amino acid side chains. Adapted from Figure 1 of Lennox et al. 
(2009) and created using the Chemical Sketch Tool hosts by PDB. 
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Each simulated mutation gives a φ, ψ and chi (χ) value associated with rotamer 1659 
properties based on the Dunbrack rotamer library (Shapovalov and Dunbrack 2011). 1660 
Both φ and ψ describe residue angles in relation to the protein backbone while χ 1661 
describes torsion of amino acid side chains (readers are encouraged to explore 1662 
Ramachandran angles with the interactive tool on Proteopedia). As χ reflects the 1663 
orientation of side chains around the residue backbone, it has minimal impact on 1664 
structural phenotype and so is not further analysed here. To note, glycine has no 1665 
associated angles as it does not possess side chains.  1666 

Mutations were simulated on both structures with the intention of not only 1667 
repeating in silico experiments for validity but to observe any differences in 1668 
structural changes between the two models, assessing potential strengths or 1669 
weaknesses of exclusively using either nearest-homolog crystal structures or 1670 
simulated structures alone. 1671 
 1672 
2.8 Transmission Bottleneck Estimation 1673 

The sizes of transmission bottlenecks were assessed using the exact Beta-1674 
Binomial sampling model proposed by Sobel Leonard et al. (2017). Code from the 1675 
authors’ supplemental materials was incorporated into R functions for ease-of-use. 1676 
Transmission pairs were decided upon based on the known dates of co-housing 1677 
between hosts. 1678 

The equation is composed of two probability distributions evaluated for each 1679 

possible bottleneck value (Nb) as specified at the start of the function. 1680 

L(Nb)i= AβbinVRvar, i|Rtot, i, k,Nb-kW × binVk|Nb, vD, iW
Nb

k=0

 1681 

The first probability function draws from a β-binomial distribution where, 1682 
given the number of variant reads and the total number of reads, the probability of 1683 
drawing a variant is defined by the variant frequency at that site. 1684 
The number of sub-consensus variants (Rvar) is measured against the total number of 1685 
reads (Rtot) at site i. The remaining terms mark the probability of success, i.e. the 1686 
threshold at which a variant can differentiated from mechanical error which is 1687 
usually 1%, and the number of trials. This likelihood value then populates a binomial 1688 
distribution of probable bottleneck sizes for the number of successes in k trials, 1689 
where the probability of success is given by the observed frequencies in the donor 1690 
(vD, i). 1691 

This matrix is then evaluated by a binomial distribution where each successful 1692 
draw indicates an Nb value suitable for explaining the variants distributed across 1693 
both donor and recipient hosts. Repeating this estimation for each possible value of 1694 
Nb (set between 0-200 in our initial trial) then gives the probability for the 1695 
bottleneck size most likely to lead to the viral population observed in the recipient 1696 
host. This maximum Nb was then incrementally adjusted in steps of 200 for samples 1697 
that showed estimates higher than 200. This incremental increase of the allowed 1698 
maximum continued up to an Nb of 1000, accurately estimating all but one sample. 1699 
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3 The Impact of Prior Immunity on Virus Shedding 1700 

The quantity of virus that an infected host releases into the environment over the duration of the 1701 
infectious period can vary greatly depending on host population structure, environmental conditions and 1702 
individual host factors. Host populations are rarely homogeneous and these differences can be reflected 1703 
in the amount, duration and method of viral dissemination. Here, horses were infected with influenza 1704 
virus in a transmission experiment and swabbed nasally to collect viral genomic material. Quantified by 1705 
qPCR, the resulting data provided us with an insight into the amount of virus present in each host on 1706 
each of the eight-day observation period. Predictably, vaccinated horses had smaller viral populations 1707 
than hosts with no vaccine-mediated immunity. Vaccine composition differed however, and horses that 1708 
received vaccines that matched the challenge virus to which they were exposed had substantially lower 1709 
viral populations than hosts that received vaccines made from multiple different influenza strains. From 1710 
this, we observe that even hosts with prior exposure to the infecting virus can be infected and 1711 
furthermore, that hosts with vaccine-conferred adaptive immune memory to the infecting virus had 1712 
smaller viral populations when they were infected. 1713 

3.1 Introduction 1714 

Influenza A viruses (IAV) infect a broad range of mammalian and avian species. 1715 
Their negative-sense segmented RNA genome is comprised of eight reassortment-1716 
capable RNP complexes. Two of these segments, numbers four (haemagglutinin-1717 
coding, HA) and six (neuraminidase-coding, NA), are major determinants of 1718 
antigenicity and immunogenicity; 18 HA and 16 NA subtypes have been detected 1719 
globally, across a broad range of species. Like many Orthomyxoviruses, IAV have a 1720 
rapid replication cycle and poor genomic-proofreading capabilities (Aeschbacher et 1721 
al., 2015; Alves Beuttemmüller et al., 2016; Khan et al., 2021). Both of these factors, 1722 
along with the lower fidelity of RNA-dependent RNA polymerases (RdRp) compared 1723 
to DNA, result in high mutation rates of IAV (Laabassi et al., 2015; Lai et al., 2004; 1724 
Landolt, 2014). 1725 

It is useful to consider the range host responses that affect virus load, including 1726 
mechanisms that either limit viral infection of cells or destroy infected cells before 1727 
they have the opportunity to sustain viral replication. Such defences include a) 1728 
Intrinsic Immunity, via the anti-viral responses of somatic cells (McKellar et al., 1729 
2021; Yan & Chen, 2012); b) Innate Immunity mediated, for example, by natural 1730 
killer cells and macrophages (Hartshorn, 2020; Hemmink et al., 2016); c) Adaptive 1731 
Immunity mediated by B- and T-lymphocytes (Paillot et al., 2016). Our experiment 1732 
is designed in such a way that the only independent variable under consideration is 1733 
the adaptive immunity of the hosts, though variation is of course introduced by host 1734 
heterogeneities we could not control for, such as innate immunity. More specifically, 1735 
we are looking at differences caused by the adaptive immune response conferred by 1736 
vaccination, following the work of Murcia et al. (2013) and Oladunni et al. (2021). 1737 

The viral load of a host is dependent upon multiple virus-host interactions. 1738 
Studies by Amat et al. (2021) however show that over the course of an infection, 1739 
H3N8 viruses attenuate slightly, causing less severe tissue damage in favour of 1740 
greater cell-to-cell spread. This may also impact the overall viral population size as 1741 
well as directly influence the amount of free virus able to be shed in mucus or 1742 
droplet. As viral load is mediated by the interplay of virus and host factors (Ganti et 1743 
al., 2021), our transmission experiment (detailed in the Methodology Chapter 2 1744 
Section 1.1) accounts for some viral genetic and phenotypic variability; all seeders 1745 
were challenged with inocula developed from the same lab-grown strain and thus 1746 
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should perform with roughly the same fitness. Though as the parallel transmission 1747 
experiments were carried out some weeks apart the two inocula were not from the 1748 
same batch; sequencing of the two inocula however showed homogeny between 1749 
batches. Hence, changes to load must have either developed de novo in the virus 1750 
during the outbreak or, more likely, be mediated by host factors.  1751 

Viral load represents the amount of virus present within a host and, while a 1752 
helpful figure, it is often difficult to quantify other than in in vitro studies. Shedding, 1753 
rather, gives the amount of virus a host expels into the environment; this is an 1754 
important metric when estimating direct and indirect transmission and can be used 1755 
as a proxy for viral load. Hence, to better understand these relationships between 1756 
host factors and the amounts of virus shed, we performed a transmission experiment 1757 
which involved infecting horses with an equine influenza virus (EIV). Using natural 1758 
transmissions between vaccinated and unvaccinated horses, we assess the impact 1759 
that host adaptive immune response has on the amount of EIV they shed on a daily 1760 
basis. 1761 

An important concept to appreciate when considering the host immune 1762 
response in this form of experiment is the theory of the Original Antigenic Sin. This 1763 
theory, put forward initially by Francis (1960), concerns adaptive immune 1764 
recognition of closely related virus strains. When first exposed to IAV, 1765 
immunocompetent individuals will mount innate, and subsequently, adaptive 1766 
immune cascades resulting in the generation of memory B cells with corresponding 1767 
epitope-binding antibodies. These memory responses enable rapid re-activation of 1768 
adaptive immunity should the immunogen appear in the body again. The Original 1769 
Antigenic Sin hypotheses deviates from the classical concept of adaptive 1770 
immunology, which holds that novel memory responses are generated for each new 1771 
pathogen encountered. OAS instead posits that newly encountered antigens 1772 
sufficiently similar to ones already responsible for generating the memory B cell 1773 
repertoire will trigger reactivation of the existing adaptive response rather than 1774 
stimulating a novel clonal expansion cascade. Thusfar OAS has mostly been studied 1775 
in mammalian influenza systems, ranging from in vivo mouse studies by Kim et al. 1776 
(2009) to in silico ordinary differential equations constructed by Pan (2011) with a 1777 
review of 23 human and animal experiments presented by Yewdell & Santos (2021). 1778 
However, older work on rodent-borne arenaviruses (lymphocytic choriomeningitis 1779 
virus) from Klenerman & Zinkernagel (1998) shows the same OAS dynamics seen in 1780 
IAV infections. 1781 

Rather than undergoing new clonal selection processes, OAS hypothesises that 1782 
the “good enough” binding of previous influenza memory cells will forego generation 1783 
of a novel B cell repertoire and instead reuse the existing memory cells to stimulate 1784 
an adaptive immunity reactivation cascade (Monto et al., 2017). This set of 1785 
imperfectly matched antibodies (Figure 3.1) are then capable of binding to pathogen 1786 
epitopes, but importantly at a reduced efficiency compared to antibodies generated 1787 
to the primary influenza exposure. Original Antigenic Sin theory proposes that the 1788 
strength of an adaptive immune response to a completely novel influenza strain may 1789 
in fact be greater than the response to an IAV strain that only moderately differs 1790 
from one to which the individual has pre-existing immunity and, consequently, OAS 1791 
is sometimes also referred to as ’antigenic seniority‘ (Henry et al., 2018). The theory 1792 
has been contentious since its proposal, but evidence generated by Simonsen (2004) 1793 
among others, showed that influenza exposure early in life grants lifelong immune 1794 
protection to hosts against strains similar to the eponymous “Original Antigen” with 1795 
which they were first infected.  1796 
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 1797 
Figure 3.1: Cartoon representation of Original Antigenic Sin. A) On first exposure, antibodies 1798 
bind to epitope X. B) Antigenic shift presents an entirely new viral epitope for the host to respond 1799 
to. C) However, on exposure to a similar, but antigenically distinct virus, antibodies matching 1800 
epitope X can still bind the novel epitope X`, but imperfectly. 1801 
3.1.1 Why is shedding important? 1802 

The viral load of a host likely affects the amount of infectious virus that 1803 
individual sheds into its’ surrounding environment (Perglione et al., 2016).  We can 1804 
assume that the longer an individual sheds, the longer they can transmit virus. In a 1805 
compartmental epidemiological 1806 
SEIR (Susceptible-Exposed-1807 
Infected-Removed) model (Figure 1808 
3.2) the viral load will impact the 1809 
recovery rate (γ) of hosts, assuming 1810 
that the recovery rate is a proxy for 1811 
the rate at which hosts cease 1812 
shedding virus and increase the size 1813 
of the infected pool.  Therefore, 1814 
we would expect that longer 1815 
durations of shedding infectious 1816 
virus will have epidemiological 1817 
consequences. However, a host 1818 
that sheds a greater quantity over the same average time period, has an increased 1819 
transmission rate (β), representing higher infectivity (Heesterbeek, 2002; Matthews 1820 
& Woolhouse, 2005). We would therefore expect hosts that shed a greater quantity 1821 
of virus and/or shed for a longer duration to have elevated force of infection (β), 1822 
essentially meaning that they have a higher chance to infect secondary hosts. Thus, 1823 
the quantity as well as duration of a host’s shedding, when scaled up to the 1824 
population-level, can influence the overall dynamics of an epidemic. Finally, 1825 
regarding the evolution of the pathogen itself, shedding indicates sustained 1826 
infection, so a longer period of shedding shows that the virus is actively replicating 1827 
for longer. Therefore, with more replication cycles within the host, the more likely 1828 
stochastic mutations will appear in the viral genome thereby creating a greater pool 1829 
of diversity upon which selective processes can act. 1830 

Figure 1: Cartoon representation of Original Antigenic Sin. A) On first exposure, antibodies bind 
the epitope X. B) Antigenic shift presents an entirely new viral epitope for the host to respond to. 
C) However, on exposure to a similar, but antigenically distinct virus antibodies matching epitope 
X can still bind the novel epitope X`, but imperfectly.

X ANTIBODY
A)

X` ANTIBODY
C)

Y ANTIBODY

B)

Figure 3.2: A standard SEIR model, showing four 
groups and the interacting dynamics between them. 
Viral shedding of hosts especially affects 
transmission rates (β) and the latency period (σ). 
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3.1.2 What is known about IAV shedding? 1831 

Epidemiological implications of viral shedding have long been explored, and 1832 
since the 1918 H1N1 pandemic a great deal of attention has been given to influenza 1833 
viruses. Understanding the shedding of IAV infected hosts has given insight into 1834 
pandemic preparedness models (Ferguson et al., 2005, 2006), critical community 1835 
thresholds for widespread vaccine coverage (Aoki & Boivin, 2009; Ip et al., 2017) 1836 
and guided public health decisions (Lau et al., 2010; Liao et al., 2010). These data 1837 
are however understudied in non-human influenza epidemic dynamics.  1838 
Values of other EIV and IAV studies, displayed in Figure 3.3: 1839 

• Equine Influenza 1840 
o 10e6 copies/µl at peak of shedding (72 hours post contact) in 1841 

experimental transmission of naïve hosts (Murcia et al., 2010) 1842 
o in vaccinated horses experimentally exposed, shedding averaged 8.4e4 1843 

copies/µl, though on most days was around 10e5 copies/µl and peaked 1844 
at 10e6 copies/µl in one host (Murcia et al., 2013) 1845 

o viral shedding from horses across yards in a UK outbreak averaged at 1846 
6.37e3 copies/µl (Hughes et al., 2012) 1847 

• In other hosts: 1848 
o during transmission experiments, vaccinated pigs shed less virus than 1849 

naïve ones (an average of 71 compared to 281 copies/µl in the naïve 1850 
pigs) (Lloyd et al., 2011). 1851 

o clinical samples from human patients averaged 6.25, or 5.02 log10 1852 
copies per ml depending on whether the sample tested ELISA positive 1853 
or negative respectively (Ward et al., 2004). 1854 

o in testing oseltamivir treatment for humans, To et al. (2010) recorded 1855 
loads of 1.84e8 copies/ml in H1N1pdm2009 infections and 3.28e8 1856 
copies/ml in patients with seasonal IAV strains 1857 

o observing swine and barns in southern Minnesota, Neira et al. (2016) 1858 
reported 4.03e7 copies/ml in saliva samples, 4.16e7 copies/ml on 1859 
railing surfaces and 1.25e6 copies/m3 of sampled indoor air 1860 

 1861 
Figure 3.3: Examples of influenza viral loads of hosts under various conditions 1862 
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3.2 Results 1863 

3.2.1 Viral Shedding 1864 

Finding the relationship between Ct Values and the concentration of the standard 1865 
curve, we can examine at which point the calculated qPCR values become 1866 
unreliable. Here, the ability of Ct values to explain the copy numbers present 1867 
really breaks down at a Ct of 32.25, corresponding to around 80 copies/µl (detailed 1868 
in Chapter 2 - Methodology). Thus, we will use this cut-off point going forward. 1869 
This conservative estimate of when there is so little virus present in the sample 1870 
that the qPCR become stochastic also indicates a sparsity of viral genomes to with 1871 
which to establish further infections.  1872 

 1873 
Figure 3.4: Copy numbers/µl of EIV in naturally infected hosts, our transmission study lies to the 1874 
right of the dotted line. Trajectories of shedding from individual hosts from the experiment are 1875 
presented in further detail in Supplementary Figure 3.2 1876 

3.2.1.1 Viral Loads 1877 

Averaging the copy numbers of hosts into sets based on their transmission 1878 
chain and immune status, we have four distinct host classes: Vaccinates in the multi 1879 
(VM) and single (VS) transmission chains and Naïves in the multi (NM) and single (NS) 1880 
transmission chains. The raw qPCR values are shown in Figure 3.4 alongside other 1881 
collated EIV datasets. Nasal swabs were used to quantify viral loads, !67

!4"
 swabs gave 1882 

positive qPCR values (68 from the Single group: 42 vaccinates [VS] & 26 naïve [NS], 1883 
69 from Multi: 41 vaccinates [VM] & 28 naïve [NM]) were collected. 1884 

The samples show substantial variation between hosts and even within hosts  1885 
day-to-day. Within an individual, this variation in viral shedding is expected 1886 

as the population exhibits well-described growth kinetics. To better observe impacts 1887 
that host factors may have on viral shedding, qPCR values were averaged into an 1888 
epidemiological class showing the average viral load on each day of observation plus 1889 
the total area under the curve (AUC) in Figure 3.5. The peak shedding in most groups 1890 
occurs two days after contact with infected individuals. As shown graphically and in 1891 
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the table of average population sizes (Table 2) on the day of peak viral load, 1892 
shedding in the multi group is marginally higher than that of hosts in the single group 1893 
regardless of whether the host was vaccinated or naïve. 1894 

 1895 
Figure 3.5: Shedding values averaged across epidemiological groups for each day post-contact 1896 
with an infected individual. Annotations show the mean population size of each group, measured 1897 
as copy numbers per µl of transport media. 1898 

Notably the VM group sheds more than the NS; this suggests that previous 1899 
exposure to multiple viral strains offers less protection to the host than no 1900 
vaccination at all, on the condition that preceding hosts in the transmission chain 1901 
have been immunised to the specific challenge strain. However, to note, by 1902 
transmission into naïve hosts the two viral populations were not identical across the 1903 
Multi and Single groups and diverged at the consensus genome level. 1904 

The duration of shedding is important to observe; we would expect a greater 1905 
total quantity of shed viruses to correlate with infectivity, but hosts shedding the 1906 
same quantity over a longer period may have slightly different epidemiological 1907 
implications. Especially for an acute virus spread in a density-dependent manner, 1908 
such as IAV, a longer infectious period increases the number of potential contacts 1909 
an individual may encounter. 1910 

Most hosts, in both transmission chains, shed for 1911 
at least 3 consecutive days, with naïve hosts usually 1912 
shedding for 5 days. There are a few occasions where a 1913 
host will stop shedding for a day and then bounce back, 1914 
such as Multi 4A and 4B. Hosts 4A & 4B in both 1915 
transmission chains both have very low viral loads and 1916 
tend to barely broach the threshold before dipping back 1917 
below it again (Figure 3.6).  1918 

The second set of graphs show the specifics of 1919 
transmission events just between co-housed hosts, the 1920 
solid line representing the donor hosts and the dashed 1921 
always the recipient horses. The grey box in the 1922 
background represents the period in which the recipient 1923 
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Figure 5: Shedding values averaged across epidemiological groups for each day post−contact with an infected individual.
 Annotations show the mean population size of each group, measured as copy numbers per µl.

Group Day 
log10 Copies/µl 

Peak Total 

VM 2 5.61 6.16 

NM 3 5.81 6.06 

VS 2 5.38 5.73 

NS 2 5.21 5.72 

Table 3.1: Shedding of each 
group on the day of peak, 
and the day that shedding 
peaked, plus the total viral 
loads of each group. 
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pair were infected by the donor, based on viral loads, known dates of sample 1924 
collection and sequence analysis.  1925 

In the multi-chain, the 3-4 event shows a slightly lower load in 4A and 4B and 1926 
then the 4-5 event shows the population rebounding as it enters naïve hosts. But in 1927 
the single chain, the 3-4 event almost crashes the population and event 4-5 looks 1928 
like transmission almost sputters out. Onward transmission is only possible because 1929 
pair 5 is naïve rather than being another pair of vaccinates, thus mirroring the same 1930 
“rescue” of transmission chain by naïve hosts seen in both Jiao (2021) and Parsons 1931 
et al. (2024). This suggests that the adaptive immune response in horses that 1932 
received a multivalent vaccine, those representing hosts with a life history of 1933 
multiple exposures to different IAVs, inhibits viral growth to a lesser extent than in 1934 
hosts with specific immunity to the challenge strain. 1935 

 1936 
Figure 3.6: Focus on the transmission events between each pair of hosts. Shaded areas 
indicate the period in which recipient pairs were assumed to be infected. 
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  1937 
Figure 3.7: A) The day at which a host peaks in their shedding, and the copies/µl of that peak. 1938 
Most of the hosts in a pair peak on the same day. Shown in B) the number of days a host is 1939 
positively shedding and C) the number of days post-contact until a host becomes shedding-1940 
positive. 1941 
3.2.1.2 Non-Parametric Tests 1942 

Data from all 137 samples did not appear normally distributed with either a density 1943 
histogram or a qq-plot. To verify this, a Shapiro-Wilk test was used to assess whether 1944 
the copy numbers were actually normally distributed. A p-value of 2.2e-16 provided a 1945 
strong indication that the residuals of the mean copy numbers did not follow a Gaussian 1946 
distribution (W=041014). On this basis, non-parametric hypothesis tests were used in 1947 
the ensuing analyses of copy numbers (further information in Supplemental 3.3). A 1948 
mono-sampled Kolmogorov-Smirnov test was used to compare the data first with a 1949 
continuous normal distribution and then with a continuous Cauchy distribution, to 1950 
examine whether the mean copy numbers align with either of these distributions. The 1951 
mean copy numbers we observe did not adequately fit either probability distribution 1952 
and so were definitely non-normal. 1953 

To understand whether host factors impact shedding, differences in the means in 1954 
shedding quantities between experimental groups (Multi or Single) and Exposure 1955 
history (Vaccinated or Naïve) were tested. As data were non-normally distributed, 1956 
the tests applied included the Kruskal-Wallis and Pairwise Wilcoxon Rank Sum Tests. 1957 
The Kruskal–Wallis test is a non-parametric method for testing whether samples 1958 
originate from the same probability distribution and for the present dataset it was 1959 
used to ask whether copy numbers were associated with particular host factors. A 1960 
significant Kruskal–Wallis test would indicate that at least one value in the dataset 1961 
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is associated with the host factor in question. The Wilcoxon Rank Sum (Mann-1962 
Whitney U) Test compares the probability that a sample drawn from one group is 1963 
greater than a sample from the alternate group, in this case 'is a randomly drawn 1964 
copy number more likely to come from a vaccinated host than from a naïve host?’. 1965 

• Transmission Chain 1966 
o Both tests were unable to state a significant difference in shedding 1967 

between individuals in the two transmission groups (Kruskal-Wallis 1968 
chi2= 3.4371, df = 1, p-value = 0.06375). 1969 

• Vaccination Status 1970 
o Wilcoxon Rank and the Kruskal-Wallis testing determined that shedding 1971 

from vaccinated individuals was consistently different to that of the 1972 
naive  hosts (Kruskal-Wallis chi2= 5.8987, df = 1, p-value = 0.01515). 1973 

• Group 1974 
o Continuing to use the Wilcoxon paired rank tests, differences between 1975 

hosts according to their transmission group and immune status were 1976 
compared and displayed in Figure 3.8. The only groups that displayed 1977 
significant differences in shedding were the naives and vaccinates in 1978 
the multi group (NM: VM, p-value = 0.044) and the vaccinates in the 1979 
single group compared to the naïves of the multi group (NM: VS, p-value 1980 
= 0.009). 1981 

With vaccinated horses in both transmission chains shedding a significantly 1982 
lower amount than naives of the multi group, the vaccine clearly helps decrease 1983 
shedding, regardless of its composition. However, seeing that neither vaccinated 1984 
group shed considerably differently to the naïves in the single transmission chain is 1985 
likely a statistical artefact caused by the great deal of variation in the NS group. A 1986 
‘difference-of-means’ test like those used above does not consider variation in its 1987 
estimation. To account for this, general additive models further explore these 1988 
relationships below.  1989 

 1990 

Figure 3.8: Copy numbers of all samples, coloured according to epidemiological groups. Dashed 1991 
lines connect boxplots showing the results of Wilcoxon rank sign tests, and coloured green if 1992 
statistically significant. 1993 
From the consensus sequence analyses, detailed in Chapter 4, we do detect two 1994 
distinctly different virus populations by the end of each transmission chain. After 1995 
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transmission through vaccinated hosts in the single group, a non-synonymous 1996 
mutation (NP g1445a) becomes fixed in the viruses. The final virus population at the 1997 
end of the multi group, however, has two fixed mutations, both in segment 2 (the 1998 
synonymous PB1 t1500c and the non-synonymous PB1 a1853c). These two different 1999 
viruses may have differing fitnesses, potentially explaining why the viral loads in NS 2000 
hosts is more similar to vaccinates than 2001 
that of NM hosts. That such a drastic shift 2002 
in fitness could be mediated by a single 2003 
non-synonymous mutation away from the 2004 
consensus in each group (making a 2005 
distance of two non-synonymous 2006 
mutations in total between the NM and NS 2007 
viruses [see haplotypes F and J in Chapter 2008 
4 Section 3.1.1]) is unexpected. Changes 2009 
in viral shedding could be caused by viral 2010 
mutations and/or changes in the host 2011 
response. 2012 
3.2.1.3 Regression Models 2013 

Models of viral shedding were constructed which included the host’s transmission 2014 
group (Group), whether the host was vaccinated or not (Status) and the day on which 2015 
the sample was taken, measured from the day that the host was first exposed to 2016 
infected individuals (Day Post-contact, DPC) as explanatory variables. The first step 2017 
was to determine whether to use the total amount of virus shed as the response 2018 
variable or to treat the viral loads of each day as independent response variables. 2019 
These models were compared in a pairwise manner and with two main ranking 2020 
processes: average posterior predictive distribution (PPD) and LOOIC (leave-one-out 2021 
information criterion) (Vehtari et al., 2022). Ultimately, the total amount of virus 2022 
shed by each host was selected as the most informative and statistically well-2023 
supported response (ΔLOOIC = 494.9, supplementary 2.1b). 2024 

 2025 
Figure 3.9: Model outputs of the observed effects of the day post-contact, epidemiological group 2026 
and finally the joined effects of both effect variables. 2027 
Observing the modelled viral load over the course of infection, as seen with the real 2028 
data, viral shedding peaks on the second day and begins to decline from the sixth 2029 

Group Coefficient Total log10 copies 

VM 12.6 12.6 

NM -1.5 11.1 

VS -2.1 10.5 

NS -3.6 9.0 

Table 3.2: Model coefficients and resulting 
viral load estimates for each epidemiological 
group. 
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day. We can also see that shedding is consistently highest in the VM group (Table 3). 2030 
This does not match what is seen in the real data, where NM hosts shed at a higher 2031 
level, as expected from a biological perspective. This is likely due to over-dispersion 2032 
in the model caused by having more data points in the VM group than NM, and a 2033 
broader range of copies in the VM group. Between the epidemiological groups, hosts 2034 
in the single transmission chain shed less overall than those in the multi chain, with 2035 
the total virus shed in the multi group being 2.1e12 compared to 1.6e10 across the 2036 
single chain. Further, the viral load of hosts is heavily influenced by their previous 2037 
history of EIV exposure; between both transmission chains, naïve hosts shed a total 2038 
of 6.3e10 whereas vaccinates shed 2.0e12 in total. 2039 

The higher quantity of viruses shed by hosts of the multi transmission chain 2040 
suggests a greater degree of uncontrolled infection than those in the single chain. 2041 
As explored previously, the previous exposure to the specific inoculum seen in the 2042 
vaccinates of the single chain reduces the amount of virus shed overall.  2043 
3.2.2 Transmission Events 2044 

From the date of first vaccination (April 1st 2008) to the beginning of each 2045 
experimental transmission chain (multi: Jul 22nd 2009, single: Oct 14th 2009), all 2046 
vaccinated individuals had many months for the initial vaccine-responses to 2047 
acquiesce. However, this extended period may introduce waning immunity of the 2048 
hosts to our considerations.  Sera were collected from the vaccinated hosts for 2049 
haemagglutinin inhibition tests in order to measure the strength of immune 2050 
responses by circulating antibodies. The transmission experiment began once 2051 
passively circulating anti-influenza antibodies had fallen to levels indicating a return 2052 
to immune senescence, i.e. a value low enough to make them susceptible to 2053 
infection. Based on both equine influenza vaccine efficacy tests (Wood et al. 1983) 2054 
and previous EIV transmission experiments (Murcia et al. 2013), this was determined 2055 
by a single radial haemolysis (SRH) value less than 60mm2. Hosts only entered the 2056 
transmission experiment once it was believed that viral exposure would trigger a 2057 
secondary, memory immune response. Thus, antibodies raised in response to vaccine 2058 
antigens would have subsided and any new humoral response would be driven 2059 
entirely by the hosts’ adaptive immune memory (Appendices Supplementary Figure 2060 
3.1). Hence the delay between the two experiments; as vaccinated hosts in the 2061 
Single group mounted a longer-lasting response than those in the Multi group, 2062 
additional weeks were needed before starting transmission.  2063 
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 2064 
Figure 3.10: Diagram of the vaccine regimen, and the time each experimental transmission chain 2065 
began. Dates of vaccine administration (V1-5) reference the schedule laid out in Table 1. 2066 
Therefore, vaccinated hosts were still susceptible to infection; each host has at least 2067 
3 samples surpassing the threshold of 1000 copies from nasal swab qPCR assays.  2068 

All transmission events were successful across the experiment; there was 2069 
always at least one donor and one recipient host wherein sufficient viral particles 2070 
were transmitted. We are, therefore, unable to gauge the level of the infective dose 2071 
from this experiment and therefore we cannot model whether or not transmission 2072 
may die out. However, under the assumption that passage through vaccinated hosts 2073 
places continually tighter bottlenecks on viral population size (as measured by copy 2074 
numbers), EIV transmission will eventually halt as the infected, vaccinated donor 2075 
sheds too little virus to establish infection in a subsequent vaccinated recipient. 2076 
From this, I hypothesise that a transmission chain with many vaccinate-vaccinate 2077 
transmission events will be prematurely shortened compared to a chain with more 2078 
heterogeneity, i.e. fewer transmission events exclusively between vaccinated hosts. 2079 

Viral transmission is wrought with stochastic bottlenecks, which may limit the 2080 
ability of a founder population to establish infection in a recipient host, and this 2081 
may lead to epidemic burnout. To examine the implications of this on a 2082 
homogeneous population of horses, the shedding data were used to simulate 2083 
conditions of an outbreak in which all hosts are vaccinated. These models are 2084 
extrapolating the trends seen in the actual experiment and are supported by the 2085 
transmission study of Murcia et al. (2013) in which EIV transmission halts after a host 2086 
sheds insufficient virus to cause a subsequent infection. In that work, horse ‘V4’ 2087 
shed an average of 64 copies daily (±101) and a total of 1221 over the course of the 2088 
experiment, and was unable to infect horse ‘V5’. From this we can safely assume a 2089 
minimum of 1,000 virions are needed to establish infection (explored further in 2090 
Methods 2.2.3). 2091 

By quantifying the total and daily average amount of virus shed by each host, 2092 
we can estimate the size of the outbreak as a whole. Summing the amount shed by 2093 
all hosts in each transmission chain (Table 2) we see 10e6.41 and 10e6.03 copies in the 2094 
multi and single chains respectively. Of course, shedding is not distributed equally, 2095 
and the size of the founding population can determine the speed and overall viral 2096 
load of the newly infected host. Each host received at least the minimum infectious 2097 
dose to establish infection, but a host exposed to 10e4 viruses is much more likely 2098 
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to be infected and to reach a higher viral load than a host exposed to only 10e2 2099 
viruses as stochasticity in the establishment of an infection means that a larger 2100 
population is less vulnerable to change. 2101 

Using the additive models created above, the significant host factors in 2102 
determining shedding profiles can be utilised to make predictions on the shedding 2103 
of subsequent hosts. Primarily, the transmission chain is simulated to have additional 2104 
vaccinated hosts. As horses in natural settings are recommended to be fully 2105 
vaccinated, this simulation could help characterise transmission events between 2106 
vaccinated hosts; although the implementation of these recommendations likely 2107 
varies between countries.  2108 
3.2.2.1 Linear Predictions 2109 

Linear predictions of the viral shedding based on the host’s position in the 2110 
transmission chain, and to which transmission chain they belonged, can be used to 2111 
extrapolate the amount of virus shed in further hypothetical vaccinated hosts rather 2112 
than naïve ones. Initially, predictions were based on the mean shedding values and 2113 
the trends observed between these means. However, they proved inadequate due 2114 
to their simplicity. The results are briefly discussed here, demonstrating the 2115 
methodology used and the naïve assumptions such linear models make. Indeed, 2116 
creating and interpreting these models was a step of the analyses but only a 2117 
preliminary one; it is included here to demonstrate the analytical process and lay 2118 
the foundation for the development of the more complex models below. 2119 

Using the data from vaccinated hosts, a linear model was created and shows 2120 
that the data have a strong signal of decline. To note, this incremental decrease in 2121 
shedding is unlikely to continue at a fixed rate. This modelling is meant to highlight 2122 
the introduction of stochasticity in transmission events, as hosts shed lower 2123 
quantities of viable virus the probability of infected hosts shedding sufficient to 2124 
cause secondary infection falls. Though vaccinated hosts in both transmission chains 2125 
shed slightly different amounts, an estimated 106.16 in total in the multi transmission 2126 
chain and 105.73 in the single chain, the slopes at which shedding decreases 2127 
incrementally with each transmission event both show the same pattern. Each 2128 
transmission event reduces the amount of virus shed overall by 100.345 or 100.195 for 2129 
the multi and single transmission chains respectively. Hence, eventually, each host  2130 
is shedding so little virus that on no day are copy numbers above 80 copies/µl (101.09), 2131 
at which point we can assume that onward infection is not viable. The above models 2132 
may be expanded upon by adding variation in shedding seen across different days, 2133 
and so we can further estimate transmission between vaccinates. 2134 
3.2.2.2 Additive Modelling 2135 

Using a Bayesian additive model in order to better represent the margins of 2136 
error and standard deviations, the shedding of hosts vaccinated with different 2137 
vaccine types can be assessed (Figure 3.11). Range-bars represent the variation over 2138 
the eight days of observation and, as before, the models predict that shedding across 2139 
vaccinates in the single group declines sooner and more rapidly than vaccinated 2140 
hosts in the multi group. This contrasts the previous model, in which the multi group 2141 
showed a steeper decline.  2142 
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 2143 
Figure 3.11: Mean shedding, at the level of both hosts in a pair, over the eight days of 2144 
observation. 2145 

Incorporating variability in shedding influenced by the day of shedding into this 2146 
model thus aims to provide a more comprehensive picture than above, wherein the 2147 
more simplistic model assumed equal rates of shedding for the entire infectious 2148 
period. It is unlikely that the 5th hosts in the single chain would shed sufficient virus 2149 
to subsequently infect a 6th pair of vaccinated individuals. In the multi group, on the 2150 
other hand, transmission appears to remain viable until the 8th pair. According to 2151 
the model, EIV will stop local spread after passage through either 5 or 7 pairs of 2152 
vaccinated hosts, in the single or multi group respectively. 2153 
3.3 Discussion 2154 

This chapter deals with an initial analysis of viral shedding data from two related 2155 
transmission experiments, both beginning with the inoculation of immunologically 2156 
naïve horses with the Newmarket/5/03 EIV strain. Each transmission chain was 2157 
composed of three pairs of vaccinated hosts followed by two pairs of naïve horses. 2158 
The vaccine regimen for each transmission chain differed, allowing a total of four 2159 
distinct experimental groups to be defined: hosts vaccinated with multiple strains 2160 
of EIV (VM) and corresponding naive hosts (NM) and hosts vaccinated with only 2161 
Newmarket/5/03 EIV antigens (VS) and the corresponding naïve hosts (NS). Once they 2162 
tested positive for EIV infection, nasal swabs were taken from each host daily in 2163 
order to quantify their viral load with the use of qPCR. From the results presented 2164 
in the previous section, it can be observed that naïve hosts in the multi group shed 2165 
substantially more virus than any of the other groups. A high degree of shedding 2166 
implies a large viral population within the individual over the entire course of EIV 2167 
infection, the size of which has a major influence on viral evolution. Primarily, a 2168 
larger population is more resilient to deleterious mutations and also provides a 2169 
broader pool of potential sites of mutation and/or selection. This, however, is 2170 
coupled with the disadvantage of dilution of beneficial mutations, as the population 2171 
may be so large that selective pressures act weakly. Finally, the more virus shed 2172 
into the environment, the more likely onward transmission is to occur, either 2173 
directly or through fomites. 2174 

A secondary cut-off point was considered, originating from an external EIV 2175 
transmission study (Stack et al., 2013) which measured a break in transmission once 2176 
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hosts were shedding beyond this 34.81 Ct value, around 15 copies/µl. However, this 2177 
study focused exclusively on transmissions between vaccinated horses and so is less 2178 
informative for transmission chains of heterogeneous hosts. Hughes et al. (2012) 2179 
defined a horse to be positively shedding once viral load numbered above 150 2180 
copies/µl (due to the limits of false positive detection in qPCR), though this study 2181 
focused on samples collected during a national outbreak of EI and so has a higher 2182 
threshold than our experimental data require.  2183 

The transmission group to which a host belongs moderately influences viral 2184 
shedding, with 10e2.1 lower shedding being observed in the single group compared 2185 
to the multi group (neff = 74%). The immune status of the host also was found to 2186 
influence viral load quite dramatically, with vaccinated horses demonstrating 10e1.6 2187 
lower shedding than their unvaccinated counterparts (neff = 72%). As expected, over 2188 
the course of infection, the amount of virus shed depended heavily on the number 2189 
of days since the host was first exposed to the pathogen. Generally, the shedding 2190 
curves had a bell shape, accelerating from days zero to two, peaking on day two or 2191 
three and then decreasing over days six to eight. This short period in which an 2192 
infected host is actively shedding virus and constant close-contact with susceptible 2193 
hosts during this period is crucial to viral spread during outbreaks. However, it must 2194 
be noted that horses in the vaccinated class of this experiment had recently 2195 
undergone an extensive vaccine regimen of five exposures over a period of 40 weeks, 2196 
which was much more intense than that normally administered in the field, where 2197 
boosting is recommended every six months. In natural, field settings waning 2198 
immunity and even exposure to other, non-IAV pathogens would be expected to 2199 
decrease the strength of the immune memory response. The stark difference in 2200 
shedding between classes seen here would thus be expected to be less dramatic and 2201 
more closely resemble one another. 2202 

Decreased shedding in vaccinated individuals makes biological sense; a pre-2203 
armed immune system mounts a stronger and faster response to infection. Thus, the 2204 
infecting viral population is suppressed and so the overall viral load is much reduced. 2205 
This suggests that in natural infections, vaccinated individuals may shed a lower 2206 
amount of virus throughout the course of infection. Temporal patterns of shedding 2207 
did not differ substantially between transmission chains; almost all hosts appeared 2208 
to spend a day or two with low-detectable, non-shedding loads before broaching the 2209 
defined threshold. Then, once viral loads averaged >1000 copies/µl, hosts were 2210 
considered as being infective to other horses, with virus being shed for up to three 2211 
days before dropping back to undetectable levels. The duration and intensity of 2212 
shedding can influence the likelihood of a host infecting another susceptible 2213 
individual, a large factor in predicting epidemic properties. As shown, the type of 2214 
vaccine a host received affected the overall viral load present across the 2215 
transmission chain, even if the effect on individual hosts itself was minimal. In both 2216 
transmission chains, the average and total viral load decreased with each pair of 2217 
vaccinates, i.e. pairs two to four. 2218 

The continuous decrease in shedding observed may not necessarily be indicative 2219 
of epidemic burnout and hosts may eventually shed enough to seed infection in other 2220 
susceptible individuals. But the important point is that the need to shed for a greater 2221 
amount of time to reach this threshold necessitates that hosts remain in close 2222 
contact for longer durations than normal. It is this requirement that increases the 2223 
chances of burnout; the conditions required for ordinary transmission become more 2224 
and more demanding, to a point that viral transmission becomes improbable. 2225 
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Additionally, quantification of viral load in each host comes exclusively from 2226 
daily nasal swabs. This is clearly missing out on an important, well-known feature of 2227 
IAV transmission; that of mechanical transmission via fomites. Virus shed into the 2228 
environment may well be able to supplement, if not entirely substitute, the initial 2229 
infective dose required to establish infection in a new host. Our results still indicate 2230 
that such low levels of shedding as seen in vaccinated hosts predict that further 2231 
down the transmission chain infected individuals would be unable to initiate 2232 
infection alone. However, with added viral challenge from surrounding fomites, 2233 
infection may still be established in new hosts. 2234 

These models imply that, were the host population all vaccinated, there would 2235 
eventually be a point at which hosts shed too little to establish subsequent 2236 
infections. This effect is of course two-fold, mounting a strong immune response to 2237 
infection limits the population size of the virus in the putative donor host and the 2238 
presence of circulating monoclonal antibodies to the pathogen means that a higher 2239 
infectious dose is needed in order to initiate infection in a recipient host.  2240 

As experimental control, it must be noted that the transmission room was 2241 
disinfected thoroughly before each new pair of hosts were introduced. In natural 2242 
disease transmission, influenza virus shed into the environment may remain infective 2243 
for hours, days or possibly longer (Bean et al., 1982; Thompson & Bennett, 2017) 2244 
and can contribute to the establishment of infections in susceptible hosts. Thus, our 2245 
experiment excluded any opportunity for indirect/mechanical transmission of the 2246 
virus, which has potential implications on our ability to accurately model epidemic 2247 
burn-out. We have assumed that droplet infection from an infected host is the only 2248 
way to seed new infection and we have based our models on this minimum infectious 2249 
dose. Virus shed into the environment may supplement that secreted directly by an 2250 
infected host (Greatorex et al., 2011), meaning that low level shedding from the 2251 
nasal cavity would not necessarily interrupt transmission (Wißmann et al., 2021). 2252 

Realistically, despite the best efforts of the horse-owning community, 100% EIV 2253 
vaccine coverage in the field is unlikely to occur and, as seen in the 2019 European 2254 
outbreak, broad coverage of the horse population doesn’t necessarily lead to 2255 
epidemic burnout. In fact, this outbreak frequently saw the symptomatic infection 2256 
of fully vaccinated horses, with these individuals contributing to the production and 2257 
spread of virus capable of infecting other hosts. Furthermore, we can assume that 2258 
asymptomatic infection of vaccinated horses also occurred as we saw evidence of 2259 
positive shedding in each host of the vaccinated class, adding yet another pool of 2260 
actively infective hosts. To relate back to the notion of SEIR epidemiological models, 2261 
each of these classes of horses likely have their own transmission (β), eclipse (σ) and 2262 
recovery (γ) rates. Thus, epidemic maintenance should be considered a complex 2263 
system where likelihoods of individuals being infected depend heavily on both donor 2264 
and recipient host factors together with host-pathogen interactions within hosts on 2265 
either side of a transmission event. However, one factor unable to be measured in 2266 
this transmission experiment is the presence of super-spreader individuals. As with 2267 
examples seen in human disease outbreaks, the causes of such super-spreader 2268 
phenomena are multi-factorial; ranging from individual behavioural or genetic 2269 
differences to population movements. To date, no specific examination of super-2270 
spreaders in EIV epidemic dynamics has been carried out. Lessons could be learnt 2271 
however from the testing of super-spreaders in foot and mouth disease virus (FMDV) 2272 
outbreaks in similar, livestock populations (Hidano & Gates, 2019).  2273 

Following the 2018-19 outbreak, the Horserace Betting Levy Board recommend 2274 
booster vaccinations every 6 months rather than annually (International Codes of 2275 
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Practice, 2023); though this is also to account for antigenic drift of circulating EIV. 2276 
Further work is needed to examine the actual minimum infectious dose and the 2277 
transmission dynamics that shape continued host-host infection. This should lead to 2278 
a better representation of the pcrit, i.e. the proportion of susceptibles that would 2279 
need to be vaccinated in order to prevent onward transmission. As guidelines differ 2280 
depending on the life of horses, i.e. sporting or non-sporting, a reliable figure for 2281 
pcrit is not known and instead owners are encouraged to vaccinate all eligible horses. 2282 
3.3.1 Outcomes 2283 

To summarise, hosts that received a vaccine shed less than those that did not, 2284 
with vaccinated individuals exposed to autologous challenge showing the lowest 2285 
level of shedding. Manufacturers have a choice whether to produce monovalent or 2286 
multivalent vaccines. The decision to include multiple antigens is one of breadth of 2287 
coverage, attempting to provide broad immunity to a handful of circulating IAV 2288 
strains rather than specifically target a single strain and potentially leave lower 2289 
protection to non-targeted strains. Unsurprisingly, the best recourse to prevent 2290 
equine influenza in an individual and to help protect others is to ensure that horses 2291 
have an up-to-date vaccination record. Despite our findings, using a monovalent 2292 
vaccine in the real-world would only be recommended if a single, well-characterised 2293 
EIV strain was circulating; as this is rarely the case in a globally distributed virus, 2294 
the breadth of protection offered by multivalent vaccines outweighs the slight 2295 
reduction in performance against a specific strain (Blanco-lobo et al., 2019; Daly et 2296 
al., 2004). 2297 

Our findings confirm and broaden understanding of viral load as a key feature of 2298 
disease processes; following work from Wood (1993); Whitlock et al. (2018) and 2299 
Smith (2004), with tightly-controlled experimental conditions. The novelty we 2300 
provide lies in the differing responses of naïve hosts in each transmission chain; NM 2301 
and NS. Even though these two classes should theoretically behave identically, NM 2302 
hosts shed considerably more than either vaccinated group whereas NS hosts are not 2303 
significantly different to either vaccinated class. Hence, we conclude that the 2304 
exposure history of hosts can impact the infection dynamics of EIV in hosts further 2305 
down a transmission chain and that the responses of immunologically naïve hosts 2306 
may be affected by the immune status of the donor host that infected them. 2307 
  2308 
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4 Analysing Consensus Sequences from Influenza 2309 

Transmission Experiments 2310 

As sequencing technology and software have developed, pathogen sequencing has become a 2311 
mainstay of disease surveillance, treatment and management. Influenza A virus infections are usually 2312 
acute meaning that viral population may be present in a host for a short period of time. In this time, 2313 
viruses diversify due to the introduction of random genomic mutations. Rapid reproduction cycles 2314 
enable viral populations to respond rapidly to host environments by adapting to selective pressures. 2315 
However, only a subpopulation of viruses leaves the host to establish new infections meaning that some 2316 
of the diversity generated during an infection stays confined to that host. To explore how viruses evolve 2317 
both within hosts and between hosts, two transmission experiments were carried out. Over the course 2318 
of the transmission experiments, influenza A viruses collected from the nasal swabs of infected horses 2319 
were sequenced to build consensus genomes. 21 unique point mutations appeared in the 53 samples, 2320 
distributed evenly across the entire IAV genome. Much of the observed diversification was generated 2321 
in horses that had previously received influenza A vaccines, viruses from unvaccinated horses mostly 2322 
remained genetically identical to each other.  2323 

4.1 Introduction 2324 

In the preceding chapter I endeavoured to relate the level of individual viral 2325 
shedding to host factors such as vaccination status, day post-infection and 2326 
transmission group. Analyses showed a larger population of viruses in unvaccinated 2327 
hosts, indicative of larger viral populations in those hosts without vaccine-mediated 2328 
immunity. Presently, I examine changes in the Equine Influenza Virus (EIV) genome 2329 
that appear in individual hosts and throughout the experimental transmission chains. 2330 
Observing the intra-host diversity of viruses relies on the collection and analysis of 2331 
viral genomes from individuals sampled at multiple timepoints. 2332 

Genomic sequence data may be analysed to investigate and understand viruses. 2333 
Viruses were the first genomes to ever be sequenced (bacteriophage MS2 (Fiers et 2334 
al., 1976)) and also the first DNA genome to be sequenced (bacteriophage ΦX174 2335 
(Sanger et al., 1977)). Since the advent of next-generation sequencing (NGS) 2336 
technologies, sequencing of viral genomes has become commonplace in many 2337 
settings and has been applied to clinical (Houldcroft et al., 2017), diagnostic and 2338 
surveillance fields to name a few (O’Carroll & Rein, 2016). With better 2339 
understanding of viral genomes and the proteins they encode, regions associated 2340 
with specific phenotypic changes (e.g. drug-resistance or emergence in a novel host) 2341 
can be tracked and observed.  2342 

The value of genomic sequencing in viral outbreaks, and the investment of 2343 
money and labour into fulfilling sequence surveillance, further proves the 2344 
importance of these data (Gardy & Loman, 2018; Nicholls et al., 2021). During the 2345 
2013-16 Ebola virus (EBOV) outbreak in West Africa, health and research projects 2346 
collaboratively sampled over 1600 EBOV genomes (Dudas et al., 2017), 2347 
representative of over 5% of recorded cases. This was the first viral outbreak in 2348 
humans to focus on sequencing of pathogen genomes and it provided an 2349 
unprecedented insight into viral phylodynamics, i.e. the joint analysis of epidemic 2350 
and evolutionary dynamics. Since then, technology and processing pipelines have 2351 
advanced rapidly. By 2020 extensive viral sampling, sequencing and analyses 2352 
pipelines had been created by academic, clinical and governmental bodies following 2353 
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SARS-CoV-2 emergence. By April 2021, the Covid-19 Genomics UK Consortium (COG-2354 
UK) were sequencing over 10% of all reported Covid-19 cases each week (Marjanovic 2355 
et al., 2022). 2356 

A common aim of sequencing pathogen genomes, especially those of bacteria 2357 
but nowadays also those of viruses, is to track genes involved in the development of 2358 
drug-resistance (Schürch & van Schaik, 2017). Anti-viral therapeutics often target 2359 
specific viral proteins and reduced efficacy, or even complete resistance to these 2360 
compounds, can result from changes to viral protein structures (Das et al., 2010; 2361 
Mather et al., 2012). This is also the case with viruses that encounter host adaptive 2362 
immune cells and molecules; recognition by T- and B-cell receptors (TCR, BCR) can 2363 
eventually lead to clearance of the virus from the host. Hence, following the 2364 
trajectory of mutations that arise within pharmacologically-targeted molecules can 2365 
be an early warning sign of the emergence of drug-resistant strains (Park et al., 2366 
2009; Vahey & Fletcher, 2019). Sequencing is also used to assist in the design of 2367 
vaccines matching circulating Influenza A Virus (IAV) strains, attempting to pre-empt 2368 
any changes to antigenic proteins that would allow escape from pre-existing host 2369 
adaptive immunity (Henry et al., 2018; Mumford, 2007; Schotsaert & García-Sastre, 2370 
2014). 2371 

A further use of viral sequence data is in the reconstruction of transmission 2372 
trees, based on connecting sequences with epidemiological data to estimate chains 2373 
of transmission (Campbell et al., 2018; Hall et al., 2015; Ypma et al., 2012). In much 2374 
a similar method to the coalescent theory used to estimate phylogenies (Kingman, 2375 
1982), consensus sequences can be sampled from hosts to reconstruct transmission 2376 
trees based on the genetic distance between two sampled viral populations (De Maio 2377 
et al., 2016, 2018). 2378 

For many decades, emergence of zoonotic viruses into human populations has 2379 
been understood as a potential public health catastrophe (K. E. Jones et al., 2008; 2380 
Parrish et al., 2008; M. E. J. J. Woolhouse et al., 2005), with SARS-CoV-2 surprising 2381 
many who had been anticipating the threat of influenza A from birds (Flanagan et 2382 
al., 2012; Gibb, 2020; Morse et al., 2012). An application of viral genomic research 2383 
is surveillance and the prediction of ’host jumps‘, adapt of the virus to a novel host. 2384 
First, however, viral genetic determinants of host specificity must be detected and 2385 
annotated in order to identify the gene or genes that permit cross-species 2386 
transmission. For HIV-1, adaptations to escape restriction factors such as tetherin 2387 
(Neil et al., 2008), TRIM5α (Stremlau et al., 2004) or SAMHD1 (Hrecka et al., 2011; 2388 
Laguette et al., 2011) enabled Simian Immunodeficiency Viruses to develop into 2389 
human-adapted pathogens capable of anthropogenic transmission. Likewise, the 2390 
emergence of SARS-CoV-2 appears to be mediated by mutations and insertions in the 2391 
furin-recognition motif of the Spike protein which binds to the host cell ACE2 viral-2392 
receptor (Andersen et al., 2020; Becker et al., 2020; Zhang et al., 2020; Zhang & 2393 
Holmes, 2020). Thus, knowledge of the viral proteins involved in host-determination 2394 
and adaptation can guide surveillance and prediction of putative cross-species 2395 
jumps.  2396 

In many viruses, proteins involved in binding and entering host cells are often 2397 
the first determinant of host permissibility (F. Chen & Cui, 2017; Mackenzie et al., 2398 
2007) and for influenza A viruses, host-range is commonly attributed to the surface 2399 
glycoprotein haemagglutinin. This is not, however, the only element defining 2400 
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susceptible hosts. Experimental mutagenesis tests have found key roles for 2401 
mammalian pathogenicity-related mutations (MPMs) in the polymerase (especially 2402 
PB2) of avian IAV (C.-Y. Lee et al., 2020; J. Li et al., 2009; W. Li et al., 2017; Min et 2403 
al., 2013). Knowing which parts of the replicative machinery limit the host range of 2404 
influenza viruses allows guided tracking of mutations with potential phenotypic 2405 
associations. 2406 

IAV continues to be the focus of governmental pandemic preparedness plans and 2407 
spillover of H5N1, H7N7 and H7N9 viruses from avian hosts are highlighted as one of 2408 
the largest threats to public health in the UK. Even policy written a year into the 2409 
Covid-19 pandemic maintained a focus on influenza A viruses, directly stating 2410 
“pandemic influenza is one of the most severe natural challenges likely to affect the 2411 
UK” (Health and Social Care, 2020). Globally, the WHO has allocated almost US$240 2412 
million to its Pandemic Influenza Preparedness framework (Pietrasik, 2023), while 2413 
their 148 National Influenza Centres (NIC) keep a vigilant watch over IAV ecology 2414 
and evolution (WHO, 2023). 2415 

Finally, closest to this study, work by Murcia et al. explored mutations arising in 2416 
natural transmission of EIV through naïve (2010) and vaccinated (2013) horses. 2417 
However, these studies both relied exclusively on sequencing the short HA1 gene on 2418 
the fourth genomic segment (~980bp) which although a highly variable region, it is 2419 
not wholly representative of the full 13kb EIV genome. Further, a key difference 2420 
between the previous two studies and the experiment presented here is that in these 2421 
prior studies both chains were homogeneous in terms of host type, i.e. transmission 2422 
either occurred between vaccinated or unvaccinated horses. By comparison, the 2423 
experiment discussed here featured natural transmission through vaccinated hosts 2424 
and subsequently through naïve hosts. This was done in the hope of more clearly 2425 
documenting evolutionary changes in the viral population directly associated with 2426 
host immunity. 2427 

With assembled consensus sequences showing the most prevalent viral genomes 2428 
present in each sample, the nucleotide sequences may also be translated into 2429 
protein sequences. These data then grant a further dimension of information from 2430 
which we can infer the putative impact of non-synonymous mutations. Protein 2431 
structures of influenza A viruses are well-described, especially the surface 2432 
glycoproteins (Lopes et al., 2017). Thanks to extensive work on understanding 2433 
influenza biology, many of the protein structures for commonly studied IAV have 2434 
been resolved and annotated in great detail (Wiley & Skehel, 1987; N. C. Wu & 2435 
Wilson, 2020). 2436 

By collating consensus sequences of viruses sampled from sequentially-infected 2437 
horses, changes to the viral genome can be observed. While mutations in viral 2438 
nucleotide sequences are generated randomly, I choose to investigate mutations 2439 
that were then fixed or removed from populations at non-random rates. Tracking 2440 
the trajectory of mutations within an infected host and throughout a transmission 2441 
chain, I sought to clarify where in the genome mutations appeared and why they 2442 
were enriched or purged from the viral population. Conclusions drawn here are 2443 
expected to be applicable to influenza A viruses beyond H3N8 EIV and should aid our 2444 
understanding of evolutionary dynamics of viral pathogens which cause acute, 2445 
density-dependent infections.  2446 
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At time of writing, there are 422 complete genomic segment sequences of 2447 
equine influenza hosted on the NCBI Influenza Virus Resource from a total 136,712 2448 
IAV samples. However, only 192 sampled individuals have sequence data available 2449 
K!86
3%%
L for all eight genomic segments, the vast majority of reported sequences are of 2450 

segment four, and often exclusively the short HA1-coding region. This short 2451 
sequence is commonly used for rapid identification of EIV, thus is overrepresented 2452 
in databases. Sequence data can tell us a great deal about the viral population and 2453 
outbreak dynamics. From the analyses presented in this chapter, I aim to highlight 2454 
mutations that appear during natural transmission of EIV, draw inferences about why 2455 
they are fixed or removed from the population and what impact they may have on 2456 
viral phenotypes. 2457 
4.2 Results  2458 

4.2.1 Multiple Mutations Appear in the EIV Genome Over the Course 2459 
of Infection 2460 

To understand the evolution of viruses during transmission chains, I analysed 2461 
whole-genome sequences of EIV collected from the nose of horses infected in the 2462 
transmission studies outlined in Chapter 2. 53 Whole-Genome Sequences (WGS) were 2463 
generated in the course of the 2464 
experiment using the Illumina 2465 
platform and these were 2466 
assembled against the 2467 
challenge strain. I then 2468 
identified mutations in 2469 
reference to the overall 2470 
consensus of all the 53 2471 
individual consensus sequences. 2472 

As observed previously, 2473 
vaccinated hosts were capable 2474 
of getting infected and shedding 2475 
enough virus to infect 2476 
subsequent hosts. Having 2477 
examined the viral population 2478 
size throughout the 2479 
transmission chains, I next 2480 
sought to understand putative 2481 
effects of mutations in coding 2482 
regions of the EIV genome upon 2483 
viral transmissibility. This 2484 
chapter focuses on the number, types and effects of mutations arising in the 2485 
vaccinated or unvaccinated hosts through the EIV transmission chains.   2486 

Horses were sampled for eight days beginning from the day of contact with an 2487 
infected individual. This resulted in a total of 80 sampling events in each 2488 
transmission group. Many samples, however, had insufficient material for RT-PCR 2489 

Table 4.1: Mutations detected at the consensus level 
across all 53 genomes. Rows are coloured depending 
on whether the mutation is synonymous (green) or 
nonsynonymous (blue). 

