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Abstract

The demand for efficient Deep Neural Network (DNN) accelerators has increased due
to the growing popularity of DNNs in various applications, including image classifica-
tion, speech recognition, and natural language processing. However, designing flexible,
reconfigurable, and efficient DNN accelerators is challenging due to the computational
intensity and memory requirements of DNN models. As such, Field-Programmable
Gate Arrays (FPGAs) have become a popular choice for implementing DNN acceler-
ators due to their ability to be reconfigured to suit the requirements of the workload
and their energy efficiency compared to traditional general-purpose CPUs and GPUs.
However, designing efficient accelerators for resource-constrained edge devices with FP-
GAs is challenging. As such, this thesis focuses on solving the difficulties of designing
new efficient DNN accelerators for resource-constrained edge FPGAs.

First, this thesis presents the SECDA methodology (SystemC Enabled Co-design of
DNN Accelerator), which enables hardware-software co-design of resource-constrained
hardware accelerators for DNN inference on edge FPGAs. To expand upon the SECDA
methodology, SECDA-TFLite and SECDA-LLM were developed to quickly adopt the
design methodology within TensorFlow Lite and llama.cpp, two popular frameworks
for DNN inference on edge devices.

Second, this thesis presents the design of the MM2IM architecture for accelerating
Transposed Convolution (TCONV) operations within Generative Adversarial Networks
(GANs) for resource-constrained edge devices. This architecture was developed utilis-
ing the SECDA methodology and the SECDA-TFLite toolkit. The MM2IM accelerator
achieved an average speedup of 84× across 261 TFLite TCONV problem configurations
compared to an ARM Neon-optimised CPU baseline.

Finally, this thesis presents AXI4MLIR, an extension to the MLIR compiler framework
that enables efficient host-accelerator communication by automatically generating host
driver code that is aware of the accelerator architecture and capable of performing effi-
cient data transfers. Our experiments using specialised FPGA accelerators demonstrate
AXI4MLIR’s versatility across different types of accelerators and problems, showcasing
significant CPU cache reference reductions (up to 56%) and up to a 1.65× speedup
compared to manually optimised driver code implementations.
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1 | Introduction

As technology advances, the availability and use of AI (Artificial Intelligence) based
solutions for everyday tasks grow. The field of Machine Learning (ML) can contribute
to this growth in AI-based solutions. ML is a branch of AI that uses algorithms
to identify patterns and make sense of large data sets, in some sense imitating how
humans learn by watching what others do. Deep Neural Networks (DNNs) are a
class of machine learning (ML) models that enable improved accuracy on traditional
classification (e.g., identify objects in a picture) and predictive tasks (e.g., guess the
next number in a sequence). Due to their success in performing a wide range of tasks,
e.g., image classification [KSH17], speech recognition [Zha+16b] and natural language
processing (NLP) [SVL14], they have become increasingly popular and are being used
to tackle real-world applications from the medical field [Ama+13; Fuk+18; Jum+21]
to automatic plant counting [Fri+19].

The growth in DNN popularity and use cases has led researchers to understand that
fundamentally DNN inference, i.e., the execution of DNN models, is computationally
intensive, memory hungry [Cha+23] in terms of both capacity and bandwidth, and
can incur high energy consumption. Hence, the increasing popularity of DNNs has
become a major driving factor which has led to the development of specialised hardware
accelerators that are used to efficiently process DNNs while minimising power, latency,
and area. These accelerators include: GPUs [Don+21; Mar+18; Ott+20; Rad+19;
RCO19], NPUs [Bou+20; Esm+12; Jan+21],CGRAs [Liu+19b; TK12], ASICs such as
the TPU [Jou+17], NVDLA [NVIa] and many others [Che+19; KSK18], and FPGA-
based designs [Mor+19; Pra+17].

Additionally, as the capabilities and accuracy of DNNs improved through the devel-
opment of new model architectures and better training methods [HGC23; HHC24],
edge computing applications for DNNs such as autonomous vehicles [Coc+21], IoT
devices [Had+18], and mobile devices [GK22; LCO18] have become more prominent.
This trend has led industry and academia to look towards efficient processing of DNNs
in edge environments with resource-constrained devices. However, current solutions
that attempt to deploy DNNs on low-power and resource-constrained edge devices
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(e.g., smartphones, tablets, wearables, etc.) are inefficient [Had+19], as they are re-
quired to be low-latency and power-efficient to be a viable solution for edge DNN
computing. This presents challenges that can span several levels of the hardware/-
software stack to run efficiently [Gib+25; Tur+18]. Hence, new specialised hardware
accelerators for DNNs are needed to meet the performance and energy targets within
resource-constraint environments.

As the demand for specialised resource-constraint accelerators grows, the challenge of
designing and deploying efficient DNN accelerators has become critical to enabling fur-
ther progression and widespread adoption. An efficient accelerator design requires a
careful co-design of the hardware and software components, particularly when the hard-
ware resources are limited. Hence, to efficiently design resource-constrained hardware
accelerators for DNNs, we need to consider the following aspects: (i) the target appli-
cations, including the variance in workloads and operations; (ii) the available hardware
resources; (iii) the communication between the host CPU and accelerator.

This thesis focuses on the design process of specialised hardware accelerators for DNNs,
especially focusing on these three key aspects. To end this, this thesis proposes that
by reducing the time and effort required to iteratively design, integrate and evalu-
ate new hardware accelerator architectures we save development time and resources.
These improvements critically allow for more fine-grained exploration of the hardware-
software co-design space, enabling more efficient end-to-end acceleration solutions with
new hardware accelerators for DNN inference.

1.1 Designing FPGA-based DNN Accelerators

DNNs have become increasingly popular and are being used for a wide range of appli-
cations. DNN model architectures have also evolved, producing various types of DNNs
such as Convolutional Neural Networks (CNNs) [Lec+98], Generative Adversarial Net-
works (GANs) [Goo+14], and Transformer-based models [Dev+19; Vas+17] including
Large Language Models (LLMs) [Bro+20]. However, these models have been increasing
in complexity and size, which has made it more and more challenging to deploy them,
especially on resource-constrained edge devices. Additionally, the evolving nature of
DNNs has made it challenging to execute these models efficiently on general-purpose
hardware.

Hence, the need for efficient hardware accelerators to execute DNN workloads has
grown. This has led researchers to utilise Field-Programmable Gate Arrays (FPGAs)
to design, prototype and deploy specialised hardware accelerators for DNNs. FPGAs
provide a reconfigurable fabric that can be programmed to implement new accelerator
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architectures. However, designing specialised FPGA-based accelerators requires a lot
of effort, time, and hardware-software expertise. The following section motivates the
need for efficient hardware accelerators for DNNs and, in turn, the need to improve
the design process of new FPGA-based hardware accelerators for DNNs. Additionally,
the section presents the system model used throughout this thesis, highlighting key
aspects that need to be considered when designing FPGA-based hardware accelerators
for DNNs on resource-constrained edge devices.

1.1.1 Motivation

General-purpose computing has gained performance over the last couple of decades due
to the increasing number of transistors that can fit into a microchip. However, this
trend (i.e., Moore’s Law) is slowing down. It has become more difficult to keep increas-
ing the number of transistors without drastically increasing cost; hence, performance
uplifts due to improved hardware are reduced compared to the demand for compu-
tational power. This is especially true with the advent of large computational work-
loads, which have become increasingly important and prevalent in machine learning.
Hence, given the diminishing performance gains provided by today’s general-purpose
computing [JD18], there has been renewed interest in exploring specialised hardware
accelerators.

Specialised accelerators can support architecture-level optimisations customised for a
target application or workload, improving performance and efficiency [Hsi+23; KLL23;
Muñ+23; Sha+23; Zha+22; Zhe+22]. Additionally, accelerators are more energy and
power-efficient compared to general-purpose processors, which is critical for power-
constrained edge devices. Hardware accelerators are also ideal for resource-constrained
edge platforms, where we have to squeeze the highest performance out of the limited
hardware resources available. The hardware logic allocated can be tailored to fit the
target workloads, in our case, DNNs.

DNN inference is a compute-intensive workload, requiring different sets of operations
such as matrix multiplications, covolutions, and activation functions. Generally, these
operations contain a high degree of data-level parallelism, which hardware accelera-
tors can exploit to achieve high performance. However, exploiting this parallelism
requires a system-level hardware-software co-design approach for acceleration. There-
fore, developing new specialised accelerators requires multiple design iterations with
system-level integration and end-to-end evaluation to estimate realistic performance.
FPGA-based design exploration allows full system integration and evaluation without
the time-consuming efforts required to design and produce an Application-Specific In-
tegrated Circuit (ASIC). Additionally, FPGAs allow for fine-grained control over the
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Figure 1.1: Typical FPGA-based host-accelerator system design.

hardware design compared to Coarse-Grained Reconfigurable Arrays (CGRAs) [TK12],
enabling the designer to prototype intricately formed accelerator architectures; for ex-
ample allowing bit-level data access for arbitrary arithmetic precision, which can be
used to optimise designs for quantised DNNs.

1.1.2 Host-Accelerator System Model

This section provides a high-level overview of the system model that will represent the
hardware platform we have used throughout the work contained within the thesis. The
system model, shown in Figure 1.1, describes a typical resource-constrained FPGA-
based edge system consisting of three main hardware components:

• Host CPU: The host processor (e.g., ARM-based), typically running a Linux-
based operating system, runs target applications and controls the hardware ac-
celerator.

• Main Memory: The main memory is used for data storage and transfer be-
tween the host processor and the hardware accelerator via Direct Memory Access
(DMA) engines within the hardware platform.

• FPGA: The FPGA provides a reconfigurable logic consisting of Configurable
Logic Blocks (CLBs), Look-Up Tables (LUTs), Flip-Flops (FFs), and Digital
Signal Processors (DSPs). The FPGA is used to implement custom hardware
accelerators for DNNs.

In additional to the hardware components, there are some system-level components
that play a crucial role in the overall design of the acceleration pipeline, especially
when designing for resource-constrained edge devices.
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• Application: The target application running in the host CPU, which in our case
consists of DNN inference. This application loads any required data into main
memory, and executes the operation, i.e., DNN inference. The application calls
the accelerator driver when the operation is suitable for hardware acceleration.

• Accelerator Driver: Responsible for managing both the DMA and the accel-
erator. The driver also implements the offloading algorithm for the data transfer
between the main memory and the accelerator. This algorithm depends on the
operation being executed, i.e., convolution, matrix multiplication, etc., and the
accelerator architecture. The accelerator driver is a ‘user-space’ driver that in-
teracts with the accelerator through memory-mapped data buffers and memory-
mapped control registers for the DMA engine and the accelerator.

• DMA Engine: Responsible for transferring data between main memory and
the accelerator. The DMA engine is controlled by the accelerator driver. Since
the DMA engine sits outside the operating system, it can access main memory
directly by using its physical address.

• Accelerator: Specialised hardware designed to accelerate the target operations
within the application. It usually contains some control logic or a micro-ISA
instruction decoder, data buffers, and multiple compute units.

In terms of memory management, the system model can be divided into four main
memory spaces, which are used for different purposes:

• User-space: Area of main-memory where user programs can allocate and access
data directly. The access to this area is controlled by the operating system
and enabled through the virtual address space. DMA engines cannot access the
virtual address space, so data needs to be moved to the DMA-space before being
transferred to the accelerator.

• DMA-space: Area of main-memory allocated for the DMA memory pool during
kernel boot-up. This allocation allows user-space drivers (the accelerator driver)
to memory map (mmap) the physical address of the DMA-space memory pool.
Moving user-space data into the memory mapped (mmapped) DMA-space allows
the DMA engine to access data directly without requiring the CPU to be involved
in the data transfer.

• Memory Mapped Input/Output: Area of virtual memory that is used to
mmap the control/status register space for any connected device. In our system
model, this can be used to control/monitor the DMA engine and the accelerator
if required.
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Table 1.1: Zynq 7020 Hardware Details.

Resource Count
CLBs 85,000
LUTs 53,200
FFs 106,400
DSPs 220
BRAMs 140
On-chip RAM (Mbits) 4.9

Resource Count
Processor Dual Core Cortex-A9
Architecture ARMv7-A
Clock Speed 650 MHz
SIMD ARM NEON
Main Memory 512 MB DDR3
Memory Speed 525 MHz

• On-chip Memory: Area of block RAM (BRAM) on the FPGA that can be used
as data buffers within the accelerator. This is the fastest and smallest memory
space available in the system model and is used to store the data immediately
required by the accelerator’s compute units.

While this thesis emphasises the accelerator design and driver, the overall system model
must be understood and considered when designing and evaluating new accelerator
designs. The interactions between the system components and memory spaces are
crucial to the overall system performance, especially when the main memory bandwidth
can become a bottleneck for the accelerator performance. Managing efficient data
caching and movement between user space, DMA space, and on-chip memory can
significantly improve overall end-to-end performance.

Hardware Details

Throughout the thesis, we focus on the Xilinx Zynq 7000 SOC platform, specifically the
Z-7020 device, which contains an ARM processor alongside an FPGA fabric, running
an Ubuntu 18.04 operating system. Note all experiments conducted throughout the
thesis runs the Zynq 7020 programming logic at 200 MHz and the ARM processor at
650 MHz, similarly we do not adjust for DVFS or other power management features
when taking power measurements.

This platform will act as the reference for the resource-constrained edge system model
as it contains limited hardware resources, which are listed in Table 1.1. Such resource-
constrained edge platforms present an interesting set of challenges for designing FPGA-
based hardware accelerators for DNNs, and this includes the acceleration paradigm
possible by these devices, which is discussed in Section 1.1.3.

1.1.3 FPGA-based Acceleration Paradigms
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Here, we discuss the possible acceleration paradigms with FPGA-based DNN inference
accelerators. We can categorise the acceleration paradigms into two main categories:
DNN-to-FPGA-Dataflow paradigm and DNN-to-FPGA-Accelerator paradigm.

The DNN-to-FPGA-Dataflow: paradigm is a high-level approach that allows the
designer to take a DNN model and automatically generate a dataflow-based hardware
design for the model or parts of the model. Works like HLS4ML [Fah+21] utilise this
approach; these works take the DNN’s low-level operations (multiplications, additions,
etc.) and map them to the FPGA fabric directly using dataflow graphs. While this
approach is easier to use, it has significant limitations in terms of capability since
mapping a full model to an FPGA requires hardware resources to support it fully.
For example, a model with 20 MB of weight data will require at least 20 MB of on-
chip memory to store the weights, which is impossible with resource-constrained edge
FPGAs such as the Zynq 7020. This makes the approach either infeasible or inefficient
for large models to be mapped to the FPGA. Additionally, the generated hardware
design is usually specific to the model, making it difficult to reuse it across multiple
models.

The DNN-to-FPGA-Accelerator: paradigm is a low-level approach that requires
the designer to custom hardware accelerators which can be used to accelerate parts
of the DNN model, usually targeting the compute-intensive operations such as matrix
multiplications or convolutions. While the hardware-software accelerator solution be-
comes more complex and requires more effort, resource-constrained edge FPGAs can
be used more efficiently and accelerate larger models. Returning to our previous ex-
ample, a DNN model with 20 MB of weight data across can be accelerated within the
Zynq 7020 by offloading the key compute-intensive operations to the accelerator while
the rest of the model can be executed on the host CPU. This allows the designer to
use the FPGA’s hardware resources more efficiently and allows the accelerator to be
reused across multiple models.

1.2 Challenges and Objectives

As highlighted in Section 1.1.1, several challenges should be addressed to efficiently
design, integrate, and deploy new custom hardware accelerators. This section outlines
the three key challenges faced when designing DNN hardware accelerators within the
system model described in Section 1.1.2. Tackling and providing solutions to these key
challenges is the main goal of the thesis. Hence, this section highlights the three key
objectives that the thesis addresses to overcome these challenges.
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1.2.1 Development Time of New Accelerators

As new types of workloads emerge within the DNN domain, it is crucial to develop new
hardware accelerators quickly and efficiently. For accelerator development, we need to
consider the time to design, implement, and verify the hardware accelerator.

The traditional design process for a new specialised accelerator involves several steps,
such as architectural exploration, RTL (Register Transfer Level) design, verification,
and synthesis. This process is very time-consuming and requires a high level of exper-
tise in hardware design. Development through RTL design requires a hardware expert
to design the accelerator and a software expert to develop the host-accelerator commu-
nication code. In addition, handwritten RTL code is highly error-prone and can lead
to difficult debugging bugs. Finally, the development process must be more scalable,
as the design process needs to be repeated for each new accelerator design.

When developing new accelerators through multiple iterations, design space exploration
(DSE) can provide valuable insights between iterations. Therefore, it is crucial to reach
a good design point where all crucial performance targets for a given accelerator are
met. Additionally, a DSE approach that supports hardware-software co-design enables
further performance gains by tuning both the hardware and software aspects of the
acceleration solution.

Hence, the first key objective of the thesis is to create a high-level design methodol-
ogy that enables a fast and iterative design loop and allows the evaluation and profiling
of both the accelerator and the overall end-to-end application.

1.2.2 Problem Specific Design and Optimisations

As mentioned within Section 1.1.1, general-purpose computing has performance limi-
tations, and hence, specialised accelerators for a given workload can provide significant
performance and energy efficiency improvements. One major challenge, especially in a
resource-constrained hardware platform, is understanding the target workload and par-
titioning it between the host processor and the hardware accelerator. Once the target
operation is identified, the designer must consider operation-specific optimisations to
improve the accelerator’s performance and efficiency. These optimisations can include
operation fusion, data quantisation, data formatting, tiling, and dataflow strategies.
Therefore, the challenge is to understand the target workload, identify the key op-
erations that can be offloaded to the hardware accelerator, and apply the necessary
optimisations to improve the accelerator’s performance and energy efficiency.
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Hence, the second key objective of this thesis is to develop problem specific acceler-
ator designs by exploring the architectural design space that is unique to DNN-based
workloads.

1.2.3 Efficient Host-Accelerator Communication

As DNN models become more and more complex and scaled, the amount of data
that needs to be processed grows significantly. This especially impacts end-to-end
performance for resource-constrained edge devices, where due to the limited accelerator
on-chip memory, input data needs to be partitioned and transferred from the main
memory to the accelerator on-chip memory. Since data transfer between main memory
and the accelerator can take an order of magnitude more than the number of cycles
required to perform a computational operation, it is crucial to minimise data transfers.
Otherwise, the required data transfer can become the main bottleneck in the overall
system model if not managed efficiently.

Therefore, to reduce the effect of data transfer overheads, we need to consider the
following challenges: (i) how to reduce the amount of data that needs to be transferred
between the host processor and hardware accelerator; (ii) how to hide the data transfer
latency by overlapping the data transfer with computation; (iii) how to format the data
so that the accelerator can efficiently process it.

Hence, the third key objective of the thesis is to develop methods and optimisations
to improve the host-accelerator communication that solves these challenges, ensuring
that we can achieve high performance and efficiency for DNN inference workloads.

1.3 Contributions

The key contributions of this thesis are as follows:

• SECDA Methodology: A new design methodology, SECDA (SystemC En-
abled Co-design of DNN Accelerator), which enables hardware-software co-design
of specialised hardware accelerators for DNN inference on resource-constrained
edge devices with FPGAs. Chapter 4 presents the design methodology, which
focuses on iterative design exploration, co-design of the accelerator (hardware)
and host-side driver code (software), and continuous evaluation of new hardware
designs using SystemC [Des23] simulation and FPGA-based hardware evalua-
tion. The SECDA methodology is instantiated across multiple tools and hard-
ware accelerators developed in the thesis. Overall, SECDA provides a struc-
tured approach to co-design of new hardware accelerators and their host-side
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driver for a given application and target FPGA platform. Open-source link:
https://github.com/gicLAB/SECDA.

• Toolkits: The thesis presents multiple toolkits that employ the SECDA method-
ology. The toolkits, presented in Chapters 5, 6 and 8, are designed around
and integrated with existing application frameworks. We focused on machine
learning and compiler frameworks such as TensorFlow Lite (TFLite) [Aba+16],
llama.cpp [Ger24b] and MLIR [Lat+21]. The toolkits provide a rapid proto-
typing environment for the target application framework, enabling developers
to design new hardware accelerators, build host-side driver code that is inte-
grated with the application framework, and execute the end-to-end applica-
tion while offloading the target operations to the hardware accelerator. Open-
source links for SECDA-TFLite: https://github.com/gicLAB/SECDA-TFLite,
AXI4MLIR: https://github.com/AXI4MLIR/axi4mlir, and SECDA-LLM:
https://github.com/gicLAB/SECDA-LLM.

• Hardware Accelerators: Multiple hardware accelerators for various DNN
models and operations. These accelerators were developed to tackle the problem
of accelerating compute-intensive DNN operations on resource constrained edge
devices with FPGAs. Chapter 4 presents the Vector MAC (VM) and Systolic
Array (SA), both accelerators where designed to accelerate convolutional layers
using two varying computational architecture. Chapter 5 presents the Fully
Connected General Matrix Multiply (FC-GEMM) accelerator that was designed
to accelerate fully connected layers which are common within Transformer-based
models. Chapter 6 presents the block floating point quantised (BFP) acceler-
ator that was designed to accelerate matrix multiplication operations Finally,
Chapter 7 presents the design of the MatMul to col2IM [Devc] (MM2IM)
hardware accelerator for GANs. MM2IM was designed to efficiently execute the
Transposed Convolution (TCONV) operation, which is a key operation in GANs.

1.4 Publications

The work presented in this thesis has been cultivated from ideas, explorations, and
experiments which have been previously described in detail in several peer-reviewed
publications. Additionally, some of the work is currently under review or in preparation
for submission.

The following publications are associated with Chapters 4, 5 and 6.

https://github.com/gicLAB/SECDA
https://github.com/gicLAB/SECDA-TFLite
https://github.com/AXI4MLIR/axi4mlir
https://github.com/gicLAB/SECDA-LLM
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1. Jude Haris, Perry Gibson, José Cano, et al., ‘SECDA: Efficient Hardware/-
Software Co-Design of FPGA-based DNN Accelerators for Edge Inference’, in
IEEE 33rd International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), Oct. 2021, pp. 33-43. DOI: 10.1109/SBAC-
PAD53543.2021.00015. [Har+21]

2. Jude Haris, Perry Gibson, José Cano, et al., ‘SECDA-TFLite: A Toolkit for
Efficient Development of FPGA-based DNN Accelerators for Edge Inference”, in
Journal of Parallel and Distributed Computing (JPDC), Vol. 173, Mar. 2023,
pp. 140-151. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2022.11.005. [Har+23]

3. Jude Haris, José Cano, et al., ‘SECDA-LLM: Designing Efficient LLM Accelera-
tors for Edge Devices’, in Addressing the Computing Requirements of LLMs and
GNNs Workshop (ARC-LG) at the 2024 International Symposium on Computer
Architecture (ISCA). June 2024. DOI: 10.48550/arXiv.2408.00462. [Har+24b]

Note that the SECDA-LLM work is an ongoing work, and we plan to expand the initial
work presented in the publication.

The following publications are associated with Chapter 8:

1. Nicolas Bohm Agostini, Jude Haris, et al., ‘AXI4MLIR: User-Driven Automatic
Host Code Generation for Custom AXI-Based Accelerators’, in 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), Mar.
2024, pp. 143-157. DOI: 10.1109/CGO57630.2024.10444801. [Ago+24]

2. Jude Haris, José Cano, et al., ‘Data Transfer Optimizations for Host CPU and Ac-
celerators in AXI4MLIR’, in Compilers for Machine Learning Workshop (C4ML)
at the 2024 International Symposium on Code Generation and Optimization
(CGO), Mar. 2024. DOI: 10.48550/arXiv.2402.19184. [Har+24a]

Note that the AXI4MLIR, first paper for the AXI4MLIR project, was conducted in
collaboration with Nicolas Bohm Agostini. We share co-first authorship, and it will
form part of their PhD thesis.

The following work associated with Chapter 7 is a work in progress, and the initial
paper is currently under review.

1. Jude Haris and José Cano, ‘Accelerating Transposed Convolutions on FPGA-
based Edge Devices’, under review at International Conference on Field-Programmable
Logic and Applications (FPL) 2025.
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Finally, the following publication is complementary to the work presented in this thesis.
It is not directly related to the thesis, but provides additional context and background
to the work presented in this thesis.

1. Rappy Saha, Jude Haris and José Cano, ‘Accelerating PoT Quantization on Edge
Devices’, in IEEE International Conference on Electronics Circuits and Systems
(ICECS). 2024.

1.5 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 provides an overview of the background concepts required to understand
the thesis. The chapter covers the basics of Deep Neural Networks (DNNs), key DNN
algorithms, popular DNN frameworks, hardware accelerators, optimisations, and co-
design methodologies.

Chapter 3 provides a review of the related work in the field of hardware accelera-
tors for DNN inference. The chapter covers the state-of-the-art in DNN accelerators,
optimisations, and co-design methodologies.

Chapter 4 presents the SECDA design methodology, which enables hardware-
software co-design of specialised hardware accelerators for DNN inference on resource-
constrained edge devices with FPGAs. The chapter contains a case study to demon-
strate the SECDA methodology, where we design and evaluate two hardware ac-
celerators for convolutional layers: the Vector MAC (VM) and Systolic Array (SA)
accelerators.

Chapter 5 presents the SECDA-TFLite toolkit, which employs the SECDA design
methodology to design and evaluate hardware accelerators for TFLite models. In this
chapter, we highlight the integration of the SECDA with the TFLite delegate system,
which allows for SECDA design methodology to be followed easily by hardware de-
signers while developing custom hardware accelerators for TFLite models. We expand
the original case study presented in Chapter 4 to include the design of a new hardware
accelerator for Fully Connected layers: the FC-GEMM accelerator, along with updates
to the VM and SA accelerators to be compatible with the TFLite delegate system.

Chapter 6 presents the SECDA-LLM toolkit, which employs the SECDA design
methodology to design and evaluate hardware accelerators for LLMs, using the
llama.cpp framework. The chapter contains a case study to demonstrate the SECDA-
LLM toolkit by designing and evaluating a hardware accelerator for LLMs, specifically
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targeting Matrix Multiplication operations that use Block Floating Point (BFP) quan-
tisation. The case study also highlights the importance of iterative design space
exploration using the SECDA methodology.

Chapter 7 presents the design and evaluation of a hardware accelerator for Generative
Adversarial Networks (GANs). The chapter focuses on the Transposed Convolution op-
eration, the key operation in GANs. Our new accelerator design, dubbed ‘MM2IM’,
provides an efficient hardware-software co-designed solution for the Transposed Con-
volution operation on resource-constrained edge FPGAs.

Chapter 8 presents AXI4MLIR, an extension to the MLIR compiler framework that
enables efficient host-accelerator communication. The chapter focuses on automatic
code generation of host driver code for specialised hardware accelerators and highlights
the importance of efficient host driver code to fully exploit the capabilities of custom
hardware accelerators.

Chapter 9 concludes the thesis by providing a summary of the key contributions, a
discussion about future work and a reflection on the PhD journey.

1.6 Summary

The demand for high-performance computing continues to grow, and hardware ac-
celerators have become increasingly popular, especially in the context of Deep Neural
Networks (DNNs), which are computationally intensive and require high memory band-
width. This chapter introduced the motivations and challenges of designing efficient
hardware accelerators for DNN inference on resource-constrained edge devices.

The chapter also presented the thesis’s contributions, including a new design methodol-
ogy for hardware-software co-design (SECDA), multiple toolkits that employ the design
methodology, and hardware accelerators for various DNN models and operations.
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2 | Background

This chapter provides the general overview of all on key concepts of this thesis in terms
of designing DNN accelerators for resources-constrained edge devices on FPGAs. The
chapter first introduces the general concepts of DNNs and some key algorithms. Then
it presents a broad view of the hardware aspect of DNN acceleration, expanding on the
system model 1.1, and focusing on the key concepts of hardware development. Finally,
it discusses key hardware-software co-design techniques and optimisations required for
efficient DNN acceleration.

2.1 Deep Neural Networks

A neural network is a computational model that is inspired by the human brain’s neural
structure. The most basic form contains three layers: input, hidden, and output. The
input layer receives the input data, the hidden layers process the input using some
learned bias and weights, and the output layer produces the final output. Deep Neural
Networks (DNNs) is a class of machine learning (ML) models that depend on increased
depth of neural network hidden layers to improve accuracy on traditional classification
and predictive tasks. DNNs are exploding in terms of research activity and adoption
in consumer and industrial processes. DNN models are being created and engineered
to solve a wide variety of tasks over many varied problem domains; these models can
range from solutions for autonomous driving [Coc+21] to protein folding [Jum+21],
and simpler tasks such as image classification [How+17], speech recognition [Abd+14;
Zha+16b], mobile malware detection [MMM17] and computer vision in robotics[PG16].

2.1.1 DNN Fundamentals

Model Architecture

DNNs are composed of ‘layers’. There are different types of layers, such as Convolu-
tional layers (CONV), Fully Connected layers (FC), Pooling layers, and Non-linearity
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Figure 2.1: Example of a DNN model architecture.

layers. Within these layers, operations are performed on the input data. Additionally,
the layers can contain a set of weights, which alter the inputs to produce the outputs.
The set of outputs from the previous layer is used as inputs for the next layer, and this
process continues until the final layer produces the model’s output. Within this thesis,
for a given DNN, we refer to the layers and how they are connected as the ‘model archi-
tecture’. The wide variety of model architectures enables DNNs to be used in various
applications. Figure 2.1 shows an example of a DNN model architecture, where one of
CONV2D is expanded to show the components of a typical ‘layer’. For example, within
this CONV2D layer, there are 4 tensors: (i) the input activations, which is normally
the output tensor from the previous layer; (ii) the weights, which contain the learned
parameters; (iii) the bias, which adds a constant value to the output of the convolution
operation; and (iv) the output activations, which is where the output of the CONV2D
layer is stored. The CONV2D layer also consists of operations: (i) the convolution
operation, which is performed on the input activations using the weights; (ii) the bias
addition operation, which adds the bias to the output of the convolution operation;
(iii) and the store operation, which usually contains post-processing operations and
stores the output activations to the output tensor.
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Training and Inference

There are two fundamental processes that apply to DNN models: training, which is
the learning phase; and inference using the trained model, which is the prediction
phase. Once a DNN model architecture is defined, usually through the use of a DNN
development framework such as TensorFlow[Aba+16] or PyTorch [Pas+17], the de-
veloper can ‘train’ the DNN model. The training usually involves running the model
on a large training data set and adjusting the model weights to minimise the error
between the model’s output and the expected output, i.e., the ground truth. Ad-
justing the weights enables models to learn key features from the training dataset.
The training phase is very computationally expensive and memory-demanding; due
to the large data set, higher memory capacity is needed to ensure that data does not
need to be fetched from devices further away and that computational device(s) do not
stall waiting for data transfers. For this reason, state-of-the-art solutions currently
use GPUs to perform the process, as they have high memory capacity and bandwidth
and can perform up to trillions of floating-point operations per second (TFLOPs).
Then, the end user can perform inference with the trained models, which is usually a
prediction/classification/generation-based task; the tasks vary depending on the user’s
needs. Training dictates the accuracy of the model, i.e., how well the model performs
the target task on new unseen data. A simple measure of accuracy for classification
tasks is the percentage of correctly classified samples, usually measured as Top-1 or
Top-5 accuracy, which is how often a model picks the correct class within the Top-1 or
Top-5 of its choices.

Inference varies depending on the end-user problem domain and task they want to
tackle; for example, a CNN model can perform image classification inference to classify
different species of birds, or a generative model can synthesise a piece of abstract art
from textual description. Nevertheless, the inference process is much less computa-
tionally demanding than the DNN training phase since significantly less data needs to
be processed to make a prediction or generate a new output. Due to inference’s less
resource-demanding nature, unlike training, resource-constrained edge devices can used
for inference tasks without a significant performance penalty. This enables DNN infer-
ence to be performed using general-purpose CPUs and GPUs but can come with the
drawback of high latency or higher power consumption per inference. Therefore, hard-
ware acceleration of DNN inference via specialised hardware, such as the TPU [Jou+17]
ASIC and FPGA-based accelerators, is being explored to achieve optimal performance
based on the variance of the DNN workloads and devices available. While inference
is less resource-demanding than training, it can still be computationally expensive
and power-hungry relative to the capabilities of resource-constrained devices. As such,
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many factors need to be considered, e.g., the model size, batch processing, quantisation,
sparsity, memory bandwidth, and many more.

This thesis focuses on the inference phase, specifically on accelerating DNN inference
using resource-constrained edge devices with specialised hardware accelerators.

2.1.2 Types of DNNs

There are varying types of DNNs and even different ranges of shapes and sizes within
the same type of DNN. Examples of the range of DNNs include the large convolu-
tional layers of InceptionV3 [Sze+16], as compared to the small depth-wise separable
convolutions of MobileNets [How+17]; or the ‘Residual Blocks’ of ResNets [He+16], as
compared to the ‘Attention Head’ of the transformer-based architecture [Vas+17] in
models such as BERT [Dev+19]. This thesis focuses on the following types of DNNs:
Convolutional Neural Networks (CNNs), Transformer models, and Generative models.
While these models differ in architecture, they share common computational primi-
tives/operations, such as convolution. The key computational primitives/operations
will be further discussed in Section 2.4.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [KSH17] are primarily used for image classifi-
cation tasks. CNNs are mainly composed of Convolutional layers (CONV), which are
used to extract features from the input data. The CONV layer performs the convo-
lution operation on the input data using a set of filters (kernels) to produce a feature
map. Since CONV layers are the most computationally intensive layers in CNNs, it be-
comes essential to maximise the convolution operation’s efficiency to improve a CNN’s
overall performance. Convolutions are sometimes referred to as downsampling since
the feature map produced is smaller than the input data.

CNNs usually contain one or more fully connected (FC), pooling, and non-linearity
layers. Fully Connected layers (FC) use all the output activations from the previous
layer when processing each production of the current layer. In image classification, FC
layers are only used for the last few layers to obtain the class label with the highest
percentage. The pooling layers are used to reduce the dimensions of the feature maps
using operators such as max or average operators. Finally, non-linearity layers (e.g.,
ReLU) are added to add non-linearity to the DNN model. In Chapter 4 and Chapter 5,
we accelerate CNNs through the design of a specialised hardware accelerator for various
quantised CNN models.
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Transformer Models

The Transformer architecture [Vas+17], and its successors such as BERT (Bidirectional
Encoder Representations from Transformers) [Dev+19], have achieved state-of-the-art
performance in a range of Natural Language Processing (NLP) tasks. These models
primarily consist of transformer encoder layers. The encoder layer consists of an atten-
tion layer and an FC layer followed by some normalisation layer. While Transformer
and BERT-based models can still be considered new to the field of DNNs, research
and development on hardware accelerators have already begun [Pat+22]. Considering
the scale of these models in terms of memory and computational demands, they have
greater room for optimisations and performance gains through the use of well-defined
hardware accelerators. In Chapter 5 and Chapter 6, we focus on the acceleration of
transformer-based models through the design of specialised hardware accelerators for
BERT models and LLMs, respectively.

Generative Models

Generative models[XLZ15] can be described as a family of DNN models where the
task of the models is to generate new data. This ranges from generating images of
faces similar to celebrities[Kar+18b] to generating a new piece of music [Dha+20].
Generative models comprise of Generative Adversarial Networks (GANs), Variational
Autoencoders (VAEs), Diffusion models and many more. While these models may
contain traditional CONV and FC layers similar to CNNs and Transformers, they
can also contain new types of layers to upscale the input data. For example, new
layers such as Transposed Convolution layers present different properties requiring
new custom hardware accelerator designs. In Chapter 7, we focus on the acceleration
of GANs through the design of a specialised hardware accelerator capable of efficiently
performing the transposed convolution operation.

2.2 Software Libraries

Throughout this thesis, we look at different software tools and frameworks as the
frontend to define and execute our target workload, mainly DNN inference. In this
section, we focus mostly on machine learning (ML) frameworks, which are software
libraries that provide a set of APIs to enable the development and deployment of DNN
models.

Additionally, we look at MLIR (Multi-Level Intermediate Representation) [Lat+21]
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which is a compiler infrastructure framework that enables the development of domain-
specific compilers.

2.2.1 TensorFlow & TensorFlow Lite

TensorFlow [Aba+16] is an open-source ML framework developed by Google. Using
TensorFlow, developers can define, train, and deploy machine learning models. Ten-
sorFlow provides a set of APIs for defining the model architecture, the training process
(including the loss function and optimiser), and the deployment of the model for infer-
ence.

TensorFlow Lite (TFLite) is a lightweight version of TensorFlow designed for mobile
and edge devices. TFLite is deployed on devices with limited computational resources,
such as smartphones, tablets, wearables, and microcontrollers. For example, TFLite
supports a range of quantisation formats, including 8-bit integer quantisation and 16-
bit floating-point quantisation, which allows the model size to be reduced to ensure
they fit in the memory of the target resource-constrained device. TFLite consists of
several smaller tools, such as the ‘TFLite converter’, which enables the conversion of
TF models to TFLite models, and the ‘TFLite benchmark model’ tool, which can be
used to evaluate TFLite models.

Within this thesis, we use TensorFlow to acquire DNN models and generate test work-
loads. As for TFLite, we use the TFLite tools to convert, run and evaluate the models.
Additionally, we take advantage of the TFLite delegate system (see section 5.2.1) to
easily integrate new hardware within TFLite; see Chapter 5 for more information on
how we use TFLite to not only deploy models on custom FPGA-based accelerators but
also to design new FPGA-based accelerators for TFLite-based DNN inference.

2.2.2 llama.cpp

llama.cpp [Ger24b] is an ML framework for LLM inference. Its main goal is to enable
LLM inference with minimal effort and setup while providing the best performance on
various hardware devices. This project has increased the usability of edge-based LLM
inference by providing simple utilities to load, run, evaluate and interact (for example,
via chatbot) with pre-trained LLMs. Note that the simplicity of llama.cpp lies in its
pure C/C++ library, with minimal external dependencies, enabling LLMs inference on
a wide range of hardware that supports standard C/C++ compilers.

Currently, llama.cpp supports a wide range of LLMs, including some multi-modal and
custom-defined models. llama.cpp [Ger24b] employs the GPT-Generated Unified For-
mat model format (GGUF) to represent LLMs. In this format, using BFP quantisation,
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it is possible to represent the weights of an LLM with as few as 1.5 bits. These quan-
tised weights enable users to run the model on resource-constrained devices such as the
Raspberry Pi and Pixel phone [Sim]. In llama.cpp implementation, BFP quantisation
is leveraged to quantise the weights of the LLMs, and it includes a few quantisation
variations, such as 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit BFP quantisa-
tion. These variations are typically denoted as Qx y, where x represents the number
of bits per weight and y denotes the type of quantisation, see Section 2.4.4 for more
information on BFP quantisation.

Enabling LLM inference to work has become more straight forward on resource-
constrained CPUs or GPUs due to the optimised support provided by llama.cpp for
AVX, AVX2 and AVX-512 on x86 architectures as well as custom CUDA kernels for
running on NVIDIA GPUs. However, LLM inference on FPGAs is not straightforward,
as the design process for new FPGA-based accelerators has yet to be integrated with
inference platforms like llama.cpp.

Within this thesis, we use llama.cpp to design and evaluate new FPGA-based acceler-
ators for LLM inference across different LLMs; see Chapter 6 for further details.

2.2.3 MLIR

In addition to the ML frameworks, in this thesis we utilise MLIR [Lat+21] to enable and
explore hardware-software co-design when designing new FPGA-based accelerators,
specifically for the AXI4MLIR work presented in Chapter 8. MLIR is a compiler
infrastructure that facilitates the creation of domain-specific compilers by providing
code generators, translators, optimisers, and the infrastructure to define subsets of
operations that expose well-defined language abstractions. MLIR is designed to easily
allow progressive lowering between current and new operations, promoting the reuse
of abstraction levels and compiler passes already implemented in the framework.

MLIR is composed of a set of dialects, each built up by a set of operations, types, and
attributes. Dialects are used to capture the semantics of a specific layer of abstraction.
This can be at a low level, such as the ‘amdgpu’ dialect which contains operations
specific to AMD GPUs, or at a higher level, such as the ‘tf’ dialect which contains
mapping MLIR operations to TensorFlow operations. While users can create new
dialects, some ‘core’ dialects are used to define common operations, such as the ‘arith’
dialect, which contains basic arithmetic operations.
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1 # matmul_trait = {
2 indexing_maps = [
3 affine_map <(m, n, k) -> (m, k)>, // A
4 affine_map <(m, n, k) -> (k, n)>, // B
5 affine_map <(m, n, k) -> (m, n)> // C
6 ]
7 iterator_types = [
8 " parallel ", " parallel ", " reduction "
9 ],

10 }
11 func.func @matmul_call (...) {
12 linalg.generic # matmul_trait
13 ins (%A, %B : memref <60 x80xf32 >, memref <80 x72xf32 >)
14 outs(%C : memref <60 x72xf32 >) {
15 ˆbb0(%a: f32, %b: f32, %c: f32):
16 %0 = arith.mulf %a, %b : f32
17 %1 = arith.addf %c, %0 : f32
18 linalg.yield %1 : f32 }
19 return }

(a) Linalg Abstraction with generic operation.

1 func.func @matmul_call (...) {
2 // Declare constants %c0 %c1 %c4 %c60 %c72 %c80 ...
3 scf.for %m = %c0 to %c60 step %c4 { // Tiling by 4,4,4
4 scf.for %n = %c0 to %c72 step %c4 {
5 scf.for %k = %c0 to %c80 step %c4 {
6 // Grab handle for the sub -tiles:
7 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
8 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] : ...
9 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] : ...

10 // Matmul computation of a 4x4x4 tile:
11 scf.for %mm = %c0 to %c4 step %c1 {
12 scf.for %nn = %c0 to %c4 step %c1 {
13 scf.for %kk = %c0 to %c4 step %c1 {
14 %3 = memref.load %sA[%mm, %kk] : !mr4x4_0
15 %4 = memref.load %sB[%kk, %nn] : !mr4x4_1
16 %5 = memref.load %sC[%mm, %nn] : !mr4x4_1
17 %6 = arith.mulf %3, %4 : f32
18 %7 = arith.addf %5, %6 : f32
19 memref.store %7, %sC[%mm, %nn] : !mr4x4_1
20 } } } } } }
21 return }

(b) Structured Control Flow (SCF) abstraction with tiling.

Figure 2.2: MLIR representations of a Matrix-Matrix Multiplication Operation in dif-
ferent abstractions.
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1 typedef struct {
2 float * allocated ; // For deallocation
3 float * aligned ; // Base address
4 size_t offset ; // Offset in # of elements
5 size_t size[N]; // One size per dim
6 size_t stride [N]; // One stride per dim
7 }

Figure 2.3: The underlying data structure of a rank==N MLIR memref buffer.

