

Vargas Moreno, Aldo Enrique (2017) Machine learning techniques to
estimate the dynamics of a slung load multirotor UAV system. PhD thesis.

http://theses.gla.ac.uk/8513/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior

permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given

Enlighten:Theses

http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/8513/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

Aerospace Sciences Research Division

College of Science and Engineering

School of Engineering

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

Machine Learning Techniques to Estimate the

Dynamics of a Slung Load Multirotor UAV

System

Aldo Enrique Vargas Moreno

Supervisors

Dr. David Anderson and Dr. Douglas Thomson

October, 2017

Aldo Enrique Vargas Moreno

Machine Learning Techniques to Estimate the Dynamics of a Slung Load Multirotor UAV System

Thesis Version: 1.5-GA

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

October, 2017

Supervisors: Dr. David Anderson and Dr. Douglas Thomson

University of Glasgow

Aerospace Sciences Research Division

School of Engineering

College of Science and Engineering

University Avenue

G12 8QQ Glasgow, United Kingdom

Preface

This thesis presents work carried out by the author in the Aerospace Sciences Research

Division at the University of Glasgow in the period from November 2012 to December

2016. The content is original except where otherwise stated.

Glasgow, United Kingdom, October, 2017

Abstract
This thesis addresses the question of designing robust and flexible controllers to enable

autonomous operation of a multirotor UAV with an attached slung load for general cargo

transport. This is achieved by following an experimental approach; real flight data from a

slung load multirotor coupled system is used as experience, allowing for a computer soft-

ware to estimate the pose of the slung in order to propose a swing-free controller that will

dampen the oscillations of the slung load when the multirotor is following a desired flight

trajectory. The thesis presents the reader with a methodology describing the development

path from vehicle design and modelling over slung load state estimators to controller syn-

thesis.

Attaching a load via a cable to the underside of the aircraft alters the mass distribution

of the combined "airborne entity" in a highly dynamic fashion. The load will be subject

to inertial, gravitational and unsteady aerodynamic forces which are transmitted to the

aircraft via the cable, providing another source of external force to the multirotor platform

and thus altering the flight dynamic response characteristics of the vehicle. Similarly the

load relies on the forces transmitted by the multirotor to alter its state, which is much more

difficult to control. The principle research hypothesis of this thesis is that the dynamics of

the coupled system can be identified by applying Machine Learning techniques.

One of the major contributions of this thesis is the estimator that uses real flight data to

train an unstructured black-box algorithm that can output the position vector of the load

using the vehicle pose and pilot pseudo-controls as input. Experimental results show very

accurate position estimation of the load using the machine learning estimator when com-

paring it with a motion tracking system (~2% offset). Another contribution lies in the

avionics solution created for data collection, algorithm execution and control of multirotor

UAVs, experimental results show successful autonomous flight with a range of algorithms

and applications. Finally, to enable flight capabilities of a multirotor with slung load, a

control system is developed that dampens the oscillations of the load; the controller uses a

feedback approach to simultaneously prevent exciting swing and to actively dampen swing

in the slung load. The methods and algorithms developed in this thesis are validated by

flight testing.

vii

Acknowledgements
Firstly, I will like to thank my wife, team-mate, partner, love and best friend Tania for

supporting and being with me since the start of this project. Also, my immediate family,

who are another one of my pillars - Rosalba, Raul, Spayro, Gabriela, Juan - and my new

family OG for supporting me spiritually throughout the development of this project and my

life in general.

Secondly, I would like to express my sincere gratitude to my supervisor Dr. Dave Anderson

for the continuous support during my PhD research, for his patience, motivation, and im-

mense knowledge. His guidance helped me throughout the time of my research and writing

of this thesis. I could not have imagined having a better supervisor and mentor for this great

academic period of my life. Besides my supervisor, I would like to thank my thesis commit-

tee: Dr. James Whidborne and Dr. Gianmarco Radice, for their insightful comments and

encouragement, but also for the hard questions which incented me to widen my research

from various perspectives.

My sincere thanks also goes to the entire academic staff in the Aerospace Sciences Research

Division at the University of Glasgow, without they precious support it would not be possible

to conduct this research. I would also like to make a special mention to Dr. Tonya Lander

(University of Oxford) and Dr. Jacob Apkarian (Quanser) for letting me be part of their

group in order to create extremely interesting stuff.

I thank my fellow officemates and friends for the stimulating discussions, experiences and

for all the fun we have had in the last four years, inside and outside the University, virtual

or face-to-face, close or far. It is a complicated task to name all of you, but a special mention

must be made to John, Murray and Victor.

Last, but not the least, I would like to express gratitude to Aldux, that inseparable partner

for having contributed wonderful ideas to this project besides being such an entrepreneurial

person that inspired me to create AltaX.

ix

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Unmanned Aerial Vehicles . 1

1.1.2 Cargo transport application . 3

1.1.3 Research question & hypothesis . 5

1.1.4 Research methodology . 6

1.2 Literature review . 7

1.2.1 MRUAV . 7

1.2.2 Quadrotor Modelling and Control 9

1.2.3 Slung Load Dynamics . 11

1.2.4 Machine Learning . 14

1.3 Thesis Contributions . 20

1.4 Thesis Structure . 21

1.5 Publications . 22

2 Multirotor Design 23

2.1 Frame . 24

2.1.1 Structures . 25

2.1.2 Configurations . 26

2.1.3 Redundancy . 27

2.1.4 Materials . 27

2.2 Motor . 30

2.2.1 Brushless motors . 31

2.2.2 Mathematical model . 32

2.2.3 Motor parameters . 32

2.3 Propeller . 35

2.3.1 Propeller parameters . 38

2.3.2 Static thrust . 38

2.4 Electronic Speed Controller . 39

2.4.1 Motor control . 40

2.5 Battery . 41

xi

2.6 Rotor . 42

2.6.1 Mathematical analysis . 43

2.6.2 Experimental analysis . 44

2.7 Flight Controller . 46

2.7.1 Sensors . 47

2.7.2 Attitude estimation . 47

2.8 Endurance Prediction . 51

2.8.1 Time of flight . 51

2.8.2 On-line calculators . 52

2.8.3 Flight tests . 52

2.8.4 Method comparison . 53

2.9 Summary . 54

3 Laboratory Set-up 55

3.1 Experimental design . 56

3.2 Micro Air Systems Technology Laboratory 56

3.2.1 Indoor positioning system . 56

3.2.2 Previous data flow . 58

3.3 Flight Stack . 58

3.3.1 Companion computers . 59

3.4 DronePilot . 62

3.4.1 Core . 62

3.4.2 Data Flow . 65

3.4.3 Interfacing . 66

3.4.4 Black box . 67

3.4.5 Applications . 68

3.5 Test-bed quadrotor . 68

3.6 Summary . 69

4 Quadrotor Modelling and Control 71

4.1 Basic concepts . 71

4.1.1 Pseudo-controls . 72

4.2 Modelling . 75

4.3 Control . 76

4.3.1 Attitude controller . 79

4.3.2 Position controller . 80

4.3.3 Trajectory Generation . 83

4.4 Experimental results . 84

4.4.1 Attitude controller performance . 85

xii

4.4.2 Position controller performance . 86

4.4.3 Trajectory flights . 91

4.5 Summary . 99

5 Machine Learning 101

5.1 Background . 101

5.2 Categories . 102

5.2.1 Supervised learning . 102

5.2.2 Unsupervised learning . 106

5.2.3 Reinforced learning . 107

5.3 Considerations . 107

5.4 Artificial Neural Networks . 108

5.4.1 Biological Neural Networks . 109

5.4.2 ANN Architectures . 111

5.4.3 ANN Learning . 112

5.5 Recurrent Neural Networks . 114

5.5.1 Mathematical Model . 116

5.5.2 Architectures . 116

5.5.3 Training . 119

5.6 Reservoir Computing . 123

5.6.1 Echo State Networks . 124

5.6.2 Mathematical model . 126

5.6.3 Training . 128

5.7 Optimisation . 129

5.7.1 CMA-ES . 130

5.8 Summary . 131

6 System Identification of MRUAV 133

6.1 Methodology . 134

6.2 Data processing . 136

6.3 Training . 137

6.4 Testing . 138

6.5 Optimising . 139

6.6 Results . 143

6.7 Summary . 145

7 MRUAV carrying a Slung Load 147

7.1 Introduction . 148

7.1.1 Small angle approximation . 149

xiii

7.2 Model of Slung Load Quadrotor System . 150

7.2.1 Quadrotor Attitude . 151

7.2.2 Slung Load Attitude . 151

7.3 Slung Load Position Estimation . 154

7.3.1 Computer Vision Estimation . 154

7.3.2 Machine Learning Estimation . 160

7.4 Controller design . 172

7.4.1 Swing-Free Position Controller . 172

7.4.2 Swing-Free Trajectory Controller 174

7.5 Experimental results . 176

7.5.1 Controller verification . 178

7.5.2 Estimator verification . 179

7.5.3 Trajectory response . 180

7.6 Summary . 184

8 Conclusion 187

8.1 Summary of contributions . 187

8.1.1 On multirotor design . 187

8.1.2 On MRUAV control . 189

8.1.3 On machine learning . 191

8.1.4 On system identification of multirotors 192

8.1.5 On slung load estimators . 193

8.1.6 Main contribution . 194

8.2 Future work . 194

8.3 Extra support and projects . 196

8.3.1 IMechE UAS Challenge . 196

8.3.2 Media outreach . 197

A Appendix 199

A.1 Makerbot Replicator 2 . 199

A.2 Rotite . 200

A.3 Rotor analysis tool . 200

A.4 pyMultiWii . 203

A.4.1 MultiWii Serial Protocol . 203

A.4.2 Data flow . 204

A.4.3 Performance . 206

A.4.4 Influence . 207

A.5 Computer Vision techniques . 207

A.5.1 Influence . 208

xiv

Bibliography 209

List of Figures

1.1 Small quadrotor - DJI Mavic Pro. 2

1.2 Helicopter swinging a slung load. 4

1.3 MRUAV carrying a slung load while manoeuvring. 7

1.4 Examples of cargo MRUAV on the healthcare industry. 14

1.5 Examples of cargo MRUAV on the food industry. 15

1.6 Examples of cargo MRUAV on the postal industry. 16

2.1 Quadrotor possible flying configurations . 23

2.2 TEGOv2 - 3D printed quadrotor performing a hover flight. 24

2.3 Quadrotor free body diagram . 25

2.4 Nylon polyamide multirotor arm and assembled glass fiber frame 26

2.5 Trirotor - three rotor configuration vehicle. 26

2.6 Two redundant multirotor configurations - Left: Hexarotor. Right: Octorotor

V-shape . 27

2.7 TEGO v1 quadrotor . 28

2.8 TEGOv1 truss structure arm . 29

2.9 TEGOv2 arm with Rotite element . 30

2.10 TEGOv2 with Rotite a)normal b)crash-survivability characteristic 30

2.11 BLDC Motor . 31

2.12 Three-phase trapezoidally excited waveform for PM BLDC motor 31

2.13 BLDC motor basic diagram . 32

2.14 BLDC types. In-runner and Out-runner . 34

2.15 Example of a pancake motor. 35

2.16 Brushless motor with neodymium magnets and poles exposed. 35

2.17 Common nylon propeller used in multirotors. 36

2.18 Carbon fibre fixed pitch propeller. 36

2.19 3 bladed fixed pitch propeller. 37

2.20 Carbon fibre foldable propeller. 37

2.21 Generic ESC unit, outputs on the right and inputs on the left. 40

2.22 Pulse width modulation input signal range for a ESC. 40

2.23 Motor control sequence. 41

xv

2.24 lithium-ion polymer battery with 3 cells and 2220 milli-Amp-hour capacity. . 42

2.25 Rotor analysis tool. 44

2.26 MAST Lab test-bed vehicles, using sets of different propellers. 45

2.27 Top: BLDC Motor 1130kv, Left: 7x3.8in 3-bladed propeller, Right: 7x3.8in

2-blade propeller. 45

2.28 Flight controller board. a) Pixhawk b) MultiWii (Naze32) 46

2.29 Quadrotor performing a hover test using three bladed propellers. 53

3.1 MAST Lab flight area and vehicles. 55

3.2 Distribution of IPS image sensors in the MAST Lab. 57

3.3 Previous structure to control MRUAV in the MAST Lab. 58

3.4 Flight Stack using a Raspberry Pi with: a) Naze32 b) Pixhawk 59

3.5 Companion Computers. a) Raspberry Pi b) Odroid U3 c) Odroid XU4 60

3.6 Benchmark comparison. 61

3.7 Sequence diagram of a simple DronePilot application. 64

3.8 Data flow. 65

3.9 MSP data frame. 66

3.10 MAVlink data frame. 67

3.11 3D plotting of a quadrotor trajectory flight. 67

3.12 FlightStack single system diagram. 68

3.13 Test-bed quadrotor hovering. 69

3.14 Test-bed quadrotor with an Odroid U3 as companion computer. 70

4.1 Simplified quadrotor in hovering. 72

4.2 ⊕ Plus configuration Throttle command diagram. 73

4.3 ⊕ Plus configuration Roll command diagram. 74

4.4 ⊕ Plus configuration Pitch command diagram. 74

4.5 ⊕ Plus configuration Yaw command diagram. 75

4.6 Strategy control block diagram. 77

4.7 MultiWii Attitude control block diagram. 80

4.8 Pixhawk Attitude control block diagram. 80

4.9 Circle and figure-of-eight trajectory. 84

4.10 Roll stabilization performance. 85

4.11 Pitch stabilization performance. 86

4.12 3D plot of an entire position hold flight test. 87

4.13 Position stabilization performance - X axis. 88

4.14 Position stabilization performance - Y axis. 88

4.15 Position hold performance - Top view. 89

4.16 Position stabilization performance - Z axis. 90

xvi

4.17 Position stabilization performance - Heading. 91

4.18 Circular trajectory tracking performance. 92

4.19 Circular trajectory tracking performance - Top view. 93

4.20 Circular trajectory tracking performance - 3D view. 93

4.21 Circular trajectory tracking performance using different times to complete the

circuit. 94

4.22 Time-collapse photography of a circle trajectory performed in 10 seconds. . . 94

4.23 Time-collapse photography of a circle trajectory performed in 4 seconds. . . . 95

4.24 Figure-of-eight trajectory tracking performance. 95

4.25 Figure-of-eight trajectory tracking performance - Top view. 96

4.26 Figure-of-eight trajectory tracking performance - 3D view. 97

4.28 Controller action during tracking. 97

4.27 Circular trajectory tracking performance using different times to complete the

circuit. 98

4.29 Time-collapse photography of a figure-of-eight trajectory performed in 10 sec-

onds. 98

4.30 Time-collapse photography of a figure-of-eight trajectory performed in 4 sec-

onds. 99

5.1 Machine Learning general categorization. 102

5.2 ML categories diagram. 103

5.3 Supervised learning diagram. 104

5.4 Reinforced learning diagram. 107

5.5 Sketch biological neuron. 110

5.6 McCulloch-Pitts model of a neuron. 111

5.7 Architecture of feed-forward and recurrent neural networks. 111

5.8 An unfolded Recurrent Neural Network. 115

5.9 Example diagram for a MLP. 117

5.10 Example diagram for a Recurrent MLP. 118

5.11 Example diagram for a system with input X and output Y. 119

5.12 Example diagram of training a neural network. 119

5.13 Reservoir computing diagram. 124

5.14 Example diagram of a Echo State Network. 125

5.15 Echo State Network mapping scheme. 127

5.16 CMA-ES optimisation run on a simple 2-dimensional problem. 131

6.1 Data flow block diagram to control a MRUAV. 134

6.2 Pilot to Pose black-box model. 135

6.3 3D trajectory plot of a training flight. 135

xvii

6.4 Example plot of inputs and outputs for the Pilot to Pose experiment. 136

6.5 Pilot to Pose network output after training with standard parameters. 138

6.6 Pilot to Pose network output with test data. 139

6.7 Pilot to Pose zoomed Roll network output . 140

6.8 Pilot to Pose network output after training with optimised parameters. 141

6.9 CMA-ES evolution process for optimising ESN parameters. 142

6.10 Pilot to Pose network output with test data and optimised parameters. 143

6.11 Pilot to Pose zoomed Roll optimised network output 144

6.12 Pilot to Pose Trajectory comparison. 145

6.13 Pilot to Pose RTRL on-board flight test. 146

6.14 Pilot to Pose ESN on-board flight test. 146

7.1 Quadrotor carrying a slung load. 147

7.2 Free body diagram for a basic pendulum. 149

7.3 Quadrotor carrying a slung load. 150

7.4 Test-beds size comparison, higher: CV platform, lower: Standard platform. . 155

7.5 Test-bed v2 Quadrotor with gimbal/camera system mounted. 156

7.6 Graphical description of the findContours algorithm. 157

7.7 3D spatial location perspective view (left) and 2D camera view (right). 157

7.8 Frame of a positive colour area found, the slung load position can then be

estimated. 159

7.9 Slung-Load estimator black-box model. 160

7.10 3D trajectory plot from a training flight of the quadrotor slung-load system. . 161

7.11 Video-frame of the slung load detach moment due to extreme oscillations. . . 162

7.12 Example plot of inputs (left) and outputs (right) for the quadrotor/slung-load

system. 163

7.13 ML Slung load position estimation after training. 164

7.14 ML Slung load X-axis position estimation with testing data. 165

7.15 ML Slung load Y-axis position estimation with testing data. 166

7.16 ML Slung load position estimation after optimising with training data. 167

7.17 ML Slung load X-axis position estimation with testing data. 168

7.18 ML Slung load Y-axis position estimation with testing data. 168

7.19 ML ESN architecture real-time on-board performance predicting the position

of the slung load. 169

7.20 ML BPTT architecture real-time on-board performance predicting the position

of the slung load. 170

7.21 ML RTRL architecture real-time on-board performance predicting the position

of the slung load. 171

xviii

7.22 3D replay of a flight comparison of the winner machine learning SL position

estimation. 172

7.23 Diagram of quadrotor with a slung load. 173

7.24 Configuration of the proposed Swing-free controller. 173

7.25 Configuration of the proposed Swing-free trajectory controller. 175

7.26 MRUAV stranded on safety net during a gathering data flight test. 176

7.27 Time-collapse image of the first oscillation of the step response. 177

7.28 1[m] aggressive step on X axis with and without swing-free control. 178

7.29 3D plot of 1[m] aggressive step with and without swing-free control. 179

7.30 Transition comparison of the quadrotor/slung-load system without (top) and

with (bottom) swing-free control. 179

7.31 Controller performance comparison using different sources for the slung-load

position. 180

7.32 3D plot of controller comparison with different sources for the slung-load po-

sition. 181

7.33 Slung load response to a circular trajectory - Top view. 182

7.34 Slung load response to a circular trajectory with swing-free control active -

Top view. 182

7.35 Slung load response to a figure-of-eight trajectory with swing-free control ac-

tive - Top view. 183

7.36 Slung load response to a figure-of-eight trajectory with swing-free control ac-

tive - Top view. 184

7.37 Light painting photographies of comparison flight tests with the swing-free

controller. 185

8.1 Hexarotor (left) and Octorotor (right) based on TEGOv2. 188

8.2 Comparison light painting photographies of previous structure (left) vs flight

stack (right). 189

8.3 University of Glasgow quadrotor vehicle performing during competition . . . 197

xix

List of Tables

2.1 Loiter flight times of similar configuration multirotors 26

2.2 Basic components of two (Pixhawk and MultiWii) flight controllers 47

2.3 Test-bed vehicle components/information. 51

2.4 Flight times computation comparison. 53

3.1 Companion computers main characteristics. 60

3.2 Test-bed quadrotor component list. 69

5.1 Von Neumann computer properties. 108

5.2 Neural network properties. 109

5.3 Elements of figure 5.15 . 127

6.1 Pilot to Pose training performance measurements. 137

6.2 Pilot to Pose testing performance measurements. 139

6.3 Pilot to Pose training performance measurements after optimisation. 141

6.4 Pilot to Pose training times comparison. 142

6.5 Pilot->Pose testing performance measurements after optimisation. 142

7.1 Performance of the CV algorithm implementation using different CPUs. . . . 159

7.2 Performance of the ML slung load estimation. 165

7.3 Machine learning slung load prediction experiment results. 167

7.4 Real-time on-board performance of the ML architectures doing the SL position

estimation. 171

7.5 DronePilot flight modes for the Swing-Free Controller. 175

8.1 List of the most relevant instructional videos. 198

xx

Nomenclature

All units of measurement throughout this thesis conform to the International System of

Units (SI), with deviations from this rule noted where appropriate.

Symbol Description

v Volts

vm Terminal phase voltage

En Motor back EMF

R Resistance

L Inductance

in Current

Qm Motor Torque

ηm Motor Efficiency

Ω Motor rotation rate

Kv Motor speed constant

Kt Motor torque constant

JR Rotor inertia

Pshaft Shaft Power

Pelec Electrical Power

T Propeller Thrust

Q Propeller Torque

CT Thrust coefficient based on tip speed

CQ Torque coefficient based on tip speed

J Propeller Advance ratio

D Propeller Diameter

ηp Propeller Efficiency

ρ Air density

µ Air viscosity

Re Reynolds number

ṁ Mass flow rate

xxi

V Flight velocity

Ve Inflow velocity

Vac Aircraft velocity

Cbatt Battery capacity C-rate

u(1−4) Pseudo-controls

v Linear velocity vector

ω Angular velocity vector

a Linear acceleration vector

α Angular acceleration vector

ϕ, θ, ψ Roll, pitch, yaw displacements

{x, y, z} Components of position

{p, q, r} Angular velocities about quadrotor body axes

1 Identity matrix

I Inertia matrix

W World frame

B Body frame

m Mass

F Force vector

τ Torques vector

Ω Propeller speed

xxii

Abbreviations

Acronym Description

AHRS Attitude Heading Reference System

AI Artificial Intelligence

AL Autonomy Level

ANN Artificial Neural Network

APT Advanced Packaging Tool

BLDC BrushLess Direct Current

BPTT Back Propagation Through Time

CCW Counter-ClockWise

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CoG Center of Gravity

COM Center Of Mass

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSV Comma Separated Values

CV Computer Vision

CW ClockWise

DCM Direction Cosine Matrix

DOF Degrees Of Freedom

EKF Extended Kalman Filter

ESC Electronic Speed Control

ESN Echo State Networks

FPP Fixed Pitch Propeller

GA Genetic Algorithms

GIL Global Interpreter Lock

GNC Guidance Navigation and Control

GPS Global Positioning System

GPU Graphics Processing Unit

xxiii

IMU Inertial Measurement Unit

IPS Indoor Positioning System

LCF Linear Complementary Filter

LiPo Lithium-ion Polymer

LSM Liquid State Machine

LTS Long-Term Support

MAST Lab Micro Air Systems Technology Laboratory

MEMS Micro-ElectroMechanical Systems

ML Machine Learning

MLP Multi-Layer Perceptron

MoCap Motion Capture

MRUAV Multirotor Unmanned Aerial Vehicles

MSE Mean Square Error

MSP MultiWii Serial Protocol

NED North-East-Down

PWM Pulse Width Modulation

RC Reservoir Computing

RF Radio Frequency

RLS Recursive Least Squares

RNN Recurrent Neural Network

ROS Robot Operative System

RTOS Real Time Operating System

RTRL Real Time Recurrent Learning

RUAS Rotorcraft Unmanned Aerial Systems

RUAV Rotorcraft Unmanned Aerial Vehicle

SAS Stability Augmentation System

SL Slung Load

SVM Support vector machines

TDL Tapped Delay Lines

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UUV Unmanned Underwater Vehicles

VTOL Vertical Take-Off and Landing

xxiv

1Introduction

This chapter presents the background and motivation for this PhD study and discusses the

application of Multirotor Unmanned Aerial Vehicles (MRUAV) slung load flight and the

problems associated with this. It further introduces the research question, hypothesis and

methodology. Continued by a literature review of the current state of the art of the related

topics. Then the contributions of this study are presented. Finally an outline of the thesis

and publications is given.

1.1 Background and motivation

Once only seen as a niche military asset (Benjamin, 2013), Unmanned Aerial Vehicles

(UAVs) have become an indispensable resource at the forefront of force projection strate-

gies for defence stakeholders around the world. However, UAV technology is also now being

embraced by the commercial and academic sectors and as a consequence there has been

a significant surge in UAV research projects focussed on commercial exploitation opportu-

nities. There are now many examples throughout the literature of UAVs being designed

and used for operations beyond the military, such as aerial photography (Cheng, 2015),

infrastructure inspection (Chan et al., 2015), law enforcement (Brumfield, 2014), littoral

maritime surveillance (Abhijit, 2016), road traffic monitoring (Kim et al., 2015), disaster

and crisis management (Apvrille et al., 2015) and agriculture and forestry (Salamí et al.,

2014). This thesis will present the results of a research project investigating and proposing

novel solutions to some of the challenges that must be overcome to properly realize the

potential of commercial UAV operation.

1.1.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles, also commonly called drones, historically started as an expend-

able military asset used for target practice (Benjamin, 2013). From the 1960’s onward,

the potential for using drones for reconnaissance purposes became apparent and this vi-

sionary leap ultimately led to the highly varied operational roles undertaken by modern

UAVs. Due to the secretive, classified and potentially clandestine nature of military surveil-

lance operations, their technological development was often kept out of sight of the public.

1

However, the highly publicised use of drone technology in recent global conflict sparked

an intense interest in UAV technology among academics and commercial entrepreneurs

alike. As the enabling technologies become more advanced and costs fall, civilian exploita-

tion of drones is developing rapidly. However, when speaking about drones dedicated for

civil use, it is important to distinguish between the large, civil vehicles that might one day

carry passengers without on-board human supervision (Ehang Inc, 2016), regular drones

of similar size to those used in the military and much smaller systems in the small or micro-

UAV classification (determined by either the wingspan or rotor diameter, below 1.5m is

small and below 20cm is considered micro). By far the most popular configuration in the

small/micro class is the quadrotor (Fig. 1.1). Small drones are typically designed to be

man-portable and relatively affordable, e.g. converted radio-controlled (RC) planes or sim-

ple, small multirotor platforms. When evaluating operational tasks currently performed

Fig. 1.1.: Small quadrotor - DJI Mavic Pro.

by human operators (usually pilots) for transfer to drone technology, such tasks are typ-

ically classified as being either Dull, Dirty or Dangerous. The "dull" classification refers

to monotonous, typically long-duration tasks that become uncomfortable for a human op-

erator to perform, a long-range surveillance flight for example. For commercial drones in

this classification, some of the most popular emerging applications include the transport

of goods (also know as cargo, payload or load) (Thiels et al., 2015), conservation and

wildlife measurement (Barmpounakis et al., 2017) or agriculture and aerial photography.

A "dirty" task is one deemed unpleasant for a human operator to perform such as flight

in close-proximity to noxious chemical spills. Finally, the "dangerous" classification is self-

explanatory - use of drone technology to keep human operators out of harms way. All three

classifications are equally applicable to both civilian and military operations. At this time

2 Chapter 1 Introduction

there remain many technical limitations in both platform capability and on-board systems

preventing widespread adoption of UAVs as commercial assets. Although military-grade

UAVs posses platform capabilities that meet or exceed their fixed-wing counterparts, they

remain prohibitively expensive for all but the most specialised commercial application. Both

purchase and operation costs have to be reduced before drones can enter the mainstream,

consequently it is the small-micro-UAV class of drones that is attracting the most interest

from companies such as (Amazon, 2013) and (Google, 2014). Smaller aircraft provide the

opportunity for operating in urban areas, but at the cost of reduced payload capacity and

endurance. Therefore maximizing aircraft performance whether is be lift to drag ratio or

rotor thrust becomes a critical technology enabler.

There are also legislative barriers to civilian UAV operation for commercial gain due to

a lack of understanding of the capabilities offered by state-of-the-art avionics suites for

each class of drone, particularly those in the small/micro-UAV class (Friedenzohn et al.,

2013). Smaller/cheaper drones require cost-minimal avionics and on-board sensor suites,

while simultaneously having to prove to national certification authorities an unprecedented

degree of autonomy and control precision of an integrated system with only antiquated

analysis techniques. From an academic perspective, these technical challenges provide a

number of interesting research opportunities.

Although there are many operational scenarios currently performed only by manned air-

craft, one of the most challenging from a research perspective is the helicopter slung load

operation.

1.1.2 Cargo transport application

In cargo transportation operations, if the load being transported is carried inside the vehicle

fuselage, a special mechanical design must often be added to the airframe in order for it

to transport the load safely and securely. This situation limits the type of vehicle airframe

and the shape of the transported cargo. In contrast, if the load is outside of the vehicle

fuselage it opens a wide range of aircraft-based transportation applications. Transporting

a load external to the vehicle fuselage is usually accomplished by attaching the load to the

underside of the vehicle via cables or ropes. At present this type of cargo transportation

mechanism is almost exclusively by manned helicopter platforms.

Helicopter slung load operations with the load suspended in various ways from a single

attachment point have been common since the 1950’s (Cicolani et al., 1995). Since then

helicopters have been used for a vast number of different towing assignments ranging from

fire-fighting applications over animal transport to container-hauling. With a manned air-

1.1 Background and motivation 3

Credit: Capital Press

Fig. 1.2.: Helicopter swinging a slung load.

craft, slung load operations require a highly skilled pilot due to the flight dynamics of the

aircraft being coupled with the load swinging when the aircraft has to manoeuvre. Such

an application is called flying crane, where helicopters carry loads connected to long cables

or slings in order to place heavy equipment when other methods are not available or eco-

nomically feasible, or when the job must be accomplished in remote or inaccessible areas,

such as the tops of tall buildings or the top of a hill or mountain, far from the nearest road.

One clear example of the difficulty of flying a helicopter with a slung load attached to it

can be seen during the Oregon Christmas Tree harvest 1 (Fig.1.2) where the pilot learns to

use the swinging of the load in order to deposit the cargo (trees) as fast as possible in the

loading truck. Pilot Dan Clark has been quoted2 as saying that the technique took him ap-

proximately 10 years to master. Anecdotal evidence of this type suggests that conventional

fixed-controller strategies may not be sufficient, rather that a learning controller would be

required to replace the pilot’s actions.

1https://www.youtube.com/watch?v=08K_aEajzNA
2http://www.thenorthwestreport.com/less-travel-could-boost-oregon-christmas-tree-sales/

4 Chapter 1 Introduction

https://www.youtube.com/watch?v=08K_aEajzNA
http://www.thenorthwestreport.com/less-travel-could-boost-oregon-christmas-tree-sales/

Dynamically, attaching a load via a cable to the underside of the aircraft alters the mass

distribution of the combined "airborne entity" in a highly dynamic fashion. The load will

be subject to inertial, gravitational and unsteady aerodynamic forces which are transmitted

to the helicopter via the cable, providing another source of external force to the helicopter

platform and thus altering the flight dynamic response characteristics of the vehicle. Simi-

larly the load relies on the forces transmitted by the helicopter to alter it’s state, i.e. we have

moved from a single to two-body system, which is much more difficult to control. There-

fore, from an academic perspective, the combination of intricate coupled dynamics and the

need for a learning control architecture shows there is significant research opportunity in

addressing the challenges of operating unmanned aerial vehicles with slung loads.

1.1.3 Research question & hypothesis

As has been shown there are significant commercial, military and humanitarian benefits

to operating autonomous UAVs as cargo-carrying platforms. However matching the capa-

bilities of manned platforms, especially in complex cargo-carrying configurations such as

the slung load, still presents significant technical challenges. The central research question

posed and addressed by this thesis is then

Is it possible to design robust and flexible controllers to enable autonomous operation of a

multirotor UAV with an attached slung load of unknown mass and geometric distribution?

The first step in designing any controller is to construct a mathematical model of the equa-

tions of motion of the system. Adding additional mass alters, at the very least, the values

of the parameters in the equations of motion that define the model - gains, time constants,

mode coupling etc. In control theory, there are two approaches to dealing with this prob-

lem: treat it as an uncertainty in the feedback loop and apply a robust controller synthesis

technique such as H∞ or use an adaptation mechanism to alter the underlying mathemati-

cal model and controller. For flight with a suspended load the primary impact of adding the

load is to induce lateral pendulous oscillations, which can become unstable. This prominent

pendulous oscillatory motion affects the response in the frequency range of the attitude con-

trol of the vehicle. Therefore, a fundamental understanding of the dynamics of slung loads

as they relate to the vehicle handling is essential in developing effective flight controllers.

Finally, given the anecdotal evidence of helicopter pilots and the wide variability in cargo

parameters, it is highly unlikely that a robust control strategy would be effective.

Following a thorough literature review and detailed consideration of this problem, the prin-

ciple research hypothesis of this thesis is that the dynamics (and ultimately control) of

1.1 Background and motivation 5

the slung load / MRUAV coupled system can be identified by applying Machine Learning

techniques.

Machine Learning addresses the question of how to build computer software that improves

automatically through experience. Recent progress in Machine Learning has been driven by

the development of new learning algorithms that use experimental data and low-cost com-

putation. One of the most commonly known machine learning subsets is Artificial Neural

Network (ANN), inspired by the structure and functional aspects of biological neural net-

works. The Recurrent Neural Network (RNN) is a class of ANN that represents a very pow-

erful generic system identification tool, integrating both large dynamic memory and highly

adaptable computational capabilities. Reservoir Computing (RC) is another approach to

design, train, and analyse RNNs. The main advantages of this paradigm are modelling ca-

pacity and accuracy, biological plausibility and their extensibility and parsimony. RC has

outperformed previous methods of non-linear system identification, prediction and classi-

fication (Sec. 5.6). This is one of the paramount capabilities needed in the presented

research.

1.1.4 Research methodology

In this thesis the problem of a MRUAV flying with a slung load (Fig. 1.3) is addressed.

This is going to be achieved following an experimental approach. Real flight data from the

MRUAV/SL system is used as experience, allowing for a computer software to understand

the dynamics of the slung in order to propose a swing-free controller that will dampen the

oscillations of the slung load when the MRUAV is following a desired flight trajectory. In

order to answer the hypothesis of a multirotor flying with a slung load using an experimen-

tal method several objectives must be met before. Those objectives include the design of a

multirotor test-bed with the capability of carrying a slung load with sufficient extra thrust

to be able to manoeuvre while maintaining the maximum time of flight possible and low

costs. The laboratory environment must be set-up to facilitate the data gathering process. A

proper avionics suite (hardware and software) must be be created and used to the purpose

of developing and testing advanced autonomous GNC (Guidance Navigation and Control)

algorithms. Then modelling, control and experimental testing of multirotor must be ad-

dressed and validated. Several machine learning techniques must be explored, tested and

validated. Finally a control system must be created so that it dampens the oscillations of

the load during and at the end of transport.

6 Chapter 1 Introduction

Fig. 1.3.: MRUAV carrying a slung load while manoeuvring.

1.2 Literature review

This section gives an overview of the state of the art of several fields of the research area

for this thesis. Such fields include the Unmanned Aerial Systems, quadrotor modelling and

control, slung load dynamics and the machine learning field.

1.2.1 MRUAV

Recently, there is a growing interest in developing Unmanned Aerial Systems (UAS) with ad-

vanced on-board autonomous capabilities (Kendoul, 2012). Unmanned aerial vehicles are

encountered in an increasing number of applications, mostly military but increasingly in the

civilian market. Most of the civilian applications require low-altitude flights with hovering

and VTOL capabilities, and small rotorcraft UAV are more appropriate for these applications

than fixed-wing UAV. Furthermore, most academic and governmental research groups use

rotorcraft UAV as experimental platforms to validate their GNC algorithms (Richards et al.,

2002) (Shim et al., 2002) (Valenti et al., 2006). A particular advantage an MRUAV has over

1.2 Literature review 7

other aerial vehicles is its unique ability for vertical stationary flight (hovering) (Ampatis

et al., 2014).

Research activities require a robust yet simple design to aid in validation of their GNC al-

gorithms. The use of a single rotor vehicle for such activities would require complicated

electro-mechanical components to accurately reposition the rotor and allow changes on the

attitude and position of the UAV. Multi rotorcraft offer a solution to simplify the compo-

nents required to manoeuvre the UAV. Since there is no need for extra electro-mechanical

components to reposition the rotor, the only requirement is to pair two or more rotors in or-

der to balance the generated torque. An exception is the trirotor, where one rotor is placed

on a tilting mechanism that balances the additional toque.

In recent years, advances in materials, electronic components (Jang et al., 2004) (Ede et al.,

2001) (Sai Dinesh et al., 2010), sensors (Burghartz, 2013) and batteries (Tarascon et al.,

2001) have fuelled a growth in the development of multirotor aerial vehicles. Therefore,

such vehicles are now seriously considered as practical and robust test-beds. The design,

construction, and testing of a MRUAV test-bed requires a great amount of time (Michael

et al., 2010) and it is one of the core research goals of this thesis.

The most common multirotor platform is the quadrotor, but additional multirotor platforms

are easily conceived by augmenting the vehicle with additional rotors. This provides greater

lifting force without the need to upgrade components, such as the rotor blades and motors.

However, the introduction of additional rotors changes the dynamic performance of the sys-

tem as shown in (Ireland et al., 2015), adding extra mass and typically requiring additional

supporting structure.

Optimal selection of the most important components of the multirotor vehicle is critical

in order to obtain the necessary performance from the test-bed to succeed in validating

the advanced algorithms. In the specific case presented in this thesis, the vehicle will be

optimized to carry a slung load with adequate flight times that are necessary to acquire all

data for the machine learning experiments. Despite the large number of published works on

multirotors, very little is published on design of multirotors given an intended application

and desired performance specifications. The most relevant methodologies are presented in

(Magnussen et al., 2014) (Magnussen et al., 2015).

As a consequence of the technological advances in sensors, specifically in MEMS (Micro-

electromechanical systems), the development of specialized computers to handle MRUAV

flight control has grown significantly. Such devices are called flight controllers and are

8 Chapter 1 Introduction

capable of computing the necessary rotor speeds to keep the vehicle stable and flying, based

on on-board sensors.

There are several publicly available open-source flight controllers. One of the most success-

ful in academia is the Pixhawk (Meier et al., 2011) project. Great success has been shown

as well from the MultiWii (MultiWii, 2010), Arducopter (Arducopter), OpenPilot (Open-

Pilot, 2011), Paparazzi (Paparazzi, 2003) (Bronz et al., 2009) and MikroKopter (HiSystems,

2006) projects, among others. It is important to note that each FC has a different level of

autonomy based on the sensors and devices being connected to it.

1.2.2 Quadrotor Modelling and Control

The study of the quadrotor’s kinematics and dynamics helps to understand its physics and

behaviour. Together with the modelling, the determination of the control algorithm struc-

ture is fundamental to achieve optimal stabilization.

As mentioned earlier, the quadrotor is a very popular research platform. Therefore, the

number of projects tackling the modelling and control has considerably and suddenly in-

creased, with the most relevant works presented in (Bouabdallah, 2007) (Bresciani, 2008)

and (Mellinger, 2012). In classical mechanics, the Newton–Euler equations describe the

combined translational and rotational dynamics of a rigid body (Mahony et al., 2012a)

(Hahn, 2002) (Bishop, 2007) (Featherstone et al., 2000).

After dealing with the kinematic and dynamic modelling, the on-board estimation of ori-

entation (attitude) and heading needs to be addressed. The more accurate results are

obtained by combining data from multiple types of sensors to take advantage of their rela-

tive strengths, such technique is called data fusion, also known as sensor fusion. There is a

large academic and commercial activity due to the variety of new on-board sensors that the

MRUAV can carry such as new generation MEMS, LIDAR, SONAR, 3D cameras, GLONASS,

i.a. Data fusion refers to a variety of techniques, technologies, systems, and applications

that use data derived from multiple information sources (Elmenreich, 2002). Fusion appli-

cations range from real-time sensor fusion for the navigation of mobile robots to the off-line

fusion of human or technical strategic intelligence data (Rothman et al., 1991).

Pixhawk project have designed an attitude estimation algorithm based on the Extended

Kalman Filter (EKF). An explanation of the algorithm can be found in (Meier et al., 2011)

and (Simon, 2006). In the other reviewed flight controller (MultiWii), a non-linear comple-

mentary filter is implemented with the rotation matrix representation, based on (Mahony

et al., 2005), with the only difference being that MultiWii leaves the corrections of errors

1.2 Literature review 9

in the rate integration due to the gyroscope imperfections to the effectiveness of the com-

plementary filter. A full description of a complementary filter can be seen in (Oliveira et al.,

2000).

Regarding stabilization or attitude control, the most used linear regulators in the MRUAV

field (COTS and hobby grade) are PID (Schiavoni et al., 2015). By design, the quadro-

tor is simply controlled by independently changing the speed of the four rotors (Beard,

2008) (Adigbli et al., 2007). The dynamics of the quadrotor are considered unstable

(Miller, 2011), with the characteristics of dynamics such as being intensively non-linear,

multi-variable, strongly coupled, and under-actuated. Therefore a feedback control topol-

ogy is needed (Stevens et al., 2003) due to the fact that the model reveals that the poles

are located on the right of the real-imaginary plane and its damping ratio is negative. One

of the most commonly used techniques (Nelson, 1998) in order to provide a solution is a

Stability Augmentation System, which makes the vehicle stable via the rate measurement in

the feedback loop. (Bouabdallah, 2007) derives the quadrotor model in the Euler–Lagrange

formalism and applies it in a comparison of PID and LQ control methods. The inner attitude

loop control is performed inside the flight controller, using accelerometers, gyroscopes and

it runs approximately at 286Hz on the MultiWii board (MultiWii, 2010) and 400Hz on the

Pixhawk flight controller (Meier et al., 2011).

In this thesis, a position control strategy that uses the pseudo-controls throttle, roll, pitch,

yaw (derived from the attitude controllers mentioned above) for station-keeping or main-

taining the position at a desired location is presented. There are similar approaches in

(Mellinger, 2012) and (Khalil, 2002). This approach will be later used by the trajectory

controller as well. (Michael et al., 2010) (Mellinger et al., 2014) describe several linear PID

controllers for tracking trajectories. In (Mellinger, 2012) a quadrotor model with non-linear

rigid body dynamics and a first-order rotor response is linearised with the rotor dynamics

neglected in order to obtain the control law for orientation and, therefore, the position of

the vehicle.

One of the main differences between this thesis and other similar approaches is the use of

distributed on-board computing for the control structure (Flight Stack Sec. 3.3). In (Heng

et al., 2011) (Honegger et al., 2012) only one computer is used in order to validate their

advanced GNC algorithms, while in (Mellinger et al., 2014) (Mahony et al., 2012b) the

vehicle was controlled using a ground station desktop computer.

If we consider the concept of distributed computing (Coulouris et al., 2012), where compo-

nents interact with each other in order to achieve a common goal, a more robust and func-

tional system can be obtained. By adding a companion computer to the avionics system,

10 Chapter 1 Introduction

we can increase the available functionality and, consequently, the computational resources

available for running guidance and navigation algorithms are considerably increased. This

system is named Flight Stack (Vargas et al., 2016).

1.2.3 Slung Load Dynamics

Over the last 50 years, applications of rotorcraft carrying external suspended loads have

been of significant interest in the aerospace research community due to the inherent sta-

bility problems such systems suffer from. Rotorcraft suspended load operations have ex-

perienced further development and extensive use since the Vietnam war. In the following

years (1965-1975) the research turned to the stabilization of difficult loads using heavy lift

helicopters (Cicolani et al., 1995). The solutions found included suspensions with multiple

attachment points and various control devices. An early successful operation using single

helicopter slung load was based on using suspensions consisting of cables and spreader bars

(Korsak et al., 1972).

A common obstacle to further operational development is the complexity of the system mo-

tion and its guidance and control along manoeuvring flight paths (Cicolani et al., 1986),

which somewhat slowed the progress of slung load operations until recently. Progress be-

yond hover operations suffered due to the lack of practical and realistic equations of motion

for use in simulation studies and, therefore, the development of experimental studies was

affected as well.

In the work of (Cicolani et al., 1995) several systematic approaches to derive the equations

of motion of the slung load system were identified. Their working equations for applications

were formulated almost entirely in terms of the objects and operations of 3-dimensional

vector mechanics, their simulation work was demonstrated and now it is used on a number

of similar studies.

Another successful example of simulation of single helicopter slung load operation is pre-

sented in (Faille et al., 1995). They studied the stabilization and regulation problem of a

helicopter/slung-load system by using a non-linear model of the system that was linearised

(only a set of equations) in order to apply linear control theory. In their model, the load

needs 9DOF (degrees of freedom) that corresponds to 18 states and, when connected to

helicopter, the model contains 33DOF resulting in 66 states. An assumption is made that it

is possible to measure the position and orientation of the slung load, therefore this method-

ology only works in simulation scenarios. Finding information about the current state of

the slung load becomes paramount if the control of the load must be addressed. This work

1.2 Literature review 11

is important for historical reasons, since it proposes a practical methodology to tackle the

problem.

For an elaborate survey of the different studies in this area throughout the last decades the

reader may refer to the work by (Fusato et al., 2001) and (Luigi, Cicolani, 1992), containing

a number of historical references dealing with different types of stability analysis. Two

major works are found in (Prasad Sampath, 1980) and (Bisgaard et al., 2006). In the first

one, the author used a Lagrange formulation to tackle the modelling problem, being this

one of the first studies that created a complete set of equations of motion in 12 degrees

of freedom, which included all body-to-body suspension schemes. In the second study,

the model was derived using the Udwaidia-Kalaba equation and a redundant coordinate

formulation in which the wires were inserted as acceleration constraints.

The majority of studies have been focused on determining stable flight regimes with respect

to slung load parameters to avoid instabilities (Prasad Sampath, 1980) (Poli, 1973) (Prab-

hakar, 1977). Alternative efforts have considered modifying the shape of the load (Hoh

et al., 2006) as well as adding extra components (gyroscopes, fins, drogues) to the load to

make it stable related to the rotorcraft (Micale et al., 1973) (Feaster et al., 1977). Adding

components of the load is a possible solution, but reduces the applicability and practicability

of the overall system, therefore it has to be pondered according to the application.

The problem of state estimation for slung load systems is mentioned sparsely in literature.

In (Dukes, 1973) the difficulty in reliably estimate slung load states is mentioned and to

overcome this problem an open loop control approach is suggested. (Gupta et al., 1976)

considers the design of state estimation for the slung load using an attitude measurement,

the angles of a measurement cable from the helicopter to the ground and the angles of the

suspension cable as sensor input to a linear Kalman filter.

One particularly relevant study was focused on designing stability augmenting techniques

for slung load systems and stability analysis to determine favourable wire lengths, vehi-

cle/load mass ratios, and other parameters (Bisgaard et al., 2006). This study resulted in

one of the first experimental systems for small scale rotorcraft. Autonomous small scale ro-

torcraft have changed the perspective on this field of engineering, making it more accessible

for academic research groups and allowing to tackle the problems related with slung load

systems. Before this seminal work by Bisgaard, testing of stability augmenting solutions

on real aircraft was limited to research and development groups with access to heavy lift,

expensive helicopters (military and defence companies).

12 Chapter 1 Introduction

In more recent work (Bisgaard et al., 2010) presents a design and verification of an esti-

mation and control system for a helicopter slung load system. In this work, Bisgaard uses

a computer vision approach to create an estimator capable of estimating the states of the

load. Vision-based sensor data estimates the relative position of the load and estimates the

wire length. After testing the estimator, a feed-forward control system based on input shap-

ing is developed so that it enables the helicopter to perform manoeuvres with a slung load

without inducing residual oscillations. An estimator for the slung load position inspired by

the latter work is created for this thesis.

Tackling the slung load problem using a multi rotorcraft is found in more recent work.

(Palunko et al., 2012) addressed the problem of trajectory tracking while carrying a slung

load, using dynamic programming in order to generate a swing-free trajectory for the

quadrotor slung load system. The estimation of the slung load states is done by using

an indoors motion tracking laboratory.

In (Palunko et al., 2013) a model-free approach to solve the slung load swing trajectory

tracking using a reinforcement learning algorithm is proposed. The slung load states are

obtained using an indoors motion tracking system. Their method converges quickly to

learn the policy function that minimizes the tracking error of the load with respect to the

reference trajectory, their results are proved experimentally.

Another approach of simulation work on dynamic modelling of the quadrotor/slung load

system can be found on (Sadr et al., 2014), the model was obtained and verified by com-

paring two Newton–Euler and Lagrange methods. Their control methodology involved a

feed-forward algorithm for reducing or cancelling the swinging load oscillation by imple-

menting input shaping theory which convolves the reference command with a sequence of

impulses, no experimental work was carry out. A interesting modelling approach for the

slung load was presented in (Feng et al., 2015), where they modelled as a three-dimensional

point mass pendulum where the dynamics of the slung load are constructed analytically by

calculating the suspension angles of the load. An adaptive control scheme is then proposed,

it addresses specifically the existence of the external force and torque caused by the slung

load. Both modelling and control techniques are verified only with simulations.

A hybrid dynamical system is proposed in (Tang et al., 2015) where the quadrotor is consid-

ered as a rigid-body and the load as a point-mass, but their hybrid model comes from two

subsystems of models, their numerical and experimental results indicate that the method is

practical for generating trajectories that include aggressive obstacle avoidance manoeuvres

and hybrid state transitions. The slung load orientation and position is obtained by using

an indoors motion tracking laboratory. Attempts using drones in the cargo transport can be

1.2 Literature review 13

Credit: Raptopoulos, Delft and Momont

Fig. 1.4.: Examples of cargo MRUAV on the healthcare industry.

from from a range of sectors, including the healthcare industry, food, and postal deliveries.

In the healthcare industry drones can transport medicines and vaccines, and retrieve medi-

cal samples into and out of remote or otherwise inaccessible regions (Andreas Raptopoulos,

2013) (Fig.1.4 bottom left and bottom right). Ambulance drones are developed to rapidly

deliver defibrillators in the crucial few minutes after cardiac arrests (Alec Momont, 2014)

(Fig.1.4 top right).

Foodwise, there are currently several companies creating delivery services for their food

goods. The most relevant are Burrito-by-drone (Fig. 1.5 top left), Domino’s Pizza (Fig.1.5

top right), 7-eleven (Fig.1.5 bottom left) and Old Hamburg Schnitzelhaus AIR (Fig. 1.5 bot-

tom right). In the postal delivery sector, postal companies have been forced to seek new

ways to expand their traditional letter delivery business models. Different postal companies

from Australia, Switzerland, Germany, Singapore and Ukraine have undertaken various

UAV trials as they test the feasibility and profitability of unmanned delivery UAV services.

Again, the most relevant are Amazon, 2013 (Fig.1.6 top middle), DHL, 2013 (Fig.1.6 bot-

tom left) and Google, 2014 (Fig.1.6 bottom right). After reviewing the literature, a very

important need for an experimental slung load estimator is found. Such an estimator can

then be used on different types of control strategies.

1.2.4 Machine Learning

Recent advances in Machine Learning can be used to solve a tremendous variety of problems

and Deep Learning (LeCun et al., 2015) is pushing the boundaries even further. Data and

analytic capabilities have made a leap forward in recent years. The volume of available

14 Chapter 1 Introduction

Credit: Burrito-by-Drone, Domino’s pizza, 7-eleven, and OHS

Fig. 1.5.: Examples of cargo MRUAV on the food industry.

data has grown exponentially, more sophisticated algorithms have been developed, and

computational power and storage have steadily improved.

There are several applications for Machine Learning, the most significant of which is predic-

tive data for different fields (engineering, science, finance, entertainment) (Mitchell, 1997).

Conventional software programs are hard-coded by humans with specific instructions on the

tasks they need to execute. By contrast, it is possible to create algorithms that learn from

data without being explicitly programmed (Shavlik et al., 1990). The concept underpin-

ning machine learning is to give the algorithm a massive number of experiences (training

data) and a generalized strategy for learning, then let it identify patterns, associations, and

insights from the data. In short, these systems are trained rather than programmed.

Some machine learning techniques, such as regressions, support vector machines (Cortes et

al., 1995), and k-means clustering (MacQueen, 1967), have been in use for decades. Others,

while developed previously, have become viable only now that vast quantities of data and

unprecedented processing power are available. Recurrent neural networks (Boden, 2001),

a frontier area of research within machine learning, uses neural networks with many layers

to push the boundaries of machine capabilities.

ML techniques can be useful for solving dynamic optimization and control theory problems,

which are exactly the type of issues that come up in modeling complex systems in fields such

as engineering and economics (Wagstaff, 2012). Therefore combining ML with other tech-

1.2 Literature review 15

Credit: Amazon, DHL and Google

Fig. 1.6.: Examples of cargo MRUAV on the postal industry.

niques, could have an enormous range of uses. Acquired knowledge (inductive algorithms)

(Kocabas et al., 1991) can be used to detect patterns, trends and structure in many domains.

This source discusses learning at different levels which are knowledge, symbol and device.

While (Dietterich, 1986) concludes there are two types of learning; knowledge-level which

is the same as knowledge acquisition and symbol-level which is speed-up learning where

knowledge is used more efficiently.

