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Abstract

Energy transfer between atoms/molecules, one of the most basic interactions within atomic
and molecular systems, is important in many diverse areas of science. The ability to con-
trol these processes is therefore a powerful tool with applications in various fields, and one
method to achieve this influence is through the use of macroscopic bodies. Making use of the
theoretical framework of macroscopic quantum electrodynamics (QED), the environment of
a microscopic system can be introduced into the quantum description, and its influence on
intermolecular energy transfer can be characterized. In this work, we explore the ways in
which intermolecular interactions can be impacted by a macroscopic environment. We derive
a general expression for the rate of resonant energy transfer (RET) between a donor and an
acceptor in an arbitrary, reciprocal environment and examine how the medium’s properties
and the molecular positions affect the interaction rate. Our consideration is then extended to
include non-reciprocal media, again calculating a general expression for the energy transfer
rate and applying to a simple setup containing non-reciprocal media. In particular, we in-
vestigate how the properties of the medium can be altered to promote unidirectional energy
propagation. We will also explore an application of this principle, which makes use of inverse
design in the creation of an optical isolator. In real-world situations, a donor and acceptor
can also be coupled to additional interacting bodies as well as their environment, and these
can have an intricate impact on the rate of energy transfer between them. The introduction
of a third molecule significantly complicates the calculation of the rate, so in this work we
use canonical transformations to reduce this computational complexity and derive a general
expression for the rate of three-body RET in a macroscopic background. Applying this to
some simple setups demonstrates the distinctive effect the mediating body can have. Finally,
we investigate how a macroscopic body can be used to induce a superabsorbing state in a
system of dipoles via control of the intermolecular coupling. After a demonstration of this
principle for a simple model system, we consider a ring of optical dipoles, inspired by natu-
rally occurring photosynthetic systems. We demonstrate how the placement of a macroscopic
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sphere inside the ring can produce superabsorption in the system, making it suitable for use
in artificial light harvesting and showing performance superior to previous methods.



Acknowledgements

First and foremost, I would like to thank my supervisor, Robert Bennett. You went above
and beyond what I ever could have expected a supervisor to do, both in your guidance and
advice, but also your support and understanding, and I cannot thank you enough. I would
also like to thank Stephen Barnett, my co-supervisor and head of the Quantum Theory group,
for creating a lively and friendly working atmosphere. Thanks also to the rest of the group,
particularly the other PhD students (past and present), for the feeling of camaraderie you
always shared. Specifically, thank you to Ben and Hector for the hands of friendship you
extended to me right at the beginning, which made Glasgow into the wonderful place I have
come to know. I also want to thank the co-authors of my publications, Claire Cisowski,
Adam Burgess and Erik Gauger for your innovative ideas and tireless work, without which
these articles would not have been possible.

Thank you to my friends in Glasgow; Ben, Flo, Hector, Thejas, Nico, Rob, Gav, Ryan,
Megan, Kyrie, Lewis, Sarah and Manu for always being a much appreciated source of joy
and laughter. Also to Anna and Flo (again), you have been with me through everything, I
don’t know how I would do life without you, and this is no exception. Thanks also go to my
family, especially my mum and sister, Tash, for their love and support even when they had
no idea what I was talking about. To my boyfriend Ben, my partner in everything, including
this journey, I absolutely could not have done this without you, thank you for being there
for me every single step of the way.

iii



List of Publications

[1] M. C. Waller and R. Bennett, “Environment-modified three-body energy transfer,” Phys-
ical Review A: Atomic, Molecular, and Optical Physics, vol. 106, p. 043107, Oct. 2022.
Publisher: American Physical Society.

[2] C. M. Cisowski, M. C. Waller, and R. Bennett, “Toward nanophotonic optical isolation
via inverse design of energy transfer in nonreciprocal media,” Physical Review A: Atomic,
Molecular, and Optical Physics, vol. 109, p. 043533, Apr. 2024. Publisher: American
Physical Society.

[3] A. Burgess, M. C. Waller, E. M. Gauger, and R. Bennett, “Engineering Dipole-Dipole
Couplings for Enhanced Cooperative Light-Matter Interactions,” Physical Review Letters,
vol. 134, p. 113602, Mar. 2025. Publisher: American Physical Society.

iv



Contents

Abstract i

Acknowledgements iii

List of Publications iv

1 Introduction 1

2 Macroscopic Quantum Electrodynamics 4
2.1 Field Quantizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Quantization of Field in Reciprocal Media . . . . . . . . . . . . . . . 5
2.1.2 Quantization of Field in Non-reciprocal Media . . . . . . . . . . . . . 11

2.2 Green’s Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Integral relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Two-body RET in a Reciprocal Environment 26
3.1 Calculation of Matrix Element . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Standard Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Canonical Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 31

3.2 Rate of Energy Transfer in Reciprocal Media . . . . . . . . . . . . . . . . . . 33
3.2.1 Applying Macroscopic QED . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Colinear Half-space System . . . . . . . . . . . . . . . . . . . . . . . 44

v



CONTENTS vi

3.3.3 Plot of general geometries . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Two-body RET in a Non-Reciprocal Environment 51
4.1 Rate of Energy Transfer in Non-Reciprocal Media . . . . . . . . . . . . . . . 51

4.1.1 Applying Macroscopic QED . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.3 Calculating the Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Non-reciprocal Half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Oriented dipole moments . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Isotropic Dipole Moments . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Plots and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Application in Inverse Design of RET Isolation . . . . . . . . . . . . . . . . . 68
4.3.1 Inverse Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Inverse Design of RET Isolation . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Three-body RET in a Reciprocal Environment 77
5.1 Calculation of Matrix Element . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Reducing order of Perturbation Theory . . . . . . . . . . . . . . . . . 80
5.1.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Rate of Energy Transfer in Reciprocal Media . . . . . . . . . . . . . . . . . . 88
5.2.1 Applying Macroscopic QED . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Controlling Intermolecular Coupling 105
6.1 Superabsorption in Light Harvesting . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Photosynthesis and Light Harvesters . . . . . . . . . . . . . . . . . . 106
6.1.2 Fundamentals of Superabsorption . . . . . . . . . . . . . . . . . . . . 107
6.1.3 Superabsorption in Nanostructures . . . . . . . . . . . . . . . . . . . 109

6.2 Ring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.1 Setup of Ring System . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS vii

6.2.2 Parallel and Tilted Setup Comparison . . . . . . . . . . . . . . . . . 113
6.3 Demonstration of Coupling Control . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Colinear Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Parallel Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Parallel Spherical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.1 Setup of Sphere inside Ring . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Application to Solar Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.1 Calculating the Power Output . . . . . . . . . . . . . . . . . . . . . . 123
6.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusion 128

A Classical Electromagnetism in Fourier Space 131

B Green’s Tensor Expressions 135
B.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.2 Reciprocal Half Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2.1 Parallel arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.2.2 Colinear arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.2.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.3 Non-reciprocal Half-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.3.1 Parallel Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.3.2 Colinear Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.4 Spherical Green’s tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.4.1 Bulk Green’s tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.4.2 Scattering Green’s tensor . . . . . . . . . . . . . . . . . . . . . . . . . 153



CHAPTER 1

Introduction

Macroscopic bodies can exert a powerful influence on the way atoms and molecules interact in
their presence. An understanding of an environment’s impact can allow for the engineering of
certain microscopic processes to achieve particular results. For this, we require macroscopic
backgrounds to be introduced into the quantum description, which can be achieved using
macroscopic quantum electrodynamics [4, 5], in which environments are described by their
effective properties, avoiding the atomistic approach [6] which becomes extremely cumber-
some when considering macroscopic bodies.

One such microscopic process is the transport of energy between atoms/molecules, which is
essential in many areas of science, such as synthetic light harvesting [7], the “spectroscopic
ruler” [8] and radiation biology [9]. The most fundamental of the intermolecular energy
transfer processes is resonant energy transfer (RET), which facilitates energy transport in
plants. It involves the de-excitation of a donor atom/molecule, releasing a virtual photon
which is absorbed by an acceptor, causing it to excite. This process, first introduced by
Förster in 1946 [10, 11] and later developed into a fully quantum theory by Gomberoff and
Power [12], was first derived for a general macroscopic environment in 2002 [13]. Since then,
two-body RET has been studied in the presence of various specific backgrounds [14–17].

An area of interest in this field is the influence that the non-reciprocity of a medium can have
on intermolecular energy transport. Reciprocity dictates much about how we experience
the world, for example how we can be sure that if we can hear someone then they can
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CHAPTER 1. INTRODUCTION 2

hear us too. In the context of light, we would assume that information transmitted by a
laser would be the same if the positions of the source and observation points were switched.
However, non-reciprocal media can break this symmetry (see [18] for a review), making them
advantageous in the design of devices which utilise one-way propagation, e.g. optical isolators
[19]. There are several paths to achieving non-reciprocity, the most common being the
Faraday effect [20], with others including methods based on inherently nonlinear waveguides
[21–25], spatiotemporal modulation [26–30] and optomechanical coupling [31]. In this thesis,
a general formula for RET in a non-reciprocal environment is calculated and used to explore
how an environment can be adapted to promote one-way energy transfer. The results from
this section have been published in Ref. [2].

The complexity of the description of RET in a macroscopic background is significantly in-
creased with the addition of a third molecule [32–37]. In this work, we make use of canonical
transformations to simplify the effective Hamiltonian of a three-body system, leading to an
alternative method for the calculation of a general rate formula. This work has been pub-
lished in Ref. [1]. Calculations which include a mediating body have previously been carried
out for simple homogenous environments [38, 39], but in this work we extend this to arbitrary
backgrounds.

Macroscopic environments can also influence dipolar interactions, which are fundamental in
many diverse scientific areas, (see e.g. [40–45]). In particular, dipole-dipole interactions can
enhance absorption rates in optical systems [46, 47], for example in synthetic light-harvesters
[48–55]. Our work, published in Ref. [3], explores the possibility of using a macroscopic body
to manipulate dipolar interactions in such a system to induce superabsorption, which could
be beneficial in improving solar energy conversion.

The structure of this work is as follows. We begin with an overview of macroscopic quantum
electrodynamics (QED) in chapter 2, the crucial theoretical framework employed in this
thesis. We review how the electromagnetic field is quantized within this framework while
taking into account absorbing and dispersing media. In particular, we focus on the differences
in how this must be approached when considering reciprocal vs non-reciprocal media. We
also examine the Green’s tensor, a critical component of macroscopic QED, and how its
properties vary depending on the reciprocity of the media considered. The specific forms of
the Green’s tensor for various environmental setups will be covered in appendix B.

We next turn our attention to the process of RET. Through perturbation theory, we calculate
a general formula for the rate of RET between two bodies, making use of macroscopic QED
to account for an external environment. Firstly, chapter 3 will consider reciprocal media
only, and to demonstrate some proof-of-principles, we will apply our derived rate expression
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to some simple systems, exploring how the properties of the environment and the positions
of the molecules affect the rate of energy transfer between them.

We then extend our consideration to include non-reciprocal media in chapter 4, again deriving
a general rate expression for two-body RET, before examining a simple setup containing
non-reciprocal media. We will focus on the conditions that must be met by the system to
induce a change in the rate of interaction between two molecules when their positions are
swapped, allowing us to see how the medium’s properties can be manipulated to maximise
energy transfer in one direction over the other. An application of this will then be discussed,
presenting results from our paper, Ref. [2] in which inverse design is used to optimize one-way
energy transfer in an optical isolator.

In chapter 5, the influence of the addition of a third mediating body on the energy transfer
between two molecules will be examined. Canonical transformations will be used to produce
a new effective Hamiltonian and thus reduce the order of perturbation theory required to
calculate a general formula for the rate of energy transfer in such a system. Again, macro-
scopic QED will be utilised to account for the effects of an external environment. This work
has been published in our paper, Ref. [1]. Some simple systems containing three bodies and
a macroscopic environment will then be examined as a proof-of-principle for the use of this
formula.

We lastly investigate how the intermolecular coupling in a system can be engineered through
the manipulation of macroscopic environments. In particular, we study how this principle
could be applied to induce superabsorption in a system of optical dipoles, thus improving
its suitability for use in synthetic light harvesting. After an overview of the basics of pho-
tosynthesis and superabsorption, we introduce a system of a ring of dipoles for which it has
previously been shown in Ref. [46] that a superabsorbing state can be reached and sustained
through careful tilting of the dipole moments. We aim to achieve the same effect through
the use of a macroscopic environment, thus allowing the dipole moments to remain parallel,
enhancing the system’s potential for superabsorption. As a proof-of-principle, we initially
consider a simple situation in which the properties of a macroscopic environment can be be
exploited to control the intermolecular coupling of two bodies, before examining how the
same principles can be applied to the ring system. Finally, we present the results from our
paper, Ref. [3], which models the system as a quantum heat engine and calculates how its
power output scales with the number of dipoles making up the ring.



CHAPTER 2

Macroscopic Quantum Electrodynamics

This thesis focuses on how intermolecular energy transfer can be affected by macroscopic
environments, so it is crucial to be able to account for macroscopic media when quantizing
the electromagnetic field. The theoretical framework used to achieve this is macroscopic
quantum electrodynamics (macroscopic QED), and the aim of this chapter is to provide an
overview of this theory to lay the groundwork for the thesis at hand.

Macroscopic QED facilitates the quantum description of macroscopic objects [4, 5, 56, 57]
by describing their effective properties, such as overall permittivity and permeability. This
means that the effects of an environment near the system can be accounted for more readily
than the atomistic approach in [6], where there are so many individual particles making up
a medium that following the dynamics of all of them becomes incredibly complex, if not
impossible. The presence of such an environment, which can include arbitrarily shaped,
dispersing, and absorbing material bodies, will be accounted for via the Green’s tensor.

In this chapter, we give an overview of the derivation of the fundamentals of macroscopic
QED. Beginning with the classical theory and then quantizing the field, we focus on the
difference in methods required when dealing with “simple” reciprocal media compared with
more general non-reciprocal media (what is meant by “simple” and general will be covered
in the next section). We will then study the Green’s tensor in more detail, looking at its
definition for different types of media and along with some useful properties.

4
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2.1 Field Quantizations

We begin by reviewing some basic concepts of classical electrodynamics in the presence
of magnetoelectric media. In this work, we will focus on the case of no free charges, so
that the only charges present are the bound charges contained within the media. We then
quantize the field by connecting phenomenological noise fields to quantized excitations of
the combined body-field system. In this section, we concentrate on how our methods must
be adjusted depending on the properties of the media we are dealing with. In particular,
we look at the “simple” case of local, isotropic, reciprocal, magnetodielectric media with
no cross-susceptibilities, compared with more “general” non-local, non-isotropic and non-
reciprocal media, where the fluctuations of the electric and magnetic field are both coupled
to both the polarization and magnetization.

2.1.1 Quantization of Field in Reciprocal Media

In this section, we consider only “simple” magnetodielectric media, by which we mean that the
response of the medium is local, isotropic, reciprocal, and the electric/magnetic field fluctua-
tions are decoupled from the polarization/magnetization, resulting in no cross-susceptibilities.
We first give an overview of the description of the classical field in the presence of reciprocal
media, then use this to construct a quantum theory for the field.

Classical Field in Reciprocal Media

In frequency space, a system with no free charges in a reciprocal medium is described by the
Maxwell equations [58],

∇ ·B(r, ω) = 0, (2.1a)

∇ ·D(r, ω) = 0, (2.1b)

∇×E(r, ω)− iωB(r, ω) = 0, (2.1c)

∇×H(r, ω) + iωD(r, ω) = 0, (2.1d)

and the constitutive relations,

D(r, ω) = ε0

[
E(r, ω) +

∫
d3r′χ(r, r′, ω) ·E(r′, ω)

]
+ PN(r, ω), (2.2a)

H(r, ω) =
1

µ0

[
B(r, ω)−

∫
d3r′ ζ(r, r′, ω) ·B(r′, ω)

]
−MN(r, ω), (2.2b)
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where χ and ζ are the electric and magnetic susceptibility response functions of the medium,
respectively, and the medium’s fluctuations are described by the noise polarization, PN, and
noise magnetization, MN. The derivations of these constitutive relations can be found in
App. A. When considering only “simple” reciprocal media, we can assume that the medium
response is local,

χ(r, r′, ω) =χ(r, ω)δ(r − r′), (2.3)

ζ(r, r′, ω) = ζ(r, ω)δ(r − r′), (2.4)

and isotropic,

χ(r, ω) =χ(r, ω)I, (2.5)

ζ(r, ω) = ζ(r, ω)I, (2.6)

simplifying the constitutive relations for reciprocal media to,

D(r, ω) = ε0ε(r, ω)E(r, ω) + PN(r, ω), (2.7a)

H(r, ω) =
1

µ0µ(r, ω)
B(r, ω)−MN(r, ω), (2.7b)

where we have introduced the electric permittivity,

ε(r, ω) = 1 + χ(r, ω), (2.8)

and the magnetic permeability,

µ(r, ω) =
1

1− ζ(r, ω)
, (2.9)

of the medium.

Substituting the constitutive relations, (2.7a) and (2.7b), into (2.1d) we find,

∇× 1

µ0µ(r, ω)
B(r, ω)−∇×MN(r, ω) + iωε0ε(r, ω)E(r, ω) + iωPN(r, ω) = 0. (2.10)

Then substituting in the rearranged (2.1c), B(ω) = − i
ω
∇ × E(ω), and making use of the
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identity ε0µ0 = c−2 we obtain an inhomogeneous Helmholtz equation for the electric field,

i

ω

[
−∇× 1

µ0µ(r, ω)
∇×+ω2ε0ε(r, ω)

]
E(r, ω) = ∇×MN(r, ω)− iωPN(r, ω)

⇒

[
∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
E(r, ω) = iµ0ωjN(r, ω), (2.11)

where the source term is the noise current density,

jN(r, ω) = ∇×MN(r, ω)− iωPN(r, ω). (2.12)

In the free space case, the Helmholtz equation is homogeneous, so this source term encapsu-
lates the effect of the medium. To solve (2.11), we introduce the Green’s tensor for reciprocal
media which satisfies the Helmholtz equation [4, 59],[

∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′), (2.13)

with δ(r − r′) = diag(1, 1, 1)δ(r − r′), and obeys the boundary condition,

G(r, r′, ω)→ 0 for |r − r′| → ∞. (2.14)

More information on the defining Helmholtz equations of the Green’s tensor will be given
in section 2.2. Using the Green’s tensor, we find that a formal solution to this Helmholtz
equation is given by,

E(r, ω) = iµ0ω

∫
d3r′G(r, r′, ω) · jN(r, ω). (2.15)

A classical effect of the medium compared to the vacuum case is that the electromagnetic
field becomes a fluctuating quantity, caused by the source fluctuations. The fluctuation-
dissipation theorem relates the fluctuations of a physical quantity to the imaginary part of
the respective response function [60, 61]. In our case the fluctuations of the medium are
described by the noise polarization and magnetization, and the response functions are the
electric and magnetic susceptibilities of the medium. Therefore, the fluctuation-dissipation
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theorem reads [4],

⟨∆PN(r, ω)∆P ∗
N(r

′, ω′)⟩cl =
kBT

πω
ε0 Imχ(r, ω)δ(r − r′)δ(ω − ω′), (2.16)

⟨∆MN(r, ω)∆M ∗
N(r

′, ω′)⟩cl =
kBT

πω

Im ζ(r, ω)

µ0

δ(r − r′)δ(ω − ω′), (2.17)

where kB is the Boltzmann constant, T is the temperature and ∆f = f − ⟨f⟩cl denotes the
classical fluctuations of a quantity f . If the imaginary parts of the response functions are
positive it means that the medium is absorbing, whereas negative means it is amplifying [4].
We can see from the above equations that any absorbing system at a non-zero temperature
must have fluctuations. We also note that since these noise terms represent fluctuations, they
vanish on their classical average [4],

⟨PN⟩cl = 0, ⟨MN⟩cl = 0. (2.18)

Now that we understand the behaviour of the classical field in reciprocal media, we can
transition from classical to quantum theory.

Quantization of Field in Reciprocal Media

When dealing with the free field, i.e. when no media is present, we can apply canonical
quantization to the electromagnetic field to build a quantum theory. However, in the presence
of media, we cannot easily formulate a Hamiltonian from the respective classical theory [4],
so instead we aim to construct a quantum theory for the field in the presence of media by
ensuring that the behaviour resembles the classical field as closely as possible, while making
sure the free-space QED is reproduced in the absence of charges.

To ensure that the quantized field’s behaviour replicates that of the classical field, we require
that the classical Maxwell equations (2.1) and the constitutive relations (2.7) hold. To this
end, the classical fields are replaced with operator-valued quantum observables so that the
Maxwell equations for the quantized field are,

∇ · B̂(ω) =0, (2.19a)

∇ · D̂(ω) =0, (2.19b)

∇× Ê(ω)− iωB̂(ω) =0, (2.19c)

∇× Ĥ(ω) + iωD̂(ω) =0, (2.19d)
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and the constitutive relations are,

D̂(r, ω) =ε0ε(r, ω)Ê(r, ω) + P̂N(r, ω), (2.20a)

Ĥ(r, ω) =
1

µ0µ(r)
B̂(r, ω)− M̂N(r, ω). (2.20b)

We also must ensure that the quantum fluctuations behave in the same way as the classical
ones, meaning that the noise field operators, P̂N and M̂N, must vanish on their ground state
average, as in the classical case (2.18), and obey the fluctuation-dissipation theorem [60, 61],〈

S
[
∆P̂N(r, ω)∆P̂ †

N(r
′, ω′)

]〉
=

ℏ
2π
ε0 Imχ(r, ω)δ(r − r′)δ(ω − ω′), (2.21)〈

S
[
∆M̂N(r, ω)∆M̂ †

N(r
′, ω′)

]〉
=

ℏ
2π

Im ζ(r, ω)

µ0

δ(r − r′)δ(ω − ω′), (2.22)

where S
[
âb̂
]
= 1

2

(
âb̂+ b̂â

)
is the symmetrized operator product. We can see that in making

the transition from classical to quantum theory, the average thermal energy kBT that appears
in the classical fluctuation-dissipation theorem, (2.16) and (2.17), has been replaced with the
quantum ground-state energy 1

2
ℏω.

These requirements can be fulfilled by introducing fundamental creation and annihilation
operators, f̂ †

λ(r, ω) and f̂λ(r, ω), respectively, which obey the bosonic commutation relations,

[
f̂λ(r, ω), f̂λ(r

′, ω′)
]
=
[
f̂ †
λ(r, ω), f̂

†
λ(r

′, ω′)
]
= 0, (2.23a)[

f̂λ(r, ω), f̂
†
λ(r

′, ω′)
]
= δλλ′δ(r − r′)δ(ω − ω′), (2.23b)

where δ(r − r′) = diag(1, 1, 1)δ(r − r′) and λ, λ′ = e,m. The vacuum state of the electro-
magnetic field is denoted

∣∣{0}〉, such that,

f̂λ(r, ω)
∣∣{0}〉 = 0 ∀λ, r, ω , (2.24)

and the excited states of the system are then reached with repeated action of the creation
operator,

∣∣1λ(r, ω)
〉
= f̂ †

λ(r, ω)
∣∣{0}〉 . (2.25)

From the above definition of the ground state (2.24), we can see that both the creation and
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annihilation operators vanish on their ground-state average,〈
f̂λ(r, ω)

〉
=
〈
{0}
∣∣ f̂λ(r, ω)

∣∣{0}〉 = 0, (2.26)〈
f̂ †
λ(r, ω)

〉
=
〈
{0}
∣∣ f̂ †

λ(r, ω)
∣∣{0}〉 = 0. (2.27)

To satisfy the fluctuation-dissipation theorem, we can relate P̂N and M̂N to the creation and
annihilation operators via,

P̂N(r, ω) = i

√
ℏε0
π

Im ε(r, ω)f̂e(r, ω), (2.28)

M̂N(r, ω) =

√
ℏ
πµ0

Imµ(r, ω)

|µ(r, ω)|2
f̂m(r, ω), (2.29)

so that (2.21) and (2.22) hold as required. We can also see from (2.26) that the noise
polarization and magnetization vanish on their ground-state average as required,〈

P̂N

〉
= 0,

〈
M̂N

〉
= 0. (2.30)

Now we have decided on our forms for the noise polarization and magnetization, we can follow
the same method as for the classical field in the previous subsection to create a Helmholtz
equation for the electric field in reciprocal media by combining (2.19c), (2.19d), (2.20a) and
(2.20b) to obtain,[

∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
Ê(r, ω) = iµ0ωĵN(r, ω), (2.31)

which, in analogy with the classical case, can be formally solved via,

Ê(r, ω) = iµ0ω

∫
d3r′G(r, r′, ω) · ĵN(r′, ω). (2.32)

If we substitute in our definition for the noise current density,

ĵN(r, ω) = ∇× M̂N(r, ω)− iωP̂N(r, ω), (2.33)

and substitute in our expressions for the noise polarization and magnetization, (2.28) and
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(2.29) respectively, we can express the electric field in terms of the fundamental fields,

Ê(r, ω) = iµ0ω

∫
d3r′

√ ℏ
πµ0

Imµ(r′, ω)

|µ(r′, ω)|2
G(r, r′, ω) ·∇′ × f̂m(r

′, ω)

+ω

√
ℏε0
π

Im ε(r′, ω)G(r, r′, ω) · f̂e(r
′, ω)

]
,

= i

∫
d3r′

−ω
c

√
ℏ
πε0

Imµ(r′, ω)

|µ(r′, ω)|2
G(r, r′, ω)×

←−
∇′ · f̂m(r

′, ω)

+
ω2

c2

√
ℏ
πε0

Im ε(r′, ω)G(r, r′, ω) · f̂e(r
′, ω)

]
, (2.34)

where we have performed partial integration and again made use of the identity ε0µ0 =

c−2 to obtain the second equality. Here, the operation
←−
∇ is mathematically defined as[

T ×
←−
∇
]
ij
(r, r′) = εjkl∂

′
l Tik(r, r

′). Finally, writing in terms of frequency components via,

f̂ =

∫ ∞

0

dωf̂(ω) + H.c. (2.35)

and splitting the electric and magnetic contributions, we obtain,

Ê(r) =

∫ ∞

0

dω Ê(r, ω) + H.c.

=
∑

λ=e,m

∫ ∞

0

dω

∫
d3r′ Gλ(r, r

′, ω) · f̂λ(r
′, ω) + H.c. (2.36)

where we have defined the G coefficients as,

Ge(r, r
′, ω) = i

ω2

c2

√
ℏ
πε0

Im ε(r′, ω)G(r, r′, ω), (2.37)

Gm(r, r
′, ω) = −iω

c

√
ℏ
πε0

Imµ(r′, ω)

|µ(r′, ω)|2
G(r, r′, ω)×

←−
∇′. (2.38)

This definition of the electric field will be utilized extensively in the coming chapters. In the
next subsection, we extend our consideration to more “general” non-reciprocal media.

2.1.2 Quantization of Field in Non-reciprocal Media

We now turn our attention to how the electromagnetic field behaves in the presence of general
non-local, non-isotropic and non-reciprocal media. The non-local and non-isotropic natures
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of the material are easy to take into consideration, namely by not making the simplifications
given by (2.64) and (2.65), respectively. On the other hand, non-reciprocity is more difficult
to account for.

In the context of electromagnetism, non-reciprocity means that a source-generated field at
an observation point is not the same when the source and observation points are inter-
changed [62]. An important feature of non-reciprocal media is that an electric response
can be induced via the magnetic field, and vice versa [63, 64]. This means that the polar-
ization and magnetization can no longer be described simply by electric permittivities and
magnetic permeabilities (as in (2.20)), but cross-susceptibilities must also be included. Fur-
ther to this, and crucially, we need to deal with the complication that Lorentz reciprocity,
GT(r′, r, ω) = G(r, r′, ω), does not hold in non-reciprocal media (as we will see in section
2.2.1). This section follows Ref. [65].

Classical Field in Non-reciprocal Media

In this section we will discard the spatial and frequency arguments unless necessary for
understanding. Although the Maxwell equations (2.1) are unchanged by the reciprocity of
the material, the polarization and magnetization fields respond differently via,

P = ε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2 − I
)
⋆E +

√
ε0
µ0

ξ1 ⋆ µ
−1 ⋆B + PN, (2.39a)

M =
1

µ0

(
I− µ−1

)
⋆B +

√
ε0
µ0

µ−1 ⋆ ξ2 ⋆E +MN, (2.39b)

where the medium is characterized by its permittivity ε(r, r′, ω), permeability µ(r, r′, ω),
and magnetoelectric susceptibilities ξ1(r, r

′, ω) and ξ2(r, r
′, ω). We have also introduced an

abbreviation denoting the spatial convolution of a tensor and vector field or between two
tensor fields,

[X ⋆ v] (r) ≡
∫
d3sX(r, s) · v(s),

[X ⋆ Y ] (r, r′) ≡
∫
d3sX(r, s) · Y (s, r′). (2.40)
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We can use equations (2.39) along with the relations D = ε0E +P and H = µ−1
0 B−M to

build the relevant constitutive relations for non-reciprocal media,

D = ε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2
)
⋆E +

√
ε0
µ0

ξ1 ⋆ µ
−1 ⋆B + PN, (2.41a)

H =
1

µ0

µ−1 ⋆B −
√
ε0
µ0

µ−1 ⋆ ξ2 ⋆E −MN, (2.41b)

which reduce to the reciprocal constitutive relations, (2.7), when the cross-susceptibilities
are zero and we assume the medium to be local and isotropic through the replacements
ε(r, r′) = ε(r)δ(r − r′)I and µ(r, r′) = µ(r)δ(r − r′)I.

To find a Helmholtz equation for the electric field in a non-reciprocal medium, we substitute
these constitutive relations into (2.1d), giving us,

− 1

iωµ0

∇× µ−1 ⋆B −
√
ε0
µ0

∇× µ−1 ⋆ ξ2 ⋆E

+ iωε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2
)
⋆E +

√
ε0
µ0

ξ1 ⋆ µ
−1 ⋆B = ∇×MN − iωPN. (2.42)

Combining with (2.1c) as we did for the reciprocal case, defining the noise current density by
(2.12) and performing integration by parts, we obtain the inhomogeneous Helmholtz equation
for the electric field,

− 1

iωµ0

∇× µ−1 ×
←−
∇ ⋆E −

√
ε0
µ0

(
∇× µ−1 ⋆ ξ2 + ξ1 ⋆ µ

−1 ×
←−
∇
)
⋆E

+ iωε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2
)
⋆E = jN

⇒

[
∇×∇×−ω

2

c2

]
E − iµ0ωQ ⋆E = iµ0ωjN, (2.43)

where we have introduced the conductivity tensor [65],

Q =
1

iωµ0

∇×
(
µ−1 − I

)
×
←−
∇ +

√
ε0
µ0

(
∇× µ−1 ⋆ ξ2 + ξ1 ⋆ µ

−1 ×
←−
∇
)

− iωε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2 − I
)
, (2.44)

where I has been defined such that T ⋆ I = T for any tensor T . This Helmholtz equation
(2.43) reduces to (2.11) as required when reciprocal magnetodielectric media is considered,
as shown in the next section 2.2.1. As for the reciprocal case, the Helmholtz equation can
be solved by means of the non-reciprocal Green’s tensor which satisfies the more general
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Helmholtz equation [65],[
∇×∇×−ω

2

c2

]
G(r, r′)− iµ0ω [Q ⋆G] (r, r′) = δ(r − r′), (2.45)

and the boundary condition (2.14). In analogy with the reciprocal case, the formal solution
for the electric field is again found to be,

E(r, r′) = iµ0ω [G ⋆ jN ] (r, r
′). (2.46)

Now, as in the previous section, we can transition from classical to quantum theory.

Quantization of Field in Non-reciprocal Media

As in the reciprocal case, we construct a quantum theory for the electromagnetic field by
replicating the behaviour of the classical field. Therefore, the quantized Maxwell equations
are the same as in the reciprocal case, (2.19), but the quantized constitutive relations take the
form of (2.41) with the classical fields replaced with operator-valued quantum observables.