Linalg Dialect

In support of the underlying algorithms and kernels used by many machine learning
frameworks (e.g., TensorFlow and PyTorch), MLIR offers a linear algebra dialect called
linalg that exposes (named) operations such as convolutions, matrix multiplications,
and others. Operations expressed in higher-level dialects can target linalg opera-
tions and leverage all subsequent transformations supported by linalg and lower-level
abstractions. As an example, Figure 2.2 presents an MLIR matrix-multiplication (Mat-
Mul) implementation in different abstractions.1 The operation is initially represented
using a linalg.matmul and subsequently undergoes conversion, transformation, and
lowering by the compiler. In Figure 2.2a-L11 and L17, the linalg.matmul is con-
verted into a linalg.generic. The linalg.generic is a core MLIR operation that
can represent most of the linalg named ops, by careful selection of its operation trait2

indexing_maps (L2), iterator_types (L7), and kernel (L15 to L18). Finally, the
generic operation can be converted into a tiled (4×4×4) implementation of the Mat-
Mul (Figure 2.2b) using the structured control flow (scf) dialect. When supporting an
accelerator that can process a MatMul4×4×4 operation. Note a 2D MatMul operation
is MatMulMxNxK : C(M,N) = A(M,K) x B(K,N). The code in Figure 2.2b-L11 to L19
has to be replaced by the runtime library calls that drive the accelerator.

MLIR Memory References

Within MLIR, memory buffers exist as N-dimensional (rank=N) memory references, or
memrefs. Accessing the elements of an MLIR memref requires accessing the values in
the equivalent C struct of Figure 2.3. The AXI4MLIR DMA runtime library, presented
in Section 8.2.1, supports bidirectional data movements between memrefs and memory-
mapped buffers (raw pointers) while respecting strides, sizes, and dimensions.

1Some MLIR code is omitted for the sake of brevity.
2See linalg.generic in https://mlir.llvm.org/docs/Dialects/Linalg
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2.3 Hardware

While DNN inference is less demanding than training, it is still deemed to be expensive
to perform DNN inference on low-power and resource-constrained edge devices such
as smartphones, tablets, etc. To address these issues, hardware-based optimisations
to reduce the compute and power requirements of inference are being developed via
ISA-level extensions for CPUs and GPUs, along with custom ASIC, CGRA and FPGA
architectures. The inefficiency of inference on edge devices is only exasperated by the
development of novel DNN model architectures with a greater number of layers and
complexity, which increases the computational and memory bandwidth demands and
is particularly critical for resource-constrained devices. Sze et al., [Sze+17] explore
the different problems and solutions for efficient processing of DNNs, and also outlines
the current trend in hardware accelerators for DNN inference. The work examines the
ASIC and FPGA-based designs to highlight the importance of spatial architecture and
different types of dataflows to enable efficient processing of DNN models. Designing
spatial accelerators for edge DNN inference has many possible optimisations to be taken
into consideration, as they have certain limitations not found in GPUs, such as low on-
chip memory, limited off-chip memory access bandwidth, and low computational power.
Power consumption and energy efficiency also need to be taken into consideration to
allow custom solution to perform in energy-constrained environments. As this thesis
focuses on hardware-software co-design of FPGA-based accelerators for DNN inference
on edge devices, within this section we discuss FPGAs, accelerators and the hardware
development process for designing FPGA-based accelerators.

2.3.1 FPGAs

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware devices that
can be programmed to perform a wide range of tasks. FPGAs are used in a variety
of applications, including digital signal processing, networking, and machine learn-
ing. FPGAs represent a middle ground between general-purpose processors like CPUs,
GPUs and NPUs, and Application-Specific Integrated Circuits (ASICs) like the TPU
and NVDLA, while providing finer grain control compared to Coarse-Grained Recon-
figurable Arrays (CGRAs).

While general-purpose CPUs are flexible and easy to program, they are inefficient for
parallel processing of highly parallel tasks, such as those found in machine learning
workloads. This inefficiency is because CPUs are designed to execute a wide range
of operations/instructions, which means that the hardware resources are optimally
utilised for a specific task. Meanwhile, GPUs/NPUs can perform well on parallel task
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processing, but they are highly energy inefficient and can often be underutilised because
the workload does not suitably match the GPU/NPU capabilities. Overall, the flexible
nature of general-purpose CPUs/GPUs/NPus usually leads to lower performance in
terms of throughput, power efficiency, and latency compared to an ASIC or FPGA-
based accelerator.

ASICs are custom-designed chips that are optimised for a specific task. Since ASICs are
higly specialised for a specific task, they can outperform general-purpose CPUs/GPUs
and FPGAs in terms of throughput, power efficiency, and latency. However, ASICs
are very time-consuming and costly to design, and once they are manufactured cannot
be reconfigured. This means that first, the design process becomes more complex
and laborious as the designer has to ensure that the design is correct before it is
manufactured. Secondly, if the task changes, the ASIC can become less efficient or
even obsolete.

Meanwhile CGRAs provide some flexibility and performance as they typically contain
functional units interconnected by a mesh style network with some configurability.
Due to their coarse-grain nature and lack of gate-level reconfigurability, CGRAs limit
the problem specific optimisations, and gate-level/circuit level optimisation which are
supported by FPGAs.

Hence, FPGAs are a good middle ground between general-purpose processors and
ASICs. FPGA-based accelerators enable high performance, low latency, and power
efficiency compared to general-purpose CPUs/GPUs due to the parallel processing
capabilities of FPGAs. But, due to the reconfigurability of FPGAs, they are less
efficient than ASICs. However, the flexibility of FPGAs makes them an attractive
choice for developing hardware accelerators for machine learning workloads, as the
workloads are constantly evolving. Additionally, reconfigurability of FPGAs allows for
rapid prototyping and testing of accelerator designs alongside the target software stack.

2.3.2 FPGA Architecture

FPGAs are composed of different primitive resources such as Configurable Logic Blocks
(CLBs), Block RAMs (BRAMs), Digital Signal Processing (DSP) blocks, Input/Out-
put (I/O) blocks and programmable interconnects.

• Configurable Logic Blocks (CLBs): CLBs are the basic building blocks of
FPGAs, they consist of Look-Up Tables (LUTs), flip-flops (FFs), and multiplex-
ers (MUXes). Using CLBs, the designer can implement any combinational or
sequential logic function.
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• Block RAMs (BRAMs): BRAMs are used to store data and implement mem-
ory structures such as caches, buffers and FIFOs. BRAMs are used to store DNN
weights, activations, and intermediate results during the computation. Note that
in the case of FPGA-based accelerators BRAMs are referred to as on-chip mem-
ory, as they are used to store data on the FPGA itself, which is faster to access
than off-chip main memory.

• Digital Signal Processing (DSP) blocks: DSP blocks are used to implement
complex arithmetic operations such as multiplication and accumulation. Within
Zynq-7000 SoC, the DSP48E supports 18× 25-bit multipliers and 48-bit adders.

• Input/Output (I/O) blocks: I/O blocks are used to interface the FPGA with
external devices. I/O blocks are used to transfer data between the FPGA and the
host system. For example, the High Performance AXI [Deva] (HP AXI) ports on
the Zynq-7000 SoC are used to transfer data between the FPGA and the ARM
processor.

• Programmable Interconnects: Programmable interconnects are fundamental
to the FPGA architecture, as they enable combining the different resources on
the FPGA together to implement the desired functionality.

Depending on the specific FPGA device, the number of these resources available on the
device vary. For the purpose of this thesis, we will focus on Xilinx FPGAs, specifically
the FPGA devices available on the Zynq-7000 SoC (System on Chip) [AMDb], see
Table 1.1 for the specifications.

2.3.3 Accelerators

Accelerators are hardware devices designed to execute specific computational tasks.
Accelerators can be used to offload computationally intensive tasks from the CPU to
improve performance in terms of throughput, latency, and power efficiency. These
tasks can range from simple image processing to cryptography and machine learning
workloads. Accelerators can be implemented in a variety of ways, including custom
ASICs, FPGAs, CGRAs and GPUs. In the context of this thesis, we focus on FPGA-
based accelerators for DNN inference, but the concepts discussed here can be applied
to other types of accelerators as well.

Accelerator Architecture

The accelerator architecture can be described as the combination of three main con-
cepts: processing units (PUs), dataflow and memory hierarchy.
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(a) 4-by-4 Systolic Array Processing Unit. (b) A 8x Vectorised Processing Unit.

Figure 2.4: Example of different dataflows architectures for processing data.

Processing Units: The PU defines what computation is performed on the data,
including PE (processing element) design within the PU. Note that within the thesis,
we distinguish between PUs and PEs. PUs are larger, more complex, and contain
several PEs, whereas PEs are more primitive computational units that can perform
simple arithmetical operations such as multiplying and adding. The PU abstracts
away the computation within the accelerator and allows the designer to focus on the
mathematical operations that need to be performed on the data. Ideally, the PU
should be designed such that an accelerator can contain multiple instances of the PU
to increase the level of parallelism and improve the performance of the accelerator.
Additionally, different PUs can perform different operations; for example, a PU can
be designed to perform matrix multiplication, while another PU can post-process the
matrix multiplication results.

Dataflow: The dataflow defines the computational paradigm of the accelerator, and
how the computation is scheduled and executed within the accelerator. Figure 2.4
contains two different PUs highlighting two common dataflow paradigms used in DNN
accelerators: the systolic array and the vectorised design, these dataflow paradigms
form the basis of the accelerator designs presented in Section 4.4.3. In the systolic
array design, the computation is pipelined, where the data is passed from one processing
element to the next. In the vectorised design, the computation is performed in a SIMD
(Single Instruction Multiple Data) manner, where the same operation is performed on
multiple data elements in parallel across the processing elements.

Memory Hierarchy: The overall memory hierarchy defines how the data is stored
and accessed across the entire system (see Figure 1.1), which includes how data is stored
in main memory and on-chip memory within the accelerator. Within the context of
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Figure 2.5: Generic DNN accelerator architecture.

accelerator design, we focus on the on-chip memory hierarchy within the accelerator.
This includes details on how the on-chip memory is allocated for different data (e.g.,
weights, activations, intermediate results) and how it is distributed to the PUs within
an accelerator. The design of the local memory hierarchy of the PUs is also important,
as it can dictate the performance of the PEs within the PUs. For example, in the
systolic array architecture, data needs to be allocated to fill the input and weight
FIFOs every cycle to maximise throughput. Similarly, in the vectorised architecture,
memory needs to be arranged so that data can be broadcast to all PEs in parallel.

DNN Accelerators

Due to the highly parallel nature of DNN workloads, general purpose GPUs are of-
ten used to accelerate DNN inference, as they can provide significant speedup over
general-purpose CPUs. However, specialised ASIC designs such as the TPUs [Jou+17],
MAERI [KSK18], and Eyeriss [Che+19] have shown that specialised DNN accelerators
can provide significant speedup over general-purpose CPUs and GPUs for DNN infer-
ence.

DNN inference accelerators are designed to target computationally intensive layers in
DNN models, such as convolutional layers. For this reason, DNN accelerators are often
designed to perform either matrix multiplication or vector-matrix multiplication, as
these operations are prevalent in DNNs. Figure 2.5 shows a generic DNN accelerator
architecture, which usually consists of: (i) on-chip memory buffers to store weights,
activations, and intermediate results during the computation to help hide the latency of
off-chip memory accesses; (ii) custom activation function units, which are used to apply
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activation functions to the intermediate results; (iii) high-speed interface to transfer
data between the CPU and the accelerator; (iv) control logic to manage the dataflow
and the computation; (v) fetch/decode unit to process the instructions from the host
CPU.

2.3.4 Hardware Development

Developing new accelerators for FPGAs is a complex process that requires a deep
understanding of hardware design methodologies. To develop a hardware accelerator,
the hardware designer has to be familiar with hardware description-based development
flow. Hardware Description Language (HDL) based design flows use highly detailed
hardware descriptions at the Register Transfer Level (RTL), for example in languages
such as Verilog [Des06] and VHDL [Des19] to define the desired behaviour of the
accelerator.

While this approach allows for fine-grained hardware designs, it comes with high
development time, and high codebase complexity and size required to define de-
signs [Pel+16], when compared to High-Level Synthesis (HLS) based solutions. HLS
tools allow the designer to write less descriptive algorithmic code in C/C++/SystemC,
which can be translated into low-level HDLs such as Verilog and VHDL. These HDLs
can then be used to realise the designs on ASICs or FPGAs.

Listing 2.6 shows an example of Verilog code for a simple adder, and listing 2.7 shows
the same adder using SystemC code that can be used to generate the same Verilog code
using Vivado HLS. SystemC code is written at a higher level and is easier to understand
than the Verilog code, which makes it easier to develop and maintain. Additionally,
some trade-offs exist between HLS and purely HDL-based design processes; we highlight
the simulation capabilities in Section 2.5.

OpenCL [SGS10] is another design methodology that uses a host-device programming
model where the host code, i.e., the driver, prepares and transfers data to be executed
by the device, i.e., the accelerator. Hence, the OpenCL approach allows for the co-
design of the driver. The device code is written in high-level OpenCL code, which
defines computation kernels that process the target workload. This high-level OpenCL
code is translated into a synthesisable hardware design. OpenCL follows a rigid pro-
gramming model, where the designer defines the computation kernels that need to be
accelerated. The designer can configure the number of hardware instances allocated to
each computation kernel. The higher the number of instances, the greater the number
of instructions executed in parallel for the given kernel.
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1 module adder (
2 input wire [31:0] a,
3 input wire [31:0] b,
4 output wire [31:0] c
5 );
6 assign c = a + b;
7 endmodule
8

Figure 2.6: Verilog code for a simple adder.

1 SC_MODULE (adder ) {
2 sc_in <int > a;
3 sc_in <int > b;
4 sc_out <int > c;
5

6 void add () {
7 c.write(a.read () + b.read ());
8 }
9

10 SC_CTOR (adder) {
11 SC_METHOD (add);
12 sensitive << a << b;
13 }
14 };
15

Figure 2.7: SystemC code for a simple adder.

High-Level Synthesis (HLS)

High-Level Synthesis (HLS) is a design methodology that allows to write algorithmic
code in high-level languages such as C/C++/SystemC, which can then be synthesised
into low-level HDLs such as Verilog and VHDL. There are many different HLS compiler-
s/tools which are able to perform HLS on high-level descriptions of hardware designs.
HLS compilers take the target hardware platform into account when generating the
hardware design, which can allow the compiler to optimise the design both in terms of
performance and resource utilisation. One drawback of HLS is that the designer has
less control over the hardware design, as the HLS compiler is responsible for generating
the hardware design from the high-level code. This can lead to the generation of sub-
optimal hardware circuits. To mitigate this issue, HLS tools often provide the designer
with the ability to provide hints to the compiler to guide the hardware design genera-
tion through HLS ‘pragmas’ or ‘directives’. These pragmas can drastically change the
design generated by the HLS compiler and lead to more efficient hardware designs.
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In this thesis we utilise the AMD’s Vivado HLS [Xilb] tool with SystemC as the in-
put language to generate the Verilog/VHDL code. Once HLS has generated the Ver-
ilog/VHDL code, Vivado HLS exports IP (Intellectual Property) blocks, which package
the generated IP into a reusable block that can be imported for Logic Synthesis.

Logic Synthesis

Logic synthesis is the process of mapping an RTL hardware design to a target FPGA
device, which involves translating the RTL code into a netlist of logic gates. The
netlist is then mapped to the target FPGA device, which involves placing the logic
gates on the FPGA and routing the connections between them. Logic synthesis of
hardware designs to an FPGA is a time-consuming process that can take minutes to
hours, depending on the complexity of the design.

From the user’s perspective, the critical part of the logic synthesis process is creating
a block design that integrates their desired IP blocks and the generated IP block, in
our case, the accelerator. Figure 2.8 contains a screen capture of the Vivado Design
Suite, which shows the block design of an accelerator integrated with the Zynq-7000
SoC. Once the block design is complete, the designer can run the Vivado Design Suite
to generate the bitstream, which consists of main steps, including synthesis, implemen-
tation, and bitstream generation. The generated bitstream can then be programmed
onto the target FPGA device, configuring the FPGA to implement the desired hard-
ware design.

2.4 Key Algorithms

Across the different types of DNN layers, there are some key operations that are re-
peatedly used in the computational graph. These operations can be thought as the
algorithmic primitives that are used to build the computational graph of a DNN. Here
we will discuss and highlight the primitive operation that will be referred across this
thesis. Note that for a type of layer, there can be multiple ways to implement the
operation.

2.4.1 Convolution

Looking at convolutional layers provides a good example of many computationally
different implementation strategies for the same convolution operation. The simplest
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Figure 2.9: Direct Convolution Example. The filer kernel is slid across the input
activations to produce the output activations.

implementation is referred to as direct convolution which simply performs the convo-
lution operation according to its definition by sliding the filter kernels across the input
activations.

Figure 2.9 shows an example of direct convolution, where a 3 × 3 filter kernel is slid
across the 5×5 input activations to produce the 2×2 output activations, with a stride
of 2 and no padding.

Direct convolution requires irregular memory access patterns which can be inefficient
on hardware such as GPUs. Hence, many optimised implementations of convolution
operations have been developed to improve the performance of convolutional layers.
A commonly used implementation referred to as GEMM convolutions is performed
by rearranging the convolution operation to matrix multiplication by flattening the
filter weights and output activations and through the replication of input activations
using the IM2COL algorithm [CPS06]. This strategy poses many advantages as matrix
multiplication-based convolutions allow for a high degree of parallel computing while
employing varying tiling strategies suited to the available hardware. We utilise this
method in Chapter 4 to implement and accelerate the convolutional layers of the CNN
models.

Transformation-based convolutions such as Fast Fourier Transform [CJM20] and Wino-
grad [LG16] are sometimes used to reduce the number of expensive multiply operations
usually by increasing memory demands, introducing shift-based operations or increas-
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Algorithm 1: Matrix Multiplication (MM)
1 Input: A = shape(m, k), B = shape(k, n)
2 Output: C = shape(m, n)
3 for i = 1 to m do
4 for j = 1 to n do
5 Cij = 0
6 for l = 1 to k do
7 Cij = Cij + Ail ×Blj

ing the number of add operations. Different methods pose varying trade-offs which
need to be accounted for when pursuing optimal performance.

2.4.2 Matrix Multiplication

Matrix Multiplication (MM) is a fundamental operation in DNNs, used in many layers
such as fully connected layers and convolutional layers.

Algorithm 1 shows the general matrix multiplication in its most basic form. Commonly,
to improve performance of MM operations, depending on the hardware architecture,
the algorithm can be optimised by using techniques such as loop unrolling, tiling, and
vectorisation. As previously mentioned, GEMM convolutions which essentially are
MM, are used to perform convolution operations by rearranging the inputs using the
IM2COL algorithm, flattening the weights and then performing the GEMM operation,
thus yielding the same result as direct convolution but with improved performance.
Figure 2.10 shows an example of the IM2COL operation. Here the input activations
are transformed into a matrix, where each row corresponds to a kernel size patch of
the input activations, the patches are determined by the kernel size and stride of the
convolution operation. The filter kernels are also flattened into a matrix, where each
row corresponds to a filter kernel. Note that while transforming the input activations
into the input matrix yields data replication and increased memory usage, the GEMM
operation can be highly optimised for parallel computations due to its regular memory
access patterns. We use matrix multiplication as a target operation for accelerator in
Chapter 5, Chapter 6 and in Chapter 8.

2.4.3 Transposed Convolution

Transposed Convolution (TCONV), sometimes referred to as deconvolution within the
field of ML, is used in upsampling layers. Upsampling layers are used to increase the
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Figure 2.10: IM2COL. The input activations are transformed into the input matrix,
and the filter kernels are flattened into the weight matrix. Note the input matrix and
the weight matrix now share the common ‘Depth (K)’ dimension.

spatial resolution of the input activations. These are used in many DNN architec-
tures, such as U-Net [RFB15] and SegNet [BKC17] for image segmentation tasks. The
TCONV operation be defined by the following eight dimensions, with the output being
defined as:

out(Oh, Ow, Oc) = tconv(Ih, Iw, Ic, Ks, Oc, S) (2.1)

where Ih, Iw, Ic are the input height, width and channels, respectively; with kernel size
Ks, output channels Oc and stride S. The output dimensions, output height Oh and
width Ow are defined as: Ohw=S × Ihw. When Ks > S, executing the direct TCONV
operation requires the coalescing of intermediate outputs into the same final output;
this coalescing is known as the overlapping sum problem. A simple tconv(2, 2, 1, 2, 1, 1)
example of direct TCONV is shown in Figure 2.11, highlighting the coalescing of in-
termediate outputs.

Since the mapping of intermediate outputs to final outputs is not a fixed ratio, the
complexity of the output mapping increases.

There are three optimised methods for implementing TCONV: (i) Zero-Insertion;
(ii) Transforming Deconvolution to Convolution (TDC); (iii) and Input-Oriented Map-
ping (IOM).

Zero-Insertion resolves the overlapping sum problem by padding the input zeros, albeit
with added compute, memory, and bandwidth overhead, approximately 75% [Xu+18].
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Figure 2.11: Direct TCONV Example. The filter kernel is slid across the inputs to
produce the intermediate output patches. The four intermediate output patches are
summed to produce the final output.

The TDC method transforms TCONV operations into Convolution operations by gen-
erating sub-filter kernels to avoid the overlapping problem, but this method requires
additional hardware to process the sparse sub-filter efficiently [CKK20]. The TDC
method expands the input kernels to the same size as the sub-filter (Fs) kernels, and
the filter data is replicated across F 2

s sub-filters.

For the IOM method, introduced within GNA [Yan+18], each activation is multiplied
by the filters and the partially overlapped intermediate results are summed to produce
the final output. We can express the IOM method as:

out(Oh, Ow, Oc) = col2im(gemm(I, WT ), Oh, Ow, Oc) (2.2)

where I(Ih, Iw, Ic) is the input data, W (Ks, Ks, Oc, Ic) is the filter data, gemm is the
matrix multiplication operation, and col2im is the operation to convert the output
of the matrix multiplication to the final output. Note an example of the TCONV
operation using the IOM method is shown in Figure 7.1. The IOM method reduces
the number of operations required to perform TCONV, as it does not require addi-
tional padding or transformation of inputs or weights. The drawback of the IOM
method is that it requires an efficient architecture to overcome overlapping sums, and
contains a significant amount (up to 28%) of ineffectual computation due to cropped
outputs which are calculated with the standard MM-based implementations of IOM.
In Chapter 7, we design and implement a specialised TCONV accelerator using the
IOM method that tackles the current limitations of the IOM method.
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2.4.4 Quantisation

Within the field of Machine Learning and DNNs, quantisation is a technique used to
reduce the precision of the weights and activations in a DNN model. This technique
is used to reduce the memory footprint and computational complexity of the model,
thus making it more suitable for deployment on resource-constrained devices. Quan-
tisation can be applied to weights, activations, or both, and can be done in a variety
of ways, such as floating-point quantisation, integer quantisation, and block floating
point quantisation. Here we focus on integer quantisation and block floating point
quantisation, which have been used across this thesis.

Integer Quantisation

Integer quantisation, also known as fixed-point quantisation, is a type of quantisation
which involves mapping the floating-point values to a smaller set of integer values,
which can be represented using fewer bits.

The most common form of integer quantisation is 8-bit signed integer quantisation
(INT8), which maps the floating-point values to 8-bit signed integers, more specifically
to the range [−128, 127]. Unsigned 8-bit integer quantisation (UINT8) is also used,
which maps the floating-point values to the range [0, 255], but this is less conventional
due to the mid-point not being ‘0’, which is not ideal for symmetric quantisation.

For frameworks like TFLite, quantisation is a key optimisation technique used to re-
duce the memory footprint and computational complexity of the model, making it
more suitable for deployment on resource-constrained devices [TFL]. Within TFLite
the inputs are mapped to INT8 quantisation, but they are asymmetrical by nature,
hence the zero-point is not ‘0’. Fortunately, the weights can be forced to become sym-
metrical with zero-point being ‘0’, and this allows for more precision to be retained
in the weights, and potentially reduced number of operations to adjust the quantised
weights [TFL]. All models used in Chapter 4, Chapter 5, and Chapter 7 utilise INT8
quantisation for the weights and activations.

Block Floating Point Quantisation

Block Floating Point (BFP) quantisation is a technique used to quantise the weights
and activations of a DNN models. BFP quantisation involves mapping the floating-
point values to a smaller set of integer values, which can be represented using fewer
bits. The key idea behind BFP quantisation is to reduce bit-width of the values but
then keep track of two scaling factors. Depending on the BFP format, the first scaling
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factor is for a small block of values, and the second scaling factor is shared across a
‘super-block’ of values. In Chapter 6, we design a MatMul accelerator around a specific
BFP format described in Section 6.3.1.

2.5 Hardware-Software Co-Design

Hardware-Software (HW-SW) co-design is a critical aspect when designing and de-
ploying DNNs on edge FPGAs. Since resources are more limited on edge FPGAs, and
DNNs workloads are large in terms of their memory footprint and computational de-
mands, a given DNN is unlikely to fully fit on an edge accelerator. Thus, for inference,
the accelerator must operate in close communication with the CPU, which requires
careful co-design with the host CPU code to ensure that data is managed efficiently.

2.5.1 SystemC

SystemC [Des23] is a TLM (Transaction Level Modelling) language based on C++ that
is used for hardware-software co-design. SystemC is used to model hardware compo-
nents and their interactions, and can be used to model the hardware-software interface.
TLM is a modelling abstraction that allows the designer to model the communication
between hardware components at a higher level of abstraction. This allows the de-
signer to focus on the functionality of the components rather than the details of the
communication between them. Within this thesis, we use SystemC to design, simulate
and generate synthesisable hardware accelerators for DNNs. Specifically, the SECDA
design methodology described in Chapter 4 uses SystemC as the core language for
hardware design to enable simulation and synthesis of the hardware accelerators.

SystemC Hardware Definition

SystemC allows the hardware designer to define modular hardware design using spe-
cialised SystemC classes. Each SystemC class is referred to as a hardware module.
A hardware module can be as simple as implementing an ‘and’ gate or as complex
as a full DNN accelerator. Within each hardware module, the designer can initiate a
clock signal, I/O ports, buffers, internal signals, and hardware ‘threads’, which contain
combinatorial or sequential logic that implements the functionalities of the hardware
module. Each SystemC ‘thread’ can be thought of as a hardware circuit that will run
independently of the other threads, unless the synchronising logic is implemented with
another thread using internal signals.
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1 SC_MODULE (FIFO) {
2 sc_in <bool > clk;
3 sc_fifo <int > data_fifo ;
4

5 void write_thread () {
6 int write_counter ;
7 while (true) {
8 data_fifo .write( write_counter );
9 write_counter ++;

10 wait (1, SC_NS);
11 }
12 }
13

14 void read_thread () {
15 int read_counter ;
16 while (true) {
17 int data = data_fifo .read ();
18 read_counter ++;
19 wait (1, SC_NS);
20 }
21 }
22 SC_CTOR (FIFO) : data_fifo (" data_fifo ") {
23 SC_THREAD ( write_thread , clk.pos ());
24 SC_THREAD ( read_thread , clk.pos ());
25 }
26 };
27

Figure 2.12: SystemC code for a simple read/write FIFO module.

Figure 2.12 shows an example of a SystemC module, which defines a simple data
read/write from/to a data FIFO using two threads. One thread writes to the FIFO,
and the other reads from it. Note that the FIFO initialised inside the module is
accessible to both threads, but the ‘read counter′ and the ‘write counter′ are only
accessible to the respective threads.

While this simple design contains only one module, more complex designs require mul-
tiple modules connecting via I/O ports. SystemC modules can also contain submod-
ules, enabling the abstraction of physical resources between different submodules. For
example, a ‘processing unit’ submodule can have internal buffers that the parent ac-
celerator module cannot access. Additionally, submodules can help design accelerators
that can support multiple types of ‘processing units’ or even have a scalable number
of submodules.
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SystemC Simulation

SystemC provides an hardware-software event-driven co-simulation environment that
allows the designer to simulate the hardware design before synthesising it. Event-
driven simulation depends on events, such as when a signal changes its value or a
FIFO is written and filled. The simulation environment allows the designer to test the
functionality of the hardware design and debug any issues that may arise. Additionally,
due to co-simulation, the designer creates and uses software testbenches that imitate the
target workload. Co-simulation helps provide data inputs to the hardware simulation
and verify the output data.

Since SystemC TLM, the modules communicate with each other through transactions,
which occur across communication channels. This type of model can allow the designer
to simulate the hardware design at different levels of abstraction. For example, the de-
signer can model the design at a finer granularity, achieving cycle-accurate simulation,
but this will lead to a slow simulation time similar to RTL simulation. Alternatively,
SystemC is typically used to perform cycle-approximate simulation using loosely-timed
models. This approach implies that not all cycles contain events, i.e., clock edges rise
and fall. Hence, the simulation only occurs when accelerated defined events occur, for
example, when a FIFO is written to or read from. We describe how SystemC simulation
is used across this thesis in Section 4.3.3.

2.5.2 Host-Accelerator Communication

This thesis focuses on the hardware-software co-design from the perspective of the low-
level host-driver interaction with the accelerator. This interaction is a vital component
of the DNN acceleration pipeline, as the efficiency of data movement between the
software-managed main memory and hardware-managed on-chip memory can dictate
the overall performance, especially in resource-constrained devices with limited on-
chip memory. Within our system model, we refer to the ‘accelerator driver’ as the
component that handles the algorithm which implements the data transfer required
for the target operation. The driver can perform data transfer as it controls both the
accelerator and the DMA engines, which move data between the main memory and
accelerator memory. As our system model uses an ARM-based SoC with an FPGA, the
standard protocol for data movement within the SoC is the AXI (Advanced eXtensible
Interface) protocol [Deva]3 and MMIO (Memory-Mapped Input/Output).

3Specifically the AXI4 version.
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Advanced eXtensible Interface (AXI) Protocol

There are three main types of AXI protocols: AXI-MM (Memory-Mapped), AXI-
Stream (AXI-S) and AXI-Lite.

AXI-MM: enables memory mapping of a region of main memory, such that the ac-
celerator can treat this area of memory as addressable. While this approach eases
the hardware implementation, it can induce latency overhead due to the mapping and
random address access.

AXI-S: enables a stream-based data interface which allows for data to be streamed
in via FIFO from main memory to the accelerator (MM2S) and accelerator to main
memory (S2MM). This approach requires careful management of the data stream, as
the data must be sent in the correct order, and the correct amount of data must be
sent; but it enables lower latency and higher throughput. This approach is suitable
for transferring large amounts of data, such as the input and output tensors of a DNN
operation.

AXI-Lite: is a simplified version of AXI-MM, which is used for control registers and
status registers. An accelerator’s I/O ports, such as the start signal, the done signal,
and the configuration registers, can be accessed using the AXI-Lite protocol. From
the driver’s perspective, the AXI-Lite protocol is accessed using MMIO. The driver
memory maps the control registers and status registers to the virtual memory space
of the host CPU and can read and write to these registers to control the accelerator.
Similarly, the driver uses the AXI-Lite combined with MMIO to access and control the
AXI DMA engine [Xila], initiating data transfers as required.

These all three types of AXI protocols are used throughout the accelerators described
within this thesis, with the AXI-MM being used for the FC-GEMM accelerator pre-
sented in Section 5.4.2, whereas all the other accelerators use AXI-S and AXI-Lite.

2.5.3 Hardware Specific Optimisations

There are several techniques that can be used to transform a DNN operation into
a form that can be efficiently executed on hardware accelerators. These techniques
can improve the performance of the DNN operations by exploiting the parallelism and
memory hierarchy of the hardware accelerators.

Tile-based Processing

Tile-based processing, or tiling, is a technique for partitioning one or more of the data
tensors for a given problem into smaller ‘tiles’. Tiling enables the processing of large
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data tensors in smaller chunks, which can be beneficial for the hardware. For example,
a tile can be loaded entirely on the L1 cache, enabling faster processing, or multiple tiles
can be sent to on-chip memory within an accelerator. Tiling can also be used to exploit
parallelism within the hardware. For example, different processing elements/units can
process multiple tiles in parallel.

Algorithm 2: Tiled Matrix Multiplication
1 Input: A = shape(m, k), B = shape(k, n), Tile = shape(t, t)
2 Output: C = shape(m, n)
3 Parameters: t = Tile size
4 for i = 0 to m step t do
5 for j = 0 to n step t do
6 for l = 0 to k step t do
7 for ii = 0 to t do
8 for jj = 0 to t do
9 for ll = 0 to t do

10 Ci+ii,j+jj = Ci+ii,j+jj + Ai+ii,l+ll ×Bl+ll,j+jj

Tiling is ubiquitous in executing tensor operations on hardware accelerators. For exam-
ple, the basic matrix multiplication operation can transform into a tiled multiplication
operation. Algorithm 1 can be transformed into a tiled matrix multiplication operation
as shown in Algorithm 2. The tile size t is a parameter that can be tuned to achieve
optimal performance depending on the hardware architecture. Algorithm 2 introduces
three new loops in L5-L9, which iterate over the tile size t. We can replace these
loops with a call to a hardware accelerator to process the tile in parallel. Algorithm 3
shows the tiled matrix multiplication operation with the tile processing offloaded to a
hardware accelerator. Additionally, Algorithm 3 shows an example of three common
dataflow patterns: output stationary, input stationary and weight stationary; these
dataflow patterns can be used to optimise data movement between the accelerator and
main memory. Stationary in this context refers to the data tiles; by keeping them
‘stationary’, in other words, cached in the local accelerator buffers, the stationary data
tiles can be reused as many times as required without requiring additional off-chip
memory access. For example, in the output stationary dataflow, each output tile is
cached in the accelerator buffers, meaning it only needs to be sent once, whereas the in-
put and weight tiles are sent m/t and n/t times, respectively. Input/weight stationary
dataflows follow the same trend by caching the input/weight tiles.

To elaborate further on Algorithm 3, the function Send Tile To Accelerator sends
the tile to the accelerator, Execute Accelerator executes the tile processing on the
accelerator, and Receive Tile From Accelerator receives the processed tile from
the accelerator. These accelerator-specific functions and the related algorithms are
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Algorithm 3: Output/Input/Weight Stationary Tiled Matrix Multiplication with
Accelerator

1 Input: A = shape(m, k), B = shape(k, n), Tile = shape(t, t)
2 Output: C = shape(m, n)
3 Parameters: t = Tile size

// Output Stationary Dataflow
4 for i = 0 to m step t do
5 for j = 0 to n step t do
6 Send Tile To Accelerator(C, i, j, t)
7 for l = 0 to k step t do
8 Send Tile To Accelerator(A, i, l, t)
9 Send Tile To Accelerator(B, l, j, t)

10 Execute Accelerator()
// Receive the accumulated output tile

11 Receive Tile From Accelerator(C, i, j, t)

// Input Stationary Dataflow
12 for i = 0 to m step t do
13 for l = 0 to k step t do
14 Send Tile To Accelerator(A, i, l, t)
15 for j = 0 to n step t do
16 Send Tile To Accelerator(B, l, j, t)
17 Send Tile To Accelerator(C, i, j, t)
18 Execute Accelerator()

// Receive the partial output tile and accumulate on the host
19 Receive Tile From Accelerator(C, i, j, t)

// Weight Stationary Dataflow
20 for l = 0 to k step t do
21 for j = 0 to n step t do
22 Send Tile To Accelerator(B, l, j, t)
23 for i = 0 to m step t do
24 Send Tile To Accelerator(A, i, l, t)
25 Send Tile To Accelerator(C, i, j, t)
26 Execute Accelerator()

// Receive the partial output tile and accumulate on the host
27 Receive Tile From Accelerator(C, i, j, t)

implemented in the host-driver code that manages the accelerator. A hardware designer
must develop and implement these functions for their accelerator.

Pipelining

Pipelining is a technique where an operation is broken down into multiple stages such
that parallel hardware units can execute different stages of multiple operations at the
same time. Typically, different hardware units are used within accelerators to pipeline
the execution of an operation, improving the accelerator’s throughput. For example, in
the tiled matrix multiplication operation, the accelerator can be pipelined to process
multiple tiles in parallel. Algorithm 3 can be pipelined by sending new tiles to the
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accelerator while the accelerator is executing the previous tiles as shown in Algorithm 4.
This example shows a pipelined execution of output stationary dataflow for MM. Note
that the first weight and input tiles are preloaded (L7-L8) before the inner loop, which
calls for the accelerator to start processing.

Algorithm 4: Pipelined Tiled Matrix Multiplication with Accelerator
1 Input: A = shape(m, k), B = shape(k, n), Tile = shape(t, t)
2 Output: C = shape(m, n)
3 Parameters: t = Tile size

// Output Stationary Dataflow
4 for i = 0 to m step t do
5 for j = 0 to n step t do
6 Send Tile To Accelerator(C, i, j, t)

// Preload the first input and weight tiles
7 Send Tile To Accelerator(A, i, 0, t)
8 Send Tile To Accelerator(B, 0, j, t)
9 for l = t to k step t do

10 Pipelined Execute Accelerator()
11 Send Tile To Accelerator(A, i, l, t)
12 Send Tile To Accelerator(B, l, j, t)

// Execute the last tile
13 Pipelined Execute Accelerator()
14 Receive Tile From Accelerator(C, i, j, t)

Additional pipeline optimisation is possible between the accelerator and the host CPU.
For example, in a scenario where the host CPU is required to pre-process data tiles
before sending them to accelerator, the host CPU and accelerator can be pipelined
such that the first tile’s execution is concurrent with the second’s pre-processing. This
type of pipelining ensures that the host CPU is not idle while the accelerator executes
the required operations.

2.6 Summary

This chapter provided an overview of the background concepts required to understand
the thesis. The topics discussed are tailored to the design of efficient hardware accel-
erators for DNN inference on resource-constrained FPGA-based edge devices.

We first introduce the key concepts of DNNs in Section 2.1, including their architecture,
training, and inference processes, along with the different types of DNNs which are
used throughout the thesis. We then discuss the fundamental software libraries used
throughout the thesis and their roles across the different chapters in Section 2.2. The
overview of the hardware concepts is explained in Section 2.3, including details of
FPGAs, accelerators and hardware development processes. Then, we introduce the key
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algorithms and techniques used throughout the thesis in Section 2.4, and finally, we
elaborate on the fundamental concepts of hardware-software co-design in Section 2.5.
The following chapter will present the landscape of related works and the state-of-the-
art works relevant to this thesis.
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3 | Related Work

This chapter provides a survey of the related work in the area of Deep Neural Networks
(DNNs) acceleration, focusing mainly on the works relevant to the research conducted
in this thesis. Section 3.1 provides an overview of the key DNN models used in this the-
sis and some of the most popular DNNs used in the literature. Section 3.2 provides an
overview of the key DNN accelerators and a detailed look at GAN and LLM accelera-
tors. Finally, Section 3.3 looks at relevant hardware-software co-design methodologies,
frameworks and tools that enable the development of efficient DNN accelerators.

3.1 Deep Neural Networks

As mentioned in Section 2.1, DNNs have been adopted to tackle a wide range of prob-
lems in various domains. Additionally, different types of DNNs have been developed
to address different types of problems and data. Throughout the thesis, we will focus
on three types of DNNs: CNNs, Transformers (including LLMs), and GANs, as these
provide interesting and challenging workloads for accelerating on resource-constrained
edge devices. This section provides an overview of the key DNN models within these
three types of DNNs, some of which form part of the experiments and evaluations
conducted in this thesis.

3.1.1 Convolutional Neural Networks

CNNs models, typically used for image recognition tasks, are one of the most well-
studied and popular in machine learning, hence throughout this thesis we chose to use
them as part of target workloads for hardware evaluation. The following models are
some of the CNNs that are used within Chapters 4 and Chapter 5.

Inception [Sze+15]:, also known as GoogLeNet, is a family of CNN models that
introduced the concept of ‘inception modules’, which consist of multiple parallel con-
volutional layers with different kernel sizes and strides. The inception modules consist
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of convolution operations with different kernel sizes, along with a max-pooling oper-
ation. The inception modules enabled increased parameter efficiency (i.e., maintain
high accuracy with fewer parameters).

ResNets [He+16]: is a family of CNN models that introduced the concept of residual
learning, which allows for the training of very deep networks by using skip connec-
tions between convolution and identity ‘blocks’ to solve the vanishing gradient prob-
lem [BSF94].

MobileNets [How+17]: is a family of lightweight CNN models designed for mobile
and embedded devices. The MobileNet architecture is based on standard 2D convolu-
tional layers, but its speciality comes from the use of depthwise separable convolutions,
which consist of a depthwise convolution followed by a pointwise convolution, to reduce
the computation complexity of the model. The depthwise convolution applies a single
filter to each input channel instead of all filters to each input channel; while the point-
wise convolution applies a 1 × 1 convolution to combine the output of the depthwise
convolution.

EfficientNets [TL19]: is a family CNN models based on the idea that properly scaling
the model depth, width, and resolution can improve the model’s performance. To do
so, EfficientNets use a compound scaling method to scale the model’s depth, width,
and resolution uniformly.

3.1.2 Transformer Models

Transformers models are a type of DNN architecture based on the attention mecha-
nism [Vas+17] that has been widely adopted in natural language processing (NLP)
tasks. The attention mechanism allows the model to weigh the importance of different
parts of the input sequence and dynamically update their influence on the output.
This is important to keep track of the context of the information within the input
sequence when generating the output sequence. Computationally, the core of the at-
tention mechanism can be broken down into matrix-matrix multiplication operations
or matrix-vector multiplication operations. Transformer models have become increas-
ingly popular through the notion of Large Language Models (LLMs), which are large
models trained on vast amounts of text data to learn the underlying structure of the
language. In this thesis, we investigated smaller transformer models, alongside LLMs,
to design new hardware for them in a resource-constrained environment.

BERT [Dev+19]: is a transformer model that introduced the concept of bidirectional
encoders. This enables the model to learn the context of a word based on the entire
input sequence, rather than just looking at the text from left to right or right to left.



3.1. Deep Neural Networks 47

MobileBERT [Sun+20]: is a lightweight version of BERT designed for mobile and
embedded devices. It is model learned from ‘BERTLARGE’, the largest version of
BERT, using a knowledge distillation technique [HVD15] to distil the knowledge from
the large ‘teacher’ model to the smaller ‘student’ model.

TinyBERT [Jia+20]: is a lightweight version of BERT designed for mobile and
embedded devices. Similar to MobileBERT, TinyBERT is based on a novel knowledge
distillation technique that contains two stages of distillation: one for pre-training and
one for fine-tuning for the target task.

ALBERT [Lan+19]: is a transformer model that introduced the concept of factorised
embedding parameterisation which decomposes the embedding matrix into two smaller
matrices. This reduces the number of parameters in the model, which can help to reduce
the memory footprint and improve the model’s performance.

GPT (Generative Pre-trained Transformer) [Bro+20]: is family of transformer
models, which are larger as the version number increases. It uses autoregressive lan-
guage models to generate text by predicting the next word in a sequence based on the
previous words.

We utilise MobileBERT and Albert within the experiments in Chapter 5 to evaluate
performance of our Fully-Connected layer accelerator.

3.1.3 Generative Adversarial Networks

GANs [Goo+14] are a type of DNN architecture that consists of two networks, a
generator and a discriminator, that are trained simultaneously. The dual model aspect
of GANs makes them particularly interesting for hardware acceleration, as both models
can be optimised to run efficiently on hardware accelerators. We focus on the generative
aspect of GANs, as they have different characteristics compared to other DNN models,
which make them difficult to accelerate on hardware accelerators. See Chapter 7 for
more details on the challenges of accelerating GANs.