In the symbol-level, also called symbolic learning, the basic fields involve learning by being

told, deduction and induction (Kocabas et al., 1991). The latter is characterised as learning

as search (Mitchell, 1982). One of the induction techniques used in this thesis is the so

called supervised induction, which relies upon a set of pre-classified examples which are

ideally indicative of the concept that it is to be learned, it is also called supervised learning.

It involves an algorithm that learns to discriminate between the given concepts (Carbonell

et al., 1990).

As explained above, inductive machine learning is the process of learning a set of rules from

instances (examples in a training set). A large number of techniques have been developed to

16 Chapter 1 Introduction

tackle inductive learning such as logical/symbolic techniques, perceptron-based techniques

and statistics (Bayesian Networks, Instance-based techniques) (Kotsiantis, 2007).

In the logic based algorithms, two methods stand out, decision trees and rule-based clas-

sifiers. (Urnkranz, 1999) provides an overview of work in decision trees with practical

applications while (Urnkranz, 1999) delivers an excellent overview of existing work in rule-

based methods. For the perceptron-based techniques the most relevant methods include

single and multi layered perceptron which are based on the notion of perceptron (ROSEN-

BLATT, 1961), such techniques are also called artificial neural networks.

Artificial neural networks are reviewed in (Rumelhart et al., 1986b) (Blum et al., 1992)

(Sethi, 1990). The latter describes nets with two hidden layers as being able to form deci-

sion boundaries of any complexity. During learning, neural networks distribute a represen-

tation across many units, or may dedicate neurons to individual subtasks. There are several

algorithms with which a network can be trained (Neocleous et al., 2002). However the most

well-known and widely used learning algorithm to estimate the values of the weights of a

network is the Back Propagation (BP) algorithm (Rumelhart et al., 1986a). Feed-forward

neural networks are usually trained by the original back propagation algorithm or by some

variant. Their greatest problem is that they are too slow for most applications.

A recurrent neural network (RNN) is an artificial neural network whose neurons send feed-

back signals to each other. A large number of reviews already exist of some types of RNN,

the most relevant being (Williams et al., 1989) (Jaeger, 2005a) (Jaeger, 2001) (Chow et

al., 1998). Many applications using RNN have addressed problems involving dynamical

systems with time sequences of events.

Recurrent neural networks are being used to track water quality and minimize the additives

needed for filtering water, the studies of time sequences of musical notes, applications

focusing on systems for language processing, real-time systems, trajectory problems, and

robotic behaviour (Jain et al., 2000). This wide range of applications make it a favourable

candidate for the task of this thesis which is to simulate, predict, classify and control a

non-linear dynamical system (MRUAV/slung-load system). Sometimes it is hard to obtain

an analytical description of the system (system model) and therefore a solution is to use

black-box modeling techniques. RNN have shown outstanding performance in such tasks

(Holzmann, 2009) (Gonzalez-Olvera et al., 2010) (Romero Ugalde et al., 2013).

Training a RNN is inherently difficult (Pascanu et al., 2012) and there are two widely known

issues with the training process, the vanishing and the exploding gradient problems which

are detailed in (Bengio et al., 1993). However RNNs, represent a very powerful generic

1.2 Literature review 17

tool, integrating both large dynamical memory and highly adaptable computational capa-

bilities. They are the Machine Learning (ML) models used in this thesis and are the most

closely resembling of biological brains, the substrate of natural intelligence. In order to

overcome the downsides of traditional RNN training such as Back Propagation Through

Time (Campolucci et al., 1996) and Real Time Recurrent Learning (Jaeger, 2005b), a novel

paradigm of computation with dynamical systems, namely Reservoir Computing (RC) has

been proposed (Verstraeten et al., 2007) which can be utilized to achieve efficient training

of RNNs.

Reservoir computing has emerged as an alternative to gradient descent methods for train-

ing recurrent neural networks. The main aspect of an RC network is that the recurrent

connections of the reservoir are fixed, while the readout output weights only are trained.

This characteristic simplifies much of the training of recurrent networks, as any standard

classification or regression method can be used to train the output layer.

In (Williams et al., 1989) (Werbos, 1990) (Puskorius et al., 1994), the used algorithms

adapt all connections (input, recurrent, output) by some version of gradient descent which

makes them perform slowly, as well as the learning process being prone to become disrupted

by bifurcations (Doya, 1992) which means convergence cannot be guaranteed, therefore

RNNs were rarely fielded in practical engineering applications. In RC algorithms, training is

fast, does not suffer from bifurcations, and is easy to implement. On a number of benchmark

tasks, RC algorithms have outperformed several other methods of non-linear dynamical

modelling as shown on (Jaeger et al., 2004) (Jaeger, 2007).

Echo State Networks (ESN) are a flavour of RC (Lukoševičius et al., 2009). The main idea

comes from a continuous neural hardware micro-circuitry. ESNs have the advantage of

overcoming the difficulties of traditional dynamic RNN in large-scale training. They can also

approximate non-linear systems precisely producing excellent results in their predictions.

The ESN is practical and conceptually simple, but requires some experience and insight to

achieve good performance.

The ESN idea is shared with Liquid State Machines (Maass et al., 2002) (Yamazaki et al.,

2007), both were developed independently, but simultaneously. Both techniques, as well as

back-propagation decorrelation learning rule (Steil, 2004), are considered flavours of the

reservoir computing framework.

For the dynamic modelling of systems, (Antonelo, 2011) created reservoir computing net-

works (particularly ESN) trained to predict the position of the robot from the sensory signals

to then create forward models of ground robots, it was found that it is possible to use the

18 Chapter 1 Introduction

network in the opposite direction for predicting local environmental sensory perceptions

from the robot position as an input, thus learning an inverse model. All of the proposed

models were used on robot navigation systems to be able to safely and purposefully navi-

gate in complex dynamic environments.

(Ploger et al., 2004) applied RNN and ESN to generate a dynamical model for a differential

drive robot using supervised learning and secondly to the training of a respective motor con-

troller, proving that ESN can be implemented in the actual hardware of the motor controller.

(Ni et al., 2011) used ESN for the application of aircraft predictive control by forecasting the

attitude control signal to further enhance the aircraft’s flying qualities, proving that RNNs

have an excellent non-linear approximation, memory and predictive ability.

A very interesting approach using neural networks to tackle slung load problems is found

in (De La Torre et al., 2013a). They proposed a neuro-predictive trajectory generation

architecture for slung load systems using a system uncertainty identifying neural network.

It is shown that the effect of system uncertainty on a model predictive control approach can

be mitigated by the use of neural networks.

While discussing the system identification, (Gonzalez-Olvera et al., 2010) presented a new

recurrent neuro-fuzzy network for modeling and identification of a class of non-linear sys-

tems using only output measurements, with an algorithm based on the adaptive observer

theory. Their trained network effectively learned the dynamics of the system on two ex-

amples based on physical systems with experimental data (a visual servoing system and a

traffic cell).

In (Jaeger, 2002b), the creator of the ESN flavour shows basic ideas and examples on how

to use the Recursive Least Squares (RLS) algorithm in combination with ESN to identify

a 10th order NARMA system. (Bian et al., 2011) used ESNs to improve the accuracy of a

6DOF model for Unmanned Underwater Vehicles (UUV), which are a highly complex non-

linear dynamic systems, by using a meta-learning strategy for off-line training and genetic

algorithms to optimize the main parameters, with their results showing that the training

strategy is simple, efficient and easy to operate.

A neural network system identification technique is used in (Shamsudin et al., 2010) to

model the dynamics of a small scale helicopter where the test data is from a non-linear

dynamics simulator. In (Liu, 2001) several techniques and training approaches were devel-

oped using RNN for applications to non-linear dynamical system identification, concluding

that the training process of RNN can be simplified due to the simple gradient calculation

1.2 Literature review 19

in feed-forward neural networks and that the RNN structure considered is appropriate for

performing non-linear dynamical system identification.

1.3 Thesis Contributions

One of the major contributions of this thesis is the development of estimators capable of

estimating the position of the slung load relative to the vehicle. The main techniques in-

vestigated are Computer Vision and Machine Learning. The first method uses a stream of

images from a downwards looking gimballed-camera to calculate a position vector of the

load relative to the MRUAV. The second estimator uses real flight data to train a machine

learning architecture that can predict the position vector of the load in the MRUAV fixed

frame using the vehicle pose and pilot pseudo-controls as input. Experimental results show

very accurate position estimation of the load using the machine learning estimator when

comparing it with a motion tracking system (~2% offset).

The next major contribution relates to enableling flight capabilities of a MRUAV with slung

load for general cargo transport, a control system is developed that dampens the oscillations

of the load when the MRUAV is following a desired flight trajectory. Such control scheme

uses a feedback approach to simultaneously prevent exciting swing and to actively dampen

swing in the slung load. The methods and algorithms developed are validated by flight

testing.

Another contribution is a methodology for the characterization and maximization of the

thrust as well as the prediction of the time of flight of a hovering multirotor while maintain-

ing constraints of specific mission requirements. The results shows that this methodology

is more accurate than on-line calculators (~2% vs ~5% offset) when comparing with real

flights. Using 3D printed components such as the Rotite (Burns, 2014) elements resulted

in a time of flight increasing by approximately 22%. More importantly, as an added benefit,

the arm of the quadrotor was able to rotate without coming loose from the frame, therefore

improving crash-survivability of the quadrotor frame.

Regarding control of multirotors, the avionics suite (Flight Stack and DronePilot) is another

contribution resulting from the necessity of solving the research hypothesis. Although there

are several similar flight stacks on the market, they can be 13 times as expensive as the one

produced in this thesis, this allows the construction of several models without defeating

the fundamental constraint of cost. The software contribution (DronePilot) ties the avion-

ics suite and allowed the vehicle to perform accurately and precisely. The hardware and

software proposed are validated by numerous flight testing.

20 Chapter 1 Introduction

The black-box system identification quadrotor models generated in this thesis have good

generalization capabilities with good accuracy. More importantly, it was demonstrated that

the learned dynamics can be used effectively on-board of the system, inside the flight stack.

This is a valuable contribution that has an application in GPS-denied environments.

1.4 Thesis Structure

Chapter 2 This chapter addresses the description and optimal selection of propulsion com-

ponents for a multirotor, for a given payload capacity, number of rotors and flight duration.

Using a simplified approach mathematical models are developed for motors, propellers,

electronic speed controllers (ESC) and batteries, therefore allowing the characterization

and maximization of the thrust. Time of flight of a hovering multirotor prediction models

are developed using experimental data.

Chapter 3 In this chapter the set-up of the Micro Air Systems Technology Laboratory (MAST

Lab) is presented, followed by the description of the avionics suite which compromises the

Flight-Stack and the DronePilot software framework. Sections of this chapter are published

in Vargas et al., 2016.

Chapter 4 The derivation of the quadrotor vehicle mathematical model is provided in this

chapter. This result is very important because it describes how the multirotor moves ac-

cording to its inputs. The model equations from this section will be inverted so that in the

control section 4.3 are used to identify which inputs are needed to reach a certain position.

Experimental results from this section are used in Vargas et al., 2016.

Chapter 5 In this chapter, a discussion about machine learning is presented. The algorithms

and methodologies used in this research effort are introduced. The goal of this section is to

show the key algorithms and theory that is used in this research effort.

Chapter 6 With the machine learning techniques introduced alongside the multirotor me-

chanics and dynamics, this chapter is focused on black-box system identification to find

system models capable of converging with the non-linear dynamics of MRUAV. Experimen-

tal flight data is presented. This chapter is based on Vargas et al., 2015b, coming from

techniques used in Vargas et al., 2014.

Chapter 7 The slung load dynamics when coupled with the MRUAV (quadcopter) dynamics

are analysed and presented in this chapter. Using computer vision and machine learning

techniques, prediction of the position of the slung load is presented. A controller to dampen

the oscillation of the load is presented and tested using the frameworks proposed in prior

1.4 Thesis Structure 21

chapters. Some of the work presented in this chapter was presented in Vargas et al., 2014

and Vargas et al., 2015a.

Chapter 8 This section summarizes the contributions of this thesis, discusses the results

and proposes solutions to improve this work.

1.5 Publications

The works created and described in this thesis contributed to the following publications:

• Aldo Vargas, Murray Ireland, and David Anderson. Swing free manoeuvre controller

for RUAS slung-load system using ESN. In: Proceedings of the 1st World Congress on

Unmanned Systems Engineering. 2014

• Aldo Vargas, Murray Ireland, and David Anderson. System Identification of multi-rotor

UAVs using echo state networks. In: AUVSIs Unmanned Systems. 2015.

• Murray Ireland, Aldo Vargas, and David Anderson. A Comparison of Closed-Loop

Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Con-

trol. In: Aerospace 2.2 (2015), pp. 325352. URL: http://www.mdpi.com/2226-

4310/2/2/325/. 2016

• Aldo Vargas, Murray Ireland, and David Anderson. Swing-Free Manoeuvre Controller

for Rotorcraft Unmanned Aerial Vehicle Slung-Load System Using Echo State Networks.

In: International Journal of Unmanned Systems Engineering 3.1 (2015), pp. 2637.

URL: http://www.ijuseng.com/#/ ijuseng-3-1-26-37- 2015/4587568279. 2016.

• Aldo Vargas, Murray Ireland, Kyle Brown and David Anderson. The MAST Lab flight

stack for GNC of micro UAVs. MDPI Robotics (ISSN 2218-6581). Pending publication.

• Aldo Vargas and David Anderson. Computer vision technique to estimate the slung load

dynamics when coupled to a Multirotor Unmanned Aerial Vehicle. Revista Internacional

de Investigación e Innovación Tecnológica (ISSN 2007-9753). Latindex Folio: 23614.

2017.

22 Chapter 1 Introduction

2Multirotor Design

In this chapter, the description of the various components for multirotor vehicles is pre-

sented. A methodology for the characterization and maximization of the thrust is presented

as well as the prediction of the time of flight of a hovering multirotor while maintaining con-

straints of specific mission requirements. Experimental tests of the rotor components are

presented and compared with on-line calculators. In order to answer the research question

(Sec. 1.1.3), a multirotor vehicle with the capability of carrying a slung load with sufficient

extra thrust to be able to manoeuvre while maintaining the maximum time of flight possible

and low costs is needed. Usually, multirotors do not require a human pilot to be on-board

which allows it to be used in dangerous situations or in hazardous environments, such as

disaster areas. Not having a pilot means that the MRUAV must contain advanced on-board

autonomous capabilities and operate with varying degrees of autonomy. The mechanical

simplicity of MRUAV makes them ideal test-beds for GNC (Guidance Navigation and Con-

trol) research due to their ease of construction, agility, expandability and reusability. A

multirotor is a rotorcraft with more than two rotors, their advantage is the simpler rotor

mechanics required for flight control. Rather than employing mechanically-complex main

and tail rotors, a multirotor employs several identical rotors to provide both lift and control.

Designing a miniature autonomous multirotor is basically dealing with numerous design

parameters that are closely linked. Taking a decision about all these parameters requires a

clear methodology. Selecting the correct hardware for a multirotor can be challenging in

order to get the best flight performance of the system. One of the first parameters to choose

is the number of actuators the vehicle will have. In this document we will refer to rotor

(actuator) as the combination of propeller, electric motor and speed controller. The most

common number of rotors used in research labs around the world is four, or most commonly

named as quadrotor or quadcopter. Quadrotors have four fixed-pitch propellers in a plus

Fig. 2.1.: Quadrotor possible flying configurations

23

or cross configuration as showed in figure 2.1, both are slightly different, one of the differ-

ences is the placing of the flight controller and the control mixing (e.g. To fly forward on

the plus configuration rotor 4 must produce more thrust than rotor 3 while in cross config-

uration rotors 2 and 4 most produce more thrust than rotors 3 and 1), the other differences

are discussed in the modelling Section 4.1. Rotating the two pairs of propellers in opposite

directions removes the need for a tail rotor. Increasing or decreasing the speed of the four

propellers simultaneously permits climbing and descending. Vertical rotation (yawing) is

achieved by creating an angular speed difference between the two pairs of rotors.

2.1 Frame

In this section the airframe for multirotors is discussed, which is a mechanical structure that

holds the parts that compose a multirotor. As stated before the most common multirotor

platform is the quadrotor, but additional multirotor platforms are easily conceived by aug-

menting the quadrotor with additional rotors. This provides greater lifting force without

the need to upgrade components, such as the rotor blades and motors. However, the intro-

duction of additional rotors changes the dynamic performance of the system Ireland et al.,

2015, adding extra mass and typically requiring additional supporting structure. The sec-

Credit: MAST Lab

Fig. 2.2.: TEGOv2 - 3D printed quadrotor performing a hover flight.

ond iteration for the design of the test-bed multirotor (Fig. 2.2) for the MAST Lab (Sec. 3.2)

was considered using a 4 rotor configuration, because its easier and more practical when

24 Chapter 2 Multirotor Design

repairing and maintaining. Many research groups have begun constructing multirotors with

four rotors as robotics research tools/platforms.

2.1.1 Structures

The frame holds together the entire aircraft and it must survive constant crashes and/or

hard-landings (which could potentially damage the entire vehicle) and it serves as vibra-

tion dampening/isolation from the rotors to the flight controller. The mechanical structure

Fig. 2.3.: Quadrotor free body diagram

design of multirotors is relatively simple. Typical multirotors utilize the spar method, with

each spar anchored to a central hub/plate like spokes in a wheel. A example of a multirotor

arm is showed in figure 2.4. This arm is part of glass fibre frame that it also has being used

in the MAST Lab. The arm is made from a durable nylon polyamide material, while the cen-

tre plates are made from glass fibre. Glass fibre is a general purpose plastic reinforcement

material and relatively inexpensive. It is durable, has good heat resistance and good tensile

strength. Nylon polyamide is a type of plastic, which is a human-made synthetic polymer

and its used on the multirotor industry due to its semi-crystalline property which is gener-

ally a very tough material with good thermal and chemical resistance. Some assumptions

are to be made in order to simplify the design process. The multirotor inertia is increased

with an increase of frame size, therefore the frame diameter is kept as small as possible

only to keep the propeller tip to tip distance equal to a small positive number.

2.1 Frame 25

Fig. 2.4.: Nylon polyamide multirotor arm and assembled glass fiber frame

2.1.2 Configurations

As stated at the introduction of this chapter, multirotors can utilize two or more rotors, it

depends on the maximum payload the vehicle is going to carry or by other specification

also heavily considered in this type of aircraft, which is transportability. This specification

refers to the capability of easiness of transportation when the vehicle its not flying. For a

quadrotor set-up, one set of hardware can give the optimal design, while for a six rotor

set-up the same hardware may not necessarily give the same response as showed on table

2.1. For better stability, fault tolerance or stronger lift force the number of motors must

be increased. The number of rotors (motor and propeller tuple) is constrained to an equal

Rotors Motor Battery Propeller Weight Hover Time
4 2200kv 2.2ah, 20C 5x3 in 303 grams 17 minutes
6 2200kv 2.2ah, 20C 5x3 in 572 grams 11 minutes

Tab. 2.1.: Loiter flight times of similar configuration multirotors

number of counter-rotating rotors to eliminate the torque in the frame yaw (ψ) axis (figure

2.3). If we consider the configuration of a multirotor using just three rotors, then the

vehicle can be called trirotor (Fig. 2.5), and it employs three rotors and a servo (small

servomotor/actuator used in small-scale robotics) to rotate one of them to compensate for

adverse torque in yaw axis.

Fig. 2.5.: Trirotor - three rotor configuration vehicle.

26 Chapter 2 Multirotor Design

2.1.3 Redundancy

For a multirotor to fly and not spin around an even number of rotors is needed and these

need to spin in opposite directions to counteract the torque spin. On a trirotor, this torque

twisting effect is countered by the rear rotor being angled to vector the thrust in the opposite

direction to the twisting effect. On a quadrotor there is no need to compensate because each

rotor has an equal opposite to counteract the spin. If one rotor fails then you are effectively

left with a trirotor configuration but without the thrust vectoring capability of an angled

third rotor. So, the vehicle then it will spin out and crash. In a hexarotor configuration

(Fig. 2.6 left) there are 3 opposing pairs of rotors. If you lose one rotor you’ll be left with

5 spinning rotor, however, the flight controller will detect a drop of stability and a resulting

yaw effect and will reduce the thrust generated on one of the rotors that would be spinning

in the opposite direction, effectively leaving you with a quadrotor configuration, the only

reason this might fail is if the weight of the vehicle and payload cannot be lifted with only

four rotors, otherwise it will be able to continue performing the mission. If we increase the

Fig. 2.6.: Two redundant multirotor configurations - Left: Hexarotor. Right: Octorotor V-
shape

number of rotors, the redundancy will be increased but the weight and complexity factor

of the multirotor will became a decision factor. Figure 2.6 right shows a multirotor, using

eight rotors, in a V-shape align configuration, for full redundancy.

2.1.4 Materials

There is two key parameters when designing/choosing a frame for a multirotor, one is

weight and the other one is sturdiness. The most common materials used in the construction

of multirotor frames are carbon fibre, glass fibre, plastics (nylon, ABS, PLA), aluminium,

wood. Recently there is more accessible 3D printers capable of printing parts or even the

entire frame, in this research effort, there is a special interest in the usage of this type of

2.1 Frame 27

technology to aid in the building stage of multirotors. If carbon fibre frame is used, then

the frame weight is calculated as the length of the frame multiplied by 0.045kg/m which is

the weight of a 7x9x1000mm carbon fibre tube.

3D printing

3D printing is the process of being able to print any object layer by layer (Anastasiou et al.,

2013) or making a three-dimensional solid object from a digital model. Its also called ad-

ditive manufacturing. The current generation of 3D printers typically requires input from a

CAD program in the form of an STL file, which defines a shape by a list of triangle vertices.

The printer used in this multirotor research effort is a Makerbot Replicator 2, this machine

uses a extrusion deposition method, also called Fused Deposition Modelling (FDM). The

part is produced by extruding small beads of material which harden immediately to form

layers. A thermoplastic filament is supplied to a extrusion nozzle head, the nozzle heats the

material and turns the flow on and off, stepper motors are used to move the extrusion head

in both horizontal and vertical directions. Control of the machine is typically done by CAM

software (Computer Aided Manufacturing). Entire frames and parts for small scale multiro-

tor vehicles can be printed using this practical device. More information about this printer

can be found in Appendix A.1. The material used on the frame printings is PLA (polylactic

acid) which is a thermoplastic aliphatic polyester derived from renewable resources. In this

research, several parts and frames have being design and built having in mind 3D printing

technologies. Fig. 2.2 shows the latest version of the first 3D printed quadrotor designed in

the MAST Lab, named TEGO. Which evolved from a standard quadrotor frame showed in

figure 2.7. As stated before, there is two main design parameters for a frame in a multirotor,

Fig. 2.7.: TEGO v1 quadrotor

sturdiness and lightweight. The arms in the model TEGOv1 are constructed using a truss

structure (Fig. 2.8), which compromises triangular units constructed with straight mem-

bers whose ends are connected at joints referred to nodes. External forces and reactions

to those forces are considered to act only at the nodes and result in forces in the members

28 Chapter 2 Multirotor Design

which are either tensile or compressive forces. This type of structure makes it ideal for

multirotor arms for robustness and crash resistance. The main issue with the first version of

Fig. 2.8.: TEGOv1 truss structure arm

the TEGO model frame was the weight of it, in order to interconnect the four arms with the

top and bottom centre plate nuts and bolts had to be used. For a airframe of this size/scale

adding this type of extra weight has a consequence in reduced time flights. The next design

iteration was using a special mechanical fastener called Rotite (Burns, 2014), this avoid the

usage of extra joining parts and therefore the frame weight was reduced.

Rotite

Rotite is basically a mechanical fastener. More deeply is a device that includes first and sec-

ond inter-engageable parts, each having a longitudinal axis and a connecting face extending

substantially transversely to the longitudinal axis. The first part has an engagement forma-

tion extending substantially axially and the second part has a receiving formation extending

substantially axially, and in which the engagement formation is receivable. The engagement

and receiving formations each includes a substantially helicoidal surface extending at least

partially around the longitudinal axis of the respective part of the connector, so that rota-

tion of the parts relative to one another about the longitudinal axes, when the parts are

substantially co-axially aligned, so that the connecting faces of the parts face one another

in a substantially axial direction, causes engagement of the engagement formation with the

corresponding receiving formation. More information about this mechanical fastener can

be found in Appendix A.2. The arm and centre plate of TEGOv1 was adopted in order to

fit this mechanical fastener and the result was a airframe 2
3 lighter than TEGOv1, mainly

because no bolts/nuts where used to put the frame together, making a lighter air-frame

translated in a substantial increase of flight times (Vargas, 2013a). The truss-rotite arm is

showed in figure 2.9 and it became the first application of Rotiteś in the aerospace indus-

try. This frame was named TEGOv2 and the maiden video can be seeing at 1. Using this

mechanical fastener did not only reduced weight of the airframe, it also help in the crash-

survivability characteristic of the vehicle. When testing the vehicle in the MAST Lab, and

1https://www.youtube.com/watch?v=G9jUP6Z5ENA

2.1 Frame 29

https://www.youtube.com/watch?v=G9jUP6Z5ENA

Fig. 2.9.: TEGOv2 arm with Rotite element

Fig. 2.10.: TEGOv2 with Rotite a)normal b)crash-survivability characteristic

having several crashes with TEGOv1 and TEGOv2 (Fig. 2.10 a) in some cases the arm just

bended (almost in the Rotite opened position) instead of breaking, without disassembling

as showed in Fig. 2.10 b. This is a desired behaviour on multirotor frames and research

platforms, where crashing when testing and tuning advanced novel algorithms is something

regular.

2.2 Motor

High torque and high speed motors that develop rotational speeds in excess of 5000rpm

are necessary for multirotors in order to achieve stability and movement in all degrees

of freedom. The current trend in multirotor motor technology is to use permanent magnet

(PM) brushless motors (BLDC). The highest efficiency and highest power density is achieved

with permanent magnets brushless motors Gieras, 2014.

30 Chapter 2 Multirotor Design

Fig. 2.11.: BLDC Motor

2.2.1 Brushless motors

Brushless motors fall into the two principal classes, sinusoidally excited and square wave

(trapezoidally excited) motors. Sinusoidally excited motors are fed with three-phase sinu-

soidal waveforms and operate on the principle of a rotating magnetic field (Gieras, 2002).

They are simply called sine-wave motors or PM (Permanent Magnet) synchronous motors.

Square wave motors are also fed with three-phase waveforms shifted by 120◦ one from

another, but these wave-shapes are rectangular or trapezoidal (Fig. 2.12). It is important

to notice that all phase windings conduct current at a time. The later is most commonly

use in multirotor design. The most important advantages for using BLDC motors on mul-

Fig. 2.12.: Three-phase trapezoidally excited waveform for PM BLDC motor

tirotors are high power to weight ratio, high efficiency, high torque, good dynamic control

for variable speed applications, absence of brushes and commutator. This absence means

there is no problem of mechanical wear of the moving parts (Jang et al., 2004), also better

heat dissipation property and ability to operate at high speeds (Ede et al., 2001) make them

superior to the conventional direct current motors.

2.2 Motor 31

2.2.2 Mathematical model

BLDC motor are considered as a three phase synchronous machine as stated before. Since

its rotor is mounted with permanent magnets, some dynamic characteristics are different.

Flux linkage from the rotor is dependent upon the magnet. Therefore, saturation of mag-

netic flux linkage is typical for this kind of motors. One structure of the BLDC motor is

A1

B1

C1

A2

B2

C2

S

N

Magnet

Ro
to

r

Windings

Fig. 2.13.: BLDC motor basic diagram

fed by a three phase voltage (which should not exceed the maximum voltage limit of the

motor), the model of the armature winding for the BLDC motor is expressed as follows

va = Ria + La
dia

dt
+ ea

vb = Rib + Lb
dib

dt
+ eb

vc = Ric + Lc
dic

dt
+ ec

(2.1)

where the armature inductance La = Lb = Lc = L, the armature resistance (in Ohms)

Ra = Rb = Rc = R, terminal phase voltage (in Volts) vn, motor input current (in am-

peres) in and motor back EMF (in volts) en. The matrix form is
va

vb

vc

 =


R + dL

dt 0 0

0 R + dL
dt 0

0 0 R + dL
dt




ia

ib

ic

+


ea

eb

ec

 (2.2)

2.2.3 Motor parameters

The back EMF constant Kv, also called motor velocity constant, measured in rpm per volt,

which is the ratio of the motor’s unloaded (no load attached to its axle) RPM to the peak

voltage on the phases connected to the armature. On literature the terms Ke and Kb are

32 Chapter 2 Multirotor Design

also used as terms of back EMF. While Kv is used as the current trend in manufacturers of

multirotor parts specifications. Back EMF is expressed as

Eb(t) = KvϕΩ (2.3)

where Eb is back EMF, Kv the constant, ϕ is the field flux and Ω is the angular speed. The

back EMF is calculated on each phase (shifted 120◦) as

ea(t) = Kvϕ(θ)Ω(t)

eb(t) = Kvϕ(θ − 2π
3

)Ω(t)

ec(t) = Kvϕ(θ + 2π
3

)Ω(t)

(2.4)

Kv can be found experimentally by testing the motor and knowing the terminal resistance

R, and is not strictly limited to factors like armatures, poles, or geometric characteristics

of the motor. It is possible that a wider flat construction can lead to a better Kv given the

same winds and same quality materials. The torque QE is calculated as follows:

QE = eaia + ebib + ecic

Ω
(2.5)

where the torque constant Kt is the torque produced per ampere.The calculations of torque

per phase are

Qa(t) = Ktϕ(θ)ia(t)

Qb(t) = Ktϕ(θ − 2π
3

)ib(t)

Qc(t) = Ktϕ(θ + 2π
3

)ic(t)

(2.6)

After using Newton’s second law of motion, the torque balance equation is described as:

QE(t) − QL(t) = JR
dΩ(t)
dt

+ BΩ(t) (2.7)

where QL(i) is the load torque (in Nm), JR being the rotor inertia (in kgm2) and B the

damping constant. The motor torque is related to the applied current that sets the strength

of the magnetic fields generated by the motor windings, a simplified version of 2.7 is

Qm = Kt(i − i0) (2.8)

2.2 Motor 33

The internal back EMF vm is proportional to the rotation rate Ω via the constant Kv, using

usual electrical circuit equations and conservation of energy, gives the following parameters

in function of the motor current i and the motor terminal voltage v:

Qm(i) = i − i0

Kv
(2.9)

Ω(i,v) = (v − iR)Kv (2.10)

Pshaft(i,v) = QmΩ = (i − i0)(v − iR) (2.11)

Pelec(i,v) = vi (2.12)

ηm(i,v) = Pshaft

Pelec
= (1 − i0

i)(1 − iR
v) (2.13)

These equations depend on the tuple of motor parameters [R, i0, Kv], which are usually

provided by the manufacturers or are very easily obtainable. Using equations 2.8 and 2.9

we can find the relation between them (2.14). Kt is inversely related to Kv. This means

that if Kv is bigger, Kt gets smaller. Stronger magnets with higher flux density decrease

the voltage needed to produce a torque

Kt = 1
Kv

(2.14)

There is two common types of BLDC motors, in-runner and out-runner. The out-runner

motor usually spins slower than their in-runner counterparts, which have a more traditional

layout, in the world of direct current motors. The out-runner can generate more torque than

a similar size in-runner motor because geometrically it can accommodate a higher number

of permanent magnets than an in-runner of similar size as showed on figure 2.14. The

Fig. 2.14.: BLDC types. In-runner and Out-runner

number of poles is important when choosing a motor, the most common in-runner BLDC

motor have 2 or 4 magnetic poles. Currently the trend is to have more than 10 poles in

a out-runner BLDC configuration. Figure 2.16 shows a multirotor specific motor with 12

neodymium magnets and 9 poles, this motor is used on small scale multirotors (frame size

less than 250mm). When having more poles, the geometric characteristics of the motor

change in order to accommodate them, ending with a much wider motor, this is commonly

34 Chapter 2 Multirotor Design

called pancake motor 2.15. Pancake motors will produce more torque and consequently will

have a lower Kv. Having a lower Kv translates in more torque and therefore we can create

a rotor with a much bigger propeller and produce the same thrust but at lower RPM, which

is useful to reduce vibrations and having a much more stable flight. One of the reasons

Fig. 2.15.: Example of a pancake motor.

why more poles in the BLDC motor means more torque is because its able to handle greater

current loads. This is because the manufacturer has to reduce the winding when increasing

the number of poles and that means adding more copper to the winding, when the cross

section of a wire is increased the resistance decreases. This decreased resistance would

allow a greater current load to pass through the motor. The greater current loads will result

in greater power. The torque is gained as a result of lower Kv. Depending on the exact

Fig. 2.16.: Brushless motor with neodymium magnets and poles exposed.

application of the multirotor this may be an advantage or disadvantage. More torque may

mean greater acceleration but a lower Kv value will reduce the maximum rotational speed

achievable.

2.3 Propeller

The propeller is basically a device which transforms rotational motion into linear thrust,

it can be viewed as a series of airfoils that each generate lift and drag when rotating at

high speeds, and together they constitute the total aerodynamic thrust and torque on the

2.3 Propeller 35

propeller. An example of a nylon (plastic) fixed pitch propeller is showed in figure 2.17 a

carbon fibre close-up is showed in figure 2.18. A pressure difference is produced between

Fig. 2.17.: Common nylon propeller used in multirotors.

the forward and rear surfaces of the airfoil-shaped blade, and air is accelerated behind the

blade. The most common propeller used in the multirotor industry are fixed pitch propeller

(FPP), in this type of device, the angle of attack of the blade remains fixed and in order to

increase/decrease the thrust generated the rotational speed must be changed. This type of

propellers come in two form factors, clockwise and counter-clockwise (also called right and

left). The angle of attack or pitch describes how much the blade of the propeller is twisted

relative to the path it travels as it turns, is usually measured in inches. Variable-pitch pro-

pellers can also be used on a multirotor (Wong et al., 2007), this type of propeller has

blades that can be rotated around their long axis to change the blade pitch, can also create

reverse thrust for braking or going backwards without the need to change the direction of

shaft revolution. The material from which the propeller is made might affect the efficiency

of the propeller at different RPMs. This may occur for softer propellers due to flexure of

the blades changing effective angle of attack at radial sections away from designed angles

(Harrington, 2011). Increasing the propeller pitch and number of blades generally gener-

ates more thrust, but at a cost of efficiency and increased electrical and mechanical power

requirements on the motor. Increasing the propeller radius is generally more efficient, as-

suming the rest of the drive system is capable of handling the load. This is because the

larger propeller, with all else being equal, may spin slower to generate the same lift. This

allows the induced velocity to drop, thereby increasing propulsive efficiency. A important

Fig. 2.18.: Carbon fibre fixed pitch propeller.

36 Chapter 2 Multirotor Design

assumption is made that the calculated dynamic performance is a measurement of the ro-

tational attitude performance of the multirotor, not the translational velocity or position.

It is based on static propeller tests and system inertia, hence variable airflow through the

propeller during flight is not taken into consideration. The payload and batteries will not

affect the dynamic performance since they are modelled as a point mass in the centre of

the rotation. Figure 2.19 shows a 3-bladed propeller. The majority of propellers used in

Fig. 2.19.: 3 bladed fixed pitch propeller.

the radio control industry have two blades but propellers with three or even four blades

are available. Adding more blades decreases the overall efficiency of the propeller because

each blade has to cut through more turbulent air from the preceding blade. Experimental

results about a vehicle using standard two bladed rotors and three bladed ones is presented

on the systems analysis section in table 2.4. There is a new trend on propellers for multi-

rotor use and is to use foldable propellers (Fig. 2.20), this type of propellers help a lot in

the transportability parameter. Two of the foldable propellers are required to form a single

rotor, and when this ones are folded, the size of the vehicle decreases and it became easier

to transport. This type of elements are usually for bigger size of propellers, starting with a

length of 15in.

Fig. 2.20.: Carbon fibre foldable propeller.

2.3 Propeller 37

2.3.1 Propeller parameters

A propeller is characterized by the thrust and power coefficients, which depend primarily

on the advance ratio λ, the blade Reynolds number Re, and on the prop geometry.

CT = CT (λ,Re, geometry) (2.15)

CQ = CQ(λ,Re, geometry) (2.16)

J = V
ΩD (2.17)

Re = ρΩRcave
µ

(2.18)

The dimensional thrust and torque can be calculated for any other V and Ω by dimension-

alizing the coefficients.

T(Ω,V) = 1
2
ρ(ΩR)2πR2CT = 1

2
ρV2πR2 CT (Ω,Re)

J2 (2.19)

Q(Ω,V) = 1
2
ρ(ΩR)2πR3CQ = 1

2
ρV2πR3 CQ(Ω,Re)

J2 (2.20)

2.3.2 Static thrust

Calculations of the static thrust generated by a propeller are needed in order to ensure that

the elements have been selected when designing a multirotor. Static thrust is defined as

the amount of thrust produced by a propeller which is located stationary to the earth. This

calculation is particularly important because multirotors are more likely to perform at low

speeds relative to the earth. This low-speed performance ensures that the calculations of

static thrust can be applied to a wide range of flight conditions. The propeller thrust is

based on momentum theory, the theoretical thrust for a stationary aircraft is

T = ṁVe (2.21)

For a moving aircraft, however, only the velocity of the air which is due to the air having

been accelerated by the propeller is what contributes to the thrust.

T = ṁ∆V = ṁ(Ve − Vac) (2.22)

Based in equation 2.22, as the aircraft velocity, Vac, increases, thrust decreases. This is

due to the fact that the propeller exit velocity (or induced velocity) is approximately con-

38 Chapter 2 Multirotor Design

stant, and therefore the result of (Ve − Vac) approaches zero as the aircraft top speed is

reached.

ṁ = ρApropVe (2.23)

The mass flow rate (2.23) is the density of the air times the cross-sectional area through

which the air is flowing, times the velocity of the air. Therefore the dynamic thrust is defined

as

T = π

4
D2
propρVe(Ve − Vac) (2.24)

Ve is assumed to be equal to the pitch speed of the propeller, defined as the distance the

propeller moves forward through the fluid during one revolution. Ve only depends on the

propeller rotational speed and the pitch. Another assumption must be made to simplify the

calculations of the thrust generated by a propeller, and that refers to the air density, which

is assumed to be at standard day (Atmosphere, 1964) which is as a way of defining certain

properties of the atmosphere in a manner which allows those who use our atmosphere to

effectively calculate and communicate its properties at any given time. The standard day

assume ρ = 1.225kg/m3. Making Vac zero we can then calculate the static thrust generated

by a propeller, equation 2.25 shows the static thrust considering the common units marked

by the manufacturers, those are thrust in newtons, propeller geometry in inches.

PropThrust = 1.225π(0.0254Propdiameter)2

4
(PropRPM0.0254PropPitch

1
60

)2 (2.25)

This equation helps on the rotor design analysis in order to be able to choose a propeller,

and get the initial estimate for thrust for hover in order to obtain an estimated time of

flight.

2.4 Electronic Speed Controller

The ESC’s is basically a computer system that will generate a three-phase square wave with

the purpose of varying a brushless motor’s speed. Each phase is shifted 120 degrees, as

showed in figure 2.12. This special circuits have being analysed heavily in the literature as

showed in Sai Dinesh et al., 2010 and Alexanderson et al., 1938. ESCs are very commonly

used in the radio controlled hobby industry therefore some standards apply, this device is

usually a stand alone unit which plugs directly to the flight controller to receive a control

signal, which is usually a Pulse Width Modulated signal (PWM) and the output is 3 phases

which are connected to the brushless motor. Figure 2.21 shows each independent phase

2.4 Electronic Speed Controller 39

cable for the motor input on the left, in the centre the electronics components (ATMEGA

or Arduino controller) and on the PWM signal input with the power source cables. Com-

mercially, ESC are classified with its maximum current that can be pulled by the motor, the

ESC showed in figure 2.21 is rated for maximum 20amperes. In a more general sense, a

Fig. 2.21.: Generic ESC unit, outputs on the right and inputs on the left.

electronic speed control is a PWM controller for a electric motor. The ESC accepts a nomi-

nal 50Hz PWM servo signal as an input whose pulse width varies from 1ms to 2ms. This

type of control is very similar to how a radio control servo works, with the difference that

in the servo the position is controlled while in the ESC speed is the factor being controlled.

A ESC expects a pulse about every 20ms, when 1ms at 50Hz is supplied to the ESC, the

unit will respond to turn the motor off, while at 1.5ms PWM input signal the motor will

be at approximately half of its total speed. When 2ms is applied, the motor will run at its

maximum speed. A example of the a PWM signal can be seen at figure 2.22.

20 ms

20 ms

20 ms

1 ms

1.5 ms

2 ms

5 v

5 v

5 v

0 v

0 v

0 v

Fig. 2.22.: Pulse width modulation input signal range for a ESC.

2.4.1 Motor control

In BLDC motor control, the electrical cycle is subdivided into six commutation steps ST,

2009. For each step, the bus voltage is applied to one of the three phase windings of

the motor while the ground is applied to a second winding. The third winding remains

open. The successive steps are executed in the same way except that the motor phase wind-

40 Chapter 2 Multirotor Design

ing changes to generate a rotating stator field 2, the sequence can be seen in figure 2.23.

Modern ESC, or the ones specially designed for multirotor use contain a micro-controller in-

terpreting the input signal and appropriately controlling the motor using a built-in software,

also called firmware. In some speed controllers its actually possible to change or upgrade

this software (firmware) for an alternate open-source one, or an improved one. This is

done with purpose of increasing the performance of the rotor or to add extra features like

active braking, reducing rotor synchronization problems and the possibility to synchronise

the flight controller control loop with the motor output signal. This features improve throt-

tle responsiveness and make the multirotor perform better and more robust. The default

Credit: STMicroelectronics

Fig. 2.23.: Motor control sequence.

PWM signal update rate is 50Hz, this is to ensure maximum compatibility with normal RC

equipment which normal analog servos sustain well (digital servos can accept higher rates),

but there is a new trend of electronic speed controllers that can work using 400Hz as re-

fresh rate. The recommended output rate for multirotors ESC is indeed 400Hz, this is in

order to minimize latency. Important to notice that is not because the output would require

400Hz (as the rotors on a multirotor spin only on the range of 80Hz to 120Hz and cannot

change speed multiple times during a single revolution), but to actually overcome the input

filtering most electronic speed controllers have and to minimize worst-case latency if the

attitude control loop is not synchronized to the PWM generation.

2.5 Battery

The most common type of battery pack used in multirotors are lithium-ion polymer (LiPo)

battery, because its the battery pack that delivers very high energy density (Salameh et al.,

2009) and very high discharge rate conserving a low weight. This type of batteries (LiPo)

are capable of specific energy of up to around 250Wh/kg Tarascon et al., 2001, about

an order of magnitude lower than gunpowder, and two orders of magnitude lower than

kerosene. Unlike cylindrical and prismatic cells, with metal casing, LiPo cells have a flexible

2http://www.st.com/web/en/resource/technical/document/user_manual/CD00236524.pdf

2.5 Battery 41

http://www.st.com/web/en/resource/technical/document/user_manual/CD00236524.pdf

(polymer laminate) case, this translate in a cell 20% lighter than the equivalent cell of same

capacity. This is an advantage to the multirotor application, where the overall weight is

a very important factor to consider. However the lack of a hard case makes them more

dangerous to handle, crush or penetration of the cell can result in a catastrophic failure.

LiPo cells are affected also by overcharge, over-discharge and over-temperature issues. Each

LiPo cell have a nominal voltage of 3.7 V and a full charge voltage of 4.2 V. LiPo batteries

Fig. 2.24.: lithium-ion polymer battery with 3 cells and 2220 milli-Amp-hour capacity.

itself are stacked type and they come in different configurations. The configuration refers

to the number of series and parallel cells that forms a pack. Figure 2.24 shows a 3s1p

battery pack, with 3 cells in series (s), therefore this pack will provide a nominal voltage

of 3.7 + 3.7 + 3.7 = 11.1 V. The unit for battery capacity Cbatt is milliampere hour (mAh),

which is a rating of how many amperes a battery can output for one hour before its depleted.

C-rating (discharge rate) is a multiplier which, when applied to the battery capacity, gives

the theoretical maximum current the battery should be able to provide. The battery pack

showed in figure 2.24 can output 2.2amp for one hour (C-rate) and it has a C-rating of

40 − 45C which means it can deliver 88 A to 110 A.

2.6 Rotor

In this document the word rotor is used to describe the propeller, motor and ESC tuple.

Its the main actuator for multirotors, is the part of the system that produces thrust that

translates in the capacity to fly. With the information on the previous sections, we can

proceed and analyse the dynamics behind the rotor. Propeller composition, radius, pitch,

and number of blades must also be chosen to work properly with the chosen motor. The

way the word is used on this document is not to be confused with the rotor of a helicopter,

these terms are widely distant from each other. Multirotors have the advantage of extreme

mechanical simplicity, it involves a number of direct drive motors, the same number of

42 Chapter 2 Multirotor Design

propeller and that is it; while the rotor in a helicopter is much more complex because the

angle of attack of the propeller needs to be changed. When selecting motors for a multirotor,

companies that sell off-the-shelf components will give thrust tables that tell us how much

thrust a specific motor can generate. This usually depends on a few factors, the propeller

used and the voltage applied to them. Next to these two parameters you will usually see

the current and power consumed and the resulting thrust generated, usually expressed in

grams. For a multirotor be able to hover, we must ensure that the rotor can generate a

thrust equal to or greater than the mass of the model. The electrical energy consumed

by an aircraft is transferred to the kinetic energy of the moving air. Since multirotor are

suspended in the air, there must clearly exist an opposing force F that is directed in a

opposite direction F = mg, where m is the mass of the vehicle and g is the acceleration of

gravity (9.8 m
s2).

2.6.1 Mathematical analysis

For the purpose of matching the motor to a load, such as a propeller, we first manipulate

relation 2.10 from the motor parameter analysis into a function for the current:

i(Ω,v) = (v − Ω
Kv

) 1
R

(2.26)

and then substitute into all the other right-hand sides to give the following functions of

motor speed and voltage:

Qm(Ω,v) = [(v − Ω
Kv

) 1
R − i0] 1

Kv
(2.27)

Pshaft(Ω,v) = [(v − Ω
Kv

) 1
R − i0] Ω

Kv
(2.28)

ηm(Ω,v) = [1 − i0R
v − Ω/Kv

] Ω
vKv

(2.29)

then, we need to use equation 2.24, that was obtained on the propeller part, which involves

the diameter of the propeller, velocity of the air, among other parameters. An assumption

has to be made, that the velocity of the air is half of the velocity of air accelerated by the

propeller:

Ve = 1
2

∆V (2.30)

the power absorbed by the rotor can be expressed like in equation 2.31, assuming rotational

losses are negligible.

Pelec = T∆V
2

(2.31)

2.6 Rotor 43

2.6.2 Experimental analysis

In the case the manufacturer of the motor does not give the thrust that the component

can produce with a certain propeller, or that the components selected does not match the

one of the manufacturer, a experimental analysis must be performed in order to know

what is the rotor performance and be able to estimate time of flight of the vehicle or to

be sure that the correct components are being chosen. This experimental analysis involves

performing real tests of the rotor at different conditions of a possible flight, in order to see

the thrust, current and PWM that the rotor will produce, use and require. A special tool was

Fig. 2.25.: Rotor analysis tool.

designed and built for this academic effort, and its presented with more detail at Appendix

A.3. This tool, showed in figure 2.25 has the capability to obtain the thrust produced by a

propeller attached to a motor, electrical current and voltage consumed by the motor and

the possibility to control the speed of the motor, this is done by generating a PWM signal

that then is sent to the ESC that will eventually drive the motor (as showed on sections

before). The idea behind this experiment is to simulate, on bench-test conditions, the

same environment and parameters that a multirotor has when it is flying. The limitations

of this tool relies on the quality of the sensors. The second limitation is in the design

of the structure that holds the rotor, as it can block the free flow of air coming from the

propeller. In order to demonstrate how to use this type of tool in the analysis of a rotor,

data was obtained and analysed from this rotor analysis tool using two different propellers

and one type of BLDC motor, which belong to one of the test-bed (Fig. 2.26) vehicles of

the MAST Lab. The elements being analysed are showed in figure 2.27. The motor is a

brushless DC motor, 1130kv , model Turnigy SK3-2826, and two sets of propellers, with

same diameter (7inches) and pitch (3.8inches), but with two and three bladed respectively.

The tests where performed trying to follow standard day conditions, and the procedure

was scripted. Having a micro-controller on-board the rotor analysis tool, it allowed us to

44 Chapter 2 Multirotor Design

Fig. 2.26.: MAST Lab test-bed vehicles, using sets of different propellers.

Fig. 2.27.: Top: BLDC Motor 1130kv, Left: 7x3.8in 3-bladed propeller, Right: 7x3.8in 2-
blade propeller.

script the tests to ensure that they where almost identical one from another, thus having

very clean and precise data in order to perform comparisons using a three-bladed and a

two-bladed propellers. Several sets of data were obtained and a polynomial of second

order was used to provide the best fit (in a least-squares sense), to later be used on time

of flight calculations. The fluctuations from the best fit line shown on each plot can be

deemed negligible due to the conditions of the experiment. Firstly, the efficiency of the

motor decreases due to heating, the battery behaves the same way. Mitigation of this loss of

power and therefore torque was attempted by completing the experiment as fast as possible.

Furthermore, the power source (2.2Ah, 40 − 50C discharge rate, LiPo battery,) causes the

voltage supplied to the motor to drop when the temperature and load to it increases. Using

the best fit polynomial equation of thrust vs current, we can obtain an equation of the

current being drawn from the motor and ESC as a function of the thrust from the propeller,

2.6 Rotor 45

where constants are obtained experimentally. This equation (2.32) is going to be later used

on the System Analysis section.

irotor = a2T2 + a1T + a0 (2.32)

2.7 Flight Controller

An important component of the multirotor is the flight controller, which is a device that

based on on-board sensors computes the necessary rotor speeds to keep the vehicle stable

and flying. The flight controller can be defined as a system used to control the trajectory of

a vehicle without constant control by a human operator being required. Flight controllers

do not replace a human operator, but assist them in controlling the vehicle, allowing them

to focus on broader aspects of operation. As stated at the beginning of this chapter, we are

using commercial off-the-shelf (COTS) parts, and in the FC (flight controller) sense, this

tendency remains. There are several publicly available open-source flight controller, one of

the most successful in academia is the Pixhawk Meier et al., 2011 project. Great success are

showed as well in the projects MultiWii MultiWii, 2010, Arducopter Arducopter, OpenPilot

OpenPilot, 2011, Paparazzi Paparazzi, 2003 Bronz et al., 2009 and MikroKopter HiSystems,

2006 among others. Its important to notice that each FC has a different level of autonomy

based on the sensors and devices being connected to it. In this research two FC will be

used, Pixhawk (Fig. 2.28 - a) and Multiwii (Fig. 2.28 - b). They both make use of open

source software. Chapter 3 describes the Flight Stack, which is a tuple of computer systems

that work cooperatively in order to achieve a particular mission. The flight controller will

be called inner loop computer.

Fig. 2.28.: Flight controller board. a) Pixhawk b) MultiWii (Naze32)

46 Chapter 2 Multirotor Design

2.7.1 Sensors

The basic sensory package on most FC includes accelerometers, gyroscopes, magnetome-

ters and barometers. Specifications on the components of the flight controllers used in this

project is showed in Tab. 2.2. Recent advances in the construction of micro-electromechanical

systems (MEMS) (Burghartz, 2013) have made it possible to manufacture small and light

motion sensors to be used on flight controllers. Accelerometers measure linear acceleration

of the FC in the inertial reference frame, while gyroscopes measure the angular velocity of

each axis of the reference frame. Magnetometers are used to correct attitude information

and estimate drift of gyroscopes. Flight controllers can estimate the altitude relative to a

take-off point based on pressure measurements from the barometer.

Description MultiWii (Naze32) Pixhawk
Processor STM32F103CB 32-bit STM32F427 Cortex M4
Frequency (MHz) 72 168
Accelerometer MPU6500 MPU6000, LSM303D
Gyroscope MPU6500 MPU6000, L3GD20
Magnetometer HMC5883L LSM303D
Barometer MS5611 MS5611

Tab. 2.2.: Basic components of two (Pixhawk and MultiWii) flight controllers

2.7.2 Attitude estimation

Recently, there is a large academic and commercial activity on the topic of sensor fusion

due to the variety of new on-board sensors that the MRUAV can carry. Data fusion refers to

a variety of techniques, technologies, systems, and applications that use data derived from

multiple information sources (Elmenreich, 2002). Fusion applications range from real-time

sensor fusion for the navigation of mobile robots to the off-line fusion of human or technical

strategic intelligence data (Rothman et al., 1991). Sensor fusion is the combination of sen-

sory data or data derived from sensory data such that the resulting information is in some

sense better than would be possible when these sources were used individually. Systems

that employ sensor fusion methods expect a number of benefits over single sensor systems

such as sensor deprivation, limited spatial coverage, limited spatial coverage, imprecision

and uncertainty. The two latter are common problems in the MRUAV sector. The main

advantages of using sensor fusion techniques from a set of heterogeneous or homogeneous

sensors are:

• Robustness and reliability: Multiple sensor suites have an inherent redundancy which

enables the system to provide information even in case of partial failure

2.7 Flight Controller 47

• Extended spatial and temporal coverage: One sensor can look where others cannot

and vice versa

• Increased confidence: A measurement of one sensor is confirmed by measurements

of other sensors

• Reduced ambiguity and uncertainty: Joint information reduces the set of ambiguous

interpretations of the measured value

• Robustness against interference: By increasing the dimensionality of the measure-

ment space the system becomes less vulnerable against interference

• Improved resolution: When multiple independent measurements of the same prop-

erty are fused, the resolution of the resulting value is better than a single sensors

measurement

When estimating orientation and heading, the best results are obtained by combining data

from multiple types of sensors to take advantage of their relative strengths. Gyroscopes

can be integrated to produce angle estimates that are reliable in short periods of time, but

they will tend to drift in the long run. Accelerometers, on the other hand, are sensitive to

vibration, but can be used in the long run to provide angle estimates that do not degrade

(or drift) as time progresses.