Segment Nucleotide Residue Frequency Global Freq
(n=384)

g979a Gly327Arg 1 1
c1497t Asp499 1 0
c1779t Ser593 1 6
g2191a Val731Ile 1 16
a881g Gln294Arg 1 0
t1500c Gly500 18 2
a1853g Glu618Gly 16 0
c201t Asp67 6 57
c825t Pro275 1 0

g1180a Asp394Asn 1 3
t1221c Ile407 1 4
a1650g Leu500 1 0
g431a Gly144Asp 1 1
a1401c Arg467Ser 3 0

05NP g1445a Ser482Asn 13 6
c690t Thr230 1 3

a1024g Lys342Glu 1 0
t1385c Ile462Thr 1 2

07MP a418g Thr140Ala 1 0
t84c Gly28 1 0
t87c Asp29 1 0

Table 1: Mutations detected at the consensus level across all 
53 genome samples. Rows are coloured depending on 
whether the mutation is synonymous (green) or 
nonsynonymous (blue).

01PB2

02PB1

03PA

04HA

06NA

08NS
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and, therefore, could not be sequenced. Ultimately, 29 and 24 sequences were 2490 
collected in the multi-strain and single-strain transmission groups respectively. At 2491 
least one sequence was obtained from each horse, with the exception of vaccinate 2492 
4B in the single-strain group from whom no sequences were recovered. A 2493 
disproportionate number of sequences came from naïve individuals: 16 of the 29 2494 
multi-strain sequences and 13 of the 24 single-strain sequences, were derived from 2495 
naive hosts, despite only four of the ten hosts in each group being naïve. 2496 

The challenge virus with which the transmission experiment began, i.e. the inoculum, 2497 
was the initial reference genome and is designated as sequence A. Mutations were then 2498 
defined when the nucleotide of a sample with >100 coverage disagrees with sequence A 2499 
in the consensus sequence. Among the 53 sequences collected during the transmission 2500 
experiments, 21 mutations were found at the consensus level (Table 1): twelve in the 2501 
single group, seven in the multi group and two in both transmission chains.  2502 

Hypothesis testing, using the non-parametric Kruskal-Wallis & Wilcoxon Signed 2503 
Rank tests strongly indicated that genetic material was only recoverable in high 2504 
enough quantities for viral sequencing on days of high viral load (Kruskal-Wallis 2505 
chi2 = 110.62, df = 1, p-value < 2.2e-16). Understandably, a host needs to shed a 2506 
large quantity of virus in order to provide sufficient material to be sequenced. 2507 
Most notably, the presence and quantity of mutations appeared to be influenced 2508 
by the host’s immune status. The total number of nucleotide mutations was 2509 
significantly associated with unvaccinated hosts (Kruskal-Wallis chi2 = 21.604, df = 2510 
1, p-value = 3.351e-06) but the transmission group had no effect on the frequency 2511 
of mutations (Kruskal-Wallis chi2 = 1.5823, df = 1, p-value = 0.2084). Whether this 2512 
trend towards greater numbers of mutations is due to the immune status of these 2513 
hosts or simply because mutations are just statistically more likely to appear as 2514 
time passes is not clarified by these experiments. Though when contextualised 2515 
with other transmission studies of EIV, populations with homogeneous immune 2516 
exposure statuses (wholly naïve as in Murcia (2010) or all with previous exposure 2517 
histories (Murcia 2013)) do not show a significant difference. However, as shown 2518 
previously, vaccination status has a large impact on the viral population size and so 2519 
the viral load confounds the variation in the number of mutations detected.  2520 

The viral mutational load indicates that a greater number of mutations may 2521 
actually drive selective processes down (Zhao et al., 2019). Of the 21 mutations 2522 
observed at the consensus level, 10 were synonymous. Most mutations appeared only 2523 
once in the study (16 of the 21 are singletons, appearing only once during the study). 2524 
Additionally, all of the mutations reported in segments 1 (PB2), 6 (NA), 7 (MP) and 2525 
8 (NS) are singletons.  2526 
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Finally, a collection of all 384 reported whole EIV genomes (in personal 2527 
communication from Laura Mojsiejczuk) was mined for mutations shared with our 2528 
transmission experiment. Comparing mutations arising in this transmission 2529 
experiment to those happening at the epidemiological level, I aimed to find 2530 
mutations shared in 2531 
both datasets. Though 2532 
not by itself indicative 2533 
of changes to viral 2534 
fitness, the presence of 2535 
the same mutations at 2536 
the same nucleotide 2537 
sites in experimental 2538 
and wild-type 2539 
infections implies a 2540 
certain amount of 2541 
plasticity at these sites 2542 
and/or a potential 2543 
phenotypic effect. 16 2544 
of the 21 consensus 2545 
mutations found in our 2546 
transmission 2547 
experiment were 2548 
detected at least once 2549 
in the 384 global H3N8 2550 
EIV sequences. The 2551 
number of sequences 2552 
sharing mutations 2553 
with our dataset is 2554 
shown in the final 2555 
“Global Frequencies” 2556 
column of Table 1. Knowing that the same mutations that appeared in our 2557 
transmission experiment have appeared under natural conditions implies, a 2558 
propensity for variation at these sites without major deleterious consequences.  2559 

To note, of the 99
693

 global EIV sequences that display mutations reported in the 2560 

experimental transmission chain, 8
99

 sequences have more than one shared mutation 2561 

with our dataset, as shown in Figure 4.1. EIV sequences have been collected for over 2562 
60 years since H3N8 EIV was first detected (1963), hence a lot of variation would be 2563 
expected in the field. So, finding mutations shared between our dataset and 60 years 2564 
of global EIV sequences is fairly likely; however, seeing sequences with more than 2565 
one shared mutation does indicate some level of maintenance in the genome. 2566 
Furthermore, all of the earlier sequences that shared two or more consensus 2567 
mutations with our dataset had the synonymous PA-c201t/Asp67 mutation. 2568 

A/donkey/Shandong/CN/1/2017−03−27

A/equine/Algiers/DZ/1/1972

A/equine/Idaho/US/37875/1991

A/equine/Kentucky/US/mag.genius1/1981

A/equine/Kentucky/US/Rosie100/1981

A/equine/Romania/RO/1/1980

A/equine/Sachiyama/JP/1/1971

A/equine/Switzerland/CH/173/1993

A/equine/Tokyo/JP/2/1971

01PB2
c1779t

03PA
c201t

03PA
g1180a

03PA
t1221c

04HA
g431a

05NP
g1445a

EIVs with more than one mutation shared with our dataset
Global Sequences

Figure 1: Global EIV sequences that share at least one mutations with our experimental dataset.Figure 1: Mutations reported in the sequences collected from the transmission 
experiment which also appear in global EIV sequences. This is then narrowed to 
the nine global sequences that display two or more mutations observed in the 
transmission experiment. 

Figure 4.1: Mutations reported in the sequences collected from the 
transmission experiment which also appear in global EIV 
sequences. This is then narrowed to the nine global sequences 
that share two or more mutations observed in the transmission 
experiment. 
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Sequences from the four 2569 
inactivated whole-virus 2570 
immunogens that comprised each 2571 
of the vaccines used to inoculate 2572 
hosts were also compared to 2573 
approximate the range of 2574 
adaptive immune specificity 2575 
raised in response to vaccination. 2576 
Full genomes of the four 2577 
inactivated viruses (Miami/63, 2578 
Newmarket/79, Newmarket/93 2579 
and Newmarket/03) shared 93.1% 2580 
sequence identity with each 2581 
other. Incorporating the 2582 
challenge strain, sequence 2583 
identity remained high between 2584 
the four vaccine strains and the 2585 
viral strain that horses were 2586 
challenged with (lab-grown 2587 
viruses descended from 2588 
Newmarket/03) at 92.25% 2589 
identity. Vaccinated individuals in the Single-strain group had been immunised 2590 
against the original ancestor of the challenge strain, thus the Newmarket/03 vaccine 2591 
and challenge strains were very closely related (96.6% identity). Full pairwise 2592 
comparisons of sequence identity between vaccine strains are displayed in Table 2.  2593 
4.2.2 Haplotypes 2594 

Though many of the mutations we report appear as singletons, some appear 2595 
together with other mutations and/or in multiple hosts. From these 21 mutations, 2596 
13 whole-genome viral haplotypes were identified; these are labelled A-M and are 2597 
represented graphically in Figure 4.2. Six of these genotypes are more than one step 2598 
away from the challenge/index virus (A), appearing only after other mutations had 2599 
become fixed prior. There were five fixation events in which a substitution persisted 2600 
in more than one epidemiologically-connected sample, three of which included a 2601 
non-synonymous mutation, i.e. PB1-a1853g/Glu618Gly, HA-a1401c/Arg467Ser and 2602 
NP-g1445a/Ser482Asn. Further, the HA-a1401c/Arg467Ser mutation is a transversion 2603 
substitution (adenine-cytosine), which is generally considered rarer than transitions.  2604 

Segment Multistrain Group Singlestrain Group AverageVacc Naïve Total Vacc Naïve Total
01PB2 0.091 0 0.050 0.102 0.091 0.058 0.031
02PB1 0.143 0 0.226 0 0.091 0.058 0.150
03PA 0.117 0.078 0.061 0.160 0.091 0.089 0.049
04HA 0.117 0 0.067 0.102 0 0.058 0.052
05NP 0 0 0 0 0 0.230 0.186
06NA 0.091 0 0.050 0.102 0 0.058 0.031
07MP 0 0 0 0.102 0 0.058 0.031
08NS 0 0 0 0.102 0 0.058 0.031
Average 0.070 0.010 0.057 0.084 0.034 0.083

Table 3: Shannon's Entropy of each genomic segment, 
calculated for each transmission group, vaccination status and 

averaged across those four groups.

B) NM/79 NM/93 NM/03 Challenge
Miami/63 96.50% 88.90% 93.60% 90.40%
NM/79 91.20% 96.00% 92.70%
NM/93 92.40% 89.30%
NM/03 96.60%

µ1 = 93.10% µ2 = 92.25%
Table 2: A) Exposure histories of vaccinated horses 
in the multi and single groups – inactivated virus 
abbreviated and coloured. B) Sequence similarities 
between the 4 vaccine strains & the challenge virus 
that horses were experimentally exposed to. 
Challenge and haplotype A are 
identical/interchangeable. Average identity is added 
for the vaccine immunogens (µ1) and for the 
challenge virus compared against all 4 immunogens 
that vaccinated horses in the multistrain 
transmission group were exposed to (µ2). 

M/63 M/63 NM/79 NM/93 NM/03

NM/03NM/03NM/03NM/03NM/03

V1 V2 V3 V4 V5
A)

Table 4.2: A) Exposure histories of vaccinated horses 
in the multi and single groups - inactivated virus used 
in the vaccine regimen are abbreviated and coloured. 
B) Sequence similarities between the four vaccine 
strains and the virus that horses were challenged 
with. Average identity across vaccine immunogens 
was calculated (µ1) and then compared to sequence 
identity of the challenge strain (µ2). Challenge virus 
and haplotype A are identical. 
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 2605 
Figure 4.2: Network of all whole-genome haplotypes found among the 53 samples. Mutations are 2606 
labelled on connecting edges and italicised if synonymous or underlined if non-synonymous. 2607 
Where a haplotype appears only once, the name of that haplotype appears inside the node; 2608 
otherwise the name is outside the node and the number inside shows the number of samples 2609 
sharing that haplotype. Haplotype A is identical to the challenge virus and thus the centre of the 2610 
network. 2611 

Overall, the distribution of genotypes begins very conserved (Figure 4.3) with 2612 
the majority of genotype A viruses found at the beginning of transmission chains. 2613 
Since the seeders are experimentally infected with the lab-grown challenge virus 2614 
(the reference and thus genotype A), these individuals mostly remain the A genotype 2615 
and are not shown. These sequences were not included in any of the analyses. 2616 
Additionally, the few mutations observed in the seeders are transient and thus 2617 
expected to result from the loss of lab-adaptive mutations upon in vivo host 2618 
infection. Passage through vaccinated hosts generates multiple new genotypes 2619 
which mostly appear and disappear quickly. Notably though, genotype C appears in 2620 
hosts 3A and 3B from the single group as well as 3B from the multi group. This 2621 
genotype has a single mutation away from the A consensus: PA-c201t\Asp67. The 2622 
appearance of this mutation in six samples (five sequences of haplotype C plus a 2623 
single H sequence which shares this mutation plus three novel mutations) in differing 2624 
vaccinated horses points to this site deserving a deeper investigation. It is also the 2625 
mutation that appeared most commonly in the global EIV sequence dataset above.  2626 
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Figure 2: Network of all whole-genome haplotypes found among the 53 
samples. Where a haplotype appears only once, the name of that 
haplotype appears inside the node; otherwise the name is outside the 
node and the number inside shows the number of samples sharing that 
haplotype. Mutations are labelled on connecting edges and shown 
italicised if synonymous, underlined if non-synonymous.

Figure 2: Network of all whole-genome haplotypes found among the 53 
samples. Mutations are labelled on connecting edges and italicised if 
synonymous or underlined is non-synonymous. Where a haplotype 
appears only once, the name of that haplotype appears inside the node; 
otherwise the name is outside the node and the number inside shows 
the number of samples sharing that haplotype. Haplotype A is identical 
to the challenge virus and thus the centre of the network.
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 2627 
Figure 4.3: Layout of the transmission experiment. Grey boxes show the period of observation 2628 
and sampling. Days on which a sequence was collected have coloured boxes and are labelled with 2629 
the corresponding haplotype (A-M). 2630 

Tracking consensus heterogeneity helps distinguish how the genome of an 2631 
infected host can change over the course of infection (as in the change in host 2632 
Mul_3A from B to L on the 6th day after contact with an infected individual) and over 2633 
transmission events. It also shows putative fixation events; almost all the naïve 2634 
individuals (pairs 5 and 6) of both transmission groups have overwhelmingly the same 2635 
genotype. Putative effects of these mutations on protein structure and function are 2636 
explained below. The two exceptions to this are Mul_6B on day 2 (K) and Sin_5B on 2637 
day 5 (D). However, even these unique genotypes retain mutations from the prior 2638 
population. 2639 

Initially, I sought to compare the consensus sequence of the transmission 2640 
experiment with the challenge inoculum and the viral strains used to produce the 2641 
various vaccines given to horses preceding the experiment. I wanted to establish a 2642 
solid baseline from which to measure branching diversity, and compare sequences 2643 
obtained from the experiment with those used to immunise some of the participant 2644 
hosts. The consensus (A) haplotype was identical to the sequence of the challenge 2645 
virus and shared 96.6% identity with the ancestral wild-type strain of the challenge 2646 
virus (A/Newmarket/5/03). Hence, we can expect the vaccinates in the single-strain 2647 
transmission group to have primed immune responses to a virus closely resembling 2648 
the one they were experimentally infected with. Alternatively, the haplotype A virus 2649 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mul 1A
Mul 1B
Mul 2A A A A A
Mul 2B A
Mul 3A G B L B
Mul 3B C C
Mul 4A E
Mul 4B A
Mul 5A J J J J J
Mul 5B J J J
Mul 6A J J J J
Mul 6B K J J J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Sin 1A
Sin 1B
Sin 2A A A
Sin 2B A M A
Sin 3A C
Sin 3B A I C
Sin 4A C H
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Sin 5A F F F
Sin 5B F F D
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Sin 6B F F F F
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Figure 3: Layout of the transmission experiment. Grey boxes show period of 
observation and sampling. Days on which a sequence was collected the box is 
coloured and labelled with the corresponding haplotype (A-M).



   
 

87 
 

shared an average of only 92.25% sequence identity (µ2 from Table 2) with each of 2650 
the four vaccine strains used in the multi-strain group. With this in mind, we can 2651 
expect the adaptive immune memory in single-strain vaccinates to present stronger 2652 
selective pressures to viruses in these hosts, potentially driving more rapid evolution 2653 
of these viruses compared to those replicating in vaccinates with broader immune 2654 
memory.  2655 

Counting the number of sequences obtained on each day, and their 2656 
corresponding genotype, we can see how the proportion of each consensus sequence 2657 
changes throughout the transmission chain. We see genotypes fixing in the 2658 
populations over time (Figure 4.3); the heterogeneity generated in the vaccinated 2659 
hosts is rapidly lost upon transmission to naïve hosts. Some mutations appear in 2660 
multiple sequences of the same host, different hosts or even different transmission 2661 
chains. Classing these mutations into haplotypes allows us to see which mutations 2662 
appear congruently and highlights the homogenisation of genomes upon entering 2663 
naïve hosts. Though to note, linkage analysis was not a part of this study due to 2664 
difficulties when working from short-length Illumina reads, hence the presence of 2665 
physically linked mutations has not been proven and further studies would be 2666 
required to resolve this issue. 2667 
4.2.3 Phylogenetic Analyses 2668 

 Having detected thirteen distinct haplotypes, the sequence alignments were 2669 
then assembled into phylogenetic trees, using both maximum-likelihood (ML) and 2670 
maximum clade credibility (MCC) estimations. Using both methods in conjunction 2671 
granted a more detailed view of both the relationships between sequences and 2672 
between each cluster of haplotypes, as well as allowing evolutionary parameters 2673 
such as substitution rate and branch length to be calculated. 2674 

A Maximum Likelihood method aims to find the topology and parameter values 2675 
of a phylogeny (e.g. branch lengths) that maximise the likelihood of connecting 2676 
sequence data under a specified evolutionary model. It estimates the probability of 2677 
observing the data given a particular tree and model of evolution and searches 2678 
through all possible trees and parameter values to find the combination that 2679 
maximises this likelihood. However, ML relies on specific assumptions about the 2680 
evolutionary processes in its estimation. Overall, an ML approach provides the best-2681 
fitting tree under the assumed model with estimates of branch lengths and 2682 
substitution rates. 2683 

Conversely, MCC estimation aims to summarise the posterior distribution of 2684 
trees and parameters to provide a single tree that best represents the evolutionary 2685 
history. The final MCC tree is a summary tree that incorporates information from all 2686 
sampled trees, weighted by their posterior probabilities. Like all Bayesian methods, 2687 
MCC tree estimation depends on prior information about parameters, which can 2688 
influence the posterior estimates. An MCC tree represents the tree with the highest 2689 
clade credibility, meaning it is the tree that is most supported by the sampled data, 2690 
given the chosen model and prior information. 2691 
4.2.3.1 Maximum Likelihood Trees 2692 

The tips of the ML tree, estimated by IQTree, shown in Figure 4.4 are coloured 2693 
by genotype and the mutations defining each split are labelled on branches. One 2694 
genotype (K) has two prior fixation events away from the consensus A, five others 2695 
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developed after one fixation event from the root of the tree. Branch lengths of the 2696 
ML tree average 1.54e-5 (± 2.22e-9), an unsurprisingly low level of change from 2697 
sequences collected over the course of 20 days.  2698 

 2699 
Figure 4.4: A stylised cladogram, based on an ML tree estimated by IQTree, showing each 2700 
sequence from the experiment grouped into its corresponding haplotype.  2701 

Three main clusters of over-represented genotypes can be distinguished 2702 
(Figure 4.4) which correspond well to the host transmission group and/or vaccination 2703 
status. 11 samples were genotype A, showing no difference from the initial challenge 2704 
inoculum. The g1445a/Ser482Asn mutation in segment 5 (NP) first appears in hosts 2705 
5A and 5B of the ‘single’ transmission group on day 2, and from this point forwards 2706 
the mutations became fixed as the F genotype. Only one sample after this date 2707 
diverges from this genotype: while retaining the original NP-g1445a mutation, three 2708 
novel mutations appear (PB2-g979a/Gly327Arg, PB1-a881g/Gln294Arg and PA-2709 
g1180a/Asp394Asn) giving the consensus of ‘Single_5B_Naive_day17’ the D 2710 
genotype. All four of these mutations are non-synonymous. Similarly, all samples 2711 
taken from hosts at the end of the alternate ‘multi’ transmission group had two 2712 
mutations in segment 2 (PB1); all had the genotype J defining a1853g/Glu618Gly 2713 
mutation. Sample ‘Multi_6B_Naive_day16’ acquired PA-t1221c/Ile407 mutation in 2714 
addition to the PB1-a1853g/Glu618Gly mutation (genotype K) which was then 2715 
removed from the population on the following day, reverting to genotype J.  2716 

Overall, of the 13 genotypes present at the consensus level, most are 2717 
connected by at least one shared mutation; only two haplotypes (I and L) appear 2718 
completely independently, sharing no mutations with any other sequence. These 2719 
two haplotypes appear on days with samples immediately before and after (B-L-B in 2720 
host Mul_3A and A-I-C in Sin_3B), representing de novo generation and reversion of 2721 
mutations. The first example, B-L-B, involved two synonymous mutations (PB1-2722 
c1500t/Gly500 and PA-c825t/Pro275) and a non-synonymous mutation (NA-2723 
a1024g/Lys342Glu) which resulted in the B-L shift; these were then reversed on 2724 
returning to the original haplotype (L-B). Rather than assume that the dominant 2725 
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Figure 4: A stylised cladogram, based on an ML tree estimated by IQTree, showing each 
sequence from the experiment grouped into their corresponding haplotypes (A – M).
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virus in this host lost and then recovered the exact same point mutations over three 2726 
consecutive days, I presume that the appearance of the L haplotype was an effect 2727 
of sampling; perhaps a slightly different sub-population was being shed on this day 2728 
or this non-dominant variant was amplified more than the B virus by chance. Samples 2729 
from the second host, Sin_3B, are also presumed to be spurious. Moving from the 2730 
most dominant, and the challenge strain (virus A) to a virus with two de novo 2731 
mutations (virus I: PA-a1650g/Leu500 and MP-a418g/Thr140Ala) is reasonably likely. 2732 
However, of all viruses sampled in this pair (Sin_3A and 3B) and the subsequent pair 2733 
(Sin_4A and 4B) four of the six viruses displayed mutations of the C haplotype (three 2734 

explicitly C viruses and one direct descendant of the C virus, H). We thus have 1

6
 2735 

viruses continuing the most dominant virus from the previous strain (A), 4

6
 viruses 2736 

sharing a common ancestor (C) and a final sample (virus I) sharing no common 2737 
mutations with the viruses before or after it. Notably, of the 21 consensus mutations, 2738 
only two (PA-c201t/Asp67 and HA-a1401c/Arg467Ser) appear in both experimental 2739 
groups, with the remainder being observed only in one transmission chain. 2740 
4.2.3.2  Maximum Clade-Credibility Trees 2741 

As above, trees were estimated with whole genomes concatenated for each 2742 
individual sample (Figure 4.5), additionally partitioned depending on the 2743 
experimental group (multi or single) from which each sample was taken. Metadata 2744 
(i.e. group and vaccination status) were incorporated in the tree estimation process 2745 
to delineate clades in order to only group viruses with epidemiological connections, 2746 
they were not used to partition sequences in any way. Trialling trees without 2747 
partitioning exposure history (i.e. trees are only partitioned by experimental groups) 2748 
led to decreased confidence in estimations. The final estimated tree shows very high 2749 
confidence, with the exception of the top clade which is estimated with 93.91% 2750 
confidence. This, however, is due to the inclusion of two sequences from a host 2751 
earlier in the chain (Mul_3A) which are thus allocated because of their genesis of 2752 
the synonymous PB1-t1500c/Gly500 mutation which is then found in all sequences 2753 
in the naïve multi group. 2754 
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Using a monophyletic 2755 
tree in this way ignores the 2756 
possibility of reassortment 2757 
between virions; though with 2758 
the small sample size and serial 2759 
sampling over eight days. 2760 
Bypassing reassortment 2761 
estimation in this way is 2762 
justified by the work of Rabadan 2763 
(2008) and Lauring (2020) who 2764 
showed that diversifying 2765 
reassortment is rare, due in part 2766 
to the similarity between viruses 2767 
co-infecting a single host cell.  2768 
4.2.3.3 Analysis of 2769 

Evolutionary Rates 2770 

Partitioning the sequences 2771 
by transmission chain allowed 2772 
for separate evolutionary rates 2773 
to be estimated for each group. 2774 
The rates differed between 2775 
transmission groups; averaged 2776 
across each genomic segment, 2777 
we observed in Tracer a mean 2778 
substitution rate of 8.77e-4 in 2779 
the multi group and the single 2780 
group rate of 1.57e-3 2781 
substitutions/genome/year. 2782 
These differences were not 2783 
significant though, with 2784 
considerable overlap of 95% 2785 
highest posterior densities (HPD) 2786 
values. Nor were there 2787 
appreciable differences between 2788 
the evolutionary rates of genomic 2789 
segments.  2790 
4.2.4 Selection Analysis 2791 

I next assessed whether selection of mutations may have influenced the 2792 
evolution of consensus sequences collected throughout the experiment. Each 2793 
genomic segment across the entire 53 sequence dataset was assessed separately by 2794 
each of the eight tests offered by the HyPhy bioinformatic suite (Pond et al., 2005). 2795 
Sequences were not stratified because non-synonymous mutations were generally 2796 
too rare to appear multiple times across multiple sub-groups. To note, segments 7 2797 
and 8 were excluded as they do not have enough diversity to measure any kind of 2798 
evolution at the consensus level. 2799 

Figure 4.5: MCC tree estimated by BEAST, and 
downsampled by TreeAnnotator. Branches are 
coloured according to the transmission chain and 
vaccine status of the corresponding host. Nodes are 
annotated with their meanPPD to represent 
confidence of each predicted split. 
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Figure 5: MCC tree estimated by BEAST, and downsampled by TreeAnnotator. Branches are 
coloured according to the transmission chain and vaccine status of the corresponding host. 
Nodes are annotated with their meanPPD to represent confidence of each prediction.
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Only one segment showed evidence of negative selection by FEL: segment 2 2800 
(PB1) at position t1500c/Gly500 (Kruskal-Wallis chi2=18.18, p-value = 0.0079). SLAC 2801 
also detected negative selection at PB1-Gly500, as well as positive selection at NP-2802 
g1445a/Ser482. The four other tests (MEME, FUBAR, BUSTED and aBS-REL) found no 2803 
significant evidence of selection or directional evolution. The sparse evidence for 2804 
selection across viral genomes is perhaps due to the short time-frame of the 2805 
experiment, limiting the period in which selection could act effectively at the viral 2806 
population. This was also attributed to ‘noisiness’ within the relatively small 2807 
dataset, which further clouded patterns of evolution. 2808 

The sites at which evidence of selection did appear (PB1-Gly500 [haplotype B] 2809 
and NP-Ser482 [haplotype F]) are also some of the most abundant mutations in the 2810 
dataset, hence which may confound estimations due to their frequency. PB1-Gly500 2811 
appears in only 6

693
 global EIV sequences, while the NP-Ser482 mutation seen in the 2812 

final virus of the single group F isn’t observed in any other sequences.  2813 
4.2.5 Sequence Diversity 2814 

An important population measure is genetic diversity. Patterns of genetic 2815 
diversity can be informative of a population’s evolutionary past; for example, low 2816 
genetic diversity may be evidence for a recent population bottleneck. Furthermore, 2817 
the variation of diversity within the genome can be informative of different 2818 
evolutionary effects, such as the strength of selection in different parts of the 2819 
genome. 2820 

Here, a few commonly used metrics of genetic diversity are selected to show 2821 
the diversity in each of the four experimental groups (VM, NM, VS and NS) as well as 2822 
that of all hosts in each transmission group (Multi or Single) and finally that of the 2823 
entire experiment together. Analysing the sequences of each group separately, 2824 
before collating these into an analysis of each transmission chain as a whole and 2825 
then the entire experiment, we will see how estimates of population diversity 2826 
depend heavily on the background against which they are being compared. Multiple 2827 
different diversity metrics were used in the analyses in order to get around the 2828 
inherent biases present in some algorithms, such as the classic problem of 2829 
overinflation of non-rare species in Simpson’s Index or the grouping-blindness 2830 
apparent when using Shannon’s Entropy. 2831 
4.2.5.1 Shannon Diversity 2832 

Shannon Entropy is calculated at divergent sites in each genomic segment, 2833 
then aggregated into transmission groups. Entropy was calculated in three rounds of 2834 
analysis: first a single dataset of all 53 samples of that segment; next, two datasets  2835 

split only by multi (29 sequences) or single (24 sequences) transmission chains 2836 
and finally full stratification into each epidemiological group (16 NM, 13 NS, 13 VM 2837 
and 11 VS samples of each genomic segment). This grants a broad view of the 2838 
patterns of diversity across the experiment, as Shannon’s Entropy is calculated based 2839 
on the differences to the rest of the population under comparison (Table 4.3). An 2840 
example of this is the lack of diversity in PB1 of the NM dataset; examining the 2841 
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sequences, all 2842 
samples contained 2843 
both t1500c/Gly500 2844 
and 2845 
a1853g/Glu618Gly 2846 
mutations but 2847 
because this is seen  2848 

in every 2849 
sequence of the NM 2850 
group, the resulting 2851 
entropy score was 2852 
zero. 2853 

Diversity appeared highest in the vaccinated hosts with values of 0.07 and 2854 
0.084 in the multi and single groups respectively. Sequences were much more 2855 
homogeneous in NM, while the diversity of NS sat between the two. We observed a 2856 
high level of homogeneity across the NM dataset indicating that sequences remained 2857 
highly conserved; a single synonymous mutation, PA-t1221c, was the only point of 2858 
divergence [haplotype K]. Though Segment 3 was diverse in all examined groups, at 2859 
the scale of the entire dataset, Segment 5 showed the most variation. Likewise, NS 2860 
sequences were mostly homogeneous, with only one of the 13 genomes being unique, 2861 
as a result of three non-synonymous mutations [haplotype D] compared to the most 2862 
prevalent haplotype in this group [haplotype F]. The average entropy of sequences 2863 
in both vaccinated groups was considerably higher than in either naïve dataset. 2864 
Finally, when each transmission group was analysed as a whole, the Multi-strain 2865 
group was found to be least diverse (H = 5.7% diversity compared to H = 8.4% in the 2866 
Single-strain group). 2867 
4.2.5.2 Tajima’s D 2868 

Tajima’s D test examines whether each sequence is undergoing neutral 2869 
evolution (null hypothesis) or not. It utilises the total number of polymorphic sites 2870 
in the sampled genome and the average number of mutations between pairs across 2871 
the dataset (Figure 4.6). 2872 
Upon examination against host factors (vaccination status and transmission group), 2873 
I saw that the distribution of diversity across genomic segments and host factors 2874 
(measured by Tajima’s D) was non-random (Figure 4.6). Initially, Wilcoxon Rank tests 2875 
showed a strongly contrasting diversity values between transmission groups (hosts in 2876 
the single group showed more diversity than those in the multi, Kruskal-Wallis chi2 2877 
= 8.4235, df = 3, p-value = 0.03802), whereas the diversity between vaccinates and 2878 
naïves was only marginally significant (Kruskal-Wallis chi2= 7.9079, df = 3, p-value = 2879 
0.04795). Vaccinates in the multi group showed lower diversity than NM (-0.21 lower 2880 
D value), whereas in the single group, vaccinates have slightly higher diversity than 2881 
naïves (+0.1065). 2882 

The population size, as measured by copy numbers, did not impact values of 2883 
Tajima’s D (p = 0.28). Key to note however, is that diversity differed across genomic 2884 
segments. To investigate further, host factors and viral genomic segments were used 2885 
to create an additive linear model highlighting differentiation of Tajima’s D diversity 2886 
across the dataset. Diversity in segments encoding the polymerase complex (1-3) is 2887 

Segment Multi Group Single Group Average 
Vacc Naïve Total Vacc Naïve Total 

1 PB2 0.091 0 0.050 0.102 0.091 0.058 0.031 
2 PB1 0.143 0 0.226 0 0.091 0.058 0.150 
3 PA 0.117 0.078 0.061 0.160 0.091 0.089 0.049 
4 HA 0.117 0 0.067 0.102 0 0.058 0.052 
5 NP 0 0 0 0 0 0.230 0.186 
6 NA 0.091 0 0.050 0.102 0 0.058 0.031 
7 MP 0 0 0 0.102 0 0.058 0.031 
8 NS 0 0 0 0.102 0 0.058 0.031 
Average 0.070 0.010 0.057 0.084 0.034 0.083  

Table 4.3: Shannon’s Entropy of each genomic segment, for each 
group & vaccination status then averaged across those four groups. 
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generally estimated as much lower than that of the shorter genomic segments. To 2888 
note however, the difference between the diversity of segments 1 and 2 is not 2889 
significant. 2890 
4.2.5.3 Nucleotide Diversity (π) 2891 

Nucleotide diversity is a distance measure, indicating the number of sites that 2892 
differs between sequences averaged across a dataset. Each base position in the 2893 
dataset is then compared to ultimately calculate the net number of nucleotide 2894 
differences between populations; practically, π diversity gives the average number 2895 
of differences between two randomly selected sequences. 2896 

Across the EIV genome, π diversity is higher in hosts of the Single transmission 2897 
group (multi = 1.61, single = 1.81). However, breaking down these values to their 2898 
component epidemiological groups shows that both vaccinated and naïve hosts in 2899 
the multi group had very similar levels of π diversity (VM = 1.46, NM = 1.61) whereas 2900 
both the vaccinates and naïves in the single-strain transmission group differed 2901 
greatly: VS = 2.15 and NS = 0.46. 2902 
4.2.5.4 Consensus Genome Diversity 2903 

These three measures are presented together in Figure 4.6. Nucleotide diversity 2904 
(π) and Shannon Entropy both measure diversity by the differences in nucleotides; the 2905 
first averages the number of different nucleotides between any two given sequences 2906 
while the latter uses the mean entropy of nucleotides across the sites in any given 2907 
sequence. Thus, the greater the value of π and Shannon Entropy, the more differences 2908 
are present between two sequences. Tajima’s D, however, is a neutrality test, which 2909 
compares the diversity seen within a sample to that which would be expected during 2910 
neutral evolution (Korneliussen et al. 2013). Ultimately, a D score of zero indicates that 2911 
the variation seen in a population matches what would be expected. When D is greater 2912 
than 0, genomes contain lower levels of mutations than would be expected, implying that 2913 
the population is undergoing balancing selection rather than purifying (negative) 2914 
selection.  2915 

On the basis of these tests diversity was found to be highest in viruses isolated 2916 
from vaccinated hosts in the Single transmission group. Further, the neutrality test 2917 
(Tajima’s D) showed that this population of viruses had evolved in a non-neutral manner. 2918 
This implies that strong selective pressures were placed upon these viruses by the host’s 2919 
strain-specific vaccine-mediated immune responses which led to greater genomic 2920 
diversification than in viruses collected from other hosts (NS, VM and NM). 2921 

 2922 
Figure 4.6: Three measures of genetic diversity, applied to sequences from each of the four 2923 
tested groups.  2924 
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4.2.6 Structure and Function of Mutations 2925 

So far, we’ve seen where mutations are located, how frequently they appear 2926 
(within the experiment and at the epidemiological scale) and whether genomes are 2927 
more diverse in certain groups. But do any of the mutations have phenotypic effects 2928 
associated with them? Are different host environments driving the evolution of 2929 
different phenotypes? 2930 

Initially, information on the proteins encoded by each segment was mined 2931 
from PDB’s UniProt after alignment with the nearest homolog in the database. I also 2932 
estimate the first structural models of the whole H3N8 proteome using AlphaFold. 2933 
Having reliable 3D models of each protein allows for not only analysis of proteins in 2934 
their natural tertiary/quaternary structures but also simply provides better visual 2935 
aids for studying. Knowing how amino acid residue variation at particular sites 2936 
affects protein structure, permits an insight into the role of mutations. Further, 2937 
structural models are now used widely in the manufacture of products for disease-2938 
control: vaccine immunogens can be designed based on the expected interactions of 2939 
viral and host proteins while specific anti-viral protein inhibitors, such as 2940 
oseltamivir, can be developed based on our structural understanding of pathogenic 2941 
proteins. 2942 

With these structural models, I then proceed to investigate, in silico, the 2943 
impact of non-synonymous mutations on protein form. This also enables 2944 
investigation of similarities between EIV HA and other HA proteins. Finally, I 2945 
estimate the antigenicity of the two EIV surface proteins, haemagglutinin and 2946 
neuraminidase, to map epitopes onto protein structures as well as assess the impact 2947 
of amino acid polymorphisms at antigenically-available sites. 2948 
4.2.7 Protein Analysis 2949 

The ProtParam tools on the Expasy Proteomics Server (Duvaud et al., 2021; 2950 
Gasteiger et al., 2005) allow for estimation of a range of protein chemical properties 2951 
such as weight, charge and hydrophobicity (Table 4A). These physiochemical 2952 
properties can then be used to further predict structural properties. Implementation 2953 
of the flexibility method of Vihinen et al. (1994) uses a sliding window to 2954 
approximate the likely structures created by short stretches of residues. On 2955 
comparison with prototypical human IAV protein sequences (Igarashi 2010), the 2956 
properties estimated here for H3N8 EIV appeared remarkably similar (Table 4B). 2957 
Haemagglutinins from pandemic, seasonal and emergent (A/California/04/2009 2958 
[CA2009], A/Brisbane/59/2007 [BR2007] and A/South Carolina/1/1918 [SC1918] 2959 
respectively) H1N1 strains had similar molecular weight (63.24kDa, ±0.26), 2960 
hydrophobicity (gravy = -0.34, ±0.01) and aromaticity (0.1, ±0) to those estimated 2961 
from our H3N8 EIV sequences (genotype A). As a reference, the difference in weights 2962 
between pre-pandemic (BR2007) and contemporary (CA2009) human haemagglutinin 2963 
to original 1918 H1N1 haemagglutinin is roughly the same as the differences between 2964 
these human and equine haemagglutinins (~0.37kDa difference both between 2965 
contemporary vs 1918 HA and contemporary vs equine HA).  2966 

While not a perfect comparison, this quick sanity-check shows that the 2967 
predicted properties of EIV proteins mirror those of experimentally-determined 2968 
human IAV haemagglutinins. This demonstrates the general homogeneity of 2969 
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influenza A protein properties, and the applicability of using human IAV structures 2970 
for homology modelling of EIV proteins.  2971 

Table 4.4: A) Properties of EIV H3N8 proteins, as predicted by ProtParam. B) repeats this analysis 2972 
with the haemagglutinin of three human influenza viruses. *Grand Average of hYdrophobicity 2973 
4.2.7.1 Protein Localisation 2974 

Knowing whether a protein is situated within, outside or traversing the viral 2975 
membrane can indicate function and provide insight into whether it may be a 2976 
potential target for disease control methods. For example, most of the 2977 
neuraminidase protein is presented on the surface of the virion, which facilitates its 2978 
function of cleaving sialic acid during viral exit from a host cell. This activity also 2979 
marks neuraminidase as a potential target for pathogen control and, indeed, 2980 

A) Segment Protein Weight 
(kDa) gravy* Aromaticity Instability Isoelectric 

Point 

EI
V 

H
3N

8 
(h
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lo
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pe

 A
) 

01PB2 PB2 86.02 -0.31 0.0660 47.74 9.50 

02PB1 PB1 86.53 -0.51 0.0890 38.95 9.38 

03PA PA 82.75 -0.49 0.0980 50.09 5.47 

04HA HA 63.61 -0.34 0.0970 32.78 8.19 

05NP NP 56.16 -0.56 0.0720 40.84 9.33 

06NA NA 52.11 -0.25 0.0960 36.90 8.48 

07MP 
M1 27.86 -0.23 0.0520 38.16 9.30 

M2 11.22 -0.26 0.0930 58.53 4.99 

08NS 
NS1 24.86 -0.32 0.0680 49.25 6.45 

NEP 14.42 -0.46 0.0740 65.67 5.23 
        

B) Segment Protein Weight 
(kDa) gravy* Aromaticity Instability Isoelectric 

Point 

SC1918 
(H1N1) 04HA HA 62.87 -0.33 0.0989 37.42 6.05 

BR2007 
(H1N1) 04HA HA 63.20 -0.35 0.0991 34.41 6.74 

CA2009 
(H1N1) 04HA HA 63.28 -0.36 0.0989 32.29 6.93 

EIV H3N8 04HA HA 63.61 -0.34 0.097 32.78 8.19 

Average 63.24 -0.34 0.10 34.22 6.98 

StDev ± 0.26 ± 0.01 ± 0 ± 2.01 ± 0.77 
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oseltamivir is an inhibitor of neuraminidase that is able to work in tissues because 2981 
of the exposed nature of its target.  2982 

There is a large bias in research toward contemporary human-infecting IAV such 2983 
as H1N1/2009pdm, H3N2 or high-pathogenicity avian influenza (HPAI) H5N1. So, while 2984 
the location of proteins throughout the virion is known, knowledge of specific 2985 
features of the EIV proteome are often reliant on extrapolations from viruses 2986 
naturalised to other hosts. Conversely, this means that EIV can be used as a model 2987 
for general IAV biology; knowing how the properties of H3N8 EIV proteins compare 2988 
to influenza viruses naturalised to other hosts means that findings here can be 2989 
assumed to mirror those in other IAV.  2990 
The proteins of influenza A viruses are well-documented and the predicted 2991 
localisation of EIV proteins generally matches what is known for other IAV. However, 2992 
knowing the precise location of residues of EIV proteins helps identify which 2993 
mutations appear intra- or extra-virion and can provide an estimate of function. It 2994 
also bridges gaps in knowledge, so we don’t have to rely on assumptions from other 2995 
IAVs. Annotation may be transferred from well-characterised proteins in order to 2996 
highlight active sites, RNA binding sites and monomer polymerisation domains. This 2997 
assists in gauging the functional impact of nucleotide substitutions in viral coding 2998 
sequence. Proteins used for mapping and annotation are shown in supplementary 2999 
Table S4.1. 3000 
4.2.7.2 Surface Accessibility 3001 

I next estimated the degree to which protein residues are exposed on the viral 3002 
surface (Figure 4.7) using the Emini Surface Predictability algorithm. Unsurprisingly, 3003 
many of the antigenic sites on the haemagglutinin head are expected to be exposed 3004 
to their surroundings until the virion is endocytosed by a host cell. This is also the 3005 
formation of haemagglutinin when among host tissues when it is at risk of 3006 
encountering extracellular immune molecules. During this extracellular period, 3007 
epitopes on the extra-virion proteins of EIV can be targeted by antibodies and 3008 
complement. Hence, identifying where mutations are located on the structure of 3009 
extra virion proteins can lead further studies into whether conformational changes 3010 
to epitopes by non-synonymous mutations affect the binding capability of immune 3011 
molecules and thus the immune response of a host. This is, therefore, a key molecule 3012 
of interest for the present study.  3013 

The five labelled antigenic sites are estimated from studies of 3014 
A/England/878/1969 (H3N2) and A/Hong Kong/1/1968 (H3N2) which circulated in 3015 
the human population in the latter half of the 20th century (Skehel et al., 1984; 3016 
Wiley et al., 1981; Wilson et al., 1981).  3017 
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3018 
Figure 4.7: Haemagglutinin head protein expected to be accessible outside the virion, exposed 3019 
to extracellular environments. Antigenic sites A-E are shown coloured. Inset 7A) shows the 3D 3020 
structure of the haemagglutinin trimer with antigenic sites coloured corresponding to the points 3021 
on the line graph. Insets B) and C) show the estimated surface accessibility of the protein scaled 3022 
from low (blue) to high (red).  3023 
Homologous residues at these sites were annotated correspondingly in 3024 
A/Newmarket/5/03 (H3N8) for alignment with the 53 samples obtained during the 3025 
transmission experiment. The sequences A/England/1969, A/Hong Kong/1968 and 3026 
A/equine/Newmarket/5/03 viruses shared 82.4% sequence identity in segment 4 and 3027 
86.2% across the whole genome. During the transmission experiment, two non-3028 
synonymous mutations appeared in the haemagglutinin protein. Site 144 sits directly 3029 
within antigenic site A (residues 142-146), a region of the protein expected to be 3030 
targeted directly by antiviral antibodies. Thus, the substitution of Glycine at this 3031 
site with a larger, more acidic and less hydrophobic Asparagine residue may have 3032 
phenotypic and/or immune-evasion effects on the haemagglutinin protein. Potential 3033 
physio-chemical, immune and spatial impacts of residue substitutions are explored 3034 
further below. Figure 4.8 shows the placement of mutations on the homotrimeric 3035 
haemagglutinin structure. 3036 

 3037 
Figure 4.8: Both sites of non-synonymous mutations seen in haemagglutinin.  3038 
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Figure 7: Haemagglutinin head protein expected to be accessible outside the virion, exposed to extracellular environments. Antigenic sites A-E 
are shown coloured. Inset 4A shows the 3D structure of the haemagglutinin trimer with correspondingly coloured antigenic sites. Figures B and C 
rather show the estimated surface accessibility of the protein scaled from low (blue) to high (red).
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4.2.7.3 Kolaskar & Tongaonkar Antigenicity 3039 

Can we measure the antigenicity of proteins from their sequences alone? 3040 
Knowing the baseline antigenicity of haplotype A viruses, we can measure how non-3041 
synonymous mutations away from this consensus may affect protein antigenicity; 3042 
further, whether antigenicity increases or decreases in response to vaccine-3043 
mediated immunity. Antigenicity was calculated using the method of Kolaskar and 3044 
Tongaonkar (1990), implemented by a tool hosted on http://tools.iedb.org/bcell/. 3045 

Only four total non-synonymous mutations are observed throughout the 3046 
transmission experiments between both antigenically available proteins: HA and NA. 3047 
By predicting the antigenicity of the consensus form of the protein (belonging to 3048 
haplotype A) and comparing the scores with the predicted antigenicity of the mutant 3049 
proteins, non-synonymous mutations with the potential to alter antigenicity (via 3050 
conformational changes resulting from differing properties of residue side chains) 3051 
can be detected. It should be noted, the scores are relative and there is no binary 3052 
threshold defining whether a region is or isn’t antigenic.  3053 

The two observed non-synonymous mutations in haemagglutinin (Figure 4.9) 3054 
show different estimated phenotypes: g431a/Gly144Asp does not affect the 3055 
predicted antigenicity of the protein while the a1401c/Arg467Ser mutant increases 3056 
antigenicity. This Arg467Ser mutation is seen in three samples, two vaccinates from 3057 
the multi group and one vaccinate from the single group (viruses E, G and M).  3058 
Gly144Asp appears only once throughout the dataset, as well as once among the 3059 
global EIV sequences (A/equine/Idaho/US/37875/1991, NCBI:txid415988) over a 3060 
decade before the challenge strain for our experiment was isolated. It must also be 3061 
noted that viruses with the mutation Arg467Ser often had some of the highest viral 3062 
loads, though due to the rarity of these samples, and a lack of global EIV sequences 3063 
sharing this mutation, it is impossible to find any statistical significance regarding 3064 
this association.  3065 

 3066 
Figure 4.9: A) Predicted antigenicity of all residues in H3N8 EIV haemagglutinin, with a focus on 3067 
the two mutations detected in our transmission experiment; B) Gly144Asp and c) Arg467Ser.  3068 

Conversely, both of the non-synonymous mutations detected in 3069 
neuraminidase are estimated to decrease antigenicity of the protein (Figure 4.10). 3070 
Again, however, these mutations only appear once each within our dataset; 3071 
t1385c/Ile462Thr appears twice in publicly available EIV sequences collected from 3072 
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China (A/equine/Heilongjiang/CN/1/2010-04-23, NCBI:txid1125808, next in 2013 at 3073 
A/equine/Xuzhou/CN/1/2013-08-27, NCBI:txid1417962) whereas a1024g/Lys342Glu 3074 
is not reported in other EIV sequences.  3075 

  3076 
Figure 4.10: A) Predicted antigenicity of all residues in H3N8 EIV neuraminidase, with a focus on 3077 
the two mutations detected in our transmission experiment, B) Lys342Glu and C) Ile462Thr. 3078 
This time, sequences sharing this mutation are dated some years after the original 3079 
isolation of the challenge strain, A/equine/Newmarket/UK/5/2003, used in this 3080 
experiment. Unfortunately, due to the sparsity of samples we cannot verify whether 3081 
either of these mutations impacted the viral loads of hosts.  3082 
4.2.7.4 Epitopes 3083 

I then examined the propensity of amino acid substitutions to affect potential 3084 
epitope sites via putative protein conformational changes, the results of which are 3085 
presented in Figure 4.11. At the consensus level, we detect two non-synonymous 3086 
mutations in haemagglutinin (Gly144Asp & Arg467Ser) and two in neuraminidase 3087 
(Lys342Glu & Ile462Thr).  3088 

 3089 
Figure 4.11: Epitope scores, as predicted by BepiPred, of both the consensus (black) and mutant 3090 
(blue) residues observed throughout the transmission experiment. The changes in values is given 3091 
by each range and is coloured red for a decreased likelihood of epitope availability or green for 3092 
increased chances of epitope availability. A value above 0.5 is likely to display some epitope 3093 
activity, below 0.5 and the location is unlikely to be epitopic; the dashed line demarcates  this 3094 
boundary. 3095 
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Figure 11: Epitope scores, as predicted by BepiPred, of both the consensus (black) and mutant (blue) residues observed 
throughout the transmission experiment. The changes in values is given by each range and is coloured red for a decreased 
likelihood of epitope availability or green for increased chances of epitope availability. A value above 0.5 is likely to display 
some epitope activity, below 0.5 and the location is unlikely to be epitopic; the dashed line demarks this boundary.
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Neither HA mutation substantially changes the estimated likelihood of epitope 3096 
presentation, according to BepiPred’s Linear Epitope Prediction tool (Jespersen et 3097 
al., 2017). The Lys342Glu NA mutation, however, is estimated to drop the probability 3098 
of epitopic availability from ‘strong likelihood’ (0.577) to ‘unlikely’ (0.435). This 3099 
matches the above Kolaskar & Tongaonkar test, where this mutation is expected to 3100 
lower the antigenicity of neuraminidase compared to the consensus seen in other 3101 
EIV samples. 3102 
 3103 

The estimated changes to viral epitopes are seen clearly in the Lys342Glu 3104 
mutation of neuraminidase. Strongly basic lysine is substituted by an acidic glutamic 3105 
acid residue. This change in protein charge is expected to alter protein structure 3106 
enough to mask a previous epitope site. This mutation, however, only appears once 3107 
throughout the transmission experiment, in genotype L which is quickly lost from 3108 
the viral population.  3109 
4.2.8 Structural Modelling 3110 

As the HA trimer is the only resolved structure for equine IAV, modelling the 3111 
nine other major proteins of EIV allowed us to observe differences between IAVs of 3112 
other species and see any large changes caused by the mutations detected 3113 
throughout our experimental transmission chain. I aimed to create usable models 3114 
for EIV structural biology, vaccine design and analysis of host-pathogen interactions. 3115 
A substantial amount of data exists on IAV biology and protein annotations, however 3116 
the vast majority of this is focused on human influenza viruses. I, thus, utilised 3117 
proteins of non-equine IAV as a template from which to estimate structures and 3118 
functions of EIV H3N8 proteins. Even if protein structural models are not perfect, 3119 
they may still have value in estimating the impact of changes caused by non-3120 
synonymous mutations. 3121 
4.2.8.1 Validating Predictions 3122 

Using the results of a Local Distance Difference Test (LDDT) to assess model 3123 
confidence, the estimated structure of each protein was mostly well-predicted.  3124 
Averaging the confidence of each predicted amino acid location as a proxy for total 3125 
model confidence, seven of the proteins were modelled well, with >75% confidence 3126 
(Figure 4.12). As a reference point, the authors of the tool classify this LDDT into 3127 
very high model confidence (>90%), confident (70-90%) and low confidence (50-70%) 3128 
(Varadi et al., 2022).  3129 
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 3130 
Figure 4.12: The local distance difference of each residue for each modelled EIV protein, 3131 
calculated with AlphaPickle (Arnold 2021). LDDT values averaged over the whole protein are 3132 
labelled on each plot. Most proteins are modelled with high (+80%) confidence. Notably, the 3133 
three transmembrane proteins are estimated with lower confidence.  3134 

Haemagglutinin, neuraminidase and matrix 2 were predicted with lower 3135 
confidence (58.6%, 72.8% and 68.3% respectively), although these are still 3136 
considered moderately reliable. Notably, these proteins are homotrimers (HA) or 3137 
homotetramers (NA and M2), which are known to be more challenging for AlphaFold 3138 
to predict. They are also transmembrane proteins, which are expected to be more 3139 
difficult to model. Overall, predictions of the influenza proteome generally provided 3140 
high-confidence 3D structural models, thus enabling in silico experiments which 3141 
could be used to investigate the impacts of amino acid mutation on protein 3142 
morphology and function.  3143 
4.2.8.2 Comparisons with other Models  3144 

In silico experiments can often occur in a vacuum and so before commencing 3145 
testing on estimated protein structures, I sought to compare the models with 3146 
resolved IAV protein structures. If structural models are close to published resolved 3147 
crystal structures then we can expect the results of in silico experiments to closely 3148 
resemble what happens in actual proteins. The homology modelling approach may 3149 
be used in the absence of known EIV protein structures and can provide useful 3150 
inferences on how non-synonymous mutations may impact proteins. As reference, 3151 
the matchmaking procedure was initially tested with two closely related 3152 
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H1N1/2009pdm haemagglutinins, A/Darwin/2001/2009 (PDB:3M6S) and 3153 
A/California/04/2009 (PDB:3LZG) which gave the following results: sequence 3154 
alignment score = 1600.7; the RMSD (root mean2 distance) between 318 pruned atom 3155 
pairs is 0.571Å and across all 322 pairs is 0.805Å.  3156 

In order to validate the use of the predicted structural models in further 3157 
analyses, I then examined the similarity of these homologous haemagglutinin 3158 
molecules with the model I developed. As shown in Figure 4.13, the sequence 3159 
similarity of proteins was compared to the overall difference in protein structures. 3160 
This Ångstrom difference was calculated by overlaying the AlphaFold structure onto 3161 
the sample and measuring the resulting mismatch.  3162 

 3163 
Figure 4.13: Differences between resolved EIV haemagglutinin structures and an AlphaFold 3164 
prediction. Each published protein is marked with their similarity to (Score) and the distance 3165 
between (Å), the HA structure as predicted by AlphaFold. 3166 

Of the five EIV haemagglutinin structures in PDB, three are H3N8, thus 3167 
matching the subtype of the inoculum used in our transmission experiment. These 3168 
three haemagglutinin proteins (from A/Equine/Newmarket/2/93 (PDB:4UNW), 3169 
A/Equine/Richmond/1/2007 (4UO3) and a mutant form of 3170 
A/Equine/Richmond/1/2007 (4UO0)) only differ from the AlphaFold model by an 3171 
average of 0.753Å; considering that the two 2009 H1N1pdm haemagglutinins differed 3172 
by only 0.571Å, our Å average from viruses sampled in 1993 and 2007 match nicely 3173 
to the estimated model. The two remaining haemagglutinin structures are from an 3174 
H7N7 virus, A/Equine/New York/49/1973 (PDB:6N5A) and H5N1 3175 
A/Equine/Guangxi/25/2010 (PDB:7WL5). Unsurprisingly, these proteins are very 3176 
genetically and structurally different from H3N8 viruses. 3177 

Figure 4.14 shows how all the resolved IAV structures in PDB compare to the 3178 
EIV prediction. All have been matched (in ChimeraX) to the AlphaFold prediction of 3179 
haemagglutinin to quantify how closely related protein sequences are, and how 3180 
spatial structures of studied proteins compare to those modelled with proteins from 3181 
our transmission study.  3182 
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 3183 
Figure 4.14: All of the available influenza A protein structures were assessed against our 3184 
structural models. Comparing the alignment score and spatial differences to resolved structures 3185 
of other IAV proteins, we see high sequence and structural homology with human IAV samples 3186 
and a distancing from proteins of swine and bat influenza.  3187 

From comparing each modelled protein to resolved influenza structures from 3188 
PDB, I have shown how EIV proteins cluster together with proteins of IAV naturalised 3189 
to other hosts. The colours also differentiate IAV subtypes. For example, the 3190 
haemagglutinin model has high sequence identity with other H3N8 equine HA, as 3191 
well as closely matching the structure of previously resolved equine HA. Conversely, 3192 
swine H1N2 haemagglutinin proteins have low sequence homology and a substantial 3193 
difference in structural similarity. To note, however, human-sampled IAV (+) are 3194 
over-represented in PDB and thus can occlude similarities or differences between 3195 
viruses of equines and other hosts. 3196 
4.2.9 Structural Analysis 3197 

Physio-chemical properties of amino acid side-chains play a large role in 3198 
determining the location of residues among the protein’s tertiary/quaternary 3199 
structure. Amino acid side-chains interact with each other and thus orient the 3200 
surrounding environment. By in silico testing the spatial impacts of non-synonymous 3201 
mutations, we explore potential changes to protein structures over the course of 3202 
transmission. 3203 

Amino acid substitutions can result in conformational changes to proteins, with 3204 
differing physiochemical properties of residue side-chains altering the interactions 3205 
between residues. In an effort to measure these changes, in silico experimental 3206 
substitutions were carried out on the structural models created above. These 3207 
substitutions then had associated changes to the bonds linking the α-Carbon to both 3208 
amino (N-Cα) and carboxyl groups (Cα-C); as amino acids display chirality, the angles 3209 
of these rotations in the amino-Cα and Cα-carboxyl bonds can be measured as Φ and 3210 
Ψ angles respectively. These concepts are clarified and illustrated in Figure 2.4 of 3211 
the Methods chapter. Of the 11 non-synonymous mutations detected across the 3212 
experiment, six are predicted to substantially alter the structure of their 3213 
homologous crystal structure, as determined by the Φ and Ψ shifts that occur. 3214 

Figure 14: All of the available influenza A 
protein structures were similarly 
assessed against our structural models. 
Comparing the alignment score and 
spatial differences to resolved structures 
of other IAV proteins, we see high 
sequence and structural homology with 
human IAV samples and a distancing 
from proteins of swine and bat influenza.

