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Abstract

Over the past three decades, a tremendous amount of research has been dedicated to the
theoretical analysis and experimental realization of structured forms of light—optical fields
with complex structures in their phase, polarization, or other degrees of freedom. Beyond
their inherent optical properties, which are often interesting and unexpected compared to
simpler, unstructured fields, structured light fields also give rise to novel effects when inter-
acting with matter. In this Thesis, I examine some fundamental and practical aspects of the
angular momentum and chirality of light, two key topics in modern structured light research.
My focus is on the optical spin angular momentum and the optical helicity in monochromatic
fields. Regarding the former, I examine the local spin in non-interfering superpositions of
plane waves. Amongst other intriguing features, the electric and magnetic spins—which are
distinct physical contributions to the total optical spin—show striking differences in these
fields, and I discuss the implications of these spin structures on light-matter interactions. In
connection with the optical helicity, I develop a theoretical model for the transfer of helicity
from a monochromatic optical field to a single atom, shedding greater light on the funda-
mental role of helicity in light-matter interactions. I also present two derivations—one of
the Faraday effect in a gas, the other of the helicity-dependent chiroptical force—within the
framework of molecular quantum electrodynamics, opening the door to future explorations
of structured light-matter interactions from the fundamental photonic perspective.
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CHAPTER 1

Introduction

My work is primarily concerned with aspects of optical angular momentum, optical chirality,
and related light-matter interactions. Here I outline the structure of my Thesis and provide
some context for the work which appears in it.

In 1909, Poynting [1] concluded, based on a mechanical analogy, that circularly polarized
(CP) light should induce a torque on a birefringent disk, and thus should also possess angular
momentum (AM). Poynting’s intuition was experimentally confirmed by Beth in 1935 [2,
3], who found that his results could be explained by assigning an AM in the direction
of propagation of +~ to left-circularly polarized (LCP) photons and −~ to right-circularly
polarized (RCP) photons. Although it had long been realized that the total AM of an optical
field consists of two distinct terms [4–7], only one of which corresponds to the polarization-
dependent or ‘spin’ AM, it was not until the early 1990s that the ‘orbital’ contribution
was brought to the fore, due to the work of Allen et al. [8, 9]. They showed that paraxial
‘vortex beams’, which can be created with relative ease in the lab, possess a well-defined
and theoretically unbounded orbital AM in their direction of propagation. In contrast to
the spin AM of Beth and Poynting, this new form of optical AM was shown to be linked not
to the polarization of the beam, but to its intensity and phase profiles.

The work of Allen et al. [8] showed that, by moving away from the very simplest optical
fields, we can find interesting and surprising results, both in terms of the intrinsic qualities
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CHAPTER 1. INTRODUCTION 2

of the light fields and in the way they interact with matter [10, 11]. This has led, in the last
three decades, to a tremendous amount of activity on the topic of ‘structured light’, which
has become one of the most active sub-fields of modern optics. Researchers are now engaged
in the analysis and production of light with non-trivial structure in the polarization, phase,
intensity, and temporal degrees of freedom [12–14].

The theory of optical AM is reviewed in some detail in Chapter 2, starting in §2.1 with the
derivation of the optical AM from Maxwell’s theory, and its splitting into intrinsic (spin)
and extrinsic (orbital) contributions. In §2.2 I discuss the theory of paraxial light beams
and their AM. By comparing the results for a plane wave with the results for a paraxial
beam, we see that the features of the spin and orbital contributions in more complex optical
fields can rarely be inferred from their behaviours in simpler optical fields. This theme is
continued in §2.3, where I discuss the features of the optical spin in more complex, non-
paraxial fields, analysing the features of the distinct ‘electric’ and ‘magnetic’ spin densities
[15, 16] in non-interfering superpositions of plane waves [17]. The spin structures which arise
in these optical fields have many interesting properties and have the potential for diverse
applications in light-matter interactions.

Chapter 3 is somewhat of an outlier in this Thesis, because it is not directly connected to
work on structured light, instead being dedicated to an overview of molecular quantum elec-
trodynamics (QED) [18–20], which is a theory for the interactions between electromagnetic
(EM) fields and non-relativistic charged particles. It uses many of the same tools to study
light-atom interactions as quantum optics [21–23] but, as I shall discuss in §3.1, is developed
more formally starting from the Lagrangian, proceeding to the quantum theory via canonical
quantization. In §3.2, I use the molecular QED formalism in a new derivation of the Faraday
effect.

Another aspect of structured light research, besides optical AM, which has garnered signifi-
cant attention is the study of chiral optical fields and their role in light-matter interactions.
Any object which cannot be superposed onto its mirror image, by means of rotations and
translations, is called chiral and is said to exhibit chirality [24, 25]. This terminology, in-
troduced by Kelvin [26], comes from the Greek word for hand [27], reflective of the fact
that human hands are the prototypical example of (approximately) chiral objects. The
distinct mirror-image forms of a chiral object are known as enantiomorphs in general and
enantiomers in the case of chiral molecules.

Chirality appears across all of the sciences, perhaps most significantly in biology and pharma-
cology. In biological systems, chiral molecules appear almost exclusively in single-enantiomer
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forms, amino acids always being left-handed and sugars right-handed, and it is an enduring
mystery how the homochirality of the world came about [28]. The fact that the human body
is composed of chiral chemicals means that the creation of single-enantiomer drugs is of great
importance, because the left- and right-handed forms of a drug can interact very differently
with our biological framework. This is exemplified by the well-known thalidomide tragedy,
in which one enantiomer caused beneficial effects whilst the other led to birth defects [29].

The simplest and most fundamental example of a chiral optical field is a CP wave. The
chirality of this field may be appreciated by noting the helical path traced out by its po-
larization vector [30], a helix being an inherently chiral object [24]. The chirality of light is
of interest because generally, in light-matter interactions, it takes a chiral optical influence
to distinguish between different molecular enantiomers. These chiroptical effects are many
and varied, and have played an important role in the study of chiral molecules since their
discovery in the 19th Century [18, 24, 25].

There has been renewed interest in the last decade or so in chiral light-matter interactions,
due to the realization that their effects can be magnified by using structured optical fields.
A major development in this regard was Tang and Cohen’s discovery of ‘superchiral’ light
and its enhancement of circular dichroism [31], which led to a flurry of further research
activity [32–36]. In the ensuing decade, diverse aspects of the chirality of light and its
interactions with matter have been explored [13, 37–49]. One topic which has received
considerable interest is the investigation of enantioselective chiroptical forces, that is, optical
forces whose magnitude and direction are sensitive to measures of the molecular and optical
chirality [37–39, 50]. It has been proposed that these forces could provide a new method for
sensing and separating molecular enantiomers [38, 50, 51], which is of great importance in
the pharmaceutical and many other industries.

The fact that CP light is fundamentally linked to aspects of optical AM and optical chirality
hints at close connections between these two seemingly distinct topics, and these connections
are firmly established when one considers the optical helicity [27, 52, 53], which is the subject
of Chapter 4. In Section 4.1 I discuss the concepts of true and false chirality introduced by
Barron [54], which is instructive for my later considerations of optical chirality, and in Section
4.2 I discuss the dual symmetry of electromagnetic fields in vacuum, which is intimately
connected with optical helicity. These first two Sections allow for an in-depth discussion
of some fundamental aspects of the optical helicity, and in particular its links with optical
chirality, in §4.3. The optical helicity is also connected with the aforementioned chiroptical
forces, and in §4.4 I derive the energy shift which leads to this force using molecular QED.
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Finally, in Chapter 5, I investigate the transfer of optical helicity to matter, specifically trying
to answer the question of whether or not a single atom can faithfully detect the local helicity
of an optical field. To do this I study a toy model consisting of an arbitrary monochromatic
field interacting with a hydrogen-like atom, taking into account both the atom’s internal
and external degrees of freedom. As I shall show, a suitable measure of atomic helicity can
be defined, and I explore the correlations between this and the optical helicity in light-atom
interactions.



CHAPTER 2

Optical Angular Momentum

In this Chapter I give an overview of the most important features of optical AM. The
following review articles have proven useful: [10, 11, 15, 55, 56]. Some useful aspects of
classical electrodynamics are discussed in Appendix B.

For the forthcoming discussions, I need to choose a polarization convention. A useful com-
parison of the different conventions may be found in Appendix III of the book by Simmons
and Guttmann [6]. At a particular instant in time, the tips of the electric field vector of a CP
plane wave trace out a helix [30]. Throughout this Thesis, I choose a convention such that,
if you point the thumb of your left (right) hand in the direction of wave propagation, your
fingers curl in the same direction as the helix in a left (right) CP wave. Mathematically, a
LCP plane wave travelling in the positive z-direction will be described by a complex electric
field of the form

Ẽ = E0
(x̂ + iŷ)√

2
ei(kz−ωt+φ0), (2.1)

where x̂ and ŷ are the unit vectors in the x- and y-directions, respectively, of a right-handed
Cartesian coordinate system. A RCP plane wave travelling in the same direction is given by

Ẽ = E0
(x̂− iŷ)√

2
ei(kz−ωt+φ0). (2.2)

5
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The CP unit vectors are thus

ε̂L ≡
1√
2

(x̂ + iŷ), (2.3a)

ε̂R ≡
1√
2

(x̂− iŷ). (2.3b)

In this convention, a LCP photon has helicity +~ whilst a RCP photon has helicity −~ (this
convention was already assumed in my discussion of Beth’s results in the Introduction).

2.1 Overview

I shall, unless otherwise stated, suppose that light, with associated fields E and B, is
contained in a volume of space V , within which there may also be a charge distribution1,
η, and an associated current density, Jη. I assume the charges and currents occupy only a
small proportion of V and that otherwise the space is free of electromagnetic material. Then
within this volume we can write D = ε0E and H = µ−1

0 B [55], and Maxwell’s equations
(B.1) become

ε0∇ ·E = η, (2.4a)

µ−1
0 ∇×B − ε0Ė = Jη, (2.4b)

∇ ·B = 0, (2.4c)

∇×E + Ḃ = 0. (2.4d)

2.1.1 Definition of Optical Angular Momentum

The linear momentum density of the EM field is usually taken to be2 [6, 55, 62]

g ≡ ε0E ×B, (2.5)
1Following Jackson’s lead [57, §6.6], I use a different letter for the macroscopic charge density (η) and the

microscopic charge density (ρ).
2In a medium the identification of the linear momentum is not so simple, see, e.g., [58]. Even in free

space, one can distinguish between the linear momentum density I have given here (sometimes called the
Poynting form) and the so-called ‘canonical’ or ‘orbital’ momentum density [59–61]. I will return to the
connections between the two later. Historically, in discussions of optical AM, the Poynting form is the usual
starting point [4, 6, 8].
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giving the total momentum in the volume V as

P = ε0

∫
V

d3rE ×B. (2.6)

The optical AM density is defined, by analogy with the mechanics of a rigid body, as j =

(r − r0) × g, with respect to some reference point r0. For simplicity I will always take r0

to coincide with the origin. The total optical angular momentum in the volume V is thus
[6, 20, 55]

J = ε0

∫
V

d3r r × (E ×B). (2.7)

It can be shown that the optical angular momentum obeys a continuity equation akin to
Poynting’s theorem. Recall that the latter takes the form [6, 62]

∂w

∂t
+∇ · S = −Jη ·E, (2.8)

where
w =

ε0

2

(
E2 + c2B2

)
(2.9)

is the electromagnetic energy density and

S ≡ E ×H = ε0c
2E ×B (2.10)

is Poynting’s vector [62]. The integral ∫
S

S · da (2.11)

tells us how much electromagnetic energy flows through the surface S per second. In the
absence of charges, the source term (Jη ·E) vanishes and Poynting’s theorem demonstrates
the local conservation of electromagnetic energy. Note that the flow of energy and the
density of momentum are intrinsically linked: g = S/c2.

The analogous continuity equation for the optical AM is [55, 63]

∂tji + ∂lMil = −εijkxjfk, (2.12)

written using index notation (see §A.3), in which ∂t ≡ ∂/∂t and ∂l ≡ ∂/∂xl, and repeated
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indices are summed over. The symbol

εijk =


+1, for (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)}

−1, for (i, j, k) ∈ {(2, 1, 3), (3, 2, 1), (1, 3, 2)}

0, for i = j, j = k or k = i

(2.13)

is the Levi-Civita pseudotensor [64, §2.9], ji is the ith Cartesian component of the angular
momentum density, and fk is the kth component of the Lorentz force density (see Eq. (B.13)).
The right-hand side of (2.12) is simply the negative of the torque density r × f , written in
index notation. The quantity

Mil = εijkxj

[
δklw − ε0EkEl − µ−1

0 BkBl

]
(2.14)

is the angular-momentum flux density [55, 63], which has the dimensions of angular mo-
mentum per unit area per unit time. If we are dealing with a light beam propagating along
the z-axis, say, then the amount of optical AM flowing each second through a z = constant

surface S is ∫
S

Mzz dxdy. (2.15)

2.1.2 Separation into Spin and Orbital Terms

The total optical AM (2.7) can be written in a variety of alternative forms. First of all, it
is customary to replace the magnetic field with ∇×A⊥. We could write this as the curl of
the total vector potential A = A⊥ +A‖, but this would be somewhat artificial, as we know
j = r × (E ×B) is gauge independent (it is defined in terms of the fields), and thus it is
more natural to write everything in terms of the gauge-invariant transverse vector potential.
The cross products may be expressed in index notation using the Levi-Civita symbol (2.13),
and we find after some manipulation that J can be written in the exact form

J = ε0

∫
V

d3r

[
Ei(r ×∇)A⊥i +E ×A⊥ − (E · ∇)(r ×A⊥)

]
. (2.16)

(Note the sum over the repeated indices in the first term.) Assuming that the EM fields
vanish at the boundary of V , as is typical in an actual experiment, we can write J in the
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form (derivation in Appendix D.1.1)

J = ε0

∫
V

d3r

[
Ei(r ×∇)A⊥i +E ×A⊥ + (r ×A⊥)(∇ ·E)

]
. (2.17)

It is also convenient to split the electric field into its transverse and longitudinal components
(see §B.2), E = E⊥ +E‖, and to write

J = Jtrans + Jlong, (2.18)

where

Jtrans ≡ ε0

∫
V

d3r r × (E⊥ ×B), (2.19a)

Jlong ≡ ε0

∫
V

d3r r × (E‖ ×B). (2.19b)

Then using (2.17) we have

Jtrans = ε0

∫
V

d3r

[
E⊥i (r ×∇)A⊥i +E⊥ ×A⊥

]
, (2.20a)

Jlong = ε0

∫
V

d3r

[
E
‖
i (r ×∇)A⊥i +E‖ ×A⊥ + (r ×A⊥)(∇ ·E‖)

]
, (2.20b)

where I have used ∇ ·E⊥ ≡ 0. The decomposition into transverse and longitudinal compo-
nents has some physical significance. To see this, note that after some work we can re-write
Jlong in the form (see derivation in Appendix D.1.2) [20, p. 46]

Jlong =

∫
V

d3r η(r ×A⊥). (2.21)

If we are considering microscopic fields and charges, i.e., if η is a sum over delta functions
(see Eq. (B.9)), then this becomes

Jlong =
∑
α

eαqα ×A⊥(qα). (2.22)
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The total AM of the combined system of charges and fields can thus be written as

Jtot = Jtrans + Jlong +
∑
α

qα ×mαvα

= Jtrans +
∑
α

qα ×
(
mαvα + eαA⊥(qα)

)
.

(2.23)

The final term in brackets is the canonical momentum, pα, of the particles, so not only does
Jlong vanish in the absence of charges, as is clear from (2.22), it can even be thought of as a
property of the particles.

Returning our attention to the transverse contribution (2.20a), this may be written as

Jtrans = L+ S, (2.24)

where

L ≡ ε0

∫
V

d3r E⊥i (r ×∇)A⊥i , (2.25a)

S ≡ ε0

∫
V

d3rE⊥ ×A⊥, (2.25b)

which are often called the optical orbital angular momentum (OAM) and spin angular mo-
mentum (SAM), respectively. The decomposition of Jtrans into a spin and orbital term has
a long history, dating back at least as far as Darwin’s work in 1932 [4]. Alternative names
for S and L are the intrinsic and extrinsic contributions to the optical AM. These terms
are derived from the fact that S is purely defined by the optical field under consideration,
whilst L also depends on the reference point r0 (taken as the origin above). The orbital con-
tribution with respect to the origin and the orbital contribution with respect to an arbitrary
point r0, are related by [65, 66]

Lr0 = L0 − r0 × P , (2.26)

where P is the linear optical momentum (2.6). Whilst in some specific (and practically
important) examples the components of Lr0 and L0 in the direction of propagation are the
same [66], this is not generally the case [67]. The terms intrinsic and extrinsic optical AM
are thus quite natural. In quantum mechanics the distinction between spin and orbital AM
stems from a similar argument, and this partly justifies the names optical SAM and OAM as
well. However, this terminology also comes with some caveats which I shall discuss below.
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2.1.3 Angular Momentum of a Plane Wave

To gain some insight into the physical nature of the SAM and OAM, let’s consider a sim-
ple example: suppose a plane, monochromatic light wave travels in the z-direction with
frequency ω = ck. The (transverse) vector potential and electric field may be written as

A⊥ = Re
{
A0ε̂e

i(kz−ωt)
}
, (2.27a)

E⊥ = Re

{
iωA0ε̂e

i(kz−ωt)
}
, (2.27b)

where
ε̂ = αx̂ + βŷ, (2.28)

subject to |α|2 + |β|2 = 1, is an arbitrary unit polarization vector. The integrand of Eq.
(2.25b) is the optical spin density,

s = ε0E⊥ ×A⊥. (2.29)

A straightforward calculation shows that, for the plane wave defined above, this equals

s =
ε0

2
ωσ|A0|2ẑ, (2.30)

where
σ ≡ i(αβ∗ − α∗β). (2.31)

The intrinsic AM contained in a volume V is thus

S =
ε0

2
ωσ|A0|2V ẑ. (2.32)

Strictly speaking, a plane wave occupies all of space, so we should take V = R3. The total
SAM of a plane wave thus appears to diverge. I will return to this point later.

Let’s compare with the orbital contribution. The integrand of Eq. (2.25a) is the orbital AM
density,

l = ε0E
⊥
i (r ×∇)A⊥i , (2.33)

which for the plane wave becomes

l =
ε0

c
(yx̂− xŷ)E2

⊥. (2.34)
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We can see immediately that, for a plane wave, the spin and orbital AM have very different
characteristics. The key features of the spin are that: (a) it is parallel to the direction of
propagation and (b) it is dependent on the polarization of the wave. Neither of these are
true of the orbital contribution. The polarization dependence of S is entirely contained in
σ. By writing (with no loss of generality) α = a and β = beiθ, for a, b, θ ∈ R, we have
σ = 2ab sin θ, and we may recognise ω2|A0|2σ as the third Stokes parameter of the wave
[6, 30]. It is easy to see that 0 ≤ |σ| ≤ 1. When the x- and y-components are in phase,
i.e., when the wave is linearly polarized, σ = 0, whilst σ takes the maximum value (+1)
for LCP light and the minimum value (−1) for RCP light. Elliptically polarized light sits
between these two extremes. Another enlightening result is the ratio of S · ẑ = Sz with the
time-averaged EM energy, W . We find

Sz

W
=
σ

ω
. (2.35)

This may be, and commonly is, interpreted as the result that every photon in the plane wave
carries, in addition to the energy ~ω, an AM σ~ in the direction of propagation. For CP
light, this is ±~. These results strongly suggest that S is the contribution to optical AM
which was predicted by Poynting and measured by Beth. However, there are a few subtleties
we must address.

If we go back to the linear momentum density, Eq. (2.5), then for a plane wave we have
g = |g|ẑ, and (r × g) · ẑ is identically zero. Therefore, a plane wave has no AM in its
direction of propagation [6, 68]. But we have just shown that S = Szẑ 6= 0. How can this
be? We must remember that in deriving Jtrans = L + S, we assumed that the fields vanish
at the surface of V . For a plane wave this is not the case, and therefore Jtrans 6= L + S. If
we return to the exact form, Eq. (2.16), now retaining only the transverse contribution, we
have

Jtrans = L+ S − ε0

∫
V

d3r (E⊥ · ∇)(r ×A⊥). (2.36)

A simple calculation shows that the additional term exactly cancels the spin contribution,
which also resolves the issue mentioned above that S appears to diverge. The following two
statements are both true and are not contradictory: the spin contribution to the AM of a
plane wave is generally non-zero and points in the direction of propagation; the total optical
AM of a plane wave has no component in the direction of propagation.

As plane waves only exist mathematically, in a real experiment we are safe to use the
decomposition into L and S by choosing a sufficiently large volume (usually V = R3). The
spin contribution in a real quasi-plane wave or paraxial beam does not have the exact form
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as given in Eq. (2.32), and it also does not diverge, but the key features of polarization
dependence and a dominant component parallel to the direction of propagation remain, as
does the ratio of SAM in the direction of propagation to energy [6, 10].

One might conclude from this Section that S is always inherently linked to circularly po-
larized light and is always parallel to the direction of propagation, but this is not the case.
That is to say, these are not defining features of optical SAM, and as I shall discuss in §2.3,
the spin can exhibit a variety of features in different optical fields. Nonetheless, the features
outlined in this Section are those which are most commonly associated with SAM, because
they occur in the simplest and most ubiquitous waves.

2.1.4 ‘True’ Angular Momenta?

I summarized earlier how, in a particular sense, S is intrinsic whilst L is extrinsic. Now I
wish to address whether we can go so far as to associate S and L with ‘true’ spin and orbital
angular momenta of light, and thus justify the use of the terms SAM and OAM? To answer
this we turn to the quantum theory.

The total AM about a particular axis is, by definition, the generator of rotations about that
axis [69]. In quantum theory, this is equivalent to saying that the Cartesian components of
a total AM operator J satisfy [70, 71]

[Ji, Jj] = i~εijkJk. (2.37)

In non-relativistic quantum mechanics (QM) we take this commutation relation as the defi-
nition of an AM operator, be it spin, orbital or total.

Lenstra and Mandel [65] showed a long time ago that Ĵtrans (the operator form of Eq. (2.24))
does obey (2.37). What about the SAM and OAM operators, Ŝ and L̂? This question was
answered by van Enk and Nienhuis [72, 73]. Their analysis begins with a mode expansion
of the (transverse) vector potential operator, Â⊥,

Â⊥(r) =
∑
k,λ

A (k)
[
ε̂kλe

ik·râkλ + ε̂∗kλe
−ik·râ†kλ

]
, (2.38)

where the sum is over the wave vectors k and orthogonal polarization vectors ε̂kλ, for λ = 1, 2.
(I discuss mode expansions of the EM field operators in detail in Chapter 3.) The operators
âkλ and â†kλ are the annihilation and creation operators of the (k, λ) mode, which act upon
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states of the quantized radiation field and satisfy the commutation relations

[âkλ, â
†
k′λ′ ] = δkk′δλλ′ . (2.39)

Using (2.38) one can show that [65, 72–74]

Ŝ =
∑
k,λ

σλ ~k̂ n̂kλ, (2.40)

where n̂kλ is the number operator of mode (k, λ), which counts the number of photons in that
mode, k̂ = k/|k|, and σλ is the value of the polarization parameter (2.31) for the different
polarizations λ. As discussed, σL = 1, σR = −1, and we once again arrive at the result that
a CP photon carries an intrinsic AM of ±~ in its direction of propagation.

The commutation relations for the components of Ŝ follow simply from (2.40). We find [73]

[Ŝi, Ŝj] = 0, (2.41)

which is not the desired form of Eq. (2.37). It follows that the components of L̂ do not obey
the ‘correct’ commutation relations either. Whilst Van Enk and Nienhuis make clear that
the spin and orbital contributions are physical observables, because they are represented by
gauge-invariant Hermitian operators, it is concluded on the basis of the above result that Ŝ
and L̂ are not ‘true’ AM of light [69, 72, 73]. I think it is worth dissecting this conclusion.

Whilst spin AM operators in non-relativistic QM must obey the commutation relation (2.37),
in relativistic QM the situation is not so simple. In fact, in relativistic QM we can only define
spin operators for particles at rest [75]. As photons are inherently relativistic, and can never
be at rest, it seems that we should not expect Ŝ to behave exactly as a spin operator in
the non-relativistic theory. The operator which is actually used to define the photon as a
spin-1 particle is the helicity operator, and the photon’s spin quantum number (s = 1) is
defined as the magnitude of the helicity quantum number [75]. Another manifestation of
the difference between the non-relativistic and relativistic theories is that a massive spin-1
particle must have three distinct spin projection eigenvalues (−~, 0,+~), but this is not the
case for a massless particle [74, 76], and it is entirely consistent that the SAM of light only
has two eigenvalues (±~).

In conclusion, it is important to recognise, as van Enk and Nienhuis [72, 73] and others [69]
have, that S and L are not of exactly the same nature as the most familiar spin and orbital
AM. However, S and L do possess what I think are the most important features of spin
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and orbital AM, respectively, which is the intrinsic and extrinsic properties discussed above.
Therefore, I shall adhere to the commonly used terminology, calling S the spin angular
momentum of light and L the orbital angular momentum of light.

2.2 Paraxial Beams and Orbital Angular Momentum

In this Section, I show that certain paraxial laser beams possess, in addition to a polarization-
dependent SAM, a well-defined and controllable OAM in their direction of propagation. I
closely follow the review articles by Allen, Padgett and Babiker [10], and Götte and Barnett
[55].

2.2.1 Paraxial Approximation

In geometrical optics a ray which makes a small angle with the optical axis is said to be
‘paraxial’ [77]. In a well-collimated laser beam, the majority of the plane waves which sum
to form the beam will have wave vectors which are approximately parallel to the optical axis
(direction of beam propagation), and thus such a beam is also called paraxial.

We consider an optical field in vacuum (η = 0 = Jη), in which case Maxwell’s equations
(2.4) become:

∇ ·E = 0, (2.42a)

c2∇×B = Ė, (2.42b)

∇ ·B = 0, (2.42c)

∇×E = −Ḃ. (2.42d)

The electric field is now entirely transverse (divergence-free), i.e., E = E⊥, and thus J =

Jtrans = L + S. The light is also assumed to be perfectly monochromatic, of frequency
ω, and I shall write the fields in the form Re{E(r)e−iωt}, where E(r) now denotes the
time-independent complex electric field

Working in the Lorenz gauge (B.20), and eliminating the scalar potential Φ using the gauge
condition, the complex electric and magnetic fields may be written in terms of the complex
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vector potential A as [10, 55]

B = ∇×A, (2.43a)

E = ick

(
A+

1

k2
∇(∇ ·A)

)
, (2.43b)

where ω = ck. The vector potential satisfies the wave equation [18, 55], which for the
monochromatic fields I am considering reduces to the vector Helmholtz equation,

∇2A+ k2A = 0. (2.44)

In the theory of laser beams, the paraxial approximation involves two principal assumptions:
first, that the (Lorenz-gauge) vector potential is perpendicular to the beam propagation
axis, taken as the z-axis. The second is that the variation of the potential in the z-direction
is dominated by an exponential factor eikz [8, 55, 78]. These assumptions align well with
the real properties of a collimated laser beam and make it possible to derive analytical
expressions for various laser modes. Following the first assumption we write A = ψ(r)ε̂,
where ε̂ = αx̂ + βŷ. It is common to say that A is ‘transverse’ [78], in the sense that it
is transverse to the propagation axis. However, it is important to distinguish between this
notion of transversality and the one I use throughout this Thesis, in which a divergence-free
vector field is called transverse (see §B.2). Because we are working in the Lorenz gauge
A 6= A⊥, i.e., A is not divergence free. Shortly, after developing the theory from the Lorenz
gauge, I will discuss some issues which can arise if one naively uses the Coulomb-gauge
potential in the theory of paraxial beams.

In general the polarization amplitudes α and β can depend on r, a necessary condition for
so-called ‘vector beams’, for example [12, 79]. Such beams are not of interest here however
and I will assume ∇2(ψε̂) = ε̂∇2ψ. Thus (2.44) reduces to the scalar Helmholtz equation
for ψ,

∇2ψ + k2ψ = 0. (2.45)

Next we write
ψ(r) = u(r)eikz, (2.46)

and invoke the second assumption of the paraxial approximation, that the variation of u in
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the z-direction is small compared to the variation of the exponential factor [10, 80],

∣∣∣∣∂u∂z
∣∣∣∣� k|u|,

∣∣∣∣∣∂2u

∂z2

∣∣∣∣∣� k

∣∣∣∣∂u∂z
∣∣∣∣ . (2.47)

The double z-derivative of ψ thus becomes

∂2

∂z2

(
ueikz

)
= eikz

(
∂2u

∂z2
+ 2ik

∂u

∂z
− k2u

)
≈ eikz

(
2ik

∂u

∂z
− k2u

)
, (2.48)

which upon inserting into (2.45) leaves us with the (approximate) equation of motion for u
[10, 55, 80],

∇2
tu+ 2ik

∂u

∂z
= 0, (2.49)

where ∇2
t ≡ ∂2

x+∂2
y is the ‘transverse Laplacian’ [55, 80]. Eq. (2.49) is known as the paraxial

wave equation (PWE) [80].

The exact expressions (in the sense that the inequalities in (2.47) are not yet invoked) for
the electric and magnetic fields in terms of u are found from Eqs. (2.43),

E = ick


αu+ 1

k2
(α ∂2

∂x2
+ β ∂2

∂x∂y
)u

βu+ 1
k2

(α ∂2

∂x∂y
+ β ∂2

∂y2
)u

i
k
(α ∂

∂x
+ β ∂

∂y
)u+ 1

k2
∂
∂z

(α ∂
∂x

+ β ∂
∂y

)u

 eikz, (2.50a)

B = ik


−βu+ i

k
β ∂
∂z
u

αu− i
k
α ∂
∂z
u

− i
k
(β ∂

∂x
− α ∂

∂y
)u

 eikz. (2.50b)

Different degrees or orders of the paraxial approximation can now be employed. Most com-
monly, perhaps, the term paraxial beam is associated with a ‘zeroth-order’ paraxial approx-
imation, in which only terms of order k are retained in the above expressions [15, 80]. The
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resulting transverse (in the second sense) or ‘2D’ fields are

E ≈ Et ≡ ick


αu

βu

0

 eikz, (2.51a)

B ≈ Bt ≡ ik


−βu

αu

0

 eikz. (2.51b)

Note that cBt = ẑ ×Et, which is reminiscent of the relation for a plane wave, although in
that case it is the exact fields which satisfy this relationship. These 2D fields do not satisfy
the divergence-free conditions imposed by Maxwell’s equations (2.42a) and (2.42c), but this
is not particularly surprising because in making the zeroth-order approximation we have
thrown away the z-components of E and B.

In the next order of approximation, we retain in E and B all terms of order k0 or higher.
From the PWE, the (1/k)∂zu terms are equivalent to terms of the order (1/k2)|∇2

tu|, so we
are left with [10]

E ≈ ick


αu

βu

i
k
(α ∂

∂x
+ β ∂

∂y
)u

 eikz (2.52)

and

B ≈ ik


−βu

αu

− i
k
(β ∂

∂x
− α ∂

∂y
)u

 eikz. (2.53)

Unlike the 2D fields above, these ‘3D’ paraxial fields satisfy both the paraxiality conditions
and Maxwell’s divergence equations (within the paraxial approximation), and they are thus
a more accurate representation of real paraxial beams. The approach I have taken, using
the Lorenz gauge, was first developed by Davis [81]. It is a simple analytical procedure
which captures the most important features of paraxial beams, but it does not account for
the real behaviour of laser beams as effectively as advanced numerical techniques [82], which
should be employed if one is interested in comparing theoretical calculations to experimental
results with high accuracy. One particular area in which Davis’s approach is lacking is the
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asymmetry between the produced electric and magnetic fields. For instance, if β = 0, then
from Eqs. (2.50), the electric field will have a dominant x-component but also a small y-
component, whereas the magnetic field has a dominant y-component but its x-component is
identically zero (both fields have small z-components of course). The electric and magnetic
fields of a real laser beam are not asymmetric [82] and thus, if greater accuracy is desired, a
symmetrization procedure should be used on the above formulae [83].