Combining gyroscopes and accelerometers can produce a better attitude estimation, that is

angle estimates that are resistant to vibration and immune to long-term angular drift. If

a magnetometer is added, then it can help in the correction of the offsets created by the

gyroscope through time and the accelerometer vibrations. The magnetometer will provide

a heading estimation.

Extended Kalman Filter

Pixhawk project have designed an attitude estimation algorithm based on the extended

Kalman filter (EKF). A more extended explanation of the algorithm can be found in Meier

et al., 2011 and Simon, 2006. Let p and v be three-dimensional position and velocity in

earth-fixed frame, q the quaternion, and b the gyroscope bias. Let Reb(q) and Ω(q) be

rotation matrix that converts body-fixed frame to earth-fixed frame and quaternion rates

matrix, respectively, as a function of the unit quaternion. Let a denotes linear acceleration

48 Chapter 2 Multirotor Design

in body-fixed frame and ω the angular velocity in body-fixed frame. Then, the state equation

in discrete time can be written as

xk =


pk

vk

qk

bk

 =


vk−1

Reb(qk−1) · ak−1

1
2 Ω(qk−1) · ωk−1

Wb,k−1

 (2.33)

where the gyroscope bias b is modelled with noise Wb. The system input u consists of

measurements of angular velocity ωm and linear acceleration am:

uk =

ωm,k

am,k

 =

 ωm,k − Wω,k + bk

ak − Wa,k − RT
eb(qk)

[
0 0g

]T
 (2.34)

where Wa and Wω represent noise and g is gravity. When substituting 2.34 into 2.33 the

non-linear model is created:

xk = f(xk−1,uk−1) + Wk−1 =


vk−1

Reb(qk−1)(am,k−1 + Wa,k−1) +
[
0 0g

]T
1
2 Ω(qk−1)(ωm,k−1 + Wω,k−1 − bk−1)

Wb,k−1

 (2.35)

where Wk =
[
Wω,k, Wa,k Wb,k

]T
represents the process noise. The states are esti-

mated by the standard EKF algorithm and measurements from accelerometers, gyroscopes,

magnetometers, GPS, and barometer are fused to estimate the states. Being mb the mag-

netic field of the Earth, mb the one of the body frame, Pz the barometric pressure sensor

reading, hb the height relative to take-off and as before vk the measurement noise. Then

the non-linear measurement model is:

zk = h(xk) + vk =


p

v

mb

hb

 =


p

v

RT
eb(q)me

−Pz

 (2.36)

Linear Complementary Filter

In the other analysed flight controller (MultiWii), a non-linear complementary filter is im-

plemented with the rotation matrix representation, based in Mahony et al., 2005, with the

only difference that (at the moment of this document being written) the MultiWii code

does not ensure that the attitude estimate is SO(3) (3D rotation group) compatible (re-

2.7 Flight Controller 49

orthogonalizing a DCM [Direction Cosine Matrix] or normalizing a quaternion), which

leaves the corrections of errors in the rate integration due to the gyroscope imperfections

to the effectiveness of the complementary filter. Therefore a linear complementary filter

should be analysed first. A full description of a complementary filter can be seen at Oliveira

et al., 2000. A LCF is designed to fuse multiple independent noisy measurements of the

same signal that have complementary spectral characteristics. The complementary filter to

estimate the angle θ is obtained:

˙̂
θ = yu + kp(yx − θ̂) (2.37)

being yu the rate measurement and yx the angle measured by accelerometer. θ̂ denotes

the estimate of θ and kp is a gain that determines crossover frequency. In this implementa-

tion the gyroscope bias varies over time. To compensate for this behaviour, a integrator is

added:

˙̂
θ = yu − b̂+ kp(yx − θ̂) (2.38)

where, b̂ = −ki(yx − θ̂).

Non-linear Complementary Filter

If we use the LCF (2.38), then extended it to the non-linear SO(3) group Mahony et al.,

2005 and finally add a bias estimate, the non-linear complementary can be seen at 2.39.

The SO(3), often called 3D rotation group, is the group of all rotations about the origin of

three-dimensional Euclidean space R3 under the operation of composition.

˙̂R = R̂(Ωy − b̂+ λ)× (2.39)

where,

˙̂
b = −kiλ

b̂(0) = b̂0

λ = vex(πa(R̃))

R̃ = R̂TRy

being πa(R̃) = 1/2(R̃ − R̃T) and R̃, R̃ ∈ SO(3) attitude estimate and estimate error,

respectively. The operator vex : SO(3) → R3 denotes the inverse operation of a skew-

symmetric matrix. Ry is the rotation matrix reconstructed using roll and pitch measured

50 Chapter 2 Multirotor Design

from the accelerometer. Being Ωy the measurement from the three-axis gyroscope of the

flight controller. R has to satisfy the constrain RTR = I, and therefore the computation

load becomes an issue in implementing this on an embedded system, this is why MultiWii

has implemented this algorithm with the rotation matrix representation. Its also called DCM

(Direction Cosine Matrix) and it consists of cosines of angles of all possible combinations of

body and global vectors (Starlino, 2011).

2.8 Endurance Prediction

In order to explain better the methods derived and used in this document, we will perform

calculations on a vehicle built-in-house at the MAST Lab. This test-bed vehicle was de-

signed and built for in-doors applications, but if a GPS component is added, it can perform

automatic flights out-doors. The components of this vehicle can be seen on table 2.3.

Part Description
Frame Glass fiber, 330mm rotor to rotor
ESC Multistar 15amps
Motor Turnigy SK3 2826, 1130kv
Propeller Several (tested: 7x3.8in two/three

blade)
Avionics Altax Flight Stack
Weight (less battery) 642grams
Battery LiPo, 3S, 2.2ah, 40−50C discharge rate

Tab. 2.3.: Test-bed vehicle components/information.

2.8.1 Time of flight

The estimated time of flight is a very important parameter when designing a multirotor,

yet its not an easy parameter to calculate or estimate (without experimental tests), and

often you need to assume factors including meteorological (wind speed, temperature, air

density), energy losses, among others. In this analysis we will focus on calculating the time

of flight when the vehicle is hovering in laboratory conditions. Using the equations derived

in previous Sections 2.3 and 2.6, it is possible to accurately estimate the time of flight while

a vehicle is hovering, or holding a specific position. This parameter will allow us to change

components of the vehicle in order to make it perform better for the mission at hand. Using

2.8 Endurance Prediction 51

equation 2.30 and 2.31 combined with Newton Second Law of Motion, the rotor power

required for hover for a multirotor with four rotors is

Protor =

√
2(mveh

4 g)3

πDprop
2ρ

(2.40)

By summing all of the consumed power, an approach to calculate time of flight while hov-

ering is:

Tflight = ηfactor
60

1000
Cbattvnom

Protors + Pavionics
(2.41)

The power consumed by the avionics is considered as a constant, while the power required

from the rotors can be calculated from experimental data as showed in equation 2.32, which

is a polynomial fit of the gathered experimental data using the rotor analysis tool.

2.8.2 On-line calculators

There are available on-line several tools that help to to calculate, estimate, evaluate and

design electric motor driven systems for RC (remote controlled) models, being the most

popular and accurate, one that is called eCalc3. It will be used in this research as a com-

mon method to compare results of theoretical and experimental calculations regarding the

design of multirotors. As reported by the author of the tool, eCalc has a ±20% of accuracy

when estimating the time of flight of a vehicle with the selected components. This type of

tool contains a database with experimental data from propellers, electric motors, batteries

among other components. This data is used to calculate, based on equations similar to the

ones presented on this document, the hover and mixed flight time of a vehicle and several

other parameters including electric power, mechanical power, maximum payload possible,

efficiency and security parameters coming from the manufacturers data-sheets in order to

keep the elements in the operational range. Its important to notice that the simulation

models and information are a key factor for eCalc business, therefore private and inacces-

sible. This service (eCalc) charges a yearly subscription in order to get access to all of the

components that they have analysed and tested.

2.8.3 Flight tests

The real flight tests where performed using a automatic pilot framework, called DronePilot,

this framework will be presented in Chapter 3.5. The main advantage of performing this

flight tests using this framework is to avoid pilot fatigue. The objective of this tests is to

3http://www.ecalc.ch/

52 Chapter 2 Multirotor Design

http://www.ecalc.ch/

hover at a specific location in space inside a laboratory (MAST Lab 3.2) while maintaining

a certain altitude above the floor. A human pilot is capable of performing this test, but

pilot fatigue can affect its performance capability affecting the repeatability of the tests.

Therefore, using an automatic pilot it is possible to repeat experiments with the same flight

performance, ensuring that the results are indeed comparable when changing hardware

like propellers and batteries.

2.8.4 Method comparison

In the table 2.4, we can see the flight times comparison of the test-bed vehicle (Fig. 2.29),

varying the propellers and the methods to calculate the time. The eCalc flight time are the

estimation of the on-line calculator. The experimental flight time (Theory/Experimental),

is calculated using equation 2.40 and the experimental data from the rotor analysis tool.

While the real ones come from an experiment where the vehicle is being flown by DronePi-

lot using motion capture data as reference and holding a desired position and altitude. In

Flight Time Two Blade Three Blade
eCalc 9 min 48 sec 10 min 57 sec
Theory/Experimental 10 min 11 sec 11 min 19 sec
Real Flight 10 min 21 sec 11 min 29 sec

Tab. 2.4.: Flight times computation comparison.

this experiments, the time of flight predictions from eCalc are less accurate than our the-

ory/experimental method, but their estimates are useful when there is no experimental

data available. Using this vehicle configuration the results showed that having the same

Fig. 2.29.: Quadrotor performing a hover test using three bladed propellers.

vehicle weight (±10 grams difference), but with the added thrust generated by the extra

2.8 Endurance Prediction 53

blade in the rotor, thus reducing the effort to the battery while holding a specific altitude

of one meter (to avoid ground effect problems) the flight times are increased by 9.8%. The

time of flight endurance predictions using the method showed in section 2.8 were off by

1.63% while the predicted using the on-line method were 5.61% off, thus proving that our

methodology outperforms the endurance prediction.

2.9 Summary

This chapter introduced and described the various components needed to build a multirotor

vehicle. A method for estimating the time of flight of a multirotor was presented and

compared with other methodologies such as an on-line estimator calculator. It was shown

using experimental data that the method presented in this chapter is closer to the real flight

times of the test-bed vehicle than the time obtained using the on-line estimator.

54 Chapter 2 Multirotor Design

3Laboratory Set-up

Fig. 3.1.: MAST Lab flight area and vehicles.

In this chapter one of the contributions of this thesis is presented, such contribution relates

to the avionics solution (Flight Stack) used throughout the development of this work. The

flight stack was created for data collection, algorithm execution and control of MRUAV. A

key consideration in the design of the flight stack is the distribution of computation be-

tween on-board and external processing and communication between vehicles with exter-

nal systems. With experimental results presented on Chapters 4, 6, 7 the flight stack shows

successful autonomous flight with a range of algorithms and applications.

Also in this chapter, the set-up of the Micro Air Systems Technology Laboratory (MAST Lab)

and the test-bed vehicle is presented, explained and analysed. The MAST Lab provides

the ideal platform for research and investigation of small-scale autonomous vehicles and

their associated technologies. This laboratory compromises state-of-the-art facilities and

resources which will be described and discussed. One of the most important resources

in the laboratory is the motion capture system. This system can provide the position and

orientation of reflective markers that can be placed on a multi-rotor, therefore behaving like

a very precise indoors positioning system for MRUAV.

As discussed in Chapter 2, multirotors are complex systems with many design constraints, it

is not practical to include all functionality within a single general avionics board (flight con-

troller), as has been the approach on the past as shown on Fig. 8.2. Instead, an improved

approach taken is to adopt a modular design of the avionics suite, we will call this one the

flight stack. A software framework is needed for the companion computer, it is presented

and analysed in this chapter. This framework is called DronePilot (Vargas, 2014).

55

3.1 Experimental design

The ability to design good scientific experiments is a key skill for any researcher. Without a

grasp of experimental design, even the best technological developments may never succeed

in being published or turning into real products. In the past years, there has been much

discussion within the robotic research community about a lack of standard experimental

procedures (Antonelli, 2015). This is due to the lack of uniformly good experimental work

and reporting within the robotics community as a whole. Experimental practices are usu-

ally learned from existing research papers, which can be of varying quality. This means that

robotic researchers sometimes don’t even learn the basics of experimental design. Exper-

imental design will be different depending on the type of robotics being researched. An

experiment with multirotors will be very different from an experiment with surgical robots.

However, there are still common aspects between the two.

3.2 Micro Air Systems Technology Laboratory

The research focus of the MAST Lab (Fig. 3.1) is on developing new control methods and

algorithms for UAVs. We are interested in coordinating actions with multiple UAVs and

methods for dealing with the interactions between them. In order to perform autonomous

control of UAVs the system requires some sort of feedback, the internal AHRS (Attitude

Heading Reference System) sensors on the flight controller could produce errors and/or in

some cases it can produce drifting. This is the reason for the use complex algorithms like

the ones discussed on the attitude estimation Section 2.7.2. Thus it is necessary to gather

position data from an external source, like GPS (Global Positioning System), however, the

GPS signals will not penetrate the building walls to provide the position of the vehicle in

our indoors laboratory. A special indoor positioning system is therefore required.

3.2.1 Indoor positioning system

IPS (Indoor Positioning System) is a system that helps in the location of objects or people

inside a building using radio waves, magnetic fields, acoustic signals, or other sensory infor-

mation collected by mobile devices. There are several commercial systems on the market,

but there is no standard for an IPS system. In the MAST Lab case, the IPS uses reflective

markers and infra-red cameras. This technique is called motion capture (MoCap).

56 Chapter 3 Laboratory Set-up

Motion Capture

Motion capture is the process of recording the movement of objects or people. It is used

in military, entertainment, sports, medical applications, and for validation of computer vi-

sion and robotics. This type of optical system utilizes data captured from image sensors

(cameras) to triangulate the 3D position of an object. Two or more cameras are required

to provide overlapping projections. Data acquisition is traditionally implemented using spe-

cial markers attached to the object. The MoCap system is used to get the position and

attitude of the vehicle being analysed and controlled inside the MAST Lab. It acts as a

extremely precise indoors GPS. The motion capture system implementation of the MAST

Lab compromises 18 OptiTrackTM V100 cameras that point to various areas of the flight

area. The cameras emit infra-red (IR) light, using an array of IR-LEDs, then the reflective

markers on-board the aircraft reflect this IR light. This enables the cameras to identify and

detect individual markers on the aircraft and then compute the markers body position and

orientation. The distribution of the MoCap cameras can be seen in figure 3.2. This system

Fig. 3.2.: Distribution of IPS image sensors in the MAST Lab.

estimates the states of the vehicles at 100Hz. It can also identify position estimates in the

range of millimetres which is beyond the requirements of the test flights. This MoCap sys-

tem is connected to a ground station computer which computes the orientation and position

of the markers, and transmits this information to the flight stack.

3.2 Micro Air Systems Technology Laboratory 57

3.2.2 Previous data flow

Before the flight stack was designed and tested, the first GNC algorithms were performed

on a different structure shown in Fig. 3.3. This structure was limited by several factors

including:

• Limited bandwidth and baud rate of the RF (Radio Frequency) radio

• MATLAB application crashes (software application stops functioning properly)

• Arduino-based (Atmel AVR 8-bit CPU) flight controller with a slower attitude stabi-

lization control loop time than 32-bit counterparts (80Hz vs 243Hz)

• Guidance and navigation implemented in an external computer, not on-board the

vehicle

Arduino-
based Flight

controller

Motion
capture

Ethernet

Ground
station

Radio Link

Fig. 3.3.: Previous structure to control MRUAV in the MAST Lab.

These factors affected significantly the performance of the vehicle and controllers. The lim-

itations also caused several accidents when either the MATLAB software or the RF suffered

a disruption. One of the biggest problem was the limited rates in the communication link,

this factor affected the outer control loop, making it extremely complicated to tune in order

to make the vehicle accurately track a trajectory.

3.3 Flight Stack

Due to multi-rotors being inherently unstable, they require active stabilisation. This sta-

bilisation is deployed on a flight controller board, which contains sensors that provide

58 Chapter 3 Laboratory Set-up

feedback. The stabilisation of a multi-rotor is time sensitive and thus the flight controller

must run a real time operating system (RTOS). The Pixhawk project (Meier et al., 2011)

includes a RTOS system called NuttX that has an emphasis on standards compliance and

small footprint, scalable from 8-bit to 32-bit micro-controller environments. If we consider

the addition of a companion computer to the avionics system, we can increase the available

functionality, e.g. interfacing with more hardware, providing a development environment,

communication protocols, etc. Consequentially, the computational resources available for

running guidance and navigation algorithms receives a considerable increase. This system

is named the flight stack. A key consideration in the design of the flight stack is the dis-

Fig. 3.4.: Flight Stack using a Raspberry Pi with: a) Naze32 b) Pixhawk

tribution of computation between on-board and external processing and communication

between vehicles and with external systems. The flight stack can be defined as a system

used to control the stability/trajectory of a UAV without constant control by a human oper-

ator being required. The flight stack is a tuple of computer systems that work cooperatively

in order to achieve a particular mission. This proposed flight stack is composed of a flight

controller, companion computer and communications systems. In the GNC (Guidance, Nav-

igation and Control) architecture, the flight controller (inner loop computer) is in charge of

the Control, that is the stability and fly-ability of the vehicle while the companion computer

(outer loop computer) is in charge of the Guidance and Navigation. It guides the vehicle to

a specific location with a pre-programmed navigation course. Figure 3.4(a) shows a flight

stack ready to be mounted on a vehicle, this particular model is composed of a Raspberry

Pi as companion computer and a Naze32 as flight controller. A similar flight stack using a

Pixhawk as flight controller is displayed on figure 3.4(b).

3.3.1 Companion computers

The outer loop computer is in charge of guiding the vehicle through a specified trajectory

or flight plan. It also handles the communication with the flight controller and with the

3.3 Flight Stack 59

user on the ground station. There are currently several promising solutions on the market

for on-board processing to act as companion computers, we decided to focus on credit card-

sized single board computers that use Linux-kernel-based operative systems, due to their

size, weight and power requirement. Two companion computers series were tested during

the effort of this research, one is the Raspberry Pi (Mitchell, 2012) shown in figure 3.5 (a)

and the Odroid series (Hardkernel Co., 2014) as displayed in figure 3.5 (b) and (c). There

are three versions of Raspberry Pi that can be used for this flight stack, Raspberry Pi B+,

Raspberry Pi 2 and Raspberry Pi 3. The Odroid versions tested on the flight stack were

the U3 and the XU4. Table 3.1 shows some of the main characteristics of the single-board

Fig. 3.5.: Companion Computers. a) Raspberry Pi b) Odroid U3 c) Odroid XU4

computers used in the flight stack. The most powerful of them is the Odroid XU4. Figure 3.6

Description RaspberryPi
2

RaspberryPi
3

Odroid U3 Odroid XU4

Processor Quad-core
ARM Cortex-
A7

64-bit Quad-
core ARMv8

Exynos 4412
Prime

Exynos 5422
Octa ARM
Cortex-A15

Frequency 900 MHz 1.2 GHz 1.7 GHz 2.0 GHz
RAM 1 GB 1 GB 2 GB DDR2 2 GB DDR3
Storage MicroSD MicroSD MicroSD,

eMMC
MicroSD,
eMMC

USB ports 4 4 3 3
Weight 45 g 45 g 48 g 60 g
Power con-
sumption

3.0 W 4.0 W 3.8 W 4.6 W

Tab. 3.1.: Companion computers main characteristics.

shows several benchmarks to measure the computing power on the Raspberry Pi 2, Odroid

C1 (not used on the flight stack), Odroid U3 and Odroid XU4. The computing power of the

XU4 was measured to be 3-4 times faster than the Raspberry Pi 2. The U3 and XU4 can

boot from a MicroSD card or an eMMC module. An eMMC (embedded multimedia card)

module outperforms a standard SD card in the capacity of read and write files. This is a

great advantage for the flight stack to boot the operating system and log data to files faster

(black box functionality).

60 Chapter 3 Laboratory Set-up

Credit: Hardkernel

Fig. 3.6.: Benchmark comparison.

Operating system

It was decided to focus on companion computers that use Linux-kernel-based operating sys-

tems, in this way we can use this flight stack (methodologies and software) fitting not only

one specific companion computer but several, ensuring scalability and upgrade-ability of

the flight stack. Debian and Ubuntu are the most influential Linux distributions (Tabassum

et al., 2014). The Raspberry Pi can use a Linux-kernel operating system (Raspbian) based

on the Debian ARM hard-float (armhf) architecture port. Being based on Debian, Raspbian

comes with the APT (Advanced Packaging Tool) as its package manager, which is used to

install software from the vast Raspbian repositories. The Raspberry Pi 2 comprises an ARM7

CPU architecture, therefore now compatible with Ubuntu. One of the main advantages of

using this distribution of Linux is that the company release a special version called Long-

term support (LTS). Long-term support includes updates for new hardware, security patches

and updates to the Ubuntu stack (cloud computing infrastructure). This computer software

product life-cycle management policy ensures the reliability of the flight stack for a specified

period of time. Long-term support not only extends the period of software maintenance, it

also alters the type and frequency of software updates (patches) to reduce the risk, expense,

and disruption of software deployment, while promoting the dependability of the software.

Another advantage of using Ubuntu LTS as operating system on the flight stack is to have

full support of ROS (Robot Operative System) on each LTS release. Although the DronePilot

framework does not include ROS support (at the moment of this document being written),

its important to keep the compatibility with such tools.

3.3 Flight Stack 61

3.4 DronePilot

A framework is a reusable set of libraries, scripts, tool sets and classes for a software system.

DronePilot is a software framework with the aim of controlling Unmanned Aerial Vehicles,

also called drones. This framework was developed due to the necessity of integrating several

software components in order to be able to control multi-rotor vehicles inside the MAST

Lab. It is an open source project, based on a GNU license, released to be used widely on

academia, it is well documented and being updated constantly. The main functionalities of

DronePilot are:

• Interfacing with flight controllers (MultiWii and Pixhawk).

• Bridging between the ground station computer and the inner loop computer, this

allows the control of vehicles from the ground station.

• Black box that records flight data on every iteration of the outer loop.

• Autonomous control of multi-rotors for various applications.

The majority of the software used in the DronePilot framework is written in the widely used

general-purpose, high-level programming language Python. Python is a dynamic object-

oriented programming language, it offers strong support for integrating with other tech-

nologies, higher programmer productivity throughout the development life cycle, and is

particularly well suited for large or complex projects with changing requirements. Python

was designed from the ground up to be embeddable, which is of great advantage if the

outer loop computer changes. Python is very well designed, fast, robust, portable, and

scalable because it has been developed as an open source project by thousands of contrib-

utors (Rossum et al., 2011). With an uncluttered, easy-to-learn syntax and well-developed

advanced language features, Python often exceeds the capabilities of comparable commer-

cially available solutions.

3.4.1 Core

The core of the DronePilot framework is a multi-threaded structure to ensure the transition

and rates between on-board and external computation. This property is called concurrency

and it involves arbitrary and dynamic patterns of communication and interaction between

parts of the algorithm. The base goals of the core in the framework include correctness,

performance and robustness. Because the framework uses shared resources, it require the

inclusion of some kind of arbiter in the implementation. DronePilot makes use of the Global

Interpreter Lock (GIL), provided by the Python programming language.

62 Chapter 3 Laboratory Set-up

The most common script uses at least two threads. Running several threads is similar to

running several different programs concurrently, with the benefit that the process shares the

same data space with the main thread and can therefore share information or communicate

with each other more easily than if they were separate processes. The other advantage is

some threads behave like light-weight processes and they do not require much memory

overhead, therefore being more computationally cheap that using separated process. One

disadvantage of using GIL is that the usage of arbiters introduces the possibility of inde-

terminacy in concurrent computation which has major implications for practice including

partial correctness and performance.

Figure 3.7 shows how objects operate with one another and in what order, this is also

called a sequence diagram. This diagram shows the most simplistic application using the

DronePilot framework. This application includes only two threads. The Comms thread is in

charge of the communications from the ground station to the vehicle, receiving and making

the data available for the rest of the threads and functions. This data includes the pilot

commands (from a joystick), for when the vehicle is being flown manually and the other

set of data are the vehicle states (position and orientation), that comes from the MoCap

system.

The second thread (Pilot) is the one that is in charge of processing the information from

the Comms thread, interfacing with the flight controller and recording timestamped data

for further analysis.

3.4 DronePilot 63

Fig. 3.7.: Sequence diagram of a simple DronePilot application.

64 Chapter 3 Laboratory Set-up

3.4.2 Data Flow

Using Python gives the advantage of using complex multi-protocol network applications

such as Twisted, a development framework well suited to running large numbers of con-

current network, database, and inter-process communication links within the same process.

This module is used for the communication between the ground station and the vehicle.

Twisted is an event-driven networking engine written in Python and licensed under the

open source MIT license (Lefkowitz, 2002). This module was chosen due to the high rate

Motion
capture

Ethernet

Ground
station

802.11

Flight
Stack

Fig. 3.8.: Data flow.

of communication that can achieved while using the User Datagram Protocol (UDP), which

is one of the core members of the Internet protocol suite („User Datagram Protocol“). UDP

uses a simple connectionless transmission model with a minimum of protocol mechanism.

With UDP, computer applications can send messages, in this case referred to as datagrams,

to other hosts on an Internet Protocol (IP) network without prior communications to set

up special transmission channels or data paths. Time-sensitive applications often use UDP

because dropping packets is preferable to waiting for delayed packets, which may not be

an option in a real-time system (Kurose et al., 2013). The data flow is showed on figure

3.8. The motion capture system is connected, via 802.3 (IEEE, 2013) to a ground station

computer running Matlab/Simulink to get the state estimation of the vehicle and the inputs

from a joystick device. This data is sent to the companion computer via a 802.11 (Crow

et al., 1997) network. Inside the companion computer, the UDP datagrams are received

inside the Comms thread and then processed by the Pilot thread, then the new computed

3.4 DronePilot 65

command is sent via USB to the flight controller which then translates into changes of the

propeller speeds of the rotors. The rate at which everything happens is 100Hz.

3.4.3 Interfacing

In order for the Pilot thread to be able to interact with the proposed flight controllers (2.7),

the DronePilot framework needs to talk the language of the flight controllers. This is the

MultiWii Serial Protocol (MSP) and MAVlink (Micro Air Vehicle Link) respectively.

MSP

A Python module named pyMultiWii (Vargas, 2013b) was created using the same open

source methodology (GNU license) in order to communicate the companion computer with

MultiWii enabled flight controllers using the MSP (MultiWii Serial Protocol). More details

about this module can be found on Appendix A.4. MSP is a protocol designed by the

MultiWii community, with the idea to be light, generic, bit wire efficient, secure. The MSP

data frames are structured as showed on figure A.6. DronePilot uses pyMultiWii to ask

Fig. 3.9.: MSP data frame.

the flight controller for the orientation of the board and for sending angle commands that

the flight controller must track. More information about this controlling methodology is

showed on Chapter 4.

MAVlink

MAVLink is a protocol for communicating with small unmanned vehicle (Meier, 2009). It is

designed as a header-only message marshaling library. MAVlink packs C-structs over serial

channels with high efficiency and is extensively tested on the PX4, PIXHAWK, APM and

Parrot AR.Drone platforms and serves there as communication backbone for the MCU/IMU

communication as well as for Linux interprocess. DronePilot does not talk the MAVlink

protocol directly, instead it uses extra python modules that have this functionality for it,

thus making the full integration of MAVlink more simple and reliable. These modules are

MAVProxy (Tridgell, 2013).

66 Chapter 3 Laboratory Set-up

Credit: QGroundControl

Fig. 3.10.: MAVlink data frame.

3.4.4 Black box

Multirotors in any condition of flight can be viewed in terms of its input (e.g. pilot com-

mands and/or desired trajectories) and output parameters (e.g. orientation and position),

without any knowledge of its internal workings, colloquially known as a black box model.

One of the flight recorder capabilities of DronePilot is to allow replay of a flight performed

previously. This is in order to analyse the flight performance, check for errors on the con-

trol algorithms, or even perform techniques such as system identification (Chapter 6). This

-1.5
-1

-0.5
0

X [m]

0.5
1

1.5-1.5

-1

-0.5

Y [m]

0

0.5

1

-0.5

0

-2

-1.5

-1

1.5

Z
 [m

]

Fig. 3.11.: 3D plotting of a quadrotor trajectory flight.

functionality saves data as a timestamped Comma Separated Values (CSV) file, the flight

recording is done at the same rate as the outer loop performs, usually is 100Hz, or a row

recorded each 0.01 seconds. Figure 3.11 shows a 3D plot of a flight recorded in order to

perform system identification on the test-bed quadrotor, the data plotted in such image is

position of the vehicle, but in order to perform the system identification techniques, the

inputs to the systems are also needed.

3.4 DronePilot 67

3.4.5 Applications

After describing the flight stack, the main objective is to reduce the amount of effort when

designing new and novel algorithms for MRUAV, the entire flight stack can be considered

as a single system, instead of combination of computers like it is, a diagram of how can be

considered is showed on figure 3.12. The type of applications that DronePilot was designed

Companion
Computer

Flight
Controller

Pseudo-controls

Flight Stack

Ground
Station

Fig. 3.12.: FlightStack single system diagram.

for include:

• Manual indoor flight

• Autonomous indoor flight

• System Identification of Multirotors

• Control of novel multirotor configurations

• Automation of performance tests on rotors

• Test of state-of-the-art control algorithms

• Control of multirotors with a slung load

• Swarm control of multirotors

Most the applications showed on the list above will be analysed in later sections.

3.5 Test-bed quadrotor

Test-beds are especially important for multi-robot research with UAVs as well as the flight

stack, a quadrotor test-bed (Fig. 3.13) was develop in the MAST Lab using 3D printing

technologies and Consumer Off-The-Shelf (COTS) components. The flight stack proposed in

this section was used to control the quadrotor and log the data needed for several research

papers, including (Vargas et al., 2014).

Although there are several platforms on the market, one of the advantages of building our

own platform is economical, a MRUAV in a quadrotor configuration similar to our own

is the Asctec Pelican (Ascending Technologies), which is 13 times as expensive as than the

68 Chapter 3 Laboratory Set-up

Fig. 3.13.: Test-bed quadrotor hovering.

Component Description
Motor Turnigy SK3 2826, 1130kv
Propeller APC 7x3.8in
ESC Multistar 15amps
Avionics AltaX Flight Stack

Tab. 3.2.: Test-bed quadrotor component list.

one produced in the MAST Lab. This allows the construction of several models without

financial limits. This test-bed uses the same rotor components analysed on section 2.8, the

components are shown on Table 3.2.

Figure 3.14 shows a slightly different version of the test-bed, using an Odroid U3 as com-

panion computer, and on top of the vehicle an asymmetrical array of four reflective markers

(for the MoCap) is displayed.

3.6 Summary

This chapter presented the configuration of the MAST Lab, also a comparison of the previous

methodology with the new methodology is presented. Such new methodology provides

better performance and capabilities to carry out research and investigation of small-scale

autonomous vehicles and their associated technologies.

This chapter also introduced the concept of the flight stack as well as the components

included in it and the DronePilot framework, which is one of the contributions of this

thesis. The next chapter will deal with the modelling and control of multirotor vehicles.

3.6 Summary 69

Fig. 3.14.: Test-bed quadrotor with an Odroid U3 as companion computer.

70 Chapter 3 Laboratory Set-up

4Quadrotor Modelling and Control

Multirotors are underactuated non-linear dynamically unstable systems that present chal-

lenges when attempting to model and control them. The model of the MRUAV system, as

in other engineering problems (Gonzalez-Olvera et al., 2010), is a crucial part of the anal-

ysis and design of controllers. The study of the MRUAV kinematics and dynamics helps to

understand its physics and behaviour. Together with the modelling, the determination of

the control algorithm structure is fundamental to achieve optimal stabilization in order to

be able to solve the research question of this thesis. The most common multirotor used

in research labs around the world is the quadrotor. In this section, the derivation of the

quadrotor model is presented. With the model introduced, a position and trajectory con-

troller is presented followed by experimental tests and results.

4.1 Basic concepts

As stated in Chapter 2, a quadrotor is modelled with four rotors in a cross configuration.

Each propeller is connected to the motor directly, all of the propellers axes of rotation are

fixed and parallel. The rotors contain fixed-pitch blades and the air flows downwards in

order to lift the vehicle upwards. These considerations point out that the structure is quite

rigid and the only things that can change are the propeller speeds. In Chapter 2, the motor

and propellers were analysed. In this section, neither the motors nor the propellers dy-

namics are fundamental because the movements are directly related just to the propellers

velocities. Another neglected component is the flight stack, which is not essential to under-

stand how the quadrotor flies. The basic model to evaluate the quadrotor movements it

is composed of just a thin cross structure with four propellers on its ends. The front and

the rear propellers rotate counter-clockwise, while the left and the right ones turn clock-

wise. Figure 4.1 shows the structure model in hovering condition, where all the propellers

have the same speed. The fixed-body is shown with an arrow to the centre of the frame

and the black-thick arrows at the end of the cross axes represent the angular speed of the

propellers. That same black-thick arrow shows the propeller direction of rotation. In figure

4.1 all propellers rotate at same speed (hovering condition) in order to counterbalance the

acceleration due to gravity, therefore the vehicle performs stationary flight and no forces or

torques move it from its position, this is called hover flight. In reality the vehicle will drift

71

Fig. 4.1.: Simplified quadrotor in hovering.

and the inputs to it should be controlled in order to make it perform stationary flight. This

will be described later on this section. The quadrotor has six DOF, even if it’s equipped with

four actuators, hence it is not possible to reach a desired set-point for all the degrees of

freedom, but at maximum four, which are quite easy to choose the best ones and decoupled

them to make the controller easier to design. These four quadrotor pseudo-controls are thus

related to the four basic movements which allow the vehicle to reach a desired altitude and

orientation, called throttle, roll, pitch and yaw. We will call these ones the pilot inputs.

4.1.1 Pseudo-controls

There are two possible configurations to control a quadrotor, one is called plus (⊕) while the

other is cross (⊗) both will be explained. These differ in several factors, even with identical

hardware and software configuration. For a quadrotor with arm of length L from the centre

of mass of the vehicle, in the ⊕ configuration the thrust forces are applied at a distance L,

meanwhile in the ⊗ configuration the thrust forces are applied at a distance of L cos(π/4),

approximately at 0.71L since the arms are at a 45° angle from the axis of rotation. The

moment of inertia behaves similarly, so the difference is really that the torque can be applied

with all four rotors, and therefore have
√

2 more available torque to rotate. This means you

can get about 41% more rotational acceleration from an ⊗ than a ⊕ configuration. The

next difference is the vehicle visibility, ⊕ will usually have one marked front arm, while the

72 Chapter 4 Quadrotor Modelling and Control

⊗ will have two marks signalling front, this gives an advantage of more visibility to the

⊗ configuration. The last difference is camera arc clearance when a ⊗ can have a camera

pointed forward without obstruction from the frame more easily than a ⊕. Some designs

remove this concern, either by mounting the camera on a stand-off or with moving landing

gear. The most obvious difference is how to control the rotor speeds in order to move the

vehicle in the desired set-points.

Throttle (u1)

This command is created by increasing (or decreasing) all of the propeller speeds by the

same amount, this leads to a vertical force in the body-fixed frame which raises and lowers

the quadrotor. Figure 4.3 shows the throttle command on a quadrotor sketch at hover

conditions, with all propellers spinning at ωHover.

Fig. 4.2.: ⊕ Plus configuration Throttle command diagram.

Roll (u2)

For ⊕ this command is created by increasing (or decreasing) the left propeller speed and by

decreasing (or increasing) the right one. For ⊗ this command is created by increasing (or

decreasing) the two left propellers speed and by decreasing (or increasing) the two right

ones. Such command leads to a torque with respect to the x axis which makes the quadrotor

rotate around that axis and makes the vehicle translate left or right. Figure 4.3 shows the

roll command on a quadrotor sketch showing faster ω3 (thicker arrow) and slower ω4, while

ω1 and ω2 remain at ωHover, this combination will make the quadrotor roll to the right →.

4.1 Basic concepts 73

Fig. 4.3.: ⊕ Plus configuration Roll command diagram.

Pitch (u3)

For ⊕ this command is created by increasing (or decreasing) the front propeller speed and

by decreasing (or increasing) the back one. For ⊗ this command is created by increasing (or

decreasing) the two front propellers speed and by decreasing (or increasing) the two back

ones. This command leads to a torque with respect to the y axis which makes the quadrotor

Fig. 4.4.: ⊕ Plus configuration Pitch command diagram.

rotate around that axis and makes the vehicle move forward and backward. Figure 4.4

shows the pitch command on a quadrotor sketch showing faster ω2 and slower ω1, while ω3

and ω4 remain at ωHover, this combination will make the quadrotor pitch forward ↑.

Yaw (u4)

For ⊕ and ⊗ this command is created by increasing (or decreasing) the counter-clockwise

propellers speed and by decreasing (or increasing) the clockwise ones. The yaw movement

is generated thanks to the fact that the left-right propellers rotate CCW while the front-

rear ones rotate CW, therefore when the overall torque is unbalanced, the vehicle turns on

itself around z. Figure 4.5 shows the yaw command on a quadrotor sketch showing faster

(ω3, ω4) and slower ω1, ω2), this combination will make the quadrotor rotate clockwise. This

command can produce changes on the vehicles current height.

74 Chapter 4 Quadrotor Modelling and Control

Fig. 4.5.: ⊕ Plus configuration Yaw command diagram.

4.2 Modelling

The coordinate systems and free body diagram for the quadrotor are shown in Fig.4.1.

The world frame W is defined by axes xW , yW and zW with zW pointing upward. The

body frame, B, is attached to the center of mass of the quadrotor with xB coinciding with

the preferred forward direction and zB perpendicular to the plane of the rotors pointing

vertically up during perfect hover. The Z − X − Y Euler angles are used to model the

rotation of the quadrotor in the world frame. To get from W to B, we first rotate about

zW by the yaw angle ψ, then rotate about the intermediate x-axis by the roll angle ϕ, and

finally rotate about the yB axis by the pitch angle θ. The rotation matrix for transforming

coordinates from B to W is given by

R =


cψcθ − sϕsψsθ −cϕsψ cψsθ + cθsϕsψ

cθsψ + cψsθsϕ cϕcψ sψsθ − cψcθsϕ

−cϕsθ sϕ cϕcθ

 (4.1)

where ck = cos(k), sk = sin(k). The position vector of the center of mass in the world frame

is denoted by r. The forces on the system are gravity, in the −zW direction and the forces

from each of the rotors Fi, in the zB direction. The equations governing the acceleration of

the center of mass are

mr̈ =


0

0

−mg

+R


0

0

ΣFi

 . (4.2)

The components of angular velocity of the robot in the body frame are p, q, and r. These

values are related to the derivatives of the roll, pitch, and yaw angles according to
p

q

r

 =


cθ 0 −cϕsθ
0 1 sθ

sθ 0 cϕcθ



ϕ̇

θ̇

ψ̇

 . (4.3)

4.2 Modelling 75

In addition to forces, each rotor produces a moment perpendicular to the plane of rotation

of the blade Mi. Rotors 1 and 3 rotate in the zB direction while 2 and 4 rotate in the

zB direction. Since the moment produced on the quadrotor is opposite to the direction of

rotation of the blades, M1 and M3 act in the zB direction while M2 and M4 act in the zB

direction. We let L be the distance from the axis of rotation of the rotors to the center of

the quadrotor. The moment of inertia matrix referenced to the center of mass along the xB

yB zB axes, I, is found by weighing individual components of the quadrotor. The angular

acceleration determined by the Euler equations is

I


ṗ

q̇

ṙ

 =


L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4

−


p

q

r

× I


p

q

r

 . (4.4)

4.3 Control

In this section the control strategies and algorithms are presented. Also experimental re-

sults of flight tests are shown in the last subsection. This section is related to the previous

one (Sec.4.2), because it analyses the quadrotor model and tries to invert it to reach a cer-

tain position and attitude. A variety of approaches to quadrotor control are found in the

literature (Sec.1.2.2), either linear and non-linear methods. The simplicity of the quadro-

tor system and its stability and agility under closed-loop control have led it to be a popular

platform for non-linear techniques such as dynamic inversion which is used in this research

alongside a typical feedback loop. The PID algorithm uses a control loop feedback mech-

anism to minimize the error between the desired output signal and the real output signal.

In the industrial area the most used linear regulators are PID (Schiavoni et al., 2015). The

reasons of this success are primarily:

• simple structure

• good performance for several processes

• tunable even without a specific model of the controlled system

Particularly in robotics, and very often in aerial robotics, PID techniques represents the

basics of control. Even though a lot of different algorithms provide better performance

than PID, this last structure is often chosen for the reasons expressed above. A standard

PID structure is composed of three contributes:

u(t) = KP e(t) +KI

∫
e(t)dt+KD

de(t)
dt

(4.5)

76 Chapter 4 Quadrotor Modelling and Control

Where u is the variable being controlled, e the error between the desired value and the

output y. KP , KI , KD being the proportional, integral and derivative coefficient. The

contributions can be defined as:

• P: This contribution is proportional to the error on the inside while outside the output

will be minimum or maximum

• I: This contribution varies according to the integral of the error, it increases the over-

shoot and the settling time and eliminates the steady state error

• D: This contribution varies according to the derivative of the error, it helps to decrease

the overshoot and the settling time

As explained on Chapter 3, the entire control strategy is performed on-board the vehicle

in the tuple of computers called Flight Stack (Vargas et al., 2014). The inner attitude loop

control is performed by the COTS flight controller, using accelerometers, gyroscopes and

it runs approximately at 286Hz on the MultiWii board (MultiWii, 2010) and 400Hz on

the Pixhawk flight controller (Meier et al., 2011). While the outer position loop control is

calculated by the companion computer, using the vehicle position reference coming from the

MoCap system (Sec.3.2.1), this loop runs at 100Hz. A block diagram of the nested feedback

loops can be seen at figure 4.6. The dynamics of the quadrotor were described in previous

Position
Control

Desired
Trajectory

Attitude
Control

Quadrotor
Dynamics

Sensors /
MoCap

{x, y, z}

{φ, θ, ψ}
{x, y, z}

{φ, θ, ψ}

{U} {Ω}

Fig. 4.6.: Strategy control block diagram.

4.3 Control 77

sections, the next equation is composed of linear equations in the World inertial frame and

angular equations in the body frame:

ẍ = (sψsϕ + cψsθcϕ)u1
m

ÿ = (−cψsϕ + sψsθcϕ)u1
m

z̈ = −g + (cθcϕ)u1
m

ṗ =
Iyy − Izz

Ixx
qr −

JTP

Ixx
qΩ +

u2

Ixx

q̇ =
Izz − Ixx

Iyy
pr −

JTP

Iyy
pΩ +

u3

Iyy

ṙ =
Ixx − Iyy

Izz
pq +

u4

Izz

(4.6)

Such system shows how the quadrotor accelerates according to the basic movement com-

mands given. This command movements (pseudo-controls Eq.4.7) are going to be fed into

the inner loop controller, which is the COTS flight controller.



u1 −→ Throttle

u2 −→ Roll

u3 −→ Pitch

u4 −→ Y aw

(4.7)

The objective of the quadrotor stabilization is to find which values of motor speeds (PWM)

will maintain the vehicle in a certain orientation (ϕ, θ, ψ) required in the desired trajectory

task. This process is known as dynamic inversion. The dynamics of the quadrotor must be

simplified in order to provide a model that can be easily implemented in the control algo-

rithms. Dynamic inversion is a popular control strategy for the quadrotor, as demonstrated

by its use in Voos, 2009, Das et al., 2008 and Mistler et al., 2001. Glad et al., 2000 describe

the theory of dynamic inversion, also known as as input-output linearisation, and apply it to

a general SISO system. Dynamic inversion is applicable to systems which may be described

in control-affine form, such as the quadrotor models. The quadrotor is an under-actuated

system, with four inputs and six degrees of freedom. This impacts the ability to feedback lin-

earise the system and requires the use of a nested-loop structure in the controller. To invert

the quadrotor system, it is necessary to define two separate outputs. Das et al., 2008 de-

scribe a tracking output yt = ht(x) = [x, y, z, ψ]T and a flat output yf = hfx) = [z, ϕ, θ, ψ]T ,

the flat outputs may be related to the pseudo-controls (Eq. 4.7) by a series of SISO systems,

then it is possible to invert each system such that linear relationships are obtained between

the flat output and new pseudo-controls.

78 Chapter 4 Quadrotor Modelling and Control

4.3.1 Attitude controller

If we consider attitude movements that are close to the nominal hover state where the

roll and pitch angles are small and from 4.9 we assume that the products of inertia are

small (ideally, they are zero because the axes are close to the principal axes) and Ixx ≈ Iyy

because of the symmetry then:

Ixxṗ = u2 − qr(Izz − Iyy) (4.8a)

Iyy q̇ = u3 − pr(Ixx − Izz) (4.8b)

Izz ṙ = u4 (4.8c)

We can also assume the component of the angular velocity in the zB direction r, is small so

the rightmost terms in (4.8a) and (4.8b) which are products involving r are small compared

to the other terms. We note that near the nominal hover state ϕ̇ ≈ p, θ̇ ≈ q and ψ̇ ≈ r.

The vector of desired rotor speeds can be found from the desired net force (u1, des) and

moments (u2, des, u3, des and u4, des) by inverting

udes =


kF kF kF kF

0 kFL 0 −kFL

−kFL 0 kFL 0

kM −kM kM −kM




ω2

1,des

ω2
2,des

ω2
3,des

ω2
4,des

 . (4.9)

As previously stated, the open-loop dynamics of the quadrotor are highly unstable (Miller,

2011). A feedback control topology is needed due to the fact (Stevens et al., 2003) that

the model reveals the poles are located on the right of the real-imaginary plane and its

damping ratio is negative. One of the most commonly used technique (Nelson, 1998)

in order to provide a solution is a Stability Augmentation System (SAS), which makes the

vehicle (aircraft) stable via the rate measurement in the feedback loop. The SAS will actuate

the vehicle pseudo-controls to dampen out the vehicle buffeting regardless of the attitude,

this technique is heavily used to stabilize the heading of the quadrotor (u4), or commonly

known as the yaw rate controller. As stated in Section 2.7, two COST flight controllers are

used in this research (MultiWii and Pixhawk), their particular attitude controllers are used

in this research. The vehicle attitude estimation was previously analysed in 2.7.2, and it is

used in order to control the stabilisation of the multirotor. The MultiWii project implements

a controller based on an inner-outer-loop structure, and its diagram is showed on figure 4.7.

The Pixhawk flight controller implements a single-feedback loop as showed in figure 4.8,

and inside the controller the working mechanism follows 4.10, where adjustingKP andKD

will result in desirable close-loop behaviour. One disadvantage of following this structure is

4.3 Control 79

ControlPilot Rotors
Quadrotor
Dynamics

SensorsKd

+
-

+
-

Fig. 4.7.: MultiWii Attitude control block diagram.

that there will be a close-loop zero at s = −KD

KP
and will cause a large overshoot if the plant

poles are not dampened. This is one if the main reasons why the MultiWii project uses the

inner-outer-loop structure that uses a rate feedback instead of a close-loop pole.

Gc(s) = KP +KDs

Y

P
= (KP +KDs)GP

1 + (KP +KDs)GP

(4.10)

The PID structure of the Pixhawk is a standard one as stated before a rate measurement

ControlPilot Rotors
Quadrotor
Dynamics+

-

Fig. 4.8.: Pixhawk Attitude control block diagram.

is not used on this controller, the derivative of the error signal is used to provide control

inputs to the plant. The MultiWii PID structure on the other hand, removes the derivative

term in the forward path.

4.3.2 Position controller

Here we present a position control strategy that uses the pseudo-controls throttle, roll,

pitch, yaw, in order for station-keeping or maintaining the position at a desired x, y, and z

location. There is similar approaches in Mellinger, 2012 and Khalil, 2002. This approach

will be later used by the trajectory controller as well. All of the next controllers and algo-

rithms are implemented using the Python computer language on the framework DronePilot.

This position controller can also be called Hover Controller, and specially on the DronePilot

framework, the examples refer to it as hover controller. As the quadrotor attitude is sta-

bilised by the on-board flight controller, we are concerned only with defining the attitude

commands which drive the quadrotor along a specific position trajectory. We may therefore

80 Chapter 4 Quadrotor Modelling and Control

consider the quadrotor vehicle and attitude stabilisation controller as a single closed-loop

system, with outputs r = [x, y, z]T and inputs u = [Td, ϕd, θd, ψd]. Here, z describes the

height of the quadrotor above the ground, x and y are parallel to the ground and the walls

of the flight space. The origin of the inertial frame is located at ground level in the centre of

the flight space. The inputs to the stabilised quadrotor vehicle are the desired thrust Td and

desired roll, pitch and yaw angles, ϕd, θd and ψd, respectively. Neglecting the attitude dy-

namics, which are stabilised by the on-board flight controller, we may describe the position

response of the quadrotor by

ẍ = T

m
(cosϕ sin θ cosψ + sinϕ sinψ)

ÿ = T

m
(cosϕ sin θ sinψ − sinϕ cosψ)

z̈ = T

m
cosϕ cos θ − g

(4.11)

where T is the net thrust from the rotors, ϕ, θ and ψ are the roll, pitch and yaw angles,

respectively, m is the quadrotor mass and g is the acceleration due to gravity. We make the

assumption that the stabilised quadrotor attitude dynamics are relatively fast with respect

to the desired position response. Hence, we assume that

T ≈ Td, ϕ ≈ ϕdes, θ ≈ θdes (4.12)

giving us a direct relationship between output r and input u. We may then employ dynamic

inversion (or feedback linearisation) to invert Equation 4.11 and provide mappings between

the inputs u and desired trajectory rdes. Using this method, we may determine the control

gains via simple pole placement of the linearised closed-loop system, as in Ireland, 2014.

We let rT (t) be the desired trajectory (or location) the vehicle is going to attempt to track.

The command accelerations, r̈desi are calculated from the PID feedback of the position error

(ei = (ri,T − ri)) by

(r̈i,T − r̈desi,T) + kp,i(ri,T − ri) + ki,i

∫
(ri,T − ri) + kd,i(ṙi,T − ṙi) = 0 (4.13)

where ˙ri,T = ¨ri,T = 0 for hovering conditions.

The gains kp, ki and kd are calculated from pole placement and are designed to provide

a stable, critically damped response. Having calculated the desired acceleration of the

vehicle in equation 4.13, we must then obtain the system inputs u. We do so by inverting

the dynamic model in Equation 4.11 to obtain the inputs as functions of the position r.

4.3 Control 81

X-Y Controller

Equations 4.11 and 4.13 are mixed and linearised accordantly in order to obtain the rela-

tionship between the desired accelerations with the roll and pitch pseudo-controls.

r̈desx = g(ϕdes cos(ψ) + ϕdes sin(ψ))

r̈desy = g(θdes cos(ψ) − θdes sin(ψ))
(4.14)

The relationships above (Eq. 4.14) are then inverted to be able to calculate the desired

pseudo-controls commands that are going to be sent to the flight controller.

u2,des = θdes = 1
g

(r̈desy cos(ψ) + r̈desx sin(ψ))

u3,des = ϕdes = 1
g

(r̈desx cos(ψ) − r̈desy sin(ψ))
(4.15)

As the flight controller receives attitude commands as PWM values in the range [1000 2000],

corresponding to the attitude range [amin amax]. We thus scale and offset the attitude

commands to provide the corresponding PWM values as followsu1

u2

 = 1000
amax − amin

ϕd
θd

+ 1500 (4.16)

where the PWM value for zero roll or pitch is 1500. u1 and u2 are then the PWM commands

corresponding to roll and pitch, respectively. As stated before, this control loop runs at

100Hz, which is the fastest rate data is received from the MoCap system, while the inner

loop control runs at 286Hz, there is usually a trade-off in optimising the control gains

between speed of response and stability.