Host
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 3215 
Figure 4.15: Twist angles of non-synonymous mutations from in silico experiments in EIV 3216 
structures. A and B show the phi and psi angles estimated on homologous crystal structures. C 3217 
and D model the same mutations on structures estimated by AlphaFold. These angles represent 3218 
structural changes and are a proxy for the impact of mutations on protein tertiary structures.  3219 

Not all of the non-synonymous mutations are equal. As shown, some of the 3220 
physical changes associated with mutations are predicted to be negligible. While 3221 
this does not necessarily indicate a change in protein function, it indicates that some 3222 
of the mutations likely alter the structure of viral proteins. These, however, are all 3223 
modelled virtually, and rotamer activity may not necessarily translate to functional 3224 
changes. A number of these non-synonymous mutations appear in important active 3225 
sites of their proteins.  3226 

In addition to the predicted spatial changes associated with mutations, point 3227 
accepted mutation (PAM) matrices describe the likelihoods of amino acid 3228 
substitutions arising in the context of the chemical properties of amino acid 3229 
residues. Each cell of a PAM matrix is then the probability of a residue being 3230 
substituted with the corresponding amino acid after nucleotide mutation(s) (Dayhoff 3231 
& Foundation, 1979; Pevsner, 2009). As an example, Leucine and Isoleucine have 3232 
residues with very similar physio-chemical properties and only a single nucleotide 3233 
substitution (CTT to ATT) can cause this change. In contrast, Leucine and Tyrosine 3234 
have disparate codon sequences and require more than one nucleotide replacement 3235 
in the codon meaning that this substitution is less likely than Leu-Ile. From this, we 3236 
can infer that certain non-synonymous mutations may have greater fitness costs than 3237 
others.  3238 
4.2.10 Physico-Chemical Impacts of Non-synonymous Mutations 3239 

The following section summarises what we’ve learned about non-synonymous 3240 
mutations in EIV proteins so far and also incorporates physio-chemical properties of 3241 
residues to potentially explain why we do or do not expect structural changes. Tables 3242 
5-12 summarise the structural metrics associated with non-synonymous mutations 3243 
observed in each genomic segment throughout the transmission experiment. This 3244 
begins with physical properties (side-chain charge, hydropathy, molecular weight, 3245 
isoelectric point [the pH at which the amino acid is not electrically-charged] and 3246 
class of amino acid side chain) of the consensus and mutant residue, then the 3247 
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Figure 15: Twist Angles of non−synonymous mutations observed in EIV samples collected throughout the experiment, simulated in silico. The phi (A) and psi (B)
angles estimated on homologous crystal structures show six residues with large impacts on the surrounding structure. These mutations are simulated on

the structures estimated by AlphaFold in 8C and 8D.

Rotational Displacement of Residues by Non-synonymous Mutations

Figure 15: Twist angles of non-synonymous mutations from in silico experiments in EIV structures. A and B show the phi and psi 
angles estimated on homologous crystal structures. C and D model mutations on structures estimated by AlphaFold. These 
angles represent structural changes and are a proxy for the impact of mutations on protein tertiary structures.
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PAM250 value for the substitution. These are then followed by two paired columns 3248 
of predicted Φ and Ψ angles associated with the substitution modelled on both a 3249 
homolog and the structure predicted above. Homologous proteins were found by 3250 
searching the Protein Data Bank (PDB) for resolved structures and extracting those 3251 
with the highest sequence similarity score to sequences sampled from the 3252 
transmission experiment; the corresponding four-character codes of each homolog 3253 
are contained in the header of such columns. When the protein is polymeric, the 3254 
chain used in the prediction follows the four-character ID code. 3255 
4.2.10.1 Segment 1: PB2 3256 

Site g2191a/Val731 sits in the Karyopherin α binding site; the change to an 3257 
isoleucine is predicted to cause a substantial effect on the local structure, though 3258 
chemical properties of the residue itself do not differ dramatically from the original 3259 
valine. On the other hand, the mutation at position 327 replaces Gly with the 3260 
hydrophobic, heavy side chain of Arg [g979a/Gly327Arg]. For this reason, the 3261 

likelihood of this mutation occurring, according to PAM250 matrix, is 10e-3. 3262 
Val731Ile appears but once in this experiment (Table 1), and yet is reported 16 times 3263 
in the 384 global full-genome EIV sequences; its putative impact on protein structure 3264 
and function could warrant further investigation. 3265 
4.2.10.2 Segment 2: PB1 3266 

First, the replacement of Gln with Arg at position 294 [a881g/Gln294Arg] in the PB1 3267 
protein is predicted to moderately alter the structure (φ = 46.2, ψ = 78.5) and 3268 
drastically shift the charge (isoelectic point = +7.54) of the immediate surroundings. 3269 
The second mutation in PB1, at position 618 [a1853g/Glu618Gly] has little 3270 
physiochemical impact on the protein, other than a change to local hydrophobicity. 3271 
While it appears in 16 of the 53 collected samples, it is not present in any of the 3272 
full-genome EIV sequences available on global databases. 3273 

Polymerase Basic Protein 1 Homolog 6QNW – B AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM 

250 

φ ψ φ ψ 

Gln294Arg 

a881g 

Neutral -3.5 146.15 3.22 Amidic 
1 46.2 78.5 -51.0 152.4 

Positive -4.5 174.20 10.76 Basic 

Glu618Gly 

a1853g 

Negative -3.5 147.13 5.65 Acidic 
0 1.0 1.0 0.0 0.0 

Neutral -0.4 75.07 5.97 Aliphatic 

Polymerase Basic Protein 2 Homolog 6QNW – C AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM 

250 

φ ψ φ ψ 

Gly327Arg 

g979a 

Neutral -0.4 75.07 6.06 Aliphatic 
-3 72.0 7.0 80.0 2.3 

Positive -4.5 174.20 10.76 Basic 

Val731Ile 

g2191a 

Neutral 4.2 117.15 5.96 Aliphatic 
4 -115.8 141.4 -86.6 123.0 

Neutral 4.5 131.18 6.02 Aliphatic 
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4.2.10.3 Segment 3: PA 3274 

Only one non-synonymous mutation was detected in the PA subunit of the 3275 
polymerase complex: g1180a/Asp394Asn. This residue is found in the PB1 binding-3276 
site, implying the potential for functional, phenotypic changes.  3277 

Polymerase Acidic Protein Homolog 6QNW – A AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM250 φ ψ φ ψ 

Asp394Asn 

g1180a 

Negative -3.5 133.10 2.77 Acidic 
2 1.0 1.0 -54.8 122.9 

Neutral -3.5 132.12 5.41 Amidic 

4.2.10.4 Segment 4: HA 3278 

Three viral haplotypes detected in the experiment show evidence of haemagglutinin 3279 
mutations: a1401c/Arg467Ser is found in all three haplotypes (E, G and M), while 3280 
haplotype G has an additional g431a/Gly144Asp mutation. The Gly144Asp singleton 3281 
is predicted to largely impact the rotation of atoms in the surrounding area, as well 3282 
as a shift in hydrophobicity and charge. This residue is within the well-described 3283 
antigenic site A of the HA1 head domain (Kawaoka et al., 1989; Webster & Laver, 3284 
1980). Thus, any conformational change to this sensitive region could potentially 3285 
alter the binding of the EIV haemagglutinin to host cell receptors and/or host 3286 
epitope-binding immune molecules; both possibilities would have a dramatic effect 3287 
on viral fitness. 3288 

Haemagglutinin Homolog   

4UNW 

AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM 

250 

φ ψ φ ψ 

Gly144Asp 

g431a 

Neutral -0.4 75.07 5.97 Aliphatic 
1 -101.0 140.6 95.7 3.3 

Negative -3.5 133.10 2.77 Acidic 

Arg467Ser 

a1401c 

Positive -4.5 174.20 10.76 Basic 
0 -94.6 111.6 62.2 32.7 

Neutral -0.8 105.10 5.68 Hydroxylic 

The more abundant mutation in our dataset, Arg467Ser, has similarly large effects 3289 
on the rotational orientation of the residue. This residue is located on the stalk 3290 
domain of haemagglutinin, though before the transmembrane portion of the stalk 3291 
and so is not expected to alter function or efficiency of the viral protein. 3292 
4.2.10.5 Segment 5: NP 3293 

The g1445a/Ser482Asn mutation found in the viral nucleoprotein is the second most 3294 
abundant mutation observed in our dataset. It is predicted to have large effects on 3295 
the spatial conformation of the protein (φ = -86, ψ = 92) but otherwise the wild-3296 
type (Ser) and mutant (Asn) residues have similar physiochemical properties.  3297 

Nucleoprotein Homolog 2IQH AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM250 φ ψ φ ψ 

Neutral -0.8 105.09 5.68 Hydroxylic 
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Ser482Asn 

g1445a 

Neutral -3.5 132.12 5.41 Amidic 1 -86.0 92.0 -57.8 145.1 

4.2.10.6 Segment 6: NA 3298 

The two non-synonymous mutations reported in segment six, a1024g/Lys342Glu and 3299 
t1385c/Ile462Thr, neither change the structure of the protein (referring to their φ 3300 
and ψ angles) or are less likely to be substituted for this residue than any other. 3301 
They are, thus, not expected to affect protein function. The likelihood that Lysine 3302 
is replaced by Glutamine, or that Isoleucine is replaced by Threonine, due to 3303 
similarities in residue properties, rather than being substituted due to chance, is 3304 
zero (as represented by their PAM250 score of 0).  3305 

Neuraminidase Homolog 5HUK – A AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM 

250 

φ ψ φ ψ 

Lys342Glu 

a1024g 

Positive -3.9 146.19 9.74 Basic 
0 1.0 1.0 0.0 0.0 

Negative -3.5 147.13 5.65 Acidic 

Ile462Thr 

t1385c 

Neutral 4.5 131.18 6.02 Aliphatic 
0 1.0 1.0 0.0 0.0 

Neutral -0.7 119.12 5.60 Hydroxylic 

4.2.10.7 Segment 7: MP 3306 

The single mutation seen in segment seven is minor; Threonine and Alanine have 3307 
relatively similar physio-chemical properties and so are not expected to substantially 3308 
alter the protein structure or function. This mutation is transient, vanishing from 3309 
the population by the end of the experiment. 3310 

Matrix Protein 1 Homolog 1EA3 AlphaFold 

Mutation Charge Hydropathy Weight 

(Da) 

Isoelectric 

Point 

Type PAM 

250 

φ ψ φ ψ 

Thr140Ala 

a418g 

Neutral -0.7 119.12 5.6 Hydroxylic 
1 -1.0 -1.0 -61.8 -39.2 

Neutral 1.8 89.09 6.0 Aliphatic 

4.2.10.8 Segment 8: NS 3311 

No non-synonymous mutations were detected in segment 8. 3312 
The eleven non-synonymous mutations observed are expected to have a range 3313 

of effects on protein structure and function. Some are minimal; for example, NA-3314 
Ile462Thr involves substitution with a residue with similar chemical properties and 3315 
from in silico testing is not expected to alter protein structure, although this may 3316 
be confounded by its location at the end of the protein chain Other mutations, 3317 
however, do show a proclivity for structural and functional changes; in 3318 
haemagglutinin the Gly144Asp mutation causes a substitution with a residue almost 3319 
twice as large (75kDa to 133kDa) and with a much more acidic isoelectric point (5.97 3320 
to 2.77) leading to a large shift in protein structure around this site. 3321 
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4.3 Discussion 3322 

From the 53 sequences collected over the course of this transmission study, I 3323 
sought to understand possible changes to viral genomes while being transmitted 3324 
through vaccinated and unvaccinated hosts. After assembling the sequences and 3325 
reporting mutations within the alignment, I addressed the problem from a range of 3326 
angles. First, I used a phylogenetic approach whereby the sampled sequences were 3327 
analysed to determine whether host immunity or transmission chain could explain 3328 
genetic changes. 3329 

The putative impacts of mutations on EIV protein structure and function were 3330 
analysed next; tools qualifying protein properties, surface availability and 3331 
propensity for interaction with host immune molecules and cells were used to 3332 
characterise each of the ten major EIV proteins residue-by-residue. With these 3333 
features described, in silico experiments were used to explore putative effects that 3334 
non-synonymous mutations may have on EIV replicative fitness. Would certain amino 3335 
acid substitutions alter how exposed a region of the protein was, and would that 3336 
impact the binding of antibodies? 3337 

An important aim I had for this work was to create high quality models of the 3338 
EIV proteome, which had previously consisted of only a single crystal-resolved 3339 
haemagglutinin structure. Establishing Equine Influenza Virus H3N8 as a suitable 3340 
model virus was necessary were these findings to be applicable to influenza 3341 
epidemiology as a whole. By estimating the structures of EIV proteins, these models 3342 
could then be compared to resolved IAV proteins to determine their similarity and 3343 
hence whether these results could potentially apply to other IAVs. This meant 3344 
estimating and validating structures from assembled genomic sequences, before 3345 
undertaking a comparative analysis with other IAV proteins and finally performing in 3346 
silico experiments simulating the effects of non-synonymous mutations on protein 3347 
structure. Ultimately, most of the major proteins of EIV were estimated with great 3348 
confidence (>70% pLDDT) and were found to closely resemble crystal structures of 3349 
other IAV proteins. 3350 
4.3.1 Sequence Analysis 3351 

4.3.1.1 Mutations detected 3352 

Collating consensus sequences from the nasal swabs of horses infected with 3353 
EIV, I observed 21 mutations across the 13kb viral genome. The majority of these 3354 
mutations (n = 16) were singletons, though two appeared independently in both 3355 
transmission chains: PA-c201t and HA-a1401c. Both populations homogenised upon 3356 
infecting immunologically naïve hosts, resulting in two distinct end-point virus 3357 
populations: F became fixed in the single group and J in the multi group. Viruses in 3358 
VS hosts were attempting to circumvent strain-specific adaptive immune recognition 3359 
whereas in the VM hosts, the breadth of immunologic memory appeared to create an 3360 
environment with weaker selective pressures for infecting viruses. Greater viral 3361 
population, fewer fixed mutations and a slightly slower branch rate in viruses from 3362 
the VS hosts indicate lower selective pressures in these hosts.  3363 
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The appearance of the non-synonymous HA-a1401c/Arg467Ser mutation in 3364 
both transmission chains is surprising. For a mutation to appear de novo at the 3365 
consensus level in three individuals (Mul_3A, Mul_4A and Sin_2B) suggests either low 3366 
levels of circulation in the original inocula or a selective pressure for its creation in 3367 
the viral population. It is notable that this mutation is a transversion, a 3368 
comparatively unlikely form of point-mutation. 3369 
4.3.2 Phylogenetic Analyses 3370 

Analysing the phylogenetic trees of viruses from each transmission group, we 3371 
estimate a higher mutation rate in viruses of the single group than of the multi group 3372 
(1.57e-3 and 8.77e-4 substitutions per annum respectively), though these differences 3373 
are not statistically significant. These values align with previously published 3374 
substitution rates of influenza A viruses (Lloyd et al., 2011; Murcia et al., 2013). 3375 
Though the rates are similar, viruses in the single group appear to change faster than 3376 
those in the multi group; one possible reason for this is the greater selective pressure 3377 
placed upon viruses that are infecting a host with pre-existing immunity. As the 3378 
shedding analysis showed, viral populations of hosts in the single group were smaller 3379 
than those in the multi chain. Hence, we assume that the single group viruses 3380 
encountered more barriers to replication (namely a primed adaptive immune 3381 
response). A greater mutation rate may be taken as evidence of the virus attempting 3382 
to adapt to this challenge. In the multi group, it may be hypothesised that viruses 3383 
did not have to contend with the same degree of immune recognition.  3384 

Viruses appear to face different challenges across each transmission chain. In 3385 
vaccinated hosts of the single chain, the immune system is primed to specifically 3386 
combat the challenge strain. Thus, we could expect strong, specific adaptive 3387 
immune responses when these hosts are naturally infected by the challenge strain. 3388 
In the shedding analyses, vaccinated hosts did have lower viral loads than naïve 3389 
hosts. Vaccinates in the multi chain have a broad history of IAV exposure. Original 3390 
Antigenic Sin theory hypothesises that the multiple exposures will confound the 3391 
specificity of antibody binding, decreasing the protective response. This certainly 3392 
matches the patterns seen in the viral load and evolutionary rate of these viruses, 3393 
suggesting an increased viral population size and lesser selective pressure compared 3394 
to the single transmission group. As vaccinated hosts in the single group (VS) had 3395 
already been exposed to antigens from the challenge strain (Newmarket/5/03) five 3396 
times over the previous year, their adaptive immune systems were primed to 3397 
respond rapidly when they were naturally infected by a virus derived from lab-grown 3398 
Newmarket/5/03 EIV. It is supposed then that viruses in VS hosts experience 3399 
different selective pressures to those in VM hosts; the rapid activation of adaptive 3400 
immunity causing viruses in VS hosts to diversify to a greater degree, in order to 3401 
escape elimination. 3402 
4.3.3 Selection Analyses 3403 

Multiple algorithms were used to examine the viral evolution for evidence of 3404 
purifying/negative or enriching/positive selection. As many of these sequences show 3405 
little diversity overall, the analyses were not well powered to detect selection. Sites 3406 
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that appeared to be under selection were the negatively selected synonymous 3407 
mutation PB1-Gly500 as well as the positively selected HA-Gly144Asp and NP-3408 
Ser482Asn. Individual sites throughout the protein were found to differ in their levels 3409 
of selection, indicating these sites may play an important role in protein function 3410 
and, therefore, warrant functional studies.  3411 
4.3.4 Consensus Diversity 3412 

The population diversity, as measured by Shannon Entropy, was greater in the 3413 
vaccinated hosts than in naïves in each transmission chain. Perhaps unexpectedly, 3414 
NM hosts had the lowest overall diversity; I attribute this to the vastly different 3415 
selective pressures between the two groups. The strong adaptive immune response 3416 
in vaccinated hosts already primed to EIV infection subdues viral replication and 3417 
thus, in theory, the viruses endure greater mutational plasticity to attempt to adapt 3418 
to the challenge. Contrary to Shannon Entropy, other diversity metrics do not 3419 
necessarily estimate that the highest diversity is found in NM hosts. Tajima’s D, as 3420 
estimated by PoPoolation, observes diversity twice as high in hosts of the single 3421 
group to those in the multi group. 3422 

While univalent vaccines are obviously better at granting protective immunity 3423 
against specific strains of EIV (as seen previously by the viral load), they clearly are 3424 
unable to provide fully neutralising immunity. They in fact appear to be driving the 3425 
diversification of viruses; applying strong selective pressures. Similar levels of 3426 
diversity in both vaccinated and unvaccinated hosts of the multi-strain group 3427 
suggests that selective pressures for the virus were not associated with vaccination 3428 
status in this group. Alternatively, viral genomes collected from horses vaccinated 3429 
with a univalent vaccine (VS) have four-fold higher diversity than unvaccinated hosts 3430 
in the same transmission group. This indicates a much greater challenge for viruses 3431 
replicating in VS hosts than in unvaccinated hosts; viruses appear to be diversifying 3432 
greatly in order to attempt to overcome host adaptive immune selection. Such a 3433 
dramatic response is not however seen in the multivalent vaccine group (VM), 3434 
possibly due to less concerted immune activation.  3435 
4.3.5 Protein Analyses  3436 

Coding sequences from the consensus genomes were translated in silico to 3437 
protein sequences and additional tests of protein properties were carried out. Many 3438 
tools exist hosted on web servers to estimate the properties of proteins from their 3439 
primary structure alone. These bioinformatic tools were first used to simply assess 3440 
basic properties such as weight, charge and hydrophobicity of each of the ten main 3441 
EIV proteins. Though easily obtained, these features were not published for H3N8 3442 
viruses, and therefore I saw a gap in the knowledge base. Beyond this, however, 3443 
measuring the properties of H3N8 EIV allowed for comparison with other, more 3444 
popularly studied IAV. As this study is in large part meant to be applicable to the 3445 
dynamics of all mammalian influenza viruses, knowing how similarly H3N8 EIV 3446 
proteins resembled the proteome of other IAV subtypes granted us some validity in 3447 
applying our conclusions to epidemiological and evolutionary dynamics of influenza 3448 
in general.  3449 
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4.3.6 Antigenicity 3450 

The reported non-synonymous mutations in the surface proteins HA and NA 3451 
are expected to have little effect on protein antigenicity. Despite substantially 3452 
different physio-chemical properties and a large change in predicted twist angles, 3453 
the two mutations in HA (Gly144Asp and Arg467Ser) have an equal likelihood of 3454 
arising (according to a PAM250 matrix). Furthermore, selection is only detected at 3455 
the first mutation (Gly144Asp), which is estimated to have no impact on the 3456 
antigenicity of the protein as a whole. Both NA mutations resulted in a decrease in 3457 
predicted antigenicity, despite little to no impact on the protein structure. This is 3458 
mirrored in calculating the probability of each site to be an epitope; only NA 3459 
Lys342Glu had a substantially different epitope score (a decrease in probability of 3460 
14%) and was estimated to no longer be an epitope. The impact of this Lys342Glu 3461 
substitution in neuraminidase implies a shift towards immune evasion, evidenced by 3462 
lowered availability of the site to immune cells plus decreased antigenicity.  3463 
4.3.7 Structural Modelling 3464 

One novel finding presented here is the structural modelling of the whole EIV 3465 
proteome. Only a single EIV protein structure, haemagglutinin, has thus far been 3466 
resolved by crystallography. The remaining major proteins of equine H3N8 have thus 3467 
relied on homologous protein structures for any structural analyses. An aim of this 3468 
study was to obtain reliable and accurate predictions of protein structures using in 3469 
silico modelling. Actual crystallographic resolution of proteins is an expensive and 3470 
time-consuming labour requiring highly-skilled technicians; modelling in silico can 3471 
grant us a reasonably trustworthy structure with limited time and expense. With 3472 
dependable protein structures, analyses such as targeted drug/antibody 3473 
manufacture or binding-affinity can help elucidate protein activity and inform on 3474 
treatment of viral infections. 3475 

Though carried out in silico, with all the caveats accompanying such 3476 
modelling, I present characterisation of the ten main proteins of the EIV proteome 3477 
with corresponding properties and localisations. Understanding the placement and 3478 
properties of these viral proteins enables comparative approaches between EIV and 3479 
other influenza A viruses, and further broadens the use of EIV to model other IAV 3480 
systems. 3481 

The equine influenza virus proteome has not, as of yet, been fully resolved 3482 
and much of what is known is inferred from studies of other IAV; the mapping of 3483 
antigenic sites on EIV H3N8 haemagglutinin, for example, is based on H3 3484 
haemagglutinin subtypes from human infections. Hence, generating 3D structural 3485 
models from the high-quality genomic sequences obtained over the transmission 3486 
experiment was an important contribution I sought to add to the knowledge base of 3487 
EIV biology. I obtained mixed results in terms of the reliability of structural 3488 
predictions; transmembrane homopolymers (HA, NA and M2) were particularly 3489 
difficult for AlphaFold to reliably model, despite finding highly homologous 3490 
sequences for each of these proteins. It is recognised that transmembrane proteins 3491 
are difficult to model in this way due to the complexities of protein-lipid 3492 
interactions.  3493 
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4.3.8 Structural Analyses 3494 

Using Ramachandran (twist) angles of amino acid chains, I examined the 3495 
structural impacts of non-synonymous mutations. I decided to use two versions of 3496 
the seven proteins in which non-synonymous mutations were reported, first fully-3497 
resolved influenza homologs and secondly the in silico structural EIV models. The 3498 
positioning effect of an amino acid substitution can indicate whether the mutation 3499 
impacts the protein tertiary or quaternary structure. The first observation was the 3500 
difference in twist angles (ψ and φ) when estimated on homologous IAV proteins 3501 
compared to those estimated on the in silico EIV structural models. These disparities 3502 
indicated either a poorly modelled structure, which contradicted the results seen 3503 
with the LDDT plots (Figure 4.12), or that the homologs are sufficiently different 3504 
from the EIV proteome to cause errors in structural analysis. 3505 
4.3.9 Physio-chemical Differences in Non-synonymous Mutations 3506 

Having explored evolutionary and viral load trends of samples, I then 3507 
referenced potential functional changes to the observed non-synonymous mutations 3508 
of EIV proteins. The eleven non-synonymous mutations detected throughout our 3509 
transmission experiment range from large impacts on local protein structures to 3510 
substitutions by amino acids with very similar residue properties. Further laboratory 3511 
work on these candidate mutations is needed in order to investigate possible 3512 
phenotypic effects on protein function and fitness. 3513 
  3514 



   
 

113 
 

5 Influenza Virus Evolution at the Sub-consensus 3515 

Level 3516 

As in the chapter above, studies often simplify genomic sequences to create a consensus genome, the 3517 
most abundant viral genome is assumed to represent all of the viruses within a sample. Realistically 3518 
however, the error-prone replication of influenza virus genomes leads to heterogeneous populations 3519 
within infected hosts. In an attempt to capture some of this heterogeneity, virus genomes present at 3520 
frequencies below the dominant genome were examined from horses in two transmission experiments. 3521 
Sub-consensus genomes collected from hosts on multiple days and from hosts connected in a 3522 
transmission chain allowed for the study of intra-host and inter-host diversity of influenza viruses. These 3523 
data also enabled the estimation of the size of the transmission bottleneck; how many viruses needed 3524 
were needed to establish an infection that reflected the observed genetic diversity. Contrary to the 3525 
patterns seen in the consensus data, vaccinated hosts had much lower diversity of sub-consensus 3526 
genomes suggesting that the application of strong selective pressures such as host adaptive immune 3527 
response created environments unfavourable to broad diversification. 3528 

5.1 Introduction 3529 

5.1.1 Reporting sub-consensus viral genomes  3530 

With the development of deep-sequencing tools and metapopulation genetics, 3531 
we are now able to see the genetic diversity of both intra- and inter-host pathogen 3532 
populations (Gallagher et al., 2018; Gelbart et al., 2020; Lauring, 2020; Nelson & 3533 
Hughes, 2015). Next-generation sequencing (NGS) technologies and the genome 3534 
assembly bioinformatic processes are now sensitive enough to account for 3535 
experimental error when assembling read libraries. This enables sub-consensus 3536 
mutations to be recognised with some confidence that the variation is not generated 3537 
by erroneous sampling (McCrone et al., 2020).  3538 

The mutant spectra present in an infected individual can have a range of 3539 
clinical and public health repercussions (Domingo & Perales, 2019). One example of 3540 
this is in chronic viral infections like HIV, where the emergence of drug-resistant 3541 
strains can quickly dominate the overall viral population. Thus, combination 3542 
treatments are required to combat the dominance of drug-resistant viruses. Rather 3543 
than preventing such resistant strains from emerging, a combination of therapeutics 3544 
with differing mechanisms of action can ensure that when sub-consensus variants 3545 
that are resistant to one drug appear, there are multiple other anti-retrovirals 3546 
restricting their proliferation. This highly-active anti-retroviral therapy (HAART) 3547 
usually consists of at least one reverse transcriptase inhibitor in combination with 3548 
an inhibitor of viral protease and/or integrase proteins (Waters et al., 2016).  3549 

 The diversity generated during infection of hosts provides the “raw material” 3550 
for global genetic drift (Rodríguez-Nevado et al., 2018; Simmonds et al., 2019). 3551 
Understanding the causes and consequences of viral mutant spectra is obviously 3552 
important for virologists, public health workers and clinicians (Houlihan et al., 2018; 3553 
Kwong et al., 2015); but how do we actually detect and observe them? By definition, 3554 
genomes with sub-consensus mutations are a small minority of the overall population 3555 
and so conventional genome amplification and sequencing techniques do not reliably 3556 
amplify all of the genomes present equally and may display biases in the sequences 3557 
they enrich. Many bioinformatic procedures were designed specifically to exclude 3558 
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spurious outliers, so how then do we obtain this information from a viral sample such 3559 
as a clinical specimen? Balancing the need for preserving data present at very low 3560 
proportions while also ensuring that sample-preparation and technical errors are 3561 
minimised is thus a key function of bioinformatic processing pipelines. Many 3562 
pipelines incorporate sequence metadata (base quality [Phred score], read quality 3563 
[Q score] and, if possible, strandedness [0-100%]) into their assignment of ‘variant’ 3564 
or ‘error’. 3565 

Further, the epidemiological mechanisms in which these variants are 3566 
maintained, transmitted and/or lost from the viral population can illuminate specific 3567 
evolutionary bottlenecks that viruses experience as they infect subsequent hosts 3568 
(Sobel Leonard et al., 2017; Stack et al., 2013). Referencing the term used in macro-3569 
ecology, a genetic bottleneck describes an event that severely reduces the amount 3570 
of genetic diversity within a population (Ørsted et al., 2019; Rees et al., 2009). In 3571 
obligate parasitic pathogens, such events occur during transmission, as well as when 3572 
migrating between host body compartments, wherein a subsection of the population 3573 
in one host leaves to establish infection in a secondary host. These bottlenecks can 3574 
be heavily influenced by the transmission route. A pathogen spread through close-3575 
contact over a long period of time (Frothingham, 1999), such as Mycobacterium 3576 
leprae causing Hansen’s Disease (neé leprosy) is afforded ample opportunities for 3577 
multiple cumulative transmission events that have a higher chance of sharing the 3578 
within-host diversity of the bacterium leading to conserved bacterial populations 3579 
(Weng et al., 2011). In contrast, fomite transmission of an acute respiratory virus 3580 
such as IAV is limited to a snapshot of the viral population present in the upper 3581 
respiratory tract at a time when a suitable surface is seeded (Bean et al., 1982; 3582 
Thompson & Bennett, 2017; Wißmann et al., 2021). Selective pressures enacted 3583 
upon viruses undergoing transmission bottlenecks shape the overall epidemic viral 3584 
population; they may also influence which mutations can become fixed in the 3585 
broader viral population (Johnson & Ghedin, 2020; Sigal et al., 2018). Some viruses, 3586 
notably HIV, even display distinct transmission phenotypes which have only been 3587 
observed through low-frequency variant (LFV) analyses (Kariuki et al., 2017). 3588 

Once a sizeable proportion of the total viral population has been sampled and 3589 
sequenced, bioinformatics tools must then distinguish mutant variants from the 3590 
consensus genome while excluding variation caused by experimental/sequencing 3591 
error. Due to the sheer quantity of viral genomes in most viral samples, most 3592 
minority variants fall below a set threshold and thus are excluded from analysis. This 3593 
threshold varies depending on the efficacy of the genome amplification technique 3594 
and the specificity of the sequencing procedure but, as a standard, most labs place 3595 
a cut-off value at genomes that constitute less than 1% of the total viral population 3596 
meta-genome after amplification (Domingo et al., 2017; Lauring, 2020).  3597 

Deep sequencing technologies can generate deep-sequence data and illustrate 3598 
the genetic composition of samples at very high coverage. Deep-sequencing 3599 
approaches enable the detection of rare variants in samples, but can also have the 3600 
undesired effect of generating and amplifying sequencing errors and artefacts. 3601 
Distinguishing real variants from such noise is not straightforward. Errors in 3602 
sequencing can arise at many steps, commonly during reverse transcription, PCR 3603 
amplification and the sequencing process itself; most deep sequencing pipelines can 3604 
now reliably detect variant genomes present at or above only 1% proportion of a 3605 
sample (Xue et al., 2018). Following these variants throughout the course of disease 3606 
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in an infected individual can help infer transmission events (De Maio et al., 2016, 3607 
2018) and even assist in estimating transmission trees (Campbell et al., 2019). As 3608 
genetic sequencing technologies improve, the ability to explore the dynamics of viral 3609 
diversity within hosts is expanding, held back only by the limitations of 3610 
informatically distinguishing technical errors from true, naturally occurring 3611 
mutations. 3612 
5.1.2  Influenza Within-host Variation 3613 

Influenza A Viruses have high mutation rates (10e-4 to 10e-5 substitutions per 3614 
nucleotide per replication (Lauring, 2020; McCrone et al., 2020)), caused by their 3615 
large population sizes, rapid replication and low-fidelity polymerase (Dunham et al., 3616 
2009; Grear et al., 2018; Smith et al., 2009). Over an acute IAV infection, viral load 3617 
averages between 105 and 107 copies/µl (Hughes et al., 2012; Neira et al., 2016; 3618 
Ward et al., 2004), so we can expect to observe significant variation during 3619 
infection. The proclivity of these viruses to mutate means that the viral population 3620 
within an individual is often genetically distinct enough to form a viral cloud, or 3621 
mutant swarm (Ørsted et al., 2019) in which subsections of the population may 3622 
exhibit stark differences to the parsimonious consensus of all genomes in the 3623 
population. 3624 

However, the actual impact of genomic variability of RNA viruses in terms of 3625 
influencing pathogenic outcomes is poorly understood (Jombart et al., 2014). 3626 
Mutations in all influenza proteins occur at an observable rate within a single host 3627 
(Chen & Cui, 2017; Illingworth & Mustonen, 2012; Kenah et al., 2016). But how 3628 
relevant is this diversity on an epidemiological scale given that the vast majority of 3629 
mutations observed at the consensus level are transient? Previous transmission 3630 
studies have implicated hosts with chronic influenza as being disproportionate 3631 
sources of IAV evolution on a global scale (Houlihan et al., 2018). Hypothesising that 3632 
lessened selective pressures enacted by weaker immune responses in addition to the 3633 
longer period of disease in chronically infected hosts simply allows for more 3634 
mutations to both appear de novo and to survive. Indeed, Lumby et al. (2020) 3635 
reported that long, non-acute IAV infections allow for greater periods of time for 3636 
selective forces to act upon viral populations. However, as chronic infections form 3637 
a minority of overall influenza infections in any host population, tracking mutations 3638 
through immunocompetent hosts to observe whether sub-consensus variation is 3639 
stochastic or driven directionally may provide insight into the way within-host 3640 
variation can shape influenza virus population structures. 3641 

Viruses exist in an ecological community; virions will be infecting host cells 3642 
amidst a plethora of other competing, complementary and/or antagonistic viruses 3643 
and bacteria present in the host mucous membranes. Additionally, once infection 3644 
with a particular virus is established, the diverse range of progeny from that virus 3645 
will also be interacting with each other, often competing but in some instances 3646 
playing a complementary role (Leeks et al., 2018). The diverse mutant spectra 3647 
generated in an infected host are then subject to selective pressures within the host 3648 
(Bessière & Volmer, 2021).  3649 

Key to understanding and measuring this range of sub-consensus viral genomes 3650 
are the methods which may be used for quantifying genetic diversity. Myriad 3651 
methods of describing diversity exist, scaling in complexity and abstraction, many 3652 
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of which are leveraged from studies of macro-organism ecology (Reeve et al., 2014). 3653 
Commonly used methods, however, range from counts of non-reference nucleotides 3654 
(such as Mutational Frequency or Simpson’s Index) to more complex methods 3655 
accounting for unequally polymorphic sites (per-site Shannon Entropy) or for 3656 
sampling bias (nucleotide π distance) (Fuhrmann et al., 2021). 3657 

Previous studies have shown that despite the relatively high de novo mutation 3658 
rate of most IAV, those mutations arising later in infection have a much lower chance 3659 
of surviving to be transmitted to a secondary host (Sigal et al., 2018). Hence, though 3660 
traditionally associated with rapid mutation, within-host diversity of influenza A 3661 
viruses is generally low (Xue & Bloom, 2019).  3662 

An important caveat of these and other studies is that measurements of viral 3663 
population diversity are reliant on a subsample of genomic information taken at a 3664 
specific point in time (Bessonov et al., 2020; Didelot et al., 2017; Houldcroft et al., 3665 
2017). Genetic diversity over the course of infection in a single host (from exposure 3666 
to colonisation, infection, possible transmission events and finally clearance/death) 3667 
fluctuates in response to host environments and both intra- and inter-species 3668 
competition (Pauly et al., 2017; Poon et al., 2016).  3669 
5.1.3 Transmission Bottlenecks of Naturally Transmitted EIV  3670 

Transmission events of pathogens are both a necessity for continued infection, 3671 
and thus survival, and a huge disruption to population dynamics. A subset of viral 3672 
particles leaves the current host, seeds an infection in a new host and becomes a 3673 
founder population in this secondary host. This founder population is composed of a 3674 
collection of viral genomes that may be wholly unrepresentative of the population 3675 
size, diversity and even phenotype of viruses in the donor host. In addition to 3676 
impacting population dynamics of viruses, transmission bottlenecks can also 3677 
illustrate putative links in epidemiological networks. Influenza A viruses usually 3678 
experience relatively tight bottlenecks (Sobel Leonard et al., 2017; McCrone & 3679 
Lauring, 2018), measured at between 1 and 5 viral particles in ferrets, mice and 3680 
guinea pigs (Bergstrom et al., 1999; Varble et al., 2014). Some estimates, like results 3681 
obtained by Sobel Leonard et al. (2017), have shown that bottlenecks between 3682 
human transmission pairs range from 100 to 200 IAV particles. However, these large 3683 
values have since been re-examined and have been shown to be erroneous due to 3684 
contamination within read-pairs (Sobel Leonard et al., 2019). The actual values are 3685 
much lower, below ten particles and are comparable with the studies presented 3686 
above. 3687 

Further, the epidemiological mechanisms by which these variants are 3688 
maintained, transmitted and/or lost from the viral population can tell us a great 3689 
deal about the specific evolutionary bottlenecks viruses experience as they infect 3690 
subsequent hosts (Sobel Leonard et al., 2017; Stack et al., 2013). Selective pressures 3691 
enacted upon viruses undergoing transmission bottlenecks shape the overall 3692 
epidemic viral population and determine which mutations become fixed in the 3693 
broader viral population (Johnson & Ghedin, 2020; Sigal et al., 2018). Some viruses, 3694 
notably HIV, even display distinct transmission phenotypes which have only been 3695 
observed through low-frequency analyses (Kariuki et al., 2017). 3696 

Most notably, due to its importance, HIV-1 infection is an exemplar culmination 3697 
of all the dynamics discussed thus far (Mak et al., 2020). Lots of variant genomes 3698 
appear below consensus level within infected hosts (Frost et al., 2018; Theys et al., 3699 
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2018), requiring multiple chemotherapeutics with overlapping mechanisms of action 3700 
(highly-active anti-retroviral therapy [HAART]) to combat the emergence of drug-3701 
resistant strains (Power et al., 2016). Additionally, studies of the transmission 3702 
bottleneck show distinct phenotypes, from those surrounding the transmission event 3703 
(associated with host colonisation) to those present in established infections (Kariuki 3704 
et al., 2017; Zwart & Elena, 2015). Finally, detailed HIV-1 transmission networks 3705 
have been made at varying scales, utilising epidemiological and genetic data, to 3706 
reconstruct transmission trees. These have been used for research, public health 3707 
and even legal purposes,  showing the interplay of within- and between-host 3708 
evolution in shaping HIV-1 population dynamics. Lessons learned from other viral 3709 
systems can provide insight into dynamics of influenza A infections despite 3710 
differences in pathology, epidemiology and biology between the viruses (Giardina et 3711 
al., 2017; Yu et al., 2018). 3712 
5.1.4 Aims 3713 

With the diverse composition of variants in EIV populations during natural 3714 
transmission chains, I aimed to understand the role of transmission bottlenecks in 3715 
shaping the evolution of influenza viruses. Furthermore, as hosts had heterogeneous 3716 
immune experiences (naïve or vaccinated with either exclusively immunogens 3717 
matching the challenge strain or alternatively, a range of four EIV) differing adaptive 3718 
immune responses may also be reflected in viral populations. Thus, I shall see the 3719 
fate of genetic diversity within hosts, and use this diversity to quantify transmission 3720 
bottlenecks, in order to understand the limitations and influences that transmission 3721 
bottlenecks place on viral evolution. 3722 

Myriad ways exist to extract these variants from the oft-times deep read 3723 
libraries generated by deep sequencing. First, I explore a range of publicly available 3724 
tools designed to extract such variants from large viral genomic assemblages. In 3725 
comparing these tools, I process a range of datasets using bioinformatic tools with 3726 
default settings. The use and analysis of such deep-sequencing data can vary 3727 
dramatically depending on the experimental procedure, sequencing technology and 3728 
bioinformatic pipelines used, so multiple datasets were selected in an effort to 3729 
account for this variation. To establish this, five control datasets were chosen in 3730 
order to test scenarios with simple, regular mutations up to complex sequence 3731 
libraries collected from clinical samples. Both publicly available sequence data and 3732 
read libraries simulated in silico with ART-Illumina datasets were used and thus both 3733 
represents real and synthetic sequences of Influenza A viruses.  3734 

Their segmented genome and overlapping reading frames provide sizeable 3735 
processing challenges to tools, many of which may be capable only of analysing more 3736 
basic, linear genomes, or indeed are not designed for viral genomes at all.  3737 

In the following comparative analysis of published variant call tools, I aim to 3738 
select one or more variant call tools (VCT) suitable for examining EIV sequences 3739 
obtained from two transmission experiments. Experimentally testing the advantages 3740 
and disadvantages of an array of tools, I then establish a bioinformatic pipeline with 3741 
which to process H3N8 EIV sequences and document the emergence, elimination and 3742 
fluctuation of low-frequency variants along natural transmission chains. 3743 
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In order to examine these evolutionary and transmission dynamics, deep-3744 
sequencing data from the above transmission experiment collected by daily nasal 3745 
swabs allowed the tracking of the trajectories of viral variants within and between 3746 
hosts. From these highly detailed descriptions of viral populations, sub-consensus 3747 
variation was examined, with additional detailed investigations at sites of known 3748 
consensus polymorphisms. The depth of genomic detail also enabled estimation of 3749 
transmission bottleneck sizes. By utilising the beta-binomial modelling of Sobel 3750 
Leonard et al. (2017), differences between two populations of viral genomes can be 3751 
compared; the proportion of shared variants and the frequency at which they appear 3752 
can estimate how many genomes passed from one population to the other. As I have 3753 
at least two samples from most individuals, this enabled quantification of within-3754 
host transmission events, where the “donor” and “recipient” hosts were samples 3755 
from the same individual on dayx and dayx+1, and inter-host transmission events. 3756 

5.2 Methods 3757 

5.2.1 Comparative Analyses of Variant Call Tools 3758 

5.2.1.1 Control Datasets 3759 

To thoroughly evaluate variant calling tools across a breadth of increasingly 3760 
complex datasets, a dataset of simulated influenza reads was created and combined 3761 
with four previously published influenza deep sequence datasets:  3762 
 3763 
Simulated Dataset 3764 

ART sequence simulator by Huang et al. (2012) is able to produce deep 3765 
sequence read data synthesised from sample reference genome and defined Illumina 3766 
machine error profile data. In doing so, ART is able to produce single-end or paired-3767 
end reads with the error rates seen in sequencing technologies. In silico generated 3768 
sequences with mutations spiked at known, regular intervals and proportions were 3769 
created under two Illumina sequencing procedures, a single-end (Illumina Genome 3770 
Analyser II – library “GA2”) and a paired-end (Illumina NextSeq – library “NS50”). 3771 
Both simulated libraries were based on A/Equine/Newmarket/2003 (H3N8) to get 3772 
datasets of non-human IAV reads. Mutant reads contained nucleotide substitutions 3773 
every 50, 100 and 200 bases and comprised 5%, 10% and 25% of the total reads in the 3774 
sample, respectively. A full diagram of where mutations are spiked into the genome 3775 
is shown in Supplemental Figure 5.1.  3776 
Sample Dataset 1 (McCrone16) 3777 
Measurements of Intrahost Viral Diversity Are Extremely Sensitive to Systematic 3778 
Errors in Variant Calling: Bioproject PRJNA317621 3779 

The samples published in this dataset are all lab-grown IAVs adapted from 3780 
A/WSN/1933 (H1N1). They have a range of viral population sizes, as determined by 3781 
copy number. Twelve samples published from in vitro mutagenesis experiments 3782 
were selected, with known variant frequencies and positions. Proportions of variant 3783 
bases ranged from 0.2% to 5% at designated variant sites. Each library was pooled 3784 
for the removal of adapters by gel isolation with the GeneJet gel extraction kit prior 3785 
to sequencing by an Illumina HiSeq 2500, with 2×125 paired-end reads. Additionally, 3786 
twenty nucleotide mutations were experimentally spiked into A/WSN/1933 (H1N1) 3787 



   
 

119 
 

viral genomes with a pHW2000 reverse-genetics system, listed below. These mutant 3788 
genomes were then mixed with wild-type genomes in known concentrations to 3789 
create samples wherein 2%, 1%, 0.5% or 0.2% of the genomes present carried these 3790 
20 mutations. The results of the authors’ variant calls (using the tools deepSNV and 3791 
LoFreq) were then compiled into a CSV file which was then used to create a 3792 
reference 3793 
(https://github.com/lauringlab/Benchmarking_paper/blob/master/data/process/23794 
015-6-23/Variants/all.sum.csv).  3795 

1. PB2: a1854g, a440t and a1167t; 3796 
2. PB1: g599a, g1764t and t1288a;  3797 
3. PA: t964g, t237a and a1358t;  3798 
4. HA: t1583g, g1006t and g542t;  3799 
5. NP: a454c and a1160t;  3800 
6. NA: g1168t and c454t;  3801 
7. MP: t861g and a541c;  3802 
8. NS: g227t and a809g 3803 

 3804 
Sample Dataset 2 (McCrone18) 3805 
Stochastic Processes Constrain the Within and Between Host Evolution of Influenza 3806 
Virus: Bioproject PRJNA412631 3807 

Influenza virus samples were collected from the Household Influenza Vaccine 3808 
Effectiveness (HIVE) study by Ohmit et al. (2015). Households of at least 3 individuals 3809 
in Michigan, USA were followed prospectively from October to April. Nasal & throat 3810 
swabs are collected by the individual on appearance of respiratory symptoms for 3811 
viral identification via RT-PCR. Over five seasons of observation (2010-2015), 77 3812 
cases of A/H1N1pdm09 and 313 cases of A/H3N2 infection were reported by the 3813 
authors. Approximately half of the cases Kn= 166

313
L were identified in the 2014–2015 3814 

influenza season, hence this is the subset of samples from which we pulled eight 3815 
random read libraries. 3816 

cDNA of all eight genomic segments was amplified from 5µl of viral RNA with 3817 
universal influenza A primers. Libraries were then sequenced on Illumina HiSeq 2500 3818 
with paired-end reads. Variants were called using a modified DeepSNV protocol laid 3819 
out in previous studies (McCrone & Lauring, 2016). Eight A/H3N2(2014-2015) samples 3820 
with a range of genome copies were chosen for the comparative analysis, all 3821 
originally aligned to the reference strain A/New York/WC-LVD-15-031/2015 (H3N2).  3822 
Notably, only the results of segment 4 (HA) are published as accompanying data, 3823 
hence results from this project will only be shown for segment 4. Variants that the 3824 
authors detected, using DeepSNV, were published with their estimated frequencies 3825 
alongside the paper – specifically the supplementary file ‘fig1-data4-v3.csv’ 3826 
(https://doi.org/10.7554/eLife.35962.011). This record of identified SNV was then 3827 
used as the control against the outputs of my in silico testing of tools.  3828 
Sample Dataset 3 (Han21) 3829 
Within-Host Evolutionary Dynamics of Seasonal and Pandemic Human Influenza A 3830 
Viruses in Young Children: Bioproject PRJNA722099 3831 

Han et al. (2021) collected samples from children observed in a longitudinal 3832 
influenza study, comprising 303 sequences (H1N1pdm09: 47 nasal, 12 throat; H3N2: 3833 
146 nasal, 98 throat) collected from 82 longitudinally-sampled individuals in South-3834 
East Asia. H3N2 sequencing libraries were prepared using a Nextera XT DNA Library 3835 
Preparation kit (Illumina, FC-131-1096) then sequenced using Illumina MiSeq 600-3836 
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cycle MiSeq Reagent Kit v3 (Illumina, MS-102-3003). H1N1pdm09 samples were 3837 
sequenced in Roche FLX+ 454.  3838 

The variants detected using a custom python code were published as 3839 
supplementary CSV files within the code base on GitHub (https://github.com/AMC-3840 
LAEB/Within_Host_H3vH1/tree/main). The presence and quantity of variants called 3841 
by the authors were then used as a control dataset in my comparative studies. 3842 
Sample Dataset 4 (Poelvoorde22) 3843 
A General Approach to Identify Low-Frequency Variants Within Influenza Samples 3844 
Collected During Routine Surveillance: Bioproject PRJNA692424 3845 

The dataset from Poelvoorde et al. (2022) has sequences from surveillance 3846 
efforts from the 2016-17 influenza season in Belgium. This work looked for sub-3847 
consensus variants in influenza samples from regular surveillance of patients. A total 3848 
of 48 (24 H1N1pdm09 and 24 H3N2) influenza viruses from the 2016–2017 Belgian 3849 
influenza season were collected by the authors and eight were randomly selected 3850 
from each group for our analyses. All libraries were sequenced on an Illumina MiSeq 3851 
platform to produce 2×250 nucleotide paired-end reads. The sheet ‘InputR’ in the 3852 
‘Input_File.xlsx’ found in Supplementary Methods S2 contained the authors’ findings 3853 
when they called variants from their dataset; this then formed the reference dataset 3854 
for my comparative analyses. 3855 
5.2.1.2 Data Set Overview 3856 

A brief overview of the 5 datasets used to evaluate variant calling tools is 3857 
presented below (Table 1). Multiple datasets were chosen to control for the various 3858 
ways in which deep-sequencing datasets are produced, removing potential bias in 3859 
instances where results are heavily influenced by the analytic pipeline used. 3860 
Repeated analyses on these disparate datasets function as technical replicates. 3861 
Supplementary Table 1 reports the exact library used for each of the 46 samples, 3862 
alongside associated metadata. 3863 

Table 5.1: The datasets used to test and compare variant call tools together with the NCBI 3864 
taxonomy ID of the reference strain and the average number of reads in the selected samples.  3865 

Dataset Reference NCBI taxID Average Reads Samples 
SimData A/Equine/Newmarket/5/03 (H3N8) 568375 1,758,612 2 

McCrone 2016 A/WSN/1933 (H1N1) 382835 5,985,094 12 
McCrone 2018 A/New York/2015 (H3N2) 1895544 928,876 8 

Han 2021 A/Brisbane/10/2007 (H3N2) 476294 339,744 4 
A/California/04/2009 (H1N1) 641501 2,175,225 4 

Poelvoorde 
2022 

A/Bretagne/7608/2009 (H1N1) 1506405 358,616 8 
A/Victoria/1003/2012 (H3N2) 2044087 275,214 8 

 3866 
5.2.2 Variant Calling Pipelines 3867 

First, paired-end reads were trimmed using PRINSEQ (Schmieder & Edwards, 3868 
2011). Then reads were assembled and mapped onto the reference genomes with 3869 
the standard samtools pipeline. Reads were mapped using Bowtie2 v2.3.5.1  with 3870 
default options in ‘local’ mode (Langmead & Salzberg, 2012). Though nine tools were 3871 
initially considered for comparative analyses, two programs were unable to be 3872 
tested: V-Phaser2, and VirVarSeq which are briefly discussed below.  3873 

• V-Phaser2 (Yang et al., 2013): Unable to utilise due to dependency issues 3874 
[libbamtools2.5.2].  3875 
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• VirVarSeq: (Verbist et al., 2014): Intermediary dependant R package [rmgt] is 3876 
no longer supported and hence could not be tested. 3877 

5.2.2.1 DiversiTools (Hughes, 2016) 3878 

Many existing tools can determine the frequency of mutations from deep-3879 
sequencing data, but most have been developed for diploid genomes. DiversiTools, 3880 
written in Perl, focuses on determining mutations in haploid genomes. Specifically 3881 
designed for analysing viral deep sequence data, it simply reports the counts of all 3882 
bases and indels at all genome positions. It runs on a user provided BAM file and 3883 
outputs the data in text tab delimited format.  3884 
Tool available at: http://josephhughes.github.io/DiversiTools  3885 
5.2.2.2 DeepSNV v1.42.1 (Gerstung et al., 2012, 2014) 3886 