DCGAN [RMC16]: is a GAN model that improves upon the original GAN model
by using strided convolutions for discriminator and transposed convolutions for the
generator.

StyleGAN [KLA21]: is a GAN model that introduces the concept of style-based
generator, which generates images at starting from low-resolution to high-resolution.

We utilise DCGAN within the experiments in Chapter 7 to evaluate performance of
our Transposed Convolution accelerator.
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3.2 DNN Acceleration

In this section, we provide an overview of specialised DNN inference accelerators. First,
we provide an overview of DNN accelerators, followed by a discussion of hardware
acceleration of Generative Adversarial Networks (GANs) and Large Language Models
(LLMs). Finally, we discuss the role of quantisation in DNN acceleration, along with
the notable works in this area.

3.2.1 Overview of DNN Accelerators

Due to the popular nature of DNNs, there has been a significant amount of research
into developing specialised hardware accelerators to accelerate DNN inference. Many of
these accelerators are designed to exploit the parallelism and regularity of convolutional
layers within the models. Here we give an overview of the relevant works in the overall
field of DNN accelerators.

Early Accelerators

DianNao [Che+14a], introduced in 2014, was one of the first ASIC-based DNN accel-
erators to achieve high throughput and energy efficiency. DianNao consisted of NFUs
(Neural Functional Units), capable of performing arithmetic operations required for
convolutions and activation functions, supporting 16-bit fixed-point arithmetic opera-
tions. Overall, this design was able to accelerate CNNs, achieving up to 452 GOPS.

Early works, such as Eyeriss [Che+17], FlexFlow [Lu+17] and the fused-layer CNN
accelerator [Alw+16], focused on the dataflow aspect of CNN accelerators. Eye-
riss [Che+17] optimised for energy efficiency by mainly exploiting dataflow. It utilises
row-stationary dataflow, which is reconfigurable for the computation shape of a given
convolutional problem. This reconfigurability allows Eyeriss to increase data reuse and
reduce the expensive data access to DRAM. FlexFlow [Lu+17] explored and supported
three different dataflows: systolic array, 2D-mapping, and tiled, through the addition
of local buffers within the PE microarchitecture. This flexibility allows FlexFlow to
adapt to different convolutional layer shapes and sizes.

While Eyeriss and FlexFlow focused on dataflow within each convolutional layer, the
fused-layer CNN accelerator [Alw+16] focused on dataflow across layers. Alwani et al.
designed a CNN accelerator that removes the need for off-chip memory access between
layers by re-ordering how the input data is sent to the accelerator in order to fuse the
processing of multiple consecutive CNN layers.
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Reconfigurable Architectures

FPGA-based accelerators are often designed with popular DNN models in mind that
are usually experimented on. However, ML experts develop new DNN models with
different types of layers and configurations as they progress their research. Previous
accelerators could be adapted to run these new layers. However, they will not be
as computationally efficient as an accelerator built with the latest types of layers and
configurations in mind. For just CNNs, many possible configurations and optimisations
can be made; looking at different types of DNNs such as Recurrent/LSTM neural
networks[She20], it becomes easy to understand the high demand in flexibility that is
required to design accelerators for DNNs.

FPGA-based reconfigurable accelerators include the VTA [Mor+19] accelerator, which
creates a programmable DNN accelerator architecture that is interfaced through a
micro-ISA. Changes in architecture parameters, such as buffer sizes and data bus
widths, can tune the VTA architecture to a specific DNN model. The VTA accel-
erator is supported by the state-of-the-art compilation framework TVM [Che+18b].
The integration with TVM enables DNN models to be compiled for inference through
TVM specifically for the VTA accelerator, encoding VTA-specific instructions within
the compiled binary. VTA can optionally leverage the AutoTVM tuning tool [Che+18a]
for additional design space exploration. Later on the thesis in Chapter 5, we will com-
pare the performance of our accelerator with the VTA accelerator. VTA is a good
candidate for comparison as it is an FPGA-based accelerator following the DNN-To-
FPGA-Accelerator acceleration paradigm (see Section 1.1.3), similar to the accel-
erator we propose in this thesis. VTA also fits the resource-constrained edge device
criteria as it uses the same Zynq-7020 SoC as the one used in our experiments.

Another approach to reconfigurability is through partitioning the available FPGA re-
sources into multiple processing elements, each element suited for different layers within
a given DNN model; the partitioning is performed via an automated design tool which
can take into account the main layers of a given model [SFM17].

Works such as Plasticine [Pra+17] and MAERI [KSK18] also look into providing a
reconfigurable architecture. Plasticine was designed with parallelism in mind to ensure
that reconfigurability does not come at the cost of performance. Meanwhile, MAERI
is a reconfigurable DNN accelerator that exploits data reuse during DNN execution.
MAERI’s reprogrammable architecture, which depends on small switches, allows a
diverse set of mapping strategies to be applied to the accelerator, which overall increases
resource utilisation.



3.2. DNN Acceleration 50

Application-Specific Integrated Circuits

Due to the nature of AI workloads, the demand for high-throughput and low-latency
inference has led for industry-based solutions such as the NVIDIA Deep Learning
Accelerator (NVDLA) [NVIa]. NVDLA is a configurable DNN accelerator that is
designed to be scalable and flexible, supporting a wide range of DNN models and
applications. One of the main components of NVDLA is the convolution core, which
is designed to support a wide range of convolutional layer shapes and sizes.

Google has also developed the Tensor Processing Unit (TPU) [Jou+17], a custom ASIC
designed to accelerate DNN inference. The original TPU core consisted of 65,536 8-bit
MACs within its matrix multiply unit, which is capable of performing up to 23 TOPS.
Since the original TPU core, Google has developed many versions of the TPU, one of
the latest, TPUv5 is capable of 393 TOPs, with 8-bit integer operations. Similarly,
Google has developed the Coral Edge TPU [Ses+22], a custom ASIC designed for edge
devices; the chip can be accessible as a solder-able module or as different products
such as a development board. It can perform inference on TFLite models, which are
compiled with their custom compiler [Cor].

Many industry-based NPUs [Bou+20; Esm+12; Jan+21] have been proposed; these are
typically integrated with the latest CPU cores. Intel’s NPUs [Int24], which are inte-
grated into the Intel Core Ultra processors, consists of two ‘Neural Compute Engines’
which contain MAC array alongside some processing units for activation functions;
the latest Intel NPU design is capable of performing up to 48 TOPS. Similarly, the
AMD’s NPUs [AMD24] are integrated within the new XDNA architecture and consist
of AI Engine (AIE) tiles, where each AI engine tile contains a memory module and
an AI engine, which is essentially a vector processor; the latest AMD NPU design
within the XDNA2 architecture is capable of performing up to 50 TOPS. Additionally,
AMD’s Versal AI Cores [AMDa] also contain the AI Engine (AIE) tiles alongside pro-
grammable logic, DSP engines and two sets of CPU cores (application processor and
real-time processor).

3.2.2 Accelerating Generative Adversarial Networks

GANs consists of a generator and a discriminator, that are trained simultaneously.
Discriminative component of GANs consists mostly of convolutional layers which can
be accelerated using traditional DNN accelerators. Here we focus on accelerator design
developed to accelerate the transposed convolution (TCONV) operation, which are
used in the generative component of GANs to ‘upscale’ input data.
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Methods for Implementing TCONV

As mentioned in Section 2.4.3, there are several methods for implementing TCONV;
each has advantages and disadvantages. For example, the Zero-Insertion [Yu+20]
and Transforming Deconvolution to Convolution (TDC) methods [CKK20] have com-
putational and transformation overheads. Thus, researchers have been focusing on
the Input-Orientated-Mapping (IOM) method [Yan+18] for TCONV. IOM reduces
the number of operations required to perform TCONV without requiring additional
padding or transformation to inputs or weights. However, implementing IOM on
resource-constrained edge devices requires a hardware-software co-designed solution
to ensure optimised tiling and offloading of the TCONV operation to the accelerator,
while tackling three key interlinked problems efficiently: (i) storing intermediate/par-
tial results; (ii) processing overlapping sums; (iii) handling cropped outputs. First,
partial results should be stored to reduce the latency of sending data back to the main
memory. This means that on a device with limited memory space, storage of results
should be optimised so that it takes up minimal space. Second, the overlapping sum
problem occurs when partial results produced by spatially separate dot products must
be coalesced to create a single output value. Since the spatial locality of the partial re-
sults corresponding to a single final output varies for each output and also between the
TCONV problem dimension, creating a specialised accelerator to handle the complex
output mapping efficiently becomes challenging. Finally, the standard IOM approach
creates additional output data that needs to be cropped from the final results to main-
tain consistent dimensions across the model execution. This cropping process not only
leads to additional overhead but also ineffective computations since the cropped output
values are computed simply to be dropped later.

However, existing solutions [Ma+22; SPS23; Xu+18; Zha+17] do not tackle these three
problems efficiently for resource-constrained edge devices. They especially neglect the
issue of the cropped outputs, including the ineffectual computations (up to 28%), to
calculate the outputs before being dropped.

TCONV Accelerators

Given their significance in GAN and overall generative models, there has been a grow-
ing interest in developing accelerators that efficiently perform the TCONV operation.
Different accelerator architectures have been proposed, employing methods such as
TDC [CKK20], Winograd-Transformed Transposed Convolution [Cha+20; Di+20], and
the Zero-Insert TCONV method [Yu+20]. Although these approaches have shown some
effectiveness, they still have transformation overheads due to algorithmic limitations
inherent to their respective methods.
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Some works have proposed implementing the TCONV operation using the IOM method
on FPGAs. For example, Ma et al., [Ma+22] exploit the intermediate-centric dataflow,
a variation on the IOM method, but their accelerator only supports fixed dimensions for
given problems. The HLS template-based approach proposed by Sestito et al. [SPS23]
suffers from the same constraint. Although they can adjust their accelerator for dif-
ferent problem sizes, this requires re-synthesis and re-mapping of the accelerator. Ad-
ditionally, these implementations target large FPGAs with MBs of on-chip memory
and do not consider constrained edge devices with limited on-chip memory. Zhang
et al. [Zha+17] proposed a design suitable for edge devices. However, their output-
oriented approach solves the overlapping sum problem but introduces hardware com-
plexity, degrading the accelerator’s performance.

Other works such as GNA [Yan+18] and FCN-Engine [Xu+18] exploit the IOM method
with ASIC designs, but similar to all previously mentioned IOM-based approaches they
do not consider the cropped outputs. Therefore, they perform ineffectual computations
of output pixels that are not required. Thus, they need an additional cropping opera-
tion to produce the final output.

3.2.3 Accelerating Large Language Models

Large Language Models (LLMs) have become popular in recent years due to their abil-
ity to generate human-like text. However, as the size of LLMs increases, the compu-
tational demand for LLM inference also increases. Hence, a myriad of research studies
have developed accelerators for LLM inference. As LLMs are based on the transformer
architecture, the accelerators developed for LLMs focus on accelerating the attention
operation, the key component of the transformer architecture.

Some works have focused on accelerating LLMs/transformers by improving the algo-
rithmic efficiency of the attention operation. The A3 accelerator [Ham+20] focuses
on accelerating the attention operation using algorithmic approximation. A3 approxi-
mates the attention operation by pre-processing the key matrix to obtain the likely set
of rows to score a high value during the key-query matrix-vector multiplication. With
their proposed algorithmic approximation scheme, the A3 accelerator modules enable
partial skipping of the dot product and softmax operations at the start of the atten-
tion mechanism. Meanwhile, the FTRANS [Li+20] work looks at reducing the weight
footprint within the transformer architecture by proposing an enhanced block-circulant
matrix representation for the weight compression which maintains the accuracy of the
model while achieving a 16x compression ratio. To support their new approach, they
propose a hardware accelerator consisting of computational units for the multi-head
attention mechanism, the feed-forward computations, add, and norm operations.



3.2. DNN Acceleration 53

Other works have also focused on the multi-head attention (MHA) mechanism. For
example, Lu et al. [Lu+20] proposed a hardware solution that accelerates the MHA
mechanism. They propose a customised hardware accelerator for two of the largest
components, in terms of the number of trainable parameters, within transformer net-
works: the BHA ResBlock and the FNN (feed-forward network) ResBlock. By parti-
tioning the matrices in the MHA and FNN ResBlocks, they reuse the systolic array to
perform the matrix multiplication for both.

3.2.4 Quantisation-based Accelerators

Quantisation is a technique based on reducing the number of bits used to represent
weights and input data. DNN models are normally trained at 32-bit float precision,
which means that, theoretically, quantisation can reduce the model size by 32x if binary
quantisation is applied to the target DNN model. Hence, there is considerable potential
for performance gains through quantisation. Therefore, quantisation has become a key
approach to reducing not only the on-chip storage requirements of custom hardware
solutions but also computational demands and alleviating bottlenecks caused by limited
bandwidth between on-chip and off-chip data transfers. Reducing the precision of both
the trained weights and the input activations can lead to a significant reduction in data
footprint, up to 92%, while only degrading accuracy by 1% [Gup+15; Jud+16a].

Studies look at applying quantisation at different levels of DNN models. Initial works
looked at applying model wide quantisation [Gon+14; HMD16], but more recent works
show that re-evaluating the precision required for each layer of a model can lead to a
greater reduction in size while maintaining small accuracy loss [Jud+16a]. Later works
investigated region-based quantisation schemes which define groups within the same
layer of weights and apply different quantisation schemes per group [Zho+17].

The hardware side of DNN inference is adapting to keep up with these model-based
optimisations. GPUs [Gup+15] and specialised accelerator [Che+14b] solutions have
started to support lower precision from the standard 32-bit float to 16-bit fixed-point
representation. Hardware-based solutions such as Stripes [Jud+16b] enable per-layer
choice of precision through the use of serial multiplication to reduce the precision of
layers independently of the precision requirements of other layers. Bit-Fusion [Sha+18]
allows for the same level of control by implementing a composable accelerator that
is able to dynamically combine bit-level processing nodes to create higher precision
processing nodes. This idea has been further developed through DRQ [Son+20], which
allows for region quantisation to be accelerated by switching between a higher and
lower precision processing for different regions of weights and activation for any given
layer.
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With the advent of Transformer/BERT-based models, quantisation is becoming more
prevalent due to the large memory footprint of these models. Quantisation not only
helps alleviate the memory space requirements to ensure that smaller edge devices can
support these new types of DNNs, but it also enables low-precision computing which
decreases the computational demand. Furthermore, this leads to bespoke accelerator
designs targeting quantised BERT models [LLC21] to fully take advantage of low-
precision computation.

3.3 Hardware-Software Co-Design of Accelerators

Hardware-software co-design is fundamental to the performance of hardware-based
DNN acceleration. In this section, we review a wide range of hardware-software co-
design related works, including design methodologies, frameworks and tools that enable
the co-design of hardware accelerators in general, and also specifically for DNNs.

3.3.1 Co-Design Methodologies

The focus within the machine learning community has been on developing more com-
plex models which give a higher QoR (Quality of Results), hence DNNs are designed
such that the desired QoR is achieved but without considering the target hardware
platform where they will run on. Cong et al., [Hao+19] propose that co-designing the
accelerator and DNN will provide a greater opportunity to optimise and get a more
favourable result. This idea was realised by their four-component system which was
able to produce good results with low power consumption and high energy efficiency.
While their proposed methodology allows the user to create accelerators with the model
in mind, they limit the potential optimisations and improvements of the accelerator by
using a fixed architecture template.

While templated-based approaches enable automated design space exploration (DSE),
they can limit potential architectural exploration, for example, the memory hierarchy,
the dataflow, and the number of processing elements. Hence, it is important to have
a design methodology that allows for the co-design of the accelerator and the DNN
model, while also enabling designing fundamentally new architectures. Additionally,
templated-based approaches can be adopted to provide further exploration, once the
initial architecture has been defined. The following design methodologies provide a
more flexible approach to designing the initial accelerator architecture.

OpenCL [SGS10] uses a host-device programming model, where the host code (i.e., the
driver) prepares and transfers data to be executed by the device (i.e., the accelerator).
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Hence, the approach allows for the co-design of the driver. The device code is written in
high-level OpenCL code which defines computation kernels that perform the processing
of the target workload. This high-level code is translated into a synthesisable hardware
design. The designer defines the computation kernels to be accelerated, being able to
configure the number of hardware instances each kernel is allocated. The higher the
number of instances, the greater number of instructions executed in parallel. The level
of design control offered by OpenCL’s programming model can be restrictive, since
the designer cannot easily define the low-level behaviour of the accelerator, such as at
the transaction level, which can enable control of each subcomponent and interfaces
between them. The Intel FPGA SDK for OpenCL[Alt11] allows for emulation of ac-
celerator designs on x86 machines, which allows for verification of the behaviour of the
design. To gather dynamic performance of the hardware accelerator, the designer has
to perform slow cycle-accurate simulation, or hardware profiling on the target FPGA,
which is very time consuming.

Hardware Description Language (HDL) based design flows use highly detailed
hardware descriptions in languages such as Verilog [Des06] and VHDL [Des19], to define
the desired behaviour of the accelerator. While this approach allows for fine-grained
hardware designs, it comes with high development time, resulting in high code-base
complexity and strict size requirements to define a design [Pel+16], as compared to
HLS or OpenCL-based solutions. Additionally, although HDL solutions can use RTL
simulator to provide cycle-accurate simulation, the level of simulation detail makes the
process much slower than non-RTL based simulations. An HDL-based approach to
designing accelerators does not lend itself well to co-design the host driver, or end-to-
end evaluation, since RTL simulators are testbench based and inherently slow.

SMAUG [Xi+20] provides a simulation-based design methodology that uses gem5-
Aladdin [Sha+16a] to perform full system simulation of the host system, the off-chip
memory accesses and the accelerator design itself. While this approach provides high
fidelity in terms of design performance insights, the simulation speed is very slow
due to simulation of the entire system (e.g., several hours for ResNet50). Rather
than integrating with an existing DNN framework, models must be redefined using
SMAUG’s Python API. In addition, SMAUG does not offer an approach where a design
can be directly synthesised to a target FPGA and integrated with a DNN framework
of choice.

SYCL [Rey+20] is similar to OpenCL, but provides a higher level of abstraction,
allowing for programming of heterogeneous devices. SYCL is a single-source program-
ming model that allows for the development of host-code that can be executed on the
CPU and also the kernel code that is executed on the target hardware. An advan-
tage of SYCL is that it allows for the development of code that can be executed on a
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range of devices, including CPUs, GPUs, and FPGAs. For FPGAs, triSYCL [Goz+20]
is an open-source implementation of SYCL for Xilinx FPGAs that allows HLS-based
development of FPGA accelerators, where the kernel code is written in SYCL and
then HLS tools are used to generate the hardware design. Unfortunately, the support
from triSYCL is limited to Xilinx FPGAs, and the level of design control is limited to
the kernel code, thus the designer cannot easily define the low-level behaviour of the
accelerator as possible with HDL-based designs.

SystemC-HLS [acc16] is a high-level synthesis (HLS) approach that uses a subset of
SystemC [davisSystemCIEEEStandard2005] to define the hardware designs and
utilise HLS tools to generate RTL designs. The benefit of using SystemC is that it al-
lows for the development of hardware designs that can be simulated at a higher level of
abstraction, enabling faster simulation and design exploration. However, the SystemC-
HLS is a combination of tools that can be used together to design accelerators, but there
are no guidelines or defined methodologies for designing hardware accelerators, espe-
cially DNN accelerators. Chapter 4 presents the SECDA design methodology, which
will supersede SystemC-HLS and provide a complete design flow for DNN accelerators.

3.3.2 Co-Design Frameworks

Here we discuss the frameworks used to enable hardware-software co-design of DNN
accelerators. This includes frameworks which are used for: designing and generating
FPGA-based accelerators, enabling simulation of specialised hardware accelerators, as
well as frameworks for developing SoC integrated accelerators.

Template-based Generation of FPGA-based Accelerator

Due to performance and power constraints, FPGA-based solutions for DNN inference
are often sought for edge devices. Hence, various tools enable the development and
deployment of FPGA-based accelerators for DNNs. These tools often use a template-
based approach to create FPGA-based accelerators to reduce the DSE and development
time.

DeepBurning [Wan+16] and DNNWeaver [Sha+16b] are two of the earlier works in
this area. DeepBurning contains a library of basic neural components which are used
by the hardware generator to create the accelerator. DNNWeaver [Sha+16b] translates
the DNN specification into an ISA (Instruction Set Architecture) based on the opera-
tions of the DNN model. Using this ISA, their own tiling and scheduling algorithms
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combined with handwritten hardware designs, they can generate the accelerator from
Caffe [Jia+14] defined models.

Similarly, FP-DNN [Gua+17] provides a framework that allows for end-to-end automa-
tion of the accelerator creation process. The user provides a symbolic description of a
DNN via a TensorFlow model, and the tool will output an FPGA accelerator optimised
according to that description. The accelerator is created using the author’s RTL-HLS
hybrid templates, where RTL is used to design the computation engine, and HLS is
used to implement the control logic.

DNNBuilder [Zha+18] is another framework for generating FPGA-based accelerators
using a template-based approach but with pre-built RTL components, allowing them to
perform a DSE to find the best performance according to their estimator. Additionally,
approaches like FINN [Umu+17] are more focused on the model-based co-design of
the accelerator. FINN is an ML dataflow-based compiler framework that provides an
end-to-end flow for exploring and implementing low-bit (<= 8bits) quantised DNN
inference on FPGAs. It uses a templated-based approach for generating hardware
accelerators, where an existing HLS and RTL-based library of components are used
to implement each individual layer of the DNN model. Similarly, HLS [Fah+21] is a
workflow that follows the DNN-to-FPGA-Dataflow acceleration paradigm, where
the DNN model is first converted to a compressed model, and then the compressed
model is used to generate a hardware design using HLS tools. The approach is not
entirely template-based but uses pre-defined optimisation to convert the model into
HLS-ready code. While the approach provides a high level of abstraction, allowing
non-hardware experts to develop DNN accelerators rapidly, it has inherent limitations
for resource-constrained devices. The generated hardware design is monolithic, and it
needs enough resources to map the entire DNN fully, limiting the mapping of bigger
models onto resource-constrained FPGA fabric.

More recently, approaches like DSAGEN [Wen+20] have been developed to provide a
more flexible approach to generating FPGA-based accelerators. DSAGEN uses an ar-
chitecture description graph combined with modular spatial architecture components
(e.g., PEs, Switches, Memory) to enable greater architectural flexibility while still en-
abling automated design space exploration. The modular components enable DSAGEN
to express designs similar to pre-existing accelerator designs such as MAERI [KSK18]
and SoftBrain [Now+17].

While these approaches provide a quick and easy way to generate accelerators, they
are limited by the templates and pre-defined components that the specific framework
provides. This can limit the potential optimisations that can be achieved, especially
when considering that resource-constrained devices can gain significant performance
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improvements by fine-grain workload-specific architectural optimisations. Additionally,
template-based approaches are desirable alongside co-design methodologies, as the co-
design methodologies can be used to define the initial architecture, and then template-
based approaches can be used to explore the design space of that architecture.

Exclusively Simulation-based Approaches

There are a range of exclusively simulation-based tools that enable the development
and evaluation of hardware accelerators, these approaches rely purely on simulations
to design, profile and evaluate hardware accelerators. For example, SystemC simu-
lation has been used as a part of co-design methodologies in other domains such as
cryptographic SoCs [KH08] and image processing [CHZ11], which demonstrate the
streamlined development time advantages of leveraging SystemC.

In terms of DNN accelerators, TFLITE-SOC [Ago+20] features the use of SystemC to
perform full end-to-end simulation of the DNN model and the accelerator design. Using
TFLite-based DNN models, the framework can provide insights into the performance
of the accelerator design on a per-layer basis.

Other exclusively simulation-based approaches have also been proposed for DNN accel-
erator design: STONNE [Muñ+21] provides cycle-accurate simulation for deep learn-
ing accelerator designs such as MAERI [KSK18] and SIGMA [Qin+20]. However,
STONNE does not integrate full system simulation as SMAUG [Xi+20]. The draw-
backs of these exclusively simulation-based approaches are that they often do not have
a direct path to mapping candidate designs to real hardware and running hardware
evaluation on target FPGA devices with the chosen DNN framework. Hence, these
design approaches, while fruitful, can be inaccurate and time-consuming compared to
other hybrid approaches, due to lack of real hardware evaluation.

Accelerator Development for SoC

As SoCs enable tight integration of hardware accelerators with the host system, there
is a need for tools that facilitate the design of specialised accelerators for SoCs. Open
source frameworks such as Chipyard [Ami+20] enable the development of Chisel-
based [Bac+12] SoCs. Chisel is a hardware construction language that allows for gen-
erating hardware accelerators from DNN models. Chipyard provides integration with
different RISC-V processor cores, such as Rocket Chip [Asa+16], BOOM [Zha+20b]
and CVA6 [ZB19], and provides access to accelerators such as Gemmini [Gen+21] and
NVDLA [NVIa]. Chipyard supports multiple development flows, including RTL and
FPGA-based simulation using FireSim [Kar+18a].
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Similarly, the ESP project [Man+20] provides an open-source platform for heteroge-
neous SoC development. It allows for the integration of custom accelerators in tiled-
based SoC configurations. Similar to Chipyard, ESP provides integration with RISC-V
cores and accelerators such as the CVA6 [ZB19] and NVDLA [NVIa]. Additionally, ESP
supports various accelerator design and integration flows, such as SystemC with Stra-
tus HLS and Chisel. Like Chipyard, ESP supports RTL and FPGA-based simulation
for prototyping hardware accelerator-enabled SoCs.

3.3.3 Code-Generation for specialised Accelerators

CPUs and GPUs which have compilers and scheduling tools [Che+18b; GC20; GC23]
to enable efficient code-generation for a target DNN problem, but these tools do not
directly support code-generation for specialised accelerators. Hence, one of the key
challenges in developing specialised accelerators is to create efficient software drivers
that can interface with the accelerator.

Due to wide range of possibilities in accelerator design, hence code generation could
enable rapid development of specialised accelerators and deployment of DNN models
on these accelerators. Alas, there are few tools that provide code generation for spe-
cialised accelerators, as most tools focus on generating code for existing accelerators,
or subset of accelerator design that can be captured within their custom hardware
description language. Here we discuss the tools existing in the literature that provide
code generation for specialised accelerators.

HeteroFlow [Xia+22], which extends the work of HeteroCL [Lai+19], provides a pro-
gramming model that allows the decoupling of implementation of the target algorithm
from the data placement/movement to the custom memory hierarchy of the accelerator.
By using the ‘.to()’ primitive, it is able to specify data placement at different levels of
the memory hierarchy. HeteroFlow is limited to accelerator co-design within HeteroCL,
and does not necessarily provide code generation for fully custom accelerators.

Other tools such as Interstellar [Yan+20], DMazeRunner [Dav+19] and Bifrost [SGC22]
delve into the challenge of mapping algorithms into specialised accelerators. For ex-
ample, Interstellar modifies the Halide [RBA] compiler to show that dataflow and
micro-architecture of existing accelerators can be expressed as schedules within Halide.
Additionally, it then uses the Halide compiler to generate the hardware designs for
different DNN accelerators, meanwhile optimising the memory hierarchy to improve
the energy efficiency. Moreover, DMazeRunner provides a tool for exploring the design
space of mapping nested loops onto dataflow accelerators to accurately estimate the
performance of the accelerator design. Finally, Bifrost connects the TVM [Che+18b]
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compiler with the STONNE [Muñ+21] accelerator simulator, enabling more straight-
forward exploration of compiler-hardware co-design exploration using STONNE.

3.4 Summary

In this chapter, we provided an overview of the relevant related works, first by dis-
cussing the state-of-the-art DNN models, including CNNs, Transformers, and GANs
in Section 3.1. We highlight the importance of these models in the context of DNN
accelerators, as they are the primary workloads we aim to accelerate throughout this
thesis.

Then, the state-of-the-art in DNN acceleration was addressed in Section 3.2, which
consisted of an overview of DNN accelerators, including GANs and LLMs accelerators
and quantisation-based acceleration. We highlighted the variety of DNN accelerators,
including early work in the DNN accelerator domain, reconfigurable architectures and
ASIC accelerators. Additionally, we discussed the key related accelerator designs that
are relevant to the work presented in the later chapters of this thesis, including the
design of accelerators for GANs and LLMs.

Finally, we discussed the related works in terms of the accelerator co-design process,
discussing the design methodologies, frameworks, and tools used in the design and
deployment of DNN accelerators in Section 3.3. We elaborate on the drawbacks of
the current design methodologies, which often lack simulation speed, design control,
or a mixture of necessary design features. This highlights the need for a better design
methodology to address the challenges in the design and deployment of DNN accel-
erators. The discussion on the co-design frameworks summarises related works that
present specialised solutions to the challenges in the design and deployment of DNN
accelerators, some of which could be combined with the work presented in this thesis.

In the next chapter, we introduce the SECDA methodology, one of this thesis’s foun-
dational contributions. This methodology provides a systematic approach to designing
FPGA-based DNN accelerators.
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4 | SECDA

Within Section 1.2.1, we highlight one of the challenges of designing DNN hardware
accelerators, which is the high effort required for the development of new accelerators;
resolving this challenge is the first key objective of this thesis. Hence, this chapter
introduces one of the core contributions of this thesis, the SystemC Enabled Co-design
of DNN Accelerators (SECDA) methodology.

The chapter is structured as follows: Sections 4.1 and 4.2 introduce and motivate the
need for the new design methodology. Section 4.3 presents the SECDA methodology
in detail. Section 4.4 presents a case study using the SECDA methodology, which is
evaluated in Section 4.5. Finally, Section 4.6 summarises the chapter.

4.1 Introduction

Due to the increasing popularity of Deep Neural Networks (DNNs) in a wide range of
applications and the advent of new DNN architectures that require more computational
resources, the task of deploying DNNs on edge devices has become more demanding.
To meet this demand, hardware-based optimisations to reduce DNN inference compute
and power requirements is an active area of research and include ISA-level extensions
to CPUs and GPUs [Mar+18; Ott+20], as well as TPUs [Jou+17] and other custom
hardware solutions for FPGAs and ASICs [Che+19; KSK18].

As discussed in Section 1.1, FPGA-based accelerators are ideal for the ever-changing
DNN workloads, as they provide a reconfigurable fabric that can be programmed to
support new specialised hardware accelerators. Hence, we dedicate our efforts to de-
veloping FPGA-based DNN accelerators for resource-constrained edge devices.

After establishing the system model (discussed in Section 1.1.2) to set the scope of
this work, we tried to design FPGA-based DNN accelerators for edge devices. Our
initial attempts to design novel and efficient DNN accelerators were challenging, time-
consuming, and unclear. The design process of new FPGA-based hardware accelerators
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for DNNs on resource-constrained edge devices required great engineering effort, time,
and hardware-software expertise.

As discussed in Section 3.3, there are a handful of design methodologies for developing
DNN accelerators, along with some frameworks and tools that can automate the gen-
eration of hardware accelerators from pre-defined hardware templates. However, the
process of developing FPGA-based DNN accelerators for resource-constrained devices
using these methodologies and tools is under-documented, and prior work focuses on
new accelerator architectural features and results, rather than the design methodolo-
gies and the process of developing the accelerators. Since resources are more limited
on edge FPGAs, and DNN workloads are large in terms of their memory footprint
and computational demands, a given DNN model is unlikely to fit fully on an accel-
erator. Thus, for inference, the accelerator must operate in close communication with
the CPU, which requires careful co-design with the host CPU code to ensure that
data is managed efficiently. Therefore, an effective design methodology for a DNN
accelerator design should, for a given set of hardware resource constraints, produce
performant accelerators that effectively leverage available resources and can respond
quickly to changing workload requirements (e.g., introduction of new types of layers or
operations).

Additionally, logic synthesis, the process that is used to map candidate hardware de-
signs to an FPGA (see Section 2.3.4), is a time-consuming process that can take from
tens of minutes to hours, depending on the complexity of the design, and the tar-
get FPGA device. Compounding the long synthesis times with the number of it-
erations in a typical design process, synthesis can create a clear bottleneck in the
hardware development process. Existing solutions either accept the synthesis time
overhead [Liu+11], surrender low-level design fidelity [SGS10], or develop accelerators
using a purely simulation-based approach [Muñ+21; Xi+20] that frequently results in
non-synthesisable hardware solutions.

The difficulties of designing our initial FPGA-based DNN accelerator and the lack of
effective design methodologies to guide the process motivated us to propose SECDA
(SystemC Enabled Co-design of DNN Accelerators), a new hardware-software co-design
methodology to efficiently produce optimised DNN inference accelerators for edge de-
vices using FPGAs.

SECDA uses SystemC [Des23] as an accelerator simulation framework, allowing candi-
date designs to be iterated upon quickly. Using SystemC High-Level Synthesis (HLS),
we can produce a synthesisable design from the same accelerator definition used for
simulation. We leverage SystemC’s modularity to reduce the time required to make
design changes by reusing and adapting existing components.
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Co-design of a software accelerator driver and a hardware accelerator is achieved by
integrating SystemC’s simulation features within the target edge-based DNN frame-
work (e.g. TensorFlow Lite). This integration allows designers to quickly test potential
optimisations such as varying data transfer and tiling strategies. Embedding the sim-
ulation environment and the hardware accelerator into the same software environment
reduces the effort of exploring hardware-software co-design trade-offs via simulation
relative to synthesising the design on an FPGA with every change.

Overall, SECDA satisfies the following five key features required for a suitable design
methodology for FPGA-based DNN accelerators: Design Control; End-to-end Evalu-
ation; Driver Co-Design; System Integration; and Simulation Speed. We expand on
these features in Section 4.2.

We demonstrate the utility of SECDA with a case study that targets the acceleration of
General Matrix Multiplication (GEMM), heavily used in convolutional layers, the most
computationally expensive portion of many DNNs [Don+18; Gib+20]. For this case
study, we develop two accelerators, the Vector MAC (VM) and Systolic Array (SA)
designs. The DNN framework used is TensorFlow Lite (TFLite), a mobile-friendly
version of TensorFlow [Aba+16]. The target device is the PNYQ Z1 board [Dig], a
platform with a dual-core CPU and an edge FPGA.

The contributions of this chapter are as follows:

• We motivate the need for a better design methodology for DNN accelerators and
define five key features that an improved new methodology should consider, which
are essential for fast design exploration and integration of hardware accelerators
for DNNs using FPGAs.

• We introduce SECDA, a new design methodology to efficiently explore the design
space of DNN accelerators for edge devices with FPGAs, and quickly arrive at
optimised solutions. We show how SECDA meets the five features and reduces
the time to obtain efficient designs.

• We demonstrate the capabilities of SECDA via a case study, where we design
two GEMM-based accelerator designs for DNN inference.

• We evaluate our accelerator designs and show that they outperform the CPU
baseline.
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4.2 Motivation

Here, we further motivate the need for a new design methodology for developing FPGA-
based DNN accelerators. To do so, we first clearly distinguish between two stages
of developing hardware accelerators and then discuss the key features that a design
methodology should include to efficiently produce optimised FPGA-based DNN accel-
erators. Finally, we compare standard FPGA design methodologies viewed through the
lens of the key features presented in Section 4.2.2 and discuss how SECDA addresses
the limitations of existing methodologies.

4.2.1 Stages of Hardware Accelerator Development

We separate the development of hardware accelerators for DNNs into two stages. First
is the process of designing and developing the accelerator architecture and the software
stack to support the accelerator design; this includes defining the hardware primitives
that are used to compose accelerator architecture. The first stage requires a hardware-
software co-design methodology, such as the ones discussed in Section 3.3.1; this is the
focus of this chapter.

The second stage is optional but recommended. This is when the designer exposes
aspects of the design as a set of templates with tunable parameters (e.g., buffer sizes and
number of processing elements) and allows automated design space exploration tools
to find more performant designs. The second stage requires design-space exploration
tools/frameworks such as the ones discussed in Section 3.3.2.

We distinguish the two stages to highlight that although there is a rich and growing
literature on the second stage, there is a lack of discussion of the design methodologies
for the first stage and how they can better accommodate the features of DNNs to ad-
dress inefficiencies with the current process of creating specialised accelerator solutions,
especially for resource-constrained devices.

4.2.2 Key Features of DNN Accelerator Design Methodologies

When designing hardware accelerators for DNNs using constrained FPGAs, two key
workload characteristics must be acknowledged. First, although DNNs are getting
more efficient [HB20], they are still large programs with ever-increasing memory and
computing demands. DNNs typically contain a large number of weights and operations,
making them difficult to fit on a resource-constrained FPGA without partitioning them
into stages. Secondly, DNNs feature a variety of operations (in terms of layers) with
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varying frequencies and computational demands. It may be preferable to use the CPU
for less frequent operations and focus accelerator resources on the most expensive layer
types. These characteristics mean that the accelerator architecture must be closely
designed with the CPU host-side software to ensure efficient workload balancing.

To effectively tackle these two characteristics, we define five key features that accel-
erator design methodologies used to efficiently produce optimised FPGA-based DNN
accelerators should consider:

• Design Control: The degree of control given to the designer for both high-level
and low-level features, such as the overall dataflow at a high-level and behaviour
and interconnection of individual components at a low-level, balancing model
depth against overall simplicity.

• End-to-end Evaluation: Inference evaluation (either in simulation or in hardware)
of full DNN models is vital. This process should be as fast as possible to keep
design iterations short. Benchmarking only single layers may cause the designer
to miss the bottlenecks that only emerge with realistic workloads.

• Driver Co-Design: The interface between the accelerator and the target DNN
framework can play a pivotal role in the efficiency and performance of the de-
sign [Wan+21; Xi+20]. A good design methodology should enable the designer
to co-design the software driver and the hardware accelerator, thus allowing the
designer to explore different degrees of workload offloading and create an effective
workload balance between the CPU and the accelerator.

• System Integration: We need both ease and speed in the process of mapping a
proposed accelerator design to an FPGA. This includes the integration of the
accelerator with the DNN framework software. The goal is minimal overhead in
realising a design on real hardware.

• Simulation Speed: Leveraging cycle-based simulation can reduce the time taken
for logic synthesis within the design process. Hence, it is crucial that simulation
is fast, accurate, and does not become the bottleneck in the design loop.

4.2.3 Comparison of Methodologies

Table 4.1 compares different state-of-the-art design methodologies discussed in Sec-
tion 3.3.1 based on the previous five key features against SECDA. As shown, SECDA
provides a high degree of design control, the ability to perform end-to-end evalua-
tion, driver co-design support and ease of system integration while maintaining fast
simulation times.
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Table 4.1: Comparison of Design Methodologies with Five Key Features.

Feature \ Methodology OpenCL HDL SMAUG triSYCL SECDA
Design Control Low Very High Medium Low High

End-to-End Evaluation ✔ ✖ ✔ ✖ ✔
Driver Co-Design ✔ ✖ ✔ ✔ ✔

System Integration Simple Difficult Simulation Only Difficult Simple
Cycle-based Simulation Slow Very Slow Slow NA Fast

To begin with, SECDA uses the SystemC programming model to define the behaviour
of an accelerator at a transaction level and HLS to produce synthesisable designs. This
provides a high degree of design control while mitigating the issues of cumbersome
HDLs. SECDA integrates a SystemC simulation environment within the target DNN
framework, allowing co-design of the accelerator driver and simulation of end-to-end
inference. Unlike SMAUG, SECDA does not simulate the full host system, avoiding
the large overheads and keeping simulation times in the order of minutes, as full host
system information is not relevant for most design iterations since most design choices
are related to the accelerator’s performance. Once the accelerator designs are refined
through simulation, we can identify issues related to the full system, such as off-chip
memory accesses, by leveraging SECDA’s HLS capabilities to test on real FPGA hard-
ware. Thus, we avoid the high simulation time seen in methodologies such as SMAUG
and expensive hardware synthesis with each design iteration. For the rapid design
of DNN accelerators for edge FPGAs, SECDA achieves a good trade-off in terms of
simulation fidelity, design granularity, and ease of deployment on real hardware.

Development Time Formulation

We now compare the development time of these methodologies with illustrative esti-
mates of the “idle” time spent waiting to evaluate candidate designs. For SECDA, we
compute this time (Et) with the following equation:

Et = #Sim ∗ (Ct + IS t) + #Synth ∗ (St + It) (4.1)

Where #Sim is the number of simulated design iterations we perform; Ct and ISt

are the times to compile and run an end-to-end inference in simulation, respectively;
#Synth is the number of hardware synthesis passes we perform; St is the time to per-
form logic synthesis of the accelerator design; and It is the time to perform inference
on the FPGA, where typically It ≈ Ct < ISt ≪ St. Since the time for St dominates
the overall time, minimising the number of logic synthesis performed is desirable. Ad-
ditionally, design methodologies such as OpenCL and HDL would incur significantly
higher ISt than SECDA, since they use cycle-accurate simulations.
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We could also follow a design methodology that eliminates simulation and relies only
on iterations using logic synthesis. From our understanding, triSYCL does not provide
a simulation environment, and the designer must rely on logic synthesis for each design
iteration. The equivalent time spent waiting for evaluation results is given by:

Et = (#Sim + #Synth) ∗ (St + It) (4.2)

Finally, a design methodology using full system simulation to perform all design iter-
ations (e.g., SMAUG) would have a similar idle evaluation time estimate as in Equa-
tion 4.2, but with the simulation time replacing the synthesis time.

Et = (#Sim + #Synth) ∗ (Ct + IS t) (4.3)

However, the simulation time It would be significantly higher than SECDA’s simpler
SystemC simulation due to a more complex simulation, which we argue is unnec-
essary in SECDA due to our two-stage approach. OpenCL, triSYCL and HDL-based
methodologies can use either, or a mix of, the approaches characterised by Equations 4.2
and 4.3. However, simulation and synthesis are expensive in terms of development time
for these methodologies. In contrast, in SECDA, we take advantage of fast simulation,
which is sufficient for most design iterations and only occasional synthesis.

4.3 SECDA Methodology

This section presents the SECDA (SystemC Enabled Co-design of DNN Accelerators)
methodology in detail. SECDA provides fast accelerator design space exploration
(DSE), integrates software and hardware design choices, and reduces barriers when
evaluating designs in real hardware.

As discussed in Section 4.2.2, SECDA targets DNN inference at the edge, specifically on
resource-constrained devices. Based on the characteristics of DNN workloads, SECDA
focuses heavily on efficient host-accelerator communication, which requires careful co-
design.

Figure 4.1 shows a high-level overview of the proposed methodology. The following
sections provide details on the key components of the methodology, including how
components are interconnected to form the SECDA design loop.
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Figure 4.1: Overview of the SECDA methodology. Components in the dashed lines
correspond to the design in simulation, and components in the dotted lines correspond
to the design running on real hardware. Application Framework and Accelerator Driver
software are common to both.

4.3.1 Application Framework

The Application Framework is the DNN software framework which runs the target
DNN models, from which we offload work to the accelerator. We characterise it as
software that could run the full workload independently of the accelerator, for ex-
ample, edge inference-specific versions of popular deep learning frameworks such as
TensorFlow’s [Aba+16] TFLite and PyTorch [Pas+17] Mobile. These frameworks re-
duce the feature set of the original frameworks (i.e., TensorFlow, PyTorch) to run
inference more efficiently using fewer resources.