Firstly, it is useful to decompose the conductivity tensor (2.44),

Q(r, r′, ω) =
1

iω

(
−iω, ∇×

)
·

M(r, r′, ω)−

(
ε0 0

0 −µ−1
0

) ·
 iω

−×
←−
∇

 , (2.47)

where we have defined the matrix,

M =

ε0
[
ε− ξ1 ⋆ µ

−1 ⋆ ξ2
] √

ε0
µ0
ξ1 ⋆ µ

−1√
ε0
µ0
µ−1 ⋆ ξ2 − 1

µ0
µ−1

 . (2.48)

It can also be shown that,

Re[Q] =
1

ω

(
−iω, ∇×

)
· Im[M] ·

 iω

−×
←−
∇

 . (2.49)

where due to the violation of Lorentz reciprocity (discussed in the next section), it is conve-
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nient to introduce generalized real and imaginary parts of a tensor field according to,

Re[T (r, r′)] =
1

2
[T (r, r′) + T †(r′, r)], (2.50)

Im[T (r, r′)] =
1

2i
[T (r, r′)− T †(r′, r)]. (2.51)

When considering reciprocal media where Lorentz reciprocity (2.75) holds, these expressions
reduce to the ordinary definitions of real and imaginary parts,

Re[T (r, r′)] =
1

2
[T (r, r′) + T ∗(r, r′)], (2.52)

Im[T (r, r′)] =
1

2i
[T (r, r′)− T ∗(r, r′)]. (2.53)

To satisfy the fluctuation dissipation theorem, we relate the noise polarization and magneti-
zation for non-reciprocal media to the creation and annihilation operators in a similar way
to the previous section, (

P̂N

M̂N

)
=

√
ℏ
π
V ⋆

(
f̂e

f̂m

)
, (2.54)

where f̂ †
λ and f̂λ are defined in the same way as in the previous section, obeying the bosonic

commutation relations (2.23), and we have introduced the matrix V such that it satisfies,

V ⋆ V† = Im[M], (2.55)

where M is defined by (2.48). The noise current density for non-reciprocal media is then
given by,

ĵN =

√
ℏω
π
R ⋆ f̂ , (2.56)

where R is a square root of the positive definite tensor field Re[Q],

R ⋆R† = Re[Q]. (2.57)

Substituting this into our expression for the electric field, (2.46), we find that we can express
the electric field in non-reciprocal media as,

E(r, ω) = iµ0ω

√
ℏω
π

[
G ⋆R ⋆ f̂

]
(r, ω). (2.58)
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It is useful to rewrite in terms of frequency components as,

E(r) =

∫ ∞

0

dωE(r, ω) +H.c.

= iµ0

√
ℏ
π

∫ ∞

0

dω ω3/2
[
G ⋆R ⋆ f̂

]
(r, ω) +H.c.

=

∫ ∞

0

dω

∫
d3sF (r, s, ω) · f̂(s, ω) +H.c. (2.59)

where we have defined,

F (r, s, ω) = iµ0

√
ℏ
π
ω3/2

∫
d3r′G(r, r′, ω) ·R(r′, s, ω), (2.60)

F †(r, s, ω) = −iµ0

√
ℏ
π
ω3/2

∫
d3r′G†(r, r′, ω) ·R†(r′, s, ω). (2.61)

This is the form of the quantized electric field that we will use in chapter 4 when investigating
the effects of non-reciprocal environments on intermolecular energy transfer.

Now that we have used the Green’s tensor to account for macroscopic environments in our
quantization of the electric field, in the next section, we will look at the Green’s tensor in
more detail to gain a deeper understanding of how it can be used.

2.2 Green’s Tensor

This section focusses on the Green’s tensor, which plays a central role in macroscopic QED.
We begin by comparing the defining Helmholtz equations that were presented in the previous
section for “simple” reciprocal media and “general” non-reciprocal media, and show how they
are connected. We then present and derive some general properties of the Green’s tensor,
including Lorentz reciprocity and integral relations that will be made use of in subsequent
chapters. Specific forms the Green’s tensor takes can be found in appendix B.

2.2.1 Definition and Properties

In the previous section 2.1, the Green’s tensor was introduced as the solution to two Helmholtz
equations, (2.13) for “simple” reciprocal magnetodielectric media in subsection 2.1.1 and
(2.45) for “general” non-reciprocal media in subsection 2.1.2, with the boundary condition
(2.14). In this section, we show that these Helmholtz equations are equivalent, with (2.45)
being the general form, reducing to (2.13) when “simple” reciprocal magnetodielectric media
is considered.
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Defining Helmholtz Equations

We begin with the general Helmholtz equation (2.45) that is valid for non-reciprocal media,[
∇×∇×−ω

2

c2

]
G(r, r′, ω)− iµ0ω

∫
d3sQ(r, s, ω) ·G(s, r′, ω) = δ(r − r′), (2.62)

where Q is the conductivity tensor given in (2.44) and again below,

Q =
1

iωµ0

∇×
(
µ−1 − I

)
×
←−
∇ +

√
ε0
µ0

(
∇× µ−1 ⋆ ξ2 + ξ1 ⋆ µ

−1 ×
←−
∇
)

− iωε0
(
ε− ξ1 ⋆ µ

−1 ⋆ ξ2 − I
)
. (2.63)

where ε is the electric permittivity, µ is the magnetic permeability and ξ1 and ξ2 are the
medium’s magnetoelectric susceptibilities. When considering “simple” reciprocal magnetodi-
electric media only, we assume that the cross-susceptibilities ξ1 and ξ2 are zero, and we
consider the response of the medium to be local,

ε(r, r′, ω) =ε(r, ω)δ(r − r′), (2.64a)

µ(r, r′, ω) =µ(r, ω)δ(r − r′), (2.64b)

and isotropic,

ε(r, ω) =ε(r, ω)I, (2.65a)

µ(r, ω) =µ(r, ω)I. (2.65b)

Applying to the Helmholtz equation (2.62) gives us,[
∇×∇×−ω

2

c2
− iµ0ωQ(r, ω)

]
G(r, r′, ω) = δ(r − r′), (2.66)

with

Q(r, r′, ω) =Q(r, ω)δ(r − r′)I

=

{
1

iωµ0

∇×
[

1

µ(r, ω)
− 1

]
×
←−
∇ − iωε0

[
ε(r, ω)− 1

]}
δ(r − r′)I. (2.67)
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Combining these and performing integration by parts leaves us with the well-known Helmholtz
equation for reciprocal magnetodielectric media,[

∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′), (2.68)

which is (2.13) in the previous section 2.1.1. The other defining feature of the Green’s tensor
is that is obeys the boundary condition,

G(r, r′, ω)→ 0 for |r − r′| → ∞, (2.69)

which is assumed for both reciprocal and non-reciprocal media.

In the next section, we discuss and derive some useful properties of the Green’s tensor,
including the defining difference between reciprocal and non-reciprocal media.

Properties

The permittivity, permeability and magnetoelectric cross-susceptibilities of the medium are
causal response functions, and so are also analytic functions of frequency in the upper half
of the complex frequency plane. Since these are the functions that appear in both defining
equations of the Green’s tensor, (2.68) and (2.62), we can deduce that the Green’s tensor is
also an analytic function in the upper half of the complex ω plane [4].

Similarly, since the medium properties obey the Schwarz reflection principle, ε∗(ω) = ε(−ω∗),
µ∗(ω) = µ(−ω∗), ξ∗1,2(ω) = ξ1,2(−ω∗), we can infer that the Schwarz reflection principle is
also valid for the Green’s tensor,

G∗(r, r′, ω) = G(r, r′,−ω∗). (2.70)

We now derive the crucial Lorentz reciprocity relation that holds for reciprocal media and
not for non-reciprocal media. Considering reciprocal media only, the defining equation (2.68)
states that the Green’s tensor is the right inverse of the Helmholtz operator, so it must also
be the left-inverse of the Helmholtz operator,

G(r, r′, ω)

[
×
←−
∇′ 1

µ(r′, ω)
×
←−
∇′ − ω2

c2
ε(r′, ω)

]
= δ(r − r′). (2.71)
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After exchanging r and r′, this expression can be rewritten as,[
∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
GT(r′, r, ω) = δ(r − r′), (2.72)

where we have used the relation1,[
∇× 1

µ(r, ω)
∇×−ω

2

c2
ε(r, ω)

]
ij

=

[
×
←−
∇ 1

µ(r, ω)
×
←−
∇ − ω2

c2
ε(r, ω)

]
ji

. (2.73)

Now comparing (2.72) with the original defining equation for the reciprocal Green’s tensor
(2.68), we find that, for reciprocal media, Lorentz reciprocity [66, 67] holds,

GT
ij(r

′, r, ω) = Gji(r
′, r, ω) = Gij(r, r

′, ω), (2.74)

or equivalently,
GT(r′, r, ω) = G(r, r′, ω). (2.75)

To better understand this physically, we consider a point source at position r1 with orientation
e1 giving rise to an electric field at observation point at position r2 with orientation e2. The
component along the direction e2 at position r2 is given by e2 · G(r2, r1, ω) · e1. Lorentz
reciprocity tells us that the reverse situation, with exchanged positions and orientations, is
also connected by the same Green’s tensor, e2 ·G(r2, r1, ω) · e1 = e1 ·G(r1, r2, ω) · e2.

However, when we extend our consideration to include non-reciprocal media defined by
Helmholtz equation (2.62), we are unable to make the same arguments. In analogy with the
reciprocal case, the non-reciprocal Green’s tensor must be the left-inverse of the Helmholtz
operator as well as the right-inverse,

G(r, r′, ω)

[
×
←−
∇′ ×

←−
∇′ − ω2

c2

]
− iµ0ω

∫
d3sG(r, s, ω) ·Q(s, r′, ω) = δ(r − r′). (2.76)

By the same reasoning as the reciprocal case, after exchanging r and r′ the first term can be
rewritten,

Gij(r
′, r, ω)

[
×
←−
∇ ×

←−
∇ − ω2

c2

]
jk

=

[
∇×∇×−ω

2

c2

]
kj

GT
ji(r

′, r, ω). (2.77)

1The first term of the left hand side can be written using index notation as ∂kεkliµ−1∂mεmjl and the first
term of the right side is εjno∂nµ

−1εopi∂p. Making the index replacements p → k, o → l and n → m in the
right hand side and rearranging, these expressions can be shown to be equivalent.
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Figure 2.1: Figure adapted from [4]. Distinction between bulk G(0) and scattering G(1)

Green’s tensors for piecewise homogeneous media.

However, we cannot do the same for the second term, since Qij(r, s) = Qji(s, r) does not
necessarily hold for non-reciprocal media. Therefore, we deduce that Lorentz reciprocity does
not hold for non-reciprocal media,

GT
ij(r

′, r, ω) = Gji(r
′, r, ω) ̸= Gij(r, r

′, ω). (2.78)

Physically, this means the Green’s tensor that connects a source at position r1 with orien-
tation e1 with the induced field at position r2 with orientation e2 is not the same Green’s
tensor that connects the source and field in the reverse situation, with the positions and
orientation exchanged, e2 ·G(r2, r1, ω) · e1 ̸= e1 ·G(r1, r2, ω) · e2.

Lorentz reciprocity is the defining difference between non-reciprocal and reciprocal media,
and is a property that will be extensively used in later chapters.

Piecewise media

In later chapters, we study environments made up of piecewise homogeneous bodies, in which
we can assume that ε(r, ω) and µ(r, ω) are piecewise constant functions of position. We
divide the volume of interest into homogeneous regions Vi, with corresponding permittivity
and permeability functions εi(ω) and µi(ω), as in figure 2.1.

If the field point r is in the region Vi but the source point r′ is not, then δ(r − r′) → 0,
so the left-hand side of the defining Helmholtz equations, (2.62) and (2.68), are zero. The
solution of the homogeneous Helmholtz equations is known as the scattering Green’s tensor
G(1)(r, r′, ω).
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If instead both r and r′ are in Vi, then the Helmholtz equations are inhomogeneous, and a
particular solution must be added to G(1) to reach the full solution. The particular solution
is chosen to be the case when Vi would extend over all space, and is called the bulk Green’s
tensor G(0)(r, r′, ω). For a piecewise homogeneous system, the full solution can be written
as,

G(r, r′, ω) =

{
G(0)(r, r′, ω) +G(1)(r, r′, ω) for r ∈ Vi and r′ ∈ Vi
G(1)(r, r′, ω) for r ∈ Vi and r′ /∈ Vi

(2.79)

So, G(0) describes the field at r as if it had been induced by a source at r′ if all space was
filled with the homogeneous material making up Vi. G(1) then gives the field contribution due
to reflection at and transmission through regions with different magneto-electric properties.
These two contributions are represented in figure 2.1.

In the rest of this work, we will be considering setups consisting of a single homogeneous
body in a vacuum where both the source and observation points are in the vacuum. This
means that G(0)(r, r′, ω) will be the free-space Green’s tensor given in appendix B.1, and
G(1)(r, r′, ω) will be determined by the geometry and material properties of the body in
question.

2.2.2 Integral relations

In this section, we derive two important integral relations that will be useful in later chapters.
The first is one that holds for “simple” reciprocal media only, and the second also holds when
more “general” non-reciprocal media are considered.

Reciprocal Media

Beginning with the defining equation of the Green’s tensor for “simple”2 reciprocal media
(2.13) for G(s, r′, ω), multiplying by G∗(r, s, ω) from the left and integrating over s we
obtain,

∫
d3sG∗(r, s, ω) ·

[
∇s ×

1

µ(s, ω)
∇s ×−

ω2

c2
ε(s, ω)

]
G(s, r′, ω) =

∫
d3sG∗(r, s, ω)δ(s− r′)

⇒ −
∫
d3sG∗(r, s, ω)

[
×
←−
∇s ·

1

µ(s, ω)
∇s ×+

ω2

c2
ε(s, ω)

]
G(s, r′, ω) =G∗(r, r′, ω),

(2.80)

2As explained at the beginning of section 2.1.1, we have defined “simple” media to be magnetodielectric,
local (2.64) and isotropic (2.65) with zero cross-susceptibilities ξ1 = 0 = ξ2.
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where we have integrated by parts and made use of the Green’s tensor’s defining boundary
condition (2.14). Taking the complex conjugate of (2.71) for G(r, s, ω), multiplying with
G(s, r′, ω) from the right and again integrating over s we find,

−
∫
d3sG∗(r, s, ω)

[
×
←−
∇s

1

µ∗(s, ω)
·∇s ×+

ω2

c2
ε∗(s, ω)

]
G(s, r′, ω) = G(r, r′, ω), (2.81)

where again we have applied partial integration and the boundary condition (2.14). Now
subtracting (2.80) from (2.81) we obtain,

−
∫
d3s

{
Imµ(s, ω)

|µ(s, ω)|2
[
G∗(r, s, ω)×

←−
∇s

]
·
[
∇s ×G(s, r′, ω)

]
−ω

2

c2
Im ε(s, ω)G∗(r, s, ω) ·G(s, r′, ω)

}
= ImG(r, r′, ω) (2.82)

where we have used Im z = (z − z∗)/(2i).

We can use this result to derive an integral relation for the coefficients Ge and Gm, defined
by (2.37) and (2.38) respectively. We calculate,

Ge(r, s, ω) ·G∗T
e (r′, s, ω) =

ω4

c4
ℏ
πε0

Im ε(s, ω)G(r, s, ω) ·G∗T (r′, s, ω), (2.83)

where we have made use of Lorentz reciprocity (2.75), and

Gm(r, s, ω) ·G∗T
m (r′, s, ω)

= −ω
2

c2
ℏ
πε0

Imµ(s, ω)

|µ(s, ω)|2
[
G(r, s, ω)×

←−
∇s

]
·
[
∇s ×G∗(s, r′, ω)

]
, (2.84)

where we have used
[
G∗(r′, s, ω)×

←−
∇s

]T
= −∇s ×G∗(s, r′, ω) for reciprocal media3. Sum-

ming these results and differentiating over s before comparing with the complex conjugate
of (2.82), we can see that,

∑
λ=e,m

∫
d3sGλ(r, s, ω) ·G∗T

λ (r′, s, ω) =
ℏµ0

π
ω2 ImG(r, r′, ω), (2.85)

where we have again made use of the identity ε0µ0 = c−2. This relation will be made use of
later on in Chapters 3 and 5.

3This can be verified using index notation:
[
G(r, r′)×

←−
∇′
]T

=
[
Gij(r, r

′)eiej × ∂kek
]T

=[
Gij(r, r

′)∂kεjkleiel
]T

= Gij(r, r
′)∂kεjklelei = −∂kεkjlGji(r

′, r)elei = −∇′ × G(r′, r) where we have
used εjkl = εkjl and Lorentz reciprocity means that Gij(r, r

′) = Gji(r
′, r) for reciprocal media.
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Non-reciprocal media

We now begin with the general Helmholtz equation for the Green’s tensor (2.62),[
∇×∇×−ω

2

c2

]
G(r, r′, ω)− iµ0ω

∫
d3sQ(r, s, ω) ·G(s, r′, ω) = δ(r − r′). (2.86)

where Q is defined in (2.63). It is useful to rewrite this expression as,

Ĥ · Ĝ = Î, (2.87)

where we have defined the Helmholtz operator Ĥ and the Green operator Ĝ, respectively,
as,

⟨r| Ĥ
∣∣r′〉 = [∇×∇×−ω2

c2

]
δ(r − r′)− iµ0ωQ(r, r′, ω), (2.88)

⟨r| Ĝ
∣∣r′〉 = G(r, r′, ω), (2.89)

and δ(r − r′) = diag(1, 1, 1)δ(r − r′). As in the reciprocal case, the fact that the Green’s
tensor is the right-inverse of the Helmholtz operator means that it is also the left-inverse,

Ĝ · Ĥ = Î. (2.90)

If we multiply this expression from the right by Ĝ† and multiply the hermitian conjugate of
this expression from the left by Ĝ and subtract those from each other, we find,

Ĝ · Ĥ · Ĝ† = Ĝ†, Ĝ · Ĥ† · Ĝ† = Ĝ, (2.91)

Ĝ ·
(
Ĥ − Ĥ†

)
· Ĝ† = Ĝ† − Ĝ. (2.92)

We now need to write this expression in coordinate space. Beginning with the right hand
side of (2.92),

⟨r| Ĝ† − Ĝ
∣∣r′〉 =(〈r′∣∣ Ĝ |r⟩)† − ⟨r| Ĝ ∣∣r′〉

=G†(r′, r, ω)−G(r, r′, ω)

=− 2i ImG(r, r′, ω), (2.93)
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where we have made use of the definition of general imaginary part of a tensor field (2.51).
We now look at the expanded left hand side of (2.92), split into,

⟨r| Ĝ · Ĥ · Ĝ† ∣∣r′〉 =∫ d3s

∫
d3s′ ⟨r| Ĝ |s⟩ ⟨s| Ĥ

∣∣s′〉 (〈r′∣∣ Ĝ ∣∣s′〉)†
=

∫
d3s

∫
d3s′ G(r, s, ω) ·

[
∇s ×∇s ×−

ω2

c2

]
I ·G†(r′, s′, ω)

− iµ0ω

∫
d3s

∫
d3s′G(r, s, ω) ·Q(s, s′, ω) ·G†(r′, s′, ω), (2.94)

and

⟨r| Ĝ · Ĥ† · Ĝ† ∣∣r′〉 =∫ d3s

∫
d3s′ ⟨r| Ĝ |s⟩

(〈
s′
∣∣ Ĥ |s⟩)† (〈r′∣∣ Ĝ ∣∣s′〉)†

=

∫
d3sG(r, s, ω) ·

[
∇s ×∇s ×−

ω2

c2

]
I ·G†(r′, s′, ω)

+ iµ0ω

∫
d3s

∫
d3s′G(r, s, ω) ·Q†(s′, s, ω) ·G†(r′, s′, ω). (2.95)

Subtracting these from each other we obtain,

⟨r| Ĝ·
(
Ĥ − Ĥ†

)
· Ĝ† ∣∣r′〉

= −iµ0ω

∫
d3s

∫
d3s′ G(r, s, ω) ·

[
Q(s, s′, ω) +Q†(s′, s, ω)

]
·G†(r′, s′, ω)

= −2iµ0ω

∫
d3s

∫
d3s′ G(r, s, ω) · Re

[
Q(s, s′, ω)

]
·G†(r′, s′, ω), (2.96)

where we have made use of the general definition of real and imaginary parts of a tensor
(2.50). Now equating (2.93) and (2.96), we reach the integral relation,∫

d3s

∫
d3s′G(r, s, ω) · Re

[
Q(s, s′, ω)

]
·G(r′, s′, ω) = Im

[
G(r, r′, ω)

]
, (2.97)

in agreement with [65]. This relation will be made use of in Chapter 4.

2.3 Summary and Conclusion

In this chapter, we have provided an overview of the quantization of the electric field in the
presence of “simple” reciprocal media, and also covered how the method must be adapted
to include more “general” non-reciprocal media. We then established the equivalence of the
ways that the Green’s tensor are defined for each medium type, before looking at a few of
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its properties that we will make use of later. In the next chapter, we investigate a system
of two bodies near a reciprocal environment and look at how the environment can affect the
rate of energy transfer between them.



CHAPTER 3

Two-body RET in a Reciprocal
Environment

In this chapter, we look at two-body resonant energy transfer (RET) and how macroscopic
environments can affect the rate of this interaction. We focus on how the system is affected
by “simple”1 reciprocal media only in this chapter (see subsection 2.1.1).

In order to determine a formula for the rate of energy transfer, we begin with the calculation
of the matrix element, firstly via standard perturbation theory and then the alternative
method of canonical perturbation theory, demonstrating that the same result is obtained
for each. Macroscopic QED is then applied to the Fermi Golden Rule to reach a formula
for the rate of energy transfer between two bodies in an arbitrary macroscopic environment
consisting of reciprocal media.

As a demonstration of some proof-of-principles, we then calculate an analytic expression for
the rate of energy transfer between two bodies in a vacuum, including the retarded and
non-retarded limits. We also provide analytic expressions for rate of energy transfer between
two bodies in a colinear arrangement near a semi-infinite half-space in the retarded and
non-retarded limits.

1As explained at the beginning of section 2.1.1, we have defined “simple” media to be magnetodielectric,
local (2.64) and isotropic (2.65) with zero cross-susceptibilities ξ1 = 0 = ξ2.

26
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Figure 3.1: System of two two-level atoms/molecules transmitting energy through the elec-
tromagnetic field due to resonance energy transfer. The donor begins in an excited energy
state and the acceptor in the ground state. Energy is emitted from the donor, transmitted
through the field and absorbed by the acceptor which becomes excited.

3.1 Calculation of Matrix Element

This section focuses on the calculation of a general expression for the matrix element for
the process of resonance energy transfer between two bodies, which will then be used in the
Fermi Golden Rule to obtain a formula for the rate of interaction.

We consider the simplest RET system, made up of two two-level atoms/molecules, a donor
and an acceptor. Energy from the donor is released via spontaneous decay and transferred to
the acceptor via the transmission of a virtual photon, as shown in figure 3.1. Such a system
is modelled by the Hamiltonian,

H =H0 +Hint

=H0 +HA
int +HD

int, (3.1)

where
H0 = Hrad +HA

mol +HD
mol, (3.2)

Hrad is the Hamiltonian of the radiation field, Hξ
mol is the Hamiltonian of the molecule ξ for

which we assume that the eigenstates are known, and,

Hξ
int = −d̂ξ · Ê(rξ), (3.3)

where d̂ξ is the transition dipole moment of molecule ξ, and Ê(rξ) is the electric field at the
position, r, of the molecule ξ. The initial and final states of the system are chosen as,

|i⟩ = |eD, gA; 0⟩ , |f⟩ = |gD, eA; 0⟩ , (3.4)

where gD(gA) denotes the ground state of the donor (acceptor), eD(eA) the excited state of
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the donor (acceptor) and 0 the ground state of the electromagnetic field.

The aim of this section is to calculate an expression for the matrix element for this interaction
that can then be applied to the Fermi Golden Rule to obtain the energy transfer rate. We
will first use the conventional method in section 3.1.1, which is second-order perturbation
theory, and then apply an alternate method in section 3.1.2 which makes use of canonical
transformations. We will see that both methods produce the same end result.

3.1.1 Standard Perturbation Theory

Here, we find the matrix element for the resonance energy transfer process between two
bodies using standard perturbation theory [68, 69]. A single RET interaction involves two
light-matter events, namely the emission of the virtual photon from the first molecule, and
the absorption of the photon by the second. Since the interaction Hamiltonian (3.3) is linear
in the electric field operator, we must have at least two actions of Hint to link the initial and
final states, meaning we require at least second-order perturbation theory. Therefore, the
matrix element is [68],

Mfi =
∑
I

⟨f |Hint |I⟩ ⟨I|Hint |i⟩
Ei − EI

, (3.5)

summing over a complete set of intermediate states I. Due to the linearity of Hint in d̂, only
two types of intermediate states contribute,

|I1⟩ = |gD, gA; 1F⟩ , |I2⟩ = |eD, eA; 1F⟩ . (3.6)

The first intermediate state type, |I1⟩, corresponds to the resonant interaction depicted in
figure 3.2a, where the excitation is transmitted through the field while both molecules are
in their ground state. In this instance, the donor emits energy, it is transferred through the
field, and then absorbed by the acceptor, and is therefore energy conserving in each step.
However, for the second type of intermediate state shown figure 3.2b, |I2⟩, the excitation is
transmitted through the field while both molecules are excited, which means an additional
excitation is generated in the system during the intermediate step. This process is not energy
conserving in all steps, and is therefore known as the off-resonant interaction. However, the
violation of energy conservation is rectified at the final step, meaning the overall process is
allowed.

We begin by considering only the energy denominators of the matrix element contributions.
For the initial and final states, the field is in the ground state and the energy comes from the
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(a) Resonant interaction. (b) Off-resonant interaction.

Figure 3.2: The two possible time-orderings for two-body resonant energy transfer.

molecular excitations only,

Ei = EeD + EgA , Ef = EgD + EeA . (3.7)

For the resonant intermediate state, both the molecules are in the ground state, and the field
contains a single photon, so the energy is calculated to be,

EI1 = EgD + EgA + ℏck. (3.8)

We therefore find the energy denominators for the resonant and off-resonant time-orderings
to respectively be,

Ei − EI1 = EeD − EgD − ℏck = Eeg − ℏck, (3.9)

Ei − EI2 = EgA − EeA − ℏck = −(Eeg + ℏck), (3.10)

where we have defined Eeg = Eeξ − Egξ as the transition energy between the molecular
excited and ground states. We can therefore rewrite the matrix element by splitting the two
time-orderings, giving us,

Mfi = −
∑
I1,I2

[
⟨f |Hint |I1⟩ ⟨I1|Hint |i⟩

ℏck − Eeg

+
⟨f |Hint |I2⟩ ⟨I2|Hint |i⟩

ℏck + Eeg

]
, (3.11)

where the sum is over all accessible photon modes for each of the intermediate step type.

Now considering only the first term in the numerator of the resonant time-ordering, we can
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substitute in the definition of the interaction Hamiltonian via (3.3) to obtain,

⟨f |Hint |I1⟩ = ⟨gD, eA; 0| − d̂D · Ê(rD)− d̂A · Ê(rA) |gD, gA; 1F⟩

=− ⟨gD| d̂D |gD⟩ ⟨eA|gA⟩ · ⟨0| Ê(rD) |1F⟩ − ⟨gD|gD⟩ ⟨eA| d̂A |gA⟩ · ⟨0| Ê(rA) |1F⟩

=− ⟨eA| d̂A |gA⟩ · ⟨0| Ê(rA) |1F⟩ , (3.12)

where we have used that
〈
gξ
∣∣eξ〉 = 0 and

〈
gξ
∣∣gξ〉 = 1 for orthogonal molecular states eξ and

gξ. We note that the above can be rewritten as,

⟨f |Hint |I1⟩ = ⟨f | − d̂A · Ê(rA) |I1⟩ = ⟨f |HA
int |I1⟩ . (3.13)

Similarly for the second term in the resonant time ordering numerator we find that,

⟨I1|Hint |i⟩ = ⟨gD, gA; 1F| − d̂D · Ê(rD)− d̂A · Ê(rA) |eD, gA; 0⟩

=− ⟨gD| d̂D |eD⟩ ⟨gA|gA⟩ · ⟨1F| Ê(rD) |0⟩ − ⟨gD|eD⟩ ⟨gA| d̂A |gA⟩ · ⟨1F| Ê(rA) |0⟩

=− ⟨gD| d̂D |eD⟩ · ⟨1F| Ê(rD) |0⟩

= ⟨I1|HD
int |i⟩ . (3.14)

Combining (3.13) and (3.14) we find that we can write the resonant component of the matrix
element (3.11) as,

M res
fi =

∑
I1

⟨f |HA
int |I1⟩ ⟨I1|HD

int |i⟩
Eeg − ℏck

. (3.15)

Using the same reasoning for the off-resonant contribution of (3.11) we find that,

Moff
fi =

∑
I2

−⟨f |H
D
int |I2⟩ ⟨I2|HA

int |i⟩
Eeg + ℏck

, (3.16)

which combined with (3.15) gives us a formula for the matrix element for two-body resonant
energy transfer,

Mfi =
∑
I1,I2

−⟨f |H
A
int |I1⟩ ⟨I1|HD

int |i⟩
ℏck − Eeg

− ⟨f |H
D
int |I2⟩ ⟨I2|HA

int |i⟩
Eeg + ℏck

(3.17)

This can alternatively be written as,

Mfi = −
∑
k

⟨f |

(
HA

intH
D
int

ℏck − Eeg

+
HD

intH
A
int

ℏck + Eeg

)
|i⟩ , (3.18)
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where we have used
∑

I |I⟩ ⟨I| = 1. This is in agreement with [68], and we will make use of
this form in section 5.1.

3.1.2 Canonical Perturbation Theory

An alternative method for calculating the matrix element of an interaction involves the use of
canonical (unitary) transformations. These are operations that satisfy Û Û † = 1 [68, 70]. In
this work, we restrict our discussion to transformations of the form eiS where S is a Hermitian
operator, which act on the generalized coordinate q and conjugate momentum p via,

qnew = eiSqe−iS, pnew = eiSpe−iS, (3.19)

and preserve the commutator relation [q, p] = iℏ, as can be easily demonstrated,

[qnew, pnew] = eiS[q, p]e−iS = iℏeiSe−iS = iℏ. (3.20)

A new Hamiltonian is then obtained in the same way,

Hnew = eiSHe−iS. (3.21)

We are aiming to create a new effective Hamiltonian that encodes the information for the
two one-photon interactions into one term, so this new coupling term will be second order in
the electric dipole. We express the Hamiltonian as H = H0 +Hint where Hint = HA

int +HD
int

and perform a unitary transformation via (3.21),

Hnew = eiSHe−iS =
∞∑
n=0

1

n!

[
iS, [iS, ...H]

]
= H0 +Hint + [iS,H0] + [iS,Hint] +

1

2

[
iS, [iS,H0]

]
+ ... , (3.22)

where S is assumed to be first order in the electric dipole moment. We seek a Hamiltonian
of second order in Hint (and thereby d̂), so we eliminate the first order Hint term by choosing
[iS,H0] = −Hint. This leaves, up to second order in the electric dipole,

Hnew = H0 +
1

2
[iS,Hint]. (3.23)

From our chosen definition of the generator, for initial state |M⟩ and final state |N⟩ we have,

⟨N | [iS,H0] |M⟩ = ⟨N | iSH0 |M⟩ − ⟨N |H0iS |M⟩ = (EM − EN) ⟨N | iS |M⟩ , (3.24)
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where we have used H0 |M⟩ = EM |M⟩ and H0 |N⟩ = EN |N⟩. We therefore have a definition
of the generator S,

⟨N | iS |M⟩ = ⟨N |Hint |M⟩
EN − EM

, (3.25)

that we can use to calculate the expectation value of the new second order interaction term,

1

2
⟨N | [iS,Hint] |M⟩ =

1

2

(
⟨N | iSHint |M⟩ − ⟨N |HintiS |M⟩

)
=
1

2

∑
I

(
⟨N | iS |I⟩ ⟨I|Hint |M⟩ − ⟨N |Hint |I⟩ ⟨I| iS |M⟩

)
=− 1

2

∑
I

⟨N |Hint |I⟩ ⟨I|Hint |M⟩
(

1

EI − EN

+
1

EI − EM

)
, (3.26)

where we have used
∑

I |I⟩ ⟨I| = 1.