Let us now see how the preceding development would differ if we used the Coulomb gauge
rather than the Lorenz gauge. For this brief interlude, I will call the Coulomb-gauge potential
AC and the Lorenz-gauge potential AL. The magnetic field is still found from the usual
expression (2.43a) regardless of what potential one uses, but the electric field is no longer
found from (2.43b), but from the expression E = ickAC . We assert, as we previously did
for AL, that the electric field (or equivalently AC) has a constant polarization which is
transverse to the beam direction, so E = icku(r)eikzε̂, where again ε̂ = αx̂ + βŷ. The
Maxwell equation (2.42a) requires that E be divergence free, and thus u must satisfy(

α
∂

∂x
+ β

∂

∂y

)
u(r) = 0. (2.54)

As was first pointed out by Lax et al. [84], this condition presents a problem for a light
beam. To see this, take the beam to be linearly polarized in the x-direction, ε̂ = x̂, so the
condition becomes

∂

∂x
u(r) = 0. (2.55)

Whilst a plane wave can satisfy this condition, a real light beam’s amplitude is not of infinite
cross section and must vary in the x-direction. Thus the assumption that E (or AC) is of
the above transverse form leads to an impossible condition for a paraxial beam [6, 55, 84].
To remedy this, a common approach when working in the Coulomb gauge is to add a small
z-component to the potential which, to fulfil the divergence-free condition, must satisfy
[6, 78, 85]

∂

∂z
ACz = −∇t ·AC . (2.56)

Now using the paraxiality condition from (2.47), we make the approximation (∂/∂z)ACz ≈
ikACz , and thus

ACz ≈
i

k
∇t ·AC =

i

k

(
α
∂

∂x
+ β

∂

∂y

)
ueikz. (2.57)
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The resulting electric and magnetic fields are

E ≈ ick


αu

βu

i
k
(α ∂

∂x
+ β ∂

∂y
)u

 eikz (2.58)

and

B ≈ ik


−βu+ i

k
β ∂
∂z
u+ 1

k2
(α ∂2

∂x∂y
+ β ∂2

∂y2
)u

αu− i
k
α ∂
∂z
u− 1

k2
(α ∂2

∂x2
+ β ∂2

∂x∂y
)u

− i
k
(β ∂

∂x
− α ∂

∂y
)u

 eikz. (2.59)

These fields are not identical to those found using the Lorenz gauge, Eqs. (2.50). This is to
be expected because AC and AL, as defined above, do not differ by the gradient of a scalar
function, and thus should not produce the same fields. However, to order k1 and k0, the two
approaches do produce the same fields, and it is only when one considers terms of the order
k−1 that differences appear. These terms may become important in non-paraxial fields, in
which case it may be necessary to model the higher-order terms more accurately [82, 83],
but for the paraxial beams I am interested in, the first-order expressions are sufficient.

Many well-known solutions of the PWE exist. An elementary solution is a Gaussian beam
with an intensity profile (|u|2) proportional to a Gaussian exponential factor, e−2a(x2+y2) [80].
The Laguerre-Gaussian (LG) modes are solutions of the PWE which are most naturally
expressed in cylindrical coordinates (ρ, ϕ, z) (see Appendix A.2), as they possess cylindrical
symmetry [55, 80]. Defined by two parameters p andm, I shall denote the LG mode functions
by uLGpm = LGm

p . Their name derives from the fact that LGm
p is formed from the product of

a Gaussian exponential factor and a generalized Laguerre polynomial L|m|p [10, 55, 56]. The
exact form of the modes is not of much interest here, they may be found in the preceding
references. Their most important feature, for my discussion, is the aforementioned cylindrical
symmetry, which means we can write LGm

p in the form

LGm
p = vpm(ρ, z)eimϕ. (2.60)

Modes which can be written in this form are sometimes called vortex beams or ‘doughnut’
modes, for reasons that I shall now outline.

The mode parameters p ∈ N and m ∈ Z of an LG mode determine the phase and intensity
structures of the beam. The index m, sometimes called the ‘topological charge’ of the beam
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[55], is often denoted by `, but m is more in-keeping with the connection (to be discussed)
between optical OAM and QM. For p = 0, m = 0 we have a simple Gaussian beam. For
|m| > 0 the intensity and phase profiles become much more interesting, with zero intensity
and thus a phase singularity on the z-axis, and helical phase fronts [55, 56]. See Figure 2.1
for a visualization of these features for the LG1

0 mode. The parameter p also drastically
alters the phase and intensity of the beam, with p+ 1 bright concentric rings forming when
m 6= 0. The phase and intensity profiles for various LG modes are shown in Figure 2.2.

Having reviewed the basic theory of paraxial beams, let’s return to the AM.

2.2.2 Angular Momentum of a Paraxial Beam

For the monochromatic fields of interest, the optical AM will contain both time-independent
terms and terms which oscillate at ±2ω. When ω is an optical frequency, the latter terms
fluctuate far too rapidly to be of any significance in most experiments, and thus the physically
relevant quantities are the time-averaged ones, which I denote by an overbar, e.g.,

Ji ≡
ω

2π

∫ 2π
ω

0

dt Ji(t). (2.61)

The time-averaged OAM and SAM are [69, 86]:

L =
ε0

2iω

∫
V

d3r E⊥∗i (r ×∇)E⊥i , (2.62a)

S =
ε0

2iω

∫
V

d3r E∗⊥ ×E⊥. (2.62b)

Note that, strictly speaking, it is not necessary to take the time-average of the SAM for a
purely monochromatic field, because it is already time independent. This follows from the
fact that e−2iωtE⊥ × E⊥ = 0 = e2iωtE∗⊥ × E∗⊥, on account of the fundamental property of
the cross product.

Following Allen et al. [8, 10], let’s ask which fields, if any, are capable of having an OAM in
their direction of propagation? Examining (2.62a) we see that L · ẑ contains the operator

1

i
ẑ · (r ×∇) =

1

i

∂

∂ϕ
, (2.63)

where ϕ is the azimuthal angle of of the cylindrical coordinates (ρ, ϕ, z). This operator is
almost identical (except for a factor of ~) to the quantum-mechanical operator Lz, and it
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(a) (b)

(c)

Figure 2.1: Features of the LG1
0 mode: (a) normalized intensity profile, showing the well-

known ‘doughnut’ shape; (b) phase profile, which is singular on the propagation axis; (c)
wave front, i.e., surface of constant phase, showing the signature helical shape. Examples
of how the intensity and phase profiles vary with the mode indices p and m are shown in
Figure 2.2.
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Figure 2.2: Laguerre-Gaussian modes: the intensity (top row) and phase (bottom row)
profiles of several LG modes. Colouring is the same as in Figure 2.1.

tells us that the only fields capable of having a non-zero OAM in the direction of propagation
are those for which ∂Ei/∂ϕ 6= 0, for at least one i ∈ {x, y, z}. Examining the LG modes
defined above, (2.60), we see that

1

i

∂

∂ϕ
LGm

p = mLGm
p , (2.64)

and thus for m 6= 0 the LG modes have non-zero OAM in the z-direction.

With u = v(ρ, z)eimϕ (which could be an LG mode or a Bessel beam [55]) we find that, to
lowest order in the paraxial approximation, the time-averaged z-components of the orbital
and spin densities are:

lz =
ε0

2
ωm|u|2, (2.65a)

sz =
ε0

2
ωσ|u|2, (2.65b)

giving the total AM of the beam in the direction of propagation as

Jz = ω(m+ σ)
ε0

2

∫
V

d3r |u|2. (2.66)
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The total time-averaged energy of the beam is

W = ω2 ε0

2

∫
V

d3r |u|2, (2.67)

and thus the ratio of AM in the z-direction to energy is [8, 10]

Jz

W
=
m+ σ

ω
. (2.68)

Using the same reasoning as above, this suggests the quite general result that a cylindrically-
symmetric paraxial beam, with polarization σ and topological charge m, carries a total AM
which is equivalent to (m + σ)~ per photon. The spin contribution (σ~) is essentially the
same as we discovered for the plane wave. The orbital contribution (m~) is now very similar,
but whilst σ is constrained between ±1, the mode indexm can be indefinitely large, implying
that the OAM can take any integer value. We again see a striking similarity between optical
AM and QM: an electron in a hydrogen atom, say, can only have the spin projection values
±1/2, whilst the orbital projection value m` can take any value belonging to {−`, . . . , `},
where ` is unbounded.

By analogy with Beth’s work, Allen et al. [8] envisaged that the existence of optical OAM
could be experimentally verified by measuring the torque about the beam axis that should
be applied to an optical element (such as a cylindrical lens) which converts a beam with zero
OAM into one with non-zero OAM. As far as I am aware, this experiment has still not been
realized, due to great technical difficulty. However, it was not long after the original paper
[8] that He et al. [87] experimentally confirmed the existence of optical OAM by observing
its effects on trapped micro-particles—more detail on the experimental aspects of optical
OAM can be found in [11, 56, 88].

This concludes my overview of the OAM in paraxial beams. In the next Section I discuss
some more interesting (spin) AM structures, outside of the paraxial approximation.

2.3 Optical Spin Structures

In §2.1.3 I discussed the AM of a plane wave and showed that the SAM in the direction
of propagation can be non-zero, whilst the OAM in this direction is identically zero. Then
in §2.2 we have seen that paraxial beams of light can possess both SAM and OAM in the
direction of propagation, the SAM being related to the polarization structure (σ) and the
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OAM to the mode structure (m) of the beam. It is well-known that, outside of the paraxial
approximation, this relationship breaks down [89]. For instance, in a tightly-focussed rather
than collimated vortex beam, L can depend on m and σ [15]. What this discussion is
intended to highlight is that, as we add more structure to an optical field, the AM can
exhibit more interesting and unexpected properties. To put this another way, we can rarely
infer the behaviour of the optical AM in more complex fields from knowledge of its behaviour
in less complex fields.

In this Section I touch on the exploration of optical AM in more exotic structured light
fields. In particular, I shall be interested in the nature of the local optical spin in so-called
non-interfering superpositions. It is generally the local angular momenta (i.e., AM densities)
which interact with small (subwavelength) particles [15, 37, 90], such that novel spin density
structures can open the door to novel light-matter interactions, a topic which has received
much attention in recent years [15, 16, 91–101]. Perhaps the greatest interest has been in
the behaviour of the local SAM in ‘3D’ optical fields, i.e., fields for which the full three-
dimensional polarization is taken into account [16, 93–96]. In the simplest case, this can just
mean taking into account the z-components of the electric and magnetic fields of a paraxial
beam, and even this can show interesting features which one might not expect from the
discussion in §2.2 [16]. More interesting, however, are the spin structures which arise when
one considers inherently non-paraxial optical fields, such as a tightly-focussed beam [94, 96]
or two plane waves propagating at an arbitrary angle to one another [93]. The work I present
in this Section fits within this theme, but before I can elaborate on this, we need to discuss
an alternative expression for the spin.

The SAM has thus far been written in the form

S = ε0

∫
V

d3rE⊥ ×A⊥.

The transverse electric field which appears in this expression can be written in terms of a
so-called electric or ‘second’ vector potential [102],

E⊥ = −c2∇×C, (2.69)

the prefactor being chosen for later convenience. Using (2.69) and integration by parts one
can show, provided the fields vanish at the boundary of the integration volume, that S may
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be written in the alternative form (see derivation in Appendix D.1.3) [69]

S = ε0c
2

∫
V

d3rB ×C⊥. (2.70)

We can obviously also write S in the ‘dual’ form,

S =
ε0

2

∫
V

d3r

[
E⊥ ×A⊥ + c2B ×C⊥

]
. (2.71)

The equality of the different expressions for S relies on the fact that, in (2.25b), it was
defined in terms of the gauge-invariant transverse vector potential A⊥ [69] (and in (2.70) is
defined in terms of the gauge-invariant transverse part of C). Whenever I refer to S or to
the optical spin, I will always mean this gauge-invariant quantity. If one defined S in terms
of A or C (instead of A⊥ or C⊥), then it would not be gauge invariant, but the change
produced by a gauge transformation would be exactly cancelled by the corresponding change
in L (if that too were defined in a non-gauge invariant way). The gauge-invariant forms are
thus the physically relevant ones. Note the two forms of S are equivalent in the presence of
charges as well as in vacuum, because the SAM is inherently linked to the transverse electric
field, which always satisfies (2.69). Henceforth, I shall refer to

se ≡ ε0E⊥ ×A⊥, (2.72a)

sm ≡ ε0c
2B ×C⊥ (2.72b)

as the electric and magnetic spin densities, respectively, and

s ≡ 1

2
(se + sm) =

ε0

2

[
E⊥ ×A⊥ + c2B ×C⊥

]
(2.73)

as ‘the’ spin density, or sometimes the dual-symmetric spin density (for reasons which are
discussed in §4.2). In the remainder of this Section, the discussion is specialized to freely-
propagating monochromatic optical fields.

In the absence of charges Maxwell’s equations exhibit a great degree of electric-magnetic
symmetry. A manifestation of this is the fact that, in vacuum, both E and B can be
written in terms of either the traditional vector potential (A) or the second vector potential
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(C). These relationships are [38, 52, 69, 102]:

E = −Ȧ⊥ = −c2∇×C, (2.74a)

B = −Ċ⊥ = ∇×A. (2.74b)

As in §2.2, I will write the monochromatic fields and potentials as the real part of a com-
plex vector: F̃ = Re{F e−iωt}. Note that, subsequently, E denotes the time-independent
complex electric field, whilst Ẽ is the real electric field, and so on. From (2.74) we have the
relationships

E = iωA⊥, B = iωC⊥. (2.75)

For a monochromatic field (2.72a) and (2.72b) become

se =
ε0

2ω
Im{E∗ ×E} =

ε0

2iω
E∗ ×E, (2.76a)

sm =
ε0c

2

2ω
Im{B∗ ×B} =

ε0c
2

2iω
B∗ ×B. (2.76b)

Because matter generally interacts differently with electric and magnetic fields (it is dual
asymmetric), the electric and magnetic spin densities are separately observable quantities
[16, 37, 90, 103]. One can show that, in a plane wave, se = sm. The same is true if we
consider only the 2D polarization of a paraxial beam, as in Eqs. (2.51). In both cases, the
equality of se with sm stems from the relationship cB = ẑ × E. However, in the paraxial
beam this is only an approximate relationship, and when the full 3D polarization is taken into
account we generally have se 6= sm [15, 16]. Differences between the electric and magnetic
spins are of interest because of their separate physical influences. In the next Section I will
explore the behaviours of the local spins in paraxial and non-paraxial superpositions of non-
interfering plane waves. These optical fields exhibit remarkably rich spin structures and are
also of particular interest in light-matter interactions, as I shall discuss.

2.3.1 Non-Interfering Superpositions

The time-averaged electric energy density of a monochromatic optical field is

we = ε0Ẽ2 =
ε0

2
E ·E∗. (2.77)
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When we superpose various monochromatic waves, such that Ee−iωt = e−iωt
∑

j Ej, the
resulting ‘intensity’ is

E ·E∗ =
∑
j

|Ej|2 +
∑
j

∑
k 6=j

Ej ·E∗k. (2.78)

The second term shows one of the defining features of any wave system, namely, interference.
In this Section I am interested in superpositions which do not interfere, i.e., for which the
overall intensity is simply given by

E ·E∗ =
∑
j

|Ej|2. (2.79)

The easiest way to form such non-interfering superpositions is to choose each Ej to be a
plane wave, and for their polarizations to be mutually orthogonal. This can easily be done
for up to three linearly polarized waves and this is what I shall focus on here.

Let’s start by considering the spins in the simplest possible example, a superposition of two
orthogonally polarized plane waves, chosen to propagate in the yz-plane, separated by an
angle of 2θ (see Figure 2.3). The specific wave and polarization vectors I consider are:

k1 = k0ẑ, ε̂1 = ŷ, (2.80a)

k2 = k0(cos 2θẑ− sin 2θŷ), ε̂2 = x̂, (2.80b)

where k0 = ω/c is the wave number of both waves. The complex electric field is

E = a1ε̂1e
ik1·r + a2ε̂2e

ik2·r. (2.81)

For simplicity I will take a1 = a = a2. The associated magnetic field is

B =
a

c
β̂1e

ik1·r +
a

c
β̂2e

ik2·r, (2.82)

where β̂i are the magnetic polarization unit vectors, which follow from Maxwell’s equation
(2.42d):

β̂i =
ki × ε̂i
|ki|

. (2.83)

In this particular case
β̂1 = −x̂, β̂2 = cos 2θŷ + sin 2θẑ. (2.84)
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Figure 2.3: Configuration leading to a two-wave non-interfering superposition: the longer
(grey) arrows are the wave vectors and the shorter (green) arrows indicate the electric po-
larization vectors.

Using (2.76) we find the following spin densities:

se = s0ẑ, (2.85a)

sm = s0(cos 2θẑ− sin 2θŷ), (2.85b)

where
s0 =

ε0|a|2

ω
sin

[
(1− cos 2θ)k0z + sin 2θk0y

]
. (2.86)

This is an illustrative toy model because we can observe different behaviours for different
separation angles. An interesting feature is that se always points in the direction of k1 = k0ẑ,
whilst sm always points in the direction of k2, which depends on θ. When θ = 0 identically,
we unsurprisingly find that both spin densities are identically zero. When 2θ � 1, but
non-zero, we can make the paraxial approximation (cos 2θ ≈ 1, sin 2θ ≈ 2θ), so

sm ≈ s0ẑ− 2θs0ŷ (2.87)

and
s0 ≈

ε0|a|2

ω
sin(2θk0y), (2.88)

and thus for two paraxial waves, the local electric and magnetic spins are approximately
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(a) Magnetic spin vectors (b) Electric spin vectors

Figure 2.4: Spin densities in the two-wave non-interfering superposition defined by Eqs.
(2.80), for 2θ = π/2. We see that the electric and magnetic spin vectors are perpendicular
everywhere. The lengths of the arrows and the background density plot indicate the mag-
nitude of the spin vectors, with black corresponding to zero magnitude and white to the
maximum (which is scaled to equal one).

equal, as expected from the above discussion.

More interesting results arise outside of the paraxial approximation. To take two extreme ex-
amples, consider the cases when the waves propagate at right angles or in opposite directions.
When 2θ = π/2, the spin densities are everywhere orthogonal (see Figure 2.4),

se =
ε0|a|2

ω
sin(k0z + k0y)ẑ, sm = −ε0|a|2

ω
sin(k0z + k0y)ŷ, (2.89)

whilst for 2θ = π, the spin densities point in opposite directions along the z-axis,

se =
ε0|a|2

ω
sin(2k0z)ẑ = −sm. (2.90)

This simple model highlights the degree to which non-paraxiality can influence local spin
structures.

As a slight aside, let’s mention that some constraints do exist between electric and magnetic
spin structures. In particular, one can show that ∇ · se = −∇ · sm in any monochromatic
field (see Chapter 4), and thus from the divergence (Gauss’) theorem [64], the fluxes of se
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(a) Magnetic spin vectors (b) Electric spin vectors

Figure 2.5: Spin densities in the three-wave non-interfering superposition defined by Eqs.
(2.92). The colour scheme is the same as in Figure 2.4.

and sm through any closed surface are the exact opposite of one another,∮
S

se · da = −
∮
S

sm · da. (2.91)

Next, let’s consider a more complex three-wave non-interfering superposition, defined by the
wave vectors, polarizations, and amplitudes:

k1 = k0x̂, ε̂1 = ŷ, a1 = a, (2.92a)

k2 =
k0√

2
(x̂ + ŷ), ε̂2 = ẑ, a2 =

√
2a, (2.92b)

k3 = k0ŷ, ε̂3 = x̂, a3 = a, (2.92c)

which has previously been considered in a different context in [17]. Using (2.83) the magnetic
polarization vectors are

β̂1 = ẑ = −β̂3, β̂2 =
1√
2

(x̂− ŷ). (2.93)

After a lengthy but simple calculation the x- and y-components of the local magnetic spin
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can be shown to equal

sxm = sym =
ε0|a|2

ω

sin

[(
1√
2
− 1

)
k0x+

1√
2
k0y

]
− sin

[
1√
2
k0x+

(
1√
2
− 1

)
k0y

] ,

(2.94)
whilst the z-component is identically zero everywhere, szm = 0. The components of the local
electric spin are

sxe = +
√

2
ε0|a|2

ω
sin

[(
1√
2
− 1

)
k0x+

1√
2
k0y

]
, (2.95a)

sye =−
√

2
ε0|a|2

ω
sin

[
1√
2
k0x+

(
1√
2
− 1

)
k0y

]
, (2.95b)

sze =
ε0|a|2

ω
sin

[
k0x− k0y

]
. (2.95c)

We see that, despite the three plane waves propagating in the xy-plane, the electric spin
density has a non-zero z-component, a feature which has previously been studied in two-
wave superpositions [93].

The spin densities for the three-wave configuration are plotted in Figure 2.5. The differences
between the electric and magnetic spin densities are much greater in this case, as compared
to the spins in the two-wave superposition (Figure 2.4). In the two-wave case, the spins have
the same magnitude everywhere, only differing in their directions. In the three-wave case
this is not true; we can see from Figure 2.5a that the magnetic spin density has much more
pronounced regions of zero magnitude (the darkest regions) as compared to the electric spin
density.

It is also interesting to compare the spin densities to the local optical helicity, h, which I
discuss in detail in Chapter 4. For a single plane wave of amplitude A0 the local helicity is

h =
ε0

2
ωσ|A0|2,

which, comparing to Eq. (2.30), is equal to the magnitude of the spin density (electric or
magnetic) of the wave. This similarity between the helicity and spin in simple fields has
led to some confusion between the two, and whilst deep connections do exist (as discussed
in §4.3), they are distinct physical quantities. In Figure 2.6 I show the local helicity of
the three-wave superposition discussed above. This highlights well the potential pitfalls of
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Figure 2.6: The local optical helicity for the three-wave non-interfering superposition defined
by Eqs. (2.92). Note the helicity is scaled with respect to we/ω, where we is given by (2.77).
The dashed grey lines indicate regions where h = 0.

naively assuming that helicity and spin are synonymous: whilst we can see that the regions
of zero helicity correspond exactly to the darkest regions of the magnetic spin plot (Figure
2.5a), the bright and dark regions of the electric spin plot (Figure 2.5b) are far less correlated
to the helicity. In fact, there are several regions in which both the local helicity and local
magnetic spin are identically zero, but the local electric spin has its greatest magnitude. It is
very important, therefore, to properly distinguish between all three quantities in theoretical
and experimental analyses.

Another difference which we may observe from Figure 2.5 is that the magnetic spin vectors
always point in the ±(x̂ + ŷ) direction, whilst the electric spin vectors appear to circulate
about certain points. As the curl of a vector field encapsulates its local circulation [64], it
seems natural to expect ∇ × se and ∇ × sm to differ in this example. This is indeed the
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case, as a direct calculation shows: the curl of the electric spin density has components

(∇× se) · x̂ = −ε0|a|2

c
cos(k0x− k0y) = (∇× se) · ŷ, (2.96a)

(∇× se) · ẑ = −ε0|a|2

c

cos

[(
1√
2
− 1

)
k0x+

1√
2
k0y

]
+ cos

[
1√
2
k0x+

(
1√
2
− 1

)
k0y

] ,

(2.96b)

and the curl of sm has components

(∇× sm) · x̂ = 0 = (∇× sm) · ŷ, (2.97a)

(∇× sm) · ẑ = (∇× se) · ẑ. (2.97b)

The curls of the (monochromatic) spin densities are of some physical significance. To discuss
this, first we note the following identities:

∇×
(
ε0

2iω
E∗ ×E

)
≡ ε0Re{E ×B∗} − ε0

2iω
(E∗j∇Ej − Ej∇E∗j ), (2.98a)

∇×

(
ε0c

2

2iω
B∗ ×B

)
≡ ε0Re{E ×B∗} − ε0c

2

2iω
(B∗j∇Bj −Bj∇B∗j ), (2.98b)

where repeated indices are summed over. The term ε0Re{E×B∗} is almost the time-average
of the Poynting vector (2.10),

S ≡ ε0c
2

2
Re{E ×B∗}. (2.99)

The other terms which appear on the right of (2.98) are very similar in form to the probability
current from quantum mechanics [104],

jψ =
~

2im
(ψ∗∇ψ − ψ∇ψ∗). (2.100)

This similarity, together with their appearance alongside the Poynting vector, suggests that
these terms may be interpreted as representing the energy ‘currents’ associated with each
component of the electric and magnetic field. As it turns out this is a known result [15, 59, 61],
although it is usually phrased in terms of the momentum rather than energy flow of the field.

Recall that the energy flux and linear momentum density only differ by a factor of c2, and
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the time-averaged linear momentum density is thus

g =
1

c2
S =

ε0

2
Re{E ×B∗}. (2.101)

Rearranging the Equations in (2.98) we have

g =
1

2
∇× se +Πe =

1

2
∇× sm +Πm, (2.102)

where

Πe ≡
ε0

2ω
Im{E∗ · (∇)E}, (2.103a)

Πm ≡
ε0c

2

2ω
Im{B∗ · (∇)B}, (2.103b)

with the notation F ∗ · (∇)F =
∑

j F
∗
j∇Fj now being used. Πe and Πm are the electric and

magnetic canonical (also called orbital) linear momentum densities [15, 60, 61]. Often, the
dual-symmetric (electric-magnetic) relationship is preferred,

g =
1

2
∇× s+Π , (2.104)

where
Π ≡ 1

2
(Πe +Πm) =

ε0

2ω
Im{E∗ · (∇)E + c2B∗ · (∇)B} (2.105)

is ‘the’ canonical momentum density and s is the dual-symmetric spin density (2.73). The
canonical momentum has been widely studied over the last decade or so [15, 59–61, 91, 93,
105], stemming in part from the fact that the traditional ‘Poynting form’, g, is in many
ways deficient as a measure of local optical momentum and energy flow in monochromatic
fields (see articles [59] and [61] for in-depth discussions). The interpretation of c2Π(e/m) as
energy currents is bolstered by noting that it is only the divergence of the Poynting vector
which appears in Poynting’s theorem (2.8), meaning that any vector which differs from the
Poynting vector by the addition of a curl term would also satisfy the theorem, and this is
exactly the relationship between the canonical and Poynting momenta. Equivalently, from
the divergence theorem, the fluxes of the Poynting and canonical energies through a closed
surface are identical, ∮

S

S · da =

∮
S

c2Π · da. (2.106)

From these results we see some immediate physical consequences of the spin structures
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discussed above. Firstly, from (2.104) and Stokes’ theorem [64], we find∫
S

S · da =

∫
S

c2Π · da+
c2

2
Γs, (2.107)

where
Γs ≡

∮
C

s · d`. (2.108)

In words, the fluxes of c2Π and S are only the same through an arbitrary open surface if the
circulation of the dual-symmetric spin density about the curve which bounds that surface is
zero. Secondly, from (2.102), we have that

Πm = Πe +
1

2
∇× (se − sm), (2.109)

i.e., the electric and magnetic canonical energy currents in an optical field are only equal when
the local circulations of se and sm are the same. The three-wave superposition discussed
above is an example of a field for which this is not the case, and we find that

Πe =
ε0|a|2

2c
(1 +

√
2)(x̂ + ŷ), (2.110a)

Πm =
ε0|a|2

2c
(1 +

√
2− cos(k0x− k0y))(x̂ + ŷ). (2.110b)

This is in contrast to the two-wave superposition, which as one might expect from Figure
(2.4), has ∇× se = ∇× sm and thus Πe = Πm for all values of θ. Note however that the
curls do not vanish, they are simply equal, and thus g 6= Π . We also have g 6= Π in the
three-wave superposition of course. In both cases g has a component which is transverse
to the plane of propagation of the waves, whilst the canonical momentum lies entirely in
the plane containing the wave vectors, which is in-keeping with the well-known connections
between Π and the local wave vector [59, 61, 78, 97].

The reason why the three-wave superposition exhibits different electric and magnetic spin
structures (energy currents), whilst the two-wave superposition does not, is likely due to
the fact that the two-wave field contains no electric or magnetic field interference terms,
i.e., both the electric and magnetic energy densities are homogeneous, whilst the three-wave
field does contain magnetic field interferences. A simple calculation shows that the magnetic
intensity is

B ·B∗ = 2|a|2(2− cos(k0x− k0y)), (2.111)

which has clear connections with (2.110b).
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To conclude this Section, and to emphasise the physical significance of some of the above
observations, I should point out that the spin densities also appear very naturally in light-
matter interactions. Consider, for instance, the time-averaged optical force exerted by a
monochromatic field on a molecule within the electric-dipole approximation. The well-known
result is (see derivation in Appendix D.2) [15, 37, 90, 93, 105, 106]

FED =
1

2ε0

Re{α̃}∇we +
ω

ε0

Im{α̃}
[
g − 1

2
∇× se

]
, (2.112)

where α̃ is the complex electric polarizability, related to the complex electric field and dipole
moment via µ̃ = α̃E [24]. The first term in (2.112) is the electric gradient (also called
dipole) force [107, 108], which is responsible for the dynamical Stark shift and is useful in
optical trapping, whilst the second term is the radiation-pressure or scattering force [37, 106].
In a field for which ∇ × se is zero (or approximately so), the radiation-pressure force may
be interpreted as arising from the Poynting momentum, but comparing Eqs. (2.112) and
(2.102), we see that it is actually Πe which is the relevant momentum density here. An
equivalent magnetic-dipole force exists as well, which is also formed from a gradient term
(∝ ∇wm) and a radiation-pressure term (∝ Πm) [37, 90, 109]. Furthermore, the torque
exerted on an electric (magnetic) dipole is directly proportional to se (sm) [37, 91, 93, 105].

In a non-interfering superposition the time-averaged electric energy density (2.77) is, by
definition, spatially homogeneous, and thus the electric gradient force vanishes in such a
field. This allows the radiation-pressure force, or contributions from higher-order multipole
moments [38], to come to the fore. This fact coupled with the richness of the spin struc-
tures which arise in non-interfering superpositions means that they are an ideal setting for
exploring exotic light-matter interactions. One potential application could be in character-
izing the interactions of synthetic nanoparticles with electric and magnetic fields. Whilst
most molecules have greater electric than magnetic polarizabilities [93, 103], it is possible
to engineer metamaterials which have a dominant magnetic response [16, 110, 111], which
could be tested by placing such particles in non-interfering superpositions.

2.4 Summary

In this Chapter I have considered various aspects of optical AM.

In §2.1 I have derived from Maxwell’s theory the spin and orbital contributions to the optical
angular momentum. After examining their properties in a single plane wave, I turned to the
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quantum theory, discussing how the operator forms of the optical SAM and OAM do not
obey the ‘correct’ angular momentum commutation relations. I argued, somewhat against
the prevailing view, that because of the inherently relativistic nature of photons, these results
should not necessarily preclude us from considering S and L as ‘true’ angular momenta of
light.

In §2.2 I discussed the theory of paraxial laser beams, deriving from the vector potential the
general expressions for the electric and magnetic fields within the paraxial approximation,
and discussing the characteristics of the Laguerre-Gaussian modes. I then examined what
properties a beam must possess in order for it to have non-zero OAM in its direction of
propagation, showing that LG modes possess this property.

In §2.3 I showed that an alternative expression for the SAM exists, which leads to the iden-
tification of distinct electric and magnetic spin densities. I then studied these local optical
spins in non-interfering superpositions of plane waves, studying two specific examples which
showcase the diverse spin dynamics which can be exhibited outside of the paraxial approx-
imation. Finally, I highlighted the influence that these highly non-trivial spin structures
could have on light-matter interactions.



CHAPTER 3

Molecular Quantum Electrodynamics
with an Application to the Faraday
Effect

In this Chapter I start by reviewing the theory of molecular QED, drawing heavily from
the textbooks by Cohen-Tannoudji, Dupont-Roc and Grynberg [20], Healy [19], and Craig
and Thirunamachandran [18]. I then put the molecular QED formalism to use in §3.2,
presenting a new derivation of the Faraday effect, which is based on earlier work by Power
and Thirunamachandran on natural optical rotation [112].

3.1 Overview of Molecular QED

QED is our most fundamental theory for the interaction of charged particles with electro-
magnetic fields [7, 113]. It is a fully-fledged quantum field theory, in the sense that the
EM fields and charges are both treated as quantized fields. Molecular QED is a low-energy
approximation to this more fundamental theory, which holds when the particles travel at
speeds much less than the speed of light, and the likelihood of creating or annihilating matter
particles is negligible [19]. The starting point for developing the theory is the Lagrangian

39
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formulation of (microscopic) classical electrodynamics, as I outline below.

