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Abstract

Bigraph reactive systems provide an established approach to modelling large and dynamic
systems which contain both spatial and non-spatial relationships between entities, and have
been used for modelling in a wide variety of research areas such as biology, networking,
sensors and security. Bigraph state rewriting operations which represent temporal evolution
rely upon an underlying NP-complete matching algorithm to identify pattern components to
substitute, but this limits the scale and scope of bigraphs due to the computational cost and
frequency of rewriting. The bigraph matching tool BigraphER relies on a Boolean satisfiabil-
ity (SAT) encoding to do this, which generates an impractically large number of clauses for
larger models which limits scalability and is difficult to adapt for extensions to the bigraph
structure.

We propose a novel and efficient algorithm for solving bigraph matching which encodes
the problem as a subgraph isomorphism constraint satisfaction problem, applying additional
constraints where required to model the added complexity of bigraph composition logic.
This approach can be supported by any constraint programming toolkit as well as any graph
solving tool which supports additional side-constraints. This approach also grants more
flexibility in regards to modelling extensions to the bigraph formalism such as bigraphs with
sharing and directed bigraphs.

We adapt the state of the art constraint-based Glasgow Subgraph Solver tool to implement
the encoded matching problem, where we observe a greater solve time of over two orders of
magnitude on a variety of different real-world matching instances performed within mixed-
reality, protocol and conference models. We also integrate the subgraph solver into the Bi-
graphER framework and provide further evaluation metrics when used as a component for
building full-scale models.

We build further upon this idea by proposing an adaptation for the McSplit algorithm for
finding largest common subgraphs in order to obtain a maximum common bigraph between
two agents, a novel definition which provides the means for supporting more rich and com-
plex types of modelling in a bigraph toolkit such as performing contextual transitions for



labelled transition systems and identifying bisimulations. This is implemented using a pro-
totype solver to demonstrate the promise of this approach. These contributions substantially
expand the scope of bigraph modelling tools and their applications for modeling large-scale
systems.
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1

Chapter 1

Introduction

1.1 Motivation: Scope of Bigraph Systems

Bigraphs are a universal mathematical model which are used to represent both the spatial
relationships of entities and their global interactions. First proposed by Milner [1], a bigraph
G consists of two graph-based structures over the same set of vertices that we refer to as
entities: the place graph GP , a directed forest graph which describes the physical nesting
of each entity relative to one other e.g. a person inside a room, and the link graph GL, a
hypergraph which defines non-spatial connections between entities e.g. a device connected
to numerous other devices regardless of location. A bigraph is capable of modeling a variety
of different systems, such as sensors in IoT devices [2, 3], network protocols [4, 5], molecular
and biological reactions [6] and security for smart buildings [7, 8].

A pair of bigraphs can define a reaction rule R : r → r′, which represents a valid substitution
from a sub-bigraph r ⊆ G to r′ within the larger bigraph structure to represent a change in
state in a process known as rewriting, i.e. moving a device from one room to another. An
initial bigraph state and set of reaction rules make up the key components of a Bigraph

Reactive System (BRS), which provides the means for modelling interactive and dynamic
systems that change state as time progresses. In particular, the BRS is able to repeatedly
apply rewriting operations to produce a transition system—a graph of unbounded size which
represents all possible branching states of the initial bigraph which can be reached through
the rewriting process.

In order to apply a reaction rule R : r → r′ to a bigraph, the BRS must first find, through
a matching algorithm, all instances of r that exist in G in order to perform the rewriting
operation—this is known as the bigraph matching problem. This is an NP-complete opera-
tion which must be performed every time a reaction rule is applied in a BRS, which quickly
becomes computationally expensive when modelling larger and more complex systems. Ef-
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ficient matching and rewriting routines are essential for practical analysis of large models,
such as traffic systems or power grids that may require hundreds or thousands of defined
entities. The current state of the art bigraph modelling tool BigraphER [9] performs bigraph
matching through a Boolean satisfiability (SAT) encoding [10], which generates an imprac-
tically large number of clauses as the scale of matching problems increase, and the inflexible
nature of SAT also makes it difficult to build upon an existing encoding implementation to
add support for extensions to the bigraph structure such as bigraphs with sharing [11] or
directed bigraphs [12], which allow support for more complex model paradigms.

We make the observation that the bigraph matching problem can be viewed as a bigraph
equivalent to the more well-known subgraph isomorphism problem (SIP), an NP-complete
graph problem which determines whether a given pattern graph P exists as a subgraph within
a larger target graph T—both problems provide two graph structures as an input, and return
a mapping or set of mappings which represent any or all found instances of the smaller
component within the larger structure. There exist many publicly available dedicated state of
the art tools such as the constraint programming-based Glasgow Subgraph Solver (GSS) [13]
which can efficiently solve SIP instances. We thus propose that a method can be developed
to encode instances of bigraph matching into instances of SIP, where a dedicated subgraph
solver will be able to solve the encoded version of the problem. Following from this, we
propose that by employing state-of-the-art optimized graph tools to solve these encoded
instances, we will see substantial improvements in performance compared to the existing
SAT encoding method. The more complex bigraph-specific logic could either be encoded
into the graph structures themselves, or as additional constraints on top of SIP.

In this dissertation, we present a novel bigraph matching algorithm implemented on top of
the constraints-based GSS which is both performant and extensible. The link and place
graphs of both input bigraphs are encoded and “flattened” together into a more conventional
directed graph format, and passed to a modified version of the GSS which imposes additional
constraints to handle the complexities introduced by regions and sites of bigraphs - abstract
nodes which can represent any (including none) connected parent/child bigraph respectively,
and define the rules for composing bigraph structures together. Via this method, we are
also able to support matching instances for the directed and sharing extensions of bigraphs
through the addition of further constraints without modifying the existing encoding structure,
demonstrating the flexibility of this approach. This new version of the solver is integrated
into the BigraphER framework and evaluated runtime-wise against the previously used SAT-
based solver, on both isolated instances of the matching problem as well as when used for
building the full transition systems of models for a variety of real-world use cases, which
include both bigraphs and the bigraphs with sharing extension.

We also extend this research further to define a bigraph equivalent to the maximum com-
mon induced subgraph (MCIS) problem—a generalized variant of SIP which finds the most
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optimal solution(s) rather than a fully satisfiable one—which we call the maximum common

bigraph (MCB) problem. This finds the largest possible shared structure(s) that can exist as a
component inside of two input bigraphs G1 and G2, constructed in such a way that there does
not exist any non-trivial composition onto any solution which also produces a valid solution.
This can be further extended to find the minimal contextual transition of a reaction rule upon
an agent—the smallest composition required to turn a non-match into a match in a BRS. We
achieve this through an adaptation of the McSplit algorithm [14], a partitioning backtracking
algorithm for MCIS. A prototype implementation and preliminary performance metrics for
both maximum common bigraph and finding a minimal contextual transition are provided.

1.2 Thesis Statement

I assert that better algorithms for performing search on bigraphs can be devised via encoding
and flattening them into a more standard graph format and adapting reliable subgraph solv-
ing tools to operate on these encodings. There exists a way to perform this which captures
the compositional constraints of bigraphs, and ensures a bijective mapping of solutions. This
alleviates the current limitations of bigraph reactive system implementations caused by fre-
quent necessary matching operations, and expands the scale and scope for modelling large
and dynamic systems in a BRS.

1.3 Contributions

This dissertation makes the following research contributions:

1. The design of a new algorithm for bigraph matching based on subgraph isomor-
phism and constraint programming (Chapter 3). A critical review of previously es-
tablished tools for solving bigraph matching was conducted (Chapter 2.5), evaluating
their strengths and drawbacks of their approaches, taking note of the use of graph en-
coding techniques and constraint modelling toolkits. We then define a novel encoding
(Section 3.2) and flattening (Section 3.3) function for bigraphs, which allows instances
of the bigraph matching problem to be reduced to an instance of subgraph isomorphism
(with extra constraints) which can then be given to and solved by a state-of-the-art
subgraph isomorphism solver which will identify all (and only) correct matches cor-
responding to the original matching instance. We provide proofs of soundness and
correctness of this algorithm (Section 3.5).

2. The adaption of the bigraph matching algorithm to support extensions of bi-
graphs (Chapter 4). We demonstrate the extensibility of our encoding by adding
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support three variants of bigraph matching through optional extra constraints: bigraph
equality checking which identifies when two bigraphs are functionally identical in a
BRS (Section 4.1), bigraphs with sharing which generalizes the place graph’s forest
structure into a DAG (Section 4.2), and directed bigraphs which assign a direction
property to hyperedge adjacencies (Section 4.3). We also provide the necessary proofs
for these extensions.

3. An implementation and extensive performance evaluation and analysis of the
matching algorithm (Chapter 5). We adapt the Glasgow Subgraph Solver to accept
a bigraph format as input and apply the additional constraints required to reflect our
encoding (Section 5.1), and demonstrate its performance to be be over two orders of
magnitude more efficient when compared against BigraphER’s MSAT algorithm, as
well as outperforming MSAT on all 11,176 provided test instances (Section 5.2). This
is then integrated into the BigraphER framework as the new primary solver and further
evaluations are performed for when we use the solver to build a full model transition
system (Section 5.3).

4. The definition of, design and implementation of an algorithm for maximum com-
mon bigraph and finding minimal contextual transitions (Chapter 6). We identify
the use-cases for where a MCB algorithm is necessary (Section 6.1), such as the opti-
mization, simplification and cost-reduction of processes through identifying bisimilar
components. We then define what it means for a shared bigraph structure to be a max-
imum (Section 6.3), in a way which is consistent with both a conventional understand-
ing of largest common graphs (Section 6.2) as well as the definition of maximality in
the context of pushouts of bigraphs. We adapt the McSplit MCIS algorithm to support
MCB through additional constraints and modification of the underlying data struc-
tures (Section 6.4), and provide proofs of soundness and correctness of this algorithm
(Section 6.5). We then adapt this further to identify all partial mappings that can be
matched through the addition of a minimal context (Section 6.6), and engineer a pro-
totype solver (Section 6.7) and compare the relative performance of the two algorithm
variants (Section 6.8).

1.4 Publications and Authorship

A preliminary version of the research, design, implementation and evaluation of the SIP-
based algorithm for bigraph matching as well as bigraphs with sharing as described in Sec-
tions 3.1 to 3.4, Section 4.2 and Sections 5.1 and 5.2.1 have been previously reported in the
publication:
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• B Archibald, K Burns, C McCreesh, M Sevegnani, Practical Bigraphs via Subgraph
Isomorphism, 27th International Conference on Principles and Practice of Constraint
Programming, DOI:10.4230/LIPIcs.CP.2021.15, Published 2021 (Reference [15]).

The work described in this dissertation is primarily my own, with the exceptions of the
following:

• The initial implementation of the Glasgow Subgraph Solver was the work of Ciaran
McCreesh.

• The integration of the matching solver as a component in BigraphER as described in
Section 5.3.1 was the work of Blair Archibald.

• The initial implementation of the McSplit Python script as described in Sections 6.7
and 6.8 was the work of James Trimble.
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Chapter 2

Background

In this dissertation, we present a new constraint-based matching algorithm for bigraphs in
order to perform efficient rewriting operations at scale. To give context to this research, this
chapter introduces the background material on the fields of which our research builds upon
by presenting the theory of general term rewriting models and graph transformation systems,
as well as the fundamentals of bigraph reactive systems, constraint programming models and
existing tools for bigraph matching.

In Section 2.1, we introduce term rewriting systems in the general case. Section 2.2 covers
graph transformation systems, a specific type of rewrite system built upon graph transfor-
mations, as well as the underlying subgraph isomorphism algorithm. Section 2.3 introduces
bigraphs and bigraph reactive systems, a more complex graph-based modelling paradigm
which also builds upon rewriting systems, and the bigraph matching problem that must be
solved to execute BRS operations. Section 2.4 defines the constraint programming paradigm,
a popular method for solving complex NP-complete problems and how this can be applied
to efficiently solve graph problems. Section 2.5 presents and discusses a selection of ex-
isting bigraph tools which aim to solve bigraph matching via various methods. Section 2.6
summarizes the chapter.

2.1 Term Rewriting

Rewriting broadly describes a fundamental type of operation in computing science and math-
ematics, in which a formula, sequence or structure S is transformed into another expression
S ′ by removing and substituting a sub-expression l within S with a different sub-expression
r, most commonly to simplify the expression or model a change in state [16]. A rewriting
operation is performed according to a rewrite rule R : l −→ r, which defines a pair of
sub-expressions—the left-hand side redex l ⊆ S, the expression within the larger structure
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Figure 2.1: The boolean algebra equation ¬(¬(P ∧ Q)) ∨ ¬(R ∧ false) represented as a
term within a term rewriting system, where leaf nodes consist of variables and constants and
non-leaf nodes represent logic operators which encapsulate their descendants.

to both find and then substitute, and the right-hand side reactum r ⊆ S ′ which defines the
new sub-expression that will be substituted in place of l when this operation is performed
[17]. The generalizability of rewriting allows it to be applied to a variety of different con-
texts which involve sequences of substitutions, ranging from reducing and simplifying math-
ematical equations or logical expressions [18] to compiler optimization for programming
languages [19].

More specifically, we are interested in term rewriting. To understand this, we initially define
a term as an expression which satisfies either of the following two conditions:

• The expression is a single elementary variable or constant.

• The expression is a function, which takes an arbitrary number of terms as input.

Under this definition, a term can be treated as a tree-like structure where leaf nodes are
variables and constants, and non-leaf nodes are nested combinations of functions which are
recursively applied to the resultant values of their children. As a familiar example, both
arithmetic equations and boolean algebra expressions can be represented in this form—an
example is provided in Figure 2.1, where we demonstrate the visual representation of a
boolean algebra equation as a term. Rewrite operations then substitute subgraphs in this
form which match their corresponding redex term’s tree representation, without altering the
rest of the structure.
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2.1.1 Rewriting Systems

Rewriting systems consist of an initial term or expression, and a set of rewrite rules which
specify what possible sequences of transformations can be made for each state transition
step. These are most commonly used for the purpose of either simplifying the expression, or
allowing it to gradually evolve in structure over time i.e. modelling a simulation [20].

We are only concerned with term rewriting systems (TRS) specifically, and thus assume that
we are only operating on terms going forward. In arithmetic contexts, equivalences such as
x ∗ 0 = 0 or x ∗ 1 = x would be represented as rewrite rules, whereas for boolean algebra
these would represent algebraic laws such as the double negation law or De Morgan’s law.
Rewrite rules are commutative in many instances, particularly in the given examples where
they represent logical or mathematical equivalences i.e. (R : l −→ r) =⇒ (R−1 : r −→ l),
however equivalence is not always guaranteed in the general case. As a trivial example,
there can be a rule that allows for the substitution of one element with another within a data
structure or graph (Section 2.2) where there is no equivalent inverse rule.

A simplified example of the TRS process is shown in Figure 2.2. Here, the TRS attempts to
find whether the redex of each defined rewrite rule lk exists within S. If it does, it will then
rewrite S by substituting the found instance with rk. This process then repeats until either
no redex of any of the rewrite rules exist within S i.e. no more rewriting operations can be
performed, or a user-defined stopping condition has been met, such as after a certain number
of total rewrites or the structure reaching a certain size or normal form. It is crucial to note
that the TRS does not actually define the specific algorithm used for finding the required
redex matches and altering the structure: the TRS itself only defines the rules for when
a substitution from one subterm to another can be allowed to take place. The underlying
necessary method for performing redex searching and term rewriting is instead treated as a
separate context-dependent component to be supplied by the developer and combined with
the TRS framework. The TRS treats this given algorithm as a “black box”, where the term S

and rewrite rule RK are provided as input to the matcher/rewriter, and the rewritten term S ′

is provided as output if lk occurs in S. Algorithms for performing matching in more specific
contexts are further explored for applications of TRSs in Section 2.2 and Section 2.3.

TRSs can also be non-deterministic: whereas the given TRS example iterates through each
rewrite rule in turn, it is also possible for rewrite operations to be applied in any order to
S as long as the corresponding rule is valid in its current state. The same rewrite rule can
also potentially be applied in a multitude of different ways to the same term if there exist
multiple non-isomorphic valid matches of lk within S for some Rk—that is, they produce
distinct non-isomorphic variations of S ′.
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Figure 2.2: A simple implementation of a term rewriting system [21]. The set of rewrite rules
are repeatedly applied to S until either no more rewrites are possible or a stopping condition
has been reached.
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Figure 2.3: Example of a transition system with initial state S, rewrite rules R = {R1, ..., R5}
and a bounded depth of 3. To further simplify this example for demonstration purposes, it is
assumed no cases exist here where the same rule can be applied more than once to the same
state to produce different transformations.

2.1.2 Transition Systems

While a TRS—alongside a supplementary matching and substitution algorithm—is mainly
concerned with transforming a given term into another through the application of rewrite
rules, it is also possible to use a similar paradigm with the same initial state and set of rules
to map out all the different possible reachable states of S in what we define as a transition

system. This is primarily used in model checking and verification contexts to simulate all the
different ways a structure can potentially change over time [22].

A transition system can be represented as an arbitrary directed graph of term states as shown
in Figure 2.3, where edges represent the transformation of a state via an application of a valid
rewrite rule. A transition system is expanded from a given vertex by applying each rewrite
rule to its corresponding term and adding a new child vertex for every discovered valid match
and its resultant transformation. Because of this, a transition system has a theoretically
infinite size as long as the rewrite rules allow it to grow indefinitely, and thus in practice
we normally bind these by only generating up to a specified depth or total number of states
found.

Two key observations can be made: firstly, graph cycles often exist in transition systems due
to the potential for a sequence of rewrite rules to generate a state which is isomorphic to one
which already exists in the graph—i.e. a formally equivalent structure, such as applying the
sequence R1 → R1 → R3 to S in the given example which results in returning back to the
initial state. Secondly, different rewriting sequences can also potentially lead to the same
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state, such as R1 → R1 → R4 and R1 → R5 → R2 both leading to state S ′
6. These cases

both introduce the need to perform a term isomorphism check on a new state against all other
current term states that exist in the transition system whenever attempting to expand it, i.e.
determining if a state already exists which is isomorphic to a resultant candidate state after
rewriting and substitution. If so, a new edge is drawn from the current state to the previous
state instead of adding a new vertex to the graph. This however has the potential to introduce
scaling issues when expanding the transition system to large depths, since the number of
isomorphism checks required to add a new candidate state grows proportionally to the size
of the graph, particularly in model checking contexts where determining equality between
two terms is non-trivial due to the data structures used [23].

2.2 Graph Transformation Systems

We now look at a more specific type of application of this paradigm, which operates on graph
based structures rather than terms. A graph transformation system (GTS) is a generalization
of TRSs which substitutes terms for graphs; that is, a GTS defines an initial graph G and a set
of rewriting rules, each in the form of a pattern graph and replacement graph pair R : l −→ r,
which specify how G can be transformed in discrete sequences of steps [24]. Similarly to
TRSs, GTS rewrite operations are performed by first finding an occurrence of the pattern
graph l as a subgraph within G—known as pattern matching in this context—before then
substituting l with an instance of r inside G. A subgraph isomorphism algorithm is required
to perform the preliminary step of pattern graph matching. GTSs can also support labelled
and directed graphs in both the initial state G and rewrite rule pair l and r as long as the
underlying matching algorithm also supports these additional features [25]. As graphs are a
widely used formalism for modelling a variety of systems and relationships between entities,
many dedicated GTS building tools have been developed such as GROOVE [26] and AGG

[27], and there also exist many dedicated GTS-based tools for specific applications such as
software engineering tooling [28], biological models [29] and natural language processing
[30].

The algebraic method of formalizing graph rewriting is built upon category theory [31]—a
mathematical paradigm which relates to sets of objects and the relationships between them,
which are referred to as morphisms. Through this, the process of subgraph substitution is
performed using pushout operations such as the single pushout (SPO) or double pushout
(DPO) approach. We are more concerned with the application of the necessary matching
algorithm for GTSs rather than the rewriting operation itself, so we do not cover category
theory for graphs for the remainder of this dissertation.
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Figure 2.4: A simple instance of SIP. The colored vertices show visually the single match of
P inside T , subject to the mapping {(p0, t5), (p1, t4), (p2, t3), (p3, t2)}.

2.2.1 Subgraph Isomorphism

So far, we have taken it for granted that the underlying matching algorithms for performing
rewriting are already provided for us “under the hood”. However, as mentioned previously,
rewriting system models do not actually supply this algorithm to the developer, and these
can be potentially difficult and computationally complex operations which can cause scaling
issues for larger models. Here we take a closer look at subgraph isomorphism, the algorithm
for determining whether a rewrite rule can be applied to a GTS state.

The Subgraph Isomorphism Problem (SIP) is a classic NP-complete decision problem that
determines whether some pattern graph P = (VP , EP ) is a subgraph of (i.e. is present in)
some target graph T = (VT , ET ). More specifically, we aim to find an injective mapping

from P to T , where each vertex p ∈ P is assigned to a vertex t ∈ T such that for all edges
ep = (p1, p2) ∈ EP , there is a corresponding matching edge tp = (t1, t2) ∈ TP . Whilst
we are mainly concerned with SIP in a model checking context, SIP is a very generalizable
algorithm which is used in a wide variety of contexts such as bioinformatics [32], computer
vision [33], compilers [34] and program code similarity [35]. A simple example of SIP is
shown in Figure 2.4.

When performing SIP as part of a GTS, it is insufficient to halt upon finding a single match
of P within T : instead, we want to enumerate all instances of P in T , as it is possible more
than one exists, and we wish to compute all possible changes in state for the application of a
rewrite rule or the building of a transition system. Formally, the problem that SIP wishes to
solve is as follows.

Definition 2.2.1 (Subgraph isomorphism problem). Given an input pattern graph P = (VP , EP )

and target graph T = (VT , ET ), a valid subgraph isomorphism solution is an injectively map-
ping function f : P → T where edges are mapped to edges, such that (u, v) ∈ EP =⇒
(f(u), f(v)) ∈ ET . We wish to enumerate all such mappings.

There also exist many extensions and variations of SIP to accommodate more complex use-
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Figure 2.5: A simple instance of induced SIP which mirrors that of Figure 2.10, which also
incorporates directed edges and vertex labelling. The non-edge in P is shown as a red dashed
bidirectional edge.

cases. For example, induced SIP enforces that non-edges between vertices in P must also
map to non-edges in T , as depicted as a red dashed edge in Figure 2.5 [36]. SIP can also
support directed graphs, where directed edges adjacent to each pattern-to-target mapping pair
must both be facing the same direction. We are also interested in labelled SIP, where each
vertex is assigned a type similarly to bigraph entities (Section 2.3), and each vertex mapping
p ∈ P to t ∈ T must have label(p) = label(t). Figure 2.5 shows a simple example of SIP
which incorporates these additional properties.

We are interested in combining these properties to establish a common behavior between
SIP and bigraph matching as described later in Chapter 3, and thus we formally define this
variant of SIP as follows:

Definition 2.2.2 (Induced, labelled, directed subgraph isomorphism problem). Given an in-
put pattern graph P = (VP , EP ), target graph T = (VT , ET ), and a vertex compatibility
function ℓ : VG × VH → {t, f}, an induced subgraph isomorphism with vertex compatibility

constraints from G to H is an injective mapping f : P → T such that edges are mapped to
edges and non-edges are mapped to non-edges i.e. (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈ EH ,
and where vertex compatibility is respected, i.e. ∀v ∈ VP → ℓ(v, f(v)) = t. We wish to
enumerate all such mappings.

It can also be observed that when |P | = |T |, the desired mapping becomes bijective, and
thus becomes the graph isomorphism problem. In this case, which of the two given graphs
are designated as the pattern graph P and target graph T becomes insignificant; their des-
ignations can be switched and SIP will still find the same solution. When implementing a
transition system for graphs, isomorphism checking on each new candidate graph state is
an additional required operation that must be performing against each existing state in the
system, in order to determine whether we wish to create a new transition system node (the
candidate graph state is unique) or simply draw a new edge to a previous node (isomorphic
to a previously found state).
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Because of its broad applicability, many dedicated solving tools for SIP exist. Solnon [37]
provides an experimental evaluation of four well-known subgraph solvers, where it is found
that the Glasgow Subgraph Solver [13] (GSS) provides the best runtime performance for
solving “harder” instances of SIP - that is, instances which are computationally challeng-
ing even with smaller numbers of nodes in the pattern and target graphs [38]. This solver
models SIP as a constraint satisfaction problem, and uses an informed backtracking search
heuristic with bit-parallel data structures and propagation algorithms which are optimized
specifically for SIP to ensure optimal performance. GSS also supports our required exten-
sions of SIP including induced SIP, directed SIP and a labelling function for defining vertex
and edge compatibilities, and is also able to explicitly enumerate all solutions or count the
total occurrences of a solution rather than deciding whether a single solution exists. Sub-
graph isomorphism in the context of constraint programming is covered further in Section
2.4.

2.3 Bigraph Reactive Systems

Bigraph reactive systems (BRSs) are a universal mathematical model first proposed by Mil-
ner [1], which simultaneously model systems based on both spatial and non-local relation-
ships between entities. Bigraph systems are constructed similarly to TRSs and GTSs, with
the exception that the underlying structure and rewrite rules are composed of bigraphs—a
two-tier graph like structure containing both directed edges and hyperedges between ver-
tices. Unlike standard graphs, bigraphs are also subject to unique rules for construction,
composition and matching which adds further complexity to rewriting operations and tran-
sition system building. To fully understand BRSs, we first begin by sufficiently defining
bigraphs, their components and terms, as well as relevant operations that can be performed
on bigraphs.

2.3.1 Overview

Instances of bigraphs can be represented both algebraically and diagrammatically, however
in this dissertation we will be primarily describing them in their diagrammatic form as pre-
senting them in a visual format allows them to be described more intuitively. A bigraph
instance in this form can be understood as the overlapping of two graph based structures that
share the same vertex set, as demonstrated in Figure 2.6. The three main components which
make up a bigraph are described as follows:

• Entities: Vertices of the bigraph, representing agents, objects or devices in the model.
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Each entity has an associated type known as a control, represented as the A, B and C
values in Figure 2.6. The set of controls in a BRS is known as the signature.

• The place graph: A directed forest graph as shown in Figure 2.6 (b), which captures
spatial and physical relationships between entities e.g. a device inside a room. In the
standard bigraph diagrammatic form as shown in Figure 2.6 (a), the place graph is
represented as the encapsulation of parent entities around their children. An entity
is considered atomic if it is a leaf node in the place graph. Top-level places, shown
as dashed rectangles, are called regions. Similarly, the grey rectangles inside entities
are called sites. These abstract region and site nodes, each distinguished by integer
ordinals incrementing from zero, represent abstractions of unknown (or empty) parent
and child place graph structures respectively, and denote where the composition of
another place graph can be allowed to take place.

• The link graph: An undirected hypergraph as shown in Figure 2.6 (c), which captures
non-spatial relationships between entities e.g. a wireless network of devices. Each
control has an arity, a non-negative integer value which defines its number of ports,
which can be viewed as “sockets” for the link graph. An entity with a control of
arity value n thus must always have n link graph adjacencies. A shared connection
between a set of entities is called a link. Equivalently to sites and regions, the link
graph contains outer names and inner names, represented in the bigraph diagrammatic
form as links extending above and beneath the bigraph structure. These represent
adjacencies to unknown (or empty) parent and child link graphs. A link is open if it
connects to an outer name, and closed otherwise i.e. it connects exclusively between
entities and inner names. Closed links in a concrete bigraph are given unique identifiers
similarly to sites and regions. In the example link graph, it can be observed that the
arity of controls A and B are 1, and the arity of C is 2. There exists a single open link
adjacent to the outer name x, and there are three closed links: e0 and e1 which connect
between entities and e2 which connects to inner name y.

The set of sites m and inner names X , when taken together make up the inner face ⟨m,X⟩ of
a bigraph. Similarly, the set of regions and n and outer names Y denote the bigraph’s outer

face ⟨n, Y ⟩. The inner and outer faces together describe the interface B : ⟨m,X⟩ → ⟨n, Y ⟩
of a bigraph B. The sets of sites and regions are labelled using an ordered set of non-negative
integers, i.e. m = 3 indicates that the set of regions is {0, 1, 2}. The interface of the example
bigraph in Figure 2.6 is B : ⟨2, {y}⟩ → ⟨2, {x}⟩

Sites, regions and names act like “sockets” which allow other bigraph structures to “join”
together to build a larger combined bigraph structure, by connecting the sites and inner names
of the above bigraph with the regions and outer names of the below structure to produce
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Figure 2.6: (a) Example of a concrete bigraph with entities, their controls and their spatial
and non-spatial relationships. (b) Place graph for (a); (c) Link graph for (a). Colors denote
control type.
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edges and links between the two. This is only possible however when the inner and outer
faces being linked together are compatible with one another, i.e. the number of inner names
and sites on the above bigraph’s inner face matches the number of outer names and regions
of another bigraph’s outer face respectively. A bigraph is considered idle in the place graph if
there exist no nodes or sites, and idle in the link graph if there exist no ports or inner names.
The compositional behavior of bigraphs is covered in further detail in Section 2.3.3.

The bigraph shown can also be described as a concrete bigraph. This term is used to describe
bigraphs where all their component entities are assigned unique identifiers v0, v1, ..., vn, and
each closed link is also given an identifier e0, e1, ..., em. Taken together, these vertex and
edge identifiers constitute the support of a concrete bigraph. We denote bigraphs lacking
a support as abstract bigraphs. Two bigraphs are considered support equivalent as long as
their abstract forms are isomorphic, i.e. have the same structure and only differ by name
assignment.

2.3.2 Bigraph Definitions

Now that we have informally described the core components of a bigraph, we now proceed to
define them via more formal means as provided by Milner [1]. We are mostly concerned with
concrete bigraphs as part of this dissertation, and thus we begin by providing the definition
of bigraphs in their concrete form.

Components

Initially, we establish some conventional notations used when defining bigraphs: firstly, the
symbol A ⊎ B is used to denote a union of sets that are known to be disjoint. Secondly,
the labels used for control names, entity identifiers and closed-link identifiers all belong to
the disjoint infinite sets X , V , and E respectively [11]. In order to formally define each
component of a bigraph, we first define the signature.

Definition 2.3.1 (Signature). A signature (K : ar) defines the set of controls K in a bigraph
and each of their corresponding mappings ar : K → N to a non-negative arity value. A
bigraph over K assigns every entity a control k ∈ K which in turn assigns that entity ar(k)

link ports.

We then build upon this definition to define the concrete place and link graphs, and subse-
quently the full concrete bigraph structure.

Definition 2.3.2 (Concrete Place Graph). A concrete place graph

B = (VB, ctrlB, prntB) : m→ n
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is a triple which has the inner face m and outer face n, indicating m sites and n regions. B
has a finite set VB ⊂ V of entities, a control map ctrlB : VB → K, and a parent map

prntB : m ⊎ VB → VB ⊎ n

that is acyclic i.e. (v, v) ̸∈ prnt+B for any v ∈ VB, with prnt+B the transitive closure of prnt.

Definition 2.3.3 (Concrete link graph). A concrete link graph

B = (VB, EB, ctrlB, linkB) : X → Y

is a quadruple having (finite) inner name set X ⊂ X and an outer name set Y ⊂ X . B has
finite sets VB ⊂ V of entities and EB ⊂ E of links, a control map ctrlB : VB → K and a link

map

linkB : X ⊎ PB → EB ⊎ Y

where PB
def
= {(v, i) | v ∈ VB, i = ar(ctrlB(v))} is the set of ports of B.

Closed links are those where the domain is restricted to PB and the image is in EB—
otherwise they are open. In addition, idle edges are links where the domain is restricted
to ∅, i.e. have no source to point from.

A concrete bigraph is the combination of a concrete place graph and concrete link graph that
each share the same entity set VB.

Definition 2.3.4 (concrete bigraph). A concrete bigraph

B = (VB, EB, ctrlB, prntB, linkB) : ⟨m,X⟩ → ⟨n, Y ⟩

consists of a concrete place graph BP = (VB, ctrlB, prntB) : m → n and a concrete link
graph BL = (VB, EB, ctrlB, linkB) : X → Y . The inner and outer interfaces of B are
⟨m,X⟩ and ⟨n, Y ⟩, respectively. The support size |B| of the concrete bigraph is VB ⊎ EB.

A full example of the deconstruction of the given bigraph example in Figure 2.6 into this
form is provided in Appendix A.

Equivalence

We also formally define the notion of support equivalence for bigraphs. This is key for
understanding what constitutes as “equality” between bigraphs (Section 4.1), particularly for
when we wish to discern equivalent bigraphs in a transition system, as well as for retaining
compositional information between the two resultant parts of a decomposed bigraph. We
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are only interested in support equivalence between bigraphs with no idle edges however, as
these cannot be sufficiently mapped without having a source. We hence define lean bigraphs
as those with no idle edges, and define lean-support equivalence as follows.

Definition 2.3.5 (lean-support equivalence). Two concrete bigraphs A and B are lean-support
equivalent, denoted as A ≏ B, when there exists a valid support translation ρ : |A| → |B|
from A to B after discarding idle edges. A support translation ρ consists of a pair of bi-
jections ρV : VA → VB and ρE : EA → EB from A to B’s vertex and closed edge sets
respectively, such that the structure of both bigraphs are maintained as follows:

• Controls are maintained, i.e. ctrlB ◦ ρV = ctrlA—this also produces a bijection ρP :

PA → PB on the ports of the corresponding entities.

• Parent and link relations are maintained, i.e.

prntB ◦ (Idm ⊎ ρV ) = (Idn ⊎ ρV ) ◦ prntA,

linkB ◦ (IdX ⊎ ρP ) = (IdY ⊎ ρE) ◦ linkA,

where Idm is the identity function of m, and so on for the other interface components.

More informally, we can imagine two bigraphs to be lean-support equivalent if they have the
same structure and only differ via the component identifiers of their supports. In other words,
if A ≏ B, then we can simply produce B through renaming the vertices and edges of A via
a support translation. An important observation is that support equivalence does not permit
bijections between differently named interface components, as this would no longer retain
the original bigraph structure between interfaces after a decomposition—that is, attempting
to recompose two component bigraphs after a reordering of the interface assignments would
cause them to join different vertices together and result in a bigraph which is not equivalent
to the original state, and hence the support translation itself must be producing a bigraph
which is not equivalent to its pre-image.

An abstraction of a concrete bigraph describes the result of discarding its support in order
to produce an abstract bigraph with the same structure. Conversely, the concretization of an
abstract bigraph describes when a support is added to produce a concrete form of the bigraph.
It can be easily deduced that the abstraction of two support equivalent bigraphs will produce
an isomorphic structure.

Symmetries

We are also interested in distinguishing between different types of symmetry that can occur
in bigraphs. Two place graphs (and hence bigraphs) are considered symmetrical if they
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Figure 2.7: Instances of symmetry in place graphs. Bigraphs B1 and B2 are symmetrical,
as they only differ in structure from the swapped ordering of entities A and B beneath the
region. Bigraph B3 contains an intra-symmetry between the descendants of A.

are support equivalent, but differ in the left-to-right orderings of children for a selection
of regions and entities, as shown between bigraphs B1 and B2 in Figure 2.7. Symmetrical
bigraphs when described algebraically are identical, as entity relations are only defined via
prnt and do not take into account the diagrammatic ordering of siblings.

A different categorization of symmetry can also occur between entities within a single place
graph, when there exists a support translation between sibling vertices and their descendants
as shown in place graph B3 in Figure 2.5. We denote these occurrences as intra-symmetries

going forward, to disambiguate them from instances of symmetry between independent
bigraphs. Bigraphs containing intra-symmetries will have multiple possible valid support
translations for mapping to a support equivalent bigraph, as the subset of vertex assignments
between intra-symmetric entities can be swapped while preserving structure.

2.3.3 Bigraph Construction

Bigraphs follow a specific formalism for allowing composition onto one another through
their interfaces. There are two key methods of combining two bigraphs A and B in order
to create a larger merged structure G: one is to simply place them side-by-side to produce
what we call the tensor product of two bigraphs G = A ⊗ B, as shown in Figure 2.8. The
other method involves placing B under A, and merging the regions of B with the sites of A
in their place graphs to produce connecting edges between the two, and similarly connecting
the inner links of A with the outer links of B in their link graphs to produce the composition

G = A ◦B of the two bigraphs A and B as shown in Figure 2.9.
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Figure 2.8: A diagrammatic example of the tensor product A⊗B of two bigraphs A and B.

Tensor Product

The tensor product operation on two bigraphs is the simultaneous independent application of
the tensor product on their underlying place and link graphs, and hence we begin by defining
these separately.

Definition 2.3.6 (Tensor product of concrete place graphs). Given two place graphs A =

(VA, ctrlA, prntA) : k → l and B = (VB, ctrlB, prntB) : m→ n, the tensor product

G = A⊗B : k +m→ l + n

is defined as
G

def
= (VA ⊎ VB, ctrlA ⊎ ctrlB, prntA ⊎ prnt′B),

where prnt′B(k + i) = n+ j whenever prntB(i) = j.

Definition 2.3.7 (Tensor product of concrete link graphs). Given two disjoint link graphs
A = (VA, EA, ctrlA, linkA) : X → Y and B = (VB, EB, ctrlB, linkB) : Z → W , the tensor
product

G = A⊗B : X ⊎ Z → Y ⊎W

is defined as
G

def
= (VA ⊎ VB, EA ⊎ EB, ctrlA ⊎ ctrlB, linkA ⊎ linkB)

Using these separate definitions, we can now define the full tensor product operation as
follows.
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Figure 2.9: Example bigraphs A : ⟨1, {x, y}⟩ → ⟨1, {x}⟩, B : ⟨1, {}⟩ → ⟨1, {x, y}⟩, and the
resultant bigraph A ◦ B : ⟨1, {}⟩ → ⟨1, {x}⟩ when composed together. It can be observed
in this diagrammatic form that the entirety of B now exists where the lone site of A used to
reside.

Definition 2.3.8 (Tensor product of concrete bigraphs). Given two disjoint bigraphs A :

⟨k,X⟩ → ⟨l, Y ⟩ and B : ⟨m,Z⟩ → ⟨n,W ⟩, the tensor product

G = A⊗B : ⟨k +m,X ⊎ Z⟩ → ⟨l + n, Y ⊎W ⟩

is defined as
G

def
= ⟨AP ⊗BP , AL ⊗BL⟩

for the place graphs AP , BP and link graphs AL, BL of A and B respectively.

Importantly, the tensor product operation is only applicable when there is no overlap in the
names of vertices or interfaces of the two component concrete bigraphs A and B—that is,
the interfaces and supports of A and B are fully disjoint.

Composition

The composition of two bigraphs is only possible if the inner face of A is equal to the outer
face of B, i.e. A : ⟨m,X⟩ → ⟨n, Y ⟩ and B : ⟨o, Z⟩ → ⟨m,X⟩. When composed, the resul-
tant bigraph’s interface will be A◦B : ⟨o, Z⟩ → ⟨n, Y ⟩. An example of a composition being
performed is shown in Figure 2.9. Decompositions are also possible within the context of
bigraphs, where a single bigraph can be decomposed into two smaller bigraphs by applying
this same operation in reverse, splitting apart links and place graph edges and replacing them
with inner/outer names and region/site pairs accordingly.