Height Controller

The height control is very similar to the X-Y control, where equations 4.11 and 4.13 are

mixed and linearised accordantly in order to obtain the relationship between the desired

acceleration and the throttle pseudo-control.

r̈desz = u1,des

m
(4.17)

And then inverted as follows

u1,des = mr̈desz
(4.18)

82 Chapter 4 Quadrotor Modelling and Control

After testing on the real vehicle, a compensation to equation 4.18 is added to improve

the behaviour of the controller, this upgrade compensates the throttle pseudo-control u1 for

close-to-large changes in the orientation of the vehicle by using the cosine of the current roll

and pitch angles of the vehicle, a gain is added which relates the minimum throttle PWM

value u0 and the throttle PWM value for the vehicle at hover uhover. The final equation to

compute the throttle pseudo-control is

u1,des = Kt

(r̈desz + g)m
cosϕi cos θi

+ u0
(4.19)

Where Kt is a throttle scale factor that is computed as

Kt =
u0 − uhover

mg
(4.20)

Heading Controller

A simple heading controller is employed. It is important to consider that in order to create

the hover controller, a heading controller is not necessarily needed. At hover conditions

ψ(t) = ψ0, and more over, the X-Y controller compensates for changes due to different

headings, as seen in Equation 4.21. This controller is utilised to keep the vehicle pointed

in a specific direction, in order to visualize the pitch and roll movements in a better way.

The heading PWM command u4 determines the heading speed, thus a simple proportional

controller is sufficient,

u4,des = kp,ψ(ψdes − ψ) (4.21)

Again, the command is scaled to provide the corresponding PWM value. The PWM com-

mands are transmitted in the range [1000 2000], corresponding to the heading rate range

[ψ̇min ψ̇max]. The heading PWM command is thus

u4 = 1000
ψ̇max − ψ̇min

ψ̇des + 1500 (4.22)

4.3.3 Trajectory Generation

The trajectory generation is a very simple yet effective method, that involves using the

position controller exposed before and simply changing the pseudo-controls for X, Y, Z and

heading, depending on the current time-step. Two traditional trajectories (Fig. 4.9) were

chosen to test the position controller performance, one is the circular or circle trajectory

4.3 Control 83

and the other one is the figure-of-eight trajectory. Both trajectories use the full motions of

the vehicle and can give us an idea of the performance of the controllers and how the entire

system attempts to track them. The circle trajectory is generated using

xdes = r cos(t)

ydes = r sin(t)
(4.23)

Being t a constant that relates the time it will take to complete a circle by multiplying with

the step time (update rate, i.e. 0.01s), if we want a circular trajectory that will be com-

pleted in n seconds, then t = 2π
n . The figure-of-eight trajectory used was the Lemniscate of

Bernoulli, which is a plane curve defined from two points a and b, as showed on parametric

equation 4.24. This lemniscate (that resembles a ∞ symbol) was first described in 1694 by

Jakob Bernoulli as a modification of an ellipse.

xdes = a
√

2 cos(t)
sin(t)2 + 1

ydes = b
√

2 cos(t) sin(t)
sin(t)2 + 1

(4.24)

X [m]
-1.5 -1 -0.5 0 0.5 1 1.5

Y
 [m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O Trajectory
8 Trajectory

Fig. 4.9.: Circle and figure-of-eight trajectory.

4.4 Experimental results

Thanks to the DronePilot (3.5) framework, it was possible to record data during flight

experiments. This data help to tune the parameters of the controllers with a quantitative

feedback as well as being able to use this data for Machine Learning experiments, this will

be explained in later chapters. In the next figures, the flight tests for attitude and position

84 Chapter 4 Quadrotor Modelling and Control

controllers will be presented. The plots are divided in two sub-plots to help identifying the

trends in the signals and the error boundaries.

4.4.1 Attitude controller performance

The attitude controller plots showed in this section were obtained using DronePilot on-

board a Flight Stack compromised by an Odroid U3 as companion computer and a Naze32

(MultiWii) as COTS flight controller, the data-logging thread records data at 100Hz. The

MoCap system update the pose data at 100Hz, the communication with the flight controller

happens at the same rate of the outer-loop with a maximum rate of up to 300Hz, this is to

ensure there is no bottle-neck communication problems in the recording and control thread.

The attitude measurement will be compared between the flight controller IMU (Inertial

Measurement Unit) and the motion capture system, which is often considered as the true

value. It is important to consider that the motion capture suffers from a considerable flaw

0 50 100 150 200 250 300 350 400 450
timestep

-1

-0.5

0

0.5

1

R
ol

l t
as

k
[d

eg
]

Desired Roll
IMU
MoCap (true)

0 50 100 150 200 250 300 350 400 450
timestep

-1

-0.5

0

0.5

1

R
ol

l e
rr

or
 [d

eg
]

IMU
MoCap (true)

Fig. 4.10.: Roll stabilization performance.

if the system is no calibrated properly and regularly. For the flight sessions it was always

intended to have the system properly calibrated. If during the flight tests we observed

an abnormal behaviour of the vehicle, like inconsistent disturbances, those indicated that

the MoCap system needed to be re-calibrated again, therefore making the flight tests time-

consuming. Figure 4.10 displays a flight test for the roll stabilization performance. The test

was done by flying the vehicle inside the MAST Lab, making the vehicle track a zero degree

pitch and roll command while recording orientation data from the IMU inside the flight

controller and the MoCap system. The position of the vehicle will drift due to mechanical

and aerodynamic factors (ground effect and wall-vehicle fluid interaction), therefore the

test cannot last for long time to safely obtain data from the MoCap system, due to the

physical size of the laboratory flight area (3x2 meters). It is appreciated on the plot that

4.4 Experimental results 85

the roll error is always lower than one degree. For the pitch part, figure 4.11, a small

0 100 200 300 400 500 600
timestep

-2

0

2

4

6

P
itc

h
ta

sk
 [d

eg
]

Desired Pitch
IMU
MoCap (true)

0 100 200 300 400 500 600
timestep

-4

-2

0

2

4

6

P
itc

h
er

ro
r

[d
eg

]

IMU
MoCap (true)

Fig. 4.11.: Pitch stabilization performance.

+5 degree pitch input from a human pilot is enforced to the vehicle, followed by a zero

degree command. The reaction lag and settling time can be observed. The timestep for

the experiments is 0.01 seconds showing around 7 seconds of flight. As mentioned before,

in order to keep a stable flight, both roll and pitch errors must be kept low. In hovering

conditions if one of the two angles (pitch and roll) are different than zero a longitudinal

acceleration will occur and will make difficult to maintain a fixed position without drift,

this is the reason why the plots show a small amount of data.

4.4.2 Position controller performance

For the position control the flight test was very similar to the one of attitude; same vehicle,

flight stack components and software. The difference is that in this flight test the vehicle

was being totally controlled by DronePilot. The control thread will compute the appropriate

roll, pitch, yaw and throttle commands in order to keep the vehicle in a specified position.

The chosen location inside the MAST Lab was [1, 1, 1] being [X,Y, Z] and meters as units.

X-Y

The initial location of the vehicle was approximately [0, 0, 0]. Then DronePilot executes a

step-response mission and will fly the vehicle from the initial location to the final location

[1, 1, 1] and then it will attempt to hover in that position until the battery runs low or it is

asked to land the vehicle. A step-response is important because it informs to the control

86 Chapter 4 Quadrotor Modelling and Control

-0.5

X [m]

0

0.5-0.5Y [m]

0

-1.5

-1

-0.5

0

0.5

Z
 [m

]

Fig. 4.12.: 3D plot of an entire position hold flight test.

designer how the system responds to a sudden input as well as giving information on the

stability of dynamical system (vehicle) and its ability to reach one stationary state when

starting from another. Figure 4.13 shows the X-axis step response of the X-Y controller. In

such plot we can observe that the reaction time when changing position (within 3 body

lengths) is approximately 4 seconds. This settling time is a trade-off between stability and

robustness of the controllers with this specific vehicle platform. For the flight experiments,

it was preferable to have a much more stable vehicle response than a fast response. The Y-

axis step response is showed at figure 4.14, it is noticed that even if the gains were identical

between axis, the response on this axis had a bigger overshoot than the previous axis, this

might be caused due to the wall-vehicle fluid interaction due to the fact that the magnitude of

the laboratory Y-axis is significantly lower, and the vehicle ends up being closer to the wall.

Another test performed to the vehicle involved how the position controller behave over

longer periods of time when attempting to hold a predefined position ([1, 1, 1] meters), as

seen in figure 4.15. The X-Y trajectory is plotted from above with a 20 centimetre tolerance

circle to show that the control will maintain the commanded position with a maximum

error of 0.6 body length.

4.4 Experimental results 87

timestep
0 500 1000 1500

P
os

iti
on

 C
on

tr
ol

 P
er

fo
rm

an
ce

 [m
]

0

0.2

0.4

0.6

0.8

1

1.2

Desired X
Current X

timestep
0 500 1000 1500

P
os

iti
on

 e
rr

or
 [m

]

-1

-0.5

0

0.5

1

Fig. 4.13.: Position stabilization performance - X axis.

timestep
0 500 1000 1500

P
os

iti
on

 C
on

tr
ol

 P
er

fo
rm

an
ce

 [m
]

0

0.2

0.4

0.6

0.8

1

1.2

Desired Y
Current Y

timestep
0 500 1000 1500

P
os

iti
on

 e
rr

or
 [m

]

-1

-0.5

0

0.5

1

Fig. 4.14.: Position stabilization performance - Y axis.

88 Chapter 4 Quadrotor Modelling and Control

X [m]
0.85 0.9 0.95 1 1.05 1.1 1.15

Y
 [m

]

0.85

0.9

0.95

1

1.05

1.1

1.15

Hover Task Trajectory
20cm diameter error circle

Fig. 4.15.: Position hold performance - Top view.

4.4 Experimental results 89

Height

The height controller step response is showed in figure 4.16. The gains for this controller

are different to the X-Y, in the form that the vehicle can have a slightly faster settling time

due to response of a matched rotor, this means that the components in the rotor tuple

fit in a proper way with the vehicle frame and its weight. For example, if the propellers

are changed in this vehicle, the response of this controller will be different to the one

previously showed. Important to consider that for this controller, the gains need to be

timestep
0 500 1000 1500H

ei
gh

t C
on

tr
ol

 P
er

fo
rm

an
ce

 [m
]

0

0.2

0.4

0.6

0.8

1

1.2

Desired Z
Current Z

timestep
0 500 1000 1500

H
ei

gh
t e

rr
or

 [m
]

-1

-0.5

0

0.5

1

Fig. 4.16.: Position stabilization performance - Z axis.

carefully selected according to the vehicle rotor capabilities and parameters in order to

obtain the best response possible of the system.

Heading

The step response of the most simplistic control is showed in figure 4.17. In this case, the

vehicle was rotated so that it performs a full 180 degree turn. This rotation is maximum

heading change possible. For this one, only the data coming from the MoCap is used, due

to the fact that the magnetometers inside the IMU of the flight controller suffer of magnetic

interference caused by the wireless communication device among other magnetic fields

present inside the MAST Lab. In the plot (Fig. 4.17), three short disturbances from the

heading of the vehicle can be observed, this is a tracking error coming from the Motion

Capture system, it might be caused by damaged reflective markers or bad calibration of the

MoCap system.

90 Chapter 4 Quadrotor Modelling and Control

timestep
0 200 400 600 800 1000 1200

H
ea

di
ng

 ta
sk

 [d
eg

]

0

50

100

150

200

Desired Heading
MoCap (true)

timestep
0 200 400 600 800 1000 1200

H
ea

di
ng

 e
rr

or
 [d

eg
]

-200

-150

-100

-50

0

50

Fig. 4.17.: Position stabilization performance - Heading.

4.4.3 Trajectory flights

As explained before, two trajectories were chosen, the circle and the figure-of-eight. The

latter has a motion which is far more aggressive than the circle, therefore more demanding

for the position controller. Four different tests for each trajectory were performed, changing

the time to complete a circuit in each one of them. As seen on the step response of the X-Y

controller (Fig. 4.13) the vehicle reached the desired position in approximately less than 4

seconds, therefore in order to avoid accidents, the minimum time to complete a circuit was

4 seconds, because it could instabilities to the vehicle going faster that the step response.

Circle

For the circular trajectory, the first test was set-up in such way that the vehicle could com-

plete a circumference of radius 0.8 meters in 10 seconds. Figure 4.18 shows the experi-

mental response of the desired trajectory and the response of the vehicle on X-Y, the height

was kept constant. It can be appreciated that the tracking error is less than 20 centime-

tres, which is very similar to the hover performance test. Such figure shows 2000 timestep,

which is exactly 20 seconds, the update rate in these tests was 100Hz. Two circuits are

displayed.

Figure 4.19 shows the same test from a top view perspective, the vehicle tracks the circle

trajectory in a very successful and precise manner. The 3D view can be appreciated in Fig.

4.20. In this test the height, heading and X-Y controllers were active, the latter one working

more actively in order to keep the vehicle in the desired position.

4.4 Experimental results 91

0 200 400 600 800 1000 1200 1400 1600 1800 2000
T

ra
j X

 [m
]

-1

-0.5

0

0.5

1

Des X
Veh X

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

or
 [m

]

-0.2

0

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ra

j Y
 [m

]

-1

-0.5

0

0.5

1
Des Y
Veh Y

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

or
 [m

]

-0.2

0

0.2

Fig. 4.18.: Circular trajectory tracking performance.

The next test presented, involved changing the time for the vehicle to complete the same

circuit. The chosen times were 10, 8, 6 and 4 seconds. It can be observed in Fig. 4.21 how

the performance of the position controller started to decrease when the time is reduced as

the time to complete the circuit gets closer to the step response of the vehicle. Important

to notice that the tests were done without any tuning of the parameters on the controllers.

MSE (Mean Squared Error) is calculated to observe how the tracking error increases when

the trajectory is more demanding (faster) to the vehicle.

Figure 4.22 and 4.23 shows a time-lapse photography merged into a single image (time-

collapse) in order to show the trajectory progression of the vehicle when performing the

autonomous circular flights, it can be appreciated how when the time to complete the

trajectory is lower the change in the attitude of the vehicle becomes more aggressive and

also fewer vehicles appear on the image.

92 Chapter 4 Quadrotor Modelling and Control

X [m]
-1 -0.5 0 0.5 1

Y
 [m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Desired
Vehicle

Fig. 4.19.: Circular trajectory tracking performance - Top view.

-1

-0.5

0

X [m]

0.5

1-1

-0.5

Y [m]

0

0.5

1

-0.5

0

-1

-1.5

Z
 [m

]

Desired
Vehicle

Fig. 4.20.: Circular trajectory tracking performance - 3D view.

4.4 Experimental results 93

X [m]
-1 -0.5 0 0.5 1

Y
 [m

]

-1

-0.5

0

0.5

1
Desired
10s -> 0.284
 8s -> 0.337
 6s -> 0.442
 4s -> 0.515

Fig. 4.21.: Circular trajectory tracking performance using different times to complete the
circuit.

Fig. 4.22.: Time-collapse photography of a circle trajectory performed in 10 seconds.

94 Chapter 4 Quadrotor Modelling and Control

Fig. 4.23.: Time-collapse photography of a circle trajectory performed in 4 seconds.

Figure-of-eight

In the similar manner as with the circular trajectory, the first test with the lemniscate (a

pendant ribbon) was configured to be completed in approximately 10 seconds. This trajec-

tory is longer to the circular one, therefore the vehicle must travel faster to complete the

circuit in comparison that with the circular. The average velocity of the vehicle performing

the circular trajectory was 0.5m/s while on the lemniscate the average is about 0.59m/s.

Fig. 4.24 shows the performance of the controller and vehicle when attempting to track

0 100 200 300 400 500 600 700 800 900 1000

T
ra

j X
 [m

]

-1

0

1
Des X
Veh X

timestep
0 100 200 300 400 500 600 700 800 900 1000

E
rr

or
 [m

]

-0.2
0

0.2

0 100 200 300 400 500 600 700 800 900 1000

T
ra

j Y
 [m

]

-1
0
1

Des Y
Veh Y

timestep
0 100 200 300 400 500 600 700 800 900 1000

E
rr

or
 [m

]

-0.2
0

0.2

Fig. 4.24.: Figure-of-eight trajectory tracking performance.

4.4 Experimental results 95

a figure-of-eight trajectory in 10 seconds. Regarding the error it can be appreciated that it

never surpass 0.2 but the trajectory is more demanding than the one of circular one, there-

fore the lemniscate contains more error. The top view can be seen in Fig. 4.25 while the 3D

X [m]
-1.5 -1 -0.5 0 0.5 1 1.5

Y
 [m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Desired
Vehicle

Fig. 4.25.: Figure-of-eight trajectory tracking performance - Top view.

plot is in Fig. 4.26. The top view shows a bigger error when the trajectory finishes, as it is

extremely complicated that the vehicle can pass in the same position where it started. The

height controller suffer a small performance decrease in order to achieve the desired height,

due to the attitude motions required to achieved the trajectory, and as is showed in equation

4.19, the attitude of the vehicle is linked directly to the height controller. In figure 4.27 the

different tracked trajectories for several times (10, 8, 6 and 4) are showed alongside their

correspondent MSE, there is a dramatically increase of error when the time became smaller.

The highest error appears when the trajectory must be completed in 4 seconds, important

to remember that the step response showed us a settling time very close to 4 seconds, there-

fore we can state that in the figure-of-eight trajectory at 4 seconds the vehicle is reaching its

performance limits, if a faster trajectory is attempted, the vehicle will not be able to track

the trajectory as a new position command is due when a previous one is not reached yet.

The three controllers actions during tracking of a figure-of-eight trajectory can be seen on

Fig. 4.28, the controllers acting on the plot are two similar angle control for position X-Y

which uses the pseudo-controls roll and pitch, heading controller using the pseudo-control

rate yaw and a height controller using the pseudo-control throttle. All pseudo-control units

are fed to the flight controller in PWM. It is shown that at 220 and 480 time-step the height

controller had a perturbation due to a momentarily loss of the trackable position from the

motion capture system.

96 Chapter 4 Quadrotor Modelling and Control

-1

-0.5

0

X [m]
0.5

1
-1.5

-1

-0.5

Y [m]

0

0.5

1

1.5

0

-1.5

-1

-0.5

Z
 [m

]

Desired
Vehicle

Fig. 4.26.: Figure-of-eight trajectory tracking performance - 3D view.

0 100 200 300 400 500 600 700 800 900 1000

R
ol

l [
pw

m
]

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

P
itc

h
[p

w
m

]

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

Y
aw

 [p
w

m
]

1480

1500

1520

timestep
0 100 200 300 400 500 600 700 800 900 1000T

hr
ot

tle
 [p

w
m

]

1400

1500

1600

Fig. 4.28.: Controller action during tracking.

Figure 4.29 and 4.30 shows the time-collapse in order to appreciate the physical movements

movements of the vehicle when tracking the trajectory, also the much more aggressive

4.4 Experimental results 97

X [m]
-1.5 -1 -0.5 0 0.5 1 1.5

Y
 [m

]

-1

-0.5

0

0.5

1

Desired
10s -> 0.267
 8s -> 0.377
 6s -> 0.476
 4s -> 0.698

Fig. 4.27.: Circular trajectory tracking performance using different times to complete the
circuit.

change in attitude from the 4 seconds (Fig. 4.30) trajectory against the 10 second (Fig.

4.29) trajectory.

Fig. 4.29.: Time-collapse photography of a figure-of-eight trajectory performed in 10 sec-
onds.

98 Chapter 4 Quadrotor Modelling and Control

Fig. 4.30.: Time-collapse photography of a figure-of-eight trajectory performed in 4 sec-
onds.

4.5 Summary

In this chapter the kinematic and dynamic modelling of a quadrotor was presented, fol-

lowed by the contribution of the position control strategy that uses the pseudo-controls

throttle, roll, pitch, yaw in order for station-keeping or maintaining the position at a de-

sired location. Such controller strategy is experimentally tested using two types of trajecto-

ries (circle and figure-of-eight). The control strategy dynamic inversion which is a popular

method for in designing non-linear controllers for the quadrotor platform, using this tech-

nique requires an accurate model of the system which is then inverted and placed in closed

loop with the plant.

4.5 Summary 99

5Machine Learning

Following a thorough literature review and detailed consideration of the research question,

the principle research hypothesis of this thesis is that the dynamics (and ultimately control)

of the slung load / MRUAV coupled system can be identified by applying Machine Learn-

ing (ML) techniques. ML addresses the question of how to build computer software that

improves automatically through experience, not to be confused with Artificial Intelligence

(AI) which has the goal of creating a machine that will mimic the human mind, in both

techniques there is learning but in the latter is not just about learning, is about knowledge

representation, reasoning and abstract thinking. ML is closely related to data mining and

statistics. Recent progress in Machine Learning has been driven by the development of new

learning algorithms that use experimental data and low-cost computation. One of the most

commonly known machine learning subsets is Artificial Neural Network (ANN), inspired by

the structure and functional aspects of biological neural networks. The Recurrent Neural

Network (RNN) is a class of ANN that represents a very powerful generic system identifi-

cation tool, integrating both large dynamic memory and highly adaptable computational

capabilities. Reservoir Computing (RC) is another approach to design, train, and analyse

RNNs. The main advantages of this paradigm are modelling capacity and accuracy, biologi-

cal plausibility and their extensibility and parsimony. ML can often be successfully applied

on problems that try to establish relationships between multiple features, improving the

efficiency of systems and the design of machines. In this section, a discussion about ML will

be presented. The applications of ML in this research effort will also be introduced. The

goal of this section is to show the key algorithms and theory that is used to help solving the

research question and hypothesis (1.1.3).

5.1 Background

ML is a computer program said to learn from experience ′E′ with respect to some class of

tasks ′T ′ and performance measure ′P ′, if its performance at tasks in ′T ′, as measured by ′P ′

improves with experience ′E′ (Mitchell, 1997). If any computer program, system or script

can improve how it performs a certain task based of past experience then we can state that

it has learnt, and therefore is a machine learning application. Figure 5.1 shows a general

categorization of ML algorithms and their applications. Two of the most typical application

101

of ML techniques are Classification and Prediction. Classification is the process whereby

a machine can recognize and categorize objects/things from a particular dataset that can

include visual or measurement data. Prediction, also known as regression in statistics, is

where a machine can guess, predict the value of something based on previous values. The

meaning of the data can lead us to another definition of ML, which is the extraction of

knowledge from data. This is the main reason why ML is related to statistical analysis and

data mining. Machine learning also uses concepts and results from many fields, including

philosophy, information theory, biology, cognitive science, computational complexity, and

control theory.

Credit: lpag.de

Fig. 5.1.: Machine Learning general categorization.

5.2 Categories

ML can be divided into three categories, Supervised learning, Unsupervised learning and Re-

inforced learning (Fig. 5.2). Supervised learning is about approximation while unsupervised

learning is about description and reinforcement learning is about maximising a numerical

reward signal. All categories can be valuable and which one is selected should depend on

the circumstances, what kind of problem is being solved, how much time is allotted to solv-

ing it, supervised learning or unsupervised (clustering) is often faster than reinforcement

learning techniques, and whether supervised learning is even possible.

5.2.1 Supervised learning

In this category the algorithm uses a known dataset (which will be called training dataset)

in order to make predictions based on evidence in the presence of uncertainty. The train-

ing dataset includes input and output (response values) data. While the algorithm identify

102 Chapter 5 Machine Learning

Inputs Outputs

Training

Supervised

Inputs Outputs

Unsupervised

Inputs Outputs

Reward

Reinforced

Fig. 5.2.: ML categories diagram.

patterns in data, the computer learns from the observations. When exposed to more obser-

vations, the computer improves its predictive performance. Using the dataset, the super-

vised learning algorithm seeks to build a model that can predict the output (response) for

a new dataset. The model is prepared through a training process where it is required to

make predictions and is corrected when those predictions are wrong. The training process

continues until the model achieves a desired level of accuracy on the training dataset. The

datasets are usually divided in two, the training and the test dataset, the latter one is used

to validate the model. Using larger training datasets often yield models with higher predic-

tive power that can generalize well for new datasets. This is the most used category in this

research effort. The first application of ML in this thesis is the one of system identification

of multirotor vehicles. Experimental flight test datasets, coming from the DronePilot (Sec.

3.5) framework, are fed into a ML algorithm, in order for it to predict the output to a certain

set of inputs. In this way, the ML algorithm will learn how the vehicle moves and reacts to

the control inputs. The steps to solve a problem using supervised learning are:

• Obtain and prepare the data

• Choose an algorithm

• Fit the model

• Validate the model

• Examine the fit and update until satisfied

• Use fitted model for predictions

In order to explain the steps, consider a machine that receives some sequence of inputs

x1, x2, ..., where xt is the sensor input at time t, this input is called the data, is usually

obtained from sensors, in our case MoCap and/or Flight Controller (IMU). This machine

5.2 Categories 103

Training
dataset

Learning
algorithm

HypothesisXn Predicted Y

Fig. 5.3.: Supervised learning diagram.

also receives a sequence of desired output y1, y2, ...,. Both input and outputs are called the

dataset. Then using either classification or regression (to fit the model until satisfied) given

a training set, the goal is to learn a function h : x → y so that is a good predictor for

the corresponding value y, such function is usually called hypothesis, the process is there-

fore showed in Fig. 5.3. Supervised learning uses two ML techniques, classification and

regression (prediction). From figure 5.3, when the predicted variable (yn) is continuous,

the learning problem is a regression one, and when yn is just discrete values, then its a

classification problem. The main objective of classification is to assign a class from a finite

set of classes to an observation, therefore the response are categorical variables. In predic-

tion (regression), the objective is to predict a continuous measurement for an observation,

therefore the response is numerical values. This is the technique used for system identi-

fication of multirotors. Between supervised and unsupervised learning is Semi-supervised

learning. This approach is used for the same applications as supervised learning. But it

uses both labelled and unlabelled data for training. It uses unlabelled data because is less

expensive and takes less effort to acquire. This type of learning can be used with methods

such as classification, regression and prediction.

Classification

This technique involves the problem of identifying to which set of categories the new obser-

vation or measurement belongs. Classification is an example of pattern recognition, often

the individual observations are analysed into a set of quantifiable properties (features).

The algorithm that implements this classification is called classifier, which is a mathemat-

104 Chapter 5 Machine Learning

ical function that maps input data into a category. The classification algorithms include

several procedures as in Alpaydn, 2014 including frequentist, bayesian, binary, multiclass,

feature vector and linear classifiers:

• Neural Networks

• Learning vector quantization

• Decision trees

– Random forest

• Kernel estimation

– k-nearest neighbour

• Quadratic classifiers

• Linear classifiers

– Fishers linear discriminant (Fisher, 1936)

– Logistic regression

– Perceptron

– Naive Bayes classifier

• Support vector machines (SVM)

Decision tree methods construct a model of decisions made based on actual values of at-

tributes in the data. Decisions fork in tree structures until a prediction decision is made for

a given record. Decision trees are trained on data for classification and regression problems.

Decision trees are often fast and accurate and a preferred method in machine learning. The

most used procedure on this research effort are the Artificial Neural Networks. The main

reason is because with the recent progress in ANN it provides new tools for modelling, es-

timation and control of complex non-linear systems. In the case of neural networks, the

classification is used to determine the error of the network and then adjust the network to

minimize it.

Prediction

Also called regression, is a statistical process for estimating the relationships between in-

puts/outputs, in other words, this analysis understands which among of the input variables

are related to the output variables and then it explores the forms of the relationships. How-

ever, it is common to find false relationships (illusions), therefore caution is needed when

using this type of methods because correlation does not imply causation. It is often recom-

mended to have knowledge a priori about the possible relationships. Several methods have

5.2 Categories 105

been developed, being the most common linear regression and ordinary least squares which

are parametric. The regression function is defined in terms of a finite number of unknown

parameters that are estimated from the datasets. A non-parametric regression is the one

that allows the function to lie in a specified set of infinite-dimensional functions. The most

popular regression algorithms are:

• Ordinary Least Squares Regression (OLSR)

• Logistic regression

• Linear regression

• Stepwise regression

• Locally Estimated Scatterplot Smoothing (LOESS)

• Multivariate Adaptive Regression Splines (MARS)

Prediction methods are a workhorse of statistics and have been cooped into statistical ma-

chine learning, this causes confusion because regression can be used to refer to the class of

problem and the class of algorithm, and in reality regression is a process.

5.2.2 Unsupervised learning

This algorithm uses no labels (no output data), leaving it on its own to find in its input. A

model is prepared by deducing structures present in the input data. It may use a mathe-

matical process to systematically reduce redundancy. The goal for unsupervised learning is

to model the underlying structure or distribution in the data in order to learn more about

the data. Algorithms are left to their own to discover and present the structure of the data.

There is two commonly used approaches to follow when applying unsupervised learning.

The first one is to teach the agent not by giving explicit categorizations, but by using a

reward system to indicate success. This type of training will generally fit into the decision

problem framework because the goal is not to produce a classification but to make decisions

that maximize rewards. The second approach is the cluster analysis, which is used on data

analysis to find hidden patterns or grouping data. In this type of learning, the goal is not

to maximize a utility function, but simply to find similarities in the training data. The as-

sumption is often that the clusters discovered will match reasonably well with an intuitive

classification. Unsupervised learning algorithms are designed to extract structure from data

samples (Ghahramani, 2008). Unfortunately, unsupervised learning also suffers from the

problem of over-fitting the training data, this issue is also called lack of robustness. The

quality of a structure is measured by a cost function which is usually minimized to infer op-

timal parameters characterizing the hidden structure in the data. Clustering can be useful

when enough data is present to form clusters and especially when additional data about

106 Chapter 5 Machine Learning

members of a cluster can be used to produce further results due to dependencies in the

data. Classification learning is powerful when the classifications are known to be correct

and it is often necessary when the decisions made by the algorithm will be required as input

somewhere else.

5.2.3 Reinforced learning

In this approach, the training information supplied to the learning algorithm by the envi-

ronment (external trainer) is in the form of a scalar reinforcement signal that constitutes a

measure of how well the system operates. The learning algorithm is not told which actions

to take, therefore it must discover which actions generates the best reward, by trying each

action in turn. Often, a form of reinforcement learning can be used for unsupervised learn-

ing, where the agent bases its actions on the previous rewards and punishments without

necessarily even learning any information about the exact ways that its actions affect the

world. In contrast, when reinforcement learning involves supervised learning, it does so

for specific reasons that determine which capabilities are critical and which are not. This

type of learning has three primary components, the agent (the learner or decision maker),

the environment (everything the agent interacts with) and actions (what the agent can do).

The objective is for the agent to choose actions that maximize the expected reward over a

given amount of time (Fig. 5.4). The agent will reach the goal much faster by following a

good policy. So the goal in reinforcement learning is to learn the best policy. All reinforce-

Agent

Environment

RewardState Action

Fig. 5.4.: Reinforced learning diagram.

ment learning agents have explicit goals, can sense aspects of their environments, and can

choose actions to influence their environments. The agent must operate despite significant

uncertainty about the environment it faces.

5.3 Considerations

There is three very important factors to consider when applying a learning algorithm method.

The first one the heterogeneity of the data, if such data involves features of many different

5.3 Considerations 107

kinds like discrete, discrete ordered, counts and/or continuous values, some algorithms are

easier to apply than others. For example SVM, linear regression, neural networks, require

that the input data be numerical and scaled to similar ranges. In comparison, decision

trees have the advantage that they can easily use heterogeneous data. The next factor

is related to the redundancy of the data, if the data contains highly correlated features

some algorithms like linear regression, logistic regression will have a poor performance,

because of numerical instabilities. This problem can be overcome or solved by using some

form of regularization of the data prior to learning. The last factor is the presence of non-

linearities and interactions. If the input data makes an independent contribution to the

output, then algorithms based on linear functions such as linear regression, SVM, Naive

Bayes will perform generally well. When choosing the algorithm, comparison with multiple

learning algorithms is suggested to see which one works best on the problem at hand, such

technique is called cross validation. Tuning the performance of a learning algorithm can

be very time-consuming, important to mention that in this research effort, several learning

and optimising methods have been tested.

5.4 Artificial Neural Networks

A neural net is a machine learning technique modelled trying to replicate the work of neu-

rons inside a biological brain. The idea is that given a number of inputs the neuron will

propagate a signal depending on how it interprets the inputs. In machine learning terms

this is done with matrix multiplication along with an activation function. ANN are a class

of pattern matching that are commonly used for regression and classification problems but

are really an enormous sub-field composed of hundreds of algorithms and variations for

all manner of problem types. The artificial network approach has superior characteristics

when compared with conventional computers Omatu et al., 1996. If we consider the Von

Neumann conventional computers approach properties, as showed in Tab. 5.1, the neural

network approach has superior characteristics (Tab. 5.2), and therefore when using neu-

ral networks we can expect to inherit at least some of the properties and advantages.

Symbolic expression
Logical representation
Local memory
Serial processing architecture
Sequential algorithm programming

Tab. 5.1.: Von Neumann computer properties.

One of the most important properties of neural networks are the parallel, distributed and

self-organization. Parallel architecture refers to the capability of information processing on

108 Chapter 5 Machine Learning

Easier pattern information processing
Self-organization
Distributed memory
Parallel processing architecture
Learning

Tab. 5.2.: Neural network properties.

many central processing units (CPUs), while in conventional computer has only a single

CPU. Distributed memory means that information is stored in many addresses in a shared

way so that each entity is represented by a pattern of activity distributed over many com-

puting elements and each element is involved in representing many different entities, using

such representation architecture, information can be divided and computed into several

different parts (Rumeihart et al., 1968). Another peculiar and relevant properties, for this

research work, are the self-organization and learning properties of neural network, this

means that neural networks can learn static or dynamic properties autonomously based on

the past history of measurement data (supervised learning) and then a better solution can

be obtained under unknown environmental conditions. This is exactly the reversed case of

conventional computers, where they cannot take decisions under new environments that

have not been pre-programmed into.

5.4.1 Biological Neural Networks

Artificial neural networks are pretty much inspired by the biological nervous system. Most

living creatures have the ability to adapt to different environments, therefore they need a

controlling unit which is able to learn (brain). Higher developed animals and humans use

very complex networks of highly specialized neurons to perform this task. The brain, or

control unit, can be divided in different functional sub-units, each sub-unit have certain

tasks like vision, hearing, motor and sensor control. The brain is connected by nerves to the

sensors and actors in the rest of the body. Extremely important to take into account is that

biological neural networks are recurrent 5.5. A neuron (nerve cell) is a special biological

cell that processes information (Fig. 5.5). It is composed of a cell body (soma), axon and

dendrites (tree-like branches). The neuron receives signals (impulses) from other neurons

via the dendrites (receivers), then it generates a signal in the soma and transmits along the

axon, which eventually branches into strands. At the terminal ends of such strands are the

synapses. The synapse is an elementary structure and functional unit between two neurons.

When a impulse reaches the synapse’s terminal, there are chemicals called neurotransmitters

which are released. The synapse’s effectiveness can be adjusted by the signals passing

through it, in this way the synapse learn from the activities they participate into. The

brain (cerebral cortex) consists of a very large number of neurons, about 1011 in average.

5.4 Artificial Neural Networks 109

Source: modified from vecteezy.com

Fig. 5.5.: Sketch biological neuron.

Neurons are massively connected between each other, they are more complex and dense

than telephone networks (Brunak et al., 1990). Each neuron is connected to 103 to 104 other

neurons. The human brain contains 1014 to 1015 interconnections. Neurons communicate

through a train of short pulses, approximately milliseconds in duration. Complex perceptual

decisions e.g. face recognition, takes around a few hundred hertz in frequency. Such type

of decisions are made in a network of neurons with operational speed of a few milliseconds,

this implies that computations cannot take more than about 100 serial stages, this is know

as the hundred step rule (Feldman et al., 1988), which states that the brain runs parallel

programs that are about 100 step long.

Computational model of a neuron

In McCulloch et al., 1943, a binary threshold unit was proposed as a computational model

of a neuron. The mathematical representation can be seen on equation 5.1 and the diagram

in Fig.5.6.

y = θ

(
n∑
j=1

wjxj − u

)
, (5.1)

The model computes a weighted sum of its n input signals, xj (j = 1, 2, ..., n,) and gener-

ates and output of 1 if such sum is above a certain threshold u, otherwise an output of 0

will result. In equation 5.1, θ(·) is a unit step function of 0, and wj is the synapse weight

associated with the jth input. The threshold u is considered as another weight w0 = −u

attached to the neuron with a constant input x0 = 1. McCulloch et al., 1943 proved that

with a properly chosen weights, an arrangement of neurons could perform universal compu-

110 Chapter 5 Machine Learning

Σ u

Y
h

X1

X2
.

.

.

Xn

W1

W2

Wn

Fig. 5.6.: McCulloch-Pitts model of a neuron.

tations. The analogies with the biological neurons include wires and interconnections with

axons and dendrites, connection weights with synapses, threshold functions with the activ-

ities in the soma. Such model simplifies assumptions that do not reflect the true behaviour

of biological neurons.

5.4.2 ANN Architectures

Based on the connection pattern (architecture) of the ANN, they can be grouped into

two main categories: feed-forward and recurrent networks. ANNs are viewed as directed

weighted graphs in which the nodes are the artificial neurons and the directed edges are

connections between neuron outputs and inputs. In the feed-forward networks the graphs

have no loops while on the recurrent networks (also called feedback) the loop occurs be-

cause of the feedback connections. In the most common family of feed-forward networks

Neural Networks

Feed-forward networks Recurrent networks

Fig. 5.7.: Architecture of feed-forward and recurrent neural networks.

(multilayer perceptron), neurons are organized into layers that have unidirectional connec-

tions between them as showed in Fig. 5.9. Such networks are static, because they produce

only one set of output values rather than a sequence of values from a given inputs, they

are also memory-less due to the fact that their response to an input is independent of the

5.4 Artificial Neural Networks 111

previous network state. A modified version or a MLP has being used on this research effort

(see Section 6) in order to perform system identification of a slung-load/quadrotor system.

Recurrent networks, on the contrary, are dynamic systems, such that when a new input pat-

tern is presented, the neuron outputs are computed. The feedback paths modify the inputs

of each neuron causing the network to enter in a new state.

5.4.3 ANN Learning

The learning process of a ANN can be viewed as the problem of updating network archi-

tecture and connection weights so that the network can efficiently perform a specific task.

The network usually learn the connection weights from available training patterns (super-

vised training). Performance is improved over time by iteratively updating the weights in

the network. One of the most attractive properties is their ability to automatically learn

from examples, instead of following a set of rules specified by human experts, this is one

major advantage over traditional expert-systems (Myers, 1986). To overview the learning

process of an ANN a model of the environment in which the network operates is need, this

model is usually called the learning paradigm, also the process of how the network weights

are updated must be understood. The learning algorithm refers to the procedure in which

learning rules are used for adjusting the weights. As explained before (5.2) there is three

main learning paradigms: supervised, unsupervised and reinforced (discussed before). The

learning theory must then address three fundamental and practical issues associated with

learning from samples, those are capacity, sample complexity and computational complexity.

Capacity concerns how many patterns can be stored and the functions and decision bound-

aries that the network can form. Sample complexity determines the number of training

patterns needed to guarantee a valid generalization, e.g. if too much patterns are supplied

may cause over-fitting. Computational complexity refers to the time required for a learning

algorithm to estimate a solution from the training patterns (data). The latter topic is impor-

tant and very relevant for the current research work. There are four basic types of learning

rules, Hebbian, competitive learning, Boltzmann and error correction.

Hebbian Rule

This learning rule is based on observations from neuro-biological experiments (Hebb, 1949).

The main idea is that if neurons on both sides of a synapse are activated synchronously and

repeatedly, the synapse’s strength is selectively increased. The Hebbian rule is described as,

wij(t+ 1) = wij(t) + ηyj(t)xi(t) (5.2)

112 Chapter 5 Machine Learning

where xi and yj are the output values of neurons i and j, which are connected by the

synapse wij and η is the learning rate. A property of this rule is that learning is done locally

and the change in synapse weight depends only on the activities of two neurons connected

to it.

Competitive Learning

In competitive learning, the output units compete among themselves for activation, which

provokes that only one output unit is active at any given time, this phenomenon is called

winner-take-all and is different from the Hebbian learning where multiple output units can

be fired simultaneously. The input data in this learning technique is often clusterized and

categorized, similar patterns are grouped and represented as a single unit, such grouping is

done automatically based on data correlations. A simple competitive rule can be seen as

∆wij =

η(xuj − wi∗j), i = i∗,

0, i = i∗.

(5.3)

It is noted that only the weights of the winner unit get updated. The effect of this rule is to

move the stored pattern in the winner unit closer to the input pattern. Also, this rule will not

stop learning (updating the weights) unless the learning rate η is 0, therefore a particular

input pattern can fire different iterations during learning which introduces a stability issue.

The system is stable if no pattern in the training changes after a finite number of learning

iterations.

Boltzmann Learning

This rule is composed of symmetric recurrent neural networks consisting of binary units, +1

for on and −1 for off, they are also called Boltzmann Machines. This rule is an stochastic

method derived from information-theoretic and thermodynamic principles as in Anderson

et al., 1988. The weight of the connection from unit i to unit j is equal to the weight on the

connection from unit j to unit i, therefore wij = wji. They contain two subset of neurons,

visible and hidden. The first ones interact with the environment and the latter do not. Each

neuron is a stochastic unit that generates an output according to the Boltzmann distribution

of statistical mechanics. The change in the connection weight wij is

∆wij = η(ρ̄ij − ρij) (5.4)

5.4 Artificial Neural Networks 113

where η is the learning rate, ρ̄ij and ρij are correlations between the states of units i and

j. The values ρ̄ij and ρij are estimated using Monte Carlo experiments and they can be

extremely slow.

Error Correction

The basic principle of the error-correction rule is to use the error signal (d − y) to modify

the connection weights to gradually reduce the error. One example of this error-correction

principle is the perceptron learning rule. A perceptron is formed of a single neuron with

adjustable weights, wj , being j = 1, 2, ..., n, and threshold u, the net input to the neuron is

v =
n∑
j=1

wjxj − u (5.5)

for an input vector x = (x1, x2, ...xn)t. The output y of the perceptron is +1 if v > 0,

and 0 otherwise. Important to notice that learning occurs only when the perceptron makes

an error. The perceptron convergence theorem states that the learning procedure converges

after a finite number of iterations. The back-propagation learning algorithm is based on this

learning rule, and many variations of this algorithm have been proposed in the literature

(Hertz et al., 1991).

5.5 Recurrent Neural Networks

Recurrent neural networks are a powerful set of artificial neural network algorithms es-

pecially useful for processing sequential data such as sound, time series (sensor) data or

written natural language, this is one of the reasons it proved to be a powerful tool to anal-

yse the flight characteristics of unmanned aerial aircraft. Also, they perform well when the

training data may contains errors as well as being robust to noise. The information persists

in them because they contain at least one feed-back connection, therefore the activations

run in a loop. Such behaviour allows them to do temporal processing and perform sequence

recognition/reproduction as well as temporal association and prediction. This capability of

operation with sequences of vectors, either on the input or in the output, is one of the

reasons why RNN are more powerful compared with fixed networks. They are considered

Turing-complete (Siegelmann, 1995) because they can simulate arbitrary programs (with

the proper weights). The diagram of a typical RNN is showed in Fig.5.8, such diagram

shows an unfolded version into a full network, that is showing the complete sequence of

the network. Xt in the input at time step t. ht is the hidden state at time step t which is the

memory of the network, ht is computed based on the previous hidden state and the input

114 Chapter 5 Machine Learning

ht

Xt

Ot

W

U

V

ht

Xt

Ot

U

V

ht

Xt

Ot

U

V

ht

Xt

Ot

U

V

W W W

t-1 t t+1

t-1 t t+1

t-1 t t+1

Unfold

Fig. 5.8.: An unfolded Recurrent Neural Network.

at the current step ht = f(UXt + Wht−1), the activation function usually is a non-linearity

such as the hyperbolic tangent (tanh), ht−1 is typically initialized to all zeroes (first hidden

state). Ot is the output at time step t. Note that time must be discretized, with the activa-

tions updated at each time step, the time scale might correspond to the operation of real

neurons, a delay unit needs to be introduced to hold activations until they are processed at

the next time step. The above diagram has outputs at each time step, but depending on the

task this may not be necessary. The main feature of an RNN is its hidden state (ht), which

captures some information about a sequence. It is noticed that at Fig. 5.8 shows a unidi-

rectional flow of information from the input units to the hidden units as well as another

unidirectional flow of information from the hidden units to the output units, In some cases,

RNN break the latter restriction with connections leading from the output units back to the

hidden units, these are called back-projections. Mathematically, a RNN can be described as

a State Space Model (dynamical system), where the state of the dynamical system is a set

of values that summarizes all the information about the past behaviour of the system that

is necessary to provide a unique description of its future behaviour, apart from the effect

of any external factors, in the neural network case the state is defined by the set of hidden

unit activations h(t) and can be described in:

h(t) = fH(WIHx(t) +WHHh(t− 1))

y(t) = fO(WHOh(t))
(5.6)

where the inputs and the outputs are the vectors x(t) and y(t), WIH , WHH , WHO the three

connection weight matrices and fH , fO the hidden unit activation functions. In addition to

the input and output spaces, there is also a state space. The order of the dynamical system is

the dimensionality of the state space which is the number of hidden units. Following on the

properties of dynamical systems, in terms of RNN, the stability concerns the boundedness

over time of the network outputs and the response of the network outputs to small changes

while the controllability refers to whether it is possible to control the dynamic behaviour of

5.5 Recurrent Neural Networks 115

the recurrent neural network and it is said to be controllable if an initial state is steerable

to any desired state within a finite number of time steps. Lastly the property of observability

concerns if it is possible to observe the results of the control applied to network which

is done if the state of the network can be determined from a finite set of input/output

measurements. It is important to mention the universal approximation capabilities of the

recurrent neural networks. The Universal Approximation Theorem (Csaji, 2001) states: Any

non-linear dynamical system can be approximated to any degree of accuracy by a recurrent

neural network, with no restriction on the compactness of the state space, provided that the

network is given sufficient sigmoidal hidden neurons. However, knowing that a RNN can

approximate any dynamical system does not tell us how to achieve it.

5.5.1 Mathematical Model

There is three formal types of RNN mathematical models, discrete-time models are iterated

over discrete time steps n = 1, 2, 3, ...,, continuous-time models are defined through differ-

ential equations whose solutions are defined over a continuous time t, spikes are especially

designed for purposes of biological modelling which are continuous dynamical models that

describe activation signals on the level of individual action potentials. If we consider a

discrete-time model with K input units with activation vector u, N internal units (neu-

rons), L output units, Win input connection weights, W internal connection weights, Wout

output connection weights and a back-propagation weight matrix Wback, the activation of

internal units is updated according equation:

x(n+ 1) = f(Winu(n+ 1) + Wx(n) + Wback(n)) (5.7)

Where u(n+1) is the externally given input, while f is the individual units transfer function

(usually a sigmoid function f = tanh), the output is computed as:

y(n+ 1) = fout(Wout(u(n+ 1),x(n+ 1))) (5.8)

Where u(n + 1),x(n + 1) denotes the concatenated vector composed by the input and

internal activation vectors, while fout remains f = tanh.

5.5.2 Architectures

Recurrent neural network architectures can have many different forms including Elman

Networks, Hopfield Network, Fully Recurrent Network, Echo State Networks (ESN), Jor-

dan Networks, Modified MLP (Multi-Layer Perceptron), Long Short Term Memory (LSTM),

Recurrent Multi-Layer Perceptron (RMLP), among others. Although several recurrent neu-

116 Chapter 5 Machine Learning

ral network architectures were tested on this research effort, the most important and docu-

mented ones are the MMLP and the ESN, this is due to the fact that they proved to converge

better when the patterns of the data change through time. These deep learning models have

a simple structure with a built-in feedback loop allowing them to act as a forecast engine,

which is one of the applications used on this research. When a RNN is trained GPU (Graph-

ics Processing Unit) have a tremendous advantage over ordinary CPU (Central Processing

Unit), this was validated in Chen et al., 2014 where they compared the speed boost from a

GPU training over a CPU. The GPU had a 250-fold increase, which means training a RNN in

e.g. 3 hours for the GPU and over a month for the CPU. Another option for training neural

networks that use large amounts of data coming from sensors, such as the one explored

in this thesis, is to use grid computing, which can be defined as a collection of computer

resources from multiple locations to reach a common goal. Neural network training can be

culminated in an extremely fast time frame if grid computing is used.

Recurrent MLP

A modified version of a Multi-Layer Perceptron (MLP) can exploit the powerful non-linear

mapping capabilities of neural networks. Their mode of operation is such that the units

each perform a biased weighted sum of their inputs and pass this activation level through

a transfer function to produce their output, and the units are arranged in a layered feed

forward topology. Figure 5.9 shows an example diagram for a normal MLP with two inputs,

Σ

Σ

Σ

Σ

Σ

f(n)

f(n)

f(n)

f(n)

1

X1

X2

Hidden layer 1 Hidden layer 2 Output layer

Y

Input layer

W

W

W

W

W

W

W

W

n

n

n

n

b

b

b

b

W

W

n

b

Fig. 5.9.: Example diagram for a MLP.

two hidden layers with two neurons each and a output layer with one neuron, this diagram

shows how a MLP is described. The neurons are the same as the one defined in Fig. 5.6

plus a bias weight b. They can have several inputs (X1, X2) which are multiplied by the

connection weights W and summed up together with the bias weight b to the summation

output n. Then the neuron output Y is calculated using the transfer function (activation

function) f(n), which can be linear function or most commonly a hyperbolic tangent. To

create a recurrent MLP, we could connect the output of a layer with the input of a previous

layer, this is done by using a real-value time-delay, such technique is called Tapped Delay

5.5 Recurrent Neural Networks 117

Σ Σf(n) f(n)X

Hidden layer 1 Hidden layer 2 Output layer

Y

Input layer

n n Σ f(n)
nT

D
L

T
D
L

∼
W[d]

T
D
L

∼
W[d]

T
D
L

∼
W[d]

T
D
L

∼
W[d]

T
D
L

∼
W[d]

T
D
L

∼
W[d]

∼
W[d]

∼
W[d]

∼
W[d]

Fig. 5.10.: Example diagram for a Recurrent MLP.

Lines (TDL). A delay-line tap extracts a signal output from somewhere within the delay

line and typically sums with other taps to form a TDL output signal (Smith, 2010). Figure

5.10 shows an example of a recurrent MLP with delays on the inputs, hidden and output

layer. The TDL contains delay operators z−d which delay time-discrete signals by a value

d. For every delay di there has to be a connection matrix W̃ [di], consequently there is three

types of delays. The input delays, allows to delay the inputs X of the neural network by any

real-valued time-step d, and the neural network can be used for systems where the output

depends not only on the current input, but also previous inputs. The output delays add a

recurrent connection of the outputs Y of the neural network to the first layer and the neural

network can be used for systems where the output depends not only on the inputs, but also

on previous outputs (states). The internal delays add a recurrent connection from all layers

to all previous layers and to it self (except from the output layer to the first layer) and the

neural network can be used for systems where the output depends on previous internal

states.

Echo State Network

The echo state network consists of a recurrent neural network with a sparsely connected

random hidden layer, with the characteristic that only the weights of output neurons are

the part of the network that can change and be trained. ESN are good at reproducing

certain time series therefore have being using in this research effort to help perform system

identification of small unmanned aircraft Vargas et al., 2015b and also in control tasks

Vargas et al., 2014. A section is dedicated to this algorithm in 5.6.1.

118 Chapter 5 Machine Learning

5.5.3 Training

There is several types of training algorithms which are well known on the literature, there

is no a clear winner among those. The most common method to minimize the total error is

gradient descent, which is a first-order iterative optimisation algorithm. The methods used in

this research effort will be described in the next sub-sections, with the exception of the ESN

training, which will be described in a different section, due to the importance of it. In the

most simplistic approach to train neural networks, we can consider a system that produces

a output Y , when a input X is given. Figure 5.11 shows such simple system where (x, y)

represents one sample of training data. As discussed in past Sections 5.2.1, training requires

SystemX Y

Fig. 5.11.: Example diagram for a system with input X and output Y.

more than one sample of data to obtain good results. Therefore the training data is defined

by the matrix X̃ and the target (output) matrix with Ỹ , both containing N samples of data.

Important to notice that the samples have to be in the correct time order and the training

data should represent the system as good as possible. Training a neural network (Fig.

SystemX
Y

Neural
Network

Update
w

Cost function
E(w)

-

e(w)

Y(w)

Fig. 5.12.: Example diagram of training a neural network.

5.12) means that all weights in the vector w, which contains the connection weights and

biases, are updated step by step, such that the neural network output (Y (w)) matches the

training output data (Y) target. The objective of this optimisation is to minimize the error

E(w) (cost function) between neural network and system outputs and the training repeats

adapting the weights of the weight vector w until one of the two termination conditions

becomes active, such conditions are the maximal number of iterations (epochs) is reached

5.5 Recurrent Neural Networks 119

and/or the error is minimized to the goal Estop. Recurrent Neural Networks can be trained

using several methods which have been explored in Jaeger, 2005a, the most important and

used are Back-propagation Through Time (BPTT), Real-Time Recurrent Learning (RTRL)

and Extended Kalman Filtering (EKF) based techniques, being the first two methods the

ones used in this research.