3.1.1 Lagrangian and Hamiltonian Formalisms

The classical equations of motion for a system of N particles may be found from Hamilton’s
principle, which states that the true trajectories of the particles are those which minimize
the integral

S =

∫ t2

t1

dt L(q, q̇, t), (3.1)

where L(q, q̇, t) is the Lagrangian, which is a function of the generalized coordinates (q1, . . . , q3N),
the generalized velocities (q̇1, . . . , q̇3N), and, potentially, of time [114]. The equations of mo-
tion are then determined explicitly from the Euler-Lagrange equations,

d

dt

(
∂L

∂q̇n

)
− ∂L

∂qn
= 0, (3.2)

for n = 1, . . . , 3N . This variational (Lagrangian) approach to mechanics is transformed to
the so-called canonical (Hamiltonian) formalism by means of the Legendre transformation.
This essentially entails moving away from a description in terms of generalized coordinates
and velocities to one in terms of the coordinates and their canonically conjugate momenta.
The momentum pn which is conjugate to qn is

pn ≡
∂L

∂q̇n
. (3.3)

The Legendre transformation defines the Hamiltonian function [19, 114]:

H(q, p, t) ≡

[∑
n

pnq̇n − L(q, q̇, t)

]
(q,p)

, (3.4)

where the notation [ · ](q,p) is to emphasise that the generalized velocities should be written
in terms of q and p. In most cases of practical interest, H corresponds to the energy of the
mechanical system. The equations of motion are given by Hamilton’s equations,

q̇n =
∂H

∂pn
, ṗn = −∂H

∂qn
. (3.5)
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These can also be written as

q̇n = {qn, H}, ṗn = {pn, H}, (3.6)

where
{A,B} =

∑
n

(
∂A

∂qn

∂B

∂pn
− ∂A

∂pn

∂B

∂qn

)
(3.7)

is the Poisson bracket of two functions A(q, p) and B(q, p). The time derivative of an
arbitrary function of q and p is given by

Ȧ = {A,H}+
∂A

∂t
. (3.8)

The Lagrangian and Hamiltonian formalisms may be extended to the study of fields. To
specify the state or configuration of a field at a particular time we must know its value at all
points, so the generalized coordinates are no longer indexed by the discrete label n but by
the continuous label r, Q = Q(r) [19, 20]. It might be the case, as in electrodynamics, that
the system actually depends on multiple generalized coordinate fields, Qm(r), m = 1, . . . ,M .
The Lagrangian is written as

L =

∫
d3r L, (3.9)

where L = L(Q, Q̇,∇Q, t) is the Lagrangian density (note it may also be a function of the
spatial derivatives of Qm(r)). The Euler-Lagrange equations in this case are [18]

∂

∂t

(
∂L

∂Q̇m(r)

)
+

∂

∂xj

(
∂L

∂(∂jQm(r))

)
− ∂L
∂Qm(r)

= 0, (3.10)

for m = 1, . . . ,M , and the repeated j index implies summation. The canonical momenta
are defined in a similar way to (3.3),

Πm(r) ≡ ∂L
∂Q̇m(r)

. (3.11)

The Hamiltonian can be expressed as

H =

∫
d3r H, (3.12)
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where H = H(Q,Π,∇Q, t) is the Hamiltonian density, which is defined via

H(Q,Π,∇Q, t) =
∑
m

ΠmQ̇m − L. (3.13)

In electrodynamics we have a system which is partially discrete (the charges) and par-
tially continuous (the EM field). For the particles the generalized coordinates and ve-
locities are simply the Cartesian components of each particle’s position and velocity vec-
tors, {qα,vα | α = 1, . . . , N}. It turns out that the most appropriate generalized co-
ordinates and velocities for the EM field are the potentials and their time derivatives,
{Ai(r), Ȧi(r), φ(r), φ̇(r) | i = x, y, z}.

An appropriate Lagrangian for the combined system of particles + field—which following
[20] I call the ‘standard’ Lagrangian—is

LS = LSpar +

∫
d3r
[
LSrad + LSint

]
, (3.14)

where1

LSpar =
∑
α

1

2
mαv

2
α, (3.15a)

LSrad =
ε0

2

[
E2(r)− c2B2(r)

]
, (3.15b)

LSint = j(r) ·A(r)− ρ(r)φ(r), (3.15c)

are the particle, radiation, and interaction parts of the Lagrangian, respectively. Although
LSrad is written in terms of the EM fields, they should be understood as functions of the
generalized coordinates and velocities, through Eqs. (B.14),

B = ∇×A,

E = −Ȧ−∇φ.

I say that LS is ‘an’ appropriate Lagrangian for the system because any two Lagrangians
1In Appendix B.1 the microscopic EM fields are denoted using lowercase letters and the macroscopic

fields using uppercase letters. All of the fields considered in this Chapter are, naturally, of the microscopic
variety, but I shall now denote these by uppercase letters as no confusion should arise.
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related by

L′ = L+
d

dt
F, (3.16)

for some arbitrary function F (q,Q, t), are entirely equivalent, in the sense that they lead to
the same equations of motion [20].

Whilst the standard Lagrangian reproduces the Maxwell and Lorentz equations, it is actually
not particularly useful for my purposes. The most important point in this regard is that
LS does not contain the generalized velocity φ̇, which means the canonical momentum Πφ

is zero. This presents a major problem when we try to move to the quantum theory via
canonical quantization (covered in the next Section), which requires a commutator between
φ and Πφ which is not identically zero. For further discussion see [20, Ch. II].

To avoid this issue, I follow the usual approach of non-relativistic QED and work in the
Coulomb gauge (B.21),

∇ ·A = 0,

so the vector potential is entirely transverse,A = A⊥. In this gauge we have the relationships

B = ∇×A⊥, (3.17a)

E⊥ = −Ȧ⊥, (3.17b)

E‖ = −∇φ. (3.17c)

The last of these is equivalent (recall Eq. (B.8a)) to Poisson’s equation from electrostatics,

∇2φ = − ρ

ε0

, (3.18)

which demonstrates that φ is not an actual dynamical variable of the EM field but a pre-
scribed function of the particles’ position vectors. Thus, the components of the transverse
field (A⊥i ) and its time derivative (Ȧ⊥i ) act alone as the generalized coordinates and velocities
of the field. Therefore instead of LS I shall take as my Lagrangian [18–20]

L = Lpar +

∫
d3r

[
Lrad + Lint

]
, (3.19)
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where

Lpar =
∑
α

1

2
mαv

2
α − VCoul, (3.20a)

Lrad =
ε0

2

[
Ȧ2
⊥(r)− c2(∇×A⊥(r))2

]
, (3.20b)

Lint = j(r) ·A⊥(r), (3.20c)

are again the particle, radiation, and interaction contributions. VCoul is the Coulomb energy
of the charges (associated with φ = φC , the Coulomb potential).

We can transition to the Hamiltonian via the method outlined above. The canonical mo-
mentum of particle α is found to be

pα = mαvα + eαA⊥(qα), (3.21)

which clearly differs from the mechanical momentummαvα. The two are equal in the absence
of fields, and the substitution

mαvα → mαvα + eαA⊥(qα)

when fields are present is known as ‘minimal coupling’. For the momentum conjugate to A⊥
we find

Π(r) = ε0Ȧ⊥(r) = −ε0E⊥(r). (3.22)

Note that the canonical AM of the field is A⊥ ×Π = ε0A⊥ × Ȧ⊥ = ε0E⊥ ×A⊥, which is
the spin AM density discussed in the previous Chapter.

The Hamiltonian is

H =
∑
α

1

2mα

[
pα − eαA⊥(qα)

]2
+VCoul +

1

2

∫
d3r
[
ε−1

0 Π
2(r) + µ−1

0 (∇×A⊥(r))2
]
. (3.23)

Rewriting the integral in terms of the fields allows us to recognize this as the classical energy
of the combined system.
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3.1.2 Canonical Quantization

The theory of electrodynamics may be ‘quantized’, as was first done by Dirac [115], by
replacing the generalized coordinates and their conjugate momenta by operators and impos-
ing upon them the so-called canonical commutation relations. This procedure is known as
‘canonical quantization’2. The canonical commutation relations in our case are [18–20]

[q̂αi, p̂βj] = i~δαβδij, (3.24a)

[Â⊥i (r), Π̂j(r
′)] = i~δ⊥ij(r − r′), (3.24b)

with all other commutators between these operators being identically zero. The fact that it
is the transverse delta function δ⊥ij(r) (see Appendix A.1) which appears on the right-hand
side of (3.24b) is due to our working in the Coulomb gauge [19, 20] (see in particular p. 120
of [20]). Note that the operators in (3.24) are in the Schrödinger picture (see Appendix C.2),
but the relations also hold for operators in the Heisenberg picture at equal times.

The Hamiltonian operator is just (3.23) with the coordinates and momenta promoted to
operators,

Ĥ =
∑
α

1

2mα

[
p̂α − eαÂ⊥(q̂α)

]2

+V̂Coul+
1

2

∫
d3r
[
ε−1

0 Π̂
2(r) + µ−1

0 (∇× Â⊥(r))2
]
. (3.25)

(Note V̂Coul is an operator only through its dependence on the q̂α.)

Because the nuclei are much more massive than the electrons, it is often reasonable to work
within the fixed-nuclei approximation [18, 19] (a zeroth-order Born-Oppenheimer approxi-
mation [24]), in which we ignore nuclear dynamics. It is also convenient to explicitly take
account of the grouping of particles into atoms or molecules. Under these assumptions, we
write Ĥ in the form [18]

Ĥ = Ĥmol + Ĥrad + Ĥmin
int , (3.26)

2Alternative quantization procedures exist, e.g., the path integral approach [74, 116]. However, the
canonical approach is the most common, especially in the non-relativistic theory.
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where

Ĥmol =
∑
ζ

Ĥmol(ζ); Ĥmol(ζ) =
∑
α

1

2me

p̂2
α(ζ) + V̂ (ζ), (3.27a)

Ĥrad =
1

2

∫
d3r
[
ε−1

0 Π̂
2(r) + µ−1

0 (∇× Â⊥(r))2
]

=
ε0

2

∫
d3r
[
Ê2
⊥(r) + c2B̂2(r)

]
, (3.27b)

Ĥmin
int = − ee

me

∑
ζ,α

p̂α(ζ) · Â⊥(q̂α(ζ)) +
e2
e

2me

∑
ζ,α

Â2
⊥(q̂α(ζ)) + V̂inter. (3.27c)

The sums over ζ extend over the molecules, the sums over α are now restricted to the
electrons, and me and ee are the mass and charge of an electron. Ĥmol(ζ) is the Hamiltonian
of the ζth molecule, which includes the momenta of ζ’s electrons, and V̂ (ζ) is the Coulomb
interaction between the nuclei and electrons of ζ. Ĥrad is the Hamiltonian of the transverse
radiation field, which in the absence of charges coincides with the total energy operator of the
field. Ĥmin

int is the interaction Hamiltonian—it contains all the terms which explicitly couple
the charges and fields. The superscript ‘m.c.’ indicates that this is the ‘minimal coupling’
form of the interaction. V̂inter is the Coulomb interaction between different molecules. When
it comes to performing calculations, particularly in perturbation theory, we usually write the
Hamiltonian in the form Ĥ = Ĥ0 + Ĥmin

int , where

Ĥ0 = Ĥmol + Ĥrad (3.28)

is treated as the ‘unperturbed’ Hamiltonian, whose eigenspectrum is assumed to be know.

It is practical to Fourier transform the field operators and to write them as sums (or integrals)
over transverse field modes, defined by the wave vectors k and their orthogonal polarization
vectors ε̂kλ (λ = 1, 2) [18–20, 23]. The derivation is simple and I shall just state the results.
The transverse vector potential operator (in the Schrödinger picture) has the expansion
[18, 23]

Â⊥(r) =
∑
k,λ

N (k)ω−1
k

[
ε̂kλe

ik·râkλ + ε̂∗kλe
−ik·râ†kλ

]
, (3.29)

where ωk = ck = c|k|. A particular choice of polarization basis is assumed here, the most
common choices being the linear or circular bases, and the mode operators â(†)

kλ are defined
relative to this basis. The normalization coefficient is

N (k) =

√
~ck

2ε0V
, (3.30)

where V is the ‘quantization volume’ within which the field is confined. The expansion of
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the canonical field momentum is

Π̂(r) = −iε0

∑
k,λ

N (k)
[
ε̂kλe

ik·râkλ − ε̂∗kλe−ik·râ
†
kλ

]
. (3.31)

The mode expansions for the Schrödinger-picture transverse electric field and magnetic field
operators are easily found from those for Â⊥ and Π̂ [18, 23]:

Ê⊥(r) = i
∑
k,λ

N (k)

[
ε̂kλe

ik·râkλ − ε̂∗kλe−ik·râ
†
kλ

]
, (3.32a)

B̂(r) =
i

c

∑
k,λ

N (k)

[
β̂kλe

ik·râkλ − β̂∗kλe−ik·râ
†
kλ

]
, (3.32b)

where
β̂kλ ≡

k × ε̂kλ
k

. (3.33)

For brevity I will often replace the double sum over k and λ with a single sum over the label
s, with the understanding that a single value of s specifies a particular mode (k, λ).

The mode operators âs and â†s acquire a physical meaning by noting the mode expansion of
Ĥrad, Eq. (3.27b), which is

Ĥrad =
∑
s

~ωs
(
â†sâs +

1

2

)
. (3.34)

This is formally identical to an infinite set of (non-interacting) harmonic oscillators [18, 23].
The eigenstates of each mode are known as the number states, denoted |n(k, λ)〉 or |ns〉. The
eigenspectrum of each mode (oscillator) is a discrete ‘ladder’ of states, each separated by
the same energy difference ~ωs. This gives the physical intuition behind the name ‘number
state’—a state which is N steps up the ladder can be thought of as a state which contains N
quanta, or photons, of the radiation field. The operator â†s creates an excitation of mode s
(i.e., moves one rung up the ladder), whilst âs destroys an excitation of mode s (moves one
rung down the ladder), and for this reason they are known as the creation and annihilation
operators, respectively. More precisely:

âkλ |n(k, λ)〉 =
√
n |n− 1(k, λ)〉 , (3.35a)

â†kλ |n(k, λ)〉 =
√
n+ 1 |n+ 1(k, λ)〉 . (3.35b)
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The creation and annihilation operators obey the commutation relations

[âkλ, â
†
k′λ′ ] = δkk′δλλ′ , (3.36a)

[âkλ, âk′λ′ ] = 0, (3.36b)

[â†kλ, â
†
k′λ′ ] = 0. (3.36c)

Note that these are the commutation relations for the mode operators with respect to a
particular choice of polarization basis. The operators relative to two different bases can have
commutation relations which differ from the above, which can be deduced by writing the
operators relative to one basis in terms of the operators relative to the other [19, p. 76]. The
operator n̂s ≡ â†sâs which appears in (3.34) is the number operator of mode s, and simply
counts the number of excitations present in that mode:

n̂kλ |n(k, λ)〉 = n |n(k, λ)〉 . (3.37)

The total photon number operator, N̂ ≡
∑

s n̂s, gives the number of excitations present in
all modes.

Each mode contains a special state known as the ground or vacuum state, |0(k, λ)〉, which
is defined via [18, 23]

âkλ |0(k, λ)〉 = 0. (3.38)

The unique state

|vac〉 ≡ |0(k1, λ1); 0(k2, λ2); . . . ; 0(ki, λi); . . . ; 0(kj, λj); . . .〉 (3.39)

i.e., the state which contains no photons in any mode, is known as ‘the’ vacuum state.
Obviously

N̂ |vac〉 = 0, (3.40)

or equivalently, âkλ |vac〉 = 0 for all (k, λ).

It is often physically intuitive and useful to partition the field operators into two terms,

F̂ (r) = F̂+(r) + F̂−(r),

where F̂+ is responsible for absorption (photon annihilation) and F̂− for emission (photon
creation). These are known as the ‘positive’ and ‘negative’ frequency contributions, respec-
tively [23, 113]. We have the following positive-frequency contributions to Â⊥, Ê⊥ and B̂
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from mode s = (ks, λs):

Â+
s =

N (ks)

ωs
ε̂se

iks·râs, (3.41a)

Ê+
s = iN (ks)ε̂se

iks·râs, (3.41b)

B̂+
s = i

N (ks)

c
β̂se

iks·râs. (3.41c)

3.1.3 Multipolar Hamiltonian

Molecular dimensions are often small compared to optical wavelengths, which means the
value of the vector potential varies by only a small amount across the molecule. We can
therefore replace the operators Â⊥(qα(ζ)) in (3.27c) with Taylor expansions about some
point Rζ , usually chosen as the position of the molecular centre-of-mass, and usually taken
as a c-number (i.e., Rζ = 〈R̂ζ〉, not R̂ζ). This is the long-wavelength approximation (LWA).
To zeroth-order the interaction Hamiltonian (3.27c) becomes

Ĥmin
int = − ee

me

∑
ζ,α

p̂α(ζ) · Â⊥(Rζ) +
e2
e

2me

∑
ζ

Â2
⊥(Rζ) + V̂inter. (3.42)

So far, I have been considering the minimal coupling form of the interaction Hamiltonian. I
shall now discuss an alternative form for the interaction, known as themultipolar form, which
is particularly useful when working within the LWA, and involves writing the interaction in
terms of the molecular multipole moments (see Appendix B.3).

We can go from the minimal coupling to the multipolar form of Hamiltonian in a variety
of ways. One is to transform the Coulomb-gauge Lagrangian (3.19) into an equivalent
one, via a transformation of the form (3.16), which is essentially equivalent to a change of
gauge [18, 20, 117]. Canonical quantization then proceeds relative to this new Lagrangian,
producing different canonical momentum and Hamiltonian operators. Alternatively, we can
use the Coulomb-gauge Lagrangian to reach the quantum theory, as above, and then perform
a unitary transformation, known as the Power-Zienau-Woolley (PZW) transformation [118,
119], to reach an equivalent quantum description of the system [19, 20, 120–122]. This is
the approach I take.
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The basic idea is to find the transformed coordinates and momenta,

q̂′α = UPZWq̂αU
†
PZW, Â′⊥ = UPZWÂ⊥U

†
PZW,

p̂′α = UPZWp̂αU
†
PZW, Π̂ ′ = UPZWΠ̂U †PZW,

and to then rewrite the Hamiltonian (3.25) in terms of these. The unitary operator which
effects the transformation is [18–20, 23, 122]

UPZW = exp

{
i

~
W

}
, W =

∫
d3r P̂ (r) · Â⊥(r), (3.43)

where P̂ (r) is the microscopic polarization field operator (see Eq. (B.37)) [18, 20, 23]. A
very useful identity in the derivation is [18–20]

eXAe−X = A+ [X,A] +
1

2!
[X, [X,A]] + . . . . (3.44)

W is a function of Â⊥ and {q̂α} (through P̂ ), but not of the canonical momenta, and thus
W clearly commutes with the generalized coordinates, so that

q̂′α = q̂α, Â′⊥ = Â⊥.

To find the new field momentum we need to evaluate the following commutator,

[W, Π̂i(r)] =

∫
d3r′ P̂j(r

′)[Â⊥j (r′), Π̂i(r)]

=

∫
d3r′ P̂j(r

′)i~δ⊥ji(r′ − r)

= i~P̂⊥i ,

(3.45)

where we have used the canonical commutation relation (3.24), and P̂⊥i is the ith component
of the transverse polarization field, P̂⊥. This leads to

Π̂ ′ = Π̂ − P̂⊥, (3.46)

which, using Eqs. (3.22) and (B.6a), may be written as

Π̂ ′ = −(ε0Ê⊥ + P̂⊥) = −D̂⊥. (3.47)
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Thus the transformed field momentum is no longer physically associated with the electric
field operator, but with the transverse component of the electric displacement field operator
[120].

From (3.44) we can show that the transformed particle momenta may be written as [19]

p̂′αi = p̂αi −
∂

∂q̂αi
W. (3.48)

The multipolar Hamiltonian can be written in an entirely general form, but it is not of
much interest here, as I will only be interested in the Hamiltonian up to the magnetic dipole
and electric quadrupole contributions (for the full multipolar Hamiltonian see, e.g., [18,
§10.10]). The Hamiltonian to the desired order is derived by expanding the polarization
field that appears in (3.48) and (3.47), using (B.39), to include the necessary terms (i.e.,
electric dipole, electric quadrupole, and so on). After some work, the multipolar form of the
Hamiltonian, up to magnetic dipole and electric quadrupole terms, can be written as

Ĥ = Ĥ ′0 + Ĥmult
int , (3.49)

where Ĥ ′0 = UPZWĤ0U
†
PZW (recall Eqs. (3.28) and (3.27a)–(3.27b)) and [18]

Ĥmult
int = −

∑
ζ

[
µ̂(ζ) · ε−1

0 D̂⊥(Rζ) + Q̂ij(ζ)∂iε
−1
0 D̂⊥j (Rζ) + m̂(ζ) · B̂(Rζ)

]
+

e2
e

8me

∑
ζ,α

[
(q̂α −Rζ)× B̂(Rζ)

]2

+
1

2ε0

∑
ζ

∫
d3r P̂ 2

ζ⊥(r). (3.50)

The first line contains the electric dipole (E1), electric quadrupole (E2), and magnetic dipole
(M1) interactions. The first term of the second line is quadratic in the magnetic field operator
and can therefore almost always be neglected. The reasons for this are twofold: firstly,
because this term is quadratic in the magnetic field, it is also quadratic in the creation and
annihilation operators. It can therefore only take part in interactions involving an even
number of photon emissions and/or absorptions. Secondly, the strength of the magnetic
interaction is inherently weaker than the electric interaction, and thus those interactions
involving an even number of photon creations or annihilations are more likely to occur via
two E1 interactions or an E1 interaction and an M1 interaction. The final term depends
only on the molecular degrees of freedom, so cannot take part in radiative processes, and
essentially represents a correction to the molecular self-energies [18, 20]. In applications, I
will only ever consider the first line of this expression.
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The multipolar Hamiltonian (3.49) corresponds to the minimal coupling Hamiltonian (3.26)
expanded to ‘first-order’ in the LWA, i.e., first derivatives are retained in the Taylor expansion
of the vector potentials. The multipolar Hamiltonian which corresponds to the zeroth-order
minimal coupling Hamiltonian, Eq. (3.42), is

Ĥ = Ĥ ′0 + ĤED
int , (3.51)

where
ĤED

int = −
∑
ζ

µ̂(ζ) · ε−1
0 D̂⊥(Rζ) +

1

2ε0

∑
ζ

∫
d3r P̂ 2

ζ⊥(r). (3.52)

This is known as the electric dipole (ED) Hamiltonian. Because of the close connection
between this and the (zeroth-order) LWA, the term electric-dipole approximation is often
used synonymously.

The field operators can be expanded in terms of the transformed creation and annihilation
operators, â′s = UPZWâsU

†
PZW and â′ †s = UPZWâ

†
sU
†
PZW. The new vector potential and field

momentum have the mode expansions

Â′⊥(r) =
∑
s

N (ks)

ωs

[
ε̂se

iks·râ′s + ε̂∗se
−iks·râ′ †s

]
,

Π̂ ′(r) = −iε0

∑
s

N (ks)
[
ε̂se

iks·râ′s − ε̂∗se−iks·râ′ †s
]
.

Because Â′⊥ = Â⊥, the vector potential has the special feature that it can be written
identically in terms of either set of mode operators. Whilst the same is not true of the
momentum, it is the case that the operator Ê⊥ expanded in terms of the original operators,
â

(†)
s , has the exact same form as the operator ε−1

0 D̂⊥ expanded in terms of the transformed
operators, â′ (†)s :

ε−1
0 D̂⊥(r) = i

∑
k,λ

N (k)

[
ε̂kλe

ik·râ′kλ − ε̂∗kλe−ik·râ
′ †
kλ

]
. (3.53)

As with the other field operators, we can write D̂⊥ as the sum of a positive-frequency and a
negative-frequency contribution, with the positive-frequency contribution from mode s being

ε−1
0 D̂

+
s = iN (ks)ε̂se

iks·râ′s. (3.54)

In the next Section, I show how to apply the molecular QED formalism outlined above, in
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a new derivation of the Faraday effect.

3.2 Faraday Effect as a Two-State Quantum Process

3.2.1 Optical Rotation Overview

Optical rotation (OR) refers to the rotation of the plane of polarization of linearly polarized
(LP) light as it passes through a medium [24, 25]. Its discovery came in the early 19th

Century through the experiments of Arago and Biot on quartz crystals, and was soon also
found to occur in certain fluids, such as aqueous sugar solution—see the first chapters of
Barron [24] and Mason [25] for further historical details and references.

It was not until Fresnel’s development of the transverse-wave theory of light and discovery
of circular polarization over a decade later that OR found an explanation as being due to
the circular birefringence of certain media, i.e., a difference in the refractive indices for LCP
and RCP light. Fresnel’s equation links this difference to the rotation angle [25]:

θ =
πL

λ
(nL − nR), (3.55)

where nL/R are the refractive indices for L/RCP light, λ is the optical wavelength, and L is
the length of the optically active system.

Optical rotation can be induced by a chiral sample, so-called natural OR, or by the presence
of an external, static magnetic field applied in the direction of the light. This is known as
magnetic optical rotation or the Faraday effect, as it was discovered by Faraday in 1846 [123].
Both natural and magnetic OR can be explained by circular birefringence, with Fresnel’s
equation (3.55) holding true, but in the latter it is common to write the rotation angle in
the form

θ = V BL cosφ, (3.56)

where φ is the angle the magnetic field B makes with the light beam, and V is the so-called
Verdet constant [24, 124], which depends on both the medium and the optical frequency. In
this Section, I derive an expression for the Verdet constants of atomic and molecular gases.
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3.2.2 Two-State Model of Power and Thirunamachandran

My approach to the Faraday effect is an extension of the work by Power and Thirunamachan-
dran on natural OR [112]. The basic idea is to consider OR as a forward Rayleigh scattering
process between two orthogonally-polarized field modes. The refractive indices do not play
a role in this derivation.

The physical situation in an OR experiment is as follows. A light beam is incident on a fluid
sample of molecules; the (classical) electric field of the light is initially in, say, an x̂-polarized
mode, which I refer to as mode 1,

E = E0x̂e
ikz. (3.57)

After interacting with the fluid sample, the scattered field is of the form

E = E0(αx̂ + βŷ)eikz, (3.58)

where α = cos θ and β = sin θ, θ being the angle the new polarization vector makes with x̂.
The initial intensity of the light beam is I0 = E ·E∗ = |E0|2, whilst the intensity of radiation
scattered into the ŷ-polarized mode, henceforth known as mode 2, is, from (3.58), equal to
I2 = β2|E0|2. Thus, in terms of directly measurable physical quantities, the angle of rotation
is

sin2 θ =
I2

I0

. (3.59)

Note that I have assumed the intensity of the scattered field is exactly equal to the intensity
of the initial field (|E0|2). In other words, there is no absorption. This analysis can therefore
only be used if the light is far from any molecular resonances.

To develop a quantum theory of OR, in which both light and matter are quantized, we
replace (3.59) with the following equivalent expression,

sin2 θ(t) =
〈n̂2(t)〉
〈N̂〉0

, (3.60)

where 〈n̂2(t)〉 is the expectation value of the number operator for mode 2 at time t and 〈N̂〉0
is the initial expectation value of the number operator for all modes. In terms of the initial
and final states, |Ψ(0)〉 and |Ψ(t)〉, these quantities are

〈n̂2(t)〉 = 〈Ψ(t)|n̂2|Ψ(t)〉 (3.61)
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and
〈N̂〉0 = 〈Ψ(0)|N̂ |Ψ(0)〉 , (3.62)

where N̂ =
∑

s n̂s, as discussed in §3.1.2. Let us suppose the initial number of photons
present is 〈N̂〉0 = n. Then the expression involving the angle of rotation becomes

sin2 θ(t) =
1

n
〈Ψ(t)|n̂2|Ψ(t)〉 , (3.63)

and thus to find θ we must find the expectation value of n̂2.

To begin with, we consider scattering by a single molecule. We take the initial state of the
system to be

|Ψ(0)〉 = |a〉 = |Eg;n(1)〉 , (3.64)

where |Eg〉 is the ground state of the molecule and |n(1)〉 is a number state of mode 1 =
(k, ε̂1) containing n photons. As above we say this mode has linear polarization ε̂1 = x̂,
and we are interested in scattering to the mode with the same wave vector but orthogonal
polarization ε̂2 = ŷ, i.e., forward Rayleigh scattering [18] from mode 1 to mode 2 = (k, ε̂2).
After interaction with the molecule there is a non-zero probability of mode 2 containing any
number of photons between zero and n, however, the most likely occupation numbers are
zero or one. As in all Rayleigh scattering the molecular state is unchanged. Non-forward
scattering is also possible, but is less likely than its forward counterpart, and besides this
it would not lead to optical rotation in the sense we have defined above. Given these
considerations, I follow Power and Thirunamachandran in treating the system as an effective
two-state model [112], with the only states of interest being the initial state |a〉 and the final
state

|b〉 = |Eg; (n− 1)(1); 1(2)〉 . (3.65)

|1(2)〉 is simplified notation for the state |1(k, ε̂2)〉. We are in particular interested in transi-
tions |a〉 → |b〉 and the likelihood of finding the system in state |b〉 at time t. The usefulness
of the two-state assumption is that the dynamics of the system now become very simple. A
general state of the system at time t is given by

|Ψ(t)〉 = Ca(t) |a〉+ Cb(t) |b〉 , (3.66)

and the Schrödinger equation becomes

i~
∂

∂t
|Ψ(t)〉 = Heff |Ψ(t)〉 , (3.67)
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where Heff is the effective two-state Hamiltonian

Heff =

(
E0 M∗

M E0

)
. (3.68)

E0 = Eg + n~ck is the energy of states |a〉 and |b〉, i.e., E0 = 〈a|H0|a〉 = 〈b|H0|b〉, and M is
the amplitude for the transition |a〉 → |b〉.

Using the time-evolved state we can write the expectation value of n̂2 as

〈Ψ(t)|n̂2(t)|Ψ(t)〉 = |Cb(t)|2, (3.69)

which gives for the angle of rotation

sin2 θ(t) =
1

n
|Cb(t)|2. (3.70)

We can solve the Schrödinger equation (3.67) analytically to find Cb(t). After a simple
calculation we find [18]

Cb(t) = ei(ϕ−π/2)e−iE0t/~ sin

(
|M |t
~

)
, (3.71)

where M = |M |eiϕ. Therefore

sin2 θ(t) =
1

n
sin2

(
|M |t
~

)
. (3.72)

Making the assumption that the angle of OR is small, we have

θ ≈ |M |t
~
√
n
. (3.73)

This result is for a single molecule, and M is the single-molecule transition amplitude. If
instead we assume that the light interacts with a dilute gas of N atoms or molecules, then
the total angle of rotation is

θ ≈ N | 〈M〉 |L
~c
√
n

, (3.74)

where we have used c = L/t, L being the length of the gas sample. Here 〈·〉 denotes rotational
averaging over the possible molecular orientations [18, 24], which must be done for particles
in an isotropic fluid. The result for a gas is simply N times the single-molecule result because
in forward Rayleigh scattering 〈MN molecules〉 = N 〈M〉 [18].
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The expression (3.74) for the angle of rotation is Power and Thirunamachandran’s central
result [112]. It directly relates OR to the calculation of a quantum transition amplitude for
a scattering process. They go on to apply (3.74) to the case of natural OR. It is instructive
to review how they proceed, so that the differences between natural OR and the Faraday
effect are clear.

As we have just demonstrated, the key to finding an OR angle in this approach is the cal-
culation of the matrix element M , the form of which depends on the choice of interaction
Hamiltonian, Hint. I will work here, following [112], with the multipolar interaction Hamil-
tonian. As with other chiroptical effects, the electric dipole (ED) interaction alone is not
sufficient to induce natural OR, which requires the mixing of ED and higher order multi-
pole moments [24]. Therefore I shall use (the relevant terms from) the Hamiltonian (3.50)
[18, 112]:

Hint = −µ̂ · ε−1
0 D̂⊥(R)− m̂ · B̂(R), (3.75)

where ε−1
0 D̂⊥(R) and B̂(R) are the operators defined in the previous Section (see Eqs. (3.53)

and (3.32b)). Note I have not included the electric quadrupole term from (3.50), because its
contribution vanishes upon rotational averaging [112].

