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Abstract

As scientific research advances, more and more data are no longer limited to traditional Eu-

clidean space, but extend to spaces with more complex geometric structures, such as complex

constrained domains and Riemannian manifolds. Riemannian manifolds are increasingly being

recognized as an important tool in data analysis and machine learning due to their widespread

use in multiple scientific fields and in real-word contexts. For example, lakes can be modeled as

manifolds to better understand their geographic structure and dynamics in environmental stud-

ies. In order to model such manifolds in real world situations, an increasing number of statistical

tools are developed for estimation over a manifold. When considering regression on manifolds,

inspired by the success of Gaussian Processes (GPs) in Euclidean spaces, this thesis aims to

provide novel tools in order to efficiently and accurately estimate surfaces using GPs tailored

for manifolds.

Traditional GPs typically use kernels that rely on Euclidean distance to define the covari-

ance between data points on the target surface, such as the radial basis function (RBF) kernel.

Traditional GPs cannot be directly applied to manifolds due to their failure to accurately cap-

ture the underlying structure, especially in the presence of gaps and complex boundaries. The

heat kernel describes the heat diffusion on the manifold, which reflects the manifold’s geometric

properties, but only specific manifolds have closed-form expressions. Intrinsic GPs proposed in

[114] use the transition density of Brownian motion (BM) on the manifold to approximate the

heat kernel, thereby capturing the manifold’s intrinsic geometric characteristics and enabling

more accurate regression on manifolds. However, Intrinsic GPs face issues near boundaries due

to resampling BM paths when crossing the boundary, causing inaccurate predictions near the

boundary. According to the definition of the Neumann boundary condition, the BM path should

be reflected when it crosses the boundary. This thesis proposes a "reflection" method to address
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this issue, leading to more accurate predictions at the boundary.

Additionally, Intrinsic GPs are constrained by the computational complexity of simulating

BM paths, especially on large-scale or highly complex manifolds, which make them highly com-

putationally intensive. This thesis investigates the feasibility of sparse methods in Intrinsic GPs,

which use inducing points as intermediaries to facilitate information transmission from training

points to test points, aiming to simplify the computational complexity without sacrificing infer-

ence accuracy. This thesis first proposes Sparse Intrinsic GPs using a Deterministic Inducing

Conditional approach (SI-GPDIC), which is straightforward to implement and computationally

efficient; however, it is sensitive to the location of a small number of inducing points. The Sparse

Intrinsic Gaussian Process using a Deterministic Training Conditional approach (SI-GPDTC) is

then proposed, which is less sensitive to the location of inducing points, achieving a balance

between computational efficiency and inference precision. Considering approximating the true

posterior distribution with a simpler, more tractable distribution by minimizing the divergence

metric between them, this thesis develops the Sparse Intrinsic Gaussian Process with Variational

Inference (SI-GPVI), a powerful tool for regression on complex manifolds. Graph GPs, which

utilize the graph Matérn kernel on the undirected graph constructed from the manifold, and Tra-

ditional GPs, which directly use the Euclidean distance-based RBF kernel, are employed for

comparison with the three Sparse Intrinsic GPs developed in this thesis. The performance of the

proposed methods is demonstrated using three examples: the 2D U-shape, the 3D Bitten-torus,

and the real-world dataset of the Aral Sea, with SI-GPVI performing particularly well.

Finally, motivated by the success of Bayesian optimisation (BO) in Euclidean space, this

thesis proposes novel approaches to construct Intrinsic BO on manifolds, building upon previous

research. The proposed GPs (introduced earlier in the thesis), serve as surrogate models in

the BO approach, providing the acquisition function the probability of improvement (PI), with

accurate information about the underlying manifold structure. Benefiting from the surrogate

models’ ability to capture the structure of manifolds, the proposed BO algorithms—Intrinsic BO

with DTC and Intrinsic BO with VI—achieve better results compared to Graph BO, based on

Graph GPs, and Traditional BO, based on Traditional GPs. Among them, Intrinsic BO with DIC

shows unstable performance due to its predictive variance providing inaccurate uncertainty when

estimating points that are far from inducing points, whereas Intrinsic BO with VI demonstrates

particularly strong performance, excelling in both accuracy and efficiency.
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Chapter 1

Introduction

This chapter is the introduction to this thesis. It begins with a discussion of the motivation for

the work, then the specific goals the thesis is trying to achieve. The chapter also introduces

three case studies used throughout the thesis: a 2D example of the U-shape, a 3D example of

the Bitten-torus, and the real-world dataset about the Aral Sea. Finally, the outline of the thesis

is presented.

1.1 Motivation

Euclidean space is the fundamental space of geometry, widely used in many fields such as

physics and computer science. Traditional statistical methods used to assume that data usu-

ally comes from Euclidean space and measure the relationships between these data points using

Euclidean distance. Although in many contexts these methods work, they do not perform well

when handling data generated from more complex constrained domains and manifolds. A man-

ifold is a space that in the neighborhood of each point resembles a Euclidean space [161]. It

usually has a more intricate global structure and frequently arises in real-world scenarios, such

as the surface of a lake or the field of medical imaging.

In many fields, such as physics, computer vision, medical imaging, and geology, manifolds

play a critical role in representing complex data structures. In the field of computer vision,

1
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manifold methods are often used in shape-related vision problems because individual shapes

can typically be viewed as differential manifolds. The shape space can be treated as a math-

ematical object, represented by constructing a manifold structure over it [173]. The structural

properties of manifolds is utilized to study shape space structures from various perspectives

[26], [75], [140], [173]. In the medical imaging field, many structures in human imaging exhibit

manifold-like characteristics, with complex intrinsic geometries and boundaries, for example,

the 3D-heart model [152]. The following references [42], [88], [157] and [121] employ measur-

ing a diffusion process on a manifold to simulate the diffusion of water molecules in tissues, as

observed in Diffusion Tensor Imaging (DTI). Also, statistical analysis of manifold-valued data

has gained a great deal of attention in neuroimaging applications [32], [174], [72], [67]. Man-

ifolds have numerous applications in geological research. Advances in geostatistical modeling

are essential for accurate subsurface characterization, as traditional methods often struggle with

the complexity of geological media [118]. Treating geological formations as manifolds help

capture many intrinsic geometric features and boundary information [66], [98]. Manifolds can

also be used to model bodies of water, such as Lake Michigan, Gull Lake in [131], and the Aral

Sea in [166]. This application will aid in monitoring and managing water resource pollution,

contributing to environmental protection area. Thus, research on manifolds is crucial given the

wide range of manifold-based applications.

On manifolds, Euclidean-based models usually fail to capture the intrinsic geometry, lead-

ing to poor performance in tasks such as regression, classification, and optimisation. Nowa-

days, there has been substantial interest in developing statistical methods suitable for manifolds,

where data are best characterised as elements of a Riemannian manifold rather than points in

Euclidean space [44]. For illustration, Pennec [120] focuses on the theoretical formulation of

the statistical framework in geodesically complete Riemannian manifolds; Fletcher et al. [43]

introduce Principal Component Analysis (PCA) to study shape analysis on manifolds, with the

main application in modeling three-dimensional anatomical structures (e.g., kidneys); Then,

Fletcher et al. [44] extend the concept of the geometric median, a robust estimator of centrality,

to manifold-valued data, with applications in robust atlas estimation; Subbarao and Meer [144]

extend the mean shift algorithm to Riemannian manifolds and provided detailed derivations for

specific manifold examples, such as matrix Lie groups and Grassmann manifolds; Asgharbeygi

and Maleki [4] proposed the geodesic K-means algorithm, extending the classical K-means clus-



CHAPTER 1. INTRODUCTION 3

tering method to manifolds; and so on.

Further research could explore the application of Gaussian processes (GPs). GPs are widely

used in machine learning, offering flexible and interpretable models with uncertainty quantifi-

cation [172]. The application of GPs in machine learning contains: robotics and control [33],

time-series modelling [128], reinforcement learning [83], [154], survival analysis [40] and some

Bayesian numerical methods, for example, Bayesian optimisation [109], [138], [23], Bayesian

quadrature [18], [73] and Bayesian differential equations solvers [29]. In addition to machine

learning, GPs are also used to solve a variety of problems, such as health monitoring [142], in-

verse problems [143], tsunami modelling [132], computer models [76] and engineering design

[45]. In these applications, the input data typically comes from Euclidean space, where GPs

perform well.

This thesis is interested in regression and optimisation on manifolds. Inspired by this, this

thesis aims to develop GP methods suitable for manifolds. The challenge lies in how to handle

data with complex intrinsic geometries. In Euclidean space, the kernels used in Traditional

GPs typically rely on Euclidean distance for modelling, for example, the radial basis function

(RBF) kernel and the Matérn kernel [165]. If Traditional GPs are directly applied to manifolds,

they will overlook the complex intrinsic geometry of the manifold and fail to accurately capture

the underlying structure, which can lead to poor performance. The most direct solution to this

problem is to replace the Euclidean distance with geodesic distance. The geodesic distance refers

to the shortest path between two points along the surface of the manifold [162]. For example, in

Euclidean space, which is a special type of manifold, the geodesic distance is simply the straight-

line distance (the Euclidean distance) between two points p, q. On a sphere, the geodesic is the

shorter arc of the great circle that passes through two points along the surface of the sphere.

However, it is challenging to accurately approximate the geodesic distance when the manifold

has complex intrinsic geometric features, both regarding algorithmic complexity and inadequate

accuracy [89]. Directly replacing Euclidean distance with the Riemannian geodesic distance

often leads to ill-defined kernels in many cases of interest, subsequently causing deviations in

the performance of GPs [39].

This motivates the need for more sophisticated approaches which can take the characteristics

of manifolds into account. Lin et al. [92] propose extrinsic covariance kernels by embedding
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manifolds into higher-dimensional Euclidean space, but this approach is challenging for com-

plex spaces. Dunson et al. [36], Borovitskiy et al. [17], Fichera et al. [41] and Bolin [15]

contributes to developing GPs on graphs and metric graphs formed by data observed on the

manifold, but these approaches do not perform well when the constructed graph fails to capture

the manifold’s intrinsic features.

When considering the process of filling an artificial lake with water, the way the water

spreads will be influenced by the internal geometric features of the lake, such as its irregular

boundaries and the various islands scattered within the lake. The process of water spread is

similar to the diffusion of heat along the surface of an object. Inspired by this, the heat kernel

can be used to describe the heat diffusion along the surface of a manifold, reflecting the intrinsic

geometric features of the manifold. Research on heat kernels covers various aspects, includ-

ing: heat kernels in presence of group structure [1], [2], [3], heat kernels in infinite dimensional

spaces [8], [35], heat kernels on fractals and fractal-like spaces [53], [7], [54], heat kernels of

non-linear operators [34], [11], heat kernels of non-symmetric operators [37], [125] etc. The

heat kernel expansion is widely studied in both physics and mathematics literature (see [153]

for a review). Grigor’yan [55] studies the Heat Kernels on weighted manifolds and their appli-

cations. Castillo et al. [25] develop intrinsic GP models on Riemannian manifolds by rescaling

solutions of heat equations, but the constructed intrinsic kernels are often impractical to imple-

ment. Lawler [85] discusses the probabilistic connections between Brownian motion (BM) and

the heat equation. Based on this view, Kozdron [81] finds the transition density of BM satisfies

the heat equation, providing a new perspective for solving the heat equation. Niu et al. [114]

propose using transition density of BM to approximate the heat kernel on manifolds.

Based on [114], this thesis aims to improve the accuracy of capturing manifold geometric

features using BM and expand the application of GPs to higher-dimensional manifolds through

the use of sparse methods. GPs, due to the matrix inversion involved in their computations, are

very challenging to apply to large datasets and high-dimensional data, where the computational

cost increases exponentially with the growth of data size and dimension. To solve this prob-

lem, there are several approximate methods have been proposed for Traditional GP in Euclidean

space. Williams and Seeger [164] use the Nyström Method to speed up the computational re-

quired for standard GP. The Subset of Regressors (SoR) is proposed by Wahba [155] and adapted

by Smola and Bartlett [136] to propose a sparse greedy approximation to GPs. Csató and Opper
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[31] and Seeger et al. [133] focus on the method Projected Latent Variables (PLV), which solves

the problem of the SoR approximation, also named the Projected Process Approximation (PPA)

by Rasmussen and Williams [165]. Snelson and Ghahramani [137] propose another likelihood

approximation Sparse Pseudo-input Gaussian processes (SPGP) to speed up GPs. A unifying

view of these sparse approximate GPs can be found in [126]. Titsias [150] introduce a varia-

tional formulation for sparse approximations GPs. Inspired by these studies, this thesis aims to

construct sparse intrinsic GPs suitable for manifolds, which can take into account the intrinsic

geometric features of the manifold and be applied to high dimensional manifolds.

There is also great interest in optimisation problems on manifolds. Similarly, in the case of

water pollution control, it is often necessary to identify and prioritize the most polluted areas

of a water body. This requires the measurement of certain indicators, such as chlorophyll level,

nutrients, etc. However, in the presence of budget constraints, it is a challenge to find the target

point in a limited measurements. Therefore, finding the target point efficiently and accurately

is essential for effective decision-making. Determining the optimal drilling locations which

contain rich oil resources is crucial for oil exploration in the desert. Due to the high cost of

drilling and the huge area of desert to be explored, it is essential to efficiently and accurately

identify suitable drilling locations.

Given the need to find the optimal point under budget constraints, Bayesian Optimisation

(BO) offers a powerful approach. BO is a highly effective global optimisation algorithm, useful

in situations where evaluations are expensive or time-consuming. The central idea of BO is to

build a model that can be updated and queried to drive optimisation decisions. It mainly consists

of two components: the surrogate model-used to approximate the unknown objective function

and the acquisition function, which guides the selection of the next sampling point by balancing

exploration and exploitation. Shahriari et al. [135] give a review of surrogate models and divide

them into into two categories: parametric models, such as the beta-Bernoulli model, the linear

models and the Generalized linear models (GLMs) and nonparametric models, such as the GPs,

the random forests and the deep neural network (DNN). There are several acquisition functions

used in BO: including the Probability of Improvement (PI)-selecting points with the highest

probability of improving over the current best value [82], [70], the Expected Improvement (EI)-

maximising the expected improvement over the current best solution [110], the upper confidence

bound algorithm (UCB)-choosing points based on the upper bound of the confidence interval
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[139] and the information based policies, the Thompson Sampling (TS) [149] and the entropy

search [134].

BO is impacting a wide range of areas, including intelligent environmental monitoring [103],

interactive user interfaces [19], experimental design [6], reinforcement learning [20], designing

games [77], sensor set selection [49], and robotics [95], [104] etc. The data in these applications

typically comes from Euclidean space, where BO is widely applied. Inspired by this research,

this thesis seeks to explore optimisation problems on manifolds, expanding the application of

BO to manifolds. However, directly applying BO from Euclidean space to manifolds can lead to

incorrect optimisation results. This is because, in traditional BO, the surrogate model relies on

Euclidean distance to define relationships between points, which does not account for the struc-

ture of the manifold. When the Euclidean distance differs significantly from the actual distance

on the surface of manifold, BO is misguided during the iterations, leading to poor performance

and inaccurate results. The quality of the surrogate model’s approximation of the objective func-

tion directly impacts the effectiveness of BO. Thus, the surrogate model should take the intrinsic

geometric features of the manifold into account. After constructing GPs suitable for manifolds,

this thesis aims to utilise the proposed GPs as surrogate models to expand the application of BO

on manifolds. Ideally, the proposed BO will achieve better performance compared to traditional

BO by accurately capturing the manifold’s intrinsic geometric features.

After introducing the motivation behind this work, the next section shows the thesis goals,

detailing the specific objectives.

1.2 Thesis Goals

The aim of this thesis is to solve regression and optimisation problems on manifolds by de-

veloping novel statistical approaches that use the intrinsic geometric features of the manifolds.

Specifically, the goals are as follows:

• The aim is to improve the heat kernel estimation closing to the boundary of manifolds in

intrinsic GPs, designed for manifolds. The current "resample" method leads to reduced

accuracy near the boundary due to a lack of exploration, causing the boundary information
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conveyed by the BM paths to be smaller than the actual boundary of the manifold. To

achieve this, this research proposes the novel "reflection" approach, which is designed

and compared to enhance the accuracy of boundary exploration on manifolds.

• The goal is to address the high computational cost associated with simulating BM paths

in intrinsic GPs, while also resolving the numerical instability and computational burden

of matrix inversion within GPs. This research aims to develop GPs that are applicable

to complex high-dimensional manifolds, ensuring both computational efficiency and ac-

curacy. To achieve this, this work proposes three novel methodologies, termed sparse

intrinsic GPs on manifolds, among which variational inference demonstrates outstanding

performance across three representative examples.

• The aim is to solve optimisation problems on manifolds. It is essential due to the presence

of many real-world optimisation problems on manifolds, such as in environmental mon-

itoring or geological exploration. Traditional methods, which rely on Euclidean space,

often overlook these intrinsic geometric features, leading to inaccurate results. This work

proposes novel BO methods specifically designed for manifolds, which can effectively

capture their intrinsic structures. An innovative application is presented in the field of wa-

ter pollution management, where the proposed BO methods are applied to find the areas

with the highest chlorophyll level in the Aral Sea.

After presenting the motivation and goals of this work, the next section will introduce the

examples used through this work.

1.3 Case Studies Presented

This section introduces the case studies used in the research, including different dimensions

as well as real-world dataset. These examples will help demonstrate the effectiveness of the

proposed methods in the subsequent chapters.
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Figure 1.1: The U-shape domain with the test function shown as a colour map and contour plot
over the region.

1.3.1 2D Example: the U-shape

The horseshoe-like U-shape defined as a subset of R2, serves as a 2-dimensional manifold sim-

ulated example for the GP approaches proposed and compared in this research. It modifies the

simulation test presented in Wood et al. [168] and can be constructed through mgcv package in

R [167]. Figure 1.1 gives the true function of the U-shape.

The U-shape presents a compact structure with two long arms separated by a narrow gap.

When two points are located in the upper and lower arms, the Euclidean distance between them

can be measured as the straight line between the two points. However, in reality, these points

are separated by the boundary in the middle, and the actual distance, or path from one point to

another requires going around the boundary within the domain. This difference emphasizes the

limitations of using Euclidean distances to capture the real geometry of manifolds. Additionally,

the value of the test function increases smoothly from the lower right to the upper right within the

U-shape boundary ranging from -6.1188 to 6.1188, as shown by the color gradient and contour

lines in Figure 1.1. The values between the upper and lower arms of the U-shape are significantly

different due to the boundary separating the two regions. This gives the challenge in using
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Euclidean distance for modelling on such manifolds since it fails to capture the true geometric

separation. A total of 418 grid points S are uniformly distributed on the surface of the U-shape

domain, ensuring an even representation of the space while respecting the boundary constraints.

These points serve as the basis for applying the GP method. Details will be introduced in Chapter

3.

1.3.2 3D Example: the Bitten-torus

This research chooses the Bitten-torus as the representative of 3-dimensional manifolds. First,

consider the torus, which is a surface of revolution generated by revolving a circle in three-

dimensional space one full revolution about an axis that lies in the same plane as the circle

[163]. It can be viewed as a two-dimensional manifold embedded in R3, which is constructed

by four parameters: r radius of tube, R distance from center of the tube to the center of the torus,

θ and φ are angles to make full circles while θ for angle of torus and φ for angle of tube.

This research keeps R and r fixed, while varying the angles θ and φ . By removing the

lower right part of a torus, this research investigates problems on the Bitten-torus, which looks

a donut with a bite in it. Figure 1.2 shows the Bitten-torus used in this work from three different

perspectives. The value of the test function is displayed through colours in the figure, with low

values shown in dark blue and high values in dark red, increasing smoothly from 0.1597541 to

6.334097922 on the surface of the Bitten-torus. A nonlinear function f is defined on the surface

of Bitten-torus with

Yi = f (xi,yi,zi)+ εi, (1.1)

where xi,yi,zi are the coordinates of a point on the surface and εi is the noise parameter. The

detail for construction of the Bitten-torus and the derivation of the metric tensor are shown

in the Chapter 6. On either side of the "bitten" region, although being geometrically close in

Euclidean distance, the values are significantly different due to the separation by the boundary.

If the modelling does not consider the manifold’s intrinsic structure and boundary conditions,

it will result in poor performance. There are 600 grid points uniformly distributed across the

surface of the Bitten-torus, which will be used in the subsequent GPs and BO methods. Details

will be elaborated in the following chapters.
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(a) (b) (c)

Figure 1.2: The Bitten-torus with the test function shown as a colour map from three different
perspectives.

1.3.3 Real World Dataset: the Aral Sea

The Aral Sea, as the real-world dataset used in this work, holds significant practical importance.

The Aral Sea is a large inland lake located in Central Asia, lying between Kazakhstan to the

north and Uzbekistan to the south. It was once the fourth-largest lake in the world, but due to

poor water resource management, it began shrinking in the 1960s and largely dried up by the

2010s, becoming a prime example of an ecological disaster [160] [107]. How to effectively mon-

itor water resource pollution and address it promptly is of great significance for environmental

protection [158]. By analysing datasets related to the Aral Sea’s chlorophyll levels, this work

aims to develop models that offer useful predictions and guide decision-making for identifying

the most polluted areas under budget constraints. This work consider an analysis of remotely-

sensed chlorophyll data at 485 locations in the Aral Sea, which can be obtained from [166].

These 485 locations can be considered as grid points on the Aral Sea case study, which will be

used for subsequent modelling. Figure 1.3 shows the chlorophyll levels of the Aral Sea, with

the levels represented by the intensity of the color—the darker the color, the higher the chloro-

phyll level. The chlorophyll values range from 0 to 19.278724. The log of chlorophyll level is

modelled as a function of the latitude and longitude coordinates of the measurement locations:

chli = f (loni, lati)+ εi, (1.2)

where loni and lati are longitude and latitude coordinates standardised by subtracting the mean

[114], chli represents the Chlorophyll level, and εi is the noise parameter.
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Figure 1.3: The chlorophyll levels of the Aral Sea shown as a colour map; the darker the colour,
the higher the chlorophyll level.

The area with high chlorophyll level is located in the lower-central part on the left side of

the Aral Sea. Separated by the gap corresponding to the isthmus of the peninsula, the overall

chlorophyll level on the left side is relatively higher than on the right. Near the boundary of

the gap despite the close Euclidean distance, the level on the left is significantly higher than

on the right, varying smoothly within the boundary but not across the gap. Thus, considering

the intrinsic geometric features when modelling on the Aral Sea is meaningful. Although real-

world data is often more complex, potentially not adhering to the smoothness assumptions, and

featuring various forms of noise, incompleteness, and nonlinear relationships, in the following

research, the proposed methods demonstrate exceptional performance, outperforming some of

the traditional methods used for comparisons.

The thesis is structured in chapters as described in the next section.
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1.4 Outline of the Thesis

This thesis is divided into 8 chapters. A brief overview of each chapter and general structure of

this thesis is shown below.

Chapter 2 provides the theoretical background for understanding GPs in Riemannian man-

ifold, covering essential concepts from Riemannian geometry, Bayesian optimisation and graph

theory. It explain how Bayesian optimisation works by giving an 1-dimensional example where

GPs can be used as a surrogate model in Bayesian optimisation.

Chapter 3 presents the Intrinsic GPs for manifolds, beginning with a review of Traditional

GPs and moving to intrinsic GPs that account for manifold geometry, including improvements

in handling boundary conditions using BM.

Chapter 4 proposes Sparse Intrinsic GPs, which use sparse methods to address the compu-

tational issues associated with Intrinsic GPs. First, Sparse Intrinsic GPs with DIC is introduced.

To correct the predictive variance of DIC, Sparse Intrinsic GPs with DTC is then presented. To

further enhance prediction accuracy and stability, Sparse Intrinsic GPs with VI is introduced.

Chapter 5 explores Graph GPs, another approach of GPs on manifolds. It focuses on the

use of the Graph Laplacian and Matérn kernels, adapted for graphs through its SPDE form, to

model manifolds with complex boundaries.

Chapter 6 applies the proposed Sparse Intrinsic GPs to three representative examples intro-

duced in Section 1.3. It begins by introducing the data analysis indicators used to evaluate and

compare the performance of different GP methods. Following this, the chapter compares the

performance of three Sparse Intrinsic GPs with Traditional GPs and Graph GPs, highlighting

the strengths and weaknesses of each method.

Chapter 7 focuses on addressing optimisation problems on manifolds with complex bound-

aries, under budget constraints. Building on previous research, this chapter proposes five Bayesian

Optimisation methods designed for manifolds. Then, it compares their effectiveness using the

same examples discussed earlier, to evaluate how well each method performs in finding the

optimal point.
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Chapter 8 concludes the whole work in this thesis and highlights the main contribution. It

also gives potential directions for future research.



Chapter 2

Theoretical Framework

In Chapter 1, the research motivation and thesis goals are outlined, providing the context and

purpose of the study. The chapter also presents an overview of the case studies, followed by

an outline of the thesis structure. In this thesis, the focus is on developing statistical methods,

including GPs and BO, that are applicable to manifolds. This work not only extends the ap-

plication of these methods beyond the limitations of Euclidean space but also provides crucial

technical support for manifold-based research across various fields.

This chapter aims to provide a fundamental theoretical explanation for subsequent research.

The chapter begins in Section 2.1 with an introduction to Riemannian geometry and its key

concepts, with a particular focus on manifolds, which serve as the foundation for all subsequent

research. Understanding these complex geometric structures is essential within this framework.

Section 2.2 then presents the framework of Bayesian Optimisation (BO), which uses Gaussian

Processes (GPs) as a surrogate model to provide information for the acquisition function at

each iteration. GPs will be the focus of this research in the upcoming Chapters 3 and 4, where

methodologies suitable for manifolds will be developed. In Chapter 6, these methods will be

implemented and compared to evaluate their performance. Section 2.3 introduces graph theory,

with a particular focus on the Graph Laplacian (GL), which will be used as another attempt to

solve regression problems on manifolds, which will be further explored in Chapter 5.

14
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2.1 Introduction to Riemannian Geometry

This section provides a broad introduction to Riemannian geometry and leads into the concept

of manifolds, which are central to this study. Based on Gauss’s intrinsic differential geometry

of surfaces, the German mathematician G. F. B. Riemann proposed Riemannian geometry in the

mid-19th century, it has evolved into an important and extensive field of study [9]. Riemannian

geometry, as a branch of modern differential geometry, primarily investigates the geometric

properties of Riemannian manifolds. Before introducing Riemannian manifolds, it is important

to define some key notation fundamental to differential geometry. Let M denote the Riemannian

manifold and C∞ indicate smoothness (infinitely differentiable). At each point s on a Riemannian

manifold M, there exists a tangent space which is denoted as TsM. This tangent space can be

regarded as a linear approximation of the Riemannian manifold at the point s. It is a standard

vector space with its origin at the current point on the manifold, and the vectors are tangents to

that point. Imagine a sphere, the vector space can be visualized as a sheet of stiff paper placed

at some point s on the sphere, where all the vectors in the space can be drawn on this sheet. The

tangent space TsM is defined by equipping the manifold with an inner product, used to measure

distances and angles between vectors. This inner product is given by a Riemannian metric tensor

g, which can measure the angle and length between two tangent vectors.

A Riemannian manifold is then described as a smooth C∞-manifold M (Hausdorff and sec-

ond countable) with a Riemannian metric tensor g defined on each tangent space TsM, as shown

below [124], [51]:

Definition 2.1. A Riemannian metric on a smooth manifold M is a symmetric positive definite

smooth covariant 2-tensor field g. A smooth manifold M equipped with a Riemannian metric g

is called a Riemannian manifold, and is denoted by (M,g).

A compact Riemannian manifold M can be embedded in a larger, flat, Euclidean space with

N dimensions, which can be explained by the Nash embedding theorems [112]:

Theory 2.1. Any compact n-dimensional Riemannian manifold can be isometrically embedded

in RN for N = n(3n+1)
2 .

To explain it more intuitively, an isometric embedding means placing a curved space, such
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as surface of a sphere, which is a 2-dimensional Riemannian manifold, into a flatter, higher-

dimensional space, like an ordinary 3-dimensional space, without distorting distances. The

theorem essentially provides a way to embed a compact Riemannian manifold in a larger Eu-

clidean space, establishing a connection between Riemannian manifolds and Euclidean space.

The presented theorem enables the analysis of complex manifold structures within the familiar

Euclidean space, proposing new approaches to manifold research.

Suppose H represents a local open subset of the manifold M, with H ⊆ M, serving as the

domain for the local chart. If x : H → Rn, the metric tensor g can be expressed as:

g =
n

∑
i, j=1

gi jdxi ⊗dx j,

in H, where

gi j = g
(

∂

∂xi ,
∂

∂x j

)
.

For example, M = Rn, a euclidean n-space and g = ∑
n
i=1 dxi ⊗ dxi define a Riemannian mani-

fold, making Euclidean space a special type of manifold. The Riemannian metric tensor g is a

symmetric, bilinear, positive definite function on M, which satisfies:

• g(t1, t2)(s) = g(t2, t1)(s);

• g(t1 + t2, t3)(s) = g(t1, t3)+g(t2, t3)(s);

• g(t1, t1)(s)> 0;

where g(t1, t2)(s) is a smooth function of s from M to R and t1, t2 ∈ TsM. The specific applica-

tion and calculation of the metric tensor in this research can be found in Chapter 3 and Chapter

6. Given the metric tensor g, the Laplace-Beltrami operator ∆s can be defined on the manifold

M. It can be seen as a generalization of the Laplace operator in Euclidean space to Riemannian

manifolds, depending on the metric structure of the manifold, which can be expressed as [117]:

∆s f =
1√
|g|

∂

∂xi

(√
|g|gi j ∂ f

∂x j

)
,

where f is a smooth function defined on M, gi j is the (i, j) element of its inverse, |g| is the

absolute value of the determinant of g and ∂

∂xi represents the partial derivative with respect to
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the coordinate xi. It is a key operator in differential equations and physical systems on mani-

folds, describing the rate of change of a function on the manifold [69]. Chapter 5 explores how

to implement GPs on manifolds by leveraging the graph structure when the Laplace-Beltrami

operator ∆s on M is unknown.

The geodesic distance d(si,s j) between two points si and s j on the manifold M is defined as

the infimum of the length of all smooth curves γ joining si and s j, shown as:

d(p,q) = inf
γ

∫ 1

0

√
gγ(t)

(
dγ

dt
,
dγ

dt

)
dt,

where γ(t) is the parameterized arc, satisfying γ(0) = si and γ(1) = s j [120].

The geodesic distance is easy to compute in special cases, such as for Euclidean space and

sphere. However, for most complex manifolds, the computation can be extremely difficult. It

often requires relying on other algorithms to study the geometric properties of the manifold. For

example, the heat kernel can be used to explore the geometry of a manifold.

2.1.1 Heat Kernel

In Chapter 3, intrinsic GPs are developed by estimating the heat kernel on the manifold, as it

captures the manifold’s intrinsic geometric properties. The heat kernel is a fundamental concept

in mathematics and physics, particularly in the study of partial differential equations (PDE). It

represents the solution to the heat diffusion equation, a parabolic PDE [56]:

∂tu−∆su = 0, (2.1)

where ∂tu shows the rate of change of heat over time, ∆s is the Laplace-Beltrami operator defined

before. The heat equation (2.1) expresses the relationship between the rate of change of the

temperature field over time and the curvature of its spatial distribution in the absence of external

heat sources. It provides valuable insights into the dynamics of heat transfer. For 1-dimensional

Euclidean space R, the fundamental solution to the heat equation (2.1) is shown as [38]:
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Definition 2.2. The function

Φ(x1, · · · ,xn, t) =


1

(4πt)n/2 e−
|x|2
4t (t > 0)

0 (t ≤ 0)
,

is called the fundamental solution of heat equation (2.1),

The process of deriving the fundamental solution of the heat equation (2.1) is provided in

Appendix A.1. For n-dimensional Euclidean space Rn, the heat kernel is the solution of the heat

equation:
∂K
∂ t

(t,x,y) = ∆xK(t,x,y),

lim
t→0

K(t,x,y) = δ (x− y) = δx(y),

where time point t > 0, x,y ∈ Rn, ∆ represents the Laplace operator defined before and δ is a

Dirac delta function. Then, the heat kernel takes the form of a time-varying Gaussian function:

K(t,x,y) =
1

(4πt)n/2 e−|x−y|2/4t ,

where |x−y| means the euclidean distance between x and y. Figure 2.1 illustrates the heat kernel

in 1-dimensional Euclidean space, with the initial point of heat diffusion at x = 0. From Figure

2.1, it is easy to see that the heat diffusion is time-dependent. As time progresses, the peak of

the heat kernel at the initial point y = 0 decreases while the spread of the heat increases. At

earlier times, such as t = 0.1, t = 0.2, the heat remains concentrated around the initial point. As

t increases, the heat diffuses further outward, with the heat kernel flattening and extending over

a larger range.

The above discussion of the heat equation does not take boundary conditions into account.

From a thermodynamic perspective, if the temperature conditions (or heat exchange condi-

tions) at the boundaries and the initial temperature conditions are known, the temperature of the

medium at future moments can be determined. For manifolds with internal geometric structure

and complex boundaries, considering boundary conditions is essential for calculating the heat

kernel. In practice, the most common boundary conditions are as follows. For one-dimensional

cases, specific expressions are given on the interval (I = (0, l)) [148]:
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Figure 2.1: The different coloured lines represent the heat kernel in 1-dimensional Euclidean
space at different moments t. The heat spreads out to both directions from initial position 0,
without boundary limitation.