In SECDA, we ensure that the Application Framework is integrated early in the design
cycle so that real workloads inform the accelerator development. That co-verification is
improved by avoiding software compatibility issues, such as misaligned data or conflict-
ing data types. The SECDA methodology is instantiated with support for running full
DNN workloads from the start to ensure that designers have a realistic understanding
of the bottlenecks in their designs, and so that they can focus on the most relevant
aspects of their design for the target workloads.

4.3.2 Accelerator Driver

The Accelerator Driver is the software component in the co-design methodology, the
bridge between the Application Framework and the hardware accelerator. It is responsi-
ble for managing aspects such as data preparation, output data unpacking, control flow
and memory management for DMAs, and thread synchronisation. The efficiency of the



4.3. SECDA Methodology 69

Accelerator Driver can be very impactful on the overall runtime performance [Wan+21;
Xi+20], hence why driver co-design is a key feature of the SECDA methodology. For
example, the design of the input data preparation stage is crucial because the data
format of the Application Framework may not be suited for a given accelerator design.
Non-accelerated CPU code may reshape data to leverage vector instructions, but we
may prefer to reshape data differently to leverage the design of a given accelerator’s
architecture. Thus, we may face co-design trade-offs where we must choose a data
format that balances the efficiency of processing it on our hardware design and the
efficiency of our CPU-side driver in rearranging the data to and from this format.

With both input preparation and output unpacking stages, the driver should ensure
that data transfers between the accelerator and main memory are performed efficiently,
since they can dominate both inference time and energy consumption for DNN acceler-
ators [Sze+17]. The driver is also responsible for balancing the workload between the
accelerator and CPU and should ensure that the aforementioned stages are pipelined
so that the CPU is not idle while the accelerator is working.

We co-design the Accelerator Driver, along with the accelerator, in an end-to-end Sys-
temC Simulation environment integrated with the Application Framework. As observed
in Figure 4.1, the Accelerator Driver is reused in both simulation and hardware eval-
uation, the latter giving performance analysis on system components not modelled in
detail by the simulation such as off-chip memory accesses.

4.3.3 SystemC Simulation

SystemC [Des23] is a C++ library that models and simulates the behaviour of hard-
ware designs. We use SystemC for Transaction-Level Modelling (TLM) [Ghe05], which
simulates complex designs without the overhead of exact register-level details while
still ensuring bit-level accuracy. SystemC Simulation is the cornerstone of the SECDA
methodology. Using simulation combined with HLS, we can gain insight into candidate
designs. SECDA is over an order of magnitude faster than using logic synthesis alone
to configure the FPGA in our case study. In SECDA, we use two levels of SystemC
Simulation (testbench and end-to-end) to further refine our co-designed steps, one for
designing low-level components (such as the processing element design) and the other
for evaluating the full accelerator design.

SystemC Testbench simulation is based on unit testing the accelerator design and
its components on various input datasets, enabling developers to iteratively design
accelerator components without running a full workload. Using SystemC HLS, we feed
performance estimates such as clock cycle counts and overall resource utilisation for
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each component into the design simulation model. The testbench environment allows
for quick design development without the need for compatible drivers to interface with
a full-scale DNN framework.

End-to-end SystemC Simulation runs entire DNN models using our candidate
accelerator designs, with the integration of the Application Framework via the Acceler-
ator Driver. This higher level of abstraction tests the correctness of the full system and
leverages the accelerator’s per-component performance estimates to show metrics for
full workloads. Using end-to-end simulation, we capture the accelerator’s behavioural
and performance information when simulated with the input data produced by any
given model.

The metrics captured from these simulations can include the number of total clock
cycles spent within the accelerator, BRAM utilisation, processing element utilisation
and various other metrics. These metrics can motivate further design iterations and
highlight components representing bottlenecks. For example, we can identify inefficient
processing elements or provide guidance on whether to explore the design space more
broadly, investigate different data-flow strategies, or increase resource utilisation. In
our case study, the accuracy of the clock cycle count is over 99% compared to the same
designs synthesised on hardware.

The simulation accuracy level achieved within the case study should extrapolate to
more complex designs, as the SystemC timing model is refined by HLS-reported timings
of low-level components, which are composable and hierarchical.

4.3.4 Hardware Synthesis

A key step of SECDA is mapping a candidate accelerator design to real hardware in
order to collect data which the designer uses to improve the overall system performance
(e.g., in terms of inference time and/or energy consumption). FPGAs are an ideal plat-
form for testing hardware designs, as well as running workloads. When an accelerator
design meets the performance targets in the simulation, we can map our SystemC Ac-
celerator onto the FPGA using HLS, followed by logic synthesis. Then we can perform
Hardware Evaluation running the Application Framework with the Hardware Acceler-
ator using the Accelerator Driver, as shown in Figure 4.1. This involves running a full
end-to-end evaluation of target DNN models using the synthesised accelerator design.

Logic synthesis is one of the most time-consuming stages of any FPGA-based design
process. Hence, we opt to perform most of our accelerator design space exploration us-
ing SystemC Simulation. Compared to hardware synthesis, compiling the same design
to run in SystemC Simulation is much faster, around 25× faster for the Vector MAC
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design in our case study (Section 4.4). The advantage of running the application on the
FPGA synthesised accelerator is that we collect actual performance values rather than
the estimates generated through simulation. Following this methodology can highlight
bottlenecks created by the host system, such as data transfer overheads, which are not
modelled in our fast simulations.

4.3.5 SECDA Design Loop

SECDA relies on two different iterative design loops to explore the accelerator design
space for DNNs. The most frequently used design loop iterates through inexpensive
SystemC simulations, and the second loop involves hardware benchmarking on FPGAs.
Hardware benchmarking requires logic synthesis, which is very time-consuming. Thus,
SECDA aims to minimise the number of times this occurs.

SECDA enables the designer to choose between the two iterative design loops. The
SystemC simulation design loop is chosen when profiling the performance of the ac-
celerator’s individual components or the overall performance of data processing within
the accelerator.

The performance profile of a given DNN model within the accelerator can also be
evaluated in simulation, which, with a diversity of models, can highlight weaknesses
in the hardware design. The hardware benchmarking design loop is chosen when the
designer is interested in accurate performance data of DNN models, particularly the
data transfer latencies between off-chip and on-chip memory, which are not modelled
by simulation to limit the duration of simulation.

SECDA achieves increased productivity by giving the designer this choice. Through the
SystemC simulation, the designer can effectively avoid expensive hardware synthesis
until an efficient accelerator design is fully developed. At this point, the design can be
mapped to the target FPGA to gather actual performance metrics.

Full-system simulation, as used in SMAUG [Xi+20], would avoid the need to syn-
thesise. However, this simulation often takes longer than synthesis. Thus, we utilise
a less expensive simulation combined with minimal hardware evaluation as our ap-
proach within SECDA. Hardware synthesised designs are evaluated and used to inform
further iterations in simulation until the final design is chosen to meet the expected
performance targets, such as reducing inference time or energy consumption.



4.4. Case Study 72

Figure 4.2: Runtime Model of our TFLite GEMM Convolution Acceleration.

4.4 Case Study

To demonstrate the value of the SECDA methodology, we designed and implemented
two different FPGA-based accelerators for DNN inference, a Vector MAC (VM) based
design and a Systolic Array (SA) based design. The Application Framework chosen
was TFLite, a popular DNN inference framework for resource-constrained edge devices
such as our target device, the PYNQ-Z1 board. We accelerate the convolutional layers,
which in TFLite are implemented using the GEMM convolution algorithm. Thus, we
develop the custom accelerators and their respective drivers to reduce the inference
time of the model. Our accelerators use 8-bit quantised DNN models, a popular ma-
chine learning optimisation that can reduce the inference time with a low accuracy
penalty [Zho+17]. Figure 4.2 shows the execution flow when performing DNN infer-
ence using a GEMM accelerator. Our accelerator offloading is integrated inside the
TFLite runtime through TFLite source code modifications.

We describe the design workflow used throughout the case study and provide details
of the designs in the following sections.

4.4.1 SECDA Instantiation

Initialisation

The initialisation step is essential to identify the target workload and to achieve integra-
tion within the Application Framework. This step varies depending on the goal of the
designer (i.e., the target application framework and workload). Note that during the
first case study using the SECDA methodology, we initialised the methodology through
manual ad hoc integration of the SystemC environment with the TFLite framework.
Later, we remove the initialisation time overhead, which is one of the main contribu-
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tions of Chapter 5. Keep in mind that fully automating this initialising step to be
framework-agnostic would be significantly challenging, as it could limit the capabilities
of SECDA as a design methodology to work with new application frameworks and
workloads.

As mentioned before, for the initial case study, SECDA was initialised by integrat-
ing end-to-end simulation with TFLite, thus establishing the foundation of our co-
design/co-verification environment. The first step of the initialisation stage was to
identify where in TFLite to intercept GEMM calls to offload expensive computations
to the target accelerator. In our case, the Gemmlowp backend library was the suitable
point of connection between TFLite and the SECDA design environment. Then, we
used a native C++ implementation of the GEMM function to emulate the functional
behaviour of our target operation. With the addition of SystemC hardware definitions,
we evolved our initial software implementation into a SystemC-based model of a simple
GEMM accelerator.

Throughout the initialisation, we integrated ‘development hooks’ to quickly switch
between the default TFLite implementation and our custom simulation environment,
which included SystemC-defined hardware components. With the initialisation com-
plete, we could simulate the execution of the TFLite framework with our custom accel-
erator design. These ‘development hooks’ were function calls and C++ classes to enable
the SECDA design environment with the TFLite framework. After this initial integra-
tion, we reused the SECDA-integrated TFLite codebase to develop the VM accelerator
design and then the SA accelerator design, enabling a much faster development process.

SystemC Simulation co-design/co-verification

Once we had our initial SystemC-based GEMM accelerator, we created a co-design/co-
verification testbench environment as discussed in Section 4.3.3. This environment al-
lowed us to prototype new hardware components (e.g., buffers, controller logic, compu-
tation units) and test them in isolation before integrating them into the full accelerator
design.

Using the testbench and the end-to-end simulation environment, we go through several
iterations where we fine-tune our accelerator components. For example, reducing the
number of clock cycles or changing the behaviour of the Accelerator Driver which
improves data reshaping.
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Design Loop

When we had an accelerator design with no major bottlenecks in simulation in terms
of clock cycles, which estimates efficient resource utilisation of the target device, we
used Hardware Synthesis to map it onto the PYNQ-Z1’s FPGA. This enabled hardware
evaluation of the design, i.e., a comprehensive full system evaluation, to identify further
areas of improvement. A key strength of SECDA is that benchmarking on real hardware
uses the same Application Framework (TFLite) and Application Driver as the simulated
version.

The following sections describe the two GEMM accelerator designs, the VM and SA de-
signs, and the GEMM accelerator driver, which connects the accelerator to the TFLite
framework, used for both designs.

4.4.2 GEMM Accelerator Driver

The software GEMM Driver is co-designed with the hardware accelerator and connects
to the Application Framework TFLite. It intercepts GEMM calls within the Gemmlowp
library, as shown in Figure 4.2. The GEMM driver is responsible for handling the
execution of convolutional layers utilising the accelerator.

It receives both weight and input data from TFLite, and reshapes them to our chosen
accelerator data format.

This data format was co-designed with the accelerator, such that:

i) CPU-side data preparation leverages vectorised loads to reduce transformation
overheads;

ii) data is partitioned across multiple memory-mapped buffers, hence can be sent
concurrently over the DMA interface, as shown in Figure 4.2;

iii) data in each partition is organised such that it can be distributed efficiently inside
the accelerator.

Once the data is reshaped, the driver is responsible for sending it to the accelerator,
and for collecting and storing the output data. We pipelined the execution of the
operations within the GEMM driver across multiple batches of GEMM operations
within each layer to ensure that the CPU is not idle while the accelerator is processing
inputs.

Algorithm 5 shows the pipelined execution flow of the GEMM driver. Note that ‘Recv’
is the critical function that, depending on the boolean parameter, either blocks until
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Algorithm 5: Pipelined GEMM Driver Execution
// Prepares & Transfers post-processing data

1 PrepPostProcessing()
2 TransferPostProcessing()

// Partitions Input & Weight data
3 Wblocks← WeightBlocks(LayerDims,AccDims)
4 Iblocks← InputBlocks(LayerDims,AccDims)
5 foreach wb in Wblocks do

// Prepares & Transfers weight data
6 PrepWeights(wb)
7 TransferWeights()
8 firstbatch← true
9 pID, tID, sID ← 0

10 foreach ib in Iblocks do
// Prepares & Transfers input data

11 if (firstbatch) then
12 PrepInputs(ib,pID++)
13 TransferInputs(tID++)
14 firstbatch← false

15 else
16 done← Recv(false)
17 PrepInputs(ib,pID++)
18 if (done) then
19 TransferInputs(tID++)
20 StoreResults(sID++)

21 while sID!=pID do
// Transfers & Process remaining GEMM

22 Recv(true)
23 if (tID!=pID) then TransferInputs(tID++)
24 StoreResults(sID++)

the accelerator has finished processing the current batch of GEMM operations or only
checks if the accelerator has finished processing the current batch of GEMM operations.
Additionally, the ‘pID’, ‘tID’, and ‘sID’ variables are used to track the progress of the
GEMM operations within the driver and ensure that the output data is stored in the
correct order.

In later design iterations, we found that the bottleneck was no longer the GEMM
operations. Hence, we moved software-side post-processing steps (see Section 4.4.4) to
the accelerator, with the GEMM driver managing the new functionality. Note that the
critical difference between the drivers for the VM and SA designs is handling output
data, as the output data layouts differ.
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4.4.3 GEMM Accelerator Designs

Both VM and SA designs follow an output-stationary dataflow approach [Kwo+19],
which was chosen to remove the need to store many intermediate results on valuable
on-chip memory, or incur time and power costs associated with storing them off-chip.

Vector Mac Design (VM)

Figure 4.3 shows an overview of the VM accelerator design consisting of four SIMD-
style compute units, which we call GEMM units. We are limited to four GEMM units
by the resource constraints of the target device. Each GEMM unit broadcasts sets of
weights and inputs to its internal MAC units to produce 4×4 output result tiles. Each
output value is calculated using a set of four MAC units, with the intermediate results
reduced to the final output value through an adder tree.

Systolic Array Design (SA)

Figure 4.4 shows an overview of the SA accelerator design. The design contains a single
computation unit constructed as a 16×16 MAC-based systolic array, where each MAC
unit accumulates towards a single output value. MAC units work by reading and storing
the input and weight values of the neighbouring MAC units in their own registers.
Hence, the systolic array moves weight and input values vertically and horizontally,
respectively, once at the start of each step.

The inputs and weights for the starting row and column of the MAC units are read
from a set of data queues which are filled by the scheduler.

4.4.4 Accelerator Components

Our designs are constructed with basic components, developed and tested both indi-
vidually in the SystemC testbench and together in end-to-end simulation. Both designs
contain similar components, although their behaviour and connections vary. Adapting,
reusing, and recomposing these components for new designs is a valuable feature of any
hardware design methodology, especially in DNNs, where a given design may quickly
lose relevance due to novel DNN workloads emerging. Below is a brief description of
the major hardware components.
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Figure 4.3: Vector MAC Accelerator design, featuring four GEMM Units.

The Input Handler

The Input Handler receives all data sent by the GEMM Driver from main memory
via DMA, as shown in Figure 4.2. Metadata added by the driver is used to direct the
incoming data to the appropriate accelerator buffers. The arrangement of the buffers
varies between both designs. The VM design uses local buffers within each GEMM
unit to store all input values and the active tile of weight data, where the global buffers
are used for storing all weight tiles; the SA design only uses global buffers for both
input and weight data.

The Scheduler

The Scheduler orchestrates computations which occur within the processing units of
each design. For the VM design, the Scheduler assigns work to each GEMM unit,
broadcasting weight data tiles to all GEMM units and ensuring maximum weight data
tile reuse to minimise redundant loads. For the SA design, the Scheduler feeds input
and weight data to the corresponding data queues, which feed the outer MAC units
within the array.
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Figure 4.4: Systolic Array Accelerator design, featuring a 16× 16 Systolic Array.

Post Processing Unit

The Post Processing Unit (PPU) receives uint32 output tiles from their adjacent pro-
cessing unit and applies the post-processing pipeline to obtain the quantised uint8
result tiles. Originally performed on the CPU side, this data size reduction enabled
us to reduce output data transfer time by 4× at the cost of additional resource us-
age. Additionally, the PPU performs all other functionality provided by Gemmlowp’s
“unpacking” function, including bias addition, scaling, and applying the activation
function. For the VM design, multiple smaller PPUs process the output from each
GEMM Unit. The PPU outputs were combined later by the Output Crossbar. In com-
parison, the SA design contains a single PPU that processes all the 16×16 output tiles
and sends them back to main memory.

Output Crossbar

The Output Crossbar is used to collect the output tiles from all PPUs (only VM
design). It rearranges the tiles so that the results are returned to the main memory in
the desired order.
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4.4.5 Accelerator Design Improvements

Our SECDA methodology enables fast and iterative development of DNN accelerator
designs. Here, we discuss the major design improvements we made throughout the case
study to optimise the end-to-end performance for both designs.

Improved Data Distribution & Bandwidth Utilisation

During the design process of the VM accelerator, in simulation we observed a lower
BRAM bandwidth utilisation than expected. To address the low BRAM utilisation, we
added extra functionality to the Input Handler to distribute the incoming input and
weight data across multiple BRAMs, increasing the number of data accesses possible
per cycle.

The synthesis of our first VM design consisted of four GEMM units. It highlighted a
data transfer bottleneck between off-chip and on-chip memory that was not modelled
within the simulation. We alleviated this bottleneck by ensuring that we leveraged
all the high-performance AXI data links available on the PYNQ-Z1 board. From
this change, we used end-to-end simulation to quickly redesign the accelerator and
the accelerator driver to leverage the improved data links, significantly reducing data
transfer times.

For the SA design, allocating 32 data queues to feed the outer MAC units of the systolic
array and enabling the Scheduler to fill the data queues in parallel with the processing
of the systolic array minimised the MAC unit idle time within the SA accelerator due
unavailability of data.

Scheduling & Post Processing

For the VM design, the simulation highlighted a slowdown that occurred within each
GEMM unit when reading the weight tiles into the local buffers. To address this
slowdown, we added the Scheduler Unit, which improved the ordering of computations,
reducing the number of reads from global weight buffers by 4×.

Through Hardware Execution, we obtained a breakdown of the inference time, which
indicated that post-processing performed within the Gemmlowp library was the new
bottleneck. Hence, we enhanced the capabilities of the accelerators by implementing
post-processing within them. By adding the PPU, we obtained 1.5× and 1.3× speedup
on single and dual-thread inference, respectively, when compared to previous VM de-
signs without it. To move more functionality to the accelerator, we adapted the GEMM
driver to receive quantised 8-bit results produced by the post-processing, as opposed to
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the 32-bit results generated by the GEMM operations, reducing output data transfer
time by 4×.

Varying Systolic Array Sizes

The SA design was prototyped, varying the dimensions of the array. We explored 4×4,
8 × 8 and 16 × 16 designs, evaluating trade-offs obtained by varying the output tile
sizes and resource utilisation. In simulation, we found that the 4times4 design lacked
the compute power for the accelerator to improve against the CPU-based GEMM. The
8× 8 design outperformed the CPU baseline, but it left much of the PYNQ Z1 FPGA
fabric unused. The 16 × 16 design improved performance by 1.7× across the various
models for single thread inference compared to the 8× 8 design, at the cost of higher
resource utilisation of the board.

DNN Specific Design Optimisations

With SECDA, we were able to make model specific changes easily to accelerator designs,
either in the host driver code or the accelerator design configurations, to improve
the performance for a given model. Due to device constraints, neither SA nor VM
designs can be allocated enough global weight buffer space to fit some larger layers
of InceptionV1 and ResNet18 entirely on the accelerator. With SECDA’s ability to
quickly simulate the performance and correctness of new designs, we co-designed a
weight tiling scheme that was fast to produce on the CPU side and process in the
accelerators. This sped up the average inference time for InceptionV1 and Resnet18
by 2× and 2.2×, respectively, compared to the previous accelerator designs.

Note that some convolutional layers of ResNet18 were still too large to fit into the
local buffers within the GEMM units of the VM design. We were able to reconfigure,
validate, and synthesise a modified VM design for ResNet18. This design trades off
global buffer space for local buffer space, enabling native execution of all layers within
the accelerator and reducing the inference time by 1.6× over the previous design.

4.5 Evaluation

4.5.1 Experimental Setup

In our case study, we evaluated the two accelerator designs on the PYNQ-Z1 board,
which includes an edge FPGA and a dual-core ARM Cortex-A9 CPU. We bench-
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mark four widely-used DNN models quantised to 8 bits: MobileNetV1 [How+17], Mo-
bileNetV2 [San+18], InceptionV1 [Sze+15] and ResNet18[He+16]; all defined on the
ImageNet dataset [Rus+15]. For each DNN model, we evaluate CPU-only inference
times in TFLite (TensorFlow version 2) using 1 and 2 CPU threads, taking the me-
dian (to not let outlier runs affect the results) of 100 runs to compare against our two
accelerator designs. We gather energy metrics using a COOWOO [COO] digital USB
power meter. All reported run have a standard deviation of less than 0.7%. For more
details on the experimental hardware setup, refer back to Section 1.1.2.

4.5.2 Case Study Results

Table 4.2 shows the breakdown of inference time and energy consumption for the four
DNN models under study for a single image using the CPU (1 and 2 threads) and the
two accelerator designs (VM and SA). The time is split between convolutional (CONV)
layers, which our accelerators target, and all other (Non-CONV) layers, which run on
the CPU. Figure 4.5 visualises the inference latency performance results.

Note that both accelerator designs could have been further optimised to improve perfor-
mance, and we tackle this aspect in Chapter 5. However, the purpose of this initial case
study is to highlight that, using SECDA, we were able to quickly develop and iterate
upon viable accelerator designs that significantly improved inference time performance
and energy consumption compared to the CPU-only case.

Overall Performance

For the VM accelerator, we observe an average speedup across models of 3× and 2×
and an average energy saving of 2.7× and 1.8× for one and two threads, respectively,
in each case when compared to CPU-only inference. Similarly, for the SA accelerator,
we observe an average speedup across models of 3.5× and 2.2× and an average energy
saving of 2.9× and 1.9× for one and two threads, respectively, in each case when
compared to CPU-only inference.

We observe less speedup and energy consumption with dual-thread execution, as ex-
pected since the CPU’s compute capacity doubles while both accelerator designs remain
the same. However, our accelerated runtime using two threads improves inference time
since the CPU-side Accelerator Driver can leverage threads.
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Table 4.2: Inference time (ms) and energy consumption (J) results for the four DNN
models under study when using different numbers of CPU threads and accelerator
designs.

DNN Hardware setup CONV Non-CONV Overall Energy

M
ob

ile
N

et
V

1 CPU (1 thr) 635 ms 141 ms 776 ms 1.84 J
CPU (1 thr) + VM 123 ms 141 ms 264 ms 0.68 J
CPU (1 thr) + SA 90 ms 141 ms 231 ms 0.65 J
CPU (2 thr) 329 ms 73 ms 402 ms 1.04 J
CPU (2 thr) + VM 105 ms 73 ms 178 ms 0.43 J
CPU (2 thr) + SA 86 ms 73 ms 159 ms 0.54 J

M
ob

ile
N

et
V

2 CPU (1 thr) 526 ms 176 ms 702 ms 1.66 J
CPU (1 thr) + VM 156 ms 176 ms 332 ms 0.79 J
CPU (1 thr) + SA 103 ms 176 ms 279 ms 0.83 J
CPU (2 thr) 277 ms 95 ms 372 ms 1.01 J
CPU (2 thr) + VM 128 ms 95 ms 223 ms 0.61 J
CPU (2 thr) + SA 97 ms 95 ms 191 ms 0.61 J

In
ce

pt
io

nV
1 CPU (1 thr) 1416 ms 117 ms 1533 ms 3.60 J

CPU (1 thr) + VM 263 ms 117 ms 380 ms 0.97 J
CPU (1 thr) + SA 225 ms 117 ms 342 ms 1.12 J
CPU (2 thr) 736 ms 117 ms 853 ms 2.20 J
CPU (2 thr) + VM 249 ms 117 ms 366 ms 0.97 J
CPU (2 thr) + SA 225 ms 117 ms 342 ms 1.12 J

R
es

N
et

18

CPU (1 thr) 1762 ms 132 ms 1894 ms 5.4 J
CPU (1 thr) + VM 555 ms 132 ms 687 ms 2.12 J
CPU (1 thr) + SA 405 ms 132 ms 537 ms 1.76 J
CPU (2 thr) 919 ms 132 ms 1051 ms 3.24 J
CPU (2 thr) + VM 550 ms 132 ms 682 ms 2.12 J
CPU (2 thr) + SA 405 ms 132 ms 537 ms 1.76 J
CPU (2 thr) + VTA – – 737 ms 1.51 J

Bottleneck Analysis

While analysing our designs, we observe that we hit a threshold for performance gains
achieved by our hardware designs, with the bottleneck for inference performance shift-
ing to two other areas. Namely, (i) CPU-side CONV data preparation and results
unpacking; (ii) and non-accelerated layers.

For (i), breaking down single-threaded CONV time for VM, we observed that only 31%
of the time is spent performing off-chip data transfers and the accelerator computations.
The CPU-side data preparation and resulting unpacking represent the majority of the
CONV time, 69%, which highlights the importance of hardware-software co-design to
ensure that additional hardware changes cannot further reduce this time.

For (ii), in single thread CPU-only inference, Non-CONV layers only represent 14% of
the inference time on average. However, by accelerating the CONV layers, the relative
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Figure 4.5: Comparison of inference time for the four DNN models under study across
different hardware setups.

importance of Non-CONV layers increases, representing 39% and 46% of single thread
inference time for VM and SA, respectively.

VM vs SA Performance Comparison

Comparing our two designs, SA achieves slightly better performance, 16% on average
in latency and up to 4% in energy savings. From these observations, we conclude that
while the core compute units of VM and SA use different strategies to perform GEMM,
we achieve similar end-to-end performance from both designs due to the shift in the
inference performance bottlenecks to the CPU side.

Model Performance Analysis

We also observe that InceptionV1 achieves the best speedup relative to the CPU-only
version, with 4× and 2.3× speedup for one and two threads, respectively, for VM, and
4.5× and 2.5×, respectively, for SA. Comparing to MobileNetV1 and MobileNetV2,
which feature depthwise separable convolutions (meaning that each convolutional layer
performs fewer MACs per input), InceptionV1’s standard convolutions have greater
potential for GEMM acceleration, since the relative time-cost of its data preparation
stage is smaller. Additionally, for InceptionV1 and ResNet18 we observe negligible
speedup for multithreaded execution, relative to the other models due to the larger
GEMM operations coupled with our pipelined execution. This means that the CPU-
side latency is “hidden” by the accelerator’s computation, resulting in minimal benefits
from two threads.
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Development Time Discussion

Finally, in terms of development time, by replacing synthesis iterations with simula-
tions, as estimated by Equation 4.1, we observed a 25× difference between St and Ct.
This suggests that we spent on average 16× less time evaluating end-to-end inference
of a given design in simulation for our GEMM accelerators, compared to developing
with all evaluation performed on the FPGA.

4.5.3 Comparison with state-of-the-art DNN accelerators

We now validate that our designs are competitive with another state-of-the-art DNN
accelerator in terms of inference time, our main design goal. We compare our designs
against VTA, which is supported through the state-of-the-art DNN compiler framework
TVM [Che+18b]. We chose it over other accelerator frameworks due to its recent
release, support from an active open-source community, and its use of 8-bit quantisation
similar to our designs. The final row of Table 4.2 shows the performance of VTA for
ResNet18, taking the median of 100 runs on the PNYQ Z1 board. ResNet18 was
the only publicly available model compatible with both VTA and TFLite at the time
of the case study. We refer the reader to the TVM VTA documentation1 for details
on synthesis and execution — note that VTA leverages both threads of the CPU. The
results show that the designs developed using the SECDA methodology are competitive
with VTA, with our VM design outperforming VTA by 8% in terms of latency, while
VTA reports 29% less energy consumption per inference. Our SA design outperforms
VTA by 37% in terms of latency, while VTA has 14% lower energy consumption. VTA
runs more of its layers on the accelerator, resulting in fewer off-chip data transfers and
achieving greater energy efficiency than our design. In terms of our target performance
metric, inference time, we have demonstrated that designs produced via SECDA can
be competitive with a state-of-the-art accelerator.

4.6 Summary

Within this chapter, we first motivated the need for an efficient design methodology
for FPGA-based DNN accelerators, highlighting the key challenges faced by developers
and the key features required for a suitable design methodology. We then introduced
the SECDA methodology, detailing its main components and usage. We presented a
case study using the SECDA methodology, where we first initialised SECDA within

1https://tvm.apache.org/docs/topic/vta/tutorials/index.html

https://tvm.apache.org/docs/topic/vta/tutorials/index.html
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the TFLite framework through simple ad-hoc integration. Using this integration, we
developed two GEMM-based accelerator designs for convolutional layers. Finally, we
evaluated the accelerators’ performance against the CPU baseline and demonstrated
that they outperform the CPU in all cases. We also made comparisons to VTA, a
state-of-the-art FPGA-based DNN accelerator for resource-constrained devices. Over-
all, we demonstrated that SECDA is a suitable design methodology for developing
FPGA-based DNN accelerators. Hence, the rest of the thesis will build up the SECDA
methodology and utilise it for FPGA-based DNN accelerators.
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5 | SECDA-TFLite

This chapter introduces the SECDA-TFLite toolkit, which extends the work that was
initially presented within the case study for the SECDA methodology, as described in
Section 4.4.

This chapter is structured as follows: Section 5.1 introduces the SECDA-TFLite toolkit,
and the motivation behind its development. Section 5.2 presents the SECDA-TFLite
toolkit in detail. Section 5.3 discusses the SECDA-TFLite benchmarking suite and
the automation of hardware design synthesis. Section 5.4 presents a case study using
the SECDA-TFLite toolkit, which is evaluated in Section 5.5. Finally, Section 5.6
summarises the chapter.

5.1 Introduction

To tackle the challenges of designing DNN hardware accelerators, we developed the
SECDA methodology [Har+21] as a guideline for efficient hardware-software co-design
of FPGA-based DNN accelerators for edge inference. A key part of SECDA is that
hardware design iterations are performed with the simulation to guide the design pro-
cess. After that, the design can be easily synthesised on real hardware (e.g., an FPGA)
for more robust testing. As discussed in Chapter 4, the approach uses a unified code-
base and encourages tight integration of the target Application Framework (i.e., the
DNN framework such as TensorFlow’s [Aba+16] TFLite or PyTorch [Pas+17] Mobile)
with the accelerator’s software driver and hardware design. The hardware-software
co-design of the accelerator driver alongside the accelerator reduces the time for de-
ployment to the target hardware once the accelerator design is ready for real hardware
evaluation. The unified codebase is achieved by leveraging SystemC [Des23], which
enables fast simulation and High-Level Synthesis (HLS) to an FPGA.

The first step in any instantiation of a SECDA-based workflow is the initial integration
with the target Application Framework. This instantiation includes sub-steps such
as setting up the simulation environment and providing a path to offload host-side
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computations to the accelerator designer. From there, developers can begin to define
their first accelerator designs and follow the iterative design loops of SECDA to produce
optimised designs.

However, our observation is that the number of strong candidate application frame-
works for DNN accelerators is limited. TVM [Che+18b], TFLite, TensorRT [NVIb],
PyTorch [Pas+17] Mobile, and ONNXRuntime [dev11] constitute the most relevant
DNN inference frameworks used today. Thus, various developers creating their own
integration for these frameworks may lead to redundant work, as they will all to per-
form the same initialisation steps. Hence, we decided to develop SECDA toolkits that
would streamline the integration process for candidate DNN frameworks.

Due to TFLite’s inherent connection with the popular TensorFlow ML Framework and
its relatively mature support for features such as quantisation, sparsity, and custom
operations, we decided to develop our initial SECDA toolkit for development and
deployment using TFLite. Therefore, we proposed SECDA-TFLite, an open-source
toolkit that extends the TFLite DNN framework so that it can be more easily used to
develop new DNN hardware accelerators using the SECDA design methodology.

The SECDA-TFLite toolkit leverages the TFLite delegate system to provide a ro-
bust and extensible set of utilities for integrating DNN accelerators for any TFLite-
supported DNN operation. Ultimately, this increases the productivity of hardware
accelerator developers, as they can begin developing and refining their design more
quickly. To aid in this, the toolkit consists of four key components: SystemC In-
tegration, Simulation Profiling, Data Communication, and Multi-threading libraries.
These provide the essential utilities that enable developers to develop their designs.
Additionally, we provided a set of extra tooling to automate the process of hardware
design synthesis, model benchmarking across different accelerators, and the generation
of reports and visualisations of profiled simulation data.

We demonstrate the utility of SECDA-TFLite with a case study which provides accel-
erators for both CNN and transformer-based DNN architectures. We port and improve
the two CNN accelerator designs from the original SECDA case study 4.4, integrating
and exploiting the FPGA resources with the more robust tooling provided by SECDA-
TFLite. In addition, we bring a new accelerator design targeting the BERT [Dev+19]
family of models, which uses a transformer neural architecture. The target device is
the PYNQ-Z1 board [Dig], a platform with a dual-core CPU and an edge FPGA. The
contributions of this chapter are as follows:

• SECDA-TFLite, an open-source toolkit to enable the efficient development of cus-
tom DNN hardware accelerators for TFLite, focused on edge devices, leveraging
the SECDA design methodology.
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• We describe the key features of the SECDA-TFLite toolkit (simulation, profiling,
and data communication utilities) and how they integrate with the upstream
TFLite framework.

• We present additional tooling to automate and ease the process of evaluating
accelerators developed using SECDA-TFLite.

• We present a SECDA-TFLite case study, where we ported and updated two
existing CNN accelerators previously developed within the SECDA case study
with our toolkit for a newer version of TFLite. In addition, we developed a new
accelerator design targeting transformer models.

• We evaluate the performance of the accelerators developed for our case study
by benchmarking them against several state-of-the-art DNN models. Our CNN
accelerators are comparable to or outperform their original counterparts, demon-
strating that SECDA-TFLite does not introduce significant overheads compared
to a more ad-hoc integration. For our new BERT accelerator, we outperform the
CPU-only inference by an average of 2.1× and 2× in terms of inference time and
energy efficiency, respectively.

5.2 SECDA-TFLite Toolkit

SECDA is a generic design methodology that can be applied to various application
frameworks (e.g., DNN inference frameworks). The first step is to the SystemC environ-
ment integrate with the target framework. However, this initial step is time-consuming
and could hinder the adoption of the methodology. Additionally, once initialised for
a given framework, the same environment can be re-used between accelerator designs
defined for that framework, further reducing the barriers to developing new accelera-
tors.

SECDA-TFLite is a TFLite-specific toolkit that provides the initial development en-
vironment when using the SECDA methodology within TFLite and a set of utilities
to aid development. This enables the developer to begin prototyping and integrating
their new design with significantly reduced initial setup overhead. While the original
SECDA case study was embedded within TFLite, the integration was ad hoc because
it focused on being a proof of concept for the methodology rather than a generic inte-
gration for future developers. SECDA-TFLite aims to be a robust open-source toolkit
for anyone who wants to develop new DNN accelerators within TFLite.

The rest of the section expands on the key aspects of SECDA-TFLite and how it
streamlines FPGA-based DNN accelerator development for TFLite using the SECDA
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Figure 5.1: Overview of the SECDA-TFLite toolkit and how it is used within the
SECDA design methodology for TFLite.

methodology. Section 5.2.1 gives context on where the integration with TFLite occurs.
Section 5.2.2 describes the four main components of the toolkit, and Section 5.2.3
discusses the toy accelerator design that we provide as a starting point for developers,
which leverages all features of the SECDA-TFLite toolkit.

5.2.1 SECDA-TFLite Delegates

The SECDA-TFLite toolkit provides the integration of the SECDA environment with
the TFLite DNN inference framework, giving the accelerator developer a starting point
to produce new DNN hardware accelerators. This integration exploits TFLite’s so-
called ‘delegate’ system, where operations from DNNs can be efficiently offloaded to the
target accelerator while still providing the original CPU inference for non-accelerator
layers. Figure 5.1 shows an overview of the key aspects SECDA-TFLite’s integration
in TFLite. For future SECDA toolkits targeting other frameworks, we will exploit
similar subsystems such as TVM’s BYOC 1, or ONNX Runtime’s Execution Provider.
Section 5.2.1 gives a brief overview of the TFLite delegate system, while Sections 5.2.1
and 5.2.1 discuss the SECDA delegates that SECDA-TFLite enables for developing
their custom offloading mechanism for accelerator designs. Note that we discuss the
SECDA delegates in terms of simulation and FPGA delegates for ease of explanation.
However in practice, a single delegate can be used for both simulation and FPGA
deployment with a simple change of compilation flags.

1‘Bring Your Own Codegen’ https://tvm.apache.org/docs/dev/how_to/relay_bring_your_
own_codegen.html

https://tvm.apache.org/docs/dev/how_to/relay_bring_your_own_codegen.html
https://tvm.apache.org/docs/dev/how_to/relay_bring_your_own_codegen.html
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Figure 5.2: Simplified example a DNN running on TFLite, with some nodes running
on the CPU, and a group of three running on a delegate.

TFLite Delegate System

The TFLite delegate system [Ten] is available in later versions (post v2.7) of TFLite
with the purpose of providing simplified support for different hardware and software
backends for DNN operations. While TFLite provides some delegates for Android and
iOS devices, creating custom delegates is required to deploy new custom hardware
accelerators. For DNN inference, TFLite delegates can be used to offload individual
(or groups of) TFLite operations within a DNN model to other backends, including
hardware accelerators. Figure 5.2 shows an example of three operations in a DNN being
executed on a delegate, with the rest of the operations being run using the default CPU
runtime. In the example, the three nodes are grouped together, enabling the potential
for further optimisations through the delegate.

In addition, creating custom delegates in TFLite can be cumbersome and requires ex-
pertise to connect TFLite with low-level hardware drivers. Hence, the SECDA-TFLite
toolkit provides the bulk of the initial delegate integration required for developers to
implement new DNN hardware accelerator designs following the SECDA methodology.
Within the SECDA-TFLite design flow, the developer defines a new delegate for their
accelerator design, which can be used for both simulation and FPGA deployment.

SECDA-TFLite Simulation Delegate

The purpose of a simulation delegate is to allow end-to-end simulation as defined within
the SECDA methodology within TFLite. The simulation delegate connects TFLite to
simulated DNN accelerator hardware designs. Under SECDA, the SystemC simulation
is required to provide a fast evaluation time for changes to the accelerator design,
enabling verification of correctness and resource efficiency. Additionally, the simulation
delegate integrates with the Profiler, more specifically the Simulation Profiler, which is
described in Section 5.2.2. These profiling tools can be extended to meet the developers’
needs while providing the essential features required.



5.2. SECDA-TFLite Toolkit 91

The simulation delegate is also used to co-design the accelerator driver, which is used to
communicate with the accelerator. The accelerator driver is responsible for managing
aspects such as tiling strategies, data preparation, output data unpacking, control flow
and generating accelerator instructions. Overall, the efficiency of the accelerator driver
can be very impactful on the overall runtime performance [Wan+21; Xi+20], hence
why the co-designing of the accelerator and the accelerator driver is prioritised within
the SECDA methodology.

SECDA-TFLite FPGA Delegate

The purpose of the FPGA delegate is to provide the interface to versions of the accel-
erator running on real hardware, namely an FPGA. The simulation delegate connects
TFLite to the DNN accelerator hardware designs on an FPGA. Under SECDA, the
purpose of running on real hardware is to identify bottlenecks that are not revealed
through simulation, for instance, the impact of off-chip memory accesses. To this end,
SECDA-TFLite provides the Data Communication library, discussed in Section 5.2.2.
This provides approaches for the designer to convert simulation constructs defined
for data communication into real hardware AXI data transfer implementation. Simi-
larly, accelerator driver code can be threaded to improve the CPU-side performance.
Thus, SECDA-TFLite provides a Multi-Threading API (see Section 5.2.2). Finally, the
FPGA delegate integrates with the Profiler, more specifically the Hardware Profiler,
to provide the developer with the necessary tools to profile the accelerator and driver
code running on the FPGA.

5.2.2 Toolkit

Along with the two TFLite delegates, which provide starting points for the integration
and development of DNN hardware accelerator designs with TFLite, the SECDA-
TFLite toolkit also provides four core components: SystemC integration, Profiler, Data
Communication, and Multi-threading API; which helps the designer to develop their
hardware designs. We describe the four components below.

SystemC Integration

SystemC end-to-end simulation is key to the SECDA methodology; however, TFLite
does not natively support the SystemC simulation environment. Thus, with SECDA-
TFLite, we define a software library within the TensorFlow Bazel [Devb] workspace,
which can be included as a dependency when compiling any TensorFlow binaries and
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delegates. This software library provides the user with the necessary components for
running SystemC simulation. It enables the SystemC API to initialise and bind hard-
ware modules defined in SystemC to the simulation environment via delegate calls.

As well as reducing the work developers must do to integrate SystemC, we also provide
the SystemC integration API that allows developers to define data transfer between
the simulated accelerator and the TFLite allocated data tensors. Thus, a key benefit
of the SystemC integration library is that we can ensure SystemC simulation con-
structs are easily accessible throughout the delegate code, with standard boilerplate
code predefined for TFLite.

1 // SystemC Accelecrator .h
2 // Define profiling for hardware accelerator
3 ClockCycles * per_batch_cycles = new ClockCycles (" total_cycles ", true);
4 ClockCycles * read_cycles = new ClockCycles (" read_cycles ", true);
5 ClockCycles * compute_cycles = new ClockCycles (" compute_cycles ", true);
6 ClockCycles * send_cycles = new ClockCycles (" send_cycles ", true);
7 std :: vector < Metric *> profiling_vars = { total_cycles , read_cycles ,
8 compute_cycles , send_cycles };
9 // -------------------------------------------------------------------

10 // C\ texttt {++} SimulationDelegate .cc
11 // Save profile of the target hardware module after simulation
12 profile . saveProfile ( accelerator . profiling_vars );
13 ...
14 ...
15 // Save all profiled data to csv
16 profile . saveCSVRecords ( profile_output_file_name );

Listing 5.1: Example of using the Simulation Profiler to define, profile
and export specific clock cycle metrics across simulation.

Profiler

Simulation Profiler: End-to-end SystemC simulation can be used to quickly evaluate
the potential performance impact of changes to the hardware and software components
of the accelerator design, as well as verifying the correctness of the implementation.
In order to profile the end-to-end simulation, the developer needs to add additional
code to keep track of hardware and software metrics (such as simulated clock cycles
spent), throughout the end-to-end DNN inference. SECDA-TFLite provides a system
called the simulation profiler, which provides a method to define the different types
of metrics to capture from the accelerator and software driver, along with common
metrics developers will be interested in, such as the number of clock cycles.