The first-order transition amplitude M (1) = 〈b|Hint|a〉 = 0 for this Hamiltonian, as can be
appreciated by noting that the initial and final states differ by two photons, whilst (3.75) is
linear in the creation and annihilation operators, so to first order can only cause transitions
between states which differ by one EM field excitation. The lowest order that is non-zero is
thus second, for which [18]

M (2) =
∑
I

〈b|Hint|I〉 〈I|Hint|a〉
Ea − EI

. (3.76)

In this expression |I〉 is an eigenstate of the combined Hamiltonian H0 = Hmol +Hrad, with
energy EI , and the sum is over all such states. The vast majority of states do not contribute
to M (2), on account of the fact that |I〉 must differ from |a/b〉 by one photon, as discussed.
There are two possible routes by which the intermediate or ‘virtual’ states |I〉 can connect
|a〉 and |b〉 (to second order). The first is when |I〉 contains one photon fewer than |a〉 does
(absorption occurs before emission); the second is when |I〉 contains one more photon than
|a〉 does (emission followed by absorption). The two possible types of intermediate state are
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thus

|I1〉 = |Er;n− 1(1)〉 , (3.77a)

|I2〉 = |Er;n(1); 1(2)〉 , (3.77b)

where |Er〉 is an eigenstate of Hmol. The total matrix element is

M (2) = M (2)(I1) +M (2)(I2), (3.78)

where
M (2)(Ii) =

∑
Ii

〈b|Hint|Ii〉 〈Ii|Hint|a〉
Ea − EIi

. (3.79)

The OR angle follows directly from calculating these matrix elements but is not of interest
to me. Let us now apply the results of this Section to the Faraday effect.

3.2.3 Application to the Faraday Effect

The general theory outlined above still holds, so we can use the expression (3.74) for the
rotation angle. The matrix element, however, differs from the natural OR case, because the
interaction Hamiltonian is no longer (3.75) but

Hint = −µ̂ · ε−1
0 D̂⊥(R)− m̂ ·B. (3.80)

The differences between this and (3.75) are subtle but important. The first term of each
Hamiltonian is the same, it is the ED interaction between the molecule and the radiation
field, but the second term of (3.80) now contains the vector B, which represents an external,
static magnetic field. Being an external field, B is not associated with the radiation field,
and it assumed to be unaltered by the light-matter interaction. For this reason, B (unlike
B̂(R) from (3.75)) is not a field operator, but a simple c-number.

It is tempting to just plug the new Hamiltonian straight into (3.76) for M (2), as is done with
(3.75), but this approach does not work for the Faraday effect. The problem is that the
second term of (3.80) cannot create or destroy photons (as it is not an operator of the EM
field). This means that the only way to connect states |a〉 and |b〉 at second order is via the
ED coupling. However, as discussed, the ED coupling is insufficient for generating OR. The
lowest order in this case which can connect the initial and final states, through a mixture
of electric and magnetic interactions, is third order, for which the matrix element is [18, p.
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235]

M (3) =
∑
I,J

〈b|Hint|J〉 〈J |Hint|I〉 〈I|Hint|a〉
(Ea − EI)(Ea − EJ)

. (3.81)

This matrix element contains three ‘actions’ of the interaction Hamiltonian (3.80) and two
intermediate states |I〉, |J〉, with the same physical interpretation as was given for the single
intermediate state in M (2).

Unfortunately the third-order matrix element presents another difficulty. One of the three
interactions between |a〉 and |b〉 will be −m̂ ·B, which means that |I〉 or |J〉 must contain
the same number of photons as |a/b〉. This state will have energy EI/J = Er + n~ω, so
Ea − EI/J = Eg − Er, where Er is an eigenenergy of the molecule. Thus if the molecular
eigenspectrum contains degeneracy we are in trouble3, because the denominator in M (3) will
become zero, leading to a singularity, and this expression becomes useless. This has led me
to develop an alternative approach for handling the external B field, as I outline below.

I begin by disregarding the radiation field altogether, so we are left with the molecule and
its interaction with the static magnetic field. The Hamiltonian is then

H ′mol = Hmol − m̂ ·B. (3.82)

The eigenspectrum of Hmol is, as always, assumed to be known, i.e., we can solve the
Schrödinger equation

Hmol |n(0)〉 = E(0)
n |n(0)〉 . (3.83)

Assuming that the usual conditions are met such that we can apply time-independent per-
turbation theory, we write the solutions of the full eigenvalue problem,

(Hmol − λm̂ ·B) |n〉 = En |n〉 , (3.84)

as a power series in the order parameter λ (which is introduced for bookkeeping purposes
and will be set equal to one at the end of the calculation). To first order, we have the

3The same problem does not occur using M (2) for natural OR because one of our stated assumptions is
that ~ω is not resonant with any of the molecular energy transitions and thus when |I〉 contains a different
number of photons from |a〉 we are safe to use these expressions. The intermediate state will always differ
from the initial state in number of photons if every term in Hint is capable of creating/destroying photons.
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well-known results [74, 125]

|n〉 = |n(0)〉+ λ |n(1)〉 , (3.85a)

En = E(0)
n + λ∆(1)

n . (3.85b)

The exact forms of |n(1)〉 and ∆
(1)
n depend on whether the state |n(0)〉 is degenerate with any

of the other initial states |m(0)〉, i.e., whether or not E(0)
n = E

(0)
m for some m 6= n. We shall

assume that any initial degeneracy is lifted by the first-order correction given above.

Reintroducing the radiation field, the Hamiltonian of the combined system is

H = H ′0 +Hint, (3.86)

where H ′0 = H ′mol +Hrad. The initial and final states of interest are still

|a〉 = |g;n(1)〉 , (3.87a)

|b〉 = |g;n− 1(1); 1(2)〉 , (3.87b)

but now |g〉 is the approximate ground state of H ′mol given by (3.85a) (note I am now using a
slightly simpler notation for the molecular eigenstates, so as to not clutter the notation too
much). The interaction Hamiltonian is no longer (3.80) because the second term has been
‘absorbed’ into the molecular Hamiltonian and thus we are just left with the ED term. Now
to find the transition amplitude M we use the second-order expression (3.76), once more
free from the problem of singularities, which leads to

M =
∑
I1

〈b|VE1|I1〉 〈I1|VE1|a〉
Ea − EI1

+
∑
I2

〈b|VE1|I2〉 〈I2|VE1|a〉
Ea − EI2

, (3.88)

with VE1 = −µ̂ · ε−1
0 D̂⊥ and the possible intermediate states again given by (3.77).

The transitions from |a〉 to |b〉 via the intermediate states can be visualized by using Feynman
diagrams (also called time-ordered graphs), which can be a very useful aid to calculations.
The diagrams for this particular calculation are shown in Figure 3.1.

Defining the atomic transition frequencies,

ωmn ≡
Emn
~
≡ Em − En

~
, (3.89)
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(a) Absorption then emission. (b) Emission then absorption.

Figure 3.1: Feynman diagrams for the Faraday effect. In these diagrams the arrow of
time points vertically upwards. The curly lines indicate photons and the solid straight line
indicates the molecule. The black circles show the interactions between the light and the
molecule via, in this case, the E1 coupling. In both diagrams the molecule starts in the
ground state |g〉, is excited to the intermediate molecular state |r〉, and then returns to the
ground state. In both cases there are two photon-molecule interactions, an absorption and an
emission. In (a) the absorption occurs before the emission but in (b) the other time-ordering
occurs. These correspond to the intermediate states |I1〉 and |I2〉, respectively.

and the electric dipole transition moments,

µmn ≡ 〈m|µ̂|n〉 , (3.90)

the matrix element becomes

M = −1

~
∑
r

µgr · 〈1(2);n− 1(1)|ε−1
0 D̂⊥|n− 1(1)〉µrg · 〈n− 1(1)|ε−1

0 D̂⊥|n(1)〉
ωrg − ω

− 1

~
∑
r

µgr · 〈1(2);n− 1(1)|ε−1
0 D̂⊥|n(1); 1(2)〉µrg · 〈1(2);n(1)|ε−1

0 D̂⊥|n(1)〉
ωrg + ω

. (3.91)

The transitions between the field modes are easily calculated using (3.54):

〈n− 1(1)|ε−1
0 D̂⊥|n(1)〉 = 〈n− 1(1)|ε−1

0 D̂
+
k1λ1
|n(1)〉

= iN (k)ε̂1e
ik·R 〈n− 1(1)|âk1λ1|n(1)〉 = i

√
nN (k)ε̂1e

ik·R, (3.92)
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and

〈1(2)|ε−1
0 D̂⊥|0(2)〉 = 〈1(2)|ε−1

0 D̂
−
k2λ2
|0(2)〉

= −iN (k)ε̂∗2e
−ik·R 〈1(2)|â†k2λ2

|0(2)〉 = −iN (k)ε̂∗2e
−ik·R, (3.93)

where N (k) is the normalization constant defined in (3.30). Inputting these into the ex-
pression for M , after some manipulation we can write

M = −µ0c
2
√
nω

V
ε̂1iε̂

∗
2j

∑
r

(
ωrg

ω2
rg − ω2

)
Re{〈g|µ̂i|r〉 〈r|µ̂j|g〉}

+ i
µ0c

2
√
nω

V
ε̂1iε̂

∗
2j

∑
r

(
ω

ω2
rg − ω2

)
Im{〈g|µ̂i|r〉 〈r|µ̂j|g〉}, (3.94)

where the repeated indices i, j are to be summed over and Re{z} and Im{z} indicate the
real and imaginary parts of z, respectively.

To write this result in a more concise form, we now introduce the dynamic polarizability
tensor α̃(ω) [18, 24]. This is essentially the microscopic analogue of the susceptibility χe.
Recall that the (macroscopic) polarization field P is related to the incident field E which
induces it via (B.7),

P̃ = ε0χ̃eẼ,

now using tildes to indicate that these quantities are in general complex. Similarly, when
an oscillating electric field interacts with a molecule, a temporary electric dipole moment is
induced, the form of which is given by [24, 126]

µ̃ = α̃ Ẽ. (3.95)

The complex polarizability tensor can be written as

α̃ = α− iα′, (3.96)
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where the real tensors α(ω) and α′(ω) are defined in the quantum theory via [24, p. 91]:

αij(ω) =
2

~
∑
r

ωrg
ω2
rg − ω2

Re{〈g|µ̂i|r〉 〈r|µ̂j|g〉}, (3.97a)

α′ij(ω) = −2

~
∑
r

ω

ω2
rg − ω2

Im{〈g|µ̂i|r〉 〈r|µ̂j|g〉}. (3.97b)

I shall call α the symmetric polarizability and α′ the anti-symmetric polarizability, on account
of the properties

αji = αij, α′ji = −α′ij, (3.98)

which follow from the properties of Re{z} and Im{z}. With these results the angle of
rotation (3.74) can be written in the concise form

θ =
1

2
µ0cωη

∣∣∣ε̂1iε̂∗2j 〈αij(ω;B) + iα′ij(ω;B)〉
∣∣∣L, (3.99)

where η is the number of molecules per unit volume present in the gas, and α
(′)
ij (ω;B)

indicates that these are the perturbed polarizabilities.

To proceed we need to choose a form for the first-order perturbation expansions (3.85), which
we then substitute into the formulae (3.97). I shall assume that states of the unperturbed
molecule are non-degenerate, so the correct expressions are [74, 125]

|n〉 = |n(0)〉+ λ
Bk

~
∑
s 6=n

m
sn(0)
k

ω
(0)
sn

|s(0)〉 , (3.100a)

ωn = ω(0)
n − λ

Bk

~
m
n(0)
k . (3.100b)

Here I have introduced some new notation:

ω(0)
n ≡ E(0)

n /~,

m
sn(0)
k ≡ 〈s(0)|m̂k|n(0)〉 ,

m
n(0)
k ≡ 〈n(0)|m̂k|n(0)〉 ,

where E(0)
s and |s(0)〉 are the energies and eigenstates of the unperturbed molecular Hamil-

tonian. If the unperturbed molecule does contain degeneracy then these expressions can
still be used so long as the degenerate eigenstates are chosen such that msn(0)

k = 0 whenever
ω

(0)
sn = 0 (i.e., the perturbation is diagonal in the degenerate subspace(s)). I will assume this

to be the case, to facilitate direct comparison with Barron [24], but note that it is entirely
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possible to use proper degenerate perturbation theory to find correct expressions to any
order when the perturbation is not diagonal in the degenerate subspace.

Using (3.100) we find, up to O(λ),

1

ω2
rg − ω2

=
1

ω
(0)2
rg − ω2

[
1 + λ

2Bk

~
ω

(0)
rg

ω
(0)2
rg − ω2

(m
r(0)
k −mg(0)

k )

]
(3.101)

and
µgri µ

rg
j =M(0)

ij + λM(1)
ij , (3.102)

where
M(0)

ij = µ
gr(0)
i µ

rg(0)
j = 〈g(0)|µ̂i|r(0)〉 〈r(0)|µ̂j|g(0)〉 (3.103)

and

M(1)
ij =

Bk

~

∑
s 6=g

1

ω
(0)
sg

(
µ
gr(0)
i µ

rs(0)
j m

sg(0)
k +m

gs(0)
k µ

sr(0)
i µ

rg(0)
j

)

+
∑
s 6=r

1

ω
(0)
sr

(
µ
gr(0)
i m

rs(0)
k µ

sg(0)
j + µ

gs(0)
i m

sr(0)
k µ

rg(0)
j

) . (3.104)

Inputting these into (3.97) we find that the perturbed polarizabilities can be written in the
forms

αij(ω;B) = α
(0)
ij (ω) +Bkα

(m)
ij,k (ω), (3.105a)

α′ij(ω;B) = α
′(0)
ij (ω) +Bkα

′(m)
ij,k (ω), (3.105b)

again only retaining terms up to order λ, which I now set equal to one. In the notation
α

(m)
ij,k (ω), the superscript indicates the molecular operator which is present in the interaction

(in this case the magnetic dipole moment operator m̂) and the ‘, k’ in the subscript indicates
that k is the index attached to the perturbing term. The next term in the expansion, to
order |B|2, would be written as BkBlα

(mm)
ij,kl (ω), and so on [24, p. 104].
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The zeroth-order polarizabilities are

α
(0)
ij (ω) =

2

~
∑
r

ω
(0)
rg

ω
(0)2
rg − ω2

Re{〈g(0)|µ̂i|r(0)〉 〈r(0)|µ̂j|g(0)〉}, (3.106a)

α
′(0)
ij (ω) = −2

~
∑
r

ω

ω
(0)2
rg − ω2

Im{〈g(0)|µ̂i|r(0)〉 〈r(0)|µ̂j|g(0)〉}, (3.106b)

and the first-order terms are

α
(m)
ij,k (ω) =

2

~2

∑
r

[
ω

(0)2
rg + ω2

(ω
(0)2
rg − ω2)2

(m
r(0)
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and

α
′(m)
ij,k (ω) = − 2

~2
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 . (3.108)

We now need to perform the rotational averaging. If Tijk... represents the components of a
molecular property tensor (such as the polarizability) with respect to a set of space-fixed
(laboratory) axes, then the rotational average, denoted by 〈·〉, is given by [18, 24]

〈Tijk...〉 = 〈`iα`jβ`kγ . . .〉Tαβγ..., (3.109)

where Tαβγ... is the same tensor but with respect to a set of molecule-fixed axes, and {`mλ}
are the direction cosines between the space- and molecule-fixed frames (see Appendix A.3
and Eq. (A.14) in particular). The average of the direction cosines depends on the rank of
the tensor. I am only interested in rank-2 and rank-3 tensors, for which we have (see Barron
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[24, p. 183] or Craig and Thirunamachandran [18, p. 189])

〈`iα`jβ〉 =
1

3
δijδαβ (3.110)

and
〈`iα`jβ`kγ〉 =

1

6
εijkεαβγ, (3.111)

respectively, where δij is the Kronecker delta [64] and εijk is the Levi-Civita symbol (2.13).

Considering first of all the rank-2 terms, that is, the terms which depend on the zeroth-order
polarizabilities, such as ε̂1iε̂∗2j 〈α

(0)
ij (ω)〉, it is easy to see that these terms do not contribute

to the OR. This is somewhat obvious, for if it were not the case then all achiral gases
would exhibit OR without the need for a magnetic field4. This result follows from a simple
application of (3.110) to the relevant parts of (3.99):

ε̂1iε̂
∗
2j 〈α

(0)
ij (ω)〉 =

1

3
ε̂1iε̂

∗
2jδijδαβα

(0)
αβ(ω) =

1

3
ε̂1 · ε̂∗2α(0)

αα(ω) = 0, (3.112)

which equals zero because ε̂1 ≡ x̂ and ε̂2 ≡ ŷ and thus ε̂1 · ε̂∗2 = 0. The average of the
term which depends on the zeroth-order anti-symmetric polarizability vanishes for the same
reason.

Let us next look at the contribution from the first-order symmetric polarizability. Applying
(3.111) to the relevant term we find

ε̂1iε̂
∗
2jBk 〈α(m)

ij,k 〉 =
1

6
εijkε̂1iε̂

∗
2jBkεαβγα

(m)
αβ,γ. (3.113)

The ith component of the cross product of two vectors can be written as [U×V ]i = εijkUjVk.
With this and ε̂1 × ε̂∗2 ≡ k̂ = ẑ we have εijkε̂1iε̂∗2jBk = B · ẑ. To evaluate εαβγα

(m)
αβ,γ, consider

εαβγm
n
γ(µpαµ

q
β + µqαµ

p
β) = mn · (µp × µq + µq × µp)

= mn · (µp × µq − µp × µq)

= 0,

(3.114)

using the anti-commutativity of the cross product. Each line of (3.107) contains a term
of this form and thus the rotational average of the symmetric polarizability is identically
zero—it does not contribute to magnetic optical rotation in an isotropic sample.

4Atomic and achiral molecular gases actually do produce a very small natural OR, due to the effects of
the parity-violating weak force [24], but these effects are beyond the scope of this model.
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The only term which does not vanish upon averaging is the contribution from the first-order
anti-symmetric polarizability, which leaves the final result as

θ =
1

12
µ0cωηεαβγα

′(m)
αβ,γ(ω)(B · k̂)L. (3.115)

This can be expanded to give the explicit formula:

θ = − 1

3~2
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 . (3.116)

This may be compared with (3.56), the Verdet constant being easily identifiable.

The first line of my result corresponds to the so-called ‘Faraday A-term’ and the second and
third lines to the ‘Faraday B-term’ which are found in the literature [24, 127, 128]. One
other term which usually appears in the literature, the ‘Faraday C-term’, is missing from
my expression. This is because one must use a Boltzmann average, rather than a simple
isotropic average, to arrive at this term. In an isotropic rotational average all directions
are treated equally, but in the presence of an external perturbation (such as a magnetic
field) this is not realistic, as the molecule will tend to align with whichever directions are
energetically favourable. Thus in a Boltzmann average we weight the orientations, denoted
Ω, by the appropriate Boltzmann factor [24, 129],

〈Tijk...〉Boltz =

∫
dΩ Tijk...(Ω)e−V (Ω)/kBT∫

dΩ e−V (Ω)/kBT
, (3.117)

where V (Ω) is the potential energy of the molecule (in the ground state) in the external
field for orientation Ω, kB is the Boltzmann constant, and T is the temperature of the gas.
In room temperature samples it is usually appropriate to assume that V (Ω)� kBT , which
allows us to Taylor expand the exponential factors and get the approximate form [24]

〈Tijk...〉Boltz ≈ 〈Tijk...〉 −
1

kBT

[
〈V Tijk...〉 − 〈V 〉 〈Tijk...〉

]
, (3.118)

where 〈·〉 denotes the regular rotational average as above.
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In the case of the Faraday effect we have V = −mg(0)
k Bk, using the previously defined

notation, and we wish to perform the Boltzmann average of α̃∗ij(ω;B). The first term in
(3.118) just leads to the Faraday A- and B-terms, as found above. The terms in the square
brackets lead to the Faraday C-term. The second term in the brackets does not contribute
anything to first-order in the magnetic field, so we are just left with the 〈V Tijk...〉 term,
which to lowest-order contributes

− 〈V Tijk...〉 = Bk 〈α(0)
ij (ω)m

g(0)
k 〉+ iBk 〈α′(0)

ij (ω)m
g(0)
k 〉+O(|B|2). (3.119)

The term which depends on the zeroth-order symmetric polarizability vanishes upon rota-
tional averaging, so we are left with only the anti-symmetric term. Performing the isotropic
average using (3.111), we find the Boltzmann-averaged expression for the rotation angle may
be written as [24]

θ =
1

12
µ0cωηεαβγ

(
α
′(m)
αβ,γ(ω) +

1

kBT
mg(0)
γ α

′(0)
αβ (ω)

)
(B · k̂)L = θA + θB + θC, (3.120)

where the Faraday A- and B-terms are given explicitly in (3.116) and the C-term is, explicitly,

θC =
1

12kBT
µ0cωηεαβγm

g(0)
γ α

′(0)
αβ (ω)(B · k̂)L

= − 1

3~kBT
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∑
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(
µgr(0) × µrg(0)

)
.

(3.121)

This concludes my derivation of the Faraday effect by means of a fully quantum-mechanical
two-state approach. Although the Faraday effect is not a new result, the approach I have
taken here is valuable from a pedagogical standpoint as it demonstrates how a phenomenon
which is usually thought of as classical can be explained using quantum theory. The method-
ology I have developed to derive this result also has wider applications, because it provides
a framework for handling external perturbations even in the presence of degeneracies, some-
thing which is often overlooked in other treatments [18]. In the next Subsection, I briefly
discuss how the model developed above could be applied to another source of optical rotation.

3.2.4 Mechanical Faraday Effect

Another source of OR which exists, which is somewhat less well-known, is a rotating medium.
The resulting effect is known as ‘rotary aether drag’ or the mechanical Faraday effect (MFE).
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Although more recent in discovery than the traditional Faraday effect and natural OR, the
MFE does have a fairly long history, dating back to an article by Fermi in 1923 [130]. The
effect was demonstrated experimentally by Jones in 1976 [131] and this sparked renewed
interest in its theoretical underpinnings [124, 132–134]. Interestingly, a rotating medium
also causes image rotation, i.e., the rotation of a light beam’s intensity pattern [135, 136].
This was confirmed in an experiment by Franke-Arnold et al. in 2011 [137]. It appears that
a magnetic field is not capable of producing image rotation.

In 2021 Milner et al. experimentally achieved the MFE in a gaseous medium for the first
time [138] (see also the theoretical papers [134, 139, 140]). It would be interesting to try and
extend the two-state model developed in the previous Subsection to the MFE in a gas. At
a glance, this seems like it should not be too difficult, because the situation is very similar
to the traditional Faraday effect: instead of the magnetic perturbation term −m̂ · B, we
would have something along the lines of Ĵ ·Ω, where Ĵ is the angular momentum operator
of the molecule and Ω is its angular velocity vector [134]. The vectors B and Ω would play
identical roles here as external perturbations, and the AM and magnetic dipole operators
are very closely related [24]. However, a difficulty which needs to be overcome is the fact
that the rotating atom does not experience the same field as a stationary atom [136], and it
is not immediately obvious how to incorporate this into the quantum theory. This is a line
of research I am actively pursuing.

3.3 Summary

In this Chapter, I have provided an overview of the basic aspects of molecular QED, starting
from the Lagrangian for classical electrodynamics and proceeding to the quantum theory
via the usual canonical quantization procedure. I discussed the mode expansions of the field
operators in terms of creation and annihilation operators and their physical interpretation. I
also discussed the transition from the minimal coupling form of interaction to the multipolar
form, and the related long-wavelength approximation.

In the next Section I applied this theory to the Faraday effect in an atomic or molecular
gas, which I did by extending an existing model due to Power and Thirunamachandran [112]
to take into account external perturbations. The form of this external perturbation is not
restricted to the particular case considered here, which could lead to future applications. I
am currently working on applying this model to the mechanical Faraday effect.



CHAPTER 4

Optical Helicity and Chirality

This Chapter is dedicated to a discussion of the electromagnetic or optical helicity [52, 53,
141, 142], a measure of the chirality of light which also has deep connections with optical
angular momentum.

The term helicity is perhaps most familiar from the theory of elementary particles, in which
it is defined as the projection of a particle’s spin angular momentum onto its direction of
motion [75, 76],

HPP =
S · P
|P |

. (4.1)

A more general concept of helicity is found in various other research areas, notably fluid
mechanics [143, 144] and plasma physics [145, 146]. Here the term refers to integrals of the
form

HV =

∫
d3r V · (∇× V ), (4.2)

which quantifies the helical nature or ‘curliness’ of the arbitrary vector field V (r, t) [147].
As I shall discuss in detail in §4.3, the optical helicity is of the form (4.2), and possesses
the necessary properties to make it a ‘chirality observable’ for the optical field. Before I can
discuss this, I need to go over some prerequisite material in Sections 4.1 and 4.2.

The optical helicity has also been shown to be connected to chiral light-matter interactions
[31, 37, 38]. In particular, Cameron et al. [38] showed that a chiral molecule will experience

70
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a force which is directly proportional to the local optical helicity. In the other main Section
of this Chapter, §4.4, I present a new derivation of their result using the molecular QED
formalism of Chapter 3.

Some terminology used in this Chapter, e.g. ‘time-even pseudoscalar’, is defined in Appendix
A.3.

4.1 True and False Chirality

As discussed in the Introduction, Kelvin defined chirality as that property belonging to
any object which is non-superposable with its mirror image. It is more customary these
days to define chirality with respect to the space inversion operation, rather than mirror
reflection. The two notions are equivalent, because space inversion is equivalent to reflection
in a plane followed by rotation about the axis perpendicular to that plane by π [24]. Kelvin’s
definition makes no mention of the time reversal operation (see Appendix A.3), which can
lead to ambiguities when considering the chirality of moving objects. This was noticed by
Barron in the 1980s, which led him to propose a slight modification to Kelvin’s definition
[24, 54, 148–150].

To illustrate Barron’s idea, consider a cone which rotates about its axis of symmetry, but
is otherwise stationary. This exists in two distinct forms which are interconverted by space
inversion, but not by rotations and translations. By Kelvin’s definition, it would be appropri-
ate to say that the cone exhibits chirality. However, the two forms are also interconvertible
via the time reversal operation followed by a rotation (see Figure 4.1, which is modelled after
a diagram in [54]).

If we now suppose that the cone rotates as before, but also translates in the direction of
the rotation axis (see Figure 4.2), then once again the system exists in two forms which are
interconverted by space inversion, but this time they are only converted by space inversion,
not by any combination of time reversal, translations, and rotations. Barron suggested that
these two different kinds of enantiomorphism should be distinguished. The spinning cone
is an archetype of what he called ‘false’ chirality, and had previously been called ‘time-
asymmetric enantiomorphism’ by Zocher and Török [151]. In summary, a falsely chiral
system exists in two distinct forms which are interconverted by space inversion and also by
time reversal combined with proper rotations. In contrast, the spinning and translating cone
is an archetype of ‘true’ chirality: a truly chiral system exists in two distinct forms which are
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Figure 4.1: The effects of the space inversion (P ) and time reversal (T ) operations on the
spinning cone as described in the main text. It is seen that the action of P is equivalent to
T followed by a rotation Rπ.

only interconverted by space inversion [24, 54, 149, 150]. Note that for systems which are at
rest the distinction between true and false chirality vanishes. As we can always transform
to a rest frame when dealing with massive particles, the distinction is only Lorentz invariant
for massless particles.

The definition of a truly chiral system as one which is invariant under time reversal and
rotations but not under space inversion naturally leads to the conclusion that ‘the hallmark
of a [truly] chiral system is that it can support time-even pseudoscalar observables’ [24, p.
39]. In contrast, a falsely chiral system must support time-odd pseudoscalar observables
[150]. What we usually consider to be chiral phenomena, such as optical rotation due to
chiral molecules, can be shown to be associated with time-even pseudoscalars, and thus
Barron’s modification is in-keeping with the original meaning of the term.

4.2 Dual Symmetry

I will be interested in the chirality of light in vacuum, so Maxwell’s equations are given by
(2.42). These equations possess an interesting symmetry which is closely connected with the
optical helicity.
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Figure 4.2: The effects of P and T on the spinning plus translating cone. The arrows within
the cones depict the directions of translational motion. Clearly the results of P and T are
not related by any combination of translations and rotations.

Let us introduce the Riemann-Silberstein vector [152],

F = E + icB. (4.3)

This allows us to reduce the four free-space Maxwell equations (2.42) to the following two:

∇ · F = 0, (4.4a)

c∇× F = iḞ . (4.4b)

Clearly, these equations are satisfied just as well by any field of the form F ′ = e−iθF , where
θ is a real constant. In other words, Maxwell’s equations are invariant to a change of the
the global phase of the Riemann-Silberstein vector. It is simple to show that the same is
true of the electromagnetic energy, momentum, and angular momentum. I shall call the
transformation

F → F ′ = e−iθF (4.5)

a duality rotation and the associated invariance the dual symmetry of electromagnetism in
vacuum. In terms of the electric and magnetic fields, the duality transformation corresponds
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to a ‘rotation’ of the form [52, 69, 153, 154]

E → E′ = cos θE + sin θcB, (4.6a)

cB → cB′ = − sin θE + cos θcB. (4.6b)

Note that for E′ andB′ to have the required symmetry characteristics, θ must be a time-odd
pseudoscalar quantity.

To gain some further physical insight into the nature of duality rotations, let’s consider
the effect on an optical plane wave, characterized by the fields E = ε̂E0e

i(k·r−ωt), cB =

β̂E0e
i(k·r−ωt). Performing the general duality transformation (4.6), and using the fact that

the electric and magnetic polarization vectors (ε̂ and β̂) form a right-handed triad with the
propagation vector k̂ = k/|k|, we find that the transformed fields are of the exact same form
as before, but with the new polarizations

ε̂′ = cos θε̂+ sin θk̂ × ε̂, (4.7a)

β̂′ = cos θβ̂ + sin θk̂ × β̂. (4.7b)

We recognize these as the results of rotating ε̂ and β̂ about k̂ through the angle θ [155].
Thus, for a plane wave, the effect of a duality rotation is an actual physical rotation of
the electric and magnetic field vectors about the axis of propagation [53]. In an optical
field formed from the sum of many plane waves, the duality transformation will rotate each
individual wave about its own wave vector.

The discussion thus far has only mentioned the electromagnetic fields, so it is not clear
how a quantity such as the local optical spin, say, which depends on both the electric field
and the vector potential, will transform under a duality transformation. To address this we
introduce the second vector potential C [102], which was already discussed in Chapter 2 and
defined by the relations (2.74). It follows directly from these relations that the transverse
components of A and C obey the equations [53, 60]:

∇ ·A⊥ = 0, (4.8a)

c2∇×C⊥ = Ȧ⊥, (4.8b)

∇ ·C⊥ = 0, (4.8c)

∇×A⊥ = −Ċ⊥. (4.8d)
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These are identical in form to the Maxwell equations (2.42), and thus possess the same
symmetries. In particular, they are also invariant under a duality transformation [52, 60,
69, 102]

A⊥ → A′⊥ = cos θA⊥ + sin θcC⊥, (4.9a)

cC⊥ → cC ′⊥ = − sin θA⊥ + cos θcC⊥. (4.9b)

Under a duality rotation, the (electric) optical spin density (2.29) therefore transforms as
se → s′e = ε0E

′ ×A′⊥, with E′ and A′⊥ given by (4.6) and (4.9).

Given the invariance of Maxwell’s equations, the electromagnetic energy, and other important
quantities with respect to duality rotations, it seems reasonable to expect other derived
electromagnetic quantities to possess this symmetry as well (in vacuum) [69]. On this basis,
in the coming Sections I will consider a measure of, e.g., the chirality of light, to be a ‘good’
measure if it is dual-symmetric.

4.3 Fundamental Aspects of Optical Helicity

A quantity of the form V · (∇×V ) is a time-even pseudoscalar, whether V is time even or
time odd, a polar vector or an axial vector, and thus the helicity (4.2) is a possible ‘chirality
observable’ for any system with an associated vector field V . Because light has several
vector fields associated with it (E, B, A, C), we can define several different ‘helicities’, and
thus several different measures of light’s true chirality. I start this Section by reviewing two
common choices which have arisen in the literature, one of which is the optical helicity, for
characterizing the chirality of monochromatic optical fields.