Now applying to two-body resonant energy transfer using initial and final states (3.4) and
intermediate states (3.6) we find,

1

2
⟨f | [iS,Hint] |i⟩ =−

1

2

∑
I1,I2

⟨f |Hint |I1⟩ ⟨I1|Hint |i⟩

(
1

EI1 − Ef

+
1

EI1 − Ei

)

+ ⟨f |Hint |I2⟩ ⟨I2|Hint |i⟩

(
1

EI2 − Ef

+
1

EI2 − Ei

)
=− 1

2

∑
I1,I2

⟨f |Hint |I1⟩ ⟨I1|Hint |i⟩

(
1

ℏck − Eeg

+
1

ℏck − Eeg

)

+ ⟨f |Hint |I2⟩ ⟨I2|Hint |i⟩

(
1

ℏck + Eeg

+
1

ℏck + Eeg

)
=−

∑
I1,I2

[
⟨f |Hint |I1⟩ ⟨I1|Hint |i⟩

ℏck − Eeg

+
⟨f |Hint |I2⟩ ⟨I2|Hint |i⟩

ℏck + Eeg

]
. (3.27)

We note that this is in agreement with (3.11), meaning we achieve the same matrix element
(3.18) using this method, showing its validity as an alternative to standard perturbation
theory. In this situation this method does not offer any advantages over the standard method,
but we will see in chapter 5 that this method can be extended for use in three-body resonance
energy transfer to significantly reduce the computational complexity of the calculations.

Now we have a general expression for the matrix element for two-body resonance energy
transfer, we can focus on including the influence of a macroscopic environment into our
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description. This can be done via macroscopic QED, a theoretical framework introduced in
chapter 2.

3.2 Rate of Energy Transfer in Reciprocal Media

In this section, we apply macroscopic QED (see chapter 2) to the general expression for
the matrix element calculated in the previous section. This allows us to express the ma-
trix element in terms of the Green’s tensor (see section 2.2), incorporating the effects of a
macroscopic reciprocal environment. We then apply this to the Fermi Golden Rule to find
an expression for the rate of energy transfer between the two bodies.

3.2.1 Applying Macroscopic QED

We begin by considering only the numerator of the resonant (first) term of the matrix element,
(3.18), and, combining with the definition of the interaction Hamiltonian (3.3), we rewrite
as,

⟨f |HA
intH

D
int |i⟩ = ⟨gD, eA; 0|

(
d̂A · Ê(rA)

)(
d̂D · Ê(rD)

)
|eD, gA; 0⟩

= ⟨eA| d̂A |gA⟩ ⟨0| Ê(rA) · Ê(rD) |0⟩ ⟨gD| d̂D |eD⟩ , (3.28)

where we have separated the molecular and field terms. We now incorporate the effects
of a reciprocal medium by employing macroscopic QED. More specifically, we do this by
expressing the quantized electric field via (2.36), which accounts for a reciprocal macroscopic
environment. Substituting this into only the field term of the resonant numerator (3.28) we
find,

⟨0| Ê(rA) · Ê(rD) |0⟩ =
∑
λ,λ′

⟨0|
∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′

×
[
Gλ(rA, s, ω) · f̂λ(s, ω) +G†

λ(rA, s, ω) · f̂
†
λ(s, ω)

]
·
[
Gλ′(rD, s

′, ω′) · f̂λ′(s′, ω′) +G†
λ′(rD, s

′, ω′) · f̂ †
λ′(s

′, ω′)
]
|0⟩

=
∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′ ⟨0|
[
Gλ(rA, s, ω) · f̂λ(s, ω) ·Gλ′(rD, s

′, ω′) · f̂λ′(s′, ω′)

+Gλ(rA, s, ω) · f̂λ(s, ω) ·G†
λ′(rD, s

′, ω′) · f̂ †
λ′(s

′, ω′)

+G†
λ(rA, s, ω) · f̂

†
λ(s, ω) ·Gλ′(rD, s

′, ω′) · f̂λ′(s′, ω′)

+ G†
λ(rA, s, ω) · f̂

†
λ(s, ω) ·G

†
λ′(rD, s

′, ω′) · f̂ †
λ′(s

′, ω′)
]
|0⟩ . (3.29)
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Since the initial and final field states are the same, we know that terms that contain two
creation or two annihilation operators will not contribute. Only terms that contain both a
creation and annihilation operators will contribute, allowing the elimination of the first and
fourth terms of (3.29). We can also use the fact that the annihilation operator acting on
the ground state gives zero, shown in equation (2.24), to eliminate the third term of (3.29),
leaving us with the second term only,

⟨0| Ê(rA) · Ê(rD) |0⟩ =
∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′

×⟨0|Gλ(rA, s, ω) · f̂λ(s, ω) ·G†
λ′(rD, s

′, ω′) · f̂ †
λ′(s

′, ω′) |0⟩ . (3.30)

Substituting this back into (3.28) we find,

⟨f |HA
intH

D
int |i⟩ = ⟨eA| d̂A |gA⟩ ⟨0|

∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′

×Gλ(rA, s, ω) · f̂λ(s, ω) ·G†
λ′(rD, s

′, ω′) · f̂ †
λ′(s

′, ω′) |0⟩ ⟨gD| d̂D |eD⟩ . (3.31)

We define,
d↑ ≡ ⟨e| d̂ |g⟩ , d↓ ≡ ⟨g| d̂ |e⟩ , (3.32)

allowing us to rewrite as,

=
∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′ d̂↑
A ·Gλ(rA, s, ω)

× ⟨0| f̂λ(s, ω) · f̂ †
λ′(s

′, ω′) |0⟩G†
λ′(rD, s

′, ω′) · d̂↓
D. (3.33)

Using ⟨0| f̂λ(s, ω) · f̂ †
λ′(s′, ω′) |0⟩ = δλλ′δ(s− s′)δ(ω − ω′) (see subsection 2.1.1) we obtain,

=
∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′ d̂↑
A ·Gλ(rA, s, ω)δ(s− s′)δ(ω − ω′)G†

λ′(rD, s
′, ω′) · d̂↓

D

=
∑
λ

∫
d3s

∫ ∞

0

dω d↑
A ·Gλ(rA, s, ω) ·G†

λ(rD, s, ω) · d
↓
D. (3.34)

We now make use of the completeness relation for reciprocal media (2.85),

∑
λ=e,m

∫
d3sGλ(r, s, ω) ·G†

λ(r
′, s, ω) =

ℏµ0

π
ω2 ImG(r, r′, ω), (3.35)
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to rewrite our expression as,

⟨f |HA
intH

D
int |i⟩ =

µ0ℏ
π

∫ ∞

0

dω ω2d↑
A · ImG(rA, rD, ω) · d↓

D. (3.36)

So we can now express the resonant contribution to the matrix element as,

M res
fi = −

∑
p

⟨f | H
A
intH

D
int

ℏcp− Eeg

|i⟩

= −µ0

π

∫ ∞

0

dω d↑
A ·

ω2 ImG(rA, rD, ω)

ω − ω0

· d↓
D, (3.37)

where we have made the substitutions ℏcp = ℏω and Eeg = ℏω0.

We can apply a similar method to the off-resonant contribution to the matrix element, Moff
fi ,

where we again initially consider only the numerator,

⟨f |HD
intH

A
int |i⟩ = ⟨eD| d̂D |gD⟩ ⟨0| Ê(rA) · Ê(rD) |0⟩ ⟨gA| d̂A |eA⟩ ,

= d↓
D ⟨0| Ê(rA) · Ê(rD) |0⟩d↑

A. (3.38)

Once we have substituted in the electric field expression (2.36), we can use the same reasoning
as before to eliminate terms that do not contain both a creation and annihilation operator,
as well as terms containing f̂ |0⟩. This leaves us with,

⟨f |HD
intH

A
int |i⟩ =

∑
λ,λ′

∫
d3s

∫
d3s′

∫ ∞

0

dω

∫ ∞

0

dω′

× d↓
D ·Gλ(rD, s, ω) ⟨0| f̂(s, ω) · f̂ †(s′, ω′) |0⟩G†

λ′(rA, s
′, ω′) · d↑

A

=
∑
λ,λ′

∫
d3s

∫ ∞

0

dω d↓
D ·Gλ(rD, s, ω) ·G†

λ′(rA, s
′, ω′) · d↑

A

=
µ0ℏ
π

∫ ∞

0

dω ω2 d↓
D · ImG(rD, rA, ω) · d↑

A, (3.39)

where we have again made use of the completeness relation. We therefore obtain an expression
for the off-resonant component of the matrix element,

Moff
fi =−

∑
p

⟨f | H
D
intH

A
int

ℏcp+ Eeg

|i⟩

=− µ0

π

∫ ∞

0

dω d↓
D ·

ω2 ImG(rD, rA, ω)

ω + ω0

· d↑
A, (3.40)

where we have again made the substitutions ℏcp = ℏω and Eeg = ℏω0.
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Now we have expressions for both components of the matrix element in terms of the functions∫∞
0
dω [ω2 ImG(r, r′, ω)]/(ω±ω0). We can apply complex contour integration techniques to

solve integrals of this form, but first we need to rearrange the integrals to a more convenient
form. For an integral of the form,∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω ± ω0

, (3.41)

we can use the relation for the imaginary part of a function,

Im f(ω) =
1

2i
[f(ω)− f ∗(ω)], (3.42)

so the frequency integral can be written as,

1

2i

∫ ∞

0

dω
ω2

ω ± ω0

[
G(r, r′, ω)−G∗(r, r′, ω)

]
. (3.43)

This can be re-written by use of the Schwarz reflection principle (2.70) for real ω, f ∗(ω) =

f(−ω∗) = f(−ω), as,

1

2i

∫ ∞

0

dω
ω2

ω ± ω0

[
G(r, r′, ω)−G(r, r′,−ω)

]
. (3.44)

Finally, we use the identity
∫ b

a
f(−x)dx = −

∫ −b

−a
f(x)dx to rewrite the integral as:

∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω ± ω0

=
1

2i

[∫ ∞

0

dω
ω2G(r, r′, ω)

ω ± ω0

−
∫ −∞

0

dω
ω2G(r, r′, ω)

ω ∓ ω0

]
. (3.45)

Applying this to our expressions for the matrix element components, (3.37) and (3.40), we
get,

M res
fi = − µ0

2πi
d↑
A ·

[∫ ∞

0

dω
ω2G(rA, rD, ω)

ω − ω0

−
∫ −∞

0

dω
ω2G(rA, rD, ω)

ω + ω0

]
· d↓

D, (3.46)

Moff
fi = − µ0

2πi
d↓
D ·

[∫ ∞

0

dω
ω2G(rD, rA, ω)

ω + ω0

−
∫ −∞

0

dω
ω2G(rD, rA, ω)

ω − ω0

]
· d↑

A. (3.47)

These frequency integrals can be evaluated by means of contour integration, which is done
in the next subsection.
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(a) Contour before pole shift. (b) Contour after pole shift.

Figure 3.3: Contour integration in a single quadrant. (a) shows the pole at ω0 on the real
axis, and (b) shows the pole after it has been shifted by iϵ so that it is completely inside the
closed contour.

3.2.2 Contour Integration

The frequency integrals in (3.46) and (3.47) have poles on the real axis at ±ω0, which pose
a problem when attempting integration around a closed contour along the real axis. To
overcome this, we let the eigenenergies of the atom take on a small imaginary part which
shifts them into the upper or lower half of the complex plane (see figure 3.3). This means
that the poles become ±(ω0 + iϵ) which allows the frequency integrals to be evaluated using
complex contour integration [71, 72].

To do this, we begin with the first term of the resonant contribution to the matrix element
(3.46), ∫ ∞

0

dω
ω2Gλ(rA, rD, ω)

ω − (ω0 + iϵ)
, (3.48)

where the pole has been shifted into the upper half of the complex plane. We extend the
integration along the ω axis by a quarter arc at ω = a up to the imaginary axis and then
downward to the origin to form a closed contour in the complex plane as in figure 3.3. The
integral of the closed loop can then be parameterized as,∮

C

f(z)

z − (ω0 + iϵ)
dz =

∫ a

0

dω
f(ω)

ω − (ω0 + iϵ)

+

∫ ia

a

dζ
f(ζ)

ζ − (ω0 + iϵ)
+ i

∫ 0

a

dξ
f(iξ)

iξ − (ω0 + iϵ)
, (3.49)

where we have set f(ω) = ω2G(rA, rD, ω). Since the Green’s tensor vanishes at infinity [4],

lim
ω→∞

G(r, r′, ω) = 0 for r ̸= r′, (3.50)



CHAPTER 3. TWO-BODY RET IN A RECIPROCAL ENVIRONMENT 38

the quarter arc integral vanishes as a→∞. So,∮
C

f(z)

z − (ω0 + iϵ)
dz =

∫ ∞

0

dω
f(ω)

ω − (ω0 + iϵ)
+ i

∫ 0

∞
dξ

f(iξ)

iξ − (ω0 + iϵ)
. (3.51)

Since the Green’s tensor is an analytic function in the upper half of the complex plane (see
section 2.2.1), we can make use of the Residue Theorem, which states that the value of a
integral around a closed loop is equal to the sum of the residues of the function at the enclosed
poles, ∮

C

F (z)

z − z0
dz = 2πi

∑
poles

Res

(
F (z)

z − z0

)
= 2πi

∑
poles

F (z0). (3.52)

Therefore, the above closed integral is equal to the residue at the pole ω0 + iϵ. As a result,∫ ∞

0

dω
f(ω)

ω − (ω0 + iϵ)
+ i

∫ 0

∞
dξ

f(iξ)

iξ − (ω0 + iϵ)
= 2πif(ω0 + iϵ). (3.53)

We now let the infinitesimal ϵ tend to zero and rearrange to obtain an expression for the first
integral term in (3.46),∫ ∞

0

dω
ω2G(rA, rD, ω)

ω − ω0

= i

∫ ∞

0

dξ
(iξ)2G(rA, rD, iξ)

iξ − ω0

+ 2πiω2
0G(rA, rD, ω0). (3.54)

Similarly for the second integral term of (3.46), we extend the integration by a quarter arc at
ω = −a up to the imaginary axis and then downward to the origin to form a closed contour.
We set f(ω) = ω2G(rA, rD, ω) and parameterise in the same way, noting that the quarter
arc integral vanishes as a→∞ giving,∮

C

f(z)

z + (ω0 + iϵ)
dz =

∫ −∞

0

dω
f(ω)

ω + (ω0 + iϵ)
+ i

∫ 0

∞
dξ

f(iξ)

iξ + (ω0 + iϵ)
. (3.55)

In this case, the pole is at (−ω0 − iϵ) so is in the lower half of the complex plane, meaning
it is not enclosed by the contour. Therefore, the closed contour contains no poles, so,∫ −∞

0

dω
f(ω)

ω + (ω0 + iϵ)
+ i

∫ 0

∞
dξ

f(iξ)

iξ + (ω0 + iϵ)
= 0. (3.56)

Also setting ϵ→ 0, ∫ −∞

0

dω
f(ω)

ω + ω0

= i

∫ ∞

0

dξ
f(iξ)

iξ + ω0

, (3.57)
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we find that the second integral term of (3.46) can be written as,∫ −∞

0

dω
ω2G(rA, rD, ω)

ω + ω0

= i

∫ ∞

0

dξ
(iξ)2G(rA, rD, iξ)

iξ + ω0

. (3.58)

Combining these two integral terms, (3.54) and (3.58), we obtain an expression for the
resonant component of the matrix element (3.46),

M res
fi =− µ0

2πi

(
d↑
A · i

∫ ∞

0

dξ (iξ)2

[
G(rA, rD, iξ)

iξ − ω0

− G(rA, rD, iξ)

iξ + ω0

]
· d↓

D

+ 2πiω2
0d

↑
A ·G(rA, rD, ω0) · d↓

D

)

=− µ0

2π
d↑
A ·

(∫ ∞

0

dξ ξ2G(rA, rD, iξ)
ω0

ω2
0 + ξ2

+ 2πω2
0G(rA, rD, ω0)

)
· d↓

D. (3.59)

We repeat the same steps for the two frequency integrals that make up the off-resonant
component of the matrix element, (3.47). For the first integral,∫ ∞

0

dω
ω2G(rD, rA, ω)

ω + ω0 + iϵ
, (3.60)

we extend the integration along the ω axis by a quarter arc at ω = a up to the imaginary
axis and then downward to the origin forming a closed contour, and note that the pole at
(−ω0− iϵ) is in the lower half of the complex plane, and so not enclosed by the contour. We
therefore find, ∫ ∞

0

dω
ω2G(rD, rA, ω)

ω + ω0 + iϵ
= i

∫ ∞

0

dξ
(iξ)2G(rD, rA, iξ)

iξ + ω0

. (3.61)

For the second integral of (3.47),∫ −∞

0

dω
ω2G(rD, rA, ω)

ω − ω0

, (3.62)

we extend the integration by a quarter arc at ω = −a up to the imaginary axis and then
downward to the origin forming a closed contour, and note that the pole at (ω0+iϵ), although
in the upper half of the complex plane is not enclosed by the contour, since the pole is positive
in ω and the contour encloses only negative values of ω. We can therefore rewrite the integral
as, ∫ −∞

0

dω
ω2G(rD, rA, ω)

ω − ω0

= i

∫ ∞

0

dξ
(iξ)2G(rD, rA, iξ)

iξ − ω0

. (3.63)

These two integral terms, (3.61) and (3.63), can be combined to give an expression for the
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off-resonant component of the matrix element (3.46),

Moff
fi = − µ0

2πi
d↓
D · i

∫ ∞

0

dξ (iξ)2

[
G(rD, rA, iξ)

iξ + ω0

− G(rD, rA, iξ)

iξ − ω0

]
· d↑

A

=
µ0

2π
d↓
D ·
∫ ∞

0

dξ ξ2G(rD, rA, iξ)
ω0

ω2
0 + ξ2

· d↑
A. (3.64)

We are now able to sum the resonant and the off-resonant components of the matrix element,
(3.59) and (3.64), to find the full matrix element,

Mfi = −µ0ω
2
0d

↑
A ·G(rA, rD, ω0) · d↓

D

−µ0

2π

∫ ∞

0

dξ
ω0ξ

2

ω2
0 + ξ2

(
d↑
A ·G(rA, rD, iξ) · d↓

D − d↓
D ·G(rD, rA, iξ) · d↑

A

)
. (3.65)

Since in this chapter we are focusing on reciprocal media, we can make use of Lorentz
reciprocity (2.74),

d↑
A ·G(rA, rD, ω0) · d↓

D = d↓
D ·G(rD, rA, ω0) · d↑

A (3.66)

to see that the second term of (3.65) disappears, and we can rewrite the total matrix element
as,

Mfi = −µ0ω
2
0 d

↑
A ·G(rA, rD, ω0) · d↓

D. (3.67)

We now use the matrix element (3.67) in the Fermi Golden Rule [68] to calculate the energy
transfer rate,

Γfi =
2π

ℏ
|Mfi|2δ(EI − Ef )

=
2πµ2

0ω
4
0

ℏ
|d↑

A ·G(rA, rD, ω0) · d↓
D|

2. (3.68)

The physical interpretation of this rate formula when read from right to left is that the donor
dipole relaxes (d↓

D), transmits its energy to the acceptor dipole
(
G(rA, rD, ω0)

)
, which excites

(d↑
A), and then the reverse process happens.

This general formula for two-body RET is in agreement with the literature, e.g. Refs. [13, 73],
and can be applied to any arbitrary (reciprocal) macroscopic environment for which the
Green’s tensor is known. In the next section, we demonstrate how this formula can be
applied to simple environments as a proof-of-principle.
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3.3 Results

The rate formula (3.68) is applicable to any external environment, but in this section we focus
on two simple examples, a vacuum and a semi-infinite half-space, to allow us to write down
simple Green’s tensors in position space (i.e., without using an angular spectrum representa-
tion). However, we emphasize that this formula could be used to calculate interactions within
far more complex systems using numerically calculated Green’s tensors, including proteins
and other biological systems [74]. In these types of systems, the dipole moments are often
randomly oriented, necessitating the calculation of the rate averaged over all possible dipole
alignments. We therefore make the replacement (see, for example, [75]),

d↑
A/D ⊗ d↓

A/D →
1

3
|dA/D|2I, (3.69)

where ⊗ is the outer product and I is the 3× 3 identity matrix. Applying this to (3.68), we
obtain a formula for the isotropic rate for two bodies in a reciprocal environment,

Γiso =
2πµ2

0ω
4
0

9ℏ
|dA|2|dD|2Tr

[
G(rA, rD, ω0) ·G∗(rD, rA, ω0)

]
. (3.70)

Now, for environments where the form of the Green’s tensor is known, it can substituted into
this expression to explore how the positions of the two molecules and the properties of the
medium influence the rate of energy transfer.

In this section, we look first at the simplest possible environment, a vacuum. The Green’s
tensor that describes free space is sufficiently simple that an analytical expression for the
rate of interaction between two bodies in a vacuum can be found. We will also examine the
intermolecular distance dependence of the rate in the near-field and far-field limits.

We will also look at an environment made up of a semi-infinite half-space in a vacuum.
The Green’s tensor for this setup is more complicated, and in order to calculate an analytic
expression for the rate, we are required to simplify the system by specifying the arrangement
of the bodies with respect to each other and the half-space, and also imposing near-field or
far-field limits. The behaviour of the rate can be examined outside of these conditions by
way of a density plot, allowing us to see how the rate is affected by the positions of the bodies
in two dimensions.

3.3.1 Vacuum

We first consider an environment made up of only free space. The Green’s tensor that
describes this is well-known and is given in appendix section B.1. To simplify things, and



CHAPTER 3. TWO-BODY RET IN A RECIPROCAL ENVIRONMENT 42

without loss of generality, we can place the two dipoles on the z-axis which will be henceforth
be referred to as a “colinear” arrangement. Therefore, the separation vector, ρ ≡ r − r′,
becomes ρ = (0, 0, z − z′) and we can define the intermolecular distance, ρ ≡ |ρ|, and the
separation unit vector, eρ ≡ ρ/ρ, respectively as ρ = |z − z′| and eρ = (0, 0, 1). We will
calculate analytical expressions for the rate of energy transfer using the full vacuum Green’s
tensor, and also with near-field and far-field limits applied.

Full Vacuum Rate

We begin with the full vacuum Green’s tensor (B.1) applied to two bodies at different points
on the z-axis,

G(0,C)(r, r′, ω) = −c
2eiωρ/c

4πω2ρ3


[
1− iωρ

c
−
(
ωρ

c

)2
]1 0 0

0 1 0

0 0 1



−

[
3− 3i

ωρ

c
−
(
ωρ

c

)2
]0 0 0

0 0 0

0 0 1


 , (3.71)

where C references the colinear arrangement. Renaming the first square bracket A and the
second B, we can rewrite the above in the much simpler form,

G(0,C)(r, r′, ω) = −c
2eiωρ/c

4πω2ρ3

A 0 0

0 A 0

0 0 A−B

 , (3.72)

where we find A−B = 2(iωρ/c− 1). We can then calculate,

G(0,C)(rA, rD, ω0) ·G(0,C)∗(rD, rA, ω0) =
c4

16π2ω4
0ρ

6

AA
∗ 0 0

0 AA∗ 0

0 0 (A−B)(A∗ −B∗)

 ,

(3.73)
Substituting this into the rate equation(3.70) we get,

Γiso,C =
µ2
0c

4

36ℏπ
|dA|2|dD|2[3AA∗ +BB∗ − (AB∗ +BA∗)]

=
µ2
0

36ℏπ
|dA|2|dD|2

(
3c4

ρ6
+
c2ω2

0

ρ4
+
ω4
0

ρ2

)
. (3.74)
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We can make the substitution q ≡ ρ/λ0 = ρc/ω0 so that our distances are in units of the
transition wavelength, λ0. This means we can rewrite the rate as,

Γiso,C = η0

(
3

q6
+

1

q4
+

1

q2

)
, (3.75)

where we have defined,

η0 =
µ2
0ω

6
0

36ℏπc2
|dA|2|dD|2. (3.76)

This result is in agreement with [76, 77].

Non-Retarded Vacuum Rate

Beginning with the non-retarded limit, q ≪ 1, of the vacuum Green’s tensor (B.3) for bodies
at different positions on the z-axis,

G
(0,C)
NR (r, r′, ω) = − c2

4πω2ρ3

1 0 0

0 1 0

0 0 −2

 . (3.77)

Substituting this into the rate equation (3.70), we can write the non-retarded limit of the
vacuum

Γ
(0,C)
NR =

c4µ2
0

12ℏπρ6
|dA|2|dD|2 = 3η0q

−6. (3.78)

This is in agreement with the well-known result for two-body resonance energy transfer in a
vacuum [11].

Retarded Vacuum Rate

Similarly, the retarded limit, q ≫ 1, of the vacuum Green’s tensor (B.4) for bodies on the
z-axis can be written as,

G
(0,C)
R (r, r′, ω) = −e

iωρ/c

4πρ

1 0 0

0 1 0

0 0 0

 . (3.79)

Substituting this into the rate equation (3.70), we can write the retarded limit of the vacuum
as,

Γ
(0,C)
R =

µ2
0ω

4
0

36ℏπρ2
|dA|2|dD|2 = η0q

−2. (3.80)
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Figure 3.4: Influence of intermolecular distance on the rate of energy transfer between a donor
and acceptor in a vacuum. Intermolecular distance is in units of the transition wavelength
q = ρ/λ0, and the rate has been normalized to the quantity η0, defined in equation (3.76) in
the main text.

Vacuum Plot

Figure 3.4 visually demonstrates the union of the near-field and far-field theories. We can
see that in the non-retarded regime where ρ/λ0 ≪ 1, the rate of energy transfer follows a r−6

dependence as predicted by (3.78), whereas in the retarded regime where r/λ0 ≫ 1, the rate
follows a ρ−2 dependence, as in (3.80). The figure also makes clear the intermediate stage
where ρ ∼ λ0, where the rate follows r−4, which we can see from (3.75).

We now turn our attention to a environment consisting of a semi-infinite half-space, and
investigate the influence it has on the rate of energy transfer between two molecules.

3.3.2 Colinear Half-space System

A step up from the vacuum in terms of simplicity of environment is the semi-infinite half-
space, which we set up to have a boundary at z = 0, so that the medium extends infinitely
into z < 0 while z > 0 is made up of a vacuum.

As discussed in section 2.2.1, the Green’s tensors for inhomogeneous environments such as
this can in general be split into the sum of a translation-invariant “bulk” part G(0) and a
“scattering” part G(1). In our system, this means that each Green’s tensor in (3.68) is the
sum of the vacuum Green’s tensor (bulk) and the half-space Green’s tensor (scattering), so
that the Green’s tensor for the entire system can be written as,

GHS(r, r′, ω) = G(0)(r, r′, ω) +G(1)(r, r′, ω). (3.81)

G(0) is the vacuum Green’s tensor given in (B.1) and is sufficiently simple that it can be
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Figure 3.5: Colinear arrangement of two bodies, a donor D and an acceptor A, near a semi-
infinite half-space at z < 0.

applied to our rate equation and yield analytical results. However, G(1) is more complex due
to the presence of infinite integrals (as can be seen in equation (B.5)).

We can significantly simplify our system by positioning the bodies in a “colinear” arrange-
ment, where we assume that both atoms are placed on the z-axis, as shown in figure 3.5.
This assumption simplifies G(1) significantly (see equation (B.23)), but we are still required
to apply near-field and far-field limits to be able to perform the infinite integrals. These
simplifications lead to the useable results (B.38) and (B.40) for the near- and far-field limits
respectively, which we can apply to our rate equation to produce analytical results.

Non-Retarded Half-Space Rate

When considering the situation where the bodies are sufficiently close to the half-space and to
each other, we can employ the non-retarded limit on both the vacuum Green’s tensor (3.77)
and the half-space Green’s tensor (B.38). Summing these gives for the effective Green’s
tensor,

GHS,C
NR (r, r′, ω) =

c2

4πω2

 1

Z3

−1 0 0

0 −1 0

0 0 2

+
RNR

Z̄3

1 0 0

0 1 0

0 0 2


 , (3.82)

where we have defined Z ≡ |z − z′|, Z̄ ≡ |z + z′| and RNR = ϵ(ω)−1
ϵ(ω)+1

.
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To find the rate for isotropically averaged dipoles, we need to calculate,

GHS,C
NR (rA, rD, ω0) ·GHS,C∗

NR (rD, rA, ω0)

=
c4

16π2ω4
0


(

RNR

Z̄3 − 1
Z3

)2
0 0

0
(

RNR

Z̄3 − 1
Z3

)2
0

0 0 4
(

RNR

Z̄3 + 1
Z3

)2
 , (3.83)

which we can then substitute into the rate equation for isotropically averaged dipoles (3.70),
giving us,

ΓHS,C
NR =

µ2
0c

4

36ℏπ
|dA|2|dD|2

(
3

Z6
+

3R2
NR

Z̄6
+

2RNR

Z̄3Z3

)
. (3.84)

In this form, we can clearly see that the first term is the contribution from the direct interac-
tion between the donor and acceptor that travels only through the vacuum without involving
the half-space, as it has the same r−6 dependence on the direct intermolecular distance,
|zA− zD|, as in (3.78). The second term is the contribution of the interaction that occurs via
the half-space, with the characteristic r−6 dependence on the distance from the donor to the
acceptor via the surface, |zA + zD|. The final term is then a blend of these two interaction
types.

It can also be useful to normalize this result to the isotropic non-retarded vacuum rate given
in (3.78), which yields,

Γ
HS,C(norm)
NR = 1 +R2

NRq̃
6 +

2RNRq̃
3

3
, (3.85)

where we have defined q̃ ≡ Z/Z̄.

This formula for the two-body isotropically averaged rate near a dielectric interface is a result
we presented in Ref. [1]. To the best of our knowledge, it does not appear anywhere else in
the literature, the closest known result being that for oriented (non-random) dipoles near a
perfect reflector reported in Eq.(20) of [16].

Retarded Half-Space Rate

Similarly, we can calculate the rate of interaction for two colinear arranged bodies near a
reciprocal half-space where the bodies are far enough away from the surface and each other
for the retarded limit to be introduced. In this case, we sum the retarded limit of the vacuum
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Green’s tensor, (3.79), and the retarded limit of the half-space Green’s tensor, (B.40), to get,

GHS,C
R (r, r′, ω) =

1

4π

(
eiZω/c

Z
+
eiZ̄ω/c

Z̄
RR

)1 0 0

0 1 0

0 0 0

 , (3.86)

where we have again defined Z ≡ |z − z′| and Z̄ ≡ |z + z′|, as well as RR ≡
√

µ(ω)−
√

ε(ω))√
µ(ω)+
√

ε(ω))
.