DeepSNV is a targeted deep-sequencing approach combined with a custom 3887 
statistical algorithm for detecting and quantifying sub-consensus SNVs in mixed 3888 
populations. Utilising a probabilistic method, DeepSNV incorporates knowledge 3889 
about the distribution of variants in terms of a prior probability. The authors present 3890 
a novel approach for calling mutations from large cohorts of deep-sequenced cancer 3891 
genes. Their work claims to be capable of detecting variants at proportions as low 3892 
as 0.0001%.  3893 
5.2.2.3 FreeBayes (Garrison & Marth, 2012) 3894 

FreeBayes is designed to find SNPs using a Bayesian statistical framework to 3895 
model multiallelic loci in sequences with non-uniform copy numbers. It uses short-3896 
read alignments plus a reference genome to determine the most-likely combination 3897 
of genotypes for the population at each position in the reference and then reports 3898 
putative polymorphic positions. 3899 
Tool available at: https://github.com/freebayes/freebayes 3900 
5.2.2.4 iVAR v1.4.2 (Grubaugh et al., 2019) 3901 

iVar is a generic tool that can be used for calling variants, determining 3902 
consensus sequences and trimming primers off amplicon sequences. iVar is written 3903 
in the C++ programming language and processes the output of the mpileup function 3904 
of samtools to subsequently call observed variants from a BAM file. iVar is not a very 3905 
sophisticated variant caller and relies on user defined thresholds for minimum read 3906 
depth, minimum base quality and minimum variant frequency. Results are outputted 3907 
in text tab format.  3908 
Tool available at: https://andersen-lab.github.io/ivar/html/manualpage.html 3909 
5.2.2.5 LoFreq v2.1.5 (Wilm et al., 2012) 3910 

LoFreq is a fast and sensitive variant-caller for inferring SNVs from next-3911 
generation sequencing data. Sensitivity is derived from the tool’s processing; each 3912 
variant call is assigned a p-value, allowing for rigorous false-positive controls. LoFreq 3913 
is generic and fast enough to be applied to high-coverage data and large genomes. 3914 
LoFreq is written in C and Python, runs on a user provided BAM file and reference 3915 
file, and outputs results in the VCF format. LoFreq has a number of in-built filters 3916 
that filter variants for strand bias, depth and snv-quality. 3917 
Tool available at: http://csb5.github.io/lofreq/  3918 
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5.2.2.6 Varscan2 (Koboldt et al., 2012) 3919 

VarScan2 was developed as a platform-agnostic caller for the detection of 3920 
mutations in the genomes of tumour-normal pairs. The algorithm reads data from 3921 
both samples simultaneously; a heuristic and statistical algorithm detects sequence 3922 
variants based on user defined thresholds in coverage, read quality and variant 3923 
frequency. VarScan2 is written in the Java programming language and runs on the 3924 
output from the samtools mpileup command (which itself runs on a BAM file), and 3925 
creates a tab delimited text file of variants.  3926 
Tool available at: http://varscan.sourceforge.net/ 3927 
5.2.2.7 vSensus  3928 

VSensus is similar to DiversiTools and simply reports the observed counts of 3929 
all bases and indels at all genome positions and then creates a consensus sequence. 3930 
It is written in the Java programming language, runs on a user provided BAM file and 3931 
outputs results in a text tab format. VSensus does not have any filter checks for 3932 
strand-bias etc, but the user can apply base quality filters.  3933 
Tool available at: https://github.com/rjorton/VSensus 3934 
Table 5.2: Default parameters of each variant calling tool 3935 

Tool Min. Base 
Quality 

Min. Mapping 
Quality 

Min. Read 
Coverage 

Min. Variant 
Frequency 

DeepSNV 25 0 100 - 
DiversiTools - - - - 
FreeBayes 0 1 0 - 

iVar 20 - 0 3% 
LoFreq 6 0 1 - 
VarScan 15 - 2 1% 
vSensus 0 0 0 - 

5.2.3 Accuracy and Hamming Distance  3936 

Simply put, pi is the proportion of non-consensus reads at site n in the control 3937 
dataset. The difference in variant reads at the corresponding site in my 3938 
experimental dataset (qi) is then calculated to give the Hamming Distance between 3939 
the two datasets at a single site (Li). Averaged across all sites in the genome, each 3940 
sample then has a distance value between the control and one of seven experimental 3941 
datasets. 3942 

L=AXpi-qiX
n

i=1

 3943 

If the caller did call a variant that also was recorded in the published dataset, 3944 
then how much did the frequency differ between the original call and each of the 3945 
caller tools? This measure of difference, the Hamming Distance, can show how 3946 
closely a reported mutation mirrors a mutation detected by other tools/researchers. 3947 
 3948 
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5.3 Results  3949 

5.3.1 Comparative Analysis of Variant Call Tools 3950 

Testing measured seven variant calling tools (VCT) using three main metrics: 3951 
1) computational demand in seconds, as given by either the unix ‘time’ command 3952 
or, for DeepSNV, the R library ‘microbenchmark’ 2) accuracy & precision and 3) 3953 
resulting viral population characteristics. This three-fold analysis touches on some 3954 
of the main factors involved in deciding which tool to select for low-frequency 3955 
variant calls. A processing pipeline is presented in Figure 5.3, representing the 3956 
source files required and output by each VCT. Ultimately, all of the output files were 3957 
transformed into csv (comma-separated value) files so results could be compared. 3958 
All tested VCT require BAM inputs, though some (deepSNV, VarScan and vSensus) 3959 
need additional prior processing before to calling variants. Additionally, all of the 3960 
tools except deepSNV could process the multi-segmented influenza A genome under 3961 
the assumption that each genomic segment was analogous to independent 3962 
chromosomes. Due to the unique necessity of an averaged reference BAM needed 3963 
for deepSNV processing, this then required variants to be called separately for each 3964 
genomic segment. 3965 

 3966 
Figure 5.1: Processing pipeline of variant call tools, and the steps involved in obtaining a final 3967 
output, in a widely-used format that can be compared across tools, i.e. a csv file. 3968 
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5.3.1.1 Computational Demand  3969 

Overall, the tools DeepSNV, VarScan and vSensus perform fastest for the processing 3970 
of each dataset (Figure 5.4). Diversitools and LoFreq rather are the slowest 3971 

 3972 

processes, sometimes reaching a scale of hours per sample. Importantly, this 3973 
measures only the actual running time of the tool, and does not include data 3974 
pre−processing steps. 3975 

A caveat of these time-trials is that the model genome used, Influenza A Virus, 3976 
has a relatively small genome compared to some other RNA viruses. Additionally, 3977 
the eight-segmented genome of IAV often artificially inflates processing 3978 
time/resources required that may not be seen in analysis of other, non-segmented 3979 
viral genomes. Not all bioinformatic tools are designed to handle segmented 3980 
genomes or proteins encoded by frame-shifts and splicing. Finally, even if processing 3981 
the sample can be relatively fast the preamble and necessary set-up can be 3982 
significantly disproportionate to the running time reported here. Despite its’ fast 3983 
run-time and comprehensive output, deepSNV requires a great deal of pre-3984 
processing before analyses and additionally has numerous other packages on which 3985 
it depends; as a consequence of its R language and utilisation of graphical outputs. 3986 
5.3.1.2 Accuracy 3987 

In order to quantify how successfully each tool was able to report LFVs, the 3988 
location and frequency of variants from tool outputs were compared against the 3989 
originally published variant calls, or the expected variants in the case of the 3990 
simulated data set. 3991 

 Each base position of the 38 selected datasets was declared as either variant 3992 
or non-variant in the reference dataset (True/False) and the outputs of my 3993 
experiments (Positive/Negative); overall giving 38 matrices with eight rows 3994 
(reference dataset plus outputs of the seven tested tools) and a column for each 3995 
base position of the IAV genome. These classic confusion matrices were then 3996 
populated with a binary pass/fail for each cell in which a variant was reported.  3997 
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Figure 1: Processing time of each variant call tool, for all five datasets. Importantly, this measures only the actual running
time of the tool, and does not include data pre−processing steps. For ease of interpretation median times are labelled

in 'hour:minute:second' format and three dashed lines are added at 1 minute (A), 10 minutes (B) and 1 hour (C).
Figure 5.2: Processing time of each variant call tool, averaged for all five datasets. Median 
times are labelled and dashed lines are added at 1 minute (A), 10 minutes (B) and 1 hour (C). 
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 3998 

 3999 

Confusion matrices were produced (using the R package caret) by comparing the 4000 
proportions of variants found by each tool to those published by the original 4001 
authors as the ‘real’ observations (Figure 5.5). To note, the published results are 4002 
taken as correct, the published datasets use one or more variant call procedures, 4003 
often with tools other than the ones tested here. The emphasis therefore is on how 4004 
repeatable these variant calls are, rather than absolute verifiability. Each row of 4005 
these matrices then gave a number of match-values (true-positive, true-negative, 4006 
false-positive or false-negative) equal to the number of nucleotides in each 4007 
genome. 4008 

To note, each site is limited to a binary value: it matches the reference or it 4009 
doesn’t match the reference. Finally, every genome sample had one set of match-4010 
values for each of the seven tools. Our results in Figure 5.6 mark the ability of each 4011 
tool to find SNV, based on four common measurements used in machine learning. 4012 

A) B)
Position 1 2 3 4 n… Sample 1 Position 1 2 3 4 n…

Reference FALSE FALSE TRUE FALSE TRUE DeepSNV TN FP TP TN TP
DeepSNV - + + - + Diversitools TN TN TP TN TP TRUE-Positive

Diversitools - - + - + FreeBayes TN TN TP FP FN TRUE-Negative
FreeBayes - - + + - iVar TN TN TP TN TP FALSE-Positive

iVar - - + - + LoFreq TN TN TP TN TP FALSE-Negative
LoFreq - - + - + VarScan TN FP FN TN TP

VarScan - + - - + vSensus TN TN TP TN TP
vSensus - - + - +
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Table 3: In comparing VCT, nucleotides at each position of the sample were marked in a presence/absence matrix (A) 
which could then be compared with the Reference. The Reference dataset was compiled from variant sites introduced 
into the dataset at known locations by the original authors, and the results of variant calls within those original 
publications. B) For any given site, the Reference is used as a gold standard against testing; these match-values were 
then used in calculating confusion matrices to measure accuracy, using the calculations presented in C.

!"#$%&%'%&( = *+
*+ + -. !/"0%1%0%&( = *.

*. + -+

2003450( = *+ + *.
*+ + *. + -+ + -.

6575#0"8	2003450( = !"#$%&%'%&( + !/"0%1%0%&(
2

C)

Figure 5.3: In comparing VCT, variants at each position of the sample were marked in a simple 
presence/absence matrix (A) which could then be compared with the Reference. The 
Reference  dataset was compiled from both variant sites introduced into the dataset at known 
locations by the original authors, and the results of variant calls within those original 
publications. B) For any given site, the Reference is used as a gold standard against the 
output of my testing; these match-values were then used in calculating confusion matrices to 
measure accuracy, using the calculations presented in C. 
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  4013 
Figure 5.4: Four measures of performance for each tool trialled: A) Accuracy, B) Sensitivity (True-4014 
Positive Ratio) & Specificity (True-Negative Ratio) of each tool averaged across all five datasets 4015 
are represented by dots, coloured and labelled with abbreviated names of each tool. C) The ratio 4016 
of True-Positives to False-Positives gives the balance likelihood. 4017 

To review these metrics, accuracy (Figure 5.6A) measures the proportion of 4018 
reads at each site that match the reference sequence, sensitivity is the percentage 4019 

of true-positives over the total number of correct calls K TP

TP+FN
L, mirrored by the 4020 

specificity which shows the proportion of incorrect calls TN

TN+FP
 (Figure 5.6B). With 4021 

default settings, both Diversitools and vSensus lag behind with lower accuracy 4022 
(72.90% and 75.30% respectively) and sensitivity (74.24% and 76.79% respectively) 4023 
than the other processes; this is likely due to the creation of many false-positives 4024 
from the lack of filtering in both of these programs.  Additionally, the specificity of 4025 
each tool may appear artificially low because during the creation of BAM files, 4026 
particularly egregious negatives are purged from the dataset due to low base-4027 
quality, prior to processing with a VCT. 4028 

Using the confusion matrices provides simple, but helpful, insight. 4029 
Quantifying the accuracy of each tools’ output grants a levelled base-line from which 4030 
to compare and rank them. Importantly, it must be noted that this quantitative 4031 
scoring does not give a definitive answer; different tools may suit certain purposes 4032 
better than others. A clinical variant-call pipeline likely values accuracy above all 4033 
else, perhaps favouring the use of VarScan. Environmental viral sampling, however, 4034 
may be able to sacrifice fine accuracy for more faster processing times. 4035 
5.3.1.3 Diversity Metrics 4036 

Using well-established methods of measuring genomic diversity (Fuhrmann et 4037 
al., 2021; Gregori et al., 2016), our final comparisons denote the population 4038 
diversity of samples as determined by the variants each tool reported. These 4039 
diversity values are then compared against those calculated using the originally 4040 
published set of low-frequency variants to show differences, if any, in viral 4041 
population analyses. Observing the population diversity of LFV detected by each tool 4042 
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in the tested datasets will allow for comparison of the resulting outputs of each tool. 4043 
Should the output from one VCT show radically different population diversity to that 4044 
calculated from the outputs of the other tools, it suggests that variants are being 4045 
missed or created spuriously. Theoretically, all VCT should produce the same output, 4046 
i.e. the detection of identical locations and frequencies of variant sites throughout 4047 
the genome, and so this homogeneity is . Thus, calculating the diversity of these 4048 
datasets enabled identification of spurious, less accurate VCT procedures. 4049 

5.3.1.3.1 Richness 4050 
First, the simplest diversity metric, richness, was calculated for each genomic 4051 
segment of the control sequence libraries. The richness of genomic variants 4052 
represents how many nucleotide positions show evidence of LFV (V), defined as a 4053 
site with <99% read identity (i.e. a variant present at a frequency of at least 1%). As 4054 
IAV has eight genomic segments (n=8), the product of richness values for each 4055 
segment is given: ∏ :	

<059  where N is the total number of bases in the genome. Thus, 4056 
Figure 5.7 shows violin plots for the richness estimates of each control dataset, each 4057 
comprised of the diversity of each genomic segment calculated from the output of 4058 
each VCT; SNV richness of eight genomic segments, as calculated from the results 4059 
of seven different tools meaning that each violin (except project 412631 which looks 4060 
exclusively at genomic segment 4 (HA)) has 56 unique points. 4061 

Due to the specific cut-off points and processes for defining what makes a 4062 
variant, VCT show markedly different numbers when analysing the same dataset. 4063 
Values from the SimData sequences are the most polarised; mutations were spiked 4064 
into the genome at known locations and frequencies.  This is of course because of 4065 
the repeated nature of mutations. To note, segments are not labelled as differences 4066 
in the diversity of each gene are not the focus of this tool comparison step.  4067 

Conservative VCT like FreeBayes, DeepSNV and LoFreq all have a maximum 4068 
number of variant sites below 20%. The stringent rulings used by these tools to 4069 
classify variant or non-variant result in only the most egregious variants to be 4070 
reported. Alternatively, tools like Diversitools, iVar and vSensus simply report the 4071 
proportion of mismatched bases at each site, leaving the filtering and classification 4072 
of variant/non-variant to the user in post-processing. Because of the lack of filtering 4073 
in vSensus and Diversitools, the richness calculated from data produced by these 4074 
tools is generally very high, making them unsuitable for the in-depth analyses I 4075 
intended to pursue. I sought to focus on clearly distinguishable dynamics of LFV, and 4076 
so the background noise generated by these non-specific tools would have hindered 4077 
further analyses. 4078 
 4079 
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 4080 
Figure 5.5: Violins show the proportion of nucleotides showing some evidence of variation, each 4081 
point representing the average richness of a genomic segment using a specified tool (colour) and 4082 
the dataset sequences from which it originated (x-axis). Each point represents the richness for 4083 
that genomic segment averaged across that dataset. Datasets created with controlled populations 4084 
of viruses (SimData, 317621 and 412631) tend towards biphasic violins, with the population 4085 
richness calculated either very high or very low, depending on the VCT used.  4086 

5.3.1.3.2 Shannon Entropy 4087 
Sub-consensus population diversity depends largely on the tool used to find 4088 

variant nucleotides. Figure 5.8 shows entropy of genomic segments calculated from 4089 
the variant proportions obtained from each VCT. Diversity between segments is small 4090 
yet significant (p <2.2e-16, Kruskal-Wallis test).  4091 

 4092 
Figure 5.6: Shannon Entropy as calculated from the variant frequencies obtained by each of the 4093 
seven tools. As above, project 412631 contains only results from segment 4 (HA). 4094 

The different proportion and frequency of variants detected by each VCT, 4095 
however, results in substantially different entropy values based solely on the chosen 4096 
VCT (p <2.2e-16, Kruskal-Wallis test). Much like the results from the richness of LFV 4097 
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in the control datasets, tools without internal filtering (Diversitools and iVar) tend 4098 
give overestimations of population diversity. Here, calculating diversity from the 4099 
variants called by FreeBayes shows that within each dataset, the eight genomic 4100 
segments show very similar values of Shannon Entropy. 4101 

5.3.1.3.3 Distance Measures 4102 
The frequency at which each mutation was originally reported is compared 4103 

against the frequency detected by our VCT trials. Measuring disparities in the 4104 
frequencies of variants that were reported in both the original publication and these 4105 
trials clarifies just how much of an impact the chosen VCT may have on further 4106 
analyses of viral populations.  4107 
Knowing how closely the variant proportion reported by a VCT matches that recorded 4108 
in the control dataset goes further than the binary true-positive/false-positive 4109 
accuracy used above in confusion matrices. Figure 5.9 presents each variant found 4110 
in both my analysis and the published dataset, then compares the frequency that 4111 
variant is reported at. The addition of a straight line representing an absolute 4112 
positive correlation helps distinguish when the frequency of mutations are over-4113 
estimated (below the line) or under-estimated (above the line). Consistency is key 4114 
for bioinformatic tools. Using tools at their default settings, great variation is seen 4115 
between the results obtained through my experiments and those originally 4116 
published. Diversitools, iVar and VSensus have very weak correlations; these tools 4117 
report the proportion of variants at every site in the genome, without any real 4118 
filtering or recognition of error.  4119 

 4120 
Figure 5.7: Each point shows the frequency of a mutation that was reported in both the original 4121 
dataset (y-axis) and in my experimental replicates (x-axis). A line is added to show what would 4122 
be expected if the mutations were found at exactly the same frequency in both datasets, i.e. a 4123 
perfect correlation. If a point deviates towards the x-axis, it was detected by my protocol at 4124 
higher frequencies than in the original work. Conversely, a point closer to the y-axis is at a lower 4125 
frequency in my dataset compared to the original publication. Spearman correlations between 4126 
the abundance of mutant genomes are annotated on each graph. 4127 
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VCT that employ more stringent filtering algorithms that can account for 4128 
sequencing error/bias, such as LoFreq, consequently have much higher congruity in 4129 
the proportion of genomes displaying variant alleles between the datasets. This time 4130 
VarScan appears as the frontrunner, with very high correlation between the 4131 
frequencies of variants in the expected (control) and observed (test) datasets. 4132 
However, note the lack of points below the dividing line for this plot – there were 4133 
few, if any, false-negatives reported with this tool. That is to say, all mismatches 4134 
between the expected and observed datasets were due to variants detected during 4135 
my testing that were not apparent in the published dataset. This is reflected in the 4136 
tests above (5.8), the ratio of true-positives to false-positives in VarScan is an 4137 
outlier. Hence, the next most congruous tool was LoFreq. 4138 
5.3.2 Observed Variants 4139 

The above conclusions indicated LoFreq as the best tool of choice for analysing 4140 
sub-consensus patterns and behaviour in the small, high-depth dataset obtained 4141 
from our EIV transmission experiment. Auxiliary results from FreeBayes were cross-4142 
examined against those from LoFreq, to ensure no low-frequency variants found by 4143 
FreeBayes, the more exact and stricter of the two, were missed by LoFreq. After 4144 
this cross-referencing procedure, all analyses were carried out using the LoFreq 4145 
output. Hence, a library of LFV was generated from each of the genomic samples 4146 
collected by nasal swabs of infected horses, totalling 53 lists of LFV. 4147 
5.3.2.1 Tracking the Trajectory of Mutations Before Broaching Consensus Level 4148 

21 mutations were recorded at the consensus level throughout the 4149 
transmission experiment (Chapter 4.3.1); 11 non-synonymous and 10 synonymous. 4150 
Exploration of this diversity began at these 21 sites in order to observe any potential 4151 
sub-consensus dynamics that may be underlying emergence at the consensus level. 4152 
It was also helpful in deducing whether these mutations appeared de novo or existed 4153 
at low levels in the population before being enriched enough to appear in genomes 4154 
at the consensus, population level. The proportion of reads at each base position 4155 
showed patterns of diversification, enrichment or removal. As the consensus 4156 
nucleotide is defined here as >50% reads, nucleotides that appeared in 10-50% of 4157 
reads are declared low-frequency variants (LFV). Nucleotides present at a proportion 4158 
of 1-10% reads are rare LFV, 0.1-1% are very rare LFV and anything below 0.1% is too 4159 
low to reliably distinguish from sequencing error. This frequency threshold was 4160 
manually filtered from the collated outputs of each tool. 4161 

Two consensus-level nonsynonymous mutations in segment 1 (PB2-4162 
t979c/Gly327Arg and PB2-g2191a/Val731Ile) are transient and appear only once with 4163 
very minimal presence outside of these samples. These mutations are seen in two 4164 
separate hosts of the Single transmission group. The two other mutations seen at 4165 
the consensus level in this segment have more fluctuation in sub-consensus 4166 
proportions and are both synonymous. Mutation PB2-c1497t (Asp499) only appears 4167 
at the consensus level once; however, in the days around this sample, 1-10% of viral 4168 
genomes also show this mutation (Figure 5.10). Notably, it is also seen across three 4169 
different vaccinated hosts of the multistrain transmission group: 2A, 2B and 3A. 4170 
Additionally, a host in the other transmission chain (singlestrain_2B) shows a 4171 
proportion of 9.28% genomes with this mutation, but only at one timepoint. The 4172 
other consensus-level mutation in this genome segment, PB2-c1779t (Ser593), also 4173 
appears in a single sample from a vaccinated host (singlestrain_4A).  4174 
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 4175 
Figure 5.8: The proportion of reads displaying a mutation, the corresponding mutation is 4176 
coloured and the host from which the sample was taken is annotated on the point. Similar 4177 
graphs for each genomic segment are found in Supplemental 5.3 4178 

In segment two (PB1), one of the three consensus mutations, PB1-4179 
a881g/Gln294Arg, is transient with little change. The synonymous substitution PB1-4180 
t1500c (Gly500) however, fluctuates lots before fixation in the multistrain 4181 
transmission group. Once in naïve hosts, cytosine is reported in >99.8% of genomes 4182 
– demonstrably fixed in this population. However, the mutation is also shown in the 4183 
three preceding transmission pairs, often enriched to high proportions. Indeed, it 4184 
broaches the consensus level twice, in individual 3A and is maintained in 1-30% of 4185 
viral genomes in these hosts as well as hosts 2A and 3B. Within host 3A of the 4186 
multistrain group, reads displaying the mutant cytosine were present on three 4187 
consecutive days: day nine of the experiment (82.58%), day ten (3.30%) and day 11 4188 
(92.77%). This wild variation is difficult to understand; it is unknown if this 4189 
synonymous mutation has any effect on viral fitness or whether the patterns seen 4190 
were caused by unrepresentative sampling on day ten. The mutation appears to arise 4191 
de novo in host 2A on day 5 of the experiment, genomes displaying this mutation are 4192 
then more frequent (from 4.09% to 14.63% of total genomes show PB1-t1500c) on 4193 
the subsequent day. Though genomes with PB1-t1500c repeatedly fall below a 4194 
frequency of 1% of viral genomes, the mutation persists with each transmission event 4195 
until eventually being passed to naïve hosts in which cytosine becomes the dominant 4196 
nucleotide at this site. In the singlestrain group, 21

23
 samples also present cytosine at 4197 

this site in 0.1-0.25% of genomes, causing a nonsynonymous substitution. PB1-4198 
a1853g/Glu618Gly displays very low levels of variation (0.1-1% of genomes show the 4199 
guanine mutation) before suddenly fixing in the multistrain naïve population. To 4200 
note, 0.1-0.25% of genomes from each sample of the singlestrain transmission group 4201 
also display the same mutation, suggesting either low level maintenance and/or a 4202 
proclivity for variation at this site. 4203 

Segment three (PA) has five consensus-level mutations. PA-c825t and PA-4204 
g1180a/Asp394Asn, the only nonsynonymous mutation recorded in this genomic 4205 
segment, are transient. Also on this genomic segment, PA-c201t shows lots of 4206 
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interesting variation, as shown in the heatmap of Figure 5.10. Remembering that 4207 
this mutation appeared in many of the global EIV sequences, putative phenotypic 4208 
effects of PA-c201t ought to be investigated. The de novo appearance, maintenance 4209 
and transmission of this variant could potentially indicate a beneficial adaptation 4210 
for these viruses. The PA-t1221c mutation is maintained at low levels (0.1-0.3%) in 4211 
almost all samples across both transmission experiments. The most variation is seen 4212 
in Mul_6B, where after narrowly broaching consensus (50.36%) on day 16 of the 4213 
experiment, genomes presenting this substitution become much rarer: 1.10% on day 4214 
17, 3.09% on day 18 and 0.14% on day 20. This may suggest a deleterious effect from 4215 
this mutation, otherwise this strain is stochastically removed from the viral 4216 
population within this host. PA-a1650g shows minimal enrichment the day before 4217 
(2.43%) and after (2.61%) the peak (75.81%) in a single host.  4218 

As explored in previous chapters, two non-synonymous mutations in segment 4219 
four lead to amino acid substitutions in haemagglutinin. HA-a431c/Gly144Asp 4220 
appears de novo and is then never reported in frequencies higher than 0.2%, hence 4221 
my assumption that this is merely a transient substitution. Appearing at consensus 4222 
level in vaccinated hosts of both transmission groups, HA-a1401c/Arg467Ser is also 4223 
observed in multiple samples at 1-10% of reads, all of which happen to be in 4224 
vaccinated hosts across both transmission groups. Maintenance at low levels in the 4225 
population indicates that the mutation is at least non-lethal for the virus. Indeed, 4226 
referring back to in silico experiments of protein antigenicity, this mutation is 4227 
estimated to increase the recognition of the surrounding protein structure by cells 4228 
of the host adaptive immune system. It does not, however, persist to the naïve hosts 4229 
and, in fact, is limited to hosts 2A and 2B in the Single transmission group. 4230 

Segment five’s non-synonymous NP-g1445a (Ser482Asn) mutation defines the 4231 
consensus F genome. In all naïve hosts of the singlestrain transmission group, >95% 4232 
of the reads report adenine at this site. However, the opposite cannot be said for 4233 
the vaccinated individuals; three of the 12 samples from vaccinated hosts display 4234 
guanine below 85%. Vaccinated host 3B shows three consecutive days of sub-4235 
consensus enrichment of the guanine-adenine mutation: 43.49% adenine on day 4236 
seven of the experiment, 1.28% on day eight and finally 15.07% on day nine. Before  4237 
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 4238 
Figure 5.9: Proportion of reads reporting a nucleotide at position 201 in genome segment 3. Cells 4239 
are coloured according to frequency: red are between 0.1-1%, orange 1-10%, yellow 10-50% and 4240 
green signifies consensus (>50%). 4241 
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broaching the consensus level, mutation g1445a appears at very high proportions, 4242 
falls back to almost being removed from the population then re-establishes itself. 4243 
Only two sequences were recoverable from samples of the next hosts in the 4244 
transmission chain (hosts 4A and 4B), both showing this mutation present at less than 4245 
0.3% indicating that these variant genomes may not have survived being transmitted. 4246 
I must conclude then that either the mutation was passed to hosts 4A and 4B but 4247 
viral loads were so low that genomes could not be sequenced or alternatively, the 4248 
mutation died out in host 3B and spontaneously appeared de novo in the naïve hosts. 4249 
This however would require the mutation to evolve in two naïve hosts (5A and 5B) 4250 
on the same day, the first day that samples from these hosts could be sequenced. 4251 

The only synonymous mutation reported at the consensus level in segment six 4252 
(NA-c690t) appears transiently in one individual; other samples from this individual 4253 
and from both transmission experiments report a proportion of thymine reads at 4254 
<0.1%. For this reason, I believe that this mutation is a random, transient 4255 
occurrence. The two other mutations are also singletons. The first, NA-4256 
a1024g/Lys342Glu appears rarely in the preceding individual (Mul_2A presents 4257 
guanine in 2.66% of genomes on day 7 of the experiment, Mul_3A 81.68% and 2.24% 4258 
on days 10 and 11 respectively and host Mul_3B also presents guanine at a proportion 4259 
of 1.09% on day 10). Finally, NA-t1385c/Ile462Thr is present in almost every sample 4260 
at very low (0.1-1%) proportions, but appears in four of the five pairs in the Single 4261 
group (1.4% in 3B on day 8, 96.37% in 4A on day 14, then both 5A:1.85% and 6A:1.54% 4262 
on day 18 of the experiment). 4263 

Only one consensus-level mutation was observed in segment 7. M1-a418g 4264 
broaches consensus level in Single_3B eight days after the beginning of the 4265 
experiment (77.01%). However, the mutation is evident before and after appearing 4266 
in the consensus sequence; the preceding day (day 7) 3.89% of reads showed a 4267 
guanine mutation and the day after spiking (day 9) guanine is present at site 418 in 4268 
4.91% of reads. Unfortunately, these three days are the only sequences collected for 4269 
individual Single_3B so tracking this transient, non-synonymous mutation beyond this 4270 
one-day spike is impossible. Referring back to the consensus analysis of this mutation 4271 
(Ch. 4 11.7), this amino acid substitution is predicted to have minimal effects on the 4272 
twist angles of the structure. However, Lys and Glu have similar chemical properties.  4273 

In segment 8, both consensus mutations (NS-t84c and NS-t87c) only appear at 4274 
levels >50% in individual Single_2B on a single day. However, the mutations are found 4275 
at low levels in vaccinated hosts of both transmission chains over multiple days. That 4276 
the same synonymous mutation appears at low levels in six vaccinated hosts at the 4277 
beginning of each transmission chain (Single_2A, Single_2B, Multi_2A, Multi_2B, 4278 
Multi_3A and Multi_3B) indicates some potential for neutral evolution. The mutation 4279 
persists at proportions 1-15% of the viral population for five days in each transmission 4280 
chain with no clear pattern of being enriched or purged.  4281 

Ultimately, mutations that appear in consensus sequences show a range of 4282 
activity below the consensus level. Some variants gradually build in frequency before 4283 
defining the consensus sequence while others remain at low proportions among the 4284 
viruses, occasionally dominating the population as a result of founder effects or 4285 
stochastic shifts in population composition. As seen in the consensus genomes, much 4286 
of the diversity is generated within hosts with a history of EIV exposure (the 4287 
“vaccinated” class) then viral genomes homogenise and sub-consensus mutations are 4288 
either removed or forced down to very small proportions of the population. Overall, 4289 
the noisiness of the data makes any inference challenging.  4290 
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5.3.3 Sub-consensus Genetic Diversity 4291 

5.3.3.1 Abundance Indices 4292 

A preliminary count of the number of variants reported by LoFreq (which 4293 
filters variants for strand bias and low quality), and how often they appear 4294 
throughout the genome can give a top-down overview of the composition of viral 4295 
genomes in the population. These counts and associated frequency metrics are 4296 
reported in Table 3. 4297 

5.3.3.1.1 Abundance 4298 
Across the 13kb genome of all 8 genomic segments, the four epidemiological 4299 

groups (Naïve in the multi group [NM], Vaccinated in the multi group [VM], Naïve in 4300 
the single group [NS] and finally Vaccinated in the single group [VS]) showed similar 4301 
numbers of sub-consensus variants.  Roughly half of the positions across the genome 4302 
showed evidence of variation above a 1% threshold shown as the Proportion in Table 4303 
12; this varied marginally between observation groups. The mean frequency of 4304 
mutations, however, did show clear demarcation between transmission groups. Both 4305 
vaccinated and naïve hosts in the multi transmission chain experienced mutations 4306 
more frequently than those in the single group (average of 6.20e-3 compared to a 4307 
frequency of 5.48e-3 in the single group). Differences in LFV frequencies between 4308 
transmission groups (using Wilcoxon Rank tests), were significant, though minor. The 4309 
heavy concentration of LFV that appear only at very low frequencies (<10%) likely 4310 
confounds this comparison however. 4311 

5.3.3.1.2 Richness 4312 
Observing richness values, we can consider the number of polymorphisms per 4313 

kilobase of genome (Table 5.3). To note, this can depend heavily on the read depth. 4314 
Hence, the expected number of polymorphisms per kilobase is also dependent on 4315 
the coverage and comparing this value between samples with different read depth 4316 
distributions may be misleading. In our experiment, the richness of variants was 4317 
similarly low between vaccinates in both transmission groups. More mutations per 4318 
kb were seen in naïve hosts, especially in the multi group (NM = 1.36, NS = 1.05). This 4319 
isn’t a huge difference but indicates a lower persistence of sub-consensus mutations 4320 
in vaccinated hosts than in naïve ones. As mentioned above though, the coverage of 4321 
each read library can impact 4322 
these calculations; the median 4323 
read depth in the multistrain 4324 
transmission experiment was 4325 
57,466 reads, lower than that of 4326 
the singlestrain group, 102,517. 4327 
5.3.3.2 Simpson Index 4328 

Simpson’s Index was 4329 
calculated for each genomic 4330 
segment in each epidemiological 4331 
group and the results for each are 4332 
presented as a summary in Table 4333 
4. All 4 of the experimental groups 4334 

 VM NM VS NS 
Variants 6150 6297 5833 5985 
Common 
(10-50%) 38 32 35 26 

Rare 
(1-10%) 129 77 67 61 

Very Rare 
(0.1-1%) 5983 6188 5731 5898 

Proportion 51.02% 49.53% 49.00% 48.99% 
Frequency 6.18e-3 6.22e-3 5.51e-3 5.46e-3 
Richness 1.36 0.75 1.05 0.77 

Table 5.3: Summary statistics of intra-host variant 
abundances. Differences may not be great, but indicate 
that NM is the most diverse group and VS the least. 
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show roughly the same trend of highest diversity in the polymerase segments as well 4335 
as segment 5 (NP).  Overall, though, when all genomic segments are averaged, 4336 
diversity is very similar across each epidemiological group.  4337 

Simpson’s Index is very similar across each of the epidemic groups. Overall 4338 
however, hosts in the multi transmission chain showed greater diversity than those 4339 
in the single chain. However, as these probabilities hardly differ between groups, 4340 
we infer that neither the vaccine status nor the transmission group of the host 4341 
impact the diversity as measured by Simpson’s Index. 4342 

5.3.3.3 Shannon Entropy 4343 

Most segments have similar diversity between groups (Table 5). Notable 4344 
exceptions are segment 02PB1 and 04HA; Naïves in the multi group (NM) have higher 4345 
diversity in the PB1 polymerase segment, opposingly sub-consensus diversity in HA 4346 
is highest in vaccinates in this group (VM).  4347 

Smaller segments, 06NA and 08NS, 4348 
only show sub-consensus diversity in 4349 
vaccinated individuals of both transmission 4350 
groups (VM and VS). Neuraminidase diversity is 4351 
highest in multi groups VM. Diversity in the 4352 
non-structural protein, however, is highest in 4353 
VS individuals. 4354 

5.3.3.3.1 Shannon Modelling 4355 
We see a slight decrease in entropy in 4356 

the single group compared to the multi group 4357 
(HS difference of -0.18, p-value=0.0225, t 4358 
value=13.265) when analysing GLMs 4359 
constructed with Shannon entropy and sample 4360 
metadata (transmission group and exposure 4361 
history). The exposure history of the host, 4362 
however, does not influence HS in either 4363 
transmission group. Entropy is much more 4364 
consistent across the single group, and both 4365 
are lower than the multi group individuals. 4366 

  VM NM VS NS 
Reads 28,652,069 39,290,539 32,892,890 33,269,595 

xZ Reads 298,459 306,957 373,782 346,558 
Frequency 6.22e-3 6.18e-3 5.46e-3 5.51e-3 
Richness 0.75 1.36 0.77 1.05 
Simpson 6e-3 5.9e-3 5.2e-3 5.1e-3 

Shannon 
HS 5.76 5.99 5.62 5.65 
HSN 0.33 0.34 0.32 0.32 
HSH 1.40 1.58 1.42 1.56 

π 
xZ π 46% 62% 72% 71% 
σ2 ±17% ±14% ±9% ±13% 
πe 2e-3 1.21e-3 6.46e-3 3.43e-3 

Caller Group HS HSN HSH 

Lo
Fr

eq
 VM 7.46 0.43 1.82 

NM 7.75 0.44 2.05 

VS 7.47 0.42 1.88 

NS 7.47 0.42 2.07 

Fr
ee

Ba
ye

s VM 5.76 0.33 1.40 

NM 5.99 0.34 1.58 

VS 5.62 0.32 1.42 

NS 5.65 0.32 1.56 

Table 5.5: Shannon Entropy averaged 
(HS) and subsequently transformed. The 
first normalisation was to the read 
coverage (HSN) then alternatively to the 
number of different genomes present 
(HSH) 

Table 5.4: Sub-consensus diversity measures, summarised for each transmission group and 
vaccination status class. Cells are shaded in gradient, where the more saturated green 
represents greater diversity. x!: arithmetic mean, σ2: variance 
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Lower sub-consensus diversity in viral populations from hosts in the single group 4367 
indicates that viruses may have been under stronger pressures than in the 4368 
alternative, multi, group. However, the lack of difference in HS values between VS 4369 
and NS groups also suggests that virus diversity remains suppressed in the NS group. 4370 
This effect is not seen when viruses from the VM group transfer into NM hosts; there, 4371 
the population diversity increases notably upon entering unvaccinated hosts. The 4372 
multi naïve group (NM) has the highest entropy scores (5.99) in this group. 4373 

These scores indicate that viruses from hosts in the multivalent vaccine 4374 
transmission chain display more diversity than those from the alternate transmission 4375 
chain, throughout short outbreak periods (21 days). Additionally, the unvaccinated 4376 
individuals at the end of this chain have the highest diversity overall. The low 4377 
diversity in VS hosts seems to be maintained on transmission to NS hosts. This is the 4378 
total opposite of the patterns of diversity seen in the consensus sequences. 4379 

These scores indicate that viruses from hosts in the multivalent vaccine 4380 
transmission chain display more diversity than those from the alternate transmission 4381 
chain, throughout the short outbreak periods (21 days). Additionally, the 4382 
unvaccinated individuals at the end of this chain have the highest diversity overall. 4383 
The temporary suppression of genetic diversity in VS hosts seems to be maintained on 4384 
transmission to NS hosts; it may be assumed that if the experiment continued for 4385 
longer, both viral populations would display similar levels of diversity once the 4386 
population levels equalised. This is the total opposite of the patterns of diversity seen 4387 
in the consensus sequences.  4388 

5.3.3.3.2 Viral Population Size in Relation to Sub-consensus Shannon Entropy 4389 
In order to observe whether viral population diversity was independent of the 4390 

mere size of that population, the copy numbers from the qPCR explored in chapter 4391 
3 were used to test these relationships. These associations were tested in order to 4392 
understand the relationships, if any, between viral population size and the sub-4393 
consensus diversity present within that population. A linear regression of HS and the 4394 
log10(copy numbers) with the host factors of group and vaccine status was used to 4395 
examine these relations. The results indicate that only the transmission group a host 4396 
was part of impacted the population diversity (HS decreased by 0.21, p-4397 
value=0.0435, t value= -1.654 when observing transmission group independently). 4398 
The addition of population size (as copy numbers) does not alter the results of the 4399 
model and the model performs worse when log10(copy numbers) is included as a 4400 
variable (ΔAIC = 3.84. The values themselves for the putative interaction of 4401 
population size and transmission group shows a minute impact.  4402 
From this we can conclude that:  4403 

• Sub-consensus Shannon entropy of the viral populations was marginally 4404 
impacted by whether the host belonged to the single or multi transmission 4405 
group 4406 

• Host vaccination status did not influence sub-consensus diversity. The 4407 
population diversity, as measured by Shannon Entropy did not correlate to the 4408 
log10 of copy numbers from qPCR values (31.6% Spearman correlation). 4409 
Further, inferences made by models including the population size performed 4410 
worse than those that excluded qPCR data 4411 
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5.3.3.4 Population nucleotide diversity (π) 4412 

Many ways to measure genomic diversity exist; Shannon Entropy is a mainstay 4413 
of population ecology but, as shown in Zhao & Illingworth (2019), this measure can 4414 
be influenced by the depth of reads. In order to overcome this potential flaw of HS, 4415 
I next explored the use of a metric that was able to account for read depth, the 4416 
distance measure that is π nucleotide diversity. There is a slight association between 4417 
π diversity and host factors. Figure 5.12B shows that the 3 polymerase-encoding 4418 
genes tend to have the lowest levels of diversity, except in the Single Naive hosts 4419 
where diversity in these segments ranges greatly. Then the opposite is seen in 4420 
segments 5-8; in the Multiple Vaccinated group these segments have a range of 4421 
diversity values which isn’t seen in these segments in the other groups.  4422 
Wilcoxon rank tests were used to assess differences in diversity between host 4423 
factors: 4424 

• Diversity in multiple/single groups: p-value = 1.4e-5 4425 
• Diversity in vaccinated/naive hosts: p-value = 0.023 4426 

So, we can be confident that π diversity is significantly different between the 4427 
two transmission groups as well as between vaccinated and non-vaccinated hosts. 4428 

 4429 
Figure 5.10: A) Average π diversity across each segment, for each host (averaged for all days 4430 
when samples were collected on more than one day). There is a suggestion of lower diversity in 4431 
vaccinated hosts than in naïve ones. B) Violins show the range of diversity with respect to each 4432 
host class for each segment. Genomic segments five to eight consistently show higher sub-4433 
consensus diversity than the other segments. 4434 
With a GLM investigating π diversity of each segment in relation to the host group 4435 
and host vaccination status, all possible trends were investigated (Figure 5.12). 4436 
Firstly, host factors did impact the ranges of diversity observed: vaccinated hosts in 4437 
the multi transmission group had lower diversity than naïves in this group. 4438 
Conversely, samples from hosts in the single transmission group had greater diversity 4439 
in both naive and vaccinated hosts (+0.09, +0.17 respectively). Statistically, we see 4440 
that nucleotide π diversity correlates moderately (59.9%) to the number of reads. 4441 
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This assures us that the π diversity is not merely being conflated with population 4442 
size. As shown above, across epidemic groups, nucleotide π differs in accordance to 4443 
host factors: the transmission chain each host was part of (Kruskal-Wallis chi2= 4444 
17.009, df = 1, p-value =3.72e-05) and the vaccination status (Kruskal-Wallis chi2 = 4445 
3.8588, df = 1, p-value = 0.04948) both statistically distinguish π values. 4446 

5.3.3.4.1 Investigating π Diversity Across Genomic Segments 4447 
Most genomic segments were more diverse than the baseline 01PB2, chosen 4448 

as the first and longest segment (Figure 5.12). Genes encoding the three proteins 4449 
comprising the polymerase complex (01PB2, 02PB1 & 03PA) were the most 4450 
conserved, though still with a significant amount of diversity (01PB2: 0.53, 02PB1: 4451 
0.36 & 03PA: 0.26). Segment 4, encoding haemagglutinin, showed higher diversity 4452 
than PB2 (0.64) though the signal was insufficient to prove statistically significant. 4453 
Lastly, the four smallest genome segments (5-8) had substantially more diversity, 4454 
ranging from 0.79-0.80. 4455 

Like many studies of viral evolution, much interest is placed on antigenic 4456 
proteins, in this case haemagglutinin (segment 4) and neuraminidase (segment 6). 4457 
One may assume that because of their presentation on the surface of the virion and 4458 
their role as targets of host adaptive immunity these genes would display the 4459 
greatest amount of diversity, at both the consensus and sub-consensus level. That 4460 
this is not the case is unexpected, and yet is seen when comparing Simpson’s Index 4461 
and Shannon Entropy as well as π nucleotide diversity. Results here show higher 4462 
diversity in genomic segments encoding the polymerase (segments 1-PB2, 2-PB1 and 4463 
3-PA) proteins than in any other part of the EIV genome. Though these are the largest 4464 
segments in the IAV genome, Shannon Entropy and nucleotide π diversity can 4465 
account for sequence length, so the increased diversity cannot solely be caused by 4466 
size. Furthermore, one would assume that the polymerase proteins require some of 4467 
the greatest stability; they are integral to replication of the genome and both their 4468 
heterotrimeric structure and their functions within host cells necessitate multiple 4469 
protein-protein interactions.  4470 

5.3.3.4.2 Nucleotide Diversity and Population Size  4471 
Shedding data, as the log10(mean copy number), was then incorporated to 4472 

detect any potential relationships between the mean π diversity of and the viral 4473 
load of each host sample. However, to statistically test whether these variables 4474 
correlated, I tried three correlatory tests (Spearman’s, Pearson’s and Kendall’s to 4475 
account for the potentially non-parametric relationships) using π diversity with the 4476 
mean log10 of viral copy numbers.  4477 

No substantial association between shedding and viral population diversity 4478 
was detected (14% Spearman correlation).Attempting another statistical test of 4479 
investigate a potential relationship, a linear regression was built. Host factors 4480 
transmission group and vaccination status were added to stratify data in the hopes 4481 
that any signal specific to one subset only would be more visible. Alas, the model 4482 
did show some weak linear relationship between the diversity and increasing viral 4483 
load (0.1) but this was only marginally significant. 4484 

Neither a GLM nor GAM could find any statistically significant relationship 4485 
between shedding and diversity, regardless of stratifying and classifying data. Model 4486 
nomenclature is stated below and outputs are graphically represented in Figure 4487 
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5.13, with full details of selection processes and model construction explained in 4488 
Chapter 2 – Methodology (Ch 2 – Section 3.1): 4489 

𝑙𝑜𝑔!"(𝑚𝑒𝑎𝑛	𝑐𝑜𝑝𝑦	𝑛𝑢𝑚𝑏𝑒𝑟)	~	𝐺𝑟𝑜𝑢𝑝 + 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒	𝐻𝑖𝑠𝑡𝑜𝑟𝑦 + 𝐺𝑒𝑛𝑜𝑚𝑒	𝑆𝑒𝑔𝑚𝑒𝑛𝑡 4490 
Removing this bias in measuring diversity allows comparative approaches, where 4491 
diversity can be benchmarked against other datasets regardless of the viral load. 4492 
Furthermore, it provides some reassurance that viral load does not act as substantial 4493 
confounding factor in statistical modelling. 4494 
5.3.4 Bottleneck Analysis 4495 

5.3.4.1 Shared Variants 4496 

Following work from Hughes’ (2012) investigation of viral population 4497 
bottlenecks in EIV, here the number of variants shared between (A) two different 4498 
hosts and (B) the same host over different days are compared (Figure 5.14). Of the 4499 
13,619bp EIV H3N8 genome, the number of sub-consensus variants we reliably called 4500 
in a single sample ranged from 518 to 5988, with a mean of 4370 K 4370

13619
 = 32%L bases 4501 

that were above the threshold of least 1% in at least one sample.  4502 
Summarily, we would expect intra-host viral populations (sampled at different 4503 
timepoints) to share more variants with each other than with viral populations 4504 
sampled from individuals in a transmission pair. Then, viral populations between 4505 
transmission pairs would likewise have more variants in common than those found 4506 
in hosts with no epidemiological connection. The raw number of variants in each 4507 
sample seems mostly unrelated to the ‘epidemic factors’ of that individual, i.e. 4508 
transmission chain and vaccine status. The low p-value support for all variables in 4509 
explaining the number of sub-consensus variants found (via a Wilcoxon Rank Sign 4510 
test) implies a more random distribution of low-frequency mutations throughout the 4511 
genome rather than being influenced by host factors. 4512 

However, when assessing the possibility of host factors influencing the 4513 
proportion of variants shared between two hosts, the distribution of within-host 4514 
variants differs largely from that of between-host variants. Within-host variants are 4515 
more commonly shared than variants between individuals (Kruskal-Wallis chi2 = 4516 
40.719, df = 1, p-value =1.757e-10), as expected. The occurrence of shared variants 4517 
when looking solely at within-host samples is not impacted by any host or epidemic 4518 
factor. When observing viral populations between-hosts, however, some host 4519 
variables do appear to influence common variants shared. 4520 
Given a transmission pair in the multi group, of two naïve individuals, on average 4521 
82.04% of variants will be shared. Transmission between two vaccinated hosts shows 4522 
a slight decrease in the proportion of shared variants (76.06%, t value= -3.223, 4523 
p=0.0013) which indicates a tighter bottleneck than seen in the naïve-naïve 4524 
transmission event. Conversely, there is no measurable difference in shared variants 4525 
when a vaccinated host infects a naïve one (t=0.601, p=0.5478). 4526 
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 4527 
Figure 5.11: Number of LFVs that are found in more than one host divided into two graphs that 4528 
show whether partnered samples were from the same host. The percentage of variants shared 4529 
between each possible pairing of viral populations (i.e. donor and recipient) was assessed. Shared 4530 
inter-host variation (A) ranges widely, from 50-100% of variants shared compared to intra-host 4531 
variation (B), where most paired samples show greater similarity (mostly 75% or more of the 4532 
variants are shared). 4533 

Switching to the single transmission chain, we see slightly more variants 4534 
shared between naïve donor-recipient pairs (85.16%, p = 0.045). In this transmission 4535 
group, we see the opposite trend between viral populations of vaccinated donors 4536 
and recipients; these hosts now share an increased proportion of variants (1.49% 4537 
greater, p = 0.06) compared to naïve-naïve pairs. Again, transmission from 4538 
vaccinated to naïve hosts does not impact the shared variants in these data (p = 4539 
0.74). 4540 
A distance matrix of shared variants across the four epidemic groups shows, as 4541 
expected, more similarity in the variants shared by samples from the same host on 4542 
separate days than samples taken from two different hosts. Matrices of identity 4543 
between the array of sub-consensus genomes are provided in Figure 5.15. A novel 4544 
observation, however, is that common variants, that is variants found in more than 4545 
one sample above the set frequency threshold of 1%, both within- and between-host 4546 
are more often found in the single transmission chain (89.9% and 84.9% respectively) 4547 
than the multi transmission chain (85.5% and 81.1%). This implies a wider 4548 
transmission bottleneck in the multi chain, more lenient to allow greater diversity 4549 
to pass from one host to the other, or to survive day-to-day during infection. 4550 

 4551 
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 4552 
Figure 5.12: Two distance matrices, showing the proportion of common variants between the 4553 
individuals of each transmission group. Dashed lines are added to divide each graph into 4554 
vaccinated and naïve quadrants. 4555 

From observing the proportion of sub-consensus variants shared between two 4556 
individuals in these transmission experiments, we can see that generally 4557 
transmission pairs will share a vast majority of variants, samples taken from the 4558 
same host over multiple days will have even more commonality in sub-consensus 4559 
diversity. The vaccination status and transmission chain of the host can make a minor 4560 
difference to this value: transmission between naïve-naïve pairs in the multi chain 4561 
is higher than that of vaccinate-vaccinate pairs whereas in the single chain the 4562 
opposite is true, and vaccinated pairs share more sub-consensus variants in common 4563 
than pairs of naïve hosts. 4564 
5.3.4.2 Variants seen in multiple horses 4565 

Some variants are seen in many horses, regardless of whether they are 4566 
epidemiologically connected or not. Figure 5.16 shows the entire EIV genome, each 4567 
point coloured for the transmission group from which the sequences were obtained. 4568 
The abundance of these shared variants is lowest in segments 1-3 (PB2, PB1 and PA), 4569 
though this could simply be because of their disproportionate length in comparison 4570 
to the other genomic segments. Roughly 50% of sites are shared between samples, 4571 
irrespective of the transmission group or vaccination status of the host from which 4572 
they were obtained. On testing with a Kruskal-Wallis test, variation in the abundance 4573 
of shared mutations was not adequately explained by epidemiological group alone 4574 
(Kruskal-Wallis chi2 = 1.0511, df = 3, p-value = 0.7889).  4575 
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 4576 
Figure 5.13: Location of LFV throughout the whole 13kb EIV genome. 4577 
5.3.4.3 Variants seen in the same horse on multiple days 4578 

As an additional investigation into the trajectory of LFV, I collated all variants 4579 
reported by LoFreq and counted how many appeared across multiple days of 4580 
sampling from an individual host. Figure 5.17 shows the number of days a variant 4581 
was detected on the x-axis; from the height of bars, I infer that many LFV tend to 4582 
appear on multiple days rather than just for a single day. Additionally, variants in 4583 
the naïve hosts (pairs 5 and 6) are more likely to appear in three or more days than 4584 
only appearing on one or two days. This is in stark contrast to the patterns seen in 4585 
vaccinated hosts (pairs 2-4), though more sequences were obtained from naïve hosts 4586 
than vaccinated ones which may skew this observation. 4587 
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Figure 5.14: The LFV observed in an individual, and the number of days that it appeared in 
total (not necessarily consecutively). Many variants persist in within-host samples for 
multiple days  This is seen especially in naïve hosts (horses comprising pairs 5 and 6). 
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5.3.4.4 Singletons 4589 

Finally, I conclude with examining the singletons (variants that only appear 4590 
in a single sample): 1024 singletons appear across the entire dataset (Figure 5.18), 4591 
only 1.07% of all reported LFV are above the threshold proportion of 1% K 1024

951,353
L. 4592 

Variants that appear spuriously usually comprise a very low proportion of the 4593 
genomes present, all of which are rarer than 10% of the genomes and the vast 4594 
majority are found at close to the limit of detection – 98% of singletons are found 4595 
below a frequency of 1.5% K1006

1024
L, very close to the 1% frequency cut-off. Singletons 4596 

may be due to highly unfit or lethal mutations, proving so deleterious to viral fitness 4597 
that they are purged from the population within 24 hours. More likely, however, 4598 
these nucleotide mutations are removed due to simple stochasticity and/or 4599 
procedural error during sequencing. Already present at such low concentrations, the 4600 
likelihood that a genome carrying a singleton mutation replicates successfully, 4601 
retains the substitution and then remains at, or above, 1% concentration within the 4602 
viral population is very low.  4603 

 4604 
Figure 5.15: Across the entire 13kb EIV genome, LFV singletons are plotted at the nucleotide 4605 
position they appear. Points are shaded corresponding to the frequency of variants, though the 4606 
vast majority sit around the threshold of detection (1% frequency) 4607 
5.3.5 Beta-Binomial Calculations of Transmission Bottlenecks 4608 

Using a variant frequency threshold of 2% to estimate bottleneck sizes with 4609 
Sobel Leonard’s beta-binomial sampling procedure, the possible events in which a 4610 
donor host could have infected a recipient host were averaged to give single values 4611 
across each transmission chain. All estimated transmission events are shown in 4612 
Figure 5.17, by arrows labelled with the size of transmission bottlenecks for each 4613 
case where it would have been theoretically possible for hosts to infect one another. 4614 
For example, no arrow connects hosts 3A and 4A in the Single transmission chain; 4615 
there was no day when 3A shed sufficient virus during the period that it was co-4616 
housed with host 4A. Conversely in the Multi group, host 5A was actively shedding 4617 
virus for two days before host 5B was infected and furthermore, 5B showed no sign 4618 
of infection whilst co-housed with the preceding pair (4A and 4B). Hence, I inferred 4619 
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this transmission event to originate from host 5A and therefore estimated the size 4620 
of this putative bottleneck, explaining the horizontal arrow joining these hosts in 4621 
the figure. 4622 

 4623 
Figure 5.16: Estimated transmission bottleneck sizes between samples. 4624 

When filtering datasets by group, Nb differences of within- and between-host 4625 
links are only statistically significant in the multi chain (p = 0.028), not the single 4626 
transmission chain (p = 0.14). Now, comparing the class of hosts involved in the 4627 
transmission event (vaccinate-vaccinate, vaccinate-naïve or naïve-naïve) we see no 4628 
substantial differences in between-host Nb of hosts in either transmission chain 4629 
(multi chain p = 0.1692 and single chain p = 0.3018). If we instead compare just the 4630 
vaccination status of donor hosts or recipient hosts, rather than looking at both ends 4631 