• The first-type boundary condition: the temperature of the medium at the boundary is

known, also called Dirichlet boundary condition; the formula for (I = (0, l)) is: u(0, t) =

c1,u(l, t) = c2, where c1 and c2 specify the fixed temperature values at the boundaries.

• The second-type boundary condition: the temperature of the medium is unknown at the

boundaries, but the normal derivative of temperature of the medium at the boundaries

is known, also called Neumann boundary condition; the formula for (I = (0, l)) is:

ux(0, t) = c1,ux(l, t) = c2, where c1 and c2 define the normal derivative of temperature

at the boundaries.

• The third-type boundary condition: the temperature of the medium at the boundary and

the normal derivative of temperature of the medium at the boundaries satisfy certain rela-

tionship equations, also called Robin boundary condition; the formula for (I = (0, l)) is:

ux(0, t)−a0u(0, t) = c1,ux(l, t)−alu(l, t) = c2, where c1 and c2 are constants that appear

in a linear combination of temperature and its derivative.

In this research, Neumann boundary conditions are adopted, ensuring that there is no heat ex-

change across the boundary by setting the constant term in the boundary condition to zero. The
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first boundary condition is the simplest which directly states that the temperature remains con-

stant at the boundary of the manifold M. The second boundary condition does not consider the

specific temperature at the boundary, but the heat flow over the boundary, which specifies the

amount of heat flowing at the boundary. It means how much heat passes through the boundary

of the manifold per unit of time. The third boundary condition combines the first and second

boundary conditions, which are affected by the temperature of the surroundings and consider

the relationship between the temperature and the heat flow at the boundary. The heat equation

with boundary and initial conditions is not easy to solve. For most manifolds with complex

boundaries, finding an analytical solution to the heat equation is usually impractical. Therefore,

numerical and approximation methods are often employed to solve it. Lawler [85] discusses

the probabilistic connections between Brownian motion (BM) and the heat equation. The next

section will introduce and explore BM in more detail.

2.1.2 Brownian motion

BM is a common natural phenomenon that describes the continuous, random movement of sus-

pended small molecular objects in mediums such as liquids and air. It is utilized to provide an

estimate for the heat kernel of manifold M in section 3.3. BM has continuous time parameters

and continuous state space, and is closely linked to the normal distribution. As an important fun-

damental theory in the discipline of stochastic processes, it is widely used in physics, economics

and other academic fields [50], [106], [116]. The BM can be defined as [111]:

Definition 2.3. A real-valued stochastic process {B(t) : t ≥ 0} is called a (linear) BM starting

at x ∈ R if the following holds:

• B(0) = x,

• the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn the in-

crements B(tn)−B(tn−1) ,B(tn−1)−B(tn−2) , . . . ,B(t2)−B(t1) are independent random

variables,

• for all t ≥ 0 and h > 0, the increments B(t + h)− B(t) are normally distributed with

expectation zero and variance h,
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• almost surely, the function t 7→ B(t) is continuous.

If x = 0, {B(t) : t ≥ 0} is a standard BM. High-dimensional BM satisfies the following

definition:

Definition 2.4. Given that B1(t),B2(t), ...,Bd(t), represent mutually independent standard BMs,

B(t) = (B1(t),B2(t), ...,Bd(t)) is referred to as a d-dimensional BM.

In other words, the projection of d-dimensional BM onto the spaces R,R2, ...,Rd−1 is also a

BM. Figure 2.2 presents 5 BM paths starting from the same initial point (0,0) in a 2-dimensional

space, displayed in different colors. Each path represents an independent realization of Brown-

ian motion, showcasing the random, unpredictable nature of the movement. Over time, the paths

spread out in various directions. It effectively visualizes the stochastic nature of BM, where no

two paths are the same despite originating from the same point. BM has many properties. For

example, BM has the Markov property, i.e., given the current state, the future state does not

depend on the past state. Also, BM demonstrates the Martingale Property, whereby at any given

time point, the current value of the BM has the same expected value as its future values. Let B(t)

denote the location of the BM at time t. For any s ≤ t, the Martingale Property can be expressed

as:

E[B(t) |Fs] = B(s), (2.2)

where Fs represents the information available at time s. The martingale property describes that

the current value is the best predictor of future values. This means that at time s, the conditional

expectation of the future value of the BM is equal to the current value B(s). The detailed proof

for the martingale property is shown in Appendix B.

This research aims to explore regression and optimisation problems on Riemannian mani-

folds. This section introduces some fundamental concepts related to manifolds, while the next

section will provide an overview of commonly used statistical methods for regression and opti-

misation, including GPs and BO, where GPs can be used as surrogate models in BO.
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Figure 2.2: Five different BM paths in a 2-dimensional space, each represented by a different
color; All paths originate from the same initial point at (0,0) and spread out in various directions.

2.2 The Framework of Bayesian Optimisation

BO is an empirical global optimisation method used for optimising black-box functions that are

costly and potentially noisy to evaluate. Motivated by the successful implementation of BO in

Euclidean spaces, Chapter 7 will build on the previous research on GPs to extend the application

of BO to manifolds, thus addressing optimisation problems on manifolds.

BO aims to iteratively search for the optimal points within the domain to be explored, based

on the existing information. These optimal points can either be maxima or minima. The core

problem in BO is determining how to select the next data point for evaluation based on the cur-

rently available information. Firstly, BO needs to consider how to make global predictions based

on the limited available information. Secondly, once a global prediction is made, it must deter-

mine how to select the next point for exploration to update the current information set, thereby

iteratively moving towards the optimal point. The BO framework consists of two key compo-

nents: a probabilistic surrogate model and an acquisition function. The surrogate model is used

to approximate the objective function, which cannot be explicitly or directly defined—in other
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words, a clear mathematical formulation is not feasible. The acquisition function then guides

the search for the next point to evaluate. The probabilistic surrogate model typically comprises a

prior probability model p( f ) and an observation model. Let f represent the unknown objective

function. The observation model describes the mechanism of observation data generation, that

is, the likelihood distribution p(D1:i | f ), where D1:i = {(x1,y1),(x2,y2), . . . ,(xi,yi)} describes

the observed data set. Updating the probabilistic proxy model means the posterior probabil-

ity distribution p( f | D1:i) containing more data information; in other words, (xi+1,yi+1) has

been added into dataset D1:i+1, which is used to calculate the posterior probability distribu-

tion p( f | D1:i+1). The process of updating the probabilistic proxy model is precisely Bayesian

Inference.

Bayesian Inference

Bayesian inference is a method of inferential statistics based on Bayes’ theorem. Bayesian

inference calculates posterior probabilities according to Bayes’ theorem:

P(A|B) = P(A)P(B|A)
P(B)

,

where P(A) is an initial judgment of the probability of a hypothesis based on existing knowledge

prior to observing the new data; P(B|A) is the probability of observing the new data under a

given hypothesis and measures the consistency of the data with the hypothesis; P(B) is the

marginal probability, representing the total probability of occurrence of the observed new data.

Bayesian inference continuously updates the posterior probability by incorporating new data

points, improving and correcting previous hypotheses in an iterative learning process.

The acquisition function is constructed based on the posterior probability distribution and

selects the most "promising" point through a certain evaluation mechanism to update the dataset

D . Figure 2.3 shows the framework of BO, where the iteration continues until the termination

condition is reached. The iterations of BO typically have several common termination condi-

tions, such as a predefined number of iterations. A maximum number of iterations is set, and

once this number is reached, the algorithm stops. Another condition is a time limit, where

BO iterations must be completed within a certain time frame. Additionally, the convergence of
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the objective function value can be a termination condition. If the optimal value found by BO

shows very little change over several iterations (below a certain threshold), the iterations stop.

This research considers the budget constraint that often exists in real-world problem-solving,

particularly when the cost of each sample is very high. Therefore, in each case, the number of

iterations is predefined based on the budget constraint. For both the surrogate model and ac-

quisition function, there are various choices available. This research primarily uses GPs as the

surrogate model. Building on the widespread application of GPs in Euclidean spaces, this work

aims to develop GPs on manifolds that can be applied to higher-dimensional manifolds while

maintaining feasible computational costs, developing from Niu et al. [114]. The next section

will provide a basic introduction to GPs in Euclidean space.

Figure 2.3: The flowchart illustrates the framework of BO; the process begins with inputting
the initial training points and updating the probabilistic surrogate model by selecting the new
observation point through the acquisition function; this iterative process continues until the ter-
mination condition is met.

2.2.1 Exploring Probabilistic Surrogate Models Focusing on Gaussian Pro-

cesses

The common probabilistic surrogate models can be categorised into parametric models and non-

parametric models as introduced in Chapter 1. This section will focus on GPs on Euclidean

space, which are widely used due to the flexible prior distributions, effective uncertainty esti-

mation, and efficient prediction. Meanwhile, GPs require less data than other non-parametric
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models [135].

In statistics, a GP is a random process in which observations appear in a continuous domain

(such as time or space). Each random variable within this domain follows a Gaussian distri-

bution. The distribution of a GP is the joint distribution of all these (infinitely many) random

variables. In other words, a GP is the normalization of the multivariate Gaussian probability

distribution [165]. Let X be the input space, a Euclidean space in this section. A Gaussian

process is specified by its mean function µ : X → R and a positive semi-definite covariance

function K : X ×X → R, where the diagonal elements represent the variance function σ . A

valid covariance function must be positive semi-definite. The function f (x) which is distributed

as a GP with mean function µ and covariance function K can be written as:

f (x)∼ GP
(
µ(x),K

(
x,x′
))

,

where the mean function is µ(x) =E[ f (x)] and K (x,x′) =E [( f (x)−µ(x))( f (x′)−µ (x′))] rep-

resents the covariance function. This can be considered the prior in Bayesian inference. The

focus then shifts to the posterior for making predictions at unknown test points. Using GPs to

model the distribution of known data and make predictions for unknown data is also known as

GP Regression. Let f represent the function values at known training points x from X , and

f ∗ denote the function values at the unknown testing points x∗ from X which are unknown.

According to the characteristics of the GP, the joint distribution between training objectives f

and testing objectives f ∗ is as follows: f

f∗

∼ N

 µ

µ∗

 ,
 K(x,x) K (x,x∗)

K (x∗,x) K (x∗,x∗)

 ,

where µ is the mean function of training points while µ∗ is the mean function of testing points.

According to the conditional distribution properties of the multidimensional Gaussian distribu-

tion, the predictive distribution for GP regression can be obtained [165]:

f∗ | f ∼ N
(
K (x∗,x)K(x,x)−1f , K (x∗,x∗)−K (x∗,x)K(x,x)−1K (x,x∗)

)
.

The posterior mean and variance evaluated at any point from X represents the model’s predic-
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tion and uncertainty. The covariance function K, also known as the kernel function, is calculated

to describe the relationship between different points in the input space, which is crucial in deter-

mining both the smoothness and structure of the predictions in GP regression. There are many

kernel types that can be applied in Euclidean space, and a few of the more common ones are

described below.

Common Kernel Functions

In the practical application of GP regression, selecting an appropriate covariance function K(x,x)

is essential for achieving good predictive performance. The covariance function defines the re-

lationships between points during modelling, influencing how similarities between data points

are measured. This directly impacts both prediction accuracy and uncertainty estimation. Com-

monly used kernel functions include the Matérn kernel and radial basis function (RBF) kernel,

among others. The Matérn kernel cluster is a class of highly flexible covariance functions [165].

The specific function expressions are as follows:

kν (x,y) = σ
2
n

21−ν

Γ(ν)

(√
2ν

∥x− y∥
κ

)ν

Kν

(√
2ν

∥x− y∥
κ

)
, (2.3)

among it, ∥x− y∥ means the distance between x and y, κ controls the degree of dependency

between neighbouring data points, Γ is Gamma function, ν is non-negative, controlling the

smoothness of the function and σ2
n controls variability of the GP [165]. Kν is the second kind of

deformed Bessel function [52]. The Matérn kernel is parameterized by a smoothness parameter

ν , which typically takes fixed values depending on the desired level of smoothness, such as 3
2 ,

5
2 . As ν → ∞, the Matérn kernel converges to the RBF kernel, which produces infinitely smooth

functions. The RBF kernel, also called the squared exponential kernel, can be expressed as:

k(x,y) = α exp
(
−∥x− y∥2

2ℓ2

)
,

which has two parameters, length-scale parameter l and variance parameter α . α intuitively

affects the value of the kernel, the larger the α , the greater the fluctuation of the kernel. For l,

the smaller the l, the higher the frequency of kernel fluctuations. The RBF kernel is Euclidean

distance-based, producing significant similarity measures only for points closing to each other,



CHAPTER 2. THEORETICAL FRAMEWORK 27

while the similarity rapidly decays for points that are farther apart. It is one of the most popular

choices in GP modeling because it results in a smooth prior over the functions sampled from the

GP. In this research, the Traditional GPs introduced in Chapter 3 adopt the RBF kernel, applying

GPs from Euclidean space directly to manifolds, primarily as a baseline comparison, serving as

a Euclidean distance-based reference rather than a focus of the study.

After introducing GPs as the surrogate model, the next section presents various acquisition

functions used in BO.

2.2.2 Various types of Acquisition Functions

“Based on what we know so far, which point should we evaluate next?”

Due to the often high cost of sampling in real-life scenarios, such as drilling for oil in the

desert, the "next point" to be explored must be chosen carefully. The acquisition function helps

make this decision, which serves as a heuristic method to evaluate a point based on the current

model. The acquisition function can be expressed as ς : X ×R×Θ → R mapping from the

input space X , the observation space R, and the hyperparameter space Θ to the real number

space. This function is constructed from the posterior distribution obtained from the observed

data set D1:i, and guides the selection of the next sample point xi+1 by maximizing it:

xi+1 = max
x∈χ

ςi (x;D1:i) .

Commonly used acquisition functions can be divided into three categories: improvement-based

strategies, optimistic Policies and information-based strategies [135].

Improvement-Based Strategy

The improvement-based strategy selects points that are expected to improve the current optimal

objective function value, where improvement refers to values smaller or larger than the current

objective, depending on the optimisation goal. Both the Expected Improvement (EI) and Prob-

ability of Improvement (PI) functions are commonly used in this approach. The PI function is



CHAPTER 2. THEORETICAL FRAMEWORK 28

expressed as:

PI(x) = ϕ

(
µ(x)− f (x+)− ε

σ(x)

)
, (2.4)

among it, x+ = argmaxx∈x1:i
f (x) is the location of the current optimal value among the observed

data set D1:i; µ(x) is the mean function while σ is the variance function in this iteration obtained

from the surrogate model. ε regulates the trade-off between exploitation and exploration in BO

and can be empirically tuned to determine the most suitable value for a given problem. PI

quantifies the probability that the observed value of x may improve the current optimal objective

function value [82]. Based on PI, Močkus et al. [108] proposed a new improvement-based

strategy EI, which can be expressed as:

EI(x) =

 (µ(x)− f (x+)− ε)ϕ(Z)+σ(x)ψ(Z), if σ(x)> 0

0, if σ(x) = 0
,

Z =
µ(x)− f(x+)−ε

σ(x) ,

among them, ϕ(·) means cumulative distribution function (CDF) and ψ(·) means probability

distribution function (PDF). Similar to PI, the amount of exploration of the EI can be adjusted

by modifying ε . The x selected by EI not only integrates the improvement probability but also

reflects the different improvement amount.

Optimistic Policies

Srinivas et al. [139] propose a confidence boundary strategy for GPs known as GP-UCB (Upper

Confidence Bound). The UCB strategy focuses on maximising the objective function’s upper

confidence bound, which can be viewed as a weighted sum of the expected performance captured

by µ(x) and of the uncertainty σ(x). The acquisition function for the UCB strategy is given by:

UCB(x) = µ(x)+
√

βσ(x),

where β balances the mean µ(x) and variance σ(x). It is a dynamically adjusted parameter

that controls the balance between exploration and exploitation. When BO is trying to find the

minimum value of the objective function, the lower confidence bound (LCB) serves as the cor-
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responding acquisition function. GP-LCB can be expressed as:

LCB(x) =−(µ(x)−
√

βσ(x)),

where β plays the same role as in the UCB strategy and can be empirically tuned to determine

the optimal value.

Information-Based Strategies

Different from the previous two categories, information-based strategies sample reward func-

tions from the posterior distribution p( f | D1:i) of the surrogate function and optimise them.

A notable example is Thompson sampling, first introduced by William R. Thompson [149].

Thompson sampling draws a random function from the posterior distribution of the surrogate

model, representing a plausible version of the unknown objective function, and selects the point

xi+1 that maximises this sampled function. In doing so, the algorithm treats the sampled function

as if it were the true objective function. This process can be viewed as:

xi+1 = argmax
x∈X

f̂ (x),

where X is the input space and f̂ (x) is the sampled function.

The next section will provide a simple example of BO in a one-dimensional case to help

illustrate the process of BO.

2.2.3 Example for 1-Dimensional BO

When applying BO to practical problems, selecting an appropriate probabilistic surrogate model

and acquisition function is crucial. In a simple one-dimensional Euclidean space, the GP serves

as an excellent example of a surrogate model and is a key focus of this research. In this example,

f (x) = x2 sin6(5πx), the surrogate model GP uses the RBF kernel, which is sufficient to capture

the relationships between points. PI is used as the acquisition function, prioritising points with

a high probability of improving the current optimal value. Figure 2.4 presents the BO process
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by using the GPyOpt package in Python [5]. GPyOpt is a Python open-source library for BO

developed by the Machine Learning group of the University of Sheffield [5]. The left graph

in Figure 2.4 shows the plot of objective function f (x), while the right graph shows the last

iteration of the optimisation process, with the number of iterations limited to 50 steps. The red

line represents the PI acquisition function, where the highest point corresponds to the selected

exploration point for the next iteration. The optimisation process successfully identifies the

global optimum. The predictive mean, represented by the black line, performs well and closely

approximates the target function, shown by the blue line. After introducing the framework of

Figure 2.4: 1-Dimensional BO: The left graph shows the plot of the objective function f (x) =
x2 sin6(5πx), while the right graph illustrates the BO process. The red points represent both
the initial sampled points and those selected during optimisation. The red line indicates the
acquisition function (PI), the black line represents the predictive mean, and the blue line shows
the target function.

BO in Euclidean space, the next section will introduce the graph theory, which serves as the

foundation for Chapter 5 and offers a new perspective for studying GPs on manifolds.

2.3 Introduction to Graph Theory

Graph theory is a branch of discrete mathematics that primarily studies graphs. A graph is

a mathematical structure used to model pairwise relationships between objects, consisting of

"nodes" and the "edges" that connect them. The combination of nodes and edges appears in

various fields and is prevalent in real-world applications. For instance, in city planning, map

drawing, and GPS navigation, road networks are often represented as graphs [57]. Social net-
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works can also be modeled using graph theory [101], [59]. Additionally, infrastructure like

power grids, water systems, and railways can be represented using graphs [68]. A graph can be

defined as [175]:

Definition 2.5. A graph G = (V,E) is a mathematical structure consisting of two sets V and E.

The elements of V are called vertices, and the elements of E are called edges. Each edge has a

set of one or two vertices associated to it, which are called its endpoints.

To illustrate, Figure 2.5 presents a simple two-dimensional undirected graph Ga = (Va,Ea),

where Va = A,B,C,D,E and Ea = a,b,c,d,e, f ,g,h. The structure of a graph can also be repre-

Figure 2.5: The undirected graph Ga = (Va,Ea) contains 5 vertices Va and 8 edges Ea.

sented by an adjacency matrix, a binary matrix that indicates the presence or absence of edges

between pairs of vertices. The definition of the adjacency matrix is as follows [13]:

Definition 2.6. The adjacency matrix of graph G is the n× n matrix W whose entries wi j are

given by

wi j =

1 if vi and v j are adjacent;

0 otherwise.

The adjacency matrix is symmetric when the graph is undirected. For Figure 2.5, the adja-
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cency matrix WGa is:

WGa =



0 1 1 1 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

1 0 0 1 0


.

2.3.1 Graph Laplacian

The Graph Laplacian (GL) matrix L, derived from the adjacency matrix W , provides a deeper

representation of the graph’s structural properties and information flow. It not only expresses the

connections between nodes but also incorporates the degree of each node, effectively capturing

the overall topology of the graph. Here, the most basic form of the GL is provided:

L(G) = D(G)−W (G), (2.5)

where D(G) is an n× n diagonal matrix, with each diagonal element equal to the sum of the

elements in the corresponding row (or column) of the adjacency matrix W for that vertex. This

matrix is called the degree matrix of graph G. For Figure 2.5, the GL matrix L(Ga) is:

L(Ga)=D(Ga)−W (Ga)=



4 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 2


−



0 1 1 1 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

1 0 0 1 0


=



4 −1 −1 −1 −1

−1 3 −1 −1 0

−1 −1 3 −1 0

−1 −1 −1 4 −1

−1 0 0 −1 2


.

Some basic properties of the GL matrix are summarized as follows:

• L(G) is symmetric, meaning that L = L⊤ and is positive semidefinite, meaning that for

any non-zero vector f, f⊤Lf ≥ 0;

• Since L(G) is a symmetric matrix, all the eigenvalues λ are real, and both the eigenvalues

and eigenvectors can be computed through the standard matrix diagonalisation process;
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• The rank of L(G) is n − k, where n is the number of vertices and k is the number of

connected components of G. This means that the number of zero eigenvalues of L(G)

corresponds to the number of disconnected components in the graph;

• L(G) can be expressed in the quadratic form:

f⊤Lf =
n

∑
i, j=1

1
2

wi j( fi − f j)
2,

where f ∈ Rn×1 is a vector of real values associated with the graph vertices, wi j is the

element of the adjacency matrix W and n represents the number of vertices. The proof

follows from Equation 2.5:

f⊤Lf = f⊤(D−W )f = f⊤Df− f⊤W f

=
n

∑
i=1

di f 2
i −

n

∑
i, j=1

wi j fi f j

=
1
2

(
n

∑
i=1

di f 2
i +

n

∑
j=1

d j f 2
j −2

n

∑
i, j=1

wi j fi f j

)

=
1
2

(
n

∑
i=1

(
n

∑
j=1

wi j

)
f 2
i +

n

∑
j=1

(
n

∑
i=1

wi j

)
f 2

j −2
n

∑
i, j=1

wi j fi f j

)

=
n

∑
i, j=1

1
2

wi j( fi − f j)
2.

The GL, as a key subject of study in graph theory, is widely applied across various fields,

such as spectral clustering and spectral embedding in machine learning [28], and graph convo-

lution in signal processing [47] and deep learning [12]. The introduction in this section serves

as a foundation for the research presented in Chapter 5. The GPs method introduced in Chapter

5 for manifolds is built by constructing a graph on the manifold, enabling the use of the GL to

analyse the structural properties of the manifold.
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2.4 Conclusion

The purpose of this chapter is to help understand some terminology and basic concepts men-

tioned in subsequent chapters. Among these, the manifold in Riemannian geometry is the pri-

mary subject of study. This work aims to design GPs on manifolds, considering their intrinsic

geometric properties (discussed in Chapters 3 and 4). Additionally, developing novel BO meth-

ods for manifolds addresses optimisation challenges (explored in Chapter 7). The graph theory

provides the foundational framework for an alternative approach to GPs on manifolds intro-

duced in Chapter 5. The next chapter will begin by introducing traditional GPs applied directly

to manifolds. Then, based on the work of Niu et al. [114], Chapter 3 will introduce Intrinsic

GPs and highlight the novel "reflection" method proposed to improve the accuracy of heat kernel

estimation near the boundary.



Chapter 3

Intrinsic Gaussian Processes for Manifolds

This chapter aims to establish a framework for addressing the regression problem on manifolds.

In recent years, an increasing amount of research has focused on manifolds, driven by their

applicability in diverse fields such as geometry, environment, and medical imaging. Unlike

Euclidean spaces, manifolds have complex intrinsic properties and boundary conditions, which

make many research approaches that work well in Euclidean spaces not directly applicable to

manifolds. This research aims to propose a model that can effectively measure the characteristics

of manifolds, laying a foundation for more in-depth research. Inspired by the rapid development

of Traditional GPs in Euclidean spaces, this chapter explores GPs on manifolds, Section 3.1

gives the brief introduction of this chapter. Section 3.2 introduces the simplest approach, namely

the direct application of Traditional GPs on manifolds, which rely solely on Euclidean distance

for regression. Then, Section 3.3 presents Intrinsic GPs specifically designed for manifolds,

taking into account their intrinsic geometric structure, based on the work of Niu et al. [114].

Building on previous research, Section 3.4 introduces a novel "reflection" approach designed to

improve the accuracy of the estimated heat kernel at boundaries through BM in Intrinsic GPs.

Section 3.5 provides a summary of this chapter.

35
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3.1 Introduction

Compared to simple geometries, manifolds usually exhibit more complex intrinsic geometric

characteristics such as topology, connectivity and smoothness, as well as complex boundaries.

These features tend to affect the modeling and prediction of manifolds, and hence the decision

making in practical engineering fields. How to improve the consideration of the intrinsic geo-

metric features of manifolds in the modeling and optimisation process is a major challenge in

the study of manifolds. Chapter 1 details various methods and approaches that attempt to cap-

ture these geometric complexities. Given the wide application of GPs in Euclidean spaces, this

research considers extending the application of GPs to the realm of manifolds.

In Euclidean spaces, GPs commonly use kernels such as the RBF kernel, as introduced in

Chapter 2. The RBF kernel has demonstrated significant effectiveness across various kernel-

based algorithms within Euclidean spaces. The RBF kernel maps data points from the original

Euclidean space to an infinite-dimensional Hilbert space through the kernel function, where the

structure of the data can be better represented and processed. However, the principle of the

RBF kernel is based on Euclidean distance, which fails to recognize the intrinsic geometric

features of manifolds, such as the complex boundaries of lakes. The next section will introduce

Traditional GPs, applied in the same manner on both Euclidean space and manifolds to motivate

the challenges arising in applying GPs on manifolds. Traditional GPs also serve as a baseline for

comparison, validating the effectiveness of the methods proposed later in this work. Section 3.3

will introduce Intrinsic GPs designed specifically for manifolds [114], which use an approximate

heat kernel to capture the manifold’s structure. The term "approximate" is used here because,

for most manifolds, an explicit analytical expression for the heat kernel typically does not exist.

The complex geometric structure and topological properties of manifolds often make the heat

kernel difficult to derive. Therefore, proposing a general "approximate" approach is meaningful.

Intrinsic GPs will use the transition density of BM paths to approximate the heat kernel. The

BM paths, through random walks within the manifold boundaries, provide information about

the geometric features. However, due to the "resample" mechanism used at the boundaries, the

information near the boundaries is often inaccurate. Section 3.4 proposes a novel "reflection"

approach to address this issue in Intrinsic GPs, enhancing the accuracy of regression predictions,

particularly near the boundaries.
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3.2 Traditional Gaussian Processes

This section illustrates the Traditional GPs used on manifolds, which directly follow the same

approach as in Euclidean spaces. As defined in previous chapters, let M be a d-dimensional com-

plete and orientable Riemannian manifold and ∂M denote M’s boundary which is continuous

and C1 almost everywhere. S = {si, i = 1, . . . ,G′} is the grid points set defined on the manifold

M, with G′ the number of grid points, si ∈ M. fr represents the vector of f (.) at all grid points.

Selecting D as training points set from grid points set and fD as the vector of f (.) at training

points set, y can be defined as the observation value of the objective function to D : y = fD + ε ,

where ε ∼ N
(
0,σ2

n
)

and σ2
n means the variance of the noise. The number of training points is

chosen based on the scale of the manifold. The aim is to infer the unknown information fr based

on the given information y corresponding to the observed value of D . In GPs, the grid points set

S is also referred to as testing points. The joint distribution of the unknown fr and the observed

values y can be calculated as: y

fr

∼ N

0,

 ΣDD +σ2
n I ΣDr

ΣrD Σrr

 , (3.1)

where ΣDr is the covariance matrix for training data points D and test data points S. The covari-

ance matrix for the joint distribution’s entries can be computed using the equation: ΣDr(i, j) =

K(si,s j), where K(si,s j) is the RBF kernel used to calculate the similarity between two points

in this study. It can be expressed as:

K(si,s j) = α exp
(
−
∥si − s j∥2

2ℓ2

)
(3.2)

where ∥si−s j∥2 represents the squared Euclidean distance between the two data points. It’s easy

to see that the computation of the RBF kernel relies on the Euclidean distance. If the Euclidean

distance does not accurately approximate the manifold’s intrinsic distance, for instance, if it

deviates significantly due to the manifold’s geometric characteristics, it will fail to provide a

reliable estimate of the manifold. The variance parameter, denoted as α , and the length-scale

parameter, denoted as l, are critical kernel parameters. These parameters can be optimised by
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maximizing the log marginal likelihood function,

log p(Y | X ,θ) =−1
2

Y T (
Σ+σ

2
n I
)−1

Y − 1
2

log
∣∣Σ+σ

2
n I
∣∣− n

2
log2π, (3.3)

where Σ = K(si,s j) and σ2
n denotes noise variance. θ represents the hyperparameters to be

optimised, including α, l and σ2
n . Knowing how to calculate the RBF kernel, the next step is to

derive the predictive distribution based on Equation 3.1. The posterior predictive distribution of

the unknown values fr (at test points S) given the observed data y can be expressed as:

p(fr | y) = N
(

ΣrD
(
ΣDD +σ

2
n I
)−1

y, Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr

)
. (3.4)

The predictive mean and variance over all grid points on M can be calculated by Equation 3.4.

The inverse term
(
ΣDD +σ2

n I
)−1 plays a critical role in GP predictions by updating the posterior

distribution in GPs, with the computational complexity O(n3).

Traditional GPs is a common approach for predicting a smooth surface. The method will

be used here as a "control" in order to compare the developments in this thesis proposed as

more appropriate approaches for prediction over a manifold surface. The next section intro-

duces Intrinsic GPs on manifolds, which are specifically designed for manifolds and utilize the

manifold’s intrinsic geometric structure for more accurate modeling [114].

3.3 Intrinsic Gaussian Processes on Manifolds

Since the RBF kernel used in Traditional GPs does not take into account the intrinsic geomet-

ric features of the manifold, this section introduces a kernel that better expresses the intrinsic

geometric characteristics of the manifold. The heat kernel, which describes heat transfer across

domains, whether in Euclidean space or more complex structures like manifolds, conveys es-

sential structural information about the domains. By constructing a heat kernel on the manifold,

the aim is to capture its geometric structure more effectively. As previously defined, M is the

Riemannian manifold with ∂M representing its complex boundary. Let ∆s denote the Laplace-

Beltrami operator on M, and δ represent the Dirac delta function. A heat kernel of M is a smooth
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function K(x,y, t) on M×M×R+ that satisfies the heat equation:

∂

∂ t
Kheat (s0,s, t) =

1
2

∆sKheat (s0,s, t) ,

lim
t→0

Kheat (s0,s,0) = δ (s0,s) ,

where s0,s ∈ S lie on the manifold M and the initial condition holds in a distributional sense

[10]. The initial condition using the Dirac delta function δ means that at the initial moment,

the heat is concentrated at the starting point and has not yet diffused. The heat kernel serves

as a solution to the heat equation, discussed in Section 2.1.1. When ∂M is nonempty, multiple

heat kernels exist. To make the heat kernel unique, this can be achieved by adding the Neumann

boundary condition:
∂K
∂n

= 0 along ∂M,

where n is a normal vector of ∂M, which means no heat transfer across the boundary ∂M. The

heat kernel satisfies Kheat (s0,s, t) = Kheat (s,s0, t) and for any fixed time t, it is a positive semi-

definite kernel on M. Thus, the heat kernel is suitable for being the covariance matrix for GPs

on M. Considering the form of the heat kernel when M is a d-dimensional Euclidean space Rd ,

which is a special type of manifold,

Kheat (x0,x, t) =
1

(2πt)d/2 exp

{
−∥x0 −x∥2

2t

}
,x ∈ Rd, (3.5)

it has a similar structure to the RBF kernel as shown in Equation (3.2). The time parameter t

corresponds to the lengthscale l of RBF kernel, influencing how quickly the covariance dimin-

ishes. Let Kt
heat (s,s0) = Kheat (s,s0, t), the next challenge is how to determine the detailed heat

kernel for a manifold. Given that explicit solutions for the heat kernel are primarily accessible

for particular manifolds like Euclidean spaces and spheres, for most manifolds, the heat kernel

cannot be directly derived and explicitly express. Considering that the random walk of BM in

space is constrained by internal geometric features, such as the inability to move beyond bound-

aries, the transition density of BM within M is utilized to model the heat kernel on this manifold

for constructing covariance kernels.
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3.3.1 The Approximation of the Heat Kernel

The numerical approximation of the heat kernel Kt
heat can be derived as below. Each Riemannian

manifold M has its own metric tensor g. Let φ :Rd →M be a smooth local function around point

s0 ∈ M and x(t0) ∈ Rd be such that φ(x(t0)) = s0. The local parameter function φ provides a

mapping that makes simulating a stochastic process in Rd with the starting point x(t0) equivalent

to simulating a sample path of BM on M with the starting point s0, as illustrated in Figure 3.1.

In this work, it is assumed that the local parameterisation φ is known. The detail of φ and g is

provided in Section 6.3, for the case of the Bitten-torus. If φ is unknown, an approach to obtain φ

is provided by Tosi et al. [151], through nonlinear dimensionality reduction using latent variable

models.