BPTT

Back-propagation is a gradient-based technique used to train several types of neural net-

works, not only recurrent. Back-propagation Through Time is an adaptation of the well-

known back-propagation training method known from feed-forward networks. It is an

extension of perceptrons or multi-layered neural networks, thus it employs at least three

or more layers of neurons (input, hidden and output) interconnected to every unit of the

previous layer. Detailed work on BPTT can be found at Werbos, 1990 Beaufays et al., 1994

Guo, 2013. In feed-forward, the error derivatives are calculated with respect to the weights

of one layer, they can be expressed completely in terms of the error derivatives from the

layer above, the issue with recurrent neural networks is that they don’t have this ordered

layering because the neurons do not form a directed acyclic graph (DAG), therefore a trans-

formation is needed for pseudo-converting a RNN into a feed-forward neural network, this

process is called unrolling or unfolding and it was showed in Fig. 5.8. The steps of the

training method of BPTT can be seen next.

1. For a sample n, the activations are computed using a forward pass as

xm+1
i (n) = f(

∑
j=1,...,Nm

wmij xj(n)) (5.9)

2. Backward compute through m = k + 1, ..., 1, for each unit xmi the error propagation

term δmi (n) as seen in equation 5.10 for the output layer and equation 5.11 for the

hidden layers,

δk+1
i (n) = (di(n) − yi(n))δf(u)

δu

∣∣
u=zk+1

i

(5.10)

δmj (n) =
Nm+1∑
i=1

δm+1
i wmij

δf(u)
δu

∣∣
u=zm

j

(5.11)

120 Chapter 5 Machine Learning

where 5.12 is the internal state of the neuron xmi , which is the error back-propagation

pass, the error propagation term δmi (n) represents the error gradient with respect to

the potential of the neuron xmi .

zmi (n) =
Nm−1∑
j=1

xm−1
j (n)wm−1

ij (5.12)

δE

δu

∣∣
u=zm

j

(5.13)

3. Finally, an adjustment to the connection weights is made according to

new wm−1
ij = wm−1

ij + γ

T∑
t−1

δmi (n)xm−1
j (n) (5.14)

After every such epoch, the error is computed as

E =
∑

n=1,...,T

∥∥d(n) − y(n)
∥∥2 =

∑
n,...,T

E(n) (5.15)

The training stops when the error falls below a predetermined threshold or when the

number of iterations exceeds a predetermined maximum number of them.

The basic gradient descent approach (and its back-propagation algorithm implementation)

is notorious for slow convergence, because the learning rate γ must be typically chosen

small to avoid instability. Many speed-up techniques are described in the literature (Pla-

gianakos et al., 2001), e.g. dynamic learning rate adaptation schemes. One of the problems

with this method is the selection of a suitable network topology (number and size of hid-

den layers), which can be overcome using prior information, performing systematic search

and/or intuition. Like all gradient-descent techniques on error surfaces, back-propagation

finds only a local error minimum, such problem can be addressed by adding noise dur-

ing training to avoid getting stuck in poor minima, or by repeating the entire learning

from different initial weight settings, or by using task-specific prior information to start

from an already plausible set of weights. This method can be easily implemented, yet a

considerable expertise/experience is a requisite for good results in non-trivial tasks. An

implementation and upgrade for the BPTT was made as a comparison of several training

methodologies that were used on this research effort, such implementation made usage of

the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) and is similar to Nawi et al., 2006.

The BFGS algorithm is an iterative method for non-linear optimisation problems. This al-

gorithm is a second order optimisation method that uses rank-one updates specified by

evaluations of the gradient to approximate the Hessian matrix. The gradient is calculated

5.5 Recurrent Neural Networks 121

using a BPTT technique based on Werbos, 1990. Experiment results using this algorithms

will be showed on Chapter 6.

RTRL

Real-Time Recurrent Learning (RTRL) is a gradient-descent method which computes the

exact error gradient at every time step. This method has been analysed and reviewed in

Chow et al., 1998 Williams et al., 1989 Cios et al., 1997. If the network activation of

the internal (Eq. 5.7) and output units (Eq. 5.8) are differentiated with the weights, the

effect of the network dynamics change. The derivative of an internal or output unit with

respect to a weight wkl is given by equation 5.16, where wkl includes all input, internal and

output units weights. Equation 5.16 constitutes a (N +L)-dimensional discrete-time linear

dynamical system with time-varying coefficients, with dynamical variable 5.17

δvi(n+ 1)
δwkl

= f ′(zi(n))
[
(
N+L∑
j=1

wij
δvi(n)
δwkl

) + δikvl(n)
]

(5.16)

(
δvi
δwkl

, ...,
δvN+L

δwkl

)
(5.17)

Where i = 1, ..., N+L, zi(n) is the unit potential, δikvl(n) represents the effect of the weight

Wkl onto the unit k. Since the initial state of the network is independent of the connection

weights, it can be initialized by making 5.17 equal to 0. Thus the computation forward

in time can be done by iterating 5.16 simultaneously with the recurrent neural network

dynamics 5.7 and 5.8, and the error gradient can be calculated as

δE

δwkl
= 2

T∑
n=1

N+L∑
i=N

(vi(n) − di(n))δvi(n)
δwkl

(5.18)

And the new weight update after a complete iteration or epoch can be done with a standard

batch gradient descent algorithm as showed in 5.19, where γ is the learning rate.

new wkl = wkl − γ
δE

δwkl
(5.19)

wkl(n+ 1) = wkl(n) − γ
L∑
i=1

(vi(n) − di(n))δvi(n)
δwkl

(5.20)

An alternative update scheme is the gradient descent of current output error at each time

step (Eq. 5.20), important to notice that it is assumed that wkl is a constant, therefore a

small learning rate must be used. Equation 5.20 is known as real-time recurrent learning.

122 Chapter 5 Machine Learning

In RTRL the computational cost for each update step is very high, because a (N + L)-

dimensional system (Eq. 5.16) must be solved for each of the weights, therefore this method

is only recommended for small networks. An implementation of the Levenberg–Marquardt

(LM) algorithm was made as a comparison of training methodologies for RNN. LM is a

second order optimisation method that uses the Jacobian matrix to approximate the Hessian

matrix, the Jacobian matrix is calculated using the RTRL method from Williams et al., 1989.

The LM algorithm Levenberg et al., 1944, Marquardt, 1963 is used to solve non-linear least

squares and is also known as the damped least-squares method (DLS).

5.6 Reservoir Computing

In order to overcome the downsides of traditional RNN training such as BPTT and RTRL

(reviewed in the previous Section), a novel paradigm of computation with dynamical sys-

tems, named Reservoir Computing (RC), has been proposed in Verstraeten et al., 2007,

which can be utilized to achieve efficient training of recurrent neural networks. Traditional

neural network models are not inherently able to handle time-varying stimuli or dynamic

patterns, usually to tackle this situation these network models treat time as an additional

spatial dimension at the same level of the inputs which is not a plausible approach for dy-

namical biological systems. The RNN model approaches the representation of time based

on recurrent connections with previous state of the network and the current sensory input

Jordan, 1986 Elman, 1990, and it was mentioned in Section 5.5. The reservoir comput-

ing model proposes a randomly generated non-linear dynamical system with fixed weights

that maps the inputs to a high-dimensional space where classification or linear regression

are efficiently accomplished. Such dynamical system is called the reservoir (Fig. 5.13),

the states of this system are linearly combined with the output layer and this is the only

part that requires training thus reducing the computational effort. RC differs from tradi-

tional neural network design and learning techniques because there is a conceptual and

computational separation of the internal states (X) and the output layer (Y), which serve

different purposes, X expands the input history into a rich ripple reservoir state space while

Y combines the neuron signals into the desired output. There are three reservoir comput-

ing models, Echo State Networks (ESN) Jaeger et al., 2004, Liquid State Machines (LSM)

Maass et al., 2002 and Backpropagation-decorrelation (BPDC) Steil, 2004. From a machine

learning perspective, a reservoir network, usually randomly generated and sparsely con-

nected, functions as a temporal kernel, projecting the input to a dynamic non-linear space

(Antonelo, 2011). The reservoir internal states form patterns that are dependant on the

current inputs but still contains memory traces of previous stimuli, resembling ripples on

water. The computation on the output layer occurs by by linearly reading out instanta-

5.6 Reservoir Computing 123

INPUT
U

OUTPUT
Y

RESERVOIR
X

Fig. 5.13.: Reservoir computing diagram.

neous states of the reservoir, this allow reservoir architectures the capability of processing

spatio-temporal patterns. The main advantages of this paradigm are modelling capacity

and accuracy, biological plausibility and their extensibility and parsimony. RC has outper-

formed previous methods of non-linear system identification, prediction and classification

Jaeger et al., 2004, NN3, 2007, Vargas et al., 2014, Verstraeten et al., 2006, this is one of

the paramount capabilities needed on this research. RC architectures are computationally

capable of modelling continuous-time, continuous-value real-time systems with bounded

resources as in Maass et al., 2003, which is another advantage of using them on systems

such as multi rotorcraft. Reservoir computing models offer a functional interpretation of the

cerebellar circuitry Yamazaki et al., 2007, it can also provide explanations of why biological

brains carry out accurate control calculations (e.g. walking or running) using inaccurate and

noisy physical data Buonomano et al., 1995. RC models are not affected by the problem

of neural networks known as catastrophic interference French, 1999, such problem relates

on how new items behave in learned models without impairing or destroying previous rep-

resentations, in RC the output weights of different output units are independent of each

other thus not an issue. In this section, the ESN model will be presented and analysed as

a reservoir computing architecture and used as one of the tools for modelling of multirotor

aircraft with or without a slung-load attached to it.

5.6.1 Echo State Networks

Echo State Networks is one of the methodologies of RC (Lukoševičius, 2012). The main

idea comes from a continuous neural hardware micro-circuitry, ESN have the advantage

to overcome the difficulties of traditional dynamic RNN in large-scale training, it can also

124 Chapter 5 Machine Learning

approximate a non-linear system excellently and its prediction can get good results. It

is practical and conceptually simple, but requires some experience and insight to achieve

good performance Vargas et al., 2014. In certain RNNs, the activation of internal states

x(n) is a function of the input history u(n), u(n−1), Such function E can be represented

as x(n) = E(u(n), u(n − 1), ...) and it can be understood as an echo of the input history,

which is where their name comes from. An ESN is composed of a discrete hyperbolic-

tangent RNN (reservoir) and of a linear readout output layer which maps the reservoir

states to the actual output. As shown in figure 5.14, the connections between the neurons

are random (not organized into neat sets of layers), such reservoir stays fixed randomly (at

the beginning) at all moments and during training only the connections on the output layer

are changed. The reservoir of ESN is constituted of analog sigmoidal neurons, such reservoir

Fig. 5.14.: Example diagram of a Echo State Network.

has a theoretical property called echo state which the refers to the fact that the influence

of inputs on reservoir states fades away gradually (Jaeger, 2001) and it is a property prior

to training. Such property can be described as fading memory of the input, the trajectories

of the reservoir state should converge given the same input, irrespective of the previous

history, this is ensured by appropriately scaling recurrent connection weights W. Other

important parameters are the input weight Win scaling, the leaking rate α, the spectral

radius ρ and it should be adjusted for an optimal validation performance in a given task, in

this research effort, a evolutionary strategy algorithm (CMA-ES) was used to find and adjust

some of the parameters of this reservoir computing approach, this is going to be explained

in Section 5.7. The basic steps to approach a modelling task using the ESN methodology is

as follows:

1. Create a random dynamical reservoir RNN with any neuron model, the size N of it

is task-dependant, examples of common sizes for the task of identifying multirotor

vehicles will be provided in section 6

5.6 Reservoir Computing 125

2. After the creation of the reservoir, the input units must be attached to the reservoir

by creating random all-to-all connections

3. Create output unit layer, some tasks (with input and output data) might require

output feedback if so, create randomly generated output-to-reservoir connections

(all-to-all)

4. Run the reservoir with the training data D for times n = 1, ..., nmax, this means

writing the input u(n) into the input unit and the target output y(n) to the output

unit, this process is also called teacher forcing

5. Estimate the output weights as a linear regression of the teacher outputs y(n) on the

reservoir states x(n), these newly computed weights are used to create the reservoir-

to-output connections, which are the dotted arrows in figure 5.13

Important to remark that after the creation of the dynamical reservoir, the determination

of optimal weights becomes a linear unique solvable task of MSE (mean squared error)

optimisation, which measures the average of the squares of the errors or deviations. MSE is

a risk function, corresponding to the expected value of the squared error loss or quadratic

loss, the difference occurs because of randomness or because the estimator doesn’t account

for information that could produce a more accurate estimate (Lehmann et al., 1998).

5.6.2 Mathematical model

Let ni represent the number of input units, nr the reservoir units and no the output units,

u(n) the ni-dimensional external input, x(n) the nr-dimensional reservoir internal activa-

tion states and y(n) the no-dimensional target output. The discrete time dynamics of the

ESN is give by the state update equation 5.21, which is similar to equation 5.7 RNN internal

activation.

x(n+ 1) = tanh(Wr
rx(n) + Wriu(n) + Wr

oy(n) + Wr
b) (5.21)

Where the weights Wto
from elements are described in table 5.3 and represents the connec-

tion weights between the nodes of the complete network (Fig. 5.15). b, i, r, o denotes bias,

input, reservoir and outputs respectively. The output is computed as

y(n+ 1) = g(Wo
rx(n+ 1) + Wo

iu(n) + Wo
oy(n) + Wo

b)

= g(Wout(x(n+ 1),u(n),y(n), 1))

= g(Woutz(n+ 1))

(5.22)

126 Chapter 5 Machine Learning

where g is a post-processing activation function and z(n+1) = (x(n+1),u(n),y(n), 1) is the

extended reservoir state which includes the previous input, output vectors and a bias term.

The weight matrices that represent the connections to the reservoir Wr
. are randomly ini-

tialized and represented by solid arrows on figure 5.15. The output weights Wo
. are trained

and represented by dashed arrows in figure 5.15. Output feedback is given by the projec-

tion Wr
oy(n) and bias W.

b As stated before, the non-trainable weights Wr
. are generated

Reservoir Output layerInput layer

U a X m Y

1

gtanh

z-1

z-1

Fig. 5.15.: Echo State Network mapping scheme.

Signals
u input signal
y output signal
x reservoir state
a weighted sum for reservoir units
m weighted sum for output units

Weights
Wr

i input to reservoir connection matrix
Wr

b bias to reservoir connection matrix
Wr

r reservoir connection matrix
Wr

o output to reservoir connection matrix
Wo

i input to reservoir connection matrix
Wo

r reservoir to output connection matrix
Wo

o output to output connection matrix
Wo

b bias to output connection matrix
Tab. 5.3.: Elements of figure 5.15

using a sparse uniformly distributed random matrix function with a certain added connec-

tivity which corresponds to the percentage of non-zero weights in the respective connection

matrix Wto
from. Also a scaling factor to the weights is applied and it corresponds to the scal-

ing of the respective connection matrix Wto
from such that all weights are rescaled according

to the multiplication of the scale factor and the weight matrix. The reservoir connection

matrix Wr
r must be rescaled to comply with stability of such dynamical system, which states

5.6 Reservoir Computing 127

that in some cases the rescaling have a few eigenvalues that are situated slightly outside the

unity circle, but the reservoir should still exhibits rich dynamics. Also, the reservoir should

guarantee the ESP (Echo State Property) (Jaeger, 2001) which means the reservoir should

have a fading memory. The spectral radius ρ is the largest absolute eigenvalue of the reser-

voir connection matrix Wr
r and should be less than unity or else the ESP will be violated.

For most applications, the best performance is attained with a reservoir that operates at the

edge of stability ρ(Wr
r) = 0.99, different values will be shown in Chapter 6.

5.6.3 Training

With the introduction and mathematical modeling presented in previous sections, we pro-

ceed to show the formal method for training a ESN network for the task that it will be used

in this research effort, in such task we assume that the output units are sigmoid units, the

output layer must contain feedback connections and a supervised training methodology is

also assumed. The formal process it is showed next:

1. Data processing. Create/obtain input and data outputs of training and testing sam-

ples, such data must be consistent with the network structure.

2. Reservoir creation. Randomly generate the dynamical reservoirs Win, W and Wback,

such reservoir must comply with the echo state property and a spectral radius ρmax <

1 and also they should be sparse with a rich variety of dynamics. The number of

neurons N should reflect both the length T of training data, and the difficulty of the

task (difficult tasks require a larger N). N should not exceed an order of magnitude

of T
10 to T

2 , just to prevent over-fitting. The spectral radius ρ should be small for fast

teacher dynamics and large for slow teacher dynamics.

3. Sample training. Enter the network input and output data samples and update the

network status using equation 5.23 and collect the concatenated input/reservoir/previous-

output states (u(n),x(n),y(n− 1)) as a new row on a state collecting matrix M. Also

the teacher output tanh−1y(n) should be saved as a new row on a teacher collecting

matrix T.

x(n+ 1) = tanh(Winu(n) + Wx(n) + Wbacky(n)) (5.23)

4. Compute output weights. Calculate values of the output by multiply the pseudo-

inverse of M with T, as showed in equation 5.24. To obtain the desired output

weight Wout, (Wout)t should be transposed.

(Wout)t = M−1T (5.24)

128 Chapter 5 Machine Learning

5. Usage. The network Win, W, Wback and Wout is ready to be exploited and it can

be driven with novel data (testing data) sequences using equations 5.25 and 5.26.

The MSE for training data and testing data should be calculated to ensure the ESN

is working properly, if not, the process can be repeated or optimised until a desired

MSE is founded on the testing data.

x(n+ 1) = tanh(Winu(n) + Wx(n) + Wbacky(n)) (5.25)

y(n+ 1) = tanh(Wout(x(n+ 1),u(n+ 1),y(n))) (5.26)

If stability problems are encountered when using the trained network, it very often helps

to add some small noise during the sampling step, such noise should be a uniform white

noise function ν(n) of sizes [0.0001 − 0.01]. In a experimental test, the noise was optimised

to produce the lowest MSE possible on the testing data. It should be added to the weights

inside the activation function in equation 5.23. This technique was proven in Jaeger, 2002a.

If the system is highly non-linear, the system can be improved by adding augmented network

states for training and in usage. The modified update augmented equation can be seen in

5.27. This method is showed and used in Jaeger, 2002b.

y(n+ 1) = tanh(Wout(x(n+ 1),u(n+ 1),y(n),x2(n+ 1),u2(n+ 1),y2(n))) (5.27)

5.7 Optimisation

In this section we discuss practical issues around the optimisation of the various global

parameters of the recurrent neural network that where analysed in 5.5.3, 5.5.3 and 5.6.1.

Optimisation refers to the goal of achieving a minimal training error (reducing the MSE for

training and testing steps). Achieving a minimal test error is delegated to cross-validation

schemes which need a method for minimizing the training error as a substep. Two main

optimisation algorithms were used on this research, Genetic Algorithms (GA) and Evolution-

ary Algorithm (EA), having always better results with the latter as shown in Vargas et al.,

2014, Lukoševičius et al., 2009 and Jiang et al., 2008. This section describes briefly the

evolutionary algorithm.

5.7 Optimisation 129

5.7.1 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a state-of-the-art evolution-

ary algorithm in continuous domain evolutionary computation, it was presented in Hansen

et al., 1996, Hansen et al., 2001, Hansen et al., 2004 and Hansen, 2016. CMA-ES is a

population based algorithm for black box optimisation, stochastic, derivative-free methods

for numerical optimisation of difficult non-linear or non-convex continuous optimisation

problems, and it has been proven to have extremely good performance with deep neu-

ral networks, recurrent neural networks and reservoir computing Loshchilov et al., 2016

Tanaka et al., 2016 Jiang et al., 2008. This EA is broadly based on the principle of biologi-

cal evolution, namely the repeated interplay of variation (via recombination and mutation)

and selection and it works on a similar way as GA Anderson, 2011 because it encodes pos-

sible solutions as genes. Each generation (iteration) new individuals (candidate solutions

x) are generated by variation, usually in a stochastic way, of the current parental individ-

uals. CMA-ES estimates parameters of a Gaussian distribution for a gene x such that the

distribution is concentrated in a region with high values of f(x) as showed in:

x
(g+1)
k ∼ m(g) + σ(g)N

(
0, C(g)) for k = 1, ..., λ (5.28)

where x(g+1)
k ∈ Rn is the individual offspring from generation g+1, ∼ denotes the same dis-

tribution both sides of the equation, m(g) ∈ Rn is the mean value of the search distribution

at generation g, σ(g) ∈ R>0 is the overall standard deviation at generation g, N
(
0, C(g)) is a

multi-variable normal distribution with zero mean and covariance matrix of the search dis-

tribution C(g) ∈ Rnxn at generation g. The number of offspring is denoted by λ ≥ 2. Figure

5.16 shows an illustration of an actual optimisation run with covariance matrix adaptation

on a simple 2-dimensional problem, where the solid lines represent the equal f−values

spherical optimisation landscape and the dotted lines represent the distribution of the pop-

ulation that changes through generations (optimisation). One of the main advantages of

the CMA-ES algorithm is that it does not require a tedious parameter tuning for its usage.

Finding good strategy parameters is considered as part of the algorithm design, and not

part of its application. The default λ population size is comparatively small to allow for

fast convergence. In the experiments section, for a task of identifying the black-box model

of a multirotor Vargas et al., 2015b, considering an optimisation of the spectral radius ρ,

reservoir size N and noise added ν(n) parameters (always making sure the ESP is fulfilled)

it took approximately 2000 iterations to evolve and create an ESN with a drastic drop on the

MSE for the testing samples. Now that the mathematical model and the training algorithm

has been discussed, we can characterize ESN as RNN with randomly scattered internal inter-

connected topology with restriction of its eigenvalue (maximal singular) where the output

130 Chapter 5 Machine Learning

Source: wikipedia.org

Fig. 5.16.: CMA-ES optimisation run on a simple 2-dimensional problem.

weights are the only ones being trained. The algorithmic complexity is reduced in com-

parison with classical RNN, they are highly adaptable and of fast teaching. To train ESN,

the user must choose a small number of parameters or optimised them using evolutionary

strategies like CMA-ES. ESN do suffer of common RNN issues like data over fitting, lack of

generalization and model stability.

5.8 Summary

This chapter introduced the ML techniques, description of the algorithms used and required

additional tools so that the following sections tackle the problems stated in the introduction

chapter.

Firstly, by identifying black-box models for quadrotor vehicles and secondly, with the devel-

opment of a slung load position estimator that uses ML at its core.

5.8 Summary 131

6System Identification of MRUAV

In this chapter, the machine learning methods discussed in Chapter 5 are applied on real

world data stored during numerous flights with multirotor vehicles to identify system mod-

els and demonstrate that the methodologies work and are capable of converging with the

non-linear dynamics of MRUAV. This section is based in Vargas et al., 2015b coming from

techniques used in Vargas et al., 2014.

Dynamic models of quadrotors can be obtained through several techniques. Grey-box mod-

elling involves measuring system properties and dynamic relationships through experimen-

tation. In this way, it can be used to derive non-linear models, however obtaining such

parameters can be difficult and expensive with the required level of accuracy and preci-

sion. This is just one example of system identification. System identification is a collection

of techniques for extracting an accurate mathematical model of a dynamic system from

experimental input-output data. This can range from parameter identification only (light-

grey-box modelling) or to full parameter/structural identification of the non-linear mapping

(known as black-box). When flying, a quadrotor is an underactuated non-linear dynamically

unstable system (Das et al., 2008). With this point of view, the RNN black-box modelling ap-

proach was chosen because they are especially powerful when approximating fast changing

dynamics. As showed in Sections ?? and ?? the kinematic and dynamic models, respec-

tively, where presented. The pilot or pseudo-controls were discussed, this are the ones used

to fly the vehicle manually inside the MAST Lab and also are the ones that when carefully

driven, via controllers presented in Section 4.3, can fly the vehicle autonomously. Using the

framework DronePilot, presented in Section 3.5, real world data can be saved and stored

for further use. Also, we can ensure this data is properly timestamped and the communi-

cation rates are always respected, which is extremely important when using this data for

the intended experiments of this chapter. Schematically figure 6.1 displays the data flow in

our robot architecture. In such architecture, the Ground Station is in charge of gathering

(Motion Capture) the position and attitude of a specific set of markers that are contained

on the vehicle, it also reads an input device (Joystick) that is used to map the pilot inputs

to the pseudo-controls of the vehicle, once that data is collected it is sent via a wireless

network to the vehicle. In the MRUAV a companion computer is reading the data being sent

from the ground station, also it gathers the current state of the vehicle (IMU) and then it

computes pseudo-controls with a position controller for a desired flight mode selected by

133

the pilot via the joystick. The current flight modes include: manual flight, position hold and

trajectory tracking mode. The entire flight data is saved on csv files on the companion com-

puter. Such data flow was explained in more detail in Section 3.5. It is important to notice

Flight Controller

IMU

Rotors

Companion Computer

PID controller

MRUAV Ground Station

MoCap System

Joystick

Fig. 6.1.: Data flow block diagram to control a MRUAV.

that several experiments were made just to know if the data being used was correct (with

rich dynamics), if the algorithms worked, if the nets were converging, if the results were

promising and if the output of the networks was making sense. Hundreds of hours of high

performance CPU time were utilised before even attempting the first promising result. Re-

garding flight-data, approximately 533Mb of data was collected using DronePilot over the

entire first stage of this research effort, this means around 96 hours of flight time have been

performed with the MRUAV. Dozens of propellers (∼ 60), 11 ESCs, 6 glass-fibre frames, 5

flight controllers, 3 companion computers and 2 motors were broken, on occasions, due

to vehicle/code malfunction. In this chapter system models that are tuned using machine

learning algorithms. The system model described in Section 6.1 uses real flight data and

considers the pilot control as inputs u(n) and as outputs y(n) the vehicle pose.

6.1 Methodology

In this system identification experiment, the black-box model of a multirotor unmanned

aerial vehicle is created using training data and three neural network approaches which

will serve as universal dynamical system representation. Figure 6.2 shows the system block

model of what it is intended to achieve, the inputs to the black-box are the pseudo-controls

required to fly the vehicle either manual or with a automatic trajectory following, the out-

puts of the black-box will be the pose data which includes position (x, y, z) in a North-East-

Down (NED) inertial reference frame and the orientation angles (ϕ, θ, ψ) in the body-fixed

frame of the vehicle. The system is controlled via four inputs [u1, u2, u3, u4], where u1 is the

134 Chapter 6 System Identification of MRUAV

Inputs
(pseudo-control) Black-Box

Outputs
(position

orientation)

Roll

Pitch

Yaw

Throttle

X
Y
Z

φ

θ

ψ

Fig. 6.2.: Pilot to Pose black-box model.

thrust along the z axis, u2, u3 are roll, pitch angle commands and u4 is the yaw rate com-

mand. The pose data is from two sources, the MoCap system and the flight controller atti-

tude complementary filter computation. The MoCap system provides the (x, y, z) inside the

MAST Lab (Fig. 6.3), therefore only flights inside the laboratory are used. For orientation,

the information is taken directly from the flight controller complementary filter (Section

2.7.2), it is also possible to use the orientation that the MoCap system delivers, but there

could be data problems/corruption if the MoCap system loses track of the markers even for

a few microseconds, causing a big error on the orientation measurements and this error

would make more difficult the neural network training. Figure 6.3 show an example of a

0

2

-0.5

-1

1.5

Z
 [m

]

-1.5

-21

-2

0.5
-1

Y [m]

0

X [m]

-0.5 0

-1
1

-1.5

-2 2

Fig. 6.3.: 3D trajectory plot of a training flight.

very rich flight test, that specific flight had a duration of approximately eight minutes (drain-

ing the battery until ∼ 10%). After dozens of hours of different flight styles/experiments,

the best data results for training neural networks comes from trying to excite all modes of

6.1 Methodology 135

the vehicle. Therefore the tests contain manual slow flights, manual aggressive flights, step-

responses and automatic trajectory flights. In Fig. 6.3, the figure of eight trajectory (Section

4.4.3) can be appreciated along side all of the manual responses.

6.2 Data processing

With the help of the DronePilot framework explained in Section 3.5, we can save all data at

a very precise time-rate, this is important when training neural networks from experimental

data. The data is saved on csv files that then are preprocessed to check several factors such

-2

0

2

x
[m

]

1000

1500

2000

ro
ll

[p
w

m
]

-5

0

5
y

[m
]

1000

1500

2000

pi
tc

h
[p

w
m

]

0

1

2

z
[m

]

1000

1500

2000

ya
w

 [p
w

m
]

-50

0

50

?
 [d

eg
]

0 2000 4000 6000 8000 10000
timestep

1000

1500

2000

th
ro

ttl
e

[p
w

m
]

-50

0

50

3
 [d

eg
]

0 2000 4000 6000 8000 10000
timestep

0

100

200

A
 [d

eg
]

Fig. 6.4.: Example plot of inputs and outputs for the Pilot to Pose experiment.

as data health, figure 6.4 shows the inputs (left) and the outputs (right) half of a training

flight. The data processing in this case, involves removing the data from where the vehicle

is not flying and after it landed (disarming/arming process). Regarding data health, we

need to make sure the reading are close to true values, as stated before, if the MoCap

system is not properly calibrated, big errors or discrepancies will appear on the position of

the vehicle. Another step that visually helps to check data consistency is making a 3D replay

animation of the entire flight and compare it with real videos taken on the laboratory. In

the MAST Lab when a vehicle is flown, either one or two cameras are recording the flight

just for the purpose of checking the data health afterwards. Important to notice that in the

136 Chapter 6 System Identification of MRUAV

supervised learning method, two or more sets of csv files (flight experiments) are needed,

one set is always used for training the neural network and an entire different set is used to

run the validation of the training process (testing). In this particular experiment, we have

several flights available for usage. Attempts on different flight modes for testing were used,

this is just to prove that the black-box actually learned the dynamics of the system.

6.3 Training

For consistency on this test, two flights are used to train two different RNN approaches

with three training methods. The RNN architectures used are the Recurrent MLP and ESN.

The training methods include the common Back-propagation Through Time with the BFGS

algorithm, Real-Time Recurrent Learning with the LM algorithm and the training method

for the Echo State Network. All methods are described in Section 5.5.3. For simplicity of

terminology we will call the networks by the main learning algorithm, that is BPTT, RTRL

and ESN. In the first attempt the networks are trained with their own specific standard

parameters, not tuned. Such parameters are different for each neural network architecture,

they were found by running training experiments manually, in a trial-and-error method

combined with the all of the literature mentioned on the Machine Learning Chapter 5.

After getting decent results with more simplistic problems such as cosine generators (not

presented in this thesis) it is proceeded to use them on the configuration for this specific

task before attempting a optimisation. Figure 6.5 shows an overlay of the training pose

output data of the three neural networks after the training process using the standards

parameters. It can be observed that the topologies are roughly converging and tracking the

real output. BPTT is the network that appears to be having the most problems to predict

the correct output. 1000 time-steps are showed on the figure, if more data is showed is not

easily distinguishable to the bare eye. In order to know if the networks are learning the task

from experience (past data), a performance measurement is needed. MSE computation is

used for this purpose. Table 6.1 shows the MSE of each network architecture for this first

training process. It is very clear the ESN is outperforming BPTT and RTRL on this task, even

Network Architecture MSE
BPTT 44.16
RTRL 13.54
ESN 0.905

Tab. 6.1.: Pilot to Pose training performance measurements.

with standard not-optimised parameters. This is of course the training data, this data is used

in the algorithm to learn from it, therefore the error is always going to be lower than using

testing data. Another important factor was the internal training time that the algorithms

6.3 Training 137

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ro
ll

[d
eg

]

-50

0

50

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pi
tc

h
[d

eg
]

-40

-20

0

20

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ya
w

 [d
eg

]

50

100

150

200

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x
[m

]

-2

0

2

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

y
[m

]

-2

0

2

REAL
BPTT
RTRL
ESN

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

z
[m

]

0.5

1

1.5

2

REAL
BPTT
RTRL
ESN

Fig. 6.5.: Pilot to Pose network output after training with standard parameters.

took to complete the learning task or iterations. On the BPTT it took around 585.79 seconds

to complete 50 iterations with the BFGS algorithm while the RTRL the training time was

480.72 seconds to complete the same iterations, both networks had two internal layers of

5 neurons each, input-output delays but internal delays. The ESN took an impressive 3.21

seconds to train the network using 100 neurons (internal units).

6.4 Testing

Figure 6.6 shows an overlay of the testing pose output data of the three neural networks.

This is done with activating (evaluating) the network output when inputting new data, such

data we call it test data and its originated from an entire different flight, this is to prove the

real performance of the networks. It can be appreciated (Fig. 6.6) that the networks are

having more problems predicting the real output, this is an expected/common behaviour,

but its the real application it is expected from this experiments, therefore it is important

to optimise the network in such way that the MSE is reduced when attempting new data.

Table 6.2 shows the errors calculated on the networks output with the test data. Even that

in the three networks the error went bigger, the ESN is still outperforming the other two

architectures. It is also appreciated that all architectures have problems with the heading

138 Chapter 6 System Identification of MRUAV

0 100 200 300 400 500 600 700 800 900 1000

ro
ll

[d
eg

]

-50

0

50

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

pi
tc

h
[d

eg
]

-50

0

50

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

ya
w

 [d
eg

]

0

100

200

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

x
[m

]

-2

0

2

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

y
[m

]

-5

0

5

REAL
BPTT
RTRL
ESN

timestep
0 100 200 300 400 500 600 700 800 900 1000

z
[m

]

0

1

2

REAL
BPTT
RTRL
ESN

Fig. 6.6.: Pilot to Pose network output with test data.

Network Architecture MSE
BPTT 45.74
RTRL 19.22
ESN 1.507

Tab. 6.2.: Pilot to Pose testing performance measurements.

output (yaw), this could indicate that there is no enough yaw data available to understand

it. In figure 6.7 only one of the six outputs is showed, next to the instant error for each

time-step, it is more easily appreciated the network behaviours. Overall, RTRL and ESN

are understanding the task, but are having problems predicting the real output. BPTT is not

converging into favourable trends using the standard parameters, it can be made better, but

more training time is needed. One of the objectives of this experiment was to identify the

best architecture that required the least optimisation and training time possible.

6.5 Optimising

After finding some rough level of convergence with the three different methodologies, an

optimisation of the parameters must be made in order to make the testing MSE closer to

6.5 Optimising 139

0 100 200 300 400 500
ro

ll
[d

eg
]

-10

-5

0

5

10

REAL
BPTT

0 200 400
-5

0

5

10

Error

0 100 200 300 400 500

ro
ll

[d
eg

]

-10

-5

0

5

10

REAL
RTRL

0 200 400
-1

-0.5

0

0.5

1

1.5

Error

timestep
0 100 200 300 400 500

ro
ll

[d
eg

]

-10

-5

0

5

10

REAL
ESN

timestep
0 200 400

-2

-1

0

1

2

Error

Fig. 6.7.: Pilot to Pose zoomed Roll network output .

zero therefore making the network output better. For BPTT and RTRL the process involved

optimising the number of neurons, avoiding large numbers because the full-iteration time

grows exponentially, also a big number of neurons does not insure a better performance,

it can cause over-fitting and larger MSE on the testing data. CMA-ES was used to find the

proper number of neurons, input-output delays was also increased, but still no internal de-

lays. The optimisation took around 2 days on a Intel(R) Xeon(R) CPU W3520 @ 2.67GHz.

For the ESN case, the optimised parameters were: #neurons (reservoir size), spectral ra-

dius, input scaling, output scaling, shift and noise added. The evolution algorithm was let

to run about 2000 iterations, considering the time to train was much lower than the other

two methods. On the training part, the MSE decreased an average of 94.41% for the three

networks, figure 6.8 shows the network output after optimising the parameters. It can be

appreciated in figure 6.8 that the three architectures are now converging with the dynamics

of the vehicle, still the BPTT is the network that has more problems predicting the output

while RTRL and ESN are not-noticeable alongside the real values. The MSE values are shown

in table 6.3. It its noticeable that the network that was more beneficiated by the optimisa-

tion process was the RTRL. The optimisation process was done by creating a fitness function

that received the parameters from the CMA-ES algorithm, created the network, train it and

computed back a MSE. Then the CMA-ES is in charge of evolving such parameters until

140 Chapter 6 System Identification of MRUAV

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ro
ll

[d
eg

]

-50

0

50

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pi
tc

h
[d

eg
]

-20

0

20

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ya
w

 [d
eg

]

100

150

200

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x
[m

]

-2

-1

0

1

REAL
BPTT
RTRL
ESN

0 200 400 600 800 1000 1200 1400 1600 1800 2000

y
[m

]

-2

0

2

4

REAL
BPTT
RTRL
ESN

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

z
[m

]

0

1

2

REAL
BPTT
RTRL
ESN

Fig. 6.8.: Pilot to Pose network output after training with optimised parameters.

Network Architecture MSE
BPTT 0.7041
RTRL 0.0133
ESN 0.0127

Tab. 6.3.: Pilot to Pose training performance measurements after optimisation.

the MSE is decreased. Some tests were interrupted due to the fact that it was noticeable

that it will never converge or it was lowest MSE possible with that set of data, but even

so, the results showed in Tab. 6.3 proved that CMA-ES is a great candidate evolutionary

algorithm to tune recurrent neural networks. Figure 6.9 shows the historic progression of

the parameters evolution for 1000 iterations of the fitness function for the ESN network

parameter optimisation. Figure 6.10 shows the network output predicting a new entire

flight, which is the testing data. 5/6 of the network outputs are very close to each other,

therefore the networks are fully understanding the new data and the system dynamics. The

heading output is not being predicted in a very good manner. After optimising parameters,

the iteration and training times changed, in comparison with the experiments with standard

parameters, this is due to a bigger number of neurons. Table 6.4 shows a comparison of

training times with standard parameters against optimised. ESN remain the fastest method

that converge in understanding the system dynamics of the MRUAV. These times does not

6.5 Optimising 141

0 200 400 600 800 1000
10 -10

10 -5

100

105

1010

1:4e+01

6:4e-04

f=0.0355545519591045

blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio

0 200 400 600 800 1000
-1000

-500

0

500

1000

x(5)=-0.0828

x(6)=0.00503

x(2)=0.931

x(4)=0.947

x(3)=8.54

x(1)=263
Object Variables, recent (6-D, popsize~9)

function evaluations
0 200 400 600 800 1000

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100
Principle Axes Lengths

function evaluations
0 200 400 600 800 1000

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

 6

 2

 3

 4

 5

 1
Standard Deviations in Coordinates divided by sigma

Fig. 6.9.: CMA-ES evolution process for optimising ESN parameters.

include the consumed time for optimisation of the parameters. The performance for the

Network Architecture Standard Param [sec] Optimised Param [sec]
BPTT 585.79 4450.11
RTRL 480.72 6086.85
ESN 3.21 18.29

Tab. 6.4.: Pilot to Pose training times comparison.

testing data is showed in table 6.5. Once optimised, ESN still got a better performance that

the other two networks, making it a very good tool for system identification of multirotor

vehicles. RTLR is extremely close to the ESN network performance, which also makes it a

great tool addition for working with MRUAVs.

Network Architecture MSE
BPTT 0.9023
RTRL 0.0164
ESN 0.0157

Tab. 6.5.: Pilot->Pose testing performance measurements after optimisation.

The zoomed individual network output is showed in figure 6.11. The difference between

signals is almost imperceptible on the RTRL and ESN cases. The three proposed optimised

networks are now following the trend.

142 Chapter 6 System Identification of MRUAV

0 100 200 300 400 500 600 700 800 900 1000

ro
ll

[d
eg

]

-50

0

50

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

pi
tc

h
[d

eg
]

-50

0

50

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

ya
w

 [d
eg

]

100

150

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

x
[m

]

-1

0

1

REAL
BPTT
RTRL
ESN

0 100 200 300 400 500 600 700 800 900 1000

y
[m

]

-5

0

5

REAL
BPTT
RTRL
ESN

timestep
0 100 200 300 400 500 600 700 800 900 1000

z
[m

]

0

1

2

REAL
BPTT
RTRL
ESN

Fig. 6.10.: Pilot to Pose network output with test data and optimised parameters.

6.6 Results

In this chapter three network architectures are used with real flight data for performing

black-box system identification. Using real flight input and output information, the RNN can

identify the system dynamics and produce a black-box model that can be used for creating

new state-of-the-art controllers, trajectory tracking algorithms or even optimise current way-

point following position controllers. It can be stated that two of the three networks tested

are ideal for system identification of MRUAV. Figure 6.12 shows four quadrotors following

the same trajectory (offset in X and Y for discrimination), the blue path corresponds to

the actual recorded data from the original flights (the testing data), while the other three

trajectories correspond to the three proposed neural network architecture output to the

pilot inputs of the same flight. If our classifier has succeeded, the trajectories must be equal.

The MSE showed in table 6.5 shows that, although there exist errors between the real flight

data and the neural network model output, the identified model using the ESN have an

acceptable accuracy and can reflect the trend of the quadrotor. The improvement after the

optimisation of the parameters on the networks output is clearly visible, therefore we can

state that the three proposed architectures understood the full non-linear dynamics of the

quadrotor MRUAV. The evolutionary strategy CMA-ES helps us improve the parameters of

6.6 Results 143

0 100 200 300 400 500
ro

ll
[d

eg
]

-20

-15

-10

-5

0

5

10

REAL
BPTT

0 200 400
-1.5

-1

-0.5

0

0.5

1

Error

0 100 200 300 400 500

ro
ll

[d
eg

]

-20

-15

-10

-5

0

5

10

REAL
RTRL

0 200 400
-0.6

-0.4

-0.2

0

0.2

0.4

Error

timestep
0 100 200 300 400 500

ro
ll

[d
eg

]

-20

-15

-10

-5

0

5

10

REAL
ESN

timestep
0 200 400

-1

-0.5

0

0.5

1

1.5

Error

Fig. 6.11.: Pilot to Pose zoomed Roll optimised network output .

the ESN, decreasing the error by 99.2%, and it also highlights that the optimal spectral

radius for our application must be greater than stated at the beginning of the research. The

task of identifying a quadrotor MRUAV therefore requires a longer memory of the input

when using echo state networks. With the results showed in table 6.5 we can distinguish

that RTRL and ESN are the network architectures that performed the best even when not

being optimised, therefore used in a real flight test. In such test the neural network was

adapted on the DronePilot thread structure to predict the vehicle pose alongside the real

information provided by the motion capture system, this is the final performance test of

the proposed neural network architectures. Due to the processing power of the companion

computer, only one architecture can be tested at a time, this is due to prevent an excessive

time increase on the iteration loop that could lead to sluggish behaviour of the vehicle.

Figure 6.13 shows only the position output of the RTRL neural network, this flight test was

a short one, close to one minute of flying, the flight was a combination of manual piloting

and two laps of a circular trajectory. Is noticeable that for height, the difference is no bigger

than 10 cm, which means we can potentially replace this height for the one supplied by the

motion capture system. This is potentially a solution for short indoors GPS-denied flights

because the vehicle can predict, with a margin of error, its own position from current flight

data. The overall MSE for the outputs on this test (Fig. 6.13) is 0.0245. The ESN flight test

144 Chapter 6 System Identification of MRUAV

-2

-1

0

X [m]
1

2-1

-0.5

0

Y [m]

0.5

1

1.5

-0.5

-1.5

-1

0

2
Z

 [m
]

REAL
BPTT
RTRL
ESN

Fig. 6.12.: Pilot to Pose Trajectory comparison.

is shown in figure 6.14, as on previous tests, the ESN performs better, with a smaller MSE,

being 0.0101 on this flight test, looking closely to the plot (6.14) on the 4200 time-step for

the X output, 2800 time-step for the Y output and on 4100 time-step for the Z axis there

is a sizeable disturbance on the prediction, which can potentially be a random state coming

from learned from data that contained motion capture training errors, therefore reducing

the reliability of this network architecture in this specific task. The flight test was roughly

one minute length, similar to the RTRL. The experiment results indicate that recurrent

neural networks provide generalization capabilities and are able to learn the dynamics of

a MRUAV with excellent accuracy. More importantly, it was demonstrated that the learned

dynamics can be used effectively on-board of the system, inside the Flight Stack.

6.7 Summary

With the results shown on this chapter it can be stated that the necessary machine learning

tools are sufficiently mature and viable to continue using them on more complex general-

ization tasks, like a slung load position estimator. In the case of system identification of

MRUAV the ESN approach showed better system modelling capabilities. On the next chap-

ter, the techniques learned and applied on tasks such as system identification of MRUAV will

be applied to the slung-load MRUAV coupled dynamics to be able to estimate and control a

load.

6.7 Summary 145

0 1000 2000 3000 4000 5000 6000

[m
]

-1.5

-1

-0.5

0

0.5

1

1.5

X
Predicted X

0 1000 2000 3000 4000 5000 6000

[m
]

-2

-1

0

1

2

Y
Predicted Y

timestep
0 1000 2000 3000 4000 5000 6000

[m
]

0

0.2

0.4

0.6

0.8

1

1.2

Z
Predicted Z

Fig. 6.13.: Pilot to Pose RTRL on-board flight test.

0 1000 2000 3000 4000 5000 6000

[m
]

-3

-2

-1

0

1

2

X
Predicted X

0 1000 2000 3000 4000 5000 6000

[m
]

-4

-3

-2

-1

0

1

2

Y
Predicted Y

timestep
0 1000 2000 3000 4000 5000 6000

[m
]

-1

-0.5

0

0.5

1

1.5

2

Z
Predicted Z

Fig. 6.14.: Pilot to Pose ESN on-board flight test.

146 Chapter 6 System Identification of MRUAV

7
MRUAV carrying a Slung Load

This chapter describes the analysis of the slung load dynamics when coupled with the

quadrotor dynamics. Firstly, an introductory section details the behavior of a slung load

using a trivial analogy of a simple pendulum, which was used to obtain the minimum cable

length that the system is able to stabilise. Secondly, the development of the system model

is presented based on Sreenath et al., 2013. Two methodologies to estimate slung load

position are then described and analysed. The first method uses a vision system, while the

second method uses machine learning techniques to tune an unstructured (black-box) es-

timator. Both methods are tested experimentally. For the second method, experiments are

conducted to generate input/output data that is used to tune the estimator, three neural

network techniques are then tested and verified by comparing results. The last part of the

chapter introduces the controller. The objective of the controller is to dampen the oscilla-

tion of the load while the vehicle is attempting to track a trajectory. The suitability and

accuracy of the controller are tested experimentally and results are presented at the end

of the chapter. Sections of this chapter are developments of the work presented on Vargas

et al., 2014, Vargas et al., 2015a and Vargas et al., 2017.

Fig. 7.1.: Quadrotor carrying a slung load.

147

Flying with a suspended load, also known as slung load or sling load is a very challeng-

ing task as the suspended load significantly alters the flight characteristics of the MRUAV

(Fig. 7.1). Dynamically, attaching a load via a cable to the underside of the aircraft alters

the mass distribution of the combined "airborne entity" in a highly dynamic fashion. The

load will be subject to inertial, gravitational and unsteady aerodynamic forces which are

transmitted to the multirotor via the cable, providing another source of external force to

the MRUAV platform and thus altering the flight dynamic response characteristics of the

vehicle. Similarly the load relies on the forces transmitted by the multirotor to alter it’s

state, i.e. we have moved from a single to two-body system, which is much more difficult

to control. Aggressive trajectories and maneuvers can be disastrous if not performed cor-

rectly, therefore, an effective GNC architecture must maintain control and stability of the

aircraft at all times. At the end of the transport motion, the slung load naturally continues

to swing. Suppression of residual oscillations has been a topic of research for many years as

shown in Faille et al., 1995, Frost et al., 2000, Zameroski et al., 2008, and Starr et al., 2005.

Several model-based and non-model-based approaches have been proposed (as shown in

Sec.1.2.3) in order to reduce the swing angle of the load when a rotorcraft follows a de-

sired trajectory or comes to a stop (El-Ferik et al., 2013 and Omar, 2009). Some include

an actuated suspension point or some other form of active load stabilization as in Smith

et al., 1973. Another approach produces exciting transient oscillations in the system such

that it reduces the oscillations induced by the load using input shaping methods; this has

been used successfully in practice (Singer et al., 1997, Khalid et al., 2006). Using a neuro-

predictive trajectory generation architecture (De La Torre et al., 2013b), it was shown that

the effect of system uncertainty could be mitigated by the use of neural networks. A fuzzy

logic method adds additional displacements to the helicopter trajectory in the longitudinal

and lateral directions in order to suppress the swing of the suspended load (Omar, 2009).

7.1 Introduction

The suspended load can be initially considered as a basic pendulum, that is, a mass at

the end of a string that swings back and forth, it consists of a mass m hanging from a

string of length L and fixed at a pivot point P (Fig. 7.2). When displaced to an initial

angle θ and released, the pendulum will swing back and forth with periodic motion. When

applying Newton’s Second Law for rotational systems (Eq. 7.1) (where the rate of change

of the angular momentum is proportional to the net torque), the equation of motion for the

pendulum can be obtained as showed on equation 7.2 and rearranged on its differential

equation form in 7.3.

τ = Iα (7.1)

148 Chapter 7 MRUAV carrying a Slung Load

P

L

θ

mg

mg cos(θ)

m

mg sin(θ)

Fig. 7.2.: Free body diagram for a basic pendulum.

mL2 d
2θ

dt2
= −mg sin θL (7.2)

d2θ

dt2
+ g

L
sin θ = 0 (7.3)

7.1.1 Small angle approximation

If the amplitude of angular displacement is small enough that the small angle approxima-

tion holds true, then the equation of motion reduces to the equation of simple harmonic

motion:
d2θ

dt2
+ g

L
θ = 0 (7.4)

And the harmonic solution is showed on equation 7.5 where the natural frequency of the

motion is given by equation 7.6.

θ(t) = θ0 cosωt+ ϕ (7.5)

ω =
√
g

L
(7.6)

With the assumption of small angles, the frequency and period of the pendulum are inde-

pendent of the initial angular displacement amplitude. All simple pendulums should have

the same period regardless of their initial angle and regardless of their mass m. The period

for a simple pendulum does not depend on the mass m or the initial angular displacement

7.1 Introduction 149

θ, but depends only on the length L of the string and the value of the gravitational field

strength g, according to:

T = 2π

√
L

g
(7.7)

When the angular displacement amplitude of the pendulum is large enough that the small

angle approximation no longer holds, then the equation of motion must remain in its non-

linear form showed on Eq. 7.3 which is usually solved using numerical methods.

7.2 Model of Slung Load Quadrotor System

The quadrotor with a slung load can be considered as a multi-body dynamical system with

eight degrees of freedom and four degrees under-actuation as showed in Sreenath et al.,

2013. Such system consists of two rigid bodies connected by a mass-less straight-line links

which support only forces along the link. Figure 7.3 shows a quadrotor carrying a slung

load following a particular trajectory. The system is characterized by the mass and inertia

Fig. 7.3.: Quadrotor carrying a slung load.

parameters of the rigid bodies, and the suspension attachment point location (quadrotor

centre of mass), some assumptions must be made in order to simplify the suspended load

system, but sufficient for realistic representation.

• Both bodies are assumed to be rigid. Quadrotor rigidity is assumed as mentioned in

Sec. 4.2 and for the slung load it is excluding non-rigid load (e.g. liquid tanks and

flexible loads).

150 Chapter 7 MRUAV carrying a Slung Load

• Tether cable considered inelastic.

• The mass of the tether and aerodynamic effects on the load are neglected.

A load with position rL may be described with respect to the quadrotor position rQ by

rL = rQ + Lq (7.8)

where q is the unit direction vector of the load, relative to the quadrotor position, and L is

the length of the tether.