The composition operation for bigraphs as a whole can be considered as the simultaneous
compositions of each bigraph’s place and link graph components. As such, to formally define
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Figure 2.10: A composition example of two place graphs. The highlighted region in PA◦B
shows where PB was joined into PA in the resultant composition.

composition, we first define these separately.

Definition 2.3.9 (Concrete place graph composition). Given two concrete place graphs A :

m→ n and B : o→ m with disjoint supports, we define the composite place graph as

A ◦B = (V, ctrl, prnt) : o→ n

Where V = VA ⊎ VB, ctrl = ctrlA ⊎ ctrlB, and the prnt value of each site and entity
v ∈ o ⊎ V depends on the following conditions.

prnt(v)
def
=


prntB(v) if v ∈ o ⊎ VB and prntB(v) ∈ VB

prntA(r) if v ∈ o ⊎ VB and prntB(v) = r ∈ n

prntA(v) if v ∈ VA

The composition for the place graph components of the given bigraph examples are shown
in Figure 2.10.

Definition 2.3.10 (Concrete link graph composition). Given two concrete link graphs A :

X → Y and B : Z → X with disjoint supports, we define the composite link graph as

A ◦B = (V,E, ctrl, link) : Z → Y

where V = VA ⊎ VB, E = EA ⊎ EB, ctrl = ctrlA ⊎ ctrlB, and the link map value for each
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Figure 2.11: A composition example of two link graphs. The highlighted region in LA◦B
shows where LB was joined into LA in the resultant composition.

port and inner name p ∈ Z ⊎ PA ⊎ PB depends on the following conditions.

link(p)
def
=


linkB(p) if p ∈ Z ⊎ PB and linkB(p) ∈ EB

linkA(o) if p ∈ Z ⊎ PB and linkB(p) = o ∈ Y

linkA(p) if p ∈ PA

The composition for the link graph components of the given bigraph examples are shown in
Figure 2.11.

2.3.4 Bigraph Rewriting

Now that we understand how bigraphs can be composed and decomposed, we now look
toward defining the rewriting rules of bigraphs, which act as the fundamental underlying
operation of bigraph reactive systems. Similarly to rewriting rules for term rewriting and
GTSs, bigraphs can have reaction rules R : r → r′, a bigraph pair which defines the potential
for a substitution of a bigraph r with the bigraph r′ inside some larger bigraph structure G.
The bigraphs which define a reaction rule also have both underlying place and link graph
components, which are applied simultaneously in one step during the substitution operation.
In order to be able to apply the reaction rule r → r′ to G however, it must first be determined
whether r occurs in G. This introduces the bigraph matching problem, a computational task
that aims to find either any or all occurrences of a smaller bigraph inside a larger one, which
is covered in further detail in Section 2.3.5. To begin with, we assume that an algorithm to
solve this is provided for us.

We formally specify an occurrence as follows.

Definition 2.3.11 (Concrete occurrence). Given two concrete bigraphs A and B, it is said
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that B occurs in A if there exists some context bigraph C and parameter bigraph D such that

A = C ◦ (B ⊗ id) ◦D,

where id is the identity bigraph—an entity-free bigraph instance which only contains ab-
stractions and faces that directly connect from ⟨m,X⟩ to ⟨n, Y ⟩, allowing for place graph
edges and link graph hyperedges to connect directly between C and D where necessary to
ensure interface compatibility.

To first be able to define a reaction rule, we first restrict the connections to/from interfaces
that can occur in our formal definition of a bigraph. This is because specific abstract config-
urations may allow for theoretically infinite occurrences in an instance, i.e. a region pointing
to a site in the smaller bigraph. We thus initially define solid bigraphs.

Definition 2.3.12 (Solid bigraph). A bigraph G is solid if it meets the following six criteria,
which prevent idle interface components and connections between them:

• For all regions o ∈ n, there exists an entity v ∈ VG such that prnt(v) = o.

• For all outer faces y ∈ Y , there exists an entity port {pv|v ∈ VG} such that (pv, y) ∈
linkG.

• For all pairs of sites s, t ∈ m, prnt(s) ∩ prnt(t) = ∅.

• There are no two inner names x, y ∈ X such that (x, e), (y, e) ∈ linkG for some source
e.

• There is no o ∈ n, s ∈ m such that prnt(s) = o.

• There are no two names x ∈ X , y ∈ Y such that (x, y) ∈ linkG.

For the application of a reaction rule, r and G are always solid. Following on from this, we
can formally define a bigraph reaction rule as follows.

Definition 2.3.13 (Bigraph reaction rule). A reaction rule R : r → r′ consists of a pair of
bigraphs—the solid redex bigraph r and reactum bigraph r′, which permits the substitution
of an occurrence of r with r′ in some host bigraph G = C ◦ (r⊗ id) ◦D to produce the new
bigraph state G′ = C ◦ (r′ ⊗ id) ◦D, for some context bigraph C and parameter bigraph D.

A ground reaction rule Rg : rg → r′g is one which specifically applies to a ground bigraph

state, which we define as a bigraph with no inner face i.e. Bg : ⟨{}, {}⟩ → ⟨n, Y ⟩. In this
case, it follows that the parameter D must also be ground.



2.3. Bigraph Reactive Systems 26

Figure 2.12: A reaction rule r → r′ within a BRS.

Figure 2.13: The reaction rule in Figure 2.12 applied to a bigraph in order to perform a
rewrite operation. The highlighted region indicates the change in structure.

A simple example bigraph reaction rule is provided in Figure 2.12, where applying this rule
will introduce two additional entities to the structure, with the port of entity C joining onto
the open link of A. An application of this rule is then demonstrated in Figure 2.13, where
the state of the bigraph evolves and adds the additional entities to the larger bigraph upon
finding the valid occurrence of A via some bigraph matching algorithm.

With reaction rules and bigraph rewriting defined, we can now finally provide the definition
of the bigraph reactive system (BRS), a rewriting system based upon the bigraph formalism.

Definition 2.3.14 (Bigraph reactive system). A bigraph reactive system (G,R) consists of
an initial ground bigraph state G and set of ground reaction rules R1, ..., Rn, where the
application and corresponding rewriting operations of valid reaction rules can be performed
on G and its resultant states at each transition step in order to build a transition system of all
reachable states.

BRSs can be understood as the bigraph equivalent to a GTS—a key difference between the
two formalisms is that the complex and abstract behavior of bigraphs can more intuitively
model scenarios in a BRS where we want to define explicit abstraction, locality, instantiation
maps and relationships between entities represented by hypergraphs in a way that GTSs do
not support [24]. Model verification can be performed on the transition system produced by
a BRS in order to determine the reachability of each state, which can be enhanced with the
use of stochastic bigraphs, which assigns a weighted probability to each reaction rule in the
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Figure 2.14: An example bigraph matching instance where vertex color denotes entity con-
trol type. The target bigraph T can be decomposed from above and beneath to produce pat-
tern bigraph P, producing the vertex mapping {(u0, v0), (u1, v2), (u2, v4), (u3, v5)} and edge
mapping {(e0, e1)}.

BRS in order to calculate the overall chance of each possible reachable state being produced
when a simulation is run [6].

2.3.5 Bigraph Matching

The bigraph matching problem can be described as the bigraph equivalent to SIP, a similarly
NP-complete decision problem where we want to determine whether a pattern bigraph P

occurs inside a host target bigraph T . However, unlike SIP which is defined via a mapping
from pattern vertices to target vertices, we recall that an occurrence in bigraphs is defined in
terms of bigraph composition—where P can only be considered occurring in T if the target
bigraph can be obtained through composing some context C and parameter bigraph D onto
the top and bottom of the pattern bigraph respectively (Definition 2.3.11). Hence, a bigraph
matching algorithm must determine if T = C ◦ (P ⊗ id) ◦ D, which will confirm whether
the subsequent rewriting operation is then possible via performing the decomposition, sub-
stituting P with the supplied reactum bigraph, and recomposing the context and parameters
to obtain the transformed bigraph.

We formally define the problem as follows.

Definition 2.3.15 (Bigraph matching problem). Given an input pattern bigraph P : ⟨m,X⟩ →
⟨n, Y ⟩ and target bigraph T : ⟨k,W ⟩ → ⟨l, Z⟩, a valid matching solution is one where T can
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be decomposed to achieve an isomorphism P such that

T = C ◦ (P ⊗ id) ◦D

for the identity bigraph id and context and parameter bigraphs C and D.

In order to build the full transition system of a BRS, we wish to enumerate all such possible
matches, and thus we aim to find T = Cn ◦ (P ⊗ id) ◦Dn for all n possible matches in the
problem instance.

There are clear parallels to SIP that can be observed—both are subgraph algorithms where
a matching solution can be represented in the form of an injective mapped assignment from
each pattern element p ∈ P to a target element t ∈ T [39]. As described previously how-
ever, bigraph matching unlike SIP is a fundamentally compositional problem, where it must
also hold that T can be decomposed into P via bigraph composition rules. This introduces
additional constraints as to what can be considered a valid match, and hence solely finding
an isomorphism of P inside T is not enough to assume it is a valid solution. For example,
any unmapped entity in T must be able to reside in either C and D for a candidate solution.
Another key difference is that bigraph matching seeks to map all elements of the support
(VP , EP ) of P to T rather than just its vertex set, so all closed edges in EP must also have a
corresponding match.

An example matching instance is provided in Figure 2.14, where it can be observed that any
target entity which isn’t mapped to must be placed in either the context or parameter. The
hyperedge connection from v0 to v3 is made through id—since the identity bigraph provides a
route for a link from an outer face that loops back around to D, we do not need to distinguish
between inner and outer links for matching. Open links can also be closed in the parameter
as seen through y, demonstrating that open links can match with closed links but not vice
versa.

In addition to identifying occurrences for rewriting in a BRS, bigraph matching is also re-
quired multiple times in order to perform a rewrite step for conditional bigraph reaction rules
[40]. It is also used to determine state predicates i.e. patterns in bigraphs [41]. When work-
ing with stochastic bigraphs [6], the number of isomorphic/symmetric solutions found for a
reaction rule applied to a given state will impact the overall probability of the resultant state
being reached upon rewrite.

2.4 Constraint Programming

The constraint programming (CP) paradigm provides an efficient method of solving complex
NP-hard satisfiability problems, in a manner where the user is not required to manually
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perform any solving or calculations but rather simply model the problem in the form of a
constraint satisfaction problem (CSP). A CSP consists of a set of variables, their range of
possible values and the relationships between variables in the form of constraints—a list of
conditions which forbid certain combinations of value assignments, as otherwise the solution
would be rendered invalid (i.e. no rows or columns in a Sudoku puzzle can contain the same
number more than once). A CP language or toolkit allows the user to construct a CSP, which
is then passed into an “under the hood” solver which aims to find a combination of values
for all variables such that none of the user-defined constraints are violated: this result is then
returned as a satisfiable solution [42]. The underlying solver relies upon a variety of different
methods to solve CSPs such as intelligent backtracking search (Section 2.4.1) as well as
inference and propagation, i.e. ruling out possible values for variables by considering the list
of constraints in combination with values already assigned to other variables. Specialized CP
solvers designed for specific subclasses of problems (such as the Glasgow Subgraph Solver
for graph matching) may also apply domain-specific heuristics and search strategies which
are known to be the most optimal for that type of problem. One example is the “fail-first”
method, which prioritizes the assigning of values to the most constrained variables — which
for some problems directly correlates with the difficulty of finding a non-conflicting value
for them [43].

At a high level, CP can be seen as a form of declarative programming, where the program-
mer specifies what needs to be done, rather than how it needs to be done. Whilst there is
some level of control in how the solving can be performed via variable and value ordering
heuristics and other customizable parameters, the underlying complexity of searching for so-
lutions is mostly abstracted away from the user. Modelling combinatorial problems as CSPs,
in addition to simply solving logic puzzles like Sudoku, can be used to model NP-complete
software algorithms like type system inference in programming languages [44] and graph
coloring, as well as a variety of industrial real-world applications such as resource allocation
for performing factory equipment maintenance [45] and job shop scheduling [46].

Formally, we define a CSP as follows [47].

Definition 2.4.1 (Constraint satisfaction problem). A CSP {V,D,C} is a triple, made up of:

• Variables V = {v1, v2, ..., vn}: The model’s set of variables to assign values to, with
cardinality n.

• Domains D = {d1, d2, ..., dn}: A set which has a bijective mapping from V , where
each dk ∈ D is a list of potential values that the corresponding variable vk ∈ V can be
assigned.

• Constraints C = {c1, c2, ..., cm}: The set of constraints which are imposed on permu-
tations of the set of variables.
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Domains can be a variety of data types, such as booleans (SAT), integers or real values. As
an example, in a 9x9 Sudoku puzzle where tiles can only be filled with integers from 1-9,
each variable vk ∈ V = {v(1,1), v(1,2), ..., v(9,9)} would have the corresponding domain value
set dk = {1, 2, ..., 9}.

Constraints can take many forms—types of constraints include binary constraints such as
the less-than constraint, which involve the relationship between the values of two variables,
e.g. 3v1 < 4v2. Ternary constraints similarly involve three variables e.g. the arithmetic
constraint v1 + v2 = v3. Global constraints meanwhile can enforce a specific relation be-
tween an arbitrarily-sized permutation of variables in the CSP—an often-used example of
a global constraint is the alldifferent constraint, which declares that for all possible
pairs (va ∈ U, vb ∈ U) in a given subset of variables U ⊆ V , da ̸= db. Described informally,
this enforces that no values in the subset can share the same value assignment. The set of
constraints in a Sudoku puzzle modelled as a CSP simply consists of 27 alldifferent
constraints, for each of the nine rows, columns and 3x3 boxes.

A solution is complete when all variables vk ∈ V have been assigned a value dk ∈ D.
However, a solution is only considered satisfiable if it is both complete and all constraints
ck ∈ C are satisfied. The user can determine whether the solver immediately terminates
upon finding a satisfiable solution, or continues to search for all possible solutions in a CSP.
A CSP is called unsatisfiable if it does not contain any satisfiable solution. For both retrieving
all solutions and proving that a CSP is unsatisfiable, the entire underlying search space in a
backtracking solver must be fully exhausted in order to rule out all other possibilities.

There also exists a variant to CSPs known as constraint optimization problems (COPs)—
these are modelled similarly to a CSP, but with the objective of optimizing a user-defined
variable known as the reward function. Optimization can take the form of either maximizing
the reward function e.g. the most packages delivered in a given time limit in an instance of the
travelling salesman, or minimizing it e.g. the minimum total distance to travel to deliver all
packages. These are typically solved by proving that any instance where the reward function
is fixed to a more optimal value than the current best solution is unsatisfiable.

2.4.1 Backtracking Search

A typical underlying combinatorial search process can be represented as a depth-first search
of a decision tree of value assignments, which make up a partial/candidate solution. Each
node at depth k represents a value selection from the domain Dvk to assign to vk. Upon
each step, the solver will propagate the constraints of the problem, which will remove values
from the sets of each domain which would cause a constraint violation to occur if assigned
to the current candidate solution—narrowing down the available search paths as it traverses.
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Figure 2.15: (a) An instance of the NP-complete 3-coloring problem. (b) An example of DFS
backtracking search, where the value-ordering heuristic selects in the order red→ blue→
yellow. (c) A satisfiable solution found through search.

If any single domain is completely exhausted mid-traversal, this indicates that the partial
solution is unsatisfiable, and it will backtrack to a previous state and attempt an alternate
search path. A simple demonstration of the CP search and backtracking process is given in
Figure 2.15, where it is used to solve a trivial instance of the 3-color problem—that is, we
want to color each vertex in a graph with one of three possible colors such that no connected
vertices share the same color. Here, each variable in the CSP represents each vertex the
graph, each variable’s initial possible domain of values are {red,blue,yellow}, and there
exists a constraint for each edge e = (u, v) which enforces that u ̸= v. The solver continues
to assign values and backtrack upon hitting a constraint conflict, i.e. two connected vertices
sharing a color, until all vertices have been colored, which is returned as a satisfiable solution.

2.4.2 Optimizing Search

The efficiency of a CP solver can be improved upon through various context-dependent con-
figurations. One such primary method is making use of an effective heuristic, which speci-
fies the order in which variables and values are selected and propagated during search. These
come in the form of variable ordering and value ordering heuristics, which define the order-
ing selection of variables and the ordering selection of values for each variable respectively
[48]. For example, it is often beneficial to prioritize the selection of variables and values
which are more heavily constrained in the model, under the assumption that finding a satisfi-
able assignment for these will be a more difficult task. This causes the solver to “fail early”
during search and backtrack early in the search tree, rather than get stuck searching large
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subtrees where there exist little or no solutions due to a poor assignment made early on, in a
phenomenon known as thrashing.

Other such heuristic techniques include search restarting, where the solver will periodically
reset all current assignments and start again from the top of the search tree as an alternative
strategy for preventing thrashing. This is combined with introducing a slight amount of ran-
domness during selection to ensure that the same search paths are unlikely to be redundantly
explored multiple times. This can also be combined with parallelism to explore multiple
branches of the search space simultaneously [49].

Restarts are typically combined with a special type of dynamically posted constraint called
nogoods [50]. Nogoods define a specific subset of variable-value pairs which can never
appear in any satisfiable solution, and can be represented via the formula ¬(v1 = d1 ∨ v2 =

d2 ∨ ... ∨ vk = dk) for a subset of variables v1 to vk. Nogoods can be posted to a solver
during search to retain information on which subtrees yield no solutions (and thus should not
be redundantly searched again) after a restart [51], or preliminarily invalidate solutions which
can be inferred to be incorrect based on what has already been discovered during search [52].
Another potential use-case of nogoods is to employ them as a symmetry breaking constraint,
which prevents the solver from considering candidate solutions which are isomorphic to (and
thus can be treated as a duplicate of) a previously discovered solution.

2.4.3 Subgraph Isomorphism Modelled as a CSP

As a relevant example, we demonstrate how a general CP model can be utilized to solve
the subgraph isomorphism problem by constructing a representation of SIP in the form of a
CSP. Given a pattern P = (VP , EP ) and target T = (VT , ET ) input graphs, we model the set
of variables V as the set of pattern vertices VP since we seek to find an assignment for all
v ∈ VP . Correspondingly, the set of domains D for each variable is the set of target vertices
VT since we aim to find an injective mapping from VP to VT .

We now consider the constraints of the model. We firstly apply the alldifferent con-
straint across all v ∈ VP as no two pattern vertices can map to the same target vertex. We
then consider the set of edges in EP—each edge can be modelled as its own constraint ap-
plied to its pair of pattern vertices, which enforces that their mapped assignments must also
exist as a pair in ET in order to be considered a valid assignment. We thus present our basic
SIP model as follows.

CSPSIP = {VP , VT , {alldifferent(VP ), {∀ (p1, p2) ∈ EP | (f(p1), f(p2)) ∈ ET}}}

For the induced variant of SIP, we can simply add the following additional constraint to
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enforce non-edges between pairs.

{∀ p1 ∈ VP , p2 ∈ VP , p1 ̸= p2 | (p1, p2) /∈ EP → (f(p1), f(p2)) /∈ ET}

Labelled SIP can also be intuitively modelled through an additional equality constraint be-
tween candidate mappings.

While the constraints described are sufficient to accurately model SIP, we can also apply
additional constraints and inference techniques in order to more quickly reduce the domains.
For example, it can be deduced that a pattern vertex of degree n can never map to a target
vertex of degree less than n. Therefore for all pattern vertices we can preliminarily reduce
their domains to only target vertices with a compatible degree, which can be performed by
checking all (p ∈ VP , t ∈ VT ) pairs in polynomial time before running the main search loop
[53]. In the case of directed SIP, we can optimize this further by ensuring that both the in-
degrees and out-degrees of each (p, t) pair are compatible as separate vertex compatibility
constraints. Labelled SIP can also preliminarily eliminate pairs with non-matching types
using this pair-checking method. The Glasgow Subgraph Solver extends the idea of degree
filtering further through the use of neighborhood degree sequencing [54], where whenever a
value assignment is made during search, the degrees of neighbors of the currently assigned
set of vertices are also compared and incompatible target nodes eliminated from the domain
during that propagation step.

GSS also makes use of a special all-different filtering technique based on vertex degree
values. During search, if there exist any combination of remaining pattern nodes of size n

still awaiting assignment where there are only < n target nodes when taking the union of
all their current domains, this preliminarily detects that no possible solution exists for the
current state of value assignments. Conversely, if the union of target nodes is instead equal
to n, then it can be inferred that no additional pattern vertex outside of that set can occupy
any of those target nodes [55].

Finally, it also possible to reason on distances and paths between vertices rather than simply
considering direct adjacencies. For example, for any pair of matches (p1, t1), (p2, t2), the
number of paths between t1 and t2 of length k must be greater than or equal to the number of
paths between p1 and p2 of the same length in a valid solution. GSS identifies and propagates
these additional path constraints through building additional supplemental graphs [56]. A
supplemental graph S contains two specially-labelled distinguished vertices v1 and v2, and
is used to build a modified variant of the pattern and target denoted as PS and TS which
share the same vertex set as P and T respectively. However there can only exist an edge
(g1, g2) between two vertices in G ∈ {PS, TS} if there also exists an isomorphism from S to
G where g1 and g2 map to v1 and v2 respectively. This produces a new SIP instance which
reflects the desired path constraints. The set of supplemental graphs which GSS relies on
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have been manually selected based on performance evaluations on a variety of benchmark
instances [13].

2.5 Related Work

There already exist multiple available implementations for executing BRSs which handle
matching through a variety of methods, such as the use of general-purpose solving tools like
SAT encodings and constraint programming models, as well as a full reduction from BRS to
a GTS where SIP can be used. In this section, we discuss and compare previously developed
frameworks which aim to solve matching problems relating to bigraphs.

2.5.1 BPL

The first known implementation of a BRS was introduced by Højsgaard et al. [57], present-
ing the BPL Tool; an experimental toolkit that allows for the building and manipulation of
bigraphs. BPL, through a domain specific language, allows a user to define bigraph reaction
rules and agent states, run model simulations, and visualize bigraphs in either SVG or TikZ
format. The underlying matching algorithm [58] required for rewriting reduces the graph-
like structure of bigraphs into a term representation of bigraphs, where axiomatic matching
rules can be applied to the transformed place and link graphs to give a non-deterministic
set of embedded solution mappings for each subterm of the pattern. The non-deterministic
property is then limited through the introduction of additional inference and congruence rules
between terms. When BPL is run on a matching instance, the tool uses a lazy list to asyn-
chronously return sets of matches, as the computational complexity involved causes BPL to
be unreliable at finding all solutions quickly. Højsgaard et al. explicitly note in the con-
clusion of their BPL tooling paper that this implementation struggles to perform efficiently
and is primarily suited for experimenting with smaller instances, recommending that a SAT
solving approach will be likely to yield a better performance [57].

2.5.2 BigraphER

Sevegnani and Calder propose BigraphER [9], a command-line bigraph toolkit written in
OCaml which allows for the modelling of BRSs through a user-provided algebraic represen-
tation of an initial state and its set of reaction rules. From there, BigraphER is able to perform
matching, rewriting, simulation and visualisation on the BRS in order to reflect the evolving
behavior of an interacting system of entities. BigraphER supports these operations on both
bigraphs and the bigraphs with sharing extension, and additionally supports the building of



2.5. Related Work 35

stochastic BRSs [6] as well as probabilistic BRSs [59], a discrete extension of stochastic
BRSs.

The underlying matchings are primarily performed by encoding the problem into a SAT al-
gorithm for subgraph isomorphism [10]. This is built upon MiniSAT [60], although there
also exists an alternate Pseudo-Boolean implementation of this algorithm which relies on
MiniCARD [61]. However, the number of CNF clauses required to perform matching grows
rapidly in relation to the scale of the problem: O(m2n2) clauses are required for a matching
problem with m and n target and pattern entities respectively. This results in poor scaling for
larger more difficult problems, limiting the overall scope of what the tool is capable of mod-
elling. This SAT-based approach is also inherently low-level, and requires direct and manual
encoding of constraints into conjunctive normal form (CNF) by the user which makes it less
adaptable to building alternative formulations or extensions. This can be particularly tricky
from a user perspective for encoding high-level graph constraints such as “at most k edges
must belong to this vertex” in a way that is both correct and efficient [62]. Conversely, a more
high-level approach such as a CSP solver, which can model the problem simply through ex-
pressions of variables and constraints, is able to provide a more adaptable framework without
sacrificing solver performance. As the solver component runs independently from the rest of
the BigraphER framework, it is feasible to swap these out with a hypothetical more efficient
matching tool without affecting the rest of the toolkit’s functionality, making BigraphER an
optimal framework for adapting a new algorithm for with minimal overhead.

2.5.3 jLibBig

Peressotti et al. introduce jLibBig [63], a BRS toolkit in the form of a Java library which
provides an interface for the modelling and manipulation of bigraph reactive systems as
a component within a Java program. Similarly to our proposed approach, the underlying
matching is performed by a constraint programming model. This is built upon Choco, a gen-
eral constraint modelling toolkit which is also provided as a Java library, where a developer
can define the variables and constraints of a CSP/COP for the underlying solver to search
[64]. jLibBig has been integrated as the matching and rewriting component within wider
Bigraph projects, such as the Bigraph Framework tool as part of the Bigraph Toolkit Suite
[65].

The Choco model for bigraph matching is able to support pure bigraphs as well as the di-
rected bigraphs extension (Section 4.3) through additional optional constraints, which pre-
liminarily demonstrates the extensibility of a constraint-based approach to the problem. The
matching of the place and link graphs are modelled as two distinct problems which are solved
separately; the place graph matching is performed through attempting to build a bipartite
graph relation from the set of entities and sites/regions in P to those in T , with constraints
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Figure 2.16: An example of the encoding of a bigraph to a ranked graph.

which ensure that the graph is injective for all P entities and all T nodes which are assigned
a region/site as their pre-image follow the rules of bigraph composition. Meanwhile, the
pattern and target link graphs are encoded and solved as a multi-flux problem where ports
and faces are each encoded as vertices, each inner name and port represented by a source
node and each outer name and closure a sink node, with adjacencies drawn between them to
match the structure of the original hyperlink structure. The solver then aims to find a solution
in the form of an additional set of edges connecting each pattern node to a target node in a
way which satisfies the rules of hyperedges. Finally, a set of “gluing” constraints are intro-
duced which enforce consistency between the solutions of the two sub-models and return a
full solution set. A proof of soundness and completeness for this method is also provided.
While Choco was chosen as the CSP tool for this algorithm, this has been designed to be
implementable for any general CSP modelling toolkit.

While an algorithm built upon a general-purpose CSP solver such as Choco allows for flexi-
bility in regard to implementation, the ability to add more complex heuristics and techniques
that would be more optimal for graph solving problems is restricted to only those which can
be supported by the interface of the solver of choice: for example, Choco does not support
parallel solution biased search, which is the heuristic GSS relies on. In addition, generalized
solvers are designed to support a wide variety of possible CSPs and are not engineered specif-
ically for modelling and solving graph-based problems, and thus do not offer the additional
under the hood benefits that GSS provides such as supplemental graphs, bit-parallelism and
other state of the art features and techniques that promise optimal performance. We also
propose that a SIP based modelling for bigraph matching will be able to solve matching for
both the place graph and link graph as one single encoded graph pair, rather than requiring
the matching of the place and link graph components to be split into their own sub-problems.
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2.5.4 BiGMTE

Gassara et al. propose an approach similar to ours for the BRS toolkit BiGMTE, where
bigraphs are encoded as ranked graphs [66]. Ranked graphs G = ⟨r, d, v⟩ →: i → j are
a triple consisting of a directed graph d, in addition to a root mapping function r : j → Vd

and variable mapping function v : Vd, which define interfaces similarly to the inner and
outer faces of bigraphs. Also similarly to bigraphs, two ranked graphs can be composed by
merging these interfaces whenever iG1 = jG2 .

This structure is extended to include an additional labelling function l : N → L to support
the encoding of control types. During the encoding process, each entity is represented by a
labelled vertex, each region/outer face and site/inner face is represented by a root mapping
and variable mapping respectively, and each hyperedge is encoded as an additional sink
node in the graph which is a child of all of its encoded entity nodes. Rather than perform
the encoding only for matching, ranked graphs are used to reduce the entire BRS into a GTS
instance, which then performs the graph rewriting process (as an instance of DPO graph
transformation) and then converts the resultant state back into a BRS format in a way which
preserves the expected behavior of applying a bigraph reaction rule.

Assuming negligible encoding/decoding time, the performance of this ranked graph ap-
proach depends on the underlying graph transformation framework. BiGMTE employs
GMTE [67], a graph matching and rewriting toolkit to perform these underlying SIP and
rewriting instances, and performance metrics are provided in comparison with jLibBig. It is
shown that BiGTME generally solves instances faster than jLibBig, and scales far more effi-
ciently for instances with a large number of entities (|VP | > 50) in the pattern graph. How-
ever for instances where there are increasingly many matchable nodes in the target graph
(|VT | > 100), BiGMTE scales more poorly compared to jLibBig. Another observation is
that BiGMTE only supports matching on the default definition of bigraphs, unlike jLibBig
supporting directed bigraphs and BigraphER supporting sharing.

Whilst this method aims to find a halfway point between bigraphs and standard graph struc-
ture which a graph matching tool can then solve through ranked graphs, we believe that this
idea can be explored further through a new encoding which resembles and behaves closely
enough to a subgraph isomorphism instance in isolation that any SIP solver (GSS in par-
ticular) can be capable of solving it, with the additional help of preliminary and checking
constraints to preserve the compositional integrity of all found solutions and filter false pos-
itives.
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2.6 Summary

In this section, we provided a background reading of the elements of research that our work
later builds upon. Section 2.1 introduced term rewriting and transition systems. Section 2.2
provides a specification of rewriting where this is applied to graphs, alongside the underlying
required graph matching problem (SIP). Section 2.3 introduces bigraphs, the main focus of
this project, as well as the bigraph matching problem, which is the key problem we wish to
solve. Section 2.4 introduces constraint programming, the paradigm we wish to use to tackle
the complexities of bigraph matching. Section 2.5 provides a review of currently available
BRS tools and their corresponding solvers for bigraph matching.

In the following chapter, we introduce a novel algorithm for bigraph matching which incor-
porates various elements used by the solvers covered in Section 2.5, including a reduction to
SIP, encoding the bigraph as a graph with additional properties to model interfaces, and an
implementation in the form of a CSP model. This later replaces the SAT matching compo-
nent within BigraphER.
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Chapter 3

A New Algorithm For Bigraph
Matching

In this chapter we introduce the formal definition of our matching algorithm, which encodes
problem instances into a format which can be understood and solved by a conventional SIP
solver. A preliminary version of this work has presented in our CP2021 publication [15].

In Section 3.1, we discuss our hypothesis of the feasibility of a “bigraph matching to SIP”
strategy for efficient solving, and give a brief high-level overview of the full proposed encod-
ing. Section 3.2 provides a formal definition of the encoding of the place graph component
of a bigraph, as well as the handling of an identified edge case where our encoding is slightly
under-constrained. Section 3.3 covers the encoding of the link graph component and the flat-
tening function which converts the hypergraph elements into a conventional graph format,
as well as the handling and removal of symmetries introduced by our algorithm. Section
3.4 provides the size of the resultant encoding compared to that of the input pattern-target
bigraph pair. Section 3.5 gives a proof of soundness and completeness of our encoding.
Section 3.6 concludes this chapter.

3.1 Motivation

The key hypothesis which motivates this proposed algorithm is that bigraph matching in-
stances share a strong similarity in properties and behavior to graph matching problems such
as SIP, as long as extra constraints to ensure that the additional bigraph rules introduced by
interfaces and composition/decomposition rules still hold can also be enforced. As outlined
in Section 2.4.3, using a dedicated high-level subgraph solving tool like GSS has numerous
potential advantages over existing bigraph tools through being able to perform additional rea-
soning on degrees, as well as supporting neighbourhood degree sequencing, all-different fil-
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tering and supplemental graphs. In addition, a high-level constraints-based approach allows
for the application of efficient heuristics which are optimized for graph problems [38, 49].
There exist some obstacles to this approach: graph matching tools generally do not support
the complexities introduced by the bigraph formalism such as hyperedges or a two-tier graph
model.

While Gassara et al.’s ranked graph approach (Section 2.5.4) involves a similar strategy of
encoding bigraphs into graphs (with interfaces), this is performed as part of a wider reduction
from the full BRS to a GTS rewriting system, and hence does not provide the underlying
dedicated matching algorithm itself (Section 2.1.1) but rather the framework to execute a
BRS using a graph transformation toolkit. This method also requires tight coupling from the
BRS to the GTS to be able solve bigraph matching in this manner, rather than being able
to treat the solver as an abstract “black box” matching component within a wider toolkit —
retaining the existing wider bigraph-focused framework in a state of the art BRS such as
BigraphER. Hence, we are interested in devising a dedicated optimized SIP-based algorithm
exclusively for performing matching, which is able to take the pattern and target bigraph
as input and return the solution without any wider dependencies. This would the solver to
support any existing BRS tool, where it can “swap out” any previously relied-upon SAT,
PB or other types of solvers typically used for bigraph matching without affecting how the
higher-level bigraph framework will function. Thus, the main contribution of this proposed
approach is an extensible and portable standalone algorithm for bigraph matching, based on
the strategy of encoding bigraphs to graphs.

In order for a SIP solver to be able to solve bigraph matching, we propose that the prob-
lem can be reduced into an instance of SIP through an encoding from bigraphs to a more
standard graph format in such a way that the extra complexity and behavior of bigraphs
are still retained in the transformed structures. This encoding is performed via two main
steps—firstly, an initial encoding function is defined which transforms a place graph into a
forest graph (removing/replacing interface components), and additional conditional degree
constraints are added to each vertex which enforce either “must have an in/out degree of at
least n” if connected to the inner/outer face respectively and “must have in/out degree equal
to n” otherwise, which models only allowing additional edge if that entity can potentially
join to another entity through composition. This demonstrates that matching of place graphs
can be treated as a hybrid of induced and non-induced SIP, evaluated upon a vertex by ver-
tex case. Secondly, the hyperedges of the link graph can then be flattened into the encoded
graph through representing them as cliques of edges between adjacent entities, producing a
flattened graph which is now in a sufficient graph format to give to a SIP solver as input.

Additional labelling constraints and degree constraints are handled through a vertex com-
patibility function, which eliminates invalid pattern-target vertex pair matches before search.
While this is sufficient to ensure that every solution in a bigraph matching instance corre-
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sponds to a SIP solution, some false solutions may also potentially occur due to an edge case
related to regions in the pattern place graph, and duplicate solutions may occur from symme-
tries which are introduced by our the cliques-as-hyperedges strategy. The former is handled
by adding one additional constraint which ensures that for all pattern vertices that share a par-
ent region, their set of matched target vertices must also share the same (or no) parent. The
latter can handled by either nogood constraints or symmetry breaking constraints; we pro-
vide a strategy (and later working implementation) using both methods. Dealing with these
is enough to guarantee a bijection of solutions between an instance of bigraph matching and
its encoded SIP instance.

We now go on to more formally describe these encoding and flattening functions. These
assume that the input bigraph is both solid and that the instance is non-trivial—that is, there
exists at least one entity in both the pattern and target.

3.2 Place Graph Encoding

The place graph encoding functions take an input bigraph and produce the graph (V,E)

where V is a set of vertices and E a set of edges. Additional constraints are specified with a
compatibility function ℓp which we define in Section 3.2.3.

Importantly, two separate functions must be specified for the encoding process of the pattern
and target place graphs in order to allow matching constraints conditional upon region and
site adjacencies in the pattern to be sufficiently modelled.

3.2.1 Pattern Place Graph

To identify the necessary constraints, we begin by considering the most basic case of bigraph
matching—where neither the pattern nor target contain any regions or sites, i.e. the place
graphs solely consist of entities in a directed forest graph structure. In this case, when passing
the pattern and target place graph directly into a SIP solver, it will identify all instances of the
structure of P occurring in T , one of the necessary requirements of a valid match. However,
when no abstractions exist, the only way T = C ◦ (P ⊗ id) ◦D can hold is if T = P ⊗ A

for some disjoint bigraph A, as there exists no interface for composition onto P and thus the
context and parameter must be left empty. We can deduce from this that when modelled as
SIP, all trees in the forest of P must match to an isomorphic tree in T—and more specifically,
each vertex p ∈ P can thus only match to a vertex t ∈ T if they share the same number of
both incoming and outgoing adjacencies. From this, we can reason that this additional degree
equality constraint must hold for all p which does not have an edge to or from an interface
node.
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Figure 3.1: Example pattern place graph encoding—regions/sites removed and degree con-
straints introduced.

Figure 3.2: Example matching instance with the introduction of abstractions in the target.
Neither match is possible here without the corresponding abstraction existing in the pattern.

Now we consider the introduction of regions and sites into the pattern graph. While we want
to remove these abstractions from the structure as they cannot be encoded into a tangible
vertex to be matched, their positions and adjacencies in the graph are still key to be able
to determine what can be considered a valid composition. When an entity has a region as
its parent, this indicates that there exists an opening that permits composition with an entity
adjacent to the inner face of the context C. Conversely, when an entity is pointing to a
site (recalling that solid bigraph entities may only have up to one child site), this permits
composition with any number of entities (including none) via a region on the outer face
of the parameter D. We can therefore reason that in cases where prnt(p) ∩ n ̸= ∅ or
prnt−1(p) ∩ m ̸= ∅ for some p ∈ P , the proposed degree constraints on entities should be
more relaxed to accurately model the bigraph composition logic.

Let P P = (VP , ctrlP , prntP ) : i→ j be a concrete place graph representing the pattern of a
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bigraph matching instance. We define our pattern encoding function as

ϕP : P P 7→ (V,E)

The place graph is stripped of its sites and regions in addition to any adjacencies to/from
them, as they do not represent a concrete component to be matched onto the target Formally,
the encoding produces the following graph:

V = VP

E = {(u, v) ∈ prnt−1
P | v /∈ i, u /∈ j}

An example application of this encoding is provided in Figure 3.1.

Each node in the pattern is assigned up to two unary degree constraints in the compatibility
function (Section 3.2.3), which restrict their in/out degrees respectively. All entities which
have no direct adjacencies to any abstract nodes must match in/out degrees exactly, and thus
are assigned equality constraints for each.

Nodes adjacent to a region are left unconstrained, to allow an additional potential incoming
edge. Similarly, nodes adjacent to a site are instead assigned a more lax ≥ constraint on
the out-degree count of the node to allow additional potential outgoing edges. This method
of encoding allows us to model the behaviour of abstractions on connecting entities without
requiring them to physically exist in the graph structure, making it compatible as an input
pattern graph for SIP.

