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Abstract

Users need to be able to interact with mid-air gesture systems in ways that are efficient,

precise, and socially acceptable. Subtle mid-air micro gestures can provide low-effort

and discreet ways of interaction. This thesis contributes techniques for recognizing and

utilizing subtle mid-air gestures with millimeter wave radars, a rapidly emerging sensing

technology in human-computer interaction.

The first contribution focused on the problem of addressing a system. By analyzing the

frequency components of various hand motions, subtle activation gestures were identified

which produced high-frequency signals through deliberate, rhythmic movements. A novel

activation gesture recognition pipeline was then developed using frequency analysis to

recognize these gestures and ignore incidental hand motions. Tested across three types of

sensors, the pipeline demonstrated robust performance in recognizing subtle high-frequency

activation gestures and producing zero false activations for broad hand motions. Further

improvements were also explored to enhance robustness to reduce false activations during

activities like typing, writing, and phone usage.

The second contribution focused on recognition of subtle gestures from mmWave radar data

using deep learning. A new dataset was developed, capturing the temporal dynamics and

motion patterns of 10 different subtle gestures from 8 users with a mmWave radar. Multiple

neural network architectures were trained and evaluated using the dataset, achieving a

high recognition accuracy of 90%. The results demonstrated that hybrid neural networks

combining convolutional and recurrent layers can effectively recognize subtle gestures from

mmWave radar signals and generalize across different users.

The final contribution progressed from offline evaluations to practical, real-time assessments.

The neural network models were integrated into prototype applications that enabled

real-time subtle gesture interactions for tasks such as selecting photos and adjusting

media playback. A user study demonstrated significant improvements in task completion,

accuracy, and user experience compared to traditional macro gestures. The findings suggest

that subtle gestural interaction, enabled by mmWave radar sensors, signal processing, and

deep learning, can significantly enhance usability of virtual interfaces.
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1 Introduction

1.1 Motivation

A mid-air gesture is a form of input that allow users to control or communicate with a smart

device (e.g. smartwatch, smart TV, smart speaker) by making defined hand movements in

the space around a sensing device, without needing any physical contact. This type of

interaction technique has been extensively studied since the 1980s and continues to garner

increasing interest, driven primarily by ongoing advancements in sensor technologies that

make mid-air gestures more practical and effective across a wide range of applications.

1.1.1 Usability Challenges With Macro-Gestures

Interaction with smart devices occurs frequently across various settings, ranging from

private (e.g., homes, personal vehicles) to public spaces (e.g., offices, libraries, public

transport). Traditionally, mid-air gestural interaction has relied on large hand and body

movements. These are referred to as macro-movements or macro-gestures. While these

gestures are suitable in applications like gaming (e.g., Wii or Xbox Kinect), they pose

usability challenges in other day-to-day interactions with devices. To understand these

challenges, consider the following scenario:

1
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Preethi loves binge-watching TV shows and often uses wave and swipe mid-air

gestures to activate gesture recognition on her TV and navigate through apps and

shows. However, these gestures quickly become tiring. Repeatedly lifting and waving

her arms to activate the TV and swiping to scroll through programs leads to physical

discomfort. To make matters worse, her gestures are sometimes mistakenly detected

by other smart devices in the room, causing the smart lights to turn on or the smart

speaker to play music. When friends come over to watch a movie, Preethi feels

self-conscious about using large macro-gestures in front of them. The exaggerated

movements make her worry about looking awkward, so she opts to use the TV

remote instead.

Preethi encounters a few significant problems. Firstly, the repeated use of macro-gestures

to control her TV leads to physical discomfort; to scroll through shows or episodes, she has

to frequently use swipe gestures. The frequent arm movements becomes tiresome, causing

physical fatigue.

Her second problem is that when she waves her hand to activate the TV, the gesture is

unintentionally detected by other smart devices in the room. This illustrates the Midas

Touch problem, where the continuous monitoring for gestures by multiple devices causes

any recognized signal to be considered as intentional interaction, even if it was meant for

another device.

The last problem she encounters is related to social acceptability. She is influenced by her

social environment and the presence of others, which affects her willingness to engage in

certain types of interactions. Performing large gestures could make them appear socially

awkward or out of place. Additionally, such gestures may be physically unfeasible in

certain situations, such as when sitting on a couch with friends or in other close quarters

where people are seated shoulder to shoulder.

The systems developed in this thesis aim to address these challenges using subtle mid-air

gestures. The term subtle gesture can take on different meanings depending on context.
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For example, even a large macro-gesture can appear subtle if socially inconspicuous—such

as swiping the cuff of a smart jacket, which to others may resemble a natural adjustment.

In such cases, subtlety arises from social camouflage rather than physical scale. However, in

HCI literature, subtle gestures more commonly refer to low-effort, compact hand or finger

motions—closely aligned with what are known as micro-gestures. Micro-gestures refer to

small-scale movements performed within a limited interaction space, typically spanning

only a few centimeters [92, 91, 10]. They primarily involve smaller muscle groups, such

as those controlling individual fingers. Such gestures are subtle because they are visually

discreet, non-intrusive, and designed to blend naturally into everyday activities. While

not all macro-gestures are subtle, all micro-gestures are, by nature, subtle. This thesis

uses the term subtle gesture to refer to these low-amplitude hand and finger motions that

are spatially compact, minimally demanding in terms of physical exertion, and socially

unobtrusive.

1.1.2 The Rise of Radars in Gesture Sensing

Gesture detection has traditionally relied on vision-based sensing (e.g., Kinect, RealSense,

Optitrack). While these sensors play a vital role in gestural interaction, they also come with

certain limitations. For example, in Preethi’s scenario, assume the TV is equipped with a

camera for gesture control. In a dimly lit or dark room, the camera might struggle to detect

her hand due to its reliance on proper lighting conditions. Another significant concern is

privacy. While some users may appreciate the convenience of hands-free interaction, others

may be wary of devices that track them visually. For these privacy-conscious users, the

idea of having a camera that constantly monitors them raises concerns over surveillance

and data security.

Recent efforts have led to the development of low-cost, miniaturized radars that possess

properties to overcome many of the challenges posed by vision-based sensors. Radars

use radio waves, a type of electromagnetic signal, to detect the range and speed of
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objects [73]. Unlike vision-based sensors, these signals are unaffected by poor lighting or

atmospheric conditions and can even penetrate through surfaces and objects, allowing for

more consistent and reliable gesture detection in various environments [94]. Radars also

offer a more privacy-preserving alternative to traditional vision-based systems. Unlike

cameras, which capture detailed visual imagery, the radars systems used in this work sense

only motion-related information such as distance, speed, and direction of movement. This

makes them far less intrusive, as no visual details of the user or their surroundings are

recorded.

The most significant property of radars relevant for this research is their sensitivity to subtle

motions. Radars, specifically millimeter-wave (mmWave) radars, operate at frequencies

in the range of 30 to 300 GHz. These radar systems are capable of providing fine spatial

resolution and high sensitivity to small movements [42, 83]. This makes them particularly

well-suited for sensing subtle micro-gestures. This research will leverage these properties

of mmWave radars to explore the design, detection, recognition, and application of subtle

mid-air gestures.

1.2 Thesis Statement

Accurate sensing of subtle mid-air micro-gestures using mmWave radar, and gesture

recognition through signal processing and deep learning, enables quick, precise and user-

friendly control of virtual interfaces, as demonstrated through empirical trials involving

real-time user studies and statistical analysis of metrics such as recognition accuracy, task

time, error distance and user experience scores.
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1.3 Contributions

This thesis makes contributions in three key areas of radar-based gesture recognition and

interaction. The first contribution focuses on the problem of addressing a system using

subtle mid-air activation gestures. Frequency analysis techniques are used to examine

how different hand motions produce distinct frequency signatures. Building on this, a

novel activation gesture recognition pipeline is developed, utilizing spectral analysis to

distinguish subtle activation gestures from incidental hand motions. Its effectiveness is

evaluated through a user study assessing recognition performance and the ability to ignore

unintended motions.

The second contribution focuses on the recognition of subtle micro-gestures using mmWave

radar. In current radar-based gesture recognition research, there is a notable bias toward

selecting macro-gestures. There is also a lack of publicly available radar gesture datasets

that focus on subtle micro-gestures. In this work, a new dataset of subtle gestures is created,

and the techniques for gesture detection and data collection are presented. Following this,

deep learning is applied for gesture recognition, and various neural network architectures

are trained and evaluated to recognize subtle gestures.

The true test of a gesture recognition system lies in its performance during live user

interactions. While past research in radar-based gesture recognition has primarlity focused

on developing gesture recogntion models, there is a lack of research involving real-time

user studies. The final contribution moves from offline evaluations to practical, real-

time assessments. This work integrates the neural network architectures developed in

the previous contribution into real-time applications. A user study is then presented

to evaluate the effectiveness of subtle gestures in controlling slider-based applications,

providing quantitative and qualitative assessments of task performance and user experience.
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1.4 Research Questions

This thesis aims to answer the following questions:

RQ1: What mid-air gestures are suitable as subtle activation gestures?

RQ2: How can subtle activation gestures be accurately recognized without extensive data

acquisition?

RQ3: How accurately can neural networks recognize subtle gestures from mmWave radar

data?

RQ4: Do subtle gestures improve task performance and user experience in radar-based

interactions involving slider control?

1.5 Thesis Structure

Chapter 2, Literature Review , provides an overview of the historical context and recent

advancements in mid-air gestural interaction and sensing technologies, particularly focusing

on mmWave radars. It then reviews research involving mmWave radars in HCI, followed by

the foundational principles of radar signal processing, which are essential for understanding

the technical contributions in subsequent chapters. Finally, the chapter explores the

different types of subtle interaction and the significance of subtle mid-air gestures in HCI.

Chapter 3, Activation Gesture Recognition Using Frequency Analysis, addresses RQ1

and RQ2. It identifies suitable subtle activation gestures based on their ability to generate

distinct high-frequency components, while remaining low-effort, visually unobtrusive,

and spatially compact. A signal processing pipeline is introduced that can accurately

detect these activation gestures without extensive data acquisition. A user study using

multiple sensors (including mmWave radar) is presented, demonstrating that a frequency-

based approach can recognize subtle activation gestures effectively while minimizing false

activations.
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Chapter 4, Subtle Gesture Recognition Using Deep Learning , addresses RQ3. It focuses

on developing a new dataset of subtle micro-gestures and applying deep learning methods to

recognize them from mmWave radar data. By training various neural network architectures,

this chapter demonstrates the effectiveness of hybrid architectures in accurately recognizing

different types of subtle gesture.

Chapter 5, Exploring Slider Control Using Subtle Gestures , addresses RQ4. Building on

the findings of the previous chapter, it integrates the best-performing trained architecture

into real-time interactive systems involving slider-based applications. A user study demon-

strates that subtle gestures enable quick, precise, and comfortable control, improving task

performance and usability compared to traditional macro-gestures.

Chapter 6, Conclusion revisits the thesis statement and the research questions, summariz-

ing the key findings from each chapter. It discusses the contributions made to radar-based

gesture recognition and interaction, acknowledges limitations, and outlines directions for

future research.



2 Literature Review

2.1 Introduction

The first chapter briefly highlighted how recent advancements in radar sensing technologies

have opened up possibilities for detecting subtle mid-air gestures. This literature review

delves deeper into the radar technology employed in this research, examining how it

enables precise, fine-grained motion sensing. In addition, this review will also explore

what constitutes subtle interaction, examine the different types, and discuss where and

why such interactions are beneficial in human-computer interaction (HCI).

In Section 2.2, the review will first provide historical context by exploring the development

and appeal of mid-air gestures, highlighting how sensing technologies and mid-air gestural

interactions have evolved over time. Following this, Section 2.3, will discuss the growing

relevance of radars in HCI, and introduce the Google Soli radar, which is an important

sensing technology in this research. Section 2.4 will then discuss radar fundamentals,

outlining the principles behind signal generation, transmission, and processing. Radar

data is complex, requiring specialized algorithms to interpret and extract meaningful

information, particularly for tasks such as gesture recognition. Section 2.5 will focus on

this aspect, delving into the machine learning algorithms used to process radar data for

recognition of mid-air gestures. This collection of background research will provide the

necessary technical foundation to understand the gesture recognition systems developed

in the later chapters. Finally, Section 2.6, reviews the concept of subtle interaction. The

discussion will include an exploration of the various types of subtle interaction, including

8



2.2. Evolution of Mid-Air Gestural Interaction 9

subtle mid-air gestures, and how they have been employed in previous research, analyzing

its design principles, use cases, and benefits in different HCI scenarios.

2.2 Evolution of Mid-Air Gestural Interaction

A mid-air gesture is a type of touchless interaction where users control or interact with a

smart device by performing specific hand movements in the air. These gestures involve

deliberate, recognizable actions, such as swiping, pinching, waving, or pointing, and

typically occur within a sensor-defined interaction zone. Importantly, mid-air gestures

do not include incidental movements or non-communicative actions—such as scratching,

stretching, or casual arm movements—that lack the explicit intent to interact with a

device.

Mid-air gestures are particularly useful in scenarios where touch-based controls are im-

practical or unhygienic. For example, in medical settings, they support sterility, allowing

hands-free control of equipment and displays [81]. In shared spaces like public kiosks,

they can help minimize wear and contamination [82]. Additionally, mid-air gestures make

it easy to handle tasks like adjusting TV settings or controlling music, allowing quick

interaction without touching a device [96].

Gestural interaction is enabled through one of two types of sensors: wearable or non-

wearable [54, 55, 4]. Wearable sensors require the user to physically wear a device to

sense the gesture. These sensors are often capable of providing precise motion tracking

and offer direct access to the user’s movement. One of the first gesture-based systems to

utilize wearable sensors was Put-That-There [9], developed in the late 1970s. It required

users to wear a small sensor cube on their hand, which was tracked through an external

magnetic field generated by a large transmitter. In the early 1990s, interaction using

data gloves were introduced in Charade [7], a gesture-based system that interpreted hand

movements to control presentation slides. These gloves provided a more direct way to track
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fine-grained finger motions. The SixthSense project [49] in 2009 showcased a wearable

gestural control system using a pocket projector and camera in a pendant-like device to

project digital content onto surfaces. The system enabled users to manipulate projected

digital content using gestures such as pinch-to-zoom and fingertip drawing.

Wearable sensors have seen success in both commercial applications and research. However,

they introduce practical limitations, such as the need to be worn consistently and potential

discomfort or intrusiveness. Non-wearable sensors provide an alternative approach to

capturing mid-air gestures without requiring users to wear any additional devices. One

early example of non-wearable gestural sensing was developed in the 1980s by Vincent

John Vincent and Francis MacDougall.1 They created a gesture-controlled musical system

using computer vision to track full-body movements, enabling users to interact with

virtual instruments through gestures. The Microsoft Kinect, released in 2010, was a major

advancement in non-wearable gesture sensing. It used a color camera and depth sensor

to track full-body movements in real-time. Initially designed for gaming, the Kinect’s

depth-sensing capabilities made it widely popular in research and commercial applications.

Up until the 2010s, non-wearable sensors primarily relied on optical cameras, often using

visible or infrared light, which were effective for capturing macro-gestures. Macro-gestures

are large, deliberate movements involving the whole arm or body, such as waving, swiping,

or pointing. In the following years, non-optical alternatives based on radio frequency (RF)

sensing began to emerge. Among these, early Wi-Fi-based systems detected motion by

analyzing how human gestures disrupted wireless signal patterns. For instance, WiSee

[60] and WiGest [1] demonstrated that fluctuations in Wi-Fi signals could be used to

recognize gestures such as pushing, pulling, and swiping, even through walls. These systems

operated over several meters and required no line-of-sight, leveraging existing wireless

infrastructure to enable low-cost, always-on gesture recognition. These methods worked

well for macro-gestures involving limb displacements on the order of tens of centimeters

to over a meter, but lacked the spatial resolution needed to capture finer hand or finger

1https://www.youtube.com/watch?v=-zQ-2kb5nvs

https://www.youtube.com/watch?v=-zQ-2kb5nvs
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movements.

As gesture interaction evolved beyond macro-gestures, there was growing interest in tech-

niques that could detect more fine-grained, localized input. These smaller gestures—often

referred to as micro-gestures—involve small movements of the hands and fingers within a

compact interaction space, typically in the order of a few centimeters [92, 91, 10]. They

are particularly useful in contexts where macro-gestures are socially awkward, fatiguing, or

physically constrained. One of the first sensors to enable such fine-grained gesture sensing

was the Leap Motion Controller from Ultraleap,2 introduced in 2012. It uses two infrared

cameras to reconstruct hand structure in 3D and detect depth and precise finger motions.

Acoustic sensing techniques also helped bridge the gap between macro and micro-input.

Systems like SoundWave [26] and FingerIO [52] used inaudible ultrasonic signals emitted

from device speakers, measuring the echoes received through microphones to detect motion.

While SoundWave enabled directional gesture detection (e.g., hand swipes), FingerIO

demonstrated sub-centimeter finger tracking by using sonar-like chirps and multiple

microphones. Despite limitations in range and vulnerability to ambient sound, they marked

a key step in sensing micro-gestures. Since the mid-2010s, low-cost, miniature radars have

also emerged as a distinct class of non-optical sensors with very high spatial resolution

and motion sensitivity to both macro and micro-gestures, expanding the possibilities for

mid-air gestural interaction.

2.3 mmWave Radars in HCI

Radars have been a significant area of research and development since the 1940s, however,

its use in HCI has only gained popularity in recent years. In the past, the requirement

for specialized signal-processing techniques and custom hardware had created substantial

barriers to entry. Recent advancements in affordable, miniaturized radar-on-chip technology

and user-friendly SDKs have significantly lowered these barriers, with companies like Texas

2https://leap2.ultraleap.com/products/leap-motion-controller-2/

https://leap2.ultraleap.com/products/leap-motion-controller-2/
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Instruments and Infineon Technologies developing low-cost commercial high-resolution

millimeter-wave (mmWave) radars [61, 51, 30].

mmWave radars are a type of radar system that operate at millimeter-wave frequencies,

specifically in the range of 30 to 300 GHz. They possess many properties that have made

them increasingly popular in HCI research over the past few years. Unlike camera-based

sensors, mmWave radars do not rely on visual information. They use radio waves, a type

of electromagnetic signal, to detect the range and speed of objects. This allows them to

sense objects in environments where visible light sensors may struggle, such as in low-light

conditions, strong shadows, or varying ambient lighting. Additionally, they can sense

through certain materials, such as clothing, plastic, or thin walls, enabling the detection

of objects even when they are partially or fully occluded.

Figure 2.1: Number of publications in the ACM Digital Library over time matching the
search queries: (1) “mmWave radar” OR “millimeter wave radar”, and (2) (“mmWave
radar” OR “millimeter wave radar”) AND “gesture recognition”. The results reflect
the growing interest in mmWave radar research, with a noticeable increase in gesture
recognition applications from 2016 onward.

By adjusting the operating frequencies and configurations of mmWave radars, they can be

optimized for detecting different types of motion at varying distances. For instance, at close
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range (typically within 0–20 cm), mmWave radars can detect millimeter-level displacements,

such as finger tremors. At longer distances (ranging from several meters to tens of meters,

depending on the radar configuration), they can track larger body movements, such as

walking, arm swings, or whole-body gestures. In long-range applications, mmWave radars

have been used for human tracking, identification, and localization [68], as well as for

gesture and activity recognition [2]. mmWave radars have also been applied in security

contexts for detecting concealed weapons, utilizing their ability to penetrate clothing [50].

In short-range configurations, mmWave radars have been shown to be sensitive enough

to capture human physiological signals, thereby enabling their use in health monitoring

applications, such as heart rate and respiration measurement [70]. They have also been

employed for material classification, where their sensitivity at close range allows for the

accurate distinction between materials based on their unique radar reflections [94].

There is a growing trend in mmWave radar research, particularly in the area of gesture

recognition. Figure 2.1 presents the number of publications in the ACM Digital Library

between 2009 and 2024 that match two specific search queries: (1) “mmWave radar” OR

“millimeter wave radar” (496 publications), and (2) ( “mmWave radar” OR “millimeter

wave radar”) AND “gesture recognition” (136 publications). The rapid rise in such

publications—especially after 2016—reflects increasing research interest in this application

area. The emphasis on gesture recognition in mmWave radar research has largely been

due its capabilities in motion sensing. mmWave radars offer fine spatial resolution and

sensitivity, enabling the detection of both macro- and micro-gestures. Another key

factor driving this focus is the privacy-preserving nature of radars. Since they do not

record any visual data, mmWave radars address many privacy concerns associated with

optical systems, which capture visual details of users and their surroundings. In contrast,

mmWave radars infer only range and velocity information without recording any visual

data, making them much more privacy-preserving. Additionally, the miniaturization of

mmWave radar technology has played a pivotal role in its adoption for gesture recognition.

The development of small, low-power radar chips like the Google Soli has opened up the
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possibility to integrate radars into a wide range of devices.

2.4 Understanding mmWave Radar Fundamentals

Using Google Soli

Soli is a high-resolution, low-power, miniature mmWave radar, designed by Google’s

Advanced Technology and Projects (ATAP) group [42]. It utilizes the Infineon BGT60TR24

frequency-modulated continuous-wave (FMCW) radar chip, which operates at a center

frequency of 60 GHz, placing it in the millimeter-wave spectrum. The chip has been

modified by Google ATAP to optimize for low power consumption and enhanced signal

processing capabilities, allowing it to take rapid measurements of movement—up to

thousands of times per second—that enable precise detection and tracking of fine-grained

movements. To achieve low power consumption, adaptive duty cycling was implemented,

which involves shutting down the chip during computation phases to save energy. For

enhanced signal processing, the design includes high-speed analog-to-digital converters

(ADCs) and custom digital signal processing (DSP) algorithms. Specifically, an Infineon

XMC4500 Cortex M4 microprocessor with quad 12-bit ADCs running at 1.79 Msample/sec

is used, enabling the radar to process signals at higher frame rates necessary for tracking

objects with sub-millimeter accuracy. Figure 2.2a shows the Soli chip, with the integrated

DSP and ADC chips. Figure 2.2b illustrates the Soli development kit, where the Soli chip

is mounted on an extended breakout board.

Soli possesses all the properties of mmWave radar discussed in the previous section, such

as the ability to sense through materials and operate in various lighting conditions. What

sets it apart from other mmWave radars is its low power consumption and compact size,

which has enabled its integration into commercial consumer devices, such as the Google

Pixel 43 smartphone and the Google Nest Hub.4 In the Google Pixel 4, Soli enabled

3https://blog.research.google/2020/03/soli-radar-based-perception-and.html
4https://support.google.com/googlenest/answer/10388741?hl=en-GB

https://blog.research.google/2020/03/soli-radar-based-perception-and.html
https://support.google.com/googlenest/answer/10388741?hl=en-GB
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(a) The Soli radar chip (compared to a penny for size reference).

(b) The Soli dev kit comprising of a Soli chip mounted on an extended
breakout board, designed to facilitate connections and development
with external devices, such as laptops.

Figure 2.2: The Soli radar system.

mid-air interactions using macro-gestures such as hand swipes to skip songs, snooze alarms,

and silence phone calls. In the Google Nest Hub, Soli was used infer when a user is paying

attention to the device through head tracking. It also enabled sleep tracking abilities that

could detect breathing patterns and assess quality of sleep.

Another important property of Soli is its fine range resolution. Range resolution refers to

the minimum distance between two objects that a radar can differentiate. It is determined

by its bandwidth. According to the equation for range resolution:

𝑟𝑒𝑠𝑟 =
𝑐

2𝐵𝑊
, (2.1)

where 𝑐 is the speed of light and 𝐵𝑊 is the bandwidth of the radar [73]. The wider the

bandwidth, the finer the radar’s ability to distinguish between closely spaced objects. For

Soli, the maximum permitted bandwidth is 7 GHz, which gives it a range resolution of

approximately:

𝑟𝑒𝑠𝑟 =
3 × 108m/s

2 × 7 × 109Hz = 0.0214m = 2.14 cm (2.2)

This means that Soli can differentiate between two objects that are as close as 2.14cm

apart. There is no strict minimum or maximum size of object that Soli can detect; rather,
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detectability depends more on the object’s reflectivity and how effectively it reflects radar

signals—commonly referred to as its radar cross-section. Objects that reflect more energy

back to the radar are easier to detect, regardless of their physical size. In practice, Soli is

capable of sensing small, dynamic features such as fingertips, especially when they are in

motion.

Figure 2.3 gives an overview of how Soli operates, detailing the processes of signal generation,

transmission, and the transformation of received signals into meaningful information. The

following sections will elaborate on each of these stages in detail. While this explanation

is specific to the Soli, the principles and techniques discussed are also relevant to other

mmWave radars.

Figure 2.3: Signal generation and processing pipeline of a mmWave radar system. The left
section illustrates the generation, transmission, and grouping of radar chirps, while the
right section outlines the process of resolving range profiles, removing clutter, and applying
FFTs to extract range and velocity information, ultimately forming a range-Doppler map.

2.4.1 Signal Generation and Transmission

The Soli features an Infineon 60GHz FMCW radar with one transmission antenna and

three receiver antennas. FMCW radar functions by emitting a modulated electromagnetic

wave toward a target, which then scatters the transmitted signal, with some portion of
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energy redirected back toward the radar. Waves are emitted by transmitting a series of

chirps from the transmission antenna. A chirp in the Soli follows a sawtooth pattern (see

Figure 2.4a). This means that each chirp starts at a base frequency and linearly sweeps up

to a higher frequency over a short period of time, then quickly resets to the base frequency

to begin the next sweep. The Soli transmits and receives a series of chirps which are

grouped into what are called packets or bursts. By analyzing the time delay and frequency

shift of the received chirps, the distance, and velocity characteristics of the target can be

resolved [77].

2.4.2 Resolving Range

Time Delay and Beat Frequency: When a chirp is reflected from an object, it travels

back to the radar with a time delay. This time delay causes a difference in frequency

between the transmitted chirp at the time of transmission and the received chirp at the

time of arrival. This difference in frequency is known as the beat frequency, which is

directly proportional to the distance of the object because the greater the distance, the

longer the time delay, and thus a larger frequency difference [77].

Applying FFT to Chirps: The radar system processes the received chirp using a Fast

Fourier Transform (FFT). The FFT translates the time-domain signal (which varies in

frequency over time) into a frequency-domain signal, representing the intensity of different

frequencies. The peak(s) in the FFT spectrum represent the beat frequency (see Figure

2.4b). Since the beat frequency is related to the range, detecting this peak allows the

calculation of the object’s distance from the radar. The result of this processing is known

as the range profile. The range profile is a data representation that shows the intensity of

reflected signals as a function of distance from the radar. It provides a detailed view of

the distance distribution of objects in the radar’s field of view. Each peak in the range

profile corresponds to a detected object, and the position of the peak indicates the radial

distance (straight-line distance from the radar) to the object [73].
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(a) Transmission of a series of chirps and the resulting beat frequency in FMCW radar system.
The TX chirp represents the transmitted signal, and the RX delayed chirp represents the received
signal reflected from a target. The difference in frequency (Δ𝑓 ) between the TX and RX chirps
forms the beat frequency, which is used to calculate the range and velocity of the target.

(b) A visual overview of signal processing in an FMCW radar system. A packet (or burst) of 256
chirps is transmitted, and each chirp undergoes Range FFT to extract the range information
from the beat frequency. Subsequently, a second FFT, referred to as Doppler FFT, is applied
across the chirps in the packet to resolve velocity, resulting in a range-Doppler map.