Tang and Cohen recognized that ‘chiral interactions require a time-even pseudoscalar, and
no such density is in use’ [31]. To fill this void they introduced the optical chirality, χ,
defined as [13, 31]

χ =
ε0

2

[
E · (∇×E) + c2B · (∇×B)

]
. (4.10)

This quantity was actually discovered a long time ago by Lipkin [156], in connection with a
novel electromagnetic conservation law. Note that I am following the terminology of Tang
and Cohen in calling χ the optical chirality; it is also common to call this the chirality density
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or local optical chirality, and to call

X =

∫
d3r χ (4.11)

the optical chirality [13, 34, 35]. I will call X the total or global optical chirality.

Using the terminology and notation outlined above, X is the sum of two ‘helicities’: X =

ε0(HE+c2HB)/2. The reasons for preferring χ over just E ·(∇×E), say, as a measure of the
chirality of light are twofold. Firstly, X and χ are inherently dual symmetric, which is not
the case for the individual helicities HE and HB. Dual symmetry of χ is easily established
by noting its form in terms of the Riemann-Silberstein vector (4.3),

χ =
ε0

2
Re{F · (∇× F ∗)}, (4.12)

which is clearly invariant under a duality rotation (4.5). Secondly, χ, but not E · (∇×E)

or B · (∇ ×B), is a locally and globally conserved quantity in the absence of charges and
currents, satisfying the continuity equation [31, 34, 156]

∂χ

∂t
+∇ ·ϕ = 0, (4.13)

where
ϕ ≡ ε0c

2

2

[
E × (∇×B)−B × (∇×E)

]
(4.14)

is the optical chirality flux. This is a desirable feature for a measure of the chirality of light,
because it means that the total chirality of the field will remain the same, unless it is altered
in light-matter interactions, as we would expect.

Let us now turn our attention to the optical helicity. The ‘magnetic helicity’ [147],

Hm =

∫
d3r A · (∇×A), (4.15)

is a time-even pseudoscalar which has been studied in various contexts since the 1950s [145–
147], and could reasonably be an optical chirality observable. However, this quantity lacks
the two most advantageous features of χ, namely, dual symmetry and conservation in the
absence of charges. To remedy this, we define the dual-symmetric optical helicity, first
studied by Candlin [157], as the sum of the magnetic helicity and an equivalent ‘electric
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helicity’ [13, 38, 52, 53, 141, 142],

H ≡
∫

d3r h, h ≡ ε0c

2

[
A⊥ ·B −C⊥ ·E

]
, (4.16)

the constant prefactor ε0c being chosen for dimensional reasons. The dual-symmetric inte-
grand h shall be called ‘the’ helicity density or the local optical helicity. The optical helicity
is, as desired, also a conserved quantity in vacuum. I will elaborate on this point shortly.

Note that because I have defined h in terms of the gauge-invariant transverse components of
the vector potentials, which is not always done in the literature [141, 142], it is itself gauge
invariant. If we had defined the helicity density in terms of the full vector potentials, A
and C, then this would not be the case. However, the total optical helicity, H, is always
gauge invariant, because the volume integral of the dot product between a transverse and
longitudinal vector field is zero [20, 52, 154]. Thus, it seems natural to define the local
optical helicity as the gauge-invariant quantity which integrates to give the gauge-invariant
total helicity.

The optical helicity relates to the helical nature of the potentials A⊥ and C⊥, whilst the
optical chirality tells us about the helicity of the fields E and B. In a monochromatic field,
the complex potential and field vectors are directly proportional, recall Eqs. (2.75), so we
might expect a proportionality between h and χ as well. This is indeed the case, and for a
monochromatic field of frequency ω = ck, the optical helicity density is [15, 94]

hm.c. =
ε0c

2ω
Im{Ẽ · B̃∗}, (4.17)

whilst the optical chirality is given by χm.c. = hm.c. × (ω2/c). It should be stressed that this
relationship only holds in monochromatic fields; in polychromatic fields the two observables
can exhibit surprisingly different behaviours, as shown explicitly by Mackinnon [158]. This
does raise interesting questions about whether h or χ, or some other quantity, is the most
appropriate chirality measure in a general optical field, but I will not touch on this here. In
all of the applications of the optical helicity or the optical chirality of which I am aware, it
is (quasi-)monochromatic fields which are considered, so one could consider h or χ as the
chirality observable, but I am more interested in the optical helicity because of some of its
other fundamental properties.

As mentioned above, the dual-symmetric optical helicity is a conserved quantity. It can



CHAPTER 4. OPTICAL HELICITY AND CHIRALITY 78

easily be shown that it obeys the continuity equation [52]

∂h

∂t
+∇ · v = 0, (4.18)

where v is the optical helicity flux,

v =
ε0c

2

[
E ×A⊥ + c2B ×C⊥

]
. (4.19)

We see immediately that v = cs, s being the dual-symmetric optical spin density (2.73),
which is very reminiscent of the relationship between the energy flux (Poynting vector) and
the linear optical momentum density (S = c2g). This is the first hint at a deep connection
which exists between optical helicity and optical spin. Before I discuss that connection in
more detail, let us note that, from Noether’s theorem [159], the existence of a conservation
law such as (4.18) is indicative of a symmetry or invariance of the underlying system. We can
ask, therefore, which (continuous) symmetry is associated with the conservation of optical
helicity? The answer is the dual symmetry discussed in §4.2! Equivalently, one can show
that the optical helicity is the ‘generator’ of duality rotations [52, 53, 60, 154].

Note that, because h is time-independent in a monochromatic field, it follows from (4.18)
that ∇ · s = 0 and thus ∇ · se = −∇ · sm in any such field, as was mentioned in §2.3.

Next, to flesh out the relationship between optical helicity and spin some more, let’s consider
the helicity in a zeroth-order paraxial beam (with electric and magnetic fields given by
(2.51)). Using (4.17) we find

H =
ε0

2
ωσ

∫
V

d3r |u|2. (4.20)

If we now compute the optical spin (the integral of Eq. (2.65b)),

S =
ε0

2
ωσ

∫
V

d3r |u|2ẑ, (4.21)

and the linear momentum of the beam (using (2.101) and (2.6)),

P =
ε0

2
ωk

∫
V

d3r |u|2ẑ, (4.22)

then we see that P /|P | = ẑ, and therefore

S · P
|P |

=
ε0

2
ωσ

∫
V

d3r |u|2 = H. (4.23)
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Thus, for the 2D paraxial beam, the optical helicity is nothing but the projection of the
spin angular momentum onto the direction of propagation, which is exactly the definition of
helicity in particle physics (Eq. (4.1)). We may also compare the ratio of the optical helicity
to the time-averaged total energy of the beam (2.67), for which we find

H
W

=
σ

ω
. (4.24)

Making the same argument as in Chapter 2, we infer from this that each photon in the
beam possesses an energy of ~ω and a helicity, i.e., angular momentum in the direction of
propagation, of σ~, which for a circularly polarized photon is ±~.

These connections are even more firmly established by considering the quantum theory. One
can show that the optical helicity operator takes the form [52, 53, 141]

Ĥ =
∑
k

~
(
n̂kL − n̂kR

)
, (4.25)

where n̂kL/R are the number operators for modes (k, L/R). Thus the total optical helicity
is essentially a measure of the number of left-CP photons minus the number of right-CP
photons, and is thus inherently linked to polarization. A linearly polarized beam can be
thought of as containing equal numbers of CP photons of opposite handedness, and thus it
has zero helicity. It should be noted that we are talking here about the total optical helicity.
The local optical helicity is not inherently linked to the CP content of an optical field; for
instance, Forbes [13, 94] has shown that a non-zero h is possible in linearly polarized optical
vortex beams (even though H = 0), when the full 3D polarization is taken into account.
This is similar to the discussion in §2.3, in which we saw that the association of the local
optical spin with polarization structure is largely confined to the paraxial approximation.

4.4 Helicity-Dependent Optical Force

Having discussed some of the fundamentals, in this Section I turn to a more practical aspect
of the optical helicity.

Cameron et al. [38] (see also [37]) have shown that a chiral molecule in a monochromatic
optical field experiences, in addition to the usual electric and magnetic forces, the time-
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averaged, rotationally-averaged force

〈Fh〉 = − ω

ε0c
G′∇hm.c., (4.26)

where G′ is a measure of the molecular chirality, in the sense that G′ > 0 for one enantiomer
and G′ < 0 for the other, whilst for an achiral molecule or atom G′ = 0 [24]. The existence
of the helicity force has been experimentally verified by Kravets et al. [160].

In a general monochromatic field the helicity force will be several orders of magnitude smaller
than the electric gradient force from (2.112), and will thus have a negligible effect on the
molecular dynamics. However, Cameron and co-workers [17, 38, 51, 161] recognized that in a
non-interfering superposition (as discussed in §2.3.1), the electric force vanishes and thus the
helicity force can dominate, leading to potential applications for the sensing and separation
of chiral molecules.

In [38] they derive the helicity-dependent force classically using the Lorentz force law, but
note that it ‘can also be justified by an appropriate calculation in the quantum domain’.
However, I am not aware of an explicit calculation showing this in the literature, so in this
Section I will derive the force using the molecular QED formalism discussed in Chapter
3, such that the electromagnetic fields as well as the molecules are quantized. I will, in
particular, derive the force for a two-wave superposition.

The force (4.26) is conservative and may be written as −∇Uh, where

Uh ≡
ωG′hm.c.

ε0c
(4.27)

may be interpreted as an interaction energy between the light and the molecule. Although
the notion of force is inherently classical, we can derive the interaction energy via quantum
theory and infer the associated force from this [18, 162]. The energy of the molecule plus
EM field when they are in the combined state |1〉 and are not interacting (i.e., when they
are well separated from one another) is

E0 = 〈1|H0|1〉 , (4.28)

where H0 is the Hamiltonian of the free field plus molecule. When the field and molecule
are brought together, the Hamiltonian is modified by the addition of the perturbation term
V , and the new energy is

E = 〈1|H0 + V |1〉 , (4.29)
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i.e., the energy shift is ∆E(1) = 〈1|V |1〉. If the perturbation does not directly connect |1〉 to
itself then ∆E(1) = 0, and we must consider higher-order corrections to the energy.

The necessary perturbation for chiral light-matter interactions is V = VE1 + VM1, where
VE1 = −µ · ε−1

0 D̂⊥ and VM1 = −m · B̂ are the electric and magnetic dipole interactions1,
and the leading energy shift is of second order [18, 108],

∆E(2) =
∑
I

〈1|V |I〉 〈I|V |1〉
E1 − EI

. (4.30)

For our particular perturbation it is convenient to write this as (now dropping the superscript
2)

∆E = ∆EE1−E1 + ∆EE1−M1 (4.31)

in which
∆EE1−E1 =

∑
I

〈1|VE1|I〉 〈I|VE1|1〉
E1 − EI

(4.32)

and
∆EE1−M1 = ∆ẼE1−M1 + ∆Ẽ∗E1−M1, (4.33)

where
∆ẼE1−M1 =

∑
I

〈1|VE1|I〉 〈I|VM1|1〉
E1 − EI

. (4.34)

The intermediate states |I〉 are the combined molecular and field eigenstates. In ∆E we
have neglected the term that arises from two magnetic interactions, as it is smaller than the
other two and not chirally sensitive. The aim is to show that 〈∆EE1−M1〉 = Uh.

The specific state |1〉 which I shall consider is

|1〉 = |Eg;α1(k1, λ1);α2(k2, λ2)〉 , (4.35)

where |Eg〉 is the molecular ground state and |α1〉 and |α2〉 are coherent states of modes
(k1, λ1) and (k2, λ2), which have polarization vectors ε̂(1) and ε̂(2). The two modes will be
taken to be monochromatic, so that |k1| = |k2| = k = ω/c, but k1 6= k2 in general. We can

1Strictly we should include the electric quadrupole at this order, but its leading contribution vanishes
upon rotational averaging [18, 38].
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write the coherent states in the forms

|α1〉 =
∑
n1

cn1 |n1〉 , (4.36)

|α2〉 =
∑
n2

dn2 |n2〉 , (4.37)

where |ni〉 = |n(ki, λi)〉 are number states of the respective modes. Coherent states are a
natural choice because they are the ‘most classical’ quantum states, and their expectation
values resemble plane waves. This is unlike the number states, which are highly non-classical
in nature [18, 23]. In fact, one can show that the results of this Section cannot be derived
if the initial state is a number state. To see this, suppose the field is in a number state,
so |1〉 = |Eg;n1;n2〉. As we shall see in the below derivation, the helicity-dependent energy
shift contains a phase term, exp{±i(k1−k2) ·R}, where R is the molecular centre-of-mass,
which can only arise from non-forward Rayleigh scattering, i.e., scattering from one mode to
another. Say the first interaction in (4.30) annihilates a photon of mode 1, then the resulting
intermediate state will be of the form |Er;n1 − 1;n2〉. To achieve the necessary phase term,
we require a photon of mode 2 to be created. However, this would result in a state of the
radiation field which is proportional to |n1 − 1;n2 + 1〉, which is orthogonal to the state |1〉,
and thus the overlap is zero. Therefore, the helicity-dependent term cannot arise if the field
is in a number state.

The energy shift can be evaluated with the aid of Feynman diagrams. The number of possi-
ble intermediate states (and thus the number of Feynman diagrams) is quite large. However,
I reduce this number by only considering those contributions which are strictly energy con-
serving (which contain one photon absorption and one emission). This is equivalent to the
time-averaging that Cameron et al. [38] perform in their classical derivation. This leaves
a total of 24 digrams, eight of which contribute to ∆EE1−E1 and 16 which contribute to
∆EE1−M1. The total energy shift is the sum of the contributions from each graph. We do
not actually have to work out 24 terms though, because of similarities between the different
graphs. Of the 16 graphs which contribute to ∆EE1−M1, eight contribute to ∆ẼE1−M1 and
the other eight contribute to ∆Ẽ∗E1−M1. The graphs which contribute to ∆ẼE1−M1 are those
in which the M1 interaction occurs before the E1 interaction. We can find ∆ẼE1−M1 and
get ∆Ẽ∗E1−M1 by taking the complex conjugate. Also, the types of graph which contribute
to ∆ẼE1−M1 are exactly the same as those which contribute to ∆EE1−E1, so we can calcu-
late ∆ẼE1−M1 and get ∆EE1−E1 ‘for free’ by just replacing the terms involving magnetic
quantities with electric quantities.
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(a) (b) (c) (d)

Figure 4.3: Feynman diagrams involving absorption and emission of a photon from the same
mode (‘class 1 diagrams’).

Just focussing on ∆ẼE1−M1, and deriving the other terms from this, the eight Feynman
diagrams fall into two classes:

• Class 1 (forward Rayleigh scattering): A photon of mode i is created and destroyed
(i = 1 or 2). Considering all of the possible time orderings, this class includes four
diagrams, see Figures 4.3.

• Class 2 (non-forward Rayleigh scattering): A photon of mode i is destroyed and a
photon of mode j 6= i is created. Again, considering all possible time orderings,
we have four such diagrams, see Figures 4.4. Note that often only forward Rayleigh
scattering is considered in the calculation of energy shifts [18], but this is because the
field is usually assumed to be in a number state. As discussed above, the helicity-
dependent term which we are seeking only arises if the field is not in a number state,
via non-forward scattering.

The evaluation of the total energy shift is quite long and tedious, so I will just explicitly
demonstrate the calculation for the graph shown in Figure 4.3a, which I denote ∆Ẽ(1a).
Expanding |1〉 in the number state basis we may write

∆Ẽ(1a) =
∑
r

∑
n′
1,n

′
2

〈α2;α1;Eg|VE1|Er;n′1;n′2〉 〈n′2;n′1;Er|VM1|Eg;α1;α2〉
Egr + ~ω

=
∑
r

∑
n′
1,n

′
2

∑
n1,n2

∑
m1,m2

cn1c
∗
m1
dn2d

∗
m2

〈m2;m1;Eg|VE1|Er;n′1;n′2〉 〈n′2;n′1;Er|VM1|Eg;n1;n2〉
Egr + ~ω

.

(4.38)
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(a) (b) (c) (d)

Figure 4.4: Feynman diagrams involving absorption and emission of photons from different
modes (‘class 2 diagrams’).

The denominator in this case is Egr + ~ω = Eg − (Er − ~ω), where Er is the energy of the
intermediate molecular eigenstate |Er〉. The energy of the intermediate state is Er − ~ω
because, as we can see from Figure 4.3a, one photon is removed from mode (k1, λ1), i.e.,
n′1 = n1− 1. The relations between the other summation indices are m1 = n1, m2 = n2, and
n′2 = n2. Therefore we are just left with a sum over r, n1, and n2:

∆Ẽ(1a) =
∑
r

∑
n1,n2

|cn1|2|dn2|2
〈n2;n1;Eg|VE1|Er;n1 − 1;n2〉 〈n2;n1 − 1;Er|VM1|Eg;n1;n2〉

Egr + ~ω
(4.39)

Only the positive-frequency (i.e., annihilation) part of the B̂ field contributes to the matrix
element involving VM1, and only the negative-frequency (creation) part of the D̂⊥ field
contributes to the matrix element involving VE1. We have

〈n2;n1 − 1;Er|VM1|Eg;n1;n2〉 = −mrg · 〈n1 − 1|B̂+|n1〉 , (4.40)

and, using (3.41c),

〈n1 − 1|B̂+|n1〉 =
i

c
N (k)eik1·R√n1β̂

(1), (4.41)

where β̂(1) is the magnetic polarization vector of mode 1, N (k) is the normalization coeffi-
cient (3.30), and mrg ≡ 〈Er|m|Eg〉 is the magnetic dipole transition moment from state g
to r. Putting everything back together:

〈n2;n1 − 1;Er|VM1|Eg;n1;n2〉 = − i
c

√
n1N (k)eik1·Rmrg · β̂(1). (4.42)
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A similar calculation for the E1 interaction gives

〈n2;n1;Eg|VE1|Er;n1 − 1;n2〉 = +i
√
n1N (k)e−ik1·Rε̂(1)∗ · µgr. (4.43)

Combining these we find

∆Ẽ(1a) =
N 2(k)

c

(∑
n2

|dn2|2
)(∑

n1

|cn1|2n1

)∑
r

[
(ε̂(1)∗ · µgr)(β̂(1) ·mrg)

Egr + ~ω

]
. (4.44)

Now the first summation is just
∑

n2
|dn2|2 = 〈α2|α2〉 = 1. The second sum,

∑
n1
|cn1|2n1,

is nothing but the average number of photons in mode 1 for the coherent state α1, which is
equal to n̄1 = |α1|2 [18, 23]. Thus we can write ∆Ẽ(1a) as

∆Ẽ(1a) = − n̄1~ω
2cε0V

∑
r

[
(ε̂(1)∗ · µgr)(β̂(1) ·mrg)

Erg − ~ω

]
, (4.45)

where I have now written the denominator in terms of Erg = −Egr. As mentioned above,
we can derive the equivalent contribution (∆EE1(1a)) involving two E1 interactions, rather
than an M1 and an E1 interaction, by just replacing the magnetic quantities above with the
appropriate electric ones:

∆EE1(1a) = − n̄1~ω
2ε0V

∑
r

[
(ε̂(1)∗ · µgr)(ε̂(1) · µrg)

Erg − ~ω

]
. (4.46)

We see from these two contributions a general feature, which is that the ‘class 1’ diagrams,
Figures 4.3, are spatially independent. On the other hand the class 2 diagrams, Figures 4.4,
have spatial dependences of e±i(k1−k2)·R.

After summing the contributions from each Feynman diagram, we find that the energy shifts
are:

∆EE1−E1 = − ~ω
2ε0V

{
n̄1ε̂

(1)∗
i ε̂

(1)
j + n̄2ε̂

(2)∗
i ε̂

(2)
j

}
α̃ggij (ω)

− ~ω
2ε0V

{
α∗1α2e

i(k2−k1)·Rε̂
(1)∗
i ε̂

(2)
j + α1α

∗
2e
i(k1−k2)·Rε̂

(2)∗
i ε̂

(1)
j

}
α̃ggij (ω), (4.47)
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and

∆EE1−M1 = − ~ω
2cε0V

{
n̄1

(
ε̂

(1)∗
i β̂

(1)
j G̃gg

ij (ω) + c.c.
)

+ n̄2

(
ε̂

(2)∗
i β̂

(2)
j G̃gg

ij (ω) + c.c.
)}

− ~ω
2cε0V

{(
α∗1α2e

i(k2−k1)·Rε̂
(1)∗
i β̂

(2)
j G̃gg

ij (ω) + c.c.
)

+
(
α1α

∗
2e
i(k1−k2)·Rε̂

(2)∗
i β̂

(1)
j G̃gg

ij (ω) + c.c.
)}

, (4.48)

where

α̃baij (ω) =
∑
r

{
µbri µ

ra
j

Erg − ~ω
+

µbrj µ
ra
i

Erg + ~ω

}
, (4.49a)

G̃ba
ij (ω) =

∑
r

{
µbri m

ra
j

Erg − ~ω
+

mbr
j µ

ra
i

Erg + ~ω

}
, (4.49b)

are the complex electric-electric and electric-magnetic dipole polarizability tensors [18].

To get a form comparable to Uh from [38], we need to take the rotational average of the
above result. For a rank-2 tensor we have the general result [18, 24]

〈Oij〉 =
1

3
δijδαβOαβ =

1

3
δijOββ, (4.50)

where Oαβ are the components of the molecular property tensor O with respect to the
molecule-fixed coordinate axes. We shall denote the isotropic averages of the polarizability
tensors as

α̃ggββ(ω) ≡ 3α(ω), G̃gg
ββ(ω) ≡ 3G̃(ω). (4.51)

Note that, although the tensor αggαβ is complex, its isotropic average is a real quantity2. To
further aid comparison to [38], we shall assume that the molecule has real wave functions,
which means that Re{G̃} ≡ 0, and thus G̃ = −iG′, where G′(ω) is a real scalar quantity
[24].

Working under the above assumptions, we find that the rotationally-averaged interaction
2One might therefore wonder how the imaginary part of the scalar polarizability appears in connection

with the (classically-derived) optical force (2.112). This term arises when the radiation is close to an
atomic/molecular resonance, because of a modification which we must make to the polarizability tensor in
order to ensure that it does not diverge [24, p. 96]. In particular, the symmetric part of the polarizability
tensor, which is the part which does not vanish upon rotational averaging, acquires an imaginary contribution.
I assume the molecular eigenenergies are far-detuned from the optical frequency, as is usual in optical lattices
[108], such that absorption is negligible and α is real.
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energies are:

〈∆EE1−E1〉 = − ~ω
2ε0V

α(ω)

{
|α1|2|ε̂(1)|2 + |α2|2|ε̂(2)|2

α∗1α2e
i(k2−k1)·Rε̂(1)∗ · ε̂(2) + α1α

∗
2e
i(k1−k2)·Rε̂(1) · ε̂(2)∗

}
(4.52)

and

〈∆EE1−M1〉 = i
~ω

2ε0cV
G′(ω)

{
|α1|2(ε̂(1)∗ · β̂(1) − ε̂(1) · β̂(1)∗)

+ |α2|2(ε̂(2)∗ · β̂(2) − ε̂(2) · β̂(2)∗) + α∗1α2e
i(k2−k1)·R(ε̂(1)∗ · β̂(2) − ε̂(2) · β̂(1∗))

+ α1α
∗
2e
i(k1−k2)·R(ε̂(2)∗ · β̂(1) − ε̂(1) · β̂(2)∗)

}
. (4.53)

To show that (4.53) is indeed Uh, we must introduce the optical helicity into this expression
somehow. We could approach this in several ways. Most rigorously, perhaps, we could find
the expectation value 〈α2;α1|ĥ|α1;α2〉, where ĥ is the operator form of the local optical
helicity, Eq. (4.16). However, the same result can be achieved in a simpler way, and this is
how I shall proceed.

We make the assumption that the classical electric field E is equal to the expectation value
〈Ê〉 (this assumption corresponds to the classical/large |α1/2| limit [23]). The expected value
of the electric field operator for coherent states such as |α1;α2〉 takes a well-known form [18],
and we may write

E = 〈Ê〉 = Re{Ẽe−iωt}, (4.54)

where I have used the fact that the two modes are monochromatic of frequency ω. The
complex (classical) electric field is given by [18]

Ẽ = 2i

√
~ω

2ε0V

(
α1ε̂

(1)eik1·R + α2ε̂
(2)eik2·R

)
. (4.55)

We similarly take the magnetic field to be B = 〈B̂〉 = Re{B̃e−iωt}, where

B̃ =
2i

c

√
~ω

2ε0V

(
α1β̂

(1)eik1·R + α2β̂
(2)eik2·R

)
. (4.56)
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We can now evaluate the local optical helicity of the (average) field using (4.17), and we find

hm.c. = i
~

2V

{
|α1|2(ε̂(1)∗ · β̂(1) − ε̂(1) · β̂(1)∗)

+ |α2|2(ε̂(2)∗ · β̂(2) − ε̂(2) · β̂(2)∗) + α∗1α2e
i(k2−k1)·R(ε̂(1)∗ · β̂(2) − ε̂(2) · β̂(1∗))

+ α1α
∗
2e
i(k1−k2)·R(ε̂(2)∗ · β̂(1) − ε̂(1) · β̂(2)∗)

}
. (4.57)

Comparing with (4.53), we see that the rotationally-averaged electric-magnetic energy shift
can be written as

〈∆EE1−M1〉 =
ωG′hm.c.

ε0c
(4.58)

which is exactly the classical result (4.27) derived by Cameron et al. [38], as required.

Although I have derived this result for a field consisting of only two modes, the same proce-
dure can be applied to any number of field modes.

4.5 Summary

In the first Section of this Chapter I discussed the notions of true and false chirality, as
introduced by Barron, which leads to the identification of time-even pseudoscalars as the
correct observables for chiral systems. In the next Section I discussed the duality rotations
and dual symmetry of electromagnetism in vacuum, and argued in favour of all electromag-
netic quantities being written in explicitly dual-symmetric forms in the absence of charges.
As I discussed later, this symmetry has close connections with the optical helicity, which was
discussed in depth in §4.3. In this Section I compared the optical helicity and the optical
chirality and discussed how both possess the necessary properties to be chirality measures
of the free optical field. The very close connections between these observables in monochro-
matic fields was mentioned, although it was stressed that this relationship does not hold for
polychromatic fields. I also considered the deep connections between the optical helicity and
the optical spin angular momentum, showing that the spin can also be interpreted as the
optical helicity flux. Finally, in §4.4 I have used the molecular QED formalism to derive the
energy splitting of a chiral molecule in a two-wave superposition, showing that the helicity-
dependent chiroptical force which was previously derived classically by Cameron et al. [38]
has its origin at a deeper level of theory.



CHAPTER 5

Optical Helicity Transfer to a Single
Atom

In the previous Chapter, we have seen that the optical helicity plays an important role in
chiral light-matter interactions. In this Chapter, I investigate the nature of helicity transfer
between light and matter from a more fundamental point of view. In particular, I try to
answer the question: can an atom act as a faithful detector of local optical helicity? I consider
the light-atom interaction semi-classically, and consider both the internal (electronic) and
external (centre-of-mass) states of the atom, and the correlations which arise between the
two due to the external perturbation. This is a connection which is often ignored but is
crucial for a comprehensive understanding of light-matter interactions [163–168].

We begin in the next Section by defining the exact situation under consideration.

5.1 Hamiltonian and State of the System

We shall suppose that the atom interacts with a monochromatic optical field, with associated
electric field

E(r, t) = Re{Ẽ(r)e−iωt}. (5.1)
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The arbitrary complex field Ẽ can be written in the Cartesian basis as

Ẽ(r) = Ex(r)x̂ + Ey(r)ŷ + Ez(r)ẑ, (5.2)

or in the ‘circular basis’ as

Ẽ(r) = ER(r)ε̂R + EL(r)ε̂L + Ez(r)ẑ. (5.3)

The components in this basis may be found by noting the relations

x̂ =
1√
2

(ε̂R + ε̂L), (5.4a)

ŷ =
i√
2

(ε̂R − ε̂L), (5.4b)

which leads to

ER =
1√
2

(Ex + iEy), (5.5a)

EL =
1√
2

(Ex − iEy). (5.5b)

We work in the electric-dipole (ED) approximation, so the interaction between the atom and
the field is given by1 −µ ·E(r, t), where µ is the atom’s electric dipole moment and r is the
centre-of-mass (COM) position of the atom.

For times t < 0, we assume that the atom is trapped by some potential and is quasi-localized
within a small volume, with an associated COM wave packet ψ0(r) ≡ 〈r|ψ0〉. At t = 0, the
trap is switched off and the optical field (5.1) simultaneously switched on. Strictly speaking
the external wave packet will begin to spread once the trap is removed, however, I shall be
concerned with such small time scales that we neglect these variations. Therefore, at t = 0

the total state of the atom is assumed to be a product state,

|Ψ(t = 0)〉 ≡ |Ψ0〉 = |g〉 |ψ0〉 , (5.6)

where |g〉 is the electronic state. We can alternatively write this directly in terms of the

1Recall that in §3.1.3, the ED Hamiltonian contained the interaction term −µ̂ · D̂⊥, where D̂⊥ is the
electric displacement field operator. However, in the semi-classical theory, it is actually the electric field, not
the displacement field, which couples to the electric dipole moment [20].



CHAPTER 5. HELICITY TRANSFER 91

wave packet ψ0,

|Ψ0〉 =

∫
d3r |g〉 |r〉ψ0(r). (5.7)

We shall assume that |g〉 is a zero-angular momentum (j = 0) electronic ground state.
We treat the light-atom interaction using first-order time-dependent perturbation theory
(TDPT), which corresponds to absorption of a single photon. Considering the well-known
selection rules for ED interactions [104, 169], the accessible excited states are

|a〉 ≡ |j = 1,m = −1〉 , (5.8a)

|b〉 ≡ |j = 1,m = 0〉 , (5.8b)

|c〉 ≡ |j = 1,m = +1〉 . (5.8c)

In quantum optics it is common to restrict oneself to a two-dimensional state space [163, 170],
but as we wish to consider optical fields with non-trivial polarization characteristics it is
necessary to consider the possibility of transitions to each of these excited states. Therefore
we make a ‘four-state approximation’, instead of the usual two-state one. The identity
operator within this state space is

1 = |g〉 〈g|+ |a〉 〈a|+ |b〉 〈b|+ |c〉 〈c| . (5.9)

The Hamiltonian of our system from t = 0 onwards is [163, 168]

H =
P 2

2M
+Helec − µ̂ ·E(r̂, t). (5.10)

The first term represents the translational kinetic energy of the atom’s COM, the second the
electronic (internal) energy, and the third term is the previously mentioned ED interaction,
now with the electric dipole moment and COM positions promoted to operators2. I shall
neglect the COM term in my analysis, under the reasonable assumption that the atom’s
translational energy is very small in the short time period we consider after the trapping
potential is removed. The electronic Hamiltonian can be written as

∑
n ~ωn |n〉 〈n|, where

|n〉 and ~ωn are the electronic eigenstates and energies. We choose, for convenience, ωg = 0.
Thus

Helec = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|+ ~ωc |c〉 〈c| . (5.11)
2In this Chapter I only use a ‘hat’ for those operators which might be confused with their classical

counterparts, i.e., r̂ is the COM position operator, r is the classical COM position.
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The interaction term takes a little more consideration to write in the energy basis. The
dipole operator can be expanded as

µ̂ = 1µ̂1

= (|g〉 〈g|+ |a〉 〈a|+ |b〉 〈b|+ |c〉 〈c|)µ̂(|g〉 〈g|+ |a〉 〈a|+ |b〉 〈b|+ |c〉 〈c|)

= σ̂+
a µ

ag + σ̂−a µ
ga + σ̂+

b µ
bg + σ̂−b µ

gb + σ̂+
c µ

cg + σ̂−c µ
gc,

(5.12)

where
µij = 〈i|µ̂|j〉 , (5.13)

and
σ̂+
m = |m〉 〈g| , σ̂−m = |g〉 〈m| (5.14)

are the atomic raising and lowering operators for each excited state. The other terms that
might arise from the second line of (5.12) vanish, because the electric dipole can only connect
states of opposite parity (the parities are solely determined by the value of j). Using (5.12)
we have

µ̂ ·E(r̂, t) =
1

2

(
σ̂+
a µ

ag + σ̂−a µ
ga
)
·
(
Ẽ(r̂)e−iωt + Ẽ∗(r̂)e+iωt

)
+

1

2

(
σ̂+
b µ

bg + σ̂−b µ
gb
)
·
(
Ẽ(r̂)e−iωt + Ẽ∗(r̂)e+iωt

)
+

1

2

(
σ̂+
c µ

cg + σ̂−c µ
gc
)
·
(
Ẽ(r̂)e−iωt + Ẽ∗(r̂)e+iωt

)
.