3.2.2 Target Place Graph

Now we consider the addition of regions and sites into the target graph. Similarly to the
place graph encoding, these abstractions will never correspond to a mapping as they repre-
sent interfaces for composition rather than nodes that we are interested in directly matching.
However, their presence still impacts what can be considered a valid match, as seen in Fig-
ure 3.2—particularly, an entity adjacent to an interface node cannot match to an otherwise
identical entity which lacks an adjacency to the same interface, as these must be preserved to
produce T after composition. To handle this case, we encode regions and sites as “dummy”
vertices that will never be compatible with any nodes in the pattern and so will never ap-
pear in mappings for any solution—however, their edges will still contribute to the in and
out-degree values of their children and parent respectively, which is sufficient to filter any
false positive matches and model the expected behavior of bigraph matching whenever this
occurs.
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Figure 3.3: Example target place graph encoding—regions/sites are replaced with unmatch-
able vertices (shown as R and S but have no label in the encoding). Vertices show control
labels.

Let T P = (VT , ctrlT , prntT ) : m→ n be a concrete place graph representing the target of a
bigraph matching instance. We then define our target bigraph encoding function as

ϕT : T P 7→ (V,E)

The abstract components of the place graph are replaced with an additional vertex with a
“dummy” label to ensure they will never be matched to, while retaining their adjacency
relations. Formally, the encoding produces the following graph:

V = VT ⊎ {ri | i ∈ n} ⊎ {si | i ∈ m}

E = prnt−1
T

where prnt−1
T is the child relation. We encode them in this manner in order to preserve

the in/out degree values of their parent/child entities, which is required for preserving the
compositional property of bigraph matching in the encoded graph and its corresponding
constraints. An example application of this encoding is provided in Figure 3.3.

3.2.3 Place Compatibility Function

Additional bigraph specific constraints are handled by the place compatibility function:

ℓp : VG × VH → {t, f}

This identifies prior to search whether a specific pair of vertices (p, t) belonging to the pattern
and target respectively can potentially—or never—be matched in a solution, based on their
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controls and adjacencies.

In the definition of this function, we refer to some bigraph definitions specified in Section
2.3 for both the pattern and target bigraphs. For clarity we define ℓp over the original bigraph
entities e.g. u ∈ VP , although formally ℓp is over their encoded SIP graph vertices e.g.
v ∈ VG, where v = ϕP (u).

ℓp can be defined as a combination of two sub-functions (ℓp1∧ℓp2), for checking control/label
compatibility and conditional degree compatibility based on the presence of sites/regions
respectively.

ℓp1(u ∈ VP , v ∈ VT ) =

t if ctrlP (u) = ctrlT (v)

f otherwise

Simply states that entities must maintain their controls, which can be enforced by encoding
each control to a corresponding vertex label.

For ℓp2 , we define δ− : Vp → N as the number of vertices u ∈ EP where (u, v) ∈ EP such
that v ∈ VP . Likewise, we define δ+ : Vp → N as the number of vertices u ∈ EP such
that (v, u) ∈ EP . As described in Chapter 2, ordinals are used to represent the place graph
interfaces.

We then define

ℓp2(u ∈ VP , v ∈ VT ) =



t if prnt(u) ∩ n = ∅ ∧ δ−(v) = δ−(u)

t if prnt(u)−1 ∩m ̸= ∅ ∧ δ+(v) ≥ δ+(u)

t if prnt(u)−1 ∩m = ∅ ∧ δ+(v) = δ+(u)

f otherwise

where m and n are the sites/regions of the pattern bigraph. The vertex compatibility function
replaces the regions/sites with the semantics of how they should be matched, e.g. that entities
connecting sites can have any number of additional children including none, but entities
without sites must match out-degrees exactly.

Within the context of a constraint programming model, this function is called as a polyno-
mial pre-process step before the main search loop is performed. All (u ∈ VP , v ∈ VT )

pattern/target pairs are compared, and v is removed from the domain of u if f is returned.

3.2.4 Dealing With Multi-Child Regions

This encoding is almost sufficient to fully model bigraph matching, however there remains
one edge case where the encoded SIP instance might find a false solution that does not respect
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Figure 3.4: (P, T1) is a matching instance which includes a region with multiple children.
A valid mapping exists as node C can be encapsulated by the region. (P, T2) is a similar
matching instance with no valid solution, where our current encoding will return a false pos-
itive without further constraining all children of a region to have the same value of prnt(p).

bigraph composition. Whenever a subset of entities UP ⊆ P, |U | ≥ 2 all share the same
region value prnt(u ∈ UP ) = k, then this indicates that the value of prnt(match(u)) ∈ T

for all matches of UP must also be the same, in order to ensure that the region merges with
a single site in the context or identity during composition. This cannot be enforced by the
encoding itself as we lose the necessary information from discarding regions. In Figure 3.4,
a valid match can be found for matching instance (P, T1) as node C can simply be joined
onto the region of P in the context a s part of the composition, respecting its incoming edges.
For instance (P, T2) however, neither C nor D can be encapsulated by the region, as neither
entity’s set of children contains the full child set of R - therefore no valid match exists.

It may be possible to build a domain-specific solver to allow conditional matching in this
special case, i.e. encoding the shared region as a vertex that can match to any (or no) target,
however resorting to this method would contradict our initial hypothesis that matching can
be solved by using an existing SIP solver (which supports direction and labelling) with ad-
ditional constraints. We instead handle this necessary edge case by enforcing the following
extra constraint on all pattern entities belonging to a shared region:

{∀va, vb ∈ VP | prnt(va) = prnt(vb) = r ∈ n} → prnt(match(va)) = prnt(match(vb))

where we denote a mapping of v ∈ VP to a target vertex as match(v) ∈ VT for a candi-
date/partial solution. This enforces that a solution is only valid when the set of children of
each region’s corresponding set of matches are either also siblings or orphans together.
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Figure 3.5: An example of flattening of open links—links become cliques between port
vertices. Bidirectional arrows indicate a pair of directed edges between the vertices.

Figure 3.6: An example of flattening of closed links—edges are explicitly encoded as addi-
tional vertices to be matched, with a degree constraint to preserve the closure.
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3.3 Link Graph Encoding

Once a place graph has been produced, we can then flatten the hyperedges in the link graph
into our encoding so we can treat links as vertices in the resultant graph. In the case of
bigraph matching, matching of open links is non-injective—that is, multiple open links in
the pattern can “merge” and map to the same target link, but most methods for solving SIP
do not support non-injective matching of vertices. This thus denotes the key challenge of
modelling link graphs in a standard graph format.

A known method of reducing graph problems which include hyperedges into a more standard
graph format is to flatten them into some form of clique format between adjacent vertices
of each hyperedge [68]. The most simple way of achieving this is to draw labelled undi-
rected edges between all pairs of vertices that share a hyperedge adjacency, however this is
not sufficient to model the added complexity of the different behaviors of open and closed
links, as well as encoding hyperedges of cardinality 1 which can exist in a bigraph matching
instance. Instead, we look toward explicitly encoding the ports of each entity as specially
typed child vertices where hyperedges are encoded as cliques between all ports, i.e. if a pair
of ports share a link in the bigraph they share a link in the flattened representation. Because
controls define the arity (number of ports) of each entity, a matching (p ∈ P, t ∈ T ) pair
of the same type will always have a matching set of child link nodes, so we can represent
ports this way without ever ruling out any potentially valid solutions. This flattening of hy-
peredges sufficiently models link graph matching for open links without the need for any
additional constraints, as it encodes the expected behavior which only allows any pair of
component pattern entities within a link to match to a pair of target vertices if there exists a
similar shared link adjacency. This encoding is sufficient to model the non-injective property
of open link matching; many links in the pattern can match to the one link in the target as
they can be merged in the context, and thus our encoding similarly allows many of these
link node cliques to match to the nodes that make up one larger clique as long as there is
sufficient space between ports. While these nodes are explicitly matched during SIP, their
assignments are omitted from any resultant solutions found as they do not count toward the
support of a bigraph. It can also be noted that through this encoding, links in the pattern and
the target can this be flattened using the same function, unlike place graph edges.

This method of encoding links also helps to more easily distinguish between place and link
graph edges and allow us to model their behavior separately without requiring support for
edge labelling. Edges pointing toward link vertices formally do not count toward the vertex
degree constraints required to model the matching of place graphs in our encoding, however
this conditional check is not required in practice as this encoding method simply increases
the total out-degree of all matching vertices between P and T by the same amount and thus
will always still permit a match.



3.3. Link Graph Encoding 49

3.3.1 Open Link Flattening

Let BL be a concrete link graph: (VB, EB, ctrlB, linkB) : X → Y , and ϕ{P,T}(D
P) :

(VD, ED) be a (pattern or target) encoding of a place graph DP. We define the flattening
function

ϕf : ϕ{P,T}(D
P)×BL 7→ (V,E)

where given an encoded place graph, a new flattened graph is produced.

We wish to explicitly model ports of entities, thus for every entity with an arity value of k, the
flattening function will add k specially labelled link vertices as a child of the encoded entity
vertex. The label compatibility constraints enforced by the vertex compatibility function
ensure that these vertices can only ever to each another. Each link is then represented by
building a bidirectional clique between the encodings of all the ports it occupies, to model
the property of each port in the hyperedge being adjacent to one another.

An example of the flattening function is shown in Figure 3.5, where all links of cardinality
n are represented by an n-clique of specially-typed link nodes. It can be observed that this
allows hyperedges of cardinality 1 to be represented as a single child link node with no
additional adjacencies.

3.3.2 Closed Link Flattening

Whilst converting links to cliques between port vertices is sufficient to encode open links,
closed links are subject to additional constraints.

Since closed edges count toward the support of a bigraph, we wish to model these in a
way that we can explicitly match them to other closed edges in the target and include these
assignments in an output solution. Closed links cannot match to open links as they cannot be
“opened” again during composition. Intuitively, this requires the introduction of at least one
additional specially typed vertex into our encoding to represent the mapping of closed links.
A closed edge in the pattern can also only match to target closed edges with isomorphic
adjacency sets—that is, for every n ports of p ∈ P connected to a closed edge e ∈ P ,
match(e) ∈ T must be adjacent to n ports of match(p) ∈ T . This can be modelled by
constraining the matching of closed links to only those of equal degree, and their associated
adjacencies will then match via conventional SIP rules. In addition, open links in the pattern
can still match to closed edges similarly to they would a target open link, provided that it
is not already occupied by a closed pattern edge, so our method of flattening these cannot
diverge from our current clique encoding format.

This additional property of links can be modelled in the encoding itself by adding a new
uniquely-labelled type of vertex—which we denote as a closure vertex— as a member of the
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encoded clique of each closed link representation. Closure vertices are given an additional
equal-degree constraint to enforce the constraint that only closed-to-closed matches are pos-
sible if their cardinality is the same size (ensuring isomorphism through matching of their
adjacent entities), whilst ensuring the matching of open links in the pattern to closed links
in the target remains otherwise unaffected. The encoding for a link graph featuring closed
edges is shown diagrammatically in Figure 3.6.

3.3.3 Formalisation of Flattening

Given the concrete link graph

BL : (VB, EB, ctrlB, linkB) : X → Y , and the encoding of a (pattern or target) place graph
D ϕ{P,T}(D

P) : (VD, ED), where (where VB = VD), we define the flattening function as
follows:

ϕf : ϕ{P,T}(D
P)×BL 7→ (V,E)

The vertices of the resultant flattened graph can be described as:

V = VD ⊎ PB ⊎ ÊB

ÊB = {e ∈ EB | linkB(p) = e, p /∈ X}

where ÊB is the set of closed links in BL, PB are the ports of BL (defined in Definition X),
and one closure node is added for all closed links. We re-use the bigraph edge identifier as a
vertex identifier in the flattened graph.

We describe the resultant edge set as follows:

E = ED ⊎ {(v, p) | p = (v, i) ∈ PB} ⊎ {(p1, p2) | p1, p2 ∈ PB,

linkB(p1) = linkB(p2)} ⊎ {(p, e) | e ∈ ÊB, linkB(p) = e}

For each pair of ports that share a link i.e. (p1, x), (p2, x) ∈ linkB for some x ∈ {ÊB ⊎ Y },
this adds two additional directed edges (p1, p2) and (p2, p1) between their encodings which
builds the resultant clique structure between all ports adjacent to x. For closed links in
particular, one additional edge (p, e) is added for each encoded e ∈ Ê where (p, e) ∈ linkB.

Finally we extend the vertex capability function for place graphs ℓp (3.2.3) to include extra



3.3. Link Graph Encoding 51

link constraints:

ℓ(u, v) = ℓp(u, v) ∧


t if u ∈ PP ∧ v ∈ PT

t if u ∈ ÊP ∧ v ∈ ÊT ∧ deg−(u) = deg−(v)

f otherwise

This expresses that ports can only map to ports, and closure nodes can only map to closure
nodes with the exact same in degree, where deg− is the standard in-degree function.

3.3.4 Full encoding

We present a full encoding of a bigraph matching instance as SIP in Figure 3.7, which in-
cludes regions and sites in the place graph and open/closed hyperedges in the link graph. It
can be observed that the same two solutions exist here for both the original matching prob-
lem and our SIP representation, from A to A and C to either target C entity. The open links
of C in P can also be assigned to either the open links of the target C nodes or the closed
link e0, but we do not consider this difference to constitute as a separate solution in bigraph
matching, which is only concerned with mapping the support constituents of P .

3.3.5 Removing Clique Symmetries

In the bigraph matching problem, while all open pattern links must be non-injectively as-
signed to target links, these mappings are not included in the embedded form of a solution—
thus, it can be inferred that uniqueness of solutions is determined by the support mapping
(entities and closed links) from P to T . Therefore for any two solutions identified by SIP
which only differ in matches between encoded port nodes, one must be treated as a “du-
plicate” and discarded rather than incrementing the solution count when enumerating all
solutions of an instance to ensure the bijective relation between matching and SIP. An exam-
ple instance is provided in Figure 3.8, where it can be observed that this can occur whenever
multiple ports of an entity share an adjacency with the same hyperedge, and thus produce
symmetrical link nodes in the corresponding clique. To distinguish these new symmetries in-
troduced by our link graph encoding from our definition of symmetrical bigraphs and bigraph
intra-symmetries given in Chapter 2, we refer to these going forward as clique symmetries.

While these duplicate solutions are easy to detect and remove after search has completed for
any SIP solver (filter any additional solutions where all support vertices are identical to a
previous solution), these new symmetries can also be identified and eliminated during search
in a constraint programming context via two methods; either through the use of nogood
recording constraints to disallow solutions that only differ in their link node assignments,
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Figure 3.7: (a) An instance of bigraph matching, where P and T are shown as directed
forests with additional hyperedges. (b) The fully encoded and flattened instance represented
as a SIP with extra degree constraints.
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or by introducing additional symmetry breaking constraints between pairs of link nodes to
enforce that only one solution in each set of symmetrical assignments will ever be found. We
define the corresponding new constraints using each method as fellows.

Nogood Recording

In our initial algorithm, we call upon exploiting nogood constraints to remove symmetries on
link cliques by dynamically inserting the following new constraint into the model for every
newly discovered valid solution.

Given the subset of a complete SIP solution in the form of the set of assignments:

{(v1,match(v1)), (v2,match(v2)), ..., (vn,match(vn))}

for encoded pattern nodes v ∈ ϕP (VP ⊎EP ) that correspond to a support element, all subse-
quent solutions must adhere to:

((v1 ̸= match(v1)) ∨ (v1 ̸= match(pn)) ∨ ... ∨ (vn ̸= match(vn)))

This records the assignments of the place graph vertices and closure vertices such that any
future solutions found during search with an identical set of assignments will be disregarded
by the solver. This ensures that the set of solutions found by the SIP solver for an encoded
bigraph matching instance will always bijectively match the set of solutions found by existing
bigraph tools. A disadvantage of this method however is that the solver can only detect clique
symmetries using nogoods when all support vertices have already been assigned deep in the
search tree when this could be potentially detected earlier. This can also only be applied when
the solver already supports dynamic constraints and/or nogood recording. Thus, we look
toward a more intuitive way of eliminating clique symmetries using constraints statically
defined before search.

Symmetry Breaking Constraints

Symmetry breaking constraints are a type of optimization constraint which disallow any
occurrences of symmetrical solutions (i.e. graph symmetries/isomorphisms, matrix rotations)
in the returned solution set of a CSP by identifying and preliminarily removing them at
propagation time [42]. These are expected to be more performance efficient when compared
to a nogood constraint filtering technique in this case, where we require a full candidate
matching of support nodes to be found before they can be enforced as opposed to eliminating
symmetries earlier in search and reduce the overall search space traversed.
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Figure 3.8: A simple example flattened link graph matching instance with explicit identifiers
shown on link nodes. There exists one bigraph matching solution {(A,A), (B,B)}, but two
SIP solutions due to both (L1, L1), (L1, L1) and (L1, L2), (L2, L1) being possible mappings
on link nodes.

Rather than relying on an underlying constraint solver having to support nogoods to remove
duplicate solutions introduced by our clique encoding, we employ the more intuitive sym-
metry breaking approach by introducing additional constraints between pairs of link nodes
in the flattened pattern bigraph. We make use of “less than” constraints, which enforce that
the value of some pattern node p1’s mapped target id must be strictly less than that of p2’s
mapping, to ensure that only one possible permutation of link node assignments within a
clique will be considered a valid match.

As seen in Figure 3.8, while one matching solution exists, two SIP solutions will be found
due to the symmetry between link nodes L1 and L2 in P . It can be observed that these sym-
metries are introduced whenever multiple ports (and thus encoded link nodes) of the same
entity occupies the same hyperedge, so we wish to define a symmetry constraint between all
pairs of link nodes that meet this criteria. It is not sufficient to consider only link vertices
inside cliques however, as any pair of link nodes which share the same parent entity but do
not belong to any clique at all (hanging links where its source has no other connections) will
also introduce a symmetry and must be similarly broken. It can be observed in Figure 3.8.
that even if the (L1, L2) and (L2, L1) edges were removed from the flattened pattern, the
SIP instance will still return the same two symmetrical solutions. These particular pairs of
link node siblings can be considered to be making up a clique of non-edges in this case. We
formally introduce our new constraint as

{∀p = (v, a), q = (v, b) ∈ PP | (a < b) ∧ ((link(p) = link(q)) ∨

(|link−1(link(p))| = |link−1(link(q))| = 1))} →

match(p) = (t, i), match(q) = (t, j), i < j

where match(p ∈ PP ) indicates the the mapping of the encoded vertex vp ∈ VP modelling
p to a target link node vt ∈ VT which models a port t ∈ PT .

In practice however, this does not need to be applied to all possible pairs of link nodes due
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to the transitive property of less-than constraints—i.e. if pa < pb and pb < pc hold for some
clique nodes in a solution then a separate constraint to enforce a < c is unnecessary. Thus
for each set of n symmetrical link nodes, only n−1 less-than constraints applied in sequence
to pairs

∑n−1
k=0(pk, pk+1) are sufficient to fully break all possible clique symmetries that occur

in the encoding [69].

An additional benefit to using symmetry breaking over the dynamic nogood recording method
is that a fully static constraint model would be more compatible with uniform sampling al-
gorithms for approximating solution counts on very large instances, as a potential avenue for
future work (Chapter 7).

3.4 Encoding Size

Overall, upon being provided with a pattern and target bigraph, our SIP encoding pro-
duces a pattern and target graph with the following number of nodes and edges, where
|e| = |link−1

G (e) ∩ PG| is the number of ports that a hyperedge e ∈ EG occupies, i.e. their
cardinality when excluding faces.

Pattern bigraph P : ⟨i,X⟩ → ⟨j, Y ⟩

|V | = |VP |+ |PP |+ |ÊP |

|E| =
∑
v∈VP

δ−(v) + |PP |+
∑
e∈EP

|e| · (|e| − 1) +
∑
e∈ÊP

|e|

Target bigraph T : ⟨n,X ′⟩ → ⟨m,Y ′⟩

|V | = |VT |+ n+m+ |PT |+ |ÊT |

|E| = |VT |+ n+ |PT |+
∑
e∈ET

|e| · (|e| − 1) +
∑
e∈ÊT

|e|

The SIP encoding hence requires only a number of nodes and edges, scaling linearly for
nodes and in the order of O(|e|2) for edges through our clique representation of hyperedges.
This demonstrates an improvement upon the clause generation scalability of O(|VP |2|VT |2)
provided by BigraphER’s SAT solver, although this does not yet consider that SAT addition-
ally supports the bigraphs with sharing extension—we later demonstrate however that SIP
with sharing does not impact the linear scaling of vertices/quadratic scaling of edges in the
encoding and thus this remains a fair comparison (Section 4.2.4).
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3.5 Soundness and Completeness

We now provide a proof of soundness and completeness of our algorithm. Soundness is
proven by demonstrating that any solution identified by the SIP model corresponds to an in-
stance of a match within bigraph matching. Conversely, completeness is proven by showing
that when a solution exists in an instance of bigraph matching, our algorithm will also find a
corresponding match in the SIP encoding.

We describe each instance of a solution for bigraph matching and SIP as an injective set
of (p, t) pairs denoting the mapping of each pattern support component and vertex to those
in the target bigraph and graph respectively. Thus we wish to prove that for any matching
solution

Sbig = {(p1, t1), ..., (pn, tn)}

the corresponding encoding will produce a solution

SSIP = {(p′1, t′1), ..., (p′n, t′n)}*

with a bijective relation between (pk, tk) and (p′k, t
′
k), and vice-versa.

We begin by making the following observations about the properties of bigraph composition,
which are subsequently used to build our proofs.

Proposition 1. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

if v ∈ VB and prntB(v) /∈ k then prntB(v) = prntG(v).

This states that if an entity in B has a non-region parent then it will have the same parent
in G, and conversely if it has no parent it will still have no parent in G. This can be simply
proven by referring to the definition of place graph composition (Definition 2.3.9) where
prntG(v) = prntB(v) ⇐⇒ prntB(v) ∈ VB. As a corollary, we deduce that if prntB(v) /∈
k then |prntB(v)| = |prntG(v)|.

Proposition 2. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

for v1, v2 ∈ VB if prntB(v1) = prntB(v2) then prntG(v1) = prntG(v2).

*Excluding mappings of port nodes, which can only have up to one permitted combination (Section 3.3.5)
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This states that sibling entities in B remain siblings in G. By Definition 2.3.9, if prntB(v1) =
prntB(v2) = v′ ∈ VB, then prntG(v1) = prntG(v2) = v′. Alternatively, if prntB(v1) =

prntB(v2) = k ∈ r then prntG(v1) = prntG(v2) = prntA(r).

Proposition 3. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

if v ∈ VA then prnt−1
A (v) ⊆ prnt−1

G (v).

This states that every child of a vertex in A will also be a child of the same vertex in G.
This can again be proven by referring to Definition 2.3.9 where for any entity, prntG(v) =
prntA(v) ⇐⇒ v ∈ A. As a corollary, we deduce that |prnt−1

A (v)| ≤ |prnt−1
G (v)|.

Proposition 4. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

if v ∈ VA and prnt−1
A (v) ∩ k = ∅ then prnt−1

A (v) = prnt−1
G (v).

This states that if a vertex in A has no site, then its set of children will be isomorphic to
its set of children in G. We know by Proposition 3 that prnt−1

A (v) ⊆ prnt−1
G (v), thus to

prove this we hypothesize the presence of an additional entity v′ where prntG(v
′) = v. If

v′ ∈ VA and prnt−1
A (v′) ̸= v, then by Definition 2.3.9 it follows that prnt−1

G (v′) ̸= v which
is a contradiction. Alternatively, if v′ ∈ VB, then by Definition 2.3.9, prntG(v′) ∈ A only
if prntB(v

′) = o ∈ k and prntA(o) = prntG(v
′) to allow the bridging of place graphs

during composition. Our initial proposition states that v has no site adjacency, therefore
prntG(v

′) ̸= v always holds, contradicting our hypothesis and proving our proposition by
contradiction. As a corollary, we deduce that |prnt−1

A (v)| = |prnt−1
G (v)| when prnt−1

A (v) ∩
k = ∅.

Proposition 5. Given the composition of two link graphs

G : X → Y = (A : Z → Y ) ◦ (B : X → Z)

for any p1, p2 ∈ PB, if linkB(p1) = linkB(p2) then linkG(p1) = linkG(p2).

This states that if two ports share a link in B then they will also share a link in G. This is
proven by the definition of link graph composition (Definition 2.3.10), where if linkB(p1) =
linkB(p2) = e ∈ PB, then linkG(p1) = linkG(p2) = e. Alternatively, if linkB(p1) =

linkB(p2) = z ∈ Z, then linkG(p1) = linkG(p2) = linkA(z).
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Proposition 6. Given the composition of two link graphs

G : X → Y = (A : Z → Y ) ◦ (B : X → Z)

for any p ∈ PB and e ∈ EB, linkG(p) = e if and only if linkB(p) = e.

This states that a port in B is linked to an edge if and only if they are also linked in G.
Firstly, from Definition 2.3.10, linkB(p) = e ∈ EB =⇒ linkG(p) = linkB(p), therefore
linkG(p) = e. Secondly, we prove that linkB(p) = e ⇐= linkG(p) = e by hypothesizing
a p ∈ PB, e ∈ EB such that linkG(p) = e but linkB(p) ̸= e. This would instead mean
linkB(p) = x ∈ (Z ⊎ EB)/{e}. If this were the case, then by link graph construction,
either linkG(p) = x ̸= e if x ∈ EB which is a contradiction, or linkG(p) = linkA(x)

if x ∈ Z. However as linkA(x) exists in A, then it cannot be e ∈ EB which contradicts
our hypothesis and proves our proposition by contradiction. As a corollary, we deduce that
|link−1

G (e) ∩ PG| = |link−1
B (e) ∩ PB|.

3.5.1 Soundness

Given an instance of bigraph matching (P, T ) with a SIP encoding (ϕf (ϕP (P )), ϕf (ϕT (T )))

for which there exists a solution in the form of the injective mapping SSIP = {(p′1, t′1), ..., (p′n,
t′n)}, we wish to prove that this corresponds to a matching solution T = C ◦ (P ⊗ id) ◦ D
in the form of an injective embedded mapping Sbig = {(p1, t1), ..., (pn, tn)} from all support
elements p ∈ P to a support element t ∈ T , where v′k is the encoded form of a support
element vk. We prove this by construction, beginning with a SIP encoding with the valid
solution SSIP .

We first consider the place graph encodings. The entities of the target place graph T =

(VT , ctrlT , prntT ) : k → l and relations between them can be constructed from ϕT (T ) as
follows:

VT = {t′i ∈ VϕT (T ) | ℓ(t′i) /∈ {root, site}},

{∀ti ∈ VT | ctrlT (ti) = ℓ(t′i)}

{∀(ta, tb) ∈ VT | (t′a, t′b) ∈ EϕT (T ) → prnt(tb) = ta}

The interface of the target place graph can be constructed by collecting all vertices in ϕT (T )

labelled root or site into respective numbered lists R = {r1, ..., rl} and S = {s1, ..., sk} and
adding a corresponding abstraction to T for each such that (ri, v′) ∈ EϕT (T ) → prnt(v) = i

and (v′, si) ∈ EϕT (T ) → prnt(i) = v.

The entities of the pattern place graph P = (VP , ctrlP , prntP ) : m → n and their relations
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can then be constructed from ϕP (P ) as follows:

VP = VϕP (P )

{∀pi ∈ VP | ctrlT (pi) = ℓ(p′i)}

{∀(pa, pb) ∈ VP | (p′a, p′b) ∈ EϕP (P ) → prnt(pb) = pa}

The interface of P can then be constructed by looking at degree constraints on vertices. Any
vertex p′ which has no degree constraint on its in-degree indicates prnt(p) = r ∈ n, and if
it has a ≥ constraint on its out-degree then prnt(o ∈ m) = p. Additionally, if for any pair
(p′a, p

′
b) ∈ VϕP (P ) which both vertices have no in-degree constraint and prnt(ta) = prnt(tb),

then prnt(pa) = prnt(pb) = r ∈ n. This is sufficient to construct the n regions and m sites
of P .

We now build C and D in adherence to the compositional property of place graphs in Defi-
nition 2.3.9 as follows:

1. {∀pi ∈ VP | prntP (pi) = r ∈ n} → prntT (ti) ∈ VC , prntC(r) = ti

2. {∀pi ∈ VP , tj ∈ VT | prnt−1
P (pi) ∩m = s, prnt(tj) = ti, t

′
j /∈ SSIP} →

tj ∈ VD, prntD(tj) = m

3. {∀ti ∈ VT | prntT (ti) ∈ VD} → ti ∈ VD, prntD(ti) = prntT (ti)

4. {∀ti ∈ VT | ti /∈ VP , ti /∈ VD} → ti ∈ VC

5. {∀ti ∈ VC} → prntC(ti) = prntT (ti)

This is sufficient to build the T = C ◦ (P ⊗ id) ◦ D decomposition on the place graph,
retaining all parent relations.

We now consider the flattened link graphs. A link graph G = (VG, EG, ctrlG, linkG) :

X → Y ∈ {P, T} can be constructed from ϕf (G) as follows.

VG = {g′ ∈ ϕf (G) | ℓ(g′) /∈ {link, closure}}

PG = {g′ ∈ ϕf (G) | ℓ(g′) = link}

EG = {g′ ∈ ϕf (G) | ℓ(g′) = closure}

{∀g ∈ VG | ctrlG(g) = ℓ(g′)}

{∀(g′a, g′b) ∈ Eϕf (G) | ℓ(g′a) = ℓ(g′b) = link} → linkG(ga ∈ PG) = linkG(gb ∈ PG)

{∀(g′a, g′b) ∈ Eϕf (G) | ℓ(g′a) = link, ℓ(g′b) = closure} → linkG(ga ∈ PG) = gb ∈ EG

As we discard idle edges for matching, we only need to rebuild the outer face of G, which can
be constructed by adding a new outer name as a sink for each g ∈ PG where linkG(g) /∈ EG,
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respecting the property that ports share a name when their flattened nodes share a clique.
This is sufficient to build the link graphs of P and T .

As the place graph construction already assigns all target entities to either C, P or D, we
assume this has been already performed. We now build the links of C and D in adherence to
the compositional property of link graphs in Definition 2.3.10 as follows:

• {∀p ∈ PP | linkP (p) = y ∈ Y } → linkC(y) = linkT (p)

• {∀p ∈ PD | linkT (p) /∈ D} → linkD(p) = x ∈ X, linkid(x) = x′ ∈ Y,

linkC(x
′) = linkT (p)

• {∀p ∈ PC} → linkC(p) = linkT (p)

• {∀e ∈ ED} → link−1
D (e) = link−1

T (e)

This thus builds the T = C ◦ (P ⊗ id) ◦D decomposition on the ports and edges of the link
graph. This concludes our proof by construction.

3.5.2 Completeness

Given an instance of bigraph matching (P, T ) where T = C ◦ (P ⊗ id)◦D for solid bigraphs
P and T where |P | > 0 and |T | > 0, and there exists a solution in the form of an injective
embedded mapping Sbig = {(p1, t1), ..., (pn, tn)} from all support elements p ∈ P to a sup-
port element t ∈ T , we wish to prove that a parallel solution SSIP = {(p′1, t′1), ..., (p′n, t′n)}
exists in the SIP instance (ϕf (ϕP (P )), ϕfϕT (T )), where v′k is the encoded form of a support
element vk.

Assume that there exists a valid composition T = C ◦(P⊗id)◦D with an embedding Sbig =

{(p1, t1), ..., (pn, tn)}, where the corresponding SIP solution SSIP = {(p′1, t′1), ..., (p′n, t′n)}
is not a valid solution. This suggests that at least one of our defined model constraints are
being violated.

We first consider place graph constraints. By construction, every parent relation between
entities prnt(vb) = va in P and T is maintained through building the edge (v′a, v

′
b) in EP

and ET , thus conventional SIP rules hold. By trivial inspection, the label compatibility
function (p′k, t

′
k) will always return true for any valid embedding (pk, tk) as controls are

preserved. Propositions 1, 3 and 4 accordingly prove that the three cases considered by
the degree compatibility function will always return true for the encodings of all possible
(pk, tk) ∈ Sbig. Proposition 2 additionally proves that the extra constraint introduced to
deal with shared regions can never be violated. Thus we conclude SSIP must satisfy all
constraints on the place graph.



3.6. Summary 61

We next consider the link graph flattening. Via conventional SIP rules, if there is an edge
between flattened port nodes (v′a, v

′
b) ∈ EP in a clique encoding then there must also exist

the edge (match(v′a),match(v
′
b)) ∈ ET . Proposition 5 proves that all ports which share a

hyperedge in P will always share a hyperedge in T , adequately reflecting this property and
thus this will always hold true. Trivially, the label compatibility function (p′k, t

′
k) will always

return true on all flattened edge nodes as pk ∈ EP ⇐⇒ tk ∈ EP . Finally, Proposition
6 proves that the degree constraint on closure nodes will always return true for any valid
(pk, tk) ∈ Sbig bigraph embedding on edges. This thus exhausts all extra constraints in the
SIP model.

Our original hypothesis that a constraint violation occurs is shown to be a contradiction, and
therefore SSIP must be a valid SIP solution. This concludes the proof.

3.6 Summary

In this chapter we have presented our encoding for the bigraph matching problem into a for-
mat which can be described as SIP with additional constraints, to allow for efficient solving
via a dedicated subgraph solving framework. In Section 3.1, we discussed our reasoning
as to why this would be an intuitive and efficient way to ease the bottlenecks introduced
by the current state-of-the-art SAT encoding. In Section 3.2 we demonstrate our proposed
encoding of the place graph components of the pattern-target bigraph pair, providing alge-
braic expressions for each, as well as identifying the single edge case in our encoding which
results in false positives and introduce an extra constraint to eliminate these. In Section 3.3
we demonstrate the same for the pattern and target link graphs, observe that our encoding
introduces new clique symmetries, and provide two methods for handling and preliminarily
removing these from the solution set. Section 3.4 gives the size of the resultant encoding in
relation to the size of the input. In Section 3.5, we provide a formal proof of soundness and
completeness of our algorithm.

Up until now, we have only covered matching for pure bigraphs—that is, bigraphs with no
modification to the original specification of the data structure as described by Milner. The
following chapter covers three extensions to the bigraph matching problem, which we can
adapt our algorithm to solve with the addition of optional further constraints to handle new
potential cases introduced by their added complexity.
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Chapter 4

Bigraph Matching on Extensions

This chapter introduces two commonly used variations of the bigraph structure— bigraphs

with sharing, which allow entities and sites to have multiple parents in the place graph, and
directed bigraphs which assign polarity to hyperedges and interfaces in the link graph. We
then demonstrate how we are able to add further optional constraints onto our original SIP
model to allow support for these extensions without the need to modify our existing encod-
ing, demonstrating the extensibility and flexibility of our approach. We also add support for
checking equality between bigraphs using similar methods. To distinguish between the orig-
inal bigraph formalism and these variants, we denote bigraphs without extensions as pure

bigraphs.

In Section 4.1, we describe how we can extend our encoding method to support checking
for equality (support equivalence) between two bigraphs. Section 4.2 introduces bigraphs
with sharing, and the additional edge cases it introduces which leave our current encoding
under-constrained. We then describe how we add additional constraints to cover these cases,
and provide a formal proof of such. Section 4.3 similarly covers directed bigraphs, and the
additional constraints required to model the increased complexity introduces by direction
in the hyperedges of the link graph, also with an accompanying formal proof. Concluding
remarks are provided in Section 4.4.

4.1 Bigraph Support Equivalence

When two bigraphs G1 and G2 are support-equivalent, then the set of solutions returned upon
performing matching on them can be considered as analogous to the set of valid support
translations between them, provided that both interfaces of each graph are also matching
i.e. the same orderings of regions/sites and naming of open links are adjacent to support-
equivalent entities. Following on from this, they can be considered functionality identical
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Figure 4.1: Example instance of an equivalence check encoding, where each open link node
and abstraction are assigned unique types to ensure matching interfaces.

in any composition—for any pair of compositions on a bigraph F ◦ G1 and F ◦ G2 (or vice
versa if composing above F ), both resultant bigraph states will also share this equivalence
property. The notion of equality is important to define as transition systems must perform
this check for all rewritten states against each bigraph already present in the system whenever
a match is found, to create loop-backs and ensure no duplicate nodes are added.

Checking for equivalence in this manner can be considered the bigraph version of graph

isomorphism. In our current SIP encoding, two support equivalent bigraphs will produce a
pair of isomorphic graphs, however further constraints are required to guarantee the equality
property upon their interfaces.

4.1.1 Encoding

To model equality checking between two bigraphs G1 and G2, their place graphs are encoded
and flattened using the target encoding function ϕT as described in Section 3.2.1, since we
now wish to explicitly match all regions and sites. To ensure that equality holds, we must
introduce the following six additional constraints to their encoded forms that must all be true:

1. |VG1| = |VG2|

2. |EG1| = |EG2|

3. {∀i ∈ n | i = match(i)}

4. {∀j ∈ m | j = match(j)}

5. {∀x ∈ X | x = match(x)}

6. {∀y ∈ Y | y = match(y)}

Constraints 1 and 2 enforce that a bijective mapping must exist between the two bigraphs
by ensuring that the same number of support components exist in both. This can be trivially
determined before running the main search process by comparing the number of non-link
vertices and closure vertices in each encoding. Constraints 3 to 6 enforce that the identi-
fiers of each mapping of interface components must also be the same, e.g. region 1 in PG1
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Figure 4.2: Example instance of a concrete place graph with sharing represented as (a) its
diagrammatic form, where the shared area is shaded yellow and (b) as a DAG. Colors denote
control type.

matches to region 1 in PG2 and open link name x in LG1 matches to x in LG2 . For sites and
regions, we can encode this by giving a unique label/control to each region and site vertex
based on its ordinal value. Similarly, for each open link, we can also assign each vertex in
their corresponding flattened clique its own label that denotes which face they point toward.
Making use of labels in this way ensures that all of the required constraints can be enforced
as a pre-process. As long as these constraints hold then the SIP solver can then search for
a match in order to determine whether the support equivalence is preserved. An example
encoding is shown in Figure 4.1.

When we search for all solutions using this encoding, the solver will also identify all intra-
symmetries that exist between sets of entities in the shared structure in the form of distinct so-
lution mappings. When doing bigraph matching, we can remove all symmetries/isomorphic
solutions by running this equality check on the pattern against itself to identify all intra-
symmetries that exist, then check these against the list of matches, removing any that have
identical mappings aside from the sets of assignments included in the identified intra-symmetry.
This is useful in contexts where we only wish to enumerate all unique solutions.

4.2 Bigraphs with Sharing

4.2.1 Definition

The bigraphs with sharing formalism was first introduced by Sevegnani et al. [11] as a gener-
alization of Milner’s original formalization, where the prnt component of the place graph is
modified to a be a set of unique pairs that denote child-parent relations between entities and
interfaces, rather than a single mapping for each entity and abstract region. This allows for
entities and sites to belong to multiple parents, thus meaning they can now spatially overlap
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as shown in Figure 4.2. The place graph as a result is now a directed acyclic graph (DAG)
rather than a forest.