Figure 3.1: BM on the Bitten-torus and its equivalent stochastic process in R2: Three BM sample
paths from same initial point s0, shown in different colours; only the pink sample path reaches
Borel set A (which can be considered a neighborhood of point s)at time t. φ : R2 → M is a local
parametrisation of M.

The BM on a Riemannian manifold is given as a system of stochastic differential equations

(SDE) in the Ito form, refer to [64], [65]:

dxi(t) =
1
2

G−1/2
d

∑
j=1

∂

∂x j

(
gi jG1/2

)
dt +

(
g−1/2dB(t)

)
i
, (3.6)

where g is the metric tensor of Riemannian manifold M, gi j is the (i, j) element of its inverse,

G is the determinant of the matrix g and B(t) represents an independent BM in the Euclidean

space. The first term of Equation (3.6) corresponds to the local curvature of M, while the second

term reflects the position-specific alignment of BM by transforming the standard BM B(t) in Rd
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according to the metric tensor g. Using the Euler-Maruyama method [79], [84], the equation can

be derived in:

dxi(t) =
1
2

d

∑
j=1

(
−g−1 ∂g

∂x j(t)
g−1
)

i j
dt +

1
4

d

∑
j=1

(
g−1)

i j tr
(

g−1 ∂g
∂x j(t)

)
dt +

(
g−1/2dB(t)

)
i
,

where dt is the diffusion time of each step of the BM simulation.

The BM path S(t) on M is defined starting from s0 at time t = 0. The probability that S(t)

enters any Borel set A on M at time t, i.e., S(t) ∈ A ⊂ M, is given by

P [S(t) ∈ A | S(0) = s0] =
∫

A
Kt

heat (s0,s)ds,

where the integral is defined as the volume form of M. This establishes the connection between

the heat kernel and the transition density of Brownian motion. The transition probability is

approximated as

P [S(t) ∈ A | S(0) = s0]≈
k
N
,

where N is the total number of simulated BM sample paths and k is the number of BM paths

which reach A at time t. Figure 3.1 shows three different sample BM paths originating from the

same initial point s0. Each sample path is represented by a distinct color. However, only the

pink path successfully reaches neighborhood A of the target point s at time t. This process also

corresponds to the stochastic process in R2 shown on the left, where only the pink path reaches

the area near point x at time t. The estimate of the transition probability p(S(t) ∈ A | S(0) = s0)

in this example is 1/3.

The transition density of S(t) at s is approximated as:

Kt
heat (s0,s)≈ K̂t = P [S(t) ∈ A | S(0) = s0]≈

1
V (A)

· k
N
, (3.7)

where V (A) is the Riemannian volume of A, and K̂t is the estimated transition density, as well

as the estimated heat kernel. t is the BM diffusion time. If t is large, the BM paths have a higher

probability to reach A. In practical applications, N is typically set to 5e4 or higher. The median

of the relative error decreases as N increases and stabilises after reaching 3e4 [114]. Note that

the Neumann boundary condition corresponds to BM reflecting at the boundary. This can be
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approximated by pausing time and resampling the next step until it falls into the interior of M.

The next section will discuss the feasibility of the "resample" method and introduce the novel

"reflection" approach proposed to improve the accuracy of the heat kernel near the boundaries.

Let Σ be the covariance matrix for all grid points on M. Given two grid points si and s j on

M, Σi, j can be constructed by simulating N BM paths starting at si and numerically evaluating

the transition density of the BM at s j using Equation (3.7). Then,

Σi j = σ
2
h Kt

heat
(
si,s j

)
, (3.8)

where the rescaling hyperparameter σ2
h is used to add extra flexibility to control the magnitude

of the kernel. Once the N BM paths are simulated, the heat kernel between si and other grid

points can be evaluated from the existing simulated paths. Under the GP prior for the unknown

objective function f : M → R, the following holds, similar to Traditional GPs:

p(fr|s ∈ S) = N (0,Σ),

where fr is the vector of the realisation of f at the grid points. As previously defined, let fD
represent the vector of the realisation of f at the observed data points, also named the training

points dataset. The joint distribution of fD and fr is :

p(fD , fr) = N

0,

 ΣDD ΣDr

ΣrD Σrr


where ΣDD is the covariance matrix for all data points in D and Σrr is the covariance matrix

for all grid points S. Each element of the covariance matrix for the joint distribution can be

computed using Equation (3.8). Then, the predictive distribution is derived as the same form

with Equation (3.4):

p(fr | y) = N
(

ΣrD
(
ΣDD +σ

2
n I
)−1

y,Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr

)
, (3.9)
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where σ2
n is the noise variance and the predictive mean and predictive variance take the form of:

µ(S) = ΣrD
(
ΣDD +σ

2
n I
)−1

y,

σ(S) = Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr.

After explaining how Intrinsic GPs use the transition density of BM paths to approximate

the heat kernel, which leverages the intrinsic geometric features of the manifold, the next section

proposes a novel "reflection" approach for improving heat kernel’s accuracy near the boundaries,

instead of the "resample" method.

3.4 Improvements to Heat Kernel Estimation at the Bound-

ary

The heat kernel on a manifold is estimated by the transition density of BM paths. As introduced

before, in Intrinsic GPs, when BM reaches the boundaries of the manifold, it employs a "re-

sample" strategy. "Resample" means pausing the process and resampling the subsequent step

until it is limited to the manifold’s limits. However, the Neumann boundary condition adopted

on the heat kernel corresponds to BM reflecting at the boundary [176]. "Reflection" refers to

the behavior where, upon reaching a boundary, the BM path is reflected back into the domain

instead of crossing the boundary. To better illustrate the difference between these two methods,

Figure 3.2 presents how both methods keep BM within the boundary by using a new U-shape

with a wider intermediate gap. It is easy to observe that BM paths remain within the manifold

boundary in both the left and right figures.

In the circular insets on both figures, a zoomed-in view of the boundary region (highlighted

by the blue dashed line) provides a simple schematic diagram at the boundary. The left one

shows one BM path under the reflection method. In the circular inset, the blue line represents

the boundary, and the black line represents the valid BM path within the boundary. If the BM

path at step i+1 crosses the boundary, the part inside the boundary is preserved, and the BM path

outside the boundary (indicated by the red dashed line, with arrows indicating the direction) is



CHAPTER 3. INTRINSIC GAUSSIAN PROCESSES FOR MANIFOLDS 44

Figure 3.2: The left one shows the BM path under the reflection method while the right one
shows the BM path under the resample method. The blue line represents the simplified bound-
aries, the black line is the BM path and the red dashed line is part of the BM path running out of
the boundary not being accepted.

reflected into the manifold (indicated by the length of the black solid line, with arrows indicating

the direction) using the boundary as the reflection axis. However, for the BM path under the

resample method shown in the right part, if the BM path at step i+1 exceeds the boundary, the

step i+1 is canceled and resampled until it stays within the boundary. The newly adopted BM

path for step i+ 1 is shown as a black line, with arrows indicating the new direction. In the

"reflection" method, BM paths retain the portion of step i+1 that remains within the manifold,

even when the entire step i+ 1 would be "rejected" under the "resample" method. Since the

heat kernel is estimated by the transition density of BM paths, the "reflection" method provides

a more accurate estimation of the heat kernel near the boundary. In contrast, the "resample"

method, while having lower computational requirements, lacks sufficient exploration near the

boundary within a certain range, often underestimating the transition density at the boundary

and resulting in a value lower than the true heat kernel.

Compared to the "reflection" method, the "resample" method used in the original Intrinsic

GPs is much simpler to implement. "Reflection" requires to be discussed considering the com-

plexity of the boundary in the calculation. BM paths not only need to determine whether the

next step is outside the domain, but they also need to identify the specific boundary segment they

have crossed and perform the necessary calculations. In some cases, after the initial reflection,
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Figure 3.3: An illustration of two "reflection" examples for BM paths: The blue line represents
the boundary, while the black lines show the BM paths inside the boundary. The red dashed
line indicates the part of the BM path running out of the boundary not being accepted; In the
left diagram, multiple "reflections" are required, whereas in the right diagram, it is necessary to
determine which part of the boundary was crossed first.

the path may cross another boundary segment and still remain outside the manifold, requiring

multiple reflections. Figure 3.3 illustrates a simplified schematic based on the above analysis.

The blue line represents the boundary, and the black line shows a BM path within the bound-

ary. The red dashed line represents the part of BM’s step i+1 outside the boundary that is not

accepted by the "reflection" method. In the left diagram of Figure 3.3, the red dashed line out-

side the boundary requires a second reflection after the first reflection still leaves it outside the

boundary. During this "reflection" process, the parts within the boundary are retained, whereas

the "resample" method would reject the entire step and resample a new step. The right diagram

of Figure 3.3 illustrates a scenario where step i+1 of the BM path crosses multiple boundaries.

It is necessary to determine which boundary was crossed first before applying the "reflection."

Otherwise, it may result in an error, as indicated by the red solid line in the diagram. Figure 3.3

visually illustrates potential computational issues that may arise in the "reflection" method.

Building on the previous analysis, the next section aims to prove the differences between the

two methods using the real heat kernel. However, since the true heat kernel cannot be directly

calculated from Equation (3.5) due to the absence of boundary conditions, the proofs will first

be conducted through a one-dimensional example.
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3.4.1 Comparison in 1-D Example

The nonnegative real line serves as an example of a manifold with a boundary:

R≥0 = {x ∈ R : x ≥ 0}.

In this case, the BM path starts at a point x0 = τ , where τ is a positive number (greater than

zero), at the initial time t = 0. When considering only one step of the BM path, the PDF for

"reflection" and "resample" can be written as follows:

Reflection at boundary: For each BM step ∆X , first sample from N (0,∆t), and if the path

goes outside the boundary at x = 0, it is reflected back into R≥0. Notice that X∆t = x either if

∆X = x− τ or if ∆X =−x− τ accompanied by a reflection. Therefore the PDF of X∆t is

preflect (x) =
1√

2π∆t
exp
[
−(x− τ)2

2∆t

]
+

1√
2π∆t

exp
[
−(x+ τ)2

2∆t

]
for x > 0,

where the first part is the PDF of a new point that falls in a region greater than zero (i.e., the

path remains within the boundary before reflection), and the second part is the PDF of a new

point that falls in a region smaller than zero (i.e., the path is reflected back into the boundary

after reflection). The formula for preflect(x) is derived by separately handling the two cases: the

path staying within the boundary and the path being reflected after crossing the boundary. This

formula also represents the true heat kernel for a one-dimensional space with a boundary set at

0 when considering only one BM step.

Resample at boundary: Alternatively, "resample" is performed from N (0,∆t) until the

path stays inside R≥0. In this case, the PDF of X∆t is represented by dividing the original

distribution by the probability P, where P is the probability that the path remains within the

boundary. This ensures that the adjusted probability density function describes the situation

where the path remains within the boundary, as shown in:

presample (x) = P−1 · 1√
2π∆t

exp
[
−(x− τ)2

2∆t

]
for x > 0,

where P is the probability that a single sample from N (0,∆t) gives a result that stays inside
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R≥0, i.e.

P =
1√

2π∆t

∫
∞

0
exp
(
−(x− τ)2

2∆t

)
dx = 1−ϕ(−τ) = ϕ(τ),

where ϕ denotes the CDF of N (0,∆t).

Using the Taylor expansion around τ = 0, the difference between presample(x) and preflect(x)

is:

lim
τ→0

presample(x)− preflect(x) = 0.

Further details can be found in Appendix C. This leads to the conclusion that, in the one-

dimensional case, when considering only one step of the BM, the results of the two methods do

not differ significantly as the initial point approaches zero. However, when the BM path moves

more than one step, the above inference cannot be applied. The corresponding heat kernel can

be derived by solving the partial differential equation:

∂

∂ t
Kheat(s0,s, t) =

1
2

∆sKheat(s0,s, t),

lim
t→0

Kheat(s0,s,0) = δ (s0,s), s0,s ∈ M,

∂K
∂n

= 0 along∂M,

which can be simplified as:
ut = kuxx, 0 ≤ x < ∞,0 < t < ∞,

u(x,0) = g(x), (IC),

ux(0, t) = 0, (BC),

where x represents s and g(x) is the Dirac delta function δ (x) introduced in Section 3.3. u(x, t)

can be represented as the convolution of Green’s function and the initial condition:

u(x, t) =
∫

∞

−∞

G(x,y, t)g(y)dy, (3.10)

where G(x,y, t) = 1√
4πkt

exp
(
− (x−y)2

4kt

)
. To comply with the boundary condition, it is necessary

to handle the effects of y symmetrically, ensuring that the derivative is zero at x = 0. Therefore,
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considering the function is symmetric, Green’s function should be modified as:

G(x,y, t) =
1√

4πkt

[
exp
(
−(x− y)2

4kt

)
+ exp

(
−(x+ y)2

4kt

)]
, (3.11)

where the second term is symmetric about the origin with respect to y. Combining Equations

(3.10) and (3.11) gives the following expression:

u(x, t) =
1√

4πkt

∫
∞

0

[
exp
(
−(x− y)2

4kt

)
+ exp

(
−(x+ y)2

4kt

)]
g(y)dy.

Since x and y are both non-negative and G already contains the positive and negative parts of

y, the integral is restricted to the non-negative real domain. The initial condition δ (x), which is

also represented by g(x), introduces discontinuities over the feasible domain, resulting in singu-

larities that are difficult to handle in integrals. Consequently, this can make both analytical and

numerical solutions highly complex. Moreover, the solutions may exhibit physically unrealistic

behavior near discontinuity points.

Based on the properties of δ (x), this work proposes an approximation using a normal dis-

tribution N (µ,0.1), as shown in Figure 3.4.1. When the variance is sufficiently small, the

normal distribution exhibits a sharp peak with a narrow shape. As demonstrated in Figure 3.4.1,

the distribution reaches its maximum value near µ (corresponding to the initial point position),

with fewer observations in the tails of the distribution. This substitution allows for an analytic

expression of the heat kernel:

u(x, t) =
1√

4πkt

∫
∞

0

[
exp
(
−(x− y)2

4kt

)
+ exp

(
−(x+ y)2

4kt

)]
1√

0.2π
exp
(
−(y−µ)2

0.2

)
dy,

where µ here corresponds to the initial point position at t = 0.

Considering the boundary condition at 0, either the "resample" or "reflection" method is ap-

plied when the BM path reaches the boundary in one dimension. Figure 3.5 compares the true

heat kernel with the heat kernels estimated using the reflection and resample methods, respec-

tively. Among them, the purple lines represent the true heat kernel aimed to approximate in

the one-dimensional case, while the red and blue lines correspond to the reflection method and

the resample method, respectively. In both Figure 3.5(a) and Figure 3.5(b), the estimated heat

kernels from both methods closely match the true heat kernel. These figures depict BM paths
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Figure 3.4: Normal distribution N (µ,0.1) with µ = 0 and δ = 0.1 used to instead the Dirac
delta function δ (x).

originating from positions 1 and 2, respectively, with parameters Tmax = 1 and Tlen = 13, where

Tmax represents the maximum path length for the BM and Tlen denotes the number of steps taken

by the BM. These parameters determine the length of each step in the BM path. For Figures 3.5

(c)-(e), all BM paths start from position 2 with different settings for Tmax and Tlen. The reflection

method’s estimated heat kernel closely aligns with the true heat kernel and significantly outper-

forms the resample method. Notably, near the boundary, the resample method fails to fit the true

heat kernel accurately. As analyzed in Section 3.4, the resample method struggles to place BM

paths near the boundary, creating gaps and reducing the number of BM paths calculated in this

region. This leads to estimated heat kernel values that are smaller than the true values. However,

when the BM path starts from position 4, both methods yield accurate estimates because the

starting point is far enough from the boundary, making the boundary’s influence negligible.

In this section, a comparison is made between the estimated heat kernel under the reflection

method and the resample method, alongside the true heat kernel, focusing on both single-step

and multi-step scenarios in one-dimensional space. When BM paths take only a single step, the

difference between the two methods is minimal, particularly as the starting point approaches

zero. However, with multiple steps, the reflection method demonstrates a clear advantage over

the resample method. The next section will extend this exploration to two-dimensional space.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: The comparison between the true heat kernel and the estimated heat kernel using the
reflection method and resample method at the boundary separately. The boundary is set at zero.
(a) BM starts from 1, Tmax=1, Tlen=13, win=0.3; (b) BM starts from 2, Tmax=1, Tlen=13,
win=0.3; (c) BM starts from 2, Tmax=5, Tlen=13, win=0.3; (d) BM starts from 2, Tmax=10,
Tlen=13, win=0.3; (e) BM starts from 2, Tmax=10, Tlen=20, win=0.3; (f) BM starts from 4,
Tmax=10, Tlen=20, win=0.1.
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3.4.2 Comparison in 2-D Example

In two-dimensional space, the true heat kernel often lacks a specific expression, making direct

comparisons of heat kernels impossible. In light of this, the accuracy of the estimated heat kernel

under two methods will be compared by predicting the true function values through Intrinsic

GPs, as discussed in Section 3.3.

To better observe the differences between the “reflection” method and the “resample” method

near the boundary, this comparison, like in Figure 3.2, will also be conducted on a new U-shape

domain with a wider intermediate gap. Different from the U-shape introduced in Chapter 1 and

used in Chapters 6 and 7, the new U-shape shown in Figure 3.6(e) has a wider gap in the middle,

making it easier to observe the regression performance near the central boundary. The rest of the

set-up of the U-shape remains the same. This design helps to compare how effectively the "re-

flection" and "resample" methods handle boundary interactions. Figures 3.6 (a)-(d) display the

predictive mean for two different sets of training points: the left side corresponds to 20 training

points uniformly distributed across the manifold, while the right side corresponds to 16 training

points, excluding the four points in the upper right corner compared to the first set. Figures 3.6

(a) and (b) show the results using the Intrinsic GPs with the “reflection” method, while Figures

3.6 (c) and (d) illustrate the “resample” method. When the 20 training points are uniformly

distributed across the manifold, it is evident that the Intrinsic GP under the “reflection” method

yields a noticeably smoother predictive mean, especially near the boundaries. However, with 16

training points, the difference in smoothness is less pronounced.

To provide a numerical comparison, the Root Mean Square Error (RMSE) is chosen as the

metric. The RMSE is a standard way to measure the accuracy of a model in predicting quan-

titative data, widely used in both numerical and statistical analyses. It is used to compare the

prediction results from the Intrinsic GPs under “reflection” and “resample” methods. The equa-

tion of the RMSE is:

RMSE =

√
1
n

n

∑
i=1

(µ̂ −µ)2, (3.12)

where n is the number of testing points, µ is the true value of the testing points and µ̂ is the

predictive mean calculated by different model. The RMSE results in Table 3.1 compare the

performance of Traditional GPs and Intrinsic GPs using the “reflection” and “resample” methods
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(a) (b)

(c) (d)

(e)

Figure 3.6: Predictive means for different methods on the U-shape domain: (a) Intrinsic GP
using “reflection” method with 20 training points; (b) Intrinsic GP using “reflection” method
with 16 training points; (c) Intrinsic GP using “resample” method with 20 training points; (d)
Intrinsic GP using “resample” method with 16 training points; (e) The true function of the new
U-shape with wide intermediate gap.
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RMSE Traditional GPs Intrinsic GPs (Reflection) Intrinsic GPs (Resample)
20 training points 1.149192 0.9593393 1.147957
16 training points 3.004057 2.183035 2.196994

Table 3.1: Comparison of the RMSE of predictive means for different methods on the new U-
shape (with wide intermediate gap).

for two sets of training points (20 and 16 points). For 20 training points, the Intrinsic GP with

the “reflection” method achieves the lowest RMSE of 0.96, outperforming both the Traditional

GP and the Intrinsic GP with the “resample” method. For 16 training points, the Intrinsic GP

with the “reflection” method again performs the best with an RMSE of 2.183035. These results

also validate the earlier findings in one dimension, confirming the superiority of the “reflection”

method over the “resample” method.

Computational Efficiency

This section discusses the trade-offs between the "reflection" and "resample" methods for han-

dling boundaries in Intrinsic Gaussian Processes (GPs), especially when applied to manifolds

with complex boundaries in two or higher-dimensional spaces. The "reflection" method, while

more accurate in capturing boundary interactions, incurs significantly greater computational cost

due to the usually complex boundaries of manifolds. As simplified in Figure 3.3, two scenarios

that need to be considered under the “reflection” method are illustrated. In contrast, the "re-

sample" method offers a simpler, less computationally expensive approach by resampling paths

which cross the boundary.In this U-shape case, there is no difference in memory usage between

the two methods. Using a system with an 11th Gen Intel i5-1145G7 CPU (2.60 GHz) and 16

GB RAM, simulating BM paths 50,000 times from a single point using the “reflection” method

took approximately 10.67 minutes on average. In contrast, the “resample” method required only

0.87 minutes under the same conditions, representing nearly a 12-fold improvement in compu-

tational efficiency. This efficiency gap becomes increasingly significant as the sample size or

data volume grows, resulting in greater time savings by the “resample” method. This is because,

in addition to the two scenarios described in Figure 3.3, the “reflection” method requires more

computations at the boundary—for instance, determining the direction of reflection. In contrast,

the resampling method involves no such calculations and only needs to check whether the next

step falls outside the boundary and resample if necessary.
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From the perspective of Intrinsic GPs on manifolds, the accuracy loss of the estimated heat

kernel at the boundaries does not significantly disrupt the overall predictive outcomes generated

by the Intrinsic GPs. Therefore, the choice between "reflection" and "resample" depends on the

specific task objective. In tasks where boundary behavior is crucial, the "reflection" method is

more suitable. If the boundary is less critical or exploration inside the domain is prioritized, the

"resample" method may be more appropriate. The choice also depends on computational com-

plexity and accuracy requirements. The "resample" method is generally simpler to implement

and may have lower computational overhead, though with some loss of accuracy.

3.5 Conclusion

This chapter first reviews the Traditional GPs, which are based on the RBF kernel. The RBF

kernel is a widely used covariance function in Euclidean space, providing smooth and stationary

predictions. However, due to the complex intrinsic geometry of manifolds, the RBF kernel based

on Euclidean distance is not well-suited for capturing the intrinsic structure of such spaces. It

does not respect the actual distances between points on the manifold, especially when these

points are separated by gaps and boundaries. This motivates the need for more sophisticated ap-

proaches which can take the characteristics of manifolds into account. Consequently, the chapter

introduces the Intrinsic GPs. The kernel Intrinsic GP uses an approximate heat kernel. Except

for very special manifolds, such as Euclidean spaces and spheres, which have explicit solutions,

such solutions do not exist for general Riemannian manifolds. Therefore, an approximation of

the heat kernel is necessary.

The approximate heat kernel used here is interpreted as the transition densities of BM on

the manifold M [114]. BM paths simulate from each grid point and use a "resample" method

when reaching the boundary. "Resample" here means to generate a new step until it stays within

the boundary. This chapter addresses improvements to the modelling of BM as it approaches

boundaries, offering more accurate handling of edge conditions through the "reflection" method.

"Reflection" is the symptom of the Neumann boundary condition on the heat kernel, ensuring

that BM reflects at the boundary rather than crossing it. "Reflection" allows for more accurate

predictions at the boundaries and ensures better handling of the manifold’s complex bound-
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ary characteristics. In one-dimensional space, the “reflection” method clearly outperforms the

“resample” method, particularly in estimating the true heat kernel near boundaries. In two-

dimensional space, the accuracy of these methods is assessed by comparing the RMSE of pre-

dictive means of the Intrinsic GPs against true function values. The “reflection” method, due to

its better handling of boundary conditions, consistently produces smoother and more accurate

estimates than the “resample” method. However, the improvement in accuracy comes with addi-

tional computational overhead, which increases as the boundary complexity grows, as discussed

in detail within the text. The choice of method primarily depends on the specific task objectives,

as well as balancing computational complexity and approximation accuracy.

Overall, this chapter proposes Intrinsic GPs suitable for manifolds, where the use of the

approximated heat kernel effectively captures the intrinsic geometric features of the manifolds.

Additionally, the "reflection" approach is introduced to improve prediction accuracy near bound-

aries. However, Section 3.3 points out that it presents significant challenges for Intrinsic GPs to

be directly utilized in manifolds. In Intrinsic GPs, for the same row in the covariance matrix,

all elements can be estimated with the same batch of BM simulations which come from the

same starting points. The calculation of the predictive mean only requires the BM simulations

originating from all training points D , where ΣrD = ΣDr (symmetric). However, calculating the

predictive variance requires BM paths simulated from all grid points for N times (N = 50000 in

this research). For instance, in the examples used in this study, the U-shape, the Bitten-torus,

and the Aral Sea, there are 418, 600, and 485 grid points, respectively. This leads to a significant

computational burden. Although the BM simulations can be executed in parallel, the computa-

tional cost remains high. Moreover, GPs face the well-known problem of high computational

complexity O(n3), where n corresponds to the number of training points, due to the inversion of

the covariance matrix.

Chapter 4 will introduce new sparse Intrinsic GPs, which utilize different sparse methods to

ensure feasibility while preserving the intrinsic geometric structure of the manifold, efficiently

managing large datasets and high-dimensional manifolds.



Chapter 4

Sparse Intrinsic Gaussian Processes

Chapter 3 highlights the computational complexity inherent in Intrinsic GPs. This chapter

aims to reduce computational challenges by introducing approximation methods, also known

as sparse methods, into the model. The Deterministic Inducing Conditional (DIC) approxima-

tion is initially chosen to improve the model due to its ease of use (described in Section 4.2),

but it presents certain issues. Consequently, the Deterministic Training Conditional (DTC) ap-

proximation is employed to address the problems associated with DIC (outlined in Section 4.3).

However, given the limitations of DTC, the Variational Inference (VI) is introduced to further

enhance the model’s performance (explained in Section 4.4).

This chapter begins by establishing the theoretical foundations of inducing variables in Sec-

tion 4.1, which are a key component of sparse methods, and then provides a concise introduction

to the sparse methods used subsequently. Section 4.2 discusses the Intrinsic GPs improved by

using the DIC approximation. Sections 4.3 provides the new sparse Intrinsic GPs combined with

the DTC approximation. Finally, Section 4.4 explores how to use the VI to enhance Intrinsic

GPs from a new perspective, transforming the prediction problem into an optimisation prob-

lem. Through these sections, the chapter systematically explores the progression from the DIC

to DTC, and ultimately to VI, demonstrating how each approximation method reduces compu-

tational complexity and improves model performance. Section 4.5 provides a summary of the

applications of the three sparse methods discussed in this chapter in the context of the Intrinsic

GP.

56
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4.1 Introduction of Inducing Variables

In Chapter 3, the discussion begins with the traditional GPs based on the RBF kernel as a pow-

erful non-parametric Bayesian method, possessing excellent performance in handling complex

regression problems. On this basis, the Intrinsic GPs built on the approximated heat kernel takes

into account the complex boundary and internal geometric features on manifolds to solve the

predictive regression problem on manifolds. As proposed in Chapter 3, the Intrinsic GPs face

certain computational challenges, making the direct application on manifolds impractical. For

example, for a training dataset D of size n, the GP regression process involves inverting an n×n

covariance matrix, which has a computational complexity of O(n3). When the dataset is large,

the computational and storage overhead becomes very high, making it difficult to handle large-

scale datasets. Additionally, with a large training dataset, the inversion process may encounter

numerical instability issues. Moreover, since the intrinsic GP uses the transition density of BM

to model the heat kernel of the manifold, calculating the predictive variance requires running

BM paths from each grid point as the initial point N times (in this research, N = 5e4), which

will bring high computational cost and lengthy computational process. Although parallel com-

puting has been employed to reduce computational complexity, the need for substantial storage

remains an urgent issue to address.

In Euclidean space, to address the computational limitations of GP regression, many re-

searchers have dedicated their efforts to the study of sparse approximation methods, as discussed

in Chapter 1. Sparse approximation is a technique for handling large datasets by using smaller

subsets to approximate the original data, thereby reducing computational intensity. Although

these sparse methods vary in their implementation and theoretical basis, they share a common

characteristic: they treat a set of data points exactly while applying computationally efficient

approximations to the remaining observation points. This approach reduces computational costs

while preserving the predictive capabilities of GPs. These sparse approximation methods enable

GPs to be applied to larger-scale and higher-dimensional datasets in Euclidean space. Quionero-

Candela et al. [126] points out that these algorithms can be understood as "exact inference with

an approximate prior," enabling the approximations to be directly formulated based on prior

assumptions about the function.

A set of latent variables u = [ f (z1) , . . . , f (zm)] is first introduced to establish sparse approx-
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imation methods on manifolds. These latent variables represent values of the GP (similar to f ),

corresponding to a set of m inducing points z = [z1,z2, ...,zm],zi ∈ M. The inducing points used

in this study are not a subset of the training set; they are predefined on the manifold. This is

because, on the manifold, the approximation of the heat kernel in Intrinsic GPs involves simu-

lating BM. By utilizing the principles of sparse methods, the use of inducing points ensures that

BM simulations are only required from these specific points, which will be discussed in detail

in the following sections. By defining the inducing points on the manifold and completing the

BM simulation in advance, the intrinsic geometric features of the manifold can be effectively

captured and stored. The subsequent Intrinsic GPs and further applications can then simply re-

trieve the information stored from the BM simulations, significantly improving computational

efficiency.

Since the grid points in GPs are equally spaced on the manifold, the selection of inducing

points here also aims to distribute them as uniformly as possible across the manifold. This

ensures that the same amount of information is provided for each part of the manifold M. The

graphical model of relationships between the inducing points, training points and testing points

is shown in Figure 4.1, where the training points and testing points are distinct. There is no direct

communication path between the training and testing points. As defined earlier, fD represents

the vector of f (.) at the training points set D , while fr denotes the vector of f (.) at all grid points

set S (also referred to as test points). Information from fD can only be transmitted to fr through

the inducing variables u. u therefore induces the dependencies between training and test cases.

This also explains why the term "inducing" is used, as these points serve as intermediaries that

"induce" or facilitate the transfer of information. Once the inducing variables u are established,

the DIC, DTC, and VI models introduced in the following sections will all leverage u to reduce

computational complexity. The upcoming sections will provide a detailed exploration of the

advantages, disadvantages, and limitations of each method.

4.2 Sparse Intrinsic Gaussian Process with DIC

Section 3.3 introduces the construction of the Intrinsic GPs and highlights the computational

limitations. This section proposes Sparse Intrinsic Gaussian Process with DIC (SI-GPDIC) on
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Figure 4.1: The graphical model of relationships between the inducing points, training points
and testing points: training points are connected to inducing points; testing points are also con-
nected to inducing points; no connection between training points and testing points; shown that
information from fD can only be transmitted to fr through the inducing variables u.

manifolds to address these challenges and improve computational efficiency, by utilizing the

DIC sparse method.

As outlined in Section 4.1, it is necessary to introduce inducing points to address these

computational challenges. The GP prior can be augmented with m inducing points on M de-

noted as z = [z1,z2, ...,zm], where zi ∈ M, which are independent of the training points. The

realisation of the objective function at the inducing points can be represented as the vector

u = [ f (z1) , . . . , f (zm)]. The marginal prior distribution p(fr, fD) can be written in terms of

the prior distribution p(u) and the conditional distribution p(fr, fD |u).

p(fr, fD) =
∫

p(fr, fD |u)p(u)du, p(u) = N (0,Σzz), (4.1)

where Σzz is the covariance matrix for all inducing points. Assuming that fD and fr are condi-

tionally independent given u, see Figure 4.1, the GP joint prior can be approximated as

p(fr, fD)≈ q(fr, fD) =
∫

q(fr|u)q(fD |u)p(u)du. (4.2)

DIC models are finite models that are linear in their parameters, with a specific prior on the

weights [126]. For input grid points dataset S, the corresponding function value fr is expressed

as:

fr =
m

∑
i=1

k (s,zi)wi
z = Σrzwz, with p(wz) = N

(
0,Σ−1

zz
)
, (4.3)
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where each inducing input zi corresponds to a different weight wi
z. Compared with Equation

(4.1), the covariance matrix for the prior on the weights is the inverse of the covariance matrix

for u. This guarantees that the GP prior on u can be precisely obtained, which is a Gaussian

distribution with zero mean and covariance:

〈
uu⊤

〉
= Σz,z

〈
wzw⊤

z

〉
Σz,z = Σz,z(Σz,z)

−1
Σz,z = Σz,z,

where u= Σzzwz and
〈
uu⊤

〉
represents the expectation of the outer product uu⊤. Then, by taking

wz = (Σzz)
−1u, the function value fr can be redefined as:

fr = Σrz(Σzz)
−1u, with u ∼ N (0,Σzz) .

Similarly, given input training points dataset D , the corresponding function value fD can be

written as:

fD = ΣDz(Σzz)
−1u, with u ∼ N (0,Σzz) . (4.4)

Through these derivations, the approximate conditional distributions in the integral (4.2) is given

by:
q(fD |u) = N

(
ΣDz(Σzz)

−1u,0
)
,

q(fr|u) = N
(
Σrz(Σzz)

−1u,0
)
,

(4.5)

with zero conditional covariance. The GP approximate joint prior can be shown as:

q(fD , fr) = N

0,

 ΣDzΣ−1
zz ΣzD ΣDzΣ−1

zz Σzr

ΣrzΣzz−1ΣzD ΣrzΣ−1
zz Σzr


= N

0,

 QDD QDr.