Listing 5.1 shows an example of how a developer can use the simulation profiler to
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capture various clock cycle metrics for their hardware accelerator design. This saves
the developer time by not having to define, capture, and process common profiling
metrics manually. However, the simulation profiler is extensible to bespoke metrics
not defined by SECDA-TFLite, such as accelerator instruction count. In addition, the
simulation profiler provides an export function to a CSV file for analysis.

Hardware Profiler: The SECDA-TFLite’s hardware profiling system is used to pro-
file the performance of the accelerator and the driver code running on the FPGA. The
simplest form of hardware profiling is to measure points of execution within the driver
code, such as the time taken to send an opcode to the accelerator.

1 // Driver code
2 prf_start (0); // Start profiling
3 int *in0 = drv.mdma ->dmas [0]. dma_get_inbuffer ();
4 int inl0 = 0;
5 int opcode = 16;
6 in0[inl0 ++] = opcode ;
7 drv.mdma ->dmas [0]. dma_start_send (inl0); // Send opcode
8 drv.mdma -> multi_dma_wait_send (); // Wait for send to complete
9 data_transfered += inl0;

10 prf_end (0, drv.p_t. p_start_sched ); // End profiling

Listing 5.2: Example of using the hardware profiling to capture the time taken to send
a single opcode to the accelerator.

Data Communication

Edge FPGA-based DNN accelerators require a high degree of data transfer between
on-chip and off-chip memory, as the on-chip memory will have insufficient capacity to
store all the weights and input data required through inference. Hence, during DNN
inference, new sets of data need to be sent to the accelerator to be processed, and
the resultant data needs to be transferred back to main memory. Since the Advanced
eXtensible Interface (AXI) is the standard data interface for data movement between
the FPGA and ARM CPU cores, within SECDA-TFLite we provide a simple AXI API
to allow the designer to quickly implement data transfers between CPU and accelerator
through the three main types of AXI data transfers: AXI-MM, AXI-Lite, and AXI-
Stream. As with the other components of the SECDA-TFLite toolkit, this avoids the
need for the hardware developer to define their own data communication methods while
still allowing them to adapt the system if necessary.
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Multi-threading API

The multi-threading API consists of simple classes that help the delegate developer
define CPU-side tasks that need to be performed in a multithreaded fashion. Most
commonly, this will be in the accelerator driver, which needs to transfer data between
the hardware accelerator and TFLite efficiently. The API allocates tasks to worker
threads to execute. While threading is not required to improve the accelerator’s per-
formance, it can improve the performance of any computationally expensive calls, such
as data packing and unpacking, to reduce the bottleneck in data preparation and stor-
age. In addition, the API does not exclude the use of other common threading libraries;
however, it is provided such that developers can benefit from multi-threading in the
context of SECDA-TFLite without having to produce a custom solution.

5.2.3 Template Delegate and SystemC DMA-Engine

Along with the SECDA-TFLite toolkit, we provide a set of simulation and FPGA
delegates for a toy accelerator. This simple design can serve as a quick starting point for
developers to showcase the usage and main features of SECDA-TFLite. The simulation
and FPGA delegate also highlight the differences between the simulation driver and
the actual AXI-based FPGA driver. We also provide a hardware definition of a simple
DMA engine that can be used to simulate any data communication using the AXI-
Stream interface.

5.3 Automation

Due to the complexity of the SECDA-TFLite toolkit, we have developed additional
tooling to automate the process of hardware synthesis, benchmarking DNN models
across different accelerators, and generating reports and visualisations of profiled sim-
ulation data.

5.3.1 Hardware Design Synthesis Automation

Automated hardware synthesis allows developers to quickly translate their accelerator
designs into FPGA bitstream with minimal effort. The tooling depends on the Xilinx
Vivado Design Suite [Xilb] for the synthesis and implementation of the hardware design.
Hence, the developer must have Vivado installed on their system. To generate the
hardware design, the developer must provide a JSON-based configuration file that
describes the accelerator metadata, such as the accelerator name and version, the
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target FPGA device, and the clock frequency. Additional features, e.g., copying the
generated bitstream to the target FPGA board, are also provided but are optional.

Once the configuration file is provided, the developer can invoke the hardware synthesis
automation tool. During invocation, the user can specify whether to perform full logic
synthesis to generate the bitstream or HLS only to generate the accelerator IP, the
estimated resource utilisation, and the timing schedule for the design.

5.3.2 Benchmarking Suite

The benchmarking suite automates the process of running experiments on the target
FPGA board and collecting the results. Figure 5.3 shows the high-level architecture of
the benchmarking suite. The suite is designed to be extensible, allowing developers to
add new benchmarks (DNN models) and accelerators with minimal effort. Additionally,
the suite provides a versioning system to track the performance of the accelerators
across different versions of the accelerator design.

An ‘experiment’ configuration within the benchmarking suite consists of the DNN mod-
els to execute, the metrics to measure (power, latency or accuracy), and the accelerators
to use. Once the experiment is configured, the user can invoke the benchmarking suite,
which will run the experiment on the target FPGA board and collect the results. Be-
fore running the experiment, the hardware synthesis automation tool must be executed
to ensure the accelerator bitstreams are available for the benchmarking suite.

5.3.3 Profile Visualisation

Figure 5.4 shows an example of the simulation visualisation tool, which graphs the
simulation-generated profiling data. It shows the accelerator’s performance per hard-
ware sub-modules in terms of cycles spent in different states (e.g., idle, busy, or stalled).
Each bar represents the breakdown of the cycles spent in each state for a specific hard-
ware sub-module. The total number of cycles is shown in the title of each bar. Note
that the total number of cycles is equal for each of the bars in this figure. This is
because all three of these sub-modules were active for the entire simulation runtime.
The accelerator developer can define the states of each sub-module within the SystemC
accelerator definitions (see Listing 5.1). This tool is useful for identifying bottlenecks
in the accelerator design. For example, the top bar chart shows the post-processing
module (PPU) spending most of its time in ‘S 1’, which is the idle state. This indicates
that the post-processing module is underutilised and could be optimised further.
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Figure 5.3: High-level architecture of the benchmarking suite.

5.4 Case Study

To demonstrate the value of the SECDA-TFLite toolkit and how it provides a founda-
tion to efficiently develop DNN accelerators within TFLite using the SECDA method-
ology, we develop three different FPGA-based DNN accelerator designs targeting Con-
volutional and BERT-based DNN models.

We develop the designs for resource-constrained edge devices such as our target device,
the PYNQ-Z1 board. For Convolutional Neural Network (CNN) models, we port,
improve, and integrate the Vector MAC (VM) and Systolic Array (SA) based-designs,
which were previously defined within the original SECDA case study, using the SECDA-
TFLite toolkit. Since the original case study, TFLite has changed significantly (from
v2.2 to v2.7+). Thus, the newly defined accelerators now target signed 8-bit inference
rather than the unsigned 8-bit inference used in earlier versions of TFLite, which has
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Figure 5.4: Example of simulation profile visualisation tool.

been deprecated. Thus, our accelerators use signed 8-bit quantised DNN models, a
popular machine learning optimisation that can reduce the inference time with a low
accuracy penalty [Zho+17].

We accelerate convolutional layers, which in TFLite are implemented using the GEMM
convolution algorithm. Thus, we develop the aforementioned custom accelerators and
their respective drivers to reduce the model’s inference time. For models in the BERT
family, we note that they contain high-level DNN layer structures commonly referred
to as transformer layers. However, these transformer layers can be decomposed into
several Matrix Multiplication operations, which are represented as Fully Connected
(FC) layers within TFLite models. From our experiments, these FC layers are the
most expensive in terms of computational requirements, taking up to 66% of the overall
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Figure 5.5: SECDA-TFLite runtime model, common for all accelerators and DNN
model types.

inference time. Thus, we develop a new GEMM-based accelerator design for BERT-
based models to accelerate the FC layers within TFLite.

Figure 5.5 shows the execution flow when performing DNN inference using our custom
accelerators. We integrate the offloading of computation to our accelerators through
the SECDA-TFLite delegates. We describe the improved development environment
made possible through the SECDA-TFLite toolkit and how it is used throughout the
case study, and provide details of the designs in the following sections.

Section 5.4.1 gives a brief overview of how the SECDA design methodology is followed
when using SECDA-TFLite. Section 5.4.2 discusses our three accelerator designs, with
Section 5.4.3 giving details of their components. Finally, in Section 5.4.4, we briefly
discuss the relevant features of the accelerators’ supporting software.

5.4.1 SECDA-TFLite Workflow

To develop new accelerators using the SECDA methodology, we need to instantiate
the development environment within the application framework so that we can load
and run models, as well as run simulations and synthesis of our candidate hardware
designs. As discussed in Section 5.2, SECDA-TFLite provides the instantiation of the
SECDA methodology within TFLite, thus avoiding many manual steps. Once this
occurs, the developer can follow the SECDA methodology to develop and define their
chosen accelerators, leveraging the utilities available in SECDA-TFLite. The following
sections give an overview of how we did this for our case study.
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Initialisation

After setting up the environment using the utilities provided by SECDA-TFLite (as
described in Section 5.2.2), the developer can use the SECDA-TFLite simulation del-
egate to make a delegate for their target accelerator, specifying features such as the
operation type(s) they want to accelerate.

As in a typical SECDA workflow, for the first iteration of development, the developer
may define a native C++ implementation of the target operation. The native C++
implementation can be a useful starting point for the designer to develop the hard-
ware design. Over time, the developer can replace this stub with SystemC hardware
definitions, producing a viable first accelerator design.

SystemC Simulation Co-Design/Co-Verification

After adding simple SystemC constructs to our accelerator module, we develop hard-
ware components such as hardware buffers or processing units in SystemC, to replace
the initial implementation. As part of the SECDA methodology, we developed the
simulation testbench and implemented hardware components for computing the target
operation (e.g., weight buffers and multipliers). Using the testbench and the end-to-end
simulation environment, we go through several iterations where we fine-tune the design
of our accelerator components. This fine-tuning ensures that each hardware component
is efficient in terms of the hardware resources utilised and clock cycles spent. This also
includes ensuring that the overall behaviour of the accelerator architecture is efficient
and that no component is creating a bottleneck.

To help perform this fine-tuning, we can use the profiling tool within SECDA-TFLite,
as discussed in Section 5.2.2. Our pre-defined metrics, such as buffer utilisation or
clock cycle counts can be used, or custom metrics can be defined. Using these metrics,
the developer can adapt the hardware design and accelerator driver iteratively. For
example, by tracking processing element (PE) utilisation, we can ensure that there is
little to no idle time.

Design Loop

SECDA-TFLite provides developers with the utilities required to instantiate an ac-
celerator development environment quickly. Once this is done, the main design loops
of SECDA begin. Developers can switch between evaluating simulated and FPGA-
synthesised versions of their hardware designs, noting bottlenecks and making design
iterations. One key benefit of using the SECDA-TFLite toolkit is that leveraging the
delegate system simplifies switching between simulation and FPGA evaluation.
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Table 5.1: PYNQ Z1 FPGA resources utilised per accelerator design.

Accelerator \ Resource BRAM DSP FF LUT
Vector Mac 221 188 61127 50298

Systolic Array 160 196 59585 33139
FC-GEMM 224 164 35580 26585

5.4.2 Accelerators Designs

Following the workflow described in Section 5.4.1, we developed and integrated three
hardware accelerator designs within SECDA-TFLite. All three accelerator designs
follow an output-stationary dataflow approach [Kwo+19], which was chosen to remove
the need to store many intermediate results on valuable on-chip memory or incur
latency and power overheads associated with storing them off-chip. From the original
SECDA case study, both the Vector Mac (VM) and Systolic Array (SA) designs have
been updated to support per-axis quantisation and the signed-integer quantisation
scheme required by newer versions of TFLite. The new FC-GEMM accelerator used
for the transformer model was developed entirely from scratch using the SECDA-
TFLite toolkit. Table 5.1 contains the resource utilisation for each accelerator design,
which was estimated after HLS; all three designs were configured to run at 200MHz.
Note that although the number of DSPs varies across designs, all three designs contain
the same number of MAC PEs. Due to DSP limitations, a portion of the PEs are
instantiated using LUTs instead of DSPs. The following section gives a brief overview
of FC-GEMM accelerator design, with more detailed descriptions of the VM and SA
designs in Section 4.4.3.

Fully Connected GEMM Accelerator (FC-GEMM)

Figure 5.6 shows an overview of the FC-GEMM accelerator design, which we use to
accelerate FC layers within transformer models such as BERT. The AXI-MM interface
performs data movement between main memory and on-chip memory, allowing the
accelerator to access the main memory directly to load and store data. The AXI-
MM interface decreases the need for complicated data packing and ordering from the
accelerator driver, which is otherwise required by the two previous designs that used the
AXI-Stream interface. However, the AXI-MM interface comes at the cost of potentially
higher data transfer latency.

The design contains five key hardware modules: Fetch, Load, Scheduler, Compute,
and Store Units. For further details of these modules, refer to Sections 5.4.3. The
computation is performed by a single Compute Unit, that contains a 4× 4× 16 MAC
array. For FC-GEMM, we opt for a single large Compute Unit as the BERT models we
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Figure 5.6: FC-GEMM accelerator design, featuring a single Compute Unit.

target consistently contain large MatMul dimensions, which ensure the Compute Unit
is fully utilised during GEMM, as opposed to multiple smaller compute units which
are more efficient for smaller sized GEMM more prevalent in CNN models. This,
additionally simplifies the work of the Scheduler Unit as it only needs to decode the
compute instructions for a single Compute Unit.

5.4.3 Accelerator Components

The accelerator designs are built around a common set of components used to perform
the key operations required for DNN inference. Here, we describe the components
used within the FC-GEMM accelerator design and the updated Post Processing Unit
(PPU) used in the VM and SA designs. The rest of the components are described in
Section 4.4.3.

FC-GEMM Specific Hardware

The FC-GEMM design differs significantly from the VM and SA designs, and it is a
completely new accelerator design in this work. It features five key components: Fetch,
Load, Scheduler, Compute, and Store Units.

• The Fetch Unit receives control signals to start the accelerator along with the
number of instructions to load from main memory.

• The Load Unit receives instructions from the Fetch Unit to load data into either
input, weight or bias buffers. The instruction contains the main memory address
along with the size and stride of the data that needs to be loaded.
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• The Scheduler for the FC-GEMM design decodes the compute instructions and
directs the MAC Array to perform the GEMM computation.

• The Compute Unit is a 4× 4× 16 MAC array, which simplifies the data orches-
tration within the accelerator.

• The Store Unit receives output data from the Compute Unit and, similarly to the
PPU, performs post-processing steps, including quantisation, bias addition, and
application of the ReLU activation function. The Store Unit reads instructions
from the Fetch Unit to get the destination address within the host-side memory
to write back the processed data and finally coordinates this data transfer to the
main memory using AXI-MM.

Post Processing Unit (PPU)

The PPU is only used in the VM and SA designs and has been updated from the
original case study. The PPU receives int32 output tiles from their adjacent processing
unit and applies the post-processing pipeline to obtain the quantised int8 result tiles.
Due to the change in the quantisation scheme from earlier TFLite versions, the PPU
was updated to read additional quantisation parameters (e.g., the axis scaling factor)
and apply them per output tile. By performing the post-processing steps within the
accelerator rather than the CPU, we reduce the size of our output data by a factor of
4, which translates into significant inference time savings. Note the FC-GEMM’s Store
component performs some of the same functions.

5.4.4 Accelerator Drivers

For each accelerator design, the driver needs to communicate with the accelerator and
ensure the correct instructions and data are passed to the accelerator. Careful co-
design of the accelerator driver and accelerator hardware is required to optimise the
performance effectively. This section gives a brief overview of the accelerator drivers
used across the three accelerator designs.

Convolutional Layers

The VM and SA accelerators target the same operation type, namely convolutional
layers. Hence, the two designs share very similar driver software. The accelerator
driver applies the im2col operation to the input tensor, a required step for our def-
inition of GEMM convolution. For most parts, the new drivers for the VM and SA
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designs within the SECDA-TFLite delegate are similar to the original GEMM driver
presented in Section 4.4.2. The key difference is that the new drivers are fully contained
within the SECDA-TFLite delegate, unlike previous version which was connected to
the Gemmlowp library. Additionally, the new drivers support signed 8-bit quantisation,
which requires more metadata to be passed to the accelerator.

Fully Connected Layers

The FC-GEMM accelerator driver has several key differences since it targets a different
DNN operation from the VM and SA designs. However, it ultimately performs the
same function, namely processing data passed between TFLite and the accelerator. In
addition, since the accelerator reads and writes host memory directly, the driver needs
to identify and pass the relevant memory addresses to the accelerator.

Overall, the key responsibilities of the FC-GEMM accelerator’s driver are:

(i) Computing quantisation parameters and managing the bias and activation function
metadata, which will be passed to the accelerator; (ii) Padding and copying TFLite
inputs tensors to memory-mapped input buffers; (iii) Generating the instructions re-
quired for the accelerator to compute the given FC layer; (iv) Copying back computed
results from the memory-mapped output buffer to the TFLite outputs tensors; (v) Man-
aging all the accelerator control signals, such as initialising the accelerator and waiting
for the accelerator to finish the computation.

5.5 Evaluation

5.5.1 Experimental Setup

We evaluated the three accelerator designs (see Section 5.4.2) on the PYNQ-Z1 board,
which includes an edge FPGA and a 650MHz dual-core ARM Cortex-A9 CPU. At
the time of the experiments, we utilised the TFLite Model Benchmarking tool2 to run
all experiments; later once the SECDA-TFLite benchmarking suite was developed we
were able to use it to re-run and extend the experiments.

First, we benchmarked seven widely used CNN models quantised to signed 8-bit in-
tegers: MobileNetV1 [How+17], MobileNetV2 [San+18], InceptionV1 [Sze+15], In-
ceptionV3 [Sze+16], ResNet18 [He+16], ResNet50, and EfficientNet-Lite [TL19], all
trained for the ImageNet dataset [Rus+15]. We evaluated each CNN model’s CPU-
only inference times in TFLite using 1 and 2 CPU threads. We compared the median

2https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools
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Table 5.2: Details on the DNN models used throughout our evaluation. For CNN
models, CONV layers are shown and for BERT models, FC layers are shown.

Model CONV/FC Layers MACs (Million) Parameters (Million) Model Size (MBs)
MobileNetV1 14 569 4.2 11.4
MobileNetV2 35 300 3.8 12.8
InceptionV1 57 1502 6.6 20.5
InceptionV3 94 5725 23.9 75.2
ResNet18 20 1800 11.5 30.5
ResNet50 54 3,800 25.6 61.5

EfficientNet-L 61 2,550 13.0 42.6
MobileBert 362 2,850 25.3 345.4

Albert 554 2,609 11.0 178.3

of 100 runs against our VM and SA designs implemented through the TFLite delegate
system. In addition to comparisons against our CPU-only baseline, we reproduced and
extended our original comparison (see Section 4.5.3) against the state-of-the-art VTA
accelerator on the same device, as discussed later in Section 5.4.4.

Similarly, we benchmarked two popular BERT models also quantised to signed 8 bits
integers: MobileBert [Sun+20] and Albert [Lan+19], both defined for the SQAUD
dataset [Raj+16] with sequence lengths of 384 and 128 for the respective models. For
each BERT model, we again evaluated CPU-only inference times in TFLite using 1
and 2 CPU threads, taking the median (to not let outlier runs affect the results) of 100
runs to compare against our FC-GEMM accelerator. All reported runs in this section
have a standard deviation of less than 0.7%. For more details on the experimental
hardware setup, refer back to Section 1.1.2.

Table 5.2 contains key details of all the DNN models used throughout our experi-
ments. Note that non-accelerated TFLite layers for both sets of benchmarks use their
native C++ implementations and are compiled with the recommended TFLite optimisa-
tions for the target platform. This included enabling NEON-based vector instructions,
multi-threading, and utilising the Gemmlowp [Goo24] backend library. Conversely, our
accelerated layers use custom-designed CPU-side accelerator drivers (see Section 5.4.4)
that include handwritten software optimisations (e.g., vector instructions) developed
using the SECDA-TFLite toolkit. We gather energy metrics using a COOWOO digital
USB power meter [COO]. Figure 5.7 shows the performance speedup of the SECDA-
TFLite accelerators against single thread CPU-only inference for the CNN and BERT
models under study. Rest of the section goes into these results in more detail.

5.5.2 CNN Results

Table 5.3 shows the breakdown of inference time and energy consumption for the
CNN models under study for a single image using the CPU (1 and 2 threads) and
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Figure 5.7: Performance speedup of the SECDA-TFLite accelerators against single
thread CPU-only inference for the CNN and BERT models under study.

the two accelerator designs (VM and SA) with a stddev of 0.5%. The time is split
between convolutional layers (TCONV), which our accelerators target, and all other
layers (TNon-CONV), which run on the CPU. Note this table is an updated and more
comprehensive version of Table 4.2 from Section 4.5.2 for the updated VM and SA
designs.

Performance Across Models

For the VM accelerator, we observe an average speedup across models of 2.9× and 1.8×
and an average energy saving of 2.6× and 1.7× for one and two threads, respectively,
in each case when compared to CPU-only inference. Similarly, for the SA accelerator,
we observe an average speedup across models of 3.4× and 2.0× and an average energy
saving of 2.9× and 1.9× for one and two threads, respectively, in each case when
compared to CPU-only inference.

We also observe that InceptionV1 achieves the best speedup relative to the CPU-only
version, with 3.8× and 2.1× speedup for one and two threads, respectively for VM,
and 4.3× and 2.4× respectively for SA. Compared to MobileNetV1 and MobileNetV2,
which feature depthwise separable convolutions (meaning that each convolutional layer
performs fewer MACs per input), InceptionV1’s standard convolutions have greater
potential for GEMM acceleration since the relative time-cost of its data preparation
stage is smaller. Additionally, for InceptionV1, InceptionV3, ResNet18, and ResNet50,
we observed negligible speedup for multithreaded execution relative to the other models
due to the larger number of GEMM operations, coupled with our pipelined execution.
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Table 5.3: Inference time (milliseconds, speedup) and energy consumption (joules,
speedup) for the 7 CNN models under study when using 1/2 CPU threads and accel-
erator designs.

DNN Hardware setup TCONV TNon-CONV Total time Energy

M
ob

ile
N

et
V

1 CPU (1 thr) 566 165 732 1.0x 2.05 1x
CPU (1 thr) + VM 107 164 271 2.7x 0.79 2.6x
CPU (1 thr) + SA 107 164 271 2.7x 0.83 2.5x
CPU (2 thr) 288 103 391 1.0x 1.26 1.0x
CPU (2 thr) + VM 107 102 209 1.9x 0.65 1.9x
CPU (2 thr) + SA 107 101 208 1.9x 0.65 1.9x

M
ob

ile
N

et
V

2 CPU (1 thr) 430 204 634 1.0x 1.84 1.0x
CPU (1 thr) + VM 124 203 327 1.9x 0.94 2x
CPU (1 thr) + SA 126 199 325 1.9x 0.94 2x
CPU (2 thr) 219 128 347 1.0x 1.08 1.0x
CPU (2 thr) + VM 124 128 252 1.4x 0.76 1.4x
CPU (2 thr) + SA 126 127 253 1.4x 0.76 1.4x

In
ce

pt
io

nV
1 CPU (1 thr) 1300 70 1370 1.0x 3.64 1.0x

CPU (1 thr) + VM 291 67 358 3.8x 1.08 3.4x
CPU (1 thr) + SA 254 66 320 4.3x 1.01 3.6x
CPU (2 thr) 687 72 759 1.0x 2.05 1.0x
CPU (2 thr) + VM 291 67 358 2.1x 1.08 1.9x
CPU (2 thr) + SA 255 66 321 2.4x 1.01 2.0x

In
ce

pt
io

nV
3 CPU (1 thr) 5182 312 5494 1.0x 15.44 1.0x

CPU (1 thr) + VM 1213 283 1496 3.7x 4.72 3.3x
CPU (1 thr) + SA 1001 279 1280 4.3x 4.32 3.6x
CPU (2 thr) 2673 310 2983 1x.0 9.04 1.0x
CPU (2 thr) + VM 1215 281 1496 2.0x 4.75 1.9x
CPU (2 thr) + SA 1003 277 1280 2.3x 4.25 2.1x

R
es

N
et

18

CPU (1 thr) 1680 53 1733 1x 3.67 1.0x
CPU (1 thr) + VM 558 48 606 2.9x 1.80 2.0x
CPU (1 thr) + SA 356 46 402 4.3x 1.30 2.8x
CPU (1 thr) + VTA - - 1369 1.3x 3.28 1.1x
CPU (2 thr) 876 53 929 1.0x 2.45 1.0x
CPU (2 thr) + VM 558 49 607 1.5x 1.76 1.4x
CPU (2 thr) + SA 356 46 402 2.3x 1.30 1.9x
CPU (2 thr) + VTA - - 737 1.3x 1.51 1.6x

R
es

N
et

50

CPU (1 thr) 3200 475 3675 1.0x 10.08 1.0x
CPU (1 thr) + VM 798 328 1126 3.3x 3.35 3.0x
CPU (1 thr) + SA 588 324 912 4.1x 2.84 3.5x
CPU (1 thr) + VTA - - 1759 2.1x 4.39 2.3x
CPU (2 thr) 1648 410 2058 1.0x 5.76 1.0x
CPU (2 thr) + VM 799 328 1127 1.8x 3.31 1.7x
CPU (2 thr) + SA 586 324 910 2.3x 2.84 2.0x
CPU (2 thr) + VTA - - 1036 2.0x 2.81 2.1x

Effi
ce

nt
N

et
-L CPU (1 thr) 2665 1230 3895 1.0x 10.98 1.0x

CPU (1 thr) + VM 566 1241 1807 2.2x 5.33 2.1x
CPU (1 thr) + SA 555 1225 1780 2.2x 5.44 2.0x
CPU (2 thr) 1335 667 2002 1.0x 6.12 1.0x
CPU (2 thr) + VM 567 650 1217 1.6x 3.78 1.6x
CPU (2 thr) + SA 555 651 1206 1.7x 3.92 1.6x
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This means that the CPU-side latency due to data format conversions is ‘hidden” by
the accelerator’s computation, resulting in minimal benefits from two threads.

Updated Accelerator Performance

Overall, we observe that the updated VM and SA designs decrease performance com-
pared to the original designs. This is noticeable when comparing TCONV times for the
VM and SA designs in Table 5.3 to the original results in Table 4.2. This decrease
in performance is as expected, and is due to the additional computational demand
introduced by the per-axis quantisation and the signed 8-bit integer data format, as
opposed to the original unsigned 8-bit integer and per-tensor quantisation.

Conversely, the updated results still present the trends we observed in the original
results. For example, we observe less speedup and energy consumption with dual-
thread and the bottleneck analysis remains similar to as described in Section 4.5.2.

VM vs SA Performance Comparison

Comparing our two designs, SA achieves slightly better performance, 16% on average
in latency and up to 9% in energy savings. This performance difference between SA
and VM can be attributed to the different strategies used to perform GEMM and the
different configurations of the MAC PEs. The SA design contains a large array of
PEs, whereas the VM design consists of four smaller GEMM units, introducing higher
overhead for scheduling GEMM operations. While VM’s smaller GEMM units allow
for smaller tile sizes, the SA design’s single large systolic array leads to higher data
reuse, lowering the number of BRAM reads.

Note that both accelerator designs could still be further refined; however, the purpose
of the case study is to highlight that by using SECDA-TFLite, we were able to quickly
port, redesign, and further iterate upon the previously defined VM and SA accelerators
while improving inference time performance and energy consumption against the CPU-
only case.

5.5.3 BERT Results

Table 5.4 shows the breakdown of inference time and energy consumption for the
two BERT models under study using the CPU (1 and 2 threads) and the FC-GEMM
accelerator with a stddev 0.1%. The time is split between Fully Connected layers (TFC)
which our accelerator targets, and all other layers (TNon-FC) which run on the CPU.
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Table 5.4: Inference time (seconds, speedup) and energy consumption (joules, speedup)
for the 2 BERT models under study when using 1/2 CPU threads and the FC-GEMM
accelerator.

DNN Hardware setup TFC TNon-FC Total time Energy

M
ob

ile
Be

rt CPU (1 thr) 8.62 3.42 12.04 1.0x 3.02 1.0x
CPU (1 thr) + FC-GEMM 2.74 3.41 6.15 2.0x 1.58 1.9x
CPU (2 thr) 4.44 3.47 7.91 1.0x 2.09 1.0x
CPU (2 thr) + FC-GEMM 2.64 3.39 6.04 1.3x 1.62 1.3x

A
lb

er
t

CPU (1 thr) 9.88 2.59 12.46 1.0x 3.13 1.0x
CPU (1 thr) + FC-GEMM 1.42 2.57 4.00 3.1x 1.08 2.9x
CPU (2 thr) 4.47 3.07 7.54 1.0x 2.02 1.0x
CPU (2 thr) + FC-GEMM 1.40 2.57 3.96 1.9x 1.08 1.9x

For our FC-GEMM accelerator, we observe an average speedup across models of 2.5×
and 1.6× and an average energy saving of 2.4× and 1.6× for one and two threads,
respectively, in each case when compared to CPU-only inference.

Similar to the CNN experiments, we observe less speedup and energy consumption with
dual-thread execution as expected since the compute capacity of the CPU doubles while
the accelerator designs remain the same.

Comparing the performance of the two models, we find that the accelerator provides a
3.1× speedup for Albert while only providing a 1.9× speedup for MobileBert for single
thread execution. We perform further analysis of the single thread inference of the two
models to identify the reason for the difference in performance improvement between
the two models while using the accelerator.

We observe that the time spent during inference on FC layers goes from 79% to 36%
when comparing CPU-only inference against accelerated inference for Albert. Similarly,
FC layers inference time percentage goes from 72% to 46% for MobileBert. This high-
lights that when accelerated, the remaining layers of the models become the majority
of the inference time, especially for Albert.

We investigate further and break down how the FC layers are delegated during inference
utilising the accelerator. Note that the FC delegate used for the FC-GEMM accelerator
is capable of grouping consecutive FC layers within a given model before inference. We
observe that by using the accelerator delegate, we reduce the number of FC layers by 5×
and 2.5× for Albert and MobileBert, respectively. Hence, this grouping optimisation
is the key reason behind the difference in the performance boost achieved by utilising
the accelerator for Albert and MobileBert.
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5.5.4 Comparison with state-of-the-art DNN accelerators

As a final evaluation, we compare our designs against the state-of-the-art VTA acceler-
ator [Che+18b] using the TVM compiler framework, similar to the SECDA case study.
The results show that the designs developed using SECDA and the SECDA-TFLite
toolkit are competitive with VTA. In single thread comparison with the VTA accel-
erator, the VM and SA accelerators are 1.61x and 2.1x faster on average across the
models, respectively, and similarly, the VM and SA accelerators report 39% and 12%
less energy consumption on average, respectively. In dual thread comparison, our VM
design is on par for ResNet18 and only 16% worse for ResNet50 in terms of latency,
while VTA reports 43% and 23% less energy consumption for ResNet18 and ResNet50,
respectively. Our SA design outperforms VTA by 35% and 6% in terms of latency
for ResNet18 and ResNet50, respectively, but VTA reports 14% and 5% less energy
consumption for ResNet18 and ResNet50, respectively.

For BERT acceleration, to the best of our knowledge, and when this case study was
conducted, there were no publicly available FPGA-based DNN accelerator inference
designs targeting transformer models that we could compare against. Hence, we only
compare against CPU-only inference.

5.6 Summary

In this chapter, we presented SECDA-TFLite, an open-source toolkit that eases de-
veloping new hardware accelerators for edge DNN inference, following the hardware-
software co-design SECDA methodology. SECDA-TFLite provides the initial environ-
ment setup within the TFLite DNN framework, as well as a set of tools and utilities
to aid in the development of accelerator designs. It provides the infrastructure to ini-
tialise and follow the SECDA design loop within TFLite. As a result, developers are
able to co-design new accelerator designs for TFLite, bypassing many of the initial
setup challenges and overheads.

The SECDA-TFLite toolkit enables tight integration of accelerator designs with TFLite
while enabling the developer to easily follow the SECDA design loop within TFLite,
thus improving opportunities for co-design of the accelerator delegate and driver. We
provide utilities for SystemC interfacing, simulation profiling, data communication,
and multi-threading for the driver. Additionally, we provide tools to automate the
hardware synthesis, benchmark new accelerator designs, and visualise profiled data.

As a case study, we updated two existing GEMM-based accelerator designs using the
SECDA-TFLite toolkit and developed a new one for BERT models. We evaluated
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the accelerators’ performance against the CPU baseline and demonstrated that they
outperformed the CPU in all cases across seven CNN models and two BERT models.
Overall, we demonstrated through SECDA-TFLite that the SECDA methodology is
suitable for developing FPGA-based DNN accelerators using a target Machine Learning
framework such as TFLite. Our toolkit provides additional features to aid in the
development of new CNN and transformer-based accelerators.

In the next chapter, we will build upon the SECDA methodology and the SECDA-
TFLite toolkit to develop a new hardware platform for LLM inference, utilizing the
tools we formalised within SECDA-TFLite, we define the SECDA design platform for
LLMs.



111

6 | SECDA-LLM

Through the rise of large language models (LLMs), the need for efficient inference
accelerators for edge devices has become more apparent. In this chapter, we introduce
SECDA-LLM, a platform that simplifies the creation of new FPGA-based hardware
accelerators for edge LLM inference using the hardware/software co-design SECDA
methodology within the llama.cpp environment. SECDA-LLM follows suit with the
SECDA-TFLite toolkit, providing a seamless connection between the SECDA design
environment and the target application framework, llama.cpp.

This chapter is structured as follows: Section 6.1 introduces the chapter and motivates
the need for the SECDA-LLM platform. Section 6.2 presents the design of the SECDA-
LLM platform and the integration of SECDA tools within the llama.cpp framework.
Section 6.3 presents a short case study using the SECDA-LLM platform. Finally,
Section 6.4 summarises the chapter.

6.1 Introduction

Large language models (LLMs) are an emerging class of machine learning (ML) systems
geared toward learning from huge text-based datasets. LLMs such as GPT-3[Bro+20]
have revolutionised the ability of Artificial Intelligence (AI) systems to understand
and generate human language. Due to innovative changes in model architecture and
training methods, and through the help of the popularity of online services like Chat-
GPT [Ray23], the field of LLMs is evolving rapidly.

The number of everyday users is also growing rapidly due to the myriad of use cases
from translation [Yao+24], classification [Sun+23], code generation [Liu+23] to health-
care [Clu+23]. Additionally, cloud-based LLM services are currently the go-to method
of access to LLMs for everyday users. However, as the availability of open-source
LLMs and datasets increases, especially over the last few years, the need for edge-
based, localised access and execution of LLMs has become more sought after. Massive
community-driven pushes have facilitated easy access to LLMs and rapid prototyping
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of new models and optimisations to enable efficient LLM inference on edge devices. At
the forefront of these pushes is the GPT-Generated Model Language [Ger24a] (GGML).
GGML is a tensor library for ML that specialises in enabling large models and high per-
formance on commodity hardware. Furthermore, GGML’s llama.cpp project [Ger24b]
is specialised towards running LLMs on edge devices, supporting LLM inference on
commodity CPUs and GPUs.

Unfortunately, LLMs can be very computationally demanding, even for inference. In
addition, due to their large memory footprint, they require high memory capacity and
bandwidth. These properties of LLMs make them challenging to execute on resource-
constrained edge devices. For example, running LLMs on mobile phones or Internet-of-
Things devices (IoT) devices is, in some cases, impossible due to memory constraints.
Hence, there is a great demand for developing and deploying custom hardware acceler-
ators to run these LLMs efficiently on resource-constrained edge devices. Fortunately,
FPGAs are ideal for designing new flexible and power-efficient accelerators in order to
employ optimisations to improve LLM performance, such as block floating point quanti-
sation. While some FPGA-based accelerators [Kha+21; Lu+20] already exist for LLM
inference at the edge, with constant changes to LLM architectures and optimisations,
we are in need of new specialised FPGA-based accelerators.

To create new and innovative FPGA-based accelerator architectures for LLM infer-
ence at the edge, we need ways to quickly prototype and evaluate LLM-based infer-
ence accelerators to reduce development time and increase design space exploration.
Hence, we present SECDA-LLM, a new platform for designing, integrating and de-
ploying specialised accelerators for LLMs at the edge. SECDA-LLM employs the
SECDA design methodology, and similar to SECDA-TFLite, it allows the user to
quickly prototype accelerator designs with the target application framework, in this
case, llama.cpp project. Our SECDA-LLM platform enables the designer to consider
hardware-software co-design optimisations in terms of both algorithmic and hardware
implementations [Gib+25] and makes deployment of LLMs through FPGA-based ac-
celerators effortless. Note that the SECDA-LLM platform and the work presented in
this chapter is ongoing, as such, the current contributions of this chapter are as follows:

• SECDA-LLM, a design platform using the SECDA methodology which enables
the design, integration and deployment of FPGA-based accelerators for LLMs on
resource-constrained edge devices.

• A case study to demonstrate SECDA-LLM, where we prototype and deploy a
new accelerator to efficiently execute quantised MatMul operations during LLM
inference.
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Figure 6.1: Overview of the SECDA-LLM. Key SECDA components are highlighted
in orange, and the LLM components are highlighted in beige.

• Evaluation of our initial accelerator design executing the TinyLlama [Zha+24]
model on the PYNQ-Z1 [Dig] board, where we achieve a 11× speedup over dual-
core ARM NEON-based CPU execution for the compute-intensive MatMul op-
eration.

6.2 SECDA-LLM Platform

SECDA-LLM is a specialised platform for creating FPGA-based LLM accelerators for
edge devices using the SECDA methodology within the llama.cpp environment. Fig-
ure 6.1 outlines the main components of SECDA-LLM. The platform simplifies the
accelerator design process by integrating the SECDA tools, thus allowing a seam-
less connection between the SECDA design environment and the target application
framework, llama.cpp. This integration enables developers to begin prototyping and
integrating their new designs with minimal setup overhead.
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The rest of this section provides details on SECDA-LLM and: (i) how it is integrated
with llama.cpp; (ii) how it enables the accelerator designer to prototype and simulate
new designs with SystemC [Des23] simulation; (iii) the ease of hardware evaluation;
(iv) the profiling and performance analysis capabilities of SECDA-LLM.

6.2.1 Integration with llama.cpp

Figure 6.1 shows that the SECDA-LLM platform builds upon the core llama.cpp
project inference. Our current integration is through llama.cpp’s main example project,
which enables users to run LLM models with minimal overhead. We can connect into
llama.cpp once it calls any of the GGML’s operations, such as matrix multiply, convo-
lution, etc.

Depending on our target operation(s), we create additional connection points from
the GGML library to the SECDA environment. During these connections, we ensure
the creation of a context handle to pass from the GGML environment to the SECDA
environment; the context handle includes pointers memory, memory-mapped model
data, access to relevant inputs tensors, quantisation, and layer parameters.

6.2.2 SECDA Environment

Within the SECDA environment, shown in Figure 6.1, the accelerator designer can
start quickly prototyping the initial accelerator design and driver code. First, the
user is required to create the initial driver, a simple C++ class that will gain access
to the context handle provided by the offload call from within GGML. Second, the
developer must create an initial SystemC description of their accelerator. Then, the
user can instantiate their desired data communication channels between the driver and
accelerator using data interfaces provided within the SECDA environment (e.g, AXI-
S, AXI-MM and AXI-Lite). The developer can use these data channels for SystemC
end-to-end simulation.

6.2.3 SystemC Simulation

SystemC end-to-end simulation is a crucial step in the SECDA methodology; therefore,
SECDA-LLM provides access to SystemC simulation. The simulation-based design
loop is shown on the bottom left half of the figure 6.1. Once the driver and accelerator
are connected through the desired data communication channels, the user can perform
end-to-end simulations of LLMs using SECDA-LLM. With simulation enabled, the de-
signer can quickly prototype new driver and accelerator features, verifying correctness,
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profiling performance and modelling control flow behaviour within their design. The
hardware developer is able to rapidly iterate through their design process, through
end-to-end simulation, to meet their target performance.

6.2.4 Hardware Evaluation

With simulation-based evaluation, the designer can quickly make fast, broad design
changes. Once satisfied with their design, the designer can quickly take their SystemC-
based design and perform High-level synthesis (HLS) and logic synthesis (HLX) through
the hardware automation tool provided by SECDA-LLM to map it to their target
FPGA, as shown on the bottom right of figure 6.1. Additionally, as SECDA-LLM is
integrated with the llama.cpp project, we can leverage the llama.cpp project’s com-
pilation flow to generate pre-defined applications that use the LLMs through the
llama.cpp’s interface. These generated applications will now have complete access to
the driver and accelerator for execution on an FPGA-enabled device; see Section 6.3.3
for details.

A major benefit of the SECDA methodology, and therefore SECDA-LLM, is that we can
reuse the driver and accelerator completely. For actual FPGA evaluation, the designer
does not need to make any changes to the driver to enable real hardware execution, as
the SECDA data interfaces switch between simulation and FPGA execution through
a simple ‘SYSC’ compiler flag. Once the accelerator is mapped to the target FPGA,
the designer can evaluate its performance with their target applications.

6.2.5 Profiler

Through SECDA-LLM, we provide two types of profiling: simulation profiling and
execution time profiling. The profiler module shown in figure 6.1 highlights how the
profiling interacts with both the accelerator design and driver. Additionally, we are
able to leverage any additional profiling tools enabled by the llama.cpp project.

The simulation profiling allows the designer to quickly evaluate the potential perfor-
mance impact of changes to the accelerator design’s hardware and software components
and verify the implementation’s correctness. Meanwhile, execution profiling can pro-
vide execution time for the custom driver and accelerator. Additionally, execution
profiling can be used during a simulation run to profile driver execution times, which
can be combined with SystemC-reported simulation times for the accelerator. This
would estimate end-to-end execution time in terms of both CPU and accelerator. At
the high-level, these profiling tools are the same as ones used for SECDA-TFLite, hence
Section 5.2.2 provides more details.
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Figure 6.2: SECDA-LLM runtime model.

6.3 Case study

To demonstrate our SECDA-LLM platform and how it provides a quick and efficient
design flow for developing LLM accelerators for edge devices using the SECDA method-
ology, we develop a new custom FPGA-based accelerator for block floating point (BFP)
quantised LLM inference. Figure 6.2 highlights the execution flow when performing
LLM inference with our specialised accelerators using SECDA-LLM within this case
study. Note that we integrate the offloading of matrix-multiply operations through the
GGML backend, which calls our MatMul driver to activate our accelerator.

6.3.1 Target Problem

For our case study, we target the acceleration of MatMul operations within our target
LLM, as MatMul represents about 97% of the computations. Specifically, we accelerate
the GGML’s MatMul Q3 K Q8 K kernel, which uses 3-bit weights and 8-bit inputs
with BFP quantisation.