We formally define this generalization in the concrete context as follows:

Definition 4.2.1 (Concrete place graph with sharing). A concrete place graph with sharing

B = (VB, ctrlB, prntB) : m→ n

is a triple which has the inner face m and outer face n, indicating m sites and n regions. B
has a finite set VB ⊂ V of entities, a control map ctrlB : VB → K, and a parent relation

prntB ⊆ (m ⊎ VB)× (VB ⊎ n)

that is acyclic i.e. (v, v) ̸∈ prnt+B for any v ∈ VB, with prnt+B the transitive closure of prnt.

Composition for directed place graphs is performed in a process similar to pure bigraphs
(Definition 2.3.9), however as prnt(v) now defines a set of values rather than a single ele-
ment, prntG(v) for each v ∈ o ⊎ VB can be obtained by performing the conditional check
on each v′ ∈ prntB(v) in turn and adding the result to prntG(v). As sites can now also have
multiple parents, all parent entities of a site prntA(r ∈ k) ⊆ VA will be added to the par-
ent set of the entity with prntG(v ∈ VB) during composition when it has the corresponding
region parent prntB(v) = r. We formally define this as follows.

Definition 4.2.2 (Concrete place graph with sharing composition). Given two concrete place
graphs with sharing A : m → n and B : o → m with disjoint supports, we define the
composite place graph with sharing as

A ◦B = (V, ctrl, prnt) : o→ n

Where V = VA ⊎ VB, ctrl = ctrlA ⊎ ctrlB, and the prnt value of each site and entity
v ∈ o ⊎ V depends on the following conditions.

prnt(v)
def
=


prntB(v) if v ∈ o ⊎ VB and prntB(v) ∩ n = ∅

prntB(v) ⊎ prntA(r) if v ∈ o ⊎ VB and prntB(v) ∩ n = r

prntA(v) if v ∈ VA

The sharing extension modifies only the definition of the place graph component of a bigraph,
so we can re-use the definition of the link graph provided in Chapter 2 to build the full
definition of a concrete bigraph. This also means we do not have to take into account the link
graph or our flattened representation of it when later extending our model to support sharing.
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Definition 4.2.3 (Concrete bigraph with sharing). A concrete bigraph with sharing

B = (VB, EB, ctrlB, prntB, linkB) : ⟨k,X⟩ → ⟨m,Y ⟩

consists of a concrete place graph with sharing BP = (VB, ctrlB, prntB) : k → m and a
concrete link graph BL = (VB, EB, ctrlB, linkB) : X → Y .

As an addendum, our definition of a solid bigraph G in Chapter 2 is also further restricted
to account for the new symmetrical behavior of the place graph interface. The following
criteria must now also be met:

• For any site s ∈ m, prnt(s) ̸= ∅.

• For any two regions r, o ∈ n, prnt−1(r) ∩ prnt−1(o) = ∅.

Allowing space to be shared crucially expands the scope of what can be modeled using
bigraphs, as many potential scenarios may involve spatial overlap—for example, modelling
a device which is connected to multiple local area networks or in physical range of multiple
wireless signals is less intuitive and more difficult when the spatial hierarchy restricts each
entity or location to only a single container. Bigraphs with sharing in particular have been
utilized to model Mixed-Reality systems [41], wireless networking protocols [5] and real-
time verification of wireless sensor networks [2].

Another key motivation for supporting bigraphs with sharing in our algorithm is that Bigra-
phER’s solver also supports the sharing property as mentioned in Section 2.7.1. Thus this
must be solved in order to fully integrate the SIP solver and evaluate the performance of our
approach against the previously used solver as described in Chapter 5.

Our current method of encoding the pattern and target place graphs does not require any
modification to be able to support instances of bigraphs with sharing: as it stands, any possi-
ble match in a matching instance with sharing will already be correctly identified by the SIP
solver. However, sharing introduces new vertex patterns and interface interactions which will
result in the solver returning a superset of the correct solution set of a matching problem—
that is, further constraints must be enforced to remove the false positives introduced by the
sharing property.

An observation that can be made is that almost all of the complexities introduced by sharing
are caused by sharing involving regions and sites. For sharing that exists exclusively between
entities, there is no need to make any changes or additions to our logic as we simply encode
the place graph pair as DAGs rather than forests which is sufficient to allow the SIP solver
to find a match.

A preliminary version of our algorithm for sharing has been presented in our CP2021 publi-
cation [15].
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4.2.2 New Place Compatibility Function

With the introduction of sharing, it is now possible for an entity or site to have multiple
parents. We thus update our place compatibility function to reflect this, by enforcing an
additional degree constraint on the in-degree of entities similarly to how we already encode
children of regions. This causes the compatibility function to now be fully symmetric be-
tween regions and sites.

ℓp2(u ∈ VP , v ∈ VT ) =



t if prnt(u) ∩ n ̸= ∅ ∧ δ−(v) ≥ δ−(u)

t if prnt(u) ∩ n = ∅ ∧ δ−(v) = δ−(u)

t if prnt(u)−1 ∩m ̸= ∅ ∧ δ+(v) ≥ δ+(u)

t if prnt(u)−1 ∩m = ∅ ∧ δ+(v) = δ+(u)

f otherwise

4.2.3 Additional Constraints

To support sharing we must also ensure that we consider and enforce the following new
composition constraints identified by Sevegnani [70]. Instances involving sharing introduce
the new risk that even if a match seemingly exists that respects all region and site constraints
individually, the returned solution does not respect the form T = C ◦ P ◦D since there may
be adjacencies that loop from the parameter back into the context, i.e. produce cycles in the
graph which violate the DAG property of the place graph. We denote this phenomenon as a
transitive closure violation, and is caused whenever for a candidate solution, an entity in the
target abstracted to a site can transitively reach an entity abstracted to a region through its
descendants.

In addition to transitive closure, we must also consider that sites can now potentially have
multiple parents. This introduces two complications: a region in P may now encapsulate
any number of entities in the context rather than just zero or one, and a new constraint
must also be applied to shared sites which is symmetrical to our adapted region constraint.
Albeit redundant, since sharing is a generalization of the standard bigraph formalism, these
constraints can also be safely applied to standard bigraph matching as well as bigraphs with
sharing without potentially invalidating any matches that would otherwise be found.

Transitive Closure

Figure 4.3 shows an example instance that is now possible due to sharing where it seems there
should be a valid match via conventional SIP rules, but where it is impossible to decompose
T to produce P in a manner which allows the remaining entities to be split into a valid context
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Figure 4.3: Example instance showing need for transitive closure to avoid the parameter also
appearing as a context. No match is possible in this instance.

and parameter. Regardless of which of the two possible matches we choose, the remaining
two vertices are captured by site 0 in the parameter. However, this same path needs to rejoin
the pattern through the context (region 1). As the same (concrete) bigraph cannot appear in
both the context and parameter at the same time, both matches are invalid. Therefore, our
model must disallow candidate solutions that produce a transitive path which leads from a
an entity abstracted to a site (parameter) back to an entity abstracted to a region (context) in
the set of unmapped entities of T .

To enforce this constraint, we preliminarily compute a descendants map τ(u, v) : VT ×
VT → {t, f} between all possible pairs of entities in the target, which is true if and only
if (u, v) ∈ prnt+T —that is, whether v can be reached when beginning from u. Whenever
a candidate solution is then found in the matching instance, the following post-processing
constraint is applied:

{∀(t ∈ VT , p ∈ VP ) | match−1(t) = ∅, prntP (s ∈ m) = prntT (t)} → τ(t,match(p)) = f

where match−1(t) ∈ VP is the pre-image mapping of t in the potential solution. This
enforces that no top-level unmatched target entities assigned to a site (and thus the parame-
ter) are allowed to be able to transitively reach any target entities that occur in the pattern,
ensuring all solutions returned respect bigraph composition rules.
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Figure 4.4: An updated example matching instance where sharing between entities in T
is now possible. A match can only exist if every entity encapsulated by the shared region
individually connects to the full set of its mapped children.

Shared Regions

We must update our region constraint defined in Section 3.2.4 to account for two new possi-
ble configurations: as shown visually in Figure 4.4, an entity may now have multiple parent
entities in addition to a region simultaneously, and a region can now potentially encapsulate
more than one entity in the context. We therefore specify that this constraint only concerns
unmatched parents of matched nodes in the target, and that the shared region must capture
only, and all of these parents.

{∀pa, pb ∈ VP | (r ∈ n) ∈ prntP (pa) ∩ prntP (pb)} →

prntT (match(pa))/prntP (pa) = prntT (match(pb))/prntP (pb)

where prntT (match(v))/prntP (v) is the set of unmapped parents of the mapping of an
encoded entity v ∈ VP .

Similarly to the non-sharing case, this can be checked and verified in polynomial time as a
post-processing constraint by inspecting all top-level nodes and whether they can suitably
slot into a region.

Shared Sites

As there can now also be occurrences of shared sites, these must be dealt with in a similar
fashion. Figure 4.5 shows the second required sharing constraint, which is symmetric to
the newly defined required region constraint for sharing. As the site is shared it must include
only, and all, entities shared by the two parents. In this example that means there cannot exist
any entities which are a child of one B entity but not the other. We define this symmetric
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Figure 4.5: (P, T1) is a matching instance which includes a shared site. A valid mapping
exists as all three A leaf nodes and their edges can be encapsulated by the site. (P, T2) is
a similar matching instance with no valid solution, where our encoding will return a false
positive without a further checking constraint to identify and remove the candidate solution.

interface constraint as

{∀pa, pb ∈ VP | (s ∈ m) ∈ prnt−1
P (pa) ∩ prnt−1

P (pb)} →

prnt−1
T (match(pa))/prnt

−1
P (pa) = prnt−1

T (match(pb))/prnt
−1
P (pb)

where prnt−1
T (match(v))/prnt−1

P (v) is the set of unmapped children of the mapping of an
encoded entity v ∈ VP .

4.2.4 Sharing Encoding Size

The pattern graph size remains the same with the introduction of sharing, as the value of
δ−(v) for any v ∈ VP will still capture any instance of a vertex’s in-degree being above one.
The total number of edges in the target graph encoding is slightly modified as follows.

Target bigraph T : ⟨n,X ′⟩ → ⟨m,Y ′⟩

|V | = |VT |+ n+m+ |PT |+ |ÊT |

|E| =
∑
v∈VP

δ−(v) +
∑
s∈n

δ−(s) + |PT |+
∑
e∈ET

|e| · (|e| − 1) +
∑
e∈ÊT

|e|

We no longer assume that the in-degree of each site is only one, thus we instead sum the
value of {δ−(i) | i ∈ VT ⊎ n} to obtain the total number of encoded place graph edges.
This permits more potential adjacencies in the SIP encoding, however this remains a linear
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relation between the number of parent relations in the bigraph and encoded edges. Therefore
edges will remain scaling quadratically in the order of O(|e|2) when sharing is possible,
improving upon the scalability of BigraphER’s SAT clause generation.

4.2.5 Soundness and Completeness

We now demonstrate a formal proof of soundness and completeness for our adapted encod-
ing. This builds upon our proof for pure bigraphs as provided in Section 3.5. We observe
that our six initial propositions still hold with the introduction of sharing, and can be reused
in the context of sharing which we now demonstrate.

Consider the composition of two place graphs with sharing:

G : m ∈ n = (A : k ∈ n) ◦ (B : m→ k)

Proposition 1 can be proven for each parent v′ ∈ prntB(v) of an entity v ∈ VB by Defini-
tion 4.2.2, and thus the corollary |prntB(v)| = |prntG(v)| remains true overall in this case.
Proposition 2 remains true for equal parent sets by evaluating each relation separately, but can
now be generalized in the case where prntB(v1) ̸= prntB(v2) but prntB(v1)∩prntB(v2) ̸= ∅
(Proposition 8). Proposition 3 still holds as v ∈ VA → prntA(v) = prntG(v) remains true
for sharing. Proposition 4 can be proven for sharing through the same method of contradic-
tion by demonstrating there can be no hypothetical entity v′ where (v′, v) ∈ prntG. Finally,
Propositions 5 and 6 still hold as they relate to the link graph which is unaffected by sharing.

In addition, we propose some new observations specifically for proving correctness in the
context of sharing as follows.

Proposition 7. Given the composition of two place graphs with sharing

G : m→ n = (A : k → n) ◦ (B : m→ k)

if v ∈ VB then prntB(v) ⊆ prntG(v).

This states that every parent of an entity in VB will always remain a parent in VG. We
prove this by hypothesizing a potential pair of entities v, v′ ∈ VB where v′ ∈ prntB(v)

but v′ /∈ prntG(v), thus prntB(v) ⊆ prntG(v) cannot be true. By Definition 4.2.2, when
prntB(v) ⊆ prntG(v) is false then v ∈ VA, which contradicts our original assumption. As a
corollary we thus deduce that |prntG(v)| ≥ |prntB(v)|.

Proposition 8. Given the composition of two place graphs with sharing

G : m→ n = (A : k → n) ◦ (B : m→ k)
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for any two entities v1, v2 ∈ VB, if (r ∈ k) ∈ prntB(v1) ∩ prntB(v2) then prntG(v1)/

prntB(v1) = prntG(v2)/prntB(v2).

This states that if any two entities share a region r in B then both entities will share the same
set of A parents in G. By Definition 4.2.2, we can determine that prntG(v1) = prntB(v1) ⊎
prntA(r) and prntG(v2) = prntB(v2)⊎prntA(r), thus prntG(v1)/prntB(v1) = prntG(v2)/

prntB(v2) = prntA(r), and therefore this holds by inspection.

Proposition 9. Given the composition of two place graphs with sharing

G : m→ n = (A : k → n) ◦ (B : m→ k)

for any two entities v1, v2 ∈ VA, if (s ∈ k) ∈ prnt−1
A (v1) ∩ prnt−1

A (v2) then prnt−1
G (v1)

/prnt−1
A (v1) = prnt−1

G (v2)/prnt
−1
A (v2).

This states that if any two entities share a site s in A then both entities will share the same set
of B children in G. We prove this by hypothesizing an entity v′ ∈ B such that s ∈ prntB(v

′)

but {v1, v2} /∈ prntG(v
′). By Definition 4.2.2, since {v1, v2} ∈ prntA(s), then this can only

be true if either prntB(v′) ∩ k = ∅ or v′ ∈ A which both contradict our initial hypothesis.
Thus this provides a proof by contradiction.

Soundness

We prove soundness by construction in a similar manner to our method for proving sound-
ness for pure bigraphs (Section 3.5.1). The entities of P and T are rebuilt in the same way,
with the minor adjustment that their parent relations are now constructed as follows:

{∀(va, vb) ∈ (G ∈ {VP , VT}) | (v′a, v′b) ∈ EϕG(G) → (vb, va) ∈ prntG}

The interface of T is also rebuilt using the same method for pure bigraphs, with the minor
adjustment that (v, si) ∈ EϕT (T ) → (si, v) ∈ prntT .

The interface of P is again reconstructed by examining the presence of degree constraints
on vertices. When a ≥ exists on the in-degree it indicates that a vertex has a region parent,
while a ≥ on the out-degree indicates the presence of a child site. Shared abstractions are
added to the structure by inspecting these vertices and their mappings in the solutions via the
following:

{∀pa, pb ∈ VP | prnt(ta)/prnt(pa) = prnt(tb)/prnt(pb)} →

(pa, (r ∈ n)) ∈ prntP , (pb, r) ∈ prntP

{∀pa, pb ∈ VP | prnt−1(ta)/prnt
−1(pa) = prnt(tb)

−1/prnt−1(pb)} →
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((s ∈ m), pa) ∈ prntP , (s, pb) ∈ prntP

Any remaining vertex with a ≥ constraint is given a lone respective region/site. This is
sufficient to construct the n regions and m sites of P , and thus builds the full place graphs
with sharing for P and T .

We now build C and D in adherence to the compositional property of place graphs with
sharing in Definition 4.2.2 as follows, taking into account that sharing now potentially allows
context and parameter entities to connect through the identity.

1. {∀pi ∈ VP , tj ∈ VT | prntP (pi) ∩ n = r, tj ∈ prnt(ti), t
′
j /∈ SSIP} →

tj ∈ VC , (n, tj) ∈ prntC

2. {∀pi ∈ VP , tj ∈ VT | prnt−1
P (pi) ∩m = s, ti ∈ prnt(tj), t

′
j /∈ SSIP} →

tj ∈ VD, (tj,m) ∈ prntD

3. {∀ti ∈ VT | prntT (ti) ∩ VD ̸= ∅} → ti ∈ VD

4. {∀ti ∈ VT | ti /∈ VP , ti /∈ VD} → ti ∈ VC

5. {∀ti, tj ∈ VT | (tj, ti) ∈ prntT , {ti, tj} ⊆ VD} → (tj, ti) ∈ prntD

6. {∀ti, tj ∈ VT | (tj, ti) ∈ prntT , {ti, tj} ⊆ VC} → (tj, ti) ∈ prntC

7. {∀ti, tj ∈ VT | (tj, ti) ∈ prntT , ti ∈ TC , tj ∈ VD} → (tj, x ∈ nid) ∈ prntD,
(x, x′ ∈ mid) ∈ prntid, (x

′, ti) ∈ prntC

Thus this builds the T = C ◦ (P ⊗ id) ◦D decomposition on the place graph with sharing.
As link graphs are unaffected by sharing, the reconstruction for these remain the same, and
this concludes our proof by construction.

Completeness

Completeness similarly to pure bigraphs in Section 3.5.2 is proven by contradiction, by ob-
serving that if SSIP is not a valid solution then at least one constraint in the SIP model
must be violated. As all parent relations are preserved between entities by building the edge
(v′a, v

′
b) in EG for each (vb, va) ∈ prntG, G ∈ {P, T}, and Propositions 1 to 6 remain true,

all constraints from the original SIP model must hold—therefore we must consider each new
sharing constraint in the adapted model.

Proposition 7 proves that the new ≥ in-degree constraint on vertices connected to a region
will always return true for all possible embeddings (p, t) ∈ Sbig where this occurs. Propo-
sition 8 and Proposition 9 additionally prove that the adapted shared region constraint and
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Figure 4.6: (a) An example of a directed bigraph. (b) The separated link graph which shows
that each port and face now has an additional inward/outward direction property, and negative
ports can act as sinks in addition to outgoing faces and closed edges.

new shared site constraint respectively can never be violated. Finally, for any valid Sbig em-
bedding, our transitive closure constraint must always return true as the definition of place
graphs with sharing (Definition 2.3.15) specifies that the structure is always acyclic. This
demonstrates that no constraint can be violated, and thus if there exists a solution Sbig then
the encoding will find the responding SSIP solution in a match by contradiction. This con-
cludes the proof.

4.3 Directed Bigraphs

Directed bigraphs, first proposed by Grohmann et al. [12] are a generalization of the link
graph component of bigraphs, in a similar manner to how sharing generalizes the place graph.
Directed bigraphs introduce direction to a bigraph’s hyperedges by designating an additional
inward or outward polarity property to each port of an entity and name, as shown in Figure
4.6. These permutations of directions, when constructed into a hyperedge, can be represented
as a set of directed edges pointing either to or from a shared central non-existent node for
each link.

Introducing polarity to the link graph can allow for more expressive and intuitive modelling
compared to standard bigraphs, particularly in cases where it is important to model the flow
of data between entities and interfaces. Polarity also allows for the representation of asym-
metric dependencies between entities, which would not be possible in pure bigraphs without
the use of additional “dummy” nodes or edges [63]. Directed bigraphs have been employed
to build models for cybersecurity protocols [71], molecular biology [72] and cloud comput-
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ing [73].

Formally, direction is introduced through two key changes in our formalization of bigraphs.
Firstly, the interfaces of a link graph BL : X → Y are partitioned into two disjoint sets
(X+, X−) and (Y +, Y −): X+ and Y + represent names where their link adjacency points
“upward” (outgoing from X and incoming from Y respectively), and vice versa for X− and
Y − which represent “downward” facing names. Secondly, the signature of the bigraph is
substituted with a polarized signature as follows.

Definition 4.3.1 (Polarized signature). A polarized signature (KP : ar) defines the set of
controls KP in a directed bigraph and each of their corresponding mappings ar : KP →
N× N to a pair of non-negative arity values. ar+ : KP → N and ar− : K → N define
the set of positive and negative ports of controls respectively in ar. A bigraph over KP

assigns every entity a control (m,n) ∈ KP which in turn assigns that entity ar+(m) outgoing
(positive) link ports and ar−(n) incoming (negative) link ports.

We then use these to formalize the concrete instance of a directed link graph as described by
Grohmann et al. [63].

Definition 4.3.2 (Concrete directed link graph). A concrete directed link graph

B = (VB, EB, ctrlB, linkB) : (X
+, X−)→ (Y +, Y −)

is a quadruple having (finite) inner name set pair X+ ⊂ X and X− ⊂ X , and outer name
set pair Y + ⊂ X and Y − ⊂ X . B has finite sets VB ⊂ V of entities and EB ⊂ E of links, a
control map ctrlB : VB → KP and a link map

linkB : X+ ⊎ Y − ⊎ P+
B → EB ⊎X− ⊎ Y + ⊎ P−

B ,

P+
B

def
= {(v, i) | v ∈ VB, i = ar+(ctrlB(v))},

P−
B

def
= {(v, i) | v ∈ VB, i = ar−(ctrlB(v))}

where P−
B and P+

B are the sets of outgoing and incoming ports of B respectively. The link
map is also subject to the constraints

{∀x ∈ X−,∀y ∈ X+ | link(y) = x} → link−1(x) = y

{∀x ∈ Y +,∀y ∈ Y − | link(x) = y} → link−1(y) = x

These enforce that only “U-turn” mappings are permitted when directly connecting incom-
ing and outgoing names on the same inner or outer face respectively, with no other incoming
adjacencies allowed to join the link. This is to preserve a consistent definition of the link
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graph during compositions, as otherwise this could potentially introduce invalid “loop” pat-
terns in the composite link and hence an invalid link graph. In the initial definition of directed
bigraphs provided in [12], a more strict version of this constraint which disallows any link
mapping to the same face at all was applied to prevent this from occurring, however this
has later evolved to the pair of constraints we describe as presented in [74], which is the
definition that we will be using for this dissertation.

Composition for link graphs is defined as follows.

Definition 4.3.3 (Concrete directed link graph composition). Given two concrete link graphs
A : (Z+, Z−) → (Y +, Y −) and B : (X+, X−) → (Z+, Z−) with disjoint supports, we
define the composite link graph as

A ◦B = (V,E, ctrl, link) : (X+, X−)→ (Y +, Y −)

where V = VA ⊎ VB, E = EA ⊎ EB, ctrl = ctrlA ⊎ ctrlB, and the link map value for each
port and inner name p ∈ X+ ⊎ Y − ⊎ P+

A ⊎ P+
B depends on the following conditions.

link(p)
def
=



linkA(p) if p ∈ Y − ⊎ P+
A and linkA(p) ∈ EA ⊎ P−

A ⊎ Y +

linkB(p) if p ∈ X+ ⊎ P+
B and linkB(p) ∈ EB ⊎ P−

B ⊎X−

linkA(o) if p ∈ X+ ⊎ P+
B and linkB(p) = o ∈ Z−

linkB(o) if p ∈ Y − ⊎ P+
A and linkA(p) = o ∈ Z−

Directed bigraphs exclusively modify the definition of the link graph similarly to how sharing
exclusively extends the place graph, so we can re-use the definition of the place graph in
Chapter 2 to arrive at our full definition of a concrete directed bigraph. This also means we
do not have to take into account the place graph’s edges or interface in our encoding when
extending our model to support directed hypergraphs.

Definition 4.3.4 (Concrete directed bigraph). A concrete directed bigraph

B = (VB, EB, ctrlB, prntB, linkB) : ⟨k, (X+, X−)⟩ → ⟨m, (Y +, Y −)⟩

consists of a concrete place graph BP = (VB, ctrlB, prntB) : k → m and a concrete directed
link graph BL = (VB, EB, ctrlB, linkB) : (X+, X−) → (Y +, Y −). The inner and outer
interfaces of B are ⟨k, (X+, X−)⟩ and ⟨m, (Y +, Y −)⟩, respectively.

When performing composition on two directed link graphs AL : X → Y and BL : Z → W

to produce A ◦B : Z → Y , names in W+ can only merge with names in X+ to preserve the
direction/flow of upward flowing links in the composite bigraph. Similarly, names of W−
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Figure 4.7: An example of composition and closure of directed links. Names on the inner
face are able to be rewired onto the outer face by looping them through the identity bigraph
back into the context.

can only merge with those of X− for preserving downward flowing links. When an inner
and outer name join in this context, it acts as a closure between the two faces—removing the
two names and their corresponding directions in a similar fashion to the behavior of edges in
the place graph when regions join with sites during composition.

As directed bigraphs are a generalization of the initial bigraph formalism, an instance of a
pure bigraph can still be modelled using the directed definition by ensuring that the directions
on each port all flow outward i.e. ar−(c) = 0 for all c ∈ ctrl, and also that the directions
of all names in both interfaces all flow upward—in the context of directed bigraphs, these
are called output-linear link graphs. Conversely, a link graph with only negative ports and
downward flowing faces is considered input-linear. Any directed link graph can hence be
considered the composition of an input-linear and output-linear link graph. [63]

4.3.1 Directed Bigraph Matching

While there already exists a tool for solving the bigraph matching problem for directed bi-
graphs [74], this tackles the problem by abstracting the matching of places and links into two
modular sub-problems which are then separately solved through the use of a general con-
straint toolkit (Section 2.5.2). In comparison, an optimized domain-specific graph solving
tool like GSS has demonstrated efficient performance times for instances where constraint
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Figure 4.8: An encoding of a directed link bigraph which models a client-server architecture
data flow.

toolkits suffer scaling issues, due to their underlying data structures not being built specifi-
cally to handle large graph states [38]. Because our approach instead encodes the link and
place graph components into a single flattened structure, we first establish the new possible
edge cases and matching rules that we now have to consider in this format due to the polar-
ization property of links, before proposing an adapted encoding to appropriately model each
of these.

Due to the U-turn constraint, we do not have to consider instances where a hyperlink flows
both outward to and inward from the same face, as this can only occur when they have no
adjacency to an entity, i.e. in non-solid bigraphs. To preserve symmetry, we extend our
definition of a solid bigraph to disallow any occurrence of two downward outer names to be
siblings in order to reflect the behavior of upward inner names. We also remain unconcerned
in regards to distinguishing whether a link exists on the outer or inner face, as the allowance
of U-turn links in the parameter provides a path for connecting a link through the identity
and onto the inner face of the context. This allows us to treat downward inner faces as
analogous to upward outer faces for matching—this is demonstrated in Figure 4.7, from w

to i. Similarly, upward inner faces can become downward outer faces via the same wiring.
Therefore, this reduces the scope of what we have to consider when encoding this extension
down to simply whether an open link is flowing outward or inward. This leaves two new
possible types of links which are introduced by direction; positive ports to negative ports,
and incoming names to negative ports. Going forward, we denote links which flow into a
negative port as a direct link. We consider direct links as open if an incoming inner face
flows into its port, and closed otherwise. We hence adapt our encoding to support these as
follows.
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4.3.2 Encoding Directed Bigraphs

Open Direct Links

Firstly, we consider the flattening of negative ports which remain open in the pattern or
target. Each hyperedge can only have at most one negative port as an alternative mapping
for open links instead of to a closed edge or outgoing name, so we can intuitively modify
our encoding to support these through the addition of a new uniquely-labelled “negative
port vertex” N which joins in with the encoded clique. As we already assign an arbitrary
outgoing direction property from entities to their port nodes in our flattened pure link graph
representation, we are trivially able to “flip” their direction in our existing encoding to reflect
that these new vertices point toward an entity rather than outward. This is sufficient to model
all possible isolated instances mapping involving open direct links; many open links are able
to match to the direct link through the clique as required and the injective property of direct
link matching is preserved, similarly to how closed edges for pure link graphs are already
encoded. A difference between closed links and open direct links however is that no degree
constraint is necessary on N , as additional links and subsequently entities are permitted to
join the link by adding and merging them through the context.

Closed Direct Links

Now we consider how to constrain direct links with no available incoming face for connec-
tivity. Another parallel can be drawn here between closed direct links and closed links for
pure bigraphs, as closed direct links can only match to closed direct links of the same car-
dinality and cannot match to open direct links, but still allow many open links to match to
it. Hence we encode this similarly through adding an additional negative closure vertex to
the clique, ensuring that this behavior is sufficiently encoded. A visual demonstration of this
encoding is provided in Figure 4.8, showing the encoded form of the DBMS model example
provided in [63] which includes both open and closed direct links.

Respecting the U-Turn Constraint

Our provided encoding ensures that any possible solution for directed bigraphs will be dis-
covered in any matching instance. However, whenever a standard open link and direct link
match to the same edge in T , this requires that a U-turn must be made in the context of P
to recompose the target, which opens up the possibility for the U-turn constraint from Def-
inition 4.3.2 to be violated during this process and rendering the candidate solution invalid
despite matching in SIP—Figure 4.9 shows an example instance which returns a false solu-
tion without handling this extra case. Therefore we must identify and define the following
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Figure 4.9: An example directed matching instance where there is no valid solution due to an
open link joining to an open direct link, which produces an invalid link graph in the pattern
due to the U-turn constraint.

two further constraints to ensure complete bijectivity between directed bigraph matching and
our SIP encoding.

Firstly, whenever an open direct link in P incoming from face do is assigned to an open direct
link with face d′o in T , the required preservation of the adjacency from do in the context pre-
vents any open link adjacent to h0 in P from also mapping to d′o without causing a violation,
as both d′o and ho would then exist in the pre-image of do while the (ho, do) link must make
a U-turn. Thus for any candidate solution, there cannot exist any negative port nodes

{∃n ∈ VP | ℓ(n) = neg link}

for the encoded graph pair (P, T ) where the following two conditions are met:

• {∃v ∈ VP | ℓ(v) = link} → (v, n) /∈ EP , (match(v),match(n)) ∈ ET

• ¬{∃v ∈ VT | ℓ(v) = neg closure} → (match(n), v) ∈ ET

The second case occurs whenever a standard open link with face ho and open direct link
with face do matches to the same closed direct link dc in T . In this case, the matching
can potentially be permitted as long as the recomposition in the context produces a perfect
U-turn with no other ports or faces in the context also joining dc. An example instance is
given in Figure 4.10 where this does not hold due to multiple open links attempting to join
to one direct link, requiring them to both U-turn on the same name which creates an invalid
directed link graph. A valid U-turn is only produced when every encoded vertex in the clique
of the link in T belongs to a match, and is mapped to by only vertices representing the port
adjacencies of ho or do exclusively. This can also be reflected in the form of a constraint
based on degree cardinality, where δ−(h0) + δ−(d0) = δ−(dc) must hold to allow the pair of
pattern links to share the same target link.
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Figure 4.10: An example directed matching instance where there is no valid solution due to
multiple links joining to a face which connects an incoming-outgoing link pair in the pattern,
violating the U-turn constraint.

Similarly to the additional constraints for sharing, these conditions can potentially be imple-
mented either as an additional constraint during propagation in a constraint model, or as a
post-process on returned solutions.

4.3.3 Formalizing Directed Bigraphs

Now that our adapted encoding and additional constraints have been defined, we present the
new flattening function as follows.

Flattening Function

Given the concrete directed link graph

BL : (VB, EB, ctrlB, linkB) : (X
+, X−)→ (Y +, Y −)

and the encoding of a (pattern or target) place graph D ϕ{P,T}(D
P) : (VD, ED), where (where

VB = VD), we define a new flattening function as follows:

ϕf : ϕ{P,T}(D
P)×BL 7→ (V,E)

where the vertices of the resultant flattened graph can be described as

V = VD ⊎ P+
B ⊎ P−

B ⊎ ÊB ⊎ N̂B

ÊB = {e ∈ EB | linkB(p) = e, p /∈ (X+ ⊎ Y −)}
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N̂B = {n ∈ P−
B | linkB(p) = n, p /∈ (X+ ⊎ Y −)}

where ÊB is the set of closed links in BL, P+
B and P−

B are the positive and negative ports of
BL, a closure node is added for each closed edge and a negative closure node is added for
each closed direct link.

We describe the resultant edge set as

E = ED ⊎ {(v, p) | p = (v, i) ∈ P+
B } ⊎ {(p, v) | p = (i, v) ∈ P−

B } ⊎

{(p1, p2) | p1, p2 ∈ (P+
B ⊎ P−

B ), linkB(p1) = linkB(p2)} ⊎

{(p, e) | e ∈ ÊB, linkB(p) = e} ⊎ {(p, n) | n ∈ N̂B, linkB(p) = n}

Finally the vertex compatibility function for link graphs is adapted to support directed links
as

ℓ(u, v) = ℓp(u, v) ∧



t if u ∈ (P+
P ⊎ P−

P ) ∧ v ∈ (P+
T ⊎ P−

T )

t if u ∈ ÊP ∧ v ∈ ÊT ∧ δ−(u) = δ−(v)

t if u ∈ N̂P ∧ v ∈ N̂T ∧ δ−(u) = δ−(v)

f otherwise

subject to the following additional conditional constraint to preserve the structural integrity
of links during composition, for cases involving open and closed direct links respectively:

{∀p1 ∈ P+
P , p2 ∈ P−

P | (match(p1),match(p2)) ∈ ET} →δ−(n) = δ+(p1) + δ+(p2) if ∃(match(p2), n ∈ N̂T ) ∈ ET

(p1, p2) ∈ EP otherwise

This encoding is sufficient for finding all matches that exist in a directed link graph whilst
ensuring no false matches are found.

4.3.4 Working Example: Travelling Bus

To further demonstrate this encoding, we provide a full working example via application
of the matching instance for the roaming bus model as described in [63]. In this model,
the reaction rule allows a bus entity to move from one zone entity to another, as long
as the origin zone has a road which leads to the destination. It can be observed that the
origin-destination relation between zones is modelled as a closed direct link, and that the
addition of the direction property allows the necessary one-way movement between roads to
be modelled. The matching problem for this model aims to find all instances where a bus is
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Figure 4.11: An encoding for a directed bigraph matching instance which models the travel
of a bus entity between zones. In both the original problem and our SIP encoding, three
possible bijective matches exist.
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by a road, and the road connects to a potential destination for the bus.

An example instance is provided in Figure 4.11 (a). It can be observed that for the given
target bigraph, three possibilities for movement exist which correspond to three matches;
Bus 0 can travel from Zone 0 to either Zone 2 via Road 0 or Zone 1 via Road 1, and Bus
1 can travel from Zone 2 to Zone 3 via Road 4. The same matches can also be observed in
the encoded SIP instance as shown in Figure 4.11 (b) through representing negative ports as
parent vertices of their respective entity.

4.3.5 Directed Encoding Size

The introduction of open and closed negative links modifies the size of a flattened link graph
as follows, ignoring any encoded place graph components, where |e| = |link−1

G (e)∩P+
G | for

a standard hyperedge e ∈ EG, and |n| = |link−1
G (n) ∩ P+

G | for a negative port n ∈ P−
G .

Directed Link Graph GL : (X+, X−)→ (Y −, Y +)

|VL| = |VG|+ |P+
G |+ |P

−
G |+ |ÊG|+ |N̂G|

|EL| = |P+
T |+ |P

−
T |+

∑
e∈EG

|e| · (|e| − 1) +
∑
e∈ÊG

|e|+
∑
n∈NG

|n| · (|n| − 1) +
∑
n∈N̂G

|n|

The scalability of our encoding hence remains unchanged by this adaptation, as open and
closed negative links will each introduce the same number of vertices and edges to the graph
in their clique representation compared to a standard (positive) open/closed link.

4.3.6 Soundness and Completeness

We now demonstrate a formal proof of soundness and completeness for our adaptated flat-
tening function. As this modifies the encoding of link graphs only, we can infer that Propo-
sitions 1 to 4 (Section 3.5.1) will still remain true. Proposition 5 holds by the definition of
directed link graph composition (Definition 4.3.3) it remains that linkB(p1) = linkB(p2)→
linkG(p1) = linkG(p2) when G = A ◦ B. Proposition 6 also holds for any p ∈ P+

B as the
properties of labelled edges in the pattern are unaffected by direction on solid bigraphs (can
only be linked to by positive ports).

In addition, we propose some new observations specifically for proving correctness in the
context of directed bigraphs as follows.

Proposition 10. Given the composition of two directed link graphs

G : (X+, X−)→ (Y +, Y −) = (A : (Z+, Z−)→ (Y +, Y −))◦(B : (X+, X−)→ (Z+, Z−))
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for any p ∈ P+
B and n ∈ P−

B where ¬∃x ∈ (Z+ ⊎X+) such that link(x) = n, linkG(p) = n

if and only if linkB(p) = n.

This states that a positive port in B links to a negative port if and only if they are also linked
in G when the negative port is unconnected to the interface. Firstly, from Definition 4.3.3,
linkB(p) = n ∈ P−

B =⇒ linkG(p) = linkB(p), therefore linkG(p) = n. Secondly, we
prove that linkB(p) = n ⇐= linkG(p) = n by hypothesizing a p ∈ P+

B , n ∈ P−
B such that

linkG(p) = n but linkB(p) ̸= n. This would instead mean linkB(p) = x ∈ (Z−⊎Y −⊎P−
B ⊎

EB)/{n}. Assume the case that x ∈ {Y −⊎P−
B ⊎EB}/{n}: by Definition 4.3.3, this implies

linkG(p) = x ̸= n which violates our initial conditions, leaving only the possibility that
x ∈ Z− and therefore linkG(p) = linkA(x) ∈ A. By our initial assumption, linkA(x) = n

which is only possible if there is some mediating link y ∈ Y such that linkA(x) = y and
linkB(y) = n, but this contradicts our initial condition that no such link pointing to n from
the interface exists. Therefore we prove our proposition by contradiction. As a corollary, we
deduce that {link−1

B (n) ∩ (Z+ ⊎X+) = ∅} → |link−1
G (n) ∩ P+

G | = |link
−1
B (n) ∩ P+

B |.

Proposition 11. Given the composition of two directed link graphs

G : (X+, X−)→ (Y +, Y −) = (A : (Z+, Z−)→ (Y +, Y −))◦(B : (X+, X−)→ (Z+, Z−))

for any n ∈ P−
B where linkB(z ∈ Z+) = n and linkA(x ∈ X+) = z then link−1

G (n) =

link−1
B (n) ⊎ link−1

A (z).

This states that when an open direct link in B composes with another open direct link in A

then its resultant set of adjacencies will include those belonging to both links exclusively.
By Definition 4.3.3, if linkB(p ∈ (P+ ⊎ Z+)) = n then linkG(p) = linkA(a) = n and
if linkA(p ∈ (P+ ⊎ X+)) = z then linkG(p) = linkB(z) = n, therefore link−1

B (n) ⊎
link−1

A (z) ⊆ link−1
G (n) at least. Now we hypothesise a source p /∈ link−1

B (n) ⊎ link−1
A (z)

where linkG(p) = n. If p ∈ A then the only way linkG(p) = n is if linkA(p) = z,
meaning p ∈ link−1

A (z) which is a contradiction. If p ∈ B then this can be achieved if
linkB(p) = z′ ∈ Z− and there exists a U-turn linkA(z

′) = z. However this would mean
{z′, x} ⊆ link−1

B (z) and cannot be a valid link graph by the U-turn constraint (Definition
4.3.2). Therefore all possibilities lead to a contradiction which proves our proposition. As
a corollary, we deduce from this that if linkB(p) /∈ n then linkG(p) /∈ n when linkG(y ∈
Y +) = n.