QrD Qrr

 ,

note that QDD = ΣDzΣ−1
zz ΣzD . This model possesses only m degrees of freedom, meaning that

only m linearly independent functions can be drawn from the prior. This constraint underscores

the finite nature of the model’s flexibility, ensuring that the additional functions do not intro-

duce new independent variations but rather depend on the established set of m functions. In an

intrinsic GP, Σzz, ΣDz, and Σzr can all be obtained by evaluating the transition densities from

the BM simulations with inducing points as the starting points (due to its symmetric properties,
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ΣDz = ΣzD ). The number of inducing points (m) is significantly smaller than the number of grid

data points (G′). As a result, BM paths only need to be simulated from the inducing points in

advance, rather than from every data point, which greatly reduces computational effort.

As defined earlier in Chapter 3, y represents the observations of the objective function in the

training set D . Using this approximation, the marginal likelihood can be expressed as:

p(y)≈ q(y) = N (0,ΣDzΣ
−1
zz ΣzD +σ

2
n I),

where σ2
n represents the noise variance. The diffusion time t and the magnitude parameter σ2

h

(introduced in Equation (3.8)) can be optimised as the hyperparameter of the kernel by max-

imising this approximate likelihood. The predictive distribution is shown below:

q(fr | y) = N
(

QrD
(
QDD +σ

2
n I
)−1 y , Qrr −QrD

(
QDD +σ

2
n I
)−1

QDr

)
= N

(
σ
−2
n ΣrzKΣzDy,ΣrzKΣzr

)
,

(4.6)

where K = (σ−2
n ΣzDΣDz +Σzz)

−1. The first line of Equation (4.6) can be seen as a transfor-

mation of Equation (3.9), where the covariance matrix Σ has been replaced everywhere by Q,

which also reflects the relative change in the GP approximate joint prior compared to Chapter

3. While the second line of Equation (4.6) is computationally cheaper, based on Equation (4.3).

Here, K can be viewed as the covariance of the posterior distribution of the weights wz. By

using the inducing points, the complexity of inverting the covariance matrix is decreased from

O(n3) to O(nm2), where m << n. The application of the SI-GPDIC method on manifolds, along

with comparisons to other methods, will be discussed in detail in Chapter 6.

Although the DIC method offers computational efficiency, it comes with certain limitations.

Due to the degeneracy of the prior, the predictive distributions present inaccurate results. As

noted by Liu et al. [94], for covariance functions that diminish to zero for pairs of distant inputs,

Q approaches zero, specifically, as test points move further from the inducing points. As a result,

the predictive variance approaches zero as the test points move further away from the inducing

inputs. This is unrealistic, as the predictive variance represents uncertainty; it should increase,

reflecting greater uncertainty when moving away from the known inducing and training points,

rather than converging to zero. Quionero-Candela et al. [126] demonstrate this limitation of



CHAPTER 4. SPARSE INTRINSIC GAUSSIAN PROCESSES 62

the DIC method in Euclidean space, while Liu et al. [94] provide evidence of this issue on

manifolds. By applying the SI-GPDIC on the U-shaped domain (introduced in Section 1.3.1),

this issue is illustrated through a set of examples, as shown in Figure 4.2. On the U-shape

domain, 5 inducing points, shown as green crosses in Figure 4.2, are symmetrically spaced

within the boundary, while eight training points are positioned along the lower half of the U-

shape, marked as black crosses. Figure 4.2(a) presents the corresponding predictive mean, while

Figure 4.2(b) displays the predictive variance. Both are calculated using Equation (3.9). Figure

4.2(b) proves that in the upper-right region of the U-shape, the variance decreases to zero as the

distance from the inducing points increases.

(a) (b)

Figure 4.2: SI-GPDIC on the U-shape, with 8 training points (black crosses) and 5 inducing
points (green crosses): (a) the predictive mean on the U-shape domain; (b) the predictive vari-
ance on the U-shape domain.

To address the problem of inaccurate variance estimation, a new sparse method called DTC

is considered. Proposed by Seeger et al. (2003), the DTC does not suffer from the nonsensical

predictive uncertainties associated with the DIC approximation [86]. This method improves the

reliability of predictive variances and offers a more robust solution for handling sparse approxi-

mations in large datasets.
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4.3 Sparse Intrinsic Gaussian Process with DTC

This section introduces the Sparse Intrinsic Gaussian Process with DTC (SI-GPDTC) to ad-

dress the issues identified in the previously discussed SI-GPDIC method. The DTC approach,

also named as Projected Latent Variables (PLV), is based on the projection from fD to u using

Equation (4.2). The corresponding likelihood approximation is given by:

p(y | fD)≃ q(y | u) = N
(
ΣDz(Σzz)

−1u,σ2
n I
)
,

where σ2
n represents the noise variance and ΣDz is the covariance matrix between training points

D and inducing points z. The DTC method retains the same likelihood as the DIC but applies a

deterministic training conditional and an exact test conditional, referred to as q(fD |u) and q(fr|u)

respectively, and is characterized by:

q(fD |u) = N
(
ΣDz(Σzz)

−1u,0
)
,

q(fr|u) = p(fr|u),

where q(fr|u) is exact, instead of the deterministic relation between fr and u of the DIC method,

as shown in Equation (4.5). This is also why it is named the Deterministic Training Conditional.

This reformulation allows for maintaining strict requirements for the model, specifically exact

inference and exact likelihood functions, while employing approximate methods in other areas,

namely for the prior distribution. The advantage of this approach lies in its ability to simplify

the computational complexity without sacrificing inference accuracy. This method achieves a

balance between computational efficiency and inference precision. The joint prior implied by

the DTC is given by:

q(fD , fr) = N

0,

 ΣDzΣ−1
zz ΣzD ΣDzΣ−1

zz Σzr

ΣrzΣzz−1ΣzD Σrr


= N

0,

 QDD QDr.

QrD Σrr

 ,

which has the closed form of the effective prior implied by the DIC method. Under the DTC

approximation, the key difference is that fr possesses its own prior variance, denoted by Σrr. This
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prior variance corrects the behavior of the predictive uncertainties, making them reasonable and

reliable. Then, the predictive distribution is now given by:

q(fr | y) = N
(

QrD
(
QDD +σ

2
n I
)−1 y , Σrr −QrD

(
QDD +σ

2
n I
)−1

QDr

)
= N

(
σ
−2
n ΣrzKΣzDy,(Σrr −Qrr)+ΣrzKΣzr

)
,

(4.7)

where K = (σ−2
n ΣzDΣDz +Σzz)

−1. The predictive mean of the DTC method is the same as that

of the DIC method, while for the predictive variance, in the first line of Equation (4.7), Qrr is

replaced with Σrr. This replacement occurs because fr has its exact prior variance Σrr, which

also corresponds to the difference in the joint distribution between the DIC method and the DTC

method. In the second line of Equation (4.7), an additional term (Σrr −Qrr) is included. Σrr is

the full covariance matrix between all the testing points S, containing all possible information,

while Qrr is the covariance matrix approximated using the information from the inducing points

z, actually underestimating the total variance because it does not account for all information.

This ensures that (Σrr −Qrr) is always positive semidefinite. This additional term increases to

the Σrr, the exact prior, as the testing points move farther from the inducing inputs z, due to Σrz

and Σzr in Qrr = ΣrzΣ−1
zz Σzr tending to zero. The presence of this term effectively resolves the

variance estimation issues present in the DIC method.

4.3.1 How to Compute Σrr

To use the DTC method in an Intrinsic GP, another issue that needs to be addressed is how to

compute Σrr. The computation of Σrr requires simulating BM paths from each testing point.

As previously discussed, one of the reasons for using the sparse method and introducing induc-

ing points is to avoid the computational complexity encountered in simulating BM paths. The

additional term (Σrr −Qrr) in predictive variance ensures that the variance accurately reflects

uncertainty when the testing points are far from both the inducing points and training points,

preventing it from decreasing to zero as the distance increases. Given that Σrr cannot be directly

computed, it is necessary to approximate Σrr in a way that ensures this property continues to

hold.

The predictive variance considers only the diagonal elements of the covariance matrix. Here,
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Σrr can be approximated as the maximum value of the diagonal elements in Σzz, which can be

expressed as:

Σ
∗
rr = max(diag(Σzz))I.

To ensure the additional term is positive definite, the absolute value is taken during the calcula-

tion process. Then, the predictive variance shown in Equation (4.7) can be rewritten as:

σDTC = max [diag(Σ∗
rr)−diag(Qrr),0]+diag(ΣrzKΣzr),

where Qrr = ΣrzΣ−1
zz Σzr and K= (σ−2

n ΣzDΣDz+Σzz)
−1. The use of max() ensures that the added

term is positive definite.

4.3.2 How to Select Inducing Points

In sparse intrinsic GPs, BM paths need to be simulated from inducing points in advance. This

constraint prevents treating the position and number of inducing points as tunable parameters in

each experiment. Thus, the inducing points z used in this work are predefined and approximately

uniformly distributed across the manifold. For different manifolds, both the location and number

of inducing points need to be adjusted accordingly. The preference for a uniform distribution

ensures that the BM paths originating from these points can comprehensively explore the entire

domain of the manifold, thereby capturing its geometric structure as completely as possible for

later predictions. The inducing variables u induces the dependencies between the training cases

fD and testing cases fr. As the number of inducing points increases, the information provided

becomes more comprehensive, leading to improved accuracy in the approximations obtained

by methods both DIC and DTC. However, this also results in a higher computational burden.

Therefore, the number of inducing points must be carefully chosen to balance accuracy and

computational efficiency. The focus of this study is primarily on comparing the performance

of different sparse intrinsic GP methods under the same number of inducing points, rather than

specifically optimizing the number of inducing points. In the later chapters, the impact of dif-

ferent numbers of inducing points on each method will also be discussed.

The application and comparison of SI-GPDTC on manifolds will be detailed in Chapter 6.

This section highlights the improvement in predictive variance achieved by the DTC method
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compared to the DIC method, demonstrated using the same U-shape example, as shown in Fig-

ure 4.3. The U-shape setup has been introduced in Section 4.2. Figure 4.3(a) shows the predic-

tive mean calculated using the DTC method, while Figure 4.3(b) illustrates the corresponding

predictive variance. Under the DTC method, the predictive mean remains the same as in the

DIC method. However, it is clear that the DTC method resolves the variance issues observed

in DIC. When the test points are far from the inducing points, where information is known, the

variance—representing uncertainty—remains appropriately large and does not drop to zero.

(a) (b)

Figure 4.3: SI-GPDTC on the U-shape, with 8 training points (black crosses) and 5 inducing
points (green crosses) (a) the predictive mean on the U-shape domain; (b) the predictive variance
on the U-shape domain.

Currently, both SI-GPDIC and SI-GPDTC use inducing points to approximate the covari-

ance matrix of a GP, thus making the inference process more manageable. The modified model

produced by each of them is not a strictly approximate procedure because there is no minimum

distance between the exact model p and the modified model q. This means the approximation is

not optimised based on a specific criterion, such as a distance measure between probability dis-

tributions. The next section proposes the SI-GPVI, which utilizes VI, approaching the problem

from a new perspective. It cleverly transforms the posterior inference problem into an optimi-

sation problem. The core idea of the VI is to introduce a metric, the Kullback-Leibler (KL)

divergence, to measure the difference between the exact posterior p and the modified model q.

By minimizing this divergence, the model is optimised, offering a more theoretically rigorous

approximation.
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4.4 Sparse Intrinsic Gaussian Process with Variational Infer-

ence

VI is a major category of methods in Bayesian approximate inference, offering improved con-

vergence and scalability [71], [156]. It has been applied to various fields, such as computational

biology, where probabilistic models provide important building blocks for analyzing genetic

data [96], [127], [141]. VI has been important to computer vision and and robotics [14], [91],

[145]. There have been many applications of variational inference to neuroscience, especially

for autoregressive processes [122], [123], hierarchical models of multiple subjects [169] and

brain-computer interfaces [147], among others.

Instead of relying on exact or sampling-based methods, VI approximates the true posterior

distribution with a simpler, more tractable distribution by minimizing the divergence metric

between them. This makes it possible to perform efficient inference in high-dimensional and

complex models where traditional methods may struggle due to computational constraints. Fig-

ure 4.4 provides a simple example where the purple shaded area represents the original target

distribution p, resembling a GP. The blue and green lines represent the distributions q1 and q2,

derived from Gaussian distributions. The overlap between each q and p is calculated, and by

minimizing the uncovered areas—i.e., minimizing the divergence metric—the distribution q2 is

selected as the approximate distribution for p. VI offers a flexible and scalable approach by

allowing the selection of simpler distributions to closely approximate the true posterior. This is

particularly beneficial in large-scale applications where the data volume and model complexity

make exact inference infeasible.

This section proposes the novel SI-GPVI on manifolds. Instead of modifying the exact GP

model, it minimizes the distance between the exact posterior GP and the variational approxima-

tion. The inducing points now become variational parameters [150]. Based on the principles

of VI, the process begins without modifying the GP prior and demonstrates how to directly ap-

proximate the posterior GP mean and covariance functions. During this process, the variational

parameters to be optimized are defined. Subsequently, the method for optimising hyperparam-

eters is derived by maximizing a lower bound to the exact marginal likelihood, achieved by

minimizing the KL divergence.
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Figure 4.4: The graphical model of the original target distribution p, the distributions q1 and q2
used to approximate p: the purple shaded area represents p, the blue and green lines represent
the distributions q1 and q2 respectively.

4.4.1 The Approximate Posterior Intrinsic GPs

The posterior intrinsic GP uses an approximate heat kernel constructed from the transition den-

sity of the BM paths. It can be described by the predictive Gaussian distribution:

p(fr | y) =
∫

p(fr | fD)p(fD | y)dfD ,

where p(fr | fD) is the conditional intrinsic GP prior while p(fD | y) is the posterior distribution

over the training function value y (where y= fD +ε as defined in Section 3.2). When introducing

inducing points z and their corresponding function values u (the inducing points dataset z is

independent of the training points dataset D), in the augmented probability space, this helps

decompose the complex posterior distribution into a more manageable form:

p(fr | y) =
∫

p(fr | u, fD) p(fD | u,y) p(u | y)dfDdu.
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Assume that given u, all information contained in the function values fD is fully captured, and

any additional information from fD will not affect other variables fr. In other words, fr and fD
are independent given u. From that, p(fr | u, fD) = p(fr | u). Since y is the noisy version of fD ,

p(fD | u,y) = p(fD | u). To derive the mean and covariance functions of p(fr | y), first regard

the following:

p(fr,u) = N

0,

 Σrr Σrz

Σzr Σzz

 , (4.8)

p(fr, fD ,u) = N

0,


ΣrD Σrr Σrz

ΣDD ΣDr ΣDz

ΣzD Σzr Σzz


 , (4.9)

then, the conditional distribution of fr given u can be derived as follows:

p(fr | u) = N
(
ΣrzΣ

−1
zz u,Σrr −ΣrzΣ

−1
zz Σzr

)
.

The conditional covariance of fr and fD given u is:

Cov[fD , fr | u] = ΣDr −ΣDzΣ
−1
zz Σzr. (4.10)

Here, let φ(u) be a free variational Gaussian distribution with its mean and variance being,

respectively, µ and A. Based on this, the mean functions of the approximate posterior Intrinsic

GPs is obtained:

E[fr | y] = Eφ(u)
[
Ep(fD |u,y)[fr|u, fD ]

]
= Eφ(u)[Ep(fD |u)[fr | u]] = Eφ(u)[ΣrzΣ

−1
zz u],

where φ(u) ∼ N (µ,A) and u is a sufficient statistic for the vector fr and fD , allowing E[fr |

u, fD ] = E[fr | u]. The conditional covariance of fD and fr given u has already been provided

by Equation (4.10). When considering the variational distribution φ(u), the conditional covari-

ance needs to incorporate the covariance of the variational distribution, using the law of total

covariance [129]:

Cov[fD , fr] = Eφ(u)[Cov[fD , fr | u]]+Covφ(u)[E[fD | u],E[fr | u]],
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among it, the first part expands as follows:

Eφ(u)[Cov[fD , fr | u]] = ΣDr −ΣDzΣ
−1
zz Σzr.

The second part expands to:

Covφ(u)[E[fD | u],E[fr | u]] = Covφ(u)[ΣDzΣ
−1
zz u,ΣrzΣ

−1
zz u],

which since E[fD | u] = ΣDzΣ−1
zz u, then

Covφ(u)[ΣDzΣ
−1
zz u,ΣrzΣ

−1
zz u] = ΣDzΣ

−1
zz Covφ(u)[u]Σ

−1
zz Σrz.

Given φ(u)∼N (µ,A), which is predefined, the predictive mean function and covariance func-

tion of the SI-GPVI can be expressed as:

µV I(S) = ΣrzΣ
−1
zz µ,

Cov(D ,S) = ΣDr −ΣDzΣ
−1
zz Σzr +ΣDzΣ

−1
zz AΣ

−1
zz Σrz,

(4.11)

where the predictive variance function of p(fr | y) takes the form of:

σV I(S) = Σrr −ΣrzΣ
−1
zz Σzr +ΣrzΣ

−1
zz AΣ

−1
zz Σrz

= (Σrr −Qrr)+ΣrzΣ
−1
zz AΣ

−1
zz Σrz,

(4.12)

where Qrr = ΣrzΣ−1
zz Σzr. In many applications, the focus is solely on the variance at each grid

point. In this research, the predictive variance of each grid point can be simplified to:

σV I(S) = diag(Σrr)−diag(Qrr)+diag(ΣrzΣ
−1
zz AΣ

−1
zz Σrz).

In the Intrinsic GP, directly calculating Σrr would require simulating BM paths from each point

in the grid points dataset S leading to significant computational cost. To circumvent the need of

simulating BM paths from S, an approximate diag(Σrr) is constructed by:

diag(Σ∗
rr) = max(diag(Σzz)). (4.13)
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As a special type of manifold, the Euclidean space allows the approximation diag(Σ∗
rr) to be the

same as diag(Σrr). To ensure the positive definiteness of the covariance matrix, the predictive

variance function can be replaced with:

σV I(S) = max [diag(Σ∗
rr)−diag(Qrr),0]+diag(ΣrzΣ

−1
zz AΣ

−1
zz Σrz). (4.14)

With the basic form of the sparse posterior intrinsic GP established, the next step is to deter-

mine how to choose µ and A of the φ(u). In the following section, the variational distribution

q(fr,u) proposed will be used to approximate the exact posterior distribution p(fr | y). After

deriving the lower bound on the exact log marginal likelihood, model hyperparameters (t,σ2
h )

will be optimised by maximizing it. Also, φ(u) can be optimised through these processes.

4.4.2 Variational lower bound

The variational lower bound provides a clear optimisation objective. By maximizing the vari-

ational lower bound, the variational distribution can be made as close as possible to the true

posterior distribution. This section will demonstrate the derivation and construction of the vari-

ational lower bound. In an augmented probability space which contains fD , fr and inducing

variables u, the initial joint model p(y, fr) is extended by incorporating the variables u, resulting

in the augmented model:

p(y, fr,u) = p(y | fr)p(fr | u) p(u) ,

where p(fr | u)=N
(
fr | ΣrzΣ−1

zz u,Σrr −ΣrzΣ−1
zz Σzr

)
represents the conditional intrinsic GP prior.

The values of the hyperparameters (t,σ2
h ) for the posterior intrinsic GP can be estimated by max-

imizing the log marginal likelihood, which is given by:

log p(y) = log[N (y | 0,σ2I+ΣDD)]. (4.15)

According to the marginalization property of Intrinsic GPs, Equation (4.15) also takes another

form:

log p(y) = log
∫

p(y | fD)p(fD | u) p(u)dfDdu.
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Instead of directly calculating the true posterior distribution p(fD ,u | y), a parametric model is in-

troduced to approximate the complex posterior distribution with a simpler distribution q(fD ,u).

Transforming complex posterior inference problems into optimisation problems requires only

minimizing the distance between the approximate distribution and the true distribution to solve

for the parameters, thereby enabling efficient computation. Then, the KL divergence is used

to measure the similarity between these two distributions. The KL divergence is a measure

from information theory that measures the amount of information lost when q(fD ,u) is used to

approximate p(fD ,u | y) [61]. The formula for KL divergence is shown as:

KL(q(fD ,u)∥p(fD ,u | y)) =
∫

q(fD ,u) log
q(fD ,u)

p(fD ,u | y)
dfDdu, (4.16)

where q(fD ,u) defined as q(fD ,u) = p(fD | u)φ (u). φ (u) is the unconstrained variational dis-

tribution over u defined before and p(fD | u) is the conditional GP prior. The p(fD ,u | y) can be

expanded using Bayesian methods as follows:

p(fD ,u | y) =
p(y | fD ,u) p(fD ,u)

p(y)
=

p(y | fD)p(fD | u) p(u)
p(y)

. (4.17)

Combining with Equation (4.17), the KL divergence shown in Equation (4.16) can be decom-

posed as:

KL(q(fD ,u)∥p(fD ,u | y)) =
∫

q(fD ,u) log
q(fD ,u)p(y)

p(y | fD)p(fD | u) p(u)
dfDdu

=−
∫

q(fD ,u) log
p(y | fD)p(fD | u) p(u)

q(fD ,u)p(y)
dfDdu

=−
∫

q(fD ,u) log
p(y | fD)p(fD | u) p(u)

q(fD ,u)
dfDdu+

∫
q(fD ,u) log p(y)dfDdu

=−FV (φ)+ log p(y).

Then,

log p(y) = KL(q(fD ,u)∥p(fD ,u | y))+FV (φ).

Minimizing the KL divergence is equivalently expressed as the maximization of FV (φ). Due

to the non-negativity of the KL divergence, it always holds that log p(y)≥ FV (φ). Thus, FV (φ)

can be regarded as the variational lower bound on the true log marginal likelihood. The vari-
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ational lower bound can also be derived directly from the true log marginal likelihood. In this

approach, Jensen’s inequality log(E[x])≥ E[log(x)] is utilized to find the lower bound:

log p(y) = log
∫

p(y | fD)p(fD | u) p(u)dfDdu

= log
∫

q(fD ,u)
p(y | fD)p(fD | u) p(u)

q(fD ,u)
dfDdu

≥
∫

q(fD ,u) log
p(y | fD)p(fD | u) p(u)

q(fD ,u)
dfDdu

= FV (φ).

Substituting the decomposed form of q(fD ,u) into it, FV (φ) can be expressed as:

FV (φ) =
∫

p(fD |u)φ(u) log
p(y | fD)p(fD | u) p(u)

p(fD |u)φ(u)
dfDdu

=
∫

p(fD |u)φ(u) log
p(y | fD)p(u)

φ(u)
dfDdu

=
∫

p(fD |u)φ(u)
{

log p(y | fD)+ log
p(u)
φ(u)

}
dfDdu

=
∫

φ(u)
{∫

p(fD |u) log p(y | fD)dfD + log
p(u)
φ(u)

}
du.

(4.18)

Among it, log p(y | fD) is expanded based on the form of the Gaussian distribution:

log p(y | fD) = log
{

1
(2πσ2)n/2 exp

(
− 1

2σ2∥y− fD∥2
)}

= log
{

1
(2πσ2)n/2

}
+ log

{
exp
(
− 1

2σ2∥y− fD∥2
)}

=−n
2

log(2πσ
2)− 1

2σ2∥y− fD∥2

=−n
2

log(2πσ
2)− 1

2σ2 Tr
[
yyT −2yfD T + fD fD T ] .

(4.19)
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By combining this expansion, the first term in the parentheses can be expressed as:

∫
p(fD |u) log p(y | fD)dfD =

∫
p(fD |u)

{
−n

2
log(2πσ

2)− 1
2σ2 Tr

[
yyT −2yfD T + fD fD T ]}dfD

=−n
2

log(2πσ
2)
∫

p(fD |u)dfD

− 1
2σ2

∫
p(fD |u)Tr

[
yyT −2yfD T + fD fD T ]dfD

=−n
2

log(2πσ
2)−

1
2σ2

{
Tr(yyT )−2Tr

[
y
∫

p(fD |u)fT
DdfD

]
+Tr

[∫
p(fD |u)fD fT

DdfD
]}

,

(4.20)

among it, setting

α = E[fD |u] =
∫

p(fD |u)fDdfD = ΣDzΣ
−1
zz u,

σ(fD |u) = Cov[fD , fD | u] = ΣDD −QDD ,

where QDD = ΣDzΣ−1
zz ΣzD has already been defined in the previous section. Then, each part of

Equation (4.20) can be simplified as follows:

−2Tr
[

y
∫

p(fD |u)fT
DdfD

]
=−2Tr

[
yα

T ] ,
Tr
[∫

p(fD |u)fD fT
DdfD

]
= Tr

[
E[fD fT

D |u]
]
= Tr

[
σ(fD |u)+E[fD |u]E[fD |u]T

]
= Tr

[
σ(fD |u)+αα

T ]= Tr
[
ΣDD −QDD +αα

T ] .
Then, Equation (4.20) takes form of:

∫
p(fD |u) log p(y | fD)dfD =−n

2
log(2πσ

2)− 1
2σ2 Tr

[
yyT −2yα

T +αα
T +ΣDD −QDD

]
=−n

2
log(2πσ

2)− 1
2σ2 (y−α)T (y−α)− 1

2σ2 Tr(ΣDD −QDD)

= log
[
N (y|α,σ2I)

]
− 1

2σ2 Tr(ΣDD −QDD).

(4.21)

ΣDD cannot be directly calculated in Intrinsic GPs due to the high computational cost of

simulating BM paths. Similarly to approximation of Σrr in section 4.4.1, the trace only concerns
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the values on the diagonal of ΣDD . An approximation method is then used here:

Σ
∗
DD = max(diag(Σzz))I. (4.22)

Due to Tr(ΣDD −QDD) being non-negative, Equation (4.21) can be rewritten as:

∫
p(fD |u) log p(y | fD)dfD = log

[
N (y|α,σ2I)

]
− 1

2σ2 Tr [max(Σ∗
DD −QDD ,0)] .

After expanding the first part, Equation (4.18) FV (φ) can be written as:

FV (φ) =
∫

φ(u) log
[
N (y|α,σ2I)p(u)

φ(u)

]
du− 1

2σ2 Tr [max(Σ∗
DD −QDD ,0)] . (4.23)

By reversing Jensen’s inequality, which involves moving the logarithm outside of the inte-

gral, the maximum value of the lower bound can be computed:

FV (φ)≤ log
∫

N(y|α,σ2I)p(u)du− 1
2σ2 Tr [max(Σ∗

DD −QDD ,0)]

= log
[
N(y|0,σ2I+QDD)

]
− 1

2σ2 Tr [max(Σ∗
DD −QDD ,0)] .

From this equation, it is evident that maximizing the lower bound of the log marginal likeli-

hood function is also equivalent to minimizing the trace Tr
[
max(Σ∗

DD −QDD ,0)
]
. This term is

equal to the variance of p(fD |u), which is the error in predicting fD from u. Then, the model pa-

rameters can be computed by maximizing the lower bound log likelihood FV (φ). The next step

is to consider how to compute the predictive mean and variance. In Section 4.4.1, expressions

for the predictive mean and variance in terms of φ(u) ∼ N (µ,A) have been derived, seeing

Equation (4.11) and (4.14). In the following section, the optimal distribution of φ(u) will be

obtained through the derivation of FV (φ).

4.4.3 Optimise φ(u)

The optimisation of φ(u) can be achieved through maximizing the lower bound of the marginal

likelihood function. Taking the derivative of FV (φ) with respect to φ(u) in Equation (4.23),
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takes the form of:

∂FV (φ)

∂φ(u)
=

∂

∂φ(u)

[∫
φ(u) log

[
N (y|α,σ2I)p(u)

φ(u)

]
du− 1

2σ2 Tr [max(Σ∗
DD −QDD ,0)]

]
.

To find the optimal value of φ(u), the derivative has been set to 0,

∂FV (φ)

∂φ(u)
= 0.

The specific derivation proceeds as follows. Let G denote the logarithmic part of the integral,

G = log
(

N(y|α,σ2I)p(u)
φ(u)

)
.

Also, ∂G
∂φ(u) =− 1

φ(u) . Thus,
∂

∂φ(u)

∫
φ(u)Gdu = 0,

G+φ(u)
∂G

∂φ(u)
= 0,

G = 1.

Rearranging the expression of G gives

logφ(u) = logN(y|α,σ2I)+ log p(u)−1.

Taking the exponential results in:

φ(u) =
N(y|α,σ2I)p(u)

Z
,

where Z is a normalization constant.

Then, the optimal φ(u) is proportional to the product of the Gaussian likelihood and the

prior:

φ(u) ∝ N(y|α,σ2I)p(u),
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where

N (y|α,σ2I) ∝ exp
(
− 1

2σ2 (y−α)T (y−α)

)
= exp

(
− 1

2σ2 (y−ΣDzΣ
−1
zz u)T (y−ΣDzΣ

−1
zz u)

)
,

p(u) ∝ exp
(
−1

2
uT

Σ
−1
zz u
)
.

Then, it can be rewritten as:

φ(u) ∝ cexp
{
−1

2
uT (Σ−1

zz +
1

σ2 Σ
−1
zz ΣzDΣDzΣ

−1
zz )u+

1
σ2 yT

ΣDzΣ
−1
zz u
}
,

where c is a constant. By completing the quadratic form, it is recognized that this expression

represents a Gaussian distribution. Consequently, the mean and covariance of the Gaussian

distribution for φ(u) are identified:

φ(u) = N(u|σ−2
Σzz(Σzz +σ

−2
ΣzDΣDz)

−1
ΣzDy,Σzz(Σzz +σ

−2
ΣzDΣDz)

−1
Σzz).

Then,
µ = σ

−2
Σzz(Σzz +σ

−2
ΣzDΣDz)

−1
ΣzDy

A = Σzz(Σzz +σ
−2

ΣzDΣDz)
−1

Σzz).

The predictive mean and variance in Equation (4.11) and (4.14) of SI-GPVI can be calculated

as:
µV I(S) = σ

−2
ΣrzKΣzDy,

σV I(S) = max [diag(Σ∗
rr)−diag(Qrr),0]+diag(ΣrzKΣzr),

(4.24)

where K = (Σzz +σ−2ΣzDΣDz)
−1, Qrr = ΣrzΣ−1

zz Σzr and diag(Σ∗
rr) = max(diag(Σzz)).

The proposal of SI-GPVI offers a novel approach for regression on manifolds, effectively

addressing the computational challenges associated with Intrinsic GPs. This method can be

applied to large datasets and high-dimensional manifolds, ensuring both efficiency and accuracy.

Benefiting from its ability to minimize the difference between the original target p and the

approximate distribution q, SI-GPVI achieves favorable results in handling complex manifolds

and providing more accurate predictions. The specific application of SI-GPVI will be presented

in Chapter 6. Through the three examples outlined in Section 1.3, SI-GPVI is validated by

comparison with other GPs, demonstrating its effectiveness and advantages.
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4.4.4 Enhancing Computational Efficiency via Inducing Points

As mentioned before, in the intrinsic GP framework, the introduction of inducing points allows

the reduction of time complexity from O(n3) to O(nm2), while also improving numerical stabil-

ity. Moreover, since the intrinsic GP models the heat kernel on the manifold using the transition

density of BM, the use of inducing points significantly reduces the computational burden: BM

paths only need to be simulated from the inducing points rather than from each grid point N

times. This results in a computational saving roughly proportional to G′/m, where G′ denotes

the total number of grid points and m is the number of inducing points. Similarly, storage re-

quirement is also reduced by approximately the same factor.

Chapter 6 presents a comparison of these GP methods. For the U-shape example, 5 inducing

points are evenly distributed along the U-shape, with a total of 418 grid points. Simulating

BM paths 50,000 times from the 5 inducing points took approximately 11.73 minutes, with a

memory usage of 723 MB. Compared to the non-sparse version, this setup achieved an 83.6-

fold improvement in computational efficiency, along with a proportional reduction in memory

consumption. In the Bitten-torus example, 6 inducing points are uniformly distributed over the

surface with 600 grid points. The BM path simulations from 6 inducing points 50,000 times took

around 48.11 minutes, occupying 1.48 GB of memory. This yielded a 100-fold improvement in

both computation time and memory usage. For the Aral Sea example, due to the presence of

real-world noise and a more complex boundary structure, a higher number of inducing points

is needed. 10 inducing points are uniformly distributed across the surface, with 485 grid points

in total. To accommodate the higher computational load, parallel computing was employed.

The simulation took approximately 84 minutes, with 1.40 GB of memory used, resulting in a

48.5-fold improvement in efficiency compared to the non-sparse version. These results highlight

the advantages of the sparse intrinsic GP approach in both computational efficiency and storage

requirement. The detailed applications of these examples are presented in Chapter 6.
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4.5 Conclusion of Proposed Methods

This chapter explores approaches to enhance the computational efficiency of Intrinsic GPs

by implementing sparse approximation techniques. Three key approaches are proposed: SI-

GPDIC, SI-GPDTC, and SI-GPVI. These methods address the computational challenges of In-

trinsic GPs by approximating the process using a subset of data points, referred to as inducing

points, rather than relying on the entire training dataset.

SI-GPDIC focuses on using a small number of inducing points to approximate the full

dataset, thereby reducing computational demands. It combines the Intrinsic GPs with the DIC

method, where information from fD can only be transmitted to fr via the inducing variables u,

effectively addressing the computational burden. However, this method exhibits errors when

calculating the predictive variance in some regions. The accuracy of the predictive variance

in SI-GPDIC is significantly affected by the placement of the inducing points. When moving

away from the inducing points and training points, the predictive variance incorrectly decreases

instead of increasing, resulting in inaccurate uncertainty estimates. A set of examples on the

U-shape domain illustrates this issue, demonstrating that the variance drops to zero in regions

far from the inducing points, which poses a significant problem.