Multi
Chain

Single
Chain

2A 2B

3A 3B

5A

4A

5B

6B6A

5
55

4

1.5 1

1.5

2

5
8 6

5

2A 2B

3A 3B

4A

5A 5B

6B6A

2 4
2 2

5.5

21

618 1
2 2



   
 

146 
 

of the transmission event as above, we still see no evidence that host factors impact 4632 
the bottleneck size (Figure 5.20). 4633 

Bottleneck sizes do not differ between transmission groups (Kruskal-Wallis 4634 
chi2 = 4.9099, df = 1, p-value = 0.0267) but are associated to the immune status of 4635 
hosts. Specifically, transmissions fall into one of three immune classes: vaccinate-4636 
vaccinate, vaccinate-naïve or naïve-naïve. Across the dataset, naïve-naïve 4637 
transmissions tended to have marginally larger bottlenecks than vaccinate-vaccinate 4638 
(p=0.067) and vaccinate-naïve (p=0.053) ones though it must be noted that the 4639 
sparsity of vaccinate-naïve samples (n=4) results in low power for testing this and 4640 
likely contributed to the p-values being near the borderline for significance. These 4641 
differences in Nb are also linked to the group each host belonged to; naïve-naïve 4642 
transmission events ceased to differ with either of the other classes when examined 4643 
in the single transmission group alone. Now, to incorporate the upper and lower 4644 
bounds of Nb estimates into tests in order to provide a more realistic response 4645 
variable, we see different trends in the between-host Nb data. The only marked 4646 
difference in bottleneck size is over transmission events from VM to NM hosts (p = 4647 
0.027).  4648 

 4649 

 4650 
Figure 5.17: Estimated bottleneck sizes for each potential transfer event between hosts. Two 4651 
outlying values far exceed the rest of the estimates and so for ease of visualising the estimated 4652 
size (alongside upper and lower confidence intervals) are placed in textboxes at the 4653 
corresponding event. 4654 
5.3.5.1 Host Factors and Bottleneck Sizes 4655 

As above, models were constructed under a Bayesian framework in rstan with 4656 
priors estimated from a Cauchy distribution guided by four concurrent MCMC 4657 
processes over 250,000 iterations: 4658 

𝑁=	~	𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝐺𝑟𝑜𝑢𝑝 × Δ𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒	𝐻𝑖𝑠𝑡𝑜𝑟𝑦 4659 
When testing variables with a GLM, the nature of transmission events 4660 

(vaccinate-vaccinate, vaccinate-naïve or naïve-naïve) proved statistically 4661 
significant, as did the transmission group. However, the effects of these were 4662 
minimal; as the Nb values themselves were so small, impacts bore little to no 4663 
biological realism (Table 5.6).  4664 



   
 

147 
 

Table 5.6: Nb values as calculated from the above model with nEFF in brackets, as a proxy for 4665 
confidence. 4666 

 Multi Group Single Group 
Vaccinate-Vaccinate 1.3 (88.27%) 3.5 (93.16%) 

Vaccinate-Naïve 0.3 (88.15%) 3.6 (95.19%) 
Naïve-Naïve 1.6 (93.16%) 5.1 (92.73%) 

These estimates were then repeated below with the addition of sequence 4667 
information. 4668 
5.3.5.2 Interactions & Correlations 4669 

As above, when examining measures of diversity, bottleneck sizes were then 4670 
compared with the amount of virus shed by these hosts. Transmission events are 4671 
stratified by the exposure status of both the donor and recipient hosts (vaccinated-4672 
vaccinated, vaccinated-naïve or naïve-naïve). The shedding of either donor or 4673 
recipient host bears no meaningful association to the size of a transmission 4674 
bottleneck size in these experimental data. 4675 

Correlations between the genetic distance (identity matrix) and the size of a 4676 
transmission bottleneck appear minimal. Spearman correlations show a slightly 4677 
negative association across the entire experiment (-6.24%). When stratified into 4678 
corresponding transmission groups, correlations were similarly low (multi group = 4679 
15.20% and single group = 2.19%). 4680 

Desiring to examine these correlations closer, I next replicated the above 4681 
Spearman tests in a GLM framework. Thus, first testing the impact of bottleneck 4682 
sizes on genetic distance over both experimental transmission chains, there is a 4683 
marginal decrease (17%, p=3.66 x 10-3) in sequence identity with a larger founder 4684 
population in a transmission event. However, this difference is not influenced by the 4685 
group in which the observed transmission event took place (p = 0.187), nor is it 4686 
significantly impacted by the vaccination status of donor and recipient hosts (p = 4687 
0.979).  4688 
Table 5.7: Proportion of shared variants and the size of bottlenecks (in viral genomes) for each 4689 
transmission event between hosts. 4690 
Group Class Events Shared Variants Nb 

M
ul

ti
 Vacc – Vacc 11 56.5% (±36.7%) 3.82 (±2.09) 

Vacc – Naïve 2 94.6% (±0%) 2.00 (±0) 
Naïve – Naïve 8 86.1% (±13.2%) 4.88 (±2.59) 

Si
ng

le
 Vacc – Vacc 8 92.2% (±5.2%) 3.38 (±2.07) 

Vacc – Naïve 2 83.8% (±6.6%) 1.50 (±0.71) 
Naïve – Naïve 4 86.5% (±6.8%) 155.75 (±200) 

In summary, Table 7 reports the average bottleneck sizes of transmission events 4691 
in both experimental groups, alongside their proportion of shared sub-consensus 4692 
variants. To note, a sparsity of samples in vaccinate-naïve transmission events skews 4693 
these rows of results. Overall, both groups show that relatively few viral particles 4694 
are involved in a single transmission event, though founder populations from naïve 4695 
hosts appear larger than those from vaccinated ones. 4696 
5.4 Discussion 4697 

Due to the rapidity of IAV mutations, evolution and epidemic dynamics become 4698 
intrinsically linked throughout pathogen spread (Kühnert et al., 2011). 4699 
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Understanding the genetic diversity of even a small viral outbreak can reveal a great 4700 
deal of information about the interplay of viral populations within and across host 4701 
(and potentially vector) populations. Though viruses within a single infected host 4702 
may have a huge capability for acquiring mutations, acute infections vastly limit the 4703 
timeframe in which a de novo mutation can arise to an observable level within a 4704 
population. Furthermore, should a variant emerge during infection, it is under time 4705 
pressure to outcompete its progenitors and reproduce in quantities large enough for 4706 
onward transmission (Xue et al., 2018). Experiments of chronic influenza infections 4707 
provide enough time and raw mutational plasticity to allow the development of very 4708 
diverse heterogeneous viral populations (Lumby et al., 2018). How important 4709 
chronically-infected hosts are in the maintenance and generation of variant diversity 4710 
remains to be answered.  4711 
5.4.1 Reporting sub-consensus viral genomes 4712 

In terms of the fastest tool, vSensus performs much faster per megabyte and 4713 
per read in the library, though iVar is a close second. As a measure of accuracy, the 4714 
frequency of variants in the population was compared with the frequencies reported 4715 
in the published datasets. I don’t think it’s clear which is the better tool just from 4716 
this, but knowing consistency is helpful. Measuring the time taken for analysis 4717 
against the number of variants called is again, not a simple metric as it depends on 4718 
the question one is trying to answer.  4719 

Observing the population diversity of viral genomes from each sample is one of 4720 
the most common analyses performed with such deep-sequencing data of viruses. 4721 
Testing the population richness and diversity then shows the kind of output one can 4722 
expect using each tool. 4723 

Overall, the stand-out VCT for academic research of viral evolution are both 4724 
FreeBayes and LoFreq. These tools have the highest accuracies except for DeepSNV 4725 
(96.52% and 94.14% respectively). Despite higher accuracy (96.06%) and faster 4726 
runtimes, DeepSNV comes with the large caveat that processing requires a control 4727 
dataset. This necessity makes DeepSNV unsuitable for analyses of de novo viral 4728 
sequences, and the lengthy set-up before running the tool is not included in the 4729 
overall timing. 4730 
5.4.2 EIV within-host variation 4731 

Combining a range of diversity measures, we can confidently infer that host 4732 
factors such as vaccination status do affect the sub-consensus diversity of viral 4733 
populations. Between hosts, viral population diversity mostly differs based on the 4734 
host’s exposure and vaccination status. Unexpectedly, the two most commonly used 4735 
diversity measures, Shannon Entropy (HS) and nucleotide π detected different groups 4736 
as the most diverse. 4737 

Shannon Entropy (and its normalised forms) is highest in naive hosts in the multi 4738 
transmission group (NM), whereas π diversity is highest in vaccinated individuals 4739 
within the single transmission group (VS). This difference in where diversity sits is 4740 
unexpected, but as noted by Zhao et al. (2019) this may be skewed by the 4741 
distribution of reads in each population; the NM group has substantially more reads 4742 
than the others. 4743 

Between the divisions of vaccine status, most measures show very little 4744 
change. Averaging the diversity of all vaccinated hosts to all naïve ones, there is a 4745 
stark difference in the richness of mutations (average naïves=1.205, average 4746 
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vaccinates=0.76). Hosts of each transmission group do, however, show substantial 4747 
differences in mutational richness, i.e. Shannon Entropy & π diversity. Within hosts, 4748 
nucleotide π diversity either changes erratically over the duration of the experiment 4749 
or remains relatively consistent. The occasions where we do see fluctuations in 4750 
within-host diversity are mostly confined to the longer segments. Levels of within-4751 
host π diversity certainly appear stable in segments 6-8 of most hosts, retaining 4752 
constantly high π diversity. I interpret this as these genes evolving at a constant 4753 
rate, but unable to find any fitness advantages within their mutations. The longer 4754 
segments however appear to be exploring mutational space more, and sudden peaks 4755 
in their sub-consensus diversity imply periods of fast evolution. Alternatively, 4756 
troughs in this diversity implies having honed-in on a particularly fit mutation, and 4757 
thus generation of de novo mutations slows as the viral population accumulates a 4758 
particularly fit mutation.  4759 
Further, neither π nor HS diversity measures show a strong association with viral 4760 
shedding. First, the relationship between each metric (HS or π) and log10(copies) was 4761 
investigated with correlatory tests (Spearman); Shannon Entropy doesn’t show any 4762 
correlation to the viral load (31%), nor does nucleotide π (14%). 4763 

Using a linear regression to quantify the relationships between variables the 4764 
population size, as measured by log10(copy number), had no impact on the Shannon 4765 
Entropy in any of the 4 epidemiological groups. By comparison, the nucleotide π 4766 
diversity of hosts marginally increases with a larger population size in the multi 4767 
group, though insignificantly (0.108, p=0.0675). 4768 
5.4.3 Transmission Bottlenecks of Naturally Transmitted EIV 4769 

To note, an important caveat of the above analyses is a reliance on the absolutism 4770 
of transmission events within the confines of the experimental design. Though the 4771 
transmission experiment only housed two pairs of hosts at a time, we cannot rule 4772 
out that some of the virus shed remained infectious in the environment. Influenza 4773 
viruses are capable of mechanical transmission, through fomites in the surrounding 4774 
environment. One unfortunate consequence of this in the present study is that 4775 
proving transmission occurred directly, exclusively between hosts in the mixing 4776 
chamber, is not possible. Previous calculations of Influenza A Virus bottleneck sizes 4777 
(Nb) vary, but mostly concur with the low (<10 virions) averages we report later. 4778 

• McCrone and Lauring (2018): 2-5 virions or up to 200 genomes (experimental 4779 
ferret transmissions) 4780 

• Johnson and Ghedin (2020): 7-24 genomes in contact transmission, or 3-5 4781 
genomes with droplet transmission (human transmissions) 4782 

• Dimas Martins and Gjini (2020): 90 (±45) genomes in another ferret 4783 
transmission study 4784 

• Sigal, Reid, and Wahl (2018): Their system requires an Nb of 20-100 genomes 4785 
to adequately explain diversity 4786 

• LeClair and Wahl (2018): in vitro IAV transmissions barely worked with Nb of 4787 
1, but functioned well at Nb = 5 4788 

Overall though, the high proportion of shared variants between pairs of hosts 4789 
indicates a generally loose transmission bottleneck in close-contact EIV infections. 4790 
This enables viral populations to maintain a high level of the diversity generated in 4791 
one host and transmit it to the subsequent host; essentially the mutations generated 4792 
in a host have a good chance of surviving and passing to the next individual. This has 4793 
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potential phylodynamic implications, variants generated de novo in hosts of the 4794 
single chain have a better chance to be maintained and passed forward than 4795 
mutations in the multi chain. To note, this analysis does not account for the 4796 
proportion of each sub-consensus mutation and is simply counting the 4797 
presence/absence of mutations at each possible nucleotide. Having estimated 4798 
transmission events between co-housed hosts, we illustrate that under experimental 4799 
outbreak conditions, low numbers of virions are involved in onward transmission of 4800 
EIV. Non-parametric tests stated that neither of the examined host factors 4801 
(transmission group or vaccination status) significantly impacted the bottleneck size. 4802 

Comparisons of viral populations within-hosts day-to-day using the same beta-4803 
binomial sampling methodology showed, as expected, much looser bottlenecks; 4804 
greater numbers of and more diverse collections of virions link the viral populations 4805 
of hosts from one day to the next. 4806 

Our data confirm that within-host IAV populations are highly dynamic, with 4807 
multiple variants arising, persisting, and sometimes becoming transiently 4808 
predominant or fixed, even during short chains of transmission. Future work linking 4809 
minority variants between different animals will inform of the size of transmission 4810 
bottlenecks during natural infection. 4811 
  4812 
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6 Discussion 4813 

In this thesis, I investigated the impact of prior Influenza A Virus (IAV) exposure 4814 
on viral evolution at the within-host and inter-host level. To this end, I examined 4815 
the virus population size and genomes of influenza viruses in infected horses that 4816 
possessed different immunological histories and were linked by transmission.  4817 
6.1 Equine Influenza as a Model Virus 4818 

The use of equine influenza virus (EIV) as a model system for IAV outbreaks in 4819 
mammals captures both direct and fomite-mediated transmission, with a virus 4820 
known to jump species barriers. IAVs infect a broad range of mammalian and avian 4821 
hosts and cross-species transmission occur sporadically, but with often dramatic 4822 
consequences. Influenza in horses presents with similar symptoms to the disease in 4823 
humans, and their movements are linked to anthropogenic activities. Though reports 4824 
of active EIV infection in humans are both rare and sporadic, people working closely 4825 
with horses often develop circulating H3N8 antibodies and this may be taken as 4826 
evidence that EIV is at least able to colonise human hosts, who develop adaptive 4827 
immune memory in response. 4828 

The spillover of H3N8 viruses into canine populations occurred concurrently with 4829 
five nonsynonymous mutations in the haemagglutinin: Asn54Lys, Asn83Ser, 4830 
Asn154Thr, Trp222Leu and Ile328Thr (Crawford et al., 2005). Though cross-species 4831 
spillover is a multi-factorial event and cannot be attributed solely to protein 4832 
conformational changes, such observations reveal that IAV can successfully adapt 4833 
from avians to equines and then on to canine hosts. 4834 

6.2 Shedding of Equine Influenza Virus 4835 

The lower amounts of virus shed by both vaccinated and unvaccinated 4836 
individuals of the single strain transmission chain speaks to the impact of prior 4837 
exposure to immunogens that specifically match the strain hosts are challenged 4838 
with. From this, I must then infer that the immunity of a host affects not only its’ 4839 
own viral load but also that of the hosts which it infects. This is important because, 4840 
as discussed below, horses most likely to be moved around the country and interact 4841 
with horses external to their day-to-day cohort (analogous to the notion of super-4842 
spreaders) are simultaneously likely to have been exposed to the greatest array of 4843 
circulating EIV strains. However, these observations may be confounded by the 4844 
ultimately different viruses at the end of each transmission chain. 4845 

Viral load can be used as a proxy for infectivity in epidemics of acute disease 4846 
spread in a frequency-dependent manner. Once the quantity of viruses surpasses the 4847 
threshold needed to establish infection, i.e. the minimum infectious dose (MID), it 4848 
is generally assumed that the more virus present (whether in the environment 4849 
outside of hosts, or viraemia for viruses spread by direct contact) the greater chance 4850 
an exposed host has of becoming infected. 4851 

These findings on the amount of viruses shed and the influence of host adaptive 4852 
immune status could additionally help parameterise epidemiological values such as 4853 
the Critical Community Size, a term describing the proportion of susceptible hosts 4854 
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needed in a population to prevent epidemic fade-out (Bartlett, 1960; Cliff et al., 4855 
2000) or pcrit which describes the proportion of the population which must be 4856 
protected in order to stop outbreaks from occurring. Knowing that even vaccinated 4857 
horses can shed sufficient virus to lead to further infections, the data generated 4858 
here could also be incorporated into compartmental epidemic models. Vaccination 4859 
decreases viral shedding, with the vaccine matching the challenge strain having a 4860 
greater inhibitory effect. From this, we may therefore assume that distributing 4861 
vaccines which closely match circulating strains would be a better public health 4862 
measure than distributing vaccines that confer lower levels of immunity but to a 4863 
greater range of viruses. However, a broader coverage would perhaps better account 4864 
for unknown strains that may be in circulation. My work shows that providing some 4865 
form of vaccine-mediated immunity is better at limiting the spread of virus than no 4866 
immunisation and further, it reflects the real-world dynamics of EIV epidemiology, 4867 
where imperfectly neutralised virus is still capable of transmission between horses. 4868 

Though still lacking the values to estimate CCS and other compartmental 4869 
epidemiological models, these findings highlight the importance of including 4870 
vaccinated horses in such models, acknowledging the potential contribution of such 4871 
hosts to maintaining chains of transmission. Here, however, the relatively low viral 4872 
load of univalent-vaccinated (VS) hosts suggests a decreased capacity for shedding 4873 
infectious virus. This in turn reduces the capability of EIV to transmit as effectively 4874 
as in wholly naïve populations. First, by shedding a lower number of infectious 4875 
particles, transmission events will require closer and/or longer duration of contact 4876 
in order for recipients to receive the minimum infectious dose required to establish 4877 
infection. If a successful viral transmission event becomes more difficult, each host 4878 
is less likely to infect as many susceptible hosts as previous conditions permitted; 4879 
the effective reproductive number (Re) would fall as secondary transmissions from 4880 
each host become increasingly rare. Clearly, the effects seen in the present 4881 
transmission experiment are not enough to halt onward spread since all hosts in the 4882 
experiment became infected. Importantly, unlike the natural epidemiology of EIV, 4883 
data presented in this study come from an experiment designed specifically to 4884 
facilitate continued transmission; hosts were kept in very close proximity until 4885 
recipients showed signs of infection. Clearly, this creates artificial scenarios that 4886 
would not be expected in the field. Yet as the focus lies on the evolutionary forces 4887 
experienced by EIV, ensuring that each host became infected was paramount. In situ 4888 
outbreaks rarely, if ever, see 100% of horses infected with EIV; understanding the 4889 
limits of spread once a premises has been seeded by an index case could inform 4890 
disease management strategies. 4891 

Upon infection, virus replication clearly occurs rapidly, though linking this to 4892 
disease progression and the course of symptoms is unexplored as I did not have 4893 
access to clinical information. In other hosts, associations between viral load and 4894 
host disease presentation have been examined in populations of young adults (McKay 4895 
et al., 2020) where minor correlations existed between viral load and patient body 4896 
temperature. In contrast, paediatric patients showed that both symptoms and 4897 
recovery time were correlated with the amount of virus present (Tran et al., 2023), 4898 
when trialling a therapeutic probiotic intended to limit IAV infection by over-4899 
colonisation of nasal epithelia with commensal bacteria. 4900 

 However, in human IAV infections, viral shedding (and thus transmission of 4901 
virus) begins prior to the appearance of symptoms (Andrew et al., 2023; McKay et 4902 
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al., 2020). Given the short period between exposure and detectable virus in infected 4903 
horses in this experimental setting, viral transmission from pre-symptomatic horses 4904 
is to be expected. The major epidemiologic consequence being that pre-4905 
symptomatic index case(s) could spread EIV through the population, as seen in 4906 
previous FMDV outbreaks (Firestone et al., 2019; R. J. Orton et al., 2020; M. 4907 
Woolhouse et al., 2001), delaying appropriate responses (e.g. 4908 
quarantine/distancing, prophylaxis, alerting a vet), at which point it may be too late 4909 
and EIV has spread to multiple other contacts. A paradigm of RNA virus evolution is 4910 
that they are highly polymorphic and this is due to the error-prone polymerase which 4911 
causes mutations to appear de novo throughout the genome. Thus, field populations 4912 
are assumed to exhibit a high level of random mutations, with the number of 4913 
mutations detected being proportionate to the size of the sampled population. 4914 
Unexpectedly, the viruses sampled from naïve hosts were found to be largely 4915 
homogenous, despite being much larger populations than those from vaccinated 4916 
hosts. While one would expect that a larger population of viruses would allow for 4917 
more variation to be generated, this, was not observed in either transmission 4918 
experiment. 4919 

In real-world settings, the index cases of EIV are more likely to be protected 4920 
(horses for sports/breeding are likely, or required, to be vaccinated) and so may 4921 
display minimal symptoms, if at all. It may be hypothesised that those days in which 4922 
shedding was not detected due to a lack of noticeable symptoms would allow 4923 
continued, uncontrolled transmission throughout the population. Observations of 4924 
influenza infections in human populations concur; many individuals that test positive 4925 
for IAV infection show no symptoms or illness. Indeed, screening by Hayward et al. 4926 
(2014) have revealed that 77% and 83% of IAV-positive individuals were 4927 
asymptomatic, depending on whether the screen was carried out using serology 4928 
and/or PCR amplification respectively . Arguably, the ability to go unnoticed by the 4929 
host is the fittest (defined by genomic reproductive success) adaptation of some 4930 
viruses; non-pathogenic infections are especially effective when spreading through 4931 
populations of animals that display social behaviour. Hosts displaying visible physical 4932 
symptoms, such as coughing or mucopurulent nasal discharge, may be avoided by 4933 
other individuals of the same species thus reducing the amount of contact and 4934 
potential for secondary transmission of the pathogen. Hence, asymptomatic 4935 
infections could facilitate continued transmission, overcoming anti-social host 4936 
behaviour which would otherwise limit contact rates. 4937 

Across the transmission experiment, hosts shed substantially different 4938 
quantities of EIV genomes based on their exposure histories. Recognising the caveat 4939 
that qPCR quantifies only the number of vRNA copies and not replication-competent 4940 
virions, the copy numbers in samples from unvaccinated hosts show a greater 4941 
number of viruses compared to vaccinated ones. However, only naïve hosts in the 4942 
multivalent transmission group (NM) show significantly greater quantities of virus 4943 
shed compared to vaccinated hosts. Hosts without any history of exposure in the 4944 
Single group (VS) did not shed substantially different amounts of virus to the hosts 4945 
with exposure histories. This may be caused by wide-ranging values from samples in 4946 
this group and/or the smaller founder population that these hosts receive; as VS 4947 
hosts shed low amounts of virus, the hosts they infected are expected to have 4948 
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received a small infective dose. Thus, even if viruses in both transmission groups 4949 
were equally fit, those in NM hosts were seeded with a larger initial viral population 4950 
leading to their significantly greater viral shedding. To note, as I will explore below, 4951 
the viruses infecting NM hosts were genetically distinct from those sampled from NS 4952 
hosts, with 2 non-synonymous and 1 synonymous mutations separating the two 4953 
populations. 4954 

Reported values of viral shedding concur with those published in other studies 4955 
of influenza A infections. Average daily shedding closely resembles that seen in other 4956 
experimental infections of horses (Murcia et al., 2010, 2013) and, as anticipated, 4957 
this was higher than in samples collected during an outbreak (Hughes et al., 2012). 4958 
Likewise, in accordance with studies in horses and pigs (Lloyd et al., 2011), 4959 
vaccinated hosts shed less virus than the unvaccinated hosts. These figures also 4960 
concur with those reported in human IAV infections (To et al., 2010; Ward et al., 4961 
2004). As explored in the introduction of Chapter 3 (3.1.2), the amount of virus shed 4962 
by a host is expected to correlate to the infectivity of that individual, i.e. the β 4963 
parameter or Force of Infection (Heesterbeek, 2002; Matthews & Woolhouse, 2005) 4964 
in compartmental epidemiological models. A strengthened Force of Infection 4965 
indicates an increased chance for secondary transmission from an infected host, thus 4966 
reducing the amount of time susceptible hosts need to be exposed to a shedding 4967 
host to acquire a dose sufficient to establish EIV infection. When considering the 4968 
virus, this greater β parameter leads to a larger viral population in circulation in the 4969 
local environment; this likely increases the impact of selective forces and decreases 4970 
those of stochastic fluctuations in mutant genome levels. 4971 

Observing the transmission of EIV in such a controlled environment allows for 4972 
examination of the transmission dynamics in a way hitherto understudied in equine 4973 
populations. By quantifying shed virus in each transmission event, the most striking 4974 
result was how quickly infection is established in a host. Moreover, hosts become 4975 
infected and then are able to spread infection very rapidly. All hosts began shedding 4976 
detectable amounts of virus by two days post-contact with infected hosts, providing 4977 
a very short interval between successive transmission events, i.e. the serial interval. 4978 
In terms of viral evolution, the rapidity of this transmission poses a double-edged 4979 
sword: fast spread of course benefits the virus in the short term, as infections can 4980 
be established and transmitted before adaptive immune responses can be fully 4981 
mounted. However, as the virus transmits so quickly, any diversity generated in the 4982 
course of the host’s infection may be lost unless the maintained virus is able to 4983 
spread and/or re-infect other hosts. Reporting the serial interval of EIV amongst 4984 
populations with heterogeneous exposure histories grants novel insight into its’ 4985 
epidemiology within horse populations. 4986 

6.3 Ensuing Work 4987 

Conclusions may be drawn on the assumption that a higher viral load correlates 4988 
to a virus better able to replicate, i.e. the virus replicates more and/or faster thus 4989 
increasing the quantity of genomes collected by each nasal swab. Hosts may shed 4990 
different quantities of virus for myriad reasons, however, many confounding 4991 
variables interfere with this assumption. Thus, even though viral load is occasionally 4992 
used as a proxy for fitness and/or competitiveness later in the analysis, it is far from 4993 
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an ideal measure. A lingering question from this study is whether shedding can be 4994 
used as a legitimate approximate of viral fitness. To support the work presented 4995 
here, proof of the correlation between viral load and replicative fitness could be 4996 
carried out in vitro. Potential avenues to test this include comparing parallel growth 4997 
curves of different genotypes in cell culture or competitive co-culture of differing 4998 
viral genotypes in the same culture to assess phenotypic strengths. These would 4999 
allow for estimates of competitiveness, or at least comparisons of fitness within such 5000 
a closed system (Domingo et al., 2019), and give an indication of what Wargo & 5001 
Kurath (2012) distinguish as both replicative and transmission fitness. 5002 

However, the virus was able to infect vaccinated hosts in both transmission 5003 
chains, so clearly it was fit enough for continued natural transmission. Hosts with 5004 
prior immunity were able to become infected and then shed sufficient quantities of 5005 
virus to lead to secondary infection of other hosts with similar exposure histories. 5006 
Concerningly, even horses which would be expected to have very strong adaptive 5007 
immune responses, due to their recent exposure to the challenge virus, were capable 5008 
of transmitting infectious virus to other hosts with histories of exposure. VS hosts 5009 
had five exposures to inactivated stock of the challenge virus across a period of 40 5010 
weeks, 40 weeks before being vaccinated in the transmission experiment and could 5011 
still transmit and be infected by EIV, showing a lack of sterilising immunity generated 5012 
by the memory response. Under such conditions, contrary to what is generally 5013 
accepted, this ability to reinfect hosts despite strong immune memory suggests that 5014 
selective pressures originating from host immunity may not be particularly strong in 5015 
guiding EIV evolution. Though the conditions of the experimental transmission were 5016 
highly controlled and would not be expected to resemble those in natural settings, 5017 
horses are also unlikely to have such comprehensive history of exposure to a 5018 
circulating strain. However, immunity developed from natural infection, rather than 5019 
exposure to inactivated whole-virus formulations could establish a stronger memory 5020 
response for these hosts. 5021 

Additionally, were the experiment to be repeated I would endeavour to 5022 
quantify the amount of virus in the immediate surroundings of infected hosts, such 5023 
as nearby surfaces or even suspended in air, as in studies by Neira et al (2016). 5024 
Understanding the viral load of a host plus the number of viral genomes (and thus 5025 
assumedly infectious particles) in the vicinity of an infected host would reveal 5026 
infectious particles present in the environment. Fomites are known to be important 5027 
environmental vectors of transmission in seasonal human IAV; evidence for 5028 
mechanical spread of EIV was reported in Australian and South African outbreaks 5029 
(Cullinane & Newton, 2013). However, during this transmission experiment, after 5030 
each transfer of hosts, the entire mixing chamber was thoroughly disinfected 5031 
thereby removing any possibility of fomite transmission. How this might affect viral 5032 
evolution is less known; once virus is shed into the environment it cannot 5033 
mutate/evolve until entering another host.  5034 

Further areas of investigation ought to include the determination of the 5035 
minimum infectious dose (MID) of H3N8 EIV in horses. Knowing the number of viral 5036 
particles needed to establish a successful infection, in vitro or in vivo, would allow 5037 
for a proper quantification of the force of infection (β) needed for epidemic spread 5038 
(Re ≥ 1). Such experiments would, however, involve prohibitively high numbers of 5039 
horses to test which raises ethical concerns. Many factors such as MID exert an 5040 
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influence on host-pathogen interactions, including host innate and adaptive 5041 
immunity, host intrinsic barriers to infection (e.g. skin and mucus), co-infection, 5042 
viral strain and viral fitness to name but a few. To estimate MID while accounting 5043 
for these potentially confounding variables would  necessitate large numbers of 5044 
horses to be infected and observed in controlled environments. Alternatively, 5045 
scaled-down experiments involving serial dilutions of viral cultures applied to tissue 5046 
explants and/or 3D tissue cultures may grant some insight into cellular MID 5047 
estimates. 5048 

Although viral genomes were collected from nasal swabs, matching disease 5049 
symptoms to shedding would also help in the construction of epidemiological 5050 
models; how do clinical symptoms correlate to the pattern of viral shedding? 5051 
Influenza has a reputation for being most contagious in pre-symptomatic hosts (Bell 5052 
et al., 2006; Hayden et al., 1998; Webb et al., 2010), but this remains to be proven 5053 
in equine populations. While correlating disease progression with daily patterns of 5054 
viral load has not yet been undertaken for EIV, going forward I would endeavour to 5055 
use existing datasets of loads and published details of symptomatic horses in a meta-5056 
analyses to craft inferences on this relationship.  5057 

6.4 Consensus Analyses 5058 

As seen especially through the emergence of variants of concern (VoC) during 5059 
the COVID-19 pandemic, viruses, like all life forms, do not evolve in a 5060 
straightforward, linear manner but rather generate an array of variants upon which 5061 
selective forces and stochasticity can act. Single Nucleotide Polymorphisms (SNP) in 5062 
viral genomes can have positive, negative or neutral impacts on the overall 5063 
replicative fitness of that individual virion. The trajectory of mutations within a viral 5064 
population at the within-host and between-host scales can reveal insights into how 5065 
diversity can be generated, transmitted and maintained at a global level. 5066 

Examining the genetic similarities between the EIV strains which comprise the 5067 
whole-virus inactivated inocula and that of the challenge strain established just how 5068 
different the immune responses of hosts could be. Memory responses of the adaptive 5069 
immune system rely on the recognition and presentation of antigens to, primarily, 5070 
memory B cells. The four strains comprising the multi-strain inoculum regiment 5071 
shared 92.25% genetic identity, meaning an average difference of 1,056 nucleotides 5072 
between the inactivated viruses used to provide exposure histories to the VM horses. 5073 

In comparison, on examining three commercial EIV vaccines (the recombinant 5074 
Canarypox vaccine ProteqFlu, plus two inactivated virus vaccines Equilis Prequenza 5075 
and Equip F (NOAH, 2016)), the strains formulating each shared varying sequence 5076 
similarity. The immunogens used in the trivalent Equip F vaccine differed the most 5077 
from the other vaccines and was also had the most diverse range of immunogens of 5078 
any vaccine, including a now extinct H7N7 virus; similarity between the genomes of 5079 
inactivated viruses marked only 70%, stimulating recipients with three very different 5080 
viruses. Though some meta-analyses on vaccine formulation have been carried out 5081 
(Elliott et al., 2023), the impacts of such broad immunisation on viral evolution 5082 
remains a mystery. According to the results presented above, exposure to 3 highly 5083 
distinct immunogens may not be as effective as other formulations. These three EIV 5084 
vaccines are approved for use in the UK and EU, and though the manufacturer of 5085 
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each (ProteqFlu – Boehringer Ingelheim, Equilis Prequenza – Intervet International 5086 
B.V. and Equip F – Zoetis UK) declined to provide sales figures, many of the 850,000 5087 
horses in the UK (BETA, 2024) are assumed to receive at least one of these if they 5088 
have been vaccinated.  5089 

Though all advertise protection from EIV, the three contain different vaccine 5090 
strains and most importantly differ in their formulation. Equilis Prequenza and Equip 5091 
F are both inactivated, whole-virus vaccines comprised of two and three unique EIV 5092 
strains respectively. ProteqFlu uses two EIV strains, but only incorporates a single 5093 
genomic segment in its composition: the haemagglutinin, as encoded by segment 5094 
four, is carried by a recombinant canarypox virus. We hence see two vaccines 5095 
stimulating immune responses to an entire, replication-incompetent virus and one 5096 
vaccine training horse adaptive immune systems exclusively to haemagglutinin.  5097 

While direct comparisons of vaccine efficacy have not been performed, the 5098 
differences in the strength (as measured by antibody titre upon challenge) and 5099 
breadth (range of EIV strains that elicit a memory response) of immunity provided 5100 
are unlikely to be equal. In fact, given the results from the investigations above, the 5101 
use of multiple heterogeneous immunogens in vaccinations may not be providing the 5102 
best protection for individuals or for populations against circulating EIV. This is 5103 
especially due to the distance between some vaccine strains and those currently 5104 
circulating; this is represented graphically in Figure 6.1.  5105 

 5106 
Figure 6.1: Brief timeline showing the three main commercial EIV vaccines sold in the UK, and 5107 
the original strain upon which they are based. A/Newmarket/77 is represented by a triangle in 5108 
order to show its unique inclusion as an H7N7 virus. 5109 

Despite no longer circulating in the wild, one of the commercial vaccines (Equip 5110 
F) continues to add inactivated H7N7 viruses into the formulation, a decision that I 5111 
believe may do more harm than good. Though tests explicitly comparing the impacts 5112 
of cross-immunity from H7N7 to H3N8 viruses have not been carried out in horses, 5113 
differences between these viruses may be exemplar of the imprinting described by 5114 
Gostic and others (Gostic et al., 2016, 2019; Kelvin & Zambon, 2019). If the host’s 5115 
first infection is from a virus with group 1 haemagglutinins (e.g. H1), subsequent 5116 
infection with viruses presenting group 2 (e.g. H3) proteins will elicit weakened 5117 
immune responses compared to infections with other group 1 viruses. H7 and H3, 5118 
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however, both fall within group two of the haemagglutinin subtypes. A similar trend 5119 
is seen in neuraminidase groupings, yet as HA is around four-fold more common on 5120 
the surface of virions (Bouvier & Palese, 2008), the immune-dampening is less 5121 
pronounced.  However, N7 and N8 are grouped separately in neuraminidase trees 5122 
(N7 is a group two neuraminidase, N8 is group one). Though the effects on host 5123 
immunity caused by imprinting has been shown to be more dramatic in 5124 
haemagglutinin, differences in divergent neuraminidase proteins may also hamper 5125 
immune memory responses.  5126 

However, conclusions drawn from another equine influenza transmission study 5127 
(Park et al., 2009) included the observation that even vaccines with mismatched or 5128 
outdated immunogens can still provide moderate protection at the population level 5129 
when sufficiently distributed. Uncertainty in circulating strains and manufacturing 5130 
constraints continue to encourage the formulation of vaccines conferring immunity 5131 
to multiple viral strains.  5132 

Viral mutations appear in horses and may appear or disappear regardless of 5133 
their impact. As this experiment could be seen as a small-scale EIV outbreak, with a 5134 
small population and short duration, the many singleton nucleotide substitutions 5135 
reported here describe well the trajectory of mutations through a population, most 5136 
notably in representing the stochastic nature of what happens to mutant genomes. 5137 
Whether or not a mutation becomes fixed in a population is determined by both 5138 
selective forces and random chance. As the hosts with exposure histories are 5139 
expected to mount rapid memory immune responses, viruses in these hosts ought to 5140 
be under greater selective pressures in attempts at removal by adaptive immune 5141 
cells and molecules. During the transmission experiment, diversity among consensus 5142 
sequences was seen almost exclusively in these historically exposed hosts (VM and VS 5143 
classes), suggesting the existence of strong pressures forcing genetic diversification 5144 
and rapid removal of any less-fit variants. I thus understand that in these controlled 5145 
settings, the fixation of consensus mutations is less likely in populations infecting 5146 
hosts with previous IAV exposure. As selective immune pressures are lower in the 5147 
naïve hosts, virus genomes are able to sustain neutral, or even slightly unfit, 5148 
mutations without being purged as severely as replicating viruses in hosts with rapid, 5149 
specific immune activation. Below the consensus level, diversity (i.e. Shannon 5150 
entropy and π nucleotide) is highest in viral populations infecting naïve hosts, with 5151 
no previous exposure to IAV. 5152 

The host environments in which EIV replicates are not all equal; differing 5153 
exposure histories, not to mention possible host heterogeneities, can dictate the 5154 
quantity and quality of antibodies present in mucus. Such host environments do not 5155 
necessarily affect evolutionary rates of EIV, but they can create situations that 5156 
encourage immune selection or reduce the effect of stochastic removal of genomes.  5157 

Unexpectedly, the output of mutations was almost entirely even, i.e. 10 5158 
synonymous and 11 nonsynonymous mutations. As nonsynonymous mutations are 5159 
more likely to impact phenotypes than synonymous ones, and due to codon 5160 
redundancy, synonymous mutations are generally expected to occur more 5161 
frequently. That nonsynonymous mutations appear more often could indicate an 5162 
exploration of the fitness landscape; strong selective pressures in vaccinated hosts 5163 
may drive the proliferation of nonsynonymous mutations in order to develop a fitter 5164 
phenotype.  5165 
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6.4.1 Global EIV Sequences 5166 

Many of the 21 consensus mutations observed across the experiment were also 5167 
observed in publicly available EIV sequences. From this, and the mutations reported 5168 
in both transmission chains, some level of convergent evolution or hypervariability 5169 
in those sites must be suspected. In contrast, the mutations that appeared most 5170 
frequently (PB1-t1500c/Gly500, PB1-a1853g/Glu618Gly and NP-g1445a/Ser482Asn) 5171 
and became fixed at the end of each transmission chain were rarely reported in 5172 
global EIV sequences. Indeed, the nonsynonymous mutation PB1-a1853g/Glu618Gly, 5173 
seen in all naïve hosts in the multi group, is never observed in the field, which I 5174 
believe indicates that if there is any phenotype associated with this mutation it must 5175 
provide very minimal benefits to the virus. 5176 

Conversely, some mutations appeared spuriously in the study without becoming 5177 
fixed, but have been observed at the global epidemiological scale. The success of 5178 
viruses carrying these mutations in real-world settings does not reflect their 5179 
appearance within this transmission study; the two settings are substantially 5180 
different. The experiment explicitly aimed to ensure EIV transmission among horses, 5181 
keeping individuals indoors to encourage transmission. Hence, mutations that 5182 
benefit wild viruses may be unsuitable in such tightly-controlled environments.  5183 

Were this study to be furthered, without consideration of cost or time, I would 5184 
direct an investigation into measuring fitness effects of these haplotypes. Thirteen 5185 
viruses, each representative of one of the reported haplotypes, would be cultured 5186 
and used to establish growth curves. Measuring the replicative speed and efficiency 5187 
would provide a much clearer marker of the genomic fitness that each constellation 5188 
of mutations provides to the virus. 5189 
6.4.2 Genetic Linkage 5190 

Hitherto, the 21 consensus mutations and the 13 haplotypes they group into 5191 
have been discussed independently. However, genetic linkage is a major 5192 
consideration in evolution that warrants further investigation, which was not 5193 
feasible in the present study. Though many of the mutations reported from this 5194 
dataset appear only once (16 of 21 SNPs are singletons), 17 appear in conjunction 5195 
with at least one other consensus mutation, either with other mutations generated 5196 
de novo in the sample, or mutations that had prior fixed in the population. This 5197 
highlights the importance of considering mutations interconnectedly; a moderately 5198 
beneficial mutation may not be selected for if it is accompanied by a second 5199 
mutation conferring detrimental effects to the viral genome. How then can we 5200 
understand the dynamics and impacts of co-occurring mutations? 5201 

Linkage equilibria studies can elucidate the genotypic/phenotypic effects of 5202 
two or more mutations independently as well as considering any interactions 5203 
between them. This form of analysis can also explore the potential for genetic 5204 
reassortment, whereby combinations of genetic segments from co-infecting 5205 
heterogeneous parental virions can assemble within a single progeny virion. 5206 
Understanding such linkage effects across the ~13kb genome was not attempted 5207 
during this study; despite the potential biological relevance, nucleotide mutations 5208 
appeared in frequencies too low for any study of interactivity. There are only 15 5209 



   
 

160 
 

samples in this dataset that appear more than once and share more than one 5210 
mutation, making any inference of mutation linkage difficult. Additionally, linkage 5211 
of mutations at a scale large enough to impact viral fitness may be incredibly unlikely 5212 
to occur over the 20-day period of sample collection. Finally, the short-read Illumina 5213 
sequencing procedure used in the experiment made studying such linkage 5214 
interactions incredibly difficult. A previous model study of such epistatic 5215 
relationships between SNPs examined the inter-connectedness of both HA and NA 5216 
activity on the proliferation of HA mutations (Liu et al., 2022). This example utilised 5217 
an alternative deep-sequencing technology, NovaSeq 6000, followed by analyses of 5218 
the read library with the variant call tool ‘DeepSNV’, which I reviewed in Chapter 5219 
5.4.1. 5220 

Of the eleven non-synonymous mutations observed over the course of the 5221 
experiment, eight appeared only once. Many, however, were predicted to have some 5222 
impact on protein structure and function. Predictions were based on physio-5223 
chemical differences between amino acid residues, spatial displacement caused by 5224 
residue substitutions and mining IAV literature for annotations of homologous 5225 
proteins.  5226 

Three examples of substitutions in protein functional sites appear in 5227 
Polymerase Basic 1, Haemagglutinin and Neuraminidase proteins. The Gln294Arg 5228 
substitution in PB1 falls in a highly exposed portion of the catalytic RNA-dependent 5229 
RNA-polymerase (RdRp) region. HA Gly144Asp is the middle of a triad of residues 5230 
forming antigenic site A, as labelled in human H3 proteins (Both et al., 1983; Caton 5231 
et al., 1982). NA Lys342Glu is at a site that, while not directly involved in protein 5232 
activity, is a critical binding site for antibodies. Antibodies raised to H11N9 viruses 5233 
by mice in laboratory settings (A/Tern/Australia/G70C/1975) were observed, in 5234 
silico, binding to the 3D neuraminidase structure, including bonds between site 342 5235 
and the antibody light-chain. 5236 

To further explore each of the mutations observed during the transmission 5237 
experiment, I sought evidence of these substitutions in published EIV datasets, 5238 
searching through only samples with full genome sequences. Seeking an indication 5239 
of the functional or epidemiological consequences of these mutations, I instead 5240 
found a complete lack of reported genomes containing these PB1 and NA mutations. 5241 
Likewise, the HA mutation (Gly144Asp) was reported only once among 384 genomes. 5242 
Despite putative antigenic and/or functional changes conferred by these mutations, 5243 
they rarely, if ever, appeared in EIV sequences generated to date. 5244 
6.4.3 Protein Structures Predicted Well 5245 

Previously unfamiliar with the intricacies of structural biology, the opportunity 5246 
to utilise new in silico modelling procedures enabled me to estimate the structures 5247 
of all 10 major proteins in the EIV proteome. Experimental structure-resolution is an 5248 
expensive, laborious process. Alternatively, homology modelling, i.e. using 5249 
translated genomic sequences in conjunction with modelling software, such as the 5250 
cloud-based platform ColabFold (Mirdita et al., 2022), can estimate hitherto 5251 
unresolved proteins using a database of pre-existing solved structures. 5252 

At time of writing, only three EIV structures have been resolved 5253 
experimentally, all of which represent haemagglutinin (A/Equine/Newmarket/2/93 5254 
[H3N8] PDB:4UNW, A/Equine/Richmond/07 [H3N8] PDB:4UO0 and 5255 
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A/Equine/NY/49/73 [H7N7] PDB:6N5A). Having a full complement of the internal 5256 
and external proteins of EIV would allow for further exploration of host-virus 5257 
interactions and the putative phenotypic effects of non-synonymous mutations upon 5258 
protein function. With the development of in silico modelling and machine-learning 5259 
procedures, 3D protein structures can now be estimated for many viruses with 5260 
relatively low computational and time costs (Abbas et al., 2023; Mirdita et al., 2022) 5261 
and once developed, have been used extensively for predicting protein structures 5262 
(Evans et al., 2021; Varadi et al., 2022). Such methods of predicting protein 5263 
structures, based solely on genomic sequence data, have been used for an array of 5264 
viral species and proteins. A meta-review of AlphaFold’s usage in virology by Gutnik 5265 
et al. (2023) discusses prediction of proteins from SARS-CoV-2, Mpox and HSV-1 5266 
viruses among those of numerous bacteriophages. 5267 

Having established high-confidence models of protein structures, I then moved 5268 
to in silico testing the putative effects of non-synonymous mutations on structure 5269 
and function. The impact of amino acid substitutions on local morphology, as 5270 
measured by two angles of rotation (the Ramachandran angles Φ and Ψ), gave a 5271 
rudimentary value of potential changes to protein function. Though only viewing 5272 
morphological changes, the placement of such mutations may reveal phenotypic 5273 
changes to proteins; for example, the Gly144Asp mutation observed in 5274 
haemagglutinin sits within part of the cluster of residues known as antigenic site A. 5275 
Due to differences in hydropathy, molecular weight and charge between the two 5276 
residues, the substitution is expected to alter the plane of this site, potentially 5277 
changing its’ antigenic presentation. Similarly, a mutation seen in neuraminidase 5278 
(Lys342Glu) lies on the surface of the protein. Though not at an active site, on 5279 
searching homologous proteins, this site was shown to be part of a binding site 5280 
targeted by anti-neuraminidase antibodies.  5281 

These two examples indicate that even just single point mutations to amino 5282 
acids may be sufficient to influence viral fitness. Rather than focusing on the exact 5283 
impact of these mutations, I highlight the potential of phenotypic mutations to arise 5284 
even in short transmission experiments. Though an experimental transmission and 5285 
under highly controlled conditions, this study provides evidence to suggest that 5286 
detectable viral evolution can occur during even short outbreaks among small 5287 
populations.   5288 
6.4.4 Summarising Consensus Findings 5289 

In the absence of immune pressures, the fastest-replicating viruses may be 5290 
expected to dominate. The homogenisation of sequences seen in the unvaccinated 5291 
individuals of both transmission chains indicates this. Having infected a host without 5292 
a primed adaptive immune response, the fittest virus (J in the Multi and F in the 5293 
Single chain) is whichever can outcompete other EIV variants. Whatever effects that 5294 
the J (PB1 t1500c synonymous and a1853g/Glu618Gly substitutions) or F (NP 5295 
g1445a/Ser482Asn mutation) haplotypes have on viral replication remain to be seen; 5296 
this would require testing the experimental fitness of these two viruses.  5297 

Further interest lies in the synonymous mutation PA c201t. This mutation 5298 
appeared independently in both transmission chains and was also recorded in 15% of 5299 
global full-genome EIV sequences. Though these variants  "199
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are the only codons to possibly encode the Aspartic acid seen at residue 67, perhaps 5301 
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the mutant form (GAT) is favoured in cellular translation. Other potential 5302 
explanations for this apparent preference may include anti-sense codons (CTG or 5303 
CTA) unfavourable to host cells, or post-translation modifications caused by this 5304 
synonymous mutation. Such seemingly innocuous changes can be due to differences 5305 
in host cellular machinery; any codon preferences present in host ribosomes will be 5306 
imprinted onto viruses reproducing in that host. Observation of host-specific codon 5307 
biases have been reported in coronaviruses (Kumar 2021), rotaviruses (Kattoor 2015) 5308 
and influenza A viruses (Wen 2019). Tests for quantifying this genomic bias, including 5309 
Relative Synonymous Codon Usage (RSCU) and Effective Number of Codons (ENCs), 5310 
were employed in the above studies to show discrete adaptive differences in viruses 5311 
in their natural hosts (e.g. avian) compared to replication in spillover hosts (e.g. 5312 
swine). Viral codon usage patterns can reflect fitness adaptations; vRNA with 5313 
features that are otherwise rare in host cells is more likely to be recognised as alien, 5314 
possibly stimulating innate immune responses. Adopting codon usage patterns that 5315 
match host cells may be a form of immune evasion by replicating viral genomes. 5316 
6.5 Quantifying Transmission Bottlenecks 5317 

Using the beta-binomial model proposed by Sobel Leonard et al. (2017), the 5318 
proportion of variant reads detected in two epidemiologically-connected samples 5319 
(either samples from a single individual over multiple days or a donor-recipient pair) 5320 
it was possible to estimate the number of viral genomes needed to affect particular 5321 
transmission events . Concurrent with other published IAV data (Dimas Martins & 5322 
Gjini, 2020; Johnson & Ghedin, 2020; LeClair & Wahl, 2018; McCrone & Lauring, 5323 
2018; Sigal et al., 2018), the actual number of distinct genomes involved in a 5324 
transmission event tends to be very small, at most five viruses.  5325 

Additionally, transmission bottlenecks differ between groups in the experiment 5326 
with events where the donor has a history of prior EIV exposure being, on average, 5327 
smaller. Whereas, when naïve hosts transmit virus, the bottlenecks include both 5328 
more genomes and a slightly greater range of diversity. Extrapolating this finding, 5329 
in an outbreak setting we would then assume that, like seen in the viral load, when 5330 
hosts with previous exposure to EIV are involved in a transmission event, the number 5331 
of viral genomes they transmit will be small and unable to fully represent the range 5332 
of diversity generated in that host.  5333 

Like any bottlenecking event in nature, inter-host transmission limits the 5334 
amount of diversity that can be maintained in the population as a whole. Regardless 5335 
of how fit or how many advantageous mutations are able to develop over the course 5336 
of a single infection, if those highly-competitive variants are unable to spread to 5337 
subsequent hosts then that beneficial variant will be ultimately lost. Having 5338 
observed minor differences between the bottlenecks of different classes, despite 5339 
the greater diversity seen in vaccinated hosts across both groups, the low number 5340 
of viable viruses that actually transmit means that much of this diversity could be 5341 
lost. 5342 

6.6 Real-World EIV Epidemiology 5343 

Premises can only be infected with EIV from a limited number of routes: 5344 
introduction by horse, cross-species transmission from a non-equine vector or 5345 
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environmental exposure to the infectious virus. We expect most EIV outbreaks to be 5346 
maintained primarily by horse-horse transmission, either a new infected individual 5347 
enters the population (e.g. trading or purchasing) or a horse native to the premises 5348 
acquires infection elsewhere (e.g. a sporting or other agricultural event) and then 5349 
returns to the focal premises. Though fomite and environmental transmission are 5350 
implicated sources of infection, the relatively short period of viability for IAV on 5351 
most surfaces (up to 24 hours (Thompson & Bennett, 2017; Wißmann et al., 2021)) 5352 
makes these routes more likely to contribute to infection within a premises, rather 5353 
than seed infection of a new premises. Conversely, virus entering an equine 5354 
population from another host species assumes circulation of EIV amongst the 5355 
external (likely wild bird) population and a plethora of cross-species contact events 5356 
in order for enough infectious virus to establish infection in the equine index case. 5357 
In most countries where wild horses are much rarer than owned/managed horses, 5358 
under both introductory circumstances, the moving horse is more likely to be 5359 
vaccinated than a stationary individual, due to economic importance, sporting 5360 
guidelines or trade requirements. Given this, I then assume that EIV is most 5361 
commonly introduced to a premises by horses with some history of vaccination. 5362 

From the above analyses, we see that hosts with a history of viral exposure are 5363 
more likely to a) shed lower amounts of infectious virus and b) foster an intra-host 5364 
environment that drives viral diversification. Hence, the index case of each outbreak 5365 
is expected to transmit a small, diverse population of viral variants. Few genomes 5366 
pass through each transmission bottleneck but carry a good representation of the 5367 
diversity generated in the index case. This, in a compartmental epidemiological 5368 
model, would then make for a low force of transmission (β).  5369 

Importantly, this experiment investigated the effects of not only different host 5370 
exposure histories on viral populations, but the knock-on effects this may cause 5371 
further along a transmission chain. Despite best practices, horse populations are 5372 
never going to be fully protected by EIV vaccines; whether due to unforeseen 5373 
changes in circulating virus, socio-economic disparities in vaccine availability or host 5374 
heterogeneities, a premises will never have complete immunity to EIV. However, 5375 
they have likely been exposed to many EIV strains throughout their life. This, then 5376 
amplified by inter-herd heterogeneities, creates an interconnected population of 5377 
horses with varying levels of immunity and contact. Therefore, knowing how 5378 
influenza A viruses are affected by the infection of hosts with adaptive immune 5379 
memory of prior IAV exposure and how these changes persist (or vanish) upon 5380 
infecting a host with no immunological memory can provide a realistic picture of the 5381 
epidemiological landscape. Assuming that the owner/rider has economic access to 5382 
routine vaccination, the immunity of each individual horse is both knowable and 5383 
controllable. Without in-depth epidemiological investigation, the time since contact 5384 
with an infected individual and the vaccine status of that individual plus hosts that 5385 
preceded it, are unknown.  5386 

Though horses in more economically-developed countries are now rarely used as 5387 
working animals, those in sporting  roles often have high levels of veterinary care. 5388 
They are also most likely to travel and contact individuals outside of their normal 5389 
group, features traditionally associated with individuals classed as “super-5390 
spreaders” in epidemic models. Quite how EIV is affected by replication in these 5391 
well-protected super-spreaders is not fully understood, but in the experiment 5392 
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presented here one class of hosts modelled horses with life histories of multiple 5393 
exposures, the VM class, and so this represents a good proxy for drawing inferences 5394 
on viral evolution. 5395 

6.7 An Immune System Exposed to a Plethora of Influenza 5396 

Viruses 5397 

Throughout the above experiment, the horses in the “vaccinated” class had 5398 
exposure histories of either one or four equine influenza strains. However, even in 5399 
the Multi group, where subjects had been exposed to four different EIV strains before 5400 
being challenged, all of the viruses to which they were exposed were H3N8, which 5401 
shares 90-95% genetic identity with the haemagglutinin of the challenge virus. 5402 
Nonetheless, phenomena that don’t rely on haemagglutinins of differing groups, like 5403 
epitope masking, are beginning to be understood for their potential to impair a full-5404 
strength humoral response to IAV infection. Epitope masking describes a process 5405 
wherein cross-reactive antibodies physically block new antibodies from binding to 5406 
viral surface proteins (Zarnitsyna et al., 2015), even though these newly developed 5407 
antibodies may have better neutralising activity. B cells activated by a memory 5408 
response produce antibodies much faster and in greater quantities than B cells from 5409 
newly elicited clonal expansion; this epitope masking can therefore dampen the 5410 
ability of newly-developed antibodies to neutralise influenza virions. Studying these 5411 
interactions between hosts and pathogens on a molecular scale is only possible with 5412 
high-resolution structural models, such as those I developed here. Further 5413 
exploration of this immune phenomena using the protein structures presented here 5414 
could aid in the development of strain-agnostic EIV vaccines. 5415 

Following from work on mice that had been exposed to different strains of 5416 
mouse-adapted influenza (J. H. Kim et al., 2009b), studies have shown immune-5417 
boosting and/or reactivation of responses to the IAV strain that individual was first 5418 
exposed to even when infected with an unrelated strain of IAV. Information on the 5419 
strength of adaptive immune memory responses were collected from hosts modelled 5420 
as having had previous exposure history (VM and VS classes) as serial radial haemolysis 5421 
values. Due to time constraints, and a lack of similar data collected during the 5422 
transmission experiment, these were not explored over the course of this thesis. 5423 
6.8 Game Theory 5424 

The incorporation of game theory into epidemiological modelling has become 5425 
more common as computational biology has developed, having especially snowballed 5426 
in popularity since the emergence of SARS-CoV-2. However, the majority of studies 5427 
to date have focused on individuals or sub-populations of decision-making people; 5428 
little attention has been directed to the study of epizootics.  5429 
Wild horse populations are far rarer than human-managed horses in the majority of 5430 
countries within agricultural and/or sport settings and this creates unique 5431 
epidemiological structures that translate (albeit clumsily) into game theory. Rather 5432 
than human players making decisions for themselves, those people managing equine 5433 
populations (e.g. farmers, jockeys, breeders etc.) make decisions on behalf of the 5434 
horses, a process as yet underexplored in game theory. The decisions to vaccinate, 5435 
move and report infection of horses lay with owners, which may alter the parameters 5436 
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that feed into such game theory models, for example risk of infection, risks & costs 5437 
of vaccination and the knowledge base (self-learned or imitation) from which 5438 
decisions are made. 5439 

By measuring the impacts of adaptive immunity on viral shedding and evolution, 5440 
this work aids in characterising some parameters that may influence decision-making 5441 
processes of individuals (owners) and populations (via policy). Illuminating the 5442 
effects of vaccination on the viral populations within-hosts (i.e. a decrease in the 5443 
quantity of virus shed and application of strong selective immune pressures) should 5444 
thus encourage more regular vaccine uptake. On an individual level, monetary and 5445 
other costs (namely, risks of adverse reactions) of vaccination may serve to 5446 
downplay the benefits of such prophylactic behaviours. Indeed, in agricultural 5447 
populations reactive vaccination protocols are often employed by individuals 5448 
managing horses (Wilson 2021). 5449 
6.9 Study Limitations 5450 

Of the transmission experiment itself, some methodological constraints may 5451 
have limited certain aspects of the analyses. To begin with, the subjects (Welsh 5452 
mountain ponies) were reared under controlled conditions and thus had known 5453 
exposure histories. However, it should be appreciated that they were 24 unique 5454 
individuals, bringing inherent differences in responses to infections beyond those 5455 
implemented in the exposure programme. Individual differences in innate, and 5456 
potentially even intrinsic, immunity could vastly alter the host environments in 5457 
which viruses find themselves, leading to different evolutionary drivers. This is 5458 
especially evident when considering NS1, a viral immune-deregulatory protein that 5459 
acts to interfere with intrinsic cellular immunity. Heterogeneity amongst the cellular 5460 
machinery of individuals could, thus, impact EIV fitness. 5461 

Secondly, a missed opportunity from this experiment was sampling exclusively 5462 
from the nasal mucosa. Pathogen populations can be keenly influenced by the spatial 5463 
heterogeneity present within hosts; a common example is the tropism for lower vs 5464 
upper respiratory tracts evident in influenza infections. Partitioning by differing 5465 
tropisms can cause populations to diverge; without input from each other they can 5466 
create very different population structures even if the microclimates provide the 5467 
exact same conditions and selective pressures. To demonstrate the potential for 5468 
such variety in horse respiratory tracts, veterinary clinicians recommend a 2-3 metre 5469 
endoscope for equine bronchoscopy – along which conditions (such as the 5470 
temperature, humidity and presentation of immune cells and molecules to name a 5471 
few) can vary greatly for colonising viruses. This, therefore, can mean that EIV 5472 
populations within a host can face wholly different adaptive landscapes, driving 5473 
evolution in separate, distinct directions. Of course, daily sampling of multiple areas 5474 
of a host’s airway is untenable due to welfare reasons.  5475 

There was no recording of symptoms while horses were observed and, 5476 
additionally, the pairing of individuals for purposes of welfare unfortunately 5477 
interferes somewhat with details of the transmission events. Though the direction 5478 
of the transmission chain is known, having four hosts present at each transmission 5479 
event meant simplifying the viruses in paired hosts XA and XB to have acted as one 5480 
population (X). This then omits the possibility of one host being infected by two (or 5481 
even three) individuals and assumes that both donor hosts transmitted the virus 5482 
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evenly and in identical proportions. Clearly, this is unrepresentative of real epidemic 5483 
dynamics, and somewhat confounds estimations of transmission bottleneck sizes.  5484 

Sera samples were collected from the vaccinated hosts for measuring the 5485 
strength of their responses during the regiment of exposure to viruses. 5486 
Unfortunately, due to time constraints of the study and the low quality of these 5487 
samples, this avenue of research was explored only at the shallowest level. 5488 

Like much predictive modelling, the protein structural estimations and 5489 
associated in silico mutagenesis experiments were never qualified or verified with 5490 
any in vitro studies. However, to account for this I did try to compare the models 5491 
with actual lab experiments whenever possible to at least add some credence to the 5492 
claims put forth, such as the comparison of predicted H3N8 protein properties with 5493 
those of IAV proteins quantified in vitro, and the attempts to contrast 3D structural 5494 
models with fully-resolved crystal structures of proteins from other IAV.  5495 

As discussed above, fomites and environmental transmission of EIV can play a 5496 
role in epidemic dynamics within premises. Hence, having the subjects held together 5497 
in a single compound may lead to slightly overinflated values that would only be 5498 
observed in cases where horses are in constant indoor contact. This perhaps explains 5499 
continual transmission events, even from hosts that shed very little amounts of virus.  5500 

7 Closing Remarks  5501 

Altogether, I present an intricate look at the evolutionary dynamics of EIV 5502 
through short, experimental transmission chains at both the consensus and sub-5503 
consensus level, further supported by daily quantification of the viral populations 5504 
shed by hosts. This comprehensive view of viruses as they experience transmission 5505 
bottlenecks moving between hosts allows for observation of the ways in which 5506 
diversity generated in one viral genome can be maintained or removed from the 5507 
population en masse. Furthermore, differing host environments were created by 5508 
exposing some hosts to whole, inactivated virus in order to stimulate immunological 5509 
memory, simulating having previously encountered such viruses. Whether hosts 5510 
experienced these simulated life-history exposures to influenza viruses, and if so by 5511 
how much did these previous immunogens differ from the challenge virus, created 5512 
a three-class system in which to analyse viral evolution.  5513 
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Appendices 

A) 

 
B) 
Model 1: mean Ct values ~ Status + Group + Days Post-contact (smoothed with 8 pivots) 
LOOIC model 1: 890.6 
Model 2: total Ct (AUC) ~ Status + Group + Days Post-contact (smoothed with 8 pivots) 
LOOIC model 2: 395.7 

 
Supplementary 2.1: A) Regression Table and raw data used in the GAM analysis of viral 
shedding. B) In determining whether to use the average (meanCt) or the summed (AUC) amount 
of virus shed when modelling, models were constructed in parallel and then compared with a 
Leave-One-Out Information Criterion (LOOIC). Diagnostic plots show the distribution of 
residuals. 