7.2.1 Quadrotor Attitude

The quadrotor attitude dynamics can be described simply by

η̇ = JηωQ (7.9)

ω̇Q = I−1 (MQ − ωQ × IωQ) (7.10)

7.2.2 Slung Load Attitude

The attitude dynamics of the combined quadrotor-load system are derived from Newton-

Euler formalism. The centre of mass of the system exists at a point along the tether at

distance r0 from the quadrotor centre of mass. The load lies a distance L along the tether

from the quadrotor centre of mass. The system thus has moment of inertia

I = mQr
2
0 +mQ(L− r0)2 (7.11)

The angular momentum of the system is given by

L = IωL

=
(
mQr

2
0 +mQ(L− r0)2)ωL

(7.12)

The moment is then obtained by differentiating the angular momentum, giving

M =
(
mQr

2
0 +mQ(L− r0)2) ω̇L

=
(
(mQ +mL)r2

0 +mLL
2 − 2mLLr0

)
ω̇L

(7.13)

7.2 Model of Slung Load Quadrotor System 151

If the quadrotor has generic specific force FQ and the load FL, the net moment acting on

the system is the sum of the moments caused by these forces and the gravitational force of

each mass, which is

M = (L− r0)q × (FL +mLg) − r0q × (FQ +mQg)

= (L− r0)q × FL − r0q × FQ

+ (L− r0)q ×mLg − r0q ×mQg

(7.14)

Note that the equation of motion for the unforced system is

0 = (L− r0)q ×mLg − r0q ×mQg (7.15)

which provides the solution for the position of the centre of mass

r0 = LmL

mQ +mL
(7.16)

Equating Equations (7.13) and (7.14) gives

Lq × FL − r0q × (FQ + FL) =
(
(mQ +mL)r2

0 +mLL
2 − 2mLLr0

)
ω̇L (7.17)

and substituting Equations (7.15) and (7.16) gives

Lq × FL − LmL

mQ +mL
q × (FQ + FL)

=
(

(mQ +mL) L2m2
L

(mQ +mL)2 +mLL
2 − 2L2m2

L

mQ +mL

)
ω̇L

⇒ (mQ +mL)q × FL −mLq × (FQ + FL)

=
(
mLL(mQ +mL) − Lm2

L

)
ω̇L

⇒ mQq × (mQFL −mLFQ) = LmQmLω̇L

which provides the solution

ω̇ = 1
LmQmL

(q × (mQFL −mLFQ)) (7.18)

The evolution of q is easily found to be

q̇ = ω × q (7.19)

152 Chapter 7 MRUAV carrying a Slung Load

The position dynamics of both the quadrotor and slung load are strongly coupled. From

Newton-Euler formalism, the net linear momentum of the system is given by

p = mQṙQ +mLṙL (7.20)

The net momentum may expressed purely in terms of the load velocity by considering

Equation 7.8, giving

p = mQ(ṙL − Lq̇) +mLṙL

= (mQ +mL)ṙL −mQLq̇
(7.21)

Substituting Equation (7.19) then gives

p = (mQ +mL)ṙL −mQL(ω × q) (7.22)

The net force acting on the system is then found from the derivative of the linear momentum

F = (mQ +mL)r̈L −mQL(ω̇ × q + ω × q̇) (7.23)

Substituting (7.18) and Equations (7.19) and expanding gives

F = (mQ +mL)r̈L + 1
mL

((q · (mQFL −mLFQ))q +mLFQ −mQFL)

−mQL ((ω · q)ω − (ω · ω)q)

= (mQ +mL)r̈L + FQ − mQ

mL
FL −mQL(ω · q)ω

+
(

1
mL

(q ·mQFL − q ·mLFQ) +mQLω · ω

)
q

(7.24)

The force vector is the sum of all forces acting on both bodies, described generally as

F = FQ + FL +mQg +mLg (7.25)

Equating the forces described by Equations (7.25) and (7.24) gives

FQ + FL + (mQ +mL)g = (mQ +mL)r̈L + FQ − mQ

mL
FL −mQL(ω · q)ω

+
(

1
mL

(q ·mQFL − q ·mLFQ) +mQLω · ω

)
q

⇒ (mQ +mL)(r̈L − g) =
(

1 + mQ

mL

)
FL +mQL(ω · q)ω

−
(

1
mL

(q ·mQFL − q ·mLFQ) +mQLω · ω

)
q

(7.26)

7.2 Model of Slung Load Quadrotor System 153

The translational dynamics of the system may then be described in terms of the load accel-

eration by

r̈L = g + 1
mQ +mL

[(
1 + mQ

mL

)
FL +mQL(ω · q)ω

−
(

1
mL

(q ·mQFL − q ·mLFQ) +mQLω · ω

)
q
] (7.27)

7.3 Slung Load Position Estimation

The strongly coupled, non-linear dynamics of the Slung-Load/Quadrotor system makes it ex-

tremely complicated to estimate the position of the load experimentally and for anti-swing

control purposes. On previous experimental research work with a Slung-Load/Quadrotor

system Palunko et al., 2012 Tang et al., 2015 Mellinger et al., 2014 Sreenath et al., 2013,

the position of the suspended load is estimated using motion capture system such as the

one used in the MAST Lab (Sec. 3.2). This approach will only work inside a laboratory. As

seen in the literature review Chapter 1, there is several alternatives to estimate the position

of the load, in this section two methods will be presented, firstly an optical approach using

computer vision approach and secondly a machine learning prediction one.

7.3.1 Computer Vision Estimation

Computer vision (CV) is an interdisciplinary field that deals with how computers can be

made to gain high-level understanding from digital images or videos. It helps in tasks that

include methods for acquiring, processing, analysing and understanding digital images, and

in general, deal with the extraction of high-dimensional data from the real world in order

to produce numerical or symbolic information. The CV estimator uses a vision based system

as the only sensor input and therefore it does not require any mounting of sensors on the

load. The CV system uses images from a downwards looking camera to calculate a position

vector of the load in the MRUAV fixed frame pointing from the camera to the load. This

makes it ideal for augmenting an already autonomous MRUAV with slung load capabilities.

This estimation system requires a slightly bigger MRUAV platform (Fig. 7.4) that the one

presented in Section 3.5, in order to be able to carry a gimballed camera sensor.

Sensor system

The vision system is a camera mounted on the MRUAV frame looking down on the load. A

two-axis gimbal was designed to keep sensor system downwards. If the camera is only fixed

to the vehicle, there can be a huge amount of false detection estimations of the position of

154 Chapter 7 MRUAV carrying a Slung Load

Fig. 7.4.: Test-beds size comparison, higher: CV platform, lower: Standard platform.

the slung load when the vehicle is pitching and rolling (drastic change in attitude). The

gimbal is made with 3D printed parts and contains two rc-servos to compensate the pitch

and roll angles of the MRUAV attitude when travelling, it can be seen in figure 7.5. With

a gimbal, the camera will always be pointing down regardless the attitude of the vehicle.

The rc-servos are commanded by the flight controller using the reversed attitude angle

and transformed to PWM, which is the input signal to the rc-servo. One disadvantage

of this sensor system is that requires a larger MRUAV (Fig. 7.5) to be able to carry and

accommodate properly the extra equipment. Having a larger vehicle, approximately 450mm

from rotor to rotor centre, will limit the trajectories that can be performed inside the MAST

Lab due to the size of the aircraft, but for outdoors flying is a very good estimation option.

Computer vision algorithm

To easily identify the load amongst other objects that appear in the camera view the load

has a specific colour; in this case the slung load is predominantly black while the ground is

a light colour. Therefore a colour tracking algorithm is needed. The location of the colour

area in the image is thus an estimate of the position of the load relative to the orientation

of MRUAV. Several colour algorithms were created to achieve the goal of finding the slung

load position, more detailed information of the algorithms can be seen in Appendix A.5.

Such algorithms use the OpenCV (Open Source Computer Vision) library of programming

7.3 Slung Load Position Estimation 155

Two-axis-gimbal /
Camera System

Fig. 7.5.: Test-bed v2 Quadrotor with gimbal/camera system mounted.

functions (Bradski, 2000). This library is mainly aimed at real-time computer vision. The

algorithm steps are as follows:

1. Grab an image frame from the camera video stream

2. Convert that image from BGR to HSV format

3. Check if the converted HSV array elements lie between the elements of two other

HSV arrays (colour selection is a range of black colour)

4. Apply two very common morphology operators, dilation and erosion

5. Find contours in the binary output image based on Suzuki et al., 1985, with a result

similar to the image in Fig. 7.6

6. If the identified area is larger than the minimum area pre-established, calculate the

centroid of the area and report back the pixel position

If the area found is to small it is assumed that the algorithm has made a false detection and

the measurement is discarded. This could happen if the load is outside the field of view

(FOV) of the camera. Note that the camera is fixed in the MRUAV which means that both

load swing and the MRUAV roll and pitch can result in the load disappearing from FOV.

When the vision algorithm has detected the pixel position of the load this measurement

156 Chapter 7 MRUAV carrying a Slung Load

Fig. 7.6.: Graphical description of the findContours algorithm.

θ
φ

SL

SL

Px

Py

Fig. 7.7.: 3D spatial location perspective view (left) and 2D camera view (right).

must be mapped to a 2D slung load position. This is done by first transforming the pixel

position to two angles θSL and ϕSL as shown in figure 7.7. The angles are calculated as:

ϕSL = KSLPx

θSL = KSLPy

(7.28)

WhereKsl is the relationship between the field of view (FOV) of the camera and the number

of diagonal pixels of the selected resolution (Eq. 7.29) and [Px, Py] are the reported pixel

position of the centroid of the area colour target found.

KSL = FOV

Dpix
(7.29)

7.3 Slung Load Position Estimation 157

Because the camera is gimballed and in the same position of the CoG of the vehicle a

rotation is needed (Eq. 7.30) and the position of the camera it is considered the same as

the vehicle (Eq. 7.31).

RE
C =


cosψQ sinψQ 0

− sinψQ cosψQ 0

0 0 1

 (7.30)

ΓEC = ΓEQ (7.31)

The position of the slung load can be calculated as:

ΓESL = ΓEC + RE
CΓCSL (7.32)

Where the position of the slung load in regards with the camera view is given by Eq. 7.33

and the rotation of the camera against the earth frame by Eq. 7.30.

ΓCSL =


LSL sinϕSL
LSL sin θSL

LSL cosϕSL cos θSL

 (7.33)

The 2D slung load position calculated with Eq. 7.32 is used by a swing-free controller to

prevent aggressive oscillations of the load. Such controller is described in section 7.4.

Implementation

The proposed algorithm must run on-board the companion computer, so that the swing-free

controller can use the estimation of the position and then reduce the oscillations of the load,

it is important to keep the delay in the vision system low. It is noticed that almost any kind

of computer vision algorithm consumes a considerable amount of CPU time, therefore it

must be designed to run on a multi-threaded structure so that the other tasks running in

parallel with the CV algorithm do not suffer from performance. The DronePilot framework

is therefore ideal for this implementation, the CV algorithm is then added as an extra thread

that runs in parallel with the control thread (that flies the vehicle), the communications one

and the rest of the add-on functions. Several colour tracking algorithm implementations

were created and tested, the best results are achieved with the Color-6 1 algorithm, that

is contained on the rpi-opencv open source repository. The rates can be seen in table 7.1.

In figure 7.8 the result of the algorithm can be appreciated in a graphic manner with a

rectangle being drawn surrounding the area found with the findContours function. On the

1https://github.com/alduxvm/rpi-opencv/blob/master/color-6.py

158 Chapter 7 MRUAV carrying a Slung Load

https://github.com/alduxvm/rpi-opencv/blob/master/color-6.py

Device Detection @ 640x480px [sec] Detection @ 500x500px [sec]]
MBPR 0.005 0.003
RPI2 0.15 0.09
RPI3 0.12 0.05

Tab. 7.1.: Performance of the CV algorithm implementation using different CPUs.

real implementation this step is not needed (as no monitor is connected when flying) and it

can reduce the load of CPU when removed. Even with the current (2016) most powerful on-

Fig. 7.8.: Frame of a positive colour area found, the slung load position can then be esti-
mated.

board credit-card-size companion computer, the algorithm is extremely heavy for the CPU.

Achieving 20Hz to get a new slung load position, which in some cases is not fast enough to

compensate or attempt a control action to reduce the oscillations.

7.3 Slung Load Position Estimation 159

7.3.2 Machine Learning Estimation

Using similar methods that were tested and proved in Chapter 6, a slung load position

prediction is created to be used later on a simple anti-swing slung load controller. Such

technique will use data from experimental flights, where a load is attached to the vehicle.

The DronePilot framework is used again in order to control the vehicle and log all of the

experimental data. The data required are pilot commands and vehicle pose as inputs, while

the outputs are only the slung load position as showed on Fig.7.9.

Inputs
(pilot commands

vehicle pose)
Black-Box

Outputs
(slung-load
position)

Throttle

Roll

Pitch

Yaw
XSL

YSL
XV

YV

ZV

φV

θV

ψV

Fig. 7.9.: Slung-Load estimator black-box model.

Data Collection

Several flight modes were designed for making the test flights easier, repeatable and safe.

As explained in the introduction of the section, flying with a slung load alters the dynamics

of the vehicle, provokes oscillations and can easily cause accidents. Flying inside a confined

space (MAST Lab) adds a challenge when gathering the data, due to the possibility of the

load making contact with one of the walls, corrupting the entire flight data. A common

flight test to gather the data for making the system identification of the quadrotor/slung-

load system involves the following steps:

• Pre-takeoff security tests (propeller nuts securely tied, battery monitor attached, Mo-

Cap markers on position, SSH login to companion computer, GroundStation sending

information to the companion computer, among others)

• Takeoff the vehicle manually using joystick attached to the GroundStation

• Activate position hold flight mode for the vehicle to remain at a specified position at

the centre of the MAST Lab

• Carefully approach the vehicle and connect the slung load to the bottom of the vehicle

(ensuring it is securely attached)

• Activate altitude hold or manual flight mode and carefully move the vehicle around

the flight area

160 Chapter 7 MRUAV carrying a Slung Load

-2

-1

0

X [m]
1

2-2

-1
Y [m]

0

1

-1

-1.5

-2

-0.5

-2.5

-3

0

2

Z
 [m

]

Quadrotor
Slung-load

Fig. 7.10.: 3D trajectory plot from a training flight of the quadrotor slung-load system.

• When test is over, activate position hold flight mode and remove the slung load from

the vehicle

• Land the vehicle manually

• Collect the data for further analysis

If during the flight test one of the next conditions occurs, then the entire test is rendered as

invalid:

• Slung load detaching from vehicle

• Slung load tether changes form noticeably

• Slung load makes contact with wall or another object inside flight area, e.g. columns,

floor

• Slung load or vehicle goes outside flight area

• Slung load attitude is perpendicular to any axis of the vehicle position (extreme slung

load oscillation)

Video of the flight test must be recorded so that it can be used to check that the above

conditions did not happened. Also, prior to using the data for the machine learning exper-

iments, it must be plotted and analysed to check if the conditions above were not broken.

Replay animations are also made in order to ease visualization of the quadrotor/slung-load

system, as shown in figure 7.10 a 3D plot of the quadrotor/slung-load system trajectory is

showed, only minimal time-steps are displayed to avoid saturation of the trajectory path.

Figure 7.11 shows the exact frame of the above-mentioned videos where the slung load de-

taches from the vehicle due to extreme oscillations while performing a flight to gather data

7.3 Slung Load Position Estimation 161

Fig. 7.11.: Video-frame of the slung load detach moment due to extreme oscillations.

for the machine learning experiments. Approximately 200MB of flight data was gathered

during all of the slung load experiments. Due to the difficulty of flying while exciting the

dynamics of the quadrotor/slung-load system, 7 out of 10 experimental flights resulted in

a crash. Collecting the experimental data was one of the most challenging elements of this

section.

Data Processing

With the help of the DronePilot framework, the flight test data is saved on-board the vehicle

so that it can be preprocessed prior neural network training. Figure 7.12 shows the inputs

on the left column and the outputs on the right column of a flight test. The data processing

in this case, in comparison with the experiments in Sec. 6.2, involves removing all data

from when the vehicle does not have a slung load attached to it. To achieve this purpose in

an easier way, the black-box flight logs contain the current flight mode in which the vehicle

is engaged, therefore the data under the slung load flight mode is the one that it will use for

training the machine learning algorithms.

162 Chapter 7 MRUAV carrying a Slung Load

T
hr

ot
tle

 [p
w

m
]

1400

1600

1800

R
ol

l [
pw

m
]

1400

1600

1800

P
itc

h
[p

w
m

]

1000

1500

2000

Y
aw

 [p
w

m
]

1400

1600

X
v [m

]

-1

0

1

Y
v [m

]

-2

0

2

Z
v [m

]

1

2

3

timestep
0 2000 4000 6000

?
v [d

eg
]

-10

0

10

3
v [d

eg
]

-10

0

10

timestep
0 2000 4000 6000

A
v [d

eg
]

260

280

300

timestep
0 2000 4000 6000

X
sl
 [m

]

-2

0

2

timestep
0 2000 4000 6000

Y
sl
 [m

]

-2

0

2

* Values only as representation

Fig. 7.12.: Example plot of inputs (left) and outputs (right) for the quadrotor/slung-load
system.

7.3 Slung Load Position Estimation 163

Training and Testing

In the same manner as previous machine learning experiments in Section 6.3, three ma-

chine learning approaches are used. For naming simplicity we will refer to them using their

training methodologies, that is, Back-propagation Through Time (BPTT), Real-Time Recur-

rent Learning (RTRL) and Echo State Network (ESN). In the first training process, a small

number of training iterations are done until a good convergence of the dynamics is being

produced by the neural networks. This process helps discard inadequate network configu-

rations. Figure 7.13 shows the result of the first promising estimations from the machine

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x
[m

]

-1

-0.5

0

0.5

1

1.5

REAL
BPTT
RTRL
ESN

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y
[m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

REAL
BPTT
RTRL
ESN

Fig. 7.13.: ML Slung load position estimation after training.

learning approaches. It is appreciated that the neural networks are slightly understanding

the movements of the slung load, although oscillations are not being perceived properly

and more training is needed to tackle this situation. To ensure the configuration of the neu-

ral networks is properly chosen, the same training is repeated with different datasets and

checked for convergence similarities. Similarly, as seen in the system identification chapter,

two different sets of data are used to ensure the neural networks are properly understand-

ing the dynamics of the slung load, those are the training and the testing datasets, the first

ones are used to train the NN and the latter for testing the NN with data that is different

from the initial iterations, therefore ensuring a full approximation of the dynamical system

164 Chapter 7 MRUAV carrying a Slung Load

behaviour. The test results of the first estimations are displayed in figures 7.14 and 7.15.

In these plots, the outputs of the neural networks are separated and zoomed to facilitate the

analysis. The prediction error in testing data is always bigger than the one for training data,

and it can easily be observed in the plots. At this stage, with no optimisation, the RTRL

0 200 400 600 800 1000

sl
un

g-
lo

ad
 x

 [m
]

-1

-0.5

0

0.5

1

REAL
BPTT

0 500 1000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Error

0 200 400 600 800 1000

sl
un

g-
lo

ad
 x

 [m
]

-1

-0.5

0

0.5

1

REAL
RTRL

0 500 1000
-0.4

-0.2

0

0.2

0.4

0.6

Error

timestep
0 200 400 600 800 1000

sl
un

g-
lo

ad
 x

 [m
]

-1

-0.5

0

0.5

1

1.5

REAL
ESN

timestep
0 500 1000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Error

Fig. 7.14.: ML Slung load X-axis position estimation with testing data.

and ESN are performing better than the BPTT. The ESN is much faster to converge when

training, while the RTRL is the winner, with a lower MSE as shown on table 7.2.

ML technique Training time [sec] Training MSE Testing MSE
BPTT 404.4 0.077 0.089
RTRL 343.3 0.050 0.064
ESN 1.84 0.060 0.065

Tab. 7.2.: Performance of the ML slung load estimation.

Optimising

After having good convergence results of the neural networks using standard parameters,

an optimisation is needed to get the best estimation possible so that later this position

estimation can be used to control the oscillations of the load using the controller proposed

7.3 Slung Load Position Estimation 165

0 200 400 600 800 1000
sl

un
g-

lo
ad

 y
 [m

]
-1.5

-1

-0.5

0

0.5

1

1.5

REAL
BPTT

0 500 1000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Error

0 200 400 600 800 1000

sl
un

g-
lo

ad
 y

 [m
]

-1.5

-1

-0.5

0

0.5

1

1.5

REAL
RTRL

0 500 1000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Error

timestep
0 200 400 600 800 1000

sl
un

g-
lo

ad
 y

 [m
]

-1.5

-1

-0.5

0

0.5

1

1.5

REAL
ESN

timestep
0 500 1000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Error

Fig. 7.15.: ML Slung load Y-axis position estimation with testing data.

in Sec. 7.4. In the slung load estimation application, it is noted that if the number of

iterations is increased, the errors decrease until a certain point, above that point the errors

will start increasing. The best results were found at 50 iterations (as shown on Tab. 7.3),

the MSEs increased when doubling this number of iterations. One of the reasons behind

this behaviour is over-fitting. Over-fitting occurs when a model is excessively complex, such

as having too many parameters relative to the number of observations. A model that has

been over-fit has poor predictive performance, as it overreacts to minor fluctuations in the

training data. The neural network output when predicting test data can be seen in Fig.

7.16, the overall behaviour of the networks is greatly improved in comparison with the

non-optimised networks. On previous experiments, RTRL and ESN constantly showed the

best performance among the topologies, while in the slung load case RTRL and BPTT had

the lowest MSEs. On figures 7.17 and 7.18, the machine learning estimation of the position

of the slung load with test data is shown.

166 Chapter 7 MRUAV carrying a Slung Load

0 200 400 600 800 1000 1200 1400 1600 1800 2000

x
[m

]

-1.5

-1

-0.5

0

0.5

1

1.5

REAL
BPTT
RTRL
ESN

timestep
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y
[m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

REAL
BPTT
RTRL
ESN

Fig. 7.16.: ML Slung load position estimation after optimising with training data.

Type Iterations Time Neurons MSE train MSE test

Normal
BPTT
RTRL
ESN

10
386.8
354.7
3.61

5
5

10

0.091633
0.048233
0.052887

0.09997
0.05996
0.06384

Best
BPTT
RTRL
ESN

50
2350.7
4197.8

12.4

20
20
10

0.022227
0.000311
0.041639

0.03259
0.00542
0.04495

Longest
BPTT
RTRL
ESN

100
4929.4
8252.8

12.5

25
25
10

0.03225
0.00017
0.06014

0.03663
0.02102
0.06621

Tab. 7.3.: Machine learning slung load prediction experiment results.

7.3 Slung Load Position Estimation 167

0 200 400 600 800 1000
sl

un
g-

lo
ad

 x
 [m

]
-1

-0.5

0

0.5

1

REAL
BPTT

0 500 1000
-0.1

0

0.1

0.2

0.3

Error

0 200 400 600 800 1000

sl
un

g-
lo

ad
 x

 [m
]

-1

-0.5

0

0.5

1

REAL
RTRL

0 500 1000
-0.2

-0.1

0

0.1

0.2

Error

timestep
0 200 400 600 800 1000

sl
un

g-
lo

ad
 x

 [m
]

-1

-0.5

0

0.5

1

REAL
ESN

timestep
0 500 1000

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Error

Fig. 7.17.: ML Slung load X-axis position estimation with testing data.

0 200 400 600 800 1000

sl
un

g-
lo

ad
 y

 [m
]

-1

-0.5

0

0.5

1

1.5

2

REAL
BPTT

0 500 1000
-0.2

-0.1

0

0.1

0.2

0.3

Error

0 200 400 600 800 1000

sl
un

g-
lo

ad
 y

 [m
]

-1

-0.5

0

0.5

1

1.5

2

REAL
RTRL

0 500 1000
-0.1

-0.05

0

0.05

0.1

0.15

Error

timestep
0 200 400 600 800 1000

sl
un

g-
lo

ad
 y

 [m
]

-1

-0.5

0

0.5

1

1.5

2

REAL
ESN

timestep
0 500 1000

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Error

Fig. 7.18.: ML Slung load Y-axis position estimation with testing data.

168 Chapter 7 MRUAV carrying a Slung Load

On-board Tests

Once the networks have reached acceptable low MSE values using test data after running

the optimisation routines, the networks must be tested in real-time on-board the vehicle.

This is the final step to corroborate the adequate estimation of the technique and so that it

can be decided if the networks are usable for applications such as control.

0 200 400 600 800 1000

S
lu

ng
-lo

ad
 X

 [m
]

-1

-0.5

0

0.5

1

1.5

REAL
PREDICTED

0 500 1000
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Error

0 200 400 600 800 1000

S
lu

ng
-lo

ad
 Y

 [m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

REAL
PREDICTED

timestep
0 500 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Error

Fig. 7.19.: ML ESN architecture real-time on-board performance predicting the position of
the slung load.

The DronePilot framework is designed to achieve the purpose of running experiments in

parallel. The selected neural network architecture is executed in parallel with the rest of

the necessary processes (comms, control, black-box). Due to the companion computer CPU

capabilities, only one network can be run at a time, therefore three (or more) different

flight tests must be performed to obtain the estimation data from the optimised machine

learning architectures (ESN, BPTT, RTRL). It is important to remember that these real-time

on-board flight tests were performed in the same entire work regime as the training data

was obtained, because it encapsulates part of the research objective which is reducing the

oscillations of a slung load during transport.

7.3 Slung Load Position Estimation 169

0 200 400 600 800 1000

S
lu

ng
-lo

ad
 X

 [m
]

-1

-0.5

0

0.5

1

1.5

REAL
PREDICTED

0 500 1000
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Error

0 200 400 600 800 1000

S
lu

ng
-lo

ad
 Y

 [m
]

-2

-1.5

-1

-0.5

0

0.5

1

REAL
PREDICTED

timestep
0 500 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Error

Fig. 7.20.: ML BPTT architecture real-time on-board performance predicting the position of
the slung load.

As shown on Table 7.3, the machine learning technique that scored the highest MSE was

ESN (high MSE shows poor performance), therefore it was expected that this trend pre-

vailed on the real-time on-board tests. Figure 7.19 shows 1000 time-steps (10seconds) of

the ML ESN architecture prediction of the slung load position, it is easily appreciated that

the architecture is having a high number of perturbations.

The machine learning architecture BPTT performance is shown in figure 7.20, showing

10seconds as well. This architecture was the second lowest MSE of the three methodologies,

it can be appreciated that the prediction follows the real position closer than the ESN, but

there is still perturbation although not at the same degree of the ESN.

The most accurate (lowest MSE) architecture after the optimisation prediction tests was

the RTRL machine learning architecture and this trend continued on the on-board tests, the

performance can be observed at figure 7.21. It is appreciated that it follows the trend of the

position and the number of perturbations are reduced significantly. Although not entirely

free of perturbations, in the 10seconds that the plot covers we can appreciate no pertur-

bations, discontinuities or misplaced behaviour. The MSEs of the tests in these 10seconds

time-frame for the three machine learning architectures can be seen on Table 7.4.

170 Chapter 7 MRUAV carrying a Slung Load

0 200 400 600 800 1000
S

lu
ng

-lo
ad

 X
 [m

]
-1

-0.5

0

0.5

1

1.5

REAL
PREDICTED

0 500 1000
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Error

0 200 400 600 800 1000

S
lu

ng
-lo

ad
 Y

 [m
]

-2

-1.5

-1

-0.5

0

0.5

1

REAL
PREDICTED

timestep
0 500 1000

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Error

Fig. 7.21.: ML RTRL architecture real-time on-board performance predicting the position of
the slung load.

ML technique SL X-axis MSE SL Y-axis MSE
ESN 0.0704 0.0447
BPTT 0.0447 0.0287
RTRL 0.0231 0.0091

Tab. 7.4.: Real-time on-board performance of the ML architectures doing the SL position
estimation.

To avoid possible vehicle crashes, only the most accurate slung load position estimation

tool is used on real control tests, there is no need to risk the vehicle trying to control the

position of a slung load that it is not close to the real position values. Figure 7.22 shows a

3D plot comparison of real slung load position with the ML RTRL estimation next to it. On

such figure, the position of the vehicles is the same but moved 1m apart on the X-axis to

easy visualization of the comparison. The objective is that the PREDICTED line be similar to

the REAL line.

7.3 Slung Load Position Estimation 171

-2

-1

0

X [m]
1

2-2

-1

Y [m]

0

1

0

-0.5

-1

-1.5

-2

2

Z
 [m

]

REAL
PREDICTED

Fig. 7.22.: 3D replay of a flight comparison of the winner machine learning SL position
estimation.

7.4 Controller design

The first step in designing any controller is to construct a mathematical model of the equa-

tions of motion of the system. Adding additional mass alters, at the very least, the values

of the parameters in the equations of motion that define the model - gains, time constants,

mode coupling etc. In control theory, there are two approaches to dealing with this prob-

lem: treat it as an uncertainty in the feedback loop and apply a robust controller synthesis

technique such as H∞ or use an adaptation mechanism to alter the underlying mathemat-

ical model and controller. For flight with a suspended load the primary impact of adding

the load is to induce lateral pendulous oscillations, which can become unstable. This promi-

nent pendulous oscillatory motion affects the response in the frequency range of the attitude

control of the vehicle. After designing and incorporating the vehicle stability and tracking

controller in Section 4.3, the effect of the load swing forces are taken into account for a

new trajectory controller that will attempt to follow the load in order to re-position it to the

reference position.

7.4.1 Swing-Free Position Controller

The swing-free controller will attempt to reduce the oscillations of the load when the system

is near hover conditions (when the system reached the end of transport). The configuration

of the proposed controller is shown in figure 7.24. A linear feedback control system is

chosen due to its simplicity and from similar successful applications such as overhead gantry

cranes as in Aoustin et al., 2003 and Iwan Solihin et al., 2007. The swing-free position

172 Chapter 7 MRUAV carrying a Slung Load

Fig. 7.23.: Diagram of quadrotor with a slung load.

Position
Control

Ref Attitude
Control

Quadrotor
Dynamics

Load
estimator /

Vision /
MoCap

Swing-free
control

Load
dynamics /

forces

Sensors /
MoCap

Fig. 7.24.: Configuration of the proposed Swing-free controller.

controller consists of two main control systems, a MRUAV position controller and a slung load

position controller. The slung load controller will generate a trajectory that the quadrotor

position controller must track. So, the controller design of the whole system can be divided

into two stages. In the first stage, the position controller for the quadrotor alone is designed

by neglecting the effect of the slung load on the quadrotor dynamics. The function of this

controller is to stabilize the vehicle and follow a reference generated by the anti-swing

controller. In the second stage, the whole system is integrated by augmenting the dynamics

of the controlled vehicle with the dynamics of the slung load. Then the proposed slung

load position controller is added to the integrated system and the performance of the whole

system is evaluated. The position controller was presented in Section 4.3 and for the slung

load position controller we assume a reference position (x, y, z) and then a computation of

error signal as in Eq. 7.34. Where Γsl is the position of the slung load and Γq the current

position of the quadrotor.

e = Γsl − Γq (7.34)

7.4 Controller design 173

Then, the goal of the slung load controller is to minimize the error signal, only a propor-

tional gain is needed to achieve this goal, due to the cascade of controllers acting after this

one. It is important to notice that the error signal is filtered before being sent in order

to avoid big changes that can produce bigger errors on the position controller, that could

potentially lead to instabilities in the system. Several crashes occurred when testing in the

laboratory the proposed controller, due to several factors including space in the room, Mo-

Cap system confusing the optical markers and layer 8 issues. The proposed controller has a

limitation, it is linked to the natural frequency of the slung load (Eq. 7.6) which means that

it cannot reduce the oscillations of loads that have a higher natural frequency than the step

response of the position control (Fig.4.14), simply because the vehicle cannot re-position

itself as fast as the slung load displaces. From the experimental results shown in Section

4.4.2 and particularly in figure 4.13, the MAST Lab research MRUAV has a settling time of

close to 4 seconds, which means that it will be able to safely reduce the oscillations of loads

with a cable length L ≤ 60cm.

7.4.2 Swing-Free Trajectory Controller

Once the swing-free controller is implemented, a trajectory is added for the quadrotor/slung-

load system in order to track it while reducing the oscillations of the load. This is the desired

behaviour for an autonomous flight of a slung load under a quadrotor. The overall control

concept is a classical cascaded scheme where the outer loop controller (the swing-free tra-

jectory controller) generates references to the inner loop controller (the MRUAV position

controller). As seen in Section 4.3.3, the chosen trajectories are a circle and a figure-of-

eight. This is because the necessary movements to achieve such trajectory encapsulates

the working regime of the experimental data gathering tests, producing high oscillations

that then must be suppressed by the proposed controller. The error signal that goes to the

position controller is:

e = Γtraj + kpsl(Γsl − Γq) − Γq (7.35)

Where kpsl is the proportional gain of the swing-free controller and Γtraj is the desired

trajectory.

Figure 7.25 shows the proposed configuration of the trajectory controller (dashed rectan-

gle), it comprises a similar layout as the trajectory controller developed for the DronePilot

framework. For this controller configuration, a flight mode selection module is added to

the system, which is in charge of changing the current mode according to the pilot input,

from the flight modes available on DronePilot. The flight modes added to DronePilot for

this section can be seeing in table 7.5.

174 Chapter 7 MRUAV carrying a Slung Load

Trajectory
generation

Swing-free
Controller

Quadrotor /
Slung-load
Dynamics

Flight
modes

Fig. 7.25.: Configuration of the proposed Swing-free trajectory controller.

Flight mode Description
Manual Allows to fly the vehicle manually, but self-levels

the roll and pitch axis
Position-hold Automatically attempts to maintain the current

position, heading and altitude
Swing-free loiter Automatically attempts to maintain the current

position and reduce the oscillations of the slung
load

Swing-free trajectory The MRUAV will autonomously attempt to track
a trajectory while reducing the oscillations of the
slung load

Tab. 7.5.: DronePilot flight modes for the Swing-Free Controller.

The position hold mode will maintain the vehicle’s position while the user attaches the

slung load to the vehicle. Once the load is attached the Swing-free loiter mode will reduce

the oscillations of the load while remaining at the current vehicle position and lastly in the

Swing-free trajectory mode the vehicle will perform a swing-free pre-selected trajectory, that

includes a circle and a figure-of-eight. The experimental results will be shown in the next

section.

7.4 Controller design 175

7.5 Experimental results

When conducting experiments with the slung load, necessary precautions must be taken

into account to prevent serious accidents, this is due to the degree of difficulty involved.

One disadvantage of doing this test in a confined space such as the MAST Lab is the reduced

flight volume, which means small error will grow larger extremely fast, because the walls or

roof are very close to the vehicle or load. Fig. 7.26 shows the vehicle stranded on the safety

net after a momentarily loss of communication with the vehicle caused by a very aggressive

bounce of the slung load.

Fig. 7.26.: MRUAV stranded on safety net during a gathering data flight test.

85% of the accidents with the slung load where caused by an error in the Motion Capture

system. This MoCap error had to do with the array of trackables, when performing the

initial experiments the position of the slung load Γsl was given by the second trackable of

the MoCap system, but when the first trackable (attached to the vehicle) was very close to

the safety net, it disappeared from the view of some cameras, therefore the MoCap system

176 Chapter 7 MRUAV carrying a Slung Load

considers it out of view, and displaced the second trackable as the first one in the array.

Every 100Hz the companion computer received the position of the vehicle, but when the

error occurred, the first trackable was now the physical slung load position rather than the

vehicle position, causing the height controller to accelerate the vehicle towards the ceiling

in an effort to reach the desired altitude requirement, without knowing the current position

was the slung load rather than the vehicle. Such an error is easy to fix within the MoCap

software by adding IDs to each trackable, but without being able to modify this system (or

update it). It became extremely complicated to fix it in the DronePilot framework, therefore

flying close to the limits of the MoCap system was not an option.

Fig. 7.27.: Time-collapse image of the first oscillation of the step response.

7.5 Experimental results 177

7.5.1 Controller verification

To illustrate the damping effect of the swing-free controller on the MRUAV an aggressive

manoeuvre is used. The aggressive manoeuvre is simply a step in position reference. From

the initial position of the vehicle with slung load already mounted on it (0, 0, 1.8)meters,

the vehicle is commanded to track an aggressive change on its position to (1, 1, 1.8)meters.

The results will only be shown for the X-axis dynamics but the process is similar for the

Y-axis dynamics. In Fig. 7.27, a time-collapse photography shows the movements of the

quadrotor/slung-load system up to the first-maximum value of the first oscillation of the

slung load, which occurs around 2 seconds after the 1m step response has been applied to

the vehicle. The step-response tests are performed both without and with the swing-free

timestep
0 200 400 600 800 1000

S
lu

ng
-lo

ad
 P

os
iti

on
 X

 [m
et

er
s]

0

0.5

1

1.5

Desired
Without control
With control

timestep
0 200 400 600 800 1000

Q
ua

dr
ot

or
 P

os
iti

on
 X

 [m
et

er
s]

0

0.5

1

1.5

Desired
Without control
With control

Fig. 7.28.: 1[m] aggressive step on X axis with and without swing-free control.

controller and a comparison is shown in Fig. 7.28, it is clear that the control scheme is

capable of providing considerable damping of the slung load swing compared to flight with-

out a dedicated slung load controller. Figure 7.29 shows a 3D plot of the same aggressive

step, the data comes from two different flights, but mixed and repositioned together for

easier comparison of the controller response without swing-free control and with swing-

control, it is noted how the slung load trajectory oscillates much less in the latter one. As

visual method of comparison Fig. 7.30 shows the transition of the same step response with-

178 Chapter 7 MRUAV carrying a Slung Load

-0.5

0

0.5

X [m]

1

1.5

2
0

0.5

Y [m]

1

1.5

-1.4

-1.6

-1.8

-2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

2

Z
 [m

]

Without control
With control

Fig. 7.29.: 3D plot of 1[m] aggressive step with and without swing-free control.

out and with swing-free controller. Not all of the oscillations are shown on the 6 selected

frames required for the swing-free controller to stop the swinging of the load.

Fig. 7.30.: Transition comparison of the quadrotor/slung-load system without (top) and
with (bottom) swing-free control.

7.5.2 Estimator verification

To verify the design of the estimator and test the performance of it when dampening the

oscillations of the load, flight tests were carried out using an aggressive step and two differ-

ent position errors for the swing-free controller. Figure 7.31 shows the controller response

on two axis for the slung load position. Two tests were performed changing the source

of the slung load position, the first one is using the slung load real position coming from

the motion capture system, the second one uses the machine learning slung load position

estimation. This type of machine learning estimation was described in Section 7.3.2. It

7.5 Experimental results 179

timestep
0 200 400 600 800 1000

S
lu

ng
-lo

ad
 P

os
iti

on
 X

 [m
et

er
s]

0

0.5

1

1.5

Desired
Control w/real
Control w/estimator

timestep
0 200 400 600 800 1000

S
lu

ng
-lo

ad
 P

os
iti

on
 Y

 [m
et

er
s]

0

0.5

1

1.5

Desired
Control w/real
Control w/estimator

Fig. 7.31.: Controller performance comparison using different sources for the slung-load
position.

can be observed that the control response with the estimator fluctuates more in compari-

son with the control response that used the motion capture readings, this is due to the fact

that the machine learning estimator calculates the slung load position with certain band of

error. Even if this estimation error is low, the controller is able to dampen the oscillations

of the slung load. The controller that uses the estimated position does not have the same

performance as the one that uses the real slung load position (Fig. 7.32).

7.5.3 Trajectory response

After verifying that the machine learning estimation of the slung load position works with

the proposed swing-free controller, flight tests were performed using a swing-free trajec-

tory controller with the machine learning estimation. In such tests, the prediction of the

position of the slung load is fed into the swing-free trajectory controller and the real slung

load position is logged from the MoCap system in order to verify the performance of the

estimator and controller. Two trajectories are tested (circular and figure-of-eight).

180 Chapter 7 MRUAV carrying a Slung Load

-0.5

0

0.5

X [m]

1

1.5

2
0

0.5

Y [m]

1

1.5

-1.6

-1.8

-2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1.4

2

Z
 [m

]

Control w/Real
Control w/Estimator

Fig. 7.32.: 3D plot of controller comparison with different sources for the slung-load posi-
tion.

Circle trajectory response

Firstly, the response of the slung load to a circular trajectory without swing-free control is

shown on Fig. 7.33 in order to appreciate the disturbances of the slung load when it is

subjected to movements of the quadrotor tracking a trajectory. Such circular trajectory is

the same as the one executed in Fig. 4.19 from Section 4.4.3 and it is set to be completed

in 5 seconds. It is appreciated that the quadrotor tracks the reference trajectory but it is not

as precise due to the slung load affecting its performance.

In Fig. 7.34, the same circular trajectory is repeated with the swing-free trajectory controller

activated and using as input the machine learning estimation of the slung load. From the

top view we can appreciate three concentric circular trajectories, the outer-most being the

one of the slung load, it is now almost a circle, no big disturbances as shown before. The

middle circle is the quadrotor trajectory adjusted in order to reduce the oscillations of the

load, it appears more off-track than before, this is due to the effort in controlling the load.

7.5 Experimental results 181

X
 [m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ref Quad Load

Fig. 7.33.: Slung load response to a circular trajectory - Top view.

X
 [m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ref Quad Load

Fig. 7.34.: Slung load response to a circular trajectory with swing-free control active - Top
view.

182 Chapter 7 MRUAV carrying a Slung Load

Figure-of-eight trajectory response

The disturbances generated by the slung load being coupled to the quadrotor performing a

figure-of-eight trajectory are shown in Fig. 7.35. The trajectory is a Lemniscate of Bernoulli

set to be completed in 8 seconds. In this case, it is noticed that the slung load disturbances

are far larger than for the circular one, in a couple of occasions the slung load does a loop

due to extreme changes in direction and the quadrotor is having larger performance issues

attempting to track the desired trajectory due to being pulled by the slung load.
X

 [m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ref Quad Load

Fig. 7.35.: Slung load response to a figure-of-eight trajectory with swing-free control active
- Top view.

The response of the slung load being controlled by the swing-free trajectory controller while

the quadrotor is performing a desired figure-of-eight trajectory can be seen on Fig. 7.36.

The load is free of disturbances and loops, it is noticed that the quadrotor trajectory di-

verged further from the desired trajectory, but this is due to the aggressive motions the

slung load creates when moving.

As a final demonstration of the performance of the swing-free trajectory controller, a test

was done in the MAST Lab with a camera doing light painting photography (long-exposure)

which involves using a long-duration shutter speed to sharply capture the illuminated mov-

ing elements. In this case, the flight controller contains status bright LEDs (blue) and the

slung load carries a red LED.

7.5 Experimental results 183

X
 [m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y [m]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ref Quad Load

Fig. 7.36.: Slung load response to a figure-of-eight trajectory with swing-free control active
- Top view.

Two light painting photographies were taken and are displayed on Fig. 7.37, both show

two trajectories, in blue colour is the visual trajectory of the flight controller which is placed

close to the CoG of the quadrotor and the slung load is the red colour trajectory, the slung

load cable is not visible. The top image shows the quadrotor performing a figure-of-eight

while the load is not taken into consideration, therefore it swings free and affects the dy-

namics of the final quadrotor trajectory. The bottom image shows the swing-free trajectory

controller in action.

7.6 Summary

In this Chapter, the dynamics of the load coupled with a multirotor were presented. Two

methods for estimating the position of the load were described and tested. It was proven

that the machine learning position estimator is capable of predicting the position of the

load in real-time so that it can be used on a anti-swing controller scheme. Results from

the controller scheme were presented in the forms of plots and a light-paint photography

that showed the oscillations of the load without anti-swing control and the result when the

anti-swing control is active.

184 Chapter 7 MRUAV carrying a Slung Load

Fig. 7.37.: Light painting photographies of comparison flight tests with the swing-free con-
troller.

7.6 Summary 185

8Conclusion

One of the major contributions of this thesis is the development of estimators capable of

estimating the position of the slung load relative to the vehicle. This objective was accom-

plished using machine learning techniques by the creation of an estimator of the slung load

position relative to the MRUAV.

The machine learning estimator was designed using a recurrent neural network structure

which was then trained in a supervised learning approach using real flight data of the

MRUAV/SL system. This data was gathered using a motion capture facility and a software

framework (DronePilot) which was created during the development of this work. After the

slung load estimator was trained, it was verified in subsequent flights to ensure its adequate

performance. Consequently, a control system was created and tested with the objective to

remove the oscillations (swing-free) generated by the slung load during or at the end of

transport. The control technique was verified and tested experimentally.

The proposed approach is an important step towards developing the next generation of

unmanned autonomous multirotor vehicles. The methods presented in this thesis enables a

quadrotor to perform flight manoeuvres while performing swing-free trajectory tracking.

8.1 Summary of contributions

8.1.1 On multirotor design

This thesis contributed a theoretical/experimental method aiming to predict the time of

flight while hovering of a multirotor vehicle. The proposed method uses data that is com-

monly given by the COTS manufacturers, which sometimes can be scarce. If the latter is

the case, then a rotor analysis tool presented in Appendix A.3, can be applied in order to

complement the required information to estimate the time of flight.

It was demonstrated that the approach followed in this work provided flight times closer

to the real life case, compared to estimations using other methods, such as on-line calcu-

lators. The main difference being that the on-line calculators contain a detailed database

187

compromising a large amount of COTS components. Thus, a combination of methods is the

preferred tool when designing a multirotor for a specific mission when experimental data

cannot be easily obtained. Furthermore, the use of 3D printing techniques was of great ben-

efit to the MAST Lab. It proved to be an effective method for manufacturing the entire frame

of a multirotor vehicle, as well as extra components for servo-gimbals, flight controller fit-

tings, among others. However, the 3D printer’s building volume capabilities limit the size of

the overall multirotor frame. The design of the quadrotor vehicle TEGOv2 presented in Sec.

2.1 Fig.2.2 improved the previous design by reducing the overall weight of the final vehicle

by not using nuts and bolts in its construction. Using lighter Rotite (Burns, 2014) elements

instead resulted in a time of flight increasing by approximately 22%. More importantly, as

an added benefit, the arm of the quadrotor was able to rotate without coming loose from

the frame, therefore improving crash-survivability of the TEGOv2 frame.

The usage of the Rotite elements on the design of the quadrotor TEGOv2 are the first

aerospace application of such mechanical fastener in the world. The company Rotite and

its products received widespread attention from a number of aerospace-related companies

that became potential clients after they saw the vehicle flying on 1 as well as in The 2014

Gadget Show Live 2 at the NEC (National Exhibition Centre at Birmingham), where the au-

thor of this thesis attended to present the quadrotor frame along with Rotite executives.

Undergraduate students from the ASDP (Aerospace Systems Design Project) course were

benefited by being given the 3D CAD files of TEGOv2 in order to build different multiro-

tor vehicles. Two models were presented in their final reports, a hexarotor (left) and an

octorotor (right) (Fig.8.1). These projects triggered research questions that were finally

addressed and presented in Ireland et al., 2015.

Fig. 8.1.: Hexarotor (left) and Octorotor (right) based on TEGOv2.

Moreover, the lessons learned from the multirotor design chapter allowed the author of this

thesis to select COTS components for the MAST Lab current and future test-beds of different

1https://www.youtube.com/watch?v=G9jUP6Z5ENA
2https://en.wikipedia.org/wiki/The_Gadget_Show

188 Chapter 8 Conclusion

https://www.youtube.com/watch?v=G9jUP6Z5ENA
https://en.wikipedia.org/wiki/The_Gadget_Show

sizes, as well as for academic competitions such as the IMechE UAS Challenge, where the

author has supervised and led the University of Glasgow team in two occasions (2015 and

2016).

8.1.2 On MRUAV control

The flight stack Vargas et al., 2016 was described and presented in Sec. 3.3 and it has

become one of the biggest contributions of this thesis, due to the impact that this solution

has had on the MAST Lab and in other universities and companies around the world. Figure

8.2 is composed of two light painting photographies showing the difference of a quadrotor

attempting a figure-of-eight trajectory tracking using the old structure (left) and after the

flight stack was implemented (right).

Fig. 8.2.: Comparison light painting photographies of previous structure (left) vs flight stack
(right).

A key consideration in the design of the flight stack is the distribution of computation

between on-board and external processing and communication between vehicles and with

external systems. The flight stack can be defined as a system used for GNC (Guidance,

Navigation and Control) of a UAV without constant control by a human operator being

required. Since this idea was first used and released by the author of this thesis it has

being accepted and replicated over a number of projects internationally (USA, UK, China,

Canada, India, Pakistan, Israel, Mexico), thanks in part to the videos 3 4 and the blog posts
5 created/distributed by the author. Moreover, along with the DronePilot framework, such

a contribution becomes a useful tool for researchers working in GNC of UAVs.

3https://www.youtube.com/watch?v=TkYeQ6orN8Y
4https://www.youtube.com/watch?v=XyyfGp-IomE
5https://altax.net/blog/flight-stack/

8.1 Summary of contributions 189

https://www.youtube.com/watch?v=TkYeQ6orN8Y
https://www.youtube.com/watch?v=XyyfGp-IomE
https://altax.net/blog/flight-stack/

The pyMultiWii python module (Vargas, 2013b) is another open source software contribu-

tion. The module is described in A.4 and it is in charge of sending and receiving commands

to and from the naze32 flight controller. Currently, this repository is one of the most visited

and used from the author. Its purpose is not only related to UAV’s, but it can be used on

several applications (ground robots, projects requiring IMU and/or orientation data). The

author used it on an interdisciplinary project at the University of Glasgow called Anemoi.

The project and its results are shown in 6.

The control systems inside the DronePilot framework (Vargas et al., 2014) used in this thesis

perform accurately and precisely, and their code is open source so that any person interested

can modify them, replicate them and use them in their own research. DronePilot has been

released with a GNU GPLv3 license, which is a copy-left license that requires anyone who

distributes the code or a derivative work to make the source available under the same terms,

and also provides an express grant of patent rights from contributors to users. Even though

the chosen control structures inside DronePilot are PID, the framework is designed in such

a way that it allows an easy change of the control structure in order to implement other

academically interesting control methodologies. Furthermore, with the aid of the extra com-

panion computer, the system can benefit from the integration of extra peripherals. During

the developing of this thesis, several peripherals were tested alongside the MRUAV test-bed,

such as an ultrasonic sonar, CV camera sets, indoor positioning systems and cameras. Such

devices were not documented in this thesis due to the fact that they were not used for the

main goal of the research. Nevertheless, incorporating these capabilities adds functionality

and flexibility to the system and contributes to future applications.

Analysing and testing two of the currently most important flight controllers (naze32 and

Pixhawk) for UAVs has a great relevance to researchers interested in this field. Results

of this thesis may aid researchers in their assessment and selection of flight controllers

that better suits their particular research needs. It has been shown that Pixhawk is more

oriented to outdoor projects while naze32 will be more suited for indoors applications.

These conclusions further indicate that there is no general purpose flight controller, and that

it has to be selected according to the particular requirements of the project. The limitation

of the flight stack in this project relies in the flight controller, its control methodology and

responsiveness; yet if a different flight controller is used, the control strategy would have

to be modified to fit the new avionics suite control strategy. The flight stack and sections of

the DronePilot framework were used by the University of Glasgow team in the IMechE UAS

Challenge (2015 and 2016), in order to fly a MRUAV through a set of specified way-points

inside a closed airfield. The vehicle was required to search (via a special visual marker)

6http://www.gla.ac.uk/colleges/scienceengineering/staff/newsletterarchive/
newsletterjune2015/headline_406758_en.html

190 Chapter 8 Conclusion

http://www.gla.ac.uk/colleges/scienceengineering/staff/newsletterarchive/newsletterjune2015/headline_406758_en.html
http://www.gla.ac.uk/colleges/scienceengineering/staff/newsletterarchive/newsletterjune2015/headline_406758_en.html

for a location where a payload (1kg of flour) had to be dropped and then continue to

another set of way-points, ending up landing safely; with the premise that everything must

be performed autonomously.

8.1.3 On machine learning

It was demonstrated that RNNs are an excellent tool as universal approximators (predic-

tors and estimators) for time-series sensor data, altought in some occassions they have the

tendency to learn what was not expected from them to learn. The applications of RNNs

algorithms (ESN, RTRL, BPTT) used in this work are an effective tool for non-linear system

modeling and control (shown on simulation in Vargas et al., 2014).

The RNN ESN approach is the fastest algorithm to iterate into usable results and, when

combined with optimisation, it can achieve better results in comparison with BPTT and

RTRL approaches. Training times decreased 99.7% from RTRL to ESN and 99.6% from

BPTT to ESN which shows one of the great advantages of using the Reservoir Computing

approach. All the methodologies showed good consistency when compared with observed

real flight data of the reviewed applications. Regarding experimental data collection, which

is an important branch for machine learning algorithms, it was shown that gathering the

same kind of input during training when collecting data results in a more efficient process,

as it will later be required in testing or at exploitation, as long as the training data is more

varied that it is expected on the exploitation phase. The author has used the Reservoir

Computing ESN approach in Vargas et al., 2014, Vargas et al., 2015b and Vargas et al.,

2015a, however it has been proved that the ESN approach became the best option when

doing system identification of MRUAVs, followed by RTRL and BPTT. Alternatively, the best

slung load relative position estimator was the RTRL approach, with BPTT being the second

best and ESN the third one. These results render further evidence that when doing this type

of research it is good practice to complete tests with different approaches in order to find

the best overall fit.

The BPTT and RTRL approaches require large amounts of CPU power when training. The

Reservoir Computing methodologies can possibly be integrated in an on-line manner (train-

ing or reinforcement can happen in real time) on board of the companion computer, thus,

creating several new paths of applications for these types of machine learning approaches

for multirotors. Increasingly powerful computers create opportunities for applications of

large RNN such as ESN. Even with modern computers the basic ESN design recipe is not

sufficient to create a successful ESN for a variety of important applications. Nevertheless,

8.1 Summary of contributions 191

improved ESN design and training procedures are needed to increase the chances of getting

a successful ESN in a reasonable number of trials.