We now calculate,

GHS,C
R (rA, rD, ω0) ·GHS,C∗

R (rD, rA, ω0)

=
1

16π2

(
eiZω0/c

Z
+
eiZ̄ω0/c

Z̄
RR

)(
e−iZω0/c

Z
+
e−iZ̄ω0/c

Z̄
RR

)1 0 0

0 1 0

0 0 0

 , (3.87)

allowing us to then easily calculate,

Tr
[
GHS,C

R (rA, rD, ω0) ·GHS,C∗

R (rD, rA, ω0)
]

=
1

8π2

(
eiZω0/c

Z
+
eiZ̄ω0/c

Z̄
RR

)(
e−iZω0/c

Z
+
e−iZ̄ω0/c

Z̄
RR

)

=
1

8π2

(
1

Z2
+
R2

R

Z̄2
+
ei(Z−Z̄)ω0/c

ZZ̄
+
ei(Z̄−Z)ω0/c

ZZ̄
RR

)

=
1

8π2

{
1

Z2
+
R2

R

Z̄2
+

2RR cos
[
ω0

c
(Z − Z̄)

]
ZZ̄

}
. (3.88)

Now substituting this into the rate equation (3.70) gives,

ΓHS,C
R =

µ2
0ω

4
0

36ℏπ
|dA|2|dD|2

{
1

Z2
+
R2

R

Z̄2
+

2RR cos
[
ω0

c
(Z − Z̄)

]
ZZ̄

}
. (3.89)

Similarly to the non-retarded result, in this form we can clearly see the contribution from
the direct vacuum interaction (first term), the interaction involving the half-space (second
term), and the blend of the two interaction types (third term), all with the characteristic r−2

distance dependence. This final term contains an oscillatory contribution that is not present
in the non-retarded limit, which depends on the distance between the surface and the closest
of the two molecules. This can be seen by considering that when zA > zD, i.e. the donor is
closest to the half-space, then the oscillation depends on zD. However, when zA < zD, i.e.
the acceptor is closer, then the oscillatory term depends on zA instead.
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We can again normalize to the isotropic retarded vacuum rate (3.80),

Γ
HS(norm)
R = 1 +R2

Rq̃
2 + 2RRq̃ cos

[
ω0

c
(Z − Z̄)

]
, (3.90)

where q̃ is defined as in section 3.3.2.

Hybrid Half-Space Rate

For completeness, we can also calculate an analytical expression for the rate for two bodies
that are close enough to each other to employ the non-retarded limit, but far enough away
from the surface to employ the retarded limit. In this instance, we sum the non-retarded
vacuum Green’s tensor and the retarded half-space Green’s tensor to find the effective Green’s
tensor,

GHS,C
Mix (r, r′, ω) = G

(0,C)
NR (r, r′, ω) +G

(1,C)
R (r, r′, ω)

=
1

4π

 c2

ω2Z3

−1 0 0

0 −1 0

0 0 2

+
eiZ̄ω/c

Z̄
RR

1 0 0

0 1 0

0 0 0


 . (3.91)

Substituting into the rate equation (3.70), we find,

ΓHS,C
Mix =

µ2
0ω

4
0

36ℏπ
|dA|2|dD|2

 3c4

ω4
0Z

6
+
R2

R

Z̄2
− 2c2RR

ω2
0Z

3Z̄
cos

(
ω0Z̄

c

) . (3.92)

As before, we can pick out the contributions that relate to the different interaction types.
The first term corresponds to the direct vacuum interaction, which in this setup is in the
non-retarded limit since the molecules are very close to each other, meaning it has a Z−6

dependence. The second term relates to the interaction via the half-space, which has a Z̄−2

dependence due to the molecules being very far away from the surface. The final blended
term contains elements of both interaction types, with the oscillation this time depending on
zA+zD, rather than being conditional on which of the two molecules is closest to the surface.

When calculating analytical expressions for the interaction rate, we are restricted in the
setups we are able to model by the complexity of the Green’s tensors that describe the
system. This is the reason we have implemented the near- and far-field limits and studied
only the colinear arrangement. However, it is possible to expand our investigation to general
geometries and without the constraints of near- and far-field limits via the use of numerical
plots, which allows more complex Green’s tensor forms to be included.
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Figure 3.6: Rate of energy transfer for a donor and acceptor near a reciprocal half-space with
reflection coefficients rp = 1 and rs = −1. The surface is positioned at z = 0, the donor is
fixed at position {xD, zD}/λ0 = {−1, 1}, while the acceptor is free to move in the x-z plane.
The rate is normalised to the isotropic two-body rate in free space, and the acceptor position
is in units of the transition wavelength λ0.

3.3.3 Plot of general geometries

We can extend our study to general geometries in two dimensions by fixing the donor and
plotting how the rate of energy transfer changes when the acceptor is in different positions
on the xz-plane. For this, the full form of the half-space Green’s tensor can be used (without
limits being placed on arrangement or distances), which is given by (B.15).

As an example, figure 3.6 shows the effect of a half-space that has been modelled as a
perfect reflector, so with reflection coefficients rp = 1 and rs = −1, where rs represents the s
(perpendicular) polarization and rp represents the p (parallel) polarization. These quantities
are defined in (B.10). We can see that there are arrangements of the two bodies for which
the half-space enhances the rate of energy transfer between them as well as positions where
the half-space suppresses the interaction rate. This points to the complex influence even a
simple macroscopic environment can have on energy transfer rates between bodies.
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3.4 Summary and Conclusion

In this chapter, we have calculated the matrix element for two-body RET using two different
methods, and shown them to produce the same result. This equivalence will be useful in
chapter 5. We then applied macroscopic QED to the matrix element to include an arbitrary
environment, which was then used in the Fermi Golden Rule to find a general formula for
the rate of energy transfer between two bodies. We then applied the formula to some simple
setups, firstly by calculating analytical expressions for the rate of interaction of two bodies in
vacuum, demonstrating the characteristic r−6 and r−2 dependencies for the near- and far-field
limits, respectively. We then looked at two bodies in a colinear arrangement near a semi-
infinite half-space, and were able to distinguish contributions stemming from direct vacuum
interactions and those involving the half-space. Finally, a plot allowed the investigation of
general arrangements of the bodies with respect to the half-space, demonstrating the intricate
influence even a simple environment can have on the rate of energy transfer.



CHAPTER 4

Two-body RET in a Non-Reciprocal
Environment

In this chapter, we investigate the effect on the rate of two-body RET of a non-reciprocal
environment (see subsection 2.1.2). We will first extend the method for calculating an ex-
pression for the rate of energy transfer is section 3.2 to apply to non-reciprocal media, again
making use of macroscopic QED (section 2.1).

We then look at a system of two bodies near a non-reciprocal half-space, and investigate
the conditions under which the non-reciprocity of the medium will affect the rate of energy
transfer. Finally, we give an application of our calculated rate formula as the starting point
in the optimization of one-way energy transfer via inverse design [2].

4.1 Rate of Energy Transfer in Non-Reciprocal Media

This section considers the same system as the previous chapter, 3, made up of two two-level
bodies interacting via RET. We again calculate a formula for the rate of energy transfer
between the bodies, but this time relax the assumption that the environment is made up of
reciprocal media.

51
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4.1.1 Applying Macroscopic QED

Since we are studying the same system as in the previous chapter, the Hamiltonian is set up
in the same way as in section 3.1. The initial and final states, (3.4), are also unchanged, so
the matrix element is also calculated via (3.18), given again below,

Mfi = −
∑
k

⟨f |

(
HA

intH
D
int

ℏck − Eeg

+
HD

intH
A
int

ℏck + Eeg

)
|i⟩ , (4.1)

where the interaction Hamiltonian is again defined by (3.3), given by,

Hξ
int = −d̂ξ · Ê(rξ). (4.2)

However, the way that the electric field is expressed via macroscopic QED for non-reciprocal
media is different than for reciprocal media. In section 2.1.2, we saw that for non-reciprocal
media we can express the electric field as (2.59), given again below,

E(r) =

∫ ∞

0

dω

∫
d3sF (r, s, ω) · f̂(s, ω) +H.c. (4.3)

where F and F † are given by (2.60) and (2.61), respectively.

Substituting this into the first term of the matrix element expression, (4.1), via the interaction
Hamiltonian, (4.2), and using the same reasoning as in section 3.2.1 where F is analogous to
G, we can express the numerator of the first term of (4.1) as,

⟨f |HA
intH

D
int |i⟩ =

∫
d3s

∫ ∞

0

dω d↑
A · F (rA, s, ω) · F †(rD, s, ω) · d↓

D. (4.4)

Now substituting in our expressions for F and F †, given by (2.60) and (2.61) respectively,
we obtain,

=

∫
d3s

∫ ∞

0

dω d↑
Aiµ0

√
ℏ
π
ω3/2

∫
d3r′G(rA, r

′, ω) ·R(r′, s, ω)

×−iµ0

√
ℏ
π
ω3/2

∫
d3r′′G†(rD, r

′′, ω) ·R†(r′′, s, ω) · d↓
D

=
µ2
0ℏ
π

∫ ∞

0

dω ω3

∫
d3r′

∫
d3r′′

∫
d3s

×d↑
A · G(rA, r

′, ω) ·R(r′, s, ω) ·G†(rD, r
′′, ω) ·R†(r′′, s, ω) · d↓

D. (4.5)
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Making use of the definition of the R function (2.57), we can rewrite as,

=
µ2
0ℏ
π

∫ ∞

0

dω ω3

∫
d3r′

∫
d3r′′d↑

A ·G(rA, r
′, ω) · ReQ(r′, r′′, ω) ·G†(rD, r

′′, ω) · d↓
D, (4.6)

where Re denotes the general real part of a tensor, defined in (2.50).

We use the integral relation (2.97) applicable to non-reciprocal media to rewrite our expres-
sion as,

⟨f |HA
intH

D
int |i⟩ =

µ0ℏ
π

∫ ∞

0

dω ω2d↑
A · ImG(rA, rD, ω) · d↓

D, (4.7)

where Im denotes the general imaginary part of a tensor, defined in (2.51). So, we can now
express the resonant contribution to the matrix element as,

M res
fi = −

∑
p

⟨f | H
A
intH

D
int

ℏcp− Eeg

|i⟩

= −µ0

π

∫ ∞

0

dω d↑
A ·

ω2 ImG(rA, rD, ω)

ω − ω0

· d↓
D, (4.8)

where we have made the substitutions ℏcp = ℏω and Eeg = ℏω0. For the off-resonant
contribution, we can apply similar methods which leads to,

Moff
fi =−

∑
p

⟨f | H
D
intH

A
int

ℏcp+ Eeg

|i⟩

=− µ0

π

∫ ∞

0

dω d↓
D ·

ω2 ImG(rD, rA, ω)

ω + ω0

· d↑
A. (4.9)

Now we want to rearrange these integrals so we can apply complex contour integration
techniques to solve them. For an integral of the form,∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω ± ω0

, (4.10)

we can use the relation for the general imaginary part of a tensor (2.51) to write the frequency
integral as,

1

2i

∫ ∞

0

dω
ω2

ω ± ω0

[
G(r, r′, ω)−G†(r′, r, ω)

]
. (4.11)

As we did for the reciprocal case, we can make us of of the Schwarz reflection principle (2.70)
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and the identity
∫ b

a
f(−x)dx = −

∫ −b

−a
f(x)dx to rewrite the integral as,

∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω ± ω0

=
1

2i

[∫ ∞

0

dω
ω2G(r, r′, ω)

ω ± ω0

+

∫ −∞

0

dω
(−ω)2GT(r′, r, ω)

−ω ± ω0

]

=
1

2i

[∫ ∞

0

dω
ω2G(r, r′, ω)

ω ± ω0

−
∫ −∞

0

dω
ω2GT(r′, r, ω)

ω ∓ ω0

]
. (4.12)

Applying this to our expressions for the matrix element components, (4.8) and (4.9), we get,

M res
fi = − µ0

2πi
d↑
A ·

[∫ ∞

0

dω
ω2G(rA, rD, ω)

ω − ω0

−
∫ −∞

0

dω
ω2GT(rD, rA, ω)

ω + ω0

]
· d↓

D, (4.13)

Moff
fi = − µ0

2πi
d↓
D ·

[∫ ∞

0

dω
ω2G(rD, rA, ω)

ω + ω0

−
∫ −∞

0

dω
ω2GT(rA, rD, ω)

ω − ω0

]
· d↑

A. (4.14)

We notice the presence of the transposes as a key difference when comparing to the reciprocal
result, (3.46) and (3.47), at this stage. In the case of reciprocal media, Lorentz reciprocity
(2.75) means that GT(rD(A), rA(D), ω) = G(rA(D), rD(A), ω) and the above expressions reduce
to (3.46) and (3.47).

4.1.2 Contour Integration

As for the reciprocal case, the frequency integrals in (4.13) and (4.14) have poles on the real
axis at ±ω0, so we let the eigenenergies of the atom take on a small imaginary part, and use
the same complex contour integration techniques as in section 3.2.2. Using the same method
as for the reciprocal case, we obtain an expression for the first integral term in (4.13),∫ ∞

0

dω
ω2G(rA, rD, ω)

ω − ω0

= i

∫ ∞

0

dξ
(iξ)2G(rA, rD, iξ)

iξ − ω0

+ 2πiω2
0G(rA, rD, ω0). (4.15)

Similarly for the second integral term of (4.13), we rewrite as,∫ −∞

0

dω
ω2GT(rD, rA, ω)

ω + ω0

= i

∫ ∞

0

dξ
(iξ)2GT(rD, rA, iξ)

iξ + ω0

. (4.16)
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Combining these two integral terms, (4.15) and (4.16), we obtain an expression for the
resonant component of the matrix element (4.13),

M res
fi =− µ0

2πi

(
d↑
A · i

∫ ∞

0

dξ (iξ)2

[
G(rA, rD, iξ)

iξ − ω0

− GT(rD, rA, iξ)

iξ + ω0

]
· d↓

D

+ 2πiω2
0d

↑
A ·G(rA, rD, ω0) · d↓

D

)

=
µ0

2π
d↑
A ·

(∫ ∞

0

dξ ξ2

[
G(rA, rD, iξ)

iξ − ω0

− GT(rD, rA, iξ)

iξ + ω0

]

− 2πω2
0G(rA, rD, ω0)

)
· d↓

D. (4.17)

We note here that in the reciprocal case, at this point we made use of the Lorentz reciprocity
(2.75) of the Green’s tensor to combine the terms in the square brackets into a single term.
However, we are unable to do this when considering non-reciprocal media, since Lorentz
reciprocity (2.75) does not hold.

We repeat the same steps for the off-resonant component of the matrix element, (4.14),

Moff
fi = − µ0

2πi
d↓
D · i

∫ ∞

0

dξ (iξ)2

[
G(rD, rA, iξ)

iξ + ω0

− GT(rA, rD, iξ)

iξ − ω0

]
· d↑

A

=
µ0

2π
d↓
D ·
∫ ∞

0

dξ ξ2

[
G(rD, rA, iξ)

iξ + ω0

− GT(rA, rD, iξ)

iξ − ω0

]
· d↑

A. (4.18)

We are now able to sum the resonant and the off-resonant components of the matrix element,
(4.17) and (4.18), to find the full matrix element,

Mfi = −µ0ω
2
0d

↑
A ·G(rA, rD, ω0) · d↓

D

+
µ0

2π

∫ ∞

0

dξ ξ2

d↑
A ·

[
G(rA, rD, iξ)

iξ − ω0

− GT(rD, rA, iξ)

iξ + ω0

]
· d↓

D

+ d↓
D ·

[
G(rD, rA, iξ)

iξ + ω0

− GT(rA, rD, iξ)

iξ − ω0

]
· d↑

A

 . (4.19)

We can use the relation a ·B · c = c ·BT · a for vectors a and c and matrix B, to see that
all terms under the integral vanish, leaving,

Mfi = −µ0ω
2
0 d

↑
A ·G(rA, rD, ω0) · d↓

D. (4.20)
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We note that this is the same result that is obtained for the reciprocal case by comparing
with (3.65). However, the G that goes into the above equation will be that for non-reciprocal
media (see, for example, B.3). Physically, it makes sense that the integral terms cancel, since
these correspond to the non-resonant, and therefore fully quantum, time ordering. Since non-
reciprocity is not a quantum effect, we would expect this result to agree with the classical
case.

4.1.3 Calculating the Rate

In analogy with the reciprocal case, we now use the matrix element (4.20) in Fermi’s Golden
Rule;

Γfi =
2π

ℏ
|Mfi|2δ(EI − Ef )

=
2πµ2

0ω
4
0

ℏ
|d↑

A ·G(rA, rD, ω0) · d↓
D|

2 (4.21)

where we have assumed real dipole moments. This formula is valid for both reciprocal and
non-reciprocal media, as can be seen by comparison with (3.68).

If we were to multiply out the modulus squared, we find that for non-reciprocal media we
can rewrite as,

ΓNR
fi =

2πµ2
0ω

4
0

ℏ

(
d↑
A ·G(rA, rD, ω0) · d↓

D

)
·
(
d↓
A ·G

∗(rA, rD, ω0) · d↑
D

)
. (4.22)

However, we recall that for reciprocal media Lorentz reciprocity holds (2.74), so we could
rewrite this as,

ΓR
fi =

2πµ2
0ω

4
0

ℏ

(
d↓
D ·G(rD, rA, ω0) · d↑

A

)
·
(
d↓
A ·G

∗(rA, rD, ω0) · d↑
D

)
, (4.23)

allowing us to directly compare and notice the difference in the first bracketed term. We
also note that the physical interpretation we were able to make for the reciprocal rate at the
end of section 3.2.2 cannot be made for the rate in non-reciprocal media. In other words,
while the form of the matrix element (3.67) remains unchanged in terms of G, its modulus
square appearing in Fermi’s Golden Rule (and therefore the rate) cannot be simplified and
interpreted in the same way as for reciprocal media.

We now apply our rate formula to a specific example of two-bodies near a non-reciprocal
semi-infinite half-space. We will investigate under which conditions a swap in the positions
of the donor and acceptor will result in a change in the rate of energy transfer between
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them.

4.2 Non-reciprocal Half-space

In the context of resonant energy transfer, non-reciprocity reveals itself when the positions of
the donor and acceptor are swapped. In the presence of reciprocal media, the rate of energy
transfer between a donor at point 1 and acceptor at point 2 will be the same as between a
donor at point 2 and acceptor at point 1. However, in non-reciprocal media, there are certain
circumstances under which a swap of this kind will affect the rate of interaction between the
molecules.

In this section, we will look at a simple environment of a semi-infinite half space for different
arrangements and dipole orientations, and examine the effects of swapping the position of
a donor and acceptor (or equivalently, r and r′ being swapped in G(r, r′, ω)). We make
use of the Green’s function for a layered topological insulator calculated in Ref. [78] (see
section B.3). This Green’s function has a complex form, given in (B.46), that requires the
evaluation of an infinite integral. For this reason, instead of calculating the rate of interaction
for different arrangements as was done in the previous chapter, we will look only at quantities
that are directly affected by a position swap, and from that deduce if the rate of interaction
is also affected.

To simplify things, will consider two specific arrangements of the bodies with respect to a
surface at z < 0, shown in figure 4.1. The first of these is “parallel”, where both bodies
are equidistant from the surface and at equal distances above and below the z-axis, so that
the line connecting the bodies is parallel to the surface. The other is “colinear”, where,
as in the previous chapter, both bodies are on the z-axis. We will also be considering
different orientations of the dipole moments of the two bodies. In the previous chapter, we
only calculated the rate of interaction between two bodies with dipole moments that are
randomly oriented, whereas in this chapter, we will also consider how the rate is affected
when the dipole moments have specific orientations in relation to the half-space and to each
other. As we will see, this will be a crucial element for distinguishing cases where a position
switch affects the interaction rate.
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(a) Parallel arrangement. (b) Colinear arrangement.

Figure 4.1: Two possible arrangements of two bodies, a donor D and an acceptor A, near a
semi-infinite half-space at z < 0.

4.2.1 Oriented dipole moments

We first consider the case where the dipole moments are oriented in either the x, y or z
directions. We can write these cases as,

d(x) = |d| (1, 0, 0) , d(y) = |d| (0, 1, 0) , d(z) = |d| (0, 0, 1) . (4.24)

We now consider the rate of energy transfer between two dipole moments, d(m) positioned
at r and oriented in the m direction, and d′(n) at r′ and oriented in the n direction, where
m and n could be x, y or z. We can calculate the rate, first assuming that d(m) is the donor
and d′(n) is the acceptor, and then vice versa. Using the rate equation (4.22), we find,

ΓNRec
(m),(n) =

2πµ2
0ω

4
D

ℏ

(
d(m) ·G(r, r′) · d′(n)

)
·
(
d(m) ·G∗(r, r′) · d′(n)

)
=
2πµ2

0ω
4
D

ℏ
|d|2|d′|2Gmn(r, r

′)G∗
mn(r, r

′), (4.25a)

ΓNRec
(n),(m) =

2πµ2
0ω

4
D

ℏ

(
d′(n) ·G(r′, r) · d(m)

)
·
(
d′(n) ·G∗(r′, r) · d(m)

)
=
2πµ2

0ω
4
D

ℏ
|d|2|d′|2Gnm(r

′, r)G∗
nm(r

′, r), (4.25b)

where we have omitted the dependence on ω0 for ease of reading. This shows that the
orientation of the two dipole moments and where they are positioned determines which
component of the Green’s tensor matrix contributes to the calculation of the rate. It is
therefore clear that a change in the rate of interaction will only occur if,

Gmn(r, r
′)G∗

mn(r, r
′) ̸= Gnm(r

′, r)G∗
nm(r

′, r). (4.26)
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where m and n could be x, y or z. So, Gmn denotes a single component of the tensor,
determined by the orientation of the dipole moments. This will be how we can determine for
which systems switching the donor and acceptor will change the interaction rate.

We note here that Lorentz reciprocity, (2.74), which states that G(r, r′) = GT (r′, r) for
reciprocal media, implies that the above will never be true for reciprocal media. So we can
conclude that the rate of energy transfer will be unaffected by a position swap for reciprocal
media for oriented dipole moments, as expected.

We will now specifically consider the two arrangements shown in figure 4.1, and explore the
effect the different dipole moment orientations have on the rate when the molecule positions
are swapped.

Parallel Arrangement

We first investigate two bodies in a parallel arrangement with the non-reciprocal half-space,
as in figure 4.1a. The expression for the Green’s tensor for a half-space made up of non-
reciprocal media for a parallel arrangement is given in (B.52) and again below,

G(1,P)(r, r′, ω) =
iµ1(ω)

4π

∫
dk∥

k∥

k⊥
e2ik

⊥zRij
P , (4.27)

where P references the parallel arrangement. The Rij
P components are given by (B.53),

which depend on X ≡ x− x′ along with the Fresnel coefficients rs,s, rp,p, rs,p and rp,s which
are defined by (B.43). rs,s represents the s (perpendicular) polarization, rp,p represents the
p (parallel) polarization, and rs,p and rp,s denote the mixing of the two polarizations that
occurs due to the magnetoelectric coupling present in non-reciprocal media [78].

We note that in this arrangement, switching the donor and acceptor amounts to making the
replacement X → −X. Therefore, it is the way that the X → −X replacement affects the
Rij

P components that will determine if a rate change is observed. This means we can write
our condition (4.26) as,

Rmn
P (X)Rmn∗

P (X) ̸= Rnm
P (−X)Rnm∗

P (−X). (4.28)

To see if the rate changes for oriented dipole moments, we need to consider the possible
dipole orientation combinations and see which satisfy (4.28).

If we firstly consider the cases where both dipole moments are oriented in the same direction,
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then the inequality that must be satisfied is,

Rmm
P (X)Rmm∗

P (X) ̸= Rmm
P (−X)Rmm∗

P (−X) (4.29)

where m is x, y or z. The diagonal elements of RP are,

Rxx
P =

J1(k
∥|X|)
|X|

(
rs,s +

k2z
k21
rp,p

)
− J0(k∥|X|)

k2z
k21
rp,p, (4.30a)

Ryy
P =−

J1(k∥|X|)
|X|

(
rs,s +

k2z
k21
rp,p

)
− J0(k∥|X|)rs,s

 , (4.30b)

Rzz
P =− J0(k∥|X|)

k∥
2

k21
rp,p. (4.30c)

We can see that the only explicit position dependence in these components are of the form
|X|, soit is clear that none of these would be affected by the replacement X → −X. We can
therefore deduce that the condition (4.29) cannot be satisfied in this system when the dipole
moments have the same orientation.

We now consider the case where the two dipole moments have different orientations, so we
must examine the off-diagonal components of RP and if they satisfy (4.28). Here we must be
more careful, as a switch in the positions of the bodies also means a switch in the positions of
the different dipole moment orientations, which correspond to different components of RP.

Looking first at the case where one dipole moment is oriented in the x direction and the
other in the y direction, the relevant RP components are,

Rxy
P =

kz
k1

[
J1(k

∥|X|)
|X|

(
rs,p + rp,s

)
− J0(k∥|X|)rp,s

]
, (4.31a)

Ryx
P =

kz
k1

[
J1(k

∥|X|)
|X|

(
rs,p + rp,s

)
− J0(k∥|X|)rs,p

]
. (4.31b)

We can see that although the only explicit position dependence is |X|, which is unaffected
by a position swap, since Rxy

P ̸= Ryx
P when rp,s ̸= rs,p, a switch in which molecule has which

orientation (x ↔ y) can result in a change. Calculating the quantities of interest according
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to (4.28), we find,

Rxy
P (X)Rxy∗

P (X) =
k2z
k21

[
J1(k

∥|X|)
|X|

(
rs,p + rp,s

)
− J0(k∥|X|)rp,s

]2

=
k2z
k21

(J1(k∥|X|)
|X|

)2 (
rs,p + rp,s

)2
+ J0(k

∥|X|)2r2p,s

− J1(k
∥|X|)J0(k∥|X|)
|X|

(
rs,p + rp,s

)
rp,s

]
, (4.32a)

Ryx
P (−X)Ryx∗

P (−X) =
k2z
k21

(J1(k∥|X|)
|X|

)2 (
rs,p + rp,s

)2
+ J0(k

∥|X|)2r2s,p

− J1(k
∥|X|)J0(k∥|X|)
|X|

(
rs,p + rp,s

)
rs,p

]
, (4.32b)

which we can see are different only if rs,p ̸= ±rp,s.

We can perform the same test for x and z oriented dipole moments, which correspond to the
components,

Rxz
P = −Rzx

P = −ik
∥kz
k21

J1(k
∥X)rp,p. (4.33)

We then calculate the quantities of interest,

Rxz
P (X)Rxz∗

P (X) =

(
k∥kz
k21

J1(k
∥X)rp,p

)2

(4.34)

and

Rzx
P (−X)Rzx∗

P (−X) =

(
−k

∥kz
k21

J1(k
∥X)rp,p

)2

(4.35)

where we have used the the fact that J1(x) (a Bessel function of the first kind) is an odd
function, meaning J1(−x) = −J1(x). We can therefore see that these components are equal,
meaning the inequality (4.26) will never hold for these dipole orientations.
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Figure 4.2: The combinations of positions and dipole moment orientations for two bodies
near a semi-infinite half-space at z < 0 that produce a rate change when the two bodies
switch positions. Small arrows indicate the dipole moment orientation, with dots signifying
the moment pointing out of the page in the y direction.

Finally, we can test y and z oriented dipole moments, corresponding to components,

Ryz
P = i

k∥

k1
J1(k

∥X)rs,p, (4.36a)

Rzy
P = −ik

∥

k1
J1(k

∥X)rp,s. (4.36b)

So the quantities of interest are,

Ryz
P (X)Ryz∗

P (X) =

(
k∥

k1
J1(k

∥X)rs,p

)2

, (4.37a)

Rzy
P (−X)Rzy∗

P (−X) =

(
−k

∥

k1
J1(k

∥X)rp,s

)2

, (4.37b)

which are only different when rs,p ̸= ±rp,s, the same condition we saw for the x, y orientation
combination.

We can conclude that when one of the parallel-arranged dipole moments is oriented in the y
direction and the other in the x or z direction (see figure 4.2), we see a change in the rate of
energy transfer when in the presence of a non-reciprocal half-space with rs,p ̸= ±rp,s.

Colinear Arrangement

We now consider the colinear arrangement setup shown in figure 4.1b. The expression for the
Green’s tensor for a half-space made up of non-reciprocal media for a colinear arrangement
is given in (B.55) and again below,

G(1,C)(r, r′, ω) =
iµ1(ω)

8π

∫
dk∥

k∥

k⊥
eik

⊥Z̄Rij
C , (4.38)
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where C references the colinear arrangement, and the Rij
C components are given by (B.56).

We note that the only explicit position dependence is Z̄ ≡ z + z′, which is unaffected by a
position swap (z ↔ z′).

First looking at the diagonal elements of Rij
C which correspond to both dipole moments

having the same orientation,

Rxx
C = Ryy

C = rs,s −
k2z
k21
rp,p, (4.39a)

Rzz
C = −k

∥2

k21
rp,p, (4.39b)

we can see that none of them have explicit position dependence, meaning the condition (4.29)
cannot be satisfied. The only non-zero off-diagonal elements are given by,

Rxy
C = −Ryx

C =
kz
k1

(
rs,p − rp,s

)
. (4.40)

which also do not have an explicit position dependence. By noting that RxyRxy∗ = RyxRyx∗ ,
we can see that the criterion (4.26) is never satisfied. This means that in the colinear
arrangement with oriented dipole moments, a position swap will never affect the rate of
interaction.

From this section we can conclude that when the two molecules are in a colinear arrange-
ment with a non-reciprocal half-space, none of the dipole moment orientation combinations
considered will affect the rate of interaction if the molecule positions are swapped. However,
when they are in a parallel arrangement and one of the dipole moments is y oriented and the
other is x or z oriented, a change in the rate of interaction can be detected under a position
swap as long as rs,p ̸= ±rp,s. We now move on to the situation where the dipole moments do
not have specific orientations, but instead are randomly oriented.

4.2.2 Isotropic Dipole Moments

To consider the case where the dipole moments are isotropically averaged, we make the same
replacement as in the previous chapter in eq. (3.69), d↑

A/D ⊗ d↓
A/D →

1
3
|dA/D|2I, in our rate

equation (4.22) to obtain,

ΓNRec
iso =

2πµ2
0ω

4
0

9ℏ
|dA|2|dD|2Tr

[
G(rA, rD, ω0) ·G∗(rA, rD, ω0)

]
. (4.41)

We want to see if a swap in the positions of the donor and acceptor would affect the rate of
energy transfer between them. For isotropically averaged dipole moments, we would see a
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rate change only if,

Tr
[
G(r, r′) ·G∗(r, r′)

]
̸= Tr

[
G(r′, r) ·G∗(r′, r)

]
, (4.42)

where we have again omitted the dependence on ω0. So, we need to examine the forms of the
Green’s tensor for the different geometries near a half-space and see if they fit this criterion.

It is useful to explicitly write out the trace in terms of the components of G,

Tr [G ·G∗] =
∑
m,n

GmnG
∗
nm, (4.43)

making it easy to see that the condition (4.42) can equivalently be written in index notation
as,

Gij(r, r
′)G∗

ji(r, r
′) ̸= Gij(r

′, r)G∗
ji(r

′, r). (4.44)

As an aside, we note that since reciprocal media obeys Lorentz reciprocity (2.74), which states
that Gij(r, r

′) = Gji(r
′, r), we can see that the inequality (4.44) will never be fulfilled for

reciprocal media. Therefore, we can conclude that for isotropically averaged dipole moments,
a position swap in reciprocal media will not effect the rate of energy transfer, as we would
expect.

Parallel Arrangement

To test if the isotropic rate will change with a position switch, instead of comparing individual
components as in the previous section, we are checking if the trace changes when the positions
are swapped. We can again examine the Rij

P components to check this, noting that in the
parallel arrangement, a position swap is equivalent to the replacement X → −X. This means
that our requirement (4.42) for a parallel arrangement can also be written,∑

m,n

Rmn
P (X)Rnm∗

P (X) ̸=
∑
m,n

Rmn
P (−X)Rnm∗

P (−X). (4.45)

We need to examine the requirement (4.45) for each of the possible index combinations and
see if any of them present an inequality.

Firstly, when m = n, i.e. the diagonal components given in (4.30), we can use the same rea-
soning as the previous section to again see that Rmm

P (X)Rmm∗
P (X) ̸= Rmm

P (−X)Rmm∗
P (−X)

cannot be satisfied.

When {m,n} = {x, y}, we note that the relevant components given in (4.31), Rxy
P and Ryx

P ,
have explicit position dependence of the form |X| only. As a result, Rmn

P (X) = Rmn
P (−X)
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and Rmn∗
P (X) = Rmn∗

P (−X), meaning (4.45) cannot be fulfilled.