Proposition 12. Given the composition of two directed link graphs

G : (X+, X−)→ (Y +, Y −) = (A : (Z+, Z−)→ (Y +, Y −))◦(B : (X+, X−)→ (Z+, Z−))

for any p,∈ P+
B , n ∈ P−

B where link−1
B (n)∩Z+ = z′, linkB(p) = z ∈ Z− and linkG(p) = n

then link−1
G (n) = link−1

B (n) ⊎ link−1
B (z)
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This states that if a open direct link and open standard link in B are ever wired together during
composition, then the resultant direct link must include all, and only, ports belonging to the
two links. We know from Proposition 5 that if any two ports share a link in B then they share
a link in G, therefore link−1

B (n) ⊆ link−1
G (n). Since linkB(p) ̸= n but linkG(P ) = n, then

there must exist a U-turn such that linkA(z) = linkB(n), thus linkA(z) = z′, transitively
connecting z to n. From Proposition 5, we thus deduce link−1

B (z) ⊆ link−1
G (n). Now we

hypothesize a source p′ such that linkG(p′) = n but p′ /∈ link−1
B (n)⊎ link−1

B (z). We assume
p′ ∈ A as if p′ ∈ B then it must link to a name in Z that loops back from A into n regardless.
linkG(p

′) = n can then hold if linkA(p′) = z, but then link−1
A (z′) = {p′, z} where a U-

turn exists and therefore cannot be a valid directed link graph (Definition 4.3.2) and this
contradicts our hypothesis, concluding our proof. As a corollary, we deduce |link−1

G (n)| =
|link−1

B (n)|+ |link−1
B (z)| when linkB(p) = z, linkG(p) = n.

Soundness

We prove soundness by construction in a similar manner to our method for proving sound-
ness for pure bigraphs. We initially assume that the place graphs for T = C ◦ (P ⊗ id) ◦D
have already been rebuilt and each target entity has been assigned to either C, P or D by
following the steps outlined in Section 3.5.1.

A directed link graph G = (VG, EG, ctrlG, linkG) : (X
+, X−), (Y +, Y −) ∈ {P, T} can then

be reconstructed from ϕf (G) as follows.

VG = {g′ ∈ ϕf (G) | ℓ(g′) /∈ {link, closure,neg link,neg closure}}

P+
G = {g′ ∈ ϕf (G) | ℓ(g′) = link}

P−
G = {g′ ∈ ϕf (G) | ℓ(g′) = neg link}

EG = {g′ ∈ ϕf (G) | ℓ(g′) = closure}

{∀g ∈ VG | ctrlG(g) = ℓ(g′)}

{∀(g′a, g′b) ∈ Eϕf (G) | ℓ(g′a) = ℓ(g′b) = link} → linkG(ga ∈ P+
G ) = linkG(gb ∈ P+

G )

{∀(g′a, g′b) ∈ Eϕf (G) | ℓ(g′a) = link, ℓ(g′b) = closure} → linkG(ga ∈ P+
G ) = gb ∈ EG

{∀(g′a, g′b) ∈ Eϕf (G) | ℓ(g′a) = link, ℓ(g′b) = neg link} → linkG(ga ∈ P+
G ) = gb ∈ P−

G

The interface of Y − for P and T can then be rebuilt using the same method as pure bigraphs
on positive ports (Section 3.5.1). Y + is constructed by adding a new outer name y as a source
for each g ∈ P−

G where there is no {v′ ∈ Vϕf (G) | ℓ(v′) = neg closure} → (g′, v′) ∈ Eϕf (G)

and adding linkP (y) = g.

We now rewire the links of C and D in adherence to the compositional property of directed
link graphs (Definition 4.3.3) for the nine combinations of directed link pair positions as
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follows:

• {∀p ∈ P+
P | linkP (p) = y ∈ Y −, linkT (p) ∈ C} → linkC(y ∈ Y +) = linkT (p)

• {∀p ∈ P+
P | linkP (p) = y ∈ Y −, linkT (p) ∈ P} → linkC(y) = y′ ∈ Y −

where linkP (y
′ ∈ Y +) = linkT (p)

• {∀p ∈ P+
P | linkP (p) = y ∈ Y −, linkT (p) ∈ D} → linkC(y) = y′ ∈ Y −, linkid(y′ ∈

Y +) = x ∈ X−, linkD(x ∈ X+) = linkT (p)

• {∀p ∈ P+
C | linkT (p) ∈ C} → linkC(p) = linkT (p)

• {∀p ∈ P+
C | linkT (p) ∈ P} → linkC(p) = y ∈ Y − where linkP (y ∈ Y +) = linkT (p)

• {∀p ∈ P+
C | linkT (p) ∈ D} → linkC(p) = y ∈ Y −, linkid(y ∈ Y +) = x ∈ X−,

linkD(x ∈ X+) = linkT (p)

• {∀p ∈ P+
D | linkT (p) ∈ C} → linkD(p) = x ∈ X−, linkid(x) = y ∈ Y −, linkC(y ∈

Y +) = linkT (p)

• {∀p ∈ P+
D | linkT (p) ∈ P} → linkD(p) = x ∈ X−, linkid(x) = y ∈ Y −, linkC(y ∈

Y +) = y′ ∈ Y − where linkP (y
′ ∈ Y +) = linkT (p)

• {∀p ∈ P+
D | linkT (p) ∈ D} → linkD(p) = linkT (p)

This thus builds the T = C ◦ (P ⊗ id) ◦ D decomposition on the ports and edges of the
directed link graph. This concludes our proof by construction.

Completeness

We again prove completeness with a proof by contradiction, observing that if Sbig is a valid
embedding while SSIP is not a valid solution then at least one constraint in the adapted
SIP model for directed link graphs must be violated. Propositions 1 to 6 remain true, so
all constraints from the original SIP model must hold and we consider the newly defined
constraints on links.

Proposition 10 proves that closed direct hyperedges in the pattern must always match on
a closed target hyperedge of the same cardinality, and thus the possible degree constraint
on newly introduced negative closure vertices will always be true for a valid composition.
Proposition 11 shows that an open standard hyperedge and open direct hyperedge cannot map
to the same open target link due to the additional U-turn constraint on faces (Definition 4.3.2),
therefore the new constraint to handle this will always return true in this case. Proposition 12
proves the case where an open standard hyperedge and open target hyperedge can only match
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to a closed target link together if the target’s cardinality is the sum of the two pattern links
(producing a valid U-turn), satisfying the other case of the new constraint. This demonstrates
that no constraint in the adapted model and flattening can be violated, and thus if there
exists a solution Sbig then the encoding will find the responding SSIP solution in a match by
contradiction. This concludes the proof.

4.4 Summary

The ease of implementing support for sharing in the place graph and direction in the link
graph, as well as adapting our encoding for finding support equivalences, demonstrates a
further advantage of our SIP encoding over the existing SAT algorithm: we can easily imple-
ment further variants of the bigraph matching problem by specifying additional high-level
constraints instead of configuring the low-level set of clauses to support new conditions. As
none of the adapted encodings for these extensions conflict with one another, it is easily pos-
sible to support any combination of equality checking, shared places and directed links in a
single matching instance.

Support for directed bigraphs was not implemented for this project as BigraphER itself does
not yet support the extension, however this could be achieved through the following steps:

• Adapt the core bigraph data structure in BigraphER such that entities can also store a
negative arity value, and subsequently possess negative ports.

• Revise all existing bigraph manipulation, composition and rewriting functions to ac-
count for the extended format, ensuring that they model the expected behavior for
directed links as described in Definition 4.3.3.

• Modify the syntax and language of BigraphER to allow the user to optionally define
agents and reaction rules which contain directed links when creating a BRS.

• Define a new textual representation of bigraphs (Figure 5.1) which allow for direction
in links, replacing the current format, and modify BigraphER to both read in and write
out bigraphs in this form.

• Thoroughly evaluate the updated version of BigraphER for correctness (e.g. test cases).

• Modify BigraphER’s graph visualization tools to include direction in their graphical
output.

• Adapt our current GSS encoding to support directed links as described in Section 4.3.
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As this concerns a large amount of engineering and refactoring work which strays from the
focus of improving the matching algorithm, we leave the adaptation of BigraphER and our
adapted GSS solver to support direction as a potential avenue for future work, which would
then allow us to compare the runtime metrics obtained against those achieved by jLibBig
[74].

We now describe in the following chapter our method of implementing our constraint mod-
els for matching and equivalence on bigraphs and bigraphs with sharing within GSS, and
evaluating its performance as the solver component of BigraphER.
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Chapter 5

Implementation and Evaluation of
Matching

In this chapter, we describe our working adaptation of the Glasgow Subgraph Solver to sup-
port our algorithm for bigraph matching, and provide evaluation metrics on both solving
isolated instances of matching as well as computing full transition systems for a variety
of BRS models when integrated as the new solver for BigraphER. We find that GSS com-
fortably outperforms the two other available solvers on all individual matching problems
while achieving an aggregate speedup of over two orders of magnitude when compared to
BigraphER’s MSAT and MCARD solvers, scaling increasingly well on instances containing
many solutions. Upon computing full transition systems, our integrated GSS implementation
achieves the best performance on 10 out of 13 evaluated BRSs.

Section 5.1 describes the adaptation of GSS to allow for the preliminary encoding and flat-
tening of an input bigraph and application of the constraints identified in Chapter 3, as well
as the constraints to support sharing in Section 4.2. Section 5.2 showcases the performance
run times of our initial version of our adaptation compared against those returned by Bigra-
phER’s MSAT and MCARD solvers, with additional comparisons for instances of equality
and evaluating the optimal configuration of GSS. Section 5.3 compares our GSS implemen-
tation against BigraphER’s current solvers when integrated as the matching tool for building
transition systems for both simpler and more hard to solve BRS models. Section 5.4 sum-
marizes the chapter.

5.1 Implementation

We implemented the encoding and SIP solving process for bigraphs and bigraphs with shar-
ing within the Glasgow Subgraph Solver due to it being the state of the art for subgraph
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solving. However, our approach could be implemented using any solver which supports
solution enumeration, directed graphs, and a way of specifying extra vertex compatibilities
and post-processing on solutions. We denote this adaptation as the Glasgow Bigraph Solver

(GBS). The tool supporting our approach has been made publicly available [75].

5.1.1 Glasgow Bigraph Solver

Figure 5.1: An example bigraph and its corresponding text representation in the BigraphER
.big format.

GSS provides a command line interface for solving single instances of SIP through reading
and parsing an input pattern and target graph file for a variety of standard graph formats.
Examples of graph formats that GSS can support include DIMACs, LAD and CSV represen-
tations of graphs, which are supplied to the input parsing component of the solver in the form
of text files. We adapt GSS to support bigraphs as input on the command line through the
implementation of an additional parsing option, where a text representation of a bigraph can
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be taken as an input and built directly as an encoded graph according to our algorithm, in the
bigraph file format used by BigraphER as provided in Figure 5.1. Therefore, the conversion
from a bigraph to an encoded graph is being performed directly by the existing input parser
while reading in the bigraph text file—as though it were simply a new graph format—rather
than requiring a separate process to convert a bigraph data structure into an encoded graph
that the solver can understand. The first line defines the control and arity value of each entity
in the structure, and the second line specifies that the bigraph contains n regions, |VP | entities
and m sites respectively. The following set of lines then provide a (n+ |VP |)× (|VP |+m)

adjacency matrix for each pair of components in the place graph. Finally, each remaining
line defines a shared link in the link graph via its connected face name (field left empty for
closed links) and a set of pairs which each denote its adjacency to an entity and the number
of ports on the entity it occupies. Regions, sites and closed links are internally labelled in
order of their definition in this format, incrementing from zero, and all flattened link nodes
are added after the encoded place graph vertices.

Two separate processes are defined for the reading and encoding of the pattern and target:
while the encoded target graph is treated as a standard SIP graph beyond this process, the
pattern encoding function in addition to building the graph produces two additional vectors
called pattern site edges and pattern root edges which retain the information regarding
edges to/from the interface which is otherwise lost in the encoding process, and are re-
tained during and after search for the application of preliminary and checking constraints.
On top of these, we also define a list of pair boolean values of length |VP | called pat-
tern big constraints, where for each bi = (bi1, bi2) in this list, bi1 = true ⇐⇒ (a, vi) ∈
pattern root edges for some region a and bi2 = true ⇐⇒ (vi, a) ∈ pattern site edges
for some site a. This allows us to more easily define the required degree constraints later on.

Preliminary Constraints

Before search, GSS runs a set of functions to compare the labels and degrees of all pattern-
target pairs to preliminarily eliminate any immediately detectable incompatibilities from the
domain. We add our own additional function to this set in order to perform this check for our
place and link compatibility functions in O(|VP ||VT |) time as shown in Algorithm 1, which
takes an input integer pair (i, j) and returns true if encoded pattern vertex pi can potentially
map to pattern vertex tj and false otherwise. We denote |linkG| as the number of link nodes
in an encoded graph G, and l(e) as the label of a vertex e.

For equality checking, the number of entities and link edges are also trivially counted during
input and will immediately return false instead of calling the solver if there is a mismatch
detected.
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Algorithm 1 Check Bigraph Degree Compatibility (int i, int j)

Ensure: 0 ≤ i ≤ |VP |, 0 ≤ j ≤ |VT |
{Link graph compatibility}
if (i ≥ (|VP | − |linkP |)) and (j < (|VT | − |linkT |)) then

return false;
else if (i < (|VP | − |linkP |)) and (j ≥ (|VT | − |linkT |)) then

return false;
else if l(pi)→ CLOSURE and l(tj)→ CLOSURE and deg−(pi) ̸= deg−(tj) then

return false;
else if (i ≥ (|VP | − |linkP |)) and (j ≥ (|VT | − |linkT |)) then

return true;
end if
{Place graph compatibility}
if pattern big constraints(i)1 and deg−(pi) > deg−(tj) then

return false;
else if not pattern big constraints(i)1 and deg−(pi) ̸= deg−(tj) then

return false;
else if pattern big constraints(i)2 and deg+(pi) > deg+(tj) then

return false;
else if not pattern big constraints(i)2 and deg+(pi) ̸= deg+(tj) then

return false;
else

return true;
end if

Checking Constraints

We implement the remainder of constraints (shared regions, shared sites, transitive closure)
as checking constraints. The sharing constraints will always hold for standard bigraphs,
however for optimization purposes we only enforce these if it is detected during parsing that
they are required—that is, transitive closure checking is only performed when sharing exists
i.e. a site or entity is given multiple parents, and only pattern entities adjacent to exclusively
shared regions or sites are checked for a valid abstraction of parents and sites in the target.

In the event sharing exists in an instance, the additional (|VT | − |linkT |)× (|VT | − |linkT |)
bitset reachability matrix(t1, t2) structure is constructed during the target graph encoding
which returns true iff. t2 is a transitive descendant of t1. We then check for transitive closure
using this via Algorithm 2, for all matches of pi, pj ∈ P where p1 and p2 are adjacent to a
site and region respectively to ensure no cycles are produced. If false is returned, then the
candidate solution is discarded. It can be deduced that this check is performed on a solution
in the order of O(|VP |2|VT |2) in the worst case where all pattern vertices connect to a region
and site, although this would be unlikely to occur in practice for larger numbers of entities.

The final necessary constraints required are those which deal with shared regions and sites for
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Algorithm 2 Transitive Closure Check (int i, int j)

Ensure: 0 ≤ i, j ≤ (|VP | − |linkP |), i ̸= j
Ensure: pattern site edges(i) and pattern root edges(j)

for all {k | (match(pi), tk) ∈ ET and match−1(tk) = ∅} do
for all {l | (tk, match(pj)) ∈ ET and match−1(tl) = ∅} do

if reachability matrix(tk, tl) then
return false;

end if
end for

end for
return true;

Algorithm 3 Shared Region Check (int r)

Ensure: (
∑|VP |−|linkP |

n=0 (r, n) ∈ pattern root edges) ≥ 2
encapsulated nodes = {};
for all {i | (r,match−1(i)) ∈ pattern root edges)} do

for all {j | (tj, ti) ∈ ET and match−1(tj) = ∅ and j /∈ encapsulated nodes} do
encapsulated nodes← j;

end for
end for
for all {i | (r,match−1(i)) ∈ pattern root edges)} do

for all {j | j ∈ encapsulated nodes} do
if (tj, ti) /∈ ET then

return false;
end if

end for
end for
return true;

bigraphs with sharing. While we implement these as checking constraints which is sufficient
to build a fully working model, as a future optimization these can potentially be enforced
at propagation time via an additional GSS supplemental graph encoding. This is performed
using Algorithm 3 and Algorithm 4 for each shared region and shared site in the pattern
respectively. These are each applied to a solution in O(|VP ||VT |) time in the worst case,
where all vertices in the pattern are adjacent to a shared region or shared site respectively:
this upper bound is due to the solid rule for sharing, where entities can only have up to one
region parent or one child site.

Eliminating Symmetries

Both methods of removing symmetries as defined in Section 3.3.5 were able to be im-
plemented using existing functionality supplied by GSS. Support for adding nogood con-
straints is required for the implementation of the solution biased search heuristic, thus we
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Algorithm 4 Shared Site Check (int s)

Ensure: (
∑|VP |−|linkP |

n=0 (n, s) ∈ pattern site edges) ≥ 2
encapsulated nodes = {};
for all {i | (match−1(i), s) ∈ pattern site edges)} do

for all {j | (ti, tj) ∈ ET and match−1(tj) = ∅ and j /∈ encapsulated nodes} do
encapsulated nodes← j;

end for
end for
for all {i | (match−1(i), s) ∈ pattern site edges)} do

for all {j | j ∈ encapsulated nodes} do
if (ti, tj) /∈ ET then

return false;
end if

end for
end for
return true;

can simply apply a new nogood constraint containing the set of variable-value assignments
of each support component each time a new solution is found. GSS also supplies a ap-
ply pattern less than constraint for symmetry breaking in conventional SIP, thus we are
able to apply this to all pairs of support vertices sharing a clique (or both have no clique) as
required before search. Which of the two strategies used to break clique symmetries can be
specified in a command line argument when calling the matcher.

5.2 Evaluation: Single Instances

We now demonstrate the performance runtimes obtains by GBS on individual matching prob-
lems compared to those of BigraphER’s MiniSAT (MSAT) solver, for both bigraphs and
bigraphs with sharing. As an additional comparison, we also consider the results of Bi-
graphER’s alternative psuedo-boolean MiniCARD (MCARD) solver [61] which is able to
encode additional cardinality constraints.

All instances in this section that we evaluate are made available in BigraphER’s text format
as well as the results we obtain [76].

5.2.1 Initial Performance vs MSAT/MCARD

A preliminary evaluation and discussion of the results found in this subsection is featured
in our CP2021 publication [15]. The experiments were run on systems with dual Xeon E5-
2687A v4 CPUs and 512GBytes RAM, running Ubuntu 18.04. The SIP solver is compiled
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with GCC 7.5 while BigraphER is compiled with OCaml 4.10, statically linked to Min-
iSAT [60] compiled with GCC 9.3, and then copied to the benchmarking machine. For each
of the three solvers, the time we specifically seek to measure is the time elapsed between call-
ing the main matching function and retrieving the returned solution set, which includes the
main search and backtracking process as well as time spent preliminarily generating clauses,
constraints and any supplementary data structures prior to running the search loop, and any
necessary post-process checking on solutions. We do not wish to measure any time spent
performing additional handling of input/output for the time being, as in a practical context
this would be handled through an interface within the integration of GBS as a component in
BigraphER, rather than running the tool directly through the command line for experimental
purposes. To allow experimenting with a large number of instances, we perform up to 30
matching problems in parallel on the same machine.

The set of instances used for this evaluation have been derived from three BRSs with sharing,
two of which having been previously used for modelling real-world systems. These are
described as follows:

• Savannah: A Mixed-Reality [41] game developed for children where each player
takes the role of a lion hunting prey, and where their real-world locations are mapped
to a virtual savannah environment using their GPS location from their mobile devices
to determine their relative position in the game world. As players explore the area,
they may encounter prey (and are notified of such on their devices) where they can
choose whether to attack or not. An attack is successful if the correct number of close-
by players required for defeating that type of prey co-operate to attack simultaneously.
The aim of the game is thus to figure out this correct value for each type of prey in the
environment. The savannah BRS with sharing models interactions between players,
their environment and their devices as well as the virtual lions and prey [41]. There
are 2528 savannah instances in our matching dataset.

• 802.11: A stochastic [6] BRS with sharing which models the 802.11 MAC protocol.
The BRS models WLANs and their connections, and the reaction rules allow for trans-
missions of packets between connected devices [5]. There are 288 of these instances
in our matching dataset.

• Conference: An adaptation of the conference BRS as defined by Milner [1], where
agents can move around between rooms in a building and connect to, or disconnect
from a conference call if there is a computer in the room. The matching instances of
the Savannah and 802.11 models are relatively small due to the limitations of previous
solvers (no instance takes more than 3ms to solve on MSAT), so to test scalability we
make use of harder generated instances of this BRS obtained through modifying the
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Figure 5.2: The solver runtimes achieved by GBS, MSAT and MCARD on the matching
dataset. Cumulative runtime (left) measures the total time taken to solve n instances. Ag-
gregate runtime (right) measures that the corresponding solver was able to solve n instances
within a runtime ≤ t.

reaction rules to add extra entities at random. There are 8360 conference instances in
our matching dataset, which we partition into 4128 instances with sharing and 4232
instances without sharing for evaluating any differences in runtime performance.

In total, there are 11,176 matching instances in this dataset. To ensure confidence in our
working implementation, we verify that the set of solutions obtained for GBS, MSAT and
MCARD are always the same for every instance.

Cumulative and Aggregate Performance

We first evaluate a high-level view of the performances of each solver. For this initial run,
GBS uses the nogoods implementation for clique symmetry breaking, and each instance is
run once against each of the three evaluated solvers. We seek to determine the relative per-
formance of GBS against MSAT and MCARD via two different measurements: the conven-
tional cumulative runtime achieved upon solving the full dataset of instances, as well as the
aggregate runtime [77] achieved by each solver. The time ratio between the runtimes of GBS
and MSAT/MCARD can then determine the cumulative and aggregate speedup respectively,
achieved by GBS compared to the currently used solvers.

The cumulative runtime measures the total amount of time taken for each solver to solve
all instances, where instances are ordered by the size of the solution set from smallest to
largest. Figure 5.2 (left) shows the total time elapsed after instance n is solved for each
solver, when ordered from 1 to n in sequence. The vertical distance between lines indicates
the cumulative speedup between solvers for solving each instance. It can be observed that
MSAT and MCARD as a whole achieve similar overall timings, while GBS demonstrates
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a significantly improved performance upon both other solvers—GBS achieves an overall
cumulative speedup of 76 over MSAT and a speedup of 95 over MCARD.

The aggregate runtime meanwhile measures the total time taken to solve all instances if
each were run simultaneously in parallel to one another, as opposed to in sequence when
we measure cumulative runtime. The overall aggregate runtime for a solver can thus be
determined as the time taken to solve the single most difficult instance in the dataset for that
solver (the most difficult instance may not necessarily be the same one across all solvers).
We also measure performance by this metric for three main reasons: firstly, when it comes
to comparing easier instances in the dataset i.e. the Savannah and 802.11 protocol problems,
the cumulative speedup observed will appear less significant due to the fact that the existing
solvers can already solve them near-instantly (≈ 1ms) which physically limits how much
their runtimes can be improved upon using a more efficient solve method—and thus we
may wish to measure relative performance in a way that reduces the significance of these
instances. Secondly, when large speedups are observed on a logarithmic scale, it becomes
more difficult to display differences in speedup value that appear small but are significant
in practice, i.e. a speedup ratio of 10 vs 30 on a chart [77]. Thirdly, it demonstrates the
hypothetical maximum potential for performance gains in a hypothetical parallelized system
where instances are split up between worker threads and solved simultaneously. Figure 5.2
(right) shows the aggregate runtimes for each solver as the number of individual instances
each solver was able to solve within a time limit of t milliseconds — the horizontal distance
between lines hence indicates the difference in the number of instances that were able to be
solved in t ms. The vertical distance between a pair of lines indicates the increase in timeout
required to allow the two solvers to solve any set of n instances, and hence measures their
aggregate speedup up to that point.

An initial observation is that all solvers hold a flat consistent aggregate runtime for the eas-
iest ≈ 3000 instances before beginning to scale upward for the harder remaining instances.
This can be explained by the real-world instances being significantly more trivial to solve
(2528 Savannah instances plus 288 802.11 MAC instances) before the transition to the larger
and more difficult 8360 generated Conference instances (also later shown in Figure 5.3) —
hence demonstrating the initial need to create harder problems in order to more compre-
hensively evaluate the scalability of each solver. It can be observed that MCARD tends to
solve more problems very quickly (< 1ms solve time) compared to MSAT, but performs
slightly worse than MSAT in aggregate where it also solves more problems more slowly
(> 1s solve time). While this is an unexpected result as MCARD is able to natively encode
more high-level constraints, we hypothesize that while these additional constraints trigger on
a subset of problems which result in very fast solve times, this does not occur on the majority
of instances and we hence observe slight overhead from handling the constraints compared
to MSAT overall. The key observation to be made is that GBS again significantly outper-
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forms both other solvers on both easier and harder problems, scaling particularly well on
hard instances; its most difficult instance took 4,516ms to solve, while MSAT and MCARD
required 820,117ms and 1,135,314ms respectively to solve their hardest instances. Therefore
GBS achieves an aggregate speedup of 181 over MSAT and 251 over MCARD.

Repeating this experiment for GBS demonstrated little variance (roughly ±3% in both cu-
mulative and aggregate runtimes from ten runs)—this is because when enumerating all so-
lutions, the solver is required to fully exhaust the search tree which ends up being a fairly
deterministic process, unlike a decision problem where simply finding one single solution is
sufficient (where the solver might get “lucky” and find a valid combination of assignments
earlier than expected by happenstance, due to the slightly-random search heuristic). This in
combination with the dataset containing a large amount of instances causes variation to be
further smoothed out in aggregate, thus a single run is sufficient to deduce the performance
of the algorithm. While not a primary focus of the evaluation, it was also observed that mem-
ory usage was negligible, the maximum resident set size recorded for the largest instances
never surpassing a maximum of 64MB — suggesting that running multiple GBS instances
in parallel could be a promising feasible approach to future performance gains.

Performance Per Instance

We now evaluate the relative performance of GBS against MSAT and MCARD on a case
by case basis, analyzing the same data retrieved from Section 5.2.1. Figure 5.3 (left) shows
the GBS runtimes of each problem for each BRS on the x-axis, while the y-axis plots the
MSAT runtime for that instance—thus each point which appears above each x = y diagonal
line indicates an instance where GBS achieved a better time than MSAT. It can be observed
that GBS outperforms MSAT on all instances, with relative performance also generally in-
creasing as the scale of the problems increase—this is particularly noticeable for the set of
conference BRS instances containing many solutions. As both solvers employ very different
methods and techniques (clauses vs constraints), it was not initially expected that different
instances of similar sizes would consistently demonstrate similar speedups. Speedups on
instances with fewer/no solutions are more modest (which can be particularly observed in
80211 and savannah), however this would still be expected to have a substantial impact on
performance for generating full transition systems as the solver would be likely be getting
called thousands of times. Another key observation in regards to the conference instances is
that matches with sharing scale significantly more linearly than those without sharing, which
can be explained by the extra computation time devoted to filtering false candidate solutions
through the additional checking constraints, therefore further performance improvements on
larger instances may be possible through an improved implementation where these are in-
stead enforced upon value assignment and detected earlier in search. As expected, it was
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Figure 5.3: Comparing GBS against (left) MSAT and (right) MCARD for each instance
of each family of matching problems. Instances are color coded as follows—Black: no
solutions, Purple: 1-9 solutions, Blue: 10-49 solutions, Green: 50-99 solutions, Yellow: ≥
100 solutions.
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Figure 5.4: The solver runtimes achieved by GBS on the matching dataset for eight different
parameter configurations. Cumulative runtime (left) measures the total time taken to solve
n instances. Aggregate runtime (right) measures that the corresponding solver was able to
solve n instances within a runtime ≤ t.

observed that the number of SAT clauses increased rapidly as instances grew in size and
complexity, but this is not evaluated further as this was prior known behavior for MSAT.

Figure 5.3 (right) shows the same GBS runtimes, except now plotted against the runtimes
obtained by MCARD. Across all four BRSs, it can be observed in this case that GBS’s per-
formance gains are overall more moderate for smaller and easier instances. In total, GBS
outperforms MCARD on all problems, except for 3 instances of savannah that which took
both solvers < 1ms to solve, however as noted earlier, this may suggest that potential run-
time improvements for building transition systems which involve thousands of these more
easy/trivial matches may be more limited.

5.2.2 Determining Optimal Configuration

We perform further evaluation on GBS, comparing its performance against itself for the cross
product of all toggle-able parameters supplied by GSS in order to determine the most per-
formant configuration. These experiments (and all subsequent experiments for this chapter)
were run on systems with dual Xeon E5-2697A v4 CPUs and 512GBytes RAM, running
Ubuntu 22.04. We primarily wish to determine whether our nogoods or symmetry breaking
approach is more efficient for dealing with flattened hyperedge cliques, however additional
features of GSS—particularly the building of supplemental graphs and performing NDS—
could potentially have a negative effect on performance if more time is spent doing prelimi-
nary setup than time is saved from solving a more constrained version of the problem.

Figure 5.4 (left) shows the cumulative GBS runtimes on the 11,176 problem instances (or-
dered by no. solutions) for the cross product of three toggle-able parameters, totalling eight
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different combinations: symmetry breaking vs nogood constraints, NDS vs no NDS, and
supplemental graphs vs no supplementals. The first instances in the dataset are all UNSAT
when ordered in this way, and it can be observed that the solver reliably instantly solves the
majority of this subset of problems regardless of configuration used—most likely due to de-
tecting failure early due to a domain wipeout produced by the preliminary degree constraints
before ever reaching the main search loop. As expected, it can be observed that all four
configurations which employ symmetry breaking constraints outperform their nogood coun-
terparts. Interestingly, the largest negative impact on performance occurs for settings where
the solver builds supplemental graphs—each of the four configurations where supplemen-
tals are turned on perform significantly worse than any configuration where this process is
skipped. It can be observed in the aggregate runtime results in Figure 5.4 (right) that roughly
11,000 out of the 11,176 instances are solved within 1 second for all eight versions of GBS,
suggesting that the instances become trivial for the underlying SIP backtracking algorithm
to solve once encoded, i.e. requiring few search node traversals, regardless of whether ad-
ditional pre-processing is performed. Preliminarily building supplemental graphs is hence
likely to introduce unnecessary overhead on these easier instances.

It can also be observed in Figure 5.4 (right) that the aggregate runtimes begin to converge
for instances that take longer to solve, suggesting supplementals may have some application
for use-cases that involve really large and difficult instances, but is generally not needed for
bigraph matching where many instances will be trivial. Similarly to our evaluation in Sec-
tion 5.2.1, we again observe that the ≈ 3000 non-conference instances were trivial to solve
for all configurations while the conference instances take an increasingly long time to solve.
We deduce that while performing NDS has a less substantial impact on performance overall,
skipping this step will result in a slightly better runtime when considering the total cumula-
tive runtimes for all instances. On the other hand, there are some observable instances where
NDS performs significantly better than no NDS despite being slightly slower overall—closer
examination of the data shows that there are 850 total instances where symbreak nds returns
a runtime which is at least 20% faster than that obtained by symbreak, while there is no in-
stance where symbreak performs more than 9.5% faster than symbreak nds. This can be
further seen in Figure 5.4 (right) where symbreak nds is able to solve much more instances
near-instantly compared to its non-NDS counterpart, resulting in a trade-off between the two
options.

For subsequent experiments, we use GBS with symmetry breaking and NDS, and with sup-
plemental graphs turned off.
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Multithreaded Configurations

GSS can also be configured to allow for the parallelization of its underlying solution-biased
search algorithm, where a small amount of randomness is introduced to the variable selection
heuristic to ensure that multiple threads explore different branches of the search tree. This
is combined with periodic restarts where the threads will share information regarding fully
exhausted branches (nogoods) before resuming search [49]. The default implementation
of solution-biased search in GSS also only begins parallel search after the first restart, as to
avoid unnecessary time loss from handling overhead and thread creation when solving trivial
instances.

When running GBS using these parallelization options, we observed no significant change in
performance time compared to that of single-threaded search. In all real-world instances (Sa-
vannah, 80211), GBS was able to find all solutions before ever reaching the threshold for trig-
gering a restart, meaning it never reaches the point of multiple thread creation regardless of
whether it is toggled on. Even for the more difficult Conference model instances, no observ-
able difference in performance could be discerned, suggesting that any potential advantages
that parallel search provides is being offset by the overhead introduced through handling
threads and nogood sharing, particularly when already, no instance ever takes less than 4 sec-
onds to solve on any single-threaded configuration (the single worst instance/configuration
pair measured using this hardware was 3856ms, using the symbreak supp nds set of pa-
rameters).

While we observe that use of parallelism within individual instances does not meaningfully
impact the efficiency of search at this scale, the substantial aggregate speedup that GBS
provides compared to MSAT/MCARD suggests that a more fruitful application of parallel
processing in this case would be to solve batches of instances in parallel instead, where each
thread runs a separate instance of GBS. In a BRS toolkit like BigraphER, this would likely
be used to match multiple reaction rule patterns against a target agent simultaneously and
allocating each of the derived pattern/target match instances amongst the available threads.

5.2.3 Equality Instances

As BigraphER performs frequent isomorphism checks in addition to matching, we also eval-
uate GBS’s performance for finding equivalences between agent states when compared to
MSAT and MCARD. This is performed on a set of 1265 equality instances derived from
a BRS which models nurses, doctors and computer systems within a hospital. Similarly
to matching, it was verified that GBS achieves the same solutions as BigraphER on all in-
stances. Of the 1265 instances, 294 were found to be trivially unsatisfiable, i.e. were found
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Figure 5.5: The solver runtimes achieved by GBS, MSAT and MCARD on the equality
checking dataset. Cumulative runtime (left) measures the total time taken to solve n in-
stances. Per-instance runtimes (right) measure the performance achieved by GBS against
MCARD for each non-trivial equality instance.

to be unsatisfiable during input before search was called and returned a solution in less than
0.1ms for all solvers.

Figure 5.5 (left) shows the cumulative runtimes achieved by MSAT, MCARD and GBS on
the set of equality instances. It can be observed that no solver took more than 2 seconds to
solve the total set of 1265 instances—it is expected that equality is an easier problem to solve
when compared to matching, due to the more constrained domains and only being required
to find one solution rather than all solutions for an instance. GBS again demonstrates signif-
icantly better performance than the existing BigraphER solve tools in this context, achieving
a cumulative speedup of 8 against MSAT and 4 against MCARD. This is roughly the perfor-
mance improvement which would be expected for these easier problems based on the results
for matching, as it was previously seen in Figure 5.3 that speedups are generally more mod-
est for easy problems and more significant as the problems grow larger both in size and in
difficulty.

Figure 5.5 (right) shows the GBS solve times for each non-trivial equality instance on the
x-axis plotted against MCARD’s time on the y-axis. GBS consistently outperforms MCARD
on all instances of the dataset, demonstrating that GBS is the more promising solver for both
matching and equality operations in a BRS based on these evaluations.

5.3 Evaluation: Full BRS Models

We now look toward employing GBS as an integrated matching component within Bigra-
phER itself for running full scale model simulations and generating transition systems on
a variety of BRSs, and compare the performance times against those achieved by MCARD
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and MSAT. Whilst GBS demonstrates promising results for standalone instances of match-
ing, this does not yet guarantee that the same performance gains will be observed in practice;
firstly, BigraphER will also be spending time performing compilation and rewrite opera-
tions in addition to matching [9], where the choice of solver will not have an impact on
performance. Secondly, depending on the method used to bind GBS to BigraphER, potential
performance gains may be dampened through time lost encoding, sending and parsing data
back and forth between them, which we take into account and examine the impact of on a
subset of the evaluated BRS models (Section 5.3.3).

5.3.1 BigraphER Integration

GBS was integrated into BigraphER by initially adding functionality for encoding and flat-
tening a pattern and target bigraph pair as required inside BigraphER’s main solver function.
This is used whenever BigraphER’s solver module is called to perform a match on any input
(P, T ) pair, and GBS is specified as the solver to use in the command line input for running
a BRS model. The resultant flattened bigraphs are then reconstructed in GBS through an
interface module which connects to an API for GBS through a set of OCaml bindings, where
BigraphER is able to call functions such as add node and add edge on a pair of graph in-
stances in GBS to reproduce the required matching instance. The set of assignments in each
solution are then returned in the standard format for BigraphER after solving.

This method of integration through OCaml binding is similarly employed for the previous
MSAT and MCARD integrations, albeit with the additional required preliminary process of
flattening the pair of bigraphs beforehand.

5.3.2 BRS Performance

The set of BRS models that were chosen for evaluation consist of the 37 BRS examples
provided by the source code of BigraphER, which we make available [76]. Out of the 37,
we discard any that were found to be too easy to solve for meaningful discussion of results,
i.e. BRSs where all three solvers exhaust the full transition system in < 1 second on the
benchmark hardware. The 13 remaining BRSs and the properties of their resultant transition
system are provided in Table 5.1. States denotes how many agent states (and hence target
instances) were discovered during generation. Rules provides the number of reaction rules
(and hence the number of pattern redexes) of the BRS. Transitions denotes the total number
of rewrite operations performed. Occurs corresponds to the total sum of solutions found
across all matching operations. Average State Size and Average Match Size describe the
average number of support elements of the target and pattern respectfully across all matching
operations.
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Average Average
BRS States Rules Transitions Occurs State Size Match Size
abrs-mobilesink 3458 85 8413 17595 15.0931 7.12903
plato-graphical-loc 10000 9 49395 60715 28.3853 5.55556
virus-simpl 809 3 3972 4694 45 2.33333
hospital 2226 10 11794 12824 34.9704 7.8
plato-graphical 10000 9 59652 130360 34.8278 4.55556
savannah-general 10000 150 161342 187341 33.5633 7.96
dining philosophers 815 4 3023 3193 21 9
virus-multifirewall 809 4 3972 4694 54 2.5
AutoBigraphER 127 1000 125 2783 5024 167.672 6.43562
AutoBigraphER 52 1000 125 2952 5203 145.777 6.43562
AutoBigraphER 83 1000 125 2859 5062 165.661 6.43562
floor security robot10 1 20 338 22 324 882.5 3.60997
link inst map 500 1 501 501 760.5 2

Table 5.1: The set of 13 example BRS models provided by BigraphER used for measuring
GBS performance against MCARD and MSAT, split into 8 “standard” models (exhausts
all possible states OR reaches 10,000 states in < 30 minutes) and 5 harder models with
significantly larger average agent state sizes.