(5.15)

This can be simplified by considering the selection rules on the magnetic quantum number
(∆m = 0 or ±1) [169]. The transition |g〉 → |c〉, for example, corresponds to ∆m = +1, and
therefore to absorption of a photon with positive helicity, i.e., a left-circularly polarized pho-
ton. Therefore only the ELε̂L component of the field takes part in this transition. Following
through this line of reasoning leads to

µ̂ ·E(r̂, t) =
1

2

[
σ̂+
a µa

(
Ea(r̂)e−iωt + E∗c (r̂)eiωt

)
+ σ̂−a µ

∗
a

(
E∗a(r̂)eiωt + Ec(r̂)e−iωt

)
+
(
σ̂+
b µb + σ̂−b µ

∗
b

) (
Eb(r̂)e−iωt + E∗b (r̂)eiωt

)
+σ̂+

c µc

(
Ec(r̂)e−iωt + E∗a(r̂)eiωt

)
+ σ̂−c µ

∗
c

(
E∗c (r̂)eiωt + Ea(r̂)e−iωt

)]
,

(5.16)
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where I have introduced

µa ≡ 〈a|µ̂ · ε̂R|g〉 , (5.17a)

µb ≡ 〈b|µ̂ · ε̂z|g〉 , (5.17b)

µc ≡ 〈c|µ̂ · ε̂L|g〉 , (5.17c)

and made the substitutions ER = Ea, Ez = Eb, and EL = Ec, for notational convenience.

Next we apply a unitary transformation to remove the dynamics due to Helec and move to
an interaction picture (see Appendix C.2). The appropriate unitary operator is

U = eiHelect/~. (5.18)

A function of a Hermitian operator may be written in terms of its eigenbasis [71, 171],

f(A) =
∑
j

f(aj) |aj〉 〈aj| , (5.19)

so we can write U as

U = |g〉 〈g|+ eiωat |a〉 〈a|+ eiωbt |b〉 〈b|+ eiωct |c〉 〈c| . (5.20)

The dynamics of the transformed state |ΨI〉 = U |Ψ〉 are governed by the Hamiltonian (see
Eq. (C.28))

HI = i~U̇U † + UHU †, (5.21)

where H is the (Schrödinger-picture) Hamiltonian given in (5.10). By design,

i~U̇U † = −Helec. (5.22)

The other part of the Hamiltonian consists of two terms (recalling that we assumed the
translational energy term is negligible):

UHU † = UHelecU
† − U

(
µ̂ ·E(r̂, t)

)
U †. (5.23)

The electronic Hamiltonian commutes with U , so UHelecU
† = Helec. However, the second

term is altered by the unitary operator because of the presence of the atomic raising and
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lowering operators. A little bit of algebra shows that they transform as

Uσ̂+
mU

† = σ̂+
me

iωmt, (5.24a)

Uσ̂−mU
† = σ̂−me

−iωmt. (5.24b)

Putting everything together, the interaction-picture Hamiltonian is:

HI = −1

2

[
σ̂+
a e

iωatµa

(
Ea(r̂)e−iωt + E∗c (r̂)eiωt

)
+ σ̂−a e

−iωatµ∗a

(
E∗a(r̂)eiωt + Ec(r̂)e−iωt

)
+
(
σ̂+
b e

iωbtµb + σ̂−b e
−iωbtµ∗b

)(
Eb(r̂)e−iωt + E∗b (r̂)eiωt

)
+σ̂+

c e
iωctµc

(
Ec(r̂)e−iωt + E∗a(r̂)eiωt

)
+ σ̂−c e

−iωctµ∗c

(
E∗c (r̂)eiωt + Ea(r̂)e−iωt

)]
. (5.25)

I shall make the following simplifying assumptions: firstly, that the excited states are degen-
erate (ωa = ωb = ωc); secondly, that the optical field is resonant with the atomic transition
frequencies (ω = ωm). Therefore HI becomes

HI = −1

2

[
σ̂+
a µa

(
Ea(r̂) + E∗c (r̂)e2iωt

)
+ σ̂−a µ

∗
a

(
E∗a(r̂) + Ec(r̂)e−2iωt

)
+ σ̂+

b µb

(
Eb(r̂) + E∗b (r̂)e2iωt

)
+ σ̂−b µ

∗
b

(
Eb(r̂)e−2iωt + E∗b (r̂)

)
+σ̂+

c µc

(
Ec(r̂) + E∗a(r̂)e2iωt

)
+ σ̂−c µ

∗
c

(
E∗c (r̂) + Ea(r̂)e−2iωt

)]
. (5.26)

Half of the terms in this Hamiltonian are stationary whilst the other half oscillate with
frequency ±2ω; we make the rotating wave approximation [170, 171] in which we neglect the
rapidly oscillating terms on the basis that, for time scales greater than ∼ ω−1, these terms
average to zero (for optical frequencies this means considering time scales greater than around
a femtosecond). We thus arrive at the rotating-wave interaction-picture Hamiltonian,

HRWA
I = −~

∑
m

[
Vm(r̂)σ̂+

m + V ∗m(r̂)σ̂−m
]
, (5.27)

where I have defined the Rabi frequencies [170, 171]

Vm(r̂) =
µmEm(r̂)

2~
, (5.28)

for m ∈ {a, b, c} (note that the repeated m index does not imply summation).



CHAPTER 5. HELICITY TRANSFER 95

We can now find the time-evolved state |Ψ(t)〉 (henceforth I will only deal with the state
in the interaction picture, so the subscript I is no longer necessary). I treat the dynamics
perturbatively, using a Dyson series expansion up to first-order in t [18, §4.2]. The perturbed
state can be written as |Ψ(t)〉 = ÛI(t, 0) |Ψ(0)〉, where ÛI(t, 0) is the interaction-picture
time-evolution operator (see Appendix C.2 and Eq. (C.23) in particular). The Dyson series
is an expansion of the form ÛI(t, 0) =

∑
n Û (n)

I (t, 0), where the nth term of the expansion
is of order n in both t and HRWA

I . By neglecting all but the zeroth- and first-order terms we
are necessarily limiting ourselves to a study of the dynamics for small t. To first order we
have [18]

ÛI(t, 0) ≈ Û (0)
I (t, 0) + Û (1)

I (t, 0)

= 1 +
1

i~

∫ t

0

dt1H
RWA
I (t1).

(5.29)

The rotating-wave Hamiltonian is time independent so the integral just gives HRWA
I t. The

perturbed state may thus be written as

|Ψ(t)〉 = |Ψ0〉+ |Ψ1〉 t, (5.30)

where |Ψ0〉 is the initial state (5.6) and

|Ψ1〉 =
1

i~
HRWA
I |Ψ0〉

= i |a〉Va(r̂) |ψ0〉+ i |b〉Vb(r̂) |ψ0〉+ i |c〉Vc(r̂) |ψ0〉

=
1

2~

∫
d3r |r〉

(
µa |a〉ψa(r) + µb |b〉ψb(r) + µc |c〉ψc(r)

)
,

(5.31)

where I have introduced the excited motional wave functions,

ψm(r) ≡ iEm(r)ψ0(r). (5.32)

We see that |Ψ(t)〉, unlike |Ψ(0)〉, cannot be written as a simple product state and thus we
have entanglement between the electronic and motional degrees of freedom. In particular,
the motional state of the atom at time t is intrinsically correlated to which transition the
electronic state makes: the state associated with the electronic transition |g〉 → |m〉 is ψm(r),
thus showing how the polarization structure of the optical field is imprinted onto the state
of the atom.
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Now that we are in possession of the perturbed state of the system, we turn our attention
to the fundamental question of this Chapter: what is the nature of helicity transfer between
the optical field and the atom? To answer this, we need to define a suitable measure of the
atomic helicity.

5.2 Defining a Measure of Atomic Helicity

5.2.1 Basic Idea

In particle physics, the helicity of an elementary particle is [76]

HPP =
J · P
|P |

,

where J and P are the angular and linear momenta of the particle (in Eq. (4.1) I definedHPP

in terms of the spin of the particle, but the two are equivalent for an elementary particle).
Taking this as a good starting point, we propose the expectation value

〈J · P 〉 (5.33)

as a measure of the atomic helicity, where J is the internal (electronic) angular momentum
operator and P is the motional (COM) linear momentum operator of the atom. In the
coordinate representation, P takes the form

P =
~
i
∇, (5.34)

∇ being the gradient operator with respect to the COM coordinates r.

It will be noted that the helicity (in particle physics and in optics) has the dimensions
of angular momentum, but this is not the case for 〈J · P 〉, which is essentially an ‘un-
normalized’ projection of the angular momentum onto the momentum. The reason I do not
take the expectation value of J · P /|P | instead is because the linear momentum operator,
having a continuous eigenspectrum, would be rather difficult to incorporate in this manner.
Thus we have opted for a measure which is as simple as possible, whilst still capturing the
essential physical (if not dimensional) features of atomic helicity. Ways in which we could
define a measure with the correct dimensions will be discussed later; for now I will call
〈J · P 〉 the atomic helicity.



CHAPTER 5. HELICITY TRANSFER 97

Because J · P is a Hermitian operator, its expectation value is real, and it represents, in
principle, an observable quantity. Hermiticity can be verified by writing the operator in the
expanded form

J · P = JxPx + JyPy + JzPz, (5.35)

and taking the Hermitian adjoint of each term,

(JiPi)
† = P †i J

†
i

= PiJi

= JiPi.

(5.36)

The second line follows from the Hermiticity of each operator separately, and the third line
from the fact that Ji and Pi commute as they act on separate state spaces.

To evaluate the expectation value, we must remember that |Ψ(t)〉 is in the interaction picture,
and therefore we must also transform the operator to obtain a meaningful quantity (which
is independent of the dynamical picture used). The necessary transformation is (see Eq.
(C.25))

(J · P )I = U(J · P )U †, (5.37)

with U given by (5.18), and the expectation value is therefore

〈J · P 〉 = 〈Ψ(t)|U(J · P )U †|Ψ(t)〉 . (5.38)

Strictly speaking this should be divided by 〈Ψ(t)|Ψ(t)〉, because |Ψ(t)〉 is not generally
normalized. However, 〈Ψ(t)|Ψ(t)〉 = 1 + 〈Ψ1|Ψ1〉 t2 ≈ 1, for t� 1, which is our assumption.

We have

〈Ψ(t)|U(J · P )U †|Ψ(t)〉 = (t 〈Ψ1|+ 〈Ψ0|)U(J · P )U †(|Ψ0〉+ |Ψ1〉 t)

= 〈Ψ0|U(J · P )U †|Ψ0〉+ 〈Ψ0|U(J · P )U †|Ψ1〉 t

+ 〈Ψ1|U(J · P )U †|Ψ0〉 t+ 〈Ψ1|U(J · P )U †|Ψ1〉 t2

= 〈Ψ0|J · P |Ψ0〉+ 〈Ψ0|J · P |Ψ1〉 te−iωt

+ 〈Ψ1|J · P |Ψ0〉 teiωt + 〈Ψ1|J · P |Ψ1〉 t2,

(5.39)

where I have used U † |Ψ0〉 = |Ψ0〉 and U † |Ψ1〉 = e−iωt |Ψ1〉 and their complex conjugates,
which are easily verifiable.
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To evaluate the above, we need to write J · P in a more computationally convenient form.
The ground and excited electronic states are, by assumption, eigenstates of J2 and Jz,

J2 |j,m〉 = ~2j(j + 1) |j,m〉 , (5.40a)

Jz |j,m〉 = ~m |j,m〉 , (5.40b)

but not of Jx and Jy. This means the expansion given above in Eq. (5.35),

J · P = JxPx + JyPy + JzPz,

is not particularly useful. To find a better form, we introduce the ladder operators,

J± = Jx ± iJy. (5.41)

Consider the effect of J+ on the states |j,m〉. It is easy to show that [J2, J±] = 0, and
therefore J2(J+ |j,m〉) = ~2j(j + 1)(J+ |j,m〉), i.e., J+ |j,m〉 is also an eigenstate of J2

with the same eigenvalue as |j,m〉. Similarly, we have [Jz, J±] = ±~J±, which we can use
to show that Jz(J+ |j,m〉) = ~(m + 1)(J+ |j,m〉). These results lead us to conclude that
J+ |j,m〉 ∝ |j,m+ 1〉. Similarly we find J− |j,m〉 ∝ |j,m− 1〉. Thus we write

J± |j,m〉 = ~β±jm |j,m± 1〉 , (5.42)

with the constants of proportionality being found to be [172]

β±jm =
√
j(j + 1)−m(m± 1). (5.43)

Noting that β+
j,j = 0 = β−j,−j, and recalling mmax = j, mmin = −j, we have the particularly

useful relations
J+ |j,mmax〉 = 0 = J− |j,mmin〉 . (5.44)

So, knowing how J± act on the states |j,m〉, a useful form for J · P is

J · P = J+P− + J−P+ + JzPz, (5.45)

where I have defined
P± =

1

2
(Px ± iPy). (5.46)
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The desired matrix elements are:

〈Ψ0|(J+P− + J−P+ + JzPz)|Ψ0〉 , (5.47a)

〈Ψ1|(J+P− + J−P+ + JzPz)|Ψ0〉 , (5.47b)

〈Ψ1|(J+P− + J−P+ + JzPz)|Ψ1〉 . (5.47c)

(〈Ψ0|J · P |Ψ1〉 is simply the complex conjugate of the second term.) The initial state is
|Ψ0〉 = |g〉 |ψ0〉, with |g〉 = |0, 0〉, and thus we have Jz |g〉 = 0, J± |g〉 = 0, the latter following
from (5.44). Therefore the first and second terms above vanish, and we are left with

〈J · P 〉 = 〈Ψ1|J · P |Ψ1〉 t2. (5.48)

As we are considering transitions from a spherically-symmetric ground state, we expect the
magnitudes of the transition dipole moments, |µm|, to be equal. Considering for definiteness
a hydrogen-like atom, it can be shown that: µa = µb = −µc = µ ∈ R. With these values
and some simple rearrangement we find that the expectation value may be written as

〈J · P 〉 =
t2µ2

4~
[
〈ψc|Pz|ψc〉 − 〈ψa|Pz|ψa〉

+
√

2
(
Re{〈ψb|Px|ψa〉 − 〈ψc|Px|ψb〉}+ Im{〈ψb|Py|ψa〉 − 〈ψc|Py|ψb〉}

)]
, (5.49)

where

〈ψm|Pj|ψn〉 =
~
i

∫ ∞
−∞

d3r E∗m(r)En(r)ψ∗0(r)
∂

∂xj
ψ0(r)

+
~
i

∫ ∞
−∞

d3r |ψ0(r)|2E∗m(r)
∂

∂xj
En(r), (5.50)

the indices m,n ∈ {a, b, c} and j ∈ {x, y, z}.

5.2.2 Examples

Now we wish to check whether our expression for the atomic helicity gives physically reason-
able results, for some elementary optical fields. To proceed, we need to consider a specific
form for ψ0(r). I shall choose a Gaussian wave packet of width σ centred on the position
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R0 [163],

ψ0(r) = Nexp

(
−|r −R0|2

2σ2

)
, (5.51)

which corresponds to the motional ground state of a harmonic potential, and can be closely
approximated by atom [107] and ion [173] traps.

Single plane wave. The optical helicity density for a monochromatic field of frequency
ω = ck0 is (4.17),

hm.c. =
ε0

2k0

Im{Ẽ · B̃∗}.

Let’s consider a single CP plane wave propagating in the z-direction with amplitude a,

Ẽ =
a√
2

(x̂± iŷ)eik0z, (5.52)

with + (−) corresponding to left (right) CP light. It is easily shown that

hLCP =
ε0

2ck0

|a|2 = −hRCP. (5.53)

For a LCP wave, Ea = 0 = Eb and Ec = aeik0z, so the only non-zero integral in the calculation
of the atomic helicity is 〈ψc|Pz|ψc〉, whilst for a RCP wave, only 〈ψa|Pz|ψa〉 does not vanish.
In either case, we have the integrals

~
i
|a|2

∫ ∞
−∞

d3r ψ∗0(r)
∂

∂z
ψ0(r) (5.54)

and
~
i
|a|2

∫ ∞
−∞

d3r |ψ0(r)|2e−ik0z ∂
∂z
eik0z. (5.55)

The integral in (5.54) vanishes, which can be appreciated by noting that the initial wave
packet (5.51) has zero average momentum. The integral in (5.55) can be easily evaluated
and we find

〈ψc|Pz|ψc〉 = ~k0|a|2 = 〈ψa|Pz|ψa〉 , (5.56)

which demonstrates the exchange of momentum from the optical plane wave to the atomic
COM in an absorption event, i.e., the recoil effect [168, 174]. The associated atomic helicity
is

〈J · P 〉LCP =
k0µ

2

4
|a|2t2 = −〈J · P 〉RCP . (5.57)
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Figure 5.1: The local optical helicity (5.60) arising from the two-wave superposition discussed
in the main text, for θ = π/12. Note that the helicity is scaled with respect to we/ω, and is
plotted with respect to the rotated axes (y′, z′).

We see that the signs of the atomic and optical helicities are the same, as we would hope.
They also both depend on |a|2, so that a more intense optical field will have a higher optical
helicity and will transfer, per second, more helicity to the atom. The time dependence of
the atomic helicity is to be expected, even though hm.c. is time independent, because 〈J · P 〉
is the expected value of the helicity at a particular time, which naturally increases with the
interaction time between light and atom. Of course, by my use of first-order TDPT, we are
necessarily considering small times.

For future reference, let’s define the ‘base values’ of the local optical and atomic helicities,
which correspond to their magnitudes for a single CP plane wave of unit amplitude:

h0 ≡
ε0

2ck0

, (5.58)

〈J · P 〉0 ≡
k0µ

2

4
t2. (5.59)

Helicity grating. Next, to gain more insight into the connection between the optical and
atomic helicities, let’s consider a helicity grating, i.e., a two-wave non-interfering superpo-
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sition with a spatially-varying optical helicity density. The specific setup I shall consider is
the one discussed in Chapter 2, recall Figure 2.3 and Eqs. (2.80),

k1 = k0ẑ, ε̂1 = ŷ,

k2 = −k0 sin 2θŷ + k0 cos 2θẑ, ε̂2 = x̂.

As in Chapter 2 we suppose that the two waves have equal amplitudes, a. The resulting
local optical helicity is found to be

hgrating = 2h0|a|2 cos2 θ sin
(
2k0 sin θy′

)
, (5.60)

where y′ = cos θy + sin θz. This optical helicity density is plotted in Figure 5.1.

The derivation of the atomic helicity is quite simple but rather lengthy, and it is thus
relegated to the Appendix D.3. The result is

〈J · P 〉grating = 2 〈J · P 〉0 |a|
2 cos2 θ sin

(
2k0 sin θY ′0

)
× e−k20σ2 sin2 θ, (5.61)

where Y ′0 = cos θY0+sin θZ0. This looks remarkably similar to the local optical helicity (5.60);
in particular, it has the exact same spatial variation, but note that the atomic helicity is a
function of R0, i.e., the position of the centre of the atomic wave packet.

An important feature of this result is the appearance of the final term in (5.61), which shows
that 〈J · P 〉 is dependent on the width of the atomic wave packet, σ. This dependence is due
to the inherently quantum-nature of the atomic motion, and the fact that the atom cannot
be localized with absolute certainty. This feature was not evident for the single plane wave,
because in that case the local optical helicity is spatially independent. This result tells us
that the atom is not a perfect detector of local optical helicity, and that it will always in fact
detect a spread of values, rather than just the optical helicity at the point R0.

If we consider the so-called Lamb-Dicke regime [173, 175, 176], then the atom is localized to
a scale much smaller than wavelength, k0σ � 1, and the effect of the term exp

(
−k2

0σ
2 sin2 θ

)
becomes negligible. Typical values of σ, for relatively small trapped ions, are on the order
of 10 nm [173, 177], so for optical wavelengths (∼ 500 nm) the Lamb-Dicke regime is easily
achievable. Note that being in the Lamb-Dicke regime is not necessarily a requirement for
using the ED approximation, because the former is related to the size of the motional wave
function with respect to the optical wavelength, whilst the latter is related to the size of the
electronic wave function. In Figure 5.2 I plot the atomic helicity for two different values of
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(a) σ/λ = 0.01 (b) σ/λ = 0.2

Figure 5.2: Plots of the atomic helicity (5.61), divided by |a|2 〈J · P 〉0. These plots show the
helicity detected by the atom when placed at points (Y ′0 , Z

′
0) in the ‘helicity grating’ (5.60),

for θ = π/12. In (a) we see the atomic helicity which would be detected at each point when
σ = 0.01λ, which is well within the Lamb-Dicke regime (k0σ � 1), whilst in (b) we see the
atomic helicity detected when σ = 0.2λ. We observe, as expected, that the helicity pattern
in (b) is ‘washed out’ as compared to (a). The dashed red contours show the lines on which
the (scaled) atomic helicity equals the randomly chosen value of ±0.83. In (b) the values of
±0.83 are close to the maxima and minima of the detected atomic helicity, whereas in (a)
they are much further removed from the brightest and darkest regions, clearly demonstrating
how the size of the atomic wave packet influences the atom’s ability to detect local optical
helicity.

the ratio σ/λ (λ = 2π/k0 being the optical wavelength).

The correlations between the local optical and atomic helicities found above led us to believe
that the connection between the two must be a deep one. In the next Subsection I demon-
strate that this is the case, by showing that the general expression for the atomic helicity
can be written directly in terms of the local optical helicity.
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5.2.3 General Expression

Using (5.5) to write the circular components Em back in terms of their Cartesian counterparts
allows us, after some simplification, to write the atomic helicity (5.49) as

〈J · P 〉 = i
t2µ2

4~
[
〈ψz|Px|ψy〉 − 〈ψy|Px|ψz〉

+ 〈ψx|Py|ψz〉 − 〈ψz|Py|ψx〉+ 〈ψy|Pz|ψx〉 − 〈ψx|Pz|ψy〉
]
. (5.62)

The terms in the square brackets can be combined into a single integral,

I =
~
i

∫ ∞
−∞

d3r ψ∗0(r)

[
E∗z (r)

∂

∂x
(Ey(r)ψ0(r))− E∗y (r)

∂

∂x
(Ez(r)ψ0(r))

+ E∗x(r)
∂

∂y
(Ez(r)ψ0(r))− E∗z (r)

∂

∂y
(Ex(r)ψ0(r))

+E∗y (r)
∂

∂z
(Ex(r)ψ0(r))− E∗x(r)

∂

∂z
(Ey(r)ψ0(r))

]
. (5.63)

Applying the product rule to the derivatives we can write this as I = I1 + I2, where

I1 = −~
i

∫ ∞
−∞

d3r ψ∗0(r)

[
(E∗y (r)Ez(r)− Ey(r)E∗z (r))

∂

∂x

+ (Ex(r)E∗z (r)− E∗x(r)Ez(r))
∂

∂y

+(E∗x(r)Ey(r)− Ex(r)E∗y (r))
∂

∂z

]
ψ0(r) (5.64)

and

I2 =
~
i

∫ ∞
−∞

d3r |ψ0(r)|2
[
E∗z (r)

∂

∂x
Ey(r)− E∗y (r)

∂

∂x
Ez(r)

E∗x(r)
∂

∂y
Ez(r)− E∗z (r)

∂

∂y
Ex(r)

+E∗y (r)
∂

∂z
Ex(r)− E∗x(r)

∂

∂z
Ey(r)

]
. (5.65)

This is looking more complicated than what we had before, but as I shall show, both of these
terms can be significantly simplified.

First, notice that the integrand of I2 contains the term Ẽ∗ · (∇× Ẽ). Then using Maxwell’s
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equation (B.1d), which for a monochromatic field reduces to

∇× Ẽ = iωB̃, (5.66)

we have
I2 = ~ω

∫ ∞
−∞

d3r ψ∗0(r)
(
Ẽ∗(r) · B̃(r)

)
ψ0(r). (5.67)

Next, it is instructive to recall the form of the (electric) spin density for a monochromatic
field (2.76),

se =
ε0

2iω
Ẽ∗ × Ẽ,

the components of which are:

sxe =
ε0

2iω
(E∗yEz − EyE∗z ), (5.68a)

sye =
ε0

2iω
(ExE∗z − E∗xEz), (5.68b)

sze =
ε0

2iω
(E∗xEy − ExE∗y ). (5.68c)

Thus analysing the integrand of I1, Eq. (5.64), we see that it contains the term (2iω/ε0)se ·∇.

Putting everything back together, we can write the atomic helicity as

〈J · P 〉 = i
t2µ2ω

4

∫ ∞
−∞

d3r

[
ψ∗0(r)

(
Ẽ∗(r) · B̃(r)

)
ψ0(r)− 2

ε0

se(r) · ψ∗0(r)∇ψ0(r)

]
.

(5.69)
A useful ‘trick’ is to note that 〈J · P 〉 is real (recalling that J · P is Hermitian), so

〈J · P 〉 =
1

2

[
〈J · P 〉+ 〈J · P 〉∗

]
. (5.70)

Therefore 〈J · P 〉 can be written in the final, general form

〈J · P 〉 =
t2µ2ck0

2ε0

∫ ∞
−∞

d3r

[
k0ψ

∗
0(r)hm.c.(r)ψ0(r) + se(r) · j0(r)

]
. (5.71)

The first term in the integrand contains the the local optical helicity (4.17), thus confirming
the explicit connection between the atomic and optical helicities in light-matter interactions.
In the second term, we see a dependence on the local electric spin, se, which couples to

j0 ≡
1

2i
(ψ∗0∇ψ0 − ψ0∇ψ∗0) , (5.72)
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which is highly reminiscent of the probability current from quantum mechanics (2.100) [104].
In the examples considered above, we did not observe this coupling, because j0 = 0 for the
Gaussian wave packet (5.51). The relevance of this term to an atomic helicity measurement
can be made clearer if we consider a wave packet of the form

φ0 = ψ0e
iq·r, (5.73)

with ψ0 the Gaussian wave packet (5.51). We then find∫ ∞
−∞

d3r se(r) · j0(r) =

∫ ∞
−∞

d3r q · se(r) |φ0(r)|2. (5.74)

This is the expectation value of the projection of the local spin AM onto the momentum
(divided by ~) of the atom in the motional state |φ0〉, making the connection with the atomic
helicity 〈J · P 〉 more natural than it might appear at first glance.

5.2.4 Atomic Helicity Measures with the Correct Dimensions

As I mentioned earlier, the ‘atomic helicity’ I have defined above does not have the dimensions
which are usually associated with a helicity. We have seen, nonetheless, that 〈J · P 〉 is
closely connected to the optical helicity in light-matter interactions, somewhat justifying
this simple choice. It would still be preferable, however, if we could define a measure of
the atomic helicity which does have the correct dimensions, i.e., the dimensions of angular
momentum.

Some very simple approaches to achieving this include dividing 〈J · P 〉 by the linear mo-
mentum of the optical field per photon, ~k0, or dividing by the magnitude, | 〈J · P 〉 |, and
multiplying by ~. Whilst these are satisfactory from a dimensional point of view, both seem
a bit artificial. Two different possibilities, which come closer to the helicity as defined in
particle theory, are

HA =
〈J · P 〉√
〈P 〉 · 〈P 〉

, (5.75)

and
HB =

〈J · P 〉√
〈P · P 〉

, (5.76)

which I shall call ‘type A’ and ‘type B’, respectively. Once again 〈·〉 denotes an expectation
value with respect to |Ψ(t)〉. A simple calculation shows that HA = ±~ for a single CP
plane wave, which is a very appealing result. However, we may wish to discount type A
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as a contender because it is not suitable for all monochromatic fields. In particular, one
can easily show that in certain optical fields, e.g., a counterpropagating superposition of
two waves with equal amplitudes, 〈P 〉 = 0, and thus HA is singular. It might be that
the momentum has a zero expectation value when considered over all space, but that some
physically relevant regions possess non-zero momentum. One way to avoid the singularity
issue, whilst retaining the intuitive results which type A gives for a plane wave, might be to
consider the density of the momentum instead. This is something I shall consider in more
detail in future work.

Type B does not lead to such a pleasingly simple result for a single plane wave, and I am yet to
derive a ‘nice’ expression for it in terms of physically intuitive quantities. Crucially however,
HB does not suffer from the same flaw as HA, that is, it should never be singular. This
follows from noting the relationship between the denominator and the standard deviation,

〈P · P 〉 = (∆P )2 + 〈P 〉2 . (5.77)

As we are interested in the dynamics of a recently trapped atom, that is, a highly localized
atom, it will necessarily have a non-zero standard deviation in its momentum, and thus even
if 〈P 〉2 = 0, 〈P · P 〉 will be non-zero. In future work, I will consider the features of this
type of atomic helicity measure in more detail.

In the next Section, I summarize the results obtained in this Chapter, and discuss possible
avenues for future research.

5.3 Summary

In the preceding Sections, I have defined a measure of the atomic helicity, 〈J · P 〉, and ex-
amined its dependence on the local optical helicity in light-atom interactions. After showing
the connections between the atomic and optical helicities in some simple examples, I have
derived a general expression for 〈J · P 〉, Eq. (5.71), which shows explicitly that, in the inter-
action between a monochromatic optical field and an atom, the helicity is transferred from
field to atom. However, as was clearly shown in the second example above, the helicity which
is ‘detected’ by the atom is not exactly the local optical helicity, but instead, due to the finite
width of the atomic wave packet, a spread of values. In the case of the helicity grating with
an atom in a Gaussian motional state, this led to the modulation of the detected helicity by
an exponential factor which depends on k0σ. In the experimentally-realizable Lamb-Dicke
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regime (k0σ � 1), the effects of this exponential scaling will be minimal, and the atom will,
essentially, act as a detector of the local optical helicity. All of this information is contained
in the first term of (5.71), which is an integral over the optical helicity density and the
probability density of the motional wave function,∫ ∞

−∞
d3r hm.c.(r) |ψ0(r)|2,

which may be interpreted as the expectation value of hm.c.(r̂) for the initial state |ψ0〉. We
also found that the general expression for 〈J · P 〉 contains a second term, which depends
on the electric spin density of the optical field and the ‘probability current’ (5.72). The
presence of this term was something of a surprise, because in the examples I considered
explicitly j0 = 0, and thus only the optical helicity density was detected. I have shown that
for an atom in an initial motional state with non-zero (average) momentum, this additional
term can be cast in a form which makes its association with a measure of the atomic helicity
more natural. One interesting thing to note is that, usually, the optical helicity appears in
connection with chiral light-matter interactions, which necessarily require a consideration of
the electric dipole and higher-order multipole moments (specifically, the magnetic dipole or
electric quadrupole terms). In my analysis, I have shown that the optical helicity can play
a role in light-matter interactions even within the electric-dipole approximation, which may
be due to the consideration of both the internal and external degrees of freedom.

My chosen measure of the atomic helicity does not have the dimensions of angular momen-
tum, and I have discussed how it could be modified to create a measure with the correct
dimensions. I considered two possibilities, (5.75) and (5.76), which seem reasonable, but
found that the first, ‘type A’, can lead to a singular and thus unsatisfactory result for some
optical fields. On the other hand, ‘type B’ is never singular and is thus preferable. Future
work will involve a more detailed analysis of this particular atomic helicity measure.

It would also be interesting going forward to try and experimentally verify the results of this
Chapter. We note again that, because J · P is a Hermitian operator, it is in principle an
observable. Whilst it is not easy to see how we could make a direct measurement of this
quantity, it may be able to be reconstructed from indirect measurements, and experiments
on the influence of structured light on the COM motion of single ions have recently been
performed [177]. Although I have considered here a hydrogen-like atom, it is more likely
that an actual experiment would use a singly-ionized alkaline earth metal, such as Be+ or
Ca+, which are routinely prepared in single-ion traps [173, 177]. The present analysis should
not require too much modification for such ions, as they only have a single valence electron.
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This work could also be extended in a number of interesting ways, one possibility being
to include in the analysis different types of atomic helicity. It is well-known, for instance,
that the orbital AM of a paraxial beam couples to the external (COM), rather than the
internal, atomic degrees of freedom in the dipole approximation [10, 178, 179]. We might
therefore be able to define a measure of atomic helicity which takes into account the COM
angular momentum (whereas I have considered the internal, electronic AM of the atom).
By taking into account both of these mechanisms, a truly comprehensive understanding of
helicity exchange between light and atoms would be possible.