For the index pairs {m,n} = {x, z} and {m,n} = {y, z}, we see an explicit dependence on X
in the corresponding components Rxz

P and Rzx
P given in (4.33), and Ryz

P and Rzy
P given in (4.36).

However, for both index pairs we find Rmn
P (X) = −Rmn

P (−X) and Rnm∗
P (X) = −Rnm∗

P (−X),
so the quantity of interest in (4.45) is again unchanged by the replacement X → −X.

Therefore, although we saw in the previous section that it is possible to observe a rate
change in this arrangement for certain dipole moment orientations, the same is not true for
isotropically averaged dipole moments.

Colinear Arrangement

For the colinear arrangement, upon inspection of the non-zero Rmn
C components given in

(4.39) and (4.40), we can see that none of them have an explicit position dependence, and
so will be unaffected by a position swap. Therefore, switching the positions of two molecules
in a colinear arrangement near a non-reciprocal half-space will not result in a change in the
interaction rate if the dipole moments are isotropically averaged.

In this section, we have found that when two molecules near a non-reciprocal surface have
randomly oriented dipole moments, a change in the rate of interaction will not be observed
under a position swap for either the colinear or the parallel arrangements.

In the next section, we use our findings to focus on setups where a position swap can lead to
a rate change. We investigate two situations of interest, and plot how the interaction rate is
affected by the molecules’ positions for energy transfer between the bodies in one direction
compared to the other.

4.2.3 Plots and Discussion

Based on the calculations of the previous two sections, we can conclude that following con-
ditions must be met in order to observe a change in the rate of energy transfer when the
positions of the donor and acceptor near a half-space are swapped:

• The dipoles must be in a parallel arrangement

• One of the dipole moments must be oriented in the y direction, and the other in either
the x or z directions

• The coefficients rs,p and rp,s of the half-space must be non-zero and satisfy rs,p ̸= ±rp,s

Physically, it makes sense that the rate of interaction in a colinear arrangement would not



CHAPTER 4. TWO-BODY RET IN A NON-RECIPROCAL ENVIRONMENT 66

(a) Parallel arrangement. (b) Colinear arrangement.

Figure 4.3: Figure showing how energy is transferred between a donor D and an acceptor A
near a semi-infinite half-space at z < 0 for two different arrangements.

be affected by the non-reciprocity of the half-space. Since the dipoles are both on the z-axis,
a position swap would not affect the way the energy interacts with the half-space, as can be
seen in figure 4.3b. On the other hand, a position swap in the parallel arrangement would
mean that the radiation propagates in the opposite direction through the medium, as in
figure 4.3a, which for non-reciprocal media would result in different properties.

Under the above conditions, we can plot the rate of energy transfer against intermolecular
distance and see how switching the positions of the dipoles affects the results.

Figure 4.4a shows how the rate of interaction depends on intermolecular distance for a y-
oriented donor and an x-oriented acceptor, and how this is altered when these orientations
are switched, so the donor becomes the acceptor and vice versa. We note that both plots
oscillate, which is due to the Bessel functions present in (4.32). We can also see that the
presence of the half-space produces only enhancement of the rate compared to the vacuum,
although there are intermolecular distances for which the half-space provides no enhancement
for the y → x direction.

The difference in plot shapes and maximum values for the different directions is determined
by the different reflection coefficient values chosen. From (4.32), we can see that although
both directions depend on both the reflection coefficients rs,p and rp,s, the x→ y direction has
an extra dependence on rp,s and the opposite direction on rp,s. We can think of the direction
corresponding to the larger reflection coefficient as being the dominant direction. So since
we chose rp,s > rs,p for figure 4.4, x → y is the dominant direction, and therefore provides
more rate enhancement. So if we wanted to maximise energy transfer in one direction and
minimise it in the other, this could be achieved by increasing the reflection coefficient that
corresponds to the desirable direction. For example, if we wanted to maximise the y → x

interaction, we would increase rp,s and decrease rs,p.
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(a) Rate of energy being transferred from
an x-oriented dipole moment to a y-oriented
dipole moment, compared to the other direc-
tion.

(b) Rate of energy being transferred from
an z-oriented dipole moment to a y-oriented
dipole moment, compared to the other direc-
tion.

Figure 4.4: Plot of rate of energy transfer against intermolecular distance for two bodies
near a non-reciprocal half-space, normalised to the isotropic vacuum rate. The reflection
coefficients are set at rp,p = 1, rs,s = −1, rp,s = 0.5 and rs,p = 0.2. The intermolecular
distance is in units of the transition wavelength λ0. The surface is positioned at z < 0, and
the donor and acceptor are both 1.05λ0 from the surface, with their positions varying along
the x-axis.

We also note that periodically there are intermolecular distances where the interaction occurs
at the same rate for both directions, and then between those distances the dominant direction
observes a further rate enhancement, and the other drops to zero. So for some distances, the
direction makes no difference to the rate, and for others, one direction is more desirable.

Figure 4.4b is for a y-oriented donor and an z-oriented acceptor, and shows how the rate of
interaction changes when the dipoles are swapped. In this case, we can see that the shape of
the plot is the same for both directions; the rate increases with intermolecular distance, and
once a certain distance is reached (∼ 10λ0), the enhancement of the rate of energy transfer
remains constant as the distances increases. The difference in the maximum rate reached is
determined by the reflection coefficients, rs,p and rp,s. From (4.37), we can see that the y → z

direction is dependent on rs,p while the opposite direction is determined by rp,s. The choice
made for figure 4.4 of rp,s > rs,p is reflected by the maximum value of the z → y direction
being larger. So increasing the relevant reflection coefficient will increase the maximum rate
in the corresponding direction; rs,p for y → z and rp,s for z → y.

From this section we can see that in a setup of two molecules in a parallel arrangement near
a non-reciprocal half-space, under certain conditions the properties of the medium can be
engineered in order to maximise energy transfer between the two molecules in one direction
over the other. This demonstrates an example of how non-reciprocity can be a vital tool in
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the design of components that require one-way propagation, for example the elimination of
backreflection in communication technologies (see e.g. Ref. [19]).

In the next section, we look at an application of this principle presented in the publication
[2], namely the use of non-reciprocity in the design of an optical isolator. This is a situation
which requires the unidirectional propagation of light, and as we saw in this section, there
are situations where properties of a non-reciprocal medium can be manipulated to achieve
this.

4.3 Application in Inverse Design of RET Isolation

In this section, we review the methods and results of C. Cisowski, which are based on our
result (4.21) and presented in our publication [2]. In this work, inverse design and three-
dimensional topology optimization are used to optimize one-way energy transfer through
non-reciprocal Faraday media.

We first give a brief overview of the principles of inverse design, specifically how Green’s
tensors can be made use of to account for non-reciprocity. Next, we look at how these methods
can be combined with our result (4.21) to create a device that maximises unidirectional energy
transfer between two molecules either side of it. Finally, we review the results produced by C.
Cisowski et al. for our publication [2] in which the inverse design of such a device is carried
out.

4.3.1 Inverse Design

Our calculated formula for the rate of energy transfer in non-reciprocal media (4.21) can be
made use of in the design of the non-reciprocal response of a device. The method used by
C. Cisowski et al. in our publication [2] is based on inverse design, which uses an efficient,
free-form algorithm to find improved structures for a goal specified by the designer with
any required constraints considered. This is instead of the traditional method of a designer
specifying a structure and testing against a set of desired characteristics (for a review of the
use of inverse design in nanophotonics, see [79].)

A prominent technique used in modern inverse design is the adjoint method [80–82], which
is used to reduce the number of simulations that must be carried out. This is done by
considering the way radiation propagates through the same system in a “forward” direction
(source to observer) and “adjoint” direction (observer to source). However, the challenge for
a non-reciprocal medium is that these two directions are physically distinct and therefore do
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not represent the same physical system. This can be resolved by using a Green’s tensor-based
inverse design approach [83], on which this section will focus.

Inverse Design using Green’s Tensors

To carry out an optimization, the goal is to increase the value of a merit function F of some
functional f of the Green’s tensor G(r, r′, ω) [83],

F = f [G(r, r′, ω)]. (4.46)

To find the maximum of F , we take a functional derivative. In principle, we would have
to take functional derivatives with respect to the real and imaginary parts of G separately,
but it is in fact more convenient to consider G and its complex conjugate G∗ separately
instead (see [83]). Each of the independent components of the Green’s tensor must be varied
during an optimization, so we can make use of the Frobenius product denoted by ⊙, where
A⊙B ≡

∑
ij AijBij for matrices A and B. The required derivative is,

δF =
∂f

∂G
(r, r′, ω)⊙ δG(r, r′, ω) +

∂f

∂G∗ (r, r
′, ω)⊙ δG∗(r, r′, ω)

=2Re

[
∂f

∂G
(r, r′, ω)⊙ δG(r, r′, ω)

]
, (4.47)

where δG is an unknown change in the Green’s tensor due to an infinitesimal change in the
environment. This can be written via a truncated Born series as [84],

δG(r, r′, ω) = µ0ω
2

∫
V

d3r′′n(r′′)α(r′′)G(r, r′′, ω) ·G(r′′, r′, ω), (4.48)

where the volume V contains the region of the environment that has changed, n(r) is the
number density of the atoms within V , and α(r) are their polarizabilities. We now assume
that we are dealing with a homogeneous scattering body, so the number density and polar-
izabilities are constant over the volume. Using (4.47) and (4.48), we find that the change in
merit function due to an additional small piece of dielectric material is given by,

δF = 2αnRe

∫
V

d3r′′
{
∂f

∂G
(r, r′, ω)⊙

[
G(r, r′′, ω) ·G(r′′, r′, ω)

]}
. (4.49)

Dropping the positive constants 2αn, since we only require the maximum as a function of
the perturbation choice, we arrive at,

δF = Re

∫
V

d3r′′ ∂f

∂G
(r, r′, ω)⊙

[
G(r, r′′, ω) ·G(r′′, r′, ω)

]
, (4.50)
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which will be used to carry out the optimization.

Level-Set approach

To perform the optimization via (4.50), the level-set approach [85] can be used. In this
method, an initial geometry is chosen and its boundaries are gradually changed to optimize
the desired effect. The medium is described as a level-set function Φ, where Φ < 0 inside the
medium, and Φ > 0 outside, and its boundary is set as the zero-level contour Φ(t) = 0. Here,
an artificial “time” parameter is introduced which represents the progress of the iterative
process. If the initial boundary shape is set as Φ

(
r(t), t

)
, the evolution of the boundary is

governed by,
∂Φ

∂t
+ v · ∇Φ = 0. (4.51)

By considering the vector normal to the boundary n = ∇Φ/|∇Φ|, the above can be rewritten
as,

∂Φ

∂t
+ vn |∇Φ| = 0, (4.52)

where vn = v · n is the scalar velocity field in the direction normal to the boundary. By
choosing vn appropriately, the boundary will deform in such a way that the merit function F
increases, which is the goal of the optimization. This is equivalent to ensuring that δF > 0,
so we need (4.50) to be positive.

To this end, the integration over r′′ can be rewritten as [86],∫
V

d3r′′ →
∫
∂V

dAδx(r′′) =

∫
∂V

dA vnδt, (4.53)

where δx represents the size of an infinitesimal deformation normal to the boundary, and
integration is now performed over its area A. The deformation has then been replaced with
the product of the velocity perpendicular to the boundary, vn, and an infinitesimal time step,
δt. Substituting (4.53) into (4.50) gives,

δF = Re

∫
∂V

dA vnδt
∂f

∂G
(r, r′, ω)⊙

[
G(r, r′′, ω) ·G(r′′, r′, ω)

]
. (4.54)

If the velocity field is chosen as,

vn = Re

{
∂f

∂G
(r, r′, ω)⊙

[
G(r, r′′, ω) ·G(r′′, r′, ω)

]}
, (4.55)

then δF =
∫
∂V
dA v2n, which is always positive, guaranteeing that F is increasing as required.
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Faraday Media

We face a problem using (4.55) in optimization, as the optimization position r′′ appears in
the second (source) point in one of the Green’s tensors. An optimization must consider each
“candidate” position for the perturbation via a separate simulation with different sources. In
a large-scale 3D problem there could be far too many of these to consider, so in order to
make the scheme numerically feasible, we want the observation positions to appear only in
the first (observation) point in the Green’s tensors [83].

For reciprocal media, we are able to make use of Lorentz reciprocity (2.74) to say G(r, r′, ω) =

GT (r′, r, ω) to achieve this, but of course this is not possible for non-reciprocal media.
However, a particular case of a non-reciprocal medium is a Faraday medium [20], where
non-reciprocity arises from the interplay between media response and an applied external
magnetic field B0. We can make use of a property of the Green’s tensor in Faraday media
given by [87, 88],

G(r, r′, ω;B0) = GT (r′, r, ω;−B0), (4.56)

where B0 is the external applied field, to rewrite (4.55) as,

vn = Re

{
∂f

∂G
(r, r′, ω)⊙

[
GT (r′′, r, ω;−B0) ·G(r′′, r′, ω;B0)

]}
, (4.57)

which has the required property of the optimization position r′′ appearing in the first argu-
ment of the Green’s tensors only. We are now in a position to apply this to a situation of
interest, namely the optimization of a non-reciprocal device that will maximise unidirectional
energy transfer between two molecules either side of it.

4.3.2 Inverse Design of RET Isolation

We consider a system of a donor and acceptor either side of a finite non-reciprocal medium in
a vacuum, and aim to deform the medium boundary to maximise one-way RET from donor
to acceptor. We label the desirable forward interaction from D → A as Γ+ and the backward
direction as Γ−. By application of our key result (4.21), we can therefore express the isolator
strength as [83],

I =
Γ+

Γ−
=

∣∣dA ·G(rA, rD) · dD

∣∣2∣∣dD ·G(rD, rA) · dA

∣∣2 (4.58)

where have dropped the frequency argument for ease of reading. The Green’s tensors G(r, r′)

and G(r′, r) are, in principle, unrelated for non-reciprocal media. Therefore, the functional
we begin with is,

F = f [G(r, r′),G(r′, r)]. (4.59)
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When a functional depends on multiple Green’s tensors, the variation is the sum of the
variations with respect to the individual Green’s tensors [83]. So, (4.55) becomes,

vIn =Re
{
∂I

∂G
(rA, rD)⊙ [G(rA, ropt) ·G(ropt, rD)]

+
∂I

∂G
(rD, rA)⊙ [G(rD, ropt) ·G(ropt, rA)]

}
. (4.60)

Beginning with the first partial derivative and substituting in (4.58) we get,

∂I

∂G
(rA, rD) =

1∣∣dD ·G(rD, rA) · dA

∣∣2 ∂

∂G(rA, rD)

∣∣dA ·G(rA, rD) · dD

∣∣2 . (4.61)

Expanding the modulus squared in the partial differential and utilising index notation,

∂

∂Gij(rA, rD)

∣∣dA ·G(rA, rD) · dD

∣∣2
ij
=

∂

∂Gij(rA, rD)

[
dApGpq(rA, rD)d

D
q d

A
l G

∗
lk(rA, rD)d

D
k

]
= dAp δpiδqjd

D
q d

A
l G

∗
lk(rA, rD)d

D
k

= dAi d
D
j d

A
l G

∗
lk(rA, rD)d

D
k

= (dA ⊗ dD)
(
dA ·G∗(rA, rD) · dD

)
, (4.62)

where we have treated G and G∗ as independent.

Moving on to the partial derivative in the second line of (4.60),

∂I

∂G
(rD, rA) =

∣∣dA ·G(rA, rD) · dD

∣∣2 ∂

∂G(rD, rA)

 1∣∣dD ·G(rD, rA) · dA

∣∣2


=

∣∣dA ·G(rA, rD) · dD

∣∣2
dD ·G∗(rD, rA) · dA

∂

∂G(rD, rA)

[
1

dD ·G(rD, rA) · dA

]
. (4.63)

To deal with this derivative we employ the quotient rule from elementary calculus,(
1

v

)′

= − v
′

v2
, (4.64)

and apply by setting v = dDpGpq(rD, rA)d
A
q using index notation, so that,

v′ =
∂

∂Gij(rD, rA)

[
dDpGpq(rD, rA)d

A
q

]
=dDp δipδjqd

A
q = dDi d

A
j , (4.65)



CHAPTER 4. TWO-BODY RET IN A NON-RECIPROCAL ENVIRONMENT 73

which means that,

∂

∂G(rD, rA)

[
1

dD ·G(rD, rA) · dA

]
=−

dDi d
A
j(

dDpGpq(rD, rA)dAq

)2
=− dD ⊗ dA(

dD ·G(rD, rA) · dA

)2 . (4.66)

Substituting (4.62) and (4.66) into (4.60) we reach,

vIn = Re


(
dA ·G∗(rA, rD) · dD

)∣∣dD ·G(rD, rA) · dA

∣∣2 (dA ⊗ dD)⊙
[
G(rA, ropt) ·G(ropt, rD)

]

−
∣∣dA ·G(rA, rD) · dD

∣∣2(
dD ·G∗(rD, rA) · dA

) (
dD ·G(rD, rA) · dA

)2 (dD ⊗ dA)⊙
[
G(rD, ropt) ·G(ropt, rA)

] .

(4.67)

The following identity for arbitrary vectors a and b and an arbitrary matrix C can be utilised,

(a⊗ b)C = a ·C · b, (4.68)

to rewrite the above as,

vIn = Re
{(

dA ·G∗(rA, rD) · dD

)∣∣dD ·G(rD, rA) · dA

∣∣2 [dA ·G(rA, ropt) ·G(ropt, rD)dD

]
−

∣∣dA ·G(rA, rD) · dD

∣∣2(
dD ·G∗(rD, rA) · dA

) (
dD ·G(rD, rA) · dA

)2 [dD ·G(rD, ropt) ·G(ropt, rA)dA

]
. (4.69)

As mentioned below (4.50), calculating G(rD, ropt) is computationally expensive, so we make
use of the Faraday relation, (4.56), to rewrite as,

vIn = Re
{
(dA ·G∗(rA, rD;B0) · dD)[dA ·GT(ropt, rA;−B0) ·G(ropt, rD;B0) · dD]∣∣dD ·G(rD, rA;B0) · dA

∣∣2
−
∣∣dA ·G(rA, rD;B0) · dD

∣∣2 [dD ·GT(ropt, rD;−B0) ·G(ropt, rA;B0) · dA]

[dD ·G∗(rD, rA;B0) · dA]
∣∣dD ·G(rD, rA;B0) · dA

∣∣2
}
. (4.70)

This is the quantity used by C. Cisowski to perform the inverse design of magneto-optical
RET isolation in the publication [2]. The next subsection reviews these results, produced by
C. Cisowski and presented in our paper [2], which builds on the formula (4.70).
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Figure 4.5: Figure reproduced from [2] under the terms of the Creative Commons Attribution
4.0 International license. Slices of the advected geometry at x = 0 showing the evolution of
the boundary as the iteration number increases.

4.3.3 Results

In this section, we present results produced by C. Cisowski et al. for our publication [2],
which make use of the expression (4.70) in a 3D algorithm to optimize a structure for one-
way energy transfer.

Since the form of the Green’s tensor for any non-trivial geometry is very complex, requiring
integration over all possible frequencies [4], it is not feasible to analytically evaluate equation
(4.70) for a donor and acceptor either side of a finite non-reciprocal medium in a vacuum.
However, the right hand side of (4.70) can be determined for any geometry using the finite-
difference time-domain (FDTD) procedure.

To calculate a Green’s tensor using FDTD, we note that the ij components of G(r, r′, ω)

correspond to the ith component of an electric field at r stemming from the jth component
of a point current source at r′, meaning we can write [83],

Gij(r, r
′, ω) =

Ei(r, ω)

iµ0ωjj(r′, ω)
, (4.71)

where j(r′, ω) is the source current in the frequency domain. In Ref. [2], the Meep FDTD
implementation [89] is used to calculate the electric field of a time-domain source j(t), and
then the components of the Green’s tensor are found by implementing the current as a
short Gaussian pulse [83]. For the setup considered here, the quantities that must be cal-
culated are G(ropt, rD;B0), G(ropt, rA;B0), G(ropt, rD;−B0) and G(ropt, rA;−B0). These
are substituted into (4.70) to find vIn, which is then be used to perform the inverse design of
magneto-optical RET isolation.
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Figure 4.6: Figure reproduced from [2] under the terms of the Creative Commons Attribution
4.0 International license. The isolation strength Γ of the optical isolator, normalized to the
initial isolation strength Γ0, increases during iterative optimization process.

Figure 4.7: Figure reproduced from [2] under the terms of the Creative Commons Attribution
4.0 International license. (a) Initial geometry and (b)-(d) final geometry of the inverse-
designed non-reciprocal RET isolator. The donor, D, and acceptor, A, are represented as
gold spheres.

In Ref. [2], a custom-made 3D algorithm is used to carry out topology optimization, beginning
with a finite sphere of non-reciprocal media with a vacuum background. The velocity on the
boundary is calculated via (4.70) and the boundary is then updated using the advection
equation (4.52), resulting in a new geometry which is used as the starting point for the next
iteration. The way that the initial sphere evolves is shown in figure 4.5.

We can see from figure 4.6 that as the iterations progress, the isolation strength of the
magneto-optical RET isolator increases, eventually converging to a factor of approximately
2.3 after around 80 iterations when the structure converges to a final shape. Figure 4.7 shows
the initial geometry and multiple perspectives on the final geometry of the topology-optimized
Faraday medium.
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This work from Ref. [2] demonstrates how the Green’s tensor formalism can be used to
perform the inverse design of isolation processes, and how these tools can be exploited to
perform inverse design of Faraday media, opening up an avenue of research in the pursuit of
an integrated photonic isolator.

4.4 Summary and Conclusion

To summarize, in this chapter we used macroscopic QED to calculate a general formula for
energy transfer between two bodies in a non-reciprocal environment, before applying it to
a simple setup of two molecules near a semi-infinite half-space. After considering different
arrangements and dipole moment orientations, we found that for a parallel arrangement
there are certain dipole moment orientation combinations that produce a change in the rate
of interaction when the positions of the molecules are switched. We then plotted how the
rate varied with the molecular positions in one direction vs the other.

We then gave an overview of an application presented in Ref. [2] that uses the principles
of non-reciprocity in the inverse design of an optical device that promotes one-way energy
transfer. We provided an outline of how our result was applied, and finally a summary of the
results produced by C. Cisowski that demonstrate the optimization of such a RET isolator
using a custom-made algorithm.



CHAPTER 5

Three-body RET in a Reciprocal
Environment

In this chapter, we look at three-body resonance energy transfer (RET) and how the presence
of an external environment affects the rate of energy transfer, as shown in figure 5.1. We will
focus on how the system is affected by reciprocal media only, as we did in chapter 3.

We begin by using canonical perturbation theory (introduced in section 3.1.2) to eliminate
some of the computational complexity arising from the presence of the third body, and
then use macroscopic QED (introduced in chapter 2) to model the effects of an external

Atoms or molecules

D

M

A

Arbitrary environment

Figure 5.1: System of three bodies (donor, mediator and acceptor) in the presence of an
arbitrary external environment. Figure reproduced from [1] under the terms of the Creative
Commons Attribution 4.0 International license.
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Figure 5.2: Figure reproduced from [1] under the terms of the Creative Commons Attribution
4.0 International license. System of three two-level atoms/molecules transmitting energy
through the electromagnetic field due to resonance energy transfer. The donor begins in an
excited energy state, the acceptor in the ground state and the mediator in its lower state.
Energy emitted from the donor is absorbed by the mediator causing it to become temporarily
excited. The mediator releases this energy again and it is absorbed by the acceptor which
then becomes excited.

reciprocal environment and obtain a general formula for the rate of three-body RET in an
arbitrary environment. We note that similar calculations have been carried out for three-
body Interatomic Coulombic decay (ICD) in a vacuum by considering the mediator as part
of the environment of the two-body system [37], but this method makes it awkward to extend
the calculations to complex geometries.

As a proof-of-principle, we apply our formula to a setup in which the donor and and acceptor
are very close to each other and the mediator is distant from them. We place this system in
some simple environments, namely a vacuum and near a semi-infinite half-space, to calculate
analytic expressions for the rate of energy transfer.

5.1 Calculation of Matrix Element

In this section, we consider a system of three two-level atoms/molecules, a donor, acceptor
and mediator, and calculate the matrix element for energy transfer between the donor and
acceptor, considering both the direct interaction and the indirect interaction via the mediator.
We will apply canonical transformations to the Hamiltonian in order to reduce the order of
perturbation theory required in the calculation.

5.1.1 Setup

We consider a system of a donor, acceptor and mediator, as seen in figure 5.1. Energy from
the donor is released and transferred to the acceptor, either directly as in figure 3.1 or via
the mediator as in figure 5.2. In analogy to the two-body system set up in section 3.1, we
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can model the system via the Hamiltonian,

H = H0 +Hint = H0 +HA
int +HD

int +HM
int, (5.1)

where,
H0 = Hrad +HA

mol +HD
mol +HM

mol, (5.2)

where Hrad is the Hamiltonian of the radiation field, Hξ
mol is the Hamiltonian of the molecule

ξ which we assume is known, and Hξ
int is defined by,

Hξ
int = −d̂ξ · Ê(rξ). (5.3)

The initial and final states of the system are taken to be,

|i⟩ = |eD, sM, gA; 0⟩ , |f⟩ = |gD, sM, eA; 0⟩ , (5.4)

where gD(gA) denotes the ground state of the donor (acceptor), eD(eA) is the excited state
of the donor (acceptor), sM is an arbitrary state of the mediator and 0 is the ground state of
the electromagnetic field.

When considering the mediated interaction involving all three molecules, four emission/absorption
events take place as shown in 5.3a. This means that fourth order perturbation theory would
be required in principle. The complexity of such a calculation means that it is useful to
simplify the Hamiltonian as much as possible, which will be done in section 5.1.2. The direct
interaction involving only the donor and acceptor also needs to be taken into account, but
since it can be treated as a two-body interaction it is covered in section 3.1.

To find the contribution to the matrix element from the indirect interaction involving the
mediator, fourth order perturbation theory is generally used,

Mfi =
∑

I,II,III

⟨f |Hint |I⟩ ⟨I|Hint |II⟩ ⟨II|Hint |III⟩ ⟨III|Hint |i⟩
(Ei − EI)(Ei − EII)(Ei − EIII)

, (5.5)

where we are required to sum over all possible intermediate states for each of the steps I, II
and III (see figure 5.3a). This corresponds to four one-photon vertices and so gives rise to 24
time-ordered diagrams, as shown in figure 5.3b.

We can make use of canonical transformations, introduced in section 3.1.2, to simplify this
calculation in two steps. Firstly, by collapsing the two one-photon vertices at the mediator
into one two-photon vertex, thus lowering the perturbation theory required to third order,
as applied at lower orders in Ref. [90]. Secondly, by using the same principles we can find a
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(a) Resonant mediated
interaction.

(b) The 24 possible time orderings of mediated energy
transfer.

Figure 5.3: Feynman diagrams depicting energy transfer between a donor D and acceptor
A via a mediator M . (a) shows one of the possible time orderings, known as the resonant
interaction, highlighting the four emission/absorption events and three intermediate states.
(b) shows a simplified depiction of the 24 possible time-orderings that must be considered
when calculating the matrix element for this process.

new interaction term which is fourth order in the electric dipole moment, thereby reducing
the order of perturbation theory required to first.

5.1.2 Reducing order of Perturbation Theory

The first step in simplifying our calculation is to consider only the interaction at the mediator.
In other words, we temporarily disregard the donor and acceptor, and consider only the
subsystem of the mediator absorbing a photon and then emitting a photon, as in figure 5.4a.
We aim to create a new coupling term that is second order in the electric dipole moment and
can therefore describe both the absorption and emission events at the mediator, as in figure
5.4b, thus effectively eliminating the intermediate state.

To this end, we consider the subsystem described by the Hamiltonian,

HM = H0 +HM
int, (5.6)

with initial and final states labelled M and N respectively,

|M⟩ =
∣∣sM; 1(p, λ)〉 , |N⟩ =

∣∣sM; 1(p′, λ′)
〉
. (5.7)
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Figure 5.4: Feynman diagram of the subsystem of the interaction at the mediator only. (a)
shows the two possible time orderings where the mediator begins in and ends the interaction
in its lower s state, and is excited to its r state in the intermediate state. (b) shows how the
interaction is considered after the unitary transformations have been applied, condensing the
two absorption and emission events into a single photon event.

We perform a unitary transformation on the Hamiltonian as we did in subsection 3.1.2,

HM
new = eiSHMe−iS =

∞∑
n=0

1

n!

[
iS,
[
iS, ...HM

]]
= H0 +HM

int + [iS,H0] +
[
iS,HM

int

]
+

1

2

[
iS, [iS,H0]

]
+ ... , (5.8)

where again S is an as-yet undetermined generator that is assumed to be first order in the
electric dipole moment. We require a second order interaction term, so we eliminate the
first order HM

int term by choosing [iS,H0] = −HM
int, leaving up to second order in the electric

dipole,

HM
new = H0 +

1

2

[
iS,HM

int

]
, (5.9)

with expectation value,

1

2
⟨N |

[
iS,HM

int

]
|M⟩ = −1

2

∑
I

⟨N |HM
int |I⟩ ⟨I|HM

int |M⟩
[

1

EI − EN

+
1

EI − EM

]
. (5.10)

Making use of the diagrams depicted in figure 5.4a, we can see that there are two types of
intermediate states. In the resonant interaction, the (p, λ) photon is absorbed before the
(p′, λ′) photon is emitted, and in the second off-resonant time ordering, the emission takes
place before the absorption. Therefore, the two types of intermediate states have different
energies. Labelling the resonant intermediate state type as I1 and the off-resonant as I2 we
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find the energies to be,

EM = Es + ℏcp, EI1 =Er,

EN = Es + ℏcp′, EI2 =Er + ℏcp+ ℏcp′. (5.11)

Making use of these and taking into account both the time orderings, (5.10) becomes,

⇒ 1

2
⟨N |

[
iS,HM

int

]
|M⟩

= −1

2

∑
r

⟨N |HM
intH

M
int |M⟩

[
1

Ers + ℏcp
+

1

Ers − ℏcp
+

1

Ers + ℏcp′
+

1

Ers − ℏcp′

]
, (5.12)

where Ers is the transition energy of the mediator going from the excited r state to its lower
s state. Since in three-body RET, the mediator responds at the frequency of the donor decay
transition [36], we can replace ℏcp→ Eeg and ℏcp′ → −Eeg, giving,

⇒ 1

2
⟨N |

[
iS,HM

int

]
|M⟩ = −

∑
r

⟨N |HM
intH

M
int |M⟩

[
1

Ers + Eeg

+
1

Ers − Eeg

]
. (5.13)

Now substituting in the definition for the interaction Hamiltonian given in (5.3) and using
index notation, we obtain,

= −
∑
r,p,p′

⟨N |
(
d̂Mi

Êi(rM, p)
)(

d̂Mj
Êj(rM, p

′)
)
|M⟩

[
1

Ers + Eeg

+
1

Ers − Eeg

]
(5.14)

= −
∑
p,p′

⟨N |αM
ij Êi(rM, p)Êj(rM, p

′) |M⟩ , (5.15)

where,

αM
ij =

∑
r

[
⟨s| d̂Mi

|r⟩ ⟨r| d̂Mj
|s⟩

Ers + Eeg

+
⟨s| d̂Mj

|r⟩ ⟨r| d̂Mi
|s⟩

Ers − Eeg

]

=
1

3

∑
r

|dsrM|2ij

[
1

Ers + Eeg

+
1

Ers − Eeg

]
, (5.16)

is identified as the dynamic polarizability of the mediator [68], where we have taken the
rotational average of the molecular orientation via d↑ ⊗ d↓ = 1

3
|d|2I (also given in (3.69)).