Out of the 13 chosen BRSs, we partition these into two categories based on their difficulty to
solve, and evaluate them separately. 8 BRSs in the set were found to either fully exhaust their
transition system or reach 10,000 unique states within 30 minutes for all solvers, which we
denote as the standard set of models. 5 BRSs were found to be significantly harder to solve,
taking all solvers at minimum several hours to reach the same threshold. We denote these 5 as
the “hard” set of models, where the amount of states they must reach before terminating has
been set to a substantially lower manually chosen value to ensure that all solvers complete
each generation within 30 minutes. It can be observed in Table 5.1 that these models produce
substantially larger average agent states (≥ 100) compared to the standard set. The full data
tables for this evaluation are provided in Appendix C.

Standard Models

Figures 5.6(a) through (h) show the runtime performances achieved by GBS, MSAT and
MCARD for each of the 8 standard-difficulty BRS models. The times taken to reach 25%,
50%, 75% and 100% of total states are plotted to show the relative scalability of each solver
as the transition system grows. For all 8 BRSs in this dataset, GBS reliably provides a
better overall performance gain over MSAT—with runtimes that range from 72% faster for
the dining philosophers BRS in Figure 5.6(h) up to 421% faster on plato-graphical-loc in
Figure 5.6(e), for reaching all states. However, performance relative to MCARD is shown to
be more competitive; while significant gains greater than 65% relative to MCARD are shown
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6
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(g) (h)

Figure 5.6: Comparing the performance of MSAT, MCARD and GBS for building the tran-
sition system on the selection of standard-difficulty BRS instances, showing the number of
unique states reached over time for each solver.

in Figures 5.6(b), (e) and (f), MCARD’s runtimes are otherwise more comparable to, and for
one BRS faster overall than as shown in Figure 5.6(h), those obtained by the integrated GBS.
This is investigated further in Section 5.3.3.

Harder Models

Figures 5.7(a) through (e) show the runtime performances achieved by the three BigraphER
solvers for each of the 5 harder-difficulty BRS models. For the three AutoBigraphER mod-
els as shown in Figures 5.7(a), (b) and (c), which simulate a routing protocol for low-power
and lossy WSNs, GBS provides significant improvements in overall solve time, gaining
speedups of over 5 against MSAT and a gain over 75% against MCARD. On the other two
hard BRSs however, GBS underperforms both MCARD and MSAT.

We can understand this result for Figure 5.7(e) by closer analysis of the model structure. As
shown in Figure 5.8, the link inst map BRS defines only a single reaction rule containing
two unconnected entities C and Dup, which rewrites a state by adding an additional Alg
entity as a child of C. For this particular instance (not shown in the figure), BigraphER also
allows the rewrite to duplicate the subtree of site 0 in r and compose it as a subtree onto site
2 in r′. It is also shown that the reactum bigraph r′ and initial agent state A each only contain
one instance of C and Dup, meaning that one single matching solution will always exist
and can be trivially found by comparing control types of entities regardless of how large the
agent may grow, while each subsequent state adds an additional A, B and Alg entity, and the
new A and B join their respective hyperedges. As the match will always remain trivial, we
deduce (and later demonstrate in Figures 5.9(c) and (d)) that the bulk of time doing matching
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(a) (b)

(c) (d)

(e)

Figure 5.7: Comparing the performance of MSAT, MCARD and GBS for building the tran-
sition system on a selection of BRS instances identified to be particularly difficult to solve.
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Figure 5.8: The sole rewrite rule and initial agent state of the link inst map BRS model
provided by BigraphER.

for GBS will be spent in the flattening and construction process, which becomes increasingly
computationally expensive as the target states and their hyperedge cliques continue to grow,
which reflects the relative worsening of performance over time that can be observed in Figure
5.7(e). While link inst map is a more abstract BRS which does not model a real-world use
case, our reason for including this in our suite of tests are twofold; firstly, we wish to evaluate
all example models provided by the BigraphER repository to ensure that our evaluation is
fair and exhaustive. Secondly, it may still highlight a weakness of our current approach that
could also potentially occur for more practical usage, and thus we wish to record this as part
of our evaluation. Specifically, this highlights that instances involving large target states and
easy matches may present a challenge for BigraphER with GBS relative to the old solvers’
performances without a more efficient method for building the flattened bigraph encodings
in GBS.

We analyze GBS’s performance for floor security robot further in Section 5.3.3 by exam-
ining individual instances of matching in the BRS.

5.3.3 Investigating Underperforming BRSs

To measurably determine the impact our GBS integration method has on overall perfor-
mance, we extract the sets of pattern redexes and target states from BigraphER for the two
BRSs where we observe an unexpected underperformance from GBS, and evaluate these
separately. For dining philosophers, the combination of its 815 possible states with its
4 redexes were retrieved to give 3260 instances of matching, while the 338 redexes of
floor security robot were retrieved along with its first 10 reached states to produce 3380
total matching instances. For completeness, we also evaluate the lone pattern against the 100
target states of link inst map.

For each extracted set of instances, we measure the cumulative runtimes achieved by the
matching engine of BigraphER with GBS, including time spent encoding, flattening and



5.3. Evaluation: Full BRS Models 111

constructing the instance. We compare these to the cumulative search time reported by the
main solver function of GBS when called directly, including constraint generation time but
ignoring input/output time in a similar fashion to our initial matching evaluations (Section
5.1). We compare these results against those achieved by MCARD in order to provide addi-
tional context to the difference in performance observed.

(a) (b)

(c) (d)

Figure 5.9: The cumulative runtimes for the sets of extracted matching instances for the (a)
dining philosopher, (b) floor security robot BRSs and (c) link inst map BRS, comparing the
total runtime of the integrated GBS against GBS search time achieved when called directly—
the corresponding runtimes of MCARD are included as an additional point of comparison.
(d) Time spent performing search relative to BigraphER flattening and I/O operations for
each BRS.

Figures 5.9(a), (b) and (c) show the cumulative runtimes achieved by the integrated GBS
compared to calling the GBS solve function directly, on the set of matches for each of the
three identified underperformant models. Figure 5.9(c) demonstrates that our hypothesis
explaining the slow runtimes reported in link inst map (Section 5.3.2) is accurate, spending
93% of reported time inside the BigraphER matching module handling the flattening and
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input/output between GBS for the bigraph pair. This is compared to 85% of total runtime
for the dining philosopher instances and 61% for floor security robot, as shown in Figure
5.9(d).

We also observe for the link inst map runtimes in Figure 5.9(c) that integrated GBS ap-
pears to scale geometrically, despite GBS showing more linear scaling for the other two
underperformant models. This is because as previously observed in Figure 5.8, the states
of link inst map in particular scale in direct proportion to the number of transitions made,
where each consecutive state update is adding a new bigraph where one additional entity is
added onto the previously largest state. This causes the I/O processing time to scale poly-
nomially, where it will encode each state with support size k to (k + n) at each update step
n when starting with an initial state size k. This is in contrast to more practical models
like dining philosophers where the average state size will not observe a substantial increase
until at least after thousands of transitions (Table 5.1).

Across the three BRSs, it was observed that each model mainly consisted of relatively easy
matches for GBS; the most difficult single link inst map matching instance was solved by
GBS in 2.73ms, whilst this was 0.24ms for dining philosophers and 7.08ms for floor se-
curity. This suggests that while the integrated GBS in its current state shows promise for
solving BRSs involving harder matches, an efficient method of passing data between the two
components is necessary in order to take full advantage of the faster solve times that the SIP
encoding offers, for models that mostly consist of trivial matches—particularly on large tar-
get states. One obvious avenue to explore for mitigating input/output bottlenecks would be
to avoid performing flattened graph construction on any bigraph which has already been pro-
cessed in a previous instance of matching; this could be achieved by modifying the matching
engine (and by extension, GBS) to accept several patterns and a single target whenever at-
tempting to branch from a given transition system state, ensuring that the same target isn’t
encoded multiple times, which is particularly beneficial if a BRS contains many reaction
rules. A method of caching the set of reaction redexes inside GBS would also ensure that the
same pattern graphs are not redundantly encoded multiple times in a simulation, and caching
all received targets would similarly allow for more efficient checking of support equivalence
between agents.

One important observation that we additionally observe appears in the runtimes for floor
security in Figure 5.9(b); it is shown that regardless of integration performance, the actual
solving time achieved by GBS underperforms that of MCARD; overall, direct GBS took
47% more time to solve the set of matches. Investigation on a selection of floor security in-
stances where GBS performs particularly poorly compared to MCARD showed that in each
of these cases, over 50% of solve time was spent building the transitive reachability matrix
of VT as a preliminary process prior to running the main search loop. We hence propose that
some method of caching this structure in addition to the target graph itself inside GBS, avoid-
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ing further redundancy, can potentially allow for faster overall solve times in the context of
transition system building. The floor security BRS is a particularly good example of where
this would be a useful potential improvement due to its 338 reaction rules, as this will cur-
rently be unnecessarily performed upon the same target graph for each (r1, T ), ..., (r338, T )

instance.

5.3.4 Scalability Assessment

Finally, we now explore the potential of GBS for expanding the scale of larger simulations
which BigraphER can support in real-time, in cases where the transition system grows to
the point where MCARD and MSAT begin to suffer scaling issues. It can be observed in
Figures 5.6 and 5.7 that different models may scale at different rates over time, and this de-
pends on the complexity of the underlying bigraphs in each state and how they evolve as
the transition system grows through numerous rewriting operations. For example, a model
may exhibit almost-linear scaling if many of its reaction rules do not significantly change
the underlying state agents, or in some cases may even reduce their size or complexity if the
reactum bigraph is smaller than the redux bigraph — this almost-linear behavior can be ob-
served in the AutoBigraphER model runs (Figures 5.7(a) through (c)). Conversely, a model
will likely demonstrate more exponential scaling if the iterative application of reaction rules
produce increasingly more complex agent states as the system grows, resulting in more diffi-
cult matching instances as the simulation progresses. Another important factor affecting this
phenomenon is that each new candidate state also needs to be isomorphism checked against
all previous states to ensure no two equivalent states are mistakenly added to the transition
system as separate nodes, which can quickly grow computationally expensive when deal-
ing with systems involving tens of thousands of possible states when the underlying support
equivalence solver is not optimized.

For this assessment, we specifically focus on the plato-graphical and plato-graphical-loc
models, as they are BRSs which produce infinite transition systems and exhibit the previously
described behavior. It can be observed from Figures 5.6(b) and (e) that the time required to
add more states demonstrates a more geometric pattern for this pair of models. Informally,
it was also observed through preliminary test simulations that while BigraphER is able to
simulate these models at hundreds of states per second initially, they begin to bottleneck as
their systems grow beyond tens of thousands of states when relying on the MCARD and
MSAT solvers. We do not consider the other large model savannah-general, as this BRS
simulation eventually completed at 20666 states and therefore was found to be finite.

To measure the scale at which each matching/isomorphism solver can support these models
maintaining acceptable performance, we add a timeout clause to BigraphER’s scan func-
tion. Calling the scan function on a target agent state T performs the following process:
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Solver plato-graphical plato-graphical-loc
MSAT #1 48657 19294
MSAT #2 48515 19054
MSAT #3 48638 19333
MSAT Avg. 48603 19227
MCARD #1 61645 30065
MCARD #2 61118 30065
MCARD #3 61639 30065
MCARD Avg. 61467 30065
GBS #1 1107427 1031491
GBS #2 1107343 1031491
GBS #3 1107414 1031491
GBS Avg. 1107394 1031491

Table 5.2: The number of states BigraphER was able to reach before the state update function
timed out (≥ 1s), per solver.

• Calls the underlying solver to solve match(r, T ) for each reaction rule R : r → r′ in
the BRS.

• For each match found for each r, performs the corresponding substitution in T to
produce a set of new candidate states C = {C1, ..., Cm}.

• For each Ci ∈ C and each agent state Aj ∈ {A1, ..., AN} already in the transition
system, calls the underlying solver to solve equality(Ci, Aj).

• Adds a new transition system node for each Ci where equality(Ci, Aj) = false for
all Aj ∈ {A1, ..., AN}, and adds a directed edge from T to Ci.

• Otherwise, if Ci is an isomorphism of an existing state Aj , simply adds a directed edge
from T to Aj .

Overall, this function handles the branching of a given agent state to all states it can evolve
into through pattern matching and then rewriting of all reaction rules in the BRS. For each
of the three available solvers, we record the size that the transition system is able to reach
before a call to the scan function takes more than 1 second to complete for a state (in which
the timeout will then trigger and halt the program) as the simulation will be too slow for
practical modelling beyond that point; this allows us to measure the impact that swapping
MCARD/MSAT with GBS will have on the scalability of BigraphER as a whole. We perform
this three times for each model/solver pair — in doing so, variance in results between runs
was observed to be very low, likely due to the transition system building process being deter-
ministic (it will always simulate states and perform the same matching/equality operations
in the same order each time).
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Table 5.2 displays the sizes of the transition systems reached for each model/solver pair
before timeout. We immediately see that while MCARD does slightly better than MSAT for
this benchmark, GBS heavily outperforms both other solvers, allowing BigraphER to grow
the system demonstrating acceptable performance to just beyond one million nodes on both
evaluated BRSs. As a ratio, GBS was able to increase the scale of the simulation under this
criteria by a factor of 34.3 over MCARD and 53.7 over MSAT on the plato-graphical-loc
model, and 18.0 over MCARD and 22.8 over MSAT on the plato-graphical model.

Deeper analysis of the underlying bigraph states and matching operations being performed
reveal that in this instance, while the agents tended to grow larger as they evolved, they never
reach a drastically large size — within the first 50,000 steps, the largest agent in the plato-
graphical system was found to have a support size of 75 (from an initial agent size of 6), and
for plato-graphical-loc this was 40 (from an initial size of 9). This suggests that while the
underlying matches are indeed getting gradually more difficult as the system grows, another
likely contributor to MSAT and MCARD’s scaling issues in this instance upon reaching tens
of thousands of nodes is the increasingly large number of required equality checking oper-
ations required per state update. When determining whether a candidate state can be added
as the nth node of the system, a maximum of n − 1 equality operations against all other
existing states must first be performed to ensure its uniqueness, which — at the point where
the toolkit must support a transition system containing hundreds of thousands of nodes —
threatens to take up the vast majority of processing time in order to grow further. This high-
lights the importance of having an efficient equivalence solver under the hood in addition to
our optimized pattern matching algorithm, when it comes to supporting large-scale simula-
tions. Overall, these results are a promising sign that through our adapted subgraph solving
algorithm, we are now able to support significantly larger and more complex models where
a SAT-based approach would previously struggle to perform at scale.

5.4 Summary

In this chapter, we have demonstrated that through adapting an efficient subgraph solving tool
to solve bigraph matching, we can achieve a significantly better performance over the current
state of the art SAT tools, including an aggregate speedup of over two orders of magnitude
against both previously used solvers on a large suite of pattern/target pair instances. This
can be integrated into the BigraphER rewriting engine, where our adapted solver provides
the best runtime performance on a majority of 13 evaluated BRSs which is sufficient to
showcase the usefulness of this approach, as well as demonstrating promising resilience on
BRSs which grow to the size of hundreds of thousands of states. However there exist possible
engineering improvements that may allow for further, more substantial gains in a practical
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context.

Currently, BigraphER with GBS considers every (P, T ) matching operation in isolation
whenever required, encoding and flattening the pair of bigraphs in BigraphER before passing
function calls to rebuild and subsequently solve them in GBS. However, this will ultimately
result in time wasted repeatedly flattening the same graphs; for a BRS model with r reaction
rules and a possible agent states, each target state will be redundantly flattened r − 1 extra
times to apply each reaction rule on it, and each redex of a reaction rule will also be flat-
tened up to a times for every attempted branching of an agent. This particularly negatively
impacts relative performance against MCARD/MSAT on BRSs with a combination of lots
of reaction rules, large target states and easy matches, where BigraphER/GBS will end up
spending the vast majority of its matching time stuck in the flattening and setup functions as
seen with the floor security robot model (Section 5.3.3). Hence, the following adaptations
can potentially be made to alleviate these bottlenecks:

• Adapt the BigraphER solver module to accept the full set of reaction redexes {r1, ..., rn}
in the BRS when attempting to match them to an agent A, instead of performing every
match (r1, A) to (rn, A) as independent instances. This would also involve adapting
GBS to accept an arbitrary number of pattern graphs as input and apply them all to
one given target as one collective operation, ensuring necessary setup processes like
building the reachability matrix for the target for applying sharing constraints is only
done once.

• Investigate methods of caching the set of reaction rules inside GBS, removing the
need to flatten and rebuild the set of pattern bigraphs more than once for a full model
simulation.

• Investigate methods of caching any received target state inside GBS during a simula-
tion, ensuring faster equivalence checking operations.

• Implement the shared site/region and transitive closure constraints (Section 5.1.1) as
constraints propagated during value assignment rather than checking constraints ap-
plied on candidate solutions.

Whilst we identify these specific areas for improvement, additional effort spent on optimiz-
ing I/O and implementing caching was deemed outside of the scope of this dissertation’s
research, as this wholly concerns further software engineering tasks to more tightly inte-
grate GBS as a component into BigraphER rather than relating to the logic of the underlying
matching algorithm itself, i.e. the main primary scope of this work. Hence, now that we have
sufficiently demonstrated that it is feasible to use our adapted SIP algorithm as the back-end
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solver in a BRS toolkit to achieve faster transition system building in the majority of evalu-
ated models with our current method of integration, we leave these extra optimization efforts
as a promising future exercise for refactoring BigraphER’s handling of data transfer and
improving further upon performance and applicability.

It is known to be difficult to determine in advance whether a SIP instance will be hard, as even
small instances can sometimes be computationally intensive depending on their structure
[38]. This means that proposing a “hybrid” approach which automatically selects the most
optimal solver for each type of model would be a difficult endeavor. However, because of the
portability of our approach to GBS, this allowed us to integrate it into BigraphER without
removing any existing infrastructure, and thus support giving the user the option of which
solver to use as an input command line parameter (either MCARD, MSAT or GBS) without
any difference in how the rest of the tool will operate. We thus provide the user the ability to
determine and select the most ideal solver for whichever context they may be working in, e.g.
floor security robot where it can be determined via brief simulation testing that MCARD
is the fastest available solver.

In the following chapter, we build upon our bigraph matching algorithm to consider a pos-
sible optimization variant of the problem based on the relation between SIP and maximum
common induced subgraph (MCIS), and its potential to allow for support for labelled tran-
sition systems and identifying minimal contextual transitions, if also added to BigraphER
or other bigraph rewriting engines. We thus define the maximum common bigraph (MCB)
problem, identify its similarities to both bigraph matching and MCIS, and introduce an algo-
rithm for MCB based upon the state of the art McSplit partitioning and backtracking MCIS
algorithm with additional constraints [14].
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Chapter 6

Introducing Maximum Common
Bigraph

In this chapter, we build upon our previous work to introduce an algorithm for solving
the maximum common bigraph (MCB) problem, which aims to find the largest shared area
(support-equivalent substructures) between two bigraphs. This allows us to identify the min-
imal contexts required to add to an agent that allows a contextual reaction rule to apply in
a transition system, which then allows for identifying bisimulations, a powerful utility for
optimization and verfication — which cannot currently be achieved through existing BRS
tools.

Section 6.1 discusses the motivation and use-cases that would benefit from a maximum com-
mon bigraph algorithm. Section 6.2 evaluates the graph-equivalent large common subgraph
problem, as well as commonly used algorithms for solving instances of MCIS. Section 6.3
proposes our definition of a maximum common bigraph and its expected observable proper-
ties. Section 6.4 describes the adaptation of McSplit to retrieve the MCB of two agent states.
Section 6.5 provides a proof of soundness and completeness of this approach. Section 6.6
extends this adaptation further to identify all occurrences where the composition of a min-
imal context would permit a full match to occur in an agent bigraph. Section 6.7 describes
the implementation of our prototype McSplit solver. Section 6.8 provides some preliminary
performance metrics and observations for our prototype implementation. Section 6.9 sum-
marizes the chapter, where we note some observations and avenues for further research on
MCB.



6.1. Motivation 119

6.1 Motivation

Our primary motivation is as follows: currently, there is no known algorithm which is con-
cerned with defining, nor finding a maximum component between two abstract bigraphs. A
similar concept exists in the form of identifying relative pushouts (RPOs) of bigraphs—that
is, the shared decomposition G of the span and cospan A1 and A2 for one greater bigraph
structure A, where no further composition onto G is possible (other than the identity bigraph)
without preventing it from occurring in both A1 and A2—in other words, the composition is
in a saturated, maximal state. Pushouts however are only concerned with concrete bigraphs
where there already exists a support mapping between A1 and A2 supplied by A, rather than
searching for this mapping to begin with between two abstract bigraphs in a BRS. Further
reading into bigraph pushouts is described in further detail in Appendix B, but for the pur-
poses of this dissertation, we only need to understand that they define a minimally bounded
triple relation between A1, A2 (decompositions of A) and a shared decomposition G between
the two.

An algorithm which is able to identify a maximum mapping between two abstract bigraphs as
a generalization of bigraph matching, i.e. finding the largest possible set of valid support as-
signments if a full match does not exist, would open up an avenue toward supporting minimal

contextual transitions in a BRS, where the smallest possible bigraph is initially composed
onto the agent as a context to allow an otherwise invalid match to appear. This is because
such an algorithm could identify the largest shared region between the reaction rule redux r

and the agent A to determine exactly what needs to be provided in the minimal context (Sec-
tion 6.1.1). This would then allow for establishing properties such as bisimulation between
agents in a BRS — the guarantee that two agents will always behave in the same way within
any possible environment — through mapping out and comparing their respective minimal
contextual transition systems, which cannot be guaranteed using a standard transition system
which relies upon full matches (Section 6.1.2). Hence, if a maximum common bigraph algo-
rithm were devised and implemented into a tool such as BigraphER to allow for simulating
more flexible and sophisticated transition systems, this opens up the potential for introducing
more rich, efficient and complex modelling techniques for real-world models.

6.1.1 Labelled Transition Systems

Up until this point, we have been wholly concerned with modelling transition systems where
a reaction rule must already exist within an agent to be able to perform its corresponding
rewrite operation, as described in Section 2.1.2 — this can be described as mapping out
the raw transition system of a BRS. However, this presumes that the agents we wish to
simulate must exist in a vacuum without any additional context, instead of as a component
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Figure 6.1: A high level representation of a transition in an LTS, where a context C from the
environment of agent A is first composed to produce C ◦ A, such that r = C ◦ G (for some
remainder bigraph G within A) now occurs in the agent and the reaction rule R : r → r′ can
be applied.

within a wider surrounding environment. In reality, there may be unknown entities and links
connected to the agent we wish to account for, which can impact the behavior of how the state
could potentially evolve over time. A hypothetical more powerful modelling paradigm would
be able to account for this and allow for transitions which take into account the possibility
that the wider context connected to the agent could supply the missing structure needed for
a match to occur, allowing a reaction rule to apply that wouldn’t otherwise. A transition
system of this form is known as a contextual labelled transition system (LTS) [78].

In an LTS, a transition between states can be denoted as A
f−→ A′: where A and A′ describe

the agent states before and after applying the transition, and f denotes the label of the tran-
sition. In a full transition system for a BRS as defined by Milner [1], the label f takes the
form of a bigraph which represents a piece of the wider environment, and is composed onto
the agent A as a context as a preliminary step, to produce f ◦A before applying the reaction
rule to it. This means that effectively any reaction rule can apply to any agent state in a
bigraph LTS, as long as f provides the appropriate context to act as a dependency. Figure
6.1 provides a simplified visual example of this process, where f first provides the necessary
context bigraph C before the state transition, allowing the reaction rule redux r to appear.
Raw transition systems can be seen as a simplified specification of LTSs as a whole, where f
is restricted to ∅ and cannot change whether a reaction rule can apply or not, as the structure
of A remains unchanged.

The implementation of an LTSs opens up the ability to simulate not only the standalone be-
havior of an agent, but also its potential behavior in any possible context, where its above
environment could influence its behavior and therefore the possible states it is able to reach
— and thus provides a more expansive and powerful modelling paradigm than the raw tran-
sition systems that we have been working with thus far. This would allow us to verify the
bisimulation of agents, i.e. given two different agents that behave similarly, we may wish
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Figure 6.2: A high-level view of how a BRS can apply a minimal context Cm to agent A
to allow the application of reaction rule R : r → r′, in order to rewrite A to produce the
successor agent A′. The blue area denotes the overlapping area G between r and A, and D
is the parameter of the constructed matching that can now occur.

to determine whether they always exhibit the same behavior regardless of any environment
they may possibly be placed in (Section 6.1.2). However, given the current lenient definition
of an LTS, there are hypothetically infinitely many contexts which could be supplied to any
reaction rule, which is not practical to model as a transition system. In addition, where the
contextual bigraph f is composed onto A is not specified, and it is possible that the same f

could be composed onto more than one combination of regions in A that allow the reaction
rule to apply, but where the resultant agent states will differ in structure. Thus, we wish
to define a specification of LTSs that both supplies information about where the additional
context is placed, as well as restricting the possible range of contexts to only the minimal
structure necessary to allow the reaction rule to fire.

Milner defines a contextual transition system (CTS) as an LTS that executes transitions in
the form A

(f,j)−−→ A′, where the context bigraph is paired with a contextual location j which
defines the mapping from the inner faces of f to the outer faces of A. Each contextual
transition is based upon an underlying reaction rule R : r → r′, such that f ◦A is equivalent
to r ◦D for some remainder bigraph D, and A′ is thus equivalent to r′ ◦D.

A transition within a CTS is considered a minimal transition if the produced triple relation
((f, j), r, A) is an RPO (Appendix B) — that is, it is minimally bounded, and there exists no
other contextual label (f ′, j′) where f ′ occurs within f , and the alternative transition relation
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((f ′, j′), r, A) can also be applied. In other words, for the transition to be minimal, f must
provide to A only what is missing from r and nothing more. A minimal transition system can
hence be defined as a CTS which is restricted to only minimal transitions, which is sufficient
for capturing any possible state the agent may reach through influence from its environment.
An example application of a minimal context for an LTS is shown in Figure 6.2.

The challenge of algorithmically identifying the minimal context Cm can be viewed as equiv-
alent to identifying a maximal overlapping area G between r and A, such that r = Cm ◦ G
and A = Cr ◦ G ◦ Dr where the resultant bigraph Cm ◦ A = (Cm ⊗ Cr) ◦ (r ⊗ id) ◦ Dr

is produced. It logically follows as shown in Figure 6.2 that Cm can then be obtained by
decomposing all elements of G from R. In other words, we would first require a method of
finding the largest possible instances of a common bigraph G between r and A where we can
take the complement of G from r to obtain C. As the lower face of Cm must mirror the upper
face of G where the interfaces of Cm are subject to the minimal bound constraint, we can
infer that the interfaces of G must also be minimal to match and similarly be closed/merged.
Hence, in order to support the building of minimal transition systems, the need for a maxi-
mum common bigraph algorithm arises as an initial necessary step and must be addressed.
This proposed strategy would follow a similar principle to using maximum common sub-
graph to solve graph edit distance problems, but within the context of bigraphs [79].

6.1.2 Bisimulations for Bigraphs

A bisimulation between two agent states A and B in a transition system describes a sym-
metric relation such that A and B will always exhibit the same behavior, and hence can
be considered functionally equivalent regardless of any internal difference in the compo-
sition of their structures — in essence, they simulate one another. A pair of agents are
called bisimilar (labelled A ∼ B) if there exists a bisimulation between them [80], and the
transition systems produced by setting either A or B as the initial state will be indistinguish-
able from one another. Being able to verify whether two states are bisimilar is a powerful
tool for model checking, as this can allow for the simplification, optimization and the re-
ducing of cost of models and systems through replacing more complex components with
smaller or cheaper components which are verified to be bisimilar. Existing real-world exam-
ples of where identifying bisimulations has been utilized include ensuring equivalence after
refactoring databases [81], optimization of large-scale graph processing [82] and simplifying
complex environments within deep reinforcement learning [83].

Within the domain of bigraphs specifically, engineering a BRS toolkit such as BigraphER
to be able to model the minimal CTS of a model, and hence be able to determine whether
two bigraph states are bisimilar by comparing their resultant minimal CTSs, which can be
performed in polynomial time [84]. This would hence meaningfully expand upon the exten-
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sibility and practicality of BRSs as a modelling paradigm. Potential real-world applications
include the following:

• Simplification of Models: Bisimilar components are interchangeable within a model
without changing the overall state behavior. Hence whenever a bisimulation A ∼ B

is identified where the bigraph A is smaller or simpler in structure compared to B, all
instances of B can be substituted with A to result in a more refined system and reduce
redundancy.

• Optimization of Models: Bigraphs which represent components that are more ex-
pensive, resource intensive or more difficult to obtain in a real-world context can be
substituted with a cheaper, more efficient or more available bigraph component if they
are bisimilar, without affecting the overall model behavior.

• System Verification: An modified bigraph agent A′ representating a system state can
be checked against a previous version of itself A to verify that A ∼ A′, to ensure
that no unexpected alteration in behavior is observed from the change. This is useful
for applications such as ensuring backward compatibility between programs and safe
refactoring of code.

• Fault Tolerance: Bigraph agents that are identified as bisimilar could be used as back-
ups for one another, if one becomes unavailable or encounters a fault. This would be
useful in contexts such as networking or distributed systems where servers running
equivalent protocols can safely replace each other to avoid downtime.

As discussed previously, bisimulations between agents cannot be identified with only a raw
transition system due to wider environmental influences potentially disrupting their congru-
ence, and can only be guaranteed through comparing minimal CTSs which exhaustively
account for all potential wider contexts. We have also established that building minimal
CTSs requires the finding, through some algorithm, of maximal shared areas between agents
and reaction rule reduxes. Hence, a maximum common bigraph algorithm would provide the
foundational missing step that would then allow for the supporting of minimal CTS building
and subsequently the introduction of bisimulation verification in a BRS.

Now that the key motivations for devising such an algorithm have been established, we
move forward to discuss the MCIS problem and the observed logical parallels to finding a
hypothetical maximum common bigraph, as well as reviewing existing MCIS tools and their
potential for being adapted to solve MCB.
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Figure 6.3: (a) An instance of the maximum common subgraph problem, with GS

as a solution subgraph between G1 and G2. The solution mapping takes the form
{(s0, a3, b0), (s1, a0, b1), (s2, a2, b2), (s3, a1, b4)}.

6.2 Maximum Common Induced Subgraph

The maximum common subgraph (MCS) problem is an NP-complete optimization problem,
which seeks to find a graph structure GS which exists as an isomorphism to a subgraph inside
two given input graphs G1 and G2, where there does not exist any larger (by some metric)
subgraph which meets the same criteria [85]. There exist two main forms of MCS: maximum
common induced subgraph (MCIS), which is concerned with maximizing the number of
vertices that can be mapped between G1 and G2, and the maximum common edge subgraph

problem (MCES) which instead uses the number of edges of GS as the measure of size to
maximize. Going forward, we are primarily concerned with the induced variant of MCS,
as this more accurately reflects the criteria which we want to later define for a maximum
common bigraph (Section 6.3). We formally define this as follows.

Definition 6.2.1 (Maximum Common Induced Subgraph). Given two input graphs G1 =

(V1, E1) and G2 = (V2, E2), a common induced subgraph GS = (VS, ES) is one such that
there exists a pair of injective mappings f1 : VS → V1 and f2 : VS → V2, where vertices and
edges and mapped such that (u, v) ∈ ES ⇐⇒ (f1(u), f1(v)) ∈ E1 and (u, v) ∈ ES ⇐⇒
(f2(u), f2(v)) ∈ E2.

GS is maximum when there exists no alternate solution G′
S = (V ′

S, E
′
S) which satisfies the

above conditions and also satisfies |V ′
S| > |VS|.

MCIS can be seen as a generalization of subgraph isomorphism, where instead of finding
only solutions that are complete and satisfiable, it instead searches for the set of solutions
which come as close as possible to a full matching, i.e. minimizing nodes with no assignment
[86]. A solution to MCIS can be represented by a set of triples (v1, v2, vs) representing the
bijective mapping from a subset of vertices v1 ∈ F1 ⊆ V1 to a subset of vertices v2 ∈ F2 ⊆
V2, where GS is isomorphic to F1 and F2 and vs indicates the mapping from each to a vertex
in VS . A solution in this format can also be treated as a solution to both SIP(GS, G1) and
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SIP(GS, G2), highlighting another relation between SIP and MCIS. As GS is a maximum
by definition, then for any other possible graph G′

S where |V ′
S| > |VS|, G′

S no valid match
will be found for either (or both) of SIP(G′

S, G1) or SIP(G′
S, G2), otherwise G′

S would be
the more optimal MCIS solution.

Despite their similarities, MCIS is a much more difficult problem to solve compared to SIP,
due to no longer being able to perform powerful reasoning on vertex degrees and path dis-
tances when moving away from the domain of exact match searching. However, the fixed
forest structure and introduction of labels to bigraphs may allow for larger instances to be
solved using MCIS, as the domains of vertices will be more restricted before search, poten-
tially cutting down the overall search space. We provide a brief analysis of MCIS algorithms
and their potential for adaptation for bigraphs.

6.2.1 Existing MCIS Algorithms

Max Clique Reduction

Multiple methods of solving MCIS rely upon a reduction to the maximum clique problem
[87], which seeks to find the largest subset of vertices S ⊆ G in a graph such that all pairs of
vertices in S are connected via an edge — this is achieved by building an association graph

A from the input pair of graphs G1 and G2. The vertex set VA is made up of the cross product
VG1 × VG2 , where each vertex represents the shared mappings u ∈ G1 → s and v ∈ G2 → s

to the solution graph vertex s ∈ GS in a MCIS solution. Edges between association graph
vertices represent compatible assignments - that is, the pair of G×H assignments can appear
in a solution together because the edges between the pairs of vertices do not conflict with one
another. From there, it can be derived that the maximum clique of compatible assignments
in the association graph corresponds to the largest common structure between G1 and G2.

McCreesh et al. propose such an adaption of an optimized max clique algorithm MCSa1
[85], which utilizes greedy coloring of vertices to determine the upper bound of any solution
in order to cut down on redundant computation. This adaptation also uses a degree-based
order of assignments, and similarly to the Glasgow Subgraph Solver, employs bit-parallel
data structures to ensure optimal performance. This could hence potentially provide an ideal
foundation for re-engineering this approach to support an encoded bigraph input. However,
unlike a CSP/COP-based format where the extra complexities of bigraphs can be simply ab-
stracted away from the base model and handled through additional constraint rules, a max
clique-based algorithm would have to be substantially overhauled from the ground up in
order to deal with factors that cannot be accounted for when considering only pairs of as-
signments in a vacuum, such as ensuring that a solution respects the compositional rules of
bigraphs, or the handling of sites and regions. Hence, a constraints-based adaptation which



6.2. Maximum Common Induced Subgraph 126

resembles our encoding for bigraph matching and retains the core underlying MCIS logic
would be more ideal as an approach for devising an algorithm for MCB.

MCIS as a Constraint Optimization Problem

MCIS in a constraints-based context can be considered as the optimization problem variant
of the SIP satisfaction problem. This is reflected in the building of the COP model — the
variables, values and constraints all remain the same as SIP (Section 2.4.3), with the key dif-
ference being that the mapping of each vertex from G1 to G2 can now optionally take a null

value ∅ to represent no assignment, and the solver aims to find a set of assignments such that
the occurrences of ∅ in the solution are minimized. Because of this congruency between the
two problems, this suggests that there can also feasibly exist an optimization-based general-
ization of our bigraph matching encoding (Chapter 3) that must adhere to similar conditions,
and which aims to find the largest possible support mapping between two bigraphs G1 and
G2 such that the resultant solution bigraph GS must occur as a pattern in both G1 and G2.

Employing a general constraint toolkit such as Choco [64] to build an MCIS model would
be a feasible approach to engineering and evaluating a MCB algorithm, as this could be used
as the foundation for building the necessary additional constraints to handle bigraph logic in
a similar manner to that of our matching algorithm. However, a simple constraint model im-
plementation would lack the performance benefits of a state-of-the-art subgraph solver with
domain-specific optimizations and efficient data structures, such as those provided by GSS
or MCIS-adapted MCSa1. Ideally, we should again be able to make use of adapting of an
existing optimized subgraph solver, provided that it is built using a constraint programming-
like paradigm and thus suitably extensible for the requirements of a bigraph-based model.
We thus look toward the McSplit MCIS algorithm.

The McSplit Algorithm

McSplit is a state-of-the-art branch and bound MCIS algorithm first introduced by Trimble
[88, 14], which operates in a very similar fashion to a constraint solver, where vertices from
VG1 are assigned to those in VG2 , and the search tree backtracks when no more assignments
are possible. Where McSplit differs from the typical constraint framework is in its parti-

tioning of node variables into sets of label classes (not to be confused with vertex labels in
labelled graphs), where all unassigned (u ∈ VG1 , v ∈ VG2) pairs that belong to the same label
class, i.e. lc(u) = lc(v), can be assigned to one another from a given search state. McSplit
utilizes sets of label classes to keep track of possible assignments instead of maintaining
separate D ⊆ VG2 domains for each v ∈ VG1 .
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Figure 6.4: The McSplit algorithm when applied to the MCIS instance in Figure 6.3, (a) in
its initial state, (b) after assigning a0 to b1, and (c) after assigning a1 to b4. The V1 and V2

arrays are positioned below their respective graphs, and label classes are color coded. Vertex
b5 is eliminated from selection when there is no G1 vertex which has the same label class/set
of neighbors - that is, non-adjacent to the first assigned vertex and adjacent to the second
assignment.
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Each unique label class can be identified using a bitset of length n, where n is the number
of assignments made at that point during search. Each kth bit of the set indicates whether
each unassigned vertex belonging to that label class was adjacent to the vertex belonging to
the kth assignment mapping (uk ∈ VG1 → vk ∈ VG2). From this, it can be deduced that all
vertices belonging to the same label class will share the same neighborhoods in relation to all
nodes currently mapped to the common subgraph VGM

, which is where the compatibility of
label class members can be inferred. It thus follows that with each subsequent assignment,
all label classes are then partitioned further (into up to two new subsets) based upon whether
their member vertices were adjacent to the vertex which was assigned at that step.

Maintaining the variables and domains of the MCIS instance as label classes in this way
can be achieved using only three array structures, representing a permutation of V1 vertex
ids (the V1 array), a permutation of G2 vertex ids (the V2 array), and a set of records that
each contain four pointer values (the LC array). All vertices in the V1 and the V2 arrays
which share a label class are positioned next to one another, and each record lc ∈ LC, lc =

{Start(V1), End(V1), Start(V2), End(V2)} indicates the bounds of each grouped label class
in the V1 and V2 arrays. At each assignment step, it takes only O(|V1| + |V2|) time to refine
these data structures using this compact setup through the shifting of V1 and V2 elements —
the label class bitsets themselves do not need to be stored at any point. Upon backtracking,
only the LC array needs to be reverted to an earlier state, as the element position of the V1

and V2 arrays at a given step in the search tree will remain correct for earlier states as they are
only reordered within their current group at each assignment step and subsequent partition.
A visual representation of the McSplit assignment process is provided in Figure 6.4.