Both weights and inputs are stored in what is called ‘super-blocks’ (SBs); these SBs
are critical in maintaining LLM accuracy by adjusting mathematical scaling during
computation. Figure 6.3 contains an visual representation of the Q3 K BFP format
used for weights, where each SB can represent 256 weights (Nw) and is partitioned
into 16 tiles (Ntiles) and each tile contains a scaling factor (6-bits) and 16 weights
(3-bits). Additionally, each SB has one super-scaling factor (16-bits). By summing
up the total number of bits required for the weights and the scaling factors and then
dividing by the number of weights, we can determine that the BFP format requires
∼3.5 bits-per-weight, which is a significant reduction from the typical 32-bit floating-
point format used in DNNs. With the Q8 K format used for inputs, each SB contains
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Figure 6.3: Q3 K super-block Data Format.

256 inputs (8-bits) and a single super-scaling factor SSF (16-bits), which equates to
8∼ bits-per-input.

6.3.2 Accelerator Design

Our accelerator design, shown in Figure 6.4, contains an instruction decoder, a data
mapper, a scheduler and the Super-Block Vector Processor (SBVP):

• The instruction decoder loads and decodes instructions from the AXI-Stream and
then communicates the instruction throughout the rest of the accelerator.

• The data mapper parses the incoming data stream and maps the weight and input
super-blocks into their respective weight and input buffers. Our mapping scheme
enables efficient data access, so that the SBVP can compute without stalling the
computation pipeline.

• The SBVP efficiently computes the dot product between the SB of weights and
inputs while scaling the computation according to the SB scaling factors.

• The scheduler tiles the MatMul problem according to the dimension of the target
layer. Additionally, it synchronises and accumulates the output data produced by
the SBVP and sends the results back to the main memory using the AXI-Stream.

6.3.3 Evaluation

We evaluate our accelerator design on the PYNQ-Z1 [Dig] FPGA board. We execute
inference for the TinyLlama model [Zha+24], which contains 1.1B parameters (460
MB), trained on the Guanaco dataset [Jos23]. This model contains various BFP quan-
tisation levels, but most layers are quantised to Q3 K . Note that with llama.cpp, you
can apply different quantisation levels to reduce the model size as required. For more
details on the experimental hardware setup, refer back to Section 1.1.2.
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Figure 6.4: Overview of our block floating point quantised accelerator design for
GGML’s MatMul Q3 K Q8 K kernel.

For our experiments, we use the llama.cpp project’s ‘main’ program cross-compiled for
our target CPU architecture, ARMv7a, with Neon vector instructions enabled alongside
our accelerator driver. We execute the TinyLlama model utilising our FPGA-mapped
accelerator to offload the MatMul Q3 K Q8 K layers to obtain an initial speed of 1.7
seconds per token (∼ 2 seconds per word). Figure 6.5 compares the performance of the
CPU and our accelerator across single and dual-thread execution. Currently, both our
accelerator and CPU-only execution do not gain performance improvement with the
additional thread. We suspect this is because the workload is memory-bound. This
provides a 11× speedup over CPU-only inference for execution of the MatMul kernel,
drastically improving the usability of LLMs on such a resource-constraint device
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Figure 6.5: Performance of our BFP accelerator compared to CPU (1 & 2 threads).
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Design Iterations

We iterated through several design changes during the design process to improve the
accelerator’s performance. We initially started with a simple design (v1) that only
computed the dot product between the weights and inputs while considering quanti-
sation. After profiling the design, we identified that the accelerator was underutilised
due to its lack of parallelism. Hence, we designed and added the SBVP (v2) to the ac-
celerator to process multiple SBs in parallel. Finally, we introduced the scheduler (v3)
to support tiling and improve data reuse across weight tiles, reducing the number of
main memory accesses needed to fetch the weights. Figure 6.6 shows the performance
improvements achieved with each design iteration.

Figure 6.6: Performance improvements achieved with each design iteration of the
accelerator.

6.3.4 Discussion

This short case study demonstrates the utility of the SECDA-LLM platform for devel-
oping FPGA-based accelerators for LLM inference. SECDA-LLM as a platform is still
in the early stages of development, and we plan to extend it with more features to sup-
port a broader range of LLM models and optimisations. Our goal is to enable research
and development of FPGA-based accelerators for LLM inference when resources are
constrained and the model is too large to fit in the memory of the target device.

Our initial accelerator design for the MatMul Q3 K Q8 K kernel demonstrates the
potential of FPGA-based accelerators for LLM inference in a resource-constrained edge
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device. We plan to extend our accelerator design to support more LLM models and,
ideally, support more quantisation levels.

6.4 Summary

This chapter introduced a novel platform, SECDA-LLM, that simplifies the creation
of specialised hardware accelerators for LLM inference on resource-constrained edge
devices. SECDA-LLM integrates the SECDA methodology within llama.cpp, enabling
developers to access the SECDA tools (e.g., AXI-API, profiler), which can be used to
effectively co-design new FPGA-based accelerators for LLMs with ease. As a case study,
we presented a quantised MatMul accelerator design that optimises LLM inference for
the TinyLlama model. We also highlight the key potential of the SECDA methodology,
which is the possible performance improvements through quick design iterations.

Overall, we demonstrated that SECDA-LLM is the ideal platform for developing
FPGA-based LLM accelerators, providing a tool which integrates the SECDA method-
ology with the llama.cpp framework, allowing design space exploration of LLM accel-
erators for resource-constrained edge FPGAs.
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7 | GAN Acceleration with SECDA-
TFLite

One of the key challenges discussed in Section 1.2 is the need for problem-specific
design and optimisation for efficient DNN acceleration. Here, we tackle the second
key objective of the thesis by trying to solve this challenge for Generative Adversarial
Networks (GANs).

As discussed in Chapter 2, GANs are a popular class of DNN models used for generative
AI-based applications. However, the unique computational requirements of GANs
make them challenging to deploy on resource-constrained devices. In this chapter, we
fully utilise the capabilities of the SECDA design methodology, and the SECDA-TFLite
toolkit to fully design, integrate, and evaluate a custom FPGA-based accelerator for
GAN inference.

The chapter is structured as follows: Section 7.1 provides an introduction to the prob-
lem and the target GAN model. Section 7.2 outlines the key observations which led
to the design of the accelerator. Section 7.3 presents the design of the accelerator and
Section 7.4 evaluates the accelerator’s performance. Finally, Section 7.5 summarises
the chapter.

7.1 Introduction

Generative models are used in various applications, including image-super resolu-
tion [DLT16], style transfer [JAF16] and object detection [Liu+19a]. Generative mod-
els such as Generative Adversarial Networks (GANs) and Fully Convolutional Neural
networks (FCNs) contain an ‘upscaling’ mechanism to generate new data. For ex-
ample, generator modules in GANs contain specialised layers to upscale input feature
maps, where the Transposed Convolution (TCONV) layer is the core of this ‘upscaling’
mechanism. However, this can be much more challenging that executing them on de-
vices with powerful CPUs/GPUs, which have much higher computational and memory
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capabilities [Gib+25].

When compared to the traditional convolution operation, which has been extensively
studied and accelerated, the complex computing properties of the TCONV operation,
such as the overlapping sum problem [Zha+17], make it challenging to design accelera-
tor architectures that can efficiently process it, especially on edge devices with limited
computational and memory capabilities.

As discussed in Section 2.4.3, there are serval methods of implementing TCONV, in-
cluding the Zero-Insertion, Transforming Deconvolution to Convolution (TDC) and
the Input-Orientated-Mapping (IOM) method. However, they all have their draw-
backs, which are extensively discussed in Section 2.4.3 and 3.2.2. To address these
drawbacks, there have been multitudes of research on developing hardware accelerators
for TCONV, especially using the IOM method, as discussed in Section 3.2.2.

In this chapter, we present MM2IM, an accelerator architecture for TCONV that
merges Matrix Multiplication (MatMul) with col2IM [Devc], a matrix transformation
operation that rearranges data columns into blocks. Following the SECDA method-
ology, we designed a hardware-software co-designed approach that enables the IOM
method on resource-constrained edge devices by efficiently handling key challenges, in-
cluding the overlapping sum problem, ineffectual computations due to cropped outputs,
and tiling TCONV computations. We developed our hardware design using SECDA-
TFLite and evaluated its performance on a resource-constrained edge FPGA for various
TCONV configurations, including the DCGAN model. Furthermore, we compare the
performance of MM2IM against similar TCONV accelerators for resource-constrained
edge devices, demonstrating our superior throughput per DSP. The contributions of
this chapter are as follows:

• MM2IM: a new accelerator architecture that efficiently processes TCONV oper-
ations on resource-constrained edge devices using our IOM-based tiling strategy.

• MM2IM mapper hardware module: a compute and output mapping engine
to tackle the overlapping sum efficiently and the cropped output problem on-the-
fly without requiring additional memory or bandwidth.

• Integration and evaluation of MM2IM: using SECDA-TFLite, we compare
MM2IM against our ARM Neon optimised CPU baseline. We obtain an average
speedup of 84× across 261 TFLite TCONV problem configurations; and similarly
achieve up to 2.6× speedup and 2× energy reduction across the DCGAN model.
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7.2 Efficient Transposed Convolution

Here, we discuss the efficient execution of the Transposed Convolution (TCONV) op-
eration using the Input-Oriented Mapping (IOM) method. While other methods are
viable, we focus on the IOM method due to its efficiency, compared to the compu-
tations and transformation overheads faced by the Zero-Insertion and TDC methods,
respectively.

7.2.1 Optimising Input-Oriented Mapping

Figure 7.1 highlights the TCONV operation using the IOM method implemented
using MM and col2IM for the TCONV problem tconv(2, 2, 2, 3, 2, 1), refer back to
Section 2.4.3 for a detailed description of the TCONV operation. Note the dimen-
sions are as follows for this example: Ih(input height) = 2, Iw(input width) = 2,
Ic(input channels) = 2, Ks(kernel size) = 3, Oc(output channels) = 2, S(stride) =
1, and that the output dimensions, output height Oh and width Ow are defined as:
Ohw = S × Ihw = 2.

The MM operations are performed on input features and weights to produce the partial
output matrix. Translating the TCONV dimensions to MM dimensions, we get the
following: M = Ih ∗ Iw, N = K2

s ∗ Oc, and the depth dimension K = Ic. Hence,
the partial output matrix can be represented by dimensions M and N , the rows and
columns of the MM operation. Therefore, the number of operations required for the
IOM method is equivalent to Ih∗Iw ∗I2

c ∗K2
s ∗Oc or simply M ∗N ∗K. Once the partial

outputs are calculated, the final output is determined through the col2IM operation,
which accumulates the partial outputs into the final output feature maps.

Note that the IOM method produces padded output feature maps, so the perimeter
of the output feature map is cropped, as shown by the grey squares in Figure 7.1.
Each partial output requires a dot product of the input row and filter column. The
partial output is then summed to produce the final output; hence, each grey square
computed represents K ineffectual computation. Additionally, the IOM method would
require the intermediate results to be stored in memory, as the partial output of the
MM operation needs to be coalesced to produce the TCONV outputs.

IOM Inefficient Computation

The baseline IOM method has two inefficiencies: ineffectual computations and the
storage of partial outputs. The number of ineffectual computations, i.e., the dropped
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Figure 7.1: Implementing TCONV using MatMul + col2IM.

outputs Do per TCONV problem, can be statically determined using the col2IM al-
gorithm [Devc]. Overall, for a given TCONV problem, IOM efficiency can be deter-
mined by looking at the drop rate: Dr = Do/M ∗ N . Therefore, for a given TCONV
problem with drop rate Dr, the level of computation inefficiency can be expressed as
((M ∗ N) − Do)/Do. In the case of the example in Figure 7.1, where Do = 12 and
M ∗N = 36, and therefore Dr = 0.33, the standard IOM method performs 50% more
computations than needed for the example TCONV problem.

IOM Inefficient Storage

In terms of storing partial outputs, we can formulate the wasted buffer space Ws as
the number of final outputs Fouts minus the number of partial outputs Pouts, calculated
assuming we do not skip ineffectual computations; where Fouts = Oc ∗ Oh ∗ Ow and
Pouts = M ∗ N . In an ideal scenario, we can completely skip storing partial outputs
and simply accumulate them to the final output, improving buffer space efficiency by
Pouts/Fouts. In the case of the example in Figure 7.1, where Pouts = 36 and Fouts = 4,
this would improve space efficiency 4.5x.

Solving IOM Inefficiencies

To solve IOM inefficiencies, we must first define the output mapping and the compute
mapping. In Figure 7.1, each square in the MM Outputs matrix represents a partial
TCONV output, and the values inside these squares represent the output index of the
final TCONV outputs (shown on the right); this output mapping is a function of S

and the input dimensions (Ih, Iw). For example, all the ‘0’ index partial outputs are
summed and stored in the ‘0’ index of the final output feature maps. Additionally,
calculating the index map of the (light and dark) blue squares in the MM Outputs, we
derive the compute mapping for the given TCONV problem, that is, the index map of
partial outputs that are not dropped out via col2IM.

Our first key insight is that by using the output mapping and the compute mapping,
we can solve the IOM inefficiencies and enable an efficient accelerator architecture that
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can: (i) Skip ineffectual computation of the dropped partial outputs (grey squares);
(ii) Remove the need for storing partial sums in temporary memory and to be summed
later; (iii) Map the outputs of the MM operation directly to the final output feature
map.

7.2.2 Resource-Constrained Acceleration Dataflow

The data transfer between off-chip and on-chip memory can become a bottleneck es-
pecially on resource-constrained edge devices. Hence, we co-designed Tiled MM2IM,
a specialised tiling strategy for MM2IM that enables weight and output stationary
dataflow minimising data transfer redundancy, highlighted in Algorithm 6. Tiled
MM2IM loads filer step filters and produces the corresponding output channels within
the outer loop. We load a dynamic number of input rows within the inner loop to cal-
culate one output row per iteration. We pre-calculate the i end row array that holds
the number of input rows required to compute the current output row.

Our second key insight is that using this dataflow can increase/decrease hardware
parallelism depending on the resource constraints by adjusting filer step. Additionally,
with Tiled MM2IM, we preemptively calculate partial outputs for later output rows
depending on the input rows being processed.

Algorithm 6: Tiled MM2IM
Data: Initialise filter step, i end row

1 foreach c← 0 to Oc by filter step do
2 SendWeightFilters(c, filter step)
3 starting ← 0
4 foreach h← 0 to Oh do
5 rows to send← i end row[h] + 1− starting
6 if i end row[h] ̸= starting − 1 then
7 SendInputRows(starting, rows to send)
8 ComputeOutRow(h, c, filter step)
9 StoreOutRow(h, c, filter step)

10 starting ← i end row[h] + 1

7.2.3 Performance Model

We built an analytical model for our MM2IM architecture to estimate performance and
guide further design choices. Our performance model accounts for the problem size and
the properties of our accelerator design to assess the overall performance. Additionally,
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we combine the accelerator analysis with data movement analysis to estimate the end-
to-end performance for a given TCONV layer. In this section, we provide an overview
of the performance model.

First, we calculate problem-specific metrics such as the number of MACs and the
number of cropped MatMul outputs for the given TCONV problem. Then, we calculate
the accelerator processing time, finding the processing time for each of the Processing
Module (PM) and its components, the Compute Unit (CU) and the Accumulation Unit
(AU), which are discussed in detail in Section 7.3.5:

TP M = TCU compute + TCU load + TCU store + TAU (7.1)

Then, we calculate the data transfer time required between the main memory and the
accelerator: Note that data redundancy due to tiled inputs is taken into account.

TData = (Wsize + Isize + Osize + OMapsize) ∗BW (7.2)

Finally, we calculate the end-to-end latency of the TCONV problem based on the data
movement required between the main memory and the accelerator:

Ttotal = TP M + TData (7.3)

Note that the total processing time only considers a single PM, assuming that all PMs
are processing in parallel, which is the case in our accelerator architecture.

Our third key insight, through performance modelling, is that up to 35% of the
end-to-end latency (Ttotal) for a given TCONV problem was due to transferring output
mapping data between main memory and the accelerator. Hence, we developed the
MM2IM mapper and a hardware module that completely removes the need for output
mapping data transfers, discussed in Section 7.3.6.

7.3 Accelerator Architecture

Figure 7.2 overviews MM2IM, our proposed stream-based and scalable accelerator
architecture, which utilises simple instructions to configure, load data and execute
TCONV operations. These instructions enable MM2IM to dynamically tile TCONV
operations using Algorithm 6. MM2IM exploits two dimensions of parallelism at the
processing module (PM) level, splitting Oc computation across the X number of PMs
(used for filter steps in Algorithm 6) and unrolling Ic within the compute units with
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Figure 7.2: MM2IM Accelerator Architecture. The accelerator is connected to main
memory via AXI-Stream buses, which used to receive instructions and send/receive
data.

an unrolling factor of UF. Note that we have set X = 8 and UF = 16 for our instanti-
ation. The following sections discuss the key components of the accelerator.

7.3.1 Instruction Decoder

The instruction decoder allows for the reconfiguration of the accelerator and execution
of TCONV problems within the accelerator by decoding instructions and sending con-
trol signals to the scheduler and weight data loader. Table 7.1 shows the opcode set of
micro-ISA for the accelerator and a brief description of each instruction. These instruc-
tions are generated and sent to the accelerator by the host-side driver code during the
execution of a given TCONV problem. Note that some opcodes, for example opcode
‘0x01’, are immediately followed by operand data which the accelerator expects once
the instruction is decoded; this enables dynamic reconfiguration of the accelerator or
loading of new sets of data to accelerator buffers.
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Table 7.1: Micro-ISA Opcode Set.

Opcode Description
0x01 Configure TCONV (Sets configuration registers)
0x02 Loads Bias and Filter (Activates Weight Data Loader)
0x04 Load Input (Activates Dynamic Input Loader)
0x08 Schedule TCONV (Activates Scheduler)
0x10 Store Output (Activates Output Crossbar)

7.3.2 Scheduler

The Scheduler is the main control unit within the accelerator. Once it is activated, it
orchestrates the execution of the entire TCONV layer. First it activates the MM2IM
Mapper alongside the Dynamic Input Loader, and then it activates the array of the
Processing Modules to execute the TCONV operation. Additionally, the Scheduler
continuously monitors the Instruction Decoder for new instructions to either load the
next row of input data to the Row Buffer or to send back the output data to main
memory by activating the Output Crossbar.

7.3.3 Data Loaders

There are two data loaders, the Weight Data Loader and the Dynamic Input Loader.
The Weight Data Loader loads batches of filter and bias data from main memory (via
AXI-Stream) to their respective buffers. Once the batch is loaded into the buffers, the
Scheduler allocates the filter and the corresponding bias data across the PMs. The
Dynamic Input Loader loads new rows of inputs data dynamically to store within the
Row Buffer, which at the request of the Scheduler broadcasts the new row of input
data to all the PMs via dedicated FIFOs.

7.3.4 Output Crossbar

The Output Crossbar is a simple interface module which combines the output streams
from each of the PMs, and at the request of the Scheduler sends the combined output
data back to main memory.

7.3.5 Processing Module

Each processing module contains an accumulation and a compute unit connected via
a FIFO stream. Figure 7.3 provides a detailed view of the PM architecture with a
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Figure 7.3: Processing Module Architecture with a detailed view of the PE array. The
wide arrows represent data movement from and to the rest of the accelerator.

fine-grained view of the PE array; note that the wide arrows represent data movement
between the rest of the accelerator and the PM.

During each TCONV layer, X filters are partitioned along the PMs. Once all the
PMs load their respective filters, rows of input data are streamed to all the PMs.
Additionally, the PMs receive the compute map (cmap) and output mapping (omap)
from the MM2IM Mapper (described in Section 7.2.1).

Compute Unit: Due to the TCONV’s complex computing nature, the Compute
Units (CUs) require additional logic to ensure that only the required dot product is
processed. This additional logic, the ‘cmap check’ within the PE Array, takes the cmap,
the input row, and the filter data and computes the dot product of the selected input
row and filter column. The computed partial results are stored in the accumulation
register (‘ACC Reg’ in Figure 7.3) and then streamed into the accumulation unit for
further processing. Note that the ‘ACC Reg’ is only used to temporarily hold a single
accumulated value of the current dot-product calculation within the PE array.

Additionally, CUs are scalable and the unrolling factor (UF) defines the number of
MACs within the PE array per CU. The UF is used to tile the Ic dimension of the
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Algorithm 7: MM2IM Mapper
1 rowid ←load(rowid), rowwidth ←load(rowwidth)
2 foreach r in MMrows do
3 hpad = −paddingtop + (S ∗ (rowid % rowwidth))
4 wpad = −paddingleft + (S ∗ (rowid ÷ rowwidth))
5 imdex = hpad ∗Ow + wpad

6 col = 0
7 foreach ih in Ks do
8 foreach iw in Ks do
9 if (ih + hpad >= 0 && ih + hpad < Oh

10 && iw + wpad >= 0 && iw + wpad < Ow) then
11 PMs cmap.broadcast write(col)
12 PMs omap.broadcast write(imdex)
13 col + +, imdex + +
14 imdex+ = Ow −Ks

15 rowid + +

given TCONV problem. Hence, to execute dot-product from Ic, the PE array will take
Ic/UF number of cycles. Increasing UF will directly increase the number of MACs per
cycle per CU while increasing the hardware resources required.

Accumulation Unit: The partial sums calculated by the CUs are stored within the
output buffers in the correct output indices; the Mapper ensures this by using the omap.
Subsequent partial sums for the same output accumulate with existing results, avoiding
the need for extra buffer space. Once the output is fully calculated for an entire output
row, the post-processing unit (PPU ) processes the row. The PPU is a specialised
processing engine used to perform the post-processing steps required by a given DNN
model and then send the output data to the Output Crossbar. We have instantiated
the PPU with the required stages to execute TFLite’s re-quantisation scheme [TFL].

7.3.6 MM2IM Mapper

The MM2IM Mapper is a key component of our accelerator architecture, as shown in
Algorithm 7. It generates the cmap and omap corresponding to the row of partial
results (i.e., the output row of MM) and streams them to the PMs. The MM2IM
Mapper takes the current rowid and the number of rows as parameters to ensure the
cmap/omap are generated only for the required rows. This also allows the MM2IM
Mapper to support partitioning/processing of the data in a tiled manner, since the
rowid can be initialised to the starting row of the tile instead of the starting row of
the output data. Overall, the MM2IM Mapper generates the compute and output
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mappings only once per row, and each map is broadcast to all the PMs, thus saving
hardware resources and additional computational overhead.

7.4 Evaluation

7.4.1 Experimental setup

To design, validate, and evaluate our MM2IM accelerator, we utilised the SECDA-
TFLite toolkit to quickly design and integrate its architecture following the SECDA
methodology. For the experiment, we opted to use the PYNQ-Z1 board, a suitable
resource-constrained edge device with an FPGA, to map our accelerator All reported
runs in this section have a standard deviation of less than 0.5%. For more details on
the experimental hardware setup, refer back to Section 1.1.2.

To further elaborate on the implementation, we used SECDA-TFLite to develop a cus-
tom MM2IM delegate for TFLite; this custom delegate first marks any TCONV layers
within the target TFLite model for offloading to our accelerator. Note that we fine-
tuned our accelerator design specifically for TFLite’s signed INT8 quantisation scheme.
During inference, our MM2IM delegate would process the marked layers, offloading all
TCONV-related metadata and pointers to the MM2IM driver code. Then, the host
driver orchestrates the tiling strategy for accelerating TCONV as described in Algo-
rithm 6, offloading the relevant input and weight data as required by the accelerator to
calculate the output feature maps for the layer. As the accelerator finishes calculating
each output feature map, the driver code generates the store opcode, which makes
the accelerator send back the output data, which the driver then stores in the TFLite
allocated memory space.

7.4.2 Synthetic benchmarks

First, we evaluated the performance of our MM2IM accelerator across varying sets of
transposed convolution problems. Using the benchmarking suite available within
SECDA-TFLite, we were able to generate TFLite models with a single-layer of
TCONV, which we used to benchmark the MM2IM’s performance across 261 dif-
ferent transposed convolution configurations.

We permuted the TCONV parameter with the following values: (i) Oc = [16, 32, 64];
(ii) Ks = [3, 5, 7]; (iii) Ih = [7, 9, 11]; (iv) Ic = [32, 64, 128, 256]; (v) S = [1, 2]. We
discussed these parameters in Section 2.4.3.
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Figure 7.4 shows the normalised speedup against dual-thread CPU execution (with
NEON-vector instructions enabled) of the same problems within the PYNQ-Z1 board.
We group similar problems for ease of visualisation of the results. The key take-
aways from these experiments are the following: (i) On average, MM2IM achieves a
84× speedup against the dual-thread CPU; (ii) The accelerator’s performance scales
with Ic, Ih and Ks; (iii) Higher stride values result in lower speedup as expected due
to less cropped outputs.

To highlight the impact of cropped outputs on the speedup, we generated Figure 7.5,
which highlights the % of cropped outputs or the ‘drop rate’, for the various TCONV
problems benchmarked within Figure 7.4. The drop rate is calculated as the ratio of
cropped outputs to the total number of outputs. Looking at Figure 7.5, we can see that
increasing Ks results in higher drop rates, while higher Ih and S result in lower drop
rates. Comparing the drop rate to the speedup, we can conclude: (i) Increased kernel
size results in higher drop rates and greater speedup; (ii) Increased stride results in
lower drop rates and speedup, as expected; (iii) Decreased drop rate with increased Ih

does not hamper the speedup. We theorise that this is due to the increased utilisation
of the processing modules, as more computation is required for the larger input height
(and width).

Additionally, we compared the performance improvement of MM2IM against other
resource-constrained TCONV accelerators. The accelerator designs proposed by Liu et
al. [Liu+18] and Zhang et al. [Zha+17] serve as good points of comparison, as they tar-
get similar resources-constrained devices. We compare the overall GOPs/DSP reported
in both works (across synthetic workloads) to our performance. Overall, MM2IM out-
performs the accelerators proposed by Liu et al. and Zhang et al. by 1.2× and 3.4× in
GOPs/DSP, respectively.

7.4.3 End-to-end evaluation

To better understand the performance of our MM2IM accelerator, we evaluated the
DCGAN model [RMC16] with end-to-end TFLite inference. We accelerate the TCONV
layers and the post-layer quantisation using our MM2IM design. The rest of the layers
are executed on the board’s CPU. We achieve a latency improvement of 1.7× and an
energy reduction of 1.4× . Note that since the DCGAN model contains different types
of layers, the potential end-to-end performance improvement with our accelerator is
limited to the TCONV layers within the model. For TCONV-only layers, we achieve
a latency improvement of 2.3×.
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7.4.4 Discussion

As mentioned in Section 7.2.3, we used our performance model to estimate and guide
the design choices of our MM2IM accelerator. To validate our performance model, we
compare its expected performance to our accelerator’s actual performance. On average,
the model estimates the actual performance within 10% of our MM2IM accelerator.
More importantly, applying the TCONV decoder optimisation to our performance
model predicts the expected performance improvement within 1% deviation of the ac-
tual performance improvement that the optimisation provides. This demonstrates the
utility of our performance model in guiding design choices through estimated perfor-
mance improvements per proposed optimisations.

7.5 Summary

In this chapter, we proposed MM2IM, a novel accelerator architecture for accelerating
TCONV operations. Our efficient hardware-software co-designed solution solves three
key challenges: (i) the overlapping sum mapping problem; (ii) ineffectual computation
and cropped output mapping; and (iii) the need for efficient dataflow strategies for
resource-constrained edge devices.

We implemented our proposed hardware design on an edge FPGA using SECDA-
TFLite. We evaluated the performance across a large variety of configurations for
TCONV problems, achieving an average speedup of 84× against a dual-thread CPU.
Furthermore, we also compared MM2IM against other resource-constrained TCONV
accelerators and achieved 2.3× higher GOPs/DSP. Finally, we evaluated a full model
(DCGAN) and achieved a 1.7× speedup and 1.4× energy reduction compared with the
CPU.



136

8 | Automatic Host Code Generation
for Specialised Accelerators

The third challenge presented in Section 1.2 is the need for efficient host-accelerator
communication. Hence, our final objective is to develop a solution to enable efficient
host-accelerator communication. In this chapter, we present AXI4MLIR, a novel code
generation tool that automatically generates host-accelerator communication code for
custom hardware accelerators. This work was conducted in close collaboration with
colleagues at Northeastern University, Boston, USA; and the Pacific Northwest Na-
tional Laboratory, USA. For completeness, we provide a detailed look at the entirety
of the work conducted, not just the parts that were directly contributed by myself.
The following sections are attributed as my main contributions to the work:

• Section 8.2.1, the development of the AXI DMA Runtime Library for AXI4MLIR.

• Section 8.2.2, the defining architectural features of the supported accelerators
within AXI4MLIR and integration with existing ARM platforms.

• In Section 8.3, the experiments were performed in joint efforts, with my focus on
developing the hardware/software infrastructure and running the experiments;
this included developing the baseline experiments, designing custom accelerators
for the matrix multiplication experiments (Section 8.3.2 and Section 8.3.3) and
convolutional experiments (Section 8.3.4), whereas my colleagues focused on the
analysis and discussion of the results within these sections.

The chapter is structured as follows: Section 8.1 introduces and motivates the need for
AXI4MLIR. Section 8.2 presents AXI4MLIR in detail, highlighting the key features
and contributions of the tool. Section 8.3 highlights the experiments we conducted to
evaluate the AXI4MLIR tool. Finally, Section 8.4 summarises the chapter.
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8.1 Introduction

We can define key operations in DNNs as tensor algebra operations. These operations
are also widely used in scientific computing and data analytics [AK23; Jum+21; RF18].
Hence, the work presented in this chapter can be applied to a wide range of applications.

Tensor operations tend to be computationally intensive and require high memory band-
width, making them suitable for specialised hardware implementations. Automated
tools have been proposed [Kwo+20; Xu+20; Ye+20; Zha+20a] to help explore new
classes of custom domain-specific accelerators targeting tensor computations, and are
currently the best path available to obtain performance gains in scientific workloads
and machine learning applications.

However, designing and fully exploiting custom hardware accelerators for tensor op-
erations is a challenging task [Gib+25]. When co-designing these devices, we need to
generate efficient architectures, and we must optimise the communication between the
host CPU and the accelerator. In particular, the host-accelerator interaction involves
several aspects, including data transfers, synchronisation, and the accelerator’s control
flow. These aspects depend on the characteristics of the host CPU microarchitecture,
the host-accelerator interface, the accelerator design, and the application code. Man-
ually rewriting the host driver code for each accelerator and application scenario can
be very tedious and error-prone. Furthermore, most of the prior work proposing new
accelerators [Ago+20; Che+19; Mor+19; Nga+20; Ska+18] only considers a simple
offload model or assumes that the required data is already placed in the accelerator’s
internal buffers, falling short in providing insights into how host-to-accelerator transfers
should be performed or generated. Additionally, complex accelerators, exemplified by
Google’s TPUs and Nvidia’s GPUs, benefit from large teams that can collaboratively
engineer dedicated compilers to address some of these issues. However, smaller devel-
opment teams may lack expertise or available time resources to invest in compilers.
Consequently, custom accelerator designers typically manually implement driver code
and instruction streams to validate and deploy their designs for a subset of synthetic
workloads.

We argue that all major features of a system-on-chip (SoC) must be considered to imple-
ment or generate efficient host-to-accelerator communication. Figure 8.1, a high-level
version of the system model presented in Section 1.1.2, highlights a typical system and
the core attributes that should be considered when generating efficient host-accelerator
communication code. This includes the AXI [Deva] interconnection between the CPU
and a custom accelerator, which is a common choice in many designs [Liu+18]. The
host-code implementation should exploit CPU, interconnect, and accelerator features
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Figure 8.1: Typical host-accelerator system design, highlighting (blue colour) relevant
parameters that should be considered for efficient generation of host-accelerator com-
munication code.

(see Figure 8.1) to maximise accelerator performance.

To effectively consider each of the key system features described in Figure 8.1 while also
delivering efficient and automated CPU-accelerator driver code generation, we propose
AXI4MLIR, an extension to the MLIR compiler framework [Lat+21] that enables effi-
cient and automated CPU-accelerator driver code generation for accelerators targeting
linear algebra applications. AXI4MLIR takes a high-level application description in
the MLIR’s linear algebra (linalg) abstraction [Dev20] as input and introduces cus-
tom MLIR attributes to describe the target accelerator capabilities. These attributes
provide accelerator-specific information to custom transformation passes that can ef-
fectively specialise and generate accelerator-aware host driver code. Our extensions
facilitate hardware-software co-design by allowing developers to automatically gener-
ate driver code with varying configurations, more easily explore their design space,
and use the designed accelerator in applications that can be compiled with the MLIR
framework. While leveraging the new attributes of AXI4MLIR, the compiler entirely
automates our user-directed host code generation. This provides a significant advan-
tage in terms of productivity and maintainability.

The contributions of this chapter are as follows:

• We present AXI4MLIR, an extension to the MLIR compiler framework that en-
ables the generation of efficient host code for custom accelerators targeting tensor
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algebra operations.

• New MLIR attributes that provide a standardised and extensible approach to
represent accelerators that can implement a range of linear algebra algorithms
supported by the MLIR linalg abstraction.

• The ability to describe and explore accelerator-specific tiling and dataflow strate-
gies for the target linear algebra operation, which can improve computation effi-
ciency within the accelerator and reduce data movement overheads between the
accelerator and CPU.

• An analysis of our compiler optimisations on a suite of benchmarks representing
key linear algebra applications, demonstrating the effectiveness of our approach
in achieving significant performance gains (up to 1.65× speedup and 56% fewer
cache references) when compared to optimised manual driver code implementa-
tions.

8.2 AXI4MLIR

To support efficient host code generation for AXI-based custom accelerators, we ex-
tended the MLIR compiler framework with the added capabilities presented in Fig-
ure 8.2. AXI4MLIR can be used as part of the design loop while following the SECDA
methodology, however for the sake of clarity and since our focus in this chapter is on
the automated host code generation aspect, we assume that the custom accelerator has
already been designed and validated. After the custom accelerator is designed and the
host CPU system is selected, the user creates a configuration file with the host CPU
system details (e.g., number and size of the caches) and a high-level description of the
accelerator capabilities (i.e., supported operations and dimensions), the available op-
codes (simple instructions), and possible opcode flows 1 (sequence of opcodes). This
information is parsed 2 by the compiler and used to find 3 suitable linalg.generic
operations with the desired operation traits (algorithm implemented, previously shown
in Figure 2.2a-L1 to L9), that can be executed on the accelerator. These operations
will require host-accelerator driver code generation. Subsequently, with user-provided
information on the total size of the CPU caches, the compiler transforms the code to
efficiently exploit the CPU memory hierarchy and the accelerator size 4 , performing
the appropriate set of tiling transformations to leverage temporal locality in the CPU
caches and to map the problem on the accelerator. In the final step, the compiler gen-
erates the runtime calls 5 that leverage the accelerator features based on user-directed
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Figure 8.2: AXI4MLIR Compiler Flow. The numbered elements are the contributions
of this work.

dataflow description (e.g., avoiding redundant host-accelerator data transfers when the
algorithm and accelerator functionality permits).

The following sections discuss the class of supported accelerators and the key features
of our AXI4MLIR DMA library. We provide details on how to describe new accelera-
tors within AXI4MLIR, introduce linalg.generic trait extensions, describe our new
MLIR dialect that provides support for runtime call replacement of opcodes and data
transfers, and finally present some key optimisations that can be performed (depending
on the available features of the host system and the custom accelerator).

8.2.1 The Custom AXI DMA Library

The AXI4MLIR DMA library 6 (Figure 8.2) exposes low-level DMA calls working
at a privileged level to enable data movement between the main memory and the
accelerator.

We designed this library to be lightweight (55 bytes in size for our target ARM SoC)
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so that it can be deployed on both resource-constrained and non-constrained systems;
bare-metal systems can also execute it. During the compilation process, the AXI
runtime issues calls to initialise the DMA engine(s) before entering the workload’s
computation kernel. First, a library call initialises the DMA engine, mapping memory
for the input and output buffers, which act as temporary staging buffers between the
CPU and the accelerator.

After DMA initialisation, the accelerator is accessible via AXI-based data transfers.
Any data that needs to be transferred to the accelerator during workload execution is
first copied to a DMA input buffer. This staging copy acts as a packing optimisation
(similar to [Sal+23]), contributing to an increased cache-hit ratio during communica-
tion. Then, the AXI “send” function call requests the DMA engine to start the data
transfer and waits for it to finish. Note that the data sent to the accelerator can be
either accelerator instructions or raw input data that must be processed. Similarly,
AXI4MLIR generates ‘recv’ function calls to wait for computation completion and to
obtain output data from the DMA output buffer.

In Section 8.2.3, Figure 8.7 presents the lowering of different high-level operations into
our DMA library calls. Function copy_to_dma_region(...) implements data move-
ment from a memref to the DMA-accessible memory region intended for transmission
to the accelerator. The offset argument allows for efficient batching of different data
transfers after computing the total length and executing a single ‘send’ operation. Ap-
propriate offset values prevent overwriting existing data in the DMA region. Function
dma_start_send(...) instructs the DMA engine to transmit a size of X bytes to
the connected accelerator, commencing from a specified offset within the DMA space
allocated. Function dma_wait_send_completion(...) instructs the CPU to wait for
the DMA’s signal informing the transaction’s completion. When receiving data from
the accelerator, the CPU waits for the data to be placed in the DMA-accessible memory
to later copy it into a memref.

8.2.2 Supported Accelerators

In matrix multiplication and similar algorithms, the term stationary refers to a slice
of data that can be reused across many iterations of an algorithm’s computation. A
stationary strategy attempts to maximise data reuse and minimise data movement,
which can significantly benefit accelerators that require efficient memory accesses. We
want to enable the programmer to easily control accelerators that support stationary
flows.

Next, we discuss the types of accelerators that AXI4MLIR can support. Then, we
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propose a standardised approach to concisely define the class of supported accelerators
in a configuration file.

Finally, we show how the AXI4MLIR parser can take user-defined configurations, ex-
tract essential attributes of the target accelerator, and populate a trait specification to
guide our MLIR compiler transformations.

Accelerator Designs

The AXI4MLIR compiler transformations support linear algebra kernels implemented
as accelerators using the AXI interconnect. In addition, the AXI-S data transfers
within AXI4MLIR facilitate support for accelerators that use a micro-ISA (Instruction
Set Architecture) with opcodes, which consist of instructions that the host CPU sends
to the accelerator. Generally, the following three actions are used to categorise the
actions within an instruction: send, compute, and receive. Issuing a combination of
these three actions can complete any accelerator’s instructions that require external
communication (e.g., data transfers, or activation/reset/configuration of the accelera-
tor compute modules). In addition, each action can have additional meta-data (e.g.,
opcode literal, data, length, dimensions, and indexes), which are used to guide compiler
transformations during accelerator host code generation. Further, specific traits of the
accelerator, such as internal buffer space (or accelerator tile sizes) and data types, are
supported and must be defined within the accelerator configuration file.

Accelerator Configuration File

1 {"cpu" = { "cache -levels ": [32K ,512K],
2 "cache -types": [data ,shared] }
3 " accelerators " = [
4 { "name": ..., " version ": x.x, " description ": ...,
5 " dma_config " : {...} , "kernel": " linalg.matmul",
6 " accel_size ": [4,4,4], " data_type ": int32 ,
7 "dims": ["m", "n", "k"],
8 "data": { "A": [m,k], "B": [k,n], "C": [m,n]},
9 " opcode_map " : "<opcode_map string - see S8 .3.4 >",

10 " opcode_flow_map " : { " flowID01 " :
11 "<opcode_flow string - see S8 .3.4 >", ...} ,
12 " selected_flow " : " flowID01 " }]}

Figure 8.3: Accelerator and CPU configuration file.

Once an AXI-based accelerator is fully designed, the accelerator developer can quickly
integrate it with our AXI4MLIR compiler transformations by providing Accelerator and
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Host information 1 (Figure 8.2) through a configuration file for the new accelerator
and the target host system. Figure 8.3 shows a sample configuration file defined in
the standard JSON format. The developer must specify the accelerator’s architectural
features, such as supported tile sizes, data type, and input and output data with
related dimensions. Additionally, the developer should describe any micro-ISA that
the accelerator can execute. The developer should define ‘opcode IDs’, captured by the
‘opcode map string’, which are comprised of actions to describe the memory operations
and related data transfers. Finally, the developer should define the possible “opcode
flow IDs” and select the desired flow for the particular operation. The configuration file
does not capture the internal behaviour of the accelerator, which has been the focus
of other works [Che+19; Xu+20]; instead, we seek to optimise the communication
with the accelerator. Thus, the configuration file contains information about the I/O
interface for sending data and instructions to the accelerator. Similar to the accelerator
information, the CPU information, shown in Figure 8.3-L1 to L2, needs to contain basic
architectural details such as the number and size of caches.

Configuration Parsing

The parser implemented in 2 (Figure 8.2) is responsible for providing the information
from the configuration file to the MLIR IR and the AXI4MLIR transformation passes.
To this end, the kernel and cache information, paired with a simple heuristic that
identifies the dimensions of the target MLIR operation, are used to schedule tiling
transformations (Figure 8.2 - 4 ) that leverage the CPU memory hierarchy sizes and
increase temporal locality of the memory accesses.

Additionally, the parser validates the opcode_map and the user selected opcode_flow,
which are then translated into new MLIR attributes to the target linalg.generic
operation trait. Their syntax and functionality are described in Section 8.2.3.

Supported Systems

Our work is focused on SoCs with accelerators connected to ARM CPUs via an AXI-S
interconnect. AXI4MLIR seamlessly integrates with a diverse set of Xilinx platforms,
although we also anticipate similar applicability to other FPGA-SoC devices. Chang-
ing the cross-compiler would allow support for other processors. Adapting our DMA
library implementation to other standards would be required to support other types
of interconnects. AXI4MLIR currently supports AXI-Stream accelerators, which do
not communicate via direct memory requests. Thus, AXI4MLIR does not require sup-
port for host-accelerator coherence protocols since the host manages the DMA engine
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transfers.

8.2.3 MLIR Extensions and Optimisations

To implement match and annotate operations for runtime replacement 3 (Figure 8.2),
and to offload the computation onto the accelerator, we implemented passes to identify
the target algorithms supported by the accelerator and extended the linalg.generic
operation trait with additional information, as shown in Figure 8.4a. In particular, we
introduced two new types of attributes to MLIR, opcode_map and opcode_flow, which
follow the syntax described in Figure 8.5 and Figure 8.6, respectively. We elaborate
more on each attribute in the operation trait below.

Extensions to linalg.generic Traits

- dma_init_config: defines the parameter values used to configure a DMA engine
associated with a specific accelerator. If multiple or different accelerators are present,
they would have different values in this field. Figure 8.4a-L2 to L4 shows the available
parameters. The code generated for the DMA initialisation is executed by the CPU
only once per application.

- init_opcodes: defines a flow of opcodes that should be sent to initialise or reset the
accelerator for a new kernel execution. During application runtime, these opcodes are
sent N times, where N is the number of kernels in an application that can be mapped
onto the custom accelerator. In Figure 8.4a-L7, we define that the reset opcode must
be included to support the described accelerator. The opcode’s functionality is derived
from the opcode_map parameter below.