Figure 2.4: Signal generation and processing in an FMCW radar system. (a) shows how
the beat frequency is generated from transmitted and received chirps, while (b) depicts
the process of applying FFT to extract range and velocity information. Images taken from
[77].
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2.4.3 Clutter Removal

Clutter refers to unwanted echoes from stationary or slow-moving objects within the radar’s

field of view, which can obscure or interfere with the detection of relevant targets [73]. In

the signal processing for Soli, clutter removal is implemented by calculating an exponential

moving average of the received range profiles across multiple chirps. This averaged signal,

or clutter map, is then subtracted from each individual chirp’s data in order to suppress

the clutter and improve detection of the true targets.

2.4.4 Resolving Velocity

Doppler Shift: If the object is moving, the frequency of the received echo will also be

shifted. This is known as the Doppler effect. This shift is added to or subtracted from

the beat frequency, depending on whether the object is moving toward or away from the

radar. Positive Doppler shift indicates motion away from the radar (increasing distance),

and negative shift indicates motion toward the radar (decreasing distance).

Applying 2D FFT to Bursts: To separate the range information from the velocity

information, a two-dimensional FFT can be applied. The first FFT is applied along the

samples within a single chirp to extract the range profile, as mentioned in Section 2.4.2.

The second FFT is applied across the series of chirps in a burst. By transforming the

changes in beat frequencies over successive chirps into the frequency domain, the FFT

reveals how these frequencies vary over time, indicative of the object’s velocity [73].

2.4.5 Range-Doppler Map

The direct output of the 2D FFT is a complex range-Doppler map. The complex values

contain both the amplitude (magnitude) and phase information of the radar signal returns

at different ranges and Doppler shifts. To create a visual representation that is interpretable,

only the magnitude of the complex numbers is taken and can be visualized as a range-
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Doppler map (RDM). A RDM exhibits reflected energy intensity as a function of target

range and velocity. Positive velocity corresponds to motion away from the radar (increasing

range) and negative velocity corresponds to motion toward the radar (decreasing range)

[77, 48].

Figure 2.5 shows examples of RDMs before and after clutter removal. Figure 2.5a displays

the raw RDM, where the presence of clutter obscure the signal of the actual target. Figure

2.5b shows the RDM after applying clutter removal as described in Section 2.4.3. The

clutter removal process filters out unwanted reflections, enhancing the clarity of the target

signal and allowing for a more accurate representation of the range and velocity of the

actual target.

(a) Raw RDM showing the intensity of reflected signals as a function
of range and velocity bins before clutter removal. The presence of
noise and stationary objects obscures the target signal.

(b) Clutter-removed RDM after applying filter to eliminate unwanted
reflections. The target signal is more prominent, showing a clearer
distinction of the reflected energy.

Figure 2.5: Comparison of RDMs before and after clutter removal.

2.5 Gesture Classification From Radar Data

Classification is a fundamental task in machine learning where the goal is to assign input

data to one of several predefined categories. This process involves training a model on a

labeled dataset so that it can learn to differentiate between various classes based on the
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features of the input data.

The general classification function can be expressed as follows:

𝑦 = argmax𝑐 𝑓 (𝑥 ;𝜃 ),

where:

• 𝑦 is the predicted class label.

• 𝑐 represents the possible classes.

• 𝑥 is the input data.

• 𝑓 (𝑥 ;𝜃 ) is the classification model parameterized by 𝜃 .

• The argmax function selects the class 𝑐 with the highest predicted probability.

In deep learning, the function 𝑓 is modeled by a neural network. Neural networks consist

of multiple layers of interconnected neurons, each layer transforming the input data into

a higher-level representation. During training, the model is optimized by adjusting 𝜃 to

minimize a loss function, to improve its ability to predict the correct class for new, unseen

data. The parameters 𝜃 include the weights and biases of all the neurons in the network.

2.5.1 Neural Networks for Gesture Classification

Neural networks have been effectively employed in various domains, such as image under-

standing [63, 37], speech recognition [98], machine translation [78], and localization [21].

Neural networks have also been widely used in gesture classification, particularly with

mmWave radars. The input to a network in this context is typically a RDM sequence,

which provide information on the reflected energy intensity across different ranges and

velocities over consecutive time frames. As a gesture is performed, the RDM changes

dynamically, reflecting the movement of different parts of the hand or body. Neural

networks are then able to learn the temporal and spatial patterns within these RDM

sequences, and classify different gestures.
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Table 2.1 provides a summary of the different radar sensors, the types (macro/micro)

and numbers of gestures recognized, and the neural network architectures employed from

various studies. The classification of gestures into macro and micro categories was based on

the movement scale observed in each study. As mentioned in Section 2.2, macro-gestures

refer to large, deliberate movements involving the whole arm or body—typically with

displacements on the order of tens of centimeters or more—whereas micro-gestures involve

smaller, localized hand and finger movements, typically within a compact interaction space

in the order of a few centimeters. Recognizing these gestures requires models capable of

capturing both spatial and temporal features. Two classic deep neural network models are

particularly popular for gesture recognition from mmWave radar data: the convolutional

neural network (CNN) and the long short-term memory network (LSTM).

• CNNs are specialized neural networks designed for spatial data processing, particularly

well-suited for tasks like image recognition. They use convolutional layers to detect

spatial patterns, such as edges, shapes, and textures, making them effective for

extracting features from RDM data.

• LSTMs are a type of recurrent neural network (RNN) designed to process sequential

data by maintaining memory over time. Unlike standard RNNs, LSTMs can capture

long-term dependencies in temporal data, making them ideal for tracking motion

patterns in radar data sequences.

Dong et al. use a 3D-CNN architecture to recognize 16 macro-gestures. 3D-CNN is

an extension of traditional CNNs into the time dimension, allowing it to capture both

spatial and temporal features. Choi et al. use an LSTM encoder to learn the temporal

characteristics of the RDM sequences and recognize 10 macro-gestures. In addition, there

are many studies [83, 29, 86] that have applied hybrid CNN-LSTM networks, which benefit

from the strengths of both CNN and LSTM, with CNNs effectively capturing spatial

features (such as shape and movement direction) and feeds these to the LSTM which

captures temporal dependencies (such as speed and rhythm). These hybrid models tend

to have higher recognition accuracy than using CNN or LSTM alone. More complex
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networks such as VGG-Net [85], ResNet [47], and Transformer [13] have also been adapted

for mmWave gesture recognition. These architectures bring the feature extraction and

sequence modeling capabilities used in other tasks and transfer them to recognizing gestures

from radar data.

Radar Gestures/Number Classification Al-
gorithm

Reference

IWR1642 Macro/9, Micro/1 3D-CNN [69]
AWR1642 Macro/16 3D-CNN [19]
Soli Macro/10 LSTM [14]
IWR1443 Macro/6 LSTM [93]
Soli Macro/7, Micro/4 CNN-LSTM [83]
Soli Macro/4 CNN-LSTM [29]
AWR1642 Macro/8 CNN-LSTM [86]
AWR1642 Macro/6 VGG-16 [85]
AWR1843 Macro/3, Micro/3 2D + 3D ResNet18 [47]
Soli Macro/20 Transformer [13]

Table 2.1: Radar sensors, gesture types, and neural networks used in gesture recognition
studies.

Although deep learning models have demonstrated strong performance in radar-based

gesture recognition, they have been predominantly applied to large, well-defined macro-

gestures. Several studies have reported classification accuracies exceeding 95% [19, 47, 14].

These results are often aided by the more distinct motion signatures of macro-gestures,

which involve larger arm or hand movements and produce stronger, more separable radar

signals. This thesis shifts the focus toward micro-gestures, evaluating whether these existing

models remain effective when applied to smaller, localized hand and finger movements.

In doing so, it also explores the design of micro-gestures that are both distinguishable

to the radar and usable in practical contexts. Furthermore, unlike prior work which

primarily evaluates recognition accuracy in offline settings, this research also explores

real-time implementation and usability by integrating the models into live applications

and conducting user studies to assess their practical viability.
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2.5.2 Radar Gesture Datasets

Deep learning models require large amounts of labeled data to effectively learn and

generalize from the underlying patterns in the input. This is because neural networks

have millions (even billions) of parameters that need to be optimized during training.

Without sufficient data, these models fail to generalize to new, unseen inputs. Currently,

there are a limited number of publicly available radar gesture datasets, particularly those

that focus on subtle micro-gestures. Table 2.2 shows a summary of the available datasets.

These datasets tend to focus on macro-gestures such as swipes, waves, and rotations.

Similarly, as was seen in Table 2.1, research in gesture recognition models also tend to

favor macro-gestures.

The focus on macro-gesture recognition has been driven by several reasons. These gestures

produce clearer and more distinct radar signatures, making them easier to detect and train

neural networks on, resulting in higher recognition accuracy. Additionally, since these

gestures are performed with larger body movements, such as the entire arm, they generates

strong radar signals that can be detected from several meters away. Because of this,

macro-gestures can be recognized with high accuracies from long ranges. For example, Liu

et al. demonstrated a 95% gesture recognition accuracy for four macro-gestures performed

from a distance of 2.4 meters.

Radar Gestures/Number Total Samples Reference
Novelda
XeThru X4

Macro-gestures/11 9600 [3]

Ancortek
Macro-gestures/2,
Micro-gestures/2

3052 [64]

IWR1443
BOOST

Macro-gestures/2,
Micro-gestures/3

56,420 [44]

Soli
Macro-gestures/7,
Micro-gestures/4

27,500 [83]

Table 2.2: Publicly available datasets for mmWave hand gesture recognition
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2.6 Understanding “Subtle”

In the Introduction of this thesis, the concept of subtle gestures was briefly introduced.

But what exactly does “subtle” mean in this context? This section aims to expand on

this by discussing subtle interaction and what constitutes subtle gestures within the wider

concept of subtle interaction, as well as the reasons behind their importance in HCI.

2.6.1 Types of Subtle Interactions

Pohl et al., in their paper “Charting Subtle Interaction in the HCI Literature”, analyzed

55 HCI publications that used the term “subtle”. They reviewed these publications to

identify common themes and categorize subtle interaction. Based on this analysis, four

main types of subtle interactions were found and each type reflects different qualities and

design goals. These are:

1. Non-Intrusive Feedback: Non-intrusive feedback in the context of subtle interaction

means not drawing much attention away from whatever the user is doing. The goal is

to provide subtle cues that inform or notify the user without significantly disrupting

their primary activity or requiring them to shift their focus entirely. Hansson and

Ljungstrand explored this with their Reminder Bracelet, which uses light, color, and

patterns instead of sound to notify users [28]. Similarly, Costanza et al. developed an

eyeglass peripheral display that delivers visual cues in the wearer’s periphery which

notify users of incoming messages, reminders, or alerts through subtle changes in

light patterns and colors, allowing the user to stay informed without significantly

disrupting their focus [16].

2. Low-Effort Input: Subtle interaction can also mean doing less, emphasizing the

reduction of physical effort required for input. Such interactions are tied to small-scale

or low-amplitude gestures, performed with minimal exertion, also commonly referred

to as micro-gestures. For instance, Costanza et al. described subtle input as requiring

“very little or no movement at all” [17]. The Gunslinger system illustrates this by
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proposing small, arms-down mid-air gestures, such as thumb and finger movements,

aiming to minimize physical input space and reduce user fatigue [45]. Similarly, the

WristFlex system uses minor hand movements, such as pinching two fingers [18].

The Nenya ring is another example which enables control through “small, discreet

movements” [6]. The EMG controller by Costanza et al. detects subtle gestures

from muscle contractions using surface electromyography, recognizing small hand

movements through muscle activity signals [17]. The FingerPad by Chan et al.

facilitates low-effort input with small touch gestures on a hidden touchpad embedded

under surfaces like tables or clothing [11].

3. Discreet Interaction: This form of subtle interaction focuses on hiding actions

from others. This can be particularly important in social contexts where overt

interaction with devices might be considered rude or distracting. Devices like the

FingerPad enable users to interact discreetly by using a touchpad embedded under

the surface of a table or a piece of clothing, allowing for private interactions that are

hidden from view [11]. Similarly, the EMG controller leverages the discreet nature of

muscle contractions, detecting subtle movements on the bicep to issue commands [17].

Discreet interaction is closely tied to low-effort input, as both emphasize small-scale

or low-amplitude movements that are minimally visible and require little physical

exertion. Systems like FingerPad and EMG controller, highlight this overlap, as the

low-effort nature of these interactions inherently supports discreet usage.

4. Nudging Users: Finally, subtle interactions can be used to nudge users towards

certain behaviors or actions. This approach leverages cues to guide users’ attention

and actions. For example, a subtle nudging technique was implemented by Sridharan

et al., where brief and localized adjustments in screen brightness or contrast were

used to influence where a user looked without the user being fully aware of the

manipulation [72].
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2.6.2 Subtle Gestures

From the broader taxonomy of subtle interaction, subtle gestures can take on multiple

interpretations depending on the context in which they are performed. For example, subtle

interaction includes the concept of discreet interaction, where actions are hidden from

others. In this sense, even a broad macro-gesture can be subtle if performed in a socially

inconspicuous manner. One example of this is Google’s Project Jacquard [58], which

integrates capacitive touch sensors into clothing to enable gesture-based input on textiles.

In their Levi’s jacket collaboration 5, users could swipe the cuff of their sleeve to control

music playback or receive navigation prompts. To an outside observer, the gesture may

simply look like someone adjusting their sleeve. In such cases, subtlety arises not from the

gesture’s physical characteristics but from its social invisibility and natural integration

into everyday movement.

However, in HCI literature, the term “subtle gesture” is more commonly associated with

low-amplitude movements, a quality closely aligned with the concept of micro-gestures.

Chan et al. [10] defined micro-gestures as “detailed gestures in a small interaction space,”

emphasizing miniaturization of hand movements for discreet interaction. In contrast, Wolf

et al. framed micro-gestures as small hand and finger movements that can be carried out

concurrently with another task [92, 91]. Their work included scenarios such as gesturing

while holding a steering wheel, showcasing how such input could be performed without

disrupting the primary activity.

Drawing from these perspectives, this thesis uses the term subtle gesture to refer primarily

to low-amplitude hand and finger motions that are spatially compact, minimally demanding

in terms of physical exertion, and socially unobtrusive. While the perception of effort

is inherently relative and may vary across individuals or contexts—for instance, what

feels effortless for one user may be challenging for another—this work adopts the term

“low-effort” to describe gestures that, for most users, require minimal muscular activation

5http://global.levi.com/jacquard/jacquard-with-buy-link.html

http://global.levi.com/jacquard/jacquard-with-buy-link.html
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and can be performed repeatedly without significant fatigue. Subtlety in this context

arises from characteristics such as compactness, precision, and unobtrusiveness, making

such gestures viable for frequent use in mid-air interaction.

2.6.3 Significance of Subtle Mid-Air Gestures

Subtle mid-air gestures are linked to low-effort input, emphasizing the reduction of physical

effort required for interaction. These gestures use small, low-amplitude movements that

are primarily driven by the muscles controlling the fingers and wrist. In Preethi’s scenario

(from Section 1.1.1), she experiences fatigue from performing large, repetitive macro-

gestures to control the TV. By contrast, subtle gestures require far less exertion, making

them more sustainable for frequent interactions.

The low-effort nature of subtle gestures also aligns with the concept of balancing be-

tween focused and casual interactions, as outlined by Pohl and Murray-Smith [57]. The

focused–casual continuum reflects how users shift their level of engagement depending

on context. For instance, a user cooking in the kitchen may casually wave a hand to

skip a song. However, if the same user wants to rewind or scrub to a precise point in a

podcast, this would require more focused attention and finer motor control. In such cases,

subtle gestures offer a low-effort mechanism for precise input without requiring the user to

break their primary activity entirely. By supporting both casual and focused modes of

interaction, subtle gestures can enable more fluid transitions between task engagement

and control.

Subtle mid-air gestures are also linked with the idea of discreet interaction to improve social

acceptability. These gestures are easier to perform in public settings without disturbing

others or breaking social norms. The work by Williamson discusses the concept of everyday

actions as performances, where users are constantly aware of their surroundings and adjust

their behavior based on social feedback. In Preethi’s scenario, she was self-conscious of

using large gestures in the presence of other people, as it could draw unwanted attention
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and potentially cause embarrassment. Subtle gestures, in such scenarios, would reduce the

visibility of interaction, which makes users more likely to engage in gestural interaction

around other people [89].

2.6.4 Sensing Subtle Mid-Air Gestures

In the past, sensing subtle gestures heavily relied on wearable sensors, which provided

high accuracy for detecting small movements but required users to wear additional devices.

The Gunslinger system required a Leap Motion Controller to be mounted on the user’s

thigh to track small, arms-down mid-air gestures [45]; the WristFlex system used an

array of force-sensitive resistors worn around the wrist to detect subtle finger pinch

gestures by sensing tendon movements at the wrist [18]; the EMG controller used surface

electromyography to detect muscle activity from electrodes placed around the upper arm,

specifically centered on the bicep brachii [17]; the FingerPad device uses a nail-mounted

touch sensor [11]. Several ring-based systems have also been developed for subtle gesture

recognition [6, 33, 75, 76].

Early non-wearable sensors lacked the spatial resolution needed to detect fine, low-

amplitude movements. Prior to the development of mmWave radars, Wi-Fi [95, 1, 31, 80]

and ultrasound [84, 65, 12, 43, 26] signals were widely used for gesture sensing. Both

approaches enabled non-wearable mid-air gesture sensing without requiring specialized

hardware. Wi-Fi leverages commodity routers, while ultrasound utilizes built-in speakers

and microphones, applying the Doppler effect—similar to mmWave radar—to detect

motion. These methods performed well for detecting large hand motions and human

posture, but they lacked fine spatial resolution.

With the development of low-cost, miniature mmWave radars like Google Soli, sensing

subtle gestures has become more feasible. These sensors offer sub-millimeter accuracy and

fine-grained range resolution, enabling the detection of even the smallest finger movements.

Their sensitivity has been demonstrated in applications such as non-contact vital sign
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monitoring [70] and distinguishing between different textures and materials [94]. The

combination of high accuracy, fine range resolution, and compact form factor opens up

new possibilities in subtle gesture sensing.

2.7 Conclusion

This literature review began by motivating the use of mid-air gestures in HCI. It then

introduced mmWave radars and its increasing significance in HCI research. Following

this, the review detailed the fundamental principles of radar signal processing and data

representations that will be required to understand the technical contributions discussed

in the upcoming chapters. A review of radar-based gesture recognition was then presented,

revealing a bias in current research toward macro-gestures. This bias was evident not

only in the recognition models but also in publicly available datasets, which tend to

focus on macro-gestures. These gestures produce strong radar signatures, making them

straightforward to detect and train on, thereby enabling high recognition accuracy but

leaving subtle micro-gesture recognition largely underexplored.

The review then shifted focus to subtle interaction, outlining different forms such as non-

intrusive feedback, discreet input, and user nudging. Within this space, subtle gestures were

defined as small, localized hand or finger movements that are less physically demanding and

more socially appropriate in shared or constrained environments. While wearable sensors

have traditionally been used to detect such gestures, recent advances in high-resolution,

low-power radars—such as Google Soli—offer new possibilities for sensing these gestures

without requiring users to wear additional hardware.

The review identified key gaps in the mmWave radar literature: a lack of focus on subtle

mid-air gestures, including limited evaluation of gesture recognition models on subtle

gestures, and an absence of user-centered studies assessing real-time usability. These gaps

are important because subtle gestures offer advantages in comfort, repeatability, and social
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acceptability, particularly in everyday settings where macro-gestures may be awkward or

tiring. Evaluating subtle gesture systems in real-time is also essential for understanding

practical challenges like unintended activations, latency, and usability.

With the combination of sub-millimeter accuracy, fine range resolution, and small form

factor, mmWave radars like Soli have great potential for enabling new forms of subtle

interactions. The remainder of this thesis addresses the key gaps by designing subtle

mid-air gestures tailored for radar sensing, developing real-time recognition systems, and

evaluating their effectiveness and usability through controlled user studies.



3 Activation Gesture Recognition Using Fre-

quency Analysis

3.1 Introduction

Activation is the process of signaling the start of an interaction, ensuring that a system

responds only when intended. In sensor-based interaction, activation serves as a crucial

first step, determining when a system transitions from passive sensing to active engagement.

However, this seemingly simple step often introduces unexpected challenges. Consider

Preethi’s scenario introduced in the beginning of this thesis (Section 1.1.1). Her gesture

was unintentionally recognised and activated other devices in the room. Sensors are

“always on” and as a consequence, every user motion may be interpreted as an interaction,

whether or not it was intended. This is know as the Midas Touch problem in gestural

interaction. Baudel and Beaudouin-Lafon also refer to this as immersion syndrome where

the user is immersed in interaction, even if they do not want to be. The technical term for

this is ‘false positive errors’, where the user does not intend to perform a gesture but the

system recognizes one anyway.

Bellotti et al. identified the importance of being able to address a sensing interface, so that

the system is able to discern when it should pay attention to a user’s actions, and when to

ignore them. One strategy for addressing the system is through the use of activation zones,

where gestures are only recognized when performed within specific spatial regions near a

screen or sensor [7, 24, 71]. This spatial filtering helps to disambiguate intentional gestures

from casual movements occurring elsewhere. More generally, gesture recognition systems

32



3.1. Introduction 33

often use delimiters that define the start and end of interaction segments, ensuring the

system recognizes only the intended gestures within these boundaries [36]. An activation

gesture (or gating gesture [90]) is a specific kind of gesture delimiter that is used to

initiate the gesture recognition mode for further interaction. These gestures serve as a

deliberate signal from the user to the system, indicating the start of intentional interaction.

An activation gesture needs to be distinctive from everyday movements and unlikely to

be performed accidentally [24, 35]. They function similarly to verbal hotwords used in

voice-activated systems, such as “Hey Siri” or “OK Google,” but in the form of physical

movements.

Depending on the sensor type, activation gestures can be dynamic movements or static

poses. Vision-based sensors often use static hand or body poses for activation since they

benefit from the ability to reconstruct spatial structure [66, 82]. With motion sensors, like

mmWave radars, it is not possible to directly reconstruct spatial structure and therefore

the activation gestures must rely on dynamic movements [32, 34, 40]. Some gesture-based

systems use temporal correlation gestures, where a user’s movement is matched in time to

a dynamic system cue, such as tracking a moving target on a screen [79]. These techniques

can serve as an implicit form of activation, relying on synchronous motion as a signal of

intent rather than requiring a distinct gesture.

Neural networks have demonstrated strong performance in recognizing macro-gestures

like hand waves, fast swipes, and circular motions from mmWave radar data [83, 14, 29].

While these gestures are replicable and distinguishable, they are large motions that can

lead to Midas Touch, as seen in Preethi’s scenario when other sensing devices are present.

Additionally, these gestures are neither low-effort when performed frequently nor discreet.

The first research question in this chapter aims to identify subtle, dynamic activation

gestures for sensors like mmWave radars.

RQ1: What mid-air gestures are suitable as subtle activation gestures?



3.1. Introduction 34

After identifying appropriate activation gestures, the next challenge lies in designing

algorithms that are sensitive enough to recognize these gestures and ignore incidental

movements. As reviewed in Section 2.5, gesture recognition research with mmWave radars

has primarily used deep learning algorithms, which rely on large amounts of data. This

method is useful for gesture sets because neural networks can learn to differentiate be-

tween each gesture given enough training data. However, for activation gestures, the goal

is to initiate interaction with the system, so not every detected motion segment needs

to be processed by a neural network to identify whether it matches a gesture from an

entire set. This would be highly inefficient, and especially problematic in battery-powered

devices like smartphones, where battery life is limited. If the phone was to run every

detected motion segment through a neural network, it would unnecessarily increase power

consumption. Moreover, activation gestures are inherently time-sensitive, often requiring

immediate system response. Offloading gesture recognition to cloud services introduces

latency and depends on stable internet connectivity, which cannot always be guaran-

teed—especially in mobile or offline scenarios. Therefore, local, lightweight processing

is preferable for activation gestures to ensure real-time responsiveness and energy effi-

ciency. By focusing on these unique constraints, this chapter will develop a system for

recognizing subtle activation gestures without the need for extensive data collection or

calibration (typically required for neural networks) through the following research question:

RQ2: How can subtle activation gestures be accurately recognized without

extensive data acquisition?

3.1.1 Chapter Structure

Section 3.2 introduces the frequency analysis of hand motions, explaining how different

types of hand movements generate distinct frequency components. Section 3.3 describes

the selection of subtle activation gestures, followed by Section 3.4, which outlines the

development of an activation gesture recognition pipeline that utilizes frequency analysis
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to recognize subtle activation gestures without data acquisition. Section 3.5 presents the

evaluation of the proposed pipeline through a user study. Section 3.6 summarizes the

main findings of the evaluation, highlights the limitations and suggests areas for future

work. Finally, Section 3.7 summarizes the chapter by revisiting the research questions and

outlining the contributions made.

3.2 Frequency Analysis of Hand Motions

Our hands are capable of moving at different speeds depending on which muscles are

involved. Larger muscles in the arm generally produce slower, broader movements compared

to the smaller muscles in the fingers, which allow for faster, finer motions. The following

section uses frequency analysis, including power spectral density (PSD) and spectrograms, to

characterize different types of hand motions that generate distinct frequency components.

3.2.1 Power Spectral Density

Power spectral density (PSD) quantifies the power present in various frequency components

of a time-series signal. It is particularly useful in identifying dominant frequencies within

a signal and understanding how energy is distributed across different frequency bands.

PSD is calculated using the fast Fourier transform (FFT), which decomposes a signal into

its constituent frequencies, allowing for the analysis of the signal’s frequency content [15].

The PSD is estimated using the FFT, based on the formula:

𝑆 (𝑓 ) = lim
𝑇→∞

1

𝑇
|F{𝑥 (𝑡)}(𝑓 ) |2 , (3.1)

where 𝑆 (𝑓 ) is the Power Spectral Density, F{𝑥 (𝑡)} represents the FFT of the signal 𝑥 (𝑡),

𝑇 is the duration of the signal, and 𝑓 is the frequency.
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3.2.2 Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal as

it varies with time. Unlike PSD, which provides a static view of the frequency content,

spectrograms offer a time-varying perspective, showing how the spectral density of the

signal changes over time [15]. This is particularly useful for analyzing signals with non-

stationary or evolving frequency components, such as hand motions. The spectrogram is

calculated using the FFT of successive time-windowed segments of the original signal:

𝑆 (𝑡, 𝑓 ) = |F{𝑥 (𝑡)𝑤 (𝑡)}(𝑓 ) |2 , (3.2)

where 𝑆 (𝑡, 𝑓 ) represents the spectrogram, F{𝑥 (𝑡)𝑤 (𝑡)}(𝑓 ) is the FFT of the signal 𝑥 (𝑡)

multiplied by a window function 𝑤 (𝑡), centered around time 𝑡 , and 𝑓 is the frequency.

3.2.3 Spectral Profiles of Low and High-Frequency Hand Mo-

tions

Not all hand motions exhibit the same frequency characteristics, as they vary widely

depending on the activity and intent. The following analysis categorizes hand motions

into two types based on their frequency components.