We can therefore define a new coupling term as given below,

H2 =
1

2

[
iS,HM

int

]
= −

∑
p,p′

αM
ij Êi(rM, p)Êj(rM, p

′), (5.17)
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Figure 5.5: The three-body resonant interaction diagrams (a) before and (b) after the reduc-
tion of the order of perturbation theory. Figure reproduced from [1] under the terms of the
Creative Commons Attribution 4.0 International license.

and can write the new Hamiltonian as,

Hnew = H0 +HA
int +HD

int +H2, (5.18)

where we have effectively collapsed the two one-photon vertices at the mediator into one
two-photon vertex, as seen in figure 5.5. This means that when considering three-body RET,
instead of fourth order perturbation theory being required, now only third order is needed.
This reduces the usual 24 time-ordered diagrams 5.3b required for this calculation to just
six, as shown in figure 5.6. This is equivalent to using a polarizability-based Hamiltonian, as
in Ref. [91] for example.

We now go one step further and use the same techniques to create an effective fourth order
term that describes the entire interaction including all three bodies. We now consider the
full system made up of all of the molecules, and need to calculate both the direct interaction
between the donor and acceptor, which is second order in the dipole operator, and also the
mediated interaction, which is fourth order. The four one-photon vertices of the mediated
interaction have now been collapsed into two one-photon vertices and one two-photon vertex
at the mediator. We can simplify this further by way of additional unitary transformations.

Beginning with the new Hamiltonian,

Hnew = H0 +H1 +H2, (5.19)

where H2 is defined by (5.17) and the acceptor and donor interaction terms have been com-
bined into a single term which is linear in the electric dipole, H1 = HA

int+H
D
int, for simplicity.

For convenience, we introduce the dimensionless constant λ which is proportional to the



CHAPTER 5. THREE-BODY RET IN A RECIPROCAL ENVIRONMENT 84

D M A

D M A

D M A

D M A

D M A

D M A

(a) (b) (c)

(d) (e) (f)

Figure 5.6: The six time ordered diagrams for three-body RET once the two one-photon
vertices have been collapsed into one two-photon vertex. Figure reproduced from [1] under
the terms of the Creative Commons Attribution 4.0 International license.

electric dipole moment, giving us,

Hnew = H0 + λH1 + λ2H2. (5.20)

Performing a unitary transformation where the generator S1 is linear in the electric dipole,
and taking terms up to fourth order, we obtain,

H(1)
new =eiλS1Hnewe

−iλS1 =
∞∑
n=0

1

n!

[
iλS1, [iλS1, ... , Hnew]

]
=H0 + λH1 + λ2H2 + λ[iS1, H0] + λ2[iS1, H1] + λ3[iS1, H2] +

λ2

2

[
iS1, [iS1, H0]

]
+
λ3

2

[
iS1, [iS1, H1]

]
+
λ4

2

[
iS1, [iS1, H2]

]
+
λ3

6

[
iS1,

[
iS1, [iS1, H0]

]]
+
λ4

6

[
iS1,

[
iS1, [iS1, H1]

]]
+
λ4

24

[
iS1,

[
iS1,

[
iS1, [iS1, H0]

]]]
. (5.21)

To eliminate the terms that are first order in the electric dipole, we choose [iS1, H0] = −H1,
which simplifies the Hamiltonian to,

H(1)
new =H0 + λ2H2 +

λ2

2
[iS1, H1] + λ3[iS1, H2] +

λ3

3

[
iS1, [iS1, H1]

]
+
λ4

2

[
iS1, [iS1, H2]

]
+
λ4

8

[
iS1,

[
iS1, [iS1, H1]

]]
. (5.22)
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We now perform a second unitary transformation, this time where the generator S2 is second
order in the electric dipole,

H(2)
new =eiλ

2S2H(1)
newe

−iλ2S2 =
∞∑
n=0

1

n!

[
iλ2S2,

[
iλ2S2, ... , H

(1)
new

]]
=H0 + λ2H2 +

λ2

2
[iS1, H1] + λ3[iS1, H2] +

λ3

3

[
iS1, [iS1, H1]

]
+
λ4

2

[
iS1, [iS1, H2]

]
+
λ4

8

[
iS1,

[
iS1, [iS1, H1]

]]
+ λ2[iS2, H0]

+ λ4[iS2, H2] +
λ4

2

[
iS2, [iS1, H1]

]
+
λ4

2

[
iS2, [iS2, H0]

]
. (5.23)

We want to eliminate the second order terms except for 1
2
[iS1, H1], as this is the direct

interaction of the donor and acceptor. So we choose [iS2, H0] = −H2, leaving,

H(2)
new =H0 +

1

2
[iS1, H1] + λ3[iS1, H2] +

λ3

3

[
iS1, [iS1, H1]

]
+
λ4

2

[
iS1, [iS1, H2]

]
+
λ4

8

[
iS1,

[
iS1, [iS1, H1]

]]
+ λ4[iS2, H2] +

λ4

2

[
iS2, [iS1, H1]

]
− λ4

2
[iS2, H2]

=H0 +
1

2
[iS1, H1] + λ3[iS1, H2] +

λ3

3

[
iS1, [iS1, H1]

]
+
λ4

2

[
iS1, [iS1, H2]

]
+
λ4

8

[
iS1,

[
iS1, [iS1, H1]

]]
+
λ4

2
[iS2, H2] +

λ4

2

[
iS2, [iS1, H1]

]
. (5.24)

We finally perform a third unitary transformation with a generator which is third order in
λ, and taking terms only up to fourth order we obtain,

H(3)
new = eiλ

3S3H(2)
newe

−iλ3S3 =
∞∑
n=0

1

n!

[
iλ3S3,

[
iλ3S3, ...H

(2)
new

]]
=H(2)

new + λ3[iS3, H0]. (5.25)

To eliminate the third order terms, we choose [iS3, H0] = −[iS1, H2]−
[
iS1, [iS1, H1]

]
, leaving,

H(3)
new =H0 +

1

2
[iS1, H1] +

λ4

2

[
iS1, [iS1, H2]

]
+
λ4

8

[
iS1,

[
iS1, [iS1, H1]

]]
+
λ4

2
[iS2, H2] +

λ4

2

[
iS2, [iS1, H1]

]
. (5.26)

We know that the
[
iS1,

[
iS1, [iS1, H1]

]]
term cannot contribute to the mediator-assisted rate,

since it is fourth order in the electric dipole, but contains no mediator term. Also, the [iS2, H2]

term cannot contribute, since it does not contain donor or acceptor terms. This leaves us
with our new interaction Hamiltonian, the mediator-dependent parts of which are fourth
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order in the electric dipole moment as required,

Hint =Hdir
int +H indir

int

=
1

2

(
[iS1, H1] +

[
iS1, [iS1, H2]

]
+
[
iS2, [iS1, H1]

])
, (5.27)

where we have decomposed into the direct second-order contribution and indirect fourth-order
(mediator-dependent) contribution by defining,

Hdir
int =

1

2
[iS1, H1], (5.28a)

H indir
int =

1

2

([
iS1, [iS1, H2]

]
+
[
iS2, [iS1, H1]

])
. (5.28b)

Hint will form the basis of our perturbative treatment in the next subsection.

5.1.3 Perturbation Theory

We now apply this Hamiltonian (5.27) to our system and perform perturbation theory to find
the matrix element for three-body RET. In the previous section, we chose the generators S1

and S2 such that they satisfy [iS1, H0] = −H1 and [iS2, H0] = −H2 respectively. Thus, we
can say that,

⟨N | iS1 |M⟩ =
⟨N |H1 |M⟩
EN − EM

, ⟨N | iS2 |M⟩ =
⟨N |H2 |M⟩
EN − EM

, (5.29)

where |M⟩ and |N⟩ are arbitrary initial and final states.

We now look at the interaction states in the new interaction Hamiltonian (5.27), noting that
the first term corresponds to the direct interaction and was calculated in section 3.1.2 to be
(3.26). The second term of (5.27) is fourth order in the dipole operator, so corresponds to
the mediated interaction,

⟨N | 1
2

[
iS1, [iS1, H2]

]
|M⟩ =

=
1

2

∑
I,II

[
⟨N |H1 |II⟩ ⟨II|H1 |I⟩ ⟨I|H2 |M⟩

(EN − EII)(EII − EI)
+
⟨N |H2 |II⟩ ⟨II|H1 |I⟩ ⟨I|H1 |M⟩

(EII − EI)(EI − EM)

− 2 ⟨N |H1 |II⟩ ⟨II|H2 |I⟩ ⟨I|H1 |M⟩
(EN − EII)(EI − EM)

]
. (5.30)
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For the final term of (5.27) we obtain,

⟨N | 1
2

[
iS2, [iS1, H1]

]
|M⟩

= −1

2

∑
I,II

[
⟨N |H1 |II⟩ ⟨II|H1 |I⟩ ⟨I|H2 |M⟩

EI − EM

(
1

EN − EII

− 1

EII − EI

)

+
⟨N |H2 |II⟩ ⟨II|H1 |I⟩ ⟨I|H1 |M⟩

EN − EII

(
1

EII − EI

− 1

EI − EM

)]
. (5.31)

Combining the two contributions for the mediated interaction, we arrive at,

⟨N |H indir
int |M⟩ =∑
I,II

[
1

2

(
⟨N |H1 |II⟩ ⟨II|H1 |I⟩ ⟨I|H2 |M⟩+ ⟨N |H2 |II⟩ ⟨II|H1 |I⟩ ⟨I|H1 |M⟩

)
(

1

(EN − EII)(EII − EI)
− 1

(EI − EM)(EN − EII)
+

1

(EI − EM)(EII − EI)

)
− ⟨N |H1 |II⟩ ⟨II|H2 |I⟩ ⟨I|H1 |M⟩

(EN − EII)(EI − EM)

]
. (5.32)

As before, each of the terms gives rise to two different time orderings depending on the
order of HD and HA, resulting in six time orderings all together. In both the first and second
time orderings, (a) and (b) in figure 5.6, both the donor and acceptor absorb photons and the
mediator emits two photons, meaning those terms can be grouped. Likewise, in the third and
fourth orderings, (d) and (e), both the donor and acceptor emit photons and the mediator
absorbs them, so the terms can be grouped. So now combining all six time orderings we have
four terms,

M indir
fi =

∑
p,p′

⟨f |

[
− HDHAH2

(Eeg + ℏcp)(Eeg − ℏcp′)
− H2HDHA

(Eeg − ℏcp)(Eeg + ℏcp′)

+
HDH2HA

(Eeg + ℏcp)(Eeg + ℏcp′)
+

HAH2HD

(Eeg − ℏcp)(Eeg − ℏcp′)

]
|i⟩ . (5.33)

To obtain our total matrix element, we need to sum the results from the direct interaction,
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given in (3.18), and indirect interactions, calculated above. So we have,

Mfi =Mdir
fi +M indir

fi

=
∑
p,p′

⟨f |

[
− HAHD

ℏcp− Eeg

− HDHA

ℏcp+ Eeg

+
HDHAH2

(ℏcp+ Eeg)(ℏcp′ − Eeg)

+
H2HDHA

(ℏcp− Eeg)(ℏcp′ + Eeg)
+

HDH2HA

(ℏcp+ Eeg)(ℏcp′ + Eeg)
+

HAH2HD

(ℏcp− Eeg)(ℏcp′ − Eeg)

]
|i⟩ ,

(5.34)

where,

HD = −d̂D · Ê(rD),

HA = −d̂A · Ê(rA),

H2 = −αM
ij (k)Êi(rM, p)Êj(rM, p

′). (5.35)

This matrix element (5.34) contains the information from all of the different time orderings,
meaning we no longer have any explicit intermediate states. As a result, the order of pertur-
bation theory required has been further reduced to first order. The first two terms of (5.34)
are the direct (two-body) interaction terms, the first corresponding to the resonant time
ordering and the second the off-resonant. The other terms describe different time orderings
of the mediated interaction. The third and fourth terms are the half-resonant contributions,
where the third term corresponds to (d) and (e) in figure 5.6 and the fourth term to (a) and
(b). The fifth term describes the completely off-resonant interaction, shown in (c), and the
sixth is the completely resonant interaction, (f).

We can now use this matrix element in the Fermi Golden Rule to calculate the rate of
interaction.

5.2 Rate of Energy Transfer in Reciprocal Media

In this section, we combine our general expression for the matrix element of three-body RET
(5.34) with macroscopic QED (introduced in chapter 2), which allows for the description of
external environments via the Green’s tensor (see section 2.2). This will then be used in
the Fermi Golden Rule to calculate a general formula for three-body RET in an arbitrary
environment.
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5.2.1 Applying Macroscopic QED

We now employ macroscopic QED by expressing the electric field in terms of the Green’s
tensor via (2.36). The first two terms of (5.34) were calculated in section 3.2 and were been
found to be (3.46) and (3.47), so we now need to apply the same methods to the other four
terms.

The numerator of the third term in the matrix element (5.34) combined with the interaction
Hamiltonian (3.3) can be written as,

⟨f |HDHAH2 |i⟩ =− ⟨gD, sM, eA; 0| d̂Di
Êi(rD)d̂Aj

Êj(rA)

× Êk(rM, p)α
M
kl(k)Êl(rM, p

′) |eD, sM, gA; 0⟩

=− d↓Di
d↑Aj

αM
kl(k) ⟨0| Êi(rD)Êj(rA)Êk(rM, p)Êl(rM, p

′) |0⟩ , (5.36)

where we have redefined the dipole moments using (3.32). To begin with, we substitute our
expression for the electric field in reciprocal media (2.36) to the mediator terms, Ê(rM, p)

and Ê(rM, p
′), only. Using the fact that the annihilation operator acting on the ground state

gives zero (2.24), we know that the only surviving term will be,

⟨f |HDHAH2 |i⟩ =−
∑
λ

∫ ∞

0

dω

∫
d3r

∑
λ′

∫ ∞

0

dω′
∫
d3r′ d↓Di

d↑Aj
αM
kl(k)

×⟨0| Êi(rD)Êj(rA)G
†
λkm

(rM, r, ω)f̂
†
λm

(r, ω)G†
λln

(rM, r
′, ω′)f̂ †

λ′
n
(r′, ω′) |0⟩

= −
∑
λ

∫ ∞

0

dω

∫
d3r

∑
λ′

∫ ∞

0

dω′
∫
d3r′d↓Di

d↑Aj
αM
kl(k)

×⟨0| Êi(rD)Êj(rA)G
†
λkm

(rM, r, ω)G
†
λln

(rM, r
′, ω′)

∣∣1λ′
m
(r′, ω′), 1λn(r, ω)

〉
, (5.37)

where we have used f̂ †
λ(r, ω) |0⟩ =

∣∣1λ(r, ω)〉. Now, as in section 3.2.1, we know that only
terms containing both creation and annihilation operators for each mode will contribute,
meaning we get,

⟨f |HDHAH2 |i⟩ = −
∑
λ

∫ ∞

0

dω

∫
d3r

∑
λ′

∫ ∞

0

dω′
∫
d3r′ d↓Di

d↑Aj
αM
kl(k)

×⟨0|Gλim
(rD, r, ω)Gλjn

(rA, r
′, ω′)G†

λkm
(rM, r, ω)G

†
λln

(rM, r
′, ω′) |0⟩ , (5.38)

where we have used f̂ †
λ′′(r′′, ω′′)

∣∣1λ(r, ω)〉 = δλ′′λδ(r
′′ − r)δ(ω′′ − ω). Now using the com-



CHAPTER 5. THREE-BODY RET IN A RECIPROCAL ENVIRONMENT 90

pleteness relation defined in (2.85), we can rewrite as,

⟨f |HDHAH2 |i⟩ = −
ℏ2µ2

0

π2
d↓Di

d↑Aj
αM
kl(k)

×
∫ ∞

0

dω

∫ ∞

0

dω′ ImGik(rD, rM, ω) ImGjl(rA, rM, ω
′). (5.39)

So now we have an expression for the third term of the matrix element (5.34),

⟨f | HDHAH2

(ℏcp+ Eeg)(ℏcp′ − Eeg)
|i⟩ =− µ2

0

π2
d↓Di

d↑Aj
αM
kl(k)

∫ ∞

0

dω

∫ ∞

0

dω′

× ω2 ImGik(rD, rM, ω)

ω − ω0

ω′2 ImGjl(rA, rM, ω)

ω + ω′
0

, (5.40)

where we have made the substitutions ℏcp = ℏω, ℏcp′ = ℏω′ and Eeg = ℏω0. We can apply
the same method to the remaining three terms of (5.34) so that the indirect matrix element
(the final four terms of (5.34)) is calculated to be,

M indir
fi = −µ

2
0

π2

∫ ∞

0

dω

∫ ∞

0

dω′ω2ω′2
[
d↓Di

d↑Aj
αM
kl(k)

ImGik(rD, rM, ω)

ω + ω0

ImGjl(rA, rM, ω
′)

ω′ − ω0

+ αM
ij (k)d

↓
Dk
d↑Al

ImGik(rM, rD, ω)

ω − ω0

ImGjl(rM, rA, ω
′)

ω′ + ω0

+ d↓Di
αM
jk(k)d

↑
Al

ImGik(rD, rM, ω)

ω + ω0

ImGjl(rM, rA, ω
′)

ω′ + ω0

+ d↑Ai
αM
jk(k)d

↓
Dl

ImGjl(rM, rD, ω)

ω − ω0

ImGik(rA, rM, ω
′)

ω′ − ω0

]
. (5.41)

The next step is to apply contour integration techniques to evaluate these frequency inte-
grals.

5.2.2 Contour Integration

We can rearrange these as in section 3.2.1 using the result (3.45). We can also apply the
results found in section 3.2.2, which have been generalized and summarized below,∫ ∞

0

dω
ω2G(r, r′, ω)

ω − ω0

= −i
∫ ∞

0

dξ
ξ2G(r, r′, iξ)

iξ − ω0

+ 2πiω2
0G(r, r′, ω0), (5.42)∫ −∞

0

dω
ω2G(r, r′, ω)

ω − ω0

= −i
∫ ∞

0

dξ
ξ2G(r, r′, iξ)

iξ − ω0

, (5.43)∫ ∞

0

dω
ω2G(r, r′, ω)

ω + ω0

=

∫ −∞

0

dω
ω2G(r, r′, ω)

ω + ω0

= −i
∫ ∞

0

dξ
ξ2G(r, r′, iξ)

iξ + ω0

, (5.44)
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to make the substitutions,∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω + ω0

= F (r, r′), (5.45a)∫ ∞

0

dω
ω2 ImG(r, r′, ω)

ω − ω0

= −F (r, r′) + πω2
0G(r, r′, ω0), (5.45b)

where we have defined the function,

F (r, r′) ≡ 1

2

∫ ∞

0

dξξ2G(r, r′, iξ)

(
1

ω − ω0

− 1

ω + ω0

)
, (5.46)

noting that in the case of reciprocal media, Lorentz reciprocity (2.74) holds for the Green’s
tensor and therefore also for this function. Applying (5.45) to the indirect matrix element
(5.41) we obtain,

M indir
fi =− µ2

0

π2

{
d↓
Di
d↑
Aj
αM
kl(k)Fik(rD, rM)

[
−Fjl(rA, rM) + πω2

0Gjl(rA, rM, ω0)
]

+αM
ij (k)d

↓
Dk

d↑
Al

[
−Fik(rM, rD) + πω2

0Gik(rM, rD, ω0)
]
Fjl(rM, rA)

+d↓
Di
αM
jk(k)d

↑
Al
Fik(rD, rM)Fjl(rM, rA)

+d↑
Ai
αM
jk(k)d

↓
Dl

[
−Fjl(rM, rD) + πω2

0Gjl(rM, rD, ω0)
]

×
[
−Fik(rA, rM) + πω2

0Gik(rA, rM, ω0)
]}
. (5.47)

We now make use of the Lorentz reciprocity of of our function, so Fij(r, r
′) = Fji(r

′, r), and
also that the dynamic polarizability is symmetric in its indices, αM

ij (k) = αM
ji (k). For the

terms with no poles, we find,

d↓
Di
d↑
Aj
αM
kl(k)Fik(rD, rM)Fjl(rA, rM) = d↑

Aj
Fjl(rA, rM)α

M
kl(k)Fik(rD, rM)d

↓
Di

= d↑
Aj
Fjl(rA, rM)α

M
kl(k)Fki(rM, rD)d

↓
Di
,

αM
ij (k)d

↓
Dk

d↑
Al
Fik(rM, rD)Fjl(rM, rA) = d↑

Al
Flj(rA, rM)α

M
ji (k)Fik(rM, rD)d

↓
Dk
,

d↓
Di
αM
jk(k)d

↑
Al
Fik(rD, rM)Fjl(rM, rA) = d↑

Al
Flj(rA, rM)α

M
jk(k)Fki(rM, rD)d

↓
Di
,

d↑
Ai
αM
jk(k)d

↓
Dl
Fjl(rM, rD)Fik(rA, rM) = d↑

Ai
Fik(rA, rM)α

M
kj(k)Fjl(rM, rD)d

↓
Dl
, (5.48)
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all of which can be written as d↑
A ·F (rA, rM) · αM(k) ·F (rM, rD) · d↓

D, so we see that all four
terms without poles cancel each other. Similarly for the terms with one pole,

d↓
Di
d↑
Aj
αM
kl(k)Fik(rD, rM)πω

2
0Gjl(rA, rM) = πω2

0d
↑
Aj
Gjl(rA, rM)α

M
ik(k)Fki(rM, rD)d

↓
Di
,

αM
ij (k)d

↓
Dk

d↑
Al
πω2

0Gik(rM, rD)Fjl(rM, rA) = πω2
0d

↑
Al
Flj(rA, rM)α

M
ji (k)Gik(rM, rD)d

↓
Dk
,

d↑
Ai
αM
jk(k)d

↓
Dl
Fjl(rM, rD)πω

2
0Gik(rA, rM) = πω2

0d
↑
Ai
Gik(rA, rM)α

M
kj(k)Fjl(rM, rD)d

↓
Dl
,

d↑
Ai
αM
jk(k)d

↓
Dl
πω2

0Gjl(rM, rD)Fik(rA, rM) = πω2
0d

↑
Ai
Fik(rA, rM)α

M
kj(k)Gjl(rM, rD)d

↓
Dl
,

(5.49)

we see that the first and third are equal, and the second and fourth are equal, meaning that
all of the one-pole terms cancel. This just leaves the two-pole term, meaning our expression
for the indirect matrix element becomes,

M indir
fi = −µ2

0π
2ω4

0d
↑
Ai
Gik(rA, rM, ω0)α

M
kj(k)Gjl(rM, rD, ω0)d

↓
Dl
. (5.50)

Now, combining the direct and indirect contributions we obtain,

Mfi =M
dir
fi +M indir

fi

=− µ0ω
2
0d

↑
Ai
·
[
G(rA, rD, ω0)

+µ0ω
2
0G(rA, rM, ω0) · αM(k) ·G(rM, rD, ω0)

]
· d↓

D. (5.51)

We can now substitute this expression into Fermi’s Golden rule [68], calculating the rate to
be,

Γfi =
2π

ℏ
|Mfi|2δ(EI − Ef )

=
2πµ2

0ω
4
0

ℏ
|d↑

A ·
[
G(rA, rD, ω0)

+µ0ω
2
0G(rA, rM, ω0) · αM(k) ·G(rM, rD, ω0)

]
· d↓

D|
2. (5.52)

The first term of (5.52) describes the direct interaction between the donor and acceptor,
where the field propagates from the donor at position rD and is observed at the acceptor
at rA, therefore corresponding to the resonant interaction. The second term describes the
mediated interaction, where the field propagates from the donor to the mediator, and then
from the mediator to the acceptor. We can see therefore that the fully resonant interaction
is the only time ordering that ends up contributing to the overall rate of energy transfer.

This result reduces to the three-body ICD formula given in [37] if the acceptor’s transition
dipole moment is expressed in terms of a photoionization cross section and the vacuum
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(a) Colinear arrangement. (b) T-shape arrangement.

Figure 5.7: Two possible arrangements of three bodies (donor, acceptor and mediator) in a
vacuum.

Green’s tensor (B.1) is used. As a proof-of-principle, in the next section we apply this
formula to some simple environments.

5.3 Results

This formula (5.52) allows the calculation of the rate of energy transfer of three-bodies in an
arbitrary external environment. As a proof-of-concept, we demonstrate the use of the formula
for two simple environments, namely a vacuum and a semi-infinite half-space. However, we
emphasize that the formula is applicable to any external environment, and could be used to
calculate interactions within far more complex systems, such as proteins and other biological
systems using a numerically calculated Green’s tensor.

There are two geometries we are particularly interested in. The “colinear” arrangement, where
all three molecules are on the z-axis as in figure 5.7a, and the “T-shape” arrangement, where
the donor and acceptor are at an equal distance above and below the z-axis respectively, and
the mediator is again on the z-axis, as shown in figure 5.7b.

The main challenge is how complex the forms of the Green’s tensor can be (see App. B),
making it difficult to derive analytic expressions for the rate, even for these simple geometries.
To simplify our calculations, we can either impose simplifying limits on the Green’s tensor
in order to calculate the rate analytically, or numerically calculate the rate of interaction for
different arrangements. This would involve fixing the donor and acceptor’s positions, and
calculating how the rate changes for different mediator positions along the z-axis. We will
take both of these routes in this section.

The simplifying limits we impose to allow the calculation of analytic expressions are that the
donor and acceptor are close enough to each other that the direct interaction between them
is in the non-retarded limit. This is equivalent to assuming that the intermolecular distance
between the donor and acceptor is significantly less that the characteristic wavelength. The
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other limit we impose is that the mediator is far enough away from the donor and acceptor
that the retarded limit can be used. This corresponds to a system of experimental interest
consisting of a dimer trapped near a surface controlled by a distant mediating agent (e.g. Ref.
[92]). Therefore, we need to use the non-retarded limit of the Green’s tensor when describing
the direct interaction between the donor and acceptor, and the retarded approximation to
describe the mediated interaction. So when we are making this approximations, our rate
formula (5.52) becomes,

Γlim =
2πµ2

0ω
4
0

ℏ
|d↑

A ·
[
GNR(rA, rD, ω0)

+µ0ω
2
0GR(rA, rM, ω0) · αM(k) ·GR(rM, rD, ω0)

]
· d↓

D|
2, (5.53)

where GNR is the non-retarded limit of the Green’s tensor, and GR is the retarded limit. We
will use this form of the rate equation when performing subsequent calculations for a system
in a vacuum and a system in the presence of a half-space.

As in section 3.3, we use the isotropic average when calculating the rate, so making the
substitution given in (3.69), (5.53) becomes,

Γiso
lim =

2πµ2
0ω

4
0

9ℏ
|dA|2|dD|2Tr

[
K(rA, rM, rD) ·K∗(rD, rM, rA)

]
, (5.54)

where we have defined,

K(rA, rM, rD) ≡ GNR(rA, rD, ω0) + µ0ω
2
0GR(rA, rM, ω0) · αM(k) ·GR(rM, rD, ω0). (5.55)

We now apply our rate equation (5.54) to two simple environments, namely a vacuum and a
semi-infinite half-space.

5.3.1 Vacuum

In the vacuum case, the form of the Green’s tensor (B.1) is sufficiently simple that we are
able to analytically calculate the rate of energy transfer for both geometries of interest in
figure 5.7, the colinear arrangement and the T-shape arrangement. We use the approximate
forms of the Green’s tensor for a vacuum for the near- and far-field limits in our limiting rate
equation (5.54) and apply this to the geometries of interest.
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Colinear Analytic Expression

For the colinear arrangement shown in figure 5.7a, we note that zM > zA > zD, allowing the
substitutions,

|zA − zD| = |zD − zA| = zA − zD ≡ zAD,

|zA − zM| = |zM − zA| = zM − zA ≡ zMA,

|zD − zM| = |zM − zD| = zM − zD ≡ zMD. (5.56)

We can use the expressions for the non-retarded and retarded limits of the vacuum Green’s
tensor, (3.77) and (3.79) respectively, to calculate the trace of the functions from (5.55),

Tr
[
KC(rA, rM, rD) ·K∗

C(rD, rM, rA)
]

= Tr


BC − AC 0 0

0 BC − AC 0

0 0 2AC

 ·
B

∗
C − AC 0 0

0 B∗
C − AC 0

0 0 2AC




= 6A2
C + 2BCB

∗
C − 2AC(BC +B∗

C), (5.57)

where we have defined,

AC ≡
c2

4πω2
0z

3
AD

, BC ≡
µ0ω

2
0αMe

iω0(zMA+zMD)/c

16π2zMAzMD

. (5.58)

Substituting (5.57) into the isotropic rate equation (5.54) we find,

Γiso
C =

2πµ2
0ω

4
0

9ℏ
|dA|2|dD|2

6

(
c2

4πω2
0z

3
AD

)2

+ 2

(
µ0ω

2
0αM

16π2zMAzMD

)2

− 2
c2

4πω2
0z

3
AD

×
µ0ω

2
0αM cos[ω0

c
(zMA + zMD)]

16π2zMAzMD

}

=
µ2
0ω

4
0

9ℏ
|dA|2|dD|2

{
3c2

4πω4
0z

6
AD

+
µ2
0ω

4
0α

2
M

64π3z2MAz
2
MD

−
c2µ0αM cos[ω0

c
(zMA + zMD)]

16π2z3ADzMAzMD

}
. (5.59)

In this first term, we can recognize the characteristic r−6 dependence that arises from direct
two-body energy transfer between the donor and acceptor without the influence of the medi-
ator in the non-retarded limit. The other two terms correspond to the mediated interaction,
and we see this oscillating contribution which only appears with the addition of the third
body.
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T-shape Analytic Expression

For the T-shape arrangement, we label the distance between the donor and acceptor as L,
so that the donor is at a position L/2 above the z-axis, and the acceptor is L/2 below the
z-axis, as shown in figure 5.7b. In this geometry, we find,

(
eρ ⊗ eρ

)
AD/DA

=

1 0 0

0 0 0

0 0 0

 , (5.60)

(
eρ ⊗ eρ

)
DM/MD

=
1

R2
+

 L2 0 −2LZ
0 0 0

−2LZ 0 4Z2

 , (5.61)

(
eρ ⊗ eρ

)
AM/MA

=
1

R2
+

 L2 0 2LZ

0 0 0

2LZ 0 4Z2

 , (5.62)

where we have defined R2
+ ≡ 4Z2 + L2. We can use these to obtain expressions for the

non-retarded and retarded limits of the vacuum Green’s tensor in this geometry,

G
(0,T)
NR (rA, rD, ω0) = −

c2

4πω2
0L

3

−2 0 0

0 1 0

0 0 1

 , (5.63)

G
(0,T)
R (rA, rM, ω0) = −

eiω0R+/2c

2πR3
+

4Z2 0 2LZ

0 R2
+ 0

2LZ 0 L2

 , (5.64)

G
(0,T)
R (rM, rD, ω0) = −

eiω0R+/2c

2πR3
+

 4Z2 0 −2LZ
0 R2

+ 0

−2LZ 0 L2

 . (5.65)

So, we can calculate the function (5.55),

KT(rA, rM, rD) = −AT

−2 0 0

0 1 0

0 0 1

+BT

4Z2R2
− 0 2LZR2

−

0 R4
+ 0

2LZR2
− 0 −L2R2

−

 , (5.66)
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where we have defined,

R2
− ≡ 4Z2 − L2, AT ≡

c2

4πω2
0L

3
, BT ≡

µ0ω
2
0αMe

iω0R+/c

4π2R6
+

. (5.67)

We can therefore can calculate,

Tr
[
KT(rA, rM, rD) ·K∗

T(rD, rM, rA)
]

=(2AT + 4BTZ
2R2

−)(2AT + 4B∗
TZ

2R2
−)− 4BTB

∗
TL

2Z2R4
− + (BTR

4
+ − AT)(B

∗
TR

4
+ − AT)

− 4BTB
∗
TL

2Z2R4
− + (AT +BTL

2R2
−)(AT +B∗

TL
2R2

−)

=6A2
T +BTB

∗
T(R

8
− +R8

+) + AT(BT +B∗
T)R

2
+(R

2
− +R2

+), (5.68)

and substitute into the expression for the isotropic rate (5.54),

Γiso
T =

2πµ2
0ω

4
0

9ℏ
|dA|2|dD|2

6

(
c2

4πω2
0L

3

)2

+
µ2
0ω

4
0α

2
M(R

8
− +R8

+)

16π4R12
+

+ R2
+(R

2
− +R2

+)
c2

4πω2
0L

3

µ0ω
2
0αM cos[ω0

c
R+]

4π2R6
+

}

=
µ2
0ω

4
0

9ℏ
|dA|2|dD|2

 3c4

4πω4
0L

6
+
µ2
0ω

4
0α

2
M

8π3

(
R8

−

R12
+

+
1

R8
+

)

+
c2µ0ω

2
0αM cos[ω0

c
R+]

4π2ω2
0L

3

(
R2

−

R4
+

− 1

R2
+

) . (5.69)

We can identify similarities between this and the colinear expression (5.59). The first term de-
scribes the direct interaction, displaying the characteristic r−6 dependence, and the mediated
interaction again contains an oscillating contribution.