Then, SI-GPDTC is used to account for this problem. It combines the Intrinsic GPs with the

DTC method and provides a more accurate estimation by incorporating its own prior variance

Σrr. This prior variance adjusts the predictive uncertainties, making them more reliable. The

predictive mean remains the same as in SI-GPDIC, but the key difference lies in the predictive

variance. It includes an additional term (Σrr −Qrr), which accounts for the full covariance ma-

trix between all testing points, thereby preventing underestimation of the total variance. This

term ensures positive semidefiniteness and effectively resolves the variance estimation issues

seen in the DIC method. For the Intrinsic GPs, Σrr cannot be directly calculated. It is ap-

proximated as the maximum value of the diagonal elements in Σzz, which can be expressed as

Σ∗
rr = max(diag(Σzz))I. Using the same U-shaped domain example, it is demonstrated that, un-

like SI-GPDIC, SI-GPDTC maintains a high variance for distant test points, preventing it from

dropping to zero and ensuring more reliable predictions.

The chapter also explores SI-GPVI. VI efficiently approximates complex probability distri-



CHAPTER 4. SPARSE INTRINSIC GAUSSIAN PROCESSES 80

butions by transforming the estimation of posterior distributions into an optimisation problem.

This optimization mechanism ensures the accuracy of SI-GPVI. This section first derives the

form of the predictive mean and variance by introducing φ(u), a variational intrinsic Gaussian

distribution. During this process, the Intrinsic GPs simplify the variance function for practical

applications and explain the process of approximating the diagonal elements to avoid high com-

putational costs. Then, Section 4.4 discusses how the lower bound of marginal log-likelihood is

utilized as the optimisation objective to approximate the posterior distribution. Building on this,

Section 4.4 derives the predictive distribution for SI-GPVI, simplifying the variance function for

practical applications and explains the process of approximating the diagonal elements to avoid

high computational costs.

Overall, Chapter 4 presents a comprehensive discussion of three Sparse Intrinsic GPs. These

methods reduce the computational complexity, making Intrinsic GPs more practical for large-

scale and complex applications. The three approaches provide robust frameworks for imple-

menting Intrinsic GPs in various constrained and irregular-shaped domains. In Chapter 6, the

application of these methods in various scenarios will be provided. Building on this foundation,

extensions in Bayesian optimisation (BO) will be discussed in Chapter 7.

The next chapter introduces the Graph GPs as a comparable but alternative approach. This

process is constructed based on the Graph Matérn Kernel. When applied to manifolds, it treats

them uniformly as graphs.



Chapter 5

Graph Gaussian Processes

The previous chapter presents the GP regression method on manifolds from two theoretical

frameworks. One approach is a direct extension of GP applications in Euclidean space, referred

to as Traditional GPs in Section 3.2. This method is based on the RBF kernel relying on the Eu-

clidean distance for modeling, which does not account for the intrinsic structure of manifolds.

The second framework considers the geometric structure of the manifold. Section 3.3 intro-

duced the Intrinsic GPs, utilizing the approximate heat kernel to model the manifold’s intrinsic

geometric properties. Since not all manifolds have a well-defined analytical expression for the

heat kernel, Intrinsic GPs use the transition density of Brownian motion (BM) paths simulated

on manifolds to approximate the heat kernel. To mitigate the computational challenges in Intrin-

sic GPs, Chapter 4 proposed three distinct sparse intrinsic GP methods, which are: SI-GPDIC,

SI-GPDTC and SI-GPVI. This chapter will explore a third theoretical framework, which learns

manifolds with complex boundaries by constructing undirected graphs on them and utilizing the

graph Matérn kernel for modeling. The quality of the constructed graph significantly influences

the Graph GP’s performance. Section 5.1 provides an overview of the development of Graph

GPs. Section 5.2 introduces the approximation of the Laplace–Beltrami operator, which trans-

forms information on the manifold into inputs used by the Matérn kernel on graphs. Section 5.3

constructs the graph Matérn kernel, presenting parameter tuning and the limitations of Graph

GPs.

81
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5.1 Introduction

A Graph GP is a method designed to handle graph-structured data, such as social networks [21],

[105], molecular structures [99], [58], and sensor networks [102]. GPs are no longer limited to

Euclidean space and have also been extended to graphs. Furthermore, Graph GP is not limited

to graphs; it can also serve as an approach to develop GPs on manifolds by leveraging graph

structures to model complex dependencies between data points on the manifold. This method of

transforming regression problems on manifolds into undirected graphs enables representation of

the geometry of the manifold by using graphical connections, which provides a new approach to

implementing GPs on manifolds with complex boundaries. This makes Graph GPs a valuable

point of comparison against the three methods proposed in this work. Through comparison with

Graph GPs, the effectiveness of the proposed methods is more strongly validated.

Section 2.3 provides a brief introduction to the fundamental concepts of graph theory. A

number of approaches have been proposed to define GPs over a weighted undirected graph

G = (V,E), as defined in Definition 2.4. These include the works of Kondor and Lafferty [80],

Rue and Held [130], and others, in areas such as Gaussian Markov Random Fields (GMRFs) and

diffusion kernels. Whittle [159] finds that Matérn GPs satisfy the stochastic partial differential

equation (SPDE) and Lindgren et al. [93] uses this perspective and defines a Matérn GP as the

solution to a specific SPDE driven by white noise. Inspired by previous works, Borovitskiy

et al. [16] explore the development of GP models using the SPDE form of the Matérn kernel

for manifolds M′ defined without a boundary, under the assumption that the Laplace–Beltrami

operator ∆′
g and its eigenpairs are known. Expanding on this, Borovitskiy et al. [17] explore GPs

indexed by the vertices of undirected graphs G, assuming that the Graph Laplacian (GL) and its

eigenpairs are known. Their work studies the graph Matérn GPs based on the graph Matérn

kernels, analogous to the SPDE form of the Matérn kernels used in Euclidean space, and applies

them to graphs derived from manifolds with boundaries.

To implement GPs on manifolds, M, with a boundary using the graph structure, one ap-

proach, proposed by Dunson et al. [36], is the Graph Laplacian-based GP (GL-GP). When the

Laplace– Beltrami operator, denoted as ∆s, of a manifold M is unknown, the GL-GP approxi-

mates it by constructing a graph on the manifold and uses the GL to approximate the heat kernel

of M, relying on a finite number of eigenpairs from the GL. The approximate heat kernel is
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tied to Euclidean distances between graph vertices V . Inspired by the convergence of graph

Matérn GPs between graphs and their manifold counterparts [17], Fichera et al. [41] extend

graph Matérn GPs to implicit manifolds, addressing cases where the Laplace–Beltrami operator

is unknown. They follow Dunson et al. [36] in constructing a graph on the manifold, calculating

the random walk normalized Laplacian ∆rw and its eigenpairs, and subsequently using the Graph

Matérn kernel to implement GPs on M.

This research targets known manifolds with complex boundaries and intrinsic structures,

aiming to solve regression problems. The presence of complex boundaries adds an additional

level of complexity to the problem, which cannot be directly compared to the work of Boroviskiy

et al. [16] which has not considered this situation. The Graph GPs used for comparison with

Tradtional GPs and SI-GPDIC, SI-GPDTC and SI-GPVI in this thesis study the graph Matérn

GPs mentioned in [41]. This Graph GP extends the work of Borovitskiy et al. on GPs over

graphs [17] and their earlier research on manifolds without boundaries [16], adapting it to handle

manifolds with complex boundaries. The following sections will introduce the construction of

Graph GPs, illustrating how they can be used to model regression tasks on manifolds.

5.2 Approximation of Laplace–Beltrami Operator

Suppose M is a connected Riemannian manifold with a boundary, and S denotes the grid points

uniformly distributed across the manifold, as previously defined in Sections 2.1 and 3.2. This

manifold can be approximated by a weighted undirected graph with the node set S and weights

determined by the squared Euclidean distances ∥si − s j∥2, where si,s j ∈ M. The most common

way to define the graph is using a Gaussian-like kernel function to represent the adjacency matrix

W :

Wi j = exp(−
||si − s j||2

4ζ 2 ),

where ζ > 0, ζ is the bandwidth. By using the K-Nearest Neighbors Graph (KNN), the sparsifi-

cation of the matrix W is effectively achieved, significantly reducing its density when K << G′
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[41]. The matrix W can be reformulated as:

Ãi j = SK
(
si,s j

)
exp

(
−
∥∥si − s j

∥∥2

4ζ 2

)
,

where SK
(
si,s j

)
is the K-Nearest Neighbors sparsification coefficient, ensuring that only the

K-nearest neighbors of each point contribute to the adjacency matrix. Suppose D̃ is the degree

matrix of the graph, which can be expressed as:

D̃i j =

∑m Ãim i = j

0 i ̸= j
, (5.1)

where each diagonal element corresponds to the sum of the weights of the edges connected to

node si. The GL can be used to approximate the Laplace-Beltrami operator on the manifold,

as introduced in Section 2.1. There are three popular notions of GL, and this study utilizes the

random walk normalized Laplacian, which takes the form:

∆rw = I− D̃−1Ã. (5.2)

Also, there are two other forms of GL, which are the Unnormalized GL and the Symmetric

Normalized Laplacian, defined below respectively:

∆un = D̃− Ã, ∆svm = I− D̃−1/2ÃD̃−1/2,

where Ã is the adjusted adjacency matrix defined in Equation (5.2) and D̃ represents the diagonal

degree matrix defined in Equation (5.1).

When the grid points set S are uniformly distributed on the manifold, all of the GLs, each

multiplied by an appropriate power of ζ , converge to the Laplace–Beltrami operator, both point-

wise [60] and spectrally [48]. When the grid points in S are sampled non-uniformly from

the manifold, none of the GLs converge to the Laplace–Beltrami operator [60]. By taking

A = D̃−1ÃD̃−1, the random walk normalized Laplacian ∆rw can be rewritten as:

∆rw = I− D̃−1A.
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This transformation proposed by Coifman and Lafon [30] helps address the pointwise conver-

gence of non-uniformly distributed data to the Laplace–Beltrami operator, which corresponds

to normalizing by using the kernel density estimator to cancel out the unknown density. How-

ever, this approach is not effective for ∆un and ∆svm. The grid points S used in this thesis are

uniformly distributed on the manifold. This allows for a more comprehensive representation of

the manifold, and, as illustrated in Chapter 7, the uniform distribution of grid points facilitates

efficient exploration of the manifold in BO under a budget constraint. Equation (5.2) can serve

as the effective approximation of the Laplace–Beltrami operator. The eigenpairs of ∆rw consist

of the eigenvalues and their corresponding eigenvectors, denoted as (λi, fi), satisfying:

∆rwλi = ∆rw fi.

These eigenpairs play a crucial role in spectral analysis and will be used for constructing Graph

GPs on manifolds with complex boundaries in next section.

5.3 Graph Matérn Gaussian Processes

The previous section provided a random walk normalized Laplacian ∆rw constructed from the

grid points using the graph structure, which corresponds to the Laplace–Beltrami operator ∆s

on the manifold M. This section will demonstrate how to implement GPs on manifolds with

complex boundaries by utilizing the eigenpairs (λi, fi) of ∆rw.

5.3.1 Stochastic Partial Differential Equations

The Matérn kernel is a widely used kernel in Euclidean space, as shown in Equation (2.3).

Whittle [159] has demonstrated that Matérn GPs on X = Rd satisfy the following SPDE:

(
2ν

κ2 −∆

) ν

2 +
d
4

f = W , (5.3)

where ν is non-negative, controlling the smoothness of the function, κ shows the degree of de-

pendency, ∆ is the Laplacian and W is Gaussian white noise [90] re-normalized by a certain
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constant. This SPDE form directly allows the Matérn kernel to be applied to Riemannian man-

ifolds, which is achieved by replacing ∆ with the Laplace–Beltrami operator. The term W can

be replaced by a canonical white noise process. As given in Definition 2.1, suppose (M′,g) is

a compact Riemannian manifold without boundary, and let ∆′
g be its Laplace–Beltrami opera-

tor. To solve the covariance kernel of the GP in Equation (5.3) within this setting, Boroviskiy

et al. [16] introduce an appropriate form that allows the use of spectral theory to compute the

required expressions. There exists a countable number of non-negative eigenvalues, following

a non-decreasing sequence with 0 = λ0 < λ1 ≤ ... ≤ λn, where limn→∞ λn = ∞. The corre-

sponding eigenfunctions form an orthonormal basis { fn}n∈Z+
. Following the Sturm–Liouville

decomposition [27], −∆′
g can be written as:

−∆
′
g f =

∞

∑
n=0

λn ⟨ f , fn⟩ fn. (5.4)

It is natural to define the operators Φ
(
−∆′

g
)
=
(

2ν

κ2 −∆′
g

) ν

2 +
d
4 . By replacing Φ(λn)=

(
2ν

κ2 +λn

) ν

2 +
d
4 .

Then, Equation (5.4) can be expressed as:

(
2ν

κ2 −∆
′
g

) ν

2 +
d
4

f =
∞

∑
n=0

(
2ν

κ2 +λn

) ν

2 +
d
4

⟨ f , fn⟩ fn.

Then, the spectral decomposition of the left-hand side of the SPDE (5.3) is obtained.

The right part of SPDE (5.3), the canonical white noise process W , can be substituted with

the appropriate generalization of the Gaussian white noise [93]. The Matérn kernel on a mani-

fold without boundary can be summarized as:

Theorem 5.1. Let λn be eigenvalues of −∆′
g, and let fn be corresponding eigenfunctions. The

Matérn kernel on a manifold without boundary M′ are given by [16]:

kν

(
s,s′
)
=

σ2

Cν

∞

∑
n=0

(
2ν

κ2 +λn

)−ν− d
2

fn(s) fn
(
s′
)

where Cν is normalizing constant chosen so that the average variance over the manifold satisfies

volg(M)−1 ∫
X k(·)(x,x)dx = σ2.

Proof. See Borovitskiy [Theorem 5, 16].
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5.3.2 Graph Matérn Gaussian Processes on Manifolds with Complex Bound-

aries

The previous section introduced the Matérn kernel for manifolds M′ without boundary and

derived the kernel equation based on the SPDE formulation of original Matérn kernel in Eu-

clidean space. To extend the Matérn kernel to manifolds with complex boundaries, the internal

structure and boundary characteristics of the manifold can be captured through their analogous

undirected graphs, as introduced in Section 5.2. This method utilizes the random walk nor-

malized Laplacian ∆rw, as defined in Equation (5.2) and constructed in Section 5.2 to replace

the Laplace–Beltrami operator ∆g on the manifold M. Denoting its eigenvalues, ordered from

smallest to largest, by 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1, and its eigenvectors, orthonormal under the

modified inner product ⟨·, ·⟩D, by f0, f1, . . . , fN−1, the Matérn kernel is defined as:

kν ,κ,σ2
(
si,s j

)
= σ

2
L−1

∑
l=0

(
2ν

κ2 +λl

)−ν

fl (si) fl
(
s j
)
, (5.5)

where L is not equal to the actual number N of eigenpairs, which means cutting off high fre-

quency eigenvectors ( fl when l large). Since high-frequency eigenvectors contribute less to the

sum, this approach can effectively reduce computational costs. The value of L can be treated

as a parameter, which will be discussed in the next section. Then, the posterior distribution of

Graph GPs is:

p(fr | y) = N
(

ΣrD
(
ΣDD +σ

2
n I
)−1

y,Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr

)
,

where fr is the corresponding function value for the grid points dataset S, D is the training point

datasets and σ2
n is the noise variance of GPs. ΣrD is calculated from Equation (5.5), the Matérn

kernel defined on manifolds with complex boundaries.

5.3.3 Hyperparameter optimisation and Limitations

When calculating the Matérn kernel defined on a manifold with a complex boundary, there exists

hyperparameters θ̂ =
(

ζ̂ , κ̂, σ̂2, σ̂2
n

)
which determine the graph structure, GP prior and the

noise variance that fits the observations y best. The smoothing parameter ν of the Matérn kernel
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function is predefined to avoid unreasonable parameter values. It usually takes specific half-

integer values, such as 0.5, 1.5, or 2.5. The hyperparameters θ̂ can be estimated by maximizing

the log marginal likelihood:

log p
(
y | ζ ,κ,σ2,σ2

n
)
=−1

2
y⊤
(
Σ+σ

2
n Im×m

)−1 y− 1
2

log
(
det
(
Σ+σ

2
n Im×m

))
− n

2
log(2π),

(5.6)

where Σ = kν ,κ,σ2
(
si,s j

)
, as defined in Equation (5.5). This is similar to the hyperparameter

optimisation method used in Traditional GPs as described in Equation (3.3). The effectiveness

of Graph GPs is highly dependent on the choice of the parameter ζ . It should be sufficiently

large to ensure that there are enough points within an ζ -sized Euclidean neighborhood around s

to capture the local geometry, while avoiding the inclusion of distant points that could distort the

representation [36]. Since the ζ -sized Euclidean neighborhood is based on Euclidean distance,

it tends to overlook the intrinsic geometric features of the manifold. When dealing with data

from complex manifolds or exhibiting highly non-uniform density, there is generally a loss of

accuracy at the local level. This is because the single ζ is optimised on all of the global data

points, therefore the consistent choice of ζ may not adequately capture local variations in the

manifold’s structure.

The number of neighbors K in the KNN method (introduced in Section 5.2) and the num-

ber of eigenpairs L, which determines the cutoff for high-frequency eigenvectors, are assumed

to be manually fixed parameters [41]. Higher values of K and L may improve the quality of

the approximation of the manifold kernel, but could substantially increase computational costs.

Furthermore, higher parameter values do not always result in better estimation of the kernel on

manifolds. Larger datasets coupled with high parameter values can lead to numerical stability

issues, potentially causing inefficiencies in the model estimation. Fichera et al. [41] does not

provide clear recommendations for determining the values of K and L, leaving these to be the

subject of further exploration. Dunson et al. [36] and Luo et al. [97] also discuss the selection

of these parameter values, but neither provides a clear method for determining them.

As mentioned by Fichera et al. [41], the quality of the constructed graph significantly influ-

ences the technique’s performance. When dealing with data from complex manifolds, simplistic

KNN method might fail to capture the manifold structure relying on a single graph bandwidth

ζ . The selection of these parameters K,L,ν significantly affects the quality of the constructed
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graph. Additionally, when the number of data points used to construct the graph is insufficient,

it often results in a poor approximation of the manifold, which in turn affects the stability and

robustness of the Graph GPs method.

This chapter proposes an alternative perspective using Graph GPs compared to Traditional

GPs and Sparse Intrinsic GPs on manifolds. Graph GPs construct graphs capturing the intrinsic

structure of the manifolds. The Graph Matérn kernel is constructed by using the SPDE form

of the Matérn kernel from Euclidean space, where the Laplace operator ∆ is replaced by the

Graph Laplacian to apply it to graphs [41]. The Graph Matérn kernel is indirectly applied to the

manifold with complex boundaries by constructing a graph structure on the manifold, allowing

for the modelling of the manifold’s geometry through the graph. However, this method has

several drawbacks. Since Graph GPs rely on the graph structure constructed on the manifold,

if this graph fails to accurately capture the intrinsic geometric structure of the manifold, it can

lead to significant errors in the predictions made by Graph GPs.

Graph-based methods have recently gained increasing attention in the study of manifolds,

providing a approach to modeling complex structures. Given their relevance, it is necessary

to compare this research with Graph GPs to evaluate their relative advantages and limitations

in manifold-based learning. In the next chapter, the five manifold-based GPs proposed so

far—Traditional GP, SI-GPDIC, SI-GPDTC, SI-GPVI, and Graph GPs—will be applied to three

representative examples presented in Section 1.3. These three examples aim to provide a com-

parative analysis of the effectiveness of these GP methods through their predictive distributions,

while also highlighting the strengths and limitations of each approach.



Chapter 6

Applications of Proposed Gaussian

Processes on Manifolds

Based on the intrinsic GPs, Chapter 4 constructs three sparse intrinsic GPs: SI-GPDIC, SI-

GPDTC, and SI-GPVI. Among them, SI-GPDIC is significantly affected by the position of

the inducing points in variance prediction. Specifically, as test points move further from the

inducing points, the predictive variance incorrectly approaches zero. In this chapter, the three

GPs developed in Chapter 4—SI-GPDIC, SI-GPDTC, and SI-GPVI—will be applied to three

distinct examples, as presented in Section 1.3. These examples are selected to emphasize the

advantages and limitations of each model. The models will also be evaluated and compared

against Traditional GPs and Graph GPs for a thorough analysis.

Section 6.1 presents two specific data analysis methods used to compare different GP mod-

els. Section 6.2 evaluates the application of these methods on the U-shape domain. Section

6.3 extends the comparison to a three-dimensional context using the Bitten-torus as an example,

starting with the derivation of the metric tensor for the Bitten-torus. In Section 6.4, the focus

shifts to a real-world dataset, illustrating the practical significance of the research by predicting

chlorophyll levels in the Aral Sea. Finally, Section 6.5 provides a comprehensive summary of

the regression results discussed throughout the chapter.

90
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6.1 Data Analysis Methods

The Root Mean Square Error (RMSE) as introduced in Section 3.4.2 is employed to evaluate

and compare the performance of various GPs which are fitted to manifolds of varying shape and

dimenionality. RMSE is a standard metric used to measure the differences between values pre-

dicted by a model and the actual observed values [62]. It offers a unified measure of predictive

accuracy by calculating the square root of the average squared differences between predicted

and observed values, as shown in Equation (3.12). By assessing the predictive mean through

RMSE, it becomes possible to determine which model offers the most accurate predictions, thus

identifying the most effective approximation method.

Predictive Log-Likelihood

Since the RMSE only considers the average difference between the predictive mean’s value and

the actual values, without taking into account the predictive variance’s performance, the predic-

tive log-likelihood (PLL) can consider both the predictive mean and the predictive variance. The

PLL is a statistical measure used to assess the performance of predictive models, especially in

probabilistic prediction. This approach is represented as a distribution over possible outcomes

rather than a single deterministic value. It compares the predictive probability density function

based on two predicted vectors, assessing the likelihood that the observations are within the

predicted distribution of the model. The PLL for a Gaussian distribution is shown as:

P(µ̂ | µ,σ) =
1√

2πσ
exp

(
−(µ̂ −µ)2

2σ

)
,

where µ is the true value of the objective function corresponding to grid points, µ̂ and σ rep-

resent the predictive mean vector and predictive variance vector separately. Since the predictive

mean of SI-GPDIC and SI-GPDTC are identical, only one plot will be drawn for both methods

in the subsequent sections, and they also share the same RMSE. Additionally, due to the dispro-

portionately small predictive variance of Graph GP, its PLL values are often extremely low (less

than -10,000), making them not meaningful for comparison. Therefore, Graph GPs are excluded

from the PLL comparison.
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Wilcoxon Signed-Rank Test

In the following three case studies, 20 datasets are randomly selected from the grid points for

each case. Different GP methods are applied to perform predictions on these datasets, and

the corresponding RMSE and PLL values are computed for each dataset. To assess whether

the differences in performance between methods are statistically significant, pairwise paired t-

tests are first considered. This statistical test requires several assumptions to be met: (1) the

differences between paired observations should be approximately normally distributed, (2) the

observations must be paired appropriately, and (3) the paired differences should be independent

of one another [78]. In each case study, the sample size of 20 is insufficient for the Central Limit

Theorem to justify the normality assumption; therefore, the normality assumption is tested using

the Shapiro-Wilk test. The results indicate that in some cases, the assumption of normality

is violated. Consequently, the Wilcoxon Signed-Rank Test is employed as a non-parametric

alternative for paired samples. This test is suitable for comparing differences between two paired

groups when the assumption of normality is not satisfied [170]. Given that the data are paired

and the observations within each pair are independent, the Wilcoxon Signed-Rank Test is applied

to evaluate the statistical significance of the performance differences between methods.

The next section will present the implementation of the proposed methods on the U-shape,

demonstrating how each GP method performs on this two-dimensional manifold.

6.2 The Implementation of Proposed Methods on the U-shape

The U-shape, introduced in Section 1.3.1, is used as an example for the two-dimensional case

to evaluate the proposed methods. The 418 grid points are uniformly distributed across the U-

shape, providing a sufficiently dense grid to capture its structural details. From these 418 grid

points, 20 datasets are randomly selected, and each dataset contains 15 training points. This

approach allows for a robust comparison of the performance of different GP methods, ensuring

that the results are not skewed by any single set of training points. Figures 6.1 and 6.2 illustrate

one of these selected datasets, showcasing the predictive mean and predictive variance for each

GP method. This helps provide a visual comparison of how each method performs on the U-
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shape. In the figures, 15 black crosses denote the training points and 5 green crosses represent

the inducing points used in Sparse Intrinsic GPs.

Figures 6.1 (a) and (b) show the predictive mean and variance of the Traditional GP, respec-

tively. The Traditional GP clearly smooths over the gap between the two arms of the U-shape,

due to the proximity of the upper and lower arms in Euclidean space. It fails to account for the

boundary information, leading to a high covariance between points that are close in Euclidean

distance, despite being far apart in intrinsic distance. Figure 6.2 (d) shows the predictive mean

of the Graph GP, which also exhibits a similar situation. As discussed in Chapter 5, the Graph

GPs rely on the graph structure constructed on the manifold, where the connectivity between

vertices is measured through the adjacency matrix W , as shown in Equation (5.2). This matrix

is based on the Euclidean distance between grid points and a bandwidth parameter ζ , optimised

on all of the global data points. Due to the influence of Euclidean distance and the global band-

width parameter ζ , the constructed graph fails to fully capture the intrinsic geometric features of

the U-shape, resulting in the predictive mean smoothing across the middle gap, which does not

reflect the true structure of the U-shape. Especially when the number of grid points is too small

or their distribution is uneven, this can amplify the issue and lead to poor results. Figures 6.1 (c)

and (d) show the predictive mean and variance of SI-GPVI. Considering the boundary factors,

this method does not smooth across the middle gap. The predictive mean transitions from the

red region (with low values) in the lower right, following the U-shape to the yellow region (with

higher values) in the upper right, mirroring the trend of the true values. This behavior occurs

because, given a fixed diffusion time, the transition probability of Brownian motion (BM) from

inducing points in the lower arm to points in the upper arm within the boundary is relatively

small. Consequently, the correlation between these regions is very low. Figure 6.2 (a) is the pre-

dictive mean of SI-GPDIC and SI-GPDTC. The predictive mean for these two method is same.

Benefiting from the approximate heat kernel, it also does not cross the boundary. Figure 6.2 (b)

and (c) are the predictive variance for SI-GPDIC and SI-GPDTC respectively.

The specific comparison between methods will be presented through numerical analysis, uti-

lizing two comparison methods, the RMSE and PLL introduced in the previous section. Table

6.1 provides descriptive statistical analysis for these results, highlighting key metrics like the

minimum, median, mean, maximum, and range. From the RMSE results, it is evident that the

predictive mean of the Traditional GP performs the worst compared to other methods. The table
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(a) Mean of Traditional GP (b) Variance of Traditional GP

(c) Mean of SI-GPVI (d) Variance of SI-GPVI

Figure 6.1: With 15 training points randomly selected, shown as black crosses on the U-shape,
and green crosses as inducing points: (a)-(b) show the predictive mean and predictive variance
of the Traditional GP; (c)-(d) show the predictive mean and predictive variance of SI-GPVI.
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(a) Mean of SI-GPDIC & SI-GPDTC (b) Variance of SI-GPDIC

(c) Variance of SI-GPDTC (d) Mean of Graph GP

Figure 6.2: With 15 training points randomly selected, shown as black crosses on the U-shape,
and green crosses as inducing points: (a) Predictive mean of SI-GPDIC & SI-GPDTC; (b) Pre-
dictive variance of SI-GPDIC; (c) Predictive variance of SI-GPDTC; (d) Predictive mean of the
Graph GP.
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clearly shows that the three proposed Sparse Intrinsic GPs yield better RMSE results than both

the Traditional GP and Graph GP methods in terms of minimum, median, mean, and maximum

values. Figure 6.3 (a) shows the violin plot of RMSE for comparison among the different meth-

ods, further illustrating these findings. The dots at each end of the bold black lines represent the

first and third quartiles, while the white dot marks the median. The PLL results indicate that the

Traditional GP also performs poorly in PLL. The proposed Sparse Intrinsic GPs (SI-GPVI, SI-

GPDIC, and SI-GPDTC) have better PLL results compared to the Traditional GP. Among these

three sparse method, due to the inaccuracy of DIC’s variance, DIC’s PLL results perform worse

than others. Figure 6.3 (b) shows the violin plot of PLL for comparison among the different

methods, supporting these observations.

Summary (RMSE) Min. Median Mean Max. Range
Tra 1.669 2.864 2.663 3.726 2.057

Graph 1.523 1.991 2.077 3.199 1.676
VI 1.437 1.578 1.750 2.538 1.101

DIC&DTC 1.386 1.591 1.713 2.730 1.344
Summary (PLL) Min. Median Mean Max. Range

Tra -12.503 -1.758 -2.397 -1.563 10.94
VI -3.438 -2.093 -2.060 -1.433 2.005

DIC -54.583 -6.014 -10.987 -3.136 51.447
DTC -1.907 -1.782 -1.794 -1.681 0.226

Table 6.1: Statistical summary of RMSE & PLL for all GP methods on the U-shape domain.

The Wilcoxon Signed-Rank Test is used to compare the performance between each pair of

GP methods on paired data. The Wilcoxon Signed-Rank Test results for the RMSE and PLL

comparisons between different GP methods are displayed in Table 6.2. If the p-value is less

than 0.05, it is judged as “significant” in statistics. The Wilcoxon Signed-Rank Test results pro-

vide strong statistical evidence supporting the superiority of the proposed Sparse Intrinsic GPs

over the Traditional GPs and Graph GPs. The significant differences in RMSE confirms that

the Sparse Intrinsic GPs offer improved predictive performance and robustness. The Wilcoxon

Signed-Rank Test comparison among SI-GPDIC, SI-GPDTC, and SI-GPVI offers valuable in-

sights into their relative strengths and effectiveness. While there is no significant difference in

RMSE, SI-GPVI stands out in terms of PLL, significantly outperforming both SI-GPDIC and

SI-GPDTC. SI-GPDTC method also outperforms SI-GPDIC in PLL. These findings suggest that

while all three methods are comparable in RMSE, SI-GPVI method is the preferred choice for
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(a) (b)

Figure 6.3: Violin plot of RMSE & PLL for all GP methods on the U-shape domain: the dots at
each end of the bold black lines represent the first and third quartiles and the white dot represents
the median.

achieving higher predictive accuracy and reliability.

Wilcoxon Signed-Rank Test (RMSE) GRAPH VI DIC&DTC
RBF 0.0005856 <0.0001 <0.0001

GRAPH 0.01718 0.003153
VI 0.33

Wilcoxon Signed-Rank Test (PLL) VI DIC DTC
RBF 0.4749 0.0005856 0.8983
VI <0.0001 0.0003223

DIC <0.0001

Table 6.2: Wilcoxon Signed-Rank Test results for RMSE and PLL among different GP methods
on the U-shape domain.

In conclusion, the U-shape has a very small gap between the upper and lower arms. The

Euclidean distance between points on the upper and lower arms differs significantly from the true

distance on the manifold. This difference leads to poor performance of Traditional GPs, which

rely on Euclidean distance through RBF kernels for predictions. Similarly, Graph GP is based

on a graph constructed from the manifold related to Euclidean distance, as shown in Equation

(5.2). As a result, Graph GP also performs unsatisfactory. These two GP methods constrained

by Euclidean distance and their assumption of smooth predictions, tends to assume that the
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values of nearby points are similar, which differ significantly in the true function. This issue is

effectively resolved by the three sparse intrinsic GP methods proposed in Chapter 4, which rely

on the approximated heat kernel based on the manifold. Since the heat kernel does not have an

explicit expression for most manifolds, it can be approximated using the transition densities of

BM paths simulated from the inducing points z. These BM paths explore the manifold along its

surface, capturing its intrinsic geometric features. The presence of the middle boundary of the

U-shape ensures that these sparse intrinsic GPs provide very different predictions for the upper

and lower arms. From Figures 6.1 and 6.2, the conclusion is clearly prove that the contour lines

of Traditional GP and Graph GP smoothly cross the boundary, while SI-GPDIC, SI-GPDTC

and SI-GPVI not. In the experiment, 20 sets of training points are randomly selected from grid

points S on the U-shape, with each set containing 15 points. The sparse intrinsic GP methods

performed better than the others, with SI-GPVI demonstrating superior performance overall.

The results of descriptive statistics and Wilcoxon Signed-Rank Tests regarding RMSE and PLL

for the various GP methods further confirm this observation.

6.3 The Implementation of Proposed Methods on the Bitten-

torus

The Bitten-torus is used to study the effectiveness of the proposed Sparse Intrinsic GP methods

in three-dimensional applications, as introduced in Section 1.3.2.

6.3.1 Construction of the Bitten-torus

In the Bitten torus example, "Bitten" refers to a portion of the Torus being removed, resembling

a donut with a bite taken out of it, as shown in Figure 1.2. To construct the Bitten-torus, let the

radius of tube r = 5, the distance from centre of the tube to the centre of the torus R = 6, the

angle of torus θ = (0,2π) and the angle of tube φ = (0.0625π,1.98π). The Bitten-Torus can be

expressed as:

X(θ ,φ) = ((R+ r cosθ)cosφ ,(R+ r cosθ)sinφ ,r sinθ).
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By computing the partial derivatives for θ and φ :

Xφ = ((R+ r cosθ)(−sinφ),(R+ r cosθ)cosφ ,0),

Xθ = (r cosφ(−sinθ),r sinφ(−sinθ),r cosθ).