> summary(mod_sumlogCopies_split)

Model Info:
 function:     stan_gamm4
 family:       gaussian [identity]
 formula:      totCopies ~ s(dpc, k = 8) + Status + group
 algorithm:    sampling
 sample:       50000 (posterior sample size)
 priors:       see help('prior_summary')
 observations: 36

Estimates:
                     mean   sd    10%   50%   90%
(Intercept)         11.1    0.7  10.2  11.1  12.1
StatusVacc           1.6    0.9   0.5   1.6   2.6
groupSin            -2.1    0.9  -3.2  -2.1  -1.1
s(dpc).1           -33.5   23.2 -63.6 -33.1  -4.1
s(dpc).2            48.1   17.1  25.9  48.5  69.4
s(dpc).3            57.3   16.1  36.3  58.0  77.1
s(dpc).4           -20.2    5.8 -27.5 -20.2 -12.7
s(dpc).5             7.3    5.0   0.8   7.4  13.7
s(dpc).6            10.0    9.2  -1.9  10.3  21.4
s(dpc).7           -30.7   17.9 -53.6 -31.0  -6.6
sigma                2.5    0.4   2.1   2.5   3.0
smooth_sd[s(dpc)1]  47.1   22.5  24.9  42.7  73.8
smooth_sd[s(dpc)2] 119.9  109.0  21.0  84.2 271.8

Fit Diagnostics:
           mean   sd   10%   50%   90%
mean_PPD 10.8    0.6 10.1  10.8  11.6 

MCMC diagnostics
                   mcse Rhat n_eff
(Intercept)        0.0  1.0  36422
StatusVacc         0.0  1.0  36413
groupSin           0.0  1.0  37329
s(dpc).1           0.2  1.0  21699
s(dpc).2           0.1  1.0  20441
s(dpc).3           0.1  1.0  15009
s(dpc).4           0.0  1.0  31730
s(dpc).5           0.0  1.0  20009
s(dpc).6           0.1  1.0  17793
s(dpc).7           0.1  1.0  16186
sigma              0.0  1.0  14298
smooth_sd[s(dpc)1] 0.2  1.0   8152
smooth_sd[s(dpc)2] 0.9  1.0  14472
mean_PPD           0.0  1.0  42107
log-posterior      0.1  1.0   6091

Status Group
DPC

0 1 2 3 4 5 6 7 8
Naive Mul 4.037 2.825 13.496 19.132 18.026 17.290 17.128 5.571 2.735
Naive Sin 1.601 3.390 17.005 17.886 13.994 10.178 13.132 3.188 0.479
Vacc Mul 3.066 2.589 22.052 15.681 19.004 20.615 16.491 11.939 2.760
Vacc Sin 2.459 2.144 19.341 15.641 15.096 18.287 13.931 7.194 0.894
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Supplementary 3.1: Serial Radial Haemolysis (SRH) experiments from vaccinated horses in the 
Multi (top) and Single (bottom) transmission groups. Dashed lines denote the date of each 
vaccination. Each point shows the degree of circulating anti-EIV antibodies as represented by 
the size of SRH plaques in response to exposing antisera to viral cultures. 
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Supplementary Figure 3.2: Viral loads obtained from each nasal swab, coloured for the host’s 
position in the transmission chain. Shapes differentiate paired hosts from each other (A or B). 
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Supplementary 3.3: Plot of the residuals from models created using the mean copy numbers of 
samples, demonstrating non-normality in the distribution of residuals. In addition, skew was 
calculated at 5.83 and the kurtosis of the curve was 42.58. Hence, non-parametric tests were 
used in the analyses that followed. 
 

Protein UniProt ID UniProt Accession PDB Reference 

01PB2 >sp|P03429 P26105  6QNW_3 

02PB1 >sp|P03432 P16505  6QNW_2 

03PA >sp|P03429 P13169  6QNW_1 

04HA >tr|Q82847 P17001  4UNW 

05NP >tr|Q1K9H2 P67915  2IQH 

06NA >sp|A0A0C4WXC5 Q07582  5HUK 

07M1 >sp|P03485 Q77ZK7  1EA3 

07M2 >sp|P0DOF5 Q77ZK8  2L0J 

08NEP >sp|P03508 Q77ZM4  1PD3 

08NS1 >tr|Q20NS3 Q20NS3 4OPH 

Supplementary 4.1: Published proteins that were used to map regions of the proteins 
translated from sequence data collected in the transmission experiment.  
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Supplementary 5.1: The simulated genomes used to test Variant Call Tools.  Nucleotides are 
numbered on the first row and cells are filled and labelled to show the frequency of mutant 
reads compared to consensus reads. 
 

Dataset Bioproject Reference Genome NCBI taxID Sequence 
 

SimData - A/Equine/Newmarket/5/03 (H3N8) 568375 ga2  

SimData - A/Equine/Newmarket/5/03 (H3N8) 568375 ns50  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3359624  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3359625  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3359626  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3359627  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3359628  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360141  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360142  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360143  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360144  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360149  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360151  

McCrone2016 PRJNA317621 A/WSN/1933 (H1N1) 382835 SRR3360152  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121274  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121281  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121301  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121368  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121380  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121409  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121620  

McCrone2018 PRJNA412631 A/New York/WC-LVD-15-031/2015 (H3N2) 1895544 SRR6121630  

Han2021 PRJNA722099 A/Brisbane/10/2007 (H3N2) 476294 SRR14242319  

Han2021 PRJNA722099 A/Brisbane/10/2007 (H3N2) 476294 SRR14242328  

Han2021 PRJNA722099 A/Brisbane/10/2007 (H3N2) 476294 SRR14242338  

Han2021 PRJNA722099 A/Brisbane/10/2007 (H3N2) 476294 SRR14242374  

Sequence Read Segment 100 150 200 300 350 400 500 550 600 700 750 800 900 950 1000 1100 1150 1200 1300 1350 1400 1500 1550 1600 1700 1750 1800 1900 1950 2000 2100 2150 2200 2300
01PB2 
02PB1 
03PA 
04HA 
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08NS 
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08NS 
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08NS 
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Han2021 PRJNA722099 A/California/04/2009 (H1N1) 641501 SRR6121449  

Han2021 PRJNA722099 A/California/04/2009 (H1N1) 641501 SRR6121456  

Han2021 PRJNA722099 A/California/04/2009 (H1N1) 641501 SRR6121594  

Han2021 PRJNA722099 A/California/04/2009 (H1N1) 641501 SRR6121605  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443362  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443363  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443366  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443370  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443375  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443376  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443382  

Poelvoorde2022 PRJNA692424 A/Victoria/1003/2012 (H3N2) 2044087 SRR13443383  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443356  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443379  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443387  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443390  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443391  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443394  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443397  

Poelvoorde2022 PRJNA692424 A/Bretagne/7608/2009 (H1N1) 1506405 SRR13443399  

Supplementary 5.2: Sequences used to test Variant Call Tools, obtained from previously 
published data or sequences using the ART simulator. 
Supplementary 5.3: Mutation sub-consensus frequency seen on genomic segments 2-7. 
Graphs attempt to show the trajectory of mutations throughout the experiment, hence only 
mutations that broach the consensus level (as illustrated by dashed line) were examined. 
Further, mutations that appear in consensus sequences but are only detectable within the sub-
consensus reads on that day are not shown. Both segment 8 mutations (110 and 113) for 
example were only seen above the limit of detection on the day in which they appeared at the 
consensus level. 



7 7 
 

7 
 

Sin

a1853 − Glu618

Sin

a881 − Gln294

Sin

t1500 − Gly500

Mul

a1853 − Glu618

Mul

a881 − Gln294

Mul

t1500 − Gly500

5 10 15 5 10 15 5 10 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Mul_2A

Mul_2B

Mul_3A

Mul_3B

Mul_4A

Mul_4B

Mul_5A

Mul_5B

Mul_6A

Mul_6B

Sin_2A

Sin_2B

Sin_3A

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

02PB1

Sin

g1180 − Asp394

Sin

t1221 − Ile407

Sin

a1650 − Leu550

Sin

c201 − Asp67

Sin

c825 − Pro275

Mul

c201 − Asp67

Mul

c825 − Pro275

Mul

t1221 − Ile407

5 10 15 5 10 15

5 10 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Mul_2A

Mul_2B

Mul_3A

Mul_3B

Mul_4A

Mul_4B

Mul_5A

Mul_5B

Mul_6A

Mul_6B

Sin_2A

Sin_2B

Sin_3A

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

03PA



7 8 
 

8 
 

Mul

a1401 − Arg467

Mul

g431 − Asp144

Sin

a1401 − Arg467

5 10 15 5 10 15 5 10 15

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Mul_2A

Mul_2B

Mul_3A

Mul_3B

Mul_4A

Mul_4B

Mul_5A

Mul_5B

Mul_6A

Mul_6B

Sin_2A

Sin_2B

Sin_3A

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

04HA

Sin

g1445 − Ser482

8 12 16

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Sin_2B

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

05NP



7 9 
 

9 
 

 

 

Mul

a1024 − Lys342

Sin

a1024 − Lys342

Sin

c690 − Thr230

5 10 15 5 10 15 5 10 15

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Mul_2A

Mul_2B

Mul_3A

Mul_3B

Mul_5B

Mul_6A

Mul_6B

Sin_2B

Sin_3A

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

06NA

Mul

a418 − Thr140

Sin

a418 − Thr140

5 10 15 5 10 15

0.00

0.25

0.50

0.75

1.00

Day

Fr
eq

Mutation
Mul_2A

Mul_2B

Mul_3A

Mul_3B

Mul_4A

Mul_4B

Mul_5A

Mul_5B

Mul_6A

Mul_6B

Sin_2A

Sin_2B

Sin_3A

Sin_3B

Sin_4A

Sin_5A

Sin_5B

Sin_6A

Sin_6B

07MP



10 

10 
 

List of References 

Abbas, U. L., Chen, J., & Shao, Q. (2023). Assessing Fairness of 
AlphaFold2 Prediction of Protein 3D Structures. Proceedings 
of the 14th ACM International Conference on Bioinformatics, 
Computational Biology, and Health Informatics, 1–10. 
https://doi.org/10.1145/3584371.3612943 

Abdel-Moneim, A. S., Abdel-Ghany, A. E., & Shany, S. A. (2010). 
Isolation and characterization of highly pathogenic avian 
influenza virus subtype H5N1 from donkeys. Journal of 
Biomedical Science, 17(1), 25. 
https://doi.org/10.1186/1423-0127-17-25 

Abdel-Moneim, A. S., Shehab, G. M., & Abu-Elsaad, A.-A. S. 
(2011). Molecular evolution of the six internal genes of H5N1 
equine influenza A virus. Arch Virol, 156(7), 1257–1262. 
https://doi.org/10.1007/s00705-011-0966-3 

Adeyefa, C. A. O., James, M. L., & Mccauley, J. W. (1996). 
Antigenic and genetic analysis of equine influenza viruses 
from tropical Africa in 1991. Epidemiol Infect, 117(2), 367–
374. https://doi.org/10.1017/s0950268800001552 

Aeschbacher, S., Santschi, E., Gerber, V., Stalder, H. P., & 
Zanoni, R. G. (2015). Development of a real-time RT-PCR for 
detection of equine influenza virus. Schweizer Archiv Fur 
Tierheilkunde, 157(4), 191–201. 
https://doi.org/10.17236/sat00015 

Alford, R. H., Kasel, J. A., Lehrich, J. R., & Knight, V. (1967). 
Human Responses to Experimental Infection with Influenza 
A/EQUI 2 Virus. American Journal of Epidemiology, 86(1), 
185–192. 
https://doi.org/10.1093/oxfordjournals.aje.a120723 

Alves Beuttemmüller, E., Woodward, A., Rash, A., Dos Santos 
Ferraz, L. E., Fernandes Alfieri, A., Alfieri, A. A. A. F. A. A., 
Elton, D., Beuttemmüller, E. A., Woodward, A., Rash, A., 
Eduardo, L., Alfieri, A. A. A. F. A. A., Alfieri, A. A. A. F. A. 
A., Elton, D., Alves Beuttemmüller, E., Woodward, A., Rash, 
A., Dos Santos Ferraz, L. E., Fernandes Alfieri, A., … Elton, 
D. (2016). Characterisation of the epidemic strain of H3N8 
equine influenza virus responsible for outbreaks in South 
America in 2012. Virology Journal, 13(1), 45. 
https://doi.org/10.1186/s12985-016-0503-9 

Amat, J. A. R., Patton, V., Chauché, C., Goldfarb, D., Crispell, 
J., Gu, Q., Coburn, A. M., Gonzalez, G., Mair, D., Tong, L., 
Martinez-Sobrido, L., Marshall, J. F., Marchesi, F., & Murcia, 
P. R. (2021). Long-term adaptation following influenza A 
virus host shifts results in increased within-host viral fitness 
due to higher replication rates, broader dissemination within 
the respiratory epithelium and reduced tissue damage. PLOS 
Pathogens, 17(12), 1–25. 
https://doi.org/10.1371/journal.ppat.1010174 



11 

11 
 

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & 
Garry, R. F. (2020). The proximal origin of SARS-CoV-2. In 
Nature Medicine (Vol. 26, Issue 4, pp. 450–452). 
https://doi.org/10.1038/s41591-020-0820-9 

Andrew, M. K., Pott, H., Staadegaard, L., Paget, J., Chaves, S. 
S., Ortiz, J. R., McCauley, J., Bresee, J., Nunes, M. C., 
Baumeister, E., Raboni, S. M., Giamberardino, H. I. G., 
McNeil, S. A., Gomez, D., Zhang, T., Vanhems, P., Koul, P. 
A., Coulibaly, D., Otieno, N. A., … Lina, B. (2023). Age 
Differences in Comorbidities, Presenting Symptoms, and 
Outcomes of Influenza Illness Requiring Hospitalization: A 
Worldwide Perspective From the Global Influenza Hospital 
Surveillance Network. Open Forum Infectious Diseases, 
10(6), 1–10. https://doi.org/10.1093/ofid/ofad244 

Aoki, F. Y., & Boivin, G. (2009). Influenza virus shedding—
Excretion patterns and effects of antiviral treatment. 
Journal of Clinical Virology, 44(4), 255–261. 
https://doi.org/10.1016/J.JCV.2009.01.010 

Arevalo, C. P., Le Sage, V., Bolton, M. J., Eilola, T., Jones, J. E., 
Kormuth, K. A., Nturibi, E., Balmaseda, A., Gordon, A., 
Lakdawala, S. S., & Hensley, S. E. (2020). Original antigenic 
sin priming of influenza virus hemagglutinin stalk antibodies. 
Proceedings of the National Academy of Sciences, 117(29), 
17221–17227. https://doi.org/10.1073/pnas.1920321117 

Armero, A., Berthetm, N., & Avarre, J.C. (2021). Intra-Host 
Diversity of SARS-CoV-2 Should Not Be Neglected: Case of the 
State of Victoria, Australia. Viruses, 13(1), 133. 
https://doi.org/10.3390/v13010133 

Arnold, M. (2021). mattarnoldbio/alphapickle: v1.4.1. Zenodo. 
https://doi.org/10.5281/zenodo.5752375 

Back, H., Treiberg, L., Gröndahl, G., Ståhl, K., Pringle, J., 
Zohari, S., Berndtsson, L. T., Gröndahl, G., Ståhl, K., 
Pringle, J., & Zohari, S. (2016). The first reported Florida 
clade 1 virus in the Nordic countries, isolated from a Swedish 
outbreak of equine influenza in 2011. Vet Microbiol, 184, 1–
6. https://doi.org/10.1016/j.vetmic.2015.12.010 

Baele, G., Suchard, M. A., Bielejec, F., & Lemey, P. (2016). 
Bayesian codon substitution modelling to identify sources of 
pathogen evolutionary rate variation. Microbial Genomics. 
https://doi.org/10.1099/mgen.0.000057 

Balasuriya, U. B. R. (2020). RNA extraction from equine samples 
for equine influenza virus. In Methods in Molecular Biology 
(Vol. 2123, pp. 369–382). Humana Press Inc. 
https://doi.org/10.1007/978-1-0716-0346-8_28 

Bean, B., Moore, B. M., Sterner, B., Peterson, L. R., Gerding, D. 
N., & Balfour, H. H. (1982). Survival of Influenza Viruses on 
Environmental Surfaces. The Journal of Infectious Diseases, 
146(1), 47–51. http://www.jstor.org/stable/30109645 

Becker, D. J., Albery, G. F., Sjodin, A. R., Poisot, T., Dallas, T. 
A., Eskew, E. A., Farrell, M. J., Guth, S., Han, B. A., 



12 

12 
 

Simmons, N. B., & Carlson, C. J. (2020). Predicting wildlife 
hosts of betacoronaviruses for SARS-CoV-2 sampling 
prioritization. BioRxiv Preprint, May 23, 1–47. 
https://doi.org/10.1101/2020.05.22.111344 

Bell, D., Nicoll, A., Fukuda, K., Horby, P., Monto, A., Hayden, F., 
Wylks, C., Sanders, L., & Van Tam, J. (2006). Non-
pharmaceutical interventions for pandemic influenza, 
international measures. Emerging Infectious Diseases, 12(1), 
81–87. https://doi.org/10.3201/EID1201.051370 

Belser, J. A., Eckert, A. M., Huynh, T., Gary, J. M., Ritter, J. M., 
Tumpey, T. M., & Maines, T. R. (2020). A Guide for the Use 
of the Ferret Model for Influenza Virus Infection. In American 
Journal of Pathology (Vol. 190, Issue 1, pp. 11–24). Elsevier 
Inc. https://doi.org/10.1016/j.ajpath.2019.09.017 

Bendall, E. E., Callear, A. P., & Getz, A. (2023). Rapid 
transmission and tight bottlenecks constrain the evolution of 
highly transmissible SARS-CoV-2 variants. Nat Commun, 14, 
272. https://doi.org/10.1038/s41467-023-36001-5 

Bera, B. C., Virmani, N., Kumar, N., Anand, T., Pavulraj, S., 
Rash, A., Elton, D., Rash, N., Bhatia, S., Sood, R., Singh, R. 
K., & Tripathi, B. N. (2017). Genetic and codon usage bias 
analyses of polymerase genes of equine influenza virus and 
its relation to evolution. BMC Genomics, 18(1), 652. 
https://doi.org/10.1186/s12864-017-4063-1 

Bergstrom, C. T., McElhany, P., & Real, L. A. (1999). 
Transmission bottlenecks as determinants of virulence in 
rapidly evolving pathogens. Proceedings of the National 
Academy of Sciences, 96(9), 5095–5100. 
https://doi.org/10.1073/pnas.96.9.5095 

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. 
N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). 
The Protein Data Bank. Nucleic Acids Research, 28(1), 235–
242. https://doi.org/10.1093/nar/28.1.235 

Bessière, P., & Volmer, R. (2021). From one to many: The within-
host rise of viral variants. PLOS Pathogens, 17(9), e1009811. 
https://doi.org/10.1371/journal.ppat.1009811 

Bessonov, N., Bocharov, G., Meyerhans, A., Popov, V., & Volpert, 
V. (2020). Nonlocal Reaction–Diffusion Model of Viral 
Evolution: Emergence of Virus Strains. Mathematics, 8(1), 
117. https://doi.org/10.3390/math8010117 

BETA. (2024). National Equestrian Form (NEF19). https://beta-
uk.org/equestrian-trade-news/ 

Biek, R., Pybus, O. G., Lloyd-Smith, J. O., & Didelot, X. (2015). 
Measurably evolving pathogens in the genomic era. Trends in 
Ecology and Evolution, 30(6), 306–313. 
https://doi.org/10.1016/j.tree.2015.03.009 

Biek, R., & Real, L. A. (2010). The landscape genetics of 
infectious disease emergence and spread. Molecular Ecology, 
19(17), 3515–3531. https://doi.org/10.1111/j.1365-
294X.2010.04679.x 



13 

13 
 

Blanco-lobo, P., Rodriguez, L., Reedy, S., Oladunni, F. S., 
Nogales, A., Murcia, P. R., Chambers, T. M., & Martinez-
Sobrido, L. (2019). A bivalent live-attenuated vaccine for the 
prevention of equine influenza virus. Viruses, 11(10), 933. 
https://doi.org/10.3390/v11100933 

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a 
flexible trimmer for Illumina sequence data. Bioinformatics, 
30(15), 2114–2120. 
https://doi.org/10.1093/bioinformatics/btu170 

Boni, M. F., de Jong, M. D., van Doorn, H. R., & Holmes, E. C. 
(2010). Guidelines for identifying homologous recombination 
events in influenza A virus. PloS One, 5(5), e10434. 
https://doi.org/10.1371/journal.pone.0010434 

Bonilla, F. A., & Oettgen, H. C. (2010). Adaptive immunity. 
Journal of Allergy and Clinical Immunology, 125(2, 
Supplement 2), S33–S40. 
https://doi.org/https://doi.org/10.1016/j.jaci.2009.09.017 

Borchers, K., Daly, J., Stiens, G., Kreling, K., Kreling, I., & 
Ludwig, H. (2005). Characterisation of three equine 
influenza A H3N8 viruses from Germany (2000 and 2002): 
evidence for frozen evolution. Vet Microbiol, 107(1–2), 13–
21. https://doi.org/10.1016/j.vetmic.2005.01.010 

Both, G. W., Sleigh, M. J., Cox, N. J., & Kendal, A. P. (1983). 
Antigenic drift in influenza virus H3 hemagglutinin from 1968 
to 1980: multiple evolutionary pathways and sequential 
amino acid changes at key antigenic sites. Journal of 
Virology, 48(1), 52–60. https://doi.org/10.1128/jvi.48.1.52-
60.1983 

Boukharta, M., Zakham, F., Touil, N., Elharrak, M., & Ennaji, M. 
M. (2014). Cleavage site and Ectodomain of HA2 sub-unit 
sequence of three equine influenza virus isolated in Morocco. 
BMC Res Notes, 7, 448. https://doi.org/10.1186/1756-0500-
7-448 

Bountouri, M., Fragkiadaki, E., Ntafis, V., Kanellos, T., & Xylouri, 
E. (2011). Phylogenetic and molecular characterization of 
equine H3N8 influenza viruses from Greece (2003 and 2007): 
evidence for reassortment between evolutionary lineages. 
Virol J, 8, 350. https://doi.org/10.1186/1743-422X-8-350 

Bouvier, N. M., & Palese, P. (2008). The biology of influenza 
viruses. Vaccine, 26(SUPPL. 4), D49–D53. 
https://doi.org/10.1016/J.VACCINE.2008.07.039 

Bryant, N. A., Rash, A. S., Woodward, A. L., Medcalf, E., 
Helwegen, M., Wohlfender, F., Cruz, F., Herrmann, C., 
Borchers, K., Tiwari, A., Chambers, T. M., Newton, J. R., 
Mumford, J. A., & Elton, D. M. (2011). Isolation and 
characterisation of equine influenza viruses (H3N8) from 
Europe and North America from 2008 to 2009. Vet Microbiol, 
147(1–2), 19–27. 
https://doi.org/10.1016/j.vetmic.2010.05.040 



14 

14 
 

Callinan, I. D. F. (2008). Report of the Equine Influenza Inquiry. 
In Equine influenza : the August 2007 outbreak in Australia 
(p. 345). Commonwealth of Australia [Canberra]. 
https://nla.gov.au/nla.obj-961843962 

Campbell, F., Cori, A., Ferguson, N., & Jombart, T. (2019). 
Bayesian inference of transmission chains using timing of 
symptoms, pathogen genomes and contact data. PLoS 
Computational Biology, 15(3). 
https://doi.org/10.1371/journal.pcbi.1006930 

Campbell, F., Strang, C., Ferguson, N., Cori, A., & Jombart, T. 
(2018a). When are pathogen genome sequences informative 
of transmission events? PLoS Pathogens, 14(2), e1006885. 
https://doi.org/10.1371/journal.ppat.1006885 

Campbell, F., Strang, C., Ferguson, N., Cori, A., & Jombart, T. 
(2018b). When are pathogen genome sequences informative 
of transmission events? PLoS Pathogens, 14(2), e1006885. 
https://doi.org/10.1371/journal.ppat.1006885 

Canini, L., Holzer, B., Morgan, S., Hemmink, J. D., Clark, B., 
Woolhouse, M. E. J., Tchilian, E., & Charleston, B. (2020). 
Timelines of infection and transmission dynamics of 
H1N1pdm09 in swine. PLoS Pathogens, 16(7). 
https://doi.org/10.1371/journal.ppat.1008628 

Cassini, A., Colzani, E., Pini, A., Mangen, M.-J. J., Plass, D., 
McDonald, S. A., Maringhini, G., van Lier, A., Haagsma, J. 
A., Havelaar, A. H., Kramarz, P., & Kretzschmar, M. E. 
(2018). Impact of infectious diseases on population health 
using incidence-based disability-adjusted life years (DALYs): 
results from the Burden of Communicable Diseases in Europe 
study, European Union and European Economic Area 
countries, 2009 to 2013. Eurosurveillance, 23(16), 1–20. 
https://doi.org/10.2807/1560-7917.ES.2018.23.16.17-00454 

Caton, A. J., Brownlee, G. G., Yewdell, J. W., & Gerhard, W. 
(1982). The antigenic structure of the influenza virus 
A/PR/8/34 hemagglutinin (H1 subtype). Cell, 31(2 PART 1), 
417–427. https://doi.org/10.1016/0092-8674(82)90135-0 

Cauldwell, A. V., Long, J. S., Moncorgé, O., Barclay, W. S., 
Cauldwell, A. V., Long, J. S., Moncorge, O., Moncorgé, O., & 
Barclay, W. S. (2014). Viral determinants of influenza A virus 
host range. The Journal of General Virology, 95(Pt 6), 1193–
1210. https://doi.org/10.1099/vir.0.062836-0 

Chambers, T. M. (2020). Equine Influenza. Cold Spring Harb 
Perspect Med. https://doi.org/10.1101/cshperspect.a038331 

Chao, L. (1990). Fitness of RNA virus decreased by Muller’s 
ratchet. Nature, 348(6300), 454–455. 
https://doi.org/10.1038/348454a0 

Chauché, C. M. (2017). Molecular Evolution of Equine Influenza 
Virus Non-Structural Protein 1. University of Glasgow. 

Chen, F., & Cui, J. (2017). Cross-species epidemic dynamic model 
of influenza. Proceedings - 2016 9th International Congress 
on Image and Signal Processing, BioMedical Engineering and 



15 

15 
 

Informatics, CISP-BMEI 2016, 1567–1572. 
https://doi.org/10.1109/CISP-BMEI.2016.7852965 

Chen, J. M., Sun, Y. X., Chen, J. W., Liu, S., Yu, J. M., Shen, C. 
J., Sun, X. D., & Peng, D. (2009). Panorama phylogenetic 
diversity and distribution of type A influenza viruses based 
on their six internal gene sequences. Virology Journal, 6(1), 
137. https://doi.org/10.1186/1743-422X-6-137 

Chen, Y. Q., Wohlbold, T. J., Zheng, N. Y., Huang, M., Huang, Y., 
Neu, K. E., Lee, J., Wan, H., Rojas, K. T., Kirkpatrick, E., 
Henry, C., Palm, A. K. E., Stamper, C. T., Lan, L. Y. L., 
Topham, D. J., Treanor, J., Wrammert, J., Ahmed, R., 
Eichelberger, M. C., … Wilson, P. C. (2018). Influenza 
Infection in Humans Induces Broadly Cross-Reactive and 
Protective Neuraminidase-Reactive Antibodies. Cell, 173(2), 
417-429.e10. https://doi.org/10.1016/j.cell.2018.03.030 

Chlanda, P., Schraidt, O., Kummer, S., Riches, J., Oberwinkler, 
H., Prinz, S., Kräusslich, H.-G., & Briggs, J. A. G. (2015). 
Structural Analysis of the Roles of Influenza A Virus 
Membrane-Associated Proteins in Assembly and Morphology. 
Journal of Virology, 89(17), 8957–8966. 
https://doi.org/10.1128/jvi.00592-15 

Clark, A. M., Nogales, A., Martinez-Sobrido, L., Topham, D. J., & 
DeDiego, M. L. (2017). Functional evolution of influenza virus 
ns1 protein in currently circulating human 2009 pandemic 
h1n1 viruses. Journal of Virology, 91(17). 
https://doi.org/10.1128/JVI.00721-17 

Cleaveland, S., Haydon, D. T., & Taylor, L. (2007). Overviews of 
pathogen emergence: Which pathogens emerge, when and 
why? In Current Topics in Microbiology and Immunology (Vol. 
315, pp. 85–111). https://doi.org/10.1007/978-3-540-70962-
6_5 

Cohn, S. K. (2020). The dramaturgy of epidemics. Bulletin of the 
History of Medicine, 94(4), 578–589. 
https://doi.org/10.1353/bhm.2020.0083 

Crawford, P. C., Dubovi, E. J., Castleman, W. L., Stephenson, I., 
Gibbs, E. P. J. J., Chen, L., Smith, C., Hill, R. C., Ferro, P., 
Pompey, J., Bright, R. A., Medina, M.-J., Johnson, C. M., 
Olsen, C. W., Cox, N. J., Klimov, A. I., Katz, J. M., & Donis, 
R. O. (2005). Transmission of Equine Influenza Virus to Dogs. 
Science, 310(5747), 482–485. 
https://doi.org/10.1126/science.1117950 

Cullinane, A., & Newton, J. R. (2013a). Equine influenza-A global 
perspective. In Veterinary Microbiology (Vol. 167, Issues 1–2, 
pp. 205–214). https://doi.org/10.1016/j.vetmic.2013.03.029 

Cullinane, A., & Newton, J. R. (2013b). Equine influenza—A 
global perspective. Veterinary Microbiology, 167(1–2), 205–
214. https://doi.org/10.1016/j.vetmic.2013.03.029 

Daly, J. M., Lai, A. C. K., Binns, M. M., Chambers, T. M., 
Barrandeguy, M., & Mumford, J. A. (1996). Antigenic and 
genetic evolution of equine H3N8 influenza A viruses. J Gen 



16 

16 
 

Virol, 77 ( Pt 4)(4), 661–671. https://doi.org/10.1099/0022-
1317-77-4-661 

Daly, J. M., Yates, P. J., Newton, J. R., Park, A., Henley, W., 
Wood, J. L. N., Davis-Poynter, N., & Mumford, J. A. (2004). 
Evidence supporting the inclusion of strains from each of the 
two co-circulating lineages of H3N8 equine influenza virus in 
vaccines. Vaccine, 22(29–30), 4101–4109. 
https://doi.org/10.1016/j.vaccine.2004.02.048 

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., 
Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., 
Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and 
BCFtools. Gigascience, 10(2). 
https://doi.org/10.1093/gigascience/giab008 

Das, K., Aramini, J. M., Ma, L. C., Krug, R. M., & Arnold, E. 
(2010). Structures of influenza A proteins and insights into 
antiviral drug targets. Nature Structural and Molecular 
Biology, 17(5), 530–538. https://doi.org/10.1038/nsmb.1779 

Daversa, D. R., Fenton, A., Dell, A. I., Garner, T. W. J., & 
Manica, A. (2017). Infections on the move: How transient 
phases of host movement influence disease spread. In 
Proceedings of the Royal Society B: Biological Sciences (Vol. 
284, Issue 1869). https://doi.org/10.1098/rspb.2017.1807 

Dayhoff, M. O., & Foundation, N. B. R. (1979). Atlas of Protein 
Sequence and Structure (Issue v. 5). National Biomedical 
Research Foundation. 
https://books.google.co.uk/books?id=BIRFAQAAIAAJ 

De, A., Sarkar, T., & Nandy, A. (2016). Bioinformatics studies of 
Influenza A hemagglutinin sequence data 
indicate  recombination-like events leading to segment 
exchanges. BMC Research Notes, 9, 222. 
https://doi.org/10.1186/s13104-016-2017-3 

De Fine Licht, H. H. (2018). Does pathogen plasticity facilitate 
host shifts? https://doi.org/10.1371/journal.ppat.1006961 

De Maio, N., Worby, C. J., Wilson, D. J., & Stoesser, N. (2018a). 
Bayesian reconstruction of transmission within outbreaks 
using genomic variants. PLoS Computational Biology, 14(4), 
1–23. https://doi.org/10.1371/journal.pcbi.1006117 

De Maio, N., Worby, C. J., Wilson, D. J., & Stoesser, N. (2018b). 
Bayesian reconstruction of transmission within outbreaks 
using genomic variants. PLoS Computational Biology, 14(4), 
1–23. https://doi.org/10.1371/journal.pcbi.1006117 

De Maio, N., Wu, C. H., & Wilson, D. J. (2016a). SCOTTI: Efficient 
Reconstruction of Transmission within Outbreaks with the 
Structured Coalescent. PLoS Computational Biology, 12(9), 
1–23. https://doi.org/10.1371/journal.pcbi.1005130 

De Maio, N., Wu, C.-H., & Wilson, D. J. (2016b). SCOTTI: 
Efficient Reconstruction of Transmission within Outbreaks 
with the Structured Coalescent. PLOS Computational 
Biology, 12(9), e1005130. 
https://doi.org/10.1371/journal.pcbi.1005130 



17 

17 
 

De Vlugt, C., Sikora, D., & Pelchat, M. (2018). Insight into 
Influenza: A Virus Cap-Snatching. Viruses, 10(11). 
https://doi.org/10.3390/v10110641 

Dee, K., Goldfarb, D. M., Haney, J., Amat, J. A. R., Herder, V., 
Stewart, M., Szemiel, A. M., Baguelin, M., & Murcia, P. R. 
(2021). Human Rhinovirus Infection Blocks Severe Acute 
Respiratory Syndrome Coronavirus 2 Replication Within the 
Respiratory Epithelium: Implications for COVID-19 
Epidemiology. The Journal of Infectious Diseases, 224(1), 31–
38. https://doi.org/10.1093/infdis/jiab147 

Dee, K., Schultz, V., Haney, J., Bissett, L. A., Magill, C., & 
Murcia, P. R. (2022). Influenza A and Respiratory Syncytial 
Virus Trigger a Cellular Response That Blocks Severe Acute 
Respiratory Syndrome Virus 2 Infection in the Respiratory 
Tract. The Journal of Infectious Diseases. 
https://doi.org/10.1093/infdis/jiac494 

Delport, W., Poon, A. F. Y. Y., Frost, S. D. W. W., & Kosakovsky 
Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic 
analysis tools for evolutionary biology. Bioinformatics, 
26(19), 2455–2457. 
https://doi.org/10.1093/bioinformatics/btq429 

Deng, J., Sheng, Z., Zhou, K., Duan, M., Yu, C., & Jiang, L. 
(2009). Construction of Effective Receptor for Recognition of 
Avian Influenza H5N1 Protein HA1 by Assembly of Monohead 
Glycolipids on Polydiacetylene Vesicle Surface. Bioconjugate 
Chemistry, 20(3), 533–537. 
https://doi.org/10.1021/bc800453u 

Diallo, A. A., Souley, M. M., Issa Ibrahim, A., Alassane, A., Issa, 
R., Gagara, H., Yaou, B., Issiakou, A., Diop, M., Ba Diouf, R. 
O., Lo, F. T., Lo, M. M. M. M., Bakhoum, T., Sylla, M., Seck, 
M. T., Meseko, C., Shittu, I., Cullinane, A., Settypalli, T. B. 
K., … Cattoli, G. (2021). Transboundary spread of equine 
influenza viruses (H3N8) in West and Central Africa: 
Molecular characterization of identified viruses during 
outbreaks in Niger and Senegal, in 2019. Transbound Emerg 
Dis, 68(3), 1253–1262. https://doi.org/10.1111/tbed.13779 

Dias, A., Bouvier, D., Crépin, T., McCarthy, A. A., Hart, D. J., 
Baudin, F., Cusack, S., & Ruigrok, R. W. H. (2009). The cap-
snatching endonuclease of influenza virus polymerase resides 
in the PA subunit. Nature, 458(7240), 914–918. 
https://doi.org/10.1038/nature07745 

Didelot, X., Fraser, C., Gardy, J., Colijn, C., & Malik, H. (2017). 
Genomic infectious disease epidemiology in partially sampled 
and ongoing outbreaks. Molecular Biology and Evolution, 
34(4), 997–1007. https://doi.org/10.1093/molbev/msw275 

Dimas Martins, A., & Gjini, E. (2020). Modeling Competitive 
Mixtures With the Lotka-Volterra Framework for More 
Complex Fitness Assessment Between Strains. Frontiers in 
Microbiology, 11(September), 1–11. 
https://doi.org/10.3389/fmicb.2020.572487 



18 

18 
 

Ding, X., Qin, L., Meng, J., Peng, Y., Wu, A., & Jiang, T. (2021). 
Progress and Challenge in Computational Identification of 
Influenza Virus  Reassortment. Virologica Sinica, 36(6), 1273–
1283. https://doi.org/10.1007/s12250-021-00392-w 

Diskin, E. R., Friedman, K., Krauss, S., Nolting, J. M., Poulson, R. 
L., Slemons, R. D., Stallknecht, D. E., Webster, R. G., & 
Bowman, A. S. (2020). Subtype Diversity of Influenza A Virus 
in North American Waterfowl: a Multidecade Study. Journal 
of Virology, 94(11). https://doi.org/10.1128/jvi.02022-19 

Domingo, E. (2020). Long-term virus evolution in nature. In Virus 
as Populations (Vol. 2507, Issue 1, pp. 225–261). Elsevier. 
https://doi.org/10.1016/B978-0-12-816331-3.00007-6 

Domingo, E., de Ávila, A. I., Gallego, I., Sheldon, J., & Perales, 
C. (2019). Viral fitness: history and relevance for viral 
pathogenesis and antiviral interventions. Pathogens and 
Disease, 77(2), ftz021. 
https://doi.org/10.1093/femspd/ftz021 

Domingo, E., Higuera, I. de la, Moreno, E., Ávila, A. I. de, Agudo, 
R., Arias, A., & Perales, C. (2017). Quasispecies Dynamics 
Taught by Natural and Experimental Evolution of Foot-and-
mouth Disease Virus. In Foot and Mouth Disease Virus: 
Current Research and Emerging Trends (pp. 147–170). 
Caister Academic Press. 
https://doi.org/10.21775/9781910190517.07 

Domingo, E., & Perales, C. (2019). Viral quasispecies. PLoS 
Genetics, 15(10), 1–20. 
https://doi.org/10.1371/journal.pgen.1008271 

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian 
evolutionary analysis by sampling trees. BMC Evolutionary 
Biology, 7(1). https://doi.org/10.1186/1471-2148-7-214 

DuBois, R. M., Aguilar-Yañez, J. M., Mendoza-Ochoa, G. I., 
Oropeza-Almazán, Y., Schultz-Cherry, S., Alvarez, M. M., 
White, S. W., Russell, C. J., Aguilar-Yanez, J. M., Mendoza-
Ochoa, G. I., Oropeza-Almazan, Y., Schultz-Cherry, S., 
Alvarez, M. M., White, S. W., Russell, C. J., Aguilar-Yañez, J. 
M., Mendoza-Ochoa, G. I., Oropeza-Almazán, Y., Schultz-
Cherry, S., … Russell, C. J. (2011). The Receptor-Binding 
Domain of Influenza Virus Hemagglutinin Produced in 
Escherichia coli Folds into Its Native, Immunogenic Structure 
. Journal of Virology, 85(2), 865–872. 
https://doi.org/10.1128/jvi.01412-10 

Dudas, G., Carvalho, L. M., Bedford, T., Tatem, A. J., Baele, G., 
Faria, N. R., Park, D. J., Ladner, J. T., Arias, A., Asogun, D., 
Bielejec, F., Caddy, S. L., Cotten, M., D’Ambrozio, J., 
Dellicour, S., Di Caro, A., Diclaro, J. W., Duraffour, S., 
Elmore, M. J., … Rambaut, A. (2017). Virus genomes reveal 
factors that spread and sustained the Ebola epidemic. 
Nature, 544(7650), 309–315. 
https://doi.org/10.1038/nature22040 



19 

19 
 

Dunham, E. J., Dugan, V. G., Kaser, E. K., Perkins, S. E., Brown, 
I. H., Holmes, E. C., & Taubenberger, J. K. (2009). Different 
Evolutionary Trajectories of European Avian-Like and 
Classical Swine H1N1 Influenza A Viruses. Journal of 
Virology, 83(11), 5485–5494. 
https://doi.org/10.1128/jvi.02565-08 

Dunning, J., Thwaites, R. S., & Openshaw, P. J. M. (2020). 
Seasonal and pandemic influenza: 100 years of progress, still 
much to learn. Mucosal Immunology, 13(4), 566–573. 
https://doi.org/10.1038/s41385-020-0287-5 

Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioannidis, V., 
& Durinx, C. (2021). Expasy, the Swiss Bioinformatics 
Resource Portal, as designed by its users. Nucleic Acids 
Research, 49(W1), W216–W227. 
https://doi.org/10.1093/nar/gkab225 

Duxbury, E. M. L., Day, J. P., Vespasiani, D. M., Thüringer, Y., 
Tolosana, I., Smith, S. C. L., Tagliaferri, L., Kamacioglu, A., 
Lindsley, I., Love, L., Unckless, R. L., Jiggins, F. M., & 
Longdon, B. (2019). Host-pathogen coevolution increases 
genetic variation in susceptibility to infection. ELife, 8. 
https://doi.org/10.7554/eLife.46440 

Ekiert, D. C., Friesen, R. H. E., Bhabha, G., Kwaks, T., 
Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H. J. 
W. M., Brandenburg, B., Vogels, R., Brakenhoff, J. P. J., 
Kompier, R., Koldijk, M. H., Cornelissen, L. A. H. M., Poon, 
L. L. M., Peiris, M., Koudstaal, W., Wilson, I. A., & Goudsmit, 
J. (2011). A highly conserved neutralizing epitope on group 2 
influenza A viruses. Science (New York, N.Y.), 333(6044), 
843–850. https://doi.org/10.1126/science.1204839 

Elena, S. F., Sanjuán, R., Bordería, A. V., & Turner, P. E. (2001). 
Transmission bottlenecks and the evolution of fitness in 
rapidly evolving RNA viruses. Infection, Genetics and 
Evolution, 1(1), 41–48. https://doi.org/10.1016/S1567-
1348(01)00006-5 

Elliott, S., Olufemi, O. T., & Daly, J. M. (2023). Systematic 
Review of Equine Influenza A Virus Vaccine Studies and Meta-
Analysis of Vaccine Efficacy. Viruses, 15(12). 
https://doi.org/10.3390/V15122337 

Emini, E. A., Hughes, J. V, Perlow, D. S., & J., B. (1985). 
Induction of hepatitis A virus-neutralizing antibody by a 
virus-specific synthetic peptide. J Virol, 55(3), 836–839. 

Endo, A., Pecoraro, R., Sugita, S., & Nerome, K. (1992). 
Evolutionary pattern of the H 3 haemagglutinin of equine 
influenza viruses: multiple evolutionary lineages and frozen 
replication. Arch Virol, 123(1–2), 73–87. 
https://doi.org/10.1007/BF01317139 

Evans, R., O\textquoterightNeill, M., Pritzel, A., Antropova, N., 
Senior, A., Green, T., Ž\’\idek, A., Bates, R., Blackwell, S., 
Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., 
Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, 



20 

20 
 

K., Jain, R., Clancy, E., … Hassabis, D. (2021). Protein 
complex prediction with AlphaFold-Multimer. BioRxiv. 
https://doi.org/10.1101/2021.10.04.463034 

Feng, K. H., Gonzalez, G., Deng, L., Yu, H., Tse, V. L., Huang, 
L., Huang, K., Wasik, B. R., Zhou, B., Wentworth, D. E., 
Holmes, E. C., Chen, X., Varki, A., Murcia, P. R., & Parrish, 
C. R. (2015). Equine and Canine Influenza H3N8 Viruses Show 
Minimal Biological Differences Despite Phylogenetic 
Divergence. Journal of Virology, 89(13), 6860–6873. 
https://doi.org/10.1128/JVI.00521-15 

Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., 
Riley, S., Meeyai, A., Iamsirithaworn, S., & Burke, D. S. 
(2005). Strategies for containing an emerging influenza 
pandemic in Southeast Asia. Nature 2005 437:7056, 
437(7056), 209–214. https://doi.org/10.1038/nature04017 

Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., 
Cooley, P. C., & Burke, D. S. (2006). Strategies for mitigating 
an influenza pandemic. Nature 2006 442:7101, 442(7101), 
448–452. https://doi.org/10.1038/nature04795 

Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, 
D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, 
A., Van den Berghe, A., Volckaert, G., & Ysebaert, M. 
(1976). Complete nucleotide sequence of bacteriophage MS2 
RNA: primary and secondary structure of the replicase gene. 
Nature, 260(5551), 500–507. 
https://doi.org/10.1038/260500a0 

Firestone, S. M., Hayama, Y., Bradhurst, R., Yamamoto, T., 
Tsutsui, T., & Stevenson, M. A. (2019). Reconstructing foot-
and-mouth disease outbreaks: a methods comparison of 
transmission network models. Scientific Reports, 9(1), 4809. 
https://doi.org/10.1038/s41598-019-41103-6 

Firestone, S. M., Hayama, Y., Lau, M. S. Y., Yamamoto, T., Nishi, 
T., Bradhurst, R. A., Demirhan, H., Stevenson, M. A., & 
Tsutsui, T. (2020). Transmission network reconstruction for 
foot- and-mouth disease outbreaks incorporating farm-level 
covariates. PLoS ONE, 15(7 July), 1–17. 
https://doi.org/10.1371/journal.pone.0235660 

Flanagan, M. L., Parrish, C. R., Cobey, S., Glass, G. E., Bush, R. 
M., & Leighton, T. J. (2012). Anticipating the Species Jump: 
Surveillance for Emerging Viral Threats. In Zoonoses and 
Public Health (Vol. 59, Issue 3, pp. 155–163). 
https://doi.org/10.1111/j.1863-2378.2011.01439.x 

Flannery, B., Zimmerman, R. K., Gubareva, L. V, Garten, R. J., 
Chung, J. R., Nowalk, M. P., Jackson, M. L., Jackson, L. A., 
Monto, A. S., Ohmit, S. E., Belongia, E. A., McLean, H. Q., 
Gaglani, M., Piedra, P. A., Mishin, V. P., Chesnokov, A. P., 
Spencer, S., Thaker, S. N., Barnes, J. R., … Fry, A. M. (2016). 
Enhanced Genetic Characterization of Influenza A(H3N2) 
Viruses and Vaccine Effectiveness by Genetic Group, 2014--



21 

21 
 

2015. The Journal of Infectious Diseases, 214(7), 1010–1019. 
https://doi.org/10.1093/infdis/jiw181 

Forster, T. (2021). Illustrations of the Atmospherical Origin of 
Epidemic Diseases, and of its relation to their Predisponent 
Constitutional Causes, Exemplified by Historical Notices and 
Cases, and on the Twofold Means of Prevention, Mitigation, 
and Cure, and of the Powerful. In Spiritualism, Mesmerism 
and the Occult, 1800--1920 Vol 1 (pp. 51–58). Routledge. 

Francis, T. (1960a). On the Doctrine of Original Antigenic Sin. 
Proceedings of the American Philosophical Society, 104(6), 
572–578. http://www.jstor.org/stable/985534 

Francis, T. (1960b). On the Doctrine of Original Antigenic Sin 
Author ( s ): Thomas Francis , Jr . Published by : American 
Philosophical Society Stable URL : 
http://www.jstor.org/stable/985534 REFERENCES Linked 
references are available on JSTOR for this article : You may 
need. Proceedings of the American Philosophical Society, 
104(6), 572–578. 