Comparison Plots

We can plot the rate’s dependence on the mediator position by fixing the positions of the
donor and acceptor and allowing the position of the mediator to vary along the z-axis. Due to
the approximations we have applied, the calculated rate is only applicable when the mediator
is sufficiently far enough away from the donor and acceptor, since the retarded limit has been
applied. The rates for both the geometries are plotted in figure 5.8. We can see that both
geometries display oscillatory behaviour, meaning the mediator can suppress or enhance the
rate of energy transfer between the donor and acceptor depending on its position.

To study more general geometries, we can extend this to allow the mediator to vary its
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Figure 5.8: Plot of rate of energy transfer against mediator position for two arrangements of
a three-body system in a vacuum, normalised to the isotropic two-body vacuum rate. The
approximate analytic expressions, (5.59) and (5.69), are compared with the exact results.
The mediator position is in units of the transition wavelength λ0 and the polarizability vol-
ume αM/4πϵ0 of the mediator is chosen as 0.1λ30. For the colinear configuration, the donor is
at {xD, zD}/λ0 = {0, 0.04} and the acceptor is at {xA, zA}/λ0 = {0, 0.08} as indicated by the
blue and red vertical lines and dictated by the imposition of the non-retarded limit in that
section of the system. For the T-shape setup, the donor is at {xD, zD}/λ0 = {0.02, 0.08} and
the acceptor is at {xA, zA}/λ0 = {−0.02, 0.08}. In order for the retarded approximation to
hold in its section of the system, the mediator should not be brought nearer than approxi-
mately a wavelength away from the donor, acceptor or boundary. This is indicated by the
dashed vertical grey line.
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Γiso/Γ0

0.1

1.0

10.0

100.0

Figure 5.9: Rate of energy transfer for a donor and acceptor in a vacuum. The donor is fixed
at position {xD, zD}/λ0 = {−1, 1}, the acceptor at position {xA, zA}/λ0 = {1, 2}, while the
mediator is free to move in the xz-plane. The other parameters and normalisation are the
same as in Fig. 5.8. The grey regions around the donor and acceptor indicate where the rate
enhancement goes off the colour scale, the limits of which have been chosen to demonstrate
the oscillations the mediator induces.

position over the xz-plane and investigate how this affects the rate (see figure 5.9). This
gives us a clear visual representation of how the geometry of the molecules affects the energy
transfer rate, even when just in a vacuum environment. The grey regions around the donor
and acceptor in figure 5.9 represent values that are too large (ranging from ∼ 103 and ∼ 105)
to show on the colour scale while preserving the visibility of the oscillatory behaviour.

5.3.2 Half-space

We now move on to studying a system of three bodies in a colinear arrangement near a semi-
infinite half-space. We will again apply the near- and far-field limits, which corresponds to a
setup of a dimer trapped near a surface controlled by a distant mediating agent, a situation
of experimental interest (e.g. Ref. [92]).

Colinear Analytic Expression

The form of the Green’s tensor when a dielectric half space is introduced is significantly more
complicated than that of just a vacuum, even when only considering simple reciprocal media
(see Appendix B.2). To make things simpler, we will just consider the colinear case where
all three molecules are positioned along the z-axis, as shown in figure 5.10.
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NR NR R

R

z

D A M

Figure 5.10: Colinear system made up of three bodies and a semi-infinite dielectric half-space.
The donor and acceptor are assumed close enough together and to the surface to apply the
non-retarded (NR) limit to their direct interaction, and the mediator is assumed far enough
away from both that the retarded (R) limit can be applied. Figure reproduced from [1] under
the terms of the Creative Commons Attribution 4.0 International license.

We are interested in the case where the donor and acceptor are positioned very close to
each other and to the half-space, and the mediator is far away from them. This means that
we can again apply the non-retarded limit to the direct interaction between the donor and
acceptor, and the retarded limit to the mediated interaction (see figure 5.10), so we use (5.54)
to calculate the rate. As discussed in subsection 2.2.1, the effective Green’s tensor we require
is the sum of the vacuum Green’s tensor and the half-space Green’s tensor. Substituting
these effective Green’s tensors for the non-retarded and retarded regimes, (B.38) and (B.40)
respectively, into our function defined in (5.55), we find,

KHS
C (rA, rM, rD) =

c2

4πω2
0

 1

z3AD

−1 0 0

0 −1 0

0 0 2



+
RNR

z̄3AD

1 0 0

0 1 0

0 0 2


+

µ0ω
2
0αM

16π2
C

1 0 0

0 1 0

0 0 0

 , (5.70)

where we have again made use of the substitutions (5.56) for our three-body colinear ar-
rangement and we have defined,

C ≡

[
eizMAω0/c

zMA

+
eiz̄MAω0/c

z̄MA

RR

][
eizMDω0/c

zMD

+
eiz̄MDω0/c

z̄MD

RR

]
. (5.71)
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So we can now calculate,

Tr
[
KHS

C (rA, rM, rD) ·KHS∗

C (rD, rM, rA)
]
=

 c2

2πω2
0

(
1

z3AD

+
RNR

z̄3AD

)2

+ 2

 c2

4πω2
0

(
RNR

z̄3AD

− 1

z3AD

)
+
µ0ω

2
0αM

16π2
C

 c2

4πω2
0

(
RNR

z̄3AD

− 1

z3AD

)
+
µ0ω

2
0αM

16π2
C∗


=

c4

4π2ω4
0

(
1

z3AD

+
RNR

z̄3AD

)2

+
c4

8π2ω4
0

(
RNR

z̄3AD

− 1

z3AD

)2

+
µ2
0ω

4
0α

2
M

128π4
CC∗

+
c2µ0αM

32π3

(
RNR

z̄3AD

− 1

z3AD

)
(C + C∗), (5.72)

and substitute this into the rate equation (5.54) to find,

ΓHS
C =

µ2
0ω

4
0

18πℏ
|dA|2|dD|2

 c4

2ω4
0

[
3

Z6
+

3R2
NR

Z̄6
+

2RNR

Z̄3Z3

]

+
µ0αM

8π

µ0ω
4
0αM

4π
CC∗ + c2

(
RNR

z̄3AD

− 1

z3AD

)
(C + C∗)

 . (5.73)

As we have done for previous results, we are able to identify the origin of some of the
contributions in this expression. For example, upon comparison with the two-body non-
retarded half-space rate in (3.84), it is clear that the first square bracket of (5.73) describes the
direct interaction between the donor and acceptor, including the effect of the half-space. We
can similarly identify the contributions that correspond to the three-body vacuum interaction
by considering the form of the function C defined in (5.71). Picking out only the vacuum
terms in this function by setting RR → 0, we find C → exp

[
i(zMA + zMD)ω0/c

]
/zMAzMD.

By comparing with (5.59), can then see that the first term in the second square bracket of
(5.73) contains the contribution from the solely mediated vacuum interaction (second term
of (5.59)) and the second term in the second square bracket of (5.73) contains the oscillating
term arising from the interference of the direct and indirect vacuum interactions (final term
of (5.59)).

Comparison Plots

Based on Ref. [92], we are particularly interested in how changing the position of the mediator
affects the rate of energy transfer between the donor and acceptor. Figure 5.11 shows how the
rate of energy transfer changes as the position of the mediator is varied along the z-axis, both
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Figure 5.11: Plot of rate of energy transfer against mediator position for a colinear three-
body system near a half-space (shaded region) modelled as a perfect reflector (corresponding
to ε → ∞ so that rNR = 1 = −rR). The surface is positioned at z = 0, and the donor and
acceptor are in the same positions as in the colinear setup of figure 5.8. The other parameters
and normalization are the same as in 5.8.

using the approximate formula (5.73) and for an exact numerical calculation using the full
formula (5.52) and the full form of the half-space Green’s tensor for the colinear arrangement
given in (B.15).

We can see from figure 5.11 that the presence of the mediator creates an oscillating effect, as
with the vacuum case, and that there are certain positions for which the mediator enhances
or suppresses the rate of energy transfer at the few percentage level. It is clear from figure
5.11 that the approximations we applied to write down (5.54) work where they are expected
to (mediator significantly more than one wavelength away from donor, acceptor and surface),
but fail outside of that. It is interesting to note that for this particular situation the effect of
the mediator is actually diminished by the presence of the half-space. In other words, when
the environment contains this half-space, adding a controllable third body will have a less of
effect on the energy transfer rate between the donor and acceptor than if no half-space were
present.

This points towards a highly non-trivial dependence of the donor-acceptor transfer rate when
accompanied by a mediator and a nearby surface. To investigate this (and to go beyond the
colinear case) we use the full form of the Green’s tensor for an environment containing a
half-space (B.5). A density plot showing the rate for different positions of the mediator in
the xz-plane is shown in figure 5.12. The plot demonstrates the intricate dependence of the
mediator’s position on the rate of energy transfer between the donor and acceptor even in the
presence of a relatively simple environment, producing both enhancement and suppression in
different regions. As for the vacuum case, the values represented by the grey regions around
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Figure 5.12: Rate of energy transfer for a donor and acceptor near a half-space with reflection
coefficient rp = 1. The bodies are positioned in the same way as in figure 5.9. The other
parameters and normalisation are the same as in Fig. 5.11. The grey regions around donor
and acceptor indicate where the rate enhancement goes off the colour scale, the limits of
which have been chosen to demonstrate the oscillations the mediator induces.

the donor and acceptor go off the colour scale, which has been chosen so that we are able to
see the oscillatory behaviour produced by the presence of the mediator.

5.4 Summary and Conclusion

In this chapter, we have used canonical transformations to calculate a general formula (5.52)
which can be used to find the rate of energy transfer between three bodies in any arbitrary
reciprocal environment. We could have obtained this using standard perturbation theory, but
the use of canonical perturbation theory beyond second order reduced the number of time
orderings we were required to consider, decreasing the complexity of the calculation. We then
applied this formula to simple situations for which the Green’s tensor is analytically known,
namely three bodies in free space and near an external semi-infinite reciprocal half-space.
However, the key point is that the formula could be applied to any environment for which
the Green’s tensor is known either analytically or numerically.

The work presented in this chapter presents possible applications in several areas. For ex-
ample, our calculated formula for the rate of energy transfer between three bodies (5.52)
can be thought of as a minimal model of a RET in a more complex environment, and as
such could be used as a starting point for investigations of this sort. More specifically, the
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mediated RET discussed in this chapter may play a part in long-range energy transfer within
photosynthetic complexes, so this work could be useful in exploring this area further.

Furthermore, our work could indicate a potential way to observe retardation in RET. Or-
dinarily the energy transfer rate at retarded distances is extremely small compared to the
corresponding (observable) rates at smaller distances [93], but adding a distant mediator to
a non-retarded, surface enhanced reaction could be a way of increasing the rate of interac-
tion, overcoming the complication of low rates and allowing the observation of the role of
retardation in RET.

It is also interesting to note that the form of the rate equation found, (5.52), is exactly as
one would anticipate from intuition about transition dipole moments and the Green’s tensor.
As indicated in Casimir and Polder’s 1948 paper on interatomic potentials [94], this could
likewise point towards a simpler way to obtain fully quantum formulae of this nature. This
would be the start of a powerful method to carry out more complex many-body calculations.



CHAPTER 6

Controlling Intermolecular Coupling

In this chapter, we explore how a macroscopic environment can be used to manipulate in-
termolecular coupling in a system. In particular, we investigate how this can be applied to
enhance the superabsorbing properties of a nanostructured synthetic light-harvesting sys-
tem. We begin with an overview of the fundamental concepts utilized in such a system,
before turning our attention to a specific setup consisting of a ring of optical dipoles. In
such a setup, inspired by photosynthetic systems, a superabsorbing state can be reached and
sustained by effective structure of energy levels which induces the required interplay between
optical and vibrational environments.

We define a “guide-slide” superabsorber to be a collection of optical dipoles with: 1) a ladder
of excitation manifolds that each has rapid relaxation to a well-defined lowest-energy state,
2) collectively enhanced optical rates coupling the lowest-energy states of adjacent manifolds.
In previous work [46], it has been found that a ring of dipoles can meet the above conditions
if the sign of the coupling relative to free space is changed. This can be achieved by a suitable
skewing of the dipole moment orientations, at the cost of reduced collective dipole moment
(hindering superabsorption), as well as the need for ad-hoc re-initialization and placement of
the structure in a photonic band gap. In this chapter, we explore how the so-called guide-
slide effect can also be achieved by careful engineering of dipole-dipole coupling within the
ring through the addition of a macroscopic dielectric environment.

To firstly illustrate the manipulation of dipolar interactions, we present a simple demonstra-
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tion of coupling control in a system that we can describe analytically, namely two bodies
near a dielectric half-space. As a proof-of-principle, we show how the characteristics of the
half-space and the dipole positions can be chosen to change the sign of the coupling. Next, we
apply these principles to the ring system by demonstrating how the placement of a dielectric
sphere inside the dipole ring can induce the "guide-slide" effect. The characteristics required
of the sphere to produce the necessary effect are then explored. Finally, we give an overview
of the methods and results of A. Burgess et al. in our publication [3], in which an open
quantum systems approach is used to model our presented ring system as a quantum heat
engine.

6.1 Superabsorption in Light Harvesting

We begin this section with an overview of the process of photosynthesis and how its concepts
can be harnessed in the creation of artificial light harvesting systems. The fundamentals of
superabsorption are then given, before exploring how this phenomenon can be applied to
improve photon capture in photosynthetic nanostructures. Finally, we take inspiration from
naturally occurring light-harvesting structures to present a simple nanosystem made up of a
ring of dipoles, on which the rest of the chapter will focus.

6.1.1 Photosynthesis and Light Harvesters

In humanity’s quest to more effectively utilise solar energy to fit our growing demand, an
obvious area of study is the way that nature is able to efficiently capture the sun’s energy
during photosynthesis [52, 95]. Understanding the mechanisms involved in photosynthesis
could be key to improving synthetic light-harvesting for use in the production of solar energy
[96, 97].

The photosynthesis process begins with energy from sunlight being captured by light-harvesting
complexes made up of chromophores1. The energy is stored in the electronic excited states
of the chromophores, before being transferred within and among the light-harvesting net-
works until it reaches a reaction centre [96]. The energy transfer process that makes this
possible is RET (resonant energy transfer), which has been the main focus of this thesis.
It has been found that the energy is directed by means of an energy gradient, whereby the
excitation moves towards the acceptor chromophore whose absorbance has the most overlap
with the donor’s fluorescence [96]. This results in a small energy loss with each downhill
energy transfer that takes place.

1Choromophores are molecules or sections of larger compounds that absorb a particular wavelength of
light.
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Two possible routes to enhancing the efficiency of artificial photosynthesis are to improve
the effective capture of photons, or to improve the transfer of the excitation energy. In this
chapter, we focus on the former.

A fundamental limit on the efficiency of solar cells was found to be due to electron-hole
pairs being prematurely lost due to radiative recombination [98]. Consequentially, signif-
icant research has been done into preventing this recombination as a means to improving
light-harvesting efficiency [55, 99–101]. However, an alternative method for improving the
efficiency is to create and sustain what is known as a superabsorbing state within the light-
harvesting system [47]. The next two subsections discuss the fundamentals of superabsorption
and how this phenomenon could be utilized in light-harvesting systems.

6.1.2 Fundamentals of Superabsorption

Superabsorption can be considered as the time-reversal of superradiance, a process first in-
troduced by Dicke in 1954 [102]. In superradiance, an ensemble of N atoms are correlated in
such a way that the power of the field spontaneously radiated by them is proportional to N2,
rather than being linearly proportional to N as it would be for an ensemble of uncorrelated
atoms. These correlations arise when individual atoms align their dipoles in a given direction,
creating a collective dipole [103].

To investigate this, we assume that the atoms are confined to a volume that is small in
comparison to the transition wavelength λ, and that they are therefore coupled to the same
electric field. In other words, the emission or absorption of a photon with wavelength λ cannot
be attributed to a single specific atom in the system, and therefore the system coherently
radiates. An ensemble of atoms modelled as two-level systems which can be in the ground
state, |g⟩, or an excited state, |e⟩, can be described by the Dicke Model [102]. In this model,
each atom is mapped to a spin 1/2 particle, where the |g⟩ and |e⟩ states are the spin down and
up states, respectively. We can therefore describe the system using the language of angular
momentum.

The atoms transition between their ground and excited states via raising and lowering oper-
ators that are analogous to the Pauli spin matrices [103],

σ̂+
i = |ei⟩ ⟨gi| , (6.1a)

σ̂−
i = |gi⟩ ⟨ei| , (6.1b)

σ̂z
i =

1

2

(
|ei⟩ ⟨ei| − |gi⟩ ⟨gi|

)
. (6.1c)

The electric dipole operator of the ith atom can then be defined by use of these operators
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as,
d̂i = di

(
σ̂+
i + σ̂−

i

)
. (6.2)

The states of a collective system are described by N + 1 "Dicke states", |J ;M⟩, which are
defined by two quantum numbers; J = N/2 and M ∈ {−J,−J + 1, ..., J − 1, J}. In this
representation, J +M is the number of excited atoms and J −M is the number of ground
state atoms. We introduce the collective raising and lowering operators,

Ĵ± =
N∑
i=1

σ̂±
i , (6.3)

which can be used to retrieve the number of atoms in the excited and ground states via,

⟨J ;M | Ĵ+Ĵ− |J ;M⟩ = J +M, (6.4)

⟨J ;M | Ĵ−Ĵ+ |J ;M⟩ = J −M. (6.5)

An arbitrary Dicke state can be reached by repeated application of the lowering operator Ĵ−
on the fully excited state,

|J ;M⟩ =

√
(J +M)!

N !(J −M)!
· ĴJ−M

− |e, e, ..., e⟩ . (6.6)

We can also define the collective operators,

Ĵz =
N∑
i=1

σ̂3
i , (6.7)

Ĵ2 =
1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
+ Ĵ2

3 , (6.8)

of which |J,M⟩ are eigenstates with eigenvalues M and J(J + 1),

Ĵz |J,M⟩ =M |J,M⟩ , (6.9)

Ĵ2 |J,M⟩ = J(J + 1) |J,M⟩ . (6.10)

Using this formalism, a collection of N non-interacting atoms can be treated as a single
system with N + 1 equidistant levels, rather than N individual two-level systems. The
atomic evolution is then a cascade of decays down a ladder of N + 1 equidistant levels, as
shown in figure 6.1.

Since the emission of a photon cannot be attributed to a specific atom in the system, the
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Figure 6.1: Figure inspired by Ref. [103] showing the ladder of N+1 symmetrical states. Dur-
ing superradiance, the system cascades from the fully excited state |J,M = J⟩ ≡ |e, e, e, ...e⟩
down to the ground state |J,M = −J⟩ ≡ |g, g, g, ...g⟩.

transition from the fully excited state to the one immediately below in the ladder can be
due to the de-excitation of any atom in the ensemble. However, in subsequent decay steps,
the number of pathways increases since there are more combinations of possible relaxations
leading to the same state, resulting in a maximum transition enhancement at the centre of
the ladder at M = 0. In following decays from there the transition enhancement decreases,
since there are fewer excited atoms and therefore fewer possible decay pathways. This results
in the short radiation burst at the ladder midpoint characteristic of a superradiant system.

Up to this point, we have only considered symmetrical superradiant states, where the ensem-
ble of atoms are non-interacting and the Dicke ladder states are equidistant. The presence of
interatomic interactions results in a "chirped" ladder states profile, breaking the degeneracy
and meaning that each transition has a unique frequency [47]. The levels with the same num-
ber of excitations (i.e. the same quantum number M) are said to be in the same manifold.
Optical processes allow transitions between the manifolds, and the ladder states are the lev-
els linked by collectively enhanced optical transitions. As we will see in the next subsection,
the positions of the ladder states within the manifolds has important consequences for the
suitability of the system for superabsorption.

6.1.3 Superabsorption in Nanostructures

Our aim is to investigate the feasibility of creating and sustaining a superabsorbing (rather
than superradiant) state in a condensed-matter nanostructured synthetic light-harvesting
system.

Due to the time-reversal symmetry of quantum mechanics, we would expect superradiating
systems to also have enhanced absorption rates. However, superabsorption is generally not
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present in natural systems, since emission tends to dominate over absorption for a given
transition, even in an intense light field [47]. Furthermore, natural superradiant systems do
not remain in a state near the middle of the Dicke ladder long enough for superabsorption
to take place, instead moving down the states ladder to the bottom-most rung [47].

One method for artificially achieving superasborption is using the phase between the atoms
and photon field to time-reverse the superradiance process [104]. Another, and the one upon
which we will be focussed, is by manipulating the interatomic interactions of a system to
suppress the emission process and extend the time that the system is in a superabsorbing
state [46, 47, 105]. As we saw in the previous subsection, the introduction of interatomic
interactions in an ensemble system results in each transition having a unique frequency. This
allows the system to be trapped in an effective two-level system around the M = 0 transition,
as the middle of the Dicke ladder is where transitions are most strongly collectively enhanced.

To investigate the way superabsorption could be made use of in an artificial light-harvesting
system, it is useful to model a simplified natural light-harvesting complex. There are two
common types of light-harvesting complexes, named LH-I (or B875) and LH-II (or B800-850)
[106]. The LH-I complexes surround the reaction centre, and the LH-I are in turn surrounded
by the LH-II complexes [107]. Augmenting the reaction centre with light-harvesting antenna
in this way increases the cross-section for light absorption [96], with the number of LH-II
complexes present depending on the growth conditions of the plant (e.g. light intensity,
temperature) [108].

A common element shared by different LH complexes in nature is a ring-shaped functional
group made up of heterodimers2 [109]. A generic model that is very similar to LH-I consists
of a central “acceptor”, representing the reaction centre, surrounded by a ring of coupled
“donors”, which represent the chromophores [110]. These donors can be modelled as two-
level systems, since many naturally occurring light-harvesting complexes contain no more
that one excitation at any one time [111]. Therefore, a suitable toy model to represent
a simple light-harvesting system is an ensemble of two-level dipoles arranged in a ring. In
natural photosynthetic systems, the dipole moments in the ring are tangentially aligned [112],
but collective effects can be enhanced if the dipole moments are instead aligned in parallel
[46].

In the rest of this chapter, we will be considering the possibility of creating and sustain-
ing a superabsorbing state in condensed-matter ring-shaped nanostructures. Since we are
looking at a molecular system, vibrational relaxation should be considered [113] due to addi-
tional vibrational degrees of freedom not present for atoms. This involves phonons creating

2A heterodimer is a protein complex composed of two different subunits.
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transitions within the energy manifolds in the downward direction [46].

When the collectively enhanced states (discussed in the previous subsection) are at the top of
their respective manifolds, this vibrational relaxation results in a pull away from the ladder
states, ruining the system’s suitability for superabsorption. On the other hand, if the ladder
states are at the bottom of the manifolds, the relaxation works to stabilize the superabsorbing
states. Therefore, we ideally want the ladder states to be at the bottom of their respective
excitation manifolds, as this way the vibrational relaxation will guide the system towards the
ladder states rather than pull away from them [46]. This is the reasoning behind the defining
conditions of a “guide-slide” superabsorber given at the beginning of this chapter.

6.2 Ring System

In this section, we model the system of an arbitrary number of dipoles arranged in a ring, and
work out the connections between ring eigenstates by optical processes. The ladder states are
identified as the strongest optical transitions between adjacent manifolds. As discussed in
the previous section, phonon processes will guide the system to the eigenstates at the bottom
of the manifolds, so having the ladder states at the bottom of their respective manifolds will
aid in achieving superabsorption. We show in this section how tilting the dipoles in the ring
is one way to achieve this, following Ref. [46].

6.2.1 Setup of Ring System

A system of N dipoles positioned in a ring can be modelled via the following Hamiltonian,

Ĥring = ω0

N∑
i=0

σ̂z
i +

N∑
i,j=1

Ji,j(σ̂
+
i σ̂

−
j + σ̂−

i σ̂
+
j ), (6.11)

where the usual definition of site-defined Pauli operators given in (6.1) have been used. The
first term describes the self-interactions of the dipoles and the second term describes the
interactions between the dipoles.

The eigenstates of the ring system are defined by Ĥring

∣∣ψk,ring

〉
= Ek,ring

∣∣ψk,ring

〉
, where

k = 1, 2, ..., N . This, combined with the degeneracies, reveals the N2 energy levels of the
system, with energies defined by Ek,ring. These energy levels are evenly spaced if there are no
intermolecular interactions, but coupling perturbs the energy levels and lifts the degeneracy
of the ladder rung spacings, as shown in figure 6.2. These energy levels are organised in
manifolds corresponding to the number of excitations in the system. There are 2N manifolds
in a system made up of N dipoles. For an uncoupled system, all of the levels in a manifold
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Figure 6.2: Plot of the energy eigenstates of a four-dipole ring system against the nearest
neighbour coupling strength, showing the perturbation of the energy levels due to the intro-
duction of intermolecular coupling. For this plot, the energy states are normalized to the
transition frequency, ω0, and the coupling of the dipoles across the ring is set to one third
of the nearest neighbour coupling. The colours represent the groupings of the five energy
manifolds.

will have the same energy.

The inter-dipole coupling is introduced via the interaction matrix Ji,j between two dipoles di

and dj of transition frequency ω0 and at positions ri and rj. Due to the rotational symmetry
of the system, it is sufficient to calculate the interactions between a single dipole and each
of the others, and then re-use this for the other dipoles in the ring. In macroscopic QED
(introduced in chapter 2), the strength of coupling between dipoles at sites i and j is given
by [114, 115],

Ji,j = −µ0ω
2
0 d

↑
i · Re

[
G(ri, rj, ω0)

]
· d↓

j , (6.12)

where ω0 is the transition frequency of the dipole. We note that by splitting up the real and
imaginary parts of the Green’s tensor, the matrix element we calculated previously (3.67)
can be decomposed into the interaction strength, (6.12), and the associated decay rate,
γi,j = −µ0ω

2
0d

↑
i · Im

[
G(ri, rj, ω0)

]
· d↓

j .

The Hamiltonian that governs how the eigenstates of the ring system are connected by optical
processes is [47],

ĤI,opt =
N∑
i=0

diσ̂x
i ⊗

∑
k

fk(âk + â†k), (6.13)

where â(†)k is the annihilation (creation) operator for optical mode k, and fk is the coupling
strength of this photon mode to the dipole di. We can transform the optical Hamiltonian
into the eigenbasis of the ring Hamiltonian by first identifying the matrix R that diagonalizes
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(a) Dipole ring setup for N = 4. (b) Dipole moment angle definitions.

Figure 6.3: (a) Diagram of four dipoles in a ring with radius Rring in the xy-plane. (b)
Representation of the angles used to defined the dipole moment orientations, namely the
equatorial angle θeq and the zenith angle θzen. Adapted from [46] under the terms of the
Creative Commons Attribution 4.0 International license.

Ĥring via R−1ĤringR, and then performing the same transformation on ĤI,opt. We can write
this as,

R−1ĤI,optR ≡ ˆ̃HI,opt, (6.14)

where we have defined the transformed optical Hamiltonian as ˆ̃HI,opt.

By considering
〈
ψl,ring

∣∣ ˆ̃HI,opt

∣∣ψk,ring

〉
, we can reveal the allowed optical interactions between

the kth and lth ring eigenstates and how likely the transitions are to take place, with a
higher transition weight corresponding to a higher transition probability. The ladder states
are identified as the most probable transitions between each adjacent manifold, and these
are the states that are linked by collectively enhanced optical transitions. As discussed in
the previous subsection, we require the ladder states to lie at the bottom at their respective
manifolds to aid the superabsorption process.

In the next subsection, we demonstrate that for a ring of dipoles, the dipole moments all
being oriented perpendicular to the plane of the ring (“parallel” setup) does not induce the
required level scheme. However, tilting the dipoles as in Ref. [46] (“tilted” setup) achieves
the desired effect.

6.2.2 Parallel and Tilted Setup Comparison

We place N dipoles in a ring in the xy-plane centred at the origin with radius Rring, so that
the ith dipole has position ri and dipole moment di. The first dipole is placed on the y axis,
with Cartesian coordinates r0 = (0, Rring, 0), and the remaining N − 1 dipoles are placed in
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(a) Level scheme for parallel setup with θeq =
θzen = π/2.
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(b) Level scheme for tilted setup with θeq =
π/2 and θzen = π/4.

Figure 6.4: Energy eigenstates of a ring of four dipoles, normalised to the transition frequency
ω0, comparing the (a) parallel setup to (b) tilted setup presented in Ref. [46]. The nearest
neighbour intermolecular distance is set to rNN = 2.5nm and the ring radius is found from
equation (6.16). The red levels identify the ladder states, and the vertical dashed lines
separate the different excitation manifolds.

a ring around the origin on the xy-plane with the origin at the centre. If we label the angle
anti-clockwise from the y-axis in the xy-plane as φ, then the positions of the dipoles can be
expressed as ri = (Rring sinφi, Rring cosφi, 0) where φi = 2πi/N with i = 1, 2, ..., N − 1. The
case of N = 4 is shown in figure 6.3a.

The orientations of the dipole moments are defined according to figure 6.3b, so that the
dipole moment at site i is given as,

di = |d|(sin
(
φi + θeq

)
cos θzen, cos

(
φi + θeq

)
cos θzen, sin θzen), (6.15)

where |d| is the dipole strength. For the parallel setup, the equatorial angle θeq, and zenith
angle θzen, are both chosen to be π/2. This results in the dipole moments all being aligned
in the z direction, so the dipole moment at site i is di = |d|(0, 0, 1). In Ref. [46] however,
the tilted setup is achieved by choosing θeq = π/2 and θzen = π/4.

The resulting level schemes for an example system of a ring of four dipoles are given in figure
6.4. We can see that for the parallel setup, the ladder states are positioned at the top of
each manifold, but the tilted setup results in the ladder states being at the bottom of the
manifolds instead. As discussed in section 6.1, having the ladder states at the bottom of
their respective manifolds allows superabsorption to be achieved.

If we are to replicate this level scheme using a different method, we need to know what
characteristic of the system creates this effect. We know that the dipole moments determine
the intermolecular coupling via equation (6.12), so we next examine how the different dipole
moment orientation schemes discussed in this section impact the intermolecular couplings in
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(a) Parallel setup with θeq = θzen = π/2. (b) Tilted setup with θeq = π/2 and θzen = π/4.

Figure 6.5: Coupling strengths between an arbitrary anchor dipole and another dipole at
positions around the ring for different numbers of dipoles, N . The nearest neighbour inter-
molecular distance is set to rNN = 2.5nm and the ring radius increases with N according
to equation (6.16). The points on the plots highlight the positions of the N dipoles in the
different rings.

the ring. To this end, we investigate how the intermolecular coupling between two dipoles is
affected by their respective positions in the ring.

We are not only interested in the case of four dipoles making up the ring, and also need to
consider how the system is affected when the ring is made up of different numbers of bodies.
For our investigations, we will fix the intermolecular distance, rNN , and allow the radius of
the ring to increase with the number of dipoles according to,

Rring =
rNN

2 sin
(
π/N

) . (6.16)

Considering the two dipole moment orientation setups separately, figure 6.5 shows how the
value of the intermolecular coupling, Jij, would change between one dipole at a fixed position
and a second dipole at different positions around the ring, with comparisons for different
values of N . The clear distinction between the different dipole moment orientations setup
is that when the moments are all parallel, the intermolecular couplings are positive, but
skewing the dipoles in this way generates negative intermolecular couplings instead. This is
a good indication that in order to ensure the required level scheme, we should aim to create
a negative intermolecular coupling in our system.