Through

(Xθ ·Xθ )dθ
2 +2

(
Xθ ·Xφ

)
dθdφ +

(
Xφ ·Xφ

)
dφ

2 = r2dθ
2 +(R+ r cosθ)2dφ

2,

the metric tensor g for describing the Bitten-torus is easily to get:

g =

 r2 0

0 (R+ r cosθ)2

 ,
where r2 represents the metric component in the direction of the small circle (along the θ direc-

tion) and (R+r cosθ)2 describes the metric component in the direction of the large circle (along

the φ direction). Then,

g−1 =

 1
r2 0

0 1
(R+r cosθ)2

,
∂g
∂θ

=

 0 0

0 −2(R+ r cosθ)r sinθ

 , ∂g
∂φ

=

 0 0

0 0

.
Using the metric tensor of the Bitten-torus, the BM paths on the Bitten-torus can be constructed

via the stochastic differential equations:

dθ(t) =
1
2

(
−g−1 ∂g

∂θ
g−1
)

11
dt +

1
4
(
g−1)

11 tr
(

g−1 ∂g
∂θ

)
dt +

(
g−1/2

)
11

dB1(t)

=−1
2

r−1 sinθ(R+ r cosθ)−1dt + r−1dB1(t)
,

dφ(t) =
1
2

(
−g−1 ∂g

∂φ
g−1
)

22
dt +

1
4
(
g−1)

22 tr
(

g−1 ∂g
∂φ

)
dt +

(
g−1/2

)
22

dB2(t)

= 0+0+
∣∣(R+ r cosθ)−1∣∣dB2(t)

=
∣∣(R+ r cosθ)−1∣∣dB2(t)

,
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where dθ(t) and dφ(t) represent the BM paths in the θ(t) direction and φ(t) direction, respec-

tively.

6.3.2 Implementation on the Bitten-torus

The 600 grid points are uniformly distributed on the surface of the Bitten-torus, providing a

sufficiently dense grid. The BM paths are simulated from six inducing points selected from 600

grid points, evenly distributed along the ridge of the outer circumference of the Bitten-torus.

Figure 6.4 (a) and (b) provide a top-down perspective and a side view, respectively, to present

the Bitten-torus and show the positions of the inducing points (indicated by black dots). By

using sparse method, the number of BM sample paths is decreased from 600×N to 6×N, and

in this case, N = 50000.

For 20 training points primarily distributed in the middle and lower regions of the Bitten-

torus, Figure 6.4 provides the predictive mean of all GP methods. Among them, Figure 6.4 (c)

shows the predictive mean of the Traditional GP. It is evident that the Traditional GP does not

account for boundary effects, as it smoothly crosses the boundary of the bitten area. The upper

boundary of the bitten area, which should originally display a high value in red, is incorrectly

predicted as blue due to the influence of the training points below, indicating a lower value.

This error occurs because the two ends of the "bitten" section are very close in Euclidean space.

The Traditional GP considers only Euclidean distance, ignoring the intrinsic geometric structure

of this manifold, causing the upper area to be influenced by the nearby training points below.

Figure 6.4 (d) shows the predictive mean of the Graph GP, which makes predictions similar

to the Traditional GP near the bitten area in the upper region. This is due to the constructed

graph failing to accurately capture the local geometric features of the manifold, leading to inac-

curate predictions. Additionally, the results of the Graph GP are not as smooth as those of the

Traditional GP. Figure 6.4 (e) and (f) display the predictive means of SI-GPVI and SI-GPDIC

& SI-GPDTC, respectively. In both cases, the predictions do not cross the boundary. Due to

boundary effects, the BM paths simulated from inducing points in the lower region have diffi-

culty reaching the upper boundary area along the surface within the given time and lengthscale

constraints. All Sparse Intrinsic GPs effectively consider the intrinsic geometric features of the

manifold. Table 6.3 provides the RMSE and PLL results for different GP methods in this ex-
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periment. The results in Table 6.3 demonstrate that the sparse methods (VI, DIC, and DTC)

outperform the Traditional GPs and Graph GPs in terms of RMSE, with SI-GPVI achieving the

lowest RMSE.

Tra Graph VI DIC DTC
RMSE 2.265784 2.153284 1.372703 1.376375 1.376375
PLL -4.96996 -2.629837 -5.728875 -1.79337

Table 6.3: RMSE and PLL among different GP methods on the Bitten-torus with 20 training
points primarily distributed in the middle and lower regions of the Bitten-torus.

Next, 20 datasets will be randomly selected for the experiment to compare different methods.

In the Bitten-torus example, as the number of grid points increases to 600, each dataset is set

to contain 20 training points to maintain a proportionate sample size. Figure 6.5 and Figure 6.6

show the experimental results on one of these datasets. Figure 6.5 (a) shows the predictive mean

of the Traditional GP. It can be seen that the inner area near the lower boundary is influenced

by the training points from the upper region, turning red. This indicates that the Traditional GP

crosses the boundary, thus affecting the prediction accuracy. Figure 6.6 (d), which shows the

predictive mean of the graph GP, also exhibits the previously discussed issue, with the inner

area near the lower region turning red. The affected area is more prominent compared to the

Traditional GP. Figure 6.5 (b) presents the predictive variance of the Traditional GP, which shows

no apparent color difference due to the very small variance values. Figure 6.5 (c) and (d) show

the predictive mean and variance of the SI-GPVI. Consistent with the analysis from previous

experiments, the Sparse Intrinsic GP does not cross the boundary and effectively considers the

manifold’s boundary conditions. The results for SI-GPDIC and SI-GPDTC are similar, as shown

in Figure 6.6 (a). The predictive variance of SI-GPDIC method (shown in Figure 6.6 (c)), in

particular, shows minimal color difference due to very small predictive variance, which also

leads to poorer performance in subsequent PLL comparison.

Table 6.4 provides an analysis of RMSE and PLL values across different GP methods on

the Bitten-torus example. It shows that Sparse Intrinsic GP methods as a whole outperform

Traditional and Graph GP methods in terms of both RMSE and PLL on the Bitten-torus mani-

fold. In comparison, Traditional GPs and Graph GPs exhibit higher RMSE values and greater

variability, indicating less precise and consistent performance. Although SI-GPDIC method has

a lower RMSE value, its poorer PLL performance (mean of -8.066, range of 22.077) suggests
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(a) Top-down perspective of objective func-
tion

(b) side perspective of objective function

(c) Mean of Traditional GP (d) Mean of Graph GP

(e) Mean of SI-GPVI (f) Mean of SI-GPDIC & SI-GPDTC

Figure 6.4: With 20 training points primarily distributed in the middle and lower regions of the
Bitten-torus: (a) and (b) show the positions of the 6 inducing points used in the sparse intrinsic
GP, represented by black dots; in the remaining figures, the black dots represent the positions
of the 20 training points. (c) the predictive mean of Traditional GP; (d) the predictive mean
of Graph GP; (e) the predictive mean of SI-GPVI; (f) the predictive mean of SI-GPDIC & SI-
GPDTC.
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(a) Mean of Traditional GP (b) Variance of Traditional GP

(c) Mean of SI-GPVI (d) Variance of SI-GPVI

Figure 6.5: With 20 training points randomly selected shown as black dots on the Bitten-torus:
(a)-(b) Predictive mean and predictive variance of Traditioanl GP; (c)-(d) Predictive mean and
predictive variance of SI-GPVI
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(a) Mean of SI-GPDIC & SI-GPDTC (b) Variance of SI-GPDTC

(c) Variance of SI-GPDIC (d) Mean of Graph GP

Figure 6.6: With 20 training points randomly selected shown as black dots on the Bitten-torus:
(a) Predictive mean of SI-GPDIC & SI-GPDTC; (b) Predictive variance of SI-GPDTC; (c) Pre-
dictive variance of SI-GPDIC; (d) Predictive mean of Graph GP.
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lower reliability. SI-GPVI achieves the lowest mean RMSE (0.9500) and the smallest range

(0.1469). The reliability of SI-GPVI is emphasized by the PLL results, which show consistent

probabilistic predictions with a mean PLL value of -2.663 and a range of 0.185. To substantiate

these findings, a series of Wilcoxon Signed-Rank Tests were conducted to validate the statis-

tical significance of the differences in RMSE and PLL between different GPs. The Wilcoxon

Signed-Rank Test results shown in Table 6.5 confirm that the Sparse Intrinsic GP methods are

significantly superior to both Traditional GP and Graph GP in terms of RMSE. Among them, SI-

GPVI further demonstrates a statistically significant advantage over the other methods in RMSE

performance.

Summary (RMSE) Min. Median Mean Max. Range
Tra 1.035 1.345 1.329 1.672 0.637

Graph 0.9368 1.1394 1.2147 1.8147 0.835
VI 0.8930 0.9452 0.9500 1.0399 0.1469

DIC/DTC 0.8908 0.9661 0.9780 1.0986 0.3542
Summary (PLL) Min. Median Mean Max. Range

Tra -3.749 -1.734 -1.888 -1.540 2.209
VI -2.817 -2.650 -2.663 -2.632 0.185

DIC -25.967 -5.923 -8.066 -3.890 22.077
DTC -1.897 -1.790 -1.783 -1.690 0.207

Table 6.4: Statistical summary of RMSE & PLL for all GP methods on the Bitten-torus.

Wilcoxon Signed-Rank Test (RMSE) GRAPH VI DIC/DTC
RBF 0.01069 <0.0001 <0.0001

GRAPH <0.0001 <0.0001
VI 0.01069

Wilcoxon Signed-Rank Test (PLL) VI DIC DTC
RBF 0.0007076 <0.0001 0.5706
VI <0.0001 <0.0001

DIC <0.0001

Table 6.5: Wilcoxon Signed-Rank Test results for RMSE and PLL among different GP methods
on the Bitten-torus.

These results are shown visually in Figure 6.7, where (a) is the violin plot for the RMSE

results, and (b) corresponds to the PLL results. The dots at each end of the bold black lines rep-

resent the first and third quartiles, while the white dot marks the median. SI-GPVI exhibits the

lowest values in RMSE, and smallest spread in both RMSE and PLL, indicating its robustness

and accuracy.
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(a) (b)

Figure 6.7: Violin plot of RMSE & PLL for all GP methods on the Bitten-torus: the bold black
lines at each end represent the first and third quartiles and the white dot represents the median.

In conclusion, the Bitten-torus, as a representation of a 3-dimensional manifold, is similar

to the U-shape example in that points on either side of the "bite" may be close in Euclidean

distance but far apart in the manifold’s intrinsic geometry. By comparing the five GP methods

on 20 randomly selected training sets (each containing 20 points), the Traditional GP and Graph

GP, both relying on Euclidean distance, perform worse than the sparse intrinsic GP methods.

Among them, SI-GPVI reconfirms its superior performance. Descriptive statistics and Wilcoxon

Signed-Rank Tests used in this section further help to confirm this conclusion.

6.4 The Implementation of Proposed Methods on the Aral

Sea

The example of real-world data is predicting chlorophyll level in the Aral Sea, which has been

introduced in Section 1.3.3. Chlorophyll level is an important parameter for measuring the

biomass and primary productivity of marine phytoplankton. It is also a key indicator of the

degree of eutrophication and the occurrence of red tides in water bodies. Monitoring chlorophyll

level in water bodies is of significant importance for environmental protection. This case also

adds significance to the research on sparse intrinsic GPs on manifolds, highlighting the potential

for numerous future applications. For sparse intrinsic GPs, given that the Aral Sea serves as a
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real-world dataset, with its objective function being non-smooth and noisy, it is essential to set a

larger number of inducing points to provide better coverage across the manifold and capture the

intricate patterns more effectively. Then, 10 inducing points are selected from 485 grid points,

evenly distributed within the boundary of the Aral Sea, represented by the little circles in Figure

6.8 (a), ensuring that the BM paths originating from them can adequately explore the entire

domain of the manifold. Consequently, the starting points for the BM are reduced from 485 grid

points to only 10 inducing points. The number of BM sample paths is decreased from 485×N

to 10×N, where N = 50000.

For 35 training points nearly equally spaced in the right half of the Aral Sea, Figures 6.8 and

6.9 present the results of each GP methods. Figure 6.8 (a) shows the true values of chlorophyll

level in the Aral Sea, with white circles representing the 10 inducing points. The chlorophyll

level values range from 0 to 19.278724, with colors in Figure 6.8 (a) transitioning from light

yellow to dark red. The lower part of the Aral Sea is divided by the isthmus of the central

peninsula, with lower chlorophyll concentrations on the left and higher concentrations on the

right. In the remaining panels of Figure 6.8 and in subsequent figures of the Aral Sea, the white

circles denote the training points. Figure 6.8 (b) and (c) respectively show the predictive mean

and variance of the Traditional GP. It can be observed that due to the smooth nature of the RBF

kernel, the predictive mean and variance in the lower left region near the right boundary are

unreasonably influenced by the training points in the right region. The RBF kernel does not

account for the existence of physical boundaries, leading to an interaction of values across dif-

ferent regions separated by land. Similarly, the Graph GP shown in Figure 6.8 (d), which first

constructs a graph on the manifold and then applies the Graph Matérn kernel, fails to accurately

capture the manifold’s intrinsic geometric features. As a result, it exhibits a similar trend of

incorrect predictions in the lower left region near the right boundary. In Figure 6.9, the results of

different sparse intrinsic GP methods for 35 training points are presented. Specifically, Figure

6.9 (a) displays the predictive mean of SI-GPVI. Unlike the issues observed with Traditional

GP and Graph GP, SI-GPVI effectively avoids these problems. Due to boundary effects, when

calculating the heat kernel in the left region, very few BM paths from the right region’s inducing

points contribute, minimizing the influence from the right region. This method effectively uti-

lizes the internal geometric features of the manifold. Figure 6.9 (c) shows the predictive mean of

SI-GPDIC and SI-GPDTC, following the same principle. In Figures 6.9 (b) and (e), which show
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the predictive variance of SI-GPVI and SI-GPDTC respectively, the variance in the left region

shows high values due to boundary-induced separation from training points, indicating high un-

certainty. However, in Figure 6.9 (d), the predictive variance of SI-GPDIC reveals that the left

region does not show similarly high uncertainty. This difference arises from the sensitivity of

SI-GPDIC to the positions of the inducing points, causing the variance to notably decrease as it

approaches the left boundary, moving further from the inducing points.

Table 6.6 presents the comparison of RMSE and PLL values for different GP methods under

this set of experiments. Sparse methods, particularly SI-GPVI, demonstrate superior perfor-

mance in terms of RMSE. While SI-GPDTC method excels in PLL, SI-GPVI remains robust

across both metrics.

Tra Graph VI DIC DTC
RMSE 2.816694 2.816725 2.669898 2.729834 2.729834
PLL -2.754867 -3.900971 -4.776345 -2.459444

Table 6.6: RMSE and PLL among different GP methods on the Aral Sea with 35 training points.

Given the non-smooth and noisy nature of the objective function, the number of randomly

selected training points is increased to 30 in 20 experimental sets to allow for a comparison

of the prediction accuracy across different methods. Figures 6.10 and 6.11 display the results

of one of these groups. Figures 6.10 (a) and (b) show the predictive mean and variance of the

Traditional GP, respectively. Similar to the predictive mean in Figure 6.11 (d) for the Graph

GP, these figures exhibit the same characteristics observed with the previous 35 training points

case. However, due to the randomness in selecting training points, the training points in the left

region now provide information about that area, reducing the influence of values from the right

region on the predictions for the left region. Figures 6.10 (c) and (d) show the predictive mean

and variance corresponding to SI-GPVI, respectively. Due to the separation by land, the values

on either side do not influence each other. Figures 6.11 (a), (b), and (c) display the predictive

mean and variance for SI-GPDIC and SI-GPDTC, respectively, and exhibit similar behavior to

SI-GPVI.

Table 6.7 provides an analysis of RMSE and PLL values across different GP methods, offer-

ing a comprehensive evaluation of their performance on the Aral Sea dataset. Table 6.7 indicates

that SI-GPVI achieves the lowest mean RMSE value of 2.370, which means it offers the highest
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(a) Objective function (b) Mean of Traditional GP

(c) Variance of Traditional GP (d) Mean of Graph GP

Figure 6.8: With 35 training points nearly evenly distributed across the right half of the Aral Sea,
separated by land, (a) displays the true chlorophyll levels of the Aral Sea, with circles represent-
ing the inducing points used in the sparse intrinsic GPs. In (b)-(f), circles mark the positions
of the 35 training points. Specifically, (b) and (c) show the predictive mean and variance of the
Traditional GP, respectively, while (d) illustrates the predictive mean generated by the Graph GP
method.
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(a) Mean of SI-GPVI (b) Variance of SI-GPVI

(c) Mean of SI-GPDIC & SI-GPDTC (d) Variance of SI-GPDIC

(e) Variance of SI-GPDTC

Figure 6.9: With 35 training points nearly evenly distributed in the right half of the Aral Sea
separated by land, represented by circles on plots: (a) and (b) illustrate the predictive mean
and variance of SI-GPVI; (c) is the Predictive mean of SI-GPDIC and SI-GPDTC; (d) and (e)
represent the predictive variance of SI-GPDIC and SI-GPDTC respectively.
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(a) Mean of Traditional GP (b) Variance of Traditional GP

(c) Mean of SI-GPVI (d) Variance of SI-GPVI

Figure 6.10: With 30 training points randomly selected shown as circles on the Aral Sea: (a)-
(b), Predictive mean and predictive variance of Traditional GP; (c)-(d), Predictive mean and
predictive variance of SI-GPVI
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(a) Mean of SI-GPDIC & SI-GPDTC (b) Variance of SI-GPDIC

(c) Variance of SI-GPDTC (d) Mean of Graph GP

Figure 6.11: With 30 training points randomly selected shown as circles on the Aral Sea: (a),
Predictive mean of SI-GPDIC & SI-GPDTC; (b), Predictive variance of SI-GPDIC; (c), Predic-
tive variance of SI-GPDTC; (d), Predictive mean of Graph GP.
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prediction accuracy among all methods. The range of RMSE values for SI-GPVI is also the

smallest (0.577), indicating stable performance with less variability in prediction accuracy. As

for probabilistic predictions, SI-GPVI maintains a mean PLL of -3.860 with a specifically nar-

row range of 0.051, indicating reliable and balanced performance comparing with other meth-

ods. The Wilcoxon Signed-Rank Test results in Table 6.8 further support the robustness of SI-

GPVI. The results show a statistically significant improvement in RMSE for SI-GPVI compared

to the Traditional GP (p = 0.0002098), proving a higher prediction accuracy. Other compar-

isons, such as the RMSE between Graph GP and SI-GPVI (p = 0.6477), do not show significant

differences, indicating that these methods perform equally well in certain aspects. However, the

probabilistic predictions of the Graph GP cannot be used. This limitation must be taken into ac-

count when considering its overall effectiveness. As a result, while the Graph GP demonstrates

comparable accuracy in some indices, its utility is constrained by the unreliability of its proba-

bilistic outputs. In the Aral Sea, SI-GPDIC and SI-GPDTC offer improve better RMSE results

over Traditional GP, but lagging behind SI-GPVI in both accuracy and consistency. SI-GPDTC

shows better probabilistic prediction performance compared to SI-GPVI and SI-GPDIC, with

a mean PLL of -2.544. However, it exhibits greater variability in probabilistic predictions, as

reflected by a wider PLL range compared to SI-GPVI.

Summary (RMSE) Min. Median Mean Max. Range
Tra 2.162 2.485 2.554 3.375 1.213

Graph 2.086 2.318 2.407 2.921 0.835
VI 2.164 2.318 2.370 2.741 0.577

DIC/DTC 2.094 2.432 2.504 3.339 1.245
Summary (PLL) Min. Median Mean Max. Range

Tra -3.614 -2.422 -2.514 -2.082 1.532
VI -3.892 -3.860 -3.860 -3.841 0.051

DIC -10.542 -3.483 -4.017 -2.484 8.058
DTC -4.004 -2.400 -2.544 -2.215 1.789

Table 6.7: Statistical summary of RMSE & PLL for all GP methods on the Aral Sea.

The violin diagram in Figure 6.12 visualizes the above findings, where (a) is the violin plot

for RMSE, and (b) corresponds to the PLL results. Among it, the dots at each end of the bold

black lines represent the first and third quartiles, while the white dot represents the median.

The plots indicate that SI-GPVI has a more concentrated distribution for both RMSE and PLL,

reflecting consistent performance.
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Wilcoxon Signed-Rank Test (RMSE) GRAPH VI DIC/DTC
RBF 0.01718 0.0002098 0.1429

GRAPH 0.6477 0.6215
VI 0.165

Wilcoxon Signed-Rank Test (PLL) VI DIC DTC
RBF <0.0001 <0.0001 0.8408
VI 0.5958 <0.0001

DIC <0.0001

Table 6.8: Wilcoxon Signed-Rank Test results for RMSE and PLL among different GP methods
on the Aral Sea.

In this example, the reason that the differences between the methods are not particularly large

is that real-world data has sudden changes, noise, and irregularities that are less than smooth.

When the data is highly unsmooth, the predictive power of the various GP methods decreases,

thus reducing the apparent difference in prediction accuracy. However, under these conditions,

SI-GPVI demonstrates better performance, with smaller ranges in RMSE and PLL values, indi-

cating more consistent and stable performance.

(a) (b)

Figure 6.12: Violin plot of RMSE & PLL for all GP methods on the Aral Sea: the dots at each
end of the bold black lines represent the first and third quartiles and the white dot represents the
median.
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6.5 Conclusion

In the previous chapters, several sparse intrinsic GP methods tailored for manifolds have been

proposed. These methods are designed to efficiently handle regression on complex manifolds.

In addition to these methods, Traditional GP and Graph GP are introduced for comparison.

This chapter uses three representative examples as introduced in Section 1.3: the two-

dimensional U-shape, the three-dimensional Bitten-torus, and a real-world dataset, Aral Sea.

Various GP methods are applied to these three examples to evaluate and compare their perfor-

mance. Section 6.1 introduces two statistical metrics used for comparison: RMSE to evaluate

the measurement deviation and PLL to evaluate the predictive probability density function which

additionally considers the predictive variance.

Across all three examples—the U-shape, Bitten-torus, and Aral Sea—the performance of

the GP methods are consistent. The proposed sparse intrinsic GPs, particularly SI-GPVI, out-

perform both the Traditional GP and Graph GP in terms of RMSE and PLL. Statistical analysis

and Wilcoxon Signed-Rank Tests confirm the superiority of SI-GPVI, highlighting its greater

predictive accuracy and reliability. SI-GPDIC and SI-GPDTC also demonstrate notable im-

provements over the Traditional GP, but are less consistent than SI-GPVI. The small differences

between GPs in the Aral Sea can be attributed to the inherent noise and irregularity of real-world

data, which brings challenges to prediction. Despite this, SI-GPVI remains the most robust and

stable of all the examples. Through these experiments, SI-GPVI proves to be a highly effective

and powerful method for regression on manifolds.

Given the superiority of the proposed methods in predicting over manifolds, exploring the

implementation of Bayesian Optimisation (BO) on manifolds becomes feasible. BO is a global

optimisation method based on Bayesian statistics and GPs, which is mainly used to optimise

costly black-box functions, and performs particularly well when dealing with computationally

expensive or experimentally costly optimisation problems. In the past, BO is usually used for

optimisation problems in Euclidean space, while the method proposed in this thesis extends the

application of BO to manifolds. In the next chapter, the implementation of BO on manifolds

with SI-GPVI, SI-GPDIC, and SI-GPDTC as proxy functions will be developed. This is not

only an extension of the application of the BO algorithm itself, but also effectively solves the
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optimisation problem on manifolds, providing substantive practical importance.



Chapter 7

Intrinsic Bayesian Optimisation on

Manifolds

When considering the mathematical optimisation problem, how to successfully achieve opti-

misation goals on manifolds presents unique challenges when constrained by complex internal

geometry. The problem exists in how to appropriately incorporate the geometric properties of

manifolds into the optimisation process. For example, measuring and monitoring pollutants in

lakes is an initiative in environmental protection. How to consume less resources to find the

most polluted areas can effectively reduce the cost of environmental remediation. Lakes can

be viewed as manifolds with complex geometrical features, and the problem can be viewed as

how to find a specific area within a limited budget, such as detecting the area of highest pol-

lution levels. Chapter 4 proposes several Sparse Intrinsic GPs, which are shown to be suitable

for predicting the surface of measurements after appropriately accounting for the geometry of a

manifold. With this foundation, exploring the implementation of Bayesian Optimisation (BO)

on manifolds becomes feasible. While Chapter 6 demonstrated that SI-GPVI is superior in esti-

mating the smooth surface and related variance over the manifold, it is also important to explore

and compare the performance of all approaches—SI-GPDIC, SI-GPDTC, and SI-GPVI, as well

as the Graph GPs under the BO framework. The iteration of BO begins with a very limited

number of initial points. This approach causes each point selected by the acquisition function

in the early regression model to significantly influence the outcomes of subsequent iterations,

introducing a degree of uncertainty in the early stages. Consequently, it is essential to explore

117
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and compare different methods when uncertainty appears in the early iterations.

This chapter aims to propose several frameworks to support the optimisation problem over

manifolds, which begins with a brief introduction of BO and defines the optimisation prob-

lems to be addressed. Then, Section 7.2 details the Traditional BO, which has already been

proficiently implemented in Euclidean space, describing its algorithmic structure on manifolds.

Section 7.3 proposes the algorithm of Intrinsic BO with DIC, and also gives the introduction of

Intrinsic BO with DTC method. In Section 7.4, when using SI-GPVI as a proxy function, the

Intrinsic BO with VI method is proposed, and is expected to demonstrate excellent performance

due to its surrogate model. Section 7.5 introduces Graph BO, which considers the manifold as a

graph composed solely of points. Through comparative analysis and simulation studies, Section

7.6 evaluates the performance of all algorithms across various complex manifolds, similar to the

examples in Chapter 6, which also includes one application in a real-world scenario. Section 7.7

provides a summary of this chapter.

7.1 Introduction of Bayesian Optimisation

Optimisation problems arise in all quantitative disciplines from statistics [100], [6] and com-

puter science [63], [138], [146] to engineering [104], [49] and economics [24]. In recent years,

the optimisation objective is no longer limited to Euclidean space with simple spatial structure.

Optimisation problems on manifolds have gradually become a research hot topic of interest. For

example, measuring and monitoring pollutants in lakes is an environmental protection initia-

tive. The health of lakes can be effectively assessed through the measurement of a number of

pollution indicators, such as the concentration of algal blooms, the level of dissolved oxygen

and the concentration of nutrients such as nitrogen and phosphorus [22]. Using these data, the

most polluted areas can be located so that targeted treatment measures can be taken with the

aim of doing this in the most cost effective way. BO is an effective solution to solve optimisa-

tion problems in Euclidean space when the objective function is unknown [135]. It outperforms

other leading-edge global optimisation algorithms on a wide range of challenging optimisation

benchmark functions [70]. Given the wide application of BO in Euclidean spaces for optimising

expensive black-box functions to explore global optima, this chapter will consider extending the
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application of BO based on GPs to the realm of manifolds. Compared to simple geometries,

manifolds usually exhibit more complex intrinsic geometric characteristics such as topology,

connectivity and smoothness, as well as complex boundaries. These features will impact how

data points are related to each other, tending to affect the modeling and prediction of surfaces

over the manifolds, and hence the decision making in practical application fields. Failing to ac-

count appropriately for the structure of the manifold in BO may result in significant relationships

and dependencies within the data being missed, resulting in less reliable results. Accounting for

intrinsic geometric features of manifolds in the modeling and optimisation process is a major

challenge in the study of manifolds and the main focus of the work that follows.

In practical applications, data collection capabilities are often limited by budget constraints,

resulting in investigation of minimal sampling designs required in order to estimate variables of

interest across a manifold. Statistical modelling including GP regression and BO, in particular,

are useful tools to estimate e.g. a pollutant surface, which means it is unnecessary to perform

continuous dense sampling around each point. For example, when placing sensors in lakes or

fields, a single sensor typically covers a small surrounding area, removing the need to waste

resources by placing sensors multiple times in the area. For BO, when the context is a smooth

latent continuous surface, the search process of BO may sometimes involve repeatedly exploring

a small neighborhood around a point. Due to the smoothness assumption of the latent function,

it is generally expected that points within a small neighborhood exhibit similar characteristics.

When a point is identified as the current optimum, BO may conduct dense sampling in that re-

gion. Such repetitive sampling can become inefficient, as it consumes computational resources

without yielding proportionate gains in information or performance, ultimately leading to re-

source waste and an increase in unnecessary computational burden. As a result, the optimisation

context shifts from a manifold with a continuous surface to one where observations can only be

collected from grid points that are densely and uniformly distributed across the manifold, which

can be seen as an exploration constraint that effectively reduces resource waste. For example, in

Figure 1.3, the Aral Sea is represented by grid points, helping to illustrate this approach. How-

ever, the number of grid points is finite, and when there is no limit to the number of iterations of

BO, BO can definitely find the optimal point. In an extreme case where the number of iterations

approaches the total number of grid points, it is equivalent to sampling from all grid points,

which is practically meaningless. Considering budget constraints, it is expected that BO can
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find the optimal point from grid points on the manifold within an effective number of iterations.

For example, the goal might be to find the optimal point successfully within sampling iterations

that are 5% of the total number of grid points.

Then, the problem can be posed as trying to find the optimal point within these grid points in

a limited number of iterations (5% G
′
, where G

′
is the number of grid points), so that the corre-

sponding implicit objective function reaches its global maximum (or minimum). M is previously

defined as a d dimensional complete Riemannian manifold, which is also the submanifold of a

higher dimensional Euclidean space Rp, d ≤ p. This problem can be described as:

Given: The objective function f (s) is defined on the manifold M and lacks an explicit analytical

expression.

Objective: Identify the optimal point sM by solving the following optimisation problem:

sM = argmaxs∈S f (s),

where S represents a finite set of grid points discretely sampled on the manifold M.

To better illustrate the problem, consider the task of finding the location with the highest

chlorophyll levels in the Aral Sea [115] in Figure 7.1 which is introduced in Section 6.4. The

distribution of the chlorophyll levels in the constrained domain is unknown and can be treated

as a black-box function. The geometry of the constrained domain is also different from the

Euclidean space R2. Two locations that have a close Euclidean distance on a map may be

intrinsically far apart if they are separated by a land barrier, for example, in the lower part of the

Aral Sea. In BO, if very few initial points are located in the left region near the right boundary,

the Euclidean distance might cause the predictive mean in the right region, which is separated

by a land barrier, to be smoothly wrong influenced by the left side. Additionally, the predictive

variance in the right region may be relatively small. This can easily lead to BO missing an

appropriate exploration of the right region.

In Chapter 4, the SI-GPDIC, SI-GPDTC and SI-GPVI methods are proposed, where the

kernels used in the regression are a heat kernel approximated via the transition density of BM
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Figure 7.1: Satellite imagery of the Aral Sea (shaded green to black in colour), an endorheic
basin (saltwater lake) in Central Asia [115].

paths simulating from inducing points. These approaches effectively incorporate the intrinsic

geometric structure and boundary information of the manifold. Chapter 6 demonstrates the ef-

fectiveness of these methods through the application to three different examples, where SI-GPVI

achieved better results, as evidenced by a comprehensive analysis of RMSE and PLL. Compared

to the Traditional GP introduced in Chapter 3 and the Graph GP introduced in Chapter 5, which

show dependency on the distribution of training points, the three sparse intrinsic GP methods

are more robust, exhibiting less sensitivity to the distribution of training points. Building on

these foundations, this chapter introduces three methods: Intrinsic BO with DIC, DTC, and VI.

Additionally, Traditional BO and Graph BO methods are developed based on the Traditional

GPs and Graph GPs discussed in earlier chapters. The performance of all these methods is rig-

orously analyzed through practical applications in Section 7.6. Among them, Intrinsic BO with

VI demonstrates superior results within a limited number of iterations compared to the other

methods.

7.2 Algorithm for Traditional Bayesian Optimisation

Traditional BO is widely applied in Euclidean spaces, including two core components: the prob-

abilistic surrogate model and the acquisition function. The probabilistic surrogate model used
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here is the Traditional GP based on the RBF kernel, as introduced in Section 3.2. Chapter 6

presents the application of the Traditional GPs on manifolds. For example, Figure 6.1 (a), (b)

shows the predictive mean and predictive variance of Traditional GP on the U-shape domain,

respectively. The values on either side of the middle gap influence each other due to their close

Euclidean distance.