- accel_dim: defines the size of the accelerator for each dimension of the implemented
algorithm. Figure 8.4a-L9 shows an example, specifying that the accelerator supports
a tiled MatMul4×4×4 version of the implemented algorithm.

- permutation_map: defines the order in which nested loops execute. In Figure 8.4a-
L12, we switch the order of the two innermost loops, potentially enabling the data
structure that uses [m,k] indices to be stationary, as the other data structures are
streamed in/out of the accelerator. In our MatMul example (Figure 2.2b presented in
Section 2.2.3), this enables an A stationary dataflow (Figure 8.4b).

- opcode_map: describes accelerator opcodes as key-value pairs. Following the syntax
scheme shown in Figure 8.5, the key or opcode entry, is an identifier that maps to a list
of actions, or opcode list, which represents sequential memory operations that have to
be performed to drive the accelerator.
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1 # matmul_accel_trait = {
2 dma_init_config = { id = 0x0,
3 inputAddress = 0x42, inputBufferSize = 0 xFF00,
4 outputAddress = 0 xFF42, outputBufferSize = 0xFF00 },
5

6 // Opcodes sent once. Tokens defined in opcode_map.
7 init_opcodes = init_opcodes < ( reset) >,
8

9 accel_dim = map <(m, n, k) -> (4, 4, 4)>, // Tiling
10

11 // Permutation and who can be stationary.
12 permutation_map = affine_map <(m, n, k) -> (m, k, n)>,
13

14 opcode_map = opcode_map < // Valid Opcodes
15 sA = [ send_literal (0 x22), send (0)],
16 sB = [ send_literal (0 x23), send (1)],
17 cC = [ send_literal (0 xF0)],
18 rC = [ send_literal (0 x24), recv (2)],
19 sBcCrC = [ send_literal (0 x25), send (1), recv (2)],
20 reset = [ send_literal (0 xFF)] >,
21

22 // Flow to implement. Tokens defined in opcode_map.
23 opcode_flow = opcode_flow < (sA ( sBcCrC )) > // As
24 // Example of other < ((sA sB cC) rC) > // Cs
25 // valid flows < (sB sA cC rC) > // Ns
26 }

(a) New Attributes for Accelerator Description.

1 func.func @matmul_call (...) {
2 // Declare constants (loop bounds and literals ): %cX, ...
3 accel.dma_init ( %c0,%c66,%c65280,%c65346,%c65280 ) : ...
4 accel.sendLiteral ( %c0xFF, %c0) : i32,i32 ->i32 // reset
5 // Tiling by 4,4,4
6 scf.for %m = %c0 to %c60 step %c4 { // first loop
7 scf.for %k = %c0 to %c80 step %c4 { // second loop
8 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
9 %offset0 = accel.sendLiteral ( %c0x22,%c0 ):i32,i32 ->i32

10 accel.send (%sA, %offset0 ) : !mr4x4_0, i32 -> i32
11 scf.for %n = %c0 to %c72 step %c4 { // innermost
12 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] :
13 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] :
14 %offset1 = accel.sendLiteral ( %0x25,%c0 ): ...
15 %offset2 = accel.send (%sB, %offset1 ) :
16 !mr4x4_0, i32 -> i32
17 accel.recv {mode =" accumulate "}( %sC, %c0) :
18 !mr4x4_0, i32 -> i32
19 } } } } } }
20 return }

(b) IR to drive the MatMul accelerator with an A-stationary flow.

Figure 8.4: Information added to the linalg.generic traits to capture accelerator be-
haviour in MLIR and IR with accel operations.
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1 opcode_dict ::=
2 `opcode_map ` `<` opcode_entry (`,` opcode_entry )* `>`
3 opcode_entry ::= ( bare_id | string_literal ) `=` opcode_list
4 opcode_list ::= `[` opcode_expr (`,` opcode_expr )* `]`
5 opcode_expr ::= `send ` `(` bare_id `)`
6 | `send_literal ` `(` integer_literal `)`
7 | `send_dim ` `(` bare_id `)`
8 | `send_idx ` `(` bare_id `)`
9 | `recv ` `(` bare_id `)`

Figure 8.5: Opcode Map Syntax. A dictionary for accelerator opcodes and actions.

1 opcode_flow_entry ::= `opcode_flow ` `<` flow_expr >
2 flow_expr ::= `(` flow_expr `)` | bare_id (` ` bare_id )*

Figure 8.6: Opcode Flow Syntax. The sequence of opcodes to implement a specific
dataflow of host-accelerator communication.

Each action, or opcode expr (send, send_literal, send_dim, send_idx, recv), imple-
ments different types of copies to/from the DMA memory-mapped region. The send
and recv actions take an input. The input is a number that is used to represent one of
the arguments to the linalg.generic operation; e.g., 0, 1, or 2 would map to A, B, or
C, respectively in the MatMul example (Figure 2.2a-L12-13). During code generation,
this information is used to copy the needed tile to the memory-mapped region. For
example, Figure 8.4a-L15 shows an opcode with identifier “sA” that issues copies to
the accelerator for the literal value 0x22 and then for the data associated with the
tile of argument 0. Furthermore, send_dim and send_idx can be used to send tile
dimensions or tile indices, which could be used to drive more complex accelerators.
Subsequent text will refer to an opcode entry, such as “sA”, simply as opcode.

- opcode_flow: represents valid opcode/data transfer flows and respects the syntax
scheme shown in Figure 8.6. Figure 8.4a-L23 shows an example, which defines an input
A stationary (associated with argument 0) valid flow implemented with two opcodes,
using the identifiers defined in the opcode_map. Additional valid examples for output
C stationary and nothing stationary flows are shown in lines 24 and 25 of Figure 8.4a.
The information in opcode_flow is parsed, and the set of parentheses is understood as
a proxy to specify multiple scopes for sequential or nested for loops in the algorithm.
Following this flow, logic related to “sA” would be transmitted inside of the second loop
(Figure 8.4b-L8 to L10), and logic related to “sBcCrC” would appear in the innermost
loop (Figure 8.4b-L12 to L18).

Suppose the user decides to forego the opportunity to specify input A as stationary,
then the opcode flow could become “(sA sB cC rC)”, and all communication driver
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Figure 8.7: Semantics and lowering of accel dialect operations.

logic would be generated in the innermost loop.

The accel Dialect

Before generating function calls for runtime replacement to the DMA runtime library
(described in Section 8.2.1), we perform host code transformations 5 (Figure 8.2) by
lowering the linalg.generic operation, with the proposed trait, to standard MLIR
dialects (scf, arith, memref) and a new dialect that we call accel. The operations
in the accel dialect abstract away host-accelerator transactions, such as initialisation,
memory transfers, and synchronisation.

Figure 8.7 presents the core accel operations and their semantics, providing examples
of how these operations map onto our custom AXI DMA library calls. Additionally,
Figure 8.4b shows how the accel operations are used in our MatMul example.

Note that it is easier to perform analysis and transformations of operations when
they are expressed in our accel dialect, as opposed to using a lower-level abstrac-
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tion. With lower-level abstractions such as llvm, function calls and additional logic
have already been exposed: additional instructions must be present in the IR to imple-
ment buffer slicing, size/offset calculations, and function calls to copy data to/from the
DMA regions. Performing analysis and transformations in the llvm abstraction is more
challenging, as traversal of control flow blocks and LLVM instructions are necessary.
Instead, operations in the intermediate accel dialect encode the relevant information,
and are easily relocated during transformation passes, respecting dependencies without
requiring complex compiler analysis. This approach facilitates implementing commu-
nication flows that consider one of the data structures to be stationary by simply
hoisting the accel operations up to the right loop nest level, while considering the
flow patterns. Finally, the accel dialect provides an intermediate step before runtime
call replacement. In AXI4MLIR we target our AXI DMA runtime library described
in Section 8.2.1, but further extensions could implement the transformation of accel
operations into other runtime libraries such as OpenCL [SGS10] or SYCL [Rey+20],
which are commonly used to interface with SoC FPGA accelerators.

8.3 Experiments and Results

To evaluate AXI4MLIR, we continue to use the PYNQ-Z1 [Dig] board with the Zynq-
7000 SoC. For more details on the experimental hardware setup, refer back to Sec-
tion 1.1.2. We also use a library of tile-based accelerators developed using SECDA-
TFLite implemented with the AXI-S interface and opcodes with a micro-ISA. For
workloads, we target a suite of kernels covering a range of dimensions, as well as an
end-to-end machine learning application.

We leverage hand-written baselines, which we discuss in Section 8.3.1. Section 8.3.2
evaluates accelerators implementing MatMul, comparing inference performance against
a hand-written baseline, identifying potential bottlenecks, and showcasing the benefits
of our optimised dataflows. Section 8.3.3 highlights the value of AXI4MLIR by demon-
strating how to handle accelerators with configurable parameters such as tile sizes and
dataflows. We showcase how to use AXI4MLIR with a convolution-based accelerator
in Section 8.3.4. Finally, Section 8.3.5 shows how AXI4MLIR can work in the context
of a complete application, evaluating the TinyBERT model [Jia+20].

8.3.1 Hand-written Baselines

The following experiments employ hand-written optimised driver code developed and
tested using the SECDA-TFLite following the SECDA methodology to establish per-
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Table 8.1: Description of the MatMul accelerators used in the experiments. Synthesised
with Xilinx Vivado at 200MHz.

Type Possible Reuse Opcode(s) Configurations
v1size Nothing sAsBcCrC (Size, OPs/Cycle)
v2size Inputs sA, sB, cCrC (4, 10)
v3size Ins/Out sA, sB, cC, rC (8, 60)
v4size Ins/Out (flex size) sA, sB, cC, rC (16, 112)

formance baselines. With host-driver code written in C++, these manual baselines will
be labelled as cpp MANUAL. All baselines are implemented with various tiling strate-
gies, with no additional data transfer overheads and with the fewest number of data
transfer calls for the selected dataflow.

8.3.2 Matrix-Multiplication Experiments

The tile-based accelerators used here resemble vector MAC engines [Alb+16; Che+14b;
Zha+15; Zha+16a] implementing MatMul algorithms. They vary in input/output
buffer size and supported dataflow. From the CPU-host perspective, some of them
can support varying degrees of data reuse when the appropriate opcode stream drives
the accelerator. Table 8.1 presents a short summary of their functionality, where size
stands for the supported tile size of the accelerator. For example, v14 is a MatMul4x4x4

accelerator that does not support data reuse and only supports tM, tN, tK == 4, 4, 4
tiles. For v14, AXI4MLIR will tile the algorithm’s loops in the host code, taking into
account the accelerator size of 4 and all the data movement will happen in the innermost
loop - ‘opcode_flow <(sA sB cCrC)>’. For v28, AXI4MLIR will tile the computation
by a factor of 8 and generate code to maximise the reuse of one of the inputs. In v2,
a stationary (As) is implemented with opcode_flow <(sA (sB cCrC))>.

Accelerators v3 and v4 can also reuse their output data structures. Accelerator v4,
marked with flex size, supports computations of non-square tiles, i.e., v416 can process
a MatMul of tM, tN, tK = 32, 16, 64, as long as tM, tN, tK are divisible by 16 and fit
in the accelerator’s memory.

All accelerators were implemented using HLS pipelining and unrolling to maximise the
number of internal processing elements instantiated and their arithmetic throughput.
The last column of Table 8.1 reports throughput (OPs/cycle) for each accelerator,
highlighting that many arithmetic operations are executed in parallel at each cycle.
Different types of accelerators with the same size have the same throughput, and
accelerators with bigger sizes provide higher throughput. All bar graphs presented in
this section represent the average of 5 independent runs with the same configuration.
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Accelerator Relevance

In order to evaluate the performance of the accelerators defined in Table 8.1, we con-
ducted experiments to compare the runtime of the CPU execution (mlir CPU ) against
the manual C++ implementation (referred to as cpp for short) of the driver code using
the accelerators. The task clock was used as a metric to measure the execution time
of the benchmarks. We present the results of the experiments in Figure 8.8, which
plots the task clock on the y-axis (smaller is better) and only includes the “Nothing
Stationary flow”, which means that the data transfers happen in the innermost loop.

Looking at Figure 8.8, we can see that the accelerator offload only becomes relevant
(i.e., executes faster than the CPU) for problems with dims ≥ 64, where dims = M =
N = K. For problems with smaller dimensions, CPU execution will be faster than
the accelerator. In addition, the results in Figure 8.8 suggest that accelerators only
become relevant if accel size = tM = tN = tK ≥ 8. For smaller accelerator sizes, the
CPU execution is faster than the accelerator.

These observations suggest that the performance benefits of using accelerators are
limited to a range of problem sizes and accelerator sizes. Therefore, it is essential
to carefully choose the appropriate accelerator configuration for a given problem to
achieve the best performance. Consequently, for the next experiments we will limit our
focus to problems with dims ≥ 64 and accelerators with accel size ≥ 8.

AXI4MLIR Generated vs. Manual Implementation

AXI4MLIR provides several benefits. First, our passes automatically tile data mapped
to the CPU memory hierarchy, leveraging spatial and temporal locality. The second
benefit is the ability to automatically generate specific flows, such as the Nothing
Stationary (Ns) flow, which can be tedious and error-prone when done manually. Ad-
ditionally, AXI4MLIR provides an efficient path to flow strategies that can potentially
improve performance, such as input A or B stationary (As, Bs) flows. Figure 8.9
presents these results.

First, we compare the differences in execution time between a manual implementation
(see Section 8.3.1) of an Ns flow strategy and an AXI4MLIR generated Ns flow strategy,
represented by the first two bars in each group of bars in Figure 8.9. The remaining bars
in each group of bars show results for automatically generated flow strategies, with As
and Bs for v2 accelerators and As, Bs, and Cs for v3 accelerators. Looking at Figure 8.9,
we see that some flows, especially Cs, provide improvements. To achieve this, the user
simply has to encode the information for Cs (or other flows) during compilation. For
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Figure 8.8: Runtime characterisation CPU vs. Accelerator execution for Matrix Multi-
plication problems. Note how an accelerator only becomes relevant for problems with
dims ≥ 64 and accel size ≥ 8.

example, we can encode Cs using the opcode flow previously presented in Figure 8.4a-
L25 in the operation’s trait.

Next, in Figure 8.9, we focus on the results with the v3 accelerator. Here, we see that
AXI4MLIR generated Cs performs better than the manually generated Ns, although
the other flows are not performing as expected. First, we would expect the perfor-
mance of AXI4MLIR generated Ns to have similar/closer task clock performance than
manual Ns. And second, we would also expect As and Bs flows to always outperform
Ns due to the degree of reuse, as they copy less data and can keep the accelerator
better utilised. Hence, this first implementation has room for improvement and, in the
following experiment, we identified and fixed the bottlenecks by analysing performance
counters and implementing optimisations that specialise memory copies.

Identifying Bottlenecks and Improving AXI4MLIR Codegen

Next, we identify performance bottlenecks in AXI4MLIR-generated copies and improve
upon them to enhance the performance of the workloads when using the custom hard-
ware accelerators. Specifically, the experiment compares the performance of manually
implemented host-accelerator driver code with AXI4MLIR-generated code for Ns, As,
Bs, and Cs flows in terms of branch instructions, cache reference counters, and the task
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Figure 8.9: Runtime results on Matrix Multiplication kernels. Manual implementation
of Ns flow vs. AXI4MLIR generated driver code for different flow strategies, Ns, As, Bs,
Cs. All bar groups follow similar trends. Ns, As, and Bs bottlenecks are analysed
and addressed in the following experiments.

clock. These metrics were obtained using the perf tool [The] to profile the application
and retrieve counters for CPU perf events over 5 runs.

Figure 8.10a shows branch instructions, cache reference counters, and the task clock
for dims == 128, for the v316 accelerator that supports input and output stationary
flows. The trends are similar to other problem and accelerator sizes. Our results are
normalised to the same counters collected on a CPU-only execution of the same problem
size. In each group, we show results for AXI4MLIR automatically generated code for
Ns, As, Bs, and Cs flows and compare them against manual implementations (first
bar of a group) for copying the necessary data through the DMA memory-mapped
region. MLIR applications have to consider MLIR memory references (presented in
Section 2.2.3), but manual implementations use bare C-arrays. To support generality,
MLIR copies between MemRef and the raw array (DMA buffer region) are implemented
with a recursive call, loading and storing one element at a time. This is necessary to
support rank = N MemRefs, where strides in all dimensions differ from 1.

In order to address this issue, we implemented an optimisation for when strides[N −
1] == 1 (i.e., elements in N − 1 dimension are adjacent to each other in memory)
and specialised MemRef copies for some known rank sizes, such as rank == 2. For
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Figure 8.10: Cache, branch, and runtime metrics of different tools and strategies using
v316 accelerator with problem size (dims == 128). Normalised values against CPU
(without accelerator) executions of same problem size.

this scenario, we leverage the spatial locality and implement the copy not with individ-
ual load and store instructions but by calling std::memcpy(src, dst, size). When
compiling this function for our platform, the compiler will inline the assembly, imple-
menting a vectorised copy that improves the performance of the copy operation. The
implications of this optimisation are twofold. First, it reduces the number of branch
references because there is no need for branching to handle non-unitary strides or to



8.3. Experiments and Results 154

(64, 8, v2,  Ns)

(64, 8, v2, As)

(64, 8, v2, Bs)

(64, 8, v3,  Ns)

(64, 8, v3, As)

(64, 8, v3, Bs)

(64, 8, v3, Cs)

(64, 16, v2,  Ns)

(64, 16, v2, As)

(64, 16, v2, Bs)

(64, 16, v3,  Ns)

(64, 16, v3, As)

(64, 16, v3, Bs)

(64, 16, v3, Cs)

(128, 8, v2,  Ns)

(128, 8, v2, As)

(128, 8, v2, Bs)

(128, 8, v3,  Ns)

(128, 8, v3, As)

(128, 8, v3, Bs)

(128, 8, v3, Cs)

(128, 16, v2,  Ns)

(128, 16, v2, As)

(128, 16, v2, Bs)

(128, 16, v3,  Ns)

(128, 16, v3, As)

(128, 16, v3, Bs)

(128, 16, v3, Cs)

(256, 8, v2,  Ns)

(256, 8, v2, As)

(256, 8, v2, Bs)

(256, 8, v3,  Ns)

(256, 8, v3, As)

(256, 8, v3, Bs)

(256, 8, v3, Cs)

(256, 16, v2,  Ns)

(256, 16, v2, As)

(256, 16, v2, Bs)

(256, 16, v3,  Ns)

(256, 16, v3, As)

(256, 16, v3, Bs)

(256, 16, v3, Cs)

di
m

s,
ac

ce
l_

si
ze

,a
cc

el
_v

er
si

on
,s

tr
at

eg
y

10
1

10
2

10
3

task-clock [ms]

cp
p_

M
AN

U
AL

m
lir

_A
XI

4M
LI

R

Fi
gu

re
8.

11
:

Ru
nt

im
e

co
m

pa
ris

on
of

th
e

m
an

ua
li

m
pl

em
en

ta
tio

n
of

dr
iv

er
co

de
an

d
A

X
IM

LI
R

-g
en

er
at

ed
co

de
.

Ea
ch

se
t

of
tw

o
ba

rs
ha

s
a

m
at

ch
in

g
A

cc
el

er
at

or
Ty

pe
,A

cc
el

er
at

or
Si

ze
,a

nd
Fl

ow
St

ra
te

gy
(N

s,
A

s,
Bs

,C
s)

.
A

X
I4

M
LI

R
is

be
tt

er
in

al
lc

as
es

.



8.3. Experiments and Results 155

256_32_512 256_512_32 32_256_512 32_512_256 512_256_32 512_32_256
dims [M_N_K]

0

10

20

30

40

50

60

70
ta

sk
-c

lo
ck

 [m
s]

C
s 128 32 32

As 128 32 32

C
s 32 128 32

C
s 32 128 32

B
s 32 128 32

C
s 128 32 32

As-squareTile Bs-squareTile Cs-squareTile Best

Figure 8.12: MatMul problem permutations (v4 accelerator) for different strategies.
For the “Best” strategies we annotate the chosen flow and tiling values.

iterate over an arbitrary number of dimensions, resulting in better control flow and
branch prediction. Second, the vectorised code reduces the number of cache references
because the data is accessed sequentially in memory.

Therefore, there will only be two cache references to fetch the cache line containing
the requested data, and subsequent loads within the same cache line will not require
additional cache references as they are read from the vector VFP registers [ARM23].
The results for this optimisation are presented in Figure 8.10b.

After incorporating this optimisation, the AXI4MLIR-generated driver code executed
faster on all accelerators than their respective manual implementations. In Figure 8.11,
we compare AXI4MLIR against manual implementations for Ns, As, Bs, and Cs and
found that the compiled generated driver code provided by AXI4MLIR is consistently
faster (1.18× average speedup and 1.65×max speedup), thanks to its ability to leverage
proper tiling for the CPU’s memory hierarchy, resulting in a 10% average and 56% max
reduction in cache references.

8.3.3 Matrix-Multiplication with flexible sizes

Runtime configurable accelerators allow for fine-grained hardware tuning for specific
problems. With AXI4MLIR, we can generate host code to configure and optimise flex-
ible accelerators for the target problem. To demonstrate this capability, we evaluated
multiple permutations of a MatMul problem on the v4 accelerator. The v4 acceler-
ator supports multiple dataflow strategies and adjustable tile sizes for its tM , tN ,
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and tK dimensions. The intuition is that scientific and machine learning workloads
present problem sizes with different values for each dimension, sometimes resulting in
tall/skinny matrices during execution. Tiling the problem in the accelerator with dif-
ferent dimensions for tM , tN , and tK, and selecting the appropriate flow strategy can
be beneficial for the application.

When using AXI4MLIR, a developer is not limited to one configuration of an acceler-
ator. Based on the user’s knowledge of the application, AXI4MLIR can automatically
generate the driver for accelerators with adjustable dimensions. This flexibility allows
for a more thorough design space exploration, enabling the developer to find the best
sizes for tM , tN , tK, and the best flow strategy for each problem instance.

In Figure 8.12, we compare four different heuristics and use them to choose the best
tiling and dataflow configuration for a MatMul problem. We evaluated performance
in terms of execution time. We profile the problem with M ,N , and K dimensions
permuted from the following values: [32, 256, 512]. Hence, the theoretical minimum
number of multiply-accumulate operations required for all permutations is the same.
Here, the As-squareTile, Bs-squareTile, and Cs-squareTile heuristics try to find the best
configuration to reduce the total memory access count given the constraint of tiling
the MatMul with square tiles (i.e., tM = tN = tK = T ), with A, B, and C stationary
dataflow, respectively. The fourth heuristic, Best, chooses between all dataflows and
flexible tiling options, only sharing the choice of the accelerator. In Figure 8.12, we
annotate the ‘Best’ configuration found for each problem.

Square tiling. We observe that as we change the problem permutation, the best flow
between As-squareTile, Bs-squareTile, and Cs-squareTile tiling strategies changes. The
best flow depends on the problem shape, the size, and the available accelerator buffer
space. T = 32 was selected for all square flows because it is the biggest value, so the
tiles fit inside the accelerator’s internal memory.

Flexible tiling. The Best heuristic, selected from non-square strategies, outperforms
square tiling by leveraging flexible tiling sizes. AXI4MLIR can generate code to utilise
larger tile sizes in various dimensions, taking advantage of the v4 accelerator’s unre-
stricted tiling factors and improving the accelerator’s internal memory utilisation.

Configurations. Manually implementing all configurations’ driver code for even a
simple accelerator such as v4 is very time-consuming. AXI4MLIR can quickly generate
the host code for configurable accelerators easily, enabling the developer to specify an
accelerator configuration per problem instance.
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1 accel_dim = map <( B,H,W, iC,oC,fH,fW ) ->
2 (0 ,0,0,256, 1, 3, 3) >, // Tiling
3 opcode_map <
4 sIcO =[ send_literal (70), send (0)], // send 3D input window
5 // and compute
6 sF=[ send_literal (1), send (1)], // send 3D filter
7 rO=[ send_literal (8), recv (2)], // recv 2D output slice
8 rst =[ send_literal (32), send_dim (1 ,3), // set filter size
9 send_literal (16), send_dim (0,1)]> // set iC size

10 opcode_flow <(sF (sIcO) rO)> // filter + output stationary
11 init_opcodes <(rst)>

(a) Opcode Map and Flow for Conv2D accelerator.

1 func.func @conv_call (...) {
2 // With %I: !mrI_1_256_7_7 ; %W: !mrW_64_256_3_3
3 // and %O: !mrO_1_64_5_5
4 // Declare constants (loop bounds and literals ): %cX, ...
5 accel.dma_init ( %c0,%c66,%c65280,%c65346,%c65280 ) : ...
6 accel.sendLiteral (%c32, %c0) : i32,i32 ->i32 // send inst
7 accel.sendDim ( %W,%c3,%c0 ) : !mrW,i32,i32 ->i32 // send %fH
8 accel.sendLiteral (%c16, %c0) : i32,i32 ->i32 // send inst
9 accel.sendDim ( %I,%c1,%c0 ) : !mrI,i32,i32 ->i32 // send %iC

10

11 // Tile dims by ( B,H,W,iC,oC,fH,fW ) -> (-,-,- ,256,1,3,3 )
12 scf.for %b = %c0 to %c1 step %c1 { // B loop
13 scf.for %oc = %c0 to %c64 step %c1 { // OC loop
14 %sW = memref.subview %W[ %oc,0,0,0 ][1 ,256,3,3 ] ...
15 %offset0 = accel.sendLiteral (%c1, %c0) : i32,i32 ->i32
16 %offset1 = accel.send (%sW, %offset0 ) :
17 !mrSubWx256x3x3, i32 -> i32
18 scf.for %oh = %c0 to %c5 step %c1 { // OH loop
19 scf.for %ow = %c0 to %c5 step %c1 { // OW loop
20 %xoffset = ... // index calculation
21 %yoffset = ... // index calculation
22 %sI = memref.subview %I [0 ,0,%xoffset,%yoffset ]
23 [1 ,256,3,3 ] ...
24 %offset2 = accel.sendLiteral (%c70, %c0) : ...
25 %offset3 = accel.send (%sI, %offset2 ) :
26 !mrSubIx256x3x3, i32 -> i32
27 // inner product of sW and sI computed in HW
28 } }
29 %sO = memref.subview %O [0 ,%oc,0,0 ] [1 ,1,5,5 ] ...
30 %offset4 = accel.sendLiteral (%c8, %c0) : ...
31 accel.recv {mode =" accumulate "}( %sO, %c0) :
32 !mrSubO_5x5_0, i32 -> i32
33 } } } } return }

(b) IR to drive the Conv2D accelerator with an output-stationary flow.

Figure 8.13: Information added to the linalg.generic traits to capture convolution ac-
celerator behaviour in MLIR and IR with accel operations.
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8.3.4 Convolution

We show the flexibility of AXI4MLIR by generating driver code for a convolution-based
accelerator executing different problem sizes. This accelerator supports varying input
channel (iC ) and filter (fHW ) sizes, computing one output slice (all elements in one
output channel - oC ) per iteration. Note that multiple instructions have to be sent to
the accelerator to orchestrate the execution of the convolution operations.

This orchestration is achieved by compiling the driver code derived from the MLIR
accel code (Figure 8.13b). The accel code is generated after a transformation
pass takes into account the attributes shown in Figure 8.13a and MLIR’s linalg.
conv_2d_nchw_fchw operations. Note that if the convolution operation has iC, fH,
fW dimensions that are smaller than the dimensions in accel\_dim, no tiling will be
performed across these dimensions. In the convolution example (Figure 8.13), upon
accelerator reset, we use send\_dim(1,3) to send to the accelerator the filter size as
the dimension ‘3’ of data structure ‘1’ (i.e., the filter), and we use send\_dim(0,1)
to send the input channel size as the dimension ‘1’ of the data structure ‘0’ (i.e., the
input).

We evaluated the performance of AXI4MLIR during the execution of all convolution
layers of ResNet18 [Wan+17]. Figure 8.14 presents performance metrics normalised
to the runtime of layer-specific manual C++ driver code. The results observed here
present similar trends to those observed in the MatMul experiments. Only one layer
(56 64 1 128 2 ) presented a 10% slowdown, contrary to previous trends. The slowdown
happened because fHW (1) and iC (64) were too small, and the overhead of dealing
with small MemRefs was not overcome since we could not leverage the strided copy
optimisation presented in Section 8.3.2. Smaller AXI4MLIR speedups are observed ev-
ery time that fHW == 1. That said, AXI4MLIR achieves better runtime performance
on 10 out of 11 ResNet18 layers, with 1.28× and 1.54× average and max speedup,
respectively, thanks to the improved CPU cache performance.

8.3.5 End-To-End Analysis

Finally, we evaluated AXI4MLIR when compiling a natural language processing model
to co-execute on both the CPU and the v416 accelerator. We benchmarked the Tiny-
BERT [Jia+20] model, a compact transformer [Wol+20] model for Masked Language
Modelling and Next Sentence Prediction targeted at mobile and embedded devices. We
translate TinyBERT to MLIR IR using Torch-MLIR [Tor24] and compare the inference
performance of CPU execution (using -O3 during compilation) against co-execution us-
ing the “Ns” offloading approach and the ‘Best’ approach, which employs the heuristics
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Figure 8.14: ResNet18 convolution layers: AXI4MLIR vs. Manual.

presented in Section 8.3.3.

As we can see in Figure 8.15, AXI4MLIR achieves a 3.4× speedup in end-to-end exe-
cution, with an 18.4× speedup in the accelerated MatMul layers that represent 75% of
the original CPU runtime. This experiment showcases how AXI4MLIR can be used to
evaluate and optimise natural language processing models on embedded devices. This
study highlights that developers can easily co-design the accelerators when targeting
full workloads, enabling efficient exploration and utilisation of CPU and accelerator
resources.

8.4 Summary

This chapter presented AXI4MLIR, an MLIR extension to enable automatic code gen-
eration of host driver code for new custom accelerators. We present the new MLIR
attribute that enable a standardised approach to describe the accelerator that supports
tensor linear algebra operations. Within our code generation we are able to replace
standard MLIR linalg operations with custom functions which enable specific tiling and
dataflows, and generate the custom accelerator instructions/opcodes to configure and
control the accelerator. Additionally, our code generation creates calls to our custom
AXI enabled DMA library to perform data transfers between the host and the accel-
erator. We demonstrate the effectiveness of AXI4MLIR through a set of experiments
which used a library of custom accelerators developed using the SECDA methodology
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Figure 8.15: Execution time of the TinyBERT model with batch size == 2. Each
bar represents a compilation strategy. The speedups for end-to-end (e2e) and for
accelerated MatMul layers are shown as annotations.

and SECDA-TFLite toolkit. The experiments show that the generated code is able to
achieve similar, if not better performance, compared to manually written code while
reducing the development time and effort to write the host driver code. Additionally,
the experiments highlight the potential for increased design space exploration of host
driver code, as the code generation can be easily modified to explore different dataflows
and tiling strategies.
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9 | Conclusions

This thesis was motivated by the need for efficient hardware accelerators for DNNs,
given a resource-constrained environment. As we explored the process of designing and
implementing hardware accelerators for DNNs, we identified several key challenges that
need to be addressed in order to facilitate the design and implementation of efficient
hardware accelerators. The challenges presented in Section 1.2, provoked the need
for a guideline, a path to follow, and a way to systematically approach the process of
designing and implementing hardware accelerators for DNNs. Chapter 4 addressed this
need by introducing the SECDA methodology, which provides a systematic approach to
designing and implementing hardware accelerators for DNNs. During the development
of the SECDA methodology, we identified tangible bottlenecks in the design process
which could be solved through tools and frameworks that ease the adoption of the
methodology for the target application framework. This led to the development of the
SECDA-TFLite toolkit and the SECDA-LLM platform presented in Chapter 5 and
Chapter 6 respectively.

Once the process of designing and implementing hardware accelerators was streamlined,
we identified potential interesting workloads for hardware acceleration. Chapter 7
explored the challenges of accelerating GANs, specifically looking at the generative
aspect of GANs, which is essentially the Transposed Convolution operation. Finally,
Chapter 8 presented AXI4MLIR as way to tackle the challenge of developing host driver
code for new custom accelerators through automatic code generation using the MLIR
compiler framework.

This chapter is structured as follows: Section 9.1 summarises the main contributions
of this thesis, Section 9.2 outlines potential future work that can be built upon the
work presented in this thesis, and finally, Section 9.3 reflects on the challenges faced,
the lessons learned and self-critiques on the presented work.
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9.1 Contributions

The main contributions of this thesis can be related to the main challenges identi-
fied in Section 1.2. The following sections summarise the main contributions: first,
reducing the development time of designing new hardware accelerators for DNNs; sec-
ond, design and optimisation for accelerating Transposed Convolution operations in
GANs; and finally, a tool for automated host driver code generation to enable efficient
host-accelerator communication.

9.1.1 Designing Process for FPGA-based DNN Accelerators

The main contribution and core of this thesis is about reducing the development
time of designing new hardware accelerators for DNNs, specifically targeting resource-
constrained edge devices. The SECDA methodology, as presented in Chapter 4, was
developed to simplify the design process and provide a high-level design approach to
enable a fast and iterative design loop. While the SECDA methodology was initially
developed as part of the learning process to design FPGA-based DNN accelerators, it
matured into a design process that can easily be applied to different types of DNN ac-
celerators and potentially other types of accelerators. This maturity in the design pro-
cess was first achieved through the development of the SECDA-TFLite toolkit, which
provided a simple connection between a hardware design environment and a high-
level application framework (TensorFlow Lite). Utilising the SECDA-TFLite toolkit
has enabled exciting research opportunities that have been demonstrated through the
SECDA-TFLite case study in Section 5.4. In fact, it was a significant factor in enabling
new ideas and prototyping designs, as presented in Chapter 7 and Chapter 8. Addition-
ally, as the SECDA methodology had shown promise through SECDA-TFLite, where
adapting the methodology to the LLM domain was a natural progression resulting in
the SECDA-LLM platform as presented in Chapter 6. While the SECDA-LLM plat-
form is still in its early stages, with our short case study in Section 6.3, it has shown
promise in enabling the exploration of FPGA-based accelerator designs and optimisa-
tions for LLMs. As a whole, the focus of this thesis has been on reducing the time-effort
of research and enabling the exploration of novel ideas. Hence, the contributions pre-
sented in this thesis are the initial steps enabling further research and development in
the area of DNN accelerators for resource-constrained edge devices.
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9.1.2 Accelerating Transposed Convolution for GANs

Exploring the efficient execution of GAN models has led to the second contribution
of this thesis, which is the design and optimisation of the MM2IM hardware design
for accelerating Transposed Convolution operations in GANs as described in Chap-
ter 7. The initial exploration of the methods of implementing Transposed Convolution
operations as described in Section 2.4.3 led to the understanding that there are ineffi-
ciencies. From the additional compute and memory requirements for the padded input
data in the Zero-Insert method to the transformation overhead of the TDC method or
the overlapping sum problem of the IOM method, it was clear that while research has
progressed in this area, the focus on optimising for resource-constrained edge devices
was lacking. Focusing on the IOM method, we noted three main requirements for effi-
cient execution on resource-constrained edge devices: efficient processing of overlapping
sums, storing of intermediate results, and handling of cropped outputs. Existing solu-
tions especially neglect the issue of ineffectual computations due to cropped outputs.
Hence, in order to address these requirements, we developed the MM2IM accelerator
architecture. The key components of this architecture include: (i) the use of the output
mapping and the compute mapping as described in Section 7.2.1; (ii) the tiled MM2IM
dataflow as described in Section 7.2.2; and (iii) the on-the-fly MM2IM mapper as de-
scribed in Section 7.3.6. While our study in Chapter 7 provides improved results, as
it is still a work in progress, there are still areas that need further exploration. Most
importantly, a more comprehensive evaluation of the MM2IM accelerator architecture
is required, including a more extensive comparison with other resource-constrained
TCONV accelerators (albeit limited) and an evaluation of a broader range of GAN
models.

9.1.3 Automated Host Driver Code Generation

The automatic code generation of host driver code for AXI-based accelerators, as pre-
sented in Chapter 8, tackles the challenge of enabling efficient host-accelerator com-
munication. With AXI4MLIR, we have developed an extension to the MLIR compiler
framework, which includes new MLIR attributes that enable the representation of ac-
celerators to be defined and used to generate efficient host driver code. One crucial
aspect is that AXI4MLIR enables the description of the CPU and custom accelera-
tor architecture, so our transformations create CPU and accelerator-aware host driver
code, such as tiling and dataflow strategies supported by the accelerator. As a con-
sequence, the AXI4MLIR compilation flow generates code to perform efficient data
transfers and also generates code containing accelerator-specific instructions/opcodes
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that can be used to control the accelerator. To enable this, we have developed the
‘accel’ dialect, which connects the algorithmic implementation of offloading computa-
tions to a new custom accelerator with the low-level AXI DMA library, which enables
the transfer of data between the host CPU and the AXI-based accelerator. Through
our experiments, we have demonstrated that AXI4MLIR can act as: first, the bridge
between the high-level algorithmic description of a DNN and the low-level host driver
code required to offload computations to a custom accelerator; and second, an efficient
way to explore the design space of different dataflow strategies for the target accelera-
tor. AXI4MLIR, combined with the SECDA methodology, can enable the design space
exploration of new classes of custom domain-specific accelerators targeting DNNs and
even tensor computations in general.

9.2 Future Work

Here, we explore the potential future work that can spring forth from the research
presented in this thesis. Also, we discuss the limitations and how they can be addressed
in future work. Some of these ideas are partly in progress, while others are interesting
research directions that can be explored.

9.2.1 The Potential of SECDA

The SECDA methodology, combined with the subsequent tools developed, SECDA-
TFLite and SECDA-LLM, have shown promise in enabling the exploration of FPGA-
based accelerator designs and optimisations for DNN inference on resource-constrained
edge devices. One of the main avenues for improvement is to further reduce the de-
velopment time of designing new hardware accelerators. An exciting and potentially
impactful direction is to explore the use of templated-based design space exploration
tools such as the ones described in Section 3.3.2 with the SECDA methodology. SECDA
would enable the high-level design process, which could be used to generate the archi-
tectural templates for the design space exploration tools. This would enable the explo-
ration of a wider range of fine-grained hardware parameter tuning of the accelerator
designs produced by SECDA and its subsequent tools.

Enabling SECDA for different types of accelerators, such as Processors-in-Memory
(PIM) accelerators or accelerators for Genome Analysis to name a few, would also
be an interesting research direction. This work would entail similar approaches to
SECDA-TFLite and SECDA-LLM but with a focus on the specific requirements of the
target domain. To enable such an endeavour, we are currently working on a library
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of SECDA-based tools that are application-agnostic and could enable the integration
of SECDA with different application frameworks with minimal effort. Similarly, the
existing SECDA tools are still under development. While SECDA-TFLite is more
mature and publicly available, SECDA-LLM is still in its early stages and requires
further development.

Most importantly, the SECDA methodology and tools are designed to enable the explo-
ration of novel ideas in the space of DNN accelerations. The exploration of these ideas
within the context of this thesis has been limited. Hence, future work is dependent
upon the exploration of critical research questions in this field, such as the exploration
of quantisation techniques, the acceleration of different types of DNN models, efficient
execution of sparse DNNs, and heterogeneous and reconfigurable accelerators, to name
a few. Incidentally, one of the complementary works [RJJ24] listed in Section 1.4
focuses on the acceleration of power-of-two (PoT) quantisation techniques on resource-
constrained edge devices. This work was able to utilise the SECDA methodology and
SECDA-TFLite to explore the design space of different PoT quantisation techniques
and propose a new hardware design for accelerating PoT-quantised DNN models.

9.2.2 Accelerating Generative DNN Models

The MM2IM accelerator architecture, as presented in Chapter 7, has shown promise
in accelerating Transposed Convolution operations in GANs. A key area for future
work is a more comprehensive evaluation of the MM2IM accelerator architecture. This
evaluation should include a more fine-grained understanding of the accelerator’s per-
formance and, overall, a broader set of GAN models. Additionally, a study on the
scalability of the MM2IM architecture in terms of hardware resources and performance
would be beneficial. The architecture is inherently scalable due to modular design, but
a more in-depth study is required to understand the limits and potential for scaling the
architecture. This study could enable insights into the design of MM2IM and also sup-
port TCONV operations in edge devices with even more stringent resource constraints
like microcontrollers.

9.2.3 Extensions to AXI4MLIR

Concerning AXI4MLIR, we have formalised the potential extensions to the work within
a short paper [Har+24a] presented in the C4ML Workshop at the International Sympo-
sium on Code Generation and Optimization (CGO) 2024. The three main extensions
include: (i) DMA-based data allocation, i.e., the ability to allocate data directly to the
DMA buffers; (ii) Data coalescing, i.e., the ability to coalesce multiple data transfers
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into a single transfer; and (iii) Software pipelining of data transfers, which enables over-
lapping data transfers with computation. These extensions aim to improve the overall
performance of the generated host driver code by reducing the data transfer overheads
and enabling more efficient data transfers between the host CPU and the accelerator.
Appendix A.1 covers these extensions in more detail. Finally, as stated before, inte-
grating AXI4MLIR with the SECDA methodology could enable wider exploration of
the design space. As such, developing a fully integrated toolchain enabling accelera-
tion of MLIR defined workloads to FPGA-based accelerators would be an interesting
research direction.

9.3 Reflection

To reflect on the work presented in this thesis, we will discuss the challenges faced,
the lessons learned, and provide a self-critique of the work. And to conclude, we will
provide some final thoughts on the thesis and on the PhD journey as a whole.

9.3.1 Challenges Faced

Throughout the thesis, I have faced several challenges that have shaped the direction
of the research and ultimately the contribution presented within this thesis. To sum-
marise, the first and foremost of these challenges was the development time of designing
new hardware accelerators for DNNs. At the beginning of the journey in understanding
how to develop hardware accelerators for DNNs on FPGAs, I was faced with the under-
standing of the complexity and importance of the design process. Realising the need
for an efficient and simple approach to prototype and evaluate new designs and ideas
was the critical point in this field of research where the requirements and workloads
are constantly evolving.

Another challenge faced was essentially out of the control of the researcher, which was
the deprecation of SystemC High Level Synthesis (HLS) in newer versions of the Xilinx
Vitis toolchain. While this has limited the exploration of new HLS-based optimisations,
it has not affected the overall contributions of the thesis. As one could argue, research
should be more resilient to such changes, hence while the tools presented in this thesis
have been tested with Xilinx based FPGAs, nothing prevents the tools from being
adapted to other FPGA vendors.
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9.3.2 Lessons Learned

As the research journey progressed, a key lesson learned but not emphasised in the
thesis was the importance of writing efficient synthesisable code. Many, many hours
were spent debugging and optimising the hardware designs to ensure they were synthe-
sised correctly and efficiently. While this is a common challenge in hardware design,
the core scope of this thesis did not cover the difficulties and complexities of HLS, and
it would be another thesis in itself to cover this topic. Hence, the lesson learned is to
understand the limitations of the HLS tools and to write efficient, synthesisable and
modular code. Additionally, the importance of HLS ‘pragmas’ cannot be understated,
as they are crucial in guiding the HLS tools to generate efficient hardware designs,
while architectural ideals that can be developed and designed with pen and paper to
formalise them into a hardware description is a different challenge.