Additionally, McSplit further ensures optimal performance by calculating an upper-bound at
each search state as follows:

bound = |M |+
∑
l∈LC

min(|(u ∈ G1 ∧ LC(u) = l)|, |(v ∈ G2 ∧ LC(v) = l)|)

where LC is the set of label classes and |M | is the number of currently assigned vertices.
This bound calculates the maximum hypothetical number of mappings that can be achieved
at that point based on the sizes of each label class group in both G1 and G2. If at any point
during search the bound value is equal to or less then a previously known maximum, the
solver will prune the full branch without searching further as it logically cannot contain a
more optimal solution (when enumerating all solutions, this is modified to strictly less than).
By relying upon its time and space optimized data structures, in addition to its bound con-
straint, McSplit was found to outperform McSa1 by over an order of magnitude [14]. There
also exists an even further optimized implementation of McSplit introduced by Calabrese
et al. which combines McSplit with efficient heuristic strategies which are based upon the
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PageRank algorithm [89].

Labelled, Directed and Connected McSplit

Trimble [88] also introduces extensions to McSplit which can support vertex labels and di-
rected edges, which is a promising feature that would enable us to potentially add also sup-
port for encodings of bigraphs.

Support for vertex labels can be accomplished through preliminarily partitioning all vertices
which share the same vertex label into separate label class before search, ensuring that only
vertices with the same vertex label can ever be assigned to each another. Support for directed
edges is more complex, and requires the introduction of two new 2D arrays AV1 and AV2 ,
representing the adjacency matrices of V1 and V2 respectively, where AVk

(u, v) is 0 if there
no adjacency, 1 if there is an outgoing adjacency and 2 if there is an incoming adjacency
between vertices u and v. At each assignment step where vertex u is assigned, label classes
are now partitioned into up to three subsets rather than two, based on the value of AVk

(u, v)

for each remaining unassigned vertex v ∈ Vk
*.

Another interesting feature of McSplit is that it can also be adapted to support the maximum
common connected induced subgraph (MCCIS) problem, which introduces the extra con-
straint that all vertex pairs in a solution must be transitively adjacent to one another (i.e. no
disjoint subgraphs). This is performed through only permitting the assignment of a vertex if
it is adjacent to a vertex which was previously assigned earlier in the search tree, after first
assignment has been made. This is accomplished in practice by storing an additional boolean
flag in each label class, which is equal to false if and only if its bitset representation is “all
zeroes” (disjoint from all current assignments), and these label classes are ignored during
variable selection beyond the initial assignment. This extension is of particular interest, as
an encoded representation of MCB must still respect the compositional logic of bigraphs; the
structure of a common bigraph GM that adheres to B1 = C1 ◦GM ◦D1, B2 = C2 ◦GM ◦D2

must be either connected, or its disjoint parts belonging to a valid tensor product of one an-
other, upon rebuilding the initial input bigraphs. Hence, a bigraph adaptation for McSplit
will likely require a hybrid algorithm between MCIS and MCCIS solving, similarly to how
GSS required a hybrid of induced and non-induced subgraph matching to model the same
property of bigraphs for bigraph matching (Chapter 3).

*This method can also be used to support labelled edges and graphs where edges can point in both direc-
tions, by adding further integer values that represent each possible edge type.
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6.3 Proposing Maximum Common Bigraph

We now formally introduce our notion of the maximum common bigraph (MCB) problem
as follows.

Definition 6.3.1 (Maximum Common Bigraph). Given two input solid bigraphs G1 and G2,
an instance of a maximum common bigraph MCB(G1, G2) = {GM ,M} of G1 and G2 is a
tuple, containing the solid bigraph GM which satisfies

G1 = C1 ◦ (id⊗GM) ◦D1, G2 = C2 ◦ (id⊗GM) ◦D2

such that there does not exist some other bigraph G′
M which satisfies

G1 = C3 ◦ (id⊗G′
M) ◦D3, G2 = C4 ◦ (id⊗G′

M) ◦D4,

(|G′
M | > |GM |) ∨ (G′

M = C5 ◦GM ◦D5)

for some arbitrary context and parameter bigraphs C1−5 and D1−5 respectively.

M = {(m1,m2, ...,mn)} is a set of triples mk = {(gk, ak, bk)}, representing the embedded
mapping between the entities, ports and closed links of g ∈ G to those in a ∈ G1 and b ∈ G2

respectively. We wish to enumerate all such instances and their corresponding mappings.

It can be observed that from this definition, a candidate solution must meet two separate
requirements to be considered a maximum. Firstly, there cannot exist any other solution
bigraph G′ with a greater support size as this would mean it cannot reasonably be consid-
ered the largest shared region between G1 and G2. Secondly, each solution must also meet
the criterion of being maximal in the compositional sense—that is, we must close or merge
any interface components if it is possible to do so while retaining GM as a sub-component
of both G1 and G2. This ensures that the solution bigraph GM , using the support mapping
supplied by M can be considered an RPO between G1 and G2. This extra step is necessary
for two reasons—firstly, without restricting the interfaces in this manner, there would be a
theoretically infinite number of additional variants for each solution bigraph containing extra
arbitrary regions/sites/links. Secondly, if any further valid composition onto GM is possible,
this violates the conceptual notion of GM being maximal—we wish to “saturate” each dis-
covered solution such that any non-identity composition onto G at all would no longer cause
it to be a valid solution. Figure 6.5 demonstrates an instance of the MCB problem, and the
corresponding decompositions of G1 and G2 to retrieve the common bigraph.

Similarly to how MCIS can be considered an optimization problem variant of the SIP deci-
sion problem, we propose MCB as the optimization variant of bigraph matching. We also
propose that in addition to our SIP encoding for bigraph matching, MCB can be solved
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Figure 6.5: (a) An instance of the maximum common bigraph problem, with G1 and G2 as
the input bigraphs and MCB as the solution. (b) A decomposition of G1 to show that MCB
exists as a component in the bigraph. (c) A similar decomposition of G2 to show MCB also
exists. The ports of C and D must be joined in MCB as this still allows for a valid solution.
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by treating a problem instance as MCIS with additional constraints and pre/post processing
to handle the complexities introduced by hyperedges, interfaces and RPO reconstruction to
ensure that the compositional criteria still hold in addition to the shared graph structure.

6.3.1 Properties

Through this definition, we can intuitively infer some properties of MCB which must always
hold for any instance, which can be used to preliminary verify the correctness of a prototype
MCB solver.

• Identity: G ∈ MCB(G,G) for any bigraph G. The maximum common bigraph be-
tween two equivalent bigraphs will also be an equivalence. There can also exist ad-
ditional solution mappings when intra-symmetries exist within G, similar to bigraph
matching.

• Inverse Rule: {GM ,M} ∈ MCB(G1, G2) ←→ {GM ,M−1} ∈ MCB(G2, G1) for any
bigraph pair G1 and G2. Swapping the order of input graphs should still produce the
same set of solutions, but with all mappings between G1 and G2 inverted.

• Succession: The solution {GM ,M} ∈ MCB(G3, MCB(G1, G2)) represents the largest
shared area between three bigraphs G1−3, regardless of order of operations (transitive).

• Matching: (Sbig ̸= ∅) ∈ MATCH(P, T ) −→ {P, Sbig} ∈ MCB(P, T )–if a full match
of pattern bigraph P exists in the target T , it follows that P will also be a maximum
common bigraph between the two with the same embedded mapping.

We now go on to describe how McSplit can be adapted to support a modified variant of our
encoded and flattened bigraph structure from Chapter 3. Once again, we assume that the
input bigraph pairs are both solid and that instances are non-trivial.

6.4 Encoding McSplit to Solve MCB

Firstly, we consider only the encoding of place graphs in isolation, and the changes we make
to the McSplit array structures which enable us to enforce valid solutions which adhere to
bigraphical composition rules. We then introduce our link graph flattening function, and the
further adaptations made to the refinement process and reward function to support these. For
each of places and links, we also describe their respective post-search processes that ensure
that all solution bigraphs are RPOs in relation to the input pair. A high level view of this
process is demonstrated visually in Figure 6.6.
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Figure 6.6: The MCB solving process, where the largest common areas between two encoded
bigraphs are found using a MCIS algorithm before their interfaces are refined to produce a
set of minimally bound solution bigraphs.

6.4.1 Place Graph Encoding

We make use of the pattern place graph encoding function from Section 3.2.1 to encode
both MCB place graphs, where the sites and regions of G1 and G2 are discarded, alongside
all parent relations involving them. We are not immediately concerned with the site and
region placements of G1 and G2 when performing the underlying MCIS process, because a
site/region placement (or lack of thereof) cannot ever cause an otherwise valid set of entity
mappings for MCB to be invalidated; we can simply assign a site as a child to all entities
v ∈ VGM

and a region as a parent to every top-level entity in the building of the solution
bigraph(s), in order to bypass any of the degree constraints which were identified in the full
matching case, guaranteeing that the result will occur in G1 and G2. Hence, we first assume
as a baseline that this relaxed structure — where all entities are adjacent to both the inner and
outer interface — will be the form of the returned solution bigraph(s) upon completing the
main MCIS search loop, and then later proceed to refine the interfaces using a post-search
function by closing and merging all regions and sites where possible, while ensuring GM

remains a sub-bigraph of both G1 and G2 (Figure 6.6, Section 6.4.3).

After applying the function, the encoded versions of G1 = (VG1 , ctrlG1 , prntG1) : i→ j and
G2 = (VG2 , ctrlG2 , prntG2) : k → l take the form of the following graph pair:

ϕP (G1) = {VG1 , (u, v) ∈ prnt−1
G1
| v ̸= i, u ̸= j}

ϕP (G2) = {VG2 , (u, v) ∈ prnt−1
G2
| v ̸= k, u ̸= l}
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Ensuring Valid Compositions

The next step to implementing MCB for the place graph is modifying McSplit to ensure that
a solution bigraph GM will always respect the compositional property of bigraphs, and thus
exist as a component in G1 and G2 in the forms G1 = C1 ◦GM ◦D1 and G2 = C2 ◦GM ◦D2

respectively. To ensure this, all pairs of assigned entities must either be directly adjacent to
one another (i.e. producing a connected subgraph), or fully transitively disjoint where neither
are descendants of the other (i.e. producing a tensor product). We begin by considering
McSplit for MCCIS, which enforces connected solutions through only selecting vertices
from label classes if that class has at least one adjacency to the current solution subgraph.
However, we want to relax this restriction in a way which still allows disjoint vertices to
be selected, as long as they cannot be transitively reached by or from any current assigned
vertex. In a CSP format, this would be added to the list of constraints as follows:

{∀u, v ∈ G1 | {∀v′ ∈ prnt−1
G1
(v) | match(v′) = ∅} ∧ (u, v) ∈ prnt+G1

∧ match(u) ̸= ∅}

→ match(v) = ∅

The same constraint applies to G2, with the difference that all calls to the match function
are replaced with match−1 to ensure symmetry.

Similarly to our matching implementation for bigraphs with sharing, we initially construct
two descendant maps for all pairs of vertices within each of G1 and G2 prior to beginning
search — which we define as τ1 and τ2 respectively — where τ{1,2}(u, v) is true if and only if
entities u and v are transitively adjacent (Section 4.2.3). This allows the solver to determine
whether a non-adjacent (belongs to an “all-zeroes” label class) entity should still be allowed
to be selected for assignment.

Connected McSplit can be adjusted to accommodate this at the variable selection step by
replacing the boolean flag within each label class with a bitset variable which we define as
A(l), which indicates entity selection visibility for its member entities. A(l) simply contains
a 1 (true) value if the label class l is adjacent to the current solution bigraph as it can be
inferred that all member vertices will also be adjacent. If the label class is disjoint from
the solution bigraph however, then the bitset will begin with a zero followed by (|{u ∈
G1 ∧ LC(u) = l}| + |{v ∈ G2 ∧ LC(v) = l}) bits, where A(l)[k + 1] indicates whether
the kth entity in the class is a current valid selection. During variable selection, a vertex v is
prohibited from being assigned to if A(LC(v))[0] = 0 and A(LC(v))[v + 1] = 0, indicating
that it is currently invisible to the propagator. Figure 6.7 provides an example instance of
this adapted approach for a given state, where each LC is shown alongside their A(l) values.
For simplicity, this conditional visibility constraint does not apply to the ports of an entity
for this approach, and thus an entity’s port vertices can only be assigned once the entity itself
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Figure 6.7: The adapted McSplit algorithm for a pair of place graphs after the mapping
u0 → v3 is made. Entities u2 and v5 are restricted from selection at the next assignment step,
as they are transitively but not directly adjacent to u0 and v3 respectively. The blue label
class vertices, which would be unselectable in default connected McSplit, are allowed to be
selected here as they can exist as a tensor product of u1 and v4 respectively.

has been assigned.

We also define A′(l) as the value of the label class l’s bitset at the previous assignment
step. Algorithm 5.1 demonstrates the label class bitset refinement process upon making the
assignment (u ∈ VG1 → v ∈ VG2), which is performed prior to the partitioning process. It
can be observed that the bitset structure can be refined at an upper bound of O(n+m) time
similarly to the main label class refinement process, by checking each unassigned entities’
relation to the entity in each bigraph assigned at that step. The partitioning process itself
is also modified such that each entity’s corresponding label class bit value is repositioned
alongside them when appropriate, to maintain congruency between states.

Our encoding function, in addition to this additional refinement process to enforce compo-
sitional integrity, is sufficient to find all valid assignments between the maximum common
bigraph(s) between the entities of a pair of place graphs. The regions and sites of the graphs
are later further restricted as a post-process to guarantee compositional saturation for each
solution, as described in Section 6.4.3.

6.4.2 Link Graph Encoding

We now consider the addition of the link graph into our encoding. As with our matching
algorithm, we proceed by constructing a link flattening function.



6.4. Encoding McSplit to Solve MCB 136

Algorithm 5 Refine LC Visibility (int u, int v)
for all l ∈ LC do
S1 ← {w ∈ VG1 ∧ lc(w) = l}
S2 ← {w ∈ VG2 ∧ lc(w) = l}
if A′(l)[0] = 1 or (|S1| > 0 and AV1 [S1[0]][u] > 0) or (|S2| > 0 and AV2 [S2[0]][v] > 0)
then
A(l)← 1
continue

end if
A(l)[0]← 0
if ℓ(l) ̸= link then

for all u′ ∈ S1 do
if A′(l)[u′ + 1] = 1 and R[u][u′] = 1 then
A(l)[u′ + 1]← 0

end if
end for
for all v′ ∈ S1 do

if A′(l)[v′ + 1] = 1 and R[v][v′] = 1 then
A(l)[v′ + 1]← 0

end if
end for

end if
end for

Given a bigraph BL : (VB, EB, ctrlB, linkB) : X → Y , and the encoding of its place graph
D ϕ{P,T}(D

P) : (VD, ED), where (where VB = VD), we define the flattening function as
follows:

ϕf : ϕ{P,T}(D
P)×BL 7→ (V,E)

The vertices of the resultant flattened graph can be described as:

V = VD ⊎ PB ⊎ ÊB

ÊB = {e ∈ EB | linkB(p) = e, p /∈ X}

where ÊB is the set of closed links in BL, PB are the ports of BL (defined in Definition X),
and one closure node is added for all closed links. We re-use the bigraph edge identifier as a
vertex identifier in the flattened graph.

We describe the resultant edge set as follows:

E = ED ⊎ {(v, p) | p = (v, i) ∈ PB} ⊎ {(p, e) | e ∈ ÊB, linkB(p) = e}

This is a less constrained variant of our flattening function from Section 3.3.3, where we no
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Figure 6.8: An example of link flattening for the MCB algorithm — hyperedge connections
are not considered for the main search loop, and are instead re-added and merged upon
finding a solution.

longer build cliques between ports which share a hyperedge. This allows the flattened graph
to represent a version of the input link graph pair where all ports have been freed up and each
have a lone connection to the bigraph interface, which is the link graph’s equivalent to our
process of freeing all sites and regions in the place graph. This produces a link graph where
there are no constraints between interface components, representing the minimal possible
structure that can be a substructure of G1 and G2 when a valid set of mappings are found.
Similarly to the place graph, then later refine and merge all possible sets of links (retaining
GM as a sub-bigraph of G1 and G2) as part of a post-search function to ensure the composi-
tion is fully maximized. A visual application of the modified flattening function is provided
in Figure 6.8.

We retain the degree constraint from our matching encoding on closure nodes to ensure that
any common hyperedge will have isomorphic adjacency sets in G1 and G2. In McSplit, this
can be preliminarily enforced using the existing label class structures by further partitioning
the ℓ = closure label class’s vertices by in-degree prior to search. To preserve the structure
of the solution bigraph’s hyperedges, we also constrain closure nodes such that they are only
available for variable selection once all of their parent port nodes have been assigned. This
prevents the case where a solution may contain a “closed” link edge that is still connected
to the interface, which we seek to prohibit. This can be reflected by enforcing the additional
constraint:

{∀e ∈ EG1 , p = (v, i) ∈ PG1 | (p, e) ∈ linkG1 ∧ match(p) = ∅} → match(p) = ∅

This can be implemented by checking neighboring closures upon port assignment and tog-
gling them to visible if all their parent ports have been assigned, using the existing bitarray
structure in the label class to distinguish between visible and invisible closure vertices. An
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additional adjustment to achieve this is that closure label class bitarrays will always have
their first bit set to zero, as adjacency to the currently selected substructure alone no longer
guarantees visibility for selection. Enforcing this on G1, in combination with the degree
constraint to ensure like-like matching, is sufficient to also ensure this holds for closures in
G2 as sharing a label class guarantees that their respective neighborhoods will match.

Modifying the Reward Function

This method of representing ports as flattened vertices introduces a discrepancy between the
size of a candidate solution’s encoded form and its support size. An example of where this
arises is shown in Figure 6.9, which shows a MCB instance in the form of a pair of bigraphs,
and its corresponding MCIS instance after encoding and flattening G1 and G2. The MCB
instance has two solutions of equal size 1, that is, (A → A) and (B → B). However, in
the encoded MCIS instance, only the (B → B) solution will be returned, because its ports
will also contribute toward the size of the mapping, meaning that the MCIS algorithm will
consider the mapping of (B → B) and its ports a solution of size 3, compared to mapping
(A→ A) and its lone port to produce a solution of size 2. Hence, we wish to modify McSplit
to ignore the assignment of port vertices, specifically when enumerating the current score of a
candidate solution. However, an occurrence of an assigned entity with an unassigned port can
never appear in a valid solution, as all components of the entity must be matched alongside
the entity itself (as matching labels always have the same arity value, all ports should always
be available for matching). Taking this into account, we propose a new scoring function to
determine the optimality of a solution as follows:

score =

−1 if ∃{ p = (v, i) ∈ PG1 | match(p) = ∅ ∧ match(v) ̸= ∅}

|GM | otherwise

Where PG1 is the set of flattened ports of bigraph G1, and |GM | is the support size of the
common bigraph. The symmetry of assigned entities and arities means only one of the input
bigraphs needs to be checked to verify validity. In addition, we also modify the bound func-
tion to ignore all label classes containing port nodes as follows, since they do not contribute
to the score of a solution:

bound = |GM |+
∑
l∈LC

min(|(u ∈ {VG1 ⊎ EG1} ∧ LC(u′) = l ∧ u ̸= (p, i) ∈ PG1)|,

|(v ∈ {VG2 ⊎ EG2} ∧ LC(v′) = l ∧ v ̸= (q, j) ∈ PG2)|)
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Figure 6.9: An example of a flattened MCB instance where the returned MCIS solution set
does not match the expected solution set of MCB due to counting port vertices, without first
modifying the score function.

Where u′ and v′ are the encoded vertices representing support elements u and v. As ver-
tex label types are partitioned into separate label classes during initialization, it is trivial to
determine whether a label class l is a “port” class by checking the vertex label value of any
member element, and skip l during summation if the label function of the vertex ℓ(v) = link.
While restricting the upper bound is not a necessary step to ensure correctness of solutions,
it is in our interest to do so whenever possible to ensure optimal performance and minimize
time spent performing redundant search tree traversal, as long as no valid solution is ever
incorrectly filtered as a result.

6.4.3 RPO Construction

After retrieving the set of each largest partial mapping M = {(u1, v1), (u2, v2), ..., (uk, vk)}
produced by the modified McSplit algorithm, where ui ∈ G1 and vi ∈ G2, this is suffi-
cient to then build each solution bigraph GM . These solutions exist as a pattern in both
input bigraphs G1 and G2, and each solution vertex w ∈ GM is common to an assigned
vertex (u ∈ G1 → v ∈ G2). In order for each GM to be maximal in terms of compo-
sitional saturation however, we must ensure that the triple relation (GM , G1, G2) is a min-
imal bound. We can achieve this for each solution by first assuming each top-level en-
tity of GM has a parent region and each entity also has a child site. For the link graph,
we also assume at first that all ports unconnected to a closure are fully open and uncon-
nected. This reflects the least constrained possible state of GM , which ensures it will al-
ways match to both G1 and G2 to begin with. We then refine each solution by closing all
unused interface components and merging all compatible pairs of interfaces in GM where
possible, until any further merging or closing of interface components will result in either
match(GM , G1) = false or match(GM , G2) = false. This can be achieved for both the
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place graph and the link graph as follows, by considering each w ∈ GM in accordance with
its triple relation (u ∈ G1, v ∈ G2, w ∈ GM), as originally defined by Milner [1, 90].

Place Graph

Algorithm 6 Construct Place Graph RPO (G1, G2,M )

VGM
← {u ∈ G1 |M(u) ̸= ∅}

ctrlGM
← {ctrlG1(u) |M(u) ̸= ∅}

prntGM
← {(u, u′) ∈ prntG1 |M(u) ̸= ∅ ∧M(u′) ̸= ∅} ⊎ {(s ∈ m,u) | (s′ ∈ m,u) /∈

prntG1} ⊎ {(u, r ∈ n) | prntG1(u) = ∅}
GM ← {VGM

, ctrlGM
, prntGM

}
for all m = (u, v) ∈M do

if prntGM
(u) = r ∈ n and prntG1(u) = prntG2(v) = ∅ then

prntGM
(u)← ∅

end if
if |prnt−1

GM
(u) ∩ VGM

| = |prnt−1
G1
(u)| = |prnt−1

G2
(v)| then

if prnt−1
G1
(u) ∩ VG1 = prnt−1

G1
(u) and prnt−1

G2
(v) ∩ VG2 = prnt−1

G2
(v) then

prnt−1
GM

(u)← prnt−1
GM

(u) ∩ VGM

end if
end if
if prntGM

(u) = r ∈ n then
for all {m′ = (u′, v′) ∈M |m′ > m} do

if prntGM
(u′) = r′ ∈ n then

if prntG1(u) = prntG1(u
′) and prntG2(v) = prntG2(v

′) then
prntGM

(u′)← prntGM
(u)

end if
end if

end for
end if

end for
return GM ;

The following three operations are sufficient to ensure that the solution place graph GM

produces a minimal bound.

• Close unused sites: For each (u ∈ VG1 , v ∈ VG2 , w ∈ VGM
) triple relation, if

|prnt−1
GM

(w) ∩ VGM
| = |prnt−1

G1
(u)| = |prnt−1

G2
(v)| and neither u and v are adjacent to

a site, remove the site of w.

• Close unused regions: For each (u ∈ VG1 , v ∈ VG2 , w ∈ VGM
) triple relation, if w is

top-level and prnt(u) = prnt(v) = ∅, remove the region of w.

• Merge regions: For each pair of triple relations (u1, v1, w1) and (u2, v2, w2), if both
w1 and w2 have a parent region and prnt(u1) = prnt(v1) and prnt(u2) = prnt(v2),
merge the regions of w1 and w2.



6.4. Encoding McSplit to Solve MCB 141

The process of closing a region in bigraph terms consists of removing the region r ∈ n

from the interface of GM and decrementing n and all ordinals {r′ ∈ n | r′ > r} by 1.
Merging two regions r1, r2 ∈ n, r2 > r1 involves removing r2 in a similar fashion, but also
changes all parent relations (v ∈ VGM

, r2) to (v, r1). This is sufficient to guarantee a minimal
bound in the place graph of GM as no further non-identity composition is possible while
retaining GM as a common component of G1 and G2. We define this process algorithmically
in Algorithm 6. As this iterates over all pairs of top-level entity mappings to determine
maximality, this requires a maximum of O(|M |2) time for each solution — although in
practice, only a fraction of nodes in a solution bigraph would be expected to be top-level.

Link Graph

Algorithm 7 Construct Link Graph RPO (G1, G2,M )

VGM
← {u ∈ G1 |M(u) ̸= ∅}

ctrlGM
← {ctrlG1(u) |M(u) ̸= ∅}

EGM
← {e ∈ EG1 |M(e) ̸= ∅}

linkGM
← {(p, e) ∈ linkG1 | e ∈ EG1} ⊎ {(p, y ∈ Y ) | (p, e ∈ EG1) /∈ linkG1}

GM ← {VGM
, ctrlGM

, EGM
, linkGM

}
for all m = (p, q) ∈M do

for all {m′ = (p′, q′) ∈M |m′ > m} do
if linkGM

(p) = y ∈ Y and linkGM
(p′) = y′ ∈ Y then

if linkG1(p) = linkG2(p
′) and linkG1(q) = linkG2(q

′) then
linkGM

(p′)← linkGM
(p)

end if
end if

end for
end for
return GM ;

To ensure that the solution link graph GM produces a minimal bound, we consider each pair
of triple relations (p ∈ G1, q ∈ G2, r ∈ GM) and (p′ ∈ G1, q

′ ∈ G2, r
′ ∈ GM) in the

solution. We wish to merge each pair of ports (r, r′) in GM such that link(r) = link(r′) as
long as link(p) = link(p′) and link(q) = link(q′) both hold, as we can infer that this will
still allow for a match to both G1 and G2 while ensuring that the number of faces in GM is
minimized. We define this process algorithmically in Algorithm 7. Similarly to the place
graph RPO function, this requires a maximum of O(|M |2) time to calculate each solution’s
RPO as we are comparing all pairs of ports.

We observe here that the link graph RPO function may produce non isomorphic bigraphs
for a seemingly symmetrical pair of solutions, as the relations of ports to the original link
graphs may differ. This indicates that we cannot perform symmetry breaking between open
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ports when performing search, although symmetry breaking between closed hyperedge ports
should remain unaffected as those are not modified as a part of this refinement.

6.5 Soundness and Completeness

We now provide a proof of soundness and completeness of our adaptation. Soundness is
proven by demonstrating that any solution identified by the MCIS model corresponds to
an instance of a solution which adheres to our definition of a maximum common bigraph.
Conversely, completeness is proven by showing that when a solution exists in an instance of
MCB, the adapted algorithm will also find a corresponding match in the MCIS encoding.

As it is already established in the literature of bigraphs how to construct an RPO for a pair of
bigraphs and a valid set of entity/closure mappings between them [1], we do not repeat the
proof of this here — instead, it is satisfactory to prove that the set of assignments returned
by the adapted McSplit solver is sufficient for then passing to the RPO building functions to
retrieve the maximum common structure. With that in mind, we represent each solution M

returned by modified McSplit as an injective set of (u, v) pairs denoting the mapping from
each vertex u in G1 to v in G2, ignoring the vertices of the later constructed common bigraph
(handled by the RPO functions). Thus we wish to prove that for any maximum common
bigraph embedding of size m:

SMCB = {(u1, v1), ..., (um, vm)}

The corresponding encoding will produce a solution:

M = {(u′
1, v

′
1), ..., (u

′
m, v

′
m)}

with a bijective relation between (uk, vk) and (u′
k, v

′
k) and vice versa. We propose some new

observations related to bigraph composition in order to supplement our proofs.

Proposition 13. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

if u ∈ VB, v ∈ VG and u ∈ prnt+G(v) then v ∈ VB.

This states that any descendant of an entity in VB must also be in VB. We prove this through
the recursive application of the definition of bigraph composition (Definition 2.3.9), where
for some v′ ∈ VG, if prntG(v

′) ∈ VB then v′ ∈ o ⊎ VB, and we know v′ is an entity
and therefore v′ ∈ VB. Applying this to u means that prnt−1(u) ⊆ VB, and this can be
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recursively applied to all children of u to prove that all grandchildren of u exist in VB and
so on, and this can be repeated recursively in order to reach all descendants of u. Hence, for
any v such that prnt+G(v) = u ∈ VB, we show that v ∈ VB as required.

Proposition 14. Given the composition of two place graphs

G : m→ n = (A : k → n) ◦ (B : m→ k)

if u ∈ VA, v ∈ VG and v ∈ prnt+G(u) then v ∈ VA.

This states that any ancestor of an entity in VA must also be in VA. We again prove this
through the recursive application of the definition of bigraph composition (Definition 2.3.9),
where for some v′ ∈ VA, prntG(v′) = prntA(v

′) and hence prntG(v
′) ∈ VA. Applying

this to prntG(u) means that the grandparent of u will be in VA, and this can be recursively
applied at each upper depth to prove that all ancestors of u must exist in VA. Hence, for any
v such that prnt+G(u ∈ VA) = v, we show that v ∈ VA as required.

Proposition 15. Given the composition of three place graphs

G : m→ n = (A : k → n) ◦ (B : l→ k) ◦ (C : m→ l)

if u ∈ VB, v ∈ VB, w ∈ VG and w ∈ prnt+G(u), v ∈ prnt+G(w) then w ∈ VB.

This states that any entity that exists between a pair of entities in VB must also be in VB. We
prove this by applying Propositions 13 and 14 together as follows: by Proposition 13, as u
is an ancestor of w and u ∈ (B ◦ C), then we know w ∈ (B ◦ C). By Proposition 14, as v
is a descendant of w and v ∈ (A ◦ B), then we know w ∈ (A ◦ B). Taken together, we can
conclude that w can only exist in B, and therefore w ∈ VB. As a corollary, we can informally
deduce that for any two entities (u ∈ VG, v ∈ VG), if u ∈ VB and v ∈ VB and prnt+G(u) = v,
then all entities between them must also exist in B.

6.5.1 Soundness

Given an instance of MCB (G1, G2) with a McSplit encoding (ϕf (ϕP (G1)), ϕf (ϕP (G2)))

for which there exists a solution of size m in the form of the injective mapping M =

{(u′
1, v

′
1), ..., (u

′
m, v

′
m)}, we wish to prove that this corresponds to a MCB solution G1 =

C1 ◦ (GM ⊗ id) ◦ D1, G2 = C2 ◦ (GM ⊗ id) ◦ D2, in the form of an injective embedded
mapping SMCB = {(u1, v1), ..., (um, vm)} from a subset of support elements u ∈ G1 to a
support element v ∈ G2, where u′

k → v′k is the encoded form of support elements uk → vk.
We wish to prove two key attributes: firstly, that the bigraph GM constructed from M is
common to G1 and G2. Secondly, that there are no alternate set of assignments M ′ of size
> m which is also common to G1 and G2.
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Commonality

We begin our proof of commonality by constructing the input bigraphs GK , K = {1, 2}
from their encoded forms. We perform this for the place graphs P = (VK , ctrlK , prntK) as
follows:

VK = VϕP (GK)

{∀vi ∈ VK | ctrlK(vi) = ℓ(v′i)}

{∀(vi, vj) ∈ VK | (v′i, v′j) ∈ EϕP (GK) → prnt(vj) = vi}

The link graphs L = (VK , EK , ctrlK , linkK) can then be constructed as follows:

VK = {g′ ∈ ϕf (GK) | ℓ(g′) /∈ {link, closure}}

PK = {g′ ∈ ϕf (GK) | ℓ(g′) = link}

EK = {g′ ∈ ϕf (GK) | ℓ(g′) = closure}

{∀g ∈ VK | ctrlK(g) = ℓ(g′)}

{∀(g′a, g′b) ∈ Eϕf (GK) | ℓ(g′a) = link, ℓ(g′b) = closure} → linkG(ga ∈ PG) = gb ∈ EG

We note that the structural information regarding the interfaces of G1 and G2 are lost as part
of the initial encoding process. However, as previously discussed, these interface compo-
nents cannot impact whether or not the set of assignments M produce a valid MCB since
the interface of GM is initially assumed to be in a fully open state, where the RPO functions
handle the constraining of interface components later on — hence, they can only affect the
structure of the common bigraph RPO, and therefore we do not require them as part of prov-
ing the soundness of M . Using M and either of our reconstructed input bigraphs (we use G1

for this proof), the common bigraph GM with the least constrained possible interface (fully
open from above and below by assigning sites and regions where possible) can thus be built
by disregarding all elements which are not part of the solution mapping (and thus cannot
appear in GM ).
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We perform this for the place graph P = (VM , ctrlM , prntM) as follows:

VM = {u ∈ VG1 |M(u) ̸= ∅}

{∀v ∈ VM | ctrlM(v) = ctrlG1(v)}

{∀(vi, vj) ∈ VM | prntG1(vj) = vi → prntM(vj) = vi}

{∀v ∈ VM | prntM(v) /∈ VM → prntM(v) = r ∈ n}

{∀v ∈ VM | (s ∈ m) ∈ prnt−1
M (v)}

As with our matching proof for links (Section 3.5.1), we add a new outer name as a sink for
each g ∈ PM where link(g) /∈ EM . The link graph L = (VM , EM , ctrlM , linkM) can then
be constructed as follows:

VM = {u ∈ VG1 |M(u′) ̸= ∅}

PM = {p ∈ PG1 |M(p′) ̸= ∅}

EK = {e ∈ EG1 |M(e′) ̸= ∅}

{∀v ∈ VM | ctrlM(v) = ctrlG1(v)}

{∀(g′a, g′b) ∈ Eϕf (GK) | ℓ(g′a) = link, ℓ(g′b) = closure→ linkG(ga ∈ PG) = gb ∈ EG}

{∀p ∈ GM | linkM(p) /∈ EM → linkM(g) = y ∈ Y }

Thus, we are able to build the common bigraph GM . In doing so, this provides us the required
set of triple relations (u ∈ G1, v ∈ G2, w ∈ GM), where each w corresponds to the mapping
of common elements (u, v) ∈M .

From here, we can effectively reduce the problem to a pair of bigraph matching instances,
where GM must occur as a pattern in both G1 and G2 in order to demonstrate that G1 =

C1 ◦ (GM ⊗ id) ◦ D1 and G2 = C2 ◦ (GM ⊗ id) ◦ G2. As we have already proven how
to retrieve these decompositions by construction for bigraph matching instances once P and
T have been decoded, we refer to our matching proof for soundness (Section 3.5.1) which
demonstrates how C1 and D1 can be built where match(P ← GM , T ← G1), and similarly
C2 and D2 where match(P ← GM , T ← G2). As this now gives us our initial pair of
MCB compositions and the common bigraph GM from its MCIS encoding and set of vertex
assignments M , this concludes our proof by construction.

Maximality

Maximality can also be proven by construction through analysis of the modified scoring
function as follows. The score of M will either be -1 if the current set of assignments decode
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into an incomplete bigraph, or conversely if the solution is structurally sound, the score of
M will be

∑
(u′,v′)∈M

{ℓ(u′) ̸= link}. In any MCB instance, the minimum possible score of any

instance will always be 0, where M = {} and GM = ∅, therefore an incomplete bigraph will
never be a solution and we can assume score(M) >= 0 is always true for a final result.

From this, we can infer that the score of the MCIS solution M will always equal the support
size of GM in the original MCB instance, as ports do not count toward support size, and
this is reflected in our MCIS adaptation by enforcing that their corresponding flattened link
nodes do not count toward the scoring function. Therefore we can conclude through this
bijection that the maximum scoring subgraph(s) returned by MCIS must always correspond
to the maximum common structure(s) GM between G1 and G2. This concludes our proof.

6.5.2 Completeness

Given an instance of MCB (G1, G2) where G1 = C1 ◦ (GM ⊗ id)◦D1 and G2 = C2 ◦ (GM ⊗
id)◦D2, for solid bigraphs G1 and G2 and the shared bigraph GM , and there exists a solution
in the form of an injective embedded mapping of size m, SMCB = {(u1, v1), ..., (um, vm)}
from a subset of support elements u ∈ G1 to a support element v ∈ G2, we wish to prove
that a parallel solution of the same size M = {(u′

1, v
′
1), ..., (u

′
n, v

′
n)} exists in the modified

MCIS instance (ϕf (ϕP (G1)), ϕfϕP (G2)), where u′
k → v′k is the encoded form of support

elements uk → vk. Similarly to our soundness proof, we wish to prove two key attributes:
firstly, that no valid MCB solution will be incorrectly filtered by the encoding or constraints.
Secondly, that no optimal MCB solution will be incorrectly pruned by the bound function.

Validity

Assume that there exists a valid pair of compositions G1 = C1 ◦ (GM ⊗ id) ◦ D1 and
G2 = C2 ◦ (GM ⊗ id) ◦ D2, with a corresponding embedding of GM in both bigraphs
SMCB = {(u1, v1), ..., (um, vm)} of size m, where the corresponding MCIS solution M =

{(u′
1, v

′
1), ..., (u

′
m, v

′
m)} is not a valid solution. This suggests that at least one of our newly

added constraints are being violated.

We first consider our method of encoding the bigraphs. By construction, all parent relations
between entities in GK , K = {1, 2} are preserved through the encoding of prntGK

(v) = u

as the edge (u′, v′) in EK , and thus conventional MCIS holds. Trivially, as controls are
preserved through graph labelling, McSplit will split any incompatible entities apart before
search, ensuring only compatible entities can be mapped to one another. This also sufficiently
handles flattened edge nodes as for any (u′, v′), u ∈ EK ⇐⇒ v ∈ EK . From Proposition
6 (Section 3.5), we know that the degree and solidity constraints on closure nodes will never
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be violated for a valid bigraph composition, as linkGM
(p ∈ PGM

) = e ∈ EGM
if and only if

linkGK
(p) = e.

Finally, we now consider our connectedness constraint on entities. By Proposition 15,
we have proven that for all pairs of entities (u, v) ∈ GM which are transitively adjacent,
then all entities between u and v must also be in GM and cannot be assigned to either of
C1, C2, D1, D2. Therefore, this constraint will always return true for any valid common
bigraph. This thus exhausts all extra constraints in the McSplit MCIS model.

Our original hypothesis that a constraint violation occurs is shown to be a contradiction, and
therefore SMCB must be a valid MCIS solution. This concludes the proof.