Based on the Traditional GPs obtained in Chapter 3, the acquisition function focuses on the

Probability of Improvement (PI), which evaluates and identifies the most promising point within

s∗ ∈ S (where S is previously defined as the grid points on the manifold M) to serve as the target

for the subsequent exploration [82]. The "promising" refers to a new point that has the highest

likelihood of yielding a better outcome than the best result observed so far (if the global optimum

being attempted is the maximum value, then the "better outcome" refers to the generation of a

new maximum value). The acquistion function PI is used here to achieve this goal:

PI(S) = ϕ

(
µ(S)− f(s+)− ε

σ(S)

)
, (7.1)

where ϕ is CDF of the standard normal distribution, f(s+) represents the corresponding max-

imum value among the existing training points D and ε helps PI to balance exploration and

exploitation, which refers to balancing the exploration of unvisited regions of the space (where

uncertainty is high) against the exploitation of regions known to have promising results (but

maybe not the absolute best). This balance is crucial for efficiently finding global optima in

complex domains. The predictive mean µ and variance σ of grid points S by the Traditional GP

are:

µRBF(S) = ΣrD
(
ΣDD +σ

2
n I
)−1

y, (7.2)

σRBF(S) = Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr, (7.3)

where σ2
n represents the noise variance, ΣrD is the covariance matrix for training data points

D and test data points S, as calculated according to Equation (3.2). y is the observed value

corresponding to training data points D .

According to the origin of PI, the next evaluation point calculated from Equation (7.1) is

the point st+1 = argmax(PI(S)). This new point will then be used to update the training points
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set D and the end of this process will be controlled by the stopping criteria. Common stopping

criteria include setting a maximum number of iterations, setting a total optimisation duration,

or setting accuracy requirements. Considering practical applications and budget constraints,

the stopping criteria adopted here is when the number of new training points generated by BO

iterations equals 5% of the total number of grid points. The focus of this study is to compare the

performance of different BO methods under the same budget constraints, rather than adjusting

the constraints to optimise the performance of all BO methods proposed. After the optimisation

stops upon reaching the maximum number of iterations, the optimal point will be selected from

the final set of training points as the global optimisation result.

Močkus [109] provided a derivation of the global optimum for BO. After introducing the

principles of Traditional BO, it is summarized in Algorithm 1. Initially, a set of training points

D = s1,s2, ...,sn from the grid points S is randomly selected. After calculating the predictive

mean and predictive variance from Traditional GP, the PI acquisition function is used to search

for the next ‘best location’ si. In every iteration, (si,yi) has been added to Di−1 to update the

posterior distribution of Traditional GP. When the maximum number of iterations is reached, the

iteration process stops. Finally, the global optimum point identified by Traditional BO will be

selected from the set D .

Algorithm 1 Traditional Bayesian optimisation on manifolds
Selecting D0 = s1,s2, ...,sn, as training points D from grid points set S
for i = 1, . . . , I { I is the number of iterations, equals to 5% of the number of S } do

1.1 calculate the predictive mean and predictive variance based on Di−1 using Equation (7.2) and (7.4);
1.2 select new si = argmax(PI(S)) by optimising PI function using Equation (7.1);
1.3 query objective function to obtain yi;
1.4 augment data Di = {Di−1,(si,yi)}.

end for
Selecting the global optimum point from the set D .

The Traditional BO is based on the Traditional GP. Chapter 6 shows the problems when the

Traditional GP is applied on manifolds. One of the major problems is that Traditional GPs ne-

glect the boundary conditions. This results wrongly in distance between points being estimated

across boundaries, instead of being constrained by the boundary. Additionally, the effectiveness

of Traditional GP is limited by the location of training points, as discussed in Section 6.1. In

particular, Traditional BO, with a very small amount of initial points becomes more sensitive to

the distribution of these initial points, resulting in unstable results. This will be specifically ana-



CHAPTER 7. INTRINSIC BAYESIAN OPTIMISATION ON MANIFOLDS 124

lyzed in Section 7.6. Section 7.3 and 7.4 propose the use of Intrinsic BO to effectively addresses

this issue.

7.3 Algorithm for Intrinsic Bayesian Optimisation with DIC

& DTC

In Section 3.3, Intrinsic GPs on manifolds were introduced, which take into account the in-

trinsic geometric features of the manifold. Building on this foundation, Section 4.2 proposes

SI-GPDIC, which improves the computational efficiency of Intrinsic GPs through utilizing m

inducing points z. On one hand, BM paths only need to be simulated from the inducing points

z rather than from all grid points S. On the other hand, it reduces the computational com-

plexity of the inversion in the calculation of the predictive mean and variance from O(n3) to

O(nm2), where m < n. This corresponds to the inversion of (ΣDD +σ2
n I)−1 in Equation (3.9)

and (σ−2
noiseΣzDΣDz +Σzz)

−1 in Equation (4.6), respectively.

Chapter 6 applies this method to three examples. While it may not perform as well as other

sparse methods, it remains an effective surrogate model in BO. This is because, in each BO

iteration, inherent uncertainty plays a key role, and the point selected by the acquisition function

PI directly influences subsequent iterations—especially when the number of training points is

quite low in the early stages. This uncertainty is not solely determined by the performance of the

predictive mean and predictive variance. Additionally, the results from this approach provide

a useful benchmark for comparison with other methods. The predictive mean and predictive

variance obtained from SI-GPDIC are expressed as:

µDIC(S) = σ
−2
n ΣrzKΣzDy, (7.4)

σDIC(S) = ΣrzKΣzr, (7.5)

where σ2
n represents the noise variance, K = (σ−2

n ΣzDΣDz +Σzz)
−1 and Σrz is the covariance

matrix for training data points D and inducing points z, calculated as Equation (3.8). With this

foundation, Intrinsic BO with DIC uses the PI as the acquisition function, as shown in Equation

(7.1). In each iteration, PI calculates the point most likely to yield an improved outcome based
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on the regression results, adds this point to the set of training points D , and initiates a new

iteration. This process continues until the budget constraint is reached.

Intrinsic BO with DIC is summarized in Algorithm 2. The initial phase begins with selecting

inducing points on the manifold. In this work, the inducing points are selected from the grid

points which are equally spaced on the manifold. The BM paths are simulated using Equation

(3.6) starting from the inducing point. The heat kernel is estimated as the BM transition density

using Equation (3.7). The covariance matrices of the inducing points and all grid points can

be constructed using the heat kernel estimates at different diffusion time. This concludes the

initial phase. In the iterative phase, the training set D is initialised by randomly choosing initial

locations from the grid points. The PI acquisition function uses the predictive mean and variance

from Equation (7.4) and (7.5) to search for the next ‘best location’, si+1. In every iteration, si+1

is added into training set D to update the posterior distribution of SI-GPDIC. The updating

process is repeated until the maximum number of iterations is reached. Throughout the process,

the BM paths only need to be simulated once in the initial phase.

Algorithm 2 Intrinsic Bayesian Optimisation with DIC on manifolds
Initial Phase
1.1 Select m inducing points from the grid points S on M;
1.2 Simulate BM paths starting with inducing points z:
for i = 1, . . . ,m { m is the size of inducing points } do

for j = 1, . . . ,N {N is No. of paths } do
Simulate BM sample paths starting at ith inducing point using Equation (3.6);

end for
end for
1.3 Estimate the transition density of BM on M using Equation (3.7);
1.4 Construct Σzz,Σzr using the heat kernel as in Equation (3.8).

Iterative Phase
2.1 Initialise the Intrinsic BO by selecting the initial locations from the grid points S on M; D0 is initialised as
D0 = {s0,y0}
for i = 1, . . . , I { I is the number of iterations } do

1. Calculate predict mean and predict variance on grid points using Equation (7.4) and (7.5); ΣzD can be
constructed from Σzr by selecting the corresponding rows and columns;
2. Find si+1 by optimising PI function as in Equation (7.1);
3. The training set is augmented Di = {Di−1,(si,yi)};

end for
Selecting the global optimum point from the set D .

Due to the fact that the predicted variance in DIC approaches zero as test points move farther

from the inducing inputs, leading to inaccurate uncertainty predictions at certain points, Section
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4.3 introduces SI-GPDTC method. Similar to DIC in terms of predictive mean, DTC addresses

the shortcomings of DIC by improving the reliability of predictive variances. The predictive

mean and variance of SI-GPDTC can be expressed as:

µDTC(S) = σ
−2
n ΣrzKΣzDy, (7.6)

σDTC(S) = max [diag(Σ∗
rr)−diag(Qrr),0]+diag(ΣrzKΣzr), (7.7)

where σ2
n represents the noise variance, K = (σ−2

n ΣzDΣDz +Σzz)
−1 and Qrr = ΣrzΣ−1

zz Σzr is the

covariance matrix approximated using the information from the inducing points z. Σrz is the

covariance matrix for training data points D and inducing points z, calculated as Equation (3.8).

This improvement makes SI-GPDTC a robust solution with a more reliable predictive distri-

bution. Intrinsic BO with DTC is proposed using SI-GPDTC as the surrogate model and PI as

the acquisition function. It is expected that as the performance of the surrogate model improves,

BO will correspondingly yield better results, although there exists some uncertainty. Algorithm

3 provides a summary of Intrinsic BO with DTC. This optimisation process is still divided into

two parts. The Initial Phase does not involve iteration but provides the foundational informa-

tion required for the subsequent Iterative Phase. In the Initial Phase, BM paths simulate from

inducing points z and the necessary covariance matrices Σzz,Σzr are precomputed and stored. In

the Iterative Phase, the PI function plays a critical role by determining the next point to explore.

This point is identified based on the predictive mean and predictive variance generated by the

SI-GPDTC. Once the next exploration point is settled, it is incorporated into the training set,

thereby updating the model with new data. This iteration process continues until the iteration

budget is reached.

7.4 Algorithm for Intrinsic Bayesian Optimisation with VI

Section 4.4 introduces SI-GPVI from a new perspective, transforming the posterior inference

problem into minimizing the distance between the exact model p and the modified model q,

achieved via KL divergence, as shown in Equation (4.16). This approach incorporates the vari-

ational lower bound FV (φ) into the true log marginal likelihood. The resulting predictive mean
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Algorithm 3 Intrinsic Bayesian Optimisation with DTC on manifolds
Initial Phase
1.1 Select m inducing points from the grid points S on M;
1.2 Simulate BM paths starting with inducing points z:
for i = 1, . . . ,m { m is the size of inducing points } do

for j = 1, . . . ,N {N is No. of paths } do
Simulate BM sample paths starting at ith inducing point using Equation (3.6);

end for
end for
1.3 Estimate the transition density of BM on M using Equation (3.7);
1.4 Construct Σzz,Σzr using the heat kernel as in Equation (3.8).

Iterative Phase
2.1 Initialise the Intrinsic BO by selecting the initial locations from the grid points on M. D0 is initialised as
D0 = {s0,y0}
for i = 1, . . . , I { I is the number of iterations } do

1. Calculate predict mean and predict variance on grid points using Equation (7.6) and (7.7); ΣzD can be
constructed from Σzr by selecting the corresponding rows and columns;
2. Find si+1 by optimising PI function as in Equation (7.1);
3. The training set is augmented Di = {Di−1,(si,yi)};

end for
Selecting the global optimum point from the set D .

and variance are provided in Equation (4.24). Chapter 6 demonstrates, through three examples,

that SI-GPVI outperforms other sparse methods (SI-GPDIC and SI-GPDTC) as well as Tradi-

tional GPs and Graph GPs. Given SI-GPVI’s strong performance, it is reasonable to expect that

using it as the surrogate model in BO can lead to superior results, thanks to enhanced predic-

tion accuracy in each iteration. Consequently, Intrinsic BO with VI has been established and

summarized in Algorithm 4.

Intrinsic BO with VI is composed of two main components: SI-GPVI, which serves as the

surrogate model for modeling the objective function, and the acquisition function PI, as shown

in Equation (7.1). Before the iterative process begins, there are some preparatory steps for SI-

GPVI. Specifically, BM paths need to be simulated first from the inducing points z. Following

this, the covariance matrix for the inducing points themselves Σzz, as well as the covariance

matrix between the inducing points and all grid points Σzr, can be precomputed and stored. This

approach allows the predictive mean and variance to be retrieved from precomputed information

Σzz and Σzr during each iteration when the surrogate model SI-GPVI is called, significantly

improving computational efficiency by eliminating the need to recompute the covariance matrix

ΣzD at each iteration. The acquisition function PI uses the information returned by the surrogate

model to determine the position of the next sampling point, identifying the location most worth
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Algorithm 4 Intrinsic Bayesian Optimisation with VI on manifolds
Initial Phase
1.1 Select m inducing points from the grid points S on M;
1.2 Simulate BM paths starting with inducing points z:
for i = 1, . . . ,m { m is the size of inducing points } do

for j = 1, . . . ,N {N is No. of paths } do
Simulate BM sample paths starting at ith inducing point using Equation (3.6);

end for
end for
1.3 Estimate the transition density of BM on M using Equation (3.7);
1.4 Construct Σzz,Σzr using the heat kernel as in Equation (3.8).

Iterative Phase
2.1 Initialise the Intrinsic BO by selecting the initial locations from the grid points on M. D0 is initialised as
D0 = {s0,y0}
for i = 1, . . . , I { I is the number of iterations } do

1. Calculate predict mean and predict variance on grid points using Equation (4.24); ΣzD can be constructed
from Σzr by selecting the corresponding rows and columns;
2. Find si+1 by optimising PI function as in Equation (7.1);
3. The training set is augmented Di = {Di−1,(si,yi)};

end for
Selecting the global optimum point from the set D .

exploring. In each iteration, the selected next sampling point is used to update the training

set D , initiating a new iteration of the optimisation process. The introduction of this method

represents a powerful and efficient approach to optimising functions on manifolds. Section 7.6

will demonstrate its application in three examples and present a comparison of the results with

other methods.

7.5 Algorithm of Graph Bayesian Optimisation

Chapter 5 introduces the Graph GP on manifolds, which differs from other methods by con-

sidering the manifold as an undirected graph structure, where the relationships between points

are determined not by distance, as is typically the case, but by whether or not they are con-

nected. On the undirected graph, inputs and outputs are indexed by vertices, with connections

between vertices represented by assigned weights, which to some extent rely on Euclidean dis-

tance. The kernel used is an extension of the Matérn kernel from Euclidean space, known as the

Graph Matérn kernel, which is derived from the SPDE formulation of the Matérn kernel. The
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predictive mean and variance of Graph GPs can be calculated as:

8µGraph(S) = ΣrD
(
ΣDD +σ

2
n I
)−1

y, (7.8)

σGraph(S) = Σrr −
(
ΣDD +σ

2
n I
)−1

ΣDr, (7.9)

where σ2
n represents the noise variance, ΣrD is the covariance matrix for training data points D

and test data points S, calculated using the Graph Matérn kernel defined on the graph structure

according to Equation (5.5).

Chapter 6 demonstrates the application of Graph GP across three examples, where the pre-

dictive mean shows improved performance compared to Traditional GP but falls short of the

sparse intrinsic GP, especially SI-GPVI. However, in practice, the predictive variance it provides

tends to be too small, leading to abnormally large values in the calculation of the PLL, which

renders the comparison meaningless. Nevertheless, it is still useful to construct BO with Graph

GPs as the surrogate model. This approach offers a different perspective on optimisation over

manifolds. By leveraging the inherent graph structure to model relationships between points on

the manifold, Graph GP introduces an alternative way to explore the search space. Although the

predictive variance may present some problems, the overall framework can still provide valu-

able information for the optimisation process. This also represents a further exploration of the

application of Graph GPs on manifolds.

Graph BO is summarized in Algorithm 5. The PI, as shown in Equation (7.1), is used to

determine the next optimal location. The initial phase begins with the construction of the graph

structure, which serves as the preparatory step for a Graph GP. Before the iteration begins, it is

first necessary to compute the n× n affinity matrix W and derive the random walk normalized

Laplacian ∆rw. The eigenvalues λ and eigenvectors f of the Laplacian matrix ∆rw are crucial

components in defining the GP on the graph structure. In each iteration, Graph GP calculates the

predictive mean and variance using the current training points D first. Based on this foundation,

the PI function identifies the next point to explore, which is then used to update the training

points D . This updating process continues until the maximum number of iterations is reached.

In the next section, Graph BO will be implemented in three examples and compared to the results

from the other BO methods.
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Algorithm 5 Graph Bayesian Optimisation on manifolds
Initial Phase
1.1 Calculate n×n affinity matrix Ã and derive the random walk normalized Laplacian ∆rw,
using the approach proposed by [41], as in Equation (5.2);
1.2 Calculate eigenvalues λ , eigenvectors f of ∆rw;
1.3 Build the Graph Matérn kernel from eigenvalues λ and eigenvectors f using Equation
(5.5);
1.4 Construct the Graph GP model.

Iterative Phase
2.1 Initialise the Graph BO by selecting the initial locations from the grid points S on M. D0
is initialised as D0 = {s0,y0}
2.2 Update the posterior distribution by finding si+1 to update training set D :
for i = 1, . . . , I { I is the number of iterations } do

1. optimise the hyperparameters of Graph GPs using Equation (5.6);
2. Calculate predictive mean and variance on grid points S from the Graph GPs as in Equation (7.8) and (7.9);
3. Find si+1 by optimising PI function as in Equation (7.1);
4. The training set is augmented Di = {Di−1,(si,yi)};

end for
Selecting the global optimum point from the set D .

7.6 The Application and Comparison of All Proposed BO Meth-

ods

Given the successful application of BO in Euclidean spaces, this chapter aims to extend its

application to manifolds. In the previous sections, five distinct BO approaches on manifolds are

introduced. The main difference between these methods lies in the different surrogate models.

Each of these methods provides a unique approach to optimising functions on manifolds. In the

application of BO, particularly on real-world datasets, it is often important to consider not only

the ability to identify the optimum value, but also the ability to identify its location. Since the

optimum value appears at a specific location in the domain, it is also meaningful to examine how

close the point found by each method is to the true optimal location, both in terms of distance and

surrounding area. However, as discussed in Chapter 1 and Chapter 2, unlike in Euclidean space,

there is no common and suitable notion of distance on a manifold that fully reflects intrinsic

geometric properties and complex boundaries. Consequently, this section not only evaluates the

optimum value found by each method, but also analyzes whether the identified point lies near

the true optimal location and whether the corresponding region of the true optimum has been

effectively explored.
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The main focus of BO remains on optimising the function value, so comparisons are pri-

marily based on the gap between the obtained and true optimal value. This section will use the

U-shape domain, the Bittern-torus, and the real-world dataset of the Aral Sea to demonstrate

and compare the performance of different BO methods.

7.6.1 The Implementation of Proposed BO on the U-shape

The U-shape, previously introduced in Section 1.3.1 as an example of a 2-dimensional manifold,

will be used to implement the proposed BO methods. Figure 7.2 shows the original form of the

U-shape as well as the U-shape constructed from 418 grid points. By applying BO to observa-

tions chosen from evenly distributed grid points on the manifold (rather than from a continuous

surface), resource wastage could be effectively minimized. Considering the budget constraints,

all BO methods are expected to find the optimal point on the U-shape using training points that

make up only 5% of the total grid points. With 418 grid points and an initial set of 3 training

points, the comparison focuses on how closely each BO method’s optimal values align with the

true optimal value after only 18 iterations, utilizing a total of 21 points (5% of the 418 grid

points) to explore the U-shape. The optimal point to be identified in this example corresponds

to the maximum value point. The true optimal value on the U-shape is 6.1188, as indicated by

the purple dot in Figure 7.2.

From the 418 grid points of the U-shape, 20 training sets are randomly selected, each con-

taining 3 points as the initial locations for the optimisation. Conducting 20 experiments ensures

robustness and reliability by averaging the outcomes across different initial training points, re-

ducing the influence of randomness and leading to more generalizable conclusions. One of the

training sets is selected for demonstration, as shown in Figure 7.3. The figure illustrates the

predictive mean in the final step of the BO process for each method using this set, allowing

for the observation of the distinct characteristics of the surrogate models GPs, associated with

each BO method. The blue points denote the three initial points, while the black crosses mark

the exploration points identified by the PI function during the BO iterations. The purple point

indicates the optimal point found by the current BO method.

In Figure 7.3, all three initial points are located in the lower part of the U-shape. In panel (a),
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(a) (b)

Figure 7.2: Original U-shape (a) and U-shape shown in grid points (b), with optimal point
indicating as the purple dot near the boundary.

the optimal point found by Traditional BO is located on the far left side of the U-shape, which is

notably distant from the true optimum located in the upper-right region. This misidentification

reflects not only a suboptimal function value but also a failure in locating the correct region

where the global optimum resides. The reason for this failure is that the surrogate model used by

Traditional BO, the Traditional GP, fails to recognize the boundaries of the U-shape. During the

iterations, the predictive mean and variance generated for the upper-right region are influenced

by the lower-right region, leading the model to mistakenly assume that the upper-right region

also has relatively low values. Additionally, because the upper-right region is closer to the initial

points in the lower-right region in Euclidean space, the model predicts a smaller variance for

this area. As a result, the acquisition function PI evaluates the upper-right region as having

low exploration value, leading to no exploration in that area. This decision not only causes the

algorithm to miss the global optimum in terms of value but also reveals its inability to infer or

explore the correct spatial location of the optimum. In panel (b), Graph BO also fails to find

the optimal point, and the reason is similar to that of Traditional BO. The surrogate model,

Graph GP, is unable to recognize the intrinsic geometric features of the U-shape, leading it to

assume that the upper-right and lower-right regions have similar values. Its inability to capture

the intrinsic geometric features of the U-shape leads to a misinterpretation of where high-value

regions may lie. This poor judgment prevents the method from identifying the true optimal
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point located at the boundary of the upper-right region. Panels (c), (d), and (e) correspond

to the results of Intrinsic BO with VI, Intrinsic BO with DIC, and Intrinsic BO with DTC,

respectively. The core of their surrogate model is the Intrinsic GP, which is proposed in Chapter

3. By using the transition density of BM paths to approximate the heat kernel on the manifold,

Intrinsic GP adopts the intrinsic geometric information of the manifold to create a predictive

model that better suits the manifold’s structure. The differences among these BO methods lie

in the various sparse methods they employ, specifically SI-GPDIC, SI-GPDTC, and SI-GPVI,

as introduced in Chapter 4. In Panel (c), Intrinsic BO with VI is the only one among the five

methods that successfully finds the optimal point. The surrogate model, SI-GPVI, as with the

excellent performance in Chapter 6, provides more accurate predictions in each iteration of

BO, leading to it finding the optimal point. By contrast, although the other two Intrinsic BO

methods in Panels (d) and (e) do not find the optimal point, they benefit from the utilization

of the manifold geometric features to find the upper-right region, the correct location of the

optimum. This indicates partial success in identifying the optimal region, even if the exact

value is not achieved. This represents a significant improvement over Traditional and Graph

BO, which failed to explore this area at all. Their predictions for the upper-right region are not

influenced by the lower regions.

A detailed comparison of the various methods will be made through numerical analysis. Ta-

ble 7.1 summarizes the optimal values found by each BO method across 20 experiments. The

optimal points found by Traditional BO have a wide range (5.6335) and a lowest mean and me-

dian, suggesting instability and poor performance on the manifold. Graph BO performs better

than Traditional BO, but there are still cases where the upper right region cannot be explored.

Intrinsic BO with VI outperforms other methods with the highest median (5.924) and the small-

est range (0.81), indicating both accuracy and reliability. Given the sample size (n = 20) and

the violation of the normality assumption, the paired t-test is not suitable for evaluating statis-

tical significance. Consequently, the Wilcoxon Signed-Rank Test is employed. It demonstrates

statistically significant superior performance compared to both Traditional BO and Intrinsic BO

with DIC, as confirmed by the Wilcoxon Signed-Rank Test (p = 0.002995 and 0.002978, respec-

tively). Due to the presence of tied and zero differences, the p-value is computed using a normal

approximation rather than the exact method. Intrinsic BO with DTC also performs well but is

slightly inferior to the VI method in all aspects. The optimal points found by Intrinsic BO with
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(a) (b)

(c) (d)

(e)

Figure 7.3: Different BO methods applied on the U-shape with same initial points and number
of iterations. The blue dots represent the initial points, the black crosses indicate the points
explored during the BO process, and the purple dot marks the optimal point found by each
method. (a) the implementation of Traditional BO on the U-shape domain; (b) the implemen-
tation of Graph BO on the U-shape domain; (c) the implementation of Intrinsic BO with VI on
the U-shape domain; (d) the implementation of Intrinsic BO with DIC on the U-shape domain;
(e) the implementation of Intrinsic BO with DTC on the U-shape domain.
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DIC display a wide range and relatively low mean, indicating poor performance.

Summary (Optimum: 6.1188) Min. Median Mean Max. Range
Tra 0.4853 4.7606 4.1568 6.1188 5.6335

Graph 3.667 6.1188 5.445 6.1188 2.452
VI 5.309 5.924 5.882 6.1188 0.81

DIC -0.8101 5.5676 5.2481 5.8262 6.6363
DTC 4.792 5.989 5.758 6.116 1.324

Table 7.1: Statistical summary of optimal point found by each BO method on the U-shape.

Figure 7.4 visualizes the statistical analysis results using a violin plot. The red horizontal

line indicates the true global value. Among all methods, only Intrinsic BO with DIC failed

to find the optimal point across all 20 sets. This is attributed to the predictive variance issues

in its surrogate model SI-GPDIC. Since the optimal point lies near the boundary, far from the

inducing points, the variance representing uncertainty incorrectly approaches zero, which leads

to a lack of exploration in this region. This issue is discussed in detail in Section 4.2. From

Figure 7.4, it is evident that Intrinsic BO with VI consistently outperforms the other methods

in finding the optimal point (the maximum value) on the U-shape domain, making it a robust

choice for manifold-based optimisation tasks.

(a)

Figure 7.4: Violin plot of optimal points found by different BO methods on the U-shape domain;
the red horizontal line is the true global value; the dots at each end of the bold black lines
represent the first and third quartiles; the white dot represents the median.
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7.6.2 The Implementation of Proposed BO on the Bitten-torus

The Bitten-torus is used as a representative example of a three-dimensional manifold as intro-

duced in Section 1.3.2. The proposed BO methods aim to select the optimal point from the

600 grid points evenly distributed on the Bitten-torus, which adequately cover the surface of the

Bitten-torus. In this example, BO attempts to find the minimum value point on the Bitten Torus,

with the optimal point value being 0.1598, as shown as pink square in Figure 7.5(a). While the

previous U-shape example focuses on maximizing the objective function, this example helps

demonstrate the flexibility of BO in addressing both minimization and maximization problems.

From the 600 grid points on the Bitten Torus, 20 training sets are randomly selected, each con-

sisting of three points. In Figure 7.5(a), the purple dots represent one of these sets, showing

the initial points selected from the Bitten Torus. Given the 5% budget constraints, with 600 grid

points and 3 initial points, all BO methods are expected to explore using a total of 30 points (i.e.,

5% of the grid points), meaning the optimal point needs to be found within 27 iterations. The

comparison will focus on how the optimal values found by each BO method align with the true

optimal value.

Figure 7.5 compares the performance of each BO method using the same set of initial points,

shown as purple dots. In panel (b), Traditional BO fails to find the optimal value, and the op-

timal point it finds is far from the true optimal point. This result shows not only suboptimal

performance in value but also a lack of ability to locate the optimal region on the manifold.

This issue arises because the surrogate model, Traditional GP, cannot recognize the manifold’s

intrinsic geometric features and boundaries. When the optimal point (with the minimum value),

is located at the boundary, the predictions made by Traditional GP in this region are influenced

by the initial points in the red area which have higher values. As a result, it fails to recognize the

boundary as a potentially optimal location, limiting both value discovery and spatial localiza-

tion. It incorrectly estimates this region as having higher values and lower uncertainty, leading

to the neglect of exploration in this area and producing an overstated predictive mean. This

neglect prevents the model from identifying not just the value but also the spatial location of

the optimum. This causes Traditional BO to incorrectly judge the optimal point to be located

in the central region of the Bitten Torus, leading to failure in identifying the true optimal point.

In panel (c), Graph BO has similar issues as Traditional BO and fails to find the optimal point.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Comparison of different BO methods applied to the Bitten-torus using the same
number of iterations and initial points, represented by the purple dots. The black dots indicate
the exploration points during the BO process, and in (a), the pink square marks the true global
optimal point (minimum), which all BO processes aim to find. In the remaining figures, the pink
square shows the optimal point found by each method: (a) the original Bitten-torus with the true
optimal point; (b) Traditional BO; (c) Graph BO; (d) Intrinsic BO with VI; (e) Intrinsic BO with
DIC; (f) Intrinsic BO with DTC.
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However, in this set, the impact on Graph GP is less severe because there is still some distance

from the initial point in the red region to the blue region boundary. However, the method still

does not demonstrate an effective ability to localize the boundary region containing the true op-

timum. Graph GP transforms the manifold into a graph structure, where the influence between

points diminishes as their connections weaken. In contrast, when using Sparse Intrinsic GPs as

surrogate models, which account for the manifold’s intrinsic structure, the BO methods in panels

(d), (e), and (f) deliver strong results. Specifically, Intrinsic BO with VI (panel d) and Intrinsic

BO with DTC (panel f) both successfully locate the optimal value at the boundary. While Intrin-

sic BO with DIC (panel e) does not find the exact optimal point, it reaches a point close to the

optimal value. Its exploration pattern covers the boundary area well, suggesting that it captures

the right region even if the precise point is missed. The use of Intrinsic GPs, which capture the

geometric properties of the manifold, indicates not just convergence in function value, but also a

strong ability to guide exploration toward the correct region where the optimum lies. The figures

clearly illustrate that for Intrinsic BO, the two sides of the "bitten" region remain independent,

which closely resembles the true structure of the Bitten-torus.

Table 7.2 shows a statistical summary of the optimal points found by different BO methods

on the Bitten Torus, and Figure 7.6 uses the violin plot to visualize these results, where the

red horizontal line shows the true global optimal value. It is obvious that Traditional BO has the

widest range (2.4377). The mean optimal value (0.4551) found by Traditional BO is significantly

higher than other BO methods, indicating ineffectiveness in finding the optimal point. Graph

BO also displays a high mean value (0.2911) and a relatively wide range. The three Intrinsic

BO methods, VI, DIC, and DTC, all outperform Traditional BO and Graph BO. Among them,

Intrinsic BO with VI shows the best performance, which has the lowest mean optimal value

(0.1972) and the smallest range (0.1965). It shows significantly superior performance compared

to Traditional BO, Graph BO, and Intrinsic BO with DIC, as confirmed by the Wilcoxon Signed-

Rank Tests, with p-values of 0.004954, 0.006687, and 0.02342, respectively. Intrinsic BO with

DTC also shows strong results, though slightly less consistent than VI. These results show that

incorporating intrinsic geometric characteristics into the BO method enhances its effectiveness

on manifolds, with Intrinsic BO with VI, driven by SI-GPVI, proving to be the most reliable and

effective approach.
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Summary (Optimum: 0.1598) Min. Median Mean Max. Range
Tra 0.1598 0.2218 0.4551 2.5975 2.4377

Graph 0.1632 0.2598 0.2911 0.5195 0.3563
VI 0.1598 0.1632 0.1972 0.3563 0.1965

DIC 0.1890 0.2339 0.2528 0.4936 0.3046
DTC 0.1598 0.1632 0.2248 0.3598 0.2

Table 7.2: Statistical summary of optimal point found by each BO method on the Bitten-torus.

(a)

Figure 7.6: Violin plot of optimal points found by different BO methods on the Bitten-torus; the
red horizontal line is the true global optimal value; the dots at each end of the bold black lines
represent the first and third quartiles; the white dot represents the median.

7.6.3 The Implementation of Proposed BO on the Aral Sea

The previous section has demonstrated and compared the application of five proposed BO meth-

ods on both two-dimensional and three-dimensional manifolds. As analyzed in Section 7.4, In-

trinsic BO with VI performs more effectively on manifolds compared to other methods, which

is attributed to the superior performance of its surrogate model, SI-GPVI. This section will uti-

lize the real-world dataset of the Aral Sea as introduced in Section 1.3.3 to further evaluate and

compare the proposed BO methods. It considers remotely sensed chlorophyll data in the Aral

Sea to investigate sites with the highest chlorophyll concentration. Chlorophyll level serves as

an indicator of water quality, making this study valuable for monitoring and predicting envi-

ronmental pollution. Additionally, it contributes to the protection of the fragile ecosystem of

the Aral Sea. With 485 grid points scattered within the complex boundary [166], the location
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with highest level of chlorophyll concentration (19.278724) is shown as a purple dot in Figure

7.7(a), which also being the optimal point that the BO methods aim to explore. When con-

ducting inference and prediction tasks, it’s essential to consider the intrinsic geometry of the

sea and its complex boundaries. The Euclidean distance between two points, which represents

the ’straight-line’ distance, may not accurately reflect the true separation when accounting for

land barriers or other obstructions. Locations separated by such boundaries often have distinct

chlorophyll levels, which the surrogate models need to capture to ensure accurate predictions

and exploration outcomes. In such cases, regions that appear close in Euclidean space may in

fact be disconnected or difficult to reach on the manifold, making it harder for models relying

solely on Euclidean proximity to correctly identify the location of the optimum.

When the budget is set to 5%, with 3 initial points, the BO methods are expected to explore

using 24 points (5% of 485 grid points), i.e., find the optimal point within 21 iterations. The

20 training sets are randomly selected from the 485 grid points of the Aral Sea, with each set

containing 3 initial points. Figure 7.7 illustrates the results of the five proposed BO methods

using one of the selected training sets, with three initial points located in the left region. In panel

(b), influenced by the initial point positioned in the lower part of the west side, the surrogate

model in Traditional BO (i.e., Traditional GP) fails to account for the land barrier in the middle.

As a result, it assumes that nearby Euclidean locations are smoothly connected, which misleads

the model into focusing exploration away from the disconnected region containing the true opti-

mum — thus impairing both the value estimation and the ability to identify the correct location.