Frost, S. D. W., Magalis, B. R., & Kosakovsky Pond, S. L. (2018). 
Neutral theory and rapidly evolving viral pathogens. 
Molecular Biology and Evolution, 35(6), 1348–1354. 
https://doi.org/10.1093/molbev/msy088 

Frothingham, R. (1999). Evolutionary bottlenecks in the agents of 
tuberculosis, leprosy, and paratuberculosis. Medical 
Hypotheses, 52(2), 95–99. 
https://doi.org/10.1054/MEHY.1997.0622 

Fuhrmann, L., Jablonski, K. P., & Beerenwinkel, N. (2021). 
Quantitative measures of within-host viral genetic diversity. 
Current Opinion in Virology, 49, 157–163. 
https://doi.org/10.1016/j.coviro.2021.06.002 

Gallagher, M. E., Brooke, C. B., Ke, R., & Koelle, K. (2018a). 
Causes and Consequences of Spatial Within-Host Viral 
Spread. Viruses, 10(11), 627. 
https://doi.org/10.3390/v10110627 

Gallagher, M. E., Brooke, C. B., Ke, R., & Koelle, K. (2018b). 
Causes and consequences of spatial within-host viral spread. 
Viruses, 10(11), 627. https://doi.org/10.3390/v10110627 

Ganti, K., Bagga, A., DaSilva, J., Shepard, S. S., Barnes, J. R., 
Shriner, S., Koelle, K., & Lowen, A. C. (2021). Avian 
Influenza A Viruses Reassort and Diversify Differently in 
Mallards and Mammals. Viruses, 13(3). 
https://doi.org/10.3390/v13030509 

Gardy, J. L., & Loman, N. J. (2018). Towards a genomics-
informed, real-time, global pathogen surveillance system. In 
Nature Reviews Genetics (Vol. 19, Issue 1, pp. 9–20). 
https://doi.org/10.1038/nrg.2017.88 

Garrison, E., & Marth, G. (2012a). Haplotype-based variant 
detection from short-read sequencing. 1–9. 
https://doi.org/10.48550/ARXIV.1207.3907 



22 

22 
 

Garrison, E., & Marth, G. (2012b). Haplotype-based variant 
detection from short-read sequencing. Q-Bio.GN, 1–9. 
https://doi.org/https://doi.org/10.48550/arXiv.1207.3907 

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. 
R., Appel, R. D., & Bairoch, A. (2005). The Proteomics 
Protocols Handbook (J. M. Walker, Ed.; pp. 571–607). 
Humana Totowa, NJ. 

Gelbart, M., Harari, S., Ben-Ari, Y., Kustin, T., Wolf, D., 
Mandelboim, M., Mor, O., Pennings, P. S., & Stern, A. (2020). 
Drivers of within-host genetic diversity in acute infections of 
viruses. PLoS Pathogens, 16(11), 1–21. 
https://doi.org/10.1371/journal.ppat.1009029 

Geoghegan, J. L., & Holmes, E. C. (2018). Evolutionary Virology 
at 40. Genetics, 210(4), 1151–1162. 
https://doi.org/10.1534/genetics.118.301556 

Gerstung, M., Beisel, C., Rechsteiner, M., Wild, P., Schraml, P., 
Moch, H., & Beerenwinkel, N. (2012). Reliable detection of 
subclonal single-nucleotide variants in tumour cell 
populations. Nature Communications, 3(1), 811. 
https://doi.org/10.1038/ncomms1814 

Gerstung, M., Papaemmanuil, E., & Campbell, P. J. (2014). 
Subclonal variant calling with multiple samples and prior 
knowledge. Bioinformatics, 30(9), 1198–1204. 
https://doi.org/10.1093/bioinformatics/btt750 

Ghafari, M., Lumby, C. K., Weissman, D. B., & Illingworth, C. J. 
R. (2020). Inferring Transmission Bottleneck Size from Viral 
Sequence Data Using a Novel Haplotype Reconstruction 
Method. Journal of Virology, 94(13). 
https://doi.org/10.1128/jvi.00014-20 

Giardina, F., Romero-Severson, E. O., Albert, J., Britton, T., 
Leitner, T., & Tanaka, M. M. (2017). Inference of 
Transmission Network Structure from HIV Phylogenetic 
Trees. PLoS Computational Biology, 13(1), 1005316. 
https://doi.org/10.1371/journal.pcbi.1005316 

Gibb, R. J. (2020). Understanding and predicting effects of 
global environmental change on zoonotic disease [University 
College London]. 
https://www.researchgate.net/publication/346979374_Unde
rstanding_and_predicting_effects_of_global_environmental_
change_on_zoonotic_disease 

Gocnikova, H., & Russ, G. (2007). Influenza a virus PB1-F2 
protein. Acta Virol, 51(2), 101–108. 

Gong, L. I., Suchard, M. A., & Bloom, J. D. (2013). Stability-
mediated epistasis constrains the evolution of an influenza 
protein. ELife, 2013(2). 
https://doi.org/10.7554/ELIFE.00631 

Gore, S., Sanz García, E., Hendrickx, P. M. S., Gutmanas, A., 
Westbrook, J. D., Yang, H., Feng, Z., Baskaran, K., 
Berrisford, J. M., Hudson, B. P., Ikegawa, Y., Kobayashi, N., 
Lawson, C. L., Mading, S., Mak, L., Mukhopadhyay, A., 



23 

23 
 

Oldfield, T. J., Patwardhan, A., Peisach, E., … Kleywegt, G. 
J. (2017). Validation of Structures in the Protein Data Bank. 
Structure, 25(12), 1916–1927. 
https://doi.org/10.1016/j.str.2017.10.009 

Gostic, K. M., Ambrose, M., Worobey, M., & Lloyd-Smith, J. O. 
(2016). Potent protection against H5N1 and H7N9 influenza 
via childhood hemagglutinin imprinting. Science, 354(6313), 
722–726. https://doi.org/10.1126/science.aag1322 

Gostic, K. M., Bridge, R., Brady, S., Viboud, C., Worobey, M., & 
Lloyd-Smith, J. O. (2019). Childhood immune imprinting to 
influenza A shapes birth year-specific risk during seasonal 
H1N1 and H3N2 epidemics. PLOS Pathogens, 15(12), 
e1008109. https://doi.org/10.1371/journal.ppat.1008109 

Grear, D. A., Hall, J. S., Dusek, R. J., & Ip, H. S. (2018). Inferring 
epidemiologic dynamics from viral evolution: 2014–2015 
Eurasian/North American highly pathogenic avian influenza 
viruses exceed transmission threshold, in wild birds and 
poultry in North America. Evolutionary Applications, 11(4), 
547–557. https://doi.org/10.1111/eva.12576 

Greatorex, J. S., Digard, P., Curran, M. D., Moynihan, R., 
Wensley, H., Wreghitt, T., Varsani, H., Garcia, F., Enstone, 
J., & Nguyen-Van-Tam, J. S. (2011). Survival of influenza 
A(H1N1) on materials found in households: implications for 
infection control. PLoS One, 6(11), e27932. 
https://doi.org/10.1371/journal.pone.0027932 

Gregori, J., Perales, C., Rodriguez-Frias, F., Esteban, J. I., Quer, 
J., & Domingo, E. (2016a). Viral quasispecies complexity 
measures. Virology, 493, 227–237. 
https://doi.org/10.1016/j.virol.2016.03.017 

Gregori, J., Perales, C., Rodriguez-Frias, F., Esteban, J. I., Quer, 
J., & Domingo, E. (2016b). Viral quasispecies complexity 
measures. Virology, 493, 227–237. 
https://doi.org/https://doi.org/10.1016/j.virol.2016.03.017 

Gregori, J., Perales, C., Rodriguez-Frias, F., Esteban, J. I., Quer, 
J., & Domingo, E. (2016c). Viral quasispecies complexity 
measures. Virology, 493, 227–237. 
https://doi.org/https://doi.org/10.1016/j.virol.2016.03.017 

Grubaugh, N. D., Gangavarapu, K., Quick, J., Matteson, N. L., De 
Jesus, J. G., Main, B. J., Tan, A. L., Paul, L. M., Brackney, 
D. E., Grewal, S., Gurfield, N., Van Rompay, K. K. A., Isern, 
S., Michael, S. F., Coffey, L. L., Loman, N. J., Andersen, K. 
G., Goes De Jesus, J., Main, B. J., … Andersen, K. G. (2019). 
An amplicon-based sequencing framework for accurately 
measuring intrahost virus diversity using PrimalSeq and iVar. 
Genome Biology, 20(8), 8. https://doi.org/10.1186/s13059-
018-1618-7 

Grubaugh, N. D., Gangavarapu, K., Quick, J., Matteson, N. L., 
Goes De Jesus, J., Main, B. J., Tan, A. L., Paul, L. M., 
Brackney, D. E., Grewal, S., Gurfield, N., Rompay, K. K. A. 
Van, Isern, S., Michael, S. F., Coffey, L. L., Loman, N. J., & 



24 

24 
 

Andersen, K. G. (2019). An amplicon-based sequencing 
framework for accurately measuring intrahost virus diversity 
using PrimalSeq and iVar. Genome Biology, 20(8). 
https://doi.org/10.1186/s13059-018-1618-7 

Grubaugh, N. D., Gangavarapu, K., Quick, J., Matteson, N. L., 
Goes De Jesus, J., Main, B. J., Tan, A. L., Paul, L. M., 
Brackney, D. E., Grewal, S., Gurfield, N., Rompay, K. K. A. 
Van, Isern, S., Michael, S. F., Coffey, L. L., Loman, N. J., 
Andersen, K. G., De Jesus, J. G., Main, B. J., … Andersen, K. 
G. (2019). An amplicon-based sequencing framework for 
accurately measuring intrahost virus diversity using 
PrimalSeq and iVar. Genome Biology, 20(8), 8. 
https://doi.org/10.1186/s13059-018-1618-7 

Gutnik, D., Evseev, P., Miroshnikov, K., & Shneider, M. (2023). 
Using AlphaFold Predictions in Viral Research. Current Issues 
in Molecular Biology, 45(4), 3705–3732. 
https://doi.org/10.3390/cimb45040240 

Hall, M., Woolhouse, M., & Rambaut, A. (2015). Epidemic 
Reconstruction in a Phylogenetics Framework: Transmission 
Trees as Partitions of the Node Set. PLoS Computational 
Biology, 11(12), 1–36. 
https://doi.org/10.1371/journal.pcbi.1004613 

Hallgren, J., Tsirigos, K. D., Pedersen, M. D., Armenteros, J. J. 
A., Marcatili, P., Nielsen, H., Krogh, A., & Winther, O. 
(2022). DeepTMHMM predicts alpha and beta transmembrane 
proteins using deep neural networks. 
https://doi.org/10.1101/2022.04.08.487609 

Han, A. X., Felix Garza, Z. C., Welkers, M. R. A. A., Vigeveno, R. 
M., Tran, N. D., Le, T. Q. M. T. H. T. Q. M., Pham Quang, T., 
Dang, D. T., Tran, T. H. T. N. A. T. H., Ha, M. T., Nguyen, T. 
H., Le, Q. T., Le, T. Q. M. T. H. T. Q. M., Hoang, T. B. N., 
Chokephaibulkit, K., Puthavathana, P., Nguyen, V. V. C. K., 
Nghiem, M. N., Nguyen, V. V. C. K., … Russell, C. A. (2021). 
Within-host evolutionary dynamics of seasonal and pandemic 
human influenza A viruses in young children. ELife, 10(8), 
e68917. https://doi.org/10.7554/eLife.68917 

Han, G.-Z., & Worobey, M. (2011). Homologous recombination in 
negative sense RNA viruses. Viruses, 3(8), 1358–1373. 
https://doi.org/10.3390/v3081358 

Haney, J., Vijayakrishnan, S., Streetley, J., Dee, K., Goldfarb, D. 
M., Clarke, M., Mullin, M., Carter, S. D., Bhella, D., & 
Murcia, P. R. (2022). Coinfection by influenza A virus and 
respiratory syncytial virus produces hybrid virus particles. 
Nature Microbiology 2022 7:11, 7(11), 1879–1890. 
https://doi.org/10.1038/s41564-022-01242-5 

Hapuarachchi, H. C., Koo, C., Kek, R., Xu, H., Lai, Y. L., Liu, L., 
Kok, S. Y., Shi, Y., Chuen, R. L. T., Lee, K.-S., Maurer-Stroh, 
S., & Ng, L. C. (2016). Intra-epidemic evolutionary dynamics 
of a Dengue virus type 1 population reveal mutant spectra 



25 

25 
 

that correlate with disease transmission. Scientific Reports, 
6(1), 22592. https://doi.org/10.1038/srep22592 

Hartshorn, K. L. (2020). Innate Immunity and Influenza A Virus 
Pathogenesis: Lessons for COVID-19. Front Cell Infect 
Microbiol, 10, 563850. 
https://doi.org/10.3389/fcimb.2020.563850 

Harvey, W. T., Benton, D. J., Gregory, V., Hall, J. P. J. J., 
Daniels, R. S., Bedford, T., Haydon, D. T., Hay, A. J., 
McCauley, J. W., & Reeve, R. (2016). Identification of Low- 
and High-Impact Hemagglutinin Amino Acid Substitutions 
That Drive Antigenic Drift of Influenza A(H1N1) Viruses. PLoS 
Pathogens, 12(4), 1–23. 
https://doi.org/10.1371/journal.ppat.1005526 

Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the 
human-ape splitting by a molecular clock of mitochondrial 
DNA. Journal of Molecular Evolution, 22(2), 160–174. 
https://doi.org/10.1007/BF02101694 

Hausser, J., & Strimmer, K. (2008). Entropy inference and the 
James-Stein estimator, with application to nonlinear gene 
association networks. J. Mach. Learn. Res., 10, 1469–1484. 
http://arxiv.org/abs/0811.3579 

Hausser, J., & Strimmer, K. (2021). Estimation of Entropy, 
Mutual Information and Related Quantities (1.3.1). 
https://cran.r-project.org/package=entropy 

Hayden, F. G., Fritz, R. S., Lobo, M. C., Alvord, W. G., Strober, 
W., & Straus, S. E. (1998). Local and systemic cytokine 
responses during experimental human influenza A virus 
infection. Relation to symptom formation and host defense. 
The Journal of Clinical Investigation, 101(3), 643–649. 
https://doi.org/10.1172/JCI1355 

Haydon, D. T., Cleaveland, S., Taylor, L. H., & Laurenson, M. K. 
(2002). Identifying reservoirs of infection: A conceptual and 
practical challenge. In Emerging Infectious Diseases (Vol. 8, 
Issue 12, pp. 1468–1473). 
https://doi.org/10.3201/eid0812.010317 

Hayward, A. C., Fragaszy, E. B., Bermingham, A., Wang, L., 
Copas, A., Edmunds, W. J., Ferguson, N., Goonetilleke, N., 
Harvey, G., Kovar, J., Lim, M. S. C., McMichael, A., Millett, 
E. R. C., Nguyen-Van-Tam, J. S., Nazareth, I., Pebody, R., 
Tabassum, F., Watson, J. M., Wurie, F. B., … Zambon, M. 
(2014a). Comparative community burden and severity of 
seasonal and pandemic influenza: Results of the Flu Watch 
cohort study. The Lancet Respiratory Medicine, 2(6), 445–
454. https://doi.org/10.1016/S2213-2600(14)70034-7 

Hayward, A. C., Fragaszy, E. B., Bermingham, A., Wang, L., 
Copas, A., Edmunds, W. J., Ferguson, N., Goonetilleke, N., 
Harvey, G., Kovar, J., Lim, M. S. C., McMichael, A., Millett, 
E. R. C., Nguyen-Van-Tam, J. S., Nazareth, I., Pebody, R., 
Tabassum, F., Watson, J. M., Wurie, F. B., … Zambon, M. 
(2014b). Comparative community burden and severity of 



26 

26 
 

seasonal and pandemic influenza: results of the Flu Watch 
cohort study. The Lancet Respiratory Medicine, 2(6), 445–
454. https://doi.org/10.1016/S2213-2600(14)70034-7 

Health and Social Care, D. of. (2020). UK Pandemic Preparedness. 
https://www.gov.uk/government/publications/uk-
pandemic-preparedness 

Heesterbeek, J. A. P. A. P. (2002). A brief history of R0 and a 
recipe for its calculation. Acta Biotheoretica, 50(3), 189–204. 
https://doi.org/10.1017/cbo9780511525667.003 

Hemmink, J. D., Morgan, S. B., Aramouni, M., Everett, H., 
Salguero, F. J., Canini, L., Porter, E., Chase-Topping, M., 
Beck, K., Loughlin, R. Mac, Carr, B. V., Brown, I. H., Bailey, 
M., Woolhouse, M., Brookes, S. M., Charleston, B., & 
Tchilian, E. (2016). Distinct immune responses and virus 
shedding in pigs following aerosol, intra-nasal and contact 
infection with pandemic swine influenza A virus, A(H1N1)09. 
Veterinary Research, 47(1), 103. 
https://doi.org/10.1186/s13567-016-0390-5 

Henry, C., Palm, A.-K. E., Krammer, F., & Wilson, P. C. (2018). 
From Original Antigenic Sin to the Universal Influenza Virus 
Vaccine. Trends in Immunology, 39(1), 70–79. 
https://doi.org/10.1016/j.it.2017.08.003 

Hicks, J. T., Lee, D.-H., Duvvuri, V. R., Kim Torchetti, M., 
Swayne, D. E., & Bahl, J. (2020). Agricultural and geographic 
factors shaped the North American 2015 highly pathogenic 
avian influenza H5N2 outbreak. PLOS Pathogens, 16(1), 
e1007857. https://doi.org/10.1371/journal.ppat.1007857 

Hidano, A., & Gates, M. C. (2019a). Assessing biases in 
phylodynamic inferences in the presence of super-spreaders. 
Veterinary Research, 50(1), 74. 
https://doi.org/10.1186/s13567-019-0692-5 

Hidano, A., & Gates, M. C. (2019b). Assessing biases in 
phylodynamic inferences in the presence of super-spreaders. 
Veterinary Research, 50(1), 74. 
https://doi.org/10.1186/s13567-019-0692-5 

Hill, W. G. (1988). Molecular Evolutionary Genetics. By Masatoshi 
Nei. New York: Columbia University Press. 1987. 512 pages. 
U.S. $50.00. ISBN 0 231 06320 2. Genetical Research, 52(1), 
74–75. https://doi.org/10.1017/S001667230002735X 

Holland, J. J., De La Torre, J. C., & Steinhauer, D. A. (1992). 
RNA Virus Populations as Quasispecies. In Current topics in 
microbiology and immunology (Vol. 176, pp. 1–20). 
https://doi.org/10.1007/978-3-642-77011-1_1 

Houldcroft, C. J., Beale, M. A., & Breuer, J. (2017). Clinical and 
biological insights from viral genome sequencing. In Nature 
Reviews Microbiology (Vol. 15, Issue 3, pp. 183–192). Nature 
Publishing Group. https://doi.org/10.1038/nrmicro.2016.182 

Houlihan, C. F., Frampton, D., Ferns, R. B., Raffle, J., Grant, P., 
Reidy, M., Hail, L., Thomson, K., Mattes, F., Kozlakidis, Z., 
Pillay, D., Hayward, A., & Nastouli, E. (2018). Use of Whole-



27 

27 
 

Genome Sequencing in the Investigation of a Nosocomial 
Influenza Virus Outbreak. The Journal of Infectious Diseases, 
218(9), 1485–1489. https://doi.org/10.1093/infdis/jiy335 

Hrecka, K., Hao, C., Gierszewska, M., Swanson, S. K., Kesik-
Brodacka, M., Srivastava, S., Florens, L., Washburn, M. P., & 
Skowronski, J. (2011). Vpx relieves inhibition of HIV-1 
infection of macrophages mediated by the SAMHD1 protein. 
Nature, 474(7353), 658–661. 
https://doi.org/10.1038/nature10195 

Huang, W., Li, L., Myers, J. R., & Marth, G. T. (2011). ART: a 
next-generation sequencing read simulator. Bioinformatics, 
28(4), 593–594. 
https://doi.org/10.1093/bioinformatics/btr708 

Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation 
of Levels of Gene Flow from DNA Sequence Data. Genetics, 
132(2), 583. https://doi.org/10.1093/GENETICS/132.2.583 

Hughes, J. (2016). DiversiTools. In GitHub repository. GitHub. 
Hughes, J., Allen, R. C., Baguelin, M., Hampson, K., Baillie, G. 

J., Elton, D., Newton, J. R., Kellam, P., Wood, J. L. N. N., 
Holmes, E. C., & Murcia, P. R. (2012a). Transmission of 
Equine Influenza Virus during an Outbreak Is Characterized 
by Frequent Mixed Infections and Loose Transmission 
Bottlenecks. PLOS Pathogens, 8(12), 1–15. 
https://doi.org/10.1371/journal.ppat.1003081 

Hughes, J., Allen, R. C., Baguelin, M., Hampson, K., Baillie, G. 
J., Elton, D., Newton, J. R., Kellam, P., Wood, J. L. N. N., 
Holmes, E. C., & Murcia, P. R. (2012b). Transmission of 
Equine Influenza Virus during an Outbreak Is Characterized 
by Frequent Mixed Infections and Loose Transmission 
Bottlenecks. PLOS Pathogens, 8(12), 1–15. 
https://doi.org/10.1371/journal.ppat.1003081 

Illingworth, C. J. R., & Mustonen, V. (2012). Components of 
Selection in the Evolution of the Influenza Virus: Linkage 
Effects Beat Inherent Selection. PLoS Pathogens, 8(12). 
https://doi.org/10.1371/journal.ppat.1003091 

Illingworth, C. J. R. R. (2016). SAMFIRE: Multi-locus variant 
calling for time-resolved sequence data. Bioinformatics, 
32(14), 2208–2209. 
https://doi.org/10.1093/bioinformatics/btw205 

Illingworth, C. J. R., Raghwani, J., Serwadda, D., Sewankambo, 
N. K., Robb, M. L., Eller, M. A., Redd, A. R., Quinn, T. C., & 
Lythgoe, K. A. (2020). A de novo approach to inferring 
within-host fitness effects during untreated HIV-1 infection. 
PLoS Pathogens, 16(6). 
https://doi.org/10.1371/journal.ppat.1008171 

International Codes of Practice. (2023, May). Horserace Betting 
Levy Board,. https://codes.hblb.org.uk/index.php/page/168 

Ip, D. K. M., Lau, L. L. H., Leung, N. H. L., Fang, V. J., Chan, K. 
H., Chu, D. K. W., Leung, G. M., Peiris, J. S. M., Uyeki, T. 
M., & Cowling, B. J. (2017). Viral Shedding and Transmission 



28 

28 
 

Potential of Asymptomatic and Paucisymptomatic Influenza 
Virus Infections in the Community. Clinical Infectious 
Diseases, 64(6), 736–742. 
https://doi.org/10.1093/CID/CIW841 

Ito, T., Gorman, O. T., Kawaoka, Y., Bean, W. J., & Webster, R. 
G. (1991). Evolutionary analysis of the influenza A virus M 
gene with comparison of the M1 and M2 proteins. Journal of 
Virology, 65(10), 5491–5498. 
https://doi.org/10.1128/jvi.65.10.5491-5498.1991 

Ito, T., Kawaoka, Y., Ohira, M., Takakuwa, H., Yasuda, J., Kida, 
H., & Otsuki, K. (1999). Replacement of internal protein 
genes, with the exception of the matrix, in equine 1 viruses 
by equine 2 influenza virus genes during evolution in nature. 
J Vet Med Sci, 61(8), 987–989. 
https://doi.org/10.1292/jvms.61.987 

Iuliano, A. D., Roguski, K. M., Chang, H. H., Muscatello, D. J., 
Palekar, R., Tempia, S., Cohen, C., Gran, J. M., Schanzer, 
D., Cowling, B. J., Wu, P., Kyncl, J., Ang, L. W., Park, M., 
Redlberger-Fritz, M., Yu, H., Espenhain, L., Krishnan, A., 
Emukule, G., … Mustaquim, D. (2018). Estimates of global 
seasonal influenza-associated respiratory mortality: a 
modelling study. The Lancet, 391(10127), 1285–1300. 
https://doi.org/https://doi.org/10.1016/S0140-
6736(17)33293-2 

Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). 
BepiPred-2.0: improving sequence-based B-cell epitope 
prediction using conformational epitopes. Nucleic Acids Res, 
45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346 

Jiao J, Fefferman N. The dynamics of evolutionary rescue from a 
novel pathogen threat in a host metapopulation. Sci Rep. 
2021 May 25;11(1):10932. doi: 10.1038/s41598-021-90407-z. 
PMID: 34035424; PMCID: PMC8149858.  

Johnson, K. E. E., & Ghedin, E. (2020). Quantifying between-Host 
Transmission in Influenza Virus Infections. Cold Spring Harb 
Perspect Med, 10(8). 
https://doi.org/10.1101/cshperspect.a038422 

Jombart, T., Cori, A., Didelot, X., Cauchemez, S., Fraser, C., & 
Ferguson, N. (2014). Bayesian Reconstruction of Disease 
Outbreaks by Combining Epidemiologic and Genomic Data. 
PLoS Computational Biology, 10(1), 1003457. 
https://doi.org/10.1371/journal.pcbi.1003457 

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., 
Gittleman, J. L., & Daszak, P. (2008). Global trends in 
emerging infectious diseases. Nature, 451(7181), 990–993. 
https://doi.org/10.1038/nature06536 

Jones, M. R., & Good, J. M. (2016). Targeted capture in 
evolutionary and ecological genomics. In Molecular Ecology 
(Vol. 25, Issue 1, pp. 185–202). Blackwell Publishing Ltd. 
https://doi.org/10.1111/mec.13304 



29 

29 
 

Jorba, N., Coloma, R., & Ortín, J. (2009). Genetic trans-
Complementation Establishes a New Model for Influenza 
Virus RNA Transcription and Replication. PLoS Pathogens, 
5(5), e1000462. 
https://doi.org/10.1371/journal.ppat.1000462 

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, 
A., & Jermiin, L. S. (2017). ModelFinder: fast model 
selection for accurate phylogenetic estimates. Nature 
Methods, 14(6), 587–589. 
https://doi.org/10.1038/nmeth.4285 

Karamendin, K., Kydyrmanov, A., Kasymbekov, Y., Khan, E., 
Daulbayeva, K., Asanova, S., Zhumatov, K., Seidalina, A., 
Sayatov, M., & Fereidouni, S. R. (2014). Continuing evolution 
of equine influenza virus in Central Asia, 2007-2012. Arch 
Virol, 159(9), 2321–2327. https://doi.org/10.1007/s00705-
014-2078-3 

Kariuki, S. M., Selhorst, P., Ariën, K. K., & Dorfman, J. R. 
(2017a). The HIV-1 transmission bottleneck. 14, 22. 
https://doi.org/10.1186/s12977-017-0343-8 

Kariuki, S. M., Selhorst, P., Ariën, K. K., & Dorfman, J. R. 
(2017b). The {HIV}-1 transmission bottleneck. Retrovirology, 
14(1), 22. https://doi.org/10.1186/s12977-017-0343-8 

Kawaoka, Y., Bean, W. J., & Webster, R. G. (1989). Evolution of 
the hemagglutinin of equine H3 influenza viruses. Virology, 
169(2), 283–292. https://doi.org/10.1016/0042-
6822(89)90153-0 

Kelvin, A. A., & Zambon, M. (2019). Influenza imprinting in 
childhood and the influence on vaccine response later in life. 
Eurosurveillance, 24(48), 1–5. https://doi.org/10.2807/1560-
7917.ES.2019.24.48.1900720 

Kenah, E., Britton, T., Halloran, M. E., & Longini, I. M. (2016). 
Molecular Infectious Disease Epidemiology: Survival Analysis 
and Algorithms Linking Phylogenies to Transmission Trees. 
PLoS Computational Biology, 12(4). 
https://doi.org/10.1371/journal.pcbi.1004869 

Khan, A., Mushtaq, M. H., Muhammad, J., Ahmed, B., Khan, E. 
A., Khan, A., Zakki, S. A., Altaf, E., Saleem, A., Warraich, M. 
A., Ahmed, N., Rabaan, A. A., Haq, I., Saleem, A., Warraich, 
M. A., Ahmed, N., & Rabaan, A. A. (2021). Global 
epidemiology of Equine Influenza viruses; “A possible 
emerging zoonotic threat in future” an extensive systematic 
review with evidence. Braz J Biol, 83, e246591. 
https://doi.org/10.1590/1519-6984.246591 

Kim, J. H., Skountzou, I., Compans, R., & Jacob, J. (2009a). 
Original Antigenic Sin Responses to Influenza Viruses. The 
Journal of Immunology, 183(5), 3294–3301. 
https://doi.org/10.4049/jimmunol.0900398 

Kim, J. H., Skountzou, I., Compans, R., & Jacob, J. (2009b). 
Original Antigenic Sin Responses to Influenza Viruses. The 



30 

30 
 

Journal of Immunology, 183(5), 3294–3301. 
https://doi.org/10.4049/jimmunol.0900398 

Kim K, Omori R, Ueno K, Iida S, Ito K (2016) Host-Specific and 
Segment-Specific Evolutionary Dynamics of Avian and Human 
Influenza A Viruses: A Systematic Review. PLoS ONE 11(1): 
e0147021. doi:10.1371/journal.pone.0147021 

Kim, W. K., Kim, J. A., Song, D. H., Lee, D., Kim, Y. C., Lee, S. 
Y., Lee, S. H., No, J. S., Kim, J. H., Kho, J. H., Gu, S. H., 
Jeong, S. T., Wiley, M., Kim, H. C., Klein, T. A., Palacios, 
G., & Song, J. W. (2016). Phylogeographic analysis of 
hemorrhagic fever with renal syndrome patients using 
multiplex PCR-based next generation sequencing. Scientific 
Reports, 6(1), 1–8. https://doi.org/10.1038/srep26017 

Kingman, J. F. C. (1982). On the genealogy of large populations. 
Journal of Applied Probability, 19(A), 27–43. 
https://doi.org/10.2307/3213548 

Klenerman, P., & Zinkernagel, R. M. (1998). Original antigenic sin 
impairs cytotoxic T lymphocyte responses to viruses bearing 
variant epitopes. Nature, 394(6692), 482–485. 
https://doi.org/10.1038/28860 

Klinkenberg, D., Backer, J. A., Didelot, X., Colijn, C., & Wallinga, 
J. (2017). Simultaneous inference of phylogenetic and 
transmission trees in infectious disease outbreaks. PLoS 
Computational Biology, 13(5). 
https://doi.org/10.1371/journal.pcbi.1005495 

Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. 
D., Lin, L., Miller, C. A., Mardis, E. R., Ding, L., & Wilson, R. 
K. (2012). VarScan 2: Somatic mutation and copy number 
alteration discovery in cancer by exome sequencing. Genome 
Research, 22(3), 568–576. 
https://doi.org/10.1101/gr.129684.111 

Koel, B. F., Vigeveno, R. M., Pater, M., Koekkoek, S. M., Han, A. 
X., Tuan, H. M., Anh, T. T. N., Hung, N. T., Thinh, L. Q., 
Hai, L. T., Ngoc, H. T. B., Chau, N. V. V., Ngoc, N. M., 
Chokephaibulkit, K., Puthavathana, P., Kinh, N. V., Trinh, 
T., Lee, R. T. C., Maurer-Stroh, S., … De Jong, M. D. (2020). 
Longitudinal sampling is required to maximize detection of 
intrahost A/H3N2 virus variants. Virus Evolution, 6(2). 
https://doi.org/10.1093/ve/veaa088 

Koelle, K., Khatri, P., Kamradt, M., & Kepler, T. B. (2010). A 
two-tiered model for simulating the ecological and 
evolutionary dynamics of rapidly evolving viruses, with an 
application to influenza. J R Soc Interface, 7(50), 1257–1274. 
https://doi.org/10.1098/rsif.2010.0007 

Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., 
Nolte, V., Futschik, A., Kosiol, C., & Schlötterer, C. (2011). 
PoPoolation: A Toolbox for Population Genetic Analysis of 
Next Generation Sequencing Data from Pooled Individuals. 
PLOS ONE, 6(1), 1–9. 
https://doi.org/10.1371/journal.pone.0015925 



31 

31 
 

Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical 
method for prediction of antigenic determinants on protein 
antigens. FEBS Lett, 276(1–2), 172–174. 
https://doi.org/10.1016/0014-5793(90)80535-q 

Korneliussen, T.S., Moltke, I., Albrechtsen, A. et al. Calculation 
of Tajima’s D and other neutrality test statistics from low 
depth next-generation sequencing data. BMC 
Bioinformatics 14, 289 (2013). 
https://doi.org/10.1186/1471-2105-14-289 

Kratsch, C., Klingen, T. R., Mü Mken, L., Steinbrü Ck, L., & 
Mchardy, A. C. (2016). Determination of antigenicity-altering 
patches on the major surface protein of human influenza 
A/H3N2 viruses. Virus Evolution, 2(1). 
https://doi.org/10.1093/ve/vev025 

Kryazhimskiy, S., Dushoff, J., Bazykin, G. A., & Plotkin, J. B. 
(2011). Prevalence of Epistasis in the Evolution of Influenza A 
Surface Proteins. PLOS Genetics, 7(2), e1001301. 
https://doi.org/10.1371/JOURNAL.PGEN.1001301 

Kühnert, D., Wu, C. H., & Drummond, A. J. (2011). Phylogenetic 
and epidemic modeling of rapidly evolving infectious 
diseases. In Infection, Genetics and Evolution (Vol. 11, Issue 
8, pp. 1825–1841). 
https://doi.org/10.1016/j.meegid.2011.08.005 

Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., 
Williams, C. S., & Grenfell, B. T. (2006). Host Species 
Barriers to Influenza Virus Infections. Science, 312(5772), 
394–397. https://doi.org/10.1126/science.1122818 

Kwong, J. C., Mccallum, N., Sintchenko, V., & Howden, B. P. 
(2015). Whole genome sequencing in clinical and public 
health microbiology. Pathology, 47(3), 199–210. 
https://doi.org/10.1097/PAT.0000000000000235 

Laabassi, F., Lecouturier, F., Amelot, G., Gaudaire, D., 
Mamache, B., Laugier, C., Legrand, L., Zientara, S., & Hans, 
A. (2015). Epidemiology and Genetic Characterization of 
H3N8 Equine Influenza Virus Responsible for Clinical Disease 
in Algeria in 2011. Transbound Emerg Dis, 62(6), 623–631. 
https://doi.org/10.1111/tbed.12209 

Laguette, N., Sobhian, B., Casartelli, N., Ringeard, M., Chable-
Bessia, C., Ségéral, E., Yatim, A., Emiliani, S., Schwartz, O., 
& Benkirane, M. (2011). SAMHD1 is the dendritic- and 
myeloid-cell-specific HIV-1 restriction factor counteracted by 
Vpx. Nature, 474(7353), 654–657. 
https://doi.org/10.1038/nature10117 

Lai, A. C. K., Chambers, T. M., Holland Jr., R. E., Morley, P. S., 
Haines, D. M., Townsend, H. G. G., & Barrandeguy, M. 
(2001). Diverged evolution of recent equine-2 influenza 
(H3N8) viruses in the Western Hemisphere. Archives of 
Virology, 146(6), 1063–1074. 
https://doi.org/10.1007/s007050170106 



32 

32 
 

Lai, A. C. K., Chambers, T. M., Holland, R. E., & Morley, P. S. 
(2001). Diverged evolution of recent equine-2 influenza ( 
H3N8 ) viruses in the Western Hemisphere. 1063–1074. 

Lai, A. C. K., Rogers, K. M., Glaser, A., Tudor, L., & Chambers, 
T. (2004). Alternate circulation of recent equine-2 influenza 
viruses (H3N8) from two distinct lineages in the United 
States. Virus Res, 100(2), 159–164. 
https://doi.org/10.1016/j.virusres.2003.11.019 

Landolt, G. A. (2014). Equine influenza virus. Veterinary Clinics 
of North America - Equine Practice, 30(3), 507–522. 
https://doi.org/10.1016/j.cveq.2014.08.003 

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read 
alignment with Bowtie 2. Nat Methods, 9(4), 357–359. 
https://doi.org/10.1038/nmeth.1923 

Lau, L. L. H., Cowling, B. J., Fang, V. J., Chan, K. H., Lau, E. H. 
Y., Lipsitch, M., Cheng, C. K. Y., Houck, P. M., Uyeki, T. M., 
Malik Peiris, J. S., & Leung, G. M. (2010). Viral Shedding and 
Clinical Illness in Naturally Acquired Influenza Virus 
Infections. The Journal of Infectious Diseases, 201(10), 1509–
1516. https://doi.org/10.1086/652241 

Lauring, A. S. (2020a). Within-Host Viral Diversity: A Window into 
Viral Evolution. Annual Review of Virology, 7(1), 63–81. 
https://doi.org/10.1146/annurev-virology-010320-061642 

Lauring, A. S. (2020b). Within-Host Viral Diversity: A Window into 
Viral Evolution. Annual Review of Virology, 7(1), 63–81. 
https://doi.org/10.1146/annurev-virology-010320 

Lazarus, L., Patel, S., Shaw, A., Leblanc, S., Lalonde, C., Hladio, 
M., Mandryk, K., Horvath, C., Petrcich, W., Kendall, C., & 
Tyndall, M. W. (2016). Uptake of community-based peer 
administered HIV point-of-care testing: Findings from the 
PROUD study. PLoS ONE, 11(12), e0166942. 
https://doi.org/10.1371/journal.pone.0166942 

Lazniewski, M., Dawson, W. K., Szczepińska, T., & Plewczynski, 
D. (2018). The structural variability of the influenza A 
hemagglutinin receptor-binding site. Briefings in Functional 
Genomics, 17(6), 415–427. 
https://doi.org/10.1093/bfgp/elx042 

LeClair, J. S., & Wahl, L. M. (2018). The Impact of Population 
Bottlenecks on Microbial Adaptation. Journal of Statistical 
Physics, 172(1), 114–125. https://doi.org/10.1007/s10955-
017-1924-6 

Lee, C. Y., Raghunathan, V., Caceres, C. J., Geiger, G., Seibert, 
B., Faccin, F. C., Gay, L. C., Ferreri, L. M., Kaul, D., 
Wrammert, J., Tan, G. S., Perez, D. R., & Lowen, A. C. 
(2023). Epistasis reduces fitness costs of influenza A virus 
escape from stem-binding antibodies. Proceedings of the 
National Academy of Sciences of the United States of 
America, 120(17), e2208718120. 
https://doi.org/10.1073/PNAS.2208718120/SUPPL_FILE/PNA
S.2208718120.SD18.XLSX 



33 

33 
 

Lee, C.-Y., An, S.-H., Choi, J.-G., Lee, Y.-J., Kim, J.-H., & Kwon, 
H.-J. (2020). Rank orders of mammalian pathogenicity-
related PB2 mutations of avian influenza A viruses. Scientific 
Reports, 10(1), 5359. https://doi.org/10.1038/s41598-020-
62036-5 

Lee, H. K., Lee, C. K., Tang, J. W. T., Loh, T. P., & Koay, E. S. C. 
(2016). Contamination-controlled high-throughput whole 
genome sequencing for influenza A viruses using the MiSeq 
sequencer. Scientific Reports, 6(1), 1–11. 
https://doi.org/10.1038/srep33318 

Lee, K., Pusterla, N., Barnum, S. M., Lee, D.-H., & Martínez-
López, B. (2021). Genome-informed characterisation of 
antigenic drift in the haemagglutinin gene of equine 
influenza strains circulating in the United States from 2012 
to 2017. Transbound Emerg Dis, 69(4), 1–12. 
https://doi.org/10.1111/tbed.14262 

Leeks, A., Segredo-Otero, E. A., Sanjuán, R., & West, S. A. 
(2018). Beneficial coinfection can promote within-host viral 
diversity. Virus Evolution, 4(2), 1–12. 
https://doi.org/10.1093/ve/vey028 

Lefeuvre, P., Lett, J.-M., Varsani, A., & Martin, D. P. (2009). 
Widely conserved recombination patterns among single-
stranded DNA viruses. Journal of Virology, 83(6), 2697 – 
2707. https://doi.org/10.1128/JVI.02152-08 

Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. 
J., Siddell, S. G., & Smith, D. B. (2018). Virus taxonomy: the 
database of the International Committee on Taxonomy 
of  Viruses (ICTV). Nucleic Acids Research, 46(D1), D708–
D717. https://doi.org/10.1093/nar/gkx932 

Legrand, L. J., Pitel, P.-H. Y., Cullinane, A. A., Fortier, G. D., 
Pronost, S. L., & Universite, N. (2015). Genetic evolution of 
equine influenza strains isolated in France from 2005 to 
2010. Equine Vet J, 47(2), 207–211. 
https://doi.org/10.1111/evj.12244 

Lennox, K., Dahl, D., Vannucci, M., & Tsai, J. (2009). Density 
Estimation for Protein Conformation Angles Using a Bivariate 
von Mises Distribution and Bayesian Nonparametrics. Journal 
of the American Statistical Association, 104, 586–596. 
https://doi.org/10.1198/jasa.2009.0024 

Leonard, A. S., Weissman, D. B., Greenbaum, B. C., Ghedin, E., 
Koelle, K., Elodie Ghedin, D., Koellea, K., Ghedin, E., 
Koelle, K., Elodie Ghedin, D., Koellea, K., Ghedin, E., & 
Koelle, K. (2017). Transmission bottleneck size estimation 
from pathogen deep-sequencing data, with an application to 
human influenza a virus. In bioRxiv (Vol. 91, Issue 14). 
https://doi.org/10.1101/101790 

Leonard, A. S., Weissman, D. B., Greenbaum, B., Ghedin, E., & 
Koelle, K. (2019). Correction for Sobel Leonard et al., 
“Transmission Bottleneck Size Estimation from Pathogen 
Deep-Sequencing Data, with an Application to Human 



34 

34 
 

Influenza A Virus.” Journal of Virology, 93(17), 
10.1128/jvi.00936-19. https://doi.org/10.1128/jvi.00936-19 

Lewis, N. S., Daly, J. M., Russell, C. A., Horton, D. L., Skepner, 
E., Bryant, N. A., Burke, D. F., Rash, A. S., Wood, J. L. N., 
Chambers, T. M., Fouchier, R. A. M., Mumford, J. A., Elton, 
D. M., & Smith, D. J. (2011). Antigenic and Genetic Evolution 
of Equine Influenza A (H3N8) Virus from 1968 to 2007. 
Journal of Virology, 85(23), 12742–12749. 
https://doi.org/10.1128/jvi.05319-11 

Lewis, N. S., Russell, C. A., Langat, P., Anderson, T. K., Berger, 
K., Bielejec, F., Burke, D. F., Dudas, G., Fonville, J. M., 
Fouchier, R. A., Kellam, P., Koel, B. F., Lemey, P., Nguyen, 
T., Nuansrichy, B., Peiris, J. M., Saito, T., Simon, G., 
Skepner, E., … Vincent, A. L. (2016). The global antigenic 
diversity of swine influenza A viruses. ELife, 5. 
https://doi.org/10.7554/eLife.12217 

Li, H. and Durbin, R. (2009) Fast and accurate short read 
alignment with Burrows–Wheeler transform, Bioinformatics, 
Volume 25, Issue 14, Pages 1754-1760 
https://doi.org/10.1093/bioinformatics/btp324 

Li, J., Ishaq, M., Prudence, M., Xi, X., Hu, T., Liu, Q., & Guo, D. 
(2009). Single mutation at the amino acid position 627 of PB2 
that leads to increased virulence of an H5N1 avian influenza 
virus during adaptation in mice can be compensated by 
multiple mutations at other sites of PB2. Virus Research, 
144(1), 123–129. 
https://doi.org/https://doi.org/10.1016/j.virusres.2009.04.
008 

Li, W., Lee, H. H. Y., Li, R. F., Zhu, H. M., Yi, G., Peiris, J. S. M., 
Yang, Z. F., & Mok, C. K. P. (2017). The PB2 mutation with 
lysine at 627 enhances the pathogenicity of avian influenza 
(H7N9) virus which belongs to a non-zoonotic lineage. 
Scientific Reports, 7(1), 2352. 
https://doi.org/10.1038/s41598-017-02598-z 

Liao, C. M., Yang, S. C., Chio, C. P., & Chen, S. C. (2010). 
Understanding influenza virus-specific epidemiological 
properties by analysis of experimental human infections. 
Epidemiology & Infection, 138(6), 825–835. 
https://doi.org/10.1017/S0950268809991178 

Lindstrom, S., Endo, A., Sugita, S., Pecoraro, M., Hiromoto, Y., 
Kamada, M., Takahashi, T., & Nerome, K. (1998). 
Phylogenetic analyses of the matrix and non-structural genes 
of equine influenza viruses. Arch Virol, 143(8), 1585–1598. 
https://doi.org/10.1007/s007050050400 

Lipsitch, M., Barclay, W., Raman, R., Russell, C. J., Belser, J. A., 
Cobey, S., Kasson, P. M., Lloyd-Smith, J. O., Maurer-Stroh, 
S., Riley, S., Beauchemin, C. A., Bedford, T., Friedrich, T. 
C., Handel, A., Herfst, S., Murcia, P. R., Roche, B., Wilke, C. 
O., & Russell, C. A. (2016). Viral factors in influenza 



35 

35 
 

pandemic risk assessment. ELife, 5, 38. 
https://doi.org/10.7554/eLife.18491 

Liu, T., Wang, Y., Tan, T. J. C., Wu, N. C., & Brooke, C. B. 
(2022). The evolutionary potential of influenza A virus 
hemagglutinin is highly constrained by epistatic interactions 
with neuraminidase. Cell Host & Microbe, 30(10), 1363-
1369.e4. https://doi.org/10.1016/j.chom.2022.09.003 

Lloyd, L. E., Jonczyk, M., Jervis, C. M., Flack, D. J., Lyall, J., 
Foote, A., Mumford, J. A., Brown, I. H., Wood, J. L., & 
Elton, D. M. (2011). Experimental transmission of avian-like 
swine H1N1 influenza virus between immunologically naïve 
and vaccinated pigs. Influenza and Other Respiratory 
Viruses, 5(5), 357–364. 
https://doi.org/https://doi.org/10.1111/j.1750-
2659.2011.00233.x 

Lopes, A. M., Domingues, P., Zell, R., & Hale, B. G. (2017). 
Structure-Guided Functional Annotation of the Influenza A 
Virus NS1 Protein Reveals Dynamic Evolution of the p85β-
Binding Site during Circulation in Humans. Journal of 
Virology, 91(21), 1–16. https://doi.org/10.1128/JVI.01081-17 

Lumby, C. K., Nene, N. R., & Illingworth, C. J. R. (2018). A novel 
framework for inferring parameters of transmission from 
viral sequence data. In PLoS Genetics (Vol. 14, Issue 10). 
Public Library of Science. 
https://doi.org/10.1371/journal.pgen.1007718 

Lumby, C. K., Zhao, L., Breuer, J., & Illingworth, C. J. R. J. 
(2020). A large effective population size for established 
within-host influenza virus infection. ELife, 9, 1–17. 
https://doi.org/10.7554/eLife.56915 

Lyons, D. M., & Lauring, A. S. (2018). Mutation and Epistasis in 
Influenza Virus Evolution. Viruses 2018, Vol. 10, Page 407, 
10(8), 407. https://doi.org/10.3390/V10080407 

Mackenzie, J. S., Childs, J. E., & Richt, J. A. (2007). The Biology, 
circumstances and consequences of cross-species 
transmission. In Current topics in microbiology and 
immunology. 

Maeda, Y., Takemura, T., Chikata, T., Kuwata, T., Terasawa, H., 
Fujimoto, R., Kuse, N., Akahoshi, T., Murakoshi, H., Tran, G. 
Van, Zhang, Y., Pham, C. H., Pham, A. H. Q., Monde, K., 
Sawa, T., Matsushita, S., Nguyen, T. V., Nguyen, K. Van, 
Hasebe, F., … Takiguchi, M. (2020). Existence of replication-
competent minor variants with different coreceptor usage in 
plasma from hiv-1-infected individuals. Journal of Virology, 
94(12), 1–17. https://doi.org/10.1128/JVI.00193-20 

Magori, K., & Park, A. W. (2014). The evolutionary consequences 
of alternative types of imperfect vaccines. J Math Biol, 
68(4), 969–987. https://doi.org/10.1007/s00285-013-0654-x 

Mak, L., Perera, D., Lang, R., Kossinna, P., He, J., Gill, M. J., 
Long, Q., & van Marle, G. (2020). Evaluation of a 
phylogenetic pipeline to examine transmission networks in a 



36 

36 
 

canadian HIV cohort. Microorganisms, 8(2). 
https://doi.org/10.3390/microorganisms8020196 

Manuguerra, J. C., Zientara, S., Sailleau, C., Rousseaux, C., 
Gicquel, B., Rijks, I., & van der Werf, S. (2000). Evidence for 
evolutionary stasis and genetic drift by genetic analysis of 
two equine influenza H3 viruses isolated in France. Vet 
Microbiol, 74(1–2), 59–70. https://doi.org/10.1016/s0378-
1135(00)00166-8 

Marjanovic, S., Romanelli, R. J., Ali, G.-C., Leach, B., Bonsu, M., 
Rodriguez-Rincon, D., & Ling, T. (2022). COVID-19 Genomics 
UK (COG-UK) Consortium: Final Report. Rand Health 
Quarterly, 9(4), 24. 

Marshall, N., Priyamvada, L., Ende, Z., Steel, J., & Lowen, A. C. 
(2013). Influenza Virus Reassortment Occurs with High 
Frequency in the Absence of Segment Mismatch. PLOS 
Pathogens, 9(6), 1–11. 
https://doi.org/10.1371/journal.ppat.1003421 

Mather, A. E., Matthews, L., Mellor, D. J., Reeve, R., Denwood, 
M. J., Boerlin, P., Reid-Smith, R. J., Brown, D. J., Coia, J. 
E., Browning, L. M., Haydon, D. T., & Reid, S. W. J. (2012). 
An ecological approach to assessing the epidemiology of 
antimicrobial resistance in animal and human populations. 
Proceedings of the Royal Society B: Biological Sciences, 
279(1733), 1630–1639. 
https://doi.org/10.1098/rspb.2011.1975 

Matthews, L., & Woolhouse, M. (2005). New approaches to 
quantifying the spread of infection. In Nature Reviews 
Microbiology. https://doi.org/10.1038/nrmicro1178 

McCrone, J. T., & Lauring, A. S. (2016). Measurements of 
Intrahost Viral Diversity Are Extremely Sensitive to 
Systematic Errors in Variant Calling. Journal of Virology, 
90(15), 6884–6895. https://doi.org/10.1128/jvi.00667-16 

McCrone, J. T., & Lauring, A. S. (2018a). Genetic bottlenecks in 
intraspecies virus transmission. In Current Opinion in 
Virology (Vol. 28, pp. 20–25). Elsevier B.V. 
https://doi.org/10.1016/j.coviro.2017.10.008 

McCrone, J. T., & Lauring, A. S. (2018b). Genetic bottlenecks in 
intraspecies virus transmission. Current Opinion in Virology, 
28, 20–25. https://doi.org/10.1016/j.coviro.2017.10.008 

McCrone, J. T., Woods, R. J., Martin, E. T., Malosh, R. E., Monto, 
A. S., & Lauring, A. S. (2018a). Stochastic processes 
constrain the within and between host evolution of influenza 
virus. ELife, 7. https://doi.org/10.7554/eLife.35962 

McCrone, J. T., Woods, R. J., Martin, E. T., Malosh, R. E., Monto, 
A. S., & Lauring, A. S. (2018b). Stochastic processes 
constrain the within and between host evolution of influenza 
virus. ELife, 7, e35962. https://doi.org/10.7554/eLife.35962 

McCrone, J. T., Woods, R. J., Monto, A. S., Martin, E. T., & 
Lauring, A. S. (2020a). The effective population size and 



37 

37 
 

mutation rate of influenza {A} virus in acutely infected 
individuals. https://doi.org/10.1101/2020.10.24.353748 

McCrone, J. T., Woods, R. J., Monto, A. S., Martin, E. T., & 
Lauring, A. S. (2020b). The effective population size and 
mutation rate of influenza A virus in acutely infected 
individuals. In bioRxiv. 
https://doi.org/10.1101/2020.10.24.353748 

McCrone, J. T., Woods, R. J., Monto, A. S., Martin, E. T., & 
Lauring, A. S. (2020c). The effective population size and 
mutation rate of influenza {A} virus in acutely infected 
individuals. In bioRxiv. 
https://doi.org/10.1101/2020.10.24.353748 

McKay, B., Ebell, M., Billings, W. Z., Dale, A. P., Shen, Y., & 
Handel, A. (2020). Associations Between Relative Viral Load 
at Diagnosis and Influenza A Symptoms  and Recovery. Open 
Forum Infectious Diseases, 7(11), ofaa494. 
https://doi.org/10.1093/ofid/ofaa494 

McKellar, J., Rebendenne, A., Wencker, M., Moncorge, O., & 
Goujon, C. (2021). Mammalian and Avian Host Cell Influenza 
A Restriction Factors. VIRUSES-BASEL, 13(3). 
https://doi.org/10.3390/v13030522 

Meinel, D. M., Heinzinger, S., Eberle, U., Ackermann, N., 
Schönberger, K., & Sing, A. (2018). Whole genome 
sequencing identifies influenza A H3N2 transmission and 
offers superior resolution to classical typing methods. 
Infection, 46(1), 69–76. https://doi.org/10.1007/s15010-017-
1091-3 

Mendenhall, I. H., Wen, D. L. H., Jayakumar, J., Gunalan, V., 
Wang, L., Mauer-Stroh, S., Su, Y. C. F., & Smith, G. J. D. 
(2019). Diversity and evolution of viral pathogen community 
in cave nectar bats (eonycteris spelaea). Viruses, 11(3). 
https://doi.org/10.3390/v11030250 

Min, J.-Y., Santos, C., Fitch, A., Twaddle, A., Toyoda, Y., 
DePasse, J. V, Ghedin, E., & Subbarao, K. (2013). Mammalian 
adaptation in the PB2 gene of avian H5N1 influenza virus. 
Journal of Virology, 87(19), 10884–10888. 
https://doi.org/10.1128/JVI.01016-13 

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., 
Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). 
IQ-TREE 2: New Models and Efficient Methods for 
Phylogenetic Inference in the Genomic Era. Molecular 
Biology and Evolution, 37(5), 1530–1534. 
https://doi.org/10.1093/molbev/msaa015 

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., 
& Steinegger, M. (2022). ColabFold: making protein folding 
accessible to all. Nature Methods, 19(6), 679–682. 
https://doi.org/10.1038/s41592-022-01488-1 

Monne, I., Fusaro, A., Nelson, M. I., Bonfanti, L., Mulatti, P., 
Hughes, J., Murcia, P. R., Schivo, A., Valastro, V., Moreno, 
A., Holmes, E. C., & Cattoli, G. (2014). Emergence of a 



38 

38 
 

Highly Pathogenic Avian Influenza Virus from a Low-
Pathogenic Progenitor. Journal of Virology, 88(8), 4375–
4388. https://doi.org/10.1128/jvi.03181-13 

Monto, A. S., Malosh, R. E., Petrie, J. G., & Martin, E. T. (2017). 
The Doctrine of Original Antigenic Sin: Separating Good From 
Evil. The Journal of Infectious Diseases, 215(12), 1782–1788. 
https://doi.org/10.1093/infdis/jix173 

Morelli, M. J., Wright, C. F., Knowles, N. J., Juleff, N., Paton, D. 
J., King, D. P., & Haydon, D. T. (2013). Evolution of foot-
and-mouth disease virus intra-sample sequence diversity 
during serial transmission in bovine hosts. Veterinary 
Research, 44(1), 12. https://doi.org/10.1186/1297-9716-44-
12 

Morens, D. M., & Taubenberger, J. K. (2010). Historical thoughts 
on influenza viral ecosystems, or behold a pale horse, dead 
dogs, failing fowl, and sick swine. Influenza and Other 
Respiratory Viruses, 4(6), 327–337. 
https://doi.org/https://doi.org/10.1111/j.1750-
2659.2010.00148.x 

Morse, S. S., Mazet, J. A. K., Woolhouse, M., Parrish, C. R., 
Carroll, D., Karesh, W. B., Zambrana-Torrelio, C., Lipkin, W. 
I., & Daszak, P. (2012). Prediction and prevention of the 
next pandemic zoonosis. In The Lancet (Vol. 380, Issue 9857, 
pp. 1956–1965). https://doi.org/10.1016/S0140-
6736(12)61684-5 

Moustafa, A., Xie, C., Kirkness, E., Biggs, W., Wong, E., Turpaz, 
Y., Bloom, K., Delwart, E., Nelson, K. E., Venter, J. C., & 
Telenti, A. (2017). The blood DNA virome in 8,000 humans. 
PLoS Pathogens, 13(3), e1006292. 
https://doi.org/10.1371/journal.ppat.1006292 

Muller, H. J. (1932). Some Genetic Aspects of Sex. The American 
Naturalist, 66(703), 118–138. 
https://doi.org/10.1086/280418 

Müller, I., Pinto, E., Santibáñez, M. C., Celedón, M. O., 
Valenzuela, P. D. T., Santiba, C., Mu, I., & Valenzuela, P. D. 
T. (2009). Isolation and characterization of the equine 
influenza virus causing the 2006 outbreak in Chile. Vet 
Microbiol, 137(1–2), 172–177. 
https://doi.org/10.1016/j.vetmic.2008.12.011 

Mumford, J. A. (2007). Vaccines and viral antigenic diversity. Rev 
Sci Tech, 26(1), 69–90. 