Bound Consistency

We prove bound consistency by contradiction by setting up the following scenario. Given a
MCB instance and solution (G1, G2, GM), our MCIS encoding should return a correspond-
ing solution M = {(u′

1, v
′
1), ..., (u

′
m, v

′
m)} where

∑
(u′,v′)∈M

{ℓ(u′) ̸= link} = |GM |. However,

let us assume that for some partial solution K = {(u′
1, v

′
1), ..., (u

′
k, v

′
k)}, k < m which even-

tually reaches M , the bound check fails and the remaining search tree is pruned, incorrectly
preventing M from being found. We set up the bound check so that it is at its strictest, and
so we assume that the current best score at this stage is already |GM | and that M is a valid
solution of equal size to the known best maximum.

For the bound to fail, the following must be true:

|GM | > |GK |+
∑

l∈LCK

min(|(u ∈ G1 ∧ LCK(u) = l ∧ u ̸= (p, i) ∈ PG1)|,

|(v ∈ G2 ∧ LCK(v) = l ∧ v ̸= (q, j) ∈ PG2)|)

Where all label classes l ∈ LCK contain disjoint subsets of (but do not necessarily together
make up the whole sets of) vertices from G1 and G2.

We can infer by our encoding that |GK | =
∑

(u′,v′)∈K
{ℓ(u) ̸= link}. We now define R =

{(u′, v′) ∈ {{M \K} | ℓ(u) ̸= link}, which consists of all non-port element pairs (and there-
fore all support elements) in {M \K} = {(u′

k+1, v
′
k+1), ..., (u

′
m, v

′
m)}, the set of assignments

which have yet to be added to K in order to reach M . By inspection, |R| = |GM | − |GK |.
We substitute this back into the violated bound function as follows:

|{(u′, v′) ∈ {{M \K} | ℓ(u) ̸= link}| >∑
l∈LCK

min(|(u ∈ G1 ∧ LCK(u) = l ∧ u ̸= (p, i) ∈ PG1)|,
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|(v ∈ G2 ∧ LCK(v) = l ∧ v ̸= (q, j) ∈ PG2)|)

To simplify, this now states that the number of non-port vertices yet to be assigned for K
to reach M must exceed the number of combined pairs of vertices across all non-port label
classes which are available for selection. Decoding this back to our original MCB instance,
this suggests that adding all remaining compatible support elements to GK in the pair of
compositions G1 = C1 ◦ (GK ⊗ id) ◦D1 and G2 = C2 ◦ (GK ⊗ id) ◦D2 is not enough for it
to reach a support size of |GM |, and therefore GM itself cannot be an optimal solution. This
contradicts our original hypothesis, and can only occur if M is not an optimal solution to
MCIS in the first place. Therefore the bound function will only prune non-optimal solutions,
and thus concludes our proof.

6.6 Finding Minimal Contextual Transitions

We now consider our approach toward adapting MCB to find all partial matches where the
composition of a minimal context would allow for a full match to occur — that is, instead
of finding all largest instances of GM such that G1 = C1 ◦ (GM ⊗ id) ◦ D1 and G2 =

C2 ◦ (GM ⊗ id) ◦ D2, we now wish to find all instances of GM where r = CM ◦ GM and
A = Cr◦GM ◦D, where the necessary interface components exist to allow for the composing
of CM onto the occurrence of GM in A. From being provided a list of solutions by the solver,
a BRS toolkit such as BigraphER can then simply rely upon existing rewriting capabilities
to obtain the corresponding minimal context of each solution by taking the complement of
each GM against r. As this is performed in order to build a minimal CTS, we describe this as
the MCTS matching problem going forward. For simplicity, we assume that the input redex
r and agent A assume the place of the G1 and G2 inputs of MCB respectively.

The main modifications we make to allow our MCB algorithm to perform MCTS are as
follows: firstly, we constrain solutions to only occur from the “bottom” of the pattern bigraph
r, to ensure that the parameter of GM is always empty (as agents are grounded, composition
on the inner face of A to reconstruct r is forbidden). We then conversely constrain solutions
to only occur on the “top” of the agent bigraph A, verifying for each candidate solution
that r can be constructed inside A through composing the remainder CM onto the available
regions and faces of GM inside A. Finally, we modify our main search loop to find all
maximal solutions, rather than just all maximum solutions — that is, any valid partial solution
where no further solutions can be retrieved through further vertex assignments is considered
a maximal common bigraph. Figure 6.10 demonstrates an instance of MCTS which can be
solved in this manner.
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Figure 6.10: An example instance demonstrating that finding the minimal context for a
MCTS can be treated as MCB with the extra constraint that the parameter beneath G must be
empty when constructing r, and that Cm ◦A is a valid composition. Cm denotes the minimal
context needed to produce an occurrence of r in A.
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6.6.1 Ensuring Null Parameter

The first step to ensuring that r = CM ◦ GM ◦ DM where DM = ∅ holds is forbidding
any entity u ∈ r from appearing in DM . This can be enforced at variable selection time,
where we add further constraints to prohibit any vertex from being selected if it has any
child vertices that have yet to be assigned. We modify MCB to handle this in a similar
fashion to how closure nodes are currently constrained to ensure solid links, where whenever
a vertex assignment is made, its parent is checked to determine whether all of its children
have now been assigned, and toggled to visible in their label class’s bitarray structure if so.
Additionally, this means that at the beginning of search, only leaf nodes in the place graph
will initially be allowed to be selected. As a constraint, this can be represented as follows:

{∀u, v ∈ Vr | prntr(u) = v ∧ match(u) = ∅} → match(v) = ∅

The second step to ensuring that nothing exists below the occurrence of GM in r is that we
no longer add a site to an entity in GM if its corresponding assignment in r does not have one
— this is necessary to prevent any GM occurrence where the additional site would have to
be closed in the parameter, rendering DM a non-empty bigraph. As a consequence, this also
requires the re-introduction of conditional degree constraints on encoded vertices, where if
an entity in the pattern rule r has no site, then its mapped assignment in A must share the
same out-degree. (Section 3.2.1). Similarly to our matching algorithm, we construct a label
compatibility function to enforce this as follows:

ℓ(u ∈ Vr, v ∈ VA) =

t if prnt(u)−1 ∩m = ∅ ∧ δ+(v) = δ+(u)

f otherwise

This can be applied to a modified McSplit implementation in practice through the introduc-
tion of a matrix of booleans forbid pairs, where forbid pairs[u][v] = true if a preliminary
process has deemed that the mapping (u ∈ G1 → v ∈ G2) can never be valid. The algo-
rithm can then conditionally skip over the assigning of u to v during the vertex assignment
stage. Before the main search loop, all (u ∈ Vr, v ∈ VA) pairs of entities are compared, and
forbid pairs[u][v] = true if u lacks a site and their out-degree values don’t match. Because
the agent A is always grounded in this context, we do not need to handle the inverse case
where a site is adjacent to v. In addition, at the RPO construction step, we no longer attempt
to modify/close the sites of GM .

The two additional constraints described restrict DM from containing any entities and regions
respectively, and as all resultant link graph composition is already handled in the context for
non-directed bigraph matching (thus never requiring wiring through the lower face of GM ),
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these are sufficient to always ensure that DM = ∅ and therefore guarantee all solutions will
occur from the bottom of r.

6.6.2 Checking For Valid Compositions

We now consider how to constrain the algorithm further to only permit the recording of solu-
tions if the remainder of r (the minimal context) is able to be composed onto the occurrence
of GM in A, allowing r to be reconstructed as a pattern of A. This can be checked for a given
candidate set of assignments M = {(u1, v1), ..., (uk, vk)}, where we consider the prntr(u)

and linkr(u) relations of each top-level entity and port in GM respectively, and compare
their values to that of their mappings prntA(v) and linkA(v) to verify whether composition
is possible. The four key cases that we wish to check are the following:

• For each triple relation (u ∈ r, v ∈ A,w ∈ GM) where w is a top-level entity, if u has
a parent, does v have a corresponding region such that prnt(v) = prnt(u) is possible
in CM ◦ A?

• For each triple relation (u ∈ r, v ∈ A,w ∈ GM) where w is a port, if u is linked to a
closed edge e not in GM , is v an open port such that link(v) = e is possible in CM ◦A?

• For each shared region of A participating in the composition, is its structure preserved?

• For each shared outer face of A participating in the composition, is its structure pre-
served?

The first two cases are trivial to determine given a current partial solution — it simply re-
quires checking if the required interface components are adjacent to the occurrence of GM

in A in order for composition to be possible. The third and fourth cases are more complex,
and must be checked due to the possibility that a given candidate solution expects a region
or face to be occupied by two conflicting components at once. We demonstrate the third and
fourth cases through Figures 6.11 and 6.12 respectively, where the solution {(A,A), (B,B)}
is checked for each reaction rule redux against the agent.

In Figure 6.11, r1 is not compatible as the A entity requires the shared region to be closed
in the context while simultaneously the B entity requires the region to stay open in order to
permit a match occurrence. Similarly, r2 would require that the shared region both remain
open and also be occupied by entity C in the context. r3 requires that both the C and D

entities compose onto the same region to permit a match, which is prohibited in pure bigraphs
without sharing. r4 is compatible with an empty minimal context as r4 already matches in A

as is, where their separate regions can be merged in the matching context to reproduce the
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Figure 6.11: An example place graph agent A with a shared region and six reaction rule
reduxes r1 to r6. For rules r1 to r3, the MCTS solution {(A,A), (B,B)} is not possible as
the shared region cannot encapsulate the required parent relations of A and B in the minimal
context. For rules r4 to r6, the parent relations in r are compatible and the solution is possible.

Figure 6.12: An example link graph agent A with a shared open hyperedge and four reaction
rule reduxes r1 to r4. For rules r1 and r2, the MCTS solution {(A,A), (B,B)} is not possible
as the hyperedge cannot encapsulate the required link relations of A and B in the minimal
context. For rules r3 and r4, the link relations in r are compatible and the solution is possible.
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agent A. r5 allows the match by composing the entity C onto the shared region. Finally, r6
is compatible as it can simply close the shared region in CM .

In Figure 6.12, r1 is not compatible as the A entity requires the face x to remain open while B
simultaneously forces a closure. r2 is similarly incompatible as it would require composing
more than one closed edge onto the same face. r3 is compatible as it already occurs in the
agent, and x′ and y′ can be merged in the matching context. Finally, r4 is compatible as the
lone edge e can close x in the minimal context.

From these examples, we can derive that a minimal context composition is valid for a partial
solution when the following occurs.

For each region in A, they can only retain one of the following states:

• Remain open, allowing an unbounded number of open regions in r to occupy it, where
they will merge in the matching context.

• Close in the minimal context, forbidding any region or entity from occupying it.

• Compose an entity in the minimal context, only permitting that entity to occupy it.

For each outer link in A, they can only retain one of the following states:

• Remain open, allowing an unbounded number of links in r to occupy it, where they
will merge in the matching context.

• Close with an edge in the minimal context, only permitting that edge to occupy it.

Thus, any candidate solution that requires any region or link in A to be in more than one of
these states at once will not have a valid minimal context that would allow the reaction rule to
occur in the agent. All four of the identified requirements can be validated by checking each
top-level entity and port within a given candidate set of assignments and comparing their
respective parents in G1 (r) and G2 (A), keeping track of what each interface component
of A encapsulates in r, and ensuring that there no conflicts exist. Algorithm 8 (Appendix
D) demonstrates the full algorithm for performing this, using the region lock and face lock

map structures to retain the states of each A region and face respectively. This can hence be
validated in O(|M |) time for any given candidate solution.

6.6.3 From Maximum to Maximal

Finally, in order to find all minimal contexts, we wish to change our criteria from finding
all maximum common bigraphs to finding all maximal common bigraphs — that is, all valid
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mappings where no other valid solution can be obtained through further vertex assigning.
While this does not require us to change the underlying McSplit partitioning logic for the
most part, this effectively means that our scoring function and bound functions are no longer
functional, as we do not track the size of the partial solution anymore. Instead, the validity
of candidate solutions are verified upon backtracking to their respective state if the solver
did not find a solution deeper in the search tree, after fully exhausting all branches from the
solution’s position. If a solution is then found, it will return a True value to all earlier states
to signal that a deeper solution was indeed discovered and that they will not be a maximal.
This behavior can be observed through our prototype implementation’s main search loop in
Algorithm 9 (Appendix D), where whether a deeper state contains a solution is tracked by
utilizing the future boolean variable. While removing the bound function may potentially
result in less optimal solve times compared to MCB, we theorize that the more constrained
nature of the MCTS problem and limited number of variables that can be selected at each
step due to the “bottom-up” rule will sufficiently narrow the search space as a trade-off.

A Note on Maximality

We observe that this method of finding maximal solutions, while sufficient to find all valid
maximal mappings, will sometimes also return non-maximal solutions due to how McSplit
handles null assignments — e.g. a solution of the form {(a, 1), (b, 2), (c, 3)} may also return
{(a, ∅), (b, 2), (c, 3)} as a solution if the a vertex is not structurally integral to whether the
mapping is compositionally valid. While this potentially introduces false positives into the
set of valid maximal bigraphs, these could be handled in a more optimized implementation
by representing each solution as a |G1| × |G2| bitmask structure S, where S[u][v] = 1 if
and only if vertex u ∈ r is assigned to v ∈ A. False positives can then be filtered out by
checking if they are dominated by another solution — that is, if for a candidate solution C

and existing solution S, C∨S = S. While this step is not necessary to validate bisimulations
when passing the solution set back to a bigraph toolkit like BigraphER, since non-minimal
contexts simply model the behavior of their existing minimal counterpart, it is preferred to
do this to keep the transition system as small as possible for optimal performance.

6.7 Prototype Implementation

We demonstrate a prototype of our adapted MCB algorithm, which was implemented by
modifying a variant of McSplit provided by Trimble, written in Python and originally cre-
ated as a contribution to the NetworkX Python graph library [91]. This variant implements a
simplified and unoptimized version of McSplit which does not make use of the efficient label
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class structure described in Section 6.2.1, but instead simulates their behavior through creat-
ing new Python list structures which store the label class membership of each vertex at each
refinement step. Whilst not as efficient as an optimized implementation of McSplit engi-
neered using a more efficient language, experimentation with this simplified implementation
allowed for easier engineering and prototyping of the necessary constraints to model MCB
and MCTS, which could then be evaluated for correctness using a mix of manually crafted
MCB instances and a suite of bigraph matching instances later used for benchmarking.

This implementation also makes use of the McSplit↓ version of the algorithm, where the
solver treats the instance as a sequence of decision problems. Beginning with n = min(|G1|,
|G2|), the search loop attempts to find a maximum common subgraph of size n, then iter-
atively decrements n by 1 when an UNSAT is returned until at least one solution is found.
The bound function is also modified to trigger a backtrack when the bound is strictly less
than the goal, rather than less than or equal. It was found that McSplit↓ performs narrowly
better overall than default McSplit on a variety of evaluated benchmark instances [88].

We make our code publicly available [92]. During experimentation, it was found that re-
stricting the variable selection heuristic to only allow assignments to ports for n steps after
assigning to an entity of arity n in order to enforce the “no entities can have unassigned
ports” constraint resulted in improved solve times. This is achieved through keeping track
of the port lock variable, which is set to n whenever selecting an entity of arity n, and then
decremented by 1 every time a port vertex is selected. Whenever port lock > 0, the score
of the current set of assignments is set to zero and considered an invalid solution. Because
of the connected-ness constraint on ports, an entity’s port vertices only become visible for
selection once the vertex itself has been selected, ensuring that this logic is sufficient to guide
the variable selection order appropriately.

Algorithm 9 (Appendix D) demonstrates the logic of our adapted main MCTS search func-
tion for our modified solver. The functions Select Vertex and Select Label Class

use the in-built vertex selection heuristic employed by the existing McSplit solver logic,
while the Select Port Class function restricts the label class selection to only those
containing port vertices. Refine Label Classes uses our adapted partitioning logic
as described in Sections 6.4 and 6.6 to preserve the structure of bigraphs when building a
solution. When a valid solution is discovered, it is added to the global solution list array.

6.8 Prototype Evaluation

We provide a preliminary evaluation of our prototype tool, using a subset of the non-sharing
Conference matching instances as a benchmark (Section 5.2.1). Since MCTS takes a reac-
tion rule redux and agent state as input similarly to our bigraph matching context, and both
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Figure 6.13: (left) The aggregate runtimes achieved by the prototype solver when solving for
MCB and MCTS on the set of 2000 conference instances, and that of GBS when performing
SIP on the same test suite. (right) Comparing MCB solve time against MCTS for each
instance. Colors indicate encoded graph size of the target. Purple: < 300, Blue: 300-599,
Green: 600-899, Yellow: 900-1199, Orange: ≥ 1200

search for occurrences of the pattern in order to perform a rewrite and grow their respective
transition systems, these test instances are suitable for re-use in this new context. We take
from the non-sharing conference instances exclusively for now, as the other model instances
include sharing which is not yet supported by this adaptation. We select 2000 easier to solve
instances from this dataset, where the pattern rules (an encoded graph size of 6) are matched
against target agents of varying sizes, ranging from encoded sizes of 59 up to 1581. Sim-
ilarly to our matching evaluation, we record the time elapsed upon calling the underlying
MCIS search function on the encoded graphs ignoring input/output time, and also including
the time taken to build each solution mapping’s RPO bigraph after search. When solving
MCTS, we do not perform the optional step of filtering non-maximal solutions for this pro-
totype, although this could be achieved by simply comparing pairs of solutions in a more
optimized implementation as discussed in Section 6.6.3.

We ensure the confidence of our MCB implementation by verifying that for each instance
with at least one full occurrence in bigraph matching, that each of its occurrences also exist
in the solution set of MCB — a required property which we identify in Section 6.3.1. This
property also holds for MCTS, where the corresponding minimal contexts of each occurrence
will be an empty bigraph. We also verify the symmetry of MCB by ensuring that when the
order of the input graphs are reversed, that the same set of solutions (with inverted mappings)
are always returned for the full suite of instances. We make the full raw dataset available at
[76].

Figure 6.13 (left) shows the aggregate solve times achieved by our prototype tool. For in-
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terest, we also include the aggregate solve times achieved by GBS when solving bigraph
matching on the same set of instances. It can be observed that our maximum common solver
does not yet achieve the efficient solve times that GBS is able to obtain, although this was
expected, as MCIS is a much harder combinatorial problem to solve than SIP (Section 6.2)
— so it follows that a similar jump in difficulty would also be demonstrated here. In addi-
tion, this prototype does not yet implement the optimized McSplit data structure for storing
label classes, which will have a further impact on performance. Finally, without the use of
an optimized compiler under the hood, A solver written in Python will underperform a more
low-level language implementation (e.g. C++ for GBS) for optimization problems, without
the use of specialized external libraries or an optimized compiler under the hood to support
this shortcoming [93]. Even when accounting for these drawbacks however, both MCB and
MCTS were able to solve roughly 400 of the problem instances within one second, suggest-
ing that this prototype may still be feasible to use for solving smaller scale models.

Figure 6.13 (right) compares the performance of MCB directly against MCTS on each indi-
vidual instance. We can observe that the additional constraints and checks required to ensure
the structural integrity of the solution bigraph and corresponding minimal context has a mild
impact on overall solve time for this benchmark, and the proportional difference in perfor-
mance decreases further as the instances grow more difficult. On average, it was found that
MCTS takes 24.95% more time to solve an instance compared to MCB, which is inconse-
quential enough to showcase that building minimal contextual transition systems through a
maximum common bigraph algorithm is indeed a promising approach. From this compar-
ison, we can also determine that both MCB and MCTS were able to solve encoded target
states with a graph size of up to roughly 300 within one second, showing promise for being
able to solve bisimulations for small to moderately sized agents using this implementation.
Notably, bisimulations for bigraphs cannot be verified for models which produce infinite
transition systems, as this signals that there are infinite possible states that each agent can
evolve into — at most, a model will only be able to determine “bisimiliar up to N steps” for
a pair of agents in this case. Thus, it would not be expected that the agents grow to absurdly
large sizes in practice when performing this check.

While we record the additional time spent building the RPO bigraphs of each solution, this
was found to take < 1% of the total solve time across all 2000 instances for both MCB
and MCTS, and thus was found to be trivial in this context. This was primarily due to
the small pattern sizes of each instance, although in a practical context these pattern rules
would be expected to be small regardless, e.g. where the largest average match size across
all evaluated BigraphER models was 9 (Table 5.1). However, we note that it may be of
interest to record the impact on performance as the provided pattern bigraph increases in
size, up to (or even greater than) the size of the target, as part of a full evaluation for a future
optimized/parallelized solver.
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Opportunities For Parallelization

As with our approach to bigraph matching, this approach shows potential to be improved
upon through parallelization. As MCTS also aims to grow the transition system of a given
model similarly to our context for performing full matches in BigraphER, the difficulties of
performing MCIS could also be alleviated through solving multiple instances simultaneously
where possible by sending them to separate threads. In practice, if a MCB solver were inte-
grated into BigraphER similarly to GSS, support for parallel transition system growth could
be integrated in a solver-agnostic manner without being concerned what type of transition
system is being built or solver is being relied upon under the hood.

In addition to this, this new context presents a further motivation for parallelization from the
increased difficulty to solve MCIS. While this was found to be a redundant optimization in
GBS as the underlying matches already solved quickly enough that running with multiple
threads only introduced overhead (Section 5.2.2), we may wish to re-explore this for harder
instances of MCB/MCTS that would otherwise take several seconds up to several minutes to
enumerate all solutions for. Archibald et al. have demonstrated that McSplit↓ can be adapted
to support parallel solution-biased search similarly to GSS’s implementation of SIP, where
it was found that this offers a performance gain of up to an order of magnitude on the vast
majority of evaluated instances [49].

6.9 Summary

In this chapter, we have provided a definition for the maximum common bigraph problem,
which we identify as an optimization-based generalization of bigraph matching where solu-
tions adhere to the RPO property of bigraphs in order to guarantee maximality on compo-
sitions. We also describe how this can be used to find the inverse of the smallest possible
composition that allows a reaction rule to be applicable, which is the key problem that must
be solved within minimal contextual transition systems, and identify additional constraints to
guarantee interface compatibility between the context and agent. We then build a prototype
backtracking solver based upon the McSplit algorithm to solve both the MCB and MCTS
variants of the problem. While this implementation is presently an unoptimized prototype,
its evaluated performance on a selection of rule/agent input pairs found that it is theoretically
feasible for use on smaller scale models.

The clear avenue presented for further research — now that we have introduced the problem,
its use cases and how it can be solved — is to improve upon our approach and build upon
a more efficient McSplit solver which implements the optimized label class array structure,
such as that provided by Calabrese et al. [89]. In addition to this, further substantial perfor-
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mance gains can be retrieved through parallelization of the McSplit search loop as described
by Archibald et al. [49]. For MCTS specifically, a more optimized solver may also wish to
explore a potential alternate variable selection method which ensures maximality of solutions
without filtering.

This adaptation also presently only considers solving MCB/MCTS for pure bigraphs. When
considering adapting this approach to extensions of bigraphs, it is important to note that
bigraphs with sharing do not have RPOs in the general case, unless the sharing exclusively
exists between pairs of entities [94]. Even so, it is possible that a MCB instance where
this criteria is met for both G1 and G2 may still produce a common bigraph which contains
sharing in the regions or sites, which means that MCB for sharing is most likely not be
possible via our current definition. Conversely, RPOs exist for directed bigraphs [12], and
thus it may be feasible to adapt our encoding to support these as we did for our matching
algorithm.
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Chapter 7

Conclusion

In this dissertation, we have successfully demonstrated that bigraph matching can be mod-
elled as a CSP model of subgraph isomorphism with additional constraints, and that this
strategy in combination with employing a state of the art subgraph CP solver produces ef-
ficient and scalable models for bigraph matching that can outperform previous methods of
solving by several orders of magnitude on harder instances. This method of encoding is
also shown to be extensible and able to support several generalizations and modifications to
the bigraph formalism, as shown by the implementations of the bigraphs with sharing and
directed bigraphs extensions, as well as bigraph equality, through a small number of extra
constraints applied on top of the base model. We have also demonstrated that this can be
integrated with the BigraphER BRS toolkit, where for a selection of practical models, our
solver substantially improves upon both performance time and the scale of which BigraphER
can perform real-time simulations. We also deduce several additional engineering strategies
to minimize input/output time based on early results when simulating full models. Building
upon this, we also propose the definition of — and provide a novel algorithm for solving
using the McSplit algorithm — the maximum common bigraph problem, opening the door
to further extensions and executions of BRSs defined by Milner [1] that have yet to be imple-
mented in a BRS, such as building labelled transition systems and identifying bisimulations.

7.1 Future Work

Throughout this dissertation, we have identified various ways to potentially build upon our
research on subgraph implementations of bigraph algorithms. These include:

• Add support for building directed BRSs and solving directed matching (Section 4.3) in
GBS and BigraphER, and compare the runtime performance of GBS against jLibBig
[74] on a suite of directed matching instances.
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• Implement the various optimizations and opportunities for parallelization in Bigra-
phER with GBS as identified in Section 5.4 in order to make full use of GBS’s promis-
ing efficiency in a practical context.

• Implement an optimized variant of the maximum common bigraph algorithm using
McSplit (Chapter 6), applying the potential of parallelizing this approach and includ-
ing the extended functionality for finding all minimal contexts, and integrate this into
BigraphER for experimenting with support for identifying bisimilar agents.

7.1.1 Further Extensions

A promising potential for further research would be to extend the SIP solver (and hence
BigraphER) to be able to support additional established bigraph extensions through further
extra optional constraints. Some established examples of these include:

• Local bigraphs: bigraphs which preserve the locality of inner and outer faces of the
link graph, which introduces the notion of confluence to bigraph theory and extends
the scope of scenarios that can be modelled, particularly in biological settings. [90]

• Binding bigraphs: an extension which introduces an alternate possible relation be-
tween entity ports called a binding in place of a closed edge, which also introduces a
locality property to hyperlinks relative to the place graph’s structure. [95]

• Conditional bigraphs: a conditional BRS which allows reaction rules to specify extra
conditions that must be met before being allowed to perform a state transition, such as
NOT constraints in the form of additional pattern bigraphs that must not exist in the
target. This can be used for guaranteeing uniqueness of specific patterns in an agent.
[96]

7.1.2 Proposing Parameterised Bigraphs

While bigraphs with sharing and directed bigraphs extend the place graph and link graphs of
the standard bigraph formalism respectively, it is also feasible to extend the properties of the
entities themselves. BigraphER using the integrated SIP encoding is currently able to support
basic entity types in the form of controls, where only entities of the same ctrl can be mapped
to one another during a matching instance, however there is currently no implementation for
assigning entities with an additional value independent of their control type, i.e. an integer
value representing the current capacity of a room or a recording of how many consecutive
states the entity has been present in. Reaction rules would then be able to alter or apply new
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Figure 7.1: Modified SIP solver input to allow an optional third file, defining integer values
of the target entity and the integer constraints imposed on the pattern entities during matching
of parameterised bigraphs.

values during a rewrite, e.g. an entity’s value incrementing from n to n + 1 when applying
R : r → r′. Additionally, r could also specify further constraints on these values that must
be met for a reaction rule to be valid, e.g. n ≤ 3 to enforce a maximum capacity constraint
on a given entity type.

The motivation for this is twofold: firstly, it allows for more rich and complex modelling of
scenarios that require further constraints than what the current bigraph formalism provides.
One such example is a model requiring a clock system where some reaction rules can only
apply to a set of entities if a certain amount of time has elapsed, i.e. a traffic light turning from
red to green after n steps in a model of a traffic system network. Secondly, this extension
would allow for the optimization of existing models where an entity’s value could represent
information that would previously require the addition of multiple child entities, such as
a stadium entity with a variable that represents its current capacity, where the number of
people currently in the room can be modelled by this new value rather than having to add a
new atomic entity for every person in the room - potentially significantly reducing the overall
size of the model and the work required to perform operations in the BRS. One other use-
case could be a load balancing problem, where the sum of values for a set of entities must
stay within a certain threshold between state changes.

As an initial proof of concept of parameterised bigraphs, this could initially be implemented
for only a single integer parameter per control type. However, this could be extended further
to allow for several parameters for each ctrl as well as the option of several different data
types, where the set of controls would begin to resemble a class system in an object orientated
programming language.

To support this extension for bigraph matching instances, it can be assumed that each entity
of the target bigraph is already given a concrete value. Conversely, the values of the pattern
bigraph (representing the LHS of a reaction rule) will be represented in the form of a set of
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integer linear inequality constraints C1...Cn between entities, where all constraints can be
represented by one of the following equations, for each vertex v in the set of pattern vertices
and some integer values a0...ak and s:

1.
∑k

n=0 anvn >= s 2.
∑k

n=0 anvn == s 3.
∑k

n=0 anvn <= s

These integer programming constraints allow for arithmetic constraints to be defined be-
tween any combination of pattern graph entities in order to further constrain the set of pos-
sible solutions for a matching instance. This can be implemented by allowing the SIP solver
to accept an optional third file as an input, which defines the target entity values and pattern
constraints as shown in figure B.1. An additional interesting feature of representing integer
constraints in this format is that it also allows for CNF encoding between entities, which
effectively grants functionality for boolean logic in addition to standard numerical summing:
for example, the CNF clause (x∨y∨¬z) can be represented in the form x+y+(1−z) >= 1

where x, y, z ∈ {0, 1}, and other clause variations can be represented similarly.

7.1.3 Counting and Sampling

There can potentially exist instances of bigraph matching where the graph states are either so
large, or the instance contains so many solutions, that it is impractical to exhaustively search
for and return every valid set of vertex assignments. Another possibility is that simply storing
and printing out every solution ends up being very slow e.g., for a very small pattern bigraph
matched against a huge target bigraph. Large scale traffic networks [2] or power grids may
require up to tens of thousands of entities to accurately model, and due to the NP-hard nature
of matching, the solution set will not be returned in a reasonable time. In these cases, it may
be more useful to instead count the number of solutions in a matching instance without listing
all the vertex mappings themselves, or even approximate the number of solutions which exist
in cases where a complete search is not feasible.

As a path forward for further research, methods of adding support for counting and sam-
pling could be evaluated, then adapted and implemented into the SIP solver to partially sup-
port very large matching problems which would otherwise be completely unsolvable, which
opens the door further for applying BRSs for modelling real-world problems. Approximate
model counting algorithms have already been created in conjunction with SAT solvers [97],
which shows promise for developing an approximated solver for bigraph matching as a com-
ponent of the SIP solver.

There also exist algorithms for achieving practically uniform sampling for really large prob-
lems in the domain of CP in particular [98], which are implemented using configurable
linear modular constraints to obtain an appropriate sampling of solutions. These can also
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be particularly useful in the context of stochastic bigraphs [6] and probabilistic bigraphs
[59], where symmetric solutions that would otherwise be discarded (due to inefficiency in-
troduced by enumerating them) can potentially alter the overall probabilities of reaching
each specific agent state; this could be alleviated by instead exploring a method for sampling
these symmetries to obtain an acceptable approximation of overall probability for each set
of non-isomorphic solutions.
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Appendix A

Formal Concrete Bigraph Example

Figure A.1: Concrete bigraph example as provided in Section 2.3.

The provided concrete bigraph example can be mathematically described as follows.

B = (VB, EB, ctrlB, prntB, linkB) : ⟨2, {y}⟩ → ⟨2, {x}⟩,

KB = {(A, 2), (B, 1), (C, 2)},

VB = {v0, v1, v2, v3, v4},

EB = {e0, e1, e2},

ctrlB = {(v0, A), (v1, B), (v2, A), (v3, C), (v4, B)},

prntB = {(0, v0), (1, v3), (v0, 0), (v1, 0), (v2, v1), (v3, 1), (v4, v3)},

linkB = {(y, e2), ((v0, 0), e0), ((v0, 1), x), ((v1, 0), e1), ((v2, 0), e0), ((v2, 1), e2),

((v3, 0), e1), ((v3, 1), x), ((v4, 0), e1)}
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Appendix B

Pushouts on Bigraphs

We provide a brief overview of spans, bounds and pushouts in the context of bigraphs as
described by Milner [1], to give additional context for the necessity for constructing IPOs as
part of the maximum common bigraph problem described in Chapter 6.

Figure B.1: A visual demonstration of pushouts for bigraphs. On the left, a cospan g⃗ bound-
ing a span f⃗ . On the right, the RPO h⃗ for this span, where any other bound k⃗ will produce
a larger bigraph K such that K = H ◦ j for some j. If the bound itself is an RPO then the
cospan g⃗ is an IPO.

Definition B.0.1 (span). A span f⃗ : (f0, f1) describes a pair of concrete bigraphs that can be
obtained through two different decompositions of a bigraph F , i.e. G = C0 ◦ f0 = C1 ◦ f1.

Definition B.0.2 (cospan). A cospan g⃗ : (g0, g1) describes a pair of concrete bigraphs that
when decomposed from two bigraphs C1 and C2 respectively, produce the same resultant
bigraph G, i.e. C1 = g0 ◦G and C2 = g1 ◦G.
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Definition B.0.3 (bound). A cospan bounds a span if g0 ◦ f0 = g1 ◦ f1, and hence this bound
g⃗ for f⃗ denotes two separate paths for decomposing a bigraph F to reach the same result G
when this occurs.

Definition B.0.4 (pushout). A pushout (⃗h, h) for f⃗ is a triple (h0, h1, h) which describes a
bound for f⃗ such that for any other possible bound g⃗ for f⃗ , there is a unique bigraph h such
that h ◦ h0 = g0 and h ◦ h1 = g1.

Definition B.0.5 (relative pushout). A pushout (⃗h, h) is considered a relative pushout (RPO)
for f⃗ bounded by g⃗ if for any other relative bound (k⃗, k), there exists a unique bigraph j such
that j ◦ h⃗ = k⃗ and k ◦ j = h, and thus introduces a notion of a minimal relative bound—by
this definition there can not exist any other bound where the H can be decomposed further
to produce the resultant bigraph.

Definition B.0.6 (idem pushout). The cospan g⃗ for a span f⃗ with resultant bigraph G is
considered an idem pushout (IPO) of f⃗ if (g⃗, id) itself is an RPO for f⃗ bounded by g⃗, defining
the minimal bound for the triple (f0, f1, G).
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Appendix C

BigraphER Data Tables

BRS GBS 25% GBS 50% GBS 75% GBS 100%
abrs-mobilesink 3.661 7.993 12.4723 18.726
plato-graphical-loc 13.729 39.17 66.819 105.234
virus-simpl 1.5391 3.813 6.7079 10.6844
hospital 4.584 11.79 22.163 38.165
plato-graphical 18.218 50.0736 89.398 137.139
savannah-general 39.006 122.599 273.81 420.095
dining philosophers 1.4556 3.1127 4.8409 6.9157
virus-multifirewall 1.74 4.3861 7.827 12.5212
AutoBigraphER 127 46.1696 103.092 171.665 245.32
AutoBigraphER 52 31.5901 76.8971 125.052 182.542
AutoBigraphER 83 43.297 111.602 170.981 239.707
floor security robot10 1 26.53 223.059 440.713 721.169
link inst map 15.1791 125.401 442.047 1088.64

Table C.1: GBS runtimes for each BRS, in seconds
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BRS MSAT 25% MSAT 50% MSAT 75% MSAT 100%
abrs-mobilesink 11.429 25.908 41.903 65.218
plato-graphical-loc 36.657 122.473 235.843 443.007
virus-simpl 4.5189 11.2515 20.0451 32.623
hospital 12.459 31.209 56.434 93.68
plato-graphical 36.7858 124.898 256.451 436.846
savannah-general 64.775 235.36 614.127 1,061.27
dining philosophers 2.59421 5.4347 8.3754 11.9226
virus-multifirewall 7.0933 17.8304 32.0598 52.0769
AutoBigraphER 127 224.099 551.03 990.508 1474.207
AutoBigraphER 52 149.384 405.506 673.67 1,029.13
AutoBigraphER 83 203.793 632.538 964.225 1402.153
floor security robot10 1 24.29 153.876 284.676 446.288
link inst map 11.973 95.779 333.884 805.739

Table C.2: MSAT runtimes for each BRS, in seconds

BRS CARD 25% CARD 50% CARD 75% CARD 100%
abrs-mobilesink 4.782 10.667 17.153 26.923
plato-graphical-loc 16.353 53.853 107.666 212.718
virus-simpl 1.7519 4.3171 7.4482 12.17
hospital 4.7023 12.089 22.72 39.8
plato-graphical 19.5867 65.4058 137.917 243.826
dining philosophers 1.2286 2.5788 4.01 5.7816
virus-multifirewall 2.3487 5.854 10.429 16.8707
AutoBigraphER 127 67.723 165.276 296.42 446.22
AutoBigraphER 52 46.261 124.422 209.093 322.203
AutoBigraphER 83 61.672 187.642 289.862 427.254
floor security robot10 1 12.2862 93.591 167.124 262.749
link inst map 11.9207 92.42 331.398 804.103

Table C.3: MCARD runtimes for each BRS, in seconds
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Appendix D

MCTS Algorithms
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Algorithm 8 Check Valid Composition (G1, G2,M )

region lock ← ∅
face lock ← ∅
for all m = (u, v) ∈M do

if l(u) = link then
if linkG1(u) = e ∈ EG1 and M(e) = ∅ and linkG2(v) = e′ ∈ EG2 then

return False
end if
if linkG2(v) = y ∈ Y then
compose← ∅
if linkG1(u) = e ∈ EG1 then
compose← e

else if linkG1(u) = y′ ∈ Y then
compose← open

end if
if face lock[compose] = ∅ then
face lock[y]← compose

else if face lock[compose] ̸= y then
return False

end if
end if

else if l(u) ̸= closure then
if prntG1(u) = u′ ∈ VG1 and M(u′) = ∅ and prntG2(v) ̸= r ∈ n then

return False
end if
if prntG2(v) = r ∈ n then
compose← ∅
if prntG1(u) = u′ ∈ VG1 then
compose← u′

else if prntG1(u) = r′ ∈ n then
compose← open

else if prntG1(u) = ∅ then
compose← close

end if
if region lock[compose] = ∅ then
region lock[r]← compose

else if region lock[compose] ̸= r then
return False

end if
end if

end if
end for
return True
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Algorithm 9 MCTS Search(G1, G2,M,LCs, port lock)

if port lock > 0 then
label class = [LCG1 , LCG2 ]← Select Port Class(LCs)

else
label class = [LCG1 , LCG2 ]← Select Label Class(LCs)

end if
if label class = ∅ then

if port lock = 0 and Check Valid Composition(G1, G2,M) then
solution list← (solution list ∪M)
return True

end if
return False

end if
u← Select Vertex(label class)
if l(u) = port then
new port lock ← port lock − 1

else if l(u) ̸= closure then
new port lock ← ar(l(u))

end if
future← False
for all {v ∈ LCG2} ⊎ {v = ∅} do

if not forbid pairs[u][v] then
LCG2 ← LCG2 \ v
M ←M ⊎ (u, v)
new LCs← Refine Label Classes(LCs,M, u, v)
future← MCTS Search(G1, G2,M, new LCs, new port lock) or future
M ←M \ (u, v)

end if
end for
if future = false then

if port lock = 0 and Check Valid Composition(G1, G2,M) then
solution list← (solution list ∪M)
return True

end if
return False

end if
return future
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