1. Low-Frequency Hand Motions: These hand motions are slower movements that

occur either intentionally or unintentionally during day-to-day activities. These

motions are typically generated by larger muscles, often involving the whole arm,

and result in broader, movements. For example, gestures made while speaking, hand

motions while cooking, such as stirring a pot, or arms swinging back and forth

while walking. These motions could be rhythmic or non-rhythmic and they result

in high power at low frequencies which generally occur in the 1-4Hz range. Figure

3.1a illustrates the frequency analysis (signal intensity (left), PSD (middle) and

spectrogram (right)) of a 10-second recording as a hand swings back and forth in
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(a) Spectral profile of an arm swinging. The signal PSD, and spectrogram reveal a dominant
low-frequency peak between 1-2Hz, reflecting the rhythmic swinging motion of the arm.

(b) Spectral profile of rapid finger movements. The PSD and spectrogram show high-frequency
peaks between 6-12Hz, indicating rapid, rhythmic oscillations of the fingers.

Figure 3.1: Signal intensity (left), PSD (middle), and spectrogram (right) for low-frequency
and high-frequency hand motions detected by Soli over a 10-second period.

front of the Soli. In the PSD, a large and sharp peak is clearly visible around 1-2Hz.

This peak represents the primary frequency of the back and forth swinging motion

of the hand. The high power of this peak also suggests a rhythmic and repetitive

motion. Its location at 1-2 Hz implies that the hand was swinging back and forth

approximately every 0.5-1 second. After this dominant peak, there’s a notable drop in

power, emphasizing the significant contrast between the primary motion and any other

minor activities or noises. In the spectrogram, the bright bands that are persistent at

around 1-2 Hz throughout the 10-second span further demonstrate the continuous

presence of the primary swinging motion.

2. High-Frequency Hand Motions: These hand motions involve rapid, high-speed

movements that are rhythmic in nature. These actions demand conscious and precise
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effort, which means they rarely happen by chance or without intent. The rhythmic

repetition of these motions generates strong power in the 4-12 Hz frequency range.

One example of such a motion is repeatedly tapping the tip of the thumb with the

index finger in a quick, oscillating pattern. These types of gestures involve fine motor

control and small displacements, yet they generate distinct, high-frequency signatures

due to the speed and regularity of the motion. Figure 3.1b presents the frequency

analysis of a 10-second recording taken while rapidly moving fingers in front of the

Soli. Compared to the PSD in Figure 3.1a, there are many more pronounced peaks

at higher frequencies, due to the fast, rhythmic motions of individual fingers. The

big peak between 10-12Hz indicates a dominant frequency in the finger motions,

which suggests that one or multiple fingers had a specific oscillatory pattern that

repeated roughly every 0.08 to 0.1 seconds. In the spectogram, the bright bands of

high-frequency activity in the 6-12 Hz range reaffirm the high-frequencies generated

by the rapid finger motions throughout the recorded period.

This analysis indicates that while day-to-day hand motions encompass a variety of move-

ments, they typically do not produce significant high-frequency components in the signal.

Routine activities such as cooking, walking, or gesturing while talking predominantly

generate low-frequency signals with peaks in the 1-4 Hz range. In contrast, hand motions

that produce strong power in the higher frequency bands (4-12 Hz) require intentional,

high-speed, and rhythmic movements. These high-frequency motions are not performed

accidentally during normal daily tasks but are associated with deliberate actions involving

rapid and repetitive movements. While this section presents only two representative

examples—one low-frequency and one high-frequency—it serves to build intuition about

the relationship between motion characteristics and their frequency profiles. A broader

range of hand and finger motions will be examined later in the chapter.
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3.3 High-Frequency Subtle Activation Gestures

As previously mentioned, activation gestures need to be distinct from everyday hand

motions. Hand motions that produce strong power in high-frequency ranges (4-12Hz) are

well-suited for this purpose because their rhythmic and high-speed nature makes them

less likely to occur by accident. Rhythmic gestures are intentional, repeated movements

where the motion pattern remains consistent over time [38, 22, 23]. The deliberate and

rhythmic nature of high-frequency gestures ensures that they are distinct from slower and

often non-repetitive motions common in everyday activities.

The following sections will describe four candidate rhythmic activation gestures: Finger

Taps, Finger Rubs, Thumb Presses, and Pinch Presses. The selection of these four gestures

was guided by both technical and design-driven considerations. All gestures were chosen

for their potential ability to generate high-frequency components within the 4–12 Hz range.

Beyond this, the gestures align with qualities associated with subtle gestures—specifically,

those emphasizing spatial compactness, low physical exertion, and social unobtrusiveness.

As discussed in Section 2.6.2, subtle gestures often overlap with the notion of micro-gestures:

small-scale, low-amplitude hand or finger motions [10, 92]. By keeping the movements

localized to the fingers and minimizing arm displacement, the selected gestures preserve

these characteristics while still producing radar-detectable high-frequency signals.

Preliminary recordings of each gesture were conducted by the researcher using a Soli radar

to examine whether these gestures indeed produce expected high-frequency components.

The gestures have been grouped into two categories based on the nature of the motions

involved: Rapid Finger Gestures and Tremor-Inducing Pressure Gestures.

3.3.1 Rapid Finger Gestures

These gestures are characterized by rapid finger movements, primarily involving the thumb

and index finger. The two Rapid Finger Gestures are:



3.3. High-Frequency Subtle Activation Gestures 40

(a) Finger Rubs: The
thumb and index
finger are rubbed
together quickly in
a back-and-forth
motion.

(b) Finger Taps: The fin-
gertip of the index finger
rapidly taps against the
thumb in a repeated mo-
tion.

(c) Thumb Press:
The thumb repeat-
edly applies firm
pressure against the
radial side of the
index finger.

(d) Pinch Press: The
thumb and index fin-
ger repeatedly pinch
together, applying
firm pressure.

Figure 3.2: Candidate subtle activation gestures.

1. Finger Rubs: This gesture (shown in figure 3.2a) involves the back and forth rubbing

of the thumb and index finger. Gently rubbing these two fingers together quickly

and repeatedly can generate high-frequency signals, as demonstrated in the spectral

analysis in Figure 3.3a. The analysis shows rapid fluctuations in intensity and a

pronounced peak in the PSD around the 10-12Hz range. The spectrogram further

illustrates strong activity at these frequencies, highlighting the generation of strong

high-frequency components.

2. Finger Taps: This gesture (shown in figure 3.2b) involves quick, repetitive motions

where the fingertip of the index finger swiftly taps the thumb. Rapidly tapping the

index finger against the thumb in this manner can produce high-frequency components,

as demonstrated in the spectral analysis in Figure 3.3b. This gesture exhibits some

low-frequency peaks in the PSD within the 0-4Hz range. However, more prominent

peaks are visible in the 8-12Hz range. Additionally, the spectrogram also highlights

bright bands at these frequencies, demonstrating the high-frequency energy generated

by this gesture.

Variations of both these gestures have been featured in research from Google and Infineon

Technologies [83, 30]. Additionally, similar gestures have been used in gesture recognition

research using other types of sensing technologies, such as accelerometers and gyroscopes
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in smartwatches [88], capacitive sensors in data gloves [53], and even infrared sensors [25].

In this work, Finger Rubs and Finger Taps have been adapted to specifically induce high-

frequency components through rhythmic repetition. Generating strong spectral energy

within the 4–12 Hz range would require performing these gestures at a repetition rate of

approximately 3–6 times per second.

3.3.2 Tremor-Inducing Pressure Gestures

These gestures generate isometric tremors. Isometric tremors are induced by the consistent,

deliberate application of pressure, leveraging the natural response of muscle contractions

[20]. The two Tremor-Inducing Pressure Gestures are:

1. Thumb Presses: This gesture (shown in figure 3.2c) involves firmly and repeatedly

pressing the radial side of the index finger using the thumb. This action creates a

concentrated pressure on the joint which engages muscles in the hand and forearm

resulting in a localized isometric tremor that leads to the generation of high-frequency

components as can be seen in the spectral analysis in Figure 3.3c. The intensity plot

shows frequent spikes corresponding to the repeated application of pressure. In the

PSD, there are peaks between 8-12 Hz, indicative of the high-frequency components

generated by the tremors. The spectrogram further validates this, displaying bright

bands at these frequencies.

2. Pinch Presses: This gesture (shown in figure 3.2d) involves firmly and repeatedly

pinching the thumb and index finger together, thereby inducing an isometric tremor

that leads to the generation of high-frequency components, as can be seen in the spec-

tral analysis in Figure 3.3d. The intensity plot exhibits frequent spikes corresponding

to the application of pressure, and the PSD shows peaks around 6-8Hz, highlighting

the high-frequency components generated by the tremors. The spectrogram also

displays bright bands at these frequencies.

These two gestures were selected due to their ability to generate subtle isometric tremors
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(a) Spectral profile of the Finger Rubs gesture, showing high-frequency components primarily in
the 10-12 Hz range generated by rapid thumb and index finger rubbing.

(b) Spectral profile of the Finger Taps gesture, highlighting high-frequency signals in the 8-12 Hz
range produced by quick, repetitive tapping between the thumb and index finger.

(c) Spectral profile of the Thumb Presses gesture, displaying high-frequency tremors in the 8-12
Hz range caused by repeated pressure on the radial side of the index finger.

(d) Spectral profile of the Pinch Presses gesture, showing high-frequency tremors in the 6-8 Hz
range generated by repetitive pinching between the thumb and index finger

Figure 3.3: Spectral profiles of activation gestures using Soli over a 5-second period. Each
plot shows the intensity (left), power spectral density (PSD) (middle), and spectrogram
(right), illustrating the high-frequency components induced by each gesture.
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through deliberate pressure application. Unlike Rapid Finger Gestures that involve visible

finger movement, these gestures require the hand to remain in a fixed pose while repeatedly

applying pressure. The absence of noticeable finger motions makes them highly subtle, but

also more challenging to detect. Similar to the Rapid Finger Gestures, these pressure-based

gestures would also need to involve applying pressure approximately 3–6 times per second

to generate strong spectral energy within the 4–12 Hz range.

3.4 Activation Gesture Recognition Pipeline

Since the previous section demonstrated that the proposed candidate activation gestures

are capable of producing high-frequency components, the next step involves developing

a method to recognize these gestures. The following sections will outline the design of a

pipeline that processes sensor data to recognize subtle activation gestures.

3.4.1 Pipeline Components

Figure 3.4 gives an overview of the proposed activation gesture recognition pipeline. This

pipeline leverages the power distribution within frequency bands to differentiate intentional

activation gestures from incidental hand motions. The various stages of the pipeline are

detailed below, and the pseudocode for implementation is outlined in Algorithm 1.

1. Total Intensity Calculation: The pipeline begins by collecting raw sensor data,

which is processed to derive the intensity of the hand motions. The focus is on

deriving the overall signal intensity as detected by the sensor. For instance, in the

case of the Soli, calculating the total intensity means taking the absolute sum of the

range-Doppler map (RDM). This intensity serves as the basic input for the subsequent

stages of the pipeline. The intensity data is updated in a sliding window buffer that

retains the most recent 1-second period of motion data. This window length was
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Figure 3.4: Overview of the proposed activation gesture recognition pipeline. First, total
intensity is calculated and stored in a 1-second sliding window buffer. A high-pass filter
then suppresses low-frequency components, after which the PSD is calculated. The PSD
is aggregated into two frequency bands: 0-4Hz for low-frequency motions and 4-12Hz for
high-frequency gestures. The system recognizes an activation gesture if the power in the
4-12Hz band exceeds that in the 0-4Hz band.

empirically chosen to balance frequency resolution and system responsiveness: a

shorter window would reduce detection latency but make it harder to distinguish

frequency bands reliably, while a longer window would improve frequency resolution

at the cost of increased lag. A 1-second window provides sufficient resolution.

2. Signal Filtering: Filtering is used in gesture recognition systems for isolating desired

gesture signals from noise. Sometimes sensor data can be dominated by low-frequency

components, which can obscure the subtle, high-frequency gestures. However, these

low-frequency components are not merely noise—they reflect broad, casual hand

motions that the system must be able to detect and distinguish from intentional input.

To achieve this, the pipeline applies a high-pass Butterworth filter to the buffered

intensities. Rather than fully suppressing low-frequency content, the filter attenuates

its power just enough to reduce its dominance, thereby allowing the high-frequency

components to emerge more clearly when performing a subtle activation gesture. For

instance, in the case of the Finger Taps gesture (Figure 3.3b), low-frequency peaks

in the 0-4 Hz range are present. Similarly, in Thumb Presses (Figure 3.3c) and Pinch

Presses (Figure 3.3d), low-frequency peaks can also be observed. The high-pass filter
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reduces the influence of these low-frequency components just enough to prevent them

from overshadowing high-frequency gesture signals, while still retaining sufficient

low-frequency information to reflect broader, casual hand motions.

3. Calculate PSD: In this step, the PSD of the filtered intensities is computed. This

gives the distribution of energy across different frequencies in real-time, thus providing

the spectral characteristics of the ongoing gesture.

4. Aggregate Power in Frequency Bands: The PSD is then aggregated into two

separate frequency bands: 0-4Hz and 4-12Hz. The 0-4Hz band captures the total

power of low-frequency components. As discussed in Section 3.2.3, day-to-day hand

motions generate significant power in this band as they tend to be low-speed and typ-

ically non-rhythmic. The 4-12Hz band captures the total power of the high-frequency

components, which exhibit higher power when the deliberate, rhythmic activation

gestures are performed, as explored in Section 3.3.

5. Gesture Recognition: The final stage of the pipeline uses the aggregated powers

to determine whether the motion detected is an activation gesture. If the power

in the 4-12Hz band is greater than in the 0-4Hz band, the recognition condition is

met, indicating that the hand gesture being performed has strong high-frequency

components. This suggests that the gesture is fast and rhythmic, characteristic of the

candidate activation gestures. On the other hand, if the power in the 0-4Hz band is

dominant, it indicates the presence of stronger low-frequency components, associated

with broader, slower motions.
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Data: Sensor data stream, sliding window size (history length for 1 second), high-pass filter
parameters, frequency bands (0-4 Hz, 4-12 Hz)

Result: Detected activation gestures
begin

Initialize 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 deque with max length ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

Initialize 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 deque with max length ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

while running do
Retrieve raw data from sensor stream
Process raw data to calculate 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 representing motion intensity
Append 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 to 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

if 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 has sufficient data for 1 second then
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 ←− Apply high-pass filter to 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

(𝑙𝑜𝑤 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟, ℎ𝑖𝑔ℎ 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 ) ←− Calculate PSD and aggregate
power in frequency bands

if ℎ𝑖𝑔ℎ 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 > 𝑙𝑜𝑤 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 then
Activation gesture recognized
Clear 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 and 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

end

end

end

end
Algorithm 1: Pseudocode for the proposed activation gesture recognition pipeline

3.4.2 Visual Analysis

Figure 3.5 shows three graphs, each tracking the cumulative power in the low (0-4Hz)

and high (4-12Hz) frequency bands during a 5-second window of different hand motions

as recorded by the Soli. The plots in 3.5a shows the cumulative low and high frequency

powers during a typical non-gesture event: an arm swinging. It exhibits dominant power

in the lower frequency band and shows no significant spikes in the high-frequency band,

reflecting the absence of fast, rhythmic motions. The plots in 3.5b show the cumulative

low and high frequency powers when continuously performing the Finger Rubs activation

gesture. Unlike the arm swing, the cumulative high-frequency power is consistently higher

than the cumulative low-frequency power due to the rapid, rhythmic finger motions,

which generate strong high-frequency components in the signal. This shows the pipeline’s

ability to effectively track the power in high-frequency components during the activation

gesture while adequately attenuating the low-frequency components. Figure 3.5c illustrates

the critical moment when an activation gesture (Finger Rubs) is recognized. Here, the
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cumulative high-frequency power exceeds the cumulative low-frequency power, triggering

the detection condition.

(a) Cumulative low and
high-frequency powers during
a non-gesture arm swing,
with dominant low-frequency
power due to slow, broad
motions.

(b) Cumulative low and high-
frequency powers during the
Finger Rubs gesture, show-
ing consistently higher high-
frequency power due to fast,
rhythmic motions.

(c) Cumulative high-frequency
power exceeding cumulative
low-frequency, marking the ac-
tivation gesture trigger condi-
tion.

Figure 3.5: Graphs tracking cumulative power in low (0-4Hz, green) and high (4-12Hz,
red) frequency bands during a 5-second period of different hand motions as captured by
the Soli: (a) arm swinging back and forth, (b) continuous Finger Rubs gesture, and (c)
activation gesture trigger point.

3.5 Evaluation

Since the input to the pipeline is signal intensity, the system is sensor-agnostic and can be

adapted to any sensor capable of detecting hand motion. To demonstrate the pipeline’s

adaptability and assess its performance across different sensing modalities, a user study

was conducted using three types of sensing technologies: a Google Soli radar, an Intel

D435 camera augmented with MediaPipe hand tracking [97], and a wrist-mounted SHAKE

1, which is a Bluetooth enabled sensor that includes an accelerometer. The study focuses

on testing the following hypotheses:

H1: The pipeline effectively ignores casual hand movements.

This hypothesis directly addresses the Midas Touch problem and evaluates a core func-

tionality of the pipeline: its ability to filter out casual, everyday hand movements.

1https://code.google.com/archive/p/shake-drivers/

https://code.google.com/archive/p/shake-drivers/
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H2: The pipeline recognizes Rapid Finger Gestures (Finger Rubs, Finger Taps) faster

than Tremor-Inducing Pressure Gestures (Thumb Press, Pinch Press).

This hypothesis aims to evaluate whether Tremor-Inducing Pressure Gestures, being

subtler due to their reliance on muscle tremors, take longer to recognize compared to the

more pronounced and intentional movements of Rapid Finger Gestures.

H3: The SHAKE recognizes activation gestures faster than the other sensors.

This hypothesis investigates the impact of sensor characteristics on recognition speed, with

the expectation that the SHAKE’s high sampling rate (see Table 3.1) and wrist-mounted

configuration will enable faster recognition of the activation gestures compared to the

other sensors.

H4: Users prefer Rapid Finger Gestures over Tremor-Inducing Pressure Gestures.

This hypothesis investigates whether users will prefer Rapid Finger Gestures over Tremor-

Inducing Pressure Gestures, considering factors such as overall comfort during repeated

use and recognition performance.

3.5.1 System Description

Sensor Sampling Rates: As mentioned before, the study uses three different sensors,

each with unique sampling rates. According to the Nyquist-Shannon sampling theorem,

to get the complete gesture signal, the sampling frequency must be at least twice the

highest frequency present in the gesture signal [67]. The specific sampling rates and the

corresponding maximum detectable frequencies for each sensor are detailed in Table 3.1.

The sampling requirements are met by all sensors, as their sampling rates are sufficiently

high to detect frequencies in casual movements and the candidate subtle activation gestures.
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Sensor Sampling Rate (Hz) Max Detectable Frequency (Hz)
Google Soli Radar 25 12.5
Intel D435 Camera 30 15
SHAKE Accelerometer 60 30

Table 3.1: Sampling specifications of sensors.

Processing Sensor Input Data : The signal intensity used as input for the pipeline is

processed differently for each sensor. The following steps outline how the raw data from

each sensor is transformed into a single intensity value at each timestep.

• Google Soli: At each timestep, Soli provides three RDM outputs corresponding to

its three receiver antennas. As discussed in Section 2.4.5 each RDM embeds the range

and velocity of the gesture as captured by the corresponding antenna. To compute

the intensity value at each timestep, the absolute sum of all RDMs is calculated.

• Intel D435 Camera with MediaPipe Tracking: MediaPipe Hands provides

tracking of 21 different 3D landmarks on the hand [97]. In this study, only the x and

y coordinates are used, as these are sufficient for tracking the horizontal and vertical

gesture motions. At each timestep, the speed of each landmark is calculated and

combined to create a composite intensity value that represents the overall speed of

the hand.

• SHAKE Accelerometer: At each timestep, the absolute values of acceleration

along the 𝑥 , 𝑦, and 𝑧 axes are summed to form the intensity value. This represents

the magnitude of acceleration.

Feedback System: To provide participants with real-time guidance on their gestures,

a feedback system employing visual and auditory mechanisms was developed. Figure

3.6 gives a graphical representation of this system. In the center is a vibrating circle

that dynamically responds to the participant’s gestures. The circle’s size and vibration

are controlled by adjusting its radius, which reflects both the vibration amplitude and

frequency. These properties are determined by the cumulative power in the high-frequency

band (4-12Hz) and the ratio of the cumulative power in the high-frequency band to the

cumulative power in the low-frequency band (0-4Hz) in the input signal. Consequently,
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Figure 3.6: Feedback system used to test the activation gesture pipeline. The system
features a vibrating circle that responds to the participant’s gestures, adjusting its size and
vibration based on the gesture’s speed and intensity. Faster gestures increase vibration
frequency, while strong signal intensities result in more visible vibrations. The circle turns
green and emits a beep when a gesture is successfully recognized.

for gestures like Finger Taps or Finger Rubs, performing the gesture with faster rhythmic

motions results in the circle vibrating at a higher frequency. Also, if the intensity of the

detected signal is higher, the amplitude of the circle’s vibration will increase, making it

pulsate more visibly. Similarly, for gestures like Thumb Presses or Pinch Presses, applying

pressure more frequently increases the vibration frequency. Additionally, applying greater

pressure generates more pronounced tremors, causing the circle to vibrate more visibly.

Once the activation condition is met—when the power in the high-frequency band exceeds

that of the low-frequency band—the system emits a beep, and the circle changes color to

green, signaling that the gesture has been recognized. Users then need to wait until the

circle turns red again before attempting another gesture.

3.5.2 Procedure

Participants were seated comfortably in front of a laptop. Two sensors, the Google Soli

radar and the Intel D435 webcam (augmented with MediaPipe hand tracking), were directly
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(a) Google Soli radar setup with the sensor positioned 20cm from
the table edge to ensure gestures are performed within the sensing
range.

(b) Intel D435 camera setup (left) with real-time MediaPipe hand
tracking visualized in an OpenCV window (right).

(c) SHAKE sensor pack (left) worn on the wrist (right).

Figure 3.7: Experimental setups for the activation gesture user study.
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connected to the laptop. For the SHAKE accelerometer, a USB dongle was attached

to the laptop, which connected to the SHAKE sensor pack wirelessly via Bluetooth.

Sensor-specific setup and instructions were as follows:

• Google Soli Radar: Participants needed to perform the gestures within Soli’s

sensing range of 20cm. To ensure this, the Soli was positioned 20cm from the edge of

the table, and participants were instructed to perform the gestures within the edge

of the table area, keeping their hands within the sensor’s detection zone (shown in

Figure 3.7a).

• Intel D435 Webcam with MediaPipe: An OpenCV window displayed the hand

with MediaPipe’s hand tracking, and participants were instructed to keep their hands

within the visible frame of the webcam while performing gestures (shown in Figure

3.7b).

• SHAKE Accelerometer: The SHAKE was secured to the participant’s wrist with a

wrist band (shown in Figure 3.7c). This placement was chosen to simulate the use of

smartwatches, which commonly incorporate accelerometers. Additionally, the muscles

around the wrist are engaged while performing the candidate activation gestures.

Participants were instructed to keep their arm in a naturally bent position while

performing the gestures.

The order in which the sensors were chosen was randomized to account for order effects,

helping to prevent bias in the results due to the sequence in which the sensors were

tested. Sensors were tested individually rather than simultaneously, as doing so would

have required participants to keep their hand within both the Soli’s limited 20cm sensing

range and the MediaPipe OpenCV tracking window—an impractical constraint during

gesture performance. Additionally, testing sensors individually ensured that each sensor

had an optimal view of the participant’s hand, not only during gesture performance but

also when performing casual hand movements. Once a sensor was selected, one of the four

candidate gestures was randomly chosen, and participants were required to perform each

gesture 20 times per sensor. Real-time feedback was provided through the vibration system
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described previously. The order of gestures was semi-randomized, alternating between a

Rapid Finger Gesture and a Tremor-Inducing Pressure Gesture. This alternation was done

to prevent the participant’s hand from tiring due to repeatedly performing the same type

of gesture. To assess the ability of the pipeline to filter out casual movements, participants

were asked to perform a series of tasks for 4 minutes with each sensor. This session was

placed after performing two activation gestures with that sensor, providing a break to

prevent hand fatigue. The tasks included: browsing a phone in front of the sensor (or

while wearing the SHAKE), performing broad hand motions, writing on a piece of paper,

and typing on a keyboard. Finally, at the end of the study, participants were asked to

rank the gestures in order of preference and share the reasons for their choices.

3.5.3 Metrics

The following metrics were used to assess the system:

• False Activations: This refers to the number of times the activation condition

was met while participants were performing the set of casual hand movements. Any

trigger that occurred during these movements was recorded as a false activation.

• Time to Activation: This is the time taken for a gesture to be recognized after the

participant begins performing it. The timer was initiated as soon as the red circle

turned green—signaling that the system was ready for a new input—and stopped

when the activation condition was met.

• Gesture Rankings: This is the participants’ subjective ranking of the four activation

gestures.

3.5.4 Participants

Eight participants were recruited for the study, consisting of six males and two females,

with ages ranging from 24 to 36 years (average age: 27). All participants performed the

experiment using their right hand. Ethics approval for this study was provided by the
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university’s ethics committee.

3.5.5 Results

The results are described below with respect to each specific hypothesis.

H1: The pipeline effectively ignores casual hand movements.

Table 3.2 provides a summary of false activations recorded when participants performed

different activities with the three sensors. The pipeline had zero false activations for broad

hand gestures across all sensors, indicating that the system is effective at filtering out

broad, low-speed motions. However, for activities like typing, writing, and phone usage,

there were false activations across all sensors.

Sensor Broad Gestures Typing Writing Phone Usage Total
Soli 0 12 3 6 21
Intel D435 0 16 23 35 74
SHAKE 0 32 29 21 82

Table 3.2: Summary of false activations by sensor and activity

Spectral analysis was performed to understand these results. For each sensor and activity,

signal intensities from all participants were aligned and averaged at each time point to form

a composite signal. The spectral profiles of these composite signals were then produced to

examine the frequency components associated with each activity. Figure 3.8 shows the

spectral profiles for activities recorded with the Soli. Spectral profiles for the Intel D435

and SHAKE sensors are included in Appendix A.1.

In Figure 3.8a, the power spectrum for broad hand motions reveals strong peaks in the

low-frequency range (0-4Hz), with weak power in the higher frequencies. This pattern is

also seen in the spectrogram, where the bright bands of activity are concentrated below

4Hz. The same trend was observed with the Intel D435 and SHAKE sensors, where

broad hand motions primarily exhibited strong power below 4Hz. The lack of strong
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(a) Spectral profile of broad hand gestures, showing strong low-frequency components primarily
in the 0-2Hz range, with minimal high-frequency activity.

(b) Spectral profile of typing, showing high-frequency components in the 4-12Hz range generated
by rapid finger movements.

(c) Spectral profile of writing, showing dominant low-frequency activity below 4Hz with occasional
high-frequency bursts, likely arising from fast writing speeds and adjustments.

(d) Spectral profile of phone usage, primarily showing strong low-frequency activity below 4 Hz,
with sporadic high-frequency peaks likely arising from quick taps or swipes on the screen.

Figure 3.8: Spectral profiles of various activities recorded with the Soli, generated from
composite signals created by aligning and averaging signal intensities across all participants.
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high-frequency components in broad hand motions allowed the system to effectively ignore

these movements, resulting in zero false activations across all sensors for this activity.