CHAPTER 6

Conclusion

In this Thesis I have considered various aspects of two pillars of structured light research:
optical angular momentum and optical chirality, focussing in particular on the theoretical
foundations of optical spin and optical helicity. I have also presented several original results,
which I summarize below.

Firstly, I have presented derivations of two existing results which have previously been con-
sidered from the classical or semi-classical perspectives, using an alternative approach based
on the molecular QED formalism. Specifically, in Section 3.2 I showed that the Faraday
effect may be treated as a two-state quantum process, resulting from forward Rayleigh
scattering between orthogonal modes of the quantized field. The essential features of the
approach I have developed here are applicable to all molecular QED problems involving ex-
ternal perturbations, even when the molecules are degenerate, a feature which was missing
from previous treatments of similar problems. In the future I will extend my derivation to
the mechanical Faraday effect. In Section 4.4, I derived the enantioselective energy split-
ting of a chiral molecule in a monochromatic field consisting of two plane waves, showing
that the helicity-dependent optical force experienced by a chiral molecule has its origins in
fundamental photonic interactions.

In Section 2.3, I discussed local optical spin structures in non-interfering superpositions of
plane waves. By examining two specific examples, I showed that the physically-distinct
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electric and magnetic spin densities, which possess identical behaviour in a plane wave or
paraxial beam, can exhibit highly interesting and diverging behaviours in more structured
fields. The complexity of these spin structures appears to increase with the number of plane
waves and their non-paraxiality. I also discussed the connections between the spin densities
and the optical forces and torques experienced by subwavelength particles. These connec-
tions suggest that non-interfering superpositions, with their non-trivial spin structures, could
provide an important platform for exploring novel light-matter interactions. This is rein-
forced by the realization that the homogeneous intensity profile of these optical fields means
that the often dominant electric gradient force vanishes, meaning other more interesting
optical forces can come to the fore.

In Chapter 5, I presented my work on the transfer of optical helicity to a single hydrogen-
like atom. While it is well established that the helicity influences optical interactions with
chiral molecules, the primary motivation behind this work was to increase our fundamental
understanding of how optical helicity interacts with matter at the atomic level. A practical
application of studying the helicity transfer to atoms could be the development of alternative
approaches for experimentally probing the local helicity of an optical field. In my analysis, I
worked within the semi-classical framework of light-matter interactions, and the key to my
findings is the full consideration of both the internal and external degrees of freedom of the
atom. After defining a suitable atomic helicity measure, by analogy with the helicity from
particle physics, I examined the connections between this and the optical helicity in some
simple examples, which suggested a correlation between the two. This connection was then
explicitly demonstrated by considering the interaction with an arbitrary monochromatic
field. The result showed that the optical helicity is indeed transferred to an atom in light-
matter interactions, but imperfectly, in the sense that the inherently quantum nature of the
(external) atomic motion means that the atom does not perfectly detect the local optical
helicity, but a spread of values, which is directly related to the spread of the atomic wave
packet. We also found the somewhat surprising result that if an atom with a non-zero
probability current is considered, then the atomic helicity depends not just on the optical
helicity density, but also on the local electric spin. In future work, it would be interesting
to extend this analysis to include AM transfer from the optical field to the external motion
of the atom, as can be achieved with a Laguerre-Gaussian beam.



Appendices

112



APPENDIX A

Mathematics

A.1 Delta Functions

The one-dimensional Dirac delta ‘function’ is defined via the relation [18, 64]∫ ∞
−∞

dx f(x)δ(x− x′) = f(x′). (A.1)

Similarly, for the three-dimensional delta function δ(r− r′) ≡ δ(x−x′)δ(y− y′)δ(z− z′), we
have ∫ ∞

−∞
d3r f(r)δ(r − r′) = f(r′). (A.2)

The derivative of the Dirac delta function is defined by applying integration by parts [18, 64],∫ ∞
−∞

d3r f(r)∂jδ(r − r′) = −
∫ ∞
−∞

d3r δ(r − r′)∂jf(r) = −∂jf(r′), (A.3)

where ∂j = ∂
∂xj

. It is important to always keep in mind that the delta function and its
derivative are only meaningful quantities when they appear in an integrand.

The Helmholtz theorem tells us that an arbitrary vector field V (r) (assuming its divergence
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and curl vanish at infinity [64, p. 97]) may be written as the sum

V (r) = V⊥(r) + V‖(r), (A.4)

where V‖(r) is a longitudinal (curl-free) vector field and V⊥(r) is a transverse (divergence-
free) vector field:

∇ · V⊥(r) = 0, ∇× V‖(r) = 0. (A.5)

In electrodynamics we are often physically interested in the splitting of a vector field (e.g.,
the electric field) into its transverse and longitudinal components. For these purposes it is
useful to define the transverse and longitudinal delta functions [18, 20], which ‘pick out’ the
transverse and longitudinal parts of a vector field:∫ ∞

−∞
d3r Vj(r)δ⊥ij(r − r′) = V ⊥i (r′), (A.6a)∫ ∞

−∞
d3r Vj(r)δ

‖
ij(r − r′) = V

‖
i (r′). (A.6b)

Note that δ⊥ij(r)+ δ
‖
ij(r) = δijδ(r), where δij is the Kronecker delta. Explicit representations

of the transverse and longitudinal delta functions, in real and Fourier space, can be found
in [18, §3.1].

A.2 Cylindrical Coordinates

Following Arfken and Weber [64, §2.4], the cylindrical coordinates are (ρ, ϕ, z) and take the
values

0 ≤ ρ <∞, 0 ≤ ϕ < 2π, −∞ < z <∞.

The Cartesian coordinates (x, y, z) are related to (ρ, ϕ, z) by

x = ρ cosϕ, y = ρ sinϕ, z = z. (A.7)

The Cylindrical unit vectors (ρ̂, ϕ̂, ẑ) are related to the Cartesian unit vectors (x̂, ŷ, ẑ) via

ρ̂ = cosϕx̂ + sinϕŷ, (A.8a)

ϕ̂ = − sinϕx̂ + cosϕŷ, (A.8b)

ẑ = ẑ. (A.8c)
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The unit vectors are mutually orthogonal. We have the cross products

ẑ× ρ̂ = ϕ̂, ϕ̂× ẑ = ρ̂, ρ̂× ϕ̂ = ẑ. (A.9)

A generic vector V can be written as V = Vρρ̂+ Vϕϕ̂+ Vzẑ. Position vectors on the other
hand are given by

r = ρρ̂+ zẑ. (A.10)

In cylindrical coordinates the gradient operator takes the form

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z
. (A.11)

The volume element dV ≡ d3r in cylindrical coordinates is

dV = ρdρdϕdz. (A.12)

A.3 Cartesian Tensors

A scalar is a physical quantity defined by a single number, its magnitude, which is inde-
pendent of our chosen coordinate system. A vector is a physical quantity defined by both a
magnitude and a direction, thus requiring three numbers in three-dimensional space. Math-
ematically, scalars and vectors are rank-0 and rank-1 Cartesian tensors, respectively. A
Cartesian tensor of rank m is a mathematical object, T , which in N -dimensional space is
specified by Nm numbers, called its components. The components depend explicitly on our
choice of coordinate system, which I will always choose to be a set of Cartesian axes {x, y, z}.
In index notation the tensor T may be written as Ti1i2...im , where each index may take the
value x, y, or z (equivalently 1, 2, or 3).

The defining feature of Cartesian tensors is how their components transform under rotations
[24, 57, 64]. In particular, we are interested in arbitrary rotational transformations between
the Cartesian coordinate systems {x, y, z} and {x′, y′, z′}, which have a common origin O =

O′. Here I have implicitly assumed the passive approach, in which the physical quantity
under consideration, e.g., the position of a particle, is left unchanged, whilst the frame of
reference which this quantity is referred to is transformed. Alternatively we could take
the active approach [57, p. 268], in which the physical quantity is transformed and the
coordinate system left the same (see Figure A.1). Under a passive rotational transformation
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Figure A.1: ‘Passive’ vs ‘active’ approach to transformations. A vector OP is shown on the
left with respect to coordinate axes {x, y, z}, with corresponding unit vectors x̂, ŷ, ẑ. In this
coordinate system the vector is described by (xP , yP , 0). On the top right is the same vector
described in a new coordinate system {x′, y′, z′}, which is related to the original system by
a clockwise rotation about the Oz-axis by an angle θ. In the new coordinate system, OP
is described by (x′P , y

′
P , 0). On the bottom right the vector OP is rotated anti-clockwise

about the Oz-axis by an angle θ, resulting in the transformed vector OP ′ 6= OP . In the
original coordinate system, {x, y, z}, the new vector is described by (xP ′ , yP ′ , 0). These two
transformations are equivalent, in the sense that x′P = xP ′ , y′P = yP ′ .

of the aforementioned type, the components of a vector V transform as [24, Ch. 4]

Vi′ = `i′kVk, (A.13)

where Vk is the component of V relative to the kth axis (original reference frame), Vi′ is the
component relative to the i′ th axis (rotated reference frame), and `i′k is the direction cosine
between the two axes, defined in terms of the unit vectors êi′ and êk:

`i′k ≡ êi′ · êk. (A.14)

In (A.13), and all similar equations, I employ the summation convention in which all repeated
indices are summed over. The inverse transformation is

Vk = `ki′Vi′ . (A.15)
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These equations highlight the importance of distinguishing between a vector V and its com-
ponents: the former is a frame-independent physical quantity, whilst the latter are explicitly
tied both to the physical quantity and the coordinate system. The rotational transformation
laws for higher-rank tensors follow simply from the rank-1 case.

What I have discussed so far are the so-called ‘proper’ rotations. Tensors can also be classified
according to their behaviour under ‘improper’ rotations. Improper rotations combine proper
rotations with spatial reflections and inversions [64, §2.9]. The space inversion operation
corresponds to a transformation to new coordinate axes defined by the unit vectors x̂′ = −x̂,
ŷ′ = −ŷ, ẑ′ = −ẑ. Taking the position vector r as a prototypical example, it is easily seen
that under spatial inversion its components transform as

xi′ = −δi′kxk = −xi. (A.16)

Again, because we are considering passive transformations, the vector r is unchanged. Any
rank-1 tensor whose components reverse sign when we transform to the space inverted co-
ordinate system is called a polar vector, or simply a vector [24, 57]. Not all rank-1 tensors
which transform under proper rotations according to (A.13) are polar vectors. This can be
seen by considering the cross product U = V ×W , where V andW are polar vectors. The
components of U transform under space inversion according to

Ui′ = +δi′kUk = Ui. (A.17)

Any rank-1 tensor whose components are the same in the original and the space inverted
coordinate systems is called an axial vector, or a pseudovector [24, 57]. For an axial vector,
the transformation law (A.13) requires modification to take into account improper rotations
[24],

Ui′ = det(Λ) `i′kUk, (A.18)

where det(Λ) is the determinant of the matrix Λ with entries `m′n. For a proper rotation,
det(Λ) = +1, whilst for an improper rotation det(Λ) = −1 [57].

Two types of rank-0 tensor can also be distinguished when improper rotations are involved.
Firstly we have the true scalars, which may be formed from the dot product of two polar
vectors or two axial vectors, and which do not change sign under space inversion. On the
other hand, a rank-0 tensor formed from the dot product of a polar vector with an axial
vector does change sign under space inversion, and these are referred to as pseudoscalars
[24]. Polar vectors and pseudoscalars are said to have odd parity, whilst axial vectors and
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scalars have even parity [57, 64].

The final spacetime transformation which is useful to consider is the time reversal operation,
which corresponds to the replacement t→ t′ = −t [19, 24, 57]. The effect on the components
of a coordinate vector is xi(t) → x′i(t

′) = +xi(t), whilst velocity components transform as
vi(t) → v′i(t

′) = −vi(t) [24]. All known classical equations of motion are form-invariant
under time reversal. A tensor which transforms in the same way as xi under time reversal,
i.e., W → W ′ = +W , is said to be a time-even quantity, whilst a quantity which transforms
as W → W ′ = −W , like a velocity, is said to be time-odd.



APPENDIX B

Classical Electrodynamics

B.1 Maxwell’s Equations

B.1.1 Macroscopic Equations

Maxwell unified, and extended, the pre-existing ‘laws’ of electromagnetism, providing a single
theoretical framework for electricity, magnetism, and optics [180]. His equations predate the
modern consensus on the atomic nature of matter and are thus naturally expressible in a
macroscopic form. They can be grouped into four differential equations describing the vector
fields E ≡ E(r, t), B ≡ B(r, t), D ≡ D(r, t), H ≡ H(r, t), J ≡ J(r, t), and the scalar
field η ≡ η(r, t). Using this notation the Maxwell equations are expressible in the differential
form [57, 62]

∇ ·D = η, (B.1a)

∇×H − Ḋ = J , (B.1b)

∇ ·B = 0, (B.1c)

∇×E + Ḃ = 0. (B.1d)
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An overdot is used to indicate partial differentiation with respect to time, and the depen-
dences on r and t have been suppressed for notational clarity.

The fields J and η are the macroscopic densities of free current and charge, respectively.
Their forms are set by the physical situation under consideration and once set they act as
boundary conditions for the determination of the other four vector fields. The charge and
current densities themselves are linked through a ‘charge continuity equation’

η̇ +∇ · J = 0, (B.2)

which expresses the local conservation of the total charge in a system. It should be noted
however that this equation is not actually independent from the Maxwell equations [62].

Examining the homogeneous Maxwell equations (B.1c) and (B.1d) it is evident that they
can be solved formally by the introduction of appropriate functions A and Φ, known as
the vector and scalar potentials respectively (to be discussed further in §B.2). Furthermore
it is clear that these two equations permit non-trivial solutions for E and B even in free
space, i.e., in the strict absence of charge. We can choose to associate these two vector
fields with the electromagnetic forces exerted on charges and currents, a choice which is
compatible with Maxwell’s equations and experiment [62]. Given these considerations we
call E the electric field and B the magnetic field. On the other hand the inhomogeneous
Maxwell equations (B.1a) and (B.1b) are not solvable without imposing some conditions on
the vector fields D and H , as (B.1a) and (B.1b) actually represent four equations for six
unknowns. To proceed we introduce the so-called constitutive relations between these fields
and the electric and magnetic fields E and B:

D = D[E,B], H = H [E,B]. (B.3)

The particular form of these relations depends on the medium that the fields are being
considered in.

In free space the constitutive relations are very simple

D = ε0E, H = µ−1
0 B, (B.4)

where ε0 is the electric permittivity and µ0 the magnetic permeability of free space. In SI
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units these are related to the speed of light in vacuum, c, via

c =
1

√
ε0µ0

. (B.5)

If a material is linear, isotropic, and homogeneous then constitutive relations identical in
form to the free space ones exist for that material, but with ε0 and µ0 replaced by the
permittivity of the material, ε, and its permeability, µ. The majority of materials can be
accounted for by relaxing the isotropic and homogeneous constraints but retaining linearity.
In these cases ε and µ are tensors which might be functions of r (amongst other things
[181]).

An alternative way to link the fields is by using additive relations of the form:

D = ε0E + P , (B.6a)

H = µ−1
0 B −M , (B.6b)

where P is the (electric) polarization field and M is the magnetic polarization or magne-
tization field, which by definition account for the material’s response to the electric and
magnetic fields. For a linear, isotropic medium we must have [182]

P = ε0χeE, (B.7)

with χe = εr − 1 the electric susceptibility and εr = ε/ε0 the relative permittivity of the
material. As with the permittivity the susceptibility can be generalised to a tensor for
anisotropic media. Similar arguments follow for the magnetization.

B.1.2 Microscopic Equations

As mentioned above, the Maxwell equations were formulated before the definite existence
of atomic and subatomic particles was established and as such the electromagnetic theory
outlined thus far is intrinsically macroscopic. However, as nature is composed of elementary
charged particles and the atoms and molecules formed by them, an intrinsically microscopic
form of Maxwell’s equations also exists which is capable of reproducing the macroscopic
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theory defined by (B.1a)–(B.1d). The microscopic equations are [18, 20, 57]

ε0∇ · e = ρ, (B.8a)

µ−1
0 ∇× b− ε0ė = j, (B.8b)

∇ · b = 0, (B.8c)

∇× e+ ḃ = 0, (B.8d)

where e, b, ρ, and j are the microscopic electric field, magnetic field, charge density, and
current density, respectively. Note that the microscopic equations are not just the macro-
scopic equations in the absence of polarization and magnetization fields, because e 6= E.
Rather E = 〈e〉 and B = 〈b〉, where 〈·〉 denotes a statistical averaging. Detailed discussions
of how to go from e to E etc., can be found in [57, 182].

The microscopic charge and current densities are not continuous functions of space (as is
required of η and J) because, by assumption, we are considering a collection of point charges.
Therefore the densities will be zero everywhere except at the positions of the particles, where
they are infinite. They are therefore defined via [18, 20, 57]

ρ(r, t) =
∑
α

eαδ(r − qα(t)) (B.9)

and
j(r, t) =

∑
α

eαvα(t)δ(r − qα(t)), (B.10)

where δ(r) is the three-dimensional Dirac delta function (see Appendix A.1) and eα, qα, and
vα ≡ q̇α are the charge, position and velocity of particle α. The total charge is given by∫

d3r ρ(r, t) =
∑
α

eα ≡ q. (B.11)

The Maxwell equations describe the dynamics of the fields but not the charges. For particle
speeds much less than the speed of light (|vα| � c), the equation of motion for a charged
point particle in the presence of EM fields is given by the Lorentz force law [20, 57]

mαv̇α = eα(e(qα) + vα × b(qα)). (B.12)

The Lorentz force for an arbitrary charge and current distribution (microscopic or macro-
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scopic) may be written as [62]

F =

∫
V

d3r

[
ηE + J ×B

]
. (B.13)

The classical microscopic formulation outlined here is the starting point for my discussion
of molecular quantum electrodynamics in Chapter 3.

B.2 Gauge Invariance

It was mentioned in the previous section that the homogeneous Maxwell equations (B.1c) and
(B.1d) can be formally solved by the introduction of a (magnetic) vector potential, A(r, t),
and an (electric) scalar potential, Φ(r, t). These are defined in relation to the electric and
magnetic fields via

B = ∇×A, (B.14a)

E = −Ȧ−∇Φ, (B.14b)

which make use of the vector calculus identities ∇ · (∇ × A) ≡ 0 and ∇ × ∇Φ ≡ 0 for
any A and Φ. Similarly the homogeneous microscopic Maxwell equations can be solved by
introducing the corresponding microscopic potentials, denoted by a and φ.

The potentials are not uniquely defined, because the same E and B are produced by the
potentials {A′,Φ′} as are produced by {A,Φ}, so long as A′ = A+∇χ and Φ′ = Φ− χ̇, for
any χ(r, t). The transformations

A→ A′ = A+∇χ, (B.15a)

Φ→ Φ′ = Φ− χ̇, (B.15b)

are called gauge transformations and the Maxwell equations, and thus electromagnetism,
exhibit gauge invariance. We are therefore free to choose the gauge we work with, and the
usefulness of working with the potentials in place of the fields is precisely due to this freedom.

The Helmholtz theorem (as discussed in Appendix A.1) tells us that the vector potential
can be written in the form

A = A⊥ +A‖,



APPENDIX B. CLASSICAL ELECTRODYNAMICS 124

where A⊥ is a divergence-free (solenoidal) vector field,

∇ ·A⊥ = 0, (B.16)

and A‖ is a curl-free (irrotational) field,

∇×A‖ = 0. (B.17)

I call A⊥ the transverse component and A‖ the longitudinal component of the vector poten-
tial. Clearly the curl of any vector field is transverse and the divergence of any scalar field is
longitudinal (this reasoning was already used in defining the potentials) and indeed we can
define functions V and w such that [64, §1.16]

A⊥ = ∇× V ,

A‖ = ∇w.

The point of this mathematical digression is to note that the magnetic field, being transverse,
is independent of the longitudinal part of the vector potential, i.e.,

B ≡ B⊥ = ∇×A⊥, (B.18)

whilst the electric field can be decomposed into transverse and longitudinal components,
written in terms of the potentials as

E⊥ = −Ȧ⊥, (B.19a)

E‖ = −Ȧ‖ −∇Φ. (B.19b)

Re-examining the gauge transformation (B.15) we see that the vector potential is altered
by the addition of ∇χ, which as we have just discussed is itself a longitudinal vector field.
Therefore in changing from one gauge to another we alter the forms of Φ and A‖, but not
A⊥, which is uniquely defined by (B.19a) and (B.18). Therefore the transverse component
of the vector potential is gauge independent.

Given the gauge-invariance of A⊥, the statement of a gauge is often just a statement of the
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value of ∇ ·A ≡ ∇ ·A‖. One common choice is the Lorenz gauge1 [20, 57]

∇ ·A = − 1

c2
Φ̇. (B.20)

This choice is particularly useful in relativistic electrodynamics because it is inherently
Lorentz covariant [20, 184]. Another choice is the Coulomb gauge, which I will make much
use of in Chapter 3, and is defined by [18, 57]

∇ ·A = 0. (B.21)

B.3 Multipole Moments

At the length scales commonly encountered in our everyday lives, molecules can reasonably
be thought of as point particles. However, a neutral molecule would be a very boring thing if
it were truly a point particle; the fact that molecules are not point particles is the entire basis
for light-molecule interactions. These interactions arise through couplings between the EM
fields and the molecular multipole moments. The multipole expansion is therefore a crucial
tool in developing a (microscopic) picture of light-molecule interactions. The multipole series
can be formulated in terms of spherical harmonics [57, 62] or in terms of Cartesian tensors
[24]. Here I give an overview of the Cartesian approach, as is common in theories of light-
molecule interactions [18, 24, 185]. I closely follow Barron [24, §2.4], and formally consider
collections of point charges, such that the charge and current densities are given by (B.9)
and (B.10).

First, let’s discuss the electric multipole moments. The zeroth-order moment of a collection
of point charges is simply the total charge, as in (B.11). I will usually consider neutral
systems (q = 0) so the zeroth moment does not contribute to the light-matter coupling. The
first-order moment of an atom or molecule is the electric dipole moment,

µ ≡
∑
α

eαqα, (B.22)

where, as above, eα and qα are the charge and position vectors of the individual charges. In
a globally neutral system, the electric dipole moment is invariant to a change of origin. The
second-order multipole moment is the electric quadrupole moment, which is a rank-2 tensor

1Commonly this is incorrectly called the Lorentz gauge, but it was in fact introduced by Lorenz [183].
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with components

Qij ≡
1

2

∑
α

eαqαiqαj. (B.23)

The electric quadrupole moment is clearly symmetric: Qij = Qji. This is the highest-order
electric multipole moment I shall consider.

The zeroth-order magnetic multipole moment (the net ‘magnetic charge’) does not exist, so
the lowest-order magnetic multipole is the first-order magnetic dipole moment,

m ≡
∑
α

eα
2mα

qα × pα, (B.24)

where mα and pα are the mass and momentum of particle α. We can alternatively write
this in terms of the angular momenta of the particles, lα = qα × pα. If the particles have
spin angular momenta in addition to orbital, these will produce additional contributions to
the magnetic dipole moment, leading to the more general definition [24]

m =
∑
α

eα
2mα

(lα + gαsα), (B.25)

where gα is the ‘g-value’ of the αth particle. I will not consider higher-order magnetic dipole
moments.

To see how the multipole moments naturally arise in light-matter interactions, let’s consider
the charge density of a single molecule ζ:

ρζ(r) =
∑
α

eαδ(r − qα). (B.26)

Let Rζ be a point within the molecule, perhaps its centre-of-mass. Then define rα as the
position of the αth particle of the molecule relative to Rζ , i.e.,

qα = Rζ + rα, (B.27)

and the delta function in (B.26) may be written as

δ(r −Rζ − rα). (B.28)

Assuming |r −Rζ | � |rα|, we may Taylor expand the Delta function about r −Rζ , which
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leads to the following expression for the charge density [18]:

ρζ(r) = qδ(r −Rζ)− µi∂iδ(r −Rζ) +Qij∂i∂jδ(r −Rζ) + . . . , (B.29)

where q is the net charge of the molecule and µi and Qij are the components of the dipole
and quadrupole moments (B.22) and (B.23), but now defined relative to the point Rζ (i.e.,
it is rα rather than qα which appear in the formulae). This expression can be used, for
instance, in calculating the Coulomb potential due to the molecule at point r′,

φC(r′) =
1

4πε0

∫
d3r

ρζ(r)

|r′ − r|
. (B.30)

If we have multiple molecules, the total microscopic charge density is

ρ =
∑
ζ

ρζ (B.31)

=
∑
ζ

q(ζ)δ(r −Rζ) +
∑
ζ

[
− µi(ζ)∂iδ(r −Rζ) +Qij(ζ)∂i∂jδ(r −Rζ) + . . .

]
, (B.32)

where q(ζ) is the charge of the ζth molecule, etc. From a comparison of the microscopic and
macroscopic Maxwell equations, we have

〈ρ〉 = η −∇ · P , (B.33)

where η is the macroscopic density of free charges and P is the macroscopic polarization
field, associated with the bound charges. It is therefore natural to partition ρ into ‘free’ and
‘bound’ terms as well,

ρ = ρfree + ρbound. (B.34)

From (B.31), the free charge contribution is given by

ρfree =
∑
ζ

q(ζ)δ(r −Rζ), (B.35)

whilst the bound contribution is

ρbound =
∑
ζ

[
− µi(ζ)∂iδ(r −Rζ) +Qij(ζ)∂i∂jδ(r −Rζ) + . . .

]
. (B.36)



APPENDIX B. CLASSICAL ELECTRODYNAMICS 128

We may introduce the microscopic polarization field, p, via

ρbound = −∇ · p = −∇ ·
∑
ζ

pζ , (B.37)

where pζ is the polarization field due to molecule ζ. Comparing with (B.36), we find that
[18]

pζ(r) =
∑
α

eαrα

[
1− 1

2
(rα · ∇) +

1

6
(rα · ∇)2 − . . .

]
δ(r −Rζ), (B.38)

which may be written in the closed form [18, 20]

pζ(r) =
∑
α

eαrα

∫ 1

0

du δ(r −Rζ − urα). (B.39)

Similar results hold for the partitioning of the microscopic current density into free and
bound terms: j = jfree + jbound. If centre-of-mass/nuclear motions are neglected, the bound
current may be written as

jbound = ṗ+∇×M, (B.40)

where M =
∑

ζ Mζ is the microscopic magnetization field. The magnetization field of
molecule ζ has the closed form [18]

Mζ(r) =
∑
α

eαrα × ṙα
∫ 1

0

du u δ(r −Rζ − urα). (B.41)



APPENDIX C

Elements of Quantum Mechanics

In this Appendix I review some important results from non-relativistic quantum mechanics
(QM) which I make reference to in the main body of my Thesis. This is standard material
found in most if not all QM textbooks. I have found [70, 74, 104, 125, 172] to be useful.

C.1 Mathematical Preliminaries

Definitions are taken almost verbatim from the books by Jordan [71], Ballentine [125], or
Renteln [186].

A (linear) vector space V consists of two sets of objects: firstly the set {ψ, φ, χ, . . . }, the
elements of which are called vectors, secondly the set {a, b, c, . . . } (defined over a field F ),
the elements of which are called scalars. For any two vectors ψ and φ the operation of
addition defines a new object ψ + φ, and for any vector ψ and any scalar a the operation of
scalar multiplication defines a new object aψ, with the condition that

aψ + bφ ∈ V ∀ ψ, φ ∈ V, a, b ∈ F . (C.1)

Furthermore there exists a unique vector 0, called the zero vector, such that ψ+0 = ψ. The
full list of axioms defining a vector space can be found in, e.g., the first chapter of [71].
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A set of vectors {ψi} is linearly independent if none of the elements of the set can be written
as a linear combination of the others, or equivalently, if

∑
i aiψi = 0 implies ai = 0 ∀ i. A

set of vectors {φi} is said to span the vector space V if any vector ψ can be written as a
linear combination of the vectors φi, i.e., ψ =

∑
i biφi, ∀ψ ∈ V . A set of vectors which spans

V and is linearly independent is called a basis of V . If a basis set of V contains N vectors,
the vector space is N -dimensional.

For any two vectors ψ, φ ∈ V we denote by (ψ, φ) ∈ F the inner product of the vectors. An
inner product satisfies:

(i) (ψ, aφ) = a(ψ, φ),

(ii) (ψ, φ+ χ) = (ψ, φ) + (ψ, χ),

(iii) (ψ, φ)∗ = (φ, ψ),

(iv) (ψ, ψ) = 0 if and only if ψ = 0; otherwise (ψ, ψ) > 0.

If (ψ, φ) = 0 then ψ and φ are orthogonal. We call ‖ψ‖ =
√

(ψ, ψ) the norm of the vector
ψ.

A linear operator A is a mapping A : V → V which satisfies

A(aψ + bφ) = aAψ + bAφ, (C.2)

for all ψ, φ ∈ V and all a, b ∈ F .

A linear functional f is a linear mapping from V to the field F , f : V → F . The set of
all linear functionals (for some V and F ) is itself a vector space which we call the dual
space of V , denoted by V ∗. For any vector ψ ∈ V a linear functional fψ ∈ V ∗ is defined via
fψ(φ) = (ψ, φ), for all φ ∈ V . I will call fψ the dual (vector) of ψ. From the properties of the
inner product we have fψ+χ(·) = fψ(·) + fχ(·) and faψ(·) = a∗fψ(·). It can be shown that a
one-to-one correspondence exists between vectors and linear functionals defined in this way
[71, §4], i.e., there is a unique vector ψf ∈ V associated with every linear functional f ∈ V ∗.

In Dirac’s notation we denote vectors ψ ∈ V by the notation |ψ〉 (sometimes called ket
vectors). The vectors (linear functionals) fψ ∈ V ∗ are denoted by 〈ψ| (sometimes called bra
vectors). The bra 〈ψ| is the dual of the ket |ψ〉 (remembering the one-to-one correspondence).
The action of the linear functional 〈ψ| on the vector |φ〉 (i.e., fψ(φ)) is denoted by 〈ψ|φ〉.
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The exact same notation is used for the inner product of two vectors |ψ〉, |φ〉:

(ψ, φ) = (|ψ〉 , |φ〉) = 〈ψ|φ〉 . (C.3)

The Hermitian adjoint of the linear operator A is the operator A† defined by

(φ,A†ψ) = (Aφ, ψ), ∀ψ, φ. (C.4)

From the third property of the inner product an equivalent condition is

(φ,A†ψ) = (ψ,Aφ)∗. (C.5)

A Hermitian operator is a linear operator for which A = A†, therefore

(φ,Aψ) = (φ,A†ψ) = (ψ,Aφ)∗, ∀ψ, φ. (C.6)

In Dirac’s notation the definition of the Hermitian adjoint is written as

〈φ|A†|ψ〉 = 〈ψ|A|φ〉∗ , ∀ |ψ〉 , |φ〉 ,

and a Hermitian operator satisfies

〈φ|A|ψ〉 = 〈φ|A†|ψ〉 = 〈ψ|A|φ〉∗ ∀ |ψ〉 , |φ〉 . (C.7)

The simplicity of Dirac’s notation makes it extremely useful in calculations but it can also
be somewhat ambiguous. This is especially true if we assume, as is often done, that an
operator in an expression such as 〈φ|A|ψ〉 can ‘act to the left’ (on 〈φ|) or ‘to the right’ (on
|ψ〉). Strictly speaking A is an operator on V (not V ∗) so can only act on kets and not bras.
A useful relation is

〈ψ|B|φ〉∗ = (|ψ〉 , B |φ〉)∗

= (B |φ〉 , |ψ〉)

= (|φ〉 , B† |ψ〉) = 〈φ|B†|ψ〉 .

As this holds for all |φ〉, we write 〈ψ|B = (B† |ψ〉)∗. Thus if B† |ψ〉 = b |χ〉 then 〈ψ|B =

b∗ 〈χ|. Whenever we ‘act to the left’ with an operator it will be consistent with this result.
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A linear operator U is unitary if and only if it satisfies [71]

UU † = 1 = U †U, (C.8)

1 being the identity operator. An alternative definition is (Uψ,Uφ) = (ψ, φ) for all ψ, φ.

An operator A : V → V is said to be anti-linear if

A(aψ + bφ) = a∗Aψ + b∗Aφ, (C.9)

for all ψ, φ ∈ V and all a, b ∈ F . An anti-linear operator T is called anti-unitary if it satisfies

(Tψ, Tφ) = (ψ, φ)∗ = (φ, ψ), (C.10)

for all ψ, φ.