CMA-ES was proved to be a satisfactory evolutionary strategy not only for the ESN approach

but for all RNNs algorithms. It was even tested against a genetic algorithm optimisation

approach for a sin wave generator. In this test, the evolutionary strategy reduced the error

around 95% against the GA approach. The machine learning methodologies designed and

used in this thesis naturally solved sensor aliasing problems, which are common problems

when working in facilities like the one used (Motion capture), as well as with noisy IMU

readings from the flight controllers for UAVs.

8.1.4 On system identification of multirotors

As shown from experimental results, the black-box models generated in this work can have

good generalization capabilities and can learn the dynamics of a MRUAV with good accuracy.

More importantly, it was demonstrated that the learned dynamics can be used effectively

on-board of the system, inside the flight stack. It was proven experimentally that the sys-

tem identification architecture is potentially a solution for short indoors GPS-denied flights

because the vehicle can predict, with a margin of error, its own position from current flight

data. As an example, if the MRAUV is flying outdoors with GPS coverage and there is a

sudden GPS-signal error, the proposed algorithm could predict the MRUAV’s position until

the GPS-signal is restored.

The methods described in Section 6.2 describe the data collection process which is paramount

for generating black-box models. The flight techniques must be a combination of manual

and automatic flights. This is done to encourage good results on test data operating in

a working range that was used for training. Having to satisfy this rule with a non-linear

system is complicated, while exciting all the rich dynamics of MRUAVs can produce large

instabilities ending up in an increase chance of crashing.

The evolutionary strategy CMA-ES helped improved the parameters of the ESN, decreasing

the error by 99.2%. It also highlighted that the optimal spectral radius for system identifica-

tion application must be greater than the one stated at the beginning of the research. The

task of identifying the dynamics of a quadrotor therefore requires a larger memory for the

input when using echo state networks. The best-performance RNN algorithms in the system

identification of multirotors were ESN and RTRL. The MSE between them after running op-

timisation routines was 0.0007, indicating consistent performance. BPTT lagged behind the

other two architectures.

192 Chapter 8 Conclusion

8.1.5 On slung load estimators

Two slung load position estimators were presented and tested. The first estimator uses a

vision based system (camera) as the only sensor input. This estimator uses a stream of

images from a downwards looking gimballed-camera to calculate a position vector of the

load in the MRUAV fixed frame pointing from the camera to the load, therefore several

computer vision colour tracking algorithms were designed. These CV algorithms became

another open source software contribution of this thesis in the form of a repository 7, which

is described in Appendix A.5. The repository led to a technical reviewer position for the

author of this thesis and the work can be seen in Pajankar et al., 2015.

The second estimator uses real flight data to train a machine learning architecture that can

predict the position vector of the load in the MRUAV fixed frame using the vehicle pose

and pilot pseudo-controls as input. This estimator was tested experimentally with excellent

precision and accuracy results. The data collection methodology was of great importance

due to the different flight modes created in order to excite the dynamics of the slung load.

This approach required testing and replacement of a number of frame parts and multirotor

components. The machine learning slung load position estimator shows good performance

and robustness when non-linearity is significant and varying tasks are given in the flight

regime. The performance of the control scheme was evaluated through flight testing and

it was found that the control scheme is capable of yielding a significant reduction in slung

load swing over the equivalent flight without the controller scheme. The performance of the

control scheme with and without controller can be seen in Fig. 7.37. The control scheme

is able to reduce the control effort of the position control due to efficient damping of the

slung load. Hence, less energy is consumed and the available flight time increases.

Regarding power management, flying a MRUAV with a load will reduce the flight times

because of two main factors. The first one relates to adding extra weight to the vehicle,

consequently the rotors must generate more thrust to keep the desired height of the tra-

jectory controller, hence reducing the flight time. The second factor relates to aggressive

oscillations of the load for this reason. The position controller demands faster adjustment

to the attitude controller which increases accordingly the trust generated by the rotors. The

proposed swing-free controller increases the time of flight of the MRUAV when carrying a

load by 38% in comparison with the same flight without swing-free control. This is done by

reducing the aggressive oscillations created by the load.

7https://github.com/alduxvm/rpi-opencv

8.1 Summary of contributions 193

https://github.com/alduxvm/rpi-opencv

8.1.6 Main contribution

The main contribution of this thesis is the development of a control system that can be inte-

grated into an unmanned autonomous multirotor and thereby enable swing-free slung load

flights. This is achieved through a two-step approach: First a slung load estimator capable

of estimating the relative position of the suspension system. This system was designed using

a machine learning recurrent neural network approach. The final step is the development

of a feedback cascade control system that can be put on an existing unmanned autonomous

multirotor and makes it capable of performing manoeuvres with a slung load without in-

ducing residual oscillations. The overall control concept is a classical tri-cascaded scheme

where the slung load controller generates a position reference based on the current vehicle

position and the estimated slung load position. The outer loop controller generates refer-

ences (attitude pseudo-commands) to the inner loop controller (the flight controller).

8.2 Future work

The methodologies developed in this thesis were created for indoor vehicles inside the

MAST Lab. As future work, the proposed control scheme can be implemented outdoors on

a larger multirotor similar to the one presented in Fig. 7.4. The implementation can be

carried out using the same flight stack, but changing the flight controller from naze32 to a

pixhawk, which is more suited for GPS-enabled flights. The DronePilot framework is ready

to interact with the pixhawk flight controller and changing sections of the core code will

enable running tests. The machine learning slung load position estimator will have to be

modified in order to run at a different rate as the one used indoors. GPS devices supply

the system with 10Hz position updates while the Mocap system provides it 10 times faster.

The computer vision estimator could be used to gather data for a new machine learning

estimator, therefore allowing a MRUAV to predict the slung load position not requiring an

on-board gimballed camera.

In the system identification of multirotors, a general model can be created using training

data from outdoors flights including multirotors of different sizes and different components.

This data can be used to train a black box system model that will be able to predict the states

of a general multirotor vehicle while flying. Therefore, allowing the vehicle to be able to

safely continue flying even if there is some problems with its sensors, including the position

system (GPS).

A second future opportunity is to convert the DronePilot framework into a ROS2 application.

This framework could be expanded or improved if the methodology of ROS (Robot Opera-

194 Chapter 8 Conclusion

tive System) (Quigley et al., 2009) is used. Such a methodology provides a common state-

of-the-art platform to achieve communication within and between heterogeneous robots.

Moreover, recently there is a new framework that helps ROS users to develop applications

of robot swarms, by providing essential mechanisms, such as abstraction of swarms, swarm

management, various communication tools, and a runtime environment, all within the stan-

dard ROS ecosystem. ROS2 is the new iteration of ROS and it will take advantage of the

opportunity to improve our user-facing APIs. At the moment of this document being written

it is under heavy development and all releases are currently "alpha"-prefixed.

ROS2 will integrate new cases such as:

• Teams of multiple robots

• Small embedded platforms

• Real-time systems

• Non-ideal networks

• Prescribed patterns for building and structuring systems

This means that a potential new application can be more easily created in the case of swing-

free multi-vehicle slung load operations, allowing a fleet of MRUAVs to carry a larger load.

To date most scientific research and commercial applications are limited to using single

expensive multirotor UAVs. A future task is to develop inexpensive and expendable Mini-

UAVs and the associated control technologies that would enable a multitude of UAVs to

perform complex tasks cooperatively. These tasks may include object manipulation such as

lifting and delivery of swung loads to disaster locations or data collection tasks of sensor

fusion used in natural resource management.

Creating a swarm of MRUAV entails a number of challenges, among them, being able to

achieve autonomy (difficult to control remotely by single pilot) and coordinating among

a group of vehicles that differentiate the swarm from single vehicle operations. One of

the main advantages of using a swarm is that if one of the MRUAV becomes inoperative

(e.g. due to battery life-time or failure), the swarm can keep going with its current mission.

Besides, applications such as surveillance or search and rescue that require coverage of

large areas or imagery from multiple sensors can be addressed by coordinating multiple

MRUAVs, each with different sensors.

Deep learning, which was first theorized in the early 80’s (and perhaps even earlier), is

one paradigm for performing machine learning. Due to a flurry of modern research, deep

learning is again on the rise due to its potential as a good tool to teach computers to do

what human brains can do naturally.

8.2 Future work 195

8.3 Extra support and projects

The author of this thesis directly supported and guided the following undergraduate and

MSc theses:

• Kirill Kurbanov. Design of a compound quadrotor. BSc Aeronautical Engineering. Uni-

versity of Glasgow. 2014

• Daniel Finnigan. A Comparison of System Identification Techniques for Rapid Prototyp-

ing of micro Unmanned Aerial Vehicles. MEng Aerospace Engineering. University of

Glasgow. 2015

• Krisjanis Kuksa. Implementing a real-time control on a micro-controller. MEng Aerospace

Engineering. University of Glasgow. 2015

• Ulises Ramirez. Diseño, construcción y control de una aeronave tipo dron. BSc Mecha-

tronics Engineering. National Autonomous University of Mexico. 2015

• Davide Restuccia. Object detection for navigation of micro UAV nap of the earth flight.

MEng Aerospace Engineering. University of Glasgow. 2015

• Kyle Brown. Multi-rotor System Identification and Control using Velocity Vector Com-

mands. MEng Aerospace Engineering. University of Glasgow. 2016

• Michael Caba. Severe Accident Mobile Investigator (SAMI) - Quadrotor vehicle. BSc

Systems Engineering. University of North Carolina at Charlotte. 2016

8.3.1 IMechE UAS Challenge

The author of this thesis supervised and lead an interdisciplinary team of undergraduate

and graduate students from the University of Glasgow to carry out the IMechE UAS Grand

Challenge (IMechE, 2014). This competition (Fig.fig:conclusion:grand) undertake a full

design and build cycle of a Unmanned Aerial System with a specific mission objective. In

the first two seasons of the competition (2015 and 2016) the mission objective was to safely

deliver a payload thorough a way-point circuit, finding the area where the payload must be

delivered and return to the takeoff location. The main requirement was that the mission

must be carry out autonomously, with no input from the users (except start and stop) or

pilot unless the aircraft was out of control.

These type of projects encourage and promote UAS research within academia as well as

promoting inter-university collaboration to encourage fundamental and interdisciplinary

UAS research. The Glasgow team was directly benefited with MRUAV design, flight stack,

human pilot and a modified version of the DronePilot software which are contributions of

this thesis and author. In the 2016 challenge, the Glasgow team manage to obtain two

196 Chapter 8 Conclusion

Fig. 8.3.: University of Glasgow quadrotor vehicle performing during competition

awards and a commendation. The awards included Most Environmentally Friendly Team

and Most Promise Team while the commendation was for Manufacturing.

8.3.2 Media outreach

Another practical contribution was the text and video documentation of most of the parts of

this research work in order for external people to benefit from it. In the text form, several

work is documented in blog posts, how-to instructions and similar items in 8.

In the video documentation section, the most relevant videos from the author are shown

in Tab. 8.1. This methodology became apparent to the author since he participated in the

Mathworks Simulink Challenge 2014. Recently (Jul-2017), the author has more than 506

subscribers and 133,688 views on his videos.

Consider it DrONE TM. - Aldo Vargas

8http://altax.net/blog/

8.3 Extra support and projects 197

http://altax.net/blog/

Title Youtube ID Release date Views
Drone Pilot - Slung Load controller (raspberry pi + naze32) 94agSRWyJPc Feb 8, 2017 6848
Computer vision using GoPro and Raspberry Pi Z2Hq4jDWunk Aug 17, 2016 4465
Drone Pilot - Trajectory controller (raspberry pi + naze32) k6tswW7M_-8 May 13, 2016 4457
Computer Vision test using a Raspberry Pi 3 pu_9DGT2qO0 Mar 12, 2016 436
Drone Pilot - Position hold controller (raspberry pi + naze32) oN2S1qJaQNU Feb 20, 2016 3521
Color detection using QX10 and openCV sRRwZ2hWfGU Feb 12, 2016 381
HD low latency video transmission with Raspberry Pi 0nqXGWzH2-s Oct 1, 2015 5427
5.038 kg HobbyKing Beer Lift 2015 - 500 mm class orGHgrHXOYc Sep 7, 2015 819
Flying drone from computer - raspberry pi + naze32 XyyfGp-IomE Aug 23, 2015 5853
Flying drone from computer - raspberry pi + pixhawk TkYeQ6orN8Y Aug 23, 2015 40544
Odroid U3 + naze32 XpUyepii0 Jul 29, 2015 734
Raspberry Pi commands a multirotor to take off KnjYYBKLK0s Jun 20, 2015 1564
NoIR camera onboard drone cfCNVA1C098 Apr 8, 2015 609
Drone color tracking xlQw_mnJtNQ Mar 17, 2015 1291
Quadcopter Position Controller #SimulinkChallenge2014 suD0DdpGi8k Dec 18, 2014 1501
MultiWii + Rapsberry Pi sending UDP to Simulink ZMc3AZBpyaE Dec 7, 2014 19497
Python and MultiWii Serial protocol TpcQ-TOuOA0 Dec 1, 2014 1915
TEGO indoor position control m20qs8lJPCY Sep 9, 2014 215

Tab. 8.1.: List of the most relevant instructional videos.

198 Chapter 8 Conclusion

https://www.youtube.com/watch?v=94agSRWyJPc
https://www.youtube.com/watch?v=Z2Hq4jDWunk
https://www.youtube.com/watch?v=k6tswW7M_-8
https://www.youtube.com/watch?v=pu_9DGT2qO0
https://www.youtube.com/watch?v=oN2S1qJaQNU
https://www.youtube.com/watch?v=sRRwZ2hWfGU
https://www.youtube.com/watch?v=0nqXGWzH2-s
https://www.youtube.com/watch?v=orGHgrHXOYc
https://www.youtube.com/watch?v=XyyfGp-IomE
https://www.youtube.com/watch?v=TkYeQ6orN8Y
https://www.youtube.com/watch?v=XpUyepii0
https://www.youtube.com/watch?v=KnjYYBKLK0s
https://www.youtube.com/watch?v=cfCNVA1C098
https://www.youtube.com/watch?v=xlQw_mnJtNQ
https://www.youtube.com/watch?v=suD0DdpGi8k
https://www.youtube.com/watch?v=ZMc3AZBpyaE
https://www.youtube.com/watch?v=TpcQ-TOuOA0
https://www.youtube.com/watch?v=m20qs8lJPCY

AAppendix

A.1 Makerbot Replicator 2

In September 2012, Makerbot Industries introduced the Replicator 2. This printer has a

build envelope of (285.0 mm × 153.0 mm × 155.0 mm (Width x Depth x Height)) and can

print at 100 µm per layer. It can print only PLA plastic and does not include the heated

build plate, extruder, or high-temperature settings for ABS plastic. Full specifications are

shown in Tab. A.1.

Fig. A.1.: Makerbot Replicator 2

Print Technology Fused Filament Fabrication
Build Volume 285.0 mm × 153.0 mm × 155.0 mm
Layer Resolution 100 µm
Positioning Precision XY: 11 µm Z: 2.5 µm
Filament Diameter 1.75 mm
Nozzle Diameter 0.4 mm

Tab. A.1.: Makerbot Replicator 2 specifications

199

A.2 Rotite

The information showed in this appendix was given by the inventor/designer of the Rotite,

Mr. Stuart Burns. Only the Rotite A will be showed on figure A.2. The design was given

only for the usage of this academic effort.

Fig. A.2.: Rotite patent figure

A.3 Rotor analysis tool

This tool designed and built by Aldo Vargas1, it provides the data necessary to make a anal-

ysis of the behaviour of the rotor tuple. This tuple has three main components: [electric

motor, electronic speed control and propeller]. Therefore we need the ability to measure at

least four important parameters which are: voltage and current being consumed by the

motor and electronic speed control, thrust produced by the propeller and the commanded

PWM signal to the motor. The final tool can be seeing at figure A.3. In the electrical anal-

1http://www.aldovargas.com/

200 Chapter A Appendix

http://www.aldovargas.com/

Fig. A.3.: Rotor analysis tool.

ysis, this tool compromises two different ways to obtain data. The redundancy here, helps

to eliminate sensor errors by averaging the measurements from the two different sensing

components. The first component is a APM power module A.4, being the second one a

180Amps Power Analyser2. The load cell is a Wheatstone Bridge with a HX711 integrated

circuit (A.5) that amplifies that signal and allows to measure the force being applied to a

metal bar that is being pushed by the propeller thrust and the motor on top of bearings

(to provide more support to the system). The input to the ESC, a PWM signal, is gener-

ated using the internal timers on a ATMEGA micro-controller. The advantage of using this

methodology is that the PWM signal is identical to the one used by the MultiWii-based flight

controllers, which then ensures that a specific PWM will correspond to the precise thrust

generated by the rotor. This will be a added benefit to find the proper take-off PWM values

that will translate into gains for the altitude controllers. The ATmega328P has three timers

2http://www.hobbyking.co.uk/hobbyking/store/__75944__Turnigy_180A_Watt_Meter_and_
Power_Analyzer.html

A.3 Rotor analysis tool 201

http://www.hobbyking.co.uk/hobbyking/store/__75944__Turnigy_180A_Watt_Meter_and_Power_Analyzer.html
http://www.hobbyking.co.uk/hobbyking/store/__75944__Turnigy_180A_Watt_Meter_and_Power_Analyzer.html

Measurement Component
Current APM power module and Turnigy 180A

Watt Meter and Power Analyser
Voltage APM power module and Turnigy 180A

Watt Meter and Power Analyser
Input signal PWM generated using timers on an Ar-

duino board
Thrust Load cell with HX711 load cell ampli-

fier

Tab. A.2.: Rotor analysis tool components.

Fig. A.4.: APM power module schematics.

known as Timer 0, Timer 1, and Timer 2. Each timer has two output compare registers

that control the PWM width for the timer’s two outputs: when the timer reaches the com-

pare register value, the corresponding output is toggled. The two outputs for each timer

will normally have the same frequency, but can have different duty cycles (depending on

the respective output compare register). Each of the timers has a prescaler that generates

the timer clock by dividing the system clock by a prescale factor such as 1, 8, 64, 256, or

1024. The Arduino has a system clock of 16MHz and the timer clock frequency will be the

system clock frequency divided by the prescale factor. Note that Timer 2 has a different set

of prescale values from the other timers. The following code fragment will set up the fast

PWM technique on pin 9:

1 TCCR1A |= (1<<WGM11); TCCR1A &= ~(1<<WGM10); TCCR1B |= (1<<WGM13);

2 TCCR1B &= ~(1<<CS11);

3 ICR1 |= 0x3FFF;

4 TCCR1A |= _BV(COM1A1);

202 Chapter A Appendix

Fig. A.5.: Load cell amplifier HX711.

And the following snippet will read the voltage, current sensors and update the value of the

PWM on pin 9:

1 void loop() {

2 Voltage = analogRead(VPin);

3 Current = analogRead(IPin);

4 val = analogRead(KnobPin);

5 val = map(val, 0, 1024, 1000, 2000);

6 pwm = map(val, 1000, 2000, 0, 255);

7 0CR1A = (val<<3);

8 delay(15);}

The entire code is available upon request. This is a open source project.

A.4 pyMultiWii

This Python module written by Aldo Vargas handles the MultiWii Serial Protocol (MSP)

in order to send and receive data from MultiWii enabled flight controller units. This is a

text-based/console, no Graphical User Interface (GUI), it works by sending and reading data

from a computer serial port connected to a MultiWii board. This module is used for doing

different requests to my flight controllers in order to control them using the DronePilot

framework Vargas et al., 2014.

A.4.1 MultiWii Serial Protocol

MSP is a protocol designed by the MultiWii community (MultiWii), with the idea to be light,

generic, bit wire efficient, secure. The MSP data frames are structured as showed on figure

A.6. The general format of a MSP message is: < header >,< direction >,< size >,<

A.4 pyMultiWii 203

Fig. A.6.: MSP data frame.

command >,< crc > Where:

• header: the ASCII characters $M

• direction: the ASCII character < if the message goes to the MultiWii board or > if

the message is coming from the board

• size: number of data bytes, binary. Can be zero as in the case of a data request to the

board

• command: message_id of MSP

• data: values to be sent. UINT16 values are LSB first

• crc: (cyclic redundancy check) checksum, XOR of < size >,< command > and each

data byte into a zero sum

The current commands implemented on the pyMultiWii Python module are showed on Tab.

A.3.

Command Message_id Data Comments
MSP_RAW_IMU 102 accx, accy, accz, gx,

gy, gz
Raw Accelerometer
and Gyroscope mea-
surements

MSP_MOTOR 104 motor*8 PWM being written
to the 8 outputs of
the board

MSP_RC 105 rcData Channels from the
radio control

MSP_ATTITUDE 108 angX, angY, heading Orientation of the
board

MSP_SET_RAW_RC 200 rcData This request is used
to inject RC channel
via MSP

Tab. A.3.: pyMultiWii MSP implemented commands.

A.4.2 Data flow

There is basically three types of messages to interact with a MultiWii board. Those are com-

mand, request and response. Command is an incoming message without implicit outgoing

204 Chapter A Appendix

response from the board, request is an incoming message with implicit outgoing response

while response is the outgoing message resulting from an incoming request. If, e.g., the

orientation of the board is needed, then a message with type request and ID = 108 must be

created and then sent to the board, after being sent, the board will reply with a response.

The function definition of how to send a request to the board:

1 def sendCMD(self, data_length, code, data):

2 checksum = 0

3 total_data = [’$’, ’M’, ’<’, data_length, code] + data

4 for i in struct.pack(’<2B%dh’ % len(data), *total_data[3:len(total_data)]):

5 checksum = checksum ^ ord(i)

6 total_data.append(checksum)

7 try:

8 b = None

9 b = self.ser.write(struct.pack(’<3c2B%dhB’ % len(data), *total_data))

10 except Exception, error:

11 print "\n\nError in sendCMD."

12 print "("+str(error)+")\n\n"

13 pass

The next code snippet is just a part on how to mix a request message and get the response at

the same time, its noticed how the first action is to send a request to the board, then there

is an infinite loop that waits until the MSP header is found on the read serial buffer:

1 start = time.clock()

2 self.sendCMD(0,cmd,[])

3 while True:

4 header = self.ser.read()

5 if header == ’$’:

6 header = header+self.ser.read(2)

7 break

8 datalength = struct.unpack(’<b’, self.ser.read())[0]

9 code = struct.unpack(’<b’, self.ser.read())

10 data = self.ser.read(datalength)

11 temp = struct.unpack(’<’+’h’*(datalength/2),data)

12 elapsed = time.clock() - start

A.4 pyMultiWii 205

13 self.ser.flushInput()

14 self.ser.flushOutput()

A.4.3 Performance

The entire implementation of this protocol does not include a sleep function, which means

that is very fast and efficient, the rate of communication would then depend on the com-

puter and the board capabilities. The module is also designed to be extremely simple to

use, the next code will request and print (to the host computer) the orientation of the a

MultiWii board connected to a USB port:

1 from pyMultiwii import MultiWii

2 from sys import stdout

3

4 if __name__ == "__main__":

5 board = MultiWii("/dev/ttyUSB0")

6 try:

7 while True:

8 board.getData(MultiWii.ATTITUDE)

9 print board.attitude

10 except Exception,error:

11 print "Error on Main: "+str(error)

This module can achieve communication back and forth of 300hz, this was achieved using a

Naze32 (32bits micro-controller) board and a Odroid U3. The next lines shows the response

of the code above, for a few seconds, its noted that the elapsed time of communication is

0.016 seconds, this is around 62.5hz, this was taken using a MultiWii AIO 2.0 (8bits micro-

controller) board and a Raspberry Pi:

1 {’timestamp’: 1417432436.878697, ’elapsed’: 0.016, ’angx’: -26.8, ’angy’: -24.8, ’heading’: -84.0}

2 {’timestamp’: 1417432436.894663, ’elapsed’: 0.016, ’angx’: -26.8, ’angy’: -24.7, ’heading’: -84.0}

3 {’timestamp’: 1417432436.910673, ’elapsed’: 0.016, ’angx’: -26.7, ’angy’: -24.8, ’heading’: -84.0}

4 {’timestamp’: 1417432436.926812, ’elapsed’: 0.016, ’angx’: -26.7, ’angy’: -24.7, ’heading’: -84.0}

5 {’timestamp’: 1417432437.134683, ’elapsed’: 0.016, ’angx’: -26.6, ’angy’: -24.2, ’heading’: -85.0}

6 {’timestamp’: 1417432437.150524, ’elapsed’: 0.016, ’angx’: -26.6, ’angy’: -24.1, ’heading’: -85.0}

7 {’timestamp’: 1417432437.166525, ’elapsed’: 0.016, ’angx’: -26.6, ’angy’: -24.1, ’heading’: -85.0}

206 Chapter A Appendix

A.4.4 Influence

This Python module has being used in several projects, not just the ones developed for

this document, but every week (approximately) there is a developer e-mail communication

either thanking the creator of the module and/or asking questions about it. Its important

to notice that this module is also released on a GNU General Public Licence. The usage of

Github 3 has being a key factor in order to make this module publicly available.

Fig. A.7.: pyMultiWii - Github project Stars

A.5 Computer Vision techniques

This repository 4 written by Aldo Vargas handles provides computer vision Python-code

examples that make usage of the openCV framework Bradski, 2000 and such examples

are targeted to work on credit-card-sized computers with relative low CPU power. The

repository contains methods for doing the next computer vision tasks:

• Colour tracking (in several formats)

• Face detection (only for front face) (Fig. A.8)

• Motion detection

• Object detection (using region of interest)

• Time-lapse photography using openCV

• Common examples on how to open image and video files

It also contains comprehensive documentation on how to prepare a companion computer

(RaspberryPi) for tasks such as computer vision. This repository triggered a technical re-

viewer position for the author of this thesis and the work can be seen at Pajankar et al.,

2015. Such citation is a book that provides the skills needed to successfully design and

implement Raspberry Pi and Python-based computer vision projects.

3http://www.github.com/
4https://github.com/alduxvm/rpi-opencv

A.5 Computer Vision techniques 207

http://www.github.com/
https://github.com/alduxvm/rpi-opencv

Fig. A.8.: Screen shot of the face detection algorithm working in a Raspberry Pi

A.5.1 Influence

This repository has being used in several projects, not just the ones developed for this thesis

as a method for estimating the slung load position. Therefore is one of the authors most

popular repositories A.9. Its important to notice that this module is also released on a GNU

General Public Licence.

Fig. A.9.: rpi-opencv - Github project Stars

208 Chapter A Appendix

Bibliography

Adigbli, Patrick, Christophe Grand, Jean-Baptiste Mouret, and Stéphane Doncieux (2007).
„Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and
Backstepping Techniques“. In: European Micro Air Vehicle Conference and Flight Competi-
tion September, pp. 17–21 (cit. on p. 10).

Alexanderson, E. F. W., M. A. Edwards, and C. H. Willis (1938). „Electronic speed control
of motors“. In: Electrical Engineering 57.6, pp. 343–354. URL: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6431329 (cit. on p. 39).

Alpaydn, Ethem (2014). Introduction to machine learning. Vol. 1107, pp. 105–128. arXiv:
0904.3664v1 (cit. on p. 105).

Ampatis, Christos and Evangelos Papadopoulos (2014). „Parametric design and optimiza-
tion of multi-rotor aerial vehicles“. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6266–6271. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6907783 (cit. on p. 8).

Anastasiou, Athanasios, Charalambos Tsirmpas, Alexandros Rompas, Kostas Giokas, and
Dimitris Koutsouris (2013). „3D printing: Basic concepts mathematics and technologies“.
In: 13th IEEE International Conference on BioInformatics and BioEngineering. IEEE, pp. 1–
4. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6701672 (cit. on p. 28).

Anderson, D. (2011). „Evolutionary algorithms in airborne surveillance systems: image en-
hancement via optimal sightline control“. In: Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering 225.10, pp. 1097–1108. URL: http:
//pig.sagepub.com/lookup/doi/10.1177/0954410011413014 (cit. on p. 130).

Anderson, David P., Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer (2002).
„SETI @ home: an experiment in public-resource computing“. In: Communications of the
ACM 45.11, pp. 56–61.

Anderson, James A., Edward. Rosenfeld, and Andras. Pellionisz (1988). Neurocomputing.
MIT Press (cit. on p. 113).

Antonelli, Gianluca (2015). „Robotic Research: Are We Applying the Scientific Method?“
English. In: Frontiers in Robotics and AI 2. URL: http://journal.frontiersin.org/
article/10.3389/frobt.2015.00013/abstract (cit. on p. 56).

Antonelo, Eric Aislan (2011). „Reservoir Computing Architectures for Modeling Robot Nav-
igation Systems“. PhD thesis. Universiteit Gent (cit. on pp. 18, 123).

Aoustin, Yannick and Alexander Formal’sky (2003). „Simple anti-swing feedback control for
a gantry crane“. In: Robotica 21.6, pp. 655–666 (cit. on p. 172).

209

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6431329
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6431329
http://arxiv.org/abs/0904.3664v1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6907783
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6907783
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6701672
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6701672
http://pig.sagepub.com/lookup/doi/10.1177/0954410011413014
http://pig.sagepub.com/lookup/doi/10.1177/0954410011413014
http://journal.frontiersin.org/article/10.3389/frobt.2015.00013/abstract
http://journal.frontiersin.org/article/10.3389/frobt.2015.00013/abstract

Apvrille, Ludovic, Yves Roudier, and Tullio Joseph Tanzi (2015). „Autonomous drones for
disasters management: Safety and security verifications“. In: 2015 1st URSI Atlantic Radio
Science Conference (URSI AT-RASC). IEEE, pp. 1–2. URL: http://ieeexplore.ieee.org/
document/7303086/ (cit. on p. 1).

Atmosphere, U S Standard (1964). „Standard Atmosphere“. In: Nature 201.4919, pp. 537–
538 (cit. on p. 39).

Barmpounakis, Emmanouil N., Eleni I. Vlahogianni, and John C. Golias (2017). „Unmanned
Aerial Systems for transportation engineering: Current practice and future challenges“.
In: International Journal of Transportation Science and Technology (cit. on p. 2).

Beard, Randal W. (2008). „Quadrotor Dynamics and Control“. In: Brigham Young Univer-
sity, pp. 1–47. URL: http : / / image . ednchina . com / GROUP / uploadfile / 201304 /
20130429210226589.pdf (cit. on p. 10).

Beaufays, Françoise and Eric a. Wan (1994). „Relating Real-Time Backpropagation and
Backpropagation - Through - Time: An Application of Flow Graph Interreciprocity“. In:
Neural Computation 6, pp. 296–306 (cit. on p. 120).

Bengio, Yoshua, Paolo Frasconi, and Patrice Simard (1993). „The problem of learning long-
term dependencies in recurrent networks“. In: IEEE International Conference on Neural
Networks Conference Proceedings. Vol. 1993-Janua, pp. 1183–1188 (cit. on p. 17).

Benjamin, Medea (2013). Drone warfare : killing by remote control. Verso, p. 246 (cit. on
p. 1).

Bian, Xinqian and Chunhui Mou (2011). „Identification of non-linear dynamic model of
UUV based on ESN neural network“. In: Proceedings of the 30th Chinese Control Confer-
ence, pp. 1432–1437 (cit. on p. 19).

Bisgaard, Morten (2007). „Modeling, estimation, and control of helicopter slung load sys-
tem“. PhD thesis. Aalborg University.

Bisgaard, Morten, Jan Dimon Bendtsen, and Anders Cour-Harbo (2006). „Modelling of
Generic Slung Load System“. In: Proceedings of AIAA Modeling and Simulation Technolo-
gies Conference 32.2, pp. 1–20 (cit. on p. 12).

Bisgaard, Morten, Morten Bisgaard, Anders La Cour-harbo, and Jan Dimon Bendtsen (2010).
„Adaptive Control System for Autonomous Helicopter Slung Load Operations“. In: CON-
TROL ENGINEERING PRACTICE, pp. 800–811. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.303.2541 (cit. on p. 13).

Bishop, Robert H. (2007). Mechatronic Systems, Sensors, and Actuators: Fundamentals and
Modeling. Vol. 19. CRC Press, p. 692. URL: https://books.google.com/books?id=
3UGQsi6VamwC&pgis=1 (cit. on p. 9).

Blum, Adam and Adam (1992). Neural networks in C++ : an object-oriented framework for
building connectionist systems. Wiley, p. 213 (cit. on p. 17).

Boden, Mikael (2001). „A guide to recurrent neural networks and backpropagation“. In:
Electrical Engineering 2, pp. 1–10 (cit. on p. 15).

Bouabdallah, Samir (2007). „Design and Control of Quadrotors With Application To Au-
tonomous Flying“. In: École Polytechnique Fédérale De Lausanne, À La Faculté Des Sciences
Et Techniques De L’Ingénieur 3727.3727, p. 61. URL: http://biblion.epfl.ch/EPFL/
theses/2007/3727/EPFL_TH3727.pdf (cit. on pp. 9, 10).

210 Bibliography

http://ieeexplore.ieee.org/document/7303086/
http://ieeexplore.ieee.org/document/7303086/
http://image.ednchina.com/GROUP/uploadfile/201304/20130429210226589.pdf
http://image.ednchina.com/GROUP/uploadfile/201304/20130429210226589.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.303.2541
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.303.2541
https://books.google.com/books?id=3UGQsi6VamwC&pgis=1
https://books.google.com/books?id=3UGQsi6VamwC&pgis=1
http://biblion.epfl.ch/EPFL/theses/2007/3727/EPFL_TH3727.pdf
http://biblion.epfl.ch/EPFL/theses/2007/3727/EPFL_TH3727.pdf

Bradski, G (2000). „The OpenCV Library“. In: Dr Dobbs Journal of Software Tools 25, pp. 120–
125. URL: http://opencv.willowgarage.com (cit. on pp. 156, 207).

Bresciani, Tommaso (2008). „Modelling , Identification and Control of a Quadrotor Heli-
copter“. In: English 4.October, p. 213. URL: http://scholar.google.com/scholar?hl=
en&btnG=Search&q=intitle:Modelling+, +Identification+and+Control+of+a+
Quadrotor+Helicopter#0 (cit. on p. 9).

Bronz, Murat, Jean Marc Moschetta, Pascal Brisset, and Michel Gorraz (2009). „Towards a
Long Endurance MAV“. en. In: International Journal of Micro Air Vehicles 1.4, pp. 241–254.
URL: http://multi-science.atypon.com/doi/abs/10.1260/175682909790291483
(cit. on pp. 9, 46).

Brunak, S and B Lautrup (1990). Neural Networks Computers with Intuition. WORLD SCI-
ENTIFIC. URL: http://www.worldscientific.com/worldscibooks/10.1142/0878
(cit. on p. 110).

Buonomano, D V and M M Merzenich (1995). „Temporal information transformed into a
spatial code by a neural network with realistic properties.“ In: Science (New York, N.Y.)
267.5200, pp. 1028–30. URL: http://www.ncbi.nlm.nih.gov/pubmed/7863330 (cit. on
p. 124).

Burghartz, J. (2013). Guide to State-of-the-Art Electron Devices. Ed. by Joachim N. Burghartz.
Chichester, UK: John Wiley and Sons, Ltd, pp. 1–328. URL: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=6963180 (cit. on pp. 8, 47).

Campolucci, Paolo, Aurelio Uncini, and Francesco Piazza (1996). „Causal back propagation
through time for locally recurrent neural networks“. In: Proceedings IEEE International
Symposium on Circuits and Systems. Vol. 3 (cit. on p. 18).

Carbonell, J and Jaime G. (1990). Machine learning : paradigms and methods. MIT Press,
pp. 1–9 (cit. on p. 16).

Chan, Brodie, Hong Guan, Jun Jo, and Michael Blumenstein (2015). „Towards UAV-based
bridge inspection systems: a review and an application perspective“. In: Structural Moni-
toring and Maintenance 2.3, pp. 283–300. URL: http://koreascience.or.kr/journal/
view.jsp?kj=E1TPK5&py=2015&vnc=v2n3&sp=283 (cit. on p. 1).

Chen, X, Y Wang, X Liu, M J F Gales, and P C Woodland (2014). „Efficient GPU-based
Training of Recurrent Neural Network Language Models Using Spliced Sentence Bunch“.
In: (cit. on p. 117).

Cheng, Eric (2015). Aerial photography and videography using drones, p. 269 (cit. on p. 1).

Chow, Tommy W S and Yong Fang (1998). „A recurrent neural-network-based real-time
learning control strategy applying to nonlinear systems with unknown dynamics“. In:
IEEE Transactions on Industrial Electronics 45.1, pp. 151–161 (cit. on pp. 17, 122).

Cicolani, L. S. and G. Kanning (1986). „General equilibrium characteristics of a dual-lift
helicopter system“. In: (cit. on p. 11).

Cicolani, Luigi S., Gerd Kanning, and Robert Synnestvedt (1995). „Simulation of the Dy-
namics of Helicopter Slung Load Systems“. In: Journal of the American Helicopter Society
40, p. 44 (cit. on pp. 3, 11).

Cios, Krzysztof J. and Mark E. Shields (1997). „The handbook of brain theory and neural
networks“. In: Neurocomputing 16.3, pp. 259–261 (cit. on p. 122).

Bibliography 211

http://opencv.willowgarage.com
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Modelling+,+Identification+and+Control+of+a+Quadrotor+Helicopter#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Modelling+,+Identification+and+Control+of+a+Quadrotor+Helicopter#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Modelling+,+Identification+and+Control+of+a+Quadrotor+Helicopter#0
http://multi-science.atypon.com/doi/abs/10.1260/175682909790291483
http://www.worldscientific.com/worldscibooks/10.1142/0878
http://www.ncbi.nlm.nih.gov/pubmed/7863330
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6963180
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6963180
http://koreascience.or.kr/journal/view.jsp?kj=E1TPK5&py=2015&vnc=v2n3&sp=283
http://koreascience.or.kr/journal/view.jsp?kj=E1TPK5&py=2015&vnc=v2n3&sp=283

Cortes, Corinna and Vladimir Vapnik (1995). „Support-Vector Networks“. In: Machine Learn-
ing 20.3, pp. 273–297. arXiv: arXiv:1011.1669v3 (cit. on p. 15).

Coulouris, George, Jean Dollimore, and Tim Kindberg (2012). Distributed Systems: Concepts
and Design. Vol. 4, p. 772. URL: http://www.amazon.com/dp/0321263545 (cit. on p. 10).

Crow, B.P., I. Widjaja, L.G. Kim, and P.T. Sakai (1997). „IEEE 802.11 Wireless Local Area
Networks“. In: IEEE Communications Magazine 35.9, pp. 116–126. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=620533 (cit. on p. 65).

Csaji, Balazs Csanad (2001). „Approximation with Artificial Neural Networks Huub ten
Eikelder“. In: (cit. on p. 116).

Das, Abhijit, Kamesh Subbarao, and Frank Lewis (2008). „Dynamic inversion of quadrotor
with zero-dynamics stabilization“. In: Proceedings of the IEEE International Conference on
Control Applications, pp. 1189–1194 (cit. on pp. 78, 133).

De La Torre, Gerardo, Tansel Yucelen, and Eric N. Johnson (2013a). „Neuropredictive Con-
trol and Trajectory Generation for Slung Load Systems“. In: AIAA Infotech Aerospace (IA)
Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. URL:
http://arc.aiaa.org/doi/10.2514/6.2013-5044 (cit. on p. 19).

– (2013b). „Neuropredictive Control and Trajectory Generation for Slung Load Systems“.
In: AIAA Infotech@Aerospace (I@A) Conference. Reston, Virginia: American Institute of
Aeronautics and Astronautics. URL: http://arc.aiaa.org/doi/10.2514/6.2013-5044
(cit. on p. 148).

Dempsey, M (2010). „US army unmanned aircraft systems roadmap 2010-2035“. In: Feder-
ation Of American Scientists.

Dietterich, Thomas G. (1986). „Learning at the Knowledge Level“. In: Machine Learning 1.3,
pp. 287–315. URL: http://link.springer.com/10.1023/A:1022858530318 (cit. on
p. 16).

Dijkstra, E. W. (1959). „A note on two problems in connexion with graphs“. In: Numerische
Mathematik 1.1, pp. 269–271.

Doya, K. (1992). „Bifurcations in the learning of recurrent neural networks“. In: [Proceed-
ings] 1992 IEEE International Symposium on Circuits and Systems 6.4, pp. 1–4. URL: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278&rep=rep1&
type=pdf (cit. on p. 18).

Dukes, Theodor A. (1973). „Maneuvering Heavy Sling Loads Near Hover Part II: Some
Elementary Maneuvers“. In: Journal of the American Helicopter Society 18.3, pp. 17–22.
URL: http://openurl.ingenta.com/content/xref?genre=article&issn=2161-
6027&volume=18&issue=3&spage=17 (cit. on p. 12).

Ede, J.D., Z.Q. Zhu, and D. Howe (2001). „Optimal split ratio for high-speed permanent
magnet brushless DC motors“. English. In: ICEMS’2001. Proceedings of the Fifth Interna-
tional Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501). Vol. 2. Int.
Acad. Publishers, pp. 909–912. URL: http://ieeexplore.ieee.org/articleDetails.
jsp?arnumber=971826 (cit. on pp. 8, 31).

El-Ferik, Sami, Asim H. Syed, Hanafy M. Omar, and Mohamed A. Deriche (2013). „Anti-
Swing Nonlinear Path Tracking Controller for Helicopter Slung Load System“. In: IFAC
Proceedings Volumes 46.30, pp. 134–141 (cit. on p. 148).

Elman, Jeffrey L. (1990). „Finding structure in time“. In: Cognitive Science 14.2, pp. 179–
211 (cit. on p. 123).

212 Bibliography

http://arxiv.org/abs/arXiv:1011.1669v3
http://www.amazon.com/dp/0321263545
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=620533
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=620533
http://arc.aiaa.org/doi/10.2514/6.2013-5044
http://arc.aiaa.org/doi/10.2514/6.2013-5044
http://link.springer.com/10.1023/A:1022858530318
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.5278&rep=rep1&type=pdf
http://openurl.ingenta.com/content/xref?genre=article&issn=2161-6027&volume=18&issue=3&spage=17
http://openurl.ingenta.com/content/xref?genre=article&issn=2161-6027&volume=18&issue=3&spage=17
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=971826
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=971826

Elmenreich, Wilfried (2002). „An introduction to sensor fusion“. In: Austria: Vienna Uni-
versity Of Technology February, pp. 1–28. URL: http://www.vmars.tuwien.ac.at/
documents/intern/805/elmenreich_sensorfusionintro.pdf (cit. on pp. 9, 47).

Faille, D. and A.J.J. van der Weiden (1995). „Robust regulation of a flying crane“. In:
Proceedings of International Conference on Control Applications. IEEE, pp. 494–499. URL:
http://ieeexplore.ieee.org/document/555752/http://ieeexplore.ieee.org/
ielx3/4243/12105/00555752.pdf?tp=&arnumber=555752&isnumber=12105%5Cnhttp:
//ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=555752&url=http%3A%2F%
2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j (cit. on pp. 11, 148).

Feaster, L., C. Poli, and R. Kirchhoff (1977). „Dynamics of a slung load“. In: Journal of
Aircraft 14.2, pp. 115–121. URL: http://arc.aiaa.org/doi/10.2514/3.44578 (cit. on
p. 12).

Featherstone, R. and D. Orin (2000). „Robot dynamics: equations and algorithms“. In: Pro-
ceedings of the 2000 IEEE International Conference on Robotics and Automation 1, pp. 826–
834. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
844153 (cit. on p. 9).

Feldman, J.A., M.A. Fanty, and N.H. Goodard (1988). „Computing with structured neu-
ral networks“. In: Computer 21.3, pp. 91–103. URL: http://ieeexplore.ieee.org/
document/34/ (cit. on p. 110).

Feng, Ying, Camille Alain Rabbath, Subhash Rakheja, and Chun-Yi Su (2015). „Adaptive con-
troller design for generic quadrotor aircraft platform subject to slung load“. In: 2015 IEEE
28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1135–
1139. URL: http://ieeexplore.ieee.org/ielx7/7120003/7129089/07129434.pdf?
tp=&arnumber=7129434&isnumber=7129089%5Cnhttp://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=7129434%5Cnhttp://ieeexplore.ieee.org/document/
7129434/ (cit. on p. 13).

Fisher, R A (1936). „The use of multiple measurements in taxonomic problems“. In: Annals
of Eugenics 7.2, pp. 179–188. arXiv: arXiv:1011.1669v3 (cit. on p. 105).

Friedenzohn, Daniel and Alexander Mirot (2013). „THE FEAR OF DRONES: PRIVACY AND
UNMANNED AIRCRAFT“. In: 3.5 (cit. on p. 3).

Frost, Chad, mark Tischler, Mike Bielefield, and Troy L (2000). „Design and test of flight
control laws for the Kaman Burro unmanned aerial vehicle“. In: Atmospheric Flight Me-
chanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics.
URL: http://arc.aiaa.org/doi/10.2514/6.2000-4205 (cit. on p. 148).

Fusato, Dario, Giorgio Guglieri, and Roberto Celi (2001). „Flight Dynamics of an Articulated
Rotor Helicopter with an External Slung Load“. In: Journal of the American Helicopter
Society 46.1, pp. 3–13. URL: http://openurl.ingenta.com/content/xref?genre=
article&issn=2161-6027&volume=46&issue=1&spage=3 (cit. on p. 12).

Ghahramani, Zoubin (2008). „Bayesian Methods for Artificial Intelligence and Machine
Learning“. In: Proceedings of the 2008 Conference on ECAI 2008: 18th European Confer-
ence on Artificial Intelligence. Amsterdam, The Netherlands, The Netherlands: IOS Press,
p. 8. URL: http://dl.acm.org/citation.cfm?id=1567281.1567285 (cit. on p. 106).

Gieras, Jacek F. (2002). Permanent Magnet Motor Technology: Design and Applications, Sec-
ond Edition, CRC Press, p. 616. URL: https://books.google.com/books?hl=en&lr=
&id=u_NiSnZeLQQC&pgis=1 (cit. on p. 31).

Bibliography 213

http://www.vmars.tuwien.ac.at/documents/intern/805/elmenreich_sensorfusionintro.pdf
http://www.vmars.tuwien.ac.at/documents/intern/805/elmenreich_sensorfusionintro.pdf
http://ieeexplore.ieee.org/document/555752/ http://ieeexplore.ieee.org/ielx3/4243/12105/00555752.pdf?tp=&arnumber=555752&isnumber=12105%5Cnhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=555752&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
http://ieeexplore.ieee.org/document/555752/ http://ieeexplore.ieee.org/ielx3/4243/12105/00555752.pdf?tp=&arnumber=555752&isnumber=12105%5Cnhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=555752&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
http://ieeexplore.ieee.org/document/555752/ http://ieeexplore.ieee.org/ielx3/4243/12105/00555752.pdf?tp=&arnumber=555752&isnumber=12105%5Cnhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=555752&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
http://ieeexplore.ieee.org/document/555752/ http://ieeexplore.ieee.org/ielx3/4243/12105/00555752.pdf?tp=&arnumber=555752&isnumber=12105%5Cnhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=555752&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
http://arc.aiaa.org/doi/10.2514/3.44578
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844153
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844153
http://ieeexplore.ieee.org/document/34/
http://ieeexplore.ieee.org/document/34/
http://ieeexplore.ieee.org/ielx7/7120003/7129089/07129434.pdf?tp=&arnumber=7129434&isnumber=7129089%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7129434%5Cnhttp://ieeexplore.ieee.org/document/7129434/
http://ieeexplore.ieee.org/ielx7/7120003/7129089/07129434.pdf?tp=&arnumber=7129434&isnumber=7129089%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7129434%5Cnhttp://ieeexplore.ieee.org/document/7129434/
http://ieeexplore.ieee.org/ielx7/7120003/7129089/07129434.pdf?tp=&arnumber=7129434&isnumber=7129089%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7129434%5Cnhttp://ieeexplore.ieee.org/document/7129434/
http://ieeexplore.ieee.org/ielx7/7120003/7129089/07129434.pdf?tp=&arnumber=7129434&isnumber=7129089%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7129434%5Cnhttp://ieeexplore.ieee.org/document/7129434/
http://arxiv.org/abs/arXiv:1011.1669v3
http://arc.aiaa.org/doi/10.2514/6.2000-4205
http://openurl.ingenta.com/content/xref?genre=article&issn=2161-6027&volume=46&issue=1&spage=3
http://openurl.ingenta.com/content/xref?genre=article&issn=2161-6027&volume=46&issue=1&spage=3
http://dl.acm.org/citation.cfm?id=1567281.1567285
https://books.google.com/books?hl=en&lr=&id=u_NiSnZeLQQC&pgis=1
https://books.google.com/books?hl=en&lr=&id=u_NiSnZeLQQC&pgis=1

Gieras, Jacek F (2014). „Design of Permanent Magnet Brushless Motors for High Speed
Applications“. In: (cit. on p. 30).

Glad, Torkel. and Lennart. Ljung (2000). Control theory : multivariable and nonlinear meth-
ods. Taylor and Francis, p. 467 (cit. on p. 78).

Gonzalez-Olvera, Marcos A. and Yu Tang (2010). „Black-box identification of a class of
nonlinear systems by a recurrent neurofuzzy network“. In: IEEE Transactions on Neural
Networks 21.4, pp. 672–679 (cit. on pp. 17, 19, 71).

Gosavi, Abhijit (2003). Simulation-Based Optimization: Parametric Optimization Techniques
and Reinforcement Learning. Vol. 1, pp. 1–6. URL: http://books.google.com/books?
hl=it&lr=&id=XqKyW9U3PWAC&pgis=1.

Guenard, Nicolas, Tarek Hamel, and Laurent Eck (2006). „Control laws for the tele opera-
tion of an unmanned aerial vehicle known as an X4-flyer“. In: IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 3249–3254.

Guo, Jiang (2013). „BackPropagation Through Time“. In: Manuscript 1, pp. 1–6 (cit. on
p. 120).

Gupta, N. K. and Jr. Bryson A. E. (1976). „Near-hover control of a helicopter with a hanging
load“. In: (cit. on p. 12).

Hahn, Hubert (2002). Rigid Body Dynamics of Mechanisms: 1 Theoretical Basis. Springer
Science and Business Media, p. 336. URL: https://books.google.com/books?id=
MqrN3KY7o6MC&pgis=1 (cit. on p. 9).

Hansen, N and S Kern (2004). „Evaluating the CMA Evolution Strategy on Multimodal Test
Functions“. In: Proceedings of the 8th International Conference on Parallel Problem Solving
from Nature - PPSN VIII 3242/2004.0, pp. 282–291 (cit. on p. 130).

Hansen, Nikolaus (2016). „The CMA Evolution Strategy: A Tutorial“. In: arXiv: 1604.00772.
URL: http://arxiv.org/abs/1604.00772 (cit. on p. 130).

Hansen, Nikolaus and Andreas Ostermeier (1996). „Adapting Arbitrary Normal Mutation
Distributions in Evolution Strategies: The Covariance Matrix Adaptation“. In: IEEE Intern.
Conf. on Evolutionary Computation, pp. 312–317. arXiv: arXiv:1011.1669v3 (cit. on
p. 130).

– (2001). „Completely Derandomized Self-Adaptation in Evolution Strategies“. In: Evolu-
tionary Computation 9.2, pp. 159–195. URL: http://www.mitpressjournals.org/doi/
abs/10.1162/106365601750190398 (cit. on p. 130).

Hebb, D. O. (1949). „The Organization of Behaviour“. In: Organization, p. 62 (cit. on
p. 112).

Heng, Lionel, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys
(2011). „Autonomous obstacle avoidance and maneuvering on a vision-guided MAV us-
ing on-board processing“. In: Proceedings - IEEE International Conference on Robotics and
Automation, pp. 2472–2477 (cit. on p. 10).

Hertz, J, A Krogh, and R G Palmer (1991). Introduction to the Theory of Neural Computation.
Vol. 1, p. 327. URL: http://books.google.com/books?id=9a_SyUG- A24C&pgis=1
(cit. on p. 114).

Hoh, Roger H., Robert K. Heffley, and David G. Mitchell (2006). „Development of Handling
Qualities Criteria for Rotorcraft with Externally Slung Loads“. In: (cit. on p. 12).

214 Bibliography

http://books.google.com/books?hl=it&lr=&id=XqKyW9U3PWAC&pgis=1
http://books.google.com/books?hl=it&lr=&id=XqKyW9U3PWAC&pgis=1
https://books.google.com/books?id=MqrN3KY7o6MC&pgis=1
https://books.google.com/books?id=MqrN3KY7o6MC&pgis=1
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.mitpressjournals.org/doi/abs/10.1162/106365601750190398
http://www.mitpressjournals.org/doi/abs/10.1162/106365601750190398
http://books.google.com/books?id=9a_SyUG-A24C&pgis=1

Holzmann, G (2009). „Reservoir computing: a powerful black-box framework for nonlinear
audio processing“. In: Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx09),
pp. 1–8. URL: http://dafx09.como.polimi.it/proceedings/papers/paper_23.pdf
(cit. on p. 17).