The power spectrum for typing (Figure 3.8b) shows high-frequency components, with strong

peaks between 4-8Hz. This is also visible in the spectrogram, where bright bands appear

intermittently at higher frequencies. These high-frequency components are produced from

the fast finger movements involved in typing, which triggered the activation condition

resulting in false activations. The power spectrums for both writing (Figure 3.8c) and

phone use (Figure 3.8d) predominantly shows strong power below 4Hz, similar to broad

hand motions. Most of the activity is concentrated in this range, as seen by the peaks

in frequencies under 4Hz and the bright, continuous bands in the lower part of the

spectrograms. However, there are occasional, sporadic bursts of high-frequency activity. In

the case of writing, these high-frequency components likely arise from fast writing speeds

and adjustments. Similarly, in phone usage, high-frequency bursts likely occurred during

rapid taps or swipes on the screen.

Multi-Trigger Validation: To address the issue of false activations during typing,

writing, and phone usage, a post-hoc multi-trigger validation mechanism was implemented.

This approach requires multiple activation signals within a brief time window to confirm an

intentional activation. The idea is that casual movements are less likely to meet a repeated

threshold, so this method could help distinguish intentional high-frequency activation

gestures from other high-frequency hand motions that arise from activities like typing or

writing.

A 2-second time window was selected, and validation criteria were set at 2 and 3 triggers

within this window. The modified algorithm of the activation gesture recognition pipeline

with the multi-trigger condition is included in the appendix in Section A.2. Figure 3.9

shows the impact of applying these multi-trigger criteria. The false activations decreased

significantly with the 2-trigger condition and under the 3-trigger criterion, false activations

were completely eliminated for all activities except typing with the SHAKE sensor, which



3.5. Evaluation 57

still had 3 false activations.

Figure 3.9: Effect of multi-trigger validation on false activations across different sensors and
activities. The figure compares the number of false activations under 1-trigger, 2-trigger,
and 3-trigger criteria within a 2-second window. The 2-trigger criterion significantly
reduces false activations, while the 3-trigger criterion nearly eliminates them across all
sensors and activities, except for a small number of activations during typing with the
SHAKE sensor.

H2: The pipeline recognizes Rapid Finger Gestures (Finger Rubs, Finger Taps) faster

than Tremor-Inducing Pressure Gestures (Thumb Press, Pinch Press).

To first test whether there is a significant difference in time to activation between Rapid

Finger Gestures and Tremor-Inducing Pressure Gestures, an analysis involving normality

testing and non-parametric comparisons was conducted. The Shapiro-Wilk test was

employed to assess the normality of the time to activation data for both types of gestures

across all three sensors. The results indicated that none of the distributions conformed to

normality (𝑝 ≤ 0.01).

To first test whether there is a significant difference in time to activation between Rapid

Finger Gestures and Tremor-Inducing Pressure Gestures, an analysis involving normality

testing and non-parametric comparisons was conducted. The Shapiro-Wilk test was

employed to assess the normality of the time to activation data for both gesture types

across all three sensors. The results indicated that none of the distributions conformed to

normality: Soli (Rapid Finger Gestures: 𝑊 = 0.81, 𝑝 < 0.001; Tremor-Inducing Pressure

Gestures: 𝑊 = 0.77, 𝑝 < 0.001), Intel D435 (𝑊 = 0.82, 𝑝 < 0.001; 𝑊 = 0.85, 𝑝 < 0.001),
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Figure 3.10: Plots illustrating the distribution of time to activation (with black line
indicating the median) for Rapid Finger Gestures and Tremor-Inducing Pressure Gestures
across three sensors: Soli, Mediapipe, and Sk8.

and SHAKE (𝑊 = 0.73, 𝑝 < 0.001;𝑊 = 0.79, 𝑝 < 0.001).

Given the non-normal distributions, the Wilcoxon Signed-Rank Test was applied to

compare the time to activation between the two types of gestures for each sensor. In all

cases, the p-values were exceedingly small (𝑝 ≤ 0.01), indicating a statistically significant

difference in time to activation between Rapid Finger Gestures and Tremor-Inducing

Pressure Gestures: Soli (𝑍 = −11.96, 𝑝 < 0.001), Intel D435 (𝑍 = −11.64, 𝑝 < 0.001),

and SHAKE (𝑍 = −4.39, 𝑝 < 0.001). Although the difference for the SHAKE sensor is

statistically significant, the effect size is smaller compared to the other two sensors.

Figure 3.10 illustrates the distribution of time to activation for Rapid Finger Gestures and

Tremor-Inducing Pressure Gestures across the three sensors. As seen in the plots, Rapid

Finger Gestures generally exhibit lower median activation times and narrower distributions.

This indicates that these gestures were not only faster to activate, but also more consistent
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across participants, with less variability in timing compared to the broader and more

variable distributions observed for Tremor-Inducing Pressure Gestures. Notably, while the

visual separation between gesture types is most pronounced for Soli and Intel D435, the

SHAKE sensor also shows this trend, albeit less distinctly—consistent with its smaller

effect size despite statistical significance.

For each sensor, a composite signal was generated for each activation gesture by aligning

and averaging the intensity signals across all participants at each time point. The PSD

of this composite signal was then calculated. Figure 3.11 shows the PSD of each gesture

across the three sensors (starting from 4 Hz for clarity). Across all sensors, Rapid Finger

Gestures exhibit stronger high-frequency components compared to Tremor-Inducing Pres-

sure Gestures. This could explain why Rapid Finger Gestures showed shorter and more

consistent time to activation, as the sensors are better able to capture their higher-intensity,

high-frequency signatures. In contrast, the subtler nature of Tremor-Inducing Pressure

Gestures made them harder for the pipeline to recognize quickly, as these gestures do not

produce high-frequency signals as strong as those generated by Rapid Finger Gestures.

As a result, it likely took more repetitions to generate a signal strong enough to meet

the recognition criteria, leading to longer and more variable activation times for Tremor-

Inducing Pressure Gestures.

H3: The SHAKE recognizes activation gestures faster than the other sensors.

The Friedman test was used to determine whether the time to activation differed signifi-

cantly across sensors, accounting for repeated measures within participants. Significant

differences were found among the sensors for both Rapid Finger Gestures (𝜒2(2) = 12.25,

𝑝 = 0.002) and Tremor-Inducing Pressure Gestures (𝜒2(2) = 14.25, 𝑝 < 0.001). Post-hoc

Nemenyi comparisons revealed that for Rapid Finger Gestures, both the SHAKE and Soli

outperformed the Intel D435 significantly (p = 0.003 , p = 0.016 , respectively), while no

significant difference was found between SHAKE and Soli (p = 0.86). For Tremor-Inducing
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Soli

Intel D435

SHAKE

Figure 3.11: Power Spectral Density (PSD) of composite signals for each activation gesture
across the three sensors (top: Soli, middle: Intel D435, bottom: SHAKE). Each plot
represents the PSD of a composite signal created by averaging the intensity signals from all
participants at each time point for a given gesture. Rapid Finger Gestures (Finger Rubs,
Finger Taps) generally exhibit stronger high-frequency components across all sensors,
while Tremor-Inducing Pressure Gestures (Pinch Presses, Thumb Presses) tend to show
weaker intensity signals.
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Pressure Gestures, SHAKE again outperformed Intel D435 (p = 0.001), but the difference

between SHAKE and Soli (p = 0.06) and between Soli and Intel D435 (p = 0.29) were not

statistically significant.

Figure 3.10 shows that the SHAKE has a narrower distribution for both Rapid Finger

Gestures and Tremor-Inducing Pressure Gestures, with a notably lower median time to

activation for Tremor-Inducing Pressure Gestures than the other sensors. This indicates

that the pipeline recognizes gestures more consistently and quickly with the SHAKE. This

can be attributed to its high sampling rate and wrist-mounted position. With a sampling

rate of 60Hz, the SHAKE processes inputs at twice the frequency of the Intel D435 and

more than double that of the Soli. While this enabled the SHAKE to sense gestures faster,

it also made it highly sensitive to muscle movements during activities like typing, writing,

and phone usage, leading to higher false activations (Table 3.2).

The Intel D435 exhibited the highest time to activation for both Rapid Finger Gestures

and Tremor-Inducing Pressure Gestures, with especially high variability in the latter, as

shown by the long-tailed distribution in Figure 3.10. Although the D435 has a higher

sampling rate than the Soli, its vision-based tracking approach with MediaPipe struggled

with the subtleties of Tremor-Inducing Pressure Gestures, requiring longer to recognize

them.

The Soli sensor’s performance in terms of time to activation fell between the SHAKE and

the Intel D435. It showed better consistency than the Intel D435 in recognizing both

Rapid Finger Gestures and Tremor-Inducing Pressure Gestures, but not as much as the

SHAKE. However, in terms of false activations, the Soli outperformed the other sensors,

recording the lowest number of false activations across all activities.

H4: Users prefer Rapid Finger Gestures over Tremor-Inducing Pressure Gestures.

Figure 3.12 shows the distribution of user preferences for each gesture type across the

three sensors. For the Soli and Intel D435, there was a clear preference for Rapid Finger
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Gestures, with Finger Rubs and Finger Taps being ranked in the top two preferences more

often than the Tremor-Inducing Pressure Gestures. In contrast, with the SHAKE, Pinch

Presses and Thumb Presses were more frequently ranked as the top two preferences.

Figure 3.12: Distribution of user preferences for each activation gesture across the three
sensors (Soli, Intel D435, SHAKE). Users showed a higher preference for Rapid Finger
Gestures (Finger Rubs and Finger Taps) with the Soli and Intel D435, while Tremor-
Inducing Pressure Gestures (Pinch Presses and Thumb Presses) were preferred with the
SHAKE.

Participants primarily ranked their preferences based on how quickly they felt the gesture

was recognized. The pattern of preferences aligns with the time to activation observed

in Figure 3.10, where Rapid Finger Gestures were recognized more quickly using the

Soli and Intel D435. One participant said: “The Finger Rubs and Taps were recognized

faster (with the Soli and Intel D435).” This may be because these two sensors—being

non-wearable and having lower sampling rates—required more repetitions to recognize the

subtler Tremor-Inducing Pressure Gestures, making them feel slower and potentially more

effortful. While these gestures appear discreet, they rely on repetitive muscle engagement
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to apply force in a fixed pose. This repeated application of pressure activates deeper

muscle groups in the hand and forearm, which can feel more strenuous over time compared

to the lighter, more dynamic flicking motions used in Rapid Finger Gestures. As a result,

users may have perceived the pressure gestures as more demanding despite their smaller

movement range. In contrast, the SHAKE sensor demonstrated similar time to activation

for both gesture types. Its wrist-mounted position placed it closer to the muscle activity

involved in pressure gestures, and its higher sampling rate enabled it to capture those

subtle muscle activations more effectively. This likely made the Tremor-Inducing Pressure

Gestures feel just as responsive as Rapid Finger Gestures on the SHAKE. One participant

noted, “I found it easier to perform the pressure gestures since it’s (SHAKE) worn on the

wrist.”

3.6 Discussion

The proposed activation gesture recognition pipeline effectively ignored broad hand gestures

across all sensors, demonstrating its robustness in filtering out large, low-speed, casual

hand movements. However, activities like typing, writing, and phone usage produced

sporadic high-frequency signals, leading to false activations. To address this, a post-hoc

multi-trigger mechanism was implemented, which drastically reduced false activations

across all activities for all sensors. With this improvement, H1 is accepted.

Rapid Finger Gestures consistently achieved significantly lower time to activation than

Tremor-Inducing Pressure Gestures across all sensors. This supports the acceptance of

H2.

The performance of the pipeline varied notably across sensors. The Soli had fewer false

activations than the SHAKE and Intel D435, while the SHAKE achieved the fastest

activation times due to its higher sampling rate and wrist-mounted positioning. These

results highlight how sensor characteristics significantly impact the pipeline’s performance
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supporting the acceptance of H3.

Participants’ preferences for activation gestures varied across sensors. With the Soli

and Intel D435, Rapid Finger Gestures were favored, as these gestures achieved faster

recognition times and were perceived as more responsive. In contrast, with the SHAKE,

Tremor-Inducing Pressure Gestures were preferred, due to the wrist-mounted positioning,

which made these gestures feel more comfortable and comparably responsive. These

variations in user preference reflect a sensor-dependent support for H4.

3.6.1 Limitations and Future Work

One design decision in the current pipeline was to compare total power in two frequency

bands—0–4Hz and 4–12Hz—even though the bands are unequal in size. This choice

was guided by empirical observations. In practice, the power in the 0–4Hz band was

consistently stronger than that in the 4–12Hz band, even during high-frequency gestures.

Expanding the low-frequency band would have further amplified this imbalance, making

it harder to detect the subtle high-frequency gestures. Moreover, although the pipeline

applies a high-pass filter to attenuate the dominance of low-frequency components, this

attenuation was intentionally conservative: the goal was to suppress their overwhelming

power just enough to allow high-frequency signals to emerge clearly—not to eliminate

low-frequency motion altogether. Future work could explore normalization techniques to

better account for differences in baseline power between bands.

The activation gesture recognition pipeline produced false activations during activities such

as typing, writing, and phone usage, where rapid, repetitive motions occasionally generated

strong high-frequency components and triggered the activation condition. To address

this limitation, a post-hoc multi-trigger validation mechanism was implemented using a

2-second window with 2 and 3-trigger conditions. This modification drastically reduced

false activations across all activities and sensors. However, this multi-trigger mechanism

was applied post-hoc, meaning it was not tested during the real-time evaluation of the
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user study, where the pipeline used a single-trigger condition. Introducing a multi-trigger

condition would naturally increase the time required to recognize gestures, as multiple

triggers within the specified window are needed for confirmation. While a follow-up

study to evaluate this in real-time would have been ideal, it was beyond the scope of

the current work which was establishing whether frequency-based activation detection

could reliably distinguish intended gestures from casual hand movements. Although the

multi-trigger mechanism was introduced post-hoc, the results provide meaningful insight

into the effectiveness of frequency-based activation detection. The observed differences

in recognition time and user preferences across gestures and sensors highlight consistent

trends. These findings remain a useful foundation for gesture design and sensor integration,

while future work could examine how trigger refinements affect responsiveness and usability.

There were also sensor-specific challenges with the Intel D435, where MediaPipe’s hand

tracking occasionally struggled with occlusion issues. When participants were performing

writing and phone usage tasks, parts of their hand would sometimes be obscured by the

pen or phone. These occlusions disrupted MediaPipe’s ability to continuously track the

hand, resulting in erratic jumps in the detected hand landmarks. This introduced high-

frequency noise into the signal, which, in turn, led to some false activations. To address

this challenge, a solution would involve incorporating the uncertainty in hand tracking.

Currently, MediaPipe’s hand tracking provides high confidence scores (typically around

99-100%) when the hand is partially occluded, which suggests an overconfidence that does

not accurately reflect the quality of tracking under challenging conditions. This means

that occluded hand poses, which should ideally be flagged as uncertain or low-confidence,

are instead treated as reliable, leading to the introduction of noise in the signal and,

ultimately, false activations. A potential solution would be to develop a probability model

that could better gauge the likelihood of a valid hand pose in each frame. This would

involve collecting data on valid hand poses. From there, a probability model (e.g., Gaussian

Mixture Model, Kernel Density Estimation) could be used to capture the distribution of

valid poses. During live gesture detection, the activation gesture recognition pipeline would
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run alongside the model, which calculates a confidence score for each hand pose based on

its similarity to valid poses. If a pose falls below a certain threshold, it could be flagged as

“uncertain,” which would prevent the trigger condition from being met. This approach

would help the system handle occlusions and even tracking under poor lighting conditions

more accurately, reducing false activations based on the reliability of hand tracking data.

Finally, because the activation gesture recognition pipeline was tested in a controlled

environment, the next step is to evaluate it “in the wild.” For example, a future user study

could integrate the pipeline into a Soli-embedded smartwatch and assess its performance

in real-world scenarios, such as walking outdoors, commuting on a subway, or using the

watch in various public spaces. These diverse conditions would provide valuable insights

into how environmental factors—like ambient noise, or erratic user movement—affect the

pipeline’s recognition performance and overall user experience.

3.7 Conclusion

This chapter began by addressing the challenge of recognizing activation gestures that

are both subtle and distinctive, to prevent unintentional activations in sensor-based

systems. Using spectral analysis, hand motions were then characterized into low- and

high-frequency motions. Building on this analysis, it became evident that gestures that

produce strong high-frequency components are intentional, rhythmic, and unlikely to occur

by accident. This informed the selection of four candidate subtle activation gestures that

would induce strong high-frequency components. An activation gesture recognition pipeline

was then developed to ignore low-frequency hand motions and recognize the high-frequency

candidate gestures. The pipeline was evaluated in a user study using three different types

of sensor: mmWave radar, camera-based hand tracking, and a wearable accelerometer.

Key findings from the study demonstrated that the pipeline successfully ignored broad

hand motions, detecting only the intended high-frequency activation gestures. However,

improvements were recommended to address instances where certain activities, such as
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typing, phone usage, and writing, occasionally produced high-frequency components that

could result in false activations.

3.7.1 Research Questions

The findings from this chapter contribute answers to the following research questions:

RQ1: What mid-air gestures are suitable as subtle activation gestures?

The selection of suitable mid-air activation gestures involved identifying hand motions that

are subtle yet capable of producing distinct high-frequency components, setting them apart

from everyday movements. Through spectral analysis, gestures with high-frequency signals

in the range of 4-12Hz were found to require deliberate, rhythmic repetition, making them

intentional and less likely to be performed accidentally. This insight led to the proposal of

four candidate activation gestures: Finger Rubs, Finger Taps, Thumb Presses, and Pinch

Presses.

RQ2: How can subtle activation gestures be accurately recognized without

extensive data acquisition?

Accurate recognition of subtle activation gestures without extensive data acquisition was

achieved by focusing on frequency-based characteristics rather than gesture-specific training

data. By leveraging the unique spectral profiles of high-frequency motions, a frequency

analysis-based activation gesture recognition pipeline was developed that detects gestures

based on the power within a targeted frequency band of 4-12Hz. This approach eliminates

the need for large datasets typically required by machine learning methods. User testing

confirmed this method’s ability in recognizing the candidate activation gestures across

multiple sensor types.
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3.7.2 Contributions

This chapter made the following contributions:

• Identified spectral characteristics of high-frequency rhythmic gestures and proposed

four candidate subtle activation gestures.

• Developed and evaluated a versatile activation gesture recognition pipeline rooted in

frequency analysis, that can be used with various types of sensors.



4 Subtle Gesture Recognition Using Deep Learn-

ing

4.1 Introduction

Activation is the initial command that triggers the system and sets the stage for further

interaction. After activation, sensor data is continuously acquired, and the processing now

shifts to recognizing specific patterns or gestures. Machine learning models, particularly

deep neural networks, plays a crucial role in gesture recognition. Neural networks are

exceptional at interpreting and recognizing patterns from complex data, such as range-

Doppler maps (RDM). As reviewed in Section 2.5.1, these models are able to learn the

temporal and spatial patterns within RDM sequences, and effectively classify different

gestures. However, for neural networks to accurately recognize gestures, they require large

amounts of training data.

As discussed in Section 2.5, research in radar-based gesture recognition has primarily

focused on macro-gestures. The emphasis on macro-gesture recognition has been driven by

several factors. These gestures are often performed using the entire arm, which generates

strong radar signals which are detectable from even several meters away. Different macro

gestures produce distinctive radar signatures, making it easier for neural networks to

learn and differentiate between them. Consequently, neural networks can achieve high

accuracy in classifying various macro-gestures due to the clear and strong patterns present

in the radar data. Aside from this, macro-gestures are particularly suitable for scenarios

involving private or infrequent interactions, such as turning lights on or off with a swipe

69
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or declining an incoming call. In these scenarios, macro-gestures are useful because they

are easy to perform and convenient.

With the increasing number of models and datasets focusing on macro-gesture recognition,

a notable gap is emerging in the recognition of more subtle gestures. Furthermore, the

absence of publicly accessible mmWave radar datasets dedicated to subtle gestures presents

an opportunity for advancement in this area. This chapter aims to address this gap by

introducing a new dataset of subtle hand gestures captured using the Google Soli. This

dataset will be used to train various neural network models that have proven effective in

recognizing macro-gestures, adapting them to subtle gesture recognition. By assessing

their performance on subtle gestures, the capabilities and limitations of these models in

this new context will be explored. Specifically, this chapter seeks to answer the following

research question:

RQ3: How accurately can neural networks recognize subtle gestures from

mmWave radar data?

4.1.1 Chapter Structure

Section 4.2 outlines the rationale and design of a subtle hand gesture set. Section 4.3

describes the data collection methods, including the process of recording gesture data

using the Soli. Section 4.4 presents the deep learning models used and offline experiments.

Section 4.5 summarizes the main findings of the experiments, highlights the limitations, and

suggests areas for future work. Finally, Section 4.6 summarizes the chapter by revisiting

the research questions and outlining the contributions made.
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4.2 Subtle Hand Gestures Set

Since there is a lack of prior work on radar-based subtle gesture recognition, designing

an appropriate gesture set for this study presented a unique challenge. As discussed

in Section 2.5.1, a review of radar-based gesture recognition literature (summarized

in Table 2.1) revealed that the vast majority of prior work focuses on macro-gestures.

Commonly recognized macro-gestures include swipes, pushes, pulls, and rotations, typically

performed at arm scale to generate strong and easily classifiable signals. In contrast,

micro-gestures have received comparatively limited attention in radar literature.

There is growing interest in micro-gestures within HCI, particularly in the context of

subtle, low-effort input [56]. As defined in Section 2.6.2, the term subtle gesture in this

thesis refers to a class of low-amplitude hand and finger motions that are spatially compact,

minimally demanding in terms of physical exertion, and socially unobtrusive. This draws

from prior work on micro-gestures in HCI: Chan et al. [10] described micro-gestures as

“detailed gestures in a small interaction space,” emphasizing miniaturization for discreet

input, while Wolf et al. [92, 91] characterized them as small hand and finger movements

that can be performed concurrently with another task, such as gesturing while holding a

steering wheel.

Prior research—particularly in vision-based and capacitive sensing—has highlighted the

value of compact, repeatable finger movements such as pinches, slides, and rotations for

subtle interaction. For example, Ultraleap’s micro-gesture guidelines emphasize using “only

one or two fingers” in relaxed positions to perform gestures like taps, swipes, and scrubs,

leveraging intrinsic proprioceptive and tactile feedback 1. Similarly, the HandSense system

used capacitive sensing to recognize a vocabulary of micro-gestures—including thumb-index

pinches, slides, and rotational “knob-turn” motions—designed for always-available input

in AR headsets [53].

In selecting the set of gestures for this research, one of the aims was to draw upon the

1https://docs.ultraleap.com/xr-guidelines/Interactions/microgestures.html

https://docs.ultraleap.com/xr-guidelines/Interactions/microgestures.html
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characteristics of micro-gestures from previous works such as pinches, directional slides

and rotations. Another aim was to use gestures that would conform to a gesture language.

A gesture language is a well-defined set of gestures designed to form meaningful interaction

metaphors. For this research, the concept of a gesture language was realized through virtual

tools. Complementing this, the gestures were also designed to leverage proprioception and

natural haptic feedback, in order to provide intrinsic physical sensations and stability.

4.2.1 Virtual Tool Gesture Language

The concept of a virtual tool gesture language is an approach involving the use of gestures

that mimic the operation of real-world objects—such as buttons, sliders, and dials. The

final gesture set is illustrated in Figures 4.1 and 4.2. These gestures maintain important

characteristics of macro-gestures like directionality and rotation but are adapted for

subtlety, primarily relying on finger motions rather than large arm movements. For

instance, in macro-gestures, swipes are typically performed using large left and right

sweeping motions of the arm. In this gesture set, the swipes have been adapted into Thumb

Swipes (Figure 4.1a) and Pinch Swipes (Figure 4.1b), which maintain the directionality of

macro-swipes but are much more subtle. Similarly, clockwise and anticlockwise gestures,

which are often performed using large circular movements of the arm or hand, have been

adapted into Index Finger Rotations (Figure 4.2a). These gestures involve only the index

finger tracing a circular path, either clockwise or counterclockwise, while the rest of the

hand remains stationary. Additionally, Close Pinch and Open Pinch (Figure 4.1c) mimic

the interaction metaphor of zooming in and out on a smartphone. Lastly, Tick and Cross

(Figure 4.2b) also offer a clear metaphor for confirming or rejecting actions, similar to how

ticks and crosses are used in written or graphical interfaces.
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4.2.2 Haptic Feedback and Proprioception

The swipe gestures in the gesture set produce natural haptic feedback through the physical

interaction of fingers. For instance, in Thumb Swipe and Pinch Swipe, the tactile sensation

of the thumb sliding across the index finger or maintaining a pinch offers intrinsic haptic

feedback. Additionally, the gestures were also designed to leverage proprioception, which

is the body’s ability to sense its position and movement in space [59]. With Thumb

Swipe and Pinch Swipe, users can rely on haptic feedback to perceive the position of their

fingers. Likewise, for Close Pinch, Open Pinch and Tick and Cross, users can sense their

fingers’ positions relative to each other by relying on internal feedback from their muscle

movements and joint positions. This combination of haptic feedback and proprioception

makes it easier for users to perform gestures by providing natural physical sensations and

spatial awareness to guide their movements [27].

4.3 Data Collection Methods

The Google Soli radar was configured for short-range sensing in accordance with Google’s

recommended parameters for optimal sensing of subtle gestures. The full radar parameters

can be found in Table 4.1. This configuration allowed for a maximum sensing range of

20cm and a range resolution of 2.7cm. Under this setup, the dimensions of the RDMs are

8×64, corresponding to 8 range bins and 64 velocity bins.

The data collection process involved capturing radar data in the form of complex RDMs as

participants executed both deliberate gestures (positive data) and a variety of non-gestural

motions (negative data). Central to this process was the Constant False Alarm Rate

(CFAR) algorithm, which was used for gesture detection. The following sections explain

CFAR and detail the methods used for positive and negative data acquisition.
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(a) Left (top row) and right (bottom row) Thumb Swipe. The thumb slides across the index
finger and the remaining four fingers are held parallel and steady, oriented towards the Soli.

(b) Left (top row) and right (bottom row) Pinch Swipe. Initiated by pinching the thumb and
index finger together, with the remaining fingers curled towards the palm, then sliding the thumb
while maintaining the pinch, oriented towards the Soli.

(c) Close Pinch (top row) with the thumb and index finger coming together from a separated
position. Open Pinch (bottom row) starting with pinched fingers and ending with them apart.
Throughout both gestures, the other three fingers remain curled towards the palm.

Figure 4.1: Subtle gesture set (1/2).
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(a) Clockwise (left) and anticlockwise (right) Index Finger Rotation. Both gestures involve the
index finger creating a circular path, while the rest of the hand remains still.

(b) Tick (left) made by moving the index finger in a checkmark shape. Cross (right) made by
moving the index finger diagonally from left to right and then crosses back over in an opposite
diagonal line.

Figure 4.2: Subtle gesture set (2/2).