Another lesson learned was the importance of tooling, automation, and reproducibility
in research. Whether it is a small task, such as loading up and uploading a new design
to the FPGA, or a more time-consuming task, such as running a set of experiments, it
is crucial to have a set of scripts and tools to automate these tasks. This strengthens
the research’s reproducibility, as the methods can be easily replicated using the tools
and scripts developed. A notable example is the development of AXI4MLIR, one of
the later projects in the PhD journey; we set a high standard for automating the
process of evaluating the generated host driver code. This pre-developed automation
enabled us to quickly provide a reproducible environment, which enabled us to pass
the artefact evaluation for the paper submission to the International Symposium on
Code Generation and Optimization (CGO) 2024.

9.3.3 Self-Critique

As discussed earlier in this chapter, the future work section covers potential extensions
to the work presented in this thesis. As such, some aspects of the work have been
limited and could be improved. Firstly, the work presented in this thesis has been
evaluated using a single FPGA platform, the PYNQ-Z1. While the ideas presented
in this thesis are platform-independent, evaluating different FPGA platforms could
have highlighted any platform-specific limitations or advantages of the tools presented
within this thesis.

One avenue of optimisation not explored in this thesis is the potential for multi-layer
hardware acceleration, i.e., the acceleration of multiple heterogeneous layers of a DNN
model within a single accelerator without sending data back to the host processor.
The lack of exploration in this area was due to the self-imposed hardware resource
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constraints within the works presented in this thesis. To explain, a broader explo-
ration of the varying levels of resources ‘constraints’ could explode the possibilities of
hardware acceleration. While it would be interesting to explore this widely, it would
be a significant undertaking.

9.3.4 Final Thoughts

The design of hardware accelerators for DNNs is an expansive and complex problem
space. In addition, as the field rapidly evolves, new types of workloads and applications
based around DNNs emerge, making hardware-software co-design more critical than
ever. Furthermore, as the need for cost-effective, power-efficient, and high-performant
solutions becomes more prevalent, pushing the boundaries of what is possible with
as few resources becomes even more important. Therefore, the need for efficient ap-
proaches to explore the design space of hardware accelerators for DNNs is crucial.
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A | Appendix

A.1 Data Transfer Optimisations in AXI4MLIR

Here we discuss the proposed extensions to the AXI4MLIR compilation flow which
extensive discussed in Chapter 8. While AXI4MLIR can provide considerable speedup
over a manual implementation of the host-driver code, we observe potential areas for
further optimisations, which can improve the utilisation of the accelerator and reduce
overall latency.

Figure A.1 shows a breakdown of the cycles spent inside the accelerator while executing
MatMul problems for a range of dimensions and tile sizes. Ideally, the accelerator’s
compute cores should be fully utilised, but our experiments show that we are achiev-
ing on average less than 10% utilisation. Additionally, profiling the execution of this
MatMul problem from the CPU’s perspective, we observed that the CPU-side bottle-
neck is caused by copying data allocated within the memory heap to the DMA buffers.
To tackle this accelerator under-utilisation and host-side bottlenecks, we propose ex-
tending AXI4MLIR with three key optimisations, discussed in detail in the following
section.

A.1.1 Proposed Data Transfer Optimisations

The following data movement optimisations extend the AXI4MLIR transformation
and lowering pipeline to mitigate and hide the time spent on transferring data. We
demonstrate and apply the proposed optimisations to the tiled MatMul problem with
a flexible stream-based accelerator that supports double buffering. Figure A.2 shows
the baseline code generated by AXI4MLIR for this accelerator and algorithm.

DMA-based data allocation

Any data that needs to be transferred via AXI DMA engines must first be placed
in DMA-mmapped buffers. Current AXI4MLIR implementations copy data between
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Figure A.1: Breakdown of clock cycles spent inside a simple MatMul accelerator. Red
segments (Compute C %) represents the time when the accelerator’s processing ele-
ments are active.

buffers (memrefs) allocated in the heap to the mmapped region (dma buffers) while
communicating with the accelerator. This can incur significant overhead. To mitigate
the extra staging transfers, we propose a new attribute and set of transformations that
trigger allocation of memrefs needed by the accelerator directly in the DMA region.

Figure A.3 demonstrates how the optimisation will tag the memref with the #dma
tag, which ensures that the required data is allocated within the DMA buffers, hence
avoiding additional copying. To support this feature, the lowering of accel.send
operations is simplified, skipping any staging copy and immediately initiating data
transfers to the accelerator.

Data coalescing

A detailed analysis of the accelerator performance highlights that the initial data load
latency is a bottleneck within the accelerator, which explains why load A takes more
cycles than load B within Figure A.1. The first data packet, loaded from memory to
the accelerator incurs additional latency, whereas the following data can be loaded in
a FIFO-like manner with, in some cases, a 1-cycle delay. To reduce the initial transfer
overhead, we propose a data coalescing strategy. This involves combining multiple
data sends within the same loop body into a single DMA transfer operation, replacing
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1 func.func @main ( %input, %output ) {
2 // Allocation of %A and %B as outputs of other operation
3 %A = memref.alloc () : () -> memref <60 x80xfp32 >
4 %B = memref.alloc () : () -> memref <80 x72xfp32 >
5 // ..Other operations happen...
6 // %A, %B, and % are needed by the accelerator
7 %C = memref.alloc () : () -> memref <60 x72xfp32 >
8 func.call @matmul_call (%A, %B, %C) // ...
9 }

10

11 func.func @matmul_call (...) {
12 // Declare constants (loop bounds and literals ): %cX, ...
13 accel.sendLiteral ( %c0xFF ) // reset opcode
14 // Tiling by 4,4,4
15 scf.for %m = %c0 to %c60 step %c4 { // first loop
16 scf.for %k = %c0 to %c80 step %c4 { // second loop
17 scf.for %n = %c0 to %c72 step %c4 { // innermost
18 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1]
19 accel.sendLiteral ( %c0x22 )
20 accel.send (%sA)
21 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1]
22 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1]
23 accel.sendLiteral (%0x25)
24 accel.send (%sB)
25 accel.recv {mode =" accumulate "}( %sC)
26 } } } return }

Figure A.2: Pseudo-MLIR code of a tiled MatMul problem showcasing the baseline
code generation.

multiple synchronisation operations with a single.

Figure A.4 shows how we propose to represent the coalescing of multiple data transfers
into one. We will transform accel.send into a variadic operation, which takes multiple
memref arguments, indicating that only one synchronisation is necessary.

Software pipelining & double-buffering

To further reduce the accelerator idle time and overall latency, we propose host-driver
support to pipeline the accelerator load, compute, and store stages. Figure A.5 demon-
strates how the initial iterations of the inner loop within the matmul_call are moved
outside the loop to enable software-level pipelining. Note that this driver code optimi-
sation can only be enabled when the accelerator provides double buffering support to
overlap loading data with computation.
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1 func.func @main ( %input, %output ) {
2 // ...
3 %A = memref.alloc () : () -> memref <60 x80xfp32, #dma >
4 %B = memref.alloc () : () -> memref <80 x72xfp32, #dma >
5 %C = memref.alloc () : () -> memref <60 x72xfp32, #dma >
6 func.call @matmul_call (...)
7 // ...
8 return }

Figure A.3: Pseudo-MLIR code of a tiled MatMul problem with DMA-based data-
allocation optimisation.

1 func.func @matmul_call (...) {
2 // Declare constants (loop bounds and literals ): %cX, ...
3 accel.sendLiteral ( %c0xFF ) : i32,i32 ->i32 // reset
4 scf.for %m = %c0 to %c60 step %c4 { // first loop
5 scf.for %k = %c0 to %c80 step %c4 { // second loop
6 scf.for %n = %c0 to %c72 step %c4 { // innermost
7 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1]
8 %op0 = accel.load_opcode (%0x22)
9 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1]

10 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1]
11 %op1 = accel.load_opcode (%0x25)
12 accel.send ([ %op0,%sA,%sB,%op1 ])
13 accel.recv {mode =" accumulate "}( %sC)
14 } } } return }

Figure A.4: Pseudo-MLIR code of a tiled MatMul problem with data-coalescing opti-
misation.
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1 func.func @matmul_call (...) {
2 // Declare constants (loop bounds and literals ): %cX, ...
3 accel.sendLiteral ( %c0xFF ) // reset opcode
4 scf.for %m = %c0 to %c60 step %c4 { // first loop
5 scf.for %k = %c0 to %c80 step %c4 { // second loop
6 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1]
7 accel.sendLiteral ( %c0x22 )
8 accel.send (%sA)
9 %sB = memref.subview %B[%k, %c0] [4, 4] [1, 1]

10 accel.sendLiteral (%0x25)
11 accel.send (%sB)
12 scf.for %n = %c4 to %c68 step %c4 { // innermost
13 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1]
14 accel.sendLiteral ( %c0x22 )
15 accel.send (%sA)
16 %n_last = arith.subi (%n, %c4)
17 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1]
18 %sC = memref.subview %C[%m, %n_last ] [4, 4] [1, 1]
19 accel.sendLiteral (%0x25)
20 accel.send (%sB)
21 accel.recv {mode =" accumulate "}( %sC)
22 }
23 %sC = memref.subview %C[%m, %c68] [4, 4] [1, 1]
24 accel.recv {mode =" accumulate "}( %sC)
25 } } return }

Figure A.5: Pseudo-MLIR code of a tiled MatMul problem with software pipelining of
data transfers.
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Glossary

accelerators A hardware device which is designed to efficiently execute a specific
operation or set of operations. Where efficiency is measured in terms of latency,
throughput, power consumption, and area. 1

activation functions Activation functions are used in neural networks to compute
the output of a node based on the inputs and the pre-existing/learned weights.
3

bandwidth The amount of data that can be transmitted in a fixed amount of time.
1

co-design Design process which involves simultaneous design of multuple components
in a system, considering the interactions between them. 2

covolutions Refers to convolution tensor operation used in neural networks, where
the input tensor is convolved with a weight tensor to produce an output tensor.
3

data-level parallelism Form of parallelisation that allows for the same instructions
to be executed across multiple subset of the input data across parallel processing
elements. 3

DNN inference DNN inference is the process of executing a trained DNN model
using new input data to make predictions/classifications. 1

edge In our context, the ‘edge’ refers to computation (physically) close to the source
of the data and away from server/cloud-based computation. This often means
avoiding the costs of network delays and a lack of security and privacy. 1

edge platforms This refers to any hardware device that is running on the edge. 3

end-to-end In our context, end-to-end refers to execution of the entire workload usu-
ally the inference of a DNN model. 2
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host-side driver The software component that runs on the host processor which man-
ages the communication to the hardware accelerator. 9

mmapped Memory mapping enables mapping of a file or device into virtual memory,
allowing the file or device to be accessed by a user program.

opcode A numeric code representation of an computer instruction, abbreviated from
‘operation code’. 139

resource-constrained In our context, resource-constrained refers to limited hard-
ware resources (computational hardware, memory capacity, memory bandwidth),
physical area, and power/energy budget. 1



Acronyms 176

Acronyms

AI Artificial Intelligence. 1,

ASIC Application-Specific Integrated Circuit. 3,

BERT Bidirectional Encoder Representations from Transformers. 18,

BFP Block Floating Point. 10, 117,

BRAM Block RAM. 6,

CGRAs Coarse-Grained Reconfigurable Arrays. 1, 4, 23,

CLBs Configurable Logic Blocks. 4,

CNNs Convolutional Neural Networks. 2,

CONV Convolutional. 14,

DMA Direct Memory Access. 4,

DNNs Deep Neural Networks. 1, 14,

DSE Design Space Exploration. 54,

DSP Digital Signal Processor. 100,

DSPs Digital Signal Processors.

FC Fully Connected. 17,

FC-GEMM Fully Connected General Matrix Multiply. 10,

FFs Flip-Flops. 4,

FPGAs Field-Programmable Gate Arrays. 2,

GANs Generative Adversarial Networks. 2,
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GEMM General Matrix Multiply. 63,

GOPS Giga Operations Per Second. 48,

GPUs Graphics Processing Units. 1,

HDL Hardware Description Language. 28,

HLS High-Level Synthesis. 29,

IoT Internet of Things. 1,

LLMs Large Language Models. 2,

LUTs Look-Up Tables. 4,

MACs Multiply-Accumulates. 50,

ML Machine Learning. 1, 14,

MLIR Multi-Level Intermediate Representation. 18,

MM2IM MatMul to col2IM. 10,

mmapped memory mapped. 5

MMIO Memory-Mapped Input/Output. 40,

NLP Natural Language Processing. 1,

NPUs Neural Processing Units. 1,

NVDLA NVIDIA Deep Learning Accelerator. 1,

PE Processing Element. 26,

PoT Power-of-Two. 165,

PUs Processing Units. 25,

QoR Quality of Results. 54,

RTL Register Transfer Level. 8, 28,

SA Systolic Array. 10,

SIMD Single Instruction, Multiple Data. 26,
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TCONV Transposed Convolution. 10,

TOPS Tera Operations Per Second. 50,

TPU Tensor Processing Unit. 1,

VM Vector Mac. 10,
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[Muñ+23] Francisco Muñoz-Mart́ınez et al. “Flexagon: A Multi-dataflow Sparse-
Sparse Matrix Multiplication Accelerator for Efficient DNN Processing”.
In: Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3.
ASPLOS’23. Mar. 25, 2023, pp. 252–265. isbn: 978-1-4503-9918-0. doi:
10.1145/3582016.3582069.

[Nga+20] Jennifer Ngadiuba et al. “Compressing Deep Neural Networks on FPGAs
to Binary and Ternary Precision with Hls4ml”. In: Machine Learning:
Science and Technology 2.1 (Dec. 2020), p. 015001. issn: 2632-2153. doi:
10.1088/2632-2153/aba042.

[Now+17] Tony Nowatzki et al. “Stream-Dataflow Acceleration”. In: Proceedings
of the 44th Annual International Symposium on Computer Architecture.
ISCA’17. June 24, 2017, pp. 416–429. isbn: 978-1-4503-4892-8. doi: 10.
1145/3079856.3080255.

[NVIa] NVIDIA. NVIDIA Deep Learning Accelerator. url: http://nvdla.org/.

[NVIb] NVIDIA. NVIDIA TensorRT. NVIDIA Developer. url: https://devel
oper.nvidia.com/tensorrt.

[Ott+20] G. Ottavi et al. “A Mixed-Precision RISC-V Processor for Extreme-Edge
DNN Inference”. In: 2020 IEEE Computer Society Annual Symposium on
VLSI. ISVLSI’20. July 2020, pp. 512–517. doi: 10.1109/ISVLSI49217.
2020.000-5.

[Pas+17] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: Advances
in Neural Information Processing Systems. NIPS’17. Oct. 28, 2017. url:
https://openreview.net/forum?id=BJJsrmfCZ.

[Pat+22] Suchita Pati et al. “Demystifying BERT: System Design Implications”.
In: 2022 IEEE International Symposium on Workload Characterization.
IISWC’22. Nov. 2022, pp. 296–309. doi: 10.1109/IISWC55918.2022.
00033.

[Pel+16] Maxime Pelcat et al. “Design Productivity of a High Level Synthesis Com-
piler versus HDL”. In: 2016 International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation. SAMOS’16. July
2016, pp. 140–147. doi: 10.1109/SAMOS.2016.7818341.

https://doi.org/10.1109/LCA.2021.3097253
https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
http://nvdla.org/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1109/IISWC55918.2022.00033
https://doi.org/10.1109/IISWC55918.2022.00033
https://doi.org/10.1109/SAMOS.2016.7818341


Bibliography 194

[PG16] Lerrel Pinto and Abhinav Gupta. “Supersizing Self-Supervision: Learning
to Grasp from 50K Tries and 700 Robot Hours”. In: 2016 IEEE Inter-
national Conference on Robotics and Automation. ICRA’16. May 2016,
pp. 3406–3413. doi: 10.1109/ICRA.2016.7487517.

[Pra+17] Raghu Prabhakar et al. “Plasticine: A Reconfigurable Architecture For
Parallel Paterns”. In: ACM SIGARCH Computer Architecture News 45.2
(June 24, 2017), pp. 389–402. issn: 0163-5964. doi: 10.1145/3140659.
3080256.

[Qin+20] E. Qin et al. “SIGMA: A Sparse and Irregular GEMM Accelerator with
Flexible Interconnects for DNN Training”. In: 2020 IEEE International
Symposium on High Performance Computer Architecture. HPCA’20. Feb.
2020, pp. 58–70. doi: 10.1109/HPCA47549.2020.00015.

[Rad+19] Valentin Radu et al. “Performance Aware Convolutional Neural Network
Channel Pruning for Embedded GPUs”. In: 2019 IEEE International
Symposium on Workload Characterization (IISWC). 2019 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). Nov. 2019,
pp. 24–34. doi: 10.1109/IISWC47752.2019.9042000.

[Raj+16] Pranav Rajpurkar et al. “SQuAD: 100,000+ Questions for Machine Com-
prehension of Text”. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing. EMNLP’16. Nov. 2016,
pp. 2383–2392. doi: 10.18653/v1/D16-1264.

[Ray23] Partha Pratim Ray. “ChatGPT: A Comprehensive Review on Back-
ground, Applications, Key Challenges, Bias, Ethics, Limitations and Fu-
ture Scope”. In: Internet of Things and Cyber-Physical Systems 3 (Jan. 1,
2023), pp. 121–154. issn: 2667-3452. doi: 10.1016/j.iotcps.2023.04.
003.

[RBA] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Op-
timizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines”. In: ().

[RCO19] Simon Rovder et al. “Optimising Convolutional Neural Networks In-
ference on Low-Powered GPUs”. In: Twelfth International Workshop
on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG-2019). 2019. url: https : / / eprints . gla . ac . uk /
183820/.

https://doi.org/10.1109/ICRA.2016.7487517
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/IISWC47752.2019.9042000
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1016/j.iotcps.2023.04.003
https://eprints.gla.ac.uk/183820/
https://eprints.gla.ac.uk/183820/


Bibliography 195

[Rey+20] Ruyman Reyes et al. “SYCL 2020: More than Meets the Eye”. In: Pro-
ceedings of the International Workshop on OpenCL. IWOCL’20. Apr. 27,
2020, p. 1. isbn: 978-1-4503-7531-3. doi: 10.1145/3388333.3388649.

[RF18] Qing Rao and Jelena Frtunikj. “Deep Learning for Self-Driving Cars:
Chances and Challenges”. In: 2018 IEEE/ACM 1st International Work-
shop on Software Engineering for AI in Autonomous Systems. SEFA-
IAS’18. May 2018, pp. 35–38. url: https://ieeexplore.ieee.org/
document/8452728.

[RFB15] Olaf Ronneberger et al. “U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention. MICCAI’15. 2015, pp. 234–241. isbn: 978-3-319-
24574-4. doi: 10.1007/978-3-319-24574-4_28.

[RJJ24] Rappy Saha et al. “Accelerating PoT Quantization on Edge Devices”.
In: IEEE International Conference on Electronics Circuits and Systems.
2024. ICECS’24. 2024.

[RMC16] Alec Radford et al. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. In: 4th International
Conference on Learning Representations. ICLR’16. 2016. url: http://
arxiv.org/abs/1511.06434.

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision 115.3 (Dec. 1, 2015),
pp. 211–252. issn: 1573-1405. doi: 10.1007/s11263-015-0816-y.

[Sal+23] Caio Salvador Rohwedder et al. “To Pack or Not to Pack: A General-
ized Packing Analysis and Transformation”. In: Proceedings of the 21st
ACM/IEEE International Symposium on Code Generation and Optimiza-
tion. CGO’23. Feb. 22, 2023, pp. 14–27. isbn: 979-8-4007-0101-6. doi:
10.1145/3579990.3580024.

[San+18] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottle-
necks”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. CVPT’18. June 2018, pp. 4510–4520. isbn: 978-1-5386-6420-
9. doi: 10.1109/CVPR.2018.00474.

[Ses+22] Kiran Seshadri et al. “An Evaluation of Edge TPU Accelerators for Con-
volutional Neural Networks”. In: 2022 IEEE International Symposium
on Workload Characterization (IISWC). 2022 IEEE International Sym-
posium on Workload Characterization (IISWC). Nov. 2022, pp. 79–91.
doi: 10.1109/IISWC55918.2022.00017.

https://doi.org/10.1145/3388333.3388649
https://ieeexplore.ieee.org/document/8452728
https://ieeexplore.ieee.org/document/8452728
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3579990.3580024
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/IISWC55918.2022.00017


Bibliography 196

[SFM17] Yongming Shen et al. “Maximizing CNN Accelerator Efficiency Through
Resource Partitioning”. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. ISCA’17. June 24, 2017, pp. 535–
547. isbn: 978-1-4503-4892-8. doi: 10.1145/3079856.3080221.

[SGC22] Axel Stjerngren et al. “Bifrost: End-to-End Evaluation and Optimization
of Reconfigurable DNN Accelerators”. In: 2022 IEEE International Sym-
posium on Performance Analysis of Systems and Software. ISPASS’22.
May 1, 2022, pp. 288–299. isbn: 978-1-6654-5954-9. doi: 10.1109/ISPAS
S55109.2022.00042.

[SGS10] John E. Stone et al. “OpenCL: A Parallel Programming Standard for Het-
erogeneous Computing Systems”. In: Computing in Science & Engineering
12.3 (May 2010), pp. 66–73. issn: 1558-366X. doi: 10.1109/MCSE.2010.
69.

[Sha+16a] Yakun Sophia Shao et al. “Co-Designing Accelerators and SoC Interfaces
Using Gem5-Aladdin”. In: The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO’16. Oct. 15, 2016, pp. 1–12.

[Sha+16b] Hardik Sharma et al. “From High-Level Deep Neural Models to FPGAs”.
In: 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO’16. Oct. 2016, pp. 1–12. doi: 10.1109/MICRO.2016.
7783720.

[Sha+18] Hardik Sharma et al. “Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks”. In: Proceedings
of the 45th Annual International Symposium on Computer Architecture.
ISCA’18. June 2, 2018, pp. 764–775. isbn: 978-1-5386-5984-7. doi: 10.
1109/ISCA.2018.00069.

[Sha+23] Hesam Shabani et al. “HIRAC: A Hierarchical Accelerator with Sorting-
based Packing for SpGEMMs in DNN Applications”. In: 2023 IEEE
International Symposium on High-Performance Computer Architecture.
HPCA’23. Feb. 2023, pp. 247–258. doi: 10 . 1109 / HPCA56546 . 2023 .
10070977.

[She20] Alex Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network”. In: Physica D: Non-
linear Phenomena 404 (Mar. 1, 2020), p. 132306. issn: 0167-2789. doi:
10.1016/j.physd.2019.132306.

https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1109/ISPASS55109.2022.00042
https://doi.org/10.1109/ISPASS55109.2022.00042
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/HPCA56546.2023.10070977
https://doi.org/10.1109/HPCA56546.2023.10070977
https://doi.org/10.1016/j.physd.2019.132306


Bibliography 197

[Sim] Willison Simon. Stanford Alpaca, and the Acceleration of on-Device Large
Language Model Development. url: https://simonwillison.net/2023/
Mar/13/alpaca/.

[Ska+18] Sam Skalicky et al. “Hot & Spicy: Improving Productivity with Python
and HLS for FPGAs”. In: 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines. FCCM’18.
Apr. 2018, pp. 85–92. doi: 10.1109/FCCM.2018.00022.

[Son+20] Zhuoran Song et al. “DRQ: Dynamic Region-Based Quantization for Deep
Neural Network Acceleration”. In: Proceedings of the ACM/IEEE 47th
Annual International Symposium on Computer Architecture. ISCA’20.
May 30, 2020, pp. 1010–1021. isbn: 978-1-7281-4661-4. doi: 10.1109/
ISCA45697.2020.00086.

[SPS23] Cristian Sestito et al. “FPGA Design of Transposed Convolutions for Deep
Learning Using High-Level Synthesis”. In: Journal of Signal Processing
Systems (Aug. 4, 2023). issn: 1939-8115. doi: 10.1007/s11265- 023-
01883-7.

[Sun+20] Zhiqing Sun et al. “MobileBERT: A Compact Task-Agnostic BERT for
Resource-Limited Devices”. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. ACL’20. July 2020,
pp. 2158–2170. doi: 10.18653/v1/2020.acl-main.195.

[Sun+23] Xiaofei Sun et al. “Text Classification via Large Language Models”. In:
Findings of the Association for Computational Linguistics: EMNLP 2023.
EMNLP’23. Dec. 2023, pp. 8990–9005. doi: 10.18653/v1/2023.findin
gs-emnlp.603.

[SVL14] Ilya Sutskever et al. “Sequence to Sequence Learning with Neural Net-
works”. In: Advances in Neural Information Processing Systems. Vol. 27.
NIPS’14. 2014. url: https://proceedings.neurips.cc/paper_files/
paper / 2014 / hash / a14ac55a4f27472c5d894ec1c3c743d2 - Abstract .
html.

[Sze+15] Christian Szegedy et al. “Going Deeper with Convolutions”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2015, pp. 1–9. isbn: 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.
7298594.

https://simonwillison.net/2023/Mar/13/alpaca/
https://simonwillison.net/2023/Mar/13/alpaca/
https://doi.org/10.1109/FCCM.2018.00022
https://doi.org/10.1109/ISCA45697.2020.00086
https://doi.org/10.1109/ISCA45697.2020.00086
https://doi.org/10.1007/s11265-023-01883-7
https://doi.org/10.1007/s11265-023-01883-7
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2023.findings-emnlp.603
https://doi.org/10.18653/v1/2023.findings-emnlp.603
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594


Bibliography 198

[Sze+16] Christian Szegedy et al. “Rethinking the Inception Architecture for Com-
puter Vision”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition. CVPR’16. June 2016, pp. 2818–2826. isbn: 978-1-4673-8851-
1. doi: 10.1109/CVPR.2016.308.

[Sze+17] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A
Tutorial and Survey”. In: Proceedings of the IEEE 105.12 (Dec. 2017),
pp. 2295–2329. issn: 1558-2256. doi: 10.1109/JPROC.2017.2761740.

[Ten] TensorFlow. TensorFlow Lite Delegates. TensorFlow. url: https://www.
tensorflow.org/lite/performance/delegates.

[TFL] TFLite Developers. TensorFlow Lite 8-Bit Quantization Specification.
TensorFlow. url: https://www.tensorflow.org/lite/performance/
quantization_spec.

[The] The Linux Perf Team. Perf Wiki. url: https://perf.wiki.kernel.
org/index.php/Main_Page.

[TK12] Vaishali Tehre and Ravindra Kshirsagar. “Survey on Coarse Grained Re-
configurable Architectures”. In: International Journal of Computer Appli-
cations 48.16 (June 30, 2012), pp. 1–7. issn: 09758887. doi: 10.5120/
7429-0104.

[TL19] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”. In: Proceedings of the 36th International
Conference on Machine Learning. International Conference on Machine
Learning. ICML’19. May 24, 2019, pp. 6105–6114. url: https://procee
dings.mlr.press/v97/tan19a.html.

[Tor24] Torch-MLIR Developers. The Torch-MLIR Project. Aug. 21, 2024. url:
https://github.com/llvm/torch-mlir.

[Tur+18] Jack Turner et al. “Characterising Across-Stack Optimisations for Deep
Convolutional Neural Networks”. In: 2018 IEEE International Symposium
on Workload Characterization. IISWC’18. Sept. 2018, pp. 101–110. doi:
10.1109/IISWC.2018.8573503.

[Umu+17] Yaman Umuroglu et al. “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference”. In: Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. FPGA’17.
Feb. 22, 2017, pp. 65–74. isbn: 978-1-4503-4354-1. doi: 10.1145/302007
8.3021744.

https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/JPROC.2017.2761740
https://www.tensorflow.org/lite/performance/delegates
https://www.tensorflow.org/lite/performance/delegates
https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.5120/7429-0104
https://doi.org/10.5120/7429-0104
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://github.com/llvm/torch-mlir
https://doi.org/10.1109/IISWC.2018.8573503
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744


Bibliography 199

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems.
NIPS’17. Dec. 4, 2017, pp. 6000–6010. isbn: 978-1-5108-6096-4.

[Wan+16] Ying Wang et al. “DeepBurning: Automatic Generation of FPGA-based
Learning Accelerators for the Neural Network Family”. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). DAC’16.
June 2016, pp. 1–6. doi: 10.1145/2897937.2898002.

[Wan+17] Fei Wang et al. “Residual Attention Network for Image Classification”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition.
CVPR’17. July 2017, pp. 6450–6458. isbn: 978-1-5386-0457-1. doi: 10.
1109/CVPR.2017.683.

[Wan+21] Yu Emma Wang et al. “Exploiting Parallelism Opportunities with
Deep Learning Frameworks”. In: ACM Trans. Archit. Code Optim. 18.1
(Dec. 30, 2021), 9:1–9:23. issn: 1544-3566. doi: 10.1145/3431388.

[Wen+20] Jian Weng et al. “DSAGEN: Synthesizing Programmable Spatial Accel-
erators”. In: Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture. ISCA’20. May 30, 2020, pp. 268–
281. isbn: 978-1-7281-4661-4. doi: 10.1109/ISCA45697.2020.00032.

[Wol+20] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language
Processing”. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. EMNLP’2020.
Oct. 2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp-demos.6.

[Xi+20] Sam (Likun) Xi et al. “SMAUG: End-to-End Full-Stack Simulation In-
frastructure for Deep Learning Workloads”. In: ACM Transactions on Ar-
chitecture and Code Optimization 17.4 (Nov. 10, 2020), 39:1–39:26. issn:
1544-3566. doi: 10.1145/3424669.

[Xia+22] Shaojie Xiang et al. “HeteroFlow: An Accelerator Programming Model
with Decoupled Data Placement for Software-Defined FPGAs”. In: Pro-
ceedings of the 2022 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA’22. Feb. 13, 2022, pp. 78–88. isbn:
978-1-4503-9149-8. doi: 10.1145/3490422.3502369.

[Xila] Xilinx. Introduction • AXI DMA LogiCORE IP Product Guide (PG021)
• Reader • AMD Technical Information Portal. url: https://docs.
amd.com/r/en-US/pg021_axi_dma.

[Xilb] Xilinx. Vivado Design Suite. AMD. url: https://www.xilinx.com/
products/design-tools/vivado.html.

https://doi.org/10.1145/2897937.2898002
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1145/3431388
https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3490422.3502369
https://docs.amd.com/r/en-US/pg021_axi_dma
https://docs.amd.com/r/en-US/pg021_axi_dma
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html


Bibliography 200

[XLZ15] Jungang Xu et al. “An Overview of Deep Generative Models”. In: IETE
Technical Review 32.2 (Mar. 4, 2015), pp. 131–139. issn: 0256-4602. doi:
10.1080/02564602.2014.987328.

[Xu+18] Dawen Xu et al. “FCN-Engine: Accelerating Deconvolutional Layers in
Classic CNN Processors”. In: 2018 IEEE/ACM International Conference
on Computer-Aided Design. ICCAD’18. Nov. 2018, pp. 1–6. doi: 10.1145/
3240765.3240810.

[Xu+20] Pengfei Xu et al. “AutoDNNchip: An Automated DNN Chip Predictor
and Builder for Both FPGAs and ASICs”. In: Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays. FPGA’20. Feb. 24, 2020, pp. 40–50. isbn: 978-1-4503-7099-8. doi:
10.1145/3373087.3375306.

[Yan+18] Jiale Yan et al. “GNA: Reconfigurable and Efficient Architecture for Gen-
erative Network Acceleration”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.11 (Nov. 2018), pp. 2519–
2529. issn: 1937-4151. doi: 10.1109/TCAD.2018.2857258.

[Yan+20] Xuan Yang et al. “Interstellar: Using Halide’s Scheduling Language to
Analyze DNN Accelerators”. In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS’20. Mar. 9, 2020, pp. 369–383. isbn:
978-1-4503-7102-5. doi: 10.1145/3373376.3378514.

[Yao+24] Binwei Yao et al. Benchmarking LLM-based Machine Translation on Cul-
tural Awareness. Mar. 22, 2024. doi: 10.48550/arXiv.2305.14328.

[Ye+20] Hanchen Ye et al. “HybridDNN: A Framework for High-Performance
Hybrid DNN Accelerator Design and Implementation”. In: Proceedings
of the 57th ACM/EDAC/IEEE Design Automation Conference. DAC’20.
Nov. 18, 2020, pp. 1–6. isbn: 978-1-4503-6725-7.

[Yu+20] Yunxuan Yu et al. “Uni-OPU: An FPGA-Based Uniform Accelerator for
Convolutional and Transposed Convolutional Networks”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 28.7 (July 2020),
pp. 1545–1556. issn: 1557-9999. doi: 10.1109/TVLSI.2020.2995741.

[ZB19] Florian Zaruba and Luca Benini. “The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-Nm FDSOI Technology”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 27.11 (Nov. 2019), pp. 2629–
2640. issn: 1557-9999. doi: 10.1109/TVLSI.2019.2926114.

https://doi.org/10.1080/02564602.2014.987328
https://doi.org/10.1145/3240765.3240810
https://doi.org/10.1145/3240765.3240810
https://doi.org/10.1145/3373087.3375306
https://doi.org/10.1109/TCAD.2018.2857258
https://doi.org/10.1145/3373376.3378514
https://doi.org/10.48550/arXiv.2305.14328
https://doi.org/10.1109/TVLSI.2020.2995741
https://doi.org/10.1109/TVLSI.2019.2926114


Bibliography 201

[Zha+15] Chen Zhang et al. “Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks”. In: Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. FPGA’15. Feb. 22, 2015, pp. 161–170. isbn: 978-1-4503-3315-3.
doi: 10.1145/2684746.2689060.

[Zha+16a] Shijin Zhang et al. “Cambricon-X: An Accelerator for Sparse Neural Net-
works”. In: 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO’16. Oct. 2016, pp. 1–12. doi: 10.1109/MICRO.
2016.7783723.

[Zha+16b] Ying Zhang et al. “Towards End-to-End Speech Recognition with Deep
Convolutional Neural Networks”. In: Interspeech 2016 (Sept. 8, 2016),
pp. 410–414. doi: 10.21437/Interspeech.2016-1446.

[Zha+17] Xinyu Zhang et al. “A Design Methodology for Efficient Implementation
of Deconvolutional Neural Networks on an FPGA”. May 7, 2017. url:
http://arxiv.org/abs/1705.02583.

[Zha+18] Xiaofan Zhang et al. “DNNBuilder: An Automated Tool for Building
High-Performance DNN Hardware Accelerators for FPGAs”. In: 2018
IEEE/ACM International Conference on Computer-Aided Design. IC-
CAD’18. Nov. 2018, pp. 1–8. doi: 10.1145/3240765.3240801.

[Zha+20a] Xiaofan Zhang et al. “DNNExplorer: A Framework for Modeling and Ex-
ploring a Novel Paradigm of FPGA-based DNN Accelerator”. In: Pro-
ceedings of the 39th International Conference on Computer-Aided De-
sign. ICCAD’20. Dec. 17, 2020, pp. 1–9. isbn: 978-1-4503-8026-3. doi:
10.1145/3400302.3415609.

[Zha+20b] Jerry Zhao et al. “SonicBOOM: The 3rd Generation Berkeley Out-of-
Order Machine”. In: Fourth Workshop on Computer Architecture Research
with RISC-V. CARRV’20. May 2020.

[Zha+22] Jin Zhao et al. “TDGraph: A Topology-Driven Accelerator for High-
Performance Streaming Graph Processing”. In: Proceedings of the 49th
Annual International Symposium on Computer Architecture. ISCA’22.
June 11, 2022, pp. 116–129. isbn: 978-1-4503-8610-4. doi: 10 . 1145 /
3470496.3527409.

[Zha+24] Peiyuan Zhang et al. TinyLlama: An Open-Source Small Language Model.
Jan. 4, 2024. doi: 10.48550/arXiv.2401.02385.

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.21437/Interspeech.2016-1446
http://arxiv.org/abs/1705.02583
https://doi.org/10.1145/3240765.3240801
https://doi.org/10.1145/3400302.3415609
https://doi.org/10.1145/3470496.3527409
https://doi.org/10.1145/3470496.3527409
https://doi.org/10.48550/arXiv.2401.02385


Bibliography 202

[Zhe+22] Size Zheng et al. “AMOS: Enabling Automatic Mapping for Tensor Com-
putations on Spatial Accelerators with Hardware Abstraction”. In: Pro-
ceedings of the 49th Annual International Symposium on Computer Ar-
chitecture. ISCA’22. June 18, 2022, pp. 874–887. isbn: 978-1-4503-8610-4.
doi: 10.1145/3470496.3527440.

[Zho+17] Aojun Zhou et al. “Incremental Network Quantization: Towards Lossless
CNNs with Low-Precision Weights”. In: 5th International Conference on
Learning Representations. ICLR’17. 2017.

https://doi.org/10.1145/3470496.3527440

	Thesis cover sheet
	2024HarisPhD
	1 Introduction
	1.1 Designing FPGA-based DNN Accelerators
	1.1.1 Motivation
	1.1.2 Host-Accelerator System Model
	1.1.3 FPGA-based Acceleration Paradigms

	1.2 Challenges and Objectives
	1.2.1 Development blackTime of New Accelerators
	1.2.2 Problem Specific Design and Optimisations
	1.2.3 Efficient Host-Accelerator Communication

	1.3 Contributions
	1.4 Publications
	1.5 Thesis Structure
	1.6 Summary

	2 Background
	2.1 Deep Neural Networks
	2.1.1 DNN Fundamentals
	2.1.2 Types of DNNs

	2.2 Software Libraries
	2.2.1 TensorFlow & TensorFlow Lite
	2.2.2 llama.cpp
	2.2.3 MLIR

	2.3 Hardware
	2.3.1 FPGAs
	2.3.2 FPGA Architecture
	2.3.3 Accelerators
	2.3.4 Hardware Development

	2.4 Key Algorithms
	2.4.1 Convolution
	2.4.2 Matrix Multiplication
	2.4.3 Transposed Convolution
	2.4.4 Quantisation

	2.5 Hardware-Software Co-Design
	2.5.1 SystemC
	2.5.2 Host-Accelerator Communication
	2.5.3 Hardware Specific Optimisations

	2.6 Summary

	3 Related Work
	3.1 Deep Neural Networks
	3.1.1 Convolutional Neural Networks
	3.1.2 Transformer Models
	3.1.3 Generative Adversarial Networks

	3.2 DNN Acceleration
	3.2.1 Overview of DNN Accelerators
	3.2.2 Accelerating Generative Adversarial Networks
	3.2.3 Accelerating Large Language Models
	3.2.4 Quantisation-based Accelerators

	3.3 Hardware-Software Co-Design of Accelerators
	3.3.1 Co-Design Methodologies
	3.3.2 Co-Design Frameworks
	3.3.3 Code-Generation for specialised Accelerators

	3.4 Summary

	4 SECDA
	4.1 Introduction
	4.2 Motivation
	4.2.1 Stages of Hardware Accelerator Development
	4.2.2 Key Features of DNN Accelerator Design Methodologies
	4.2.3 Comparison of Methodologies

	4.3 SECDA Methodology
	4.3.1 Application Framework
	4.3.2 Accelerator Driver
	4.3.3 SystemC Simulation
	4.3.4 Hardware Synthesis
	4.3.5 SECDA Design Loop

	4.4 Case Study
	4.4.1 SECDA Instantiation
	4.4.2 GEMM Accelerator Driver
	4.4.3 GEMM Accelerator Designs
	4.4.4 Accelerator Components
	4.4.5 Accelerator Design Improvements

	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 Case Study Results
	4.5.3 Comparison with state-of-the-art DNN accelerators

	4.6 Summary

	5 SECDA-TFLite
	5.1 Introduction
	5.2 SECDA-TFLite Toolkit
	5.2.1 SECDA-TFLite Delegates
	5.2.2 Toolkit
	5.2.3 Template Delegate and SystemC DMA-Engine

	5.3 Automation
	5.3.1 Hardware Design Synthesis Automation
	5.3.2 Benchmarking Suite
	5.3.3 Profile Visualisation

	5.4 Case Study
	5.4.1 SECDA-TFLite Workflow
	5.4.2 Accelerators Designs
	5.4.3 Accelerator Components
	5.4.4 Accelerator Drivers

	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 CNN Results
	5.5.3 BERT Results
	5.5.4 Comparison with state-of-the-art DNN accelerators

	5.6 Summary

	6 SECDA-LLM
	6.1 Introduction
	6.2 SECDA-LLM Platform
	6.2.1 Integration with llama.cpp
	6.2.2 SECDA Environment
	6.2.3 SystemC Simulation
	6.2.4 Hardware Evaluation
	6.2.5 Profiler

	6.3 Case study
	6.3.1 Target Problem
	6.3.2 Accelerator Design
	6.3.3 Evaluation
	6.3.4 Discussion

	6.4 Summary

	7 GAN Acceleration with SECDA-TFLite
	7.1 Introduction
	7.2 Efficient Transposed Convolution
	7.2.1 Optimising Input-Oriented Mapping
	7.2.2 Resource-Constrained Acceleration Dataflow
	7.2.3 Performance Model

	7.3 Accelerator Architecture
	7.3.1 Instruction Decoder
	7.3.2 Scheduler
	7.3.3 Data Loaders
	7.3.4 Output Crossbar
	7.3.5 Processing Module
	7.3.6 MM2IM Mapper

	7.4 Evaluation
	7.4.1 Experimental setup
	7.4.2 Synthetic benchmarks
	7.4.3 End-to-end evaluation
	7.4.4 Discussion

	7.5 Summary

	8 Automatic Host Code Generation for Specialised Accelerators
	8.1 Introduction
	8.2 AXI4MLIR
	8.2.1 The Custom AXI DMA Library
	8.2.2 Supported Accelerators
	8.2.3 MLIR Extensions and Optimisations

	8.3 Experiments and Results
	8.3.1 Hand-written Baselines
	8.3.2 Matrix-Multiplication Experiments
	8.3.3 Matrix-Multiplication with flexible sizes
	8.3.4 Convolution
	8.3.5 End-To-End Analysis

	8.4 Summary

	9 Conclusions
	9.1 Contributions
	9.1.1 Designing Process for FPGA-based DNN Accelerators
	9.1.2 Accelerating Transposed Convolution for GANs
	9.1.3 Automated Host Driver Code Generation

	9.2 Future Work
	9.2.1 The Potential of SECDA
	9.2.2 Accelerating Generative DNN Models
	9.2.3 Extensions to AXI4MLIR

	9.3 Reflection
	9.3.1 Challenges Faced
	9.3.2 Lessons Learned
	9.3.3 Self-Critique
	9.3.4 Final Thoughts


	A Appendix
	A.1 Data Transfer Optimisations in AXI4MLIR
	A.1.1 Proposed Data Transfer Optimisations


	Bibliography