Traditional BO incorrectly assumes that the region near the left boundary on the east side has

similarly low values, leading to insufficient exploration in the lower-left area of the east side

of the Aral Sea. Consequently, Traditional BO’s final chosen optimum lies in a more northern

region of the Aral Sea rather than in the true optimal area (the lower-eastern basin). Similarly,

in panel (c), Graph BO also overlooks the lower-left area of the east side of the sea, leading

to lower predicted values in that region and causing the optimal point found to be higher than

the true optimal point for the Aral Sea. However, in this dataset, certain real-world noise or

sampling deviations appeared to unintentionally benefit Traditional BO and Graph BO, helping

them explore the region near the true optimum that would otherwise have been overlooked. In

panels (d), (e), and (f), it is evident that the Intrinsic BO methods using Sparse Intrinsic GP

as the surrogate model successfully avoid the issues associated with Traditional BO and Graph
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Different BO methods applied on the Aral Sea with same number of iterations and
initial points, represented by the blue dots. The green crosses indicate the points explored during
the BO process, and in (a), and the purple dot marks the true optimal point (maximum), which
all BO processes aim to find. In the remaining figures, the purple dot marks the optimal point
found by each method: (a) the true chlorophyll level of the Aral Sea; (b) the implementation of
Traditional BO; (c) the implementation of Graph BO; (d) the implementation of Intrinsic BO
with VI; (e) the implementation of Intrinsic BO with DIC; (f) the implementation of Intrinsic
BO with DTC.
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BO. Sparse Intrinsic GP utilize the transition density of BM paths to estimate the heat kernel

on the manifold, incorporating the manifold’s intrinsic geometric structure into the predictive

model. This allows for more accurate predictions on manifolds. In particular, panel (d) shows

that Intrinsic BO with VI is the only method among the five methods that successfully identifies

the true optimal point in this case, demonstrating not only convergence in function value, but

also a strong ability to guide exploration toward the correct region where the optimum lies.

Figure 7.8 provides a clearer illustration of the impact of the boundary on each method by

showing the predictive mean of the surrogate models after only one iteration, using the same

initial points as those in Figure 7.7. Since Intrinsic BO with DIC, DTC, and VI all rely on the

principle of simulating BM paths, it is sufficient to present the results of Intrinsic BO with VI.

Figure 7.8 (a) and (b) show the one-step iteration results for Traditional BO and Graph BO,

respectively. It is more evident here that the surrogate models of these two methods smooth

across the isthmus of the central peninsula, providing similar predictions on both sides of the

isthmus due to the close spatial vicinity of points in Euclidean space. In contrast, Figure 7.8 (c)

shows that Intrinsic BO with VI clearly provides different predictive results on either side of the

isthmus. The presence of the isthmus causes very large actual distance between the two sides of

the sea, which is accurately reflected in the model’s predictions.

Table 7.3 provides a statistical summary of the optimal points found by all BO methods after

21 iterations on the Aral Sea. The violin plot in Figure 7.9 visually compares the distribution

of these optimal points found by different BO methods. The red horizontal line is the true

global optimal value 19.278724. Graph BO is the worst-performing method among all, with

the most significant range (9.943) and the lowest mean (13.682), reflecting great prediction

instability and inaccuracy. Traditional BO fails to successfully identify the optimal point in all

20 training sets when applied to the Aral Sea. Although it shows relatively good predictive

results compared to other methods, it still falls short compared to the Intrinsic BO with VI.

As in the case of the U-shape and Bitten-torus applications, Intrinsic BO with VI performs

better than other methods in all aspects, offering more stable and accurate performance. It

significantly exceeds the performance of both Graph BO and Intrinsic BO with DIC, as validated

by the Wilcoxon Signed-Rank Tests, with p-values of 0.0007208 and 0.005346, respectively.

Given that the common significance threshold for the p-value is 0.05, these results are highly

significant.
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(a) (b)

(c)

Figure 7.8: Different BO methods with only one iteration, the blue dots represent the initial
points, and the purple dot is the optimal point found by each BO method, the green cross repre-
sents the optimal point found after one iteration: (a) the implementation of Traditional BO; (b)
the implementation of Graph BO; (c) the implementation of Intrinsic BO with VI.

Summary (Optimum: 19.279) Min. Median Mean Max. Range
Tra 11.89 15.41 16.05 17.99 6.1

Graph 9.336 13.649 13.682 19.279 9.943
VI 13.19 16.57 16.71 19.279 6.089

DIC 11.49 14.90 14.22 15.67 4.18
DTC 11.49 15.14 15.69 19.279 7.789

Table 7.3: Statistical summary of optimal point found by each BO method with 21 iterations on
the Aral Sea.
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(a)

Figure 7.9: Violin plot of optimal points found by different BO methods on the Aral Sea; the
red horizontal line is the true global optimal value; the dots at each end of the bold black lines
represent the first and third quartiles; the white dot represents the median.

7.6.4 Impact of the Number of Inducing Points

Due to the abrupt changes, noise, and irregularities inherent in real-world data, the Aral Sea

dataset lacks smoothness, resulting in instability in the performance of BO methods based

on sparse intrinsic GPs. For example, in the case of Intrinsic BO with Variational Inference,

the range of optimal values identified is 0.81 for the U-shape and 0.1965 for the Bittern-torus,

whereas in the Aral Sea case, it increases significantly to 6.089, indicating substantial variability.

As increasing the number of inducing points generally leads to a more accurate approximation

and enhances the model’s ability to fit complex functional structures, it is expected that varying

the number of inducing points may improve the BO algorithm’s ability to identify the true opti-

mum. This consideration motivates a sensitivity analysis on the number of inducing points, with

the aim of improving the performance of intrinsic BO methods in challenging, non-smooth data

settings such as the Aral Sea case.

In Section 7.6.3, the Aral Sea experiments use 10 inducing points, with their locations shown

in Figure 6.8(a). To investigate the impact of the number of inducing points, additional experi-

ments are conducted using 5, 15, 20, and 42 inducing points, while keeping other experimental

settings fixed. All configurations are evaluated using the same 20 sets of initial training points to
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ensure a fair comparison. The distributions of the inducing points for each setting are provided

in Appendix D.

The results show that increasing the number of inducing points does not consistently lead to

significant improvements in performance on the Aral Sea dataset. When the number of inducing

points increases from 10 to 15 and 20, no clear performance gain is observed, while an improve-

ment appears at 42 inducing points. However, this improvement results in a 4.2-fold increase

in computational time, and the dense distribution of inducing points at this level undermines the

fundamental advantage of using the sparse method. Although slight variations in outcomes are

observed across different settings with 5, 10, 15, 20, and 42 inducing points, these differences

are not statistically significant. The Wilcoxon Signed-Rank Test is conducted on paired results

obtained from the same 20 initial point sets across different inducing point settings. The test re-

sults show that only the comparison between 5 and 10 inducing points is statistically significant

(where the p-value is less than 0.0001). All other comparisons with 10 inducing points have

p-values greater than 0.05. This suggests that increasing the number of inducing points beyond

10 does not lead to statistically significant improvements in optimisation performance. The ob-

served fluctuations are likely due to noise and randomness in the dataset rather than systematic

gains from using more inducing points. In light of this, increasing the number of inducing points

does not necessarily yield better performance. A moderate number of inducing points is suffi-

cient to explore the manifold effectively without bringing unnecessary computational burden.

Future work may consider alternative strategies to improve the performance of BO methods on

real-world cases.

7.7 Conclusion of All BO Methods Proposed and Applied

In Chapter 6, the U-shape is used as the representative example of two-dimensional manifolds

to compare the performance of five GP methods: Traditional GPs, Graph GPs, SI-GPDIC, SI-

GPDTC, and SI-GPVI. These methods have already been discussed in previous chapters. The

comparison also extends to a three-dimensional manifold, the Bitten-torus, and a real-world

dataset, the Aral Sea. Three Sparse Intrinsic GPs stand out because their kernel functions ac-

count for the intrinsic geometric structure of the manifold, leading to more accurate predictions
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when compared to Traditional GPs and Graph GPs, according to the root mean square error

(RMSE) indicator. Additionally, SI-GPVI and SI-GPDTC methods generally provide better

predictive distributions, as evaluated by the predictive log likelihood (PLL) indicator, which

utilizes both predictive mean and variance. Among these methods, SI-GPVI consistently out-

performs the others across all three examples. Encouraged by the successful of these methods

in regression tasks on manifolds, this chapter explores BO on manifolds. BO is an advanced

optimisation technique in Euclidean space, and this chapter extends its application to address

optimisation challenges on manifolds.

Section 7.1 provides the background of BO and discusses its significance for optimisation

problems on manifolds. The core task is defined as finding the optimal point from a finite set of

grid points on the manifold while operating under a budget constraint. In this case, the budget

constraint is expressed as a limited number of iteration steps, set at 5% of G
′
, the total number of

grid points S. BO consists of two main parts: the surrogate model and the acquisition function.

The five GP methods mentioned earlier can serve as the surrogate models to predict the objective

function. PI function acts as the acquisition function, selecting the next point to explore in the

following iteration. This newly selected point updates the training set, starting the next cycle of

iterations. The process repeats until the predefined number of iterations is completed, ensuring

an efficient and targeted search for the optimal point on the manifold.

Section 7.2-7.5 propose five different BO algorithms based on different surrogate models

mentioned above, namely Traditional BO, Graph BO, Intrinsic BO with DIC, Intrinsic BO with

DTC, and Intrinsic BO with VI. Obtaining knowledge of the geometry and intricate boundaries

of the manifold through the heat kernel allows BO to more effectively navigate the manifold

and enhance the precision of resolving the optimisation problem, when using SI-GPDIC, SI-

GPDTC, and SI-GPVI as surrogate models. However, for Traditional BO and Graph BO, the

surrogate model is related to Euclidean distance, which provides less accurate predictions for the

iterative process. Especially in the initial stages of iteration, due to the small number of training

points offering limited information, inaccurate GP predictions may lead the PI to explore incor-

rect regions. Although these errors may be corrected to some extent after multiple iterations,

they can still affect the results of BO, especially when existing a budget constraint.

Section 7.6 applies all proposed BO methods to the three examples used in Chapter 6, provid-
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ing a comprehensive evaluation of their performance. The performance of these BO methods in

the three examples is generally consistent with the performance of their corresponding surrogate

models. The shortcomings of the surrogate model on manifolds continue to emerge throughout

the iterative process, though these problems may be relieved partially. For instance, for BO,

its surrogate model, Traditional GP, lacks consideration of the manifold’s intrinsic features, de-

pending on Euclidean distances. This limitation in capturing the true geometric properties of

the manifolds can seriously affect the whole optimisation process, especially when the optimal

point is near the boundary. Both Traditional BO and Graph BO are highly sensitive to initial-

isation and often get trapped in central regions of the U-shape and Bitten-torus. This occurs

due to inaccurate estimations near the boundary, influenced by the Euclidean distances between

the two ends. Correspondingly, BO methods also benefit from the strengths of their surrogate

models. For example, Intrinsic GPs consider the geometric features of the manifolds, enhancing

the accuracy and effectiveness of the optimisation process. Intrinsic BO with VI performs more

effectively on manifolds compared to other methods, owing to the exceptional performance of

its surrogate model, SI-GPVI. When the implicit objective function is non-differentiable, multi-

peaked and non-convex, Intrinsic BO with VI still presents advantages compared to others in

the Aral Sea example. Furthermore, the analysis of the number of inducing points suggests that

simply increasing the number of inducing points does not guarantee better performance.

In conclusion, this chapter expands the application of BO to the field of manifolds. The

chapter proposes five BO methods suitable for manifolds. Among these methods, Intrinsic BO

with VI is prove to be the most promising, consistently obtaining accurate and dependable op-

timisation results across various manifold structures. It is a powerful tool for solving complex

optimisation problems in manifold settings. The next chapter will give a comprehensive dis-

cussion throughout this work, highlighting the contributions made and suggesting the potential

directions for future studies.



Chapter 8

Conclusion

Considering the more complex geometric structures on manifolds compared to Euclidean space,

Traditional GPs cannot be directly applied to manifolds. This thesis proposes several GP ap-

proaches dedicated to manifolds and compares them with existing GP methods when applying

to manifolds. The superiority of the proposed methods is demonstrated through three represen-

tative examples.

8.1 Summary

Standard statistical and machine learning tools typically require input data to lie in Euclidean

space. However, many types of data are better represented in more general nonlinear metric

spaces, such as Riemannian manifolds. This work aims to explore regression and optimisation

on manifolds, focusing on the application and extension of GP methods in the field of mani-

folds. GP is a well-established theory in Euclidean space, but one of the most challenging tasks

to explore GP effectiveness in manifold is how to capture the intrinsic geometric characteristics

of the manifold and its complex boundaries. This study proposes several GPs customised for

manifolds, specifically SI-GPDIC, SI-GPDTC, and SI-GPVI, and compares them with Tradi-

tional GP and Graph GP across three examples, demonstrating the superiority of the proposed

methods. Based on these GP methods, several BO approaches for solving optimisation problems

on manifolds are developed. The details are presented below.

148
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In chapter 1, this thesis begins by introducing the research motivation and the background

behind the topic selection. It outlines the key goals and contributions of the thesis. Additionally,

it presents an overview of the case studies that will be explored throughout the thesis, setting the

stage for the subsequent chapters.

Chapter 2 provides the theoretical background necessary for deriving and solving the new

models. It begins with an introduction to Riemannian geometry which are crucial for under-

standing the manifold structure. Then, Chapter 2 moves on to the framework of Bayesian op-

timisation and provides an example of 1-dimensional Bayesian optimisation. This framework

lays the foundation for the Bayesian optimisation on manifolds discussed in Chapter 7. Among

its topics, the introduction to GPs also establishes the groundwork for GPs on manifolds in

Chapters 3, 4 and 6. Finally, Chapter 2 introduces graph theory, with a particular focus on the

Graph Laplacian (GL), used in Chapter 5 for Graph GPs.

Chapter 3 explores the application of GPs on manifolds. It begins by introducing Traditional

GPs used in Euclidean space based on the RBF kernel, highlighting their limitations in effec-

tively handling the complex boundaries of manifolds. As a result, the chapter introduces the

Intrinsic GPs, which considers the geometric features of manifolds, thereby improving the ac-

curacy of evaluations. Intrinsic GPs use the transition density of BM to simulate the heat kernel

on manifolds. Furthermore, the chapter addresses the challenge of BM paths at the bound-

ary and proposes a novel "reflection" method based on the Neumann boundary condition. It

offers a comparison of the "reflection" and "resample" methods, along with their respective

advantages and disadvantages. In one-dimensional space, the "reflection" method clearly out-

performs the "resample" method, particularly in estimating the heat kernel near boundaries. In

two-dimensional space, the accuracy of these methods is assessed by comparing the predictive

means of the Intrinsic GP against true function values. In Section 3.3, the challenges in calculat-

ing the predictive variance for the Intrinsic GP—specifically the need to simulate BM from each

grid point—are highlighted. The next chapter will propose three new GPs by utilizing sparse

methods to address this issue.

Chapter 4 proposes the use of sparse methods to address the computational challenges inher-

ent in Intrinsic GPs discussed earlier. This chapter aims to improve the computational efficiency

while maintaining accuracy in GP models on manifolds. Sparse methods greatly reduce the
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computational complexity of Intrinsic GPs by introducing a set of m inducing points z, making

it feasible for large-scale datasets and high-dimensional manifolds. BM paths only need to be

simulated from the inducing points instead of the grid points, where m << G
′
. Additionally, the

computational complexity of the inversion in Intrinsic GPs, which is typically O(n3), is reduced

to O(nm2) using sparse methods, where m < n, significantly reducing the computational cost.

This chapter proposes three Sparse Intrinsic GP methods:

• Sparse Intrinsic GP with DIC (SI-GPDIC) - DIC ensures that information flows from

training points to testing points exclusively through the inducing points. However, DIC

has limitations in predictive accuracy due to the degeneracy of the prior. As test points

move further from inducing points, the predicted variance unreasonably approaches zero.

• Sparse Intrinsic GP with DTC (SI-GPDTC) - It shares the same mean as SI-GPDIC but

resolves the issues present in the DIC method. The key difference between these two

approaches is that fr possesses its own prior variance, denoted by Σrr, instead of ΣrzΣ−1
zz Σzr.

This prior variance corrects the uncertainty problem found in DIC.

• Sparse Intrinsic GP with VI (SI-GPVI) - It provides more accurate and stable predictions.

Instead of relying on exact or sampling-based methods, SI-GPVI transforms this problem

into an optimisation problem, making it more efficient and tractable. It approximates the

true posterior distribution with a simpler distribution by minimizing the KL divergence

between them. Minimizing the KL divergence, as derived in Section 4.4, is equivalent to

maximizing the lower bound of the log marginal likelihood function. Building on this,

Section 4.4 derives the predictive distribution for SI-GPVI, simplifying the variance func-

tion for practical applications.

This section also explores how the inducing points should be selected. Further applications and

comparisons among these methods are provided in Chapter 6.

Chapter 5 explores another theoretical framework Graph GPs on manifolds, with the core

idea of representing the manifold as a graph structure. By utilizing the graph Matérn kernel, it

extends the application of GPs to manifolds with complex boundaries. The construction of this

graph is limited by several factors, such as the number of vertices, the similarity between in-

trinsic distances on the manifold and Euclidean distances, and the differences between local and
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global characteristics of the manifold. These limitations can significantly affect the performance

of Graph GPs.

Chapter 6 uses the three cases introduced in Chapter 1—namely, the U-shape, the Bitten-

torus, and the real-world dataset Aral Sea—to compare the five GPs on manifolds proposed

in the previous chapters. The final example is a real-world dataset, the chlorophyll levels in

the Aral Sea. The application of this example is specifically significant because it shows the

feasibility and applicability of the proposed methodology in the real world. It also highlights

the utility of these GP methods in environmental studies. RMSE and PLL are two metrics

used for comparison in this research. In each example, 20 sets of experimental groups are

randomly selected from the grid points S on the manifold. These examples demonstrate the

limitations of the Traditional GP and Graph GP, which rely on Euclidean distance and perform

poorly in capturing the true manifold structure. The Sparse Intrinsic GP methods perform better

than the others. Among them, SI-GPVI demonstrates superior performance, showcasing its

accuracy and robustness in applications on manifolds. This makes it a strong choice for real-

world applications.

To address optimisation problems on manifolds, Chapter 7 proposes several BO method-

ologies, building on the previous works discussed in earlier chapters. BO uses these GPs as

surrogate models and the PI as the acquisition function to iteratively search for the optimal

point (maximum or minimum, depending on the requirements) within a limited number of iter-

ations. This limitation is due to budget constraints. Understanding the geometry and intricate

boundaries of the manifold enables BOs to navigate it more effectively and improve optimisa-

tion accuracy. Chapter 7 presents five BO algorithms: Traditional BO, Graph BO, Intrinsic BO

with VI, Intrinsic BO with DIC, and Intrinsic BO with DTC. These methods are applied to the

same examples used in Chapter 6 for comparative analysis. Intrinsic BO with VI performs the

best across all cases, consistent with the superior performance of its surrogate model, SI-GPVI.

This not only helps effectively solve optimisation problems on the manifold by providing the

most promising solutions, but also highlights the effectiveness of SI-GPVI in capturing the in-

trinsic geometry of the manifold. In addition, the analysis of inducing point selection suggests

that simply increasing their number does not necessarily lead to better performance, emphasis-

ing the importance of choosing an appropriate quantity to balance accuracy and computational

efficiency.
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8.1.1 Main Contribution

The main contribution of this work can be divided into three aspects:

• Chapter 3 improves the method for handling BM paths when reaching the boundary of

manifolds in Intrinsic GP. The "resample" method, where the next step of the BM path

falls outside the boundary, resamples the step until it within the boundary. However, this

approach results in lacking of exploration near the boundary, which leads to reduced accu-

racy for Intrinsic GP close to the boundary. To address this issue, this thesis introduces the

"reflection" method. When the next step falls outside the boundary, the path is reflected

back into the manifold while still preserving a small segment of the path that reached the

boundary, as shown in Figure 3.2. This method provides more accurate boundary infor-

mation and helps Intrinsic GP to better approximate the true heat kernel at the boundary,

which is particularly evident in the one-dimensional example shown in Figure 3.4. The

limitation of this "reflection" method arises from its computational difficulty, which in-

creases with boundary complexity. The choice between "reflection" and "resample" de-

pends on the specific task objective, and the requirements for computational complexity

and accuracy.

• This thesis proposes three GPs methods specifically designed for manifolds: SI-GPDIC,

SI-GPDTC, and SI-GPVI , increasing the feasibility of applying GPs to larger datasets

or higher-dimensional manifolds. These methods hold significant importance as they ad-

dress the computational challenges posed by Intrinsic GP, as well as retain the ability to

capture the intrinsic geometry of the manifold, which is essential for accurate predictions,

especially in domains where the Euclidean distance between points fails to reflect their

true relationship on the manifold. These methods not only relieved the simulation from

a large number G
′

of grid points S for Nbm times, but instead, require simulations from

only a small number m of inducing points z, where m << G
′
. This greatly reduces the

computational burden associated with BM path simulations. Additionally, they reduce

the high computational complexity O(n3) of inverting the covariance matrix in GPs to

O(nm2), where n is the number of training points and m << n. Among these methods,

SI-GPDIC, while achieving good results for the predictive mean, is highly sensitive to the

location of the inducing points in its predictive variance, often providing incorrect results
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when far from the inducing points. SI-GPDTC addresses this issue, offering more reliable

predictive variance while maintaining the same mean as SI-GPDIC. SI-GPVI incorporates

variational inference, transforming the problem of posterior inference into an optimisation

problem. It simplifies the lower bound of the log marginal likelihood and the predictive

variance function by approximating the diagonal elements. SI-GPVI is proved to outper-

form the other methods, making it the most reliable and effective algorithm for use on

manifolds.

• This thesis expands the application of BO on manifolds, making significant contributions

to solving optimisation problems on manifolds. While BO is widely used in Euclidean

space, directly applying it to manifolds often fails to find the optimum point, because it

tends to overlook the intrinsic geometric structure of the manifold. Inspired by SI-GPDIC,

SI-GPDTC, and SI-GPVI’s ability to capture the geometric structure of manifolds, this

thesis proposes several BO methods suited for manifolds: Intrinsic BO with DIC, Intrinsic

BO with DTC, and Intrinsic BO with VI. Additionally, this thesis also proposes Traditional

BO and Graph BO, which mainly rely on Euclidean distances on the manifold. Thanks to

the superiority of SI-GPVI, Intrinsic BO with VI consistently shows the best performance

in finding the optimum point on manifolds compared to other BO methods. The limitation

is that when applied in real-world scenarios, where the objective function is often non-

smooth and noisy, Intrinsic BO with VI, although superior to other methods, may struggle

to maintain its performance.

8.1.2 Limitation

Although the methodologies proposed in this research have demonstrated their effectiveness in

the text, there are still some limitations in practical applications. The three examples presented

in this thesis contain two-dimensional as well as three-dimensional manifolds, and the applica-

tion of the proposed methodologies to higher dimensions would involve more complex modeling

and more factors to be considered, which remain to be explored. The "reflection" method faces

limitations due to its increasing computational complexity as boundary conditions become more

intricate. BM paths not only need to determine whether the next step is outside the domain, but

also identify the specific boundary segment they have crossed and perform the necessary calcu-
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lations. Sometimes, a single reflection may not be enough to ensure that the BM path goes back

inside the boundary, after the initial reflection, the path might cross another boundary, remain-

ing outside the manifold and requiring multiple reflections. However, given the computational

complexity of the "reflection" method and its limited contribution to improving overall regres-

sion accuracy, the "resample" method, with its easier implementation and simplicity, remains a

strong choice in practical applications. Additionally, although SI-GPVI and Intrinsic BO with

VI have demonstrated superiority over other methods, their advantages are limited when dealing

with real-world cases like the Aral Sea, where the data is non-smooth and noisy. Further explo-

ration is required to improve the robustness of SI-GPVI and Intrinsic BO with VI when dealing

with this type of data.

8.2 Future work

This work proposes effective methods to address regression and optimisation problems on mani-

folds. However, various extensions can be made to this work. For example, this work anticipates

applications in higher-dimensional spaces, as the examples currently provided remain in three

dimensions. Expanding to handle more complex, higher-dimensional manifolds would further

demonstrate the robustness and applicability of these proposed methods and help address more

challenges in manifold study. Sometimes, a single reflection may not be enough to ensure the

path returns inside the boundary. After the initial reflection, the BM path might cross another

boundary, remain outside the manifold, and require multiple reflections. Additionally, in some

cases, the BM path may cross more than one boundary, making it necessary to accurately deter-

mine which boundary segment is reached first.

Below are additional potential directions for future research:

• The inducing points z used in this work are predefined and approximately uniformly dis-

tributed across the manifold. The inducing variables u induces the dependencies between

the training cases fD and testing cases fr, leaving an imprint on the final solution [126].

Despite the promising results of SI-GPVI on manifolds, optimising the location of in-

ducing points z would theoretically improve the model’s accuracy and efficiency. Several

greedy selection approaches have been suggested for GPs on Euclidean space. Csató et al.
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[31] use an online selection process that updates z by adding new points to the inducing

set only when their projection error exceeds a threshold. Keerthi et al. [74] use greedy

forward selection to choose z by adding points that maximize the reduction in negative

log-posterior. Snelson et al. [137] treat z as a parameter and optimise it by maximising the

marginal likelihood with respect to z. Smola et al. [136] maximise the effective posterior

instead of the marginal likelihood to find the optimal z. However, these methods are not

suitable for sparse intrinsic GPs, as the computational burden caused by simulating BM

paths makes it infeasible to determine the optimal z through greedy selection approaches.

Within the framework of sparse intrinsic GPs, how to optimise the location of inducing

points remains an area for further research.

• This thesis focuses on manifolds with complex boundaries, assuming that the intrinsic ge-

ometric features of the manifold are known. There has been abundant interest in learning

of In-BO on unknown manifolds, which means no intrinsic geometry available in advance.

This is a more practical approach for real-world applications, as accurately measuring the

geometry of data manifolds is often either impossible or expensive. Fichera et al. [41]

propose the Graph GPs that are capable of inferring the implicit structure of the man-

ifold directly from data. Peach et al. [119] propose Riemannian manifold vector field

GP (RVGP), which models vector fields on implicit manifolds. The most closely related

research is by Mu et al. [113], which propose the GP on Unknown Manifolds (GPUM)

methodology to learn the manifold’s geometry using probabilistic latent variable mod-

els, where BM simulated paths work. Inspired by these works, this research also extends

to address regression and optimisation problems on unknown manifolds, offering a wide

range of applications.

• This work uses the Aral sea dataset as a real world case study, which provides the chloro-

phyll levels of the region. Both SI-GPVI and Intrinsic BO with VI achieve promising

results in this case. These applications provide concrete examples for environmental pro-

tection and water pollution management. However, the real-world applications of mani-

folds extend far beyond these area. In various branches of medical imaging analysis and

computer vision, manifolds play a crucial role, for example, 3D Human model in [46],

white matter geometry in [88], diffusion tensor imaging in [121], diffusion magnetic res-

onance images in [157] and so on. Research on manifolds can also be applied in geology
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[66] [171]. For instance, geological formations, such as terrain surfaces and subsurface

structures, often exhibit complex, non-Euclidean geometries that can be modelled as man-

ifolds. Ignoring the intrinsic geometric features of these manifolds often leads to inaccu-

rate modelling and suboptimal results. Although many challenges remain with manifolds

in these domains, this work’s ability to capture the internal structure of manifolds holds

significant potential for application in these fields.



Appendix A

Fundamental Solution to the Heat Kernel

This appendix aims to derive the fundamental solution to the heat equation:

∂tu−∆u = 0. (A.1)

Suppose u(x, t) is a solution to PDE (A.1) which takes form of u(x, t) = w(t)v
(

x2

t

)
, a straight-

forward calculation gives

ut(x, t) = w′(t)v
(

x2

t

)
−w(t)v′

(
x2

t

)
x2

t2 ;

ux(x, t) = w(t)v′
(

x2

t

)
2x
t

;

uxx(x, t) = w(t)v′′
(

x2

t

)
4x2

t2 +w(t)v′
(

x2

t

)
2
t
.

According to (A.1), it satisfies:

w′(t)v
(

x2

t

)
− w(t)

t

[
v′′
(

x2

t

)
4x2

t
+2v′

(
x2

t

)
+ v′

(
x2

t

)
x2

t

]
= 0.

Then,
w′(t)t
w(t)

=
4 x2

t v′′(x2

t )+2v′(x2

t )+
x2

t v′(x2

t )

v(s)
. (A.2)
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To ensure that both sides of Equation A.2 remain equal, both sides of this equality must be

constant. Let this constant be denoted as λ , then

4x2

t v′′(x2

t )+2v′(x2

t )+
x2

t v′(x2

t )

v(s)
= λ ,

x2

t

(
4v′′+ v′

)
+

1
2
(
4v′−2λv

)
= 0.

By giving λ =−1
2 and 4v′+v = 0, the equation is satisfied and v(x2

t ) = e−
x2
4t . Correspondingly,

w′(t)t
w(t)

=−1
2
,

w(t) = t−
1
2 .

Therefore,

u = u1(x, t) =
1√
t
e−

x2
4t

is a solution of ut = uxx. Then,

u(x1,x2, · · · ,xn, t) = u1(x1, t)u2(x2, t)...un(xn, t) =
1

tn/2 e−
|x|2
4t .

To ensure that the integral of the solution over the entire space equals 1, that is, for each t > 0:

∫
Rn

Φ(x1, . . . ,xn, t)dx1 · · ·dxn = 1,

it is necessary to use 1
(4π)n/2 as a normalization factor. Then, the fundamental solution to the heat

equation (A.1) is expressed as:

Φ(x1, · · · ,xn, t) =


1

(4πt)n/2 e−
|x|2
4t (t > 0)

0 (t ≤ 0)
.



Appendix B

Martingale Properties of Brownian Motion

BM has many important properties. Here, the proof of its martingale property is presented. First,

the definition of the martingale property is as follows [87]:

Definition B.1. A real-valued stocastic process {X(t)}t≥0 is a martingale with respect to a

filtration {F (t)} if it is adapted, that is, X(t)∈F (t) for all t ≥ 0, if E|X(t)|<+∞ for all t ≥ 0,

and if

E[X(t) | F (s)] = X(s)

almost surely, for all 0 ≤ s ≤ t.

To prove the martingale property of BM, it is only necessary to show that the following

equation holds:

E[B(t) |Fs] = B(s), (B.1)

where {B(t)} is a standard BM. Due to the independence of B(t)−B(s) from F (s),

E [B(t)−B(s) | Fs] = E[B(t)−B(s)],
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it is easy to obtain:

E [B(t) | Fs] = E [B(s)+(B(t)−B(s)) | Fs]

= E [B(s) | Fs]+E [B(t)−B(s) | Fs]

= B(s)+E[B(t)−B(s)] = B(s),

which proves the martingale property of BM.



Appendix C

The Taylor Expansion for presample(x) And

preflect(x)

Section 3.4.1 has provided the formulas for presample(x) nd preflect(x). Thus, the difference be-

tween them is given by:

presample (x)− preflect (x)=
(

1
ϕ(τ)

−1
)
· 1√

2π∆t
exp
(
−(x− τ)2

2∆t

)
− 1√

2π∆t
exp
(
−(x+ τ)2

2∆t

)
The Taylor expansion for the standard normal CDF near τ = 0 is used:

ϕ(τ) =
1
2
+

τ√
2π

+O
(
τ

3) .
From this, it follows that:

1
ϕ(τ)

= 2− 2τ√
2π

+O
(
τ

2) .
Thus,

1
ϕ(τ)

−1 = 1− 2τ√
2π

+O
(
τ

2) .
Next, the exponentials are expanded:

exp
(
−(x± τ)2

2∆t

)
= exp

(
− x2

2∆t

)(
1± xτ

∆t
+O

(
τ

2)) .

161



APPENDIX C. THE TAYLOR EXPANSION FOR presample(x) AND preflect(x) 162

Using these expansions, the difference between the two PDFs becomes:

presample (x)− preflect (x)=
1√

2π∆t
exp
(
− x2

2∆t

)[(
1− 2τ√

2π

)(
1+

xτ

∆t

)
−
(

1− xτ

∆t

)]
+O

(
τ

2) .
The terms inside the brackets can be expanded as follows:(

1− 2τ√
2π

)(
1+

xτ

∆t

)
= 1+

xτ

∆t
− 2τ√

2π
− 2xτ2

√
2π∆t

.

Then,

presample (x)− preflect (x) =
1√

2π∆t
exp
(
− x2

2∆t

)[
2xτ

∆t
− 2τ√

2π
+O

(
τ

2)]
The term τ can be factored out from the expression as follows:

presample (x)− preflect (x) = τ · 1√
2π∆t

exp
(
− x2

2∆t

)[
x
∆t

− 2√
2π

+O(τ)

]
.

Since τ is an explicit factor in the expression, taking the limit yields:

lim
τ→0+

(
presample (x)− preflet (x)

)
= 0,

which leads to the conclusion presented in Section 3.4.1.



Appendix D

Inducing Points Placement in the Aral Sea

The following illustrates the locations of inducing points with different quantities in the Aral

Sea dataset.
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(a) 5 inducing points (b) 10 inducing points

(c) 15 inducing points (d) 42 inducing points

Figure D.1: Comparison of inducing point distributions in the Aral Sea dataset with varying
numbers of inducing points (5, 10, 15, and 42).
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