4.3.1 Gesture Detection Using CFAR

In previous work, deep learning models have been used for continuous gesture spotting by

applying a sliding window across time and classifying each segment [83]. This method can

even begin classifying a gesture before it is fully complete, refining the prediction as more

frames arrive. However, such continuous inference pipelines are computationally expensive

and power-intensive. This becomes particularly problematic for battery-constrained devices

like smartphones or wearables, where running every motion segment through a neural

network would lead to excessive power consumption. To reduce this overhead for real-world

deployments, a lightweight triggering mechanism can be used to first detect motion, and

only then invoke the gesture recognition models.

The Constant False Alarm Rate (CFAR) algorithm plays an important role in radar

systems, particularly in the context of gesture detection, by effectively managing a detection
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Parameter Value
lower freq 58000 Hz
upper freq 63500 Hz
chirp rate 2000 Hz
chirps per burst 64
samples per chirp 16
Transmission antennas 1
Receiver antennas 3
Max sensing range 20 cm
Range bin resolution 2.7 cm
Sampling rate 25 Hz

Table 4.1: Soli parameters configuration

threshold to maintain a constant false alarm rate amidst varying noise levels [73]. The

CFAR implementation in this research is derived from the methodology outlined by Choi

et al. and employs an Exponential Moving Average (EMA). First, the signal intensity

(absolute sum of RDM) is calculated as follows:

𝑥𝑡 =
∑︁
𝑖

����RDM𝑖 (𝑟, 𝑣, 𝑡 − 1)
���� , (4.1)

where RDM𝑖 is the RDM matrix for the 𝑖-th channel. The moving average 𝑀𝑡 at time 𝑡 is

then calculated using the equation:

𝑀𝑡 = (1 − 𝛼)𝑀𝑡−1 + 𝛼𝑥𝑡 , (4.2)

where 𝛼 ∈ [0, 1] represents a constant smoothing factor. The gesture detection occurs if

the current signal exceeds the threshold, which is defined as

|𝑥𝑡 −𝑀𝑡 | > 𝜃 · (𝑀𝑡 +𝑀offset), (4.3)

where 𝜃 is a detection threshold, and 𝑀offset is an offset parameter.

Figure 4.3 shows the operation of CFAR. The plot on the left represents a scenario where

no gestures or movements are detected in front of the Soli. The absence of CFAR triggers
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indicates a stable background with no motions that would suggest the presence of a gesture.

The plot on the right shows red dots marking where the CFAR detection threshold is met.

These red dots indicate frames when the algorithm has identified a gesture or motion that

surpasses the detection threshold.

Figure 4.3: CFAR algorithm in operation. On the left, no gestures or movements are
detected, resulting in no CFAR triggers. On the right, a gesture is detected, indicated by
red dots where the signal intensity surpasses the detection threshold.

4.3.2 Positive Data Collection

Positive data refers to gesture instances that serve as intended input for the model to learn

and recognize. Gesture data was obtained from a group of eight individuals, consisting

of six males and two females, all right handed, with an age span from 24 to 36 years

(average age: 27). The gestures were performed with the right hand. A total of 16,000

positive gesture samples were collected. Each sample comprises of 0.5 seconds or 13 Soli

complex RDM frames. Previous research on macro-gesture recognition using mmWave

radars typically employed longer windows, with the minimum being 2 seconds [14, 83, 5].

In this research, however, the rationale behind selecting half-second windows is twofold.

First, each of the the subtle gestures used in this work are quicker to perform compared

to macro-gestures which involve larger hand or arm movements. Macro-gestures, such as

broad hand swipes, naturally take longer to execute, thereby necessitating longer windows.
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Second, shorter window lengths would allow faster feedback in real-time applications.

Long window lengths would introduce feedback lag due to the time taken been input and

recognition.

During data collection, participants were seated comfortably in front of a laptop, with

a Google Soli radar connected via USB. The Soli was positioned approximately 20cm

(sensing range) from the edge of the table, and participants were instructed to perform the

gestures within the edge of the table area, keeping their hands within the sensor’s detection

zone. Positioned behind the Soli was a camera that recorded the hand movements. A

demonstrator sat to the left of the participant to oversee the process and was responsible

for logging the gestures. The laptop screen displayed a live camera feed, allowing the

demonstrator to monitor and verify the gestures being performed in real-time. Additionally,

a live CFAR detection feed was displayed to ensure that the logged data corresponded

to the intended gestures and not erroneous movements. The characteristic bell shape in

the signal’s moving average (right plot in Figure 4.3) represents the gesture’s intensity

profile, with an initial surge, peak, and decrease as the gesture is initiated, executed, and

completed. This bell-shaped curve was used to identify a full gesture sample. When the

CFAR detection presented this pattern, an auditory cue was emitted and the demonstrator

would log the gesture by pressing the appropriate key.

The data collection session for each participant was divided into four segments, with each

segment dedicated to a specific gesture type. The first segment focused on collecting data

for left and right Thumb Swipes, the second for left and right Pinch Swipes, the third for

Open Pinch and Close Pinch, and the fourth for Tick and Cross. Participants were given

the opportunity to take short breaks between each segment or even within segments to

prevent fatigue. 200 samples per gesture were collected from each participant, ensuring a

substantial volume of samples for each gesture.
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4.3.3 Negative Data Collection

Negative data refers to hand motions which the model should ignore. These are unintended

hand motions that meet the CFAR detection criteria, such as hand adjustments or other

incidental motions, that do not correspond to the defined gestures. This data was collected

from the same group of participants who performed the positive gestures. The negative

data collection segment was placed midway through the positive data collection session.

During the segment, participants were instructed to execute movements resembling the

target gestures and any CFAR detection that did not match an actual gesture was logged

as a negative sample. A key indicator for a negative sample was the absence of the

characteristic bell-shaped curve in the CFAR plot. Unlike in the positive samples where

a bell shape indicated correct gesture execution, any other pattern was a cue for the

demonstrator to log the motion as a negative sample. Participants were also asked to move

their arms towards and away from the sensor from various angles. This was done because

these larger motions, compared to the subtle gestures, can trigger CFAR detection due

to their strong signal intensity. Furthermore, these motions are contextually relevant as

subtle gestures inherently require the hand to be brought into the sensor’s detection range

before the gesture can be performed, and similarly, the hand must be moved away after the

interaction is completed. Finally, participants were also encouraged to perform random

motions, resembling close-range adjustments. These included small, incidental hand

movements such as slight repositioning of the hand or fingers near the sensor, which would

trigger CFAR detection. 200 negative data samples were logged from each participant.

4.3.4 Samples Visualization

Figure 4.4 visualizes the radar data captured for the various subtle hand gestures. Each

subplot represent one sample of each gesture from participant 1. The plots show the

characteristic velocity changes over time as detected by the Soli. From a visual standpoint,

each gesture movement corresponds to a distinctive pattern. For the left and right Thumb



4.3. Data Collection Methods 80

Swipes and Pinch Swipes, there are vertical lines centered around the 0 velocity bins,

which then break and deviate to the left or right, depending on the direction of the

motion. The Open Pinch and Close Pinch also show distinct vertical lines with a short

intermittent burst of intensity change highlighting the opening or closing motions of the

pinch. The anticlockwise and clockwise Index Finger Rotations feature more dispersed

patterns, reflecting the circular motion of the index finger. The Tick and Cross gestures

also display dispersed patterns.

4.3.5 Data Records

A total of 17,600 gesture samples were collected comprising of 16,000 positive samples

and 1,600 negative samples. The entire dataset is available for download from the Open

Science Framework [62]. The structure of the data set is shown in Figure 4.5.

The dataset is organized into participant folders labeled 1 to 8. Within each participant’s

folder, there are two subfolders: raw data, which contains the raw complex RDM gesture

data, and clutter removed data, which contains the clutter-removed complex RDM gesture

data.

The data files are stored in HDF5 format (.h5), suitable for large datasets. Each HDF5

file contains 3-channel complex RDM data corresponding to each of the three Soli receiver

antenna for the specific gesture and session. The naming convention for the radar data

files is pX gesture session Y type.h5, where:

• pX: represents the participant ID (e.g., p1 for participant 1).

• gesture: is the name of the gesture performed (e.g., thumbswipe, pinch).

• session Y: indicates the session number (e.g., session 1).

• type: indicates whether the data is raw (raw) or clutter-removed (processed).
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Figure 4.4: Aggregated and normalized radar responses for different subtle hand gestures
captured using the Google Soli radar. Each subplot represents one sample of each gesture
from participant 1, with time (0-0.5 seconds) on the 𝑦-axis and velocity bins (centered
around 0) on the 𝑥-axis. The plots show the unique velocity-time signature of each gesture.
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Figure 4.5: File structure of the Soli Subtle Gestures Dataset. The dataset is organized
into participant folders, each containing subfolders for raw and clutter-removed complex
RDM gesture data. Data files are stored in HDF5 format (.h5) with a naming convention
indicating participant ID, gesture, session, and data type. The complete dataset is available
for download from the Open Science Framework [62].

4.4 Experiments

To validate the subtle gestures dataset, various neural network architectures were trained

and evaluated. The following sections describe the preprocessing steps applied to the

radar data, the neural network architectures implemented for gesture recognition, and the

evaluation methodology and results.
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4.4.1 Data Preprocessing

The complex RDMs contain both magnitude and phase information of the radar signal

returns at different ranges and Doppler shifts. In preprocessing, only the magnitude

information is retained, as it captures the variations in motion patterns. The phase

information is discarded due to its high sensitivity to noise, making it inconsistent and

difficult to generalize across different conditions. Additionally, phase variations are often

erratic and not necessarily linked to distinct gestures, whereas magnitude provides more

stable motion pattern representations that are invariant to gesture-specific changes.

Following the extraction of magnitudes, the RDM from the three receiver antennas at

each time step are summed together. This step aggregates the signals from all antennas,

integrating multiple perspectives into a unified RDM. Finally, the aggregate RDMs are

normalized.

4.4.2 Model Implementations

Three neural network architectures were implemented: a long short-term memory network

(LSTM), a hybrid model combining convolutional neural network and LSTM (CNN-LSTM),

and a time-distributed CNN-LSTM (TD-CNN-LSTM). CNNs are commonly used for

processing spatial data such as images, where they apply convolutional filters to detect

local spatial patterns like edges or textures. In the context of gesture recognition, CNNs

are useful for extracting spatial features from RDMs, such as motion shapes and energy

distributions across frames. LSTMs are a type of recurrent neural network (RNN) designed

to model sequential data by maintaining and updating a memory of past inputs over

time. Unlike standard RNNs, LSTMs incorporate gating mechanisms that allow them

to retain relevant information over long sequences and discard irrelevant signals, making

them especially well-suited for capturing temporal dependencies in time-series data. This

property is particularly important for gesture recognition tasks, where the system must

understand how motion unfolds across a series of RDM frames.
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To prepare the data for input into the LSTM, each 8×64 RDM was flattened into a vector

of size 512. The LSTM network processed sequences of these vectors, with each sequence

comprising 13 frames corresponding to the duration of a single gesture motion. This setup

would allow the LSTM to capture the temporal dependencies in the progression of the

gesture across frames.

The CNN-LSTM model (Figure 4.6) and the TD-CNN-LSTM model combine the strengths

of convolutional and recurrent layers. These networks process sequences of RDM data,

where the convolutional layers first extract spatial features from the input data. The

output of the convolutional layers is then flattened and fed into an LSTM layer, which

learns the time-dependent features. This combination allows the network to first extract

meaningful spatial features from each frame and then capture the temporal dependencies

across sequences of frames. The key difference between the CNN-LSTM model and the

TD-CNN-LSTM model lies in how they handle the sequential data. In the CNN-LSTM

model, the entire sequence of frames is processed by the convolutional layers as a whole, and

then the extracted features are fed into the LSTM layer. This means that the convolutional

layers learn spatial features across the entire sequence simultaneously. In contrast, the

TD-CNN-LSTM model applies the convolutional layers to each frame independently, and

then the sequence of frame-level features is fed into the LSTM layer. This time-distributed

approach ensures that the convolutional layers learn spatial features from each frame

separately before the LSTM layer captures the temporal dependencies.

Training Parameters: For all models, the batch size was set to 32, and the learning

rate was initialized at 0.0001. The Adam optimizer was used due to its adaptive learning

rate properties. The models were trained for 250 epochs, with early stopping implemented

to prevent overfitting. The early stopping criterion was set with a patience of 10 epochs,

monitoring the validation accuracy.

Architecture Details: The LSTM model consisted of an LSTM layer with an input size

of 512, a hidden size of 256 units, and 3 layers. Dropout was applied with a rate of 0.75 to
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Figure 4.6: CNN-LSTM architecture used for subtle gesture recognition. Each RDM
undergoes aggregation and normalization, followed by a 2D convolutional layer that
extracts spatial features, which are then flattened and processed through an LSTM layer
to capture temporal dependencies, culminating in a fully connected layer that feeds into a
softmax layer for gesture classification.

prevent overfitting. The output of the LSTM layer was fed into a linear classifier with a

hidden size of 256 units. The output of this layer was passed through a softmax function

to produce the class probabilities.

The CNN-LSTM model started with three convolutional layers with 32, 64, and 128

filters, respectively, each followed by batch normalization and ReLU activation. Each

convolutional layer was also followed by a max-pooling layer. The CNN part of the model

included a dropout of 0.5. The output from the convolutional layers was flattened and fed

into an LSTM layer with a hidden size of 256 units and 3 layers, with a dropout rate of 0.5.

The output of the LSTM layer was passed through a linear classifier with a hidden size of

128 units, ReLU activation, and 0.5 dropout, followed by a final linear layer. The output

of this layer was passed through a softmax function to produce the class probabilities.

The TD-CNN-LSTM model applied the convolutional layers in a time-distributed manner

to each frame independently. The CNN part of the model included a convolutional layer

with 32 filters followed by ReLU activation and max-pooling. The flattened output of the

TD-CNN was fed into an LSTM layer with a hidden size of 64 units. The output of the
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LSTM layer was passed through a linear classifier to produce the final output.

These design choices were guided by iterative tuning based on preliminary experiments

on validation accuracy. For instance, the number of convolutional layers and filter sizes

were selected to ensure a gradual increase in spatial abstraction. Dropout rates were

empirically adjusted to balance between underfitting and overfitting, with higher dropout

used in models more prone to memorizing patterns (e.g., LSTM). Hidden layer sizes

were chosen to maintain enough capacity to capture gesture variations while minimizing

overparameterization.

4.4.3 Results

To evaluate the models, Leave-One-Subject-Out Cross-Validation (LOSO-CV) was used.

In this approach, data from one participant is used as the test set, while data from the

remaining participants are used for training. This process is repeated such that each

participant’s data is used once as the test set. LOSO-CV ensures that the model is tested

on completely unseen data from a new participant in each fold, providing a robust estimate

of the model’s ability to generalize to new users. The performance metrics, including the

confusion matrix, were aggregated across all folds to provide an overall evaluation of the

model’s effectiveness in recognizing the gestures.

LSTM CNN-LSTM TD-CNN-LSTM
Fold 1 77.1 89.5 84.8
Fold 2 79.3 90.1 85.1
Fold 3 76.5 89.8 84.9
Fold 4 80.0 90.3 85.3
Fold 5 78.9 90.2 84.9
Fold 6 79.9 89.9 85.0
Fold 7 77.6 90.5 85.2
Fold 8 78.0 90.0 85.2
Avg. (Std.) 78.5 (±1.3) 90.0 (±0.3) 85.1 (±0.2)

Table 4.2: Model accuracies for LSTM, CNN-LSTM, and TD-CNN-LSTM across 8 folds
of leave-one-subject-out cross-validation.

The results of the LOSO-CV are summarized in Table 4.2. The LSTM model, had the
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lowest average accuracy of 78.5% with a standard deviation of ±1.3. The CNN-LSTM

model consistently outperformed the other models across all folds, achieving an average

accuracy of 90.0% with a low standard deviation of ±0.3, indicating stable performance

across different participants. This also highlights the importance of convolutional layers in

extracting spatial features, which drastically improved the models perfomance compared

to LSTM. The TD-CNN-LSTM achieved an average accuracy of 85.1% with a standard

deviation of ±0.2, once again highlighting the advantage of integrating both convolutional

and recurrent layers.

The confusion matrix in Figure 4.7 illustrates the aggregated performance of each model

across 8 folds. The confusion matrix for the LSTM model (Figure 4.7a) shows the model

struggling with certain gestures. For instance, right Thumb Swipe is frequently confused

with left Thumb Swipe and vice versa. Similarly, the model also has a tendency to

confuse clockwise and anticlockwise Index Finger Rotations. Right Pinch Swipe often gets

misclassified as left Pinch Swipe or Open Pinch. This indicates that the LSTM model

has difficulty in distinguishing between gestures with similar spatial characteristics. Since

LSTM networks focus primarily on learning temporal dependencies in sequential data,

they lack the architectural components to effectively capture fine-grained spatial patterns

within individual RDM frames. As a result, they struggle to differentiate between gestures

that follow similar temporal progressions but differ subtly in spatial structure — such as

left versus right motions or clockwise versus anticlockwise rotations.

The CNN-LSTM model’s confusion matrix (Figure 4.7b) shows improved classification

accuracy across most gesture, with fewer misclassifications overall. For example, the

accuracies for Thumb Swipes, Pinch Swipes, and Index Finger Rotations are much higher,

indicating that the CNN layers are effectively capturing spatial features before the LSTM

layers process the temporal dependencies. This improvement reflects the model’s ability

to capture both spatial and temporal features, reducing the confusion between similar

gestures. The TD-CNN-LSTM model’s confusion matrix (Figure 4.7c) also shows a better

performance compared to LSTM, although slightly worse than CNN-LSTM. The lower
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accuracy of the TD-CNN-LSTM compared to the CNN-LSTM could be due to the time-

distributed layer overemphasizing temporal variations, which may reduce the model’s

ability to generalize effectively for spatially similar gestures.

The model size and inference times are presented in Table 4.3. The LSTM model is 7.0MB

and has an inference time of 1.5ms. The TD-CNN-LSTM model, at 2.3MB, is much

smaller than the LSTM and also has a faster inference time of 1.3 ms. Additionally, it

outperforms the LSTM in terms of accuracy, making it a more efficient choice in terms

of both memory usage and speed. The CNN-LSTM model, while the largest at 13.0MB

and having the highest inference time of 2.5 ms, is the best-performing model in terms

of accuracy. The trade-off in model size and inference time is negligible, as the model

size remains relatively small and manageable at only 13MB, making it suitable for most

deployment scenarios, including edge devices and mobile platforms. Moreover, the slight

difference in inference times between the CNN-LSTM and TD-CNN-LSTM models is

unlikely to have a noticeable impact in real-time applications, as both have sufficiently

low latencies to support smooth and responsive interactions.

Network Architecture Model Size [MB] Inference Time [ms]
LSTM 7.0 1.5
CNN-LSTM 13.0 2.5
TD-CNN-LSTM 2.3 1.3

Table 4.3: Resource efficiency metrics for LSTM, CNN-LSTM, and TD-CNN-LSTM
models.

4.5 Discussion

The results of the experiments demonstrate that deep learning models can be effectively

trained to classify subtle hand gestures using the collected mmWave radar data. This

highlights that a sufficient volume of data has been collected for each gesture type, the

data has been well-processed, and the samples of different gestures are sufficiently distinct

to allow the models to differentiate between them.
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(a) Aggregated confusion matrix for LSTM. The
model shows difficulties in distinguishing be-
tween gestures with similar spatial character-
istics, such as left and right Thumb Swipes or
clockwise and anticlockwise Index Finger Rota-
tions. The results highlight the model’s limita-
tions in capturing spatial features.

(b) Aggregated confusion matrix for CNN-
LSTM. This model shows improved gesture
classification accuracy, with much fewer mis-
classifications compared to the LSTM model.
The inclusion of convolutional layers improved
the model’s ability to extract spatial features,
leading to better recognition of gestures like
Thumb Swipes and Pinch Swipes.

(c) Aggregated confusion matrix for TD-CNN-
LSTM. This model shows better classification ac-
curacy than LSTM, however, slightly lower than
CNN-LSTM, possibly due to the time-distributed
layer overemphasizing temporal variations.

Figure 4.7: Aggregated confusion matrices for the different neural network models over 8
folds: (a) LSTM, (b) CNN-LSTM, and (c) TD-CNN-LSTM. These matrices illustrate the
performance of each model in recognizing different subtle gestures.
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The CNN-LSTM model achieved the highest accuracy, consistently outperforming the other

architectures with an average accuracy of 90.0%. This is attributed to the CNN’s ability

to capture spatial features and the LSTM’s strength in capturing temporal dependencies

from RDM sequences. Because of this, the CNN-LSTM model also performed well in

accurately classifying gestures with similar spatial patterns. The TD-CNN-LSTM model

also performed well, offering a balance between memory, efficiency, and accuracy. The

performance of these models across different folds, as seen in the LOSO-CV results (Table

4.2) also highlight their ability to generalize to unseen data from different users.

90% accuracy is notable given the increased difficulty of recognizing subtle micro-gestures.

In macro-gesture recognition tasks, several studies have reported higher classification

accuracies exceeding 95% [19, 47]. These results are often aided by the more distinct

motion signatures of macro-gestures, which involve larger arm or hand movements and

produce stronger, more separable radar signals. In contrast, the gestures used in this

study involve minimal finger movements, leading to weaker and more ambiguous radar

signatures. Thus, achieving 90% accuracy for subtle gesture recognition using a short

0.5-second input window represents a strong result, indicating that deep learning models

can successfully generalize even under more constrained signal conditions.

4.5.1 Limitations and Future Work

The radar parameters used in this study were optimized for short-range gesture sensing

(Table 3.1), limiting the current models to recognizing gestures performed within a 20cm

range of the Soli. Future work could focus on extending this capability to detect subtle

gestures over several meters. Increasing the detection range would make the system more

practical by allowing users to perform gestures from a distance without needing to approach

the sensor, thereby increasing convenience and accessibility in various applications.

The Soli has one transmitting antenna and three receiving antennas. It is possible to

increase the sensing range of the Soli by adjusting the radar parameters, such as lowering
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the frequency range of the trasmission signal and increasing the number of samples per

chirp. Although this would increase the sensing range, it would also lower the range bin

resolution. Lower range bin resolution means reduced spatial precision, making it more

challenging to detect subtle gestures. However, with more sophisticated radar hardware

that includes additional antennas, it may be possible to detect subtle gestures from

longer ranges by employing a Multiple Input Multiple Output (MIMO) setup. MIMO uses

multiple transmitting and receiving antennas to create a diverse range of signal paths

[41]. This increases the spatial resolution and allows for more precise detection of small

movements over larger distances. For example, the Texas Instruments AWR6843 radar,2

which operates in the 60-64 GHz band, offers a MIMO setup with three transmitters and

four receivers and could provide fine spatial resolution for gesture detection at longer

ranges. Future work could explore detection of subtle gestures from longer ranges using

such radar hardware.

The dataset collected in this research, could also serve as supplementary training data

for future work aiming to detect the same gestures at longer ranges. Although the

radar responses at longer distances may differ due to variations in radar hardware, signal

reflection, and resolution, the fundamental motion patterns encoded in the RDM data

would remain consistent for the same gestures. By leveraging transfer learning, the models

trained in this research, could be refined with additional long-range data. New models

could also be developed by training on a combination of newly collected long-range data

and the existing short-range dataset.

4.5.2 Use Cases

The Soli Subtle Gestures Dataset introduced in this chapter, along with the models trained

on it, opens up new possibilities for low-effort and discreet interactions with technology.

The gestures were selected with the virtual tools gesture language in mind, making them

2https://www.ti.com/product/AWR6843

https://www.ti.com/product/AWR6843
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highly practical for a wide range of applications. For instance, left and right Thumb

Swipes are particularly well-suited for virtual sliders, making them ideal for tasks like

rewinding or fast-forwarding through videos and podcasts, adjusting volume or brightness,

or making discrete selections in menus or lists. Open Pinch and Close Pinch could be

used to zoom in and out on digital content, mimicking common touchscreen interactions

without physical contact. Clockwise and anticlockwise Index Finger Rotations aligns with

the operation of turning a knob. Tick and Cross could be used as simple commands for

accepting or rejecting inputs, similar to actions in checklists and decision-making. Each

gesture offers a subtle way to navigate and control technology, potentially making mid-air

interactions more accessible and efficient, especially in settings where large gestures might

be impractical.

Future work could move from offline evaluation to the assessment of subtle gestures within

real-time applications. The models developed in this work could be integrated into live

prototypes and evaluated in controlled and ’in the wild’ user studies. For example, in an

automotive setting, subtle gestures could be evaluated for controlling in-car entertainment

or navigation systems, helping to reduce driver distraction. In more casual scenarios,

such as watching TV, subtle gestures could be used to change channels, adjust volume,

or scroll through menus while sitting comfortably on a couch. Similarly, a smartwatch

controlled by subtle gestures would be an excellent candidate for a public usability study

focusing on social acceptability. This could investigate how people respond to using and

observing subtle gestures in public to better understand the social dynamics and perceived

appropriateness of subtle gesture interactions in shared spaces.

4.6 Conclusion

This chapter investigated recognition of subtle mid-air gestures using mmWave radar.

While existing resources focus predominantly on macro-gestures, this research introduced

a new dataset for subtle gestures. Each gesture was chosen based on the interaction
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metaphors of a virtual tools gesture language and designed to leverage proprioceptive and

haptic feedback. 16,000 positive data samples were collected from eight participants using

a Google Soli radar, capturing 10 distinct subtle gestures. Additionally, 1,600 negative

samples were collected to capture erroneous and irrelevant motions. The signal processing

and data collection procedure was systematically presented, and the dataset was vali-

dated using deep learning models with the aim of answering the following research question:

RQ3: How accurately can neural networks recognize subtle gestures from

mmWave radar data?

Three neural network architectures were trained on the dataset using Leave-One-Subject-

Out Cross-Validation, including an LSTM, a CNN-LSTM hybrid, and a Time-Distributed

CNN-LSTM (TD-CNN-LSTM). The performance of each model was evaluated and pre-

sented. The final results showed that the CNN-LSTM model consistently achieved the

highest performance with an average accuracy of 90.0%, followed by the TD-CNN-LSTM

with 85.1%, and the LSTM model with 78.5%. The findings highlight the effectiveness

of hybrid models in capturing both the spatial and temporal features of subtle hand

gestures present in the RDM sequences. The results also validate the quality of the dataset,

demonstrating that a sufficient volume of data has been collected for each gesture type,

the data has been well-processed, and the samples of different gestures are sufficiently

distinct to allow the models to differentiate between them.

This work provides a practical and well-validated framework that could inform future

commercial implementations of subtle radar-based gesture control. For instance, companies

like Google developing radar-driven features (e.g., Motion Sense) could use this dataset and

modeling approach to expand their repertoire of subtle, socially acceptable interactions in

wearables or smart environments. Additionally, the dataset and methods serve as a strong

starting point for future research aimed at improving the recognition of subtle micro-

gestures at longer ranges using more sophisticated radar hardware, such as MIMO-based
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systems.

4.6.1 Contributions

The chapter makes the following contributions:

• Developed a new dataset specifically for subtle mid-air gestures using Google Soli

radar, and made the dataset publicly available.

• Trained and evaluated multiple deep learning architectures, including LSTM, CNN-

LSTM, and TD-CNN-LSTM, on the new dataset.

• Demonstrated the effectiveness of neural networks in recognizing subtle gestures,

and validated the collected dataset for future use in radar-based gesture recognition

systems.