Murcia, P. R., Baillie, G. J., Daly, J., Elton, D., Jervis, C., 
Mumford, J. A., Newton, R., Parrish, C. R., Hoelzer, K., 
Dougan, G., Parkhill, J., Lennard, N., Ormond, D., Moule, S., 
Whitwham, A., McCauley, J. W., McKinley, T. J., Holmes, E. 
C., Grenfell, B. T., & Wood, J. L. N. (2010a). Intra- and 
Interhost Evolutionary Dynamics of Equine Influenza Virus. 
Journal of Virology, 84(14), 6943–6954. 
https://doi.org/10.1128/jvi.00112-10 



39 

39 
 

Murcia, P. R., Baillie, G. J., Daly, J., Elton, D., Jervis, C., 
Mumford, J. A., Newton, R., Parrish, C. R., Hoelzer, K., 
Dougan, G., Parkhill, J., Lennard, N., Ormond, D., Moule, S., 
Whitwham, A., McCauley, J. W., McKinley, T. J., Holmes, E. 
C., Grenfell, B. T., & Wood, J. L. N. (2010b). Intra- and 
Interhost Evolutionary Dynamics of Equine Influenza Virus. 
Journal of Virology, 84(14), 6943–6954. 
https://doi.org/10.1128/jvi.00112-10 

Murcia, P. R., Baillie, G. J., Daly, J., Elton, D., Jervis, C., 
Mumford, J. A., Newton, R., Parrish, C. R., Hoelzer, K., 
Dougan, G., Parkhill, J., Lennard, N., Ormond, D., Moule, S., 
Whitwham, A., McCauley, J. W., McKinley, T. J., Holmes, E. 
C., Grenfell, B. T., & Wood, J. L. N. (2010c). Intra- and 
Interhost Evolutionary Dynamics of Equine Influenza Virus. 
Journal of Virology, 84(14), 6943–6954. 
https://doi.org/10.1128/jvi.00112-10 

Murcia, P. R., Baillie, G. J., Stack, J. C., Jervis, C., Elton, D., 
Mumford, J. A., Daly, J., Kellam, P., Grenfell, B. T., Holmes, 
E. C., & Wood, J. L. N. (2013a). Evolution of Equine 
Influenza Virus in Vaccinated Horses. Journal of Virology, 
87(8), 4768–4771. https://doi.org/10.1128/jvi.03379-12 

Murcia, P. R., Baillie, G. J., Stack, J. C., Jervis, C., Elton, D., 
Mumford, J. A., Daly, J., Kellam, P., Grenfell, B. T., Holmes, 
E. C., & Wood, J. L. N. (2013b). Evolution of Equine 
Influenza Virus in Vaccinated Horses. Journal of Virology, 
87(8), 4768–4771. https://doi.org/10.1128/jvi.03379-12 

Murcia, P. R., Baillie, G. J., Stack, J. C., Jervis, C., Elton, D., 
Mumford, J. A., Daly, J., Kellam, P., Grenfell, B. T., Holmes, 
E. C., & Wood, J. L. N. (2013c). Evolution of Equine 
Influenza Virus in Vaccinated Horses. Journal of Virology, 
87(8), 4768–4771. https://doi.org/10.1128/jvi.03379-12 

Murcia, P. R., Hughes, J., Battista, P., Lloyd, L., Baillie, G. J., 
Ramirez-Gonzalez, R. H., Ormond, D., Oliver, K., Elton, D., 
Mumford, J. A., Caccamo, M., Kellam, P., Grenfell, B. T., 
Holmes, E. C., & Wood, J. L. N. (2012). Evolution of an 
Eurasian Avian-like Influenza Virus in Naïve and Vaccinated 
Pigs. PLOS Pathogens, 8(5), 1–12. 
https://doi.org/10.1371/journal.ppat.1002730 

Murcia, P. R., Wood, J. L. N., & Holmes, E. C. (2011). Genome-
Scale Evolution and Phylodynamics of Equine H3N8 Influenza 
A Virus. Journal of Virology, 85(11), 5312–5322. 
https://doi.org/10.1128/JVI.02619-10 

Nei, M., & Gojobori, T. (1986). Simple methods for estimating 
the numbers of synonymous and nonsynonymous nucleotide 
substitutions. Molecular Biology and Evolution, 3(5), 418–
426. 
https://doi.org/10.1093/oxfordjournals.molbev.a040410 

Neil, S. J. D., Zang, T., & Bieniasz, P. D. (2008). Tetherin inhibits 
retrovirus release and is antagonized by HIV-1 Vpu. Nature, 
451(7177), 425–430. https://doi.org/10.1038/nature06553 



40 

40 
 

Neira, V., Rabinowitz, P., Rendahl, A., Paccha, B., Gibbs, S. G., 
& Torremorell, M. (2016). Characterization of Viral Load, 
Viability and Persistence of Influenza A Virus in Air and on 
Surfaces of Swine Production Facilities. PLOS ONE, 11(1), 1–
11. https://doi.org/10.1371/journal.pone.0146616 

Nelson, C. W., & Hughes, A. L. (2015). Within-host nucleotide 
diversity of virus populations: Insights from next-generation 
sequencing. Infection, Genetics and Evolution, 30, 1–7. 
https://doi.org/10.1016/j.meegid.2014.11.026 

Nemoto, M., Ohta, M., Yamanaka, T., Kambayashi, Y., Bannai, 
H., Tsujimura, K., Yamayoshi, S., Kawaoka, Y., & Cullinane, 
A. (2021). Antigenic differences between equine influenza 
virus vaccine strains and Florida sublineage clade 1 strains 
isolated in Europe in 2019. Vet J, 272, 105674. 
https://doi.org/10.1016/j.tvjl.2021.105674 

Neverov, A. D., Kryazhimskiy, S., Plotkin, J. B., & Bazykin, G. A. 
(2015). Coordinated Evolution of Influenza A Surface 
Proteins. PLoS Genetics, 11(8), e1005404. 
https://doi.org/10.1371/journal.pgen.1005404 

Newton, J. R., Daly, J. M., Spencer, L., & Mumford, J. A. (2006). 
Description of the outbreak of equine influenza (H3N8) in the 
United Kingdom in 2003, during which recently vaccinated 
horses in Newmarket developed respiratory disease. 
Veterinary Record, 158(6), 185–192. 
https://doi.org/10.1136/vr.158.6.185 

Nicholls, S. M., Poplawski, R., Bull, M. J., Underwood, A., 
Chapman, M., Abu-Dahab, K., Taylor, B., Colquhoun, R. M., 
Rowe, W. P. M., Jackson, B., Hill, V., O’Toole, Á., Rey, S., 
Southgate, J., Amato, R., Livett, R., Gonçalves, S., Harrison, 
E. M., Peacock, S. J., … Loman, N. J. (2021). CLIMB-COVID: 
continuous integration supporting decentralised sequencing 
for  SARS-CoV-2 genomic surveillance. In Genome biology 
(Vol. 22, Issue 1, p. 196). https://doi.org/10.1186/s13059-
021-02395-y 

Nicholson, K. G. (1992). Clinical features of influenza. Seminars 
in Respiratory Infections, 7(1), 26—37. 
http://europepmc.org/abstract/MED/1609165 

NOAH. (2016). NOAH Compendium. National Organisation of 
Animal Health. https://www.noahcompendium.co.uk/?id=-
457321 

Oakeson, K. F., Wagner, J. M., Mendenhall, M., Rohrwasser, A., 
& Atkinson-Dunn, R. (2017). Bioinformatic analyses of whole-
genome sequence data in a public health laboratory. 
Emerging Infectious Diseases, 23(9), 1441–1445. 
https://doi.org/10.3201/eid2309.170416 

O’Carroll, I. P., & Rein, A. (2016). Viral Nucleic Acids. In R. A. 
Bradshaw & P. D. Stahl (Eds.), Encyclopedia of Cell Biology 
(pp. 517–524). Academic Press. 
https://doi.org/https://doi.org/10.1016/B978-0-12-394447-
4.10061-6 



41 

41 
 

Ohmit, S. E., Petrie, J. G., Malosh, R. E., Johnson, E., Truscon, 
R., Aaron, B., Martens, C., Cheng, C., Fry, A. M., & Monto, 
A. S. (2015). Substantial Influenza Vaccine Effectiveness in 
Households With Children During the 2013--2014 Influenza 
Season, When 2009 Pandemic Influenza A(H1N1) Virus 
Predominated. The Journal of Infectious Diseases, 213(8), 
1229–1236. https://doi.org/10.1093/infdis/jiv563 

Oladunni, F. S., Oseni, S. O., Martinez-Sobrido, L., & Chambers, 
T. M. (2021). Equine Influenza Virus and Vaccines. Viruses, 
13(8), 1657. https://doi.org/10.3390/v13081657 

Olguin-Perglione, C., & Barrandeguy, M. E. (2021). An Overview 
of Equine Influenza in South America. Viruses, 13(5), 888. 
https://doi.org/10.3390/v13050888 

Ørsted, M. I., Anthony Hoffmann, A. I., Sverrisdó ttir, E. I., 
Lehmann Nielsen, K., Nygaard Kristensen, T., Hoffmann, A. 
A., Sverrisdóttir, E., Nielsen, K. L., & Kristensen, T. N. 
(2019a). Genomic variation predicts adaptive evolutionary 
responses better than population bottleneck history. PLOS 
Genetics, 15(6), e1008205. 
https://doi.org/10.1371/journal.pgen.1008205 

Ørsted, M. I., Anthony Hoffmann, A. I., Sverrisdó ttir, E. I., 
Lehmann Nielsen, K., Nygaard Kristensen, T., Hoffmann, A. 
A., Sverrisdóttir, E., Nielsen, K. L., & Kristensen, T. N. 
(2019b). Genomic variation predicts adaptive evolutionary 
responses better than population bottleneck history. PLOS 
Genetics, 15(6), e1008205. 
https://doi.org/10.1371/journal.pgen.1008205 

Orton, R. (2022). VSensus. In GitHub repository. GitHub. 
Orton, R. J., Wright, C. F., King, D. P., & Haydon, D. T. (2020). 

Estimating viral bottleneck sizes for FMDV transmission 
within and between hosts and implications for the rate of 
viral evolution. Interface Focus, 10(1). 
https://doi.org/10.1098/rsfs.2019.0066 

Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial 
epidemiology: An emerging (or re-emerging) discipline. In 
Trends in Ecology and Evolution (Vol. 20, Issue 6 SPEC. ISS., 
pp. 328–336). https://doi.org/10.1016/j.tree.2005.03.009 

Oxburgh, L., & Klingeborn, B. (1999). Cocirculation of two 
distinct lineages of equine influenza virus subtype H3N8. J 
Clin Microbiol, 37(9), 3005–3009. 
https://doi.org/10.1128/JCM.37.9.3005-3009.1999 

Paillot, R., Rash, N. L., Garrett, D., Prowse-Davis, L., Montesso, 
F., Cullinane, A., Lemaitre, L., Thibault, J.-C., Wittreck, S., 
& Dancer, A. (2016). How to Meet the Last OIE Expert 
Surveillance Panel Recommendations on Equine Influenza (EI) 
Vaccine Composition: A Review of the Process Required for 
the Recombinant Canarypox-Based EI Vaccine. Pathogens, 
5(4), 1–13. https://doi.org/10.3390/pathogens5040064 



42 

42 
 

Pan, K. (2011). Understanding Original Antigenic Sin in Influenza 
with a Dynamical System. PLoS ONE, 6(8), e23910. 
https://doi.org/10.1371/journal.pone.0023910 

Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for 
modern phylogenetics and evolutionary analyses in R. 
Bioinformatics, 35(3), 526–528. 
https://doi.org/10.1093/bioinformatics/bty633 

Park, A. W., Daly, J. M., Lewis, N. S., Smith, D. J., Wood, J. L. 
N. N., & Grenfell, B. T. (2009). Quantifying the Impact of 
Immune Escape on Transmission Dynamics of Influenza. 
Science, 326(5953), 726–728. 
https://doi.org/10.1126/science.1175980 

Parker, I. M., Saunders, M., Bontrager, M., Weitz, A. P., 
Hendricks, R., Magarey, R., Suiter, K., & Gilbert, G. S. 
(2015). Phylogenetic structure and host abundance drive 
disease pressure in communities. Nature, 520(7548), 542–
544. https://doi.org/10.1038/nature14372 

Parrish, C. R., Holmes, E. C., Morens, D. M., Park, E.-C., Burke, 
D. S., Calisher, C. H., Laughlin, C. A., Saif, L. J., & Daszak, 
P. (2008). Cross-species virus transmission and the 
emergence of new epidemic diseases. Microbiology and 
Molecular Biology Reviews : MMBR, 72(3), 457–470. 
https://doi.org/10.1128/MMBR.00004-08 

Parsons TL, Bolker BM, Dushoff J, Earn DJD. The probability of 
epidemic burnout in the stochastic SIR model with vital 
dynamics. Proc Natl Acad Sci U S A. 2024 Jan 
30;121(5):e2313708120. doi: 10.1073/pnas.2313708120. Epub 
2024 Jan 26. PMID: 38277438; PMCID: PMC10835029. 

Pauly, M. D., Procario, M. C., & Lauring, A. S. (2017). A novel 
twelve class fluctuation test reveals higher than expected 
mutation rates for influenza A viruses. ELife, 6, e26437. 
https://doi.org/10.7554/eLife.26437 

Pedruzzi, G., & Rouzine, I. M. (2021). An evolution-based high-
fidelity method of epistasis measurement: Theory and 
application to influenza. PLOS Pathogens, 17(6), e1009669. 
https://doi.org/10.1371/JOURNAL.PPAT.1009669 

Pérez-Losada, M., Arenas, M., Galán, J. C., Palero, F., & 
González-Candelas, F. (2015). Recombination in viruses: 
mechanisms, methods of study, and 
evolutionary  consequences. Infection, Genetics and 
Evolution : Journal of Molecular Epidemiology 
and  Evolutionary Genetics in Infectious Diseases, 30, 296–
307. https://doi.org/10.1016/j.meegid.2014.12.022 

Perglione, C. O., Golemba, M. D., Torres, C., & Barrandeguy, M. 
(2016). Molecular epidemiology and spatio-temporal 
dynamics of the H3N8 equine influenza virus in South 
America. Pathogens, 5(4). 
https://doi.org/10.3390/pathogens5040061 

Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., 
Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. 



43 

43 
 

(2021). UCSF ChimeraX: Structure visualization for 
researchers, educators, and developers. Protein Sci, 30(1), 
70–82. https://doi.org/10.1002/pro.3943 

Pevsner, J. (2009). Bioinformatics and Functional Genomics. 
Wiley. https://books.google.co.uk/books?id=awjHNAEACAAJ 

Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. 
J. (2014). PopGenome: an efficient Swiss army knife for 
population genomic analyses in R. Molecular Biology and 
Evolution, 31(7), 1929–1936. 
https://doi.org/10.1093/molbev/msu136 

Pietrasik, T. (2023). Pandemic Influenza Preparedness (PIP) 
Framework. 

Poelvoorde, L. A. E. Van, Van Poelvoorde, L. A. E., Delcourt, T., 
Vuylsteke, M., De Keersmaecker, S. C. J., Thomas, I., Van 
Gucht, S., Saelens, X., Roosens, N., & Vanneste, K. (2022). A 
general approach to identify low-frequency variants within 
influenza samples collected during routine surveillance. 
Microbial Genomics, 8(9), 1–13. 
https://doi.org/10.1099/mgen.0.000867 

Pond, S. L. K., Frost, S. D. W. W., Muse, S. V, Kosakovsky Pond, 
S. L., Frost, S. D. W. W., & Muse, S. V. (2005). HyPhy: 
hypothesis testing using phylogenies. Bioinformatics, 21(5), 
676–679. https://doi.org/10.1093/bioinformatics/bti079 

Poon, L. L. M. M., Song, T., Rosenfeld, R., Lin, X., Rogers, M. B., 
Zhou, B., Sebra, R., Halpin, R. A., Guan, Y., Twaddle, A., 
DePasse, J. V., Stockwell, T. B., Wentworth, D. E., Holmes, 
E. C., Greenbaum, B., Peiris, J. S. M., Cowling, B. J., & 
Ghedin, E. (2016). Quantifying influenza virus diversity and 
transmission in humans. Nature Genetics, 48(2), 195–200. 
https://doi.org/10.1038/ng.3479 

Power, R. A., Davaniah, S., Derache, A., Wilkinson, E., Tanser, 
F., Gupta, R. K., Pillay, D., & de Oliveira, T. (2016). 
Genome-Wide Association Study of HIV Whole Genome 
Sequences Validated using Drug Resistance. PLOS ONE, 11(9), 
e0163746. https://doi.org/10.1371/journal.pone.0163746 

Rabadan, R., Levine, A. J., & Krasnitz, M. (2008). Non-random 
reassortment in human influenza A viruses. Influenza and 
Other Respiratory Viruses, 2(1), 9–22. 
https://doi.org/https://doi.org/10.1111/j.1750-
2659.2007.00030.x 

Rambaut, A. (2018, November). FigTree v1.4.4. 
https://github.com/rambaut/figtree 

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. 
A. (2018). Posterior Summarization in Bayesian Phylogenetics 
Using Tracer 1.7. Systematic Biology, 67(5), 901–904. 
https://doi.org/10.1093/sysbio/syy032 

Rash, A., Woodward, A., Bryant, N., McCauley, J., & Elton, D. 
(2014). An efficient genome sequencing method for equine 
influenza [H3N8] virus reveals a new polymorphism in the PA-



44 

44 
 

X protein. Virol J, 11, 159. https://doi.org/10.1186/1743-
422X-11-159 

Rees, E. E., Pond, B. A., Cullingham, C. I., Tinline, R. R., Ball, 
D., Kyle, C. J., & White, B. N. (2009). Landscape modelling 
spatial bottlenecks: implications for raccoon rabies disease 
spread. Biology Letters. 
https://doi.org/10.1098/rsbl.2009.0094 

Reeve, R., Leinster, T., Cobbold, C. A., Thompson, J., Brummitt, 
N., Mitchell, S. N., & Matthews, L. (2014). How to partition 
diversity. Q-Bio.QM, September 2015. 
http://arxiv.org/abs/1404.6520 

Righetto, I., & Filippini, F. (2018). Pandemic Avian Influenza and 
Intra/Interhaemagglutinin Subtype Electrostatic Variation 
among Viruses Isolated from Avian, Mammalian, and Human 
Hosts. BioMed Research International, 2018, 1–10. 
https://doi.org/10.1155/2018/3870508 

Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, 
L. J., Hedley, A. J., Leung, G. M., Ho, L. M., Lam, T. H., 
Thach, T. Q., Chau, P., Chan, K. P., Lo, S. V., Leung, P. Y., 
Tsang, T., Ho, W., Lee, K. H., Lau, E. M. C., Ferguson, N. M., 
& Anderson, R. M. (2003). Transmission dynamics of the 
etiological agent of SARS in Hong Kong: Impact of public 
health interventions. Science, 300(5627), 1961–1966. 
https://doi.org/10.1126/science.1086478 

Rioux, M., McNeil, M., Francis, M. E., Dawe, N., Foley, M., 
Langley, J. M., & Kelvin, A. A. (2020). The power of first 
impressions: Can influenza imprinting during infancy inform 
vaccine design? Vaccines, 8(3), 1–21. 
https://doi.org/10.3390/vaccines8030546 

Rivailler, P., Perry, I. A., Jang, Y., Davis, C. T., Chen, L.-M., 
Dubovi, E. J., & Donis, R. O. (2010). Evolution of canine and 
equine influenza (H3N8) viruses co-circulating between 2005 
and 2008. Virology, 408(1), 71–79. 
https://doi.org/10.1016/j.virol.2010.08.022 

Rodríguez-Nevado, C., Lam, T. T. T.-Y., Holmes, E. C., Pagán, I., 
Rodr\’\iguez-Nevado, C., Lam, T. T. T.-Y., Holmes, E. C., & 
Pagán, I. (2018). The impact of host genetic diversity on 
virus evolution and emergence. Ecology Letters, 21(2), 253–
263. https://doi.org/10.1111/ele.12890 

Rodríguez-Nevado, C., Lam, T. T. Y., Holmes, E. C., & Pagán, I. 
(2018). The impact of host genetic diversity on virus 
evolution and emergence. In Ecology Letters (Vol. 21, Issue 
2, pp. 253–263). Blackwell Publishing Ltd. 
https://doi.org/10.1111/ele.12890 

Rosenberg, C. E. (1992). Framing disease: studies in cultural 
history. Introduction. Framing disease:  illness, society, and 
history. Hospital Practice (Office Ed.), 27(7), 179-182,185-
186,191-192. 
https://doi.org/10.1080/21548331.1992.11705460 



45 

45 
 

Rouli, L., Merhej, V., Fournier, P.-E., & Raoult, D. (2015). The 
bacterial pangenome as a new tool for analysing pathogenic 
bacteria. New Microbes and New Infections, 7, 72–85. 
https://doi.org/10.1016/j.nmni.2015.06.005 

Rouzine, I. M., & Rozhnova, G. (2018). Antigenic evolution of 
viruses in host populations. PLoS Pathog, 14(9), e1007291. 
https://doi.org/10.1371/journal.ppat.1007291 

Rozek, W., Kwasnik, M., Socha, W., Sztromwasser, P., & Rola, J. 
(2021). Analysis of Single Nucleotide Variants (SNVs) Induced 
by Passages of Equine Influenza Virus H3N8 in Embryonated 
Chicken Eggs. Viruses, 13(8). 
https://doi.org/10.3390/v13081551 

Russell, C. J. (2021). Hemagglutinin Stability and Its Impact on 
Influenza A Virus Infectivity, Pathogenicity, and 
Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and 
Humans. Viruses, 13(5), 746. 
https://doi.org/10.3390/v13050746 

Rutty, J. (1770). A chronological history of the weather and 
seasons, and of the prevailing diseases in Dublin: With the 
various periods, successions, and revolutions, during the 
space of forty years: With a comparative view of the 
difference of the Irish Climate and Disea. Robinson and 
Roberts. 

Ryu, S., & Cowling, B. J. (2021). Human Influenza Epidemiology. 
Cold Spring Harbor Perspectives in Medicine, 11(12), 
a038356. https://doi.org/10.1101/cshperspect.a038356 

Saito, T., Kawaoka, Y., & Webster, R. G. (1993). Phylogenetic 
analysis of the N8 neuraminidase gene of influenza A viruses. 
Virology, 193(2), 868–876. 
https://doi.org/10.1006/viro.1993.1196 

Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. 
R., Fiddes, J. C., Hutchison, C. A., Slocombe, P. M., & 
Smith, M. (1977). Nucleotide sequence of bacteriophage 
φX174 DNA. Nature, 265(5596), 687–695. 
https://doi.org/10.1038/265687a0 

Schmieder, R., & Edwards, R. (2011). Quality control and 
preprocessing of metagenomic datasets. Bioinformatics, 
27(6), 863–864. 
https://doi.org/10.1093/bioinformatics/btr026 

Schönherz, A. A., Lorenzen, N., Guldbrandtsen, B., Buitenhuis, 
B., & Einer-Jensen, K. (2016). Ultra-deep sequencing of VHSV 
isolates contributes to understanding the role of viral 
quasispecies. Veterinary Research, 47(1). 
https://doi.org/10.1186/s13567-015-0298-5 

Schotsaert, M., & García-Sastre, A. (2014). Influenza vaccines: A 
moving interdisciplinary field. In Viruses (Vol. 6, Issue 10, 
pp. 3809–3826). https://doi.org/10.3390/v6103809 

Schürch, A. C., & van Schaik, W. (2017). Challenges and 
opportunities for whole-genome sequencing–based 
surveillance of antibiotic resistance. Annals of the New York 



46 

46 
 

Academy of Sciences, 1388(1), 108–120. 
https://doi.org/10.1111/nyas.13310 

Seladi-Schulman, J., Campbell, P. J., Suppiah, S., Steel, J., & 
Lowen, A. C. (2014). Filament-producing mutants of 
influenza A/Puerto Rico/8/1934 (H1N1) virus have  higher 
neuraminidase activities than the spherical wild-type. PloS 
One, 9(11), e112462. 
https://doi.org/10.1371/journal.pone.0112462 

Selzer, L., Su, Z., Pintilie, G. D., Chiu, W., & Kirkegaard, K. 
(2020). Full-length three-dimensional structure of the 
influenza a virus M1 protein and its organization into a 
matrix layer. PLoS Biology, 18(9), 1–26. 
https://doi.org/10.1371/journal.pbio.3000827 

Shannon, C. E. (1948). A mathematical theory of communication. 
Bell Syst Techn J, 27, 379–423. 

Shrestha, S., Foxman, B., Weinberger, D. M., Steiner, C., Viboud, 
C., & Rohani, P. (2013). Identifying the interaction between 
influenza and pneumococcal pneumonia using  incidence 
data. Science Translational Medicine, 5(191), 191ra84. 
https://doi.org/10.1126/scitranslmed.3005982 

Sievers, F., Geoffrey, J. B., & Higgins, D. G. (2020). Multiple 
Sequence Alignments. In A. D. Baxevanis, G. D. Bader, & D. 
S. Wishart (Eds.), Bioinformatics (4th ed., pp. 227–250). 

Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making 
accurate alignments of many protein sequences. Protein 
Science, 27(1), 135–145. 
https://doi.org/https://doi.org/10.1002/pro.3290 

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, 
W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., 
Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable 
generation of high-quality protein multiple sequence 
alignments  using Clustal Omega. Molecular Systems Biology, 
7, 539. https://doi.org/10.1038/msb.2011.75 

Sigal, D., Reid, J. N. S., & Wahl, L. M. (2018). Effects of 
Transmission Bottlenecks on the Diversity of Influenza A 
Virus. Genetics, 210(3), 1075–1088. 
https://doi.org/10.1534/genetics.118.301510 

Simmonds, P., Aiewsakun, P., & Katzourakis, A. (2019a). 
Prisoners of war — host adaptation and its constraints on 
virus evolution. Nature Reviews Microbiology, 17, 321–328. 
https://doi.org/10.1038/s41579-018-0120-2 

Simmonds, P., Aiewsakun, P., & Katzourakis, A. (2019b). 
Prisoners of war — host adaptation and its constraints on 
virus evolution. Nature Reviews Microbiology, 17(5), 321–
328. https://doi.org/10.1038/s41579-018-0120-2 

Simonsen, L., Reichert, T. A., & Miller, M. A. (2004). The virtues 
of antigenic sin: consequences of pandemic recycling on 
influenza-associated mortality. International Congress 
Series, 1263, 791–794. 
https://doi.org/https://doi.org/10.1016/j.ics.2004.01.029 



47 

47 
 

Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., 
Knossow, M., Wilson, I. A., & Wiley, D. C. (1984). A 
carbohydrate side chain on hemagglutinins of Hong Kong 
influenza viruses  inhibits recognition by a monoclonal 
antibody. Proceedings of the National Academy of Sciences 
of the United States of America, 81(6), 1779–1783. 
https://doi.org/10.1073/pnas.81.6.1779 

Skums, P., Zelikovsky, A., Singh, R., Gussler, W., Dimitrova, Z., 
Knyazev, S., Mandric, I., Ramachandran, S., Campo, D., Jha, 
D., Bunimovich, L., Costenbader, E., Sexton, C., O’Connor, 
S., Xia, G. L., & Khudyakov, Y. (2018). QUENTIN: 
Reconstruction of disease transmissions from viral 
quasispecies genomic data. Bioinformatics, 34(1), 163–170. 
https://doi.org/10.1093/bioinformatics/btx402 

Smith, B. P. (2004). Evolution of equine infection control 
programs. Vet Clin North Am Equine Pract, 20(3), 521–530, 
v. https://doi.org/10.1016/j.cveq.2004.07.002 

Smith, G. J. D., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, 
M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J., 
Bhatt, S., Peiris, J. S. M., Guan, Y., & Rambaut, A. (2009). 
Origins and evolutionary genomics of the 2009 swine-origin 
H1N1 influenza A  epidemic. Nature, 459(7250), 1122–1125. 
https://doi.org/10.1038/nature08182 

Sobel Leonard, A., Weissman, D. B., Greenbaum, B., Ghedin, E., 
& Koelle, K. (2017a). Transmission Bottleneck Size 
Estimation from Pathogen Deep-Sequencing Data, with an 
Application to Human Influenza A Virus. Journal of Virology, 
91(14), 1–19. https://doi.org/10.1128/JVI.00171-17 

Sobel Leonard, A., Weissman, D. B., Greenbaum, B., Ghedin, E., 
& Koelle, K. (2017b). Transmission Bottleneck Size 
Estimation from Pathogen Deep-Sequencing Data, with an 
Application to Human Influenza A Virus. Journal of Virology, 
91(14), 1–19. https://doi.org/10.1128/JVI.00171-17 

Sobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. 
L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2020). A 
Global Ramachandran Score Identifies Protein Structures 
with Unlikely Stereochemistry. Structure, 28(11), 1249-
1258.e2. https://doi.org/10.1016/j.str.2020.08.005 

Sovinova, O., Tumova, B., Pouska, F., & Nemec, J. (1957). 
[Isolation of virus responsible for respiratory diseases in 
horses]. Ceskoslovenska epidemiologie, mikrobiologie, 
imunologie, 6(4), 213–220. 
http://www.ncbi.nlm.nih.gov/pubmed/13472742 

Sovinova, O., Tumova, B., Pouska, F., & Nemec, J. (1958). 
Isolation of a virus causing respiratory disease in horses. Acta 
Virologica, 2(1), 52–61. 

Spielman, S. J., Weaver, S., Shank, S. D., Magalis, B. R., Li, M., & 
Kosakovsky Pond, S. L. (2019). Chapter 14 Evolution of Viral 
Genomes: Interplay Between Selection, Recombination, and 



48 

48 
 

Other Forces. Methods in Molecular Biology, 1910. 
https://doi.org/10.1007/978-1-4939-9074-0_14 

Stack, J. C., Murcia, P. R., Grenfell, B. T., Wood, J. L. N. N., 
Holmes, E. C., Conrad Stack, J., Murcia, P. R., Grenfell, B. 
T., Wood, J. L. N. N., Holmes, E. C., Stack, J. C., Murcia, P. 
R., Grenfell, B. T., Wood, J. L. N. N., Holmes, E. C., & 
Holmes, E. C. (2013). Inferring the inter-host transmission of 
influenza A virus using patterns of intra-host genetic 
variation. Proceedings of the Royal Society B: Biological 
Sciences, 280(1750), 20122173. 
https://doi.org/10.1098/rspb.2012.2173 

Stremlau, M., Owens, C. M., Perron, M. J., Kiessling, M., 
Autissier, P., & Sodroski, J. (2004). The cytoplasmic body 
component TRIM5alpha restricts HIV-1 infection in Old World 
monkeys. Nature, 427(6977), 848–853. 
https://doi.org/10.1038/nature02343 

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. 
J., & Rambaut, A. (2018). Bayesian phylogenetic and 
phylodynamic data integration using BEAST 1.10. Virus 
Evolution, 4(1). https://doi.org/10.1093/ve/vey016 

Sunayana, S. J. (2019). Investigation of Influenza B Virus 
Replication Potential in Swine Primary Respiratory Epithelial 
Cells and Phylodynamic Analysis of Equine Influenza A H3N8 
Viruses. South Dakota State University. 

Taddese, B., Garnier, A., Deniaud, M., Pele, J., Bellenger, L., 
Becu, J.-M., & Chabbert, M. (2022). Bios2cor: From 
Biological Sequences and Simulations to Correlation Analysis 
(R package version 2.2.1). 

Tajima, F. (1989). Statistical method for testing the neutral 
mutation hypothesis by DNA polymorphism. Genetics, 123(3), 
585–595. https://doi.org/10.1093/genetics/123.3.585 

Team, R. C. (2022). R: A Language and Environment for 
Statistical Computing. 

Team, S. D. (2022). RStan: the R Interface to Stan (R package 
version 2.21.7). https://mc-stan.org/ 

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, 
D., Ward, N. L., Angiuoli, S. V, Crabtree, J., Jones, A. L., 
Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., 
Scarselli, M., Margarit y Ros, I., Peterson, J. D., Hauser, C. 
R., Sundaram, J. P., Nelson, W. C., … Fraser, C. M. (2005). 
Genome analysis of multiple pathogenic isolates of 
Streptococcus agalactiae : Implications for the microbial 
“pan-genome.” Proceedings of the National Academy of 
Sciences, 102(39), 13950–13955. 
https://doi.org/10.1073/pnas.0506758102 

Theys, K., Libin, P., Pineda-Peña, A.-C. C., Nowé, A., 
Vandamme, A.-M. M., & Abecasis, A. B. (2018a). The impact 
of HIV-1 within-host evolution on transmission dynamics. 
Current Opinion in Virology, 28, 92–101. 
https://doi.org/10.1016/j.coviro.2017.12.001 



49 

49 
 

Theys, K., Libin, P., Pineda-Peña, A.-C. C., Nowé, A., 
Vandamme, A.-M. M., & Abecasis, A. B. (2018b). The impact 
of HIV-1 within-host evolution on transmission dynamics. 
Current Opinion in Virology, 28, 92–101. 
https://doi.org/10.1016/j.coviro.2017.12.001 

Theys, K., Libin, P., Pineda-Peña, A.-C. C., Nowé, A., 
Vandamme, A.-M. M., & Abecasis, A. B. (2018c). The impact 
of HIV-1 within-host evolution on transmission dynamics. 
Current Opinion in Virology, 28, 92–101. 
https://doi.org/10.1016/j.coviro.2017.12.001 

Thompson, K.-A., & Bennett, A. M. (2017). Persistence of 
influenza on surfaces. J Hosp Infect, 95(2), 194–199. 
https://doi.org/10.1016/j.jhin.2016.12.003 

To, K. K. W., Chan, K.-H., Li, I. W. S., Tsang, T.-Y., Tse, H., 
Chan, J. F. W., Hung, I. F. N., Lai, S.-T., Leung, C.-W., 
Kwan, Y.-W., Lau, Y.-L., Ng, T.-K., Cheng, V. C. C., Peiris, J. 
S. M., & Yuen, K.-Y. (2010). Viral load in patients infected 
with pandemic H1N1 2009 influenza A virus. Journal of 
Medical Virology, 82(1), 1–7. 
https://doi.org/https://doi.org/10.1002/jmv.21664 

Toh, X., Soh, M. L., Ng, M. K., Yap, S. C., Harith, N., Fernandez, 
C. J., Huangfu, T., Lien, M., Mee, S., Ng, K., Choo, S., 
Nurshilla, Y., Judith, C., & Taoqi, F. (2019). Isolation and 
characterization of equine influenza virus (H3N8) from an 
equine influenza outbreak in Malaysia in 2015. Transbound 
Emerg Dis, 66(5), 1884–1893. 
https://doi.org/10.1111/tbed.13218 

Tran, T. T., Phung, T. T. B., Tran, D. M., Bui, H. T., Nguyen, P. 
T. T., Vu, T. T., Ngo, N. T. P., Nguyen, M. T., Nguyen, A. T. 
V. H., & Nguyen, A. T. V. H. (2023). Efficient symptomatic 
treatment and viral load reduction for children with 
influenza virus infection by nasal-spraying Bacillus spore 
probiotics. Scientific Reports, 13(1), 14789. 
https://doi.org/10.1038/s41598-023-41763-5 

Tusche, C., Steinbrück, L., & McHardy, A. C. (2012). Detecting 
patches of protein sites of influenza a viruses under positive 
selection. Molecular Biology and Evolution, 29(8), 2063–
2071. https://doi.org/10.1093/molbev/mss095 

Vahey, M. D., & Fletcher, D. A. (2019a). Influenza A virus surface 
proteins are organized to help penetrate host mucus. ELife, 
8. https://doi.org/10.7554/eLife.43764 

Vahey, M. D., & Fletcher, D. A. (2019b). Low-Fidelity Assembly of 
Influenza A Virus Promotes Escape from Host Cells. Cell, 
176(1–2), 281-294.e19. 
https://doi.org/10.1016/j.cell.2018.10.056 

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., 
Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., 
Ž\’\idek, A., Green, T., Tunyasuvunakool, K., Petersen, S., 
Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … 
Velankar, S. (2022). AlphaFold Protein Structure Database: 



50 

50 
 

massively expanding the structural coverage of protein-
sequence space with high-accuracy models. Nucleic Acids 
Res, 50(D1), D439–D444. 
https://doi.org/10.1093/nar/gkab1061 

Varble, A., Albrecht, R. A., Backes, S., Crumiller, M., Bouvier, N. 
M., Sachs, D., García-Sastre, A., & Tenoever, B. R. (2014). 
Influenza a virus transmission bottlenecks are defined by 
infection route and recipient host. Cell Host and Microbe, 
16(5), 691–700. https://doi.org/10.1016/j.chom.2014.09.020 

Varble, A., Benitez, A. A., Schmid, S., Sachs, D., Shim, J. V., 
Rodriguez-Barrueco, R., Panis, M., Crumiller, M., Silva, J. 
M., Sachidanandam, R., & Tenoever, B. R. (2013). An in vivo 
RNAi screening approach to identify host determinants of 
virus Replication. Cell Host and Microbe. 
https://doi.org/10.1016/j.chom.2013.08.007 

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry, J. 
(2022). Pareto Smoothed Importance Sampling. 

Verbist, B. M. P. P., Thys, K., Reumers, J., Wetzels, Y., Van Der 
Borght, K., Talloen, W., Aerssens, J., Clement, L., Thas, O., 
der Borght, K., Talloen, W., Aerssens, J., Clement, L., & 
Thas, O. (2014). VirVarSeq: a low-frequency virus variant 
detection pipeline for Illumina sequencing using adaptive 
base-calling accuracy filtering. Bioinformatics, 31(1), 94–
101. https://doi.org/10.1093/bioinformatics/btu587 

Vihinen, M., Torkkila, E., & Riikonen, P. (1994). Accuracy of 
protein flexibility predictions. Proteins: Structure, Function, 
and Bioinformatics, 19(2), 141–149. 
https://doi.org/https://doi.org/10.1002/prot.340190207 

Vijaykrishna, D., Mukerji, R., & Smith, G. J. D. (2015). RNA Virus 
Reassortment: An Evolutionary Mechanism for Host Jumps 
and Immune Evasion. PLOS Pathogens, 11(7), 1–6. 
https://doi.org/10.1371/journal.ppat.1004902 

Virmani, N., Bera, B. C., Shanumugasundaram, K., Singh, B. K., 
Gulati, B. R., Singh, R. K., & Vaid, R. K. (2011). Genetic 
analysis of the matrix and non-structural genes of equine 
influenza virus (H3N8) from epizootic of 2008-2009 in India. 
Vet Microbiol, 152(1–2), 169–175. 
https://doi.org/10.1016/j.vetmic.2011.04.011 

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., 
Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. 
(2019). The Immune Epitope Database (IEDB): 2018 update. 
Nucleic Acids Research, 47(D1), D339–D343. 
https://doi.org/10.1093/nar/gky1006 

von Itzstein, M. (2007). The war against influenza: discovery and 
development of sialidase inhibitors. Nature Reviews Drug 
Discovery, 6(12), 967–974. https://doi.org/10.1038/nrd2400 

Voorhees, I. E. H., Lee, H., Allison, A. B., Lopez-Astacio, R., 
Goodman, L. B., Oyesola, O. O., Omobowale, O., Fagbohun, 
O., Dubovi, E. J., Hafenstein, S. L., Holmes, E. C., & Parrish, 
C. R. (2019). Limited Intrahost Diversity and Background 



51 

51 
 

Evolution Accompany 40 Years of Canine Parvovirus Host 
Adaptation and Spread. Journal of Virology, 94(1), 1162–
1181. https://doi.org/10.1128/JVI.01162-19 

Wakeley, J. (1996). The variance of pairwise nucleotide 
differences in two populations with  migration. Theoretical 
Population Biology, 49(1), 39–57. 
https://doi.org/10.1006/tpbi.1996.0002 

Walker, P. J., Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., 
Adriaenssens, E. M., Alfenas-Zerbini, P., Dempsey, D. M., 
Dutilh, B. E., García, M. L., Curtis Hendrickson, R., Junglen, 
S., Krupovic, M., Kuhn, J. H., Lambert, A. J., Łobocka, M., 
Oksanen, H. M., Orton, R. J., Robertson, D. L., Rubino, L., … 
Zerbini, F. M. (2022). Recent changes to virus taxonomy 
ratified by the International Committee on Taxonomy of 
Viruses (2022). Archives of Virology, 167(11), 2429–2440. 
https://doi.org/10.1007/s00705-022-05516-5 

Ward, C. L., Dempsey, M. H., Ring, C. J. A., Kempson, R. E., 
Zhang, L., Gor, D., Snowden, B. W., & Tisdale, M. (2004). 
Design and performance testing of quantitative real time PCR 
assays for influenza A and B viral load measurement. Journal 
of Clinical Virology, 29(3), 179–188. 
https://doi.org/https://doi.org/10.1016/S1386-
6532(03)00122-7 

Wargo, A. R., & Kurath, G. (2012). Viral fitness: definitions, 
measurement, and current insights. Current Opinion in 
Virology, 2(5), 538–545. 
https://doi.org/10.1016/j.coviro.2012.07.007 

Wasik, B. R., Voorhees, I. E. H., Barnard, K. N., Alford-Lawrence, 
B. K., Weichert, W. S., Hood, G., Nogales, A., Martínez-
Sobrido, L., Holmes, E. C., & Parrish, C. R. (2019). Influenza 
Viruses in Mice: Deep Sequencing Analysis of Serial Passage 
and Effects of Sialic Acid Structural Variation. Journal of 
Virology, 93(23). https://doi.org/10.1128/JVI.01039-19 

Waters, L., Ahmed, N., Angus, B., Boffito, M., Bower, M., 
Churchill, D., Dunn, D., Edwards, S., Emerson, C., & Fidler, 
S. (2016). BHIVA guidelines for the treatment of HIV-1-
positive adults with antiretroviral therapy 2015 (2016 interim 
update). BHIVA) BHA, Ed. London, UK: BHIVA. 
https://www.bhiva.org/file/RVYKzFwyxpgiI/treatment-
guidelines-2016-interim-update.pdf 

Watson, J., Halpin, K., Selleck, P., Axell, A., Bruce, K., Hansson, 
E., Hammond, J., Daniels, P., & Jeggo, M. (2011). Isolation 
and characterisation of an H3N8 equine influenza virus in 
Australia, 2007. Aust Vet J, 89 Suppl 1, 35–37. 
https://doi.org/10.1111/j.1751-0813.2011.00738.x 

Webb, G. F., Hsieh, Y.-H., Wu, J., & Blaser, M. J. (2010). Pre-
symptomatic Influenza Transmission, Surveillance, and 
School Closings: Implications for Novel Influenza A (H1N1) 
Pre-symptomatic influenza transmission. Math. Model. Nat. 



52 

52 
 

Phenom, 5(3), 191–205. 
https://doi.org/10.1051/mmnp/20105312 

Webster, R. G., & Laver, W. G. (1980). Determination of the 
number of nonoverlapping antigenic areas on Hong Kong 
(H3N2) influenza virus hemagglutinin with monoclonal 
antibodies and the selection of variants with potential 
epidemiological significance. Virology, 104(1), 139–148. 
https://doi.org/10.1016/0042-6822(80)90372-4 

Weng, X., Heiden, J. Vander, Xing, Y., Liu, J., & Vissa, V. (2011). 
Transmission of leprosy in Qiubei County, Yunnan, China: 
Insights from an 8-year molecular epidemiology 
investigation. Infection, Genetics and Evolution, 11(2), 363–
374. https://doi.org/10.1016/J.MEEGID.2010.11.014 

Whitlock, F., Rash, A., & Elton, D. (2018a). Equine influenza: 
evolution of a highly infectious virus. Veterinary Record, 
182(25), 710–711. 
https://doi.org/https://doi.org/10.1136/vr.k2727 

Whitlock, F., Rash, A., & Elton, D. (2018b). Equine influenza: 
evolution of a highly infectious virus. Veterinary Record, 
182(25), 710–711. 
https://doi.org/https://doi.org/10.1136/vr.k2727 

WHO. (2023). Pandemic Influenza Preparedness Framework: 
Partnership Contribution High-Level Implementation Plan III 
2024-2030. https://creativecommons.org/licenses/by-nc-
sa/3.0/igo/ 

Wiley, D. C., & Skehel, J. J. (1987). The structure and function of 
the haemagglutinin membrane glycoprotein of influenza 
virus. Structure. 
https://doi.org/10.1146/annurev.bi.56.070187.002053 

Wiley, D. C., Wilson, I. A., & Skehel, J. J. (1981). Structural 
identification of the antibody-binding sites of Hong Kong 
influenza haemagglutinin and their involvement in antigenic 
variation. Nature, 289(5796), 373–378. 
https://doi.org/10.1038/289373a0 

Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., 
Wong, C. H., Khor, C. C., Petric, R., Hibberd, M. L., & 
Nagarajan, N. (2012). LoFreq: a sequence-quality aware, 
ultra-sensitive variant caller for uncovering cell-population 
heterogeneity from high-throughput sequencing datasets. 
Nucleic Acids Research, 40(22), 11189–11201. 
https://doi.org/10.1093/nar/gks918 

Wilson, I. A., Skehel, J. J., & Wiley, D. C. (1981). Structure of 
the haemagglutinin membrane glycoprotein of influenza virus 
at 3 A  resolution. Nature, 289(5796), 366–373. 
https://doi.org/10.1038/289366a0 

Wißmann, J. E., Kirchhoff, L., Brüggemann, Y., Todt, D., 
Steinmann, J., & Steinmann, E. (2021). Persistence of 
Pathogens on Inanimate Surfaces: A Narrative Review. 
Microorganisms, 9(2). 
https://doi.org/10.3390/microorganisms9020343 



53 

53 
 

Wood, J. L. N., & Grenfell, B. T. (2009). Dynamics of Influenza. 
21645(October), 726–728. 
https://doi.org/10.1126/science.1175980.Quantifying 

Wood J. M., Mumford J., Folkers C., Scott A.M., Schild G.C. 
Studies with inactivated equine influenza vaccine. J Hyg 
(Lond). 1983 Jun;90(3):371-84. doi: 
10.1017/s0022172400029004  

Wood, J. M. (1993). “Frozen” evolution of equine influenza 
viruses? Equine Vet J, 25(2), 87. 
https://doi.org/10.1111/j.2042-3306.1993.tb02912.x 

Woodward, A., Rash, A. S., Medcalf, E., Bryant, N. A., & Elton, 
D. M. (2015). Using epidemics to map H3 equine influenza 
virus determinants of antigenicity. Virology, 481, 187–198. 
https://doi.org/10.1016/j.virol.2015.02.027 

Woolhouse, M., Chase-Topping, M., Haydon, D., Friar, J., 
Matthews, L., Hughes, G., Shaw, D., Wilesmith, J., 
Donaldson, A., Cornell, S., Keeling, M., & Grenfell, B. 
(2001). Foot-and-mouth disease under control in the UK. 
Nature, 411(6835), 258–259. 
https://doi.org/10.1038/35077149 

Woolhouse, M. E. J. J., Haydon, D. T., & Antia, R. (2005). 
Emerging pathogens: The epidemiology and evolution of 
species jumps. Trends in Ecology and Evolution, 20(5), 238–
244. https://doi.org/10.1016/j.tree.2005.02.009 

Wu, N. C., & Wilson, I. A. (2020). Influenza hemagglutinin 
structures and antibody recognition. Cold Spring Harbor 
Perspectives in Medicine, 10(8), 1–20. 
https://doi.org/10.1101/cshperspect.a038778 

Wu, Y., Wu, Y., Tefsen, B., Shi, Y., & Gao, G. F. (2014). Bat-
derived influenza-like viruses H17N10 and H18N11. Trends in 
Microbiology, 22(4), 183–191. 
https://doi.org/10.1016/j.tim.2014.01.010 

Wyper, G. M. A., Fletcher, E., Grant, I., McCartney, G., 
Fischbacher, C., Harding, O., Jones, H., de Haro Moro, M. T., 
Speybroeck, N., Devleesschauwer, B., & Stockton, D. L. 
(2022). Measuring disability-adjusted life years (DALYs) due 
to COVID-19 in Scotland, 2020. Archives of Public Health, 
80(1), 105. https://doi.org/10.1186/s13690-022-00862-x 

Xu, S., Li, L., Luo, X., Chen, M., Tang, W., Zhan, L., Dai, Z., 
Lam, T. T., Guan, Y., & Yu, G. (2022). Ggtree: A serialized 
data object for visualization of a phylogenetic tree and 
annotation data. IMeta, 1(4), e56. 
https://doi.org/10.1002/imt2.56 

Xue, K. S., & Bloom, J. D. (2019). Reconciling disparate estimates 
of viral genetic diversity during human influenza infections. 
In Nature Genetics (Vol. 51, Issue 9, pp. 1298–1301). Nature 
Publishing Group. https://doi.org/10.1038/s41588-019-0349-
3 



54 

54 
 

Xue, K. S., & Bloom, J. D. (2020). Linking influenza virus 
evolution within and between human hosts. Virus Evolution, 
6(1). https://doi.org/10.1093/ve/veaa010 

Xue, K. S., Moncla, L. H., Bedford, T., & Bloom, J. D. (2018). 
Within-Host Evolution of Human Influenza Virus. Trends in 
Microbiology, 26(9), 781–793. 
https://doi.org/10.1016/j.tim.2018.02.007 

Xue, K. S., Stevens-Ayers, T., Campbell, A. P., Englund, J. A., 
Pergam, S. A., Boeckh, M., & Bloom, J. D. (2017). Parallel 
evolution of influenza across multiple spatiotemporal scales. 
ELife, 6. https://doi.org/10.7554/eLife.26875 

Yan, N., & Chen, Z. Z. J. (2012). Intrinsic antiviral immunity. 
Nature Immunology, 13(3), 214–222. 
https://doi.org/10.1038/ni.2229 

Yang, R., Sun, H., Gao, F., Luo, K., Huang, Z., Tong, Q., Song, 
H., Han, Q., Liu, J. J. J., Lan, Y., Qi, J., Li, H., Chen, S., Xu, 
M., Qiu, J., Zeng, G., Zhang, X., Huang, C., Pei, R., … Liu, J. 
J. J. (2022). Human infection of avian influenza A H3N8 virus 
and the viral origins: a descriptive study. The Lancet 
Microbe, 3(11), e824–e834. https://doi.org/10.1016/S2666-
5247(22)00192-6 

Yang, X., Charlebois, P., Macalalad, A., Henn, M. R., & Zody, M. 
C. (2013). V-Phaser 2: Variant inference for viral 
populations. BMC Genomics, 14(1), 674. 
https://doi.org/10.1186/1471-2164-14-674 

Yewdell, J. W., & Santos, J. J. S. (2021). Original Antigenic Sin: 
How Original? How Sinful? Cold Spring Harbor Perspectives in 
Medicine, 11(5), a038786. 
https://doi.org/10.1101/cshperspect.a038786 

Yondon, M., Heil, G. L., Burks, J. P., Zayat, B., Waltzek, T. B., 
Jamiyan, B.-O., Mckenzie, P. P., Krueger, W. S., Friary, J. 
A., Gray, G. C., & Gray, C. (2013). Isolation and 
characterization of H3N8 equine influenza A virus associated 
with the 2011 epizootic in Mongolia. Influenza Other Respir 
Viruses, 7(5), 659–665. https://doi.org/10.1111/irv.12069 

Yongfeng, Y., Xiaobo, S., Nan, X., Jingwen, Z., Wenqiang, L., 
Xiaobo, S., & Nan, X. (2020). Detection of the epidemic of 
the H3N8 subtype of the equine influenza virus in large-scale 
donkey farms. Int J Vet Sci Med, 8(1), 26–30. 
https://doi.org/10.1080/23144599.2020.1739844 

Yoon, S.-W., Webby, R. J., & Webster, R. G. (2014). Evolution 
and Ecology of Influenza A Viruses. In Curr Top Microbiol 
Immunol (Vol. 385, pp. 359–375). 
https://doi.org/10.1007/82_2014_396 

Ypma, R. J. F., Bataille, A. M. A., Stegeman, A., Koch, G., 
Wallinga, J., & van Ballegooijen, W. M. (2012). Unravelling 
transmission trees of infectious diseases by combining 
genetic and epidemiological data. Proceedings of the Royal 
Society B: Biological Sciences, 279(1728), 444–450. 
https://doi.org/10.1098/rspb.2011.0913 



55 

55 
 

Yu, F., Wen, Y., Wang, J., Gong, Y., Feng, K., Ye, R., Jiang, Y., 
Zhao, Q., Pan, P., Wu, H., Duan, S., Su, B., & Qiu, M. (2018). 
The Transmission and Evolution of HIV-1 Quasispecies within 
One Couple: a Follow-up Study based on Next-Generation 
Sequencing OPEN. SCIENTIfIC REPoRTs |, 8, 1404. 
https://doi.org/10.1038/s41598-018-19783-3 

Zarnitsyna, V. I., Ellebedy, A. H., Davis, C., Jacob, J., Ahmed, 
R., & Antia, R. (2015). Masking of antigenic epitopes by 
antibodies shapes the humoral immune response to 
influenza. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 370(1676). 
https://doi.org/10.1098/RSTB.2014.0248 

Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin 
of SARS-CoV-2 Associated with the COVID-19 Outbreak. 
Current Biology, 30(7), 1346-1351.e2. 
https://doi.org/10.1016/j.cub.2020.03.022 

Zhang, Y. Z., & Holmes, E. C. (2020). A Genomic Perspective on 
the Origin and Emergence of SARS-CoV-2. Cell, 181(2), 223–
227. https://doi.org/10.1016/j.cell.2020.03.035 

Zhao, L., Abbasi, A. B., & Illingworth, C. J. R. R. (2019). 
Mutational load causes stochastic evolutionary outcomes in 
acute RNA viral infection. Virus Evolution, 5(1), 1–12. 
https://doi.org/10.1093/ve/vez008 

Zhao, L., & Illingworth, C. J. R. R. (2019a). Measurements of 
intrahost viral diversity require an unbiased diversity metric. 
Virus Evolution, 5(1), 1–7. 
https://doi.org/10.1093/ve/vey041 

Zhao, L., & Illingworth, C. J. R. R. (2019b). Measurements of 
intrahost viral diversity require an unbiased diversity metric. 
Virus Evolution, 5(1), 1–7. 
https://doi.org/10.1093/ve/vey041 

Zhou, B., Donnelly, M. E., Scholes, D. T., St. George, K., Hatta, 
M., Kawaoka, Y., & Wentworth, D. E. (2009). Single-Reaction 
Genomic Amplification Accelerates Sequencing and Vaccine 
Production for Classical and Swine Origin Human Influenza A 
Viruses. Journal of Virology, 83(19), 10309–10313. 
https://doi.org/10.1128/JVI.01109-09 

Zhu, H., Damdinjav, B., Gonzalez, G., Patrono, L. V., Ramirez-
Mendoza, H., Amat, J. A. R. R., Crispell, J., Parr, Y. A., 
Hammond, T.-A. A., Shiilegdamba, E., Leung, Y. H. C. C., 
Peiris, M., Marshall, J. F., Hughes, J., Gilbert, M., & Murcia, 
P. R. (2019). Absence of adaptive evolution is the main 
barrier against influenza emergence in horses in Asia despite 
frequent virus interspecies transmission from wild birds. 
PLoS Pathogens, 15(2), 1–23. 
https://doi.org/10.1371/journal.ppat.1007531 

Zwart, M. P., & Elena, S. F. (2015). Matters of Size: Genetic 
Bottlenecks in Virus Infection and Their Potential Impact on 
Evolution. Annual Review of Virology, 2, 161–179. 
https://doi.org/10.1146/annurev-virology-100114-055135 



56 

56 
 

  


	Thesis cover sheet
	2024BonePhD