Honegger, Dominik, Pierre Greisen, Lorenz Meier, Petri Tanskanen, and Marc Pollefeys
(2012). „Real-time velocity estimation based on optical flow and disparity matching“.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 1, pp. 5177–
5182. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6385530 (cit. on p. 10).

Huang, H. M. (2004). „Autonomy Levels for Unmanned Systems (ALFUS) Framework Vol-
ume I : Terminology Unmanned Systems Working Group Participants 1 National Institute
of Standards and Technology“. In: Framework I.September, p. 29.

Ireland, Murray, Aldo Vargas, and David Anderson (2015). „A Comparison of Closed-Loop
Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control“.
In: Aerospace 2.2, pp. 325–352. URL: http://www.mdpi.com/2226- 4310/2/2/325/
(cit. on pp. 8, 24, 188).

Ireland, Murray L. (2014). „Investigations in multi-resolution modelling of the quadrotor
micro air vehicle“. In: (cit. on p. 81).

Iwan Solihin, M. and Wahyudi (2007). „Sensorless anti-swing control strategy for auto-
matic gantry crane system: Soft sensor approach“. In: 2007 International Conference on
Intelligent and Advanced Systems, ICIAS 2007, pp. 992–996 (cit. on p. 172).

Jaeger, H (2002a). „Short term memory in echo state networks“. In: GMD Report 152,
p. 60. URL: papers://78a99879- 71e7- 4c85- 9127- d29c2b4b416b/Paper/p14153%
5Cnhttp : / / neuron - ai . tuke . sk / $ \ sim $ bundzel / diploma _ theses _ students /
2006/MartinSramko-EchoStateNNinPrediction/STMEchoStatesTechRep.pdf (cit. on
p. 129).

Jaeger, Herbert (2001). „The "echo state" approach to analysing and training recurrent
neural networks“. In: GMD Report 148, pp. 1–47 (cit. on pp. 17, 125, 128).

– (2002b). „Adaptive Nonlinear System Identification with Echo State Networks“. In: Ad-
vances in Neural Information Processing Systems (NIPS), pp. 593–600. URL: http://books.
nips.cc/nips15.html (cit. on pp. 19, 129).

– (2005a). „A tutorial on training recurrent neural networks , covering BPPT , RTRL , EKF
and the " echo state network " approach“. In: ReVision 2002, pp. 1–46. URL: http://
www.mendeley.com/catalog/tutorial- training- recurrent- neural- networks-
covering-bppt-rtrl-ekf-echo-state-network-approach/ (cit. on pp. 17, 120).

– (2005b). „A tutorial on training recurrent neural networks , covering BPPT , RTRL , EKF
and the " echo state network " approach“. In: ReVision 2002, pp. 1–46. URL: http://
www.mendeley.com/catalog/tutorial- training- recurrent- neural- networks-
covering-bppt-rtrl-ekf-echo-state-network-approach/ (cit. on p. 18).

– (2007). „Discovering multiscale dynamical features with hierarchical Echo State Net-
works“. In: 10 (cit. on p. 18).

Jaeger, Herbert and Harald Haas (2004). „Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication“. In: Science 304.78, pp. 78–80. arXiv:
arXiv:1011.1669v3. URL: http://science.sciencemag.org/content/304/5667/78.
short%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1091277 (cit. on
pp. 18, 123, 124).

Bibliography 215

http://dafx09.como.polimi.it/proceedings/papers/paper_23.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385530
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385530
http://www.mdpi.com/2226-4310/2/2/325/
papers://78a99879-71e7-4c85-9127-d29c2b4b416b/Paper/p14153%5Cnhttp://neuron-ai.tuke.sk/\simbundzel/diploma_theses_students/2006/Martin Sramko- Echo State NN in Prediction/STMEchoStatesTechRep.pdf
papers://78a99879-71e7-4c85-9127-d29c2b4b416b/Paper/p14153%5Cnhttp://neuron-ai.tuke.sk/\simbundzel/diploma_theses_students/2006/Martin Sramko- Echo State NN in Prediction/STMEchoStatesTechRep.pdf
papers://78a99879-71e7-4c85-9127-d29c2b4b416b/Paper/p14153%5Cnhttp://neuron-ai.tuke.sk/\simbundzel/diploma_theses_students/2006/Martin Sramko- Echo State NN in Prediction/STMEchoStatesTechRep.pdf
http://books.nips.cc/nips15.html
http://books.nips.cc/nips15.html
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://www.mendeley.com/catalog/tutorial-training-recurrent-neural-networks-covering-bppt-rtrl-ekf-echo-state-network-approach/
http://arxiv.org/abs/arXiv:1011.1669v3
http://science.sciencemag.org/content/304/5667/78.short%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1091277
http://science.sciencemag.org/content/304/5667/78.short%5Cnhttp://www.sciencemag.org/cgi/doi/10.1126/science.1091277

Jain, L. C. and L. R. Medsker (2000). Recurrent neural networks : design and applications.
CRC Press, p. 392 (cit. on p. 17).

Jang, G.H. and M.G. Kim (2004). „A bipolar-starting and unipolar-running method to drive
an HDD spindle motor at high speed with large starting torque“. In: APMRC 2004 Asia-
Pacific Magnetic Recording Conference, 2004. IEEE, pp. 36–37. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1521938 (cit. on pp. 8, 31).

Jiang, Fei, Hugues Berry, and Marc Schoenauer (2008). „Supervised and Evolutionary
Learning of Echo State Networks“. In: URL: https://hal.inria.fr/inria-00337235
(cit. on pp. 129, 130).

Jordan, Michael I. (1986). „Attractor dynamics and parallelism in a connectionist sequential
machine“. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society,
pp. 531–546. URL: http://scholar.google.com/scholar?hl=en&btnG=Search&q=
intitle:Attractor+dynamics+and+parallelism+in+a+connectionist+sequential+
machine#0 (cit. on p. 123).

Khalid, Attir, John Huey, William Singhose, Jason Lawrence, and David Frakes (2006). „Hu-
man Operator Performance Testing Using an Input-Shaped Bridge Crane“. In: Journal of
Dynamic Systems, Measurement, and Control 128.4, p. 835. URL: http://dynamicsystems.
asmedigitalcollection.asme.org/article.aspx?articleid=1411554 (cit. on p. 148).

Khalil, H K (2002). Nonlinear Systems, Third Edition. URL: http : / / cdsweb . cern . ch /
record/1173048 (cit. on pp. 10, 80).

Kim, Nikolai Vladimirovich and Mikhail Alekseevich Chervonenkis (2015). „Situation Con-
trol of Unmanned Aerial Vehicles for Road Traffic Monitoring“. In: Modern Applied Science
9.5, p. 1. URL: http://ccsenet.org/journal/index.php/mas/article/view/46350
(cit. on p. 1).

Kocabas, S., Jaime G. Carbonell, Kenneth De Jong, et al. (1991). „A review of learning“. In:
The Knowledge Engineering Review 6.03, p. 195. URL: http://www.journals.cambridge.
org/abstract_S0269888900005804 (cit. on p. 16).

Kotsiantis, Sotiris B. (2007). „Supervised machine learning: A review of classification tech-
niques“. In: Informatica 31, pp. 249–268 (cit. on p. 17).

Kurose, James F. and Keith W. Ross (2013). Computer Networking A Top-Down Approach. 5,
p. 4. arXiv: 8177588788 (cit. on p. 65).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). „Deep learning“. In: Nature
521.7553, pp. 436–444. arXiv: arXiv:1312.6184v5. URL: http://dx.doi.org/10.
1038/nature14539 (cit. on p. 14).

Lehmann, E L and G Casella (1998). „Theory of Point Estimation“. In: Design 41.3, p. 589.
URL: http://www.amazon.com/dp/0387985026 (cit. on p. 126).

Levenberg, K and K Levenberg (1944). „A Method for the Solution of Certain Problems in
Least Squares“. In: Quart. Appl. Math. Vol. 2. 2, pp. 164–168 (cit. on p. 123).

Liu, D. (2001). „Open-loop training of recurrent neural networks for nonlinear dynami-
cal system identification“. In: IJCNN01. International Joint Conference on Neural Net-
works. Proceedings (Cat. No.01CH37222). Vol. 2. IEEE, pp. 1215–1220. URL: http://
ieeexplore.ieee.org/document/939534/ (cit. on p. 19).

Loshchilov, Ilya and Frank Hutter (2016). „CMA-ES for Hyperparameter Optimization of
Deep Neural Networks“. In: arXiv: 1604.07269. URL: http://arxiv.org/abs/1604.
07269 (cit. on p. 130).

216 Bibliography

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1521938
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1521938
https://hal.inria.fr/inria-00337235
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Attractor+dynamics+and+parallelism+in+a+connectionist+sequential+machine#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Attractor+dynamics+and+parallelism+in+a+connectionist+sequential+machine#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Attractor+dynamics+and+parallelism+in+a+connectionist+sequential+machine#0
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1411554
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1411554
http://cdsweb.cern.ch/record/1173048
http://cdsweb.cern.ch/record/1173048
http://ccsenet.org/journal/index.php/mas/article/view/46350
http://www.journals.cambridge.org/abstract_S0269888900005804
http://www.journals.cambridge.org/abstract_S0269888900005804
http://arxiv.org/abs/8177588788
http://arxiv.org/abs/arXiv:1312.6184v5
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://www.amazon.com/dp/0387985026
http://ieeexplore.ieee.org/document/939534/
http://ieeexplore.ieee.org/document/939534/
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269

Luigi, Cicolani, Kanning Gerd (1992). Equations of motions of slung-load systems. URL: http:
//search.library.utoronto.ca/details?4139736&uuid=4777f6b9- 68ae- 49cb-
82e1-5ae58eac1948 (cit. on p. 12).

Lukoševičius, M (2012). „A practical guide to applying echo state networks“. In: Neural
Networks: Tricks of the Trade, Reloaded, pp. 659–686. arXiv: 1406.6247 (cit. on p. 124).

Lukoševičius, Mantas and Herbert Jaeger (2009). „Reservoir computing approaches to re-
current neural network training“. In: Computer Science Review 3.3, pp. 127–149 (cit. on
pp. 18, 129).

Maass, Wolfgang, Thomas Natschläger, and Henry Markram (2002). „Real-time computing
without stable states: a new framework for neural computation based on perturbations.“
In: Neural computation 14.11, pp. 2531–2560. arXiv: arXiv:1011.1669v3 (cit. on pp. 18,
123).

Maass, Wolfgang, Thomas Natschläger, and Henry Makram (2003). „A Model for Real-Time
Computation in Generic Neural Microcircuits“. In: Advances in Neural Information Process-
ing Systems, pp. 213–220 (cit. on p. 124).

MacQueen, J B (1967). „Some Methods for classification and Analysis of Multivariate Ob-
servations“. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability. Vol. 1, pp. 281–297. URL: http://projecteuclid.org/euclid.bsmsp/
1200512992 (cit. on p. 15).

Magnussen, Øyvind, Geir Hovland, and Morten Ottestad (2014). „Multicopter UAV design
optimization“. In: MESA 2014 - 10th IEEE/ASME International Conference on Mechatronic
and Embedded Systems and Applications, Conference Proceedings (cit. on p. 8).

Magnussen, Øyvind, Morten Ottestad, and Geir Hovland (2015). „Multicopter design opti-
mization and validation“. In: Modeling, Identification and Control 36.2, pp. 67–79 (cit. on
p. 8).

Mahony, R., T. Hamel, and J.-M. Pflimlin (2005). „Complementary filter design on the spe-
cial orthogonal group SO(3)“. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, pp. 1477–1484. URL: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1582367 (cit. on pp. 9, 49, 50).

Mahony, Robert, Vijay Kumar, and Peter Corke (2012a). „Multirotor Aerial Vehicles: Model-
ing, Estimation, and Control of Quadrotor“. In: IEEE Robotics and Automation Magazine
19.3, pp. 20–32 (cit. on p. 9).

– (2012b). „Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor“.
In: IEEE Robotics and Automation Magazine 19.3, pp. 20–32 (cit. on p. 10).

– (2012c). „Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor“.
In: IEEE Robotics and Automation Magazine 19.3, pp. 20–32.

Marquardt, Donald W. (1963). „An Algorithm for Least-Squares Estimation of Nonlinear Pa-
rameters“. In: Journal of the Society for Industrial and Applied Mathematics 11.2, pp. 431–
441. arXiv: arXiv:1011.1669v3 (cit. on p. 123).

McCulloch, Warren S. and Walter Pitts (1943). „A logical calculus of the ideas immanent
in nervous activity“. In: The Bulletin of Mathematical Biophysics 5.4, pp. 115–133. URL:
http://link.springer.com/10.1007/BF02478259 (cit. on p. 110).

Bibliography 217

http://search.library.utoronto.ca/details?4139736&uuid=4777f6b9-68ae-49cb-82e1-5ae58eac1948
http://search.library.utoronto.ca/details?4139736&uuid=4777f6b9-68ae-49cb-82e1-5ae58eac1948
http://search.library.utoronto.ca/details?4139736&uuid=4777f6b9-68ae-49cb-82e1-5ae58eac1948
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/arXiv:1011.1669v3
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1582367
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1582367
http://arxiv.org/abs/arXiv:1011.1669v3
http://link.springer.com/10.1007/BF02478259

Meier, Lorenz, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys (2011). „PIX-
HAWK: A system for autonomous flight using onboard computer vision“. English. In:
2011 IEEE International Conference on Robotics and Automation. IEEE, pp. 2992–2997.
URL: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5980229 (cit. on
pp. 9, 10, 46, 48, 59, 77).

Mellinger, Daniel (2012). „Trajectory generation and control for quadrotors“. PhD thesis.
University of Pennsylvania, p. 136 (cit. on pp. 9, 10, 80).

Mellinger, Daniel, Nathan Michael, and Vijay Kumar (2014). „Trajectory generation and con-
trol for precise aggressive maneuvers with quadrotors“. In: Springer Tracts in Advanced
Robotics. Vol. 79, pp. 361–373 (cit. on pp. 10, 154).

Micale, Edward C. and Corrado Poli (1973). „Dynamics of Slung Bodies Utilizing a Rotating
Wheel for Stability“. In: Journal of Aircraft 10.12, pp. 760–763 (cit. on p. 12).

Michael, Nathan, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar (2010). „The GRASP
multiple micro-UAV testbed“. In: IEEE Robotics and Automation Magazine 17.3, pp. 56–65
(cit. on pp. 8, 10).

Miller, Derek Scott (2011). „Open loop system identification of a micro quadrotor helicopter
from closed loop data“. PhD thesis, p. 161. URL: http://ezproxy.net.ucf.edu/login?
url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp:
/ / sfx . fcla . edu / ucf ? url _ ver = Z39 . 88 - 2004 & rft _ val _ fmt = info : ofi / fmt :
kev : mtx : dissertation & genre = dissertations + & + theses & sid = ProQ : ProQuest +
Dissertations+&+The (cit. on pp. 10, 79).

Mistler, V., A. Benallegue, and N.K. M’Sirdi (2001). „Exact linearization and noninteracting
control of a 4 rotors helicopter via dynamic feedback“. In: Proceedings 10th IEEE Inter-
national Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat.
No.01TH8591). IEEE, pp. 586–593. URL: http://ieeexplore.ieee.org/document/
981968/ (cit. on p. 78).

Mitchell, G. (2012). „The Raspberry Pi single-board computer will revolutionise computer
science teaching“. In: Engineering and Technology 7, p. 26 (cit. on p. 60).

Mitchell, Tom M. (1982). „Generalization as search“. In: Artificial Intelligence 18.2, pp. 203–
226 (cit. on p. 16).

Mitchell, Tom M (1997). Machine Learning. 1, pp. 417–433. arXiv: 0-387-31073-8. URL:
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/
0070428077 (cit. on pp. 15, 101).

Myers, Ware (1986). „INTRODUCTION TO EXPERT SYSTEMS.“ In: IEEE Expert 1.1, pp. 100–
109 (cit. on p. 112).

Nawi, Nazri Mohd, Meghana R. Ransing, and Rajesh S. Ransing (2006). „An improved learn-
ing algorithm based on the Broyden-Fletcher-GoldfarbShanno (BFGS) method for back
propagation neural networks“. In: Proceedings - ISDA 2006: Sixth International Conference
on Intelligent Systems Design and Applications. Vol. 1, pp. 152–157 (cit. on p. 121).

Nelson, Robert C. (1998). Flight stability and automatic control. WCB/McGraw Hill, p. 441
(cit. on pp. 10, 79).

Neocleous, Costas and Christos Schizas (2002). „Artificial Neural Network Learning: A
Comparative Review“. In: Springer Berlin Heidelberg, pp. 300–313. URL: http://link.
springer.com/10.1007/3-540-46014-4_27 (cit. on p. 17).

218 Bibliography

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5980229
http://ezproxy.net.ucf.edu/login?url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp://sfx.fcla.edu/ucf?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:ProQuest+Dissertations+&+The
http://ezproxy.net.ucf.edu/login?url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp://sfx.fcla.edu/ucf?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:ProQuest+Dissertations+&+The
http://ezproxy.net.ucf.edu/login?url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp://sfx.fcla.edu/ucf?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:ProQuest+Dissertations+&+The
http://ezproxy.net.ucf.edu/login?url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp://sfx.fcla.edu/ucf?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:ProQuest+Dissertations+&+The
http://ezproxy.net.ucf.edu/login?url=http://search.proquest.com/docview/923785954?accountid=10003%5Cnhttp://sfx.fcla.edu/ucf?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:ProQuest+Dissertations+&+The
http://ieeexplore.ieee.org/document/981968/
http://ieeexplore.ieee.org/document/981968/
http://arxiv.org/abs/0-387-31073-8
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0070428077
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0070428077
http://link.springer.com/10.1007/3-540-46014-4_27
http://link.springer.com/10.1007/3-540-46014-4_27

Ni, Shaobo, Lei Liu, Zhishen Wang, and Zirui Wang (2011). „Predictive Control of Vehicle
Based on Echo State Network“. In: 2011 International Conference on Intelligence Science
and Information Engineering, pp. 37–40. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5997371 (cit. on p. 19).

Norouzi, Mohammad, Mostafa Yaghobi, Mohammad Rezai Siboni, and Mahdi Jadaliha
(2008). „Recursive line extraction algorithm from 2D laser scanner applied to naviga-
tion a mobile robot“. In: 2008 IEEE International Conference on Robotics and Biomimetics,
ROBIO 2008, pp. 2127–2132.

Ok, Kyel, Sameer Ansari, Billy Gallagher, et al. (2013). „Path planning with uncertainty:
Voronoi Uncertainty Fields“. In: Proceedings - IEEE International Conference on Robotics
and Automation, pp. 4596–4601.

Oliveira, P., I. Kaminer, and A. Pascoal (2000). „Navigation system design using time-
varying complementary filters“. In: IEEE Transactions on Aerospace and Electronic Systems
36.4, pp. 1099–1114. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=892661 (cit. on pp. 10, 50).

Omar, Hanafy M. (2009). „New fuzzy-based anti-swing controller for helicopter slung-load
system near hover“. In: 2009 IEEE International Symposium on Computational Intelligence
in Robotics and Automation - (CIRA). IEEE, pp. 474–479. URL: http://ieeexplore.ieee.
org/document/5423159/ (cit. on p. 148).

Omatu, Sigeru, Marzuki Khalid, and Rubiyah Yusof (1996). „Neuro-Control Applications“.
In: Springer London, pp. 171–243. URL: http://link.springer.com/10.1007/978-1-
4471-3058-1_5 (cit. on p. 108).

Pajankar, Ashwin and Aldo Vargas (2015). Raspberry Pi computer vision programming : de-
sign and implement your own computer vision applications with the Raspberry Pi. Packt
Publishing (cit. on pp. 193, 207).

Palunko, Ivana, Rafael Fierro, and Patricio Cruz (2012). „Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic programming ap-
proach“. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 2691–
2697. URL: http://ieeexplore.ieee.org/document/6225213/ (cit. on pp. 13, 154).

Palunko, Ivana, Aleksandra Faust, Patricio Cruz, Lydia Tapia, and Rafael Fierro (2013). „A
reinforcement learning approach towards autonomous suspended load manipulation us-
ing aerial robots“. In: Proceedings - IEEE International Conference on Robotics and Automa-
tion, pp. 4896–4901 (cit. on p. 13).

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2012). „On the difficulty of training
recurrent neural networks“. In: Proceedings of The 30th International Conference on Ma-
chine Learning 2, pp. 1310–1318. arXiv: arXiv:1211.5063v2. URL: http://jmlr.org/
proceedings/papers/v28/pascanu13.pdf (cit. on p. 17).

Plagianakos, V. P., G. D. Magoulas, and M. N. Vrahatis (2001). „Learning Rate Adapta-
tion in Stochastic Gradient Descent“. In: Springer US, pp. 433–444. URL: http://link.
springer.com/10.1007/978-1-4613-0279-7_27 (cit. on p. 121).

Ploger, Paul G, Adriana Arghir, Tobias Giinther, et al. (2004). „Echo State Networks for Mo-
bile Robot Modeling and Control“. In: RoboCup 2003 Robot Soccer World Cup VII Robocup
20, pp. 157–168. URL: http://www.springerlink.com/content/88yex45c3jcx81x6
(cit. on p. 19).

Bibliography 219

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5997371
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5997371
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=892661
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=892661
http://ieeexplore.ieee.org/document/5423159/
http://ieeexplore.ieee.org/document/5423159/
http://link.springer.com/10.1007/978-1-4471-3058-1_5
http://link.springer.com/10.1007/978-1-4471-3058-1_5
http://ieeexplore.ieee.org/document/6225213/
http://arxiv.org/abs/arXiv:1211.5063v2
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://link.springer.com/10.1007/978-1-4613-0279-7_27
http://link.springer.com/10.1007/978-1-4613-0279-7_27
http://www.springerlink.com/content/88yex45c3jcx81x6

Poli, C (1973). „Dynamics of Slung Bodies Using a Single-Point Suspension System“. In:
Journal of Aircraft 10.2, pp. 80–86. URL: http://arc.aiaa.org/doi/abs/10.2514/3.
60200 (cit. on p. 12).

Postel, J. „User Datagram Protocol“. In: URL: https://tools.ietf.org/html/rfc768
(cit. on p. 65).

Prabhakar, A. (1977). „Stability of a helicopter carrying an underslung load“. In: (cit. on
p. 12).

Prasad Sampath (1980). Dynamics of a Helicopter-slung Load System. URL: https://books.
google.co.uk/books/about/Dynamics_of_a_Helicopter_slung_Load_Syst.html?
id=-xJcnQEACAAJ&redir_esc=y (cit. on p. 12).

Puskorius, Gintaras V. and Lee A. Feldkamp (1994). „Neurocontrol of Nonlinear Dynamical
Systems with Kalman Filter Trained Recurrent Networks“. In: IEEE Transactions on Neural
Networks 5.2, pp. 279–297 (cit. on p. 18).

Quigley, Morgan, Ken Conley, Brian Gerkey, et al. (2009). „ROS: an open-source Robot
Operating System“. In: ICRA 3, p. 5. arXiv: 1106.4561. URL: http://pub1.willowgarage.
com/\simkonolige/cs225B/docs/quigley-icra2009-ros.pdf (cit. on p. 195).

Richards, Arthur, John Bellingham, and Tillerson (2002). „Coordination and control of mul-
tiple UAVs“. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1–11.
URL: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Co-
ordination+and+Control+of+Multiple+UAVs#1%5Cnhttp://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.208.1820&rep=rep1&type=pdf (cit. on p. 7).

Romero Ugalde, Hector M., Jean-Claude Carmona, Victor M. Alvarado, and Juan Reyes-
Reyes (2013). „Neural network design and model reduction approach for black box
nonlinear system identification with reduced number of parameters“. In: Neurocomput-
ing 101, pp. 170–180. URL: http : / / linkinghub . elsevier . com / retrieve / pii /
S0925231212006522 (cit. on p. 17).

Rossum, Guido Van, Python Software Foundation, Unladen Swallow, et al. (2011). „Python
(programming language)“. In: Flying, pp. 1–14 (cit. on p. 62).

Rothman, Peter L. and Richard V. Denton (1991). „Fusion or confusion: knowledge or non-
sense?“ In: ed. by Vibeke Libby. International Society for Optics and Photonics, pp. 2–12.
URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=
963284 (cit. on pp. 9, 47).

Rumeihart, D E and J L Mcclelland (1968). „in Parallel Distributed Processing. Explorations
in the Microstructure of Cognition“. In: Clin. Neurophysiol.J. Physiol. J. Neurophysiol. J.
Physiol. Shinoda, J. I. Yokota, T. Fukami, Neurosci. Lett.. RedmanJ. Comp. Neurol 24.25,
pp. 423–434. arXiv: arXiv : 1011 . 1669v3. URL: http : / / www . jstor . org / stable /
1702143 % 5Cnhttp : / / www . jstor . org / page / info / about / policies / terms . jsp %
5Cnhttp://www.jstor.org (cit. on p. 109).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986a). „Learning repre-
sentations by back-propagating errors“. In: Nature 323.6088, pp. 533–536. arXiv: arXiv:
1011.1669v3 (cit. on p. 17).

Rumelhart, David E., James L. McClelland, and San Diego. PDP Research Group. University
of California (1986b). Parallel distributed processing : explorations in the microstructure of
cognition. MIT Press (cit. on p. 17).

220 Bibliography

http://arc.aiaa.org/doi/abs/10.2514/3.60200
http://arc.aiaa.org/doi/abs/10.2514/3.60200
https://tools.ietf.org/html/rfc768
https://books.google.co.uk/books/about/Dynamics_of_a_Helicopter_slung_Load_Syst.html?id=-xJcnQEACAAJ&redir_esc=y
https://books.google.co.uk/books/about/Dynamics_of_a_Helicopter_slung_Load_Syst.html?id=-xJcnQEACAAJ&redir_esc=y
https://books.google.co.uk/books/about/Dynamics_of_a_Helicopter_slung_Load_Syst.html?id=-xJcnQEACAAJ&redir_esc=y
http://arxiv.org/abs/1106.4561
http://pub1.willowgarage.com/\simkonolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/\simkonolige/cs225B/docs/quigley-icra2009-ros.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Co-ordination+and+Control+of+Multiple+UAVs#1%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.1820&rep=rep1&type=pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Co-ordination+and+Control+of+Multiple+UAVs#1%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.1820&rep=rep1&type=pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Co-ordination+and+Control+of+Multiple+UAVs#1%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.1820&rep=rep1&type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S0925231212006522
http://linkinghub.elsevier.com/retrieve/pii/S0925231212006522
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=963284
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=963284
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.jstor.org/stable/1702143%5Cnhttp://www.jstor.org/page/info/about/policies/terms.jsp%5Cnhttp://www.jstor.org
http://www.jstor.org/stable/1702143%5Cnhttp://www.jstor.org/page/info/about/policies/terms.jsp%5Cnhttp://www.jstor.org
http://www.jstor.org/stable/1702143%5Cnhttp://www.jstor.org/page/info/about/policies/terms.jsp%5Cnhttp://www.jstor.org
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3

Sadr, S., S. Ali A. Moosavian, and P. Zarafshan (2014). „Dynamics Modeling and Control
of a Quadrotor with Swing Load“. In: Journal of Robotics 2014, pp. 1–12. URL: http:
//www.hindawi.com/journals/jr/2014/265897/ (cit. on p. 13).

Sai Dinesh, P, J Ananthapadmanabha, V Aravind, et al. (2010). „Low cost and real time
electronic speed controller of position sensorless brushless DC motor“. In: 2010 Fifth
International Conference on Information and Automation for Sustainability. IEEE, pp. 329–
334. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5715682 (cit. on pp. 8, 39).

Salameh, Z. M. and B. G. Kim (2009). „Advanced lithium polymer batteries“. In: 2009 IEEE
Power and Energy Society General Meeting. IEEE, pp. 1–5. URL: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5275404 (cit. on p. 41).

Salamí, Esther, Cristina Barrado, and Enric Pastor (2014). „UAV Flight Experiments Applied
to the Remote Sensing of Vegetated Areas“. In: Remote Sensing 6.11, pp. 11051–11081.
URL: http://www.mdpi.com/2072-4292/6/11/11051/ (cit. on p. 1).

Schiavoni, R. Scattolini P. Bolzern and N. (2015). „Fondamenti di Controlli Automatici“. In:
McGraw-Hill Education (cit. on pp. 10, 76).

Sethi, I.K. (1990). „Entropy nets: from decision trees to neural networks“. In: Proceedings of
the IEEE 78.10, pp. 1605–1613. URL: http://ieeexplore.ieee.org/document/58346/
(cit. on p. 17).

Shamsudin, Syariful Syafiq, Xiaoqi Chen, Wenhui Wang, Christopher E. Hann, and Geof-
frey Chase (2010). „Neural Networks based System Identification for an Unmanned Heli-
copter System“. In: Proceedings of the 4th Asia International Symposium on Mechatronics.
Singapore: Research Publishing Services, pp. 12–19 (cit. on p. 19).

Shavlik, Jude W. and Thomas Glen. Dietterich (1990). Readings in machine learning. Mor-
gan Kaufmann Publishers (cit. on p. 15).

Shim, David H., H. Jin Kim, and Shankar Sastry (2002). „A flight control system for aerial
robots: Algorithms and experiments“. In: IFAC Proceedings Volumes (IFAC-PapersOnline).
Vol. 15. 1, pp. 241–246 (cit. on p. 7).

Siegelmann, H T (1995). „Computation beyond the turing limit.“ In: Science (New York,
N.Y.) 268.5210, pp. 545–8. URL: http://www.sciencemag.org/content/268/5210/545
(cit. on p. 114).

Simon, Dan (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
John Wiley and Sons, p. 552. URL: https://books.google.com/books?hl=en&lr=&id=
UiMVoP_7TZkC&pgis=1 (cit. on pp. 9, 48).

Singer, N., W. Singhose, and E. Kriikku (1997). An input shaping controller enabling cranes
to move without sway. Tech. rep. Aiken, SC: Savannah River Site (SRS). URL: http://
www.osti.gov/servlets/purl/491559-NFLqr9/webviewable/ (cit. on p. 148).

Smith, J. H., G. M. Allen, and D. Vensel (1973). „Design, Fabrication, and Flight Test of
the Active Arm External Load Stabilization System for Cargo Handling Helicopters“. In:
(cit. on p. 148).

Smith, Julius O. (Julius Orion) (2010). Physical audio signal processing : for virtual musical
instruments and audio effects. W3K Publishing, p. 803 (cit. on p. 118).

Smith, Warren D. and Peter W. Shor (1992). „Steiner tree problems“. In: Algorithmica 7.1-6,
pp. 329–332.

Bibliography 221

http://www.hindawi.com/journals/jr/2014/265897/
http://www.hindawi.com/journals/jr/2014/265897/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5715682
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5715682
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5275404
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5275404
http://www.mdpi.com/2072-4292/6/11/11051/
http://ieeexplore.ieee.org/document/58346/
http://www.sciencemag.org/content/268/5210/545
https://books.google.com/books?hl=en&lr=&id=UiMVoP_7TZkC&pgis=1
https://books.google.com/books?hl=en&lr=&id=UiMVoP_7TZkC&pgis=1
http://www.osti.gov/servlets/purl/491559-NFLqr9/webviewable/
http://www.osti.gov/servlets/purl/491559-NFLqr9/webviewable/

Sreenath, Koushil, Taeyoung Lee, and Vijay Kumar (2013). „Geometric control and differen-
tial flatness of a quadrotor UAV with a cable-suspended load“. In: Proceedings of the IEEE
Conference on Decision and Control, pp. 2269–2274 (cit. on pp. 147, 150, 154).

Sreerama, K. Murthy (1998). „Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey“. In: Data Mining and Knowledge Discovery 2.4, pp. 345–389. URL:
https://www.cs.nyu.edu/\simroweis/csc2515-2006/readings/murthy_dt.pdf.

Starr, Gregory, John Wood, and Ron Lumia (2005). „Rapid Transport of Suspended Pay-
loads“. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion April, pp. 394–399. URL: http://ieeexplore.ieee.org/document/1570310/ (cit.
on p. 148).

Steil, Jochen J. (2004). „Backpropagation-Decorrelation: Online recurrent learning with
O(N) complexity“. In: IEEE International Conference on Neural Networks - Conference Pro-
ceedings. Vol. 2, pp. 843–848. arXiv: arXiv:1506.08836v1 (cit. on pp. 18, 123).

Stevens, L.B. and L.F. Lewis (2003). Aircraft control and simulation, pp. 103–106. URL: http:
//www.ulb.tu-darmstadt.de/tocs/114368600.pdf (cit. on pp. 10, 79).

Suzuki, Satoshi and KeiichiA Be (1985). „Topological structural analysis of digitized binary
images by border following“. In: Computer Vision, Graphics and Image Processing 30.1,
pp. 32–46 (cit. on p. 156).

Tabassum, Mujahid and Kuruvilla Mathew (2014). „Software evolution analysis of linux
(Ubuntu) OS“. In: 2014 International Conference on Computational Science and Technology,
ICCST 2014 (cit. on p. 61).

Takahashi, Osamu and R. J. Schilling (1989). „Motion Planning in a Plane Using General-
ized Voronoi Diagrams“. In: IEEE Transactions on Robotics and Automation 5.2, pp. 143–
150.

Tanaka, Tomohiro, Takahiro Shinozaki, Shinji Watanabe, and Takaaki Hori (2016). „Evolu-
tion Strategy Based Neural Network Optimization and LSTM Language Model for Robust
Speech Recognition“. In: (cit. on p. 130).

Tang, Sarah and Vijay Kumar (2015). „Mixed Integer Quadratic Program Trajectory Genera-
tion for a Quadrotor with a Cable-Suspended Payload“. In: IEEE International Conference
on Robotics and Automation (ICRA), pp. 2216–2222 (cit. on pp. 13, 154).

Tarascon, J M and M Armand (2001). „Issues and challenges facing rechargeable lithium
batteries.“ In: Nature 414.6861, pp. 359–67. URL: http : / / dx . doi . org / 10 . 1038 /
35104644 (cit. on pp. 8, 41).

Thiels, Cornelius A, Johnathon M Aho, Scott P Zietlow, and Donald H Jenkins (2015). „Use
of unmanned aerial vehicles for medical product transport.“ In: Air medical journal 34.2,
pp. 104–8. URL: http://www.ncbi.nlm.nih.gov/pubmed/25733117 (cit. on p. 2).

Urnkranz, Johannes (1999). „Separate-and-Conquer Rule Learning“. In: Artificial Intelli-
gence Review 13, pp. 3–54 (cit. on p. 17).

Valenti, Mario, Brett Bethke, Gaston Fiore, and Jonathan P How (2006). „Indoor Multi-
Vehicle Flight Testbed for Fault Detection , Isolation , and Recovery“. In: AIAA Guidance,
Navigation, and Control Conference and Exhibit 8, pp. 1–18 (cit. on p. 7).

Vargas, Aldo, Murray Ireland, and David Anderson (2014). „Swing free manoeuvre con-
troller for RUAS slung-load system using ESN“. In: Proceedings of the 1st World Congress
on Unmanned Systems Engineering (cit. on pp. 21, 22, 68, 77, 118, 124, 125, 129, 133,
147, 190, 191, 203).

222 Bibliography

https://www.cs.nyu.edu/\simroweis/csc2515-2006/readings/murthy_dt.pdf
http://ieeexplore.ieee.org/document/1570310/
http://arxiv.org/abs/arXiv:1506.08836v1
http://www.ulb.tu-darmstadt.de/tocs/114368600.pdf
http://www.ulb.tu-darmstadt.de/tocs/114368600.pdf
http://dx.doi.org/10.1038/35104644
http://dx.doi.org/10.1038/35104644
http://www.ncbi.nlm.nih.gov/pubmed/25733117

– (2015a). „Swing-Free Manoeuvre Controller for Rotorcraft Unmanned Aerial Vehicle
Slung-Load System Using Echo State Networks“. In: International Journal of Unmanned
Systems Engineering 3.1, pp. 26–37. URL: http://www.ijuseng.com/#/ijuseng-3-1-
26-37-2015/4587568279 (cit. on pp. 22, 147, 191).

– (2015b). „System Identification of multi-rotor UAVs using echo state networks“. In: AU-
VSI’s Unmanned Systems (cit. on pp. 21, 118, 130, 133, 191).

Vargas, Aldo, Murray Ireland, Kyle Brown, and David Anderson (2016). „The MAST Lab
flight stack for GNC of micro UAV ’ s“. In: (cit. on pp. 11, 21, 189).

Vargas, Aldo and David Anderson (2017). „Computer vision technique to estimate the slung
load dynamics when coupled to a Multirotor Unmanned Aerial Vehicle“. In: Revista In-
ternacional de Investigacion e Innovación Tecnologica (RIIIT) ISSN 2007-.Latindex Folio:
23614 (cit. on p. 147).

Verstraeten, D., B. Schrauwen, M. D’Haene, and D. Stroobandt (2007). „An experimental
unification of reservoir computing methods“. In: Neural Networks 20.3, pp. 391–403 (cit.
on pp. 18, 123).

Verstraeten, David, Benjamin Schrauwen, and Dirk Stroobandt (2006). „Reservoir-based
techniques for speech recognition“. In: Neural Networks, pp. 1050–1053 (cit. on p. 124).

Wagstaff, Kiri (2012). „Machine Learning that Matters“. In: Proceedings of the 29th Inter-
national Conference on Machine Learning, pp. 529–536. arXiv: 1206.4656. URL: http:
//arxiv.org/abs/1206.4656%5Cnhttp://icml.cc/discuss/2012/298.html (cit. on
p. 15).

Werbos, Paul J. (1990). „Backpropagation Through Time: What It Does and How to Do It“.
In: Proceedings of the IEEE 78.10, pp. 1550–1560 (cit. on pp. 18, 120, 122).

Williams, Ronald J. and David Zipser (1989). „A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networks“. In: Neural Computation 1.2, pp. 270–280. arXiv:
arXiv:1011.1669v3 (cit. on pp. 17, 18, 122, 123).

Wong, K.C., J.A. Guerrero, D. Lara, and R. Lozano (2007). „Attitude stabilization in hover
flight of a mini tail-sitter UAV with variable pitch propeller“. In: 2007 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, pp. 2642–2647. URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399278 (cit. on
p. 36).

Wysocki, Rafal and Wojciech Zabierowski (2011). „Twisted framework on game server ex-
ample“. In: 2011 11th International Conference The Experience of Designing and Applica-
tion of CAD Systems in Microelectronics (CADSM), pp. 361–363.

Yamazaki, Tadashi and Shigeru Tanaka (2007). „The cerebellum as a liquid state machine“.
In: Neural Networks 20.3, pp. 290–297 (cit. on pp. 18, 124).

Zameroski, Daniel, Gregory Starr, John Wood, and Ron Lumia (2008). „Rapid Swing-Free
Transport of Nonlinear Payloads Using Dynamic Programming“. In: Journal of Dynamic
Systems, Measurement, and Control 130.4, p. 041001. URL: http://dynamicsystems.
asmedigitalcollection.asme.org/article.aspx?articleid=1475743 (cit. on p. 148).

Bibliography 223

http://www.ijuseng.com/#/ijuseng-3-1-26-37-2015/4587568279
http://www.ijuseng.com/#/ijuseng-3-1-26-37-2015/4587568279
http://arxiv.org/abs/1206.4656
http://arxiv.org/abs/1206.4656%5Cnhttp://icml.cc/discuss/2012/298.html
http://arxiv.org/abs/1206.4656%5Cnhttp://icml.cc/discuss/2012/298.html
http://arxiv.org/abs/arXiv:1011.1669v3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399278
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399278
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1475743
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1475743

Websites

Abhijit, Singh (2016). Unmanned and Autonomous Vehicles and Future Maritime Operations
in Littoral Asia | ORF. URL: http://www.orfonline.org/research/unmanned- and-
autonomous - vehicles - and - future - maritime - operations - in - littoral - asia/
(visited on Feb. 22, 2017) (cit. on p. 1).

Alec Momont (2014). TU Delft - Ambulance Drone. URL: https://www.youtube.com/watch?
v=y-rEI4bezWc (visited on Dec. 17, 2016) (cit. on p. 14).

Amazon (2013). Amazon Prime Air. URL: https : / / www . amazon . com / Amazon - Prime -
Air/b?ie=UTF8&node=8037720011 (visited on Dec. 17, 2016) (cit. on pp. 3, 14).

Andreas Raptopoulos (2013). Andreas Raptopoulos: No roads? There’s a drone for that | TED
Talk | TED.com. URL: http://www.ted.com/talks/andreas_raptopoulos_no_roads_
there_s_a_drone_for_that (visited on Dec. 17, 2016) (cit. on p. 14).

Brumfield, Eric (2014). Armed Drones for Law Enforcement: Why it Might Be Time to Re-
Examine the Current Use of Force Standard (cit. on p. 1).

Burns, Stuart (2014). Rotite Fastener. URL: http://www.rotite.com/ (cit. on pp. 20, 29,
188).

DHL (2013). Deutsche Post DHL Group | DHL Parcelcopter 3.0. URL: http://www.dpdhl.
com/en/media_relations/specials/parcelcopter.html (visited on Dec. 17, 2016)
(cit. on p. 14).

DIYDrones, 3DRobotics. Arducopter. URL: http://copter.ardupilot.com/ (cit. on pp. 9,
46).

Ehang Inc (2016). EHANG 184 autonomous aerial vehicle. URL: http://www.ehang.com/
ehang184 (visited on Feb. 20, 2017) (cit. on p. 2).

French, Robert M. (1999). Catastrophic forgetting in connectionist networks (cit. on p. 124).

GmbH, Ascending Technologies. Ascending Technologies. URL: http://www.asctec.de/
(cit. on p. 68).

Google (2014). Google Project Wing X. URL: https://x.company/projects/wing/ (visited
on Dec. 17, 2016) (cit. on pp. 3, 14).

Hardkernel Co., Ltd. (2014). Odroid U3 (cit. on p. 60).

Harrington, Aaron Michael (2011). Optimal Propulsion System Design for a Micro Quad
Rotor. URL: http://drum.lib.umd.edu/handle/1903/12029 (cit. on p. 36).

HiSystems (2006). MikroKopter. URL: http://www.mikrokopter.de/en/home (cit. on pp. 9,
46).

IEEE (2013). IEEE 802.3 Standard for Ethernet’ Marks 30 Years of Innovation and Global
Market Growth. URL: http : / / vlib . excelsior . edu / login ? url = http : / / search .
ebscohost.com/login.aspx?direct=true&db=bwh&AN=bizwire.c49319159&site=
eds-live&scope=site (cit. on p. 65).

IMechE (2014). The Unmanned Aircraft Systems Challenge. URL: https://www.imeche.
org/get-involved/young-members-network/auasc (visited on Jan. 5, 2017) (cit. on
p. 196).

224 Bibliography

http://www.orfonline.org/research/unmanned-and-autonomous-vehicles-and-future-maritime-operations-in-littoral-asia/
http://www.orfonline.org/research/unmanned-and-autonomous-vehicles-and-future-maritime-operations-in-littoral-asia/
https://www.youtube.com/watch?v=y-rEI4bezWc
https://www.youtube.com/watch?v=y-rEI4bezWc
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
http://www.ted.com/talks/andreas_raptopoulos_no_roads_there_s_a_drone_for_that
http://www.ted.com/talks/andreas_raptopoulos_no_roads_there_s_a_drone_for_that
http://www.rotite.com/
http://www.dpdhl.com/en/media_relations/specials/parcelcopter.html
http://www.dpdhl.com/en/media_relations/specials/parcelcopter.html
http://copter.ardupilot.com/
http://www.ehang.com/ehang184
http://www.ehang.com/ehang184
http://www.asctec.de/
https://x.company/projects/wing/
http://drum.lib.umd.edu/handle/1903/12029
http://www.mikrokopter.de/en/home
http://vlib.excelsior.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bwh&AN=bizwire.c49319159&site=eds-live&scope=site
http://vlib.excelsior.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bwh&AN=bizwire.c49319159&site=eds-live&scope=site
http://vlib.excelsior.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bwh&AN=bizwire.c49319159&site=eds-live&scope=site
https://www.imeche.org/get-involved/young-members-network/auasc
https://www.imeche.org/get-involved/young-members-network/auasc

Kendoul, Farid (2012). Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems. arXiv: 10.1.1.91.5767 (cit. on p. 7).

Korsak, Kazimierz, Kenneth R. Meenen, Donald N. Meyers, and Frank N. Piasecki (1972).
Multi-Helicopter Heavy Lift System Feasibility Study (cit. on p. 11).

Lefkowitz, Glyph (2002). Twisted. URL: http://twistedmatrix.com/ (cit. on p. 65).

Liyan Yi (2014). Swinging Crane Project. URL: https : / / www . eleceng . adelaide . edu .
au/students/wiki/projects/index.php/Projects:2014s2-80_Swinging_Crane_
Project (visited on Jan. 4, 2017).

Meier, Lorenz (2009). MAVlink. URL: https://github.com/mavlink/mavlink/commit/
a087528b8146ddad17e9f39c1dd0c1353e5991d5 (cit. on p. 66).

Müller, Markus (2004). eCalc. URL: http://www.ecalc.ch/.

MultiWii. MultiWii. URL: http://www.multiwii.com/ (cit. on p. 203).

– (2010). MultiWii. URL: http://www.multiwii.com/ (cit. on pp. 9, 10, 46, 77).

NN3 (2007). Forecasting Competition for Neural Networks and Computational Intelligence.
URL: http://www.neural-forecasting-competition.com/NN3/index.htm (cit. on
p. 124).

OpenPilot (2011). OpenPilot. URL: http://www.openpilot.org/ (cit. on pp. 9, 46).

Paparazzi (2003). Paparazzi Project. URL: http://paparazziuav.org (cit. on pp. 9, 46).

ROSENBLATT, FRANK (1961). PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE
THEORY OF BRAIN MECHANISMS (cit. on p. 17).

ST (2009). Three-phase BLDC motor control software library. URL: http://www.st.com/web/
en/resource/technical/document/user_manual/CD00236524.pdf (cit. on p. 40).

Starlino (2011). DCM Tutorial. URL: http://www.starlino.com/dcm_tutorial.html
(cit. on p. 51).

Tridgell, Andrew (2013). MAVProxy. URL: http://tridge.github.io/MAVProxy/ (cit. on
p. 66).

Vargas, Aldo (2013a). 3D printed Quadrotor using Rotite elements. URL: http://altax.net/
hangar/tego-v3/ (cit. on p. 29).

– (2013b). pyMultiwii - python module that handles the MultiWii Serial Protocol. URL: https:
//github.com/alduxvm/pyMultiWii (cit. on pp. 66, 190).

– (2014). DronePilot - Open Source project to control flight controllers. URL: https : / /
github.com/alduxvm/DronePilot (cit. on p. 55).

Voos, H (2009). Nonlinear control of a quadrotor micro-UA[1] H. Voos, Nonlinear control of
a quadrotor micro-UAV using feedback-linearization, no. April. Ieee, 2009, pp. 16.V using
feedback-linearization. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4957154 (cit. on p. 78).

Websites 225

http://arxiv.org/abs/10.1.1.91.5767
http://twistedmatrix.com/
https://www.eleceng.adelaide.edu.au/students/wiki/projects/index.php/Projects:2014s2-80_Swinging_Crane_Project
https://www.eleceng.adelaide.edu.au/students/wiki/projects/index.php/Projects:2014s2-80_Swinging_Crane_Project
https://www.eleceng.adelaide.edu.au/students/wiki/projects/index.php/Projects:2014s2-80_Swinging_Crane_Project
https://github.com/mavlink/mavlink/commit/a087528b8146ddad17e9f39c1dd0c1353e5991d5
https://github.com/mavlink/mavlink/commit/a087528b8146ddad17e9f39c1dd0c1353e5991d5
http://www.ecalc.ch/
http://www.multiwii.com/
http://www.multiwii.com/
http://www.neural-forecasting-competition.com/NN3/index.htm
http://www.openpilot.org/
http://paparazziuav.org
http://www.st.com/web/en/resource/technical/document/user_manual/CD00236524.pdf
http://www.st.com/web/en/resource/technical/document/user_manual/CD00236524.pdf
http://www.starlino.com/dcm_tutorial.html
http://tridge.github.io/MAVProxy/
http://altax.net/hangar/tego-v3/
http://altax.net/hangar/tego-v3/
https://github.com/alduxvm/pyMultiWii
https://github.com/alduxvm/pyMultiWii
https://github.com/alduxvm/DronePilot
https://github.com/alduxvm/DronePilot
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4957154
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4957154

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style, modified by the author

of this document.

	Titlepage
	Declaration
	Abstract
	Acknowledgement
	Nomenclature
	Abbreviations
	1 Introduction
	1.1 Background and motivation
	1.1.1 Unmanned Aerial Vehicles
	1.1.2 Cargo transport application
	1.1.3 Research question & hypothesis
	1.1.4 Research methodology

	1.2 Literature review
	1.2.1 MRUAV
	1.2.2 Quadrotor Modelling and Control
	1.2.3 Slung Load Dynamics
	1.2.4 Machine Learning

	1.3 Thesis Contributions
	1.4 Thesis Structure
	1.5 Publications

	2 Multirotor Design
	2.1 Frame
	2.1.1 Structures
	2.1.2 Configurations
	2.1.3 Redundancy
	2.1.4 Materials

	2.2 Motor
	2.2.1 Brushless motors
	2.2.2 Mathematical model
	2.2.3 Motor parameters

	2.3 Propeller
	2.3.1 Propeller parameters
	2.3.2 Static thrust

	2.4 Electronic Speed Controller
	2.4.1 Motor control

	2.5 Battery
	2.6 Rotor
	2.6.1 Mathematical analysis
	2.6.2 Experimental analysis

	2.7 Flight Controller
	2.7.1 Sensors
	2.7.2 Attitude estimation

	2.8 Endurance Prediction
	2.8.1 Time of flight
	2.8.2 On-line calculators
	2.8.3 Flight tests
	2.8.4 Method comparison

	2.9 Summary

	3 Laboratory Set-up
	3.1 Experimental design
	3.2 Micro Air Systems Technology Laboratory
	3.2.1 Indoor positioning system
	3.2.2 Previous data flow

	3.3 Flight Stack
	3.3.1 Companion computers

	3.4 DronePilot
	3.4.1 Core
	3.4.2 Data Flow
	3.4.3 Interfacing
	3.4.4 Black box
	3.4.5 Applications

	3.5 Test-bed quadrotor
	3.6 Summary

	4 Quadrotor Modelling and Control
	4.1 Basic concepts
	4.1.1 Pseudo-controls

	4.2 Modelling
	4.3 Control
	4.3.1 Attitude controller
	4.3.2 Position controller
	4.3.3 Trajectory Generation

	4.4 Experimental results
	4.4.1 Attitude controller performance
	4.4.2 Position controller performance
	4.4.3 Trajectory flights

	4.5 Summary

	5 Machine Learning
	5.1 Background
	5.2 Categories
	5.2.1 Supervised learning
	5.2.2 Unsupervised learning
	5.2.3 Reinforced learning

	5.3 Considerations
	5.4 Artificial Neural Networks
	5.4.1 Biological Neural Networks
	5.4.2 ANN Architectures
	5.4.3 ANN Learning

	5.5 Recurrent Neural Networks
	5.5.1 Mathematical Model
	5.5.2 Architectures
	5.5.3 Training

	5.6 Reservoir Computing
	5.6.1 Echo State Networks
	5.6.2 Mathematical model
	5.6.3 Training

	5.7 Optimisation
	5.7.1 CMA-ES

	5.8 Summary

	6 System Identification of MRUAV
	6.1 Methodology
	6.2 Data processing
	6.3 Training
	6.4 Testing
	6.5 Optimising
	6.6 Results
	6.7 Summary

	7 MRUAV carrying a Slung Load
	7.1 Introduction
	7.1.1 Small angle approximation

	7.2 Model of Slung Load Quadrotor System
	7.2.1 Quadrotor Attitude
	7.2.2 Slung Load Attitude

	7.3 Slung Load Position Estimation
	7.3.1 Computer Vision Estimation
	7.3.2 Machine Learning Estimation

	7.4 Controller design
	7.4.1 Swing-Free Position Controller
	7.4.2 Swing-Free Trajectory Controller

	7.5 Experimental results
	7.5.1 Controller verification
	7.5.2 Estimator verification
	7.5.3 Trajectory response

	7.6 Summary

	8 Conclusion
	8.1 Summary of contributions
	8.1.1 On multirotor design
	8.1.2 On MRUAV control
	8.1.3 On machine learning
	8.1.4 On system identification of multirotors
	8.1.5 On slung load estimators
	8.1.6 Main contribution

	8.2 Future work
	8.3 Extra support and projects
	8.3.1 IMechE UAS Challenge
	8.3.2 Media outreach

	A Appendix
	A.1 Makerbot Replicator 2
	A.2 Rotite
	A.3 Rotor analysis tool
	A.4 pyMultiWii
	A.4.1 MultiWii Serial Protocol
	A.4.2 Data flow
	A.4.3 Performance
	A.4.4 Influence

	A.5 Computer Vision techniques
	A.5.1 Influence

	Bibliography
	Colophon