5 Exploring Slider Control Using Subtle Ges-

tures

5.1 Introduction

Previous chapters have developed and validated systems that utilize signal processing

and deep learning techniques to detect and recognize subtle gestures with mmWave radar

sensors. However, the true test of any interactive system lies in its performance during live

user interactions. This chapter shifts from theoretical and controlled offline evaluations to

practical, real-time assessments. The work presented in this chapter explores the usability

of the developed subtle gesture recognition systems in real-time applications. Additionally,

this chapter examines whether subtle gestures can achieve better overall usability than

macro-gestures in mid-air interaction with mmWave radar, particularly with regard to

recognition accuracy, user comfort, and social acceptability.

In the scenario introduced in Section 1.1.1, Preethi wants to browse Netflix to find a new

episode to watch. A virtual slider provides a suitable interaction metaphor for this kind of

task, as sliding and scrolling are fundamental interactions used in navigating lists, menus,

numerical entries, or timelines. Such tasks demand both directional control and stopping

precision, making them a practical and representative challenge for evaluating mid-air

interaction. Moreover, the neural network classifiers developed in Chapter 4 demonstrated

high recognition accuracy (≈ 90%) for sliding gestures, making it a natural progression

to explore how those gestures perform in real-time. This chapter investigates the final

research question in this thesis:

95
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RQ4: Do subtle gestures improve task performance and user experience in

radar-based interactions involving slider control?

The first step in the process of slider control is acquiring the slider handle, and the second

step is moving the handle to the desired position. With a traditional cursor and mouse,

this is accomplished by positioning the cursor over the slider handle and then clicking and

holding the mouse button to “grab” and move the handle. For mid-air gestural interaction

with sensors like Kinect or Ultraleap, users normally control a virtual cursor through arm

movements in space. Various techniques have been explored to acquire the slider handle,

such as moving the cursor over the handle and dwelling, using push gestures by moving

the hand towards the display, as well as pinch gestures by bringing the fingers together to

grasp the slider handle [87]. Once the handle is acquired, users then move it to the desired

position by moving the arm left or right in space to adjust the slider’s position along a

predefined path.

These cursor-based interactions rely on vision-based sensors like Kinect or Ultraleap, which

continuously track the user’s hand movements and translate them into corresponding

cursor coordinates on the screen. This enables precise control over the slider’s position,

much like using a physical mouse. However, this approach is not directly possible with

mmWave radar, as it does not provide precise coordinate positions like vision-based

systems. Instead, mmWave radar detects hand motions by measuring changes in signal

reflections to determine the range and velocity of the user’s hand relative to the sensor,

which is embedded in the range-Doppler map (RDM). While this provides high resolution

range and velocity information, it does not offer the detailed coordinate precision needed

for exact cursor positioning on a screen. To allow interaction with virtual tools like sliders

using mmWave radars, gesture recognition systems are required to compensate for the

lack of direct coordinate tracking.

As demonstrated in Chapter 4, neural networks can leverage the spatial and temporal

patterns in range-Doppler data to distinguish between even spatially similar subtle gestures
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with high accuracy. Although radars do not provide explicit coordinate positions, it offers

precise and consistent measurements. These capabilities can enable new forms of interaction

that combine gesture recognition with radar-derived measurements—such as range, velocity,

or angle of arrival—to support accurate control without relying on traditional cursor-based

steering.

5.1.1 Chapter Structure

Section 5.2 describes the system design for controlling sliders using subtle gestures de-

tected by Soli. It outlines the overall framework, including the selection of appropriate

gestures, methods for gesture detection and recognition, and how these are integrated

into applications for real-time interactions. Section 5.3 presents a user study which aims

to assess the effectiveness of subtle gestures compared to macro-gestures and evaluate

the usability of the devloped applications. Section 5.4 presents the results of the study.

Section 5.5 summarizes the main findings of the evaluation, highlights the limitations and

suggests areas for future work. Finally, Section 5.6 summarizes the chapter by revisiting

the research questions and outlining the contributions made.

5.2 System Design

The system design overview is shown in Figure 5.1. The process begins when a user

performs a gesture in front of the Soli radar. The Constant False Alarm Rate (CFAR)

algorithm is then used to detect the gesture. Once a gesture is detected, the corresponding

radar data is segmented and passed through a CNN-LSTM model for classification. Finally,

the recognized gesture is mapped to an action within a slider-controlled application. Each

of these components is explained in detail in the following sections.



5.2. System Design 98

Figure 5.1: Overview of the system design for slider control using the Soli radar. Candidate
gestures (Large Swipes, Thumb Swipes, Pinch Swipes) are performed within the Soli’s
detection range, detected by the CFAR algorithm, classified using a CNN-LSTM model,
and then mapped to control actions in slider-based applications, such as a photo scroller
or video player.

5.2.1 Candidate Gestures

The interactive systems developed for this research will focus on horizontal sliders. Given

this, the candidate gestures chosen for controlling the sliders are based on directional

movements. To facilitate interaction with the slider, three types of directional swipes are

considered: Large Swipes, Thumb Swipes, and Pinch Swipes.

Large Swipes are the most common macro-gestures used for interacting with mmWave

radars. This gesture involves a broad, sweeping motion of the hand either to the left or

right across the radar’s detection field. Due to its simplicity, ease of detection, and its

popularity in gesture recognition literature with mmWave radars, Large Swipes serves as

the baseline gesture in this study.

Thumb Swipes and Pinch Swipes, collectively referred to as Subtle Swipes, are both subtle,

low-effort gestures with similar gesture profiles. Thumb Swipes involve the movement of

the thumb to the left or right across the index finger, while the remaining fingers are kept

steady and oriented toward the sensor.Pinch Swipes involve pinching the thumb and index
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finger together and then sliding the thumb either to the left or right while maintaining

the pinch. These gestures align with the interaction metaphor of virtual tools for slider

control, where the index finger can be imagined as the slider itself, and the thumb moving

along the index finger mimics the action of adjusting the slider handle.

5.2.2 Gesture Detection and Recognition

In real-time gesture recognition, two components work together: gesture detection and

classification. For gesture detection, the system utilizes the Constant False Alarm Rate

(CFAR) algorithm (explained in detail in Section 4.3.1). CFAR processes the radar data

and identifies when meaningful gestures occur by analyzing the changes in radar signal

patterns. Once CFAR detects a gesture, it extracts the relevant RDM segment representing

that gesture.

The segment is then passed to the CNN-LSTM model for classification. The CNN-LSTM

architecture is well-suited for this task because it first processes the spatial features of the

RDM data through convolutional layers, capturing the structure of the gesture, and then

uses LSTM layers to model the temporal dependencies across the frames, recognizing the

sequence of movements that define the specific gesture. The output of this process is the

gesture classification label (e.g., Left Thumb Swipe, Right Thumb Swipe, etc).

5.2.3 Applications

Once the system detects and classifies a gesture, the identified gesture is mapped to a

specific action on the slider. For instance, a Left Thumb Swipe moves the slider handle to

the left, while a Right Thumb Swipe moves it to the right.

Selection and seeking are two common tasks typically performed using sliders. To explore

these interactions, two applications were developed: a Photo Scroller for Discrete Selection

and a Video Player for Continuous Seeking.

• Photo Scroller: This application is illustrated in Figure 5.2a. It simulates a scenario
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where users need to select fixed, discrete values from a set range, similar to scrolling

through a list of photos or selecting items from a menu. The photos are arranged in

a carousel, allowing users to navigate through them by swiping left or right using the

specified gestures.

• Video Player: This application is illustrated in Figure 5.2b. It simulates a scenario

where users needs to make fine adjustments along a continuous scale, such as a video

timeline. The timeline is represented as a continuous slider, allowing users to seek

forward or backward through the video by swiping left or right using the specified

gestures.

The video player incorporates two control modes, each initiated by a discrete gesture.

In the first mode, a discrete swipe gesture initiates automatic slider movement at

a constant speed in the swipe direction. The movement continues until the user

withdraws their hand from the radar’s sensing range, which stops the slider handle. In

the second mode, a discrete swipe gesture initiates slider movement, but the slider’s

speed is dynamically controlled by the distance of the user’s hand from the radar

sensor. As the user’s hand moves closer to the sensor, the speed decreases toward

zero; as the hand moves farther away, the speed increases linearly, reaching maximum

speed at approximately 20 cm, the radar’s detection limit. Further details on the

signal processing steps used for deriving hand distance from radar data are provided

in Appendix B.

5.3 Evaluation

A user study was carried out to determine how accurately users could perform slider-

related tasks using subtle gestures. Specifically, the experiment focused on assessing the

recognition accuracy of Subtle Swipes (Thumb Swipes and Pinch Swipes) in real-time,

comparing with Large Swipes, and determining if users could control a virtual slider with

comparable accuracy and ease. Additionally, the study sought to explore whether this
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(a) Discrete Selection Task : Users control
a Photo Scroller using swipe gestures to
select fixed, discrete values, navigating left
or right between photo items.

(b) Continuous Seeking Task : Users interact
with a Video Player using swipe gestures to
precisely seek through the video timeline.

Figure 5.2: Applications developed for slider-based slider control using Soli. The system
enables interaction with two main applications: a Photo Scroller for Discrete Selection
and a Video Player for Continuous Seeking.

type of system using radar-based subtle gestures provides a positive user experience for

casual interactions. The study focuses on testing the following hypotheses:

H1: Large Swipes are recognized more accurately than Subtle Swipes.

This hypothesis evaluates the recognition accuracy of the neural network model in real-time

performance. It is based on the expectation that Large Swipes generate strong radar sig-

natures, which could lead to higher recognition accuracy compared to the two Subtle Swipes.

H2: Users will complete tasks more quickly using Subtle Swipes compared to

Large Swipes.

This hypothesis tests the efficiency of the candidate gesture. It is predicated on the assump-
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tion that the low physical effort required for Subtle Swipes will reduce task completion times.

H3: Subtle Swipes will provide higher accuracy in controlling the slider compared

to Large Swipes.

This hypothesis evaluates the accuracy of slider control, based on the expectation that the

fine motor control enabled by Subtle Swipes will allow users to achieve closer alignment

with targets.

H4: Users prefer Subtle Swipes over Large Swipes for slider control.

This hypothesis is based on user experience and comfort. It assumes that the low effort

and discreet nature of Subtle Swipes will make them more appealing than Large Swipes,

leading to an overall user preference for Subtle Swipes.

5.3.1 Tasks

As mentioned before, selection and seeking are two common tasks typically performed

using sliders. Therefore, two types of tasks were designed for this experiment: Discrete

Selection and Continuous Seeking.

• Discrete Selection: This task simulates scenarios where users need to select fixed,

discrete values from a set range and is implemented using the Photo Scroller. The

photo carousel is visually set up to display numbers labeled from 1 to 10. Directly

below the carousel, a target number is displayed, which the participants are instructed

to navigate to using one of the canditate gestures. For example, if a Left Thumb

Swipe is performed, the carousel moves to the number on the left, and similarly, a

Right Thumb Swipe moves the carousel to the number on the right.

• Continuous Seeking: This task simulates scenarios where users need to make fine,

adjustments along a continuous scale and is implemented using the Video Player.

The application includes a progress bar at the bottom. During the task, a target
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position is highlighted by a small red rectangle somewhere along the progress bar.

Participants are instructed to use one of the gesture techniques to move the slider

handle towards the target. Each participant is asked to complete the task using both

control modes previously described: one where the slider moves at a constant speed

and the other with speed control, where the slider speed dynamically adjusts based

on the distance of the user’s hand from the sensor.

5.3.2 Procedure

The experimental setup is shown in Figure 5.3. In the experiment, participants were first

introduced to the Google Soli radar system and seated comfortably on a couch in front of

a TV. A laptop connected to the radar was placed on a table in front of them, with the

laptop’s display projected onto the TV via an HDMI connection. This setup was designed

to simulate a casual living room environment, similar to how one would watch TV at

home.

Participants were then shown how to correctly perform the three candidate gestures (i.e.,

Large Swipes, Thumb Swipes, and Pinch Swipes). Specific instructions were given for

Thumb Swipes and Pinch Swipes to prevent false recognition during the thumb reset

motion. For example, after performing a Right Thumb Swipe, resetting the thumb to the

left could trigger a left swipe. Although the neural networks were trained to ignore such

reset movements, additional guidance was provided before the trials. Participants were

instructed to reset to the starting point of the gesture by moving their thumb behind the

index finger to hide it from the radar’s direct line of sight. This guidance was provided to

reduce the likelihood of false recognitions.

The order in which participants performed the tasks was randomized. Before beginning

each task, participants were introduced to the corresponding application and allowed to

interact with them. They were allowed to engage in practice trials to become comfortable

with the gestures and applications.
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Figure 5.3: Experimental setup where participants were required to interact with the
Soli radar system in a casual living room environment. Gestures performed within the
detection range of the Soli sensor controlled the slider application displayed on the TV.

The order of gestures within each task was also randomized. Each session began with

participants leaning forward and bringing their hands close to the Soli sensor. For Subtle

Swipes (Thumb Swipes and Pinch Swipes), when the participant’s hand came within 20

cm of the sensor, the slider would turn green, signaling that that the system is ready to

recognize gestures. For all tasks, time recording started when the system recognized the

first swipe gesture.

Participants were not placed under time constraints but were required to meet specific

criteria for each task. For both Discrete Selection and Continuous Seeking, the objective

was to hit the target 50 times, with Continuous Seeking requiring participants to achieve

50 target hits with both control modes. For Continuous Seeking, participants were also

instructed to bring the slider handle as close as possible to the center of the target. The

tasks ended automatically upon meeting the required criteria: for Discrete Selection, this

was immediately upon selecting the 50th target; for Continuous Seeking, the task concluded

as soon as the slider handle stopped within the target area after the 50th successful target
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hit.

Following each task, participants were asked to complete a User Experience Questionnaire

(UEQ) [39] to evaluate their experience with the two applications. The UEQ consists of

26 items divided into six scales, as illustrated in Figure 5.4. These include: attractiveness,

efficiency, perspicuity, dependability, stimulation, and novelty. The questionnaire was also

supplemented with a series of open-ended questions. These questions were designed to

allow participants to explain their ratings and provide more insight into their experience

with each scale. The questions were:

1. What aspects of the application did you find most appealing or unappealing? (At-

tractiveness)

2. Were there any moments where the application felt particularly easy or difficult to

understand? (Perspicuity)

3. How did you feel about the speed and ease of completing tasks using the application?

Were there any elements that made the interaction feel faster or slower for you?

(Efficiency)

4. Did you feel confident that the application would consistently respond as expected?

If there were any moments where it didn’t, what do you think caused that? (Depend-

ability)

5. What features of the application made the interaction exciting or boring for you?

(Stimulation)

6. Did anything about the application feel new or innovative to you? (Novelty)

Additionally, participants rated their experience using a 7-point Likert scale on the following

statements, which focused on Subtle Swipes to evaluate their usability and performance

relative to the more familiar Large Swipes.

• S1 Learning and Adaptation: I was able to quickly learn and adapt to using

Subtle Swipes.
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• S2 Goal Achievement: I felt that I could achieve my goal faster using Subtle Swipes

compared to Large Swipes.

• S3 Precision: I found it easier to reach the exact target with Subtle Swipes than

with Large Swipes.

• S4 Physical Comfort: I felt physically more comfortable using Subtle Swipes for

extended periods than Large Swipes.

• S5 Public Usability: I would feel comfortable using Subtle Swipes in a public

setting.

• S6 Overall Preference: Overall, I prefer the experience of using Subtle Swipes over

Large Swipes for interacting with the slider.

Figure 5.4: Overview of the six scales and associated items in the User Experience
Questionnaire.

5.3.3 Metrics

The following metrics were used to assess the system:

• Overall Task Time: Measures the total duration from the initiation of the first

gesture until task completion.

• Time to Target: Records the time it takes for a participant to move the slider from

its starting position to the target.
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• Recognition Accuracy: Measures the system’s ability to correctly classify gestures

in real-time.

• Error Distance: Measures the distance between the center of the slider handle and

the center of the target.

• Overshoots: The number of times the slider moves past the target, requiring

corrective action to move it back.

• Undershoots: The number of times the slider stops before reaching the target,

requiring further movement to reach it.

5.3.4 Participants

Eight participants were recruited for the study, consisting of six males and two females,

with ages ranging from 24 to 55 years (average age: 30). As the gesture recognition models

were trained exclusively on right-hand data, all participants performed the experiment

using their right hand. Ethics approval for this study was provided by the university’s

ethics committee.

5.4 Results

This section presents results grouped by task type. Within each task type, results are

organized by the relevant performance metrics used to evaluate gesture recognition and

interaction performance.

5.4.1 Discrete Selection Task

Recognition Accuracy Recognition accuracy for each gesture type was derived from

the Discrete Selection task data. The accuracies are shown in Figure 5.5. The Friedman

test was used to compare recognition accuracy between Large Swipes, Pinch Swipes, and

Thumb Swipes, accounting for repeated measures within participants. No significant dif-
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ferences were found (𝜒2(2) = 1.75, 𝑝 = 0.417), suggesting that the CNN-LSTM model

did not consistently favor one gesture type over another in terms of recognition accuracy.

Although Large Swipes had a slightly higher mean recognition accuracy (91.3%) compared

to Pinch Swipes (89.4%) and Thumb Swipes (88.2%), these differences were not statistically

significant.

Figure 5.5: Recognition accuracy for Large, Pinch, and Thumb Swipes during the Discrete
Selection task. Large Swipes show the highest accuracy at 91.3%, while Pinch Swipes and
Thumb Swipes have slightly lower accuracies at 89.4% and 88.2%, respectively. Error bars
represent the standard error of the mean (SEM) across participants.

Overall Task Time and Time to Target For the Discrete Selection task, the Friedman

test was used to compare task time and time to target among the three gesture types (Large

Swipes, Pinch Swipes, Thumb Swipes), accounting for repeated measures within participants.

Significant differences were found for both task completion time (𝜒2(2) = 12.00, 𝑝 = 0.002)

and time to target (𝜒2(2) = 14.53, 𝑝 < 0.001). Post-hoc Nemenyi comparisons for task

completion time indicated that Large Swipes was significantly slower than both Pinch

Swipes and Thumb Swipes (𝑝 = 0.008 for both), whereas no significant difference emerged

between Pinch Swipes and Thumb Swipes (𝑝 = 0.90). A similar pattern was observed
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for time to target, where Large Swipes again required significantly more time than Pinch

Swipes (𝑝 = 0.004) and Thumb Swipes (𝑝 = 0.002), while Pinch Swipes and Thumb Swipes

did not differ (𝑝 = 0.90).

The mean task time (shown in Figure 5.6a) using Large Swipes was 184.8 seconds, compared

to 160.2 seconds for Pinch Swipes and 158.1 seconds for Thumb Swipes. This represents a

reduction of approximately 13% and 14% for Pinch Swipes and Thumb Swipes compared

to Large Swipes, respectively. The mean time to target (shown in Figure 5.6b) using Large

Swipes was 7.2 seconds, compared to 6.3 seconds for Pinch Swipes and 6.1 seconds for

Thumb Swipes. This represents a reduction of approximately 13% and 15% for Pinch

Swipes and Thumb Swipes compared to Large Swipes, respectively.

5.4.2 Continuous Seeking Task

Overall Task Time and Time to Target For the Continuous Seeking task, the

Friedman test was first used to compare task time and time to target among Large Swipes,

Pinch Swipes, and Thumb Swipes, accounting for repeated measures within participants.

Significant differences were found for both task completion time (𝜒2(2) = 9.25, 𝑝 = 0.01)

and time to target (𝜒2(2) = 14.53, 𝑝 < 0.001). Post-hoc Nemenyi comparisons for task

completion time indicated that Large Swipes was significantly slower than both Pinch

Swipes (𝑝 = 0.03) and Thumb Swipes (𝑝 = 0.01), whereas no significant difference emerged

between Pinch Swipes and Thumb Swipes (𝑝 = 0.90). A similar pattern was observed

for time to target, where Large Swipes again required significantly more time than Pinch

Swipes (𝑝 = 0.004) and Thumb Swipes (𝑝 = 0.002), while Pinch Swipes and Thumb Swipes

did not differ (𝑝 = 0.90).

The mean task time (shown in Figure 5.6c) using Large Swipes was 98.4 seconds, compared

to 78.6 seconds for Pinch Swipes and 79.4 seconds for Thumb Swipes. This represents a

reduction of approximately 20% and 19% for Pinch Swipes and Thumb Swipes compared

to Large Swipes, respectively. The mean time to target (shown in Figure 5.6d) using Large
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(a) Mean task completion time for the Dis-
crete Selection task using Large Swipes, Pinch
Swipes, and Thumb Swipes.

(b) Mean time to target for the Discrete Se-
lection task using Large Swipes, Pinch Swipes,
and Thumb Swipes.

(c) Mean task completion time for the Contin-
uous Seeking task using Large Swipes, Pinch
Swipes, and Thumb Swipes with and without
Speed Control.

(d) Mean time to target for the Continuous
Seeking task using Large Swipes, Pinch Swipes,
and Thumb Swipes with and without speed
control.

Figure 5.6: Comparison of mean task completion time (left) and time to target (right) for
the Discrete Selection task (top row) and the Continuous Seeking task (bottom row).
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Swipes was 2.8 seconds, compared to 2.1 seconds for Pinch Swipes and 2.2 seconds for

Thumb Swipes. This represents a reduction of approximately 25% and 21% for Pinch

Swipes and Thumb Swipes compared to Large Swipes, respectively.

The introduction of speed control further reduced the mean task times to 68.8 and 67.1

seconds for Pinch Swipes and Thumb Swipes, respectively, marking approximately 30%

and 32% reduction in task time compared to Large Swipes. The Friedman test was also

used to compare task time and time to target between the Subtle Swipes (Pinch Swipes,

Thumb Swipes) and their corresponding speed control versions. Significant differences

were found for both task completion time (𝜒2(3) = 12.15, 𝑝 = 0.007) and time to target

(𝜒2(3) = 14.67, 𝑝 = 0.002). Post-hoc Nemenyi comparisons for task time revealed that

Thumb Swipes with Speed Control was significantly faster compared to both Pinch Swipes

(𝑝 = 0.019) and Thumb Swipes (𝑝 = 0.019). For time to target, both Pinch Swipes with

Speed Control and Thumb Swipes with Speed Control were significantly faster than their

standard counterparts. Thumb Swipes with Speed Control was significantly faster than

both Thumb Swipes (𝑝 = 0.012) and Pinch Swipes (𝑝 = 0.030), while Pinch Swipes with

Speed Control also outperformed Thumb Swipes (𝑝 = 0.047) and Pinch Swipes (𝑝 = 0.053).

Slider Dynamics Figure 5.7 visualizes the slider dynamics for Large Swipes, Thumb

Swipes, and Thumb Swipes with speed control (Pinch Swipes are omitted, as the dynamics

are similar to Thumb Swipes). Figure 5.7a shows time series of how slider position changes

over time. For all three cases, there is an initial reaction time before the slider starts

moving. Then, there is a ballistic phase when the slider starts accelerating towards the

target. There might then be some corrections, overshooting, and oscillations around the

target (as seen in the case of Large Swipes). Finally, after the slider has settled on the

target, it rests there for some time until the the next trial begins. Phase space plots in

Figure 5.7b visualize slider velocity against its position. For Large Swipes and Thumb

Swipes, the slider accelerates instantaneously (as observed in the Hooke plots in Figure

5.7c). It then moves towards the target at a constant velocity (300 pixels/second). Upon
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(a) Time-series plot showing how the slider position changes over time. An initial reaction time
is followed by a ballistic phase, corrections near the target, and a resting phase.

(b) Phase-space plot illustrating slider velocity over position. Large Swipes, Thumb Swipes, and
Pinch Swipes reach a constant velocity instantly, whereas the speed control variant demonstrates
a smooth bell-shaped curve, indicating gradual acceleration and deceleration.

(c) Hooke plot showing acceleration over position. These data further emphasize the instantaneous
acceleration and deceleration in Large Swipes, Thumb Swipes, and Pinch Swipes, and the gradual
acceleration and deceleration with speed control.

Figure 5.7: Slider Dynamics for various gesture types and control modes. The area between
the two red dashed lines represents the target area. All trials shown are for target 7 of
participant P1. The index of difficulty is 4, one of the higher IDs in the dataset.
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reaching the target, the slider decelerates instantaneously, bringing the velocity to zero.

In these cases, users lacked the ability to accelerate or decelerate dynamically. With

speed control, instead of an instantaneous acceleration to a constant velocity, there is a

smooth, continuous adjustment of speed. The phase space plot for Thumb Swipe with

speed control reveals a bell-shaped trajectory, indicating that the slider’s velocity increases

gradually as it moves towards the target, reaches a peak, and then decelerates smoothly as

it approaches the target zone. This bell shape highlights the user’s control over acceleration

and deceleration, allowing the slider to reach higher speeds in the middle of its trajectory

before slowing down as it nears the target.

Overshoots, Undershoots and Error Distance To evaluate accuracy in controlling

the slider during the seeking task, three main metrics were used: overshoots, undershoots,

and error distance.

• Overshoots: The mean number of overshoots is shown in Figure 5.8a. Mean

overshoots using Large Swipes were 5.2, while the mean overshoots for Pinch Swipes

and Thumb Swipes were 2.1 and 2.5, respectively. This represents a significant

reduction in overshoots of approximately 60% for Pinch Swipes and 52% for Thumb

Swipes compared to Large Swipes. With speed control, the mean overshoots for Pinch

Swipes and Thumb Swipes were 3.0 and 3.1, respectively. This is a significant reduction

of approximately 42% for Pinch Swipes and 40% for Thumb Swipes compared to

Large Swipes.

To determine whether speed control significantly affected overshoot frequency, the

Friedman test was applied across the four subtle swipe conditions (Pinch Swipes,

Thumb Swipes, and their respective speed control versions), accounting for repeated

measures within participants. The test revealed no significant differences in overshoot

counts across conditions (𝜒2(3) = 3.95, 𝑝 = 0.27), indicating that speed control did

not significantly impact the number of overshoots.

• Undershoots: The mean number of undershoots is shown in Figure 5.8b. Mean
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(a) Mean overshoots for Continuous Seeking
task showing significant improvement when
using Pinch and Thumb Swipes, with further
improvements using speed control.

(b) Mean undershoots for Continuous Seeking
task showing significant improvement in under-
shoots when using Pinch and Thumb Swipes,
with further improvements using speed control.

(c) Mean error distance for the Continuous
Seeking task using Large Swipes, Pinch Swipes,
and Thumb Swipes with and without speed
control. Subtle Swipes with speed control ex-
hibit the lowest error distance.

Figure 5.8: Comparison of overshoots, undershoots, and error distance for the Continuous
Seeking task across different swipe types. Subfigures (a) and (b) present the mean number
of overshoots and undershoots, respectively, while subfigure (c) shows the mean error
distance.



5.4. Results 115

undershoots using Large Swipes were 6.6, while the mean undershoots for Pinch

Swipes and Thumb Swipes were 2.1 and 2.5, respectively. This represents a significant

reduction in undershoots of approximately 68% for Pinch Swipes and 62% for Thumb

Swipes compared to Large Swipes. With speed control, the mean undershoots for

Pinch Swipes and Thumb Swipes were 1.8 and 1.6, respectively. This is an even more

significant reduction of approximately 73% for Pinch Swipes and 76% for Thumb

Swipes compared to Large Swipes.