C.2 Quantum Dynamics

In this Section I shall discuss the general theory of time-evolution in QM. First though, let’s
recall the basic postulates regarding states and dynamical variables.

The state vector |Ψ(t)〉, which is of unit norm, contains all of the information which can
be known about the state of a (pure, closed) quantum system. Any attribute of a physical
system which we could in principle measure will be called an observable. In QM there is
associated to any observable A a Hermitian operator Â. If Â possesses an eigenspectrum
{ai}, with associated eigenstates {|ai〉}, then the possible results of measuring A are nothing
but the eigenvalues, which are real, and they occur with probabilities

Pi(t) = | 〈ai|Ψ(t)〉 |2. (C.11)

After the measurement the system is no longer in state |Ψ(t)〉 but in the eigenstate cor-
responding to the measured eigenvalue. Equation (C.11) leads to the result that when a
measurement is made of a system to deduce the value of an observable A, and it is known
that at the moment of measurement the system is in state |Ψ(t)〉, the expected value of the
measurement is given by

〈A〉 (t) = 〈Ψ(t)|Â|Ψ(t)〉 . (C.12)

As Â is Hermitian expectation values are real valued.
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The time evolution of a state in non-relativistic QM is governed, by postulate, by the
Schrödinger equation,

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (C.13)

with Ĥ(t) the Hamiltonian operator. Alternatively we can describe the dynamics in terms
of a (unitary) time-evolution operator Û (t, t0) which evolves the state of the system from
|Ψ(t0)〉 at t = t0 to the state |Ψ(t)〉 at time t > t0,

|Ψ(t)〉 = Û (t, t0) |Ψ(t0)〉 , (C.14)

and obeys an operator form of the Schrödinger equation,

i~
∂

∂t
Û (t, t0) = Ĥ(t)Û (t, t0). (C.15)

Evidently Û (t0, t0) = 1 and therefore an exact integral representation of the time-evolution
operator is

Û (t, t0) = 1 +
1

i~

∫ t

t0

dt′ Ĥ(t′)Û (t′, t0). (C.16)

Above I assumed that it was the state vectors which evolve in time whilst the operators
representing observables remain fixed. This is one of several equivalent ‘dynamical pictures’
which one can adopt in QM, and is known as the Schrödinger picture. The opposite approach,
so to speak, is the Heisenberg picture, in which all of the time dependence is associated
with the operators. It is easy to see the equivalence between these two descriptions. The
expectation value of the observable A is (C.12)

〈A〉 (t) = 〈Ψ(t)|A|Ψ(t)〉 = 〈Ψ(t0)|Û †(t, t0)AÛ (t, t0)|Ψ(t0)〉 ,

which suggests we define the Heisenberg-picture operators and states via

AH(t) ≡ Û †(t, t0)ASÛ (t, t0), |ΨH〉 ≡ |ΨS(t0)〉 , (C.17)

where a subscript H (S) denotes an object in the Heisenberg (Schrödinger) picture. (From
now on I will drop the ‘hats’ from operators for the most part, unless extra clarity is required.)
This is equivalent to applying a unitary transformation (see Eq. (C.26)) Û = Û †(t, t0). The
equation of motion is no longer the Schrödinger equation (C.13) but the Heisenberg equation

d

dt
AH(t) =

i

~
[HH(t), AH(t)] + Û †∂AS

∂t
Û . (C.18)
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HH(t) ≡ Û †(t, t0)HSÛ (t, t0) is the Heisenberg-picture Hamiltonian, which only differs from
HS when it depends explicitly on time, and the final term is only present if the Schrodinger-
picture operator AS contains an explicit time dependence.

I do not use the Heisenberg picture in this Thesis but I do use another alternative to the
Schrödinger picture, called the Dirac or interaction picture. Suppose we have a Hamiltonian
(in the Schrödinger picture) of the form

HS(t) = H0 + V (t), (C.19)

where V (t) is some interaction term of interest to us which may depend explicitly on time. If
we want to focus solely on the dynamics due to V , rather than the full Hamiltonian, we can
achieve this via a unitary transformation, |ΨI(t)〉 = U |ΨS(t)〉, where a subscript I indicates
an object in the interaction picture. The resulting dynamics are then ‘in the interaction
picture’. The correct unitary transformation is found to be U = Û †

0 (t, t0) where Û0 is the
time-evolution operator associated with ‘free evolution’ under the Hamiltonian H0 (see Eq.
(C.15)),

i~
∂

∂t
Û0(t, t0) = H0(t)Û0(t, t0). (C.20)

I will always assume H0 is time-independent so we have [171]

Û0(t, t0) = e−iH0t/~ (C.21)

and thus
U = Û †

0 (t, t0) = e+iH0t/~. (C.22)

We may choose the interaction and Schrödinger pictures to have the same initial state,
|ΨS(t0)〉 = |ΨI(t0)〉 = |Ψ(t0)〉, so we can write

|ΨI(t)〉 ≡ ÛI(t, t0) |Ψ(t0)〉 , |ΨS(t)〉 ≡ ÛS(t, t0) |Ψ(t0)〉 ,

and by definition
ÛI(t, t0) ≡ UÛS(t, t0) ≡ Û †

0 (t, t0)ÛS(t, t0) (C.23)

is the interaction-picture time-evolution operator. It is then easily shown by differentiation of
ÛI (see also Eq. (C.28)) that the dynamics of the state |ΨI〉 are governed by the Schrödinger
equation

i~
∂

∂t
|ΨI(t)〉 = VI(t) |ΨI(t)〉 , (C.24)
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where VI(t) ≡ Û †
0 (t, t0)V (t)Û0(t, t0) is the interaction term V in the interaction picture.

Generally if AS is the operator representing an observable in the Schrödinger picture then
the equivalent operator in the interaction picture is, from (C.29),

AI(t) = UASU
† = Û †

0 (t, t0)ASÛ0(t, t0), (C.25)

The separation of the Hamiltonian into the form H0 + V is not unique and it is possible to
transform to different ‘interaction pictures’ depending on how we partition H.

C.3 Spacetime Symmetries

In this Section I discuss how spacetime transformations and symmetries are incorporated
into quantum mechanics (QM). I follow Messiah [70, Ch. XV], Jordan [71, Ch. 7], and
Gibson and Pollard [76, Ch. 2].

A theorem due to Wigner [71, 187] tells us that the only transformations of states and
operators which leave observable quantities in QM unchanged are of the form

|ψ〉 → |ψ′〉 = Û |ψ〉 , (C.26a)

Â→ Â′ = ÛÂÛ †, (C.26b)

where Û must be either unitary or anti-unitary (see definitions (C.8) and (C.10)). Time
reversal is a well-known transformation with an associated anti-unitary operator but most
other physical transformations are associated with unitary operators and I will only consider
these.

Whilst the transformations (C.26) always leave expectation values unchanged the
Schrödinger equation is not form-invariant to such transformations, in general. Taking the
time derivative of |Ψ′(t)〉 = Û |Ψ(t)〉, Û unitary, we have

i~
∂

∂t
|Ψ′(t)〉 =

(
i~ ˙̂
UÛ † + ÛĤÛ †

)
|Ψ′(t)〉 , (C.27)

i.e., the dynamics of the transformed state are not governed by the Hamiltonian ÛĤÛ † but
by the Hamiltonian

Ĥ ′ = i~ ˙̂
UÛ † + ÛĤÛ †. (C.28)

Clearly if Û is time independent then we do have Ĥ ′ = ÛĤÛ †; I will assume this to be the
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case for the remainder of this Section.

These results concern transformations in Hilbert space; I am interested in physical transfor-
mations of a system. If |ψ〉 is the state of a system, let us denote by |ψ′〉 ≡ T [ψ] the state
which results from some physical transformation T of the system. Similarly, for an oper-
ator Â denote by Â′ ≡ T [Â] the equivalent operator of the transformed system. Wigner’s
theorem tells us that T [·] must take the form given in Eq. (C.26), or else norms will not be
preserved. Thus we write

|ψ′〉 = ÛT |ψ〉 , Â′ = ÛT ÂÛ
†
T , (C.29)

where ÛT is the unitary transformation corresponding to the physical transformation T . It
is a mathematical fact, just discussed, that this transformation will leave the measurable
attributes of the system unchanged. To paraphrase Messiah [70], transforming both the
states and operators of the system in this way is equivalent to making the same physical
transformation to both the apparatus used to prepare the system and the apparatus used
to measure the system. This kind of invariance is universal and physically does not tell us
anything particularly interesting about a system. More interesting is the following situation:
suppose that instead of transforming the states and operators of a system, we only transform
the states (or vice versa). This corresponds to physically transforming the preparation but
not the measurement apparatus (or vice versa). Then the expectation value of a measurement
of the observable A, with the transformed states, is

〈ψ′|Â|ψ′〉 = 〈ψ|Û †T ÂÛT |ψ〉 .

Clearly this only equals 〈ψ|Â|ψ〉 if
Û †T ÂÛT = Â.

Introducing the commutator,
[A,B] = AB −BA, (C.30)

the above condition is equivalent to the statement that Â and ÛT commute, i.e.,

[Â, ÛT ] = 0. (C.31)

Physically this is a very important result. It tells us that when the operator representing the
observable A commutes with the operator representing the physical transformation T , the
observable is invariant under that transformation. As always the Hamiltonian represents a
special case. If

[Ĥ, ÛT ] = 0 (C.32)
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we call T (or ÛT ) a symmetry transformation of the system [76]. This also implies [70]

[Û , ÛT ] = 0, (C.33)

where Û is the time-evolution operator of the system (see the discussion in appendix C.2). It
follows from these conditions that under a symmetry transformation T the energy spectrum
and dynamics of the system are unchanged.

An important class of symmetry transformations are the spacetime (or geometric) transfor-
mations. These include spatial and temporal translations, rotations, etc. As an example
consider a stationary hydrogen atom, well isolated from any external fields, and translate
it through space by some amount a. All else being the same we expect the energy of the
system to be unchanged, i.e., we expect this to be a symmetry transformation. Under this
change the centre-of-mass and relative position vectors transform as R→ R+a and r → r,
respectively. The energy of a stationary hydrogen atom in the absence of external fields
does not depend on R, so this transformation does leave the energy unchanged. What is the
unitary operator, T̂ (a) say, related to this physical transformation? We have (suppressing
the relative position, as it is unchanged)

ψ′(R) = T̂ (a)ψ(R) = ψ(R− a). (C.34)

Noticing that the right-hand-side has the same Taylor series as e−a·∇ leads to the correct
operator [71, 76]

T̂ (a) = e−ia·P̂ /~, (C.35)

where P̂ = (~/i)∇ is the momentum operator of the atomic centre-of-mass. It can be shown
that all unitary transformations which depend on a continuous real parameter s are of the
form [71, §15]

Û(s) = eisÂ, (C.36)

where Â is a unique Hermitian operator. If [Ĥ, Û(s)] = 0, Â is called the generator of the
symmetry transformation Û(s). Therefore, from (C.35), linear momentum is the generator
of spatial translations. Also, if [Ĥ, Û(s)] = 0 it follows that [Ĥ, Â] = 0 = [Û , Â] (from the
definitions of Û(s) and Û ), which implies

〈Ψ(t)|Â|Ψ(t)〉 = 〈Ψ(0)|Û †(t, 0)ÂÛ (t, 0)|Ψ(0)〉 = 〈Ψ(0)|Â|Ψ(0)〉 . (C.37)

Thus if the operator Â is the generator of a symmetry transformation its expectation value
does not change in time and we call A a constant of motion. This is the well-known connec-
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tion between symmetries and conservation laws in quantum mechanics.

In the above discussion I have chosen the active interpretation of transformations, in which
we really imagine transforming the physical system in some way. Alternatively, one could
adopt the passive viewpoint [70, 76], in which it is not the physical system which is trans-
formed, but our chosen frame of reference.
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Derivations

D.1 Optical Angular Momentum Derivations

D.1.1 Derivation of Eq. (2.17)

We start from the exact expression (2.16),

J = ε0

∫
V

d3r

[
Ei(r ×∇)A⊥i +E ×A⊥ − (E · ∇)(r ×A⊥)

]
. (D.1)

We simplify the third term. Say r ×A⊥ = fxx̂ + fyŷ + fzẑ, then∫
d3r (E · ∇)(r ×A⊥) =

∑
i

x̂i

∫
d3r Ej∂jfi. (D.2)

Using integration by parts we have∫ b

a

Ej∂jfi dxj =

[
Ejfi

]b
a

−
∫ b

a

fi∂jEj dxj. (D.3)

139
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Assuming the fields vanish at the boundaries of the volume, this leads to∫
d3rE · ∇fi = −

∫
d3r fi(∇ ·E). (D.4)

Hence ∫
d3r (E · ∇)(r ×A⊥) = −

∫
d3r (r ×A⊥)(∇ ·E), (D.5)

and the angular momentum becomes

J = ε0

∫
V

d3r

[
Ei(r ×∇)A⊥i +E ×A⊥ + (r ×A⊥)(∇ ·E)

]
, (D.6)

which is (2.17), as desired.

D.1.2 Derivation of Eq. (2.21)

We start from (2.20b),

Jlong = ε0

∫
V

d3r

[
E
‖
i (r ×∇)A⊥i +E‖ ×A⊥ + (r ×A⊥)(∇ ·E‖)

]
.

The longitudinal electric field satisfies ∇ · E‖ = η/ε0, and can be written as E‖ = −∇φC ,
where φC is the Coulomb potential (note that this does not require us to be using the
Coulomb gauge) [20]. In terms of φC and η we can write

Jlong = −ε0

∫
V

d3r

[
(∂iφC)(r ×∇)A⊥i + (∇φC)×A⊥

]
+

∫
V

d3r η(r ×A⊥). (D.7)

Using integration by parts, in a similar manner to the previous derivation above, we find
(under the usual assumptions)∫

V

d3r (∂iφC)(r ×∇)A⊥i = −
∫
V

d3r φC∂i(r ×∇)A⊥i (D.8)

and ∫
V

d3r (∇φC)×A⊥ = −
∫
V

d3r φC(∇×A⊥). (D.9)

It is easily shown, by writing everything in index notation, that

φC∂i(r ×∇)A⊥i = φC(r ×∇)(∇ ·A⊥)− φC(∇×A⊥). (D.10)
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We have ∇ ·A⊥ ≡ 0, and thus the the first integral in (D.7) is identically zero, which leaves

Jlong =

∫
V

d3r η(r ×A⊥). (D.11)

This is (2.21), as required.

D.1.3 Derivation of Eq. (2.70)

Starting from the usual form for the SAM,

S = ε0

∫
V

d3rE⊥ ×A⊥,

we want to write this in the from (2.70) [69],

S = ε0c
2

∫
V

d3rB ×C⊥.

Using E⊥ = −c2∇×C⊥, we can write

S = ε0c
2

∫
V

d3rA⊥ × (∇×C⊥). (D.12)

This can be written, using index notation for the cross product, as

S = ε0c
2

∫
V

d3r

[
A⊥j ∇C⊥j − (A⊥ · ∇)C⊥

]
. (D.13)

Using integration by parts we have (under the usual assumptions, as above)

−
∫
V

d3r (A⊥ · ∇)C⊥ =

∫
V

d3rC⊥(∇ ·A⊥), (D.14)

and ∫
V

d3r A⊥j ∇C⊥j = −
∫
V

d3r C⊥j ∇A⊥j . (D.15)

As ∇ ·A⊥ = 0, we have

S = −ε0c
2

∫
V

d3r C⊥j ∇A⊥j . (D.16)
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We can show, again making use of index notation, that

− C⊥j ∇A⊥j = (∇×A⊥)×C⊥ − (C⊥ · ∇)A⊥. (D.17)

But B ≡ ∇×A⊥, so we have

S = ε0c
2

∫
V

d3r

[
B ×C⊥ − (C⊥ · ∇)A⊥

]
. (D.18)

Again using integration by parts on the second term in the integrand we have

−
∫
V

d3r (C⊥ · ∇)A⊥ =

∫
V

d3rA⊥(∇ ·C⊥). (D.19)

With ∇ ·C⊥ = 0, we finally have

S = ε0c
2

∫
V

d3rB ×C⊥, (D.20)

as required.

D.2 Classical Electric-Dipole Force on an Atom

Here I derive Eq. (2.112) for the time-averaged classical force due to a monochromatic field
on an atom/molecule in the electric-dipole (ED) approximation [15, 90, 93, 105, 106],

FED =
1

2ε0

Re{α̃}∇we +
ω

ε0

Im{α̃}
[
g − 1

2
∇× se

]
.

We start from the Lorentz force law (B.13),

F =

∫
d3r

[
ρE + j ×B

]
, (D.21)

now with microscopic charge and current densities, which are given by (B.9) and (B.10). We
can write this as the sum of two terms: F (E) + F (B), which are the contributions from the
electric and magnetic fields respectively. In the ED approximation, and assuming a neutral
atom/molecule, the charge density becomes (see Eq. (B.29)),

ρ ≈ −µi∂iδ(r −R), (D.22)
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where µi is the ith component of the electric dipole moment (B.22) of the molecule, and R
is its centre-of-mass. Using the derivative of the delta function property (A.3), we find

F (E) =

∫
d3r ρE = (µ · ∇)E(R). (D.23)

(Now formally integrating over all space.)

In the ED approximation j = ṗ, where p is the microscopic polarization field of the molecule
(see Eqs. (B.37) and (B.40)). From (B.38) we have p ≈ µδ(r −R), so

j ≈ µ̇δ(r −R). (D.24)

(I am neglecting centre-of-mass motions, i.e., the Röntgen term [18].) The magnetic force is
thus

F (B) =

∫
d3r j ×B = µ̇×B(R). (D.25)

Now we assume a monochromatic optical field, and write the electric and magnetic fields in
the form F = Re{F̃ e−iωt}. The electric dipole moment is induced by the oscillating fields
and thus we also write µ = Re{µ̃e−iωt} [24]. The time-averaged electric force is therefore

F (E) =
1

4

[
(µ̃ · ∇)Ẽ∗ + c.c.

]
, (D.26)

c.c. meaning complex conjugate. Similarly we find the time-averaged magnetic force

F (B) =
iω

4

[
µ̃∗ × B̃ − c.c.

]
. (D.27)

We shall assume an isotropic molecular response to the optical field, with the induced electric
dipole given by µ̃ = α̃Ẽ, α̃ being the complex scalar electric polarizability. Some simple
manipulation and use of Maxwell’s equations then leads to

FED = F (E) + F (B) =
1

4
Re{α̃}∇|Ẽ|2

+
ω

2
Im{α̃}

[
Re{Ẽ × B̃∗} − 1

2ω
∇× Im{Ẽ∗ × Ẽ}

]
, (D.28)

which is easily written in terms of the desired optical properties to give (2.112). Higher-order
forces are easily derived by considering other molecular responses (i.e., different to µ̃ = α̃Ẽ)
and higher-order multipole moments in ρ and j.
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D.3 Atomic Helicity Derivation

Here I present the detailed derivation of the atomic helicity in the two-wave grating, Eq.
(5.61).

The optical field is defined by (2.80). The components of the electric field in the CP basis
are

Ea = ER =
a√
2

(eif2 + ieif1), (D.29a)

Eb = Ez = 0, (D.29b)

Ec = EL =
a√
2

(eif2 − ieif1), (D.29c)

where I’ve defined

f1 ≡ k1 · r = k0z, (D.30a)

f2 ≡ k2 · r = k0 cos 2θz − k0 sin 2θy. (D.30b)

Clearly any spatial dependence is going to depend upon the phase difference f1 − f2. This
is equal to

f1 − f2 = 2k0 sin θy′, (D.31)

where y′ = cos θy+sin θz. For later calculations it is convenient to write f1−f2 = β1y+β2z,
where β1 ≡ 2k0 sin θ cos θ, β2 ≡ 2k0 sin2 θ.

We wish to calculate the atomic helicity using (5.49), which involves six integrals of the form
〈ψm|Pj|ψn〉 (recall (5.50)). These can be further broken down into two integrals each. I shall
define 〈ψm|Pj|ψn〉 = fmnj + gmnj , where

fmnj =
~
i

∫ ∞
−∞

d3r E∗m(r)En(r)ψ∗0(r)
∂

∂xj
ψ0(r), (D.32a)

gmnj =
~
i

∫ ∞
−∞

d3r |ψ0(r)|2E∗m(r)
∂

∂xj
En(r). (D.32b)

We could have as many as 12 integrals to evaluate then. However, as Eb = 0, this reduces to
4. The ones we are left with are f ccz , faaz , gccz , gaaz .

Let’s note that the fz functions, which depend on |Ea/c(r)|2, are either pure imaginary (due
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to the factor of 1/i at the front and everything in the integrand being real) or identically zero.
Now 〈ψm|Pz|ψm〉 must be real, because it is the expectation value of a Hermitian operator.
Therefore, unless fmmz is identically zero, it must be exactly cancelled by an imaginary part
from gmmz . Therefore it makes more sense to work out the g terms first, and if they contain
an imaginary term we know this will be cancelled by the f terms.

Let’s consider gccz first. This is defined as

~
i

∫ ∞
−∞

dr |ψ0(r)|2E∗c (r)
∂

∂z
Ec(r). (D.33)

We have
∂

∂z
Ec(r) =

ak0√
2

(i cos 2θeif2 + eif1), (D.34)

and therefore

E∗c (r)
∂

∂z
Ec(r) = i

|a|2k0

2
(cos 2θ + 1) +

|a|2k0

2
(ei(f1−f2) − cos 2θe−i(f1−f2)). (D.35)

Therefore

gccz =
|a|2~k0

2

[
(cos 2θ + 1)

∫ ∞
−∞

dr |ψ0(r)|2

+
1

i

(∫ ∞
−∞

dr |ψ0(r)|2ei(f1−f2) − cos 2θ

∫ ∞
−∞

dr |ψ0(r)|2e−i(f1−f2)

)]
. (D.36)

Recalling that ψ0 is normalised the first term is very simple, and the only integral we need
to consider is

Ia =

∫ ∞
−∞

dr |ψ0(r)|2ei(f1−f2)

because ∫ ∞
−∞

dr |ψ0(r)|2e−i(f1−f2) =

(∫ ∞
−∞

dr |ψ0(r)|2ei(f1−f2)

)∗
. (D.37)

Written in terms of u ≡ r −R0 the integral is

Ia = N2ei(β1Y0+β2Z0)

∫ ∞
−∞

dux e
−u2x/σ2

∫ ∞
−∞

duy e
iβ1uye−u

2
y/σ

2

∫ ∞
−∞

duz e
iβ2uze−u

2
z/σ

2

. (D.38)

(N is the normalization prefactor for ψ0, as in (5.51).)
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These are simple standard integrals [64]. Firstly,∫ ∞
−∞

du e−au
2

= π1/2a−1/2, (D.39)

so for a = 1/σ2 we have ∫ ∞
−∞

dux e
−u2x/σ2

= π1/2σ. (D.40)

Secondly, ∫ ∞
−∞

du e−au
2−bu = π1/2a−1/2eb

2/4a. (D.41)

Again a = 1/σ2 and −b = iβ1 or iβ2. So∫ ∞
−∞

duy e
iβ1uye−u

2
y/σ

2

= π1/2σe−β
2
1σ

2/4, (D.42)

and ∫ ∞
−∞

duz e
iβ2uze−u

2
z/σ

2

= π1/2σe−β
2
2σ

2/4. (D.43)

Combining everything we find

Ia = ei(β1Y0+β2Z0)e−(β2
1+β2

2)σ2/4 (D.44)

where I have used N2π3/2σ3 = 1 (definition of N). Therefore

I∗a = e−i(β1Y0+β2Z0)e−(β2
1+β2

2)σ2/4. (D.45)

We have

Ia−cos 2θI∗a = e−(β2
1+β2

2)σ2/4
(
(1− cos 2θ) cos(β1Y0 + β2Z0) + i(1 + cos 2θ) sin(β1Y0 + β2Z0)

)
.

(D.46)
Bringing everything together we have

gccz =
|a|2~k0

2
(cos 2θ + 1)

(
1 + e−(β2

1+β2
2)σ2/4 sin(β1Y0 + β2Z0)

)
+

1

i

|a|2~k0

2
(1− cos 2θ)e−(β2

1+β2
2)σ2/4 cos(β1Y0 + β2Z0). (D.47)

From the discussion above, it must be the case that f ccz will exactly cancel the imaginary
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term in gccz , so we would have

〈ψc|Pz|ψc〉 = f ccz + gccz =
|a|2~k0

2
(cos 2θ + 1)

(
1 + e−(β2

1+β2
2)σ2/4 sin(β1Y0 + β2Z0)

)
. (D.48)

Let’s verify that f ccz does indeed cancel the imaginary term. This is defined as

f ccz =
~
i

∫ ∞
−∞

dr |Ec(r)|2ψ∗0(r)
∂

∂z
ψ0(r). (D.49)

|Ec|2 = |a|2(1 + sin(β1y + β2z)), so

f ccz =
~
i
|a|2

∫ ∞
−∞

dr ψ∗0(r)
∂

∂z
ψ0(r) +

~
i
|a|2

∫ ∞
−∞

dr sin(β1y + β2z)ψ∗0(r)
∂

∂z
ψ0(r). (D.50)

The first integral is identically zero:∫ ∞
−∞

dr ψ∗0(r)
∂

∂z
ψ0(r)

= N2

∫ ∞
−∞

dux e
−u2x/σ2

∫ ∞
−∞

duy e
−u2y/σ2

∫ ∞
−∞

duz e
−u2z/2σ2 ∂

∂uz
e−u

2
z/2σ

2

,

using the change of variables defined above and ∂/∂uz = ∂/∂z. Now∫ ∞
−∞

duz e
−u2z/2σ2 ∂

∂uz
e−u

2
z/2σ

2

=
−1

σ2

∫ ∞
−∞

duz uze
−u2z/σ2

which equals zero because the integrand is an odd function of uz and the integral is over an
even interval. So

f ccz =
~
i
|a|2

∫ ∞
−∞

dr sin(β1y + β2z)ψ∗0(r)
∂

∂z
ψ0(r). (D.51)

Let’s evaluate this integral, call it I, say. Start by using the trigonometric identity [64]

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y). (D.52)

Then I = I1 + I2 where

I1 =

∫ ∞
−∞

dr sin(β1y) cos(β2z)ψ∗0(r)
∂

∂z
ψ0(r) (D.53)
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and
I2 =

∫ ∞
−∞

dr cos(β1y) sin(β2z)ψ∗0(r)
∂

∂z
ψ0(r). (D.54)

Work out I1 first. We can write it as

I1 =
−N2

σ2

∫ ∞
−∞

dux e
−u2x/σ2

∫ ∞
−∞

duy sin(β1uy + β1Y0)e−u
2
y/σ

2

×
∫ ∞
−∞

duz cos(β2uz + β2Z0)uze
−u2z/σ2

.

(D.55)

Again let’s use the angle addition formulae, the one for cosine is

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y). (D.56)

So I1 contains the integrals

Ia1 =

∫ ∞
−∞

duy sin(β1uy + β1Y0)e−u
2
y/σ

2

= cos(β1Y0)

∫ ∞
−∞

duy sin(β1uy)e
−u2y/σ2

+ sin(β1Y0)

∫ ∞
−∞

duy cos(β1uy)e
−u2y/σ2

(D.57)

and

Ib1 =

∫ ∞
−∞

duz cos(β2uz + β2Z0)uze
−u2z/σ2

= cos(β2Z0)

∫ ∞
−∞

duz cos(β2uz)uze
−u2z/σ2 − sin(β2Z0)

∫ ∞
−∞

duz sin(β2uz)uze
−u2z/σ2

(D.58)

All the integrals with odd integrands (i.e., depending on u cosu or sinu) are zero, so these
reduce to

Ia1 = sin(β1Y0)

∫ ∞
−∞

duy cos(β1uy)e
−u2y/σ2

(D.59)

and
Ib1 = − sin(β2Z0)

∫ ∞
−∞

duz sin(β2uz)uze
−u2z/σ2

. (D.60)

To evaluate Ib1 recall that we can write sinu = Im{eiu}, so we just need to evaluate∫ ∞
−∞

duz uze
iβ2uze−u

2
z/σ

2

, (D.61)
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which just has the form of a standard integral:∫ ∞
−∞

du ue−au
2−bu = −π

1/2

2

b

a3/2
eb

2/4a. (D.62)

We have −b = iβ2, a = 1/σ2, so∫ ∞
−∞

duz uze
iβ2uze−u

2
z/σ

2

=
i

2
π1/2σ3β2e

−β2
2σ

2/4. (D.63)

Therefore
Ib1 = −1

2
π1/2σ3β2e

−β2
2σ

2/4 sin(β2Z0). (D.64)

Onto Ia1 . Similarly notice cosu = Re{u}, so the integral we need is∫ ∞
−∞

duy e
iβ1uye−u

2
y/σ

2

, (D.65)

which is just a standard integral discussed earlier (D.41). Therefore∫ ∞
−∞

duy e
iβ1uye−u

2
y/σ

2

= π1/2σe−β
2
1σ

2/4. (D.66)

Therefore
Ia1 = π1/2σe−β

2
1σ

2/4 sin(β1Y0). (D.67)

Combining everything for I1 we have

I1 =
−N2

σ2

∫ ∞
−∞

dux e
−u2x/σ2 ×

(
π1/2σe−β

2
1σ

2/4 sin(β1Y0)
)

×
(
−1

2
π1/2σ3β2e

−β2
2σ

2/4 sin(β2Z0)

)
(D.68)

which upon some tidying up gives

I1 =
1

2
β2 sin(β1Y0) sin(β2Z0)e−(β2

1+β2
2)σ2/4. (D.69)

I2 can be evaluated in much the same way. We find

I2 = −1

2
β2 cos(β1Y0) cos(β2Z0)e−(β2

1+β2
2)σ2/4. (D.70)
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Then with f ccz = (~|a|2/i)(I1 + I2) we find

f ccz = −1

i

|a|2~
2

β2e
−(β2

1+β2
2)σ2/4 cos(β1Y0 + β2Z0). (D.71)

Recalling β2 = 2k0 sin2 θ = k0(1− cos 2θ) this becomes

f ccz = −1

i

|a|2~k0

2
(1− cos 2θ)e−(β2

1+β2
2)σ2/4 cos(β1Y0 + β2Z0), (D.72)

which exactly cancels the imaginary part of gccz (D.47) as required.

We still need to find the other contributions from gaaz and faaz . Again, we can find the g
function and know that the final result will just be the real part of this.

By definition

gaaz =
~
i

∫ ∞
−∞

dr |ψ0|2E∗a
∂

∂z
Ea. (D.73)

We have
∂

∂z
Ea =

ak0√
2

(i cos 2θeif2 − eif1), (D.74)

so
E∗a

∂

∂z
Ea = i

|a|2k0

2
(cos 2θ + 1) +

|a|2k0

2
(cos 2θe−i(f1−f2) − ei(f1−f2)). (D.75)

Therefore

gaaz = ~k0|a|2 cos2 θ +
1

i

|a|2~k0

2

(
cos 2θ

∫ ∞
−∞
|ψ0|2e−i(f1−f2) −

∫ ∞
−∞
|ψ0|2ei(f1−f2)

)
. (D.76)

As in the previous calculation for gccz we just have a single integral to evaluate, Ia,

gaaz = ~k0|a|2 cos2 θ − 1

i

|a|2~k0

2
(Ia − cos 2θI∗a). (D.77)

We worked out Ia − cos 2θI∗a earlier:

Ia−cos 2θI∗a = e−(β2
1+β2

2)σ2/4
(
(1− cos 2θ) cos(β1Y0 + β2Z0) + i(1 + cos 2θ) sin(β1Y0 + β2Z0)

)
.

(D.78)
I won’t bother showing it explicitly but as expected faaz cancels the imaginary part of this.
So we have

faaz + gaaz = ~k0|a|2 cos2 θ − |a|
2~k0

2
(1 + cos 2θ)e−(β2

1+β2
2)σ2/4 sin(β1Y0 + β2Z0). (D.79)
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Putting everything together according to (5.49) we can finally write down the atomic helicity
formula for the atom placed in the helicity grating. The spatially-independent parts cancel
and we get, using β2

1 + β2
2 = 4k2

0 sin2 θ,

HA
grating =

t2µ2|a|2k0

2
cos2 θ sin(2k0 sin θY ′0)e−k

2
0σ

2 sin2 θ, (D.80)

which is (5.61) as required.
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