To determine whether speed control significantly affected undershoot frequency, the

Friedman test was applied across the four subtle swipe conditions (Pinch Swipes,

Thumb Swipes, and their respective speed control versions), accounting for repeated

measures within participants. The test revealed no significant differences in under-

shoots counts across conditions (𝜒2(3) = 3.16, 𝑝 = 0.37), indicating that speed control

did not significantly impact the number of overshoots.

• Error Distance: The Wilcoxon Signed-Rank Test was used to compare error distance

between Large Swipes and Pinch Swipes, and Large Swipes and Thumb Swipes. In all

comparisons, 𝑝 < 0.05, indicating a significant difference in error distance. The mean

error distance is shown in Figure 5.8c. The mean error distance using Large Swipes

was 27.8px, compared to 22.1px for Pinch Swipes and 19.6px for Thumb Swipes. This

represents a reduction of approximately 20% and 29% for Pinch Swipes and Thumb

Swipes compared to Large Swipes, respectively. With speed control, the mean error

distance for Pinch Swipes and Thumb Swipes were 18.6px and 17.8px, respectively.

This is an even more significant reduction of approximately 33% for Pinch Swipes

and 36% for Thumb Swipes compared to Large Swipes.

The Friedman test was used to compare error distance among Pinch Swipes, Thumb

Swipes, and their speed control counterparts. A statistically significant difference was

found (𝜒2(3) = 9.00, 𝑝 = 0.029). Post-hoc Nemenyi comparisons revealed that Thumb

Swipes with Speed Control had a significantly lower error distance than Pinch Swipes

(𝑝 = 0.036). No other comparisons reached statistical significance (𝑝 > 0.05).
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Figures 5.9a and 5.9b, display time series and phase space plots for all trials across all

participants for two targets with an index of difficulty of 4. In the time series plot, the

trajectories of the slider position show that Pinch Swipes and Thumb Swipes—both

with and without speed control—demonstrate a more consistent approach to the tar-

gets. Large Swipes, in contrast, display more erratic undershooting and overshooting

behaviors, as seen in the irregular paths before stabilizing on the target. Similarly,

in the phase space plots for Large Swipes there are notable vertical lines within the

plot, especially between the two target positions. These vertical trajectories indicate

that the slider velocity frequently drops to zero before reaching the target, signaling

frequent undershoots. In contrast, the phase space plots for Pinch Swipes and Thumb

Swipes show far fewer vertical lines between the targets, reflecting less undershoots.

The speed control phase space plots once again exhibit bell-shaped trajectories, as

participants are able to control the slider’s velocity, allowing them to reach higher

speeds in the middle of the movement before decelerating as they near the target.

User Preferences For the Discrete Selection task, all participants preferred Subtle

Swipes over Large Swipes. In the Continuous Seeking task, 2 of the 8 participants preferred

standard Subtle Swipes, while the others preferred using the speed control variants. The

distribution of participant responses to the six Likert statements is visualized in Figure

5.10. The key insights derived from the responses to each statement are discussed below:

• S1 (Learning and Adaptation): Participants generally found Subtle Swipes easy

to learn and adapt to, with a mean rating of 5.2 (SD 0.92). Ratings ranged from 4 to

7, and no participant gave a rating below 4, indicating most users felt moderately

comfortable adopting Thumb Swipes and Pinch Swipes.

• S2 (Goal Achievement): Participants felt they could achieve their tasks faster

using Subtle Swipes compared to Large Swipes, reflected by a mean rating of 6.1 (SD

0.94). All responses were between 5 and 7.

• S3 (Precision): Participants reported ease in precisely aligning the slider to the



5.4. Results 117

(a) Time series trajectories showing Pinch and Thumb Swipes—both with and without speed
control—follow a more stable path to the target compared to Large Swipes, which display irregular
paths with more frequent undershoots and overshoots.

(b) Phase space plots highlighting the differences in velocity control, where Large Swipes display
frequent abrupt stops. In contrast, the speed control-enabled gestures form a smoother, bell-
shaped trajectory, demonstrating better control and fewer undershoots, though occasional
overshoots occur.

Figure 5.9: Slider Dynamics for Seeking Task for Large Swipes, Pinch Swipes, and Thumb
Swipes (with and without Speed Control). The shown trials are for two targets with index
of difficulty 4 for all participants.

target with Subtle Swipes, as shown by a mean rating of 5.8 (SD 0.79). Responses

ranged from 5 to 7, indicating confidence in accuracy for most users.

• S4 (Physical Comfort): Most participants found Subtle Swipes physically comfort-

able to perform, with a mean rating of 5.9 (SD 1.05). Although responses ranged

from 4 to 7, the majority indicated minimal physical strain when using these gestures.

• S5 (Public Usability): Participants largely indicated they would feel comfortable

using Subtle Swipes in public, with a mean rating of 6.4 (SD 0.82).

• S6 (Overall Preference): Users generally preferred Subtle Swipes over Large Swipes,

as evidenced by a mean rating of 6.1 (SD 0.94). All responses fell between 5 and 7,

indicating a strong overall inclination toward subtle gestures.
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Figure 5.10: Mean Likert-scale ratings (1–7) for each of the six statements, with error bars
indicating the standard deviation. Higher ratings reflect stronger agreement. Participants
generally rated Subtle Swipes favorably, finding them easy to learn, efficient, precise,
comfortable, publicly usable, and overall preferable compared to Large Swipes.

5.4.3 UEQ Results

Figure 5.11a shows the mean scale scores for the Photo Scroller and Video Player. The

mean scale scores range from -3 (horribly bad) to 3 (extremely good) [39]. The scores

show that both applications performed positively across all scales. Figure 5.11b further

break down the results by showing the mean value per item across each of the six scales.

The following analysis offers a closer look at each scale, revealing participant perceptions

and highlighting strengths and areas for improvement with both applications.

• Attractiveness: This scale evaluates the overall appeal of the application, capturing

users’ impressions of its visual design, aesthetics, and how pleasant they found the

interaction. The Video Player showed a mean of 2.0 (SD 0.39), while the Photo

Scroller had a mean of 0.67 (SD 0.32). Looking at the itemized results, the Video

Player outperformed the Photo Scroller across all attributes. The responses from

the open-ended questions indicated that participants found the Video Player more
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familiar. One participant commented, “It (Video Player) had a layout and design

similar to what I use daily, which made it easier to connect with.” In contrast, multiple

participants noted that the Photo Scroller felt unfamiliar: “Its (Photo Scroller) design

wasn’t like what I’m used to on my phone or iPad.”

• Perspicuity: This scale assesses how easily users could understand and become

familiar with the application. The Photo Scroller received a higher mean score of 2.80

(SD 0.22), compared to the Video Player’s 1.35 (SD 0.37). The itemized breakdown

indicates that participants found the Photo Scroller easier to learn and generally less

complicated. One participant stated, “It was immediately clear how to scroll through

the images.” In contrast, the Video Player required more time to learn: “It took me

longer to understand how the hand gestures worked with the speed control.” The

clear/confusing item shows the Photo Scroller being rated as clearer. One participant

mentioned that the Video Player controls were more complex: “At first, it wasn’t

obvious how to control the video using gestures, and I had to try a few times to get

it right.”

• Efficiency: This scale evaluates whether users can accomplish their tasks without

unnecessary effort. The Video Player had a mean of 2.35 (SD 0.25), and the Photo

Scroller 2.08 (SD 0.53). One participant noted regarding the Video Player, “I liked

how controlling the speed made seeking faster.” The itemized results show that

participants appreciated the practical aspects of both systems, with both applications

scoring high for usability and reduced effort.

• Dependability: This scale measures user control, focusing on how reliable and

predictable the system feels. The Video Player scored a mean of 1.65 (SD 0.45), and

the Photo Scroller 1.83 (SD 0.28). Some participants rated the Photo Scroller as

more predictable, with one noting, “The Photo Scroller responded to every swipe

consistently, so I felt like I was in control the whole time.” Another participant

mentioned that the Video Player initially felt less predictable, explaining, “At first,

the speed control was tricky to manage, and it felt unpredictable. But after a few
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(a) Comparison of mean scale scores between the Video Player and Photo Scroller applications.

(b) Mean value per item for all UEQ scales (Attractiveness, Perspicuity, Efficiency, Dependability,
Stimulation, and Novelty) for Video Player and Photo Scroller applications.

Figure 5.11: (Top) Overview of mean scale scores; (Bottom) Mean value per item across
six UEQ scales.
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tries, it became easier.”

• Stimulation: This scale examines whether using the system is exciting and motivat-

ing. The Video Player received a higher mean score of 2.43 (SD 0.37), whereas the

Photo Scroller scored 1.18 (SD 0.46). Participants found the video interactions more

engaging, with one stating, “The ability to control the speed while seeking through

the video made it more interesting.” The Photo Scroller was seen as functional but

relatively less stimulating.

• Novelty: This scale focuses on how innovative or unique the system appears. The

Video Player achieved a mean of 2.83 (SD 0.10), while the Photo Scroller scored 1.93

(SD 0.63). Many participants highlighted the novelty of radar-based interaction, with

one remarking, “The radar aspect was new to me. I’ve never controlled a video player

without touch before, and the experience felt futuristic.”

5.5 Discussion

Despite the expectation that Large Swipes would be recognized more accurately than

Subtle Swipes, the results showed no significant difference in recognition accuracy between

the gestures. Large Swipes had a slightly higher mean recognition accuracy (91.3%)

compared to Pinch Swipes (89.4%) and Thumb Swipes (88.2%), but these differences were

not statistically significant, leading to the rejection of H1.

Pinch Swipes and Thumb Swipes reduced task time by up to 14% in the Discrete Selection.

The faster performance can be primarily attributed to the nature of the movements. Large

Swipes require the user to move their whole arm, necessitating significant motion and time

to reset each swipe. In contrast, Pinch Swipes and Thumb Swipes keep the hand positioned

in front of the Soli without needing to reposition the entire arm. Only minimal finger

movements are involved, allowing for faster gesture repetitions. In the Continuous Seeking

task, Pinch Swipes and Thumb Swipes reduced task time by up to 14% . When combined

with speed control, seeking task times were further reduced by up to 32% compared to
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Large Swipes. Speed control enabled finer control over slider velocity by allowing users to

gradually accelerate and decelerate through small hand movements toward and away from

the Soli. This continuous velocity adjustment allowed users to reach higher peak slider

speeds while maintaining precision near the target, thereby reducing both task time and

time to target. These reductions highlight the efficiency gains provided by Subtle Swipes,

supporting the acceptance of H2.

The number of overshoots and undershoots reduced by up to 60% and 68%, respectively,

when using Subtle Swipes instead of Large Swipes in the Continuous Seeking task. With

speed control, undershoots were further reduced by up to 76% compared to Large Swipes.

The addition of speed control enabled users to make more deliberate and fine-grained

adjustments near the target, which significantly reduced the number of undershoots. How-

ever, overshoots increased in some cases (although not statistically significant), resulting

from participants not decelerating early enough before reaching the target. Error distances

reduced by up to 29% with Subtle Swipes and up to 36% with speed control. The ability

to control velocity continuously allowed participants to slow down as they approached

the target, helping them converge more closely to the target center and reducing error

distance. While the absolute differences in error distance (≈ 8–10 pixels) may appear small

relative to the total slider range, even these differences can be meaningful depending on

the application. For instance, in long-form content such as movies or surveillance footage,

each pixel on the slider might correspond to several seconds or minutes of video. In such

contexts, smaller error distances directly translate to more accurate temporal navigation.

Moreover, these gains were accompanied by substantial reductions in overshoots and under-

shoots, reflecting more stable and controlled adjustments near the target. These metrics

indicate that Subtle Swipes provide higher accuracy in controlling the slider compared to

Large Swipes, supporting the acceptance of H3.

Finally, participants consistently favored Subtle Swipes over Large Swipes in terms of goal

achievement, precision, comfort, and social acceptability, as reflected by the Likert scale

responses (Figure 5.10). For both the Photo Scroller and Video Player applications, all
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participants preferred using Subtle Swipes over Large Swipes. While speed control was

generally well received, a few participants noted an initial learning curve, describing it

as tricky to manage at first. After a few trials, however, the interaction became easier

to handle and felt more predictable, highlighting how practice helped mitigate early

uncertainty. Overall, the results support the acceptance of H4.

5.5.1 Limitations and Future Work

The CNN-LSTM model used in this chapter was trained on radar data limited to a 20cm

detection range. As a result of this, the applications designed in the user study required

participants to perform gestures within this range of the Soli. Predicated on the possibility

of extending the detection range of subtle gestures (discussed in Section 4.5.1), future

work could explore designing applications for long-range subtle gesture interaction. This

could focus on evaluating the usability of subtle gestures in scenarios where users can

interact with devices from a few meters away, such as controlling a TV or smart speaker

from across a room.

Another limitation of this work is the lack of ’in the wild’ evaluation to assess social

acceptability and ethical issues with subtle interactions. While the subtle gestures employed

in this research are inherently designed to be discreet and low-effort, the social acceptability

of these interactions were only assessed through self-reported measures like Likert scale

statements (e.g., “I would feel comfortable using subtle swipes in a public setting”). A more

holistic evaluation would involve user studies in public or semi-public spaces to understand

how observers perceive subtle gestures when participants engage in interactions with

devices, capturing both user comfort and social acceptance from a bystander perspective.

One of the benefits of subtle interactions is that they do not draw attention to the

user. However, this also presents a double-edged issue — what is subtle from the user’s

perspective may be deceptive or “sneaky” for the observer. For instance, imagine a family

watching TV together when, suddenly, the channel is changed without anyone knowing
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who issued the command. Similarly, consider at a dinner where one person is secretly

interacting with their device, deliberately concealing it from their date. The use of subtle

gestures could obscure accountability and lead to misunderstandings or even suspicion

among observers, especially when they are not aware of the gesture-based control.

The discreet nature of subtle interactions that make them socially acceptable for the user

can simultaneously obscure their actions from others, creating a tension between the desire

for discreet control and the need for observable, accountable behavior. The implications of

this duality must be considered, especially in scenarios where shared or public contexts are

involved. Future work could explore how to balance discreet interaction with transparency

for observers by focusing on feedback that would help observers remain aware of ongoing

interactions without disrupting the subtle nature of the gesture itself. For example, in

the case of the Video Player, feedback mechanism could involve visual cues on the screen

showing the direction from which the subtle gesture was performed, allowing observers

to locate who made the change. Other modes like light feedback could also be effective.

For instance, a smart speaker could employ a ring of LEDs that briefly light up in the

direction from which the gesture was performed.

5.6 Conclusion

This chapter explored radar-based slider control using subtle gestures. First, a frame-

work was presented to control slider-based applications using a set of three candidate

gestures (Large Swipes, Pinch Swipes, and Thumb Swipes). Two applications were designed

and integrated to enable slider control using a Google Soli radar: a Photo Scroller and

a Video Player. A user study was then carried out to answer the following research question:

RQ4: Do subtle gestures improve task performance and user experience in

radar-based interactions involving slider control?
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The user study evaluated the effectiveness of Subtle Swipes(Pinch Swipes, and Thumb

Swipes) compared to Large Swipes. Eight participants were recruited to perform two types

of tasks with the developed applications. The Photo Scroller was used for simulating the

selection of discrete values, while the Video Player was used for simulating seeking through

continuous ranges. Several metrics were gathered to assess the performance including task

time, time to target, recognition accuracy, error distance, overshoots and undershoots. To

evaluate user experience, participants also completed various questionnaires, and responded

to open-ended questions.

The results of the study demonstrated that participants were able to complete tasks more

quickly and accurately with Subtle Swipes compared to Large Swipes. The results from the

questionnaires also demonstrated a clear preference for Subtle Swipes, with participants

consistently reporting that these gestures allowed them to achieve their goals more quickly.

They also found it easier to reach precise targets and were more physically comfortable

using Subtle Swipes for longer periods. Additionally, participants also expressed confidence

with using these gestures in public settings.

User Experience Questionnaires (UEQ) were used to evaluate the overall usability and

appeal of the two applications. Both applications received positive scores, and users found

interactions using Subtle Swipes to be easy to learn, efficient, and engaging.

5.6.1 Contributions

This chapter makes the following contributions:

• Provides a design framework for incorporating mmWave radar gesture recognition

models into real-time slider-based applications, demonstrated through the development

of two applications: a Photo Scroller and a Video Player.

• Conducts a user study comparing the effectiveness of Subtle Swipe gestures in slider-

based interactions to traditional Large Swipes.

• Demonstrates that Subtle Swipes outperform Large Swipes in multiple performance
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metrics (task time, time to target, error distance, overshoots, and undershoots) and

are consistently preferred by users (higher comfort, perceived speed, precision, and

social acceptability).



6 Conclusion

6.1 Introduction

This thesis made the following statement in its Introduction:

Accurate sensing of subtle mid-air micro-gestures using mmWave radar, and

gesture recognition through signal processing and deep learning, enables quick,

precise and user-friendly control of virtual interfaces, as demonstrated through

empirical trials involving real-time user studies and statistical analysis of metrics

such as recognition accuracy, task time, error distance and user experience scores.

The following sections revisit the research questions posed to explore and validate this

thesis statement, providing a summary of how each question was addressed and the key

findings. The chapter also highlights the main contributions of this research, outlines its

limitations, and suggests directions for future work.

6.2 Research Questions

This research explored the following research questions:

RQ1: What types of subtle gestures might be suitable as activation gestures?

RQ2: How can subtle activation gestures be accurately recognized without extensive data

acquisition?

127
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RQ3: How accurately can neural networks recognize subtle gestures from mmWave radar

data?

RQ4: Do subtle gestures improve task performance and user experience in radar-based

interactions involving slider control?

Each of these research questions is addressed in specific chapters of the thesis:

• Chapter 3 addressed RQ1 and RQ2, focusing on the identification of suitable

activation gestures and the development of a signal processing pipeline for their

recognition.

• Chapter 4 addressed RQ3 by introducing a dataset for subtle gesture recognition

and evaluating deep learning models for gesture classification.

• Chapter 5 addressed RQ4 by integrating subtle gestures into interactive systems and

conducting user studies to assess their effectiveness.

6.2.1 Research Question 1

RQ1: What types of subtle gestures might be suitable as activation gestures?

This question is addressed at the beginning of Chapter 3, which started by analyzing the

frequency components of various hand motions. By using frequency analysis techniques

such as power spectral density (PSD) and spectrograms, the chapter systematically

examined how different hand movements produce distinct frequency signatures. This

analysis indicated that while day-to-day hand motions encompass a variety of movements,

they typically do not produce significant high-frequency components. Hand movements

during routine activities such as cooking, walking, or gesturing while talking predominantly

generate low-frequency signals with peaks in the 1-4 Hz range. In contrast, hand motions

that produce substantial power in the higher frequency bands (4-12 Hz) require intentional,

high-speed, and rhythmic movements. These high-frequency motions are associated with
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deliberate actions involving rapid and repetitive movements of small muscle groups, like

those in the fingers. Based on these findings, gestures that produced strong high-frequency

components were identified as suitable activation gestures because their deliberate and

rhythmic nature makes them distinct from everyday motions and less likely to occur

accidentally. Accordingly, four candidate gestures were selected—Finger Taps, Finger

Rubs, Thumb Presses, and Pinch Presses—due to their ability to generate significant

high-frequency signals through intentional, repetitive movements.

6.2.2 Research Question 2

RQ2: How can subtle activation gestures be accurately recognized without

extensive data acquisition?

This question was addressed in the second half of Chapter 3, which developed and

implemented a signal processing pipeline to recognize subtle activation gestures without

extensive data acquisition or reliance on machine learning techniques. The pipeline

leveraged frequency analysis to distinguish intentional gestures from incidental hand

movements by detecting strong high-frequency components (4–12 Hz) in the sensor data,

which were unlikely to be produced by casual motions. To evaluate its effectiveness, a

user study was conducted using three different sensors—a Google Soli mmWave radar,

an Intel D435 camera with MediaPipe hand tracking, and a wrist-mounted SHAKE

accelerometer—focusing on metrics such as false activations, time to activation, and user

preferences. The results varied across sensors: the Soli sensor effectively filtered out broad

hand gestures and had fewer false activations but still encountered some false activations

during activities like typing and phone usage; the SHAKE accelerometer achieved the

fastest activation times but registered the highest number of false activations due to

its high sensitivity and wrist placement; and the Intel D435 had moderate performance

with some challenges in hand tracking accuracy. Overall, the pipeline demonstrated that

subtle activation gestures could be recognized without extensive data acquisition, but

its effectiveness depended on the sensor used and adjustments, such as a multi-trigger
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validation mechanism, to minimize false activations.

6.2.3 Research Question 3

RQ3: How accurately can deep learning models recognize subtle gestures from

mmWave radar data?

This question was addressed in Chapter 4. A new dataset was developed, comprising 16,000

positive samples of ten distinct subtle gestures and 1,600 negative samples of non-gesture

movements, collected from eight participants using a Google Soli radar. Each sample

consisted of a sequence of range-Doppler maps (RDMs), capturing the temporal dynamics

and motion patterns of the gestures over time. Three neural network architectures—LSTM,

CNN-LSTM, and Time-Distributed CNN-LSTM (TD-CNN-LSTM)—were trained and

evaluated using Leave-One-Subject-Out Cross-Validation. The CNN-LSTM model achieved

the best performance, with an average accuracy of 90.0%, followed by the TD-CNN-LSTM

with 85.1%, and the LSTM with 78.5%. These results demonstrated that deep learning

models, particularly hybrid architectures combining convolutional and recurrent layers, can

accurately recognize subtle gestures from mmWave radar data. The results also indicated

that the dataset captured the necessary variations and distinctive features in the RDM

sequences for each gesture, enabling the models to learn effective representations and

generalize across different users.

6.2.4 Research Question 4

RQ4: Do subtle gestures improve task performance and user experience in

radar-based interactive systems?

This question was addressed in Chapter 5, which explored the effectiveness of subtle

gestures in radar-based slider control applications. The CNN-LSTM model trained in the

previous chapter was integrated into two real-time interactive systems—a Photo Scroller

for iscrete selection and a Video Player for continuous seeking—both controlled using
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gestures detected by a Google Soli radar sensor. Three directional swipe gestures were used:

traditional Large Swipes and two Subtle Swipes (Thumb Swipes and Pinch Swipes). A user

study with eight participants compared the performance of these gestures in terms of the

models recognition accuracy, task completion time, precision, and user preference. The

results showed that the CNN-LSTM model recognized Subtle Swipes with similar accuracy

to Large Swipes, which is notable given the lower intensity and less pronounced radar

signatures of Subtle Swipes. Participants completed tasks more quickly and accurately

using Subtle Swipes and expressed a strong preference for them over Large Swipes, citing

increased comfort, efficiency, and social acceptability. These findings demonstrated that

subtle gestures improve task performance and user experience in radar-based interactions

involving slider control.

6.3 Contributions

This thesis made contributions to the design, implementation, and evaluation of subtle

gesture recognition systems using mmWave radar. Each contribution addressed specific

challenges in gesture recognition and interaction design. Design recommendations and a

summary of limitations and future work are provided below for each contribution.

6.3.1 Subtle Activation Gesture Recognition Pipeline

This contribution focused on the problem of addressing gesture systems, a fundamental

part of interaction; the key issue tackled was the Midas touch problem. First, a set of

subtle activation gestures were selected based on spectral analysis of hand motions. By

examining the frequency components of various hand movements, four candidate gestures

were identified: Finger Rubs, Finger Taps, Thumb Presses, and Pinch Presses that produce

distinct high-frequency signals. Building on this, a novel activation gesture recognition

pipeline was developed that used frequency analysis to recognize high-frequency deliberate
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gestures from incidental movements. The pipeline aggregates power in specific frequency

bands to detect high-frequency gestures while ignoring low-frequency casual motions. The

system was evaluated through a user study using three different sensors: a Google Soli

mmWave radar, an Intel D435 camera with MediaPipe hand tracking, and a wrist-mounted

accelerometer (SHAKE sensor). The results demonstrated that the pipeline effectively

ignored broad hand gestures and accurately recognized the selected subtle activation

gestures. However, activities involving rapid hand movements like typing, writing, and

phone usage occasionally produced false activations due to high-frequency components

similar to the activation gestures. To address this, a multi-trigger validation mechanism

was introduced, significantly reducing false activations across all sensors.

Design Recommendations

• Use high-frequency, subtle finger gestures for activation due to their low effort,

discreetness, and rhythmic nature. The fast rhythmic movements of the fingers

generate distinct high-frequency signals that are unlikely to occur frequently during

everyday activities, effectively reducing false activations. The rhythmic nature allows

users to continue performing the gesture until it is successfully detected.

• Incorporate a multi-trigger validation mechanism into the activation gesture recog-

nition pipeline to reduce false activations during activities involving rapid hand

movements. By requiring multiple activation triggers within a brief time window (e.g.,

two or three triggers within a 2-second window), the likelihood of false activations

reduces. However, this introduces a trade-off: increasing the number of required

triggers decreases unintended activations but also increases the time to activation, as

users need to perform the gesture for longer before it is recognized. Designers should

balance the need for minimizing false activations with maintaining a responsive user

experience, considering the specific context and user expectations of the application.

• For vision-based hand tracking (e.g. MediaPipe), implement methods to handle

occlusions and improve tracking reliability. Incorporate confidence assessments or

probabilistic models to reduce false activations caused by tracking errors, especially
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in environments where parts of the hand may be obscured.

Limitations and Future Work

• The pipeline produced false activations during activities involving rapid, repetitive

hand movements, such as typing, writing, and phone usage. To mitigate this issue,

a post-hoc multi-trigger validation mechanism was implemented, requiring multiple

activation triggers within a short time window (e.g. two or three triggers within a 2-

second window) for confirmation. While this approach eliminated all false activations

in most cases in the post-hoc analysis, it was not evaluated in real-time during the

user study.

• Sensor-specific challenges were encountered, particularly with the camera-based hand

tracking using MediaPipe. The system occasionally struggled with occlusions when

participants’ hands were partially obscured by objects like pens or phones, which led

to erratic jumps in the detected hand landmarks, introducing high-frequency noise

that caused false activations. With camera-based tracking, one potential solution is to

incorporate uncertainty measures or confidence scores into the hand tracking process.

Developing a probabilistic model that assesses the likelihood of valid hand poses

could help filter out unreliable data. By setting appropriate confidence thresholds,

the system could ignore frames with low-confidence hand detections, reducing the

introduction of high-frequency noise due to tracking errors.

• The pipeline was tested in a controlled laboratory environment. While this setting

allowed for systematic evaluation, it does not fully represent the variability and

unpredictability of real-world conditions. Future research could involve deploying the

pipeline ‘in the wild’ to assess its performance during everyday activities in diverse

environments. Evaluating the system in real-world contexts could help identify

additional challenges, such as environmental noise, and diverse user behaviors, which

could affect the pipelines performance.

• The user study involved eight healthy participants. While this sample size was

sufficient to identify significant differences and validate the effectiveness of the pipeline,
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a larger participant group would provide greater statistical power. However, since

all participants were healthy adults, increasing the number of similar participants

might not reveal substantially new insights. Instead, future studies should focus

on including more diverse groups, such as senior citizens, who may have difficulty

performing subtle gestures like Tremor-Inducing Pressure Gestures. Evaluating the

pipeline’s performance across such populations could highlight specific limitations or

necessary design adaptations to improve accessibility and inclusivity.

6.3.2 Subtle Gesture Recognition Using Neural Networks

This contribution focused on the challenge of recognizing subtle mid-air gestures from

mmWave radar data—a relatively unexplored area compared to macro-gesture recognition.

To address this, a new dataset was created, comprising radar data of 10 subtle gestures

captured using a Google Soli sensor. The gestures were selected based on a “virtual

tools” gesture language, which mimics real-world interactions such as swiping, pinching,

and rotating, and also used proprioception and natural haptic feedback. Three neural

network architectures—LSTM, CNN-LSTM, and TD-CNN-LSTM—were trained and

evaluated using Leave-One-Subject-Out Cross-Validation (LOSO-CV). The CNN-LSTM

model achieved the highest accuracy of 90.0%, demonstrating that hybrid deep learning

models can accurately recognize subtle gestures from mmWave radar data. This also

validated the dataset which captured the necessary variations and distinctive features of

each gesture, enabling the models to learn meaningful representations and generalize well

across different users.

Design Recommendations

• Choose hybrid architectures like CNN-LSTM for gesture recognition to effectively

capture both spatial and temporal features. Additionally, consider factors such as

model size and inference time to ensure suitability for the deployment environment.

Limitations and Future Work
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• The subtle gestures dataset was created using the short-range settings of the Soli

radar, limiting the maximum sensing range to 20cm. Future work could explore subtle

gesture detection from longer ranges by utilizing more sophisticated radar systems,

such as those that support Multiple Input Multiple Output (MIMO) setups, which

have fine spatial resolution and can detect small movements over larger distances.

• If detecting subtle gestures from longer ranges is feasible, future work could focus on

creating a new dataset of long-range RDM sequences. Transfer learning techniques

could be employed to adapt existing gesture detection and recognition models from

this research to the new data, reducing the need for extensive new data collection.

• The dataset was created with data from eight healthy, right-handed participants.

While LOSO-CV demonstrated that the trained models could generalize across

participants, future expansions with a larger or more diverse participant group (e.g.,

older adults, individuals with hand tremors, or left-handed participants) could capture

a broader range of real-world gesture variations. This would enable the models to

better adapt to diverse user needs and reduce potential biases in the training data.

• Another avenue for future work could leverage recent advancements in generative

models for radar data [74]. The work by Tonolini et al. demonstrated the ability

to generate synthetic RDM data given a hand pose captured through an OptiTrack

motion tracking system. Future work could try to use this approach to generate

synthetic RDM data for subtle gestures. This approach could allow researchers

to expand or even create new datasets without needing additional participants or

prolonged recording sessions.

6.3.3 Evaluating Subtle Gestures in Real-Time Applications

While many mmWave radar gesture recognition models have been developed and evaluated

offline, there is a notable lack of research testing the application of gestures—particularly

subtle gestures—in real-time applications. This contribution addressed this gap by assessing
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the effectiveness and user experience of subtle gestures in real-time applications involving

slider-based controls. Sliders were chosen because they are fundamental interactive

components widely used for tasks such as adjusting settings, navigating through content,

and making selections. By integrating the previously developed CNN-LSTM gesture

recognition model into two slider-based interactive applications, the research investigated

whether subtle gestures could improve task performance compared to traditional large

gestures. A user study with eight participants demonstrated that subtle gestures allowed

users to complete tasks more quickly and with greater precision. Participants also expressed

a strong preference for subtle gestures, citing increased comfort, efficiency, and perceived

social acceptability.

Design Recommendations

• Use gestures like Thumb Swipes and Pinch Swipes (Figure 4.1) for slider control.

These gestures align well with the interaction metaphor of virtual tools for slider

control, where the index finger can be imagined as the slider itself, and the thumb

moving along the index finger mimics the action of adjusting the slider handle. Such

interaction metaphors can be generalised to other interface components—for example,

Index Finger Rotations can represent turning a virtual dial, while Open and Close

Pinch gestures can support zooming in and out, respectively.

• Implement speed control using hand distance from the radar, allowing users to

dynamically adjust the speed of continuous interactions. This enhancement enables

quicker and more precise adjustments depending on proximity. While demonstrated

in this study for slider speed control, the same principle can generalize to other

interactions—for instance, controlling dial rotation speed after a Finger Rotation, or

adjusting zoom rate after Open and Close Pinch gestures. By remaining in a closed

interaction loop, users gain fine control over the intensity or velocity of the action

being performed.

• Combine spatial activation zones with rhythmic high-frequency gestures (e.g., Thumb

Presses or Finger Rubs) to ”grab” the slider handle in real applications. In the user
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study, the slider handle was acquired simply by bringing the hand into the radar’s

sensing range—an approach suitable for controlled experimental settings. However,

for real-world use, requiring deliberate activation gestures to be performed within the

activation zone would offer both spatial and intentional context. This approach can

also generalize to other interaction metaphors—for example, requiring an activation

gesture to engage with a virtual dial or initiate a zoom action ensures that subsequent

control inputs are intentional.

Limitations and Future Work

• In the slider control user study, participants reported that they would feel comfort

using subtle gestures in public, however, this was not validated. Future work could

address this by conducting ‘in the wild’ evaluations with Soli-embedded devices

like smartwatches to assess recognition performance under real-world conditions,

considering factors like environmental noise, diverse user behaviors, and device

placement.

• Subtle gestures, while offering privacy and discretion to the user, may appear deceptive

to observers, raising ethical concerns in social interactions. For instance, a TV channel

might be changed surreptitiously, leaving family members puzzled, or a person might

engage with their device during a dinner date without their companion’s knowledge.

Future research could explore design interventions to maintain the benefits of subtlety

while ensuring relevant observers remain aware that an interaction is taking place.

Appropriate feedback mechanisms—visual, auditory, or other unobtrusive cues—could

help balance the need for discretion with the desire for transparency and ethical,

socially acceptable behavior.

• The user study focused on a limited set of gestures, suitable for slider control but not

representative of the full range of potential interactions. Future work could integrate

the broader set of gestures—such as Index Finger Rotations for dial manipulation or

Open and Close Pinch gestures for zooming—into other real-time applications. By

evaluating these new gestures in context, and comparing them directly to familiar
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touchscreen gestures, future work can continue to explore “virtual tools” interactions

using mmWave radar.

• This study’s sample comprised eight healthy participants, and some had prior experi-

ence from earlier experiments with radar gestures. While the results demonstrated

consistent trends, the small sample size and participant overlap reduce statistical

power. Future work could recruit larger, more diverse groups of participants, including

those who are older, and have no prior experience with radar-based gestures. This

would help capture a broader range of user behaviors and increase the ecological

validity of the results.

• This study focused on a single-device context with short-range sensing, which limits

gesture input to the immediate vicinity of the device. For example, bringing a hand

close to a thermostat or smartwatch and performing a gesture within its sensing

range ensures that only the intended device responds. However, if the gesture

recognition systems developed in this thesis are extended to support long-range

sensing, multiple radar-embedded devices in the same space (e.g., a TV and a

smart speaker) may simultaneously detect the same gesture, leading to unintended

activations. Future work should explore spatial disambiguation strategies—such as

device-specific activation zones, beamforming, or gesture differentiation based on

rhythm or frequency characteristics—to ensure reliable, context-aware targeting in

shared environments.

6.4 Summary

This thesis addressed usability issues with macro-gestures by focusing on interaction using

subtle mid-air gestures. It developed and evaluated techniques that enable users to interact

with mmWave radar embedded systems using discrete and low-effort hand gestures. The

research introduced methods for addressing gesture systems, recognizing a diverse set of

subtle gestures from mmWave radar data, and evaluated these techniques in real-time
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through user studies. The results demonstrate that the developed techniques are successful,

highly practical, and have the potential to be implemented across a wide range of gesture

systems.

A scenario was presented in the Introduction of this thesis to illustrate the usability

challenges associated with macro-gestures. These included physical discomfort, unintended

activations stemming from the Midas Touch problem, and social acceptability concerns.

The revised scenario below demonstrates how the systems developed in this thesis address

these challenges and lead to better outcomes.

Preethi wants to watch a program on Netflix and needs to browse through the

catalog. She addresses the TV by bringing her hand close to the Soli sensor and

performs a Finger Rub activation gesture. Since the gesture is subtle and generates

a high-frequency signal, it is only recognized by the TV’s activation system while

remaining undetected by other smart devices in the room. With the system now

activated, Preethi browses through the Netflix catalog using Thumb and Pinch

Swipes. The low-effort nature of these gestures allows her to navigate comfortably

without tiring her hand or arm. She also feels comfortable using these gestures when

her friends are over and no longer feels self-conscious about looking awkward.
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A.1 Spectral Profiles of Casual Hand Motions

Soli

Intel D435

SHAKE

Figure A.1: Spectral profiles of broad hand motions across the three sensors (top: Soli,
middle: Intel D435, bottom: SHAKE), generated from composite signals created by
aligning and averaging signal intensities across all participants. The PSD for these gestures
consistently exhibit strong peaks in the low-frequency band (0–4Hz). In the spectrogram,
bright bands of activity are consistent below 4Hz for all three sensors.
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Soli

Intel D435

SHAKE

Figure A.2: Spectral profiles of typing task across the three sensors (top: Soli, middle:
Intel D435, bottom: SHAKE), generated from composite signals created by aligning and
averaging signal intensities across all participants. The PSDs for all sensors reveal multiple
peaks at higher frequencies (between 4–12Hz), reflecting the rapid finger movements
characteristic of typing. The spectrograms also shows bursts of strong energy concentrated
in these higher-frequency regions.
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Soli

Intel D435

SHAKE

Figure A.3: Spectral profiles of writing task across the three sensors (top: Soli, middle:
Intel D435, bottom: SHAKE), generated from composite signals created by aligning and
averaging signal intensities across all participants. Most of the activity is concentrated
below 4Hz, as seen by the peaks in the PSDs in lower frequencies and bright, continuous
bands in the spectrograms. However, occasional bursts of high-frequency activity are
present, particularly in the spectrogram for the Intel D435.
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Soli

Intel D435

SHAKE

Figure A.4: Spectral profiles of phone usage task across the three sensors (top: Soli,
middle: Intel D435, bottom: SHAKE), generated from composite signals created by
aligning and averaging signal intensities across all participants. The PSDs for Soli and
Intel D435 predominantly show strong activity below 4Hz. However, in the Intel D435
spectrogram, brief bursts of high-frequency energy appear, while the SHAKE data exhibit
more pronounced peaks in the 4–12Hz range.
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A.2 Pseudocode for the Activation Gesture Detec-

tion Pipeline with Multi-Trigger Validation

Data: Sensor data stream, sliding window size (ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ for 1 second), high-pass filter
parameters, frequency bands (0-4 Hz, 4-12 Hz), validation window (2 seconds)

Result: Detected activation gestures
begin

Initialize 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 deque with max length ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

Initialize 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 deque with max length ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ

Initialize 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 deque for recent timestamps within 2 seconds
while running do

Retrieve raw data from sensor stream
Process raw data to calculate 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 representing motion intensity
Append 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 to 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

if 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 has sufficient data for 1 second then
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 ←− Apply high-pass filter to 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

(𝑙𝑜𝑤 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟, ℎ𝑖𝑔ℎ 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 ) ←− Calculate PSD and aggregate
power in frequency bands

if ℎ𝑖𝑔ℎ 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 > 𝑙𝑜𝑤 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑤𝑒𝑟 then
Record current timestamp in 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠

while timestamps in 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 are older than 2 seconds do
Remove the oldest timestamp from 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠

end
if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠 contains 3 timestamps then

Confirm activation gesture and clear 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠
Clear 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 and 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

end

end

end

end

end
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B.1 Deriving Hand Distance from Radar Data

The derivation of hand distance from the radar data is a critical component of the

continuous seeking task, enabling control of the slider based on the user’s hand position

relative to the Google Soli sensor. This process involves several steps to accurately capture

and interpret the radar signals.

Blob Detection The first step involves identifying significant reflections that correspond

to the hand. This is achieved through the use of a blob detection algorithm known as the

Laplacian of Gaussian (LoG) 1. The LoG method is particularly effective for identifying

blobs, which are contiguous regions in the range Doppler map that stand out due to their

higher signal intensity, indicating a potential target object like a hand.

Subpixel Position Refinement Once a potential hand position is detected, the exact

center of this detected blob is refined to subpixel accuracy. It involves fitting a quadratic

polynomial to the intensity values around the detected center, adjusting the estimated

position based on the polynomial’s maximum point, which provides the most accurate

representation of the hand’s central position.

Distance Calculation The refined position coordinates are then used to calculate the

physical distance from the radar sensor. The dimensions of the range Doppler map, which

are 8 rows and 64 columns, allow for this conversion from pixel coordinates to actual

distance measurements. Each pixel in the map corresponds to a specific portion of the

1”Blob Detection Using Laplacian of Gaussian.” Available at https://scikit-image.org/docs/
stable/auto_examples/features_detection/plot_blob.html
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radar’s field of view, with coordinates scaled to reflect this mapping accurately. The

distance is calculated based on the displacement of the hand’s position from the range

Doppler map’s pixel grid, using the normalized positions 𝑥 = 𝑐
64 and 𝑦 = 𝑟

8 , where 𝑐 and 𝑟

are the column and row indices of the detected blob’s center. This method allows for precise

tracking of hand movements, mapping them accurately within the spatial dimensions that

the radar covers.

B.2 User Experience Questionnaire

Figure B.1: User Experience Questionnaire (1/3)
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Figure B.2: User Experience Questionnaire (2/3)
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Figure B.3: User Experience Questionnaire (3/3)
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Figure B.4: Distribution of UEQ Responses for Photo Scroller and Video Player.
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[54] Nogales, R. and Benalcázar, M. [2021], ‘Hand Gesture Recognition Using Machine

Learning and Infrared Information: A Systematic Literature Review’, International

Journal of Machine Learning and Cybernetics 12, 2859–2886.

[55] Pan, M., Tang, Y. and Li, H. [2023], ‘State-of-the-Art in Data Gloves: A Review of

Hardware, Algorithms, and Applications’, IEEE Transactions on Instrumentation

and Measurement 72, 1–15.

[56] Pohl, H., Muresan, A. and Hornbæk, K. [2019], ‘Charting Subtle Interaction in

the HCI Literature’, Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems p. 1–15.



Bibliography 157

[57] Pohl, H. and Murray-Smith, R. [2013], ‘Focused and Casual Interactions: Allowing

Users to Vary Their Level of Engagement’, Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems p. 2223–2232.

[58] Poupyrev, I., Gong, N.-W., Fukuhara, S., Karagozler, M. E., Schwesig, C. and Robin-

son, K. E. [2016], ‘Project jacquard: Interactive digital textiles at scale’, Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems p. 4216–4227.

[59] Proske, U. and Gandevia, S. C. [2012], ‘The Proprioceptive Senses: Their Roles in

Signaling Body Shape, Body Position and Movement, and Muscle Force’, Physiological

Reviews 92(4), 1651–1697.

[60] Pu, Q., Gupta, S., Gollakota, S. and Patel, S. [2013], ‘Whole-home gesture recognition

using wireless signals’, Proceedings of the 19th Annual International Conference on

Mobile Computing & Networking p. 27–38.

[61] Rao, S., Ahmad, A., Roh, J. C. and Bharadwaj, S. [2017], ‘77GHz Single Chip Radar

Sensor Enables Automotive Body and Chassis Applications’, Texas Instruments. Avail-

able online: https://www.ti.com/lit/wp/spry315/spry315.pdf?ts=1722175009171

(accessed on 29 July 2024).

[62] Ravindran, A. M. [2024], ‘Soli Subtle Gesture Dataset’. OSF.IO.

URL: https://doi.org/10.17605/OSF.IO/EVUDB

[63] Rawat, W. and Wang, Z. [2017], ‘Deep Convolutional Neural Networks for Image

Classification: A Comprehensive Review’, Neural Computation 29, 2352–2449.

[64] Ritchie, M., Capraru, R. and Fioranelli, F. [2020], ‘Dop-NET: A Micro-Doppler Radar

Data Challenge’, Electronics Letters 56(11), 568–570.

[65] Ruan, W., Sheng, Q. Z., Yang, L., Gu, T., Xu, P. and Shangguan, L. [2016], ‘Au-

dioGest: Enabling Fine-Grained Hand Gesture Detection by Decoding Echo Signal’,

https://www.ti.com/lit/wp/spry315/spry315.pdf?ts=1722175009171


Bibliography 158

Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-

uitous Computing p. 474–485.

[66] Schwarz, J., Marais, C. C., Leyvand, T., Hudson, S. E. and Mankoff, J. [2014],

‘Combining Body Pose, Gaze, and Gesture to Determine Intention to Interact in

Vision-Based Interfaces’, Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems p. 3443–3452.

[67] Shannon, C. [1949], ‘Communication in the Presence of Noise’, Proceedings of the

Institute of Radio Engineers 37(1), 10–21.

[68] Shastri, A., Valecha, N., Bashirov, E., Tataria, H., Lentmaier, M., Tufvesson, F., Rossi,

M. and Casari, P. [2022], ‘A Review of Millimeter Wave Device-Based Localization and

Device-Free Sensing Technologies and Applications’, IEEE Communications Surveys

Tutorials 24(3), 1708–1749.

[69] Shen, X., Zheng, H., Feng, X. and Hu, J. [2022], ‘ML-HGR-Net: A Meta-Learning

Network for FMCW Radar Based Hand Gesture Recognition’, IEEE Sensors Journal

22(11), 10808–10817.

[70] Singh, A., Rehman, S. U., Yongchareon, S. and Chong, P. H. J. [2021], ‘Multi-Resident

Non-Contact Vital Sign Monitoring Using Radar: A Review’, IEEE Sensors Journal

21(4), 4061–4084.

[71] Sørensen, T., Andersen, O. D. and Merritt, T. [2015], ‘”Tangible Lights”: In-Air

Gestural Control of Home Lighting’, Proceedings of the Ninth International Conference

on Tangible, Embedded, and Embodied Interaction p. 727–732.

[72] Sridharan, S., Bailey, R., McNamara, A. and Grimm, C. [2012], ‘Subtle Gaze Manip-

ulation for Improved Mammography Training’, Proceedings of the Symposium on Eye

Tracking Research and Applications p. 75–82.

[73] Stimson, G. W. [2014], Introduction to Airborne Radar - Third Edition, SciTech.



Bibliography 159

[74] Tonolini, F., Radford, J., Turpin, A., Faccio, D. and Murray-Smith, R. [2020],

‘Variational Inference for Computational Imaging Inverse Problems’, Journal of

Machine Learning Research 21(179), 1–46.

[75] Tsai, H.-R., Hsiu, M.-C., Hsiao, J.-C., Huang, L.-T., Chen, M. and Hung, Y.-P.

[2016], ‘TouchRing: Subtle and Always-Available Input Using a Multi-Touch Ring’,

Proceedings of the 18th International Conference on Human-Computer Interaction

with Mobile Devices and Services Adjunct p. 891–898.

[76] Tsai, H.-R., Wu, C.-Y., Huang, L.-T. and Hung, Y.-P. [2016], ‘ThumbRing: Private

Interactions Using One-Handed Thumb Motion Input on Finger Segments’, Proceedings

of the 18th International Conference on Human-Computer Interaction with Mobile

Devices and Services Adjunct p. 791–798.

[77] Utyansky, D. [2018], ‘Digital Signal Processing for Frequency-Modulated Contin-

uous Wave Radars’. https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_

Processing_for_RADARs_CH.pdf.

[78] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. and Polosukhin, I. [2017], ‘Attention is All You Need’, Proceedings of the 31st

International Conference on Neural Information Processing Systems p. 6000–6010.

[79] Velloso, E., Carter, M., Newn, J., Esteves, A., Clarke, C. and Gellersen, H. [2017], ‘Mo-

tion Correlation: Selecting Objects by Matching Their Movement’, ACM Transactions

on Computer-Human Interaction 24(3), 1–35.

[80] Venkatnarayan, R. H., Page, G. and Shahzad, M. [2018], ‘Multi-User Gesture Recogni-

tion Using WiFi’, Proceedings of the 16th Annual International Conference on Mobile

Systems, Applications, and Services pp. 401–413.

[81] Wachs, J., Stern, H., Edan, Y., Gillam, M., Feied, C., Smith, M. and Handler, J. [2007],

‘Gestix: A Doctor-Computer Sterile Gesture Interface for Dynamic Environments’,

Soft Computing in Industrial Applications 39, 30–39.

https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_Processing_for_RADARs_CH.pdf
https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_Processing_for_RADARs_CH.pdf


Bibliography 160

[82] Walter, R., Bailly, G. and Müller, J. [2013], ‘StrikeAPose: Revealing Mid-Air Gestures

on Public Displays’, Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems p. 841–850.

[83] Wang, S., Song, J., Lien, J., Poupyrev, I. and Hilliges, O. [2016], ‘Interacting with

Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency

Spectrum’, Proceedings of the 29th Annual Symposium on User Interface Software

and Technology p. 851–860.

[84] Wang, W., Liu, A. X. and Sun, K. [2016], ‘Device-Free Gesture Tracking Using

Acoustic Signals’, Proceedings of the 22nd Annual International Conference on Mobile

Computing and Networking p. 82–94.

[85] Wang, Y., Shu, Y., Jia, X., Zhou, M., Xie, L. and Guo, L. [2021], ‘Multifeature

Fusion-Based Hand Gesture Sensing and Recognition System’, IEEE Geoscience and

Remote Sensing Letters 19, 1–5.

[86] Wang, Y., Wang, D., Fu, Y., Yao, D., Xie, L. and Zhou, M. [2022], ‘Multi-Hand

Gesture Recognition Using Automotive FMCW Radar Sensor’, Remote Sensing

14(10), 2374.

[87] Waugh, K., McGill, M. and Freeman, E. [2022], ‘Push or Pinch? Exploring Slider

Control Gestures for Touchless User Interfaces’, Nordic Human-Computer Interaction

Conference .

[88] Wen, H., Ramos Rojas, J. and Dey, A. K. [2016], ‘Serendipity: Finger Gesture Recog-

nition Using an Off-the-Shelf Smartwatch’, Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems p. 3847–3851.

[89] Williamson, J. R. [2012], User Experience, Performance, and Social Acceptability:

Usable Multimodal Mobile Interaction, PhD thesis, University of Glasgow.



Bibliography 161

[90] Williamson, J. R., Crossan, A. and Brewster, S. [2011], ‘Multimodal Mobile Interac-

tions: Usability Studies in Real World Settings’, Proceedings of the 13th International

Conference on Multimodal Interfaces p. 361–368.

[91] Wolf, K. [2016], Microgestures—Enabling Gesture Input with Busy Hands, in ‘Periph-

eral Interaction: Challenges and Opportunities for HCI in the Periphery of Attention’,

Springer International Publishing, pp. 95–116.

[92] Wolf, K., Naumann, A., Rohs, M. and Müller, J. [2011], A Taxonomy of Microin-

teractions: Defining Microgestures Based on Ergonomic and Scenario-Dependent

Requirements, in ‘Proceedings of the 13th IFIP TC 13 International Conference

on Human-Computer Interaction (INTERACT 2011)’, Springer Berlin Heidelberg,

pp. 559–575.

[93] Yang, Z. and Zheng, X. [2021], ‘Hand Gesture Recognition Based on Trajectories

Features and Computation-Efficient Reused LSTM Network’, IEEE Sensors Journal

21(15), 16945–16960.

[94] Yeo, H.-S., Flamich, G., Schrempf, P., Harris-Birtill, D. and Quigley, A. [2016],

‘RadarCat: Radar Categorization for Input amp; Interaction’, Proceedings of the 29th

Annual Symposium on User Interface Software and Technology p. 833–841.

[95] Yu, N., Wang, W., Liu, A. X. and Kong, L. [2018], ‘QGesture: Quantifying Gesture

Distance and Direction with WiFi Signals’, Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies 2(1).

[96] Zaiţi, I.-A., Pentiuc, -G. and Vatavu, R.-D. [2015], ‘On Free-Hand TV Control:

Experimental Results on User-Elicited Gestures with Leap Motion’, Personal and

Ubiquitous Computing 19, 821–838.

[97] Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-L. and

Grundmann, M. [2020], ‘MediaPipe Hands: On-device Real-time Hand Tracking’,

arXiv 2006.10214 .



Bibliography 162

[98] Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A. E.-D., Jin, W. and Schuller, B.

[2018], ‘Deep Learning for Environmentally Robust Speech Recognition: An Overview

of Recent Developments’, ACM Transactions on Intelligent Systems and Technology

9(5), 1–28.


	Thesis Cover Sheet (My Version)
	2025RavindranPhD
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Usability Challenges With Macro-Gestures
	The Rise of Radars in Gesture Sensing

	Thesis Statement
	Contributions
	Research Questions
	Thesis Structure

	Literature Review
	Introduction
	Evolution of Mid-Air Gestural Interaction
	mmWave Radars in HCI
	Understanding mmWave Radar Fundamentals Using Google Soli
	Signal Generation and Transmission
	Resolving Range
	Clutter Removal
	Resolving Velocity
	Range-Doppler Map

	Gesture Classification From Radar Data
	Neural Networks for Gesture Classification
	Radar Gesture Datasets

	Understanding ``Subtle"
	Types of Subtle Interactions
	Subtle Gestures
	Significance of Subtle Mid-Air Gestures
	Sensing Subtle Mid-Air Gestures

	Conclusion

	Activation Gesture Recognition Using Frequency Analysis
	Introduction
	Chapter Structure

	Frequency Analysis of Hand Motions
	Power Spectral Density
	Spectrogram
	Spectral Profiles of Low and High-Frequency Hand Motions

	High-Frequency Subtle Activation Gestures
	Rapid Finger Gestures
	Tremor-Inducing Pressure Gestures

	Activation Gesture Recognition Pipeline
	Pipeline Components
	Visual Analysis

	Evaluation
	System Description
	Procedure
	Metrics
	Participants
	Results

	Discussion
	Limitations and Future Work

	Conclusion
	Research Questions
	Contributions


	Subtle Gesture Recognition Using Deep Learning
	Introduction
	Chapter Structure

	Subtle Hand Gestures Set
	Virtual Tool Gesture Language
	Haptic Feedback and Proprioception

	Data Collection Methods
	Gesture Detection Using CFAR
	Positive Data Collection
	Negative Data Collection
	Samples Visualization
	Data Records

	Experiments
	Data Preprocessing
	Model Implementations
	Results

	Discussion
	Limitations and Future Work
	Use Cases

	Conclusion
	Contributions


	Exploring Slider Control Using Subtle Gestures
	Introduction
	Chapter Structure

	System Design
	Candidate Gestures
	Gesture Detection and Recognition
	Applications

	Evaluation
	Tasks
	Procedure
	Metrics
	Participants

	Results
	Discrete Selection Task
	Continuous Seeking Task
	UEQ Results

	Discussion
	Limitations and Future Work

	Conclusion
	Contributions


	Conclusion
	Introduction
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Contributions
	Subtle Activation Gesture Recognition Pipeline
	Subtle Gesture Recognition Using Neural Networks
	Evaluating Subtle Gestures in Real-Time Applications

	Summary

	Appendices
	Appendix A
	Spectral Profiles of Casual Hand Motions
	Pseudocode for the Activation Gesture Detection Pipeline with Multi-Trigger Validation

	Appendix B
	Deriving Hand Distance from Radar Data
	User Experience Questionnaire

	Bibliography