In the next section, we demonstrate how a macroscopic body can be used to generate a
negative intermolecular coupling between two dipoles. We consider a simple system that
can be described analytically as a proof-of-principle, namely two bodies near a semi-infinite
half-space, and investigate how the properties of the system can be chosen to manipulate the
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intermolecular coupling in the required way.

6.3 Demonstration of Coupling Control

In the previous section we saw that tilting the dipoles moments in the ring in the correct
way results in the ladder scheme we are looking for. However, this method means that the
dipole structure is no longer perfectly aligned, which decreases the superabsorption effects of
the system. We aim to create the same ladder scheme while allowing the dipole moments to
remain perfectly aligned with the use of a macroscopic dielectric body.

In order to demonstrate how a macroscopic environment can, in theory, be manipulated to
achieve a desired intermolecular coupling, we consider a system made up of two bodies near
a semi-infinite half-space (the same system studied in sections 3.3.2 and 4.2). To ensure
an analytic description, we concentrate on two simple dipole arrangements, “colinear” and
“parallel” shown in figure 4.1, and we will be concentrating on the non-retarded regime, where
the dipoles are close enough to each other and the half-space to ignore relativistic effects.
As a proof-of-principle, we will demonstrate how the characteristics of the half-space can be
chosen to achieve a negative intermolecular coupling.

In particular, we note that the nearest neighbour inter-dipole interactions in a system of
a sphere surrounded by a ring of dipoles could be approximated as two dipoles in parallel
placement with a semi-infinite half-space. Therefore, demonstrating the ability to ensure a
negative coupling in this toy system is a good indication that the same is possible in the
more complex system of a ring of N dipoles surrounding a sphere.

From the expression for the coupling strength given by (6.12), we can see that achieving a
negative coupling is equivalent to choosing a Green’s tensor that results in,

Re
[
GHS

NRmn
(r, r′, ω)

]
> 0, (6.17)

for the relevant component, where the component is dependent on the orientation of the
dipole moments. The characteristics of the system that we can control are; (1) the positions
of the dipoles in relation to the half-space and each other, (2) the orientations of the dipole
moments, and (3) the material that the half-space is made up of. For each orientation
combination, we can determine the constraints on the material’s permittivity in terms of the
dipoles’ positions that must be met to achieve a negative coupling.
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6.3.1 Colinear Arrangement

For completeness, we first consider two dipoles positioned in a colinear arrangement with a
semi-infinite half-space (see figure 4.1b). The non-retarded Green’s tensor for a half-space in
a vacuum for colinearly placed dipoles is given by (B.39) and again below,

GHS,C
NR (r, r′, ω) =

c2

4πω2

 1

Z3

−1 0 0

0 −1 0

0 0 2

+
rNR
p

Z̄3

1 0 0

0 1 0

0 0 2


 , (6.18)

where Z ≡ z−z′ and rNR
p ≡ ϵ(ω)−1

ϵ(ω)+1
. By setting the condition that Re

[
GHS,C

NRmn
(r, r′, ω)

]
> 0 for

dipole moment orientations {m,n}, we find that we get a negative coupling if the permittivity
obeys,

{x, x}/{y, y} : ϵ >
1 + (z̄/z)3

1− (z̄/z)3
=

(b+ 1)3 − (b− 1)3

(b+ 1)3 + (b− 1)3
(6.19a)

{z, z} : ϵ >
1− (z̄/z)3

1 + (z̄/z)3
=

(b+ 1)3 + (b− 1)3

(b+ 1)3 − (b− 1)3
(6.19b)

where we have defined z′/z ≡ b.

Figure 6.6a shows the permittivity and position combinations that result in a positive Green’s
tensor component for the different dipole moment orientations. We note that not every
permittivity-position combination considered will achieve the desired effect. There is a small
region when the dipoles are very close together and the permittivity is between 0 and -1 where
the effect cannot be achieved, no matter which dipole moment orientations are chosen.

6.3.2 Parallel Arrangement

The parallel arrangement shown in figure 4.1a is of particular interest as it can be considered
as a simplified toy model of the nearest neighbour interactions of a ring of dipoles around a
sphere. In this arrangement, the non-retarded effective Green’s tensor, which includes both
the vacuum background and the half-space, is given in (B.33) and again below,

GHS,P
NR (r, r′, ω) =

c2

4πω2

 1

X3

2 0 0

0 −1 0

0 0 −1

+
rNR
p

R5
+

R
2
+ − 3X2 0 6zX

0 R2
+ 0

−6zX 0 2R2
+ − 3X2


 ,
(6.20)
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(a) Colinear placement, r = (0, 0, z) and
r′ = (0, 0, z′).

(b) Parallel placement, r = (x, 0, Z) and
r′ = (x′, 0, Z).

Figure 6.6: Plot of the positions of two dipoles against the permittivity of a semi-infinite
half-space positioned at z < 0. Shaded regions indicate combinations of parameters that
result in Re

[
GHS

NRmn
(r, r′, ω)

]
> 0 for the selected dipole moment orientations {m,n}, which

are indicated by colour. We have limited our investigation to the non-retarded regime, which
is only valid for the position range plotted here.

where X ≡ x − x′, R2
+ ≡ 4Z2 + X2 and rNR

p ≡ ϵ(ω)−1
ϵ(ω)+1

. By setting the condition that

Re
[
GHS,P

NRmn
(r, r′, ω)

]
> 0 for dipole moment orientations {m,n}, we find that we get a

negative coupling if the permittivity obeys,

{x, x} : ϵ >
(R2

+ − 3X2)X3 − 2R5
+

(R2
+ − 3X2)X3 + 2R5

+

=
2a2 − 1− (4a2 + 1)5/2

2a2 − 1 + (4a2 + 1)5/2
, (6.21a)

{y, y} : ϵ >
X3 +R3

+

X3 −R3
+

=
1 + (4a2 + 1)3/2

1− (4a2 + 1)3/2
, (6.21b)

{z, z} : ϵ >
(2R2

+ − 3X2)X3 + 2R5
+

(2R2
+ − 3X2)X3 − 2R5

+

=
8a2 − 1 + 2(4a2 + 1)5/2

8a2 − 1− 2(4a2 + 1)5/2
, (6.21c)

{x, z} : |ϵ| > 1, {z, x} : |ϵ| < 1, (6.21d)

where we have defined X/Z ≡ a.

Figure 6.6b shows the position and permittivity combinations that achieve the desired ef-
fect for the different orientation combinations. We can see that if suitable dipole moment
orientations are chosen, any of the permittivity and position combinations considered could
be used to achieve a negative coupling. It is interesting to note from (6.21d) that if one of
the dipole moments is aligned in the x direction and the other in the z direction, a suitable
permittivity can be chosen without needing to consider the positions of the dipoles.
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In particular, we note that the case where the dipole moments are oriented perpendicular
to the plane on which they are positioned corresponds to the ring of parallel oriented dipole
moments discussed in the previous section. For the setup considered here where the dipoles
are positioned in the xz-plane, this corresponds to both dipole moments being oriented in the
y direction. From figure 6.6b we can see that for the half-space to produce the desired effect,
its permittivity must be lower than −1. Furthermore, we see that a smaller intermolecular
distance compared to distance to the surface is preferred. This is a good indication that by
manipulating the system of a sphere in a ring of dipoles in a similar way, we can also achieve
a negative coupling. This is explored in the next section.

6.4 Parallel Spherical System

In this section, we investigate achieving the desired ladder state configuration in a ring
of parallel dipole moments by placing a dielectric spherical body in the centre (see figure
6.7a). Keeping the dipole moments perfectly aligned in this way maximizes the potential for
superabsorbing effects in the system.

We can see from the previous section that it is possible in principle to create a negative
coupling between two dipoles by controlling the positions of the dipoles and the properties
of its environment. This was demonstrated using the simple environment of a semi-infinite
half-space. In this section, we apply the same principles to a spherical dielectric environment
inside a ring of dipoles, which is too complicated to describe analytically.

6.4.1 Setup of Sphere inside Ring

We set up a system of N dipoles in a ring arrangement in the xz-plane around a sphere of
radius R with its centre coinciding with the origin of the coordinate system. A schematic of
this system is shown in 6.7a and a diagram of the N = 4 case is given in figure 6.7c. The
dipole moments will all be oriented in the y direction.

It is useful to consider the system in spherical coordinates (r, θ, ϕ) (see figure 6.7b), in which
the positions of the dipole at site i can be written as,

ri = (ri, θi, ϕi) =


(
R, 2πi

N
, 0
)

for x ≥ 0,(
R, 2π − 2πi

N
, π
)

for x ≤ 0.
(6.22)

We note here that when x = 0, the value of ϕ can be chosen to be 0 or π.

The coupling matrix is calculated via (6.12). We can pick one dipole and consider its inter-
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(a) Schematic of parallel
spherical system.

(b) Spherical coordinates. (c) Spherical system setup with N=4.

Figure 6.7: (a) is taken from [3] under the terms of the Creative Commons Attribution 4.0
International license. (b) shows the spherical coordinate system used in this work. (c) is the
setup of four dipoles in a ring of radius Rring in the xz-plane positioned around a sphere of
radius Rsph (shaded green portion).

action with each of the other N − 1 dipoles around the ring to calculate the first row of Ji,j,
and then exploit the rotational symmetry of the system to build the rest of the matrix. The
effective Green’s tensor for a sphere in a vacuum is found by summing the bulk (vacuum)
Green’s tensor in spherical coordinates given by (B.68), and the scattering Green’s tensor for
a sphere (B.109).

We also need to express the orientations of the dipole moments in spherical coordinates. As
in section 6.2.1, the dipole moments are all oriented in the y direction. To convert this to
spherical coordinates, we use the standard unit vector conversions,

er =sin θ cosϕex + sin θ sinϕey + cos θez,

eθ =cos θ cosϕex + cos θ sinϕey − sin θez,

eϕ =− sinϕex + cosϕey. (6.23)
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For a y orientation, ex = 0 = ez and ey = 1, so,

er =sin θ sinϕ = 0,

eθ =cos θ sinϕ = 0,

eϕ =

1 for x ≥ 0,

−1 for x ≤ 0,
(6.24)

where we have used sin 0 = sinπ = 0, cos 0 = 1 and cosπ = −1. So we can write the dipole
moments in spherical coordinates as di = (di, θi, ϕi) = ±|d| (0, 0, 1), with the sign depending
on the sign of x. As discussed above, due to the rotational symmetry of the system, we
only need to calculate the interactions between a single dipole and each of the others. If we
choose the interacting dipole to be on the z-axis, then ϕ can be chosen to be 0 or π so that
it is always different from the dipole it is interacting with. So in our coordinate system, we
can say that for all dipole combinations, the dipole moments used in the calculation of the
coupling matrix are di = |d|(0, 0, 1) and dj = |d|(0, 0,−1).

This means that the coupling matrix for our system is calculated via,

J ring
i,j = −ω

2|d|2

ϵ0c2
(0, 0, 1) · Re

[
G(0)(ri, rj, ω) +G(1)(ri, rj, ω)

]
· (0, 0, 1), (6.25)

where G(0) is given by (B.68) and G(1) by (B.109). Our aim is to find constraints on the
sphere parameters (the radius and the permittivity) that will achieve the “guide-slide” effect,
as defined at the beginning of this chapter.

6.4.2 Results

A plot showing the combinations of sphere size and permittivity that achieve the required
level scheme for a ring of four dipoles is shown in figure 6.8. Interestingly, we can see that
the effect can only be achieved by a sphere with a negative permittivity.

As a demonstration of the effectiveness of such a sphere, we consider an example system
made up of a ring of dipoles and a sphere with permittivity ϵ = −2.37, which is similar to
the permittivity of chromium at 1.8eV [3]. As in section 6.2.2, the ring size is allowed to
increase with the number of dipoles via (6.16), and the radius of the sphere Rsph is chosen to
be one nanometre smaller than the radius of the ring. The resulting intermolecular coupling
around such a ring for different number of dipoles is shown in figure 6.9a. We can see that
this size and permittivity combination results in a negative intermolecular coupling for all
of the dipole numbers considered (3-6). Using the four dipole case as an example, figure
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Figure 6.8: Plot of permitivitty and radius (normalised to the ring radius) of a sphere inside
a ring of four dipoles set up in the same way as in figure 6.4a. Combinations of parameters
that result in the required level scheme for the guide-slide effect are indicated by red points.

6.9b shows that the ladder states are indeed at the bottom of their respective manifolds as
required, demonstrating the sphere’s effectiveness as a method of aiding in superabsorption
in such a ring system.

We now turn our attention to the work carried out by A. Burgess et al. presented in Ref. [3],
which uses an open quantum systems approach to model the system presented in this section
as an effective quantum heat engine. This allows for the comparison of the power outputs
of our presented parallel spherical setup with the tilted setup introduced in [46] (see section
6.2.2).

6.5 Application to Solar Cell

In this section, we explain the methods and results of A. Burgess presented in our publication
[3]. This work characterizes the superabsorbing parallel spherical system presented in the
previous section by calculating its power output and how it scales with the number of dipoles
in the ring. In this work, an open quantum systems approach is used to model the system as
an effective quantum heat engine, demonstrating the system’s suitability for use as a solar
cell.
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(a) Coupling strengths between an arbitrary an-
chor dipole and another dipole at positions around
the ring for N dipoles.

(b) Energy eigenstates of a ring of four
dipoles, normalised to the transition fre-
quency ω0. Red levels indicate ladder states.

Figure 6.9: (a) Coupling plot for varying N and (b) level scheme for N = 4 for a ring of
dipoles with parallel oriented moments surrounding a sphere with radius Rsph = (Rring−1)nm
and permittivity ϵ = −2.37. The other parameters are the same as for figures 6.5 and 6.4,
respectively.

6.5.1 Calculating the Power Output

To model the vibrational relaxation present in typical nano-structures, N vibrational baths
are introduced that are coupled to each of the dipoles via the Hamiltonian term,

HI,vib =
N∑
i=1

σ(i)
z

∑
v

gi,v(bi,v + b†i,v), (6.26)

where gi,v and b
(†)
i,v are the coupling strength and the annihilation (creation) operator of the

phonon mode v of the ith dipole’s vibrational bath, respectively.

The open quantum dynamics of the system are modelled using a weak-coupling Born-Markov
approximation, allowing the calculation of the Bloch-Redfield equations [116]. This model
assumes second-order perturbation theory is used for the bath-system coupling and that
vibrational relaxation happens on a timescale so much faster than the other system dynamics
that the bath correlations can be modelled as delta functions. The Bloch-Redfield equations
then lead to a master equation of the form [3],

d

dt
ρring = −i

[
Hring, ρring

]
+
(
Dopt +Dvib +DX +Dt

)
ρring, (6.27)

where the terms in the brackets are the system dissipators. Dopt is the optical dissipator,
which determines the optical transitions between the excitation number manifolds, and Dvib

is the vibrational dissipator, dictating the vibrational transitions within these manifolds.
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The final two dissipator terms are added in order to model the extraction of excitons from
the ring system, which would then be converted into useful energy, allowing the calculation
of the efficiency of the system. This extraction is achieved by means of an extra dipole placed
below the centre of the ring, coupled incoherently to the system, which acts as a trap. This
is characterised by the extraction dissipator term,

DXρring = γX

(
XρringX

† − 1

2

{
X†X, ρring

})
, (6.28)

where γX represents the extraction rate from the ring system to the trap, and the Lindblad
operator, X, determines the incoherent transport and is given by,

X =
N∑
i=1

σ
(i)
− ⊗ σ

(t)
+ . (6.29)

The final dissipator term describes the decay within the trap, in the form of incoherent
transitions from the trap’s excited state to its ground state. This decay dissipator term is
given by,

Dtρring = Γt

(
σ
(t)
− ρringσ

(t)
+ −

1

2

{
σ
(t)
+ σ

(t)
− , ρring

})
, (6.30)

where Γt is the trap decay rate. Since the temperature of the solar photons is high and the
phonons and trap are room temperature, the system can be modelled as an effective quantum
heat engine (QHE), from which the power output at the steady state can be calculated, where
the steady states are found from (6.27). The power output at the steady state is calculated
via,

P = IV, (6.31)

where the I is the current of the QHE, given by,

I = eΓt⟨ρt,e⟩, (6.32)

where ⟨ρt,e⟩ represents the expectation value of the steady state population of the trap’s
excited state, and V is the potential difference which can be found using,

eV = ℏωt + kBTvib ln

[
⟨ρt,e⟩
⟨ρt,g⟩

]
, (6.33)

where kB is Boltzmann’s constant, Tvib is the temperature of the vibrational baths and ⟨ρt,g⟩
is the expectation value of the steady state population of the trap’s ground state. The power
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output P can then be maximised for each ring configuration by choosing Γt such that,

Pmax = maxΓt

{
I (Γt)V (Γt)

}
. (6.34)

This method for the calculation of the power output is used by A. Burgess in Ref. [3], the
results of which are reviewed in the next section.

6.5.2 Results and Discussion

In this section, the results of A. Burgess from Ref. [3] are presented, which compare the
power output of the previously developed tilted ring system [46] with the spherical parallel
ring system explored in section 6.4. From these we will see that the spherical system is a
more advantageous configuration for a superabsorber than the tilted system.

Figure 6.10 shows the results of numerical simulations carried out by A. Burgess and presented
in our paper [3], showing the power output for different numbers of dipoles making up the
ring. It is immediately apparent from figure 6.10a that the spherical setup has an enhanced
scaling of power with N when compared with the tilted setup. This is quantified in figure
6.10b with a log-log plot showing the exponent, m, for each configuration’s power output of
the form P = αNm. The growth exponent is calculated to be m = 1.55 for the spherical
setup compared to m = 1.08 for the tilted setup. The theoretical maximum Dicke scaling of
N2 is also included as well as linear scaling for reference, and it is clear that the scaling of the
spherical setup is noticeably enhanced when compared to the tilted. This is because tilting
the dipole moments causes destructive interference between the molecules, which limits the
superabsorbing effects (see section 6.1.2).

From figure 6.10c it can be seen that for small values of N , the power output per dipole
is greater for the tilted setup, and that the spherical system only begins to dominate for
N > 4. This because we have set the system up so that the distance between the dipoles
and the central sphere is constant, and so the addition of more dipoles changes the size
ratio of the sphere in comparison to the ring. Therefore, for small N the relative size of the
spherical body is small compared to the size of the ring, which limits the ability to engineer
the intermolecular couplings.

Further advantages of the spherical setup arise from the lack of some of the additional pro-
cesses that were required in the previously presented tilted setup [46] to sustain the super-
absorbing state. These include a reinitialisation process and confining the system within a
photonic band gap. These are in addition to the dipole moments needing to be symmetri-
cally tilted about the ring to engineer the required dipole-dipole coupling. In contrast, the
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Figure 6.10: Figure reproduced from [3] under the terms of the Creative Commons Attribu-
tion 4.0 International license. Scaling of power output of the solar cell with number of dipoles
for both the parallel spherical setup and the previously developed tilted setup. (a) Power
output, (b) log-log plot of power output and (c) power output per dipole for increasing N
are given. Super-linear scaling for both configurations were calculated via P = αNm and are
plotted in (b). It was found that m = 1.55 for the parallel setup (red solid) and m = 1.05
for the tilted setup (blue solid). N2 (green dashed) and linear scaling (black dashed) are
plotted for comparison in (b). Parameters are the same as in figure 6.9, with Tvib = 300K,
Topt = 5800K, γopt = γX = 1µeV and γvib = 103γopt.
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system presented here requires the inclusion of a metallic nanoparticle in the centre of a
ring of dipoles. Encouragingly, recent experimental studies that use DNA origami to com-
bine nanoparticle systems with molecular rings provide a promising path to this realisation
[117–119].

Furthermore, because of the super-extensive power generation of the presented model, it is
predicted that increasing the ring size would result in power outputs greater than the sum of
its parts [3]. We note that our method of modelling the inter-dipolar coupling via macroscopic
QED is preserved in the limit of large N , and that in fact the approximation that the dipoles
are effectively next to a semi-infinite dielectric plane becomes more accurate in this limit.

6.6 Summary and Conclusion

In summary, beginning with an overview of photosynthesis, this chapter presented superab-
sorption as one of the routes to improved synthetic light harvesting, and introduced the idea
of a “guide-slide” superabsorber as a set of criteria that can be met by a system of optical
dipoles to achieve and sustain superabsorption. A system consisting of a ring of dipoles was
then presented, and we demonstrated how tilting the dipole moments as in Ref. [46] can
affect the sign of the intermolecular coupling such that the system acts as a “guide-slide”
superabsorber.

By considering a simple toy model of two dipoles near a semi-infinite half-space, it was
then demonstrated that it is possible to change the sign of the inter-dipole coupling by
manipulating the properties of the environment. Applying this principle to the ring system,
we showed that a sphere placed inside the ring has the potential to alter the inter-dipole
coupling in such a way that the system behaves as a “guide-slide” superabsorber without
requiring any tilting of the dipole moments. Finally, we presented work by A. Burgess in our
publication [3] in which the way the power output of such a parallel spherical system scales
with the number of dipoles was calculated, and found to be preferable to the tilted setup
introduced in Ref. [46].



CHAPTER 7

Conclusion

The broad goal of this thesis was to study the way that macroscopic environments can influ-
ence intermolecular interactions. We first used macroscopic QED to derive a general formula
for the rate of two-body RET that can be applied to an arbitrary reciprocal macroscopic
background. This was achieved using second order perturbation theory, but we also demon-
strated that the use of canonical transformations to reduce the order of perturbation theory
required leads to the same result. As a proof-of-principle, we then applied the formula to two
bodies in a vacuum by way of the Green’s tensor, calculating analytic expressions for the rate
of energy transfer between the bodies for the near- and far-field regimes, demonstrating the
characteristic r−6 and r−2 distance dependencies, respectively. We then considered the two
bodies to be near a semi-infinite half-space, and by employing the colinear arrangement and
the near- and far-field limits, calculated analytic formulae for the interaction rate. We found
that when the far-field regime is considered, an oscillatory dependence on the intermolecular
distance is observed, and a plot in two dimensions demonstrated the non-trivial influence on
the rate of even simple environments.

We next extended our consideration to non-reciprocal media, again applying macroscopic
QED to reach a general formula for the rate of energy transfer in an arbitrary environment.
We then considered two bodies near a non-reciprocal half-space in a parallel or colinear
arrangement, and examined under which conditions switching the positions of the donor and
acceptor would induce a change in the rate of energy transfer between them. We found that
if the dipole moments are randomly oriented, a position swap will not cause a rate change in
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either setup, but that if the bodies are in a parallel arrangement, then there are certain dipole
moment orientations that will result in a change in the rate of interaction under a position
swap. By plotting the dependence of the rate on the molecular positions, we note that the
reflective properties of the half-space can be chose to favour energy transfer in one direction
over the other. An application of this principle presented in our paper [2] is then discussed,
where an optical isolator that maximises unidirectional propagation is created using inverse
design. The work presented could be built upon to move towards the creation of an integrated
optical isolator, or be used in the improvement of bulk isolators.

We then looked at three-body RET, applying canonical transformations to simplify the cal-
culation and reduce the perturbation theory order required from fourth order to first, before
reaching a general rate formula using macroscopic QED. We found that of all the 24 time-
orderings considered, only the resonant interaction ended up contributing to the overall rate
of energy transfer. The formula was then applied to a situation of experimental interest,
where the donor and acceptor are in the near-field regime and the mediator is in the far-field
limit. Considering colinear and T-shape arrangements, analytic expressions for the rate of
interaction were calculated for three bodies in a vacuum for both arrangements, and for the
colinear arrangement near a semi-infinite half-space. A density plot demonstrated the intri-
cate dependence of the rate on the molecular positions in the presence of a simple half-space.
This work could be relevant in the study of long-range energy transport in photosynthesis,
and could possibly be used to observe retardation in RET.

We finally investigated how a macroscopic environment could engineer the intermolecular
coupling in a ring of optical dipoles to induce and sustain a superabsorbing state. We first
demonstrated how tilting the dipole moments as in Ref. [46] could produce the desired effect,
and found that this was equivalent to changing the sign of the inter-dipolar coupling. A toy
system of two bodies near a semi-infinite half-space was then considered to illustrate how in
principle the properties of the environment and the positions of the bodies can be used to
change the sign of the intermolecular coupling. We then applied this idea to the ring system,
by placing a macroscopic sphere inside the ring and exploring the properties that sphere must
have to induce the required intermolecular coupling. We noticed that a negative permittivity
is necessary (but not sufficient) to produce the desired effect. We then presented the results
of A. Burgess et al. in Ref [3], which calculated the power output of our spherical setup
and how it scales as the number of dipoles in the ring is increased. When compared with
the tilted setup, we found that the scaling of the spherical system is noticeably enhanced,
due to the fact that keeping the dipole moments parallel eliminates destructive interference,
which reduces the system’s superabsorbing potential. We also noted that the spherical setup
offers further advantages over the tilted setup, such as not requiring a reinitialisation process
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or the singular coupling of a trap to a particular state. This highlights this work as an
ideal candidate for use in the design of light-harvesting superabsorbers. More generally, the
methods of engineering inter-dipolar coupling through design of macroscopic environments
could be useful in the design of quantum-enhanced devices.



APPENDIX A

Classical Electromagnetism in Fourier
Space

In this Appendix, we transform the well-known classical Maxwell equations and constitution
relations in a reciprocal medium from the time domain to the frequency domain. The classical
Maxwell equations for a electromagnetic field in a reciprocal medium are [58, 68],

∇ ·B(t) = 0, (A.1)

∇ ·D(t) = ρ, (A.2)

∇×E(t) +
∂B(t)

∂t
= 0, (A.3)

∇×H(t)− ∂D(t)

∂t
= J , (A.4)

where E and B represent the electric and magnetic fields, and D and H are the correspond-
ing derived fields, related to E and B via the constitutive relations,

D(t) = ϵ0E(t) + P (t), (A.5)

H(t) =
1

µ0

B(t)−M(t), (A.6)

where P and M are the polarization and magnetization of the medium, respectively. We will
only be considering the case where there are no free charges, meaning we can set both the
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free charge density ρ and the free current density J to zero. It is useful for us to move from
the time domain into the frequency domain. The Fourier transform of an arbitrary function
f is defined as,

F
[
f(t)

]
≡ f̃(ω) =

1

2π

∫ ∞

−∞
dt f(t)eiωt. (A.7)

When applied to Maxwell’s equations for no free charges, we find (A.1) and (A.2) simply
become,

∇ · B̃(ω) = 0, (A.8)

∇ · D̃(ω) = 0, (A.9)

while (A.3) transforms as,

F
[
∇×E(t) +

∂B(t)

∂t

]
= ∇× F

[
E(t)

]
+ F

[
∂B(t)

∂t

]
= ∇× Ẽ(ω) +

1

2π

∫ ∞

−∞
dt
∂B(t)

∂t
eiωt = ∇× Ẽ(ω)− iω

2π

∫ ∞

−∞
dtB(t)eiωt

= ∇× Ẽ(ω)− iωB̃(ω) = 0, (A.10)

where in the second line we have integrated by parts. In a similar way, (A.4) becomes,

∇× H̃(ω) + iωD̃(ω) = 0. (A.11)

The constitutive relations also need to be transformed into the frequency domain, so we
need to know how P and M transform. We apply the simplifying assumption that we can
describe the bound charges by some equilibrium arrangement which is weakly perturbed by
the electromagnetic field, and further assume that the response of these charges are linear
and causal. The constitutive relations for reciprocal media in the time domain can be written
as [4],

P (r, t) = ϵ0

∫ ∞

−∞
dτ

∫
d3r′χ(r, r′, τ) ·E(r′, t− τ) + PN(r, t), (A.12)

M (r, t) =
1

µ0

∫ ∞

−∞
dτ

∫
d3r′ ζ(r, r′, τ) ·B(r′, t− τ) +MN(r, t). (A.13)

These expressions can be interpreted as being made up of a reactive part and a random part.
The reactive part describes the linear response of the medium to the electromagnetic field,
where χ and ζ are the electric and magnetic susceptibility response functions of the medium,
respectively. Since we assumed that the response of the bound charges is causal, we require
that χ(r, r′, τ) = 0 and ζ(r, r′, τ) = 0 for |r − r′| > cτ , so that the reactive part of the
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polarisation and magnetisation only depends on previous influences at a given instant. The
random part accounts of the medium’s fluctuations, and is described by the noise polarisation,
PN, and noise magnetisation, MN. These relate to the noise charge density, ρN, and the noise
current density, jN, via,

ρN =−∇ · PN, (A.14)

jN =ṖN +∇×MN, (A.15)

which obey the continuity equation,

ρ̇N +∇ · jN = 0. (A.16)

To transform into the frequency domain, we make use of the convolution theorem. The
convolution of two functions f and g is defined as,

(f ∗ g)(t) :=
∫ ∞

−∞
dτ f(τ)g(t− τ), (A.17)

and the convolution theorem tells us,

F [f ∗ g] = F [f ]F [g] . (A.18)

We can apply this to our expressions by writing,

P (r, t) = ϵ0

∫
d3r′

[
χ(r, r′) ∗E(r′)

]
(t) + PN(r, t), (A.19)

M(r, t) =
1

µ0

∫
d3r′

[
ζ(r, r′) ∗B(r)

]
(t) +MN(r, t), (A.20)

so that,

P̃ (r, ω) = ϵ0

∫
d3r′ χ̃(r, r′, ω) · Ẽ(r′, ω) + P̃N(r, ω), (A.21)

M̃ (r, ω) =
1

µ0

∫
d3r′ ζ̃(r, r′, ω) · B̃(r′, ω) + M̃N(r, ω). (A.22)

We can now apply these to the constitutive relations (A.5) and (A.6) to find,

D̃(r, ω) = ϵ0

[
Ẽ(r, ω) +

∫
d3r′ χ̃(r, r′, ω) · Ẽ(r′, ω)

]
+ P̃N(r, ω), (A.23)

H̃(r, ω) =
1

µ0

[
B̃(r, ω)−

∫
d3r′ ζ̃(r, r′, ω) · B̃(r′, ω)

]
− M̃N(r, ω). (A.24)



APPENDIX A. CLASSICAL ELECTROMAGNETISM IN FOURIER SPACE 134

So now we have the Maxwell equations given by (A.8), (A.9), (A.10) and (A.11), and the
constitutive relations given by (A.23) and (A.24), in Fourier space ready to use. In the main
text, we will omit the tildes for ease of reading.



APPENDIX B

Green’s Tensor Expressions

In this appendix, forms of the Green’s tensor are presented and/or derived for the specific
environments relevant to this work.

B.1 Vacuum

In the case of an environment consisting entirely of a vacuum, the form of the Green’s tensor
is given by (see, for example, [4, 59]),

G(0)(r, r′, ω) = − c2

3ω2
δ(ρ) − c2eiωρ/c

4πω2ρ3


[
1− iωρ

c
−
(
ωρ

c

)2
]
I

−

[
3− 3i

ωρ

c
−
(
ωρ

c

)2
]
eρeρ

 , (B.1)

where ρ = r− r′, ρ = |ρ| and eρ = ρ/ρ. For the systems considered in this work, the source
and observation points will always be at different positions, so ρ will never be 0, meaning the
first term of the above equation will not contribute and can be omitted. We can equivalently
rewrite in the condensed form,

G(0)(r, r′, ω) = −c
2eiωρ/c

4πω2ρ3

[
a
(
−iρω/c

)
I− b

(
−iρω/c

)
eρeρ

]
, (B.2)
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where we have defined a(x) ≡ 1 + x+ x2 and b(x) ≡ 3 + 3x+ x2.

It can be useful to simplify by applying the non-retarded limit, which corresponds to short
distances where ωρ/c≪ 1, which gives us the following form,

G
(0)
NR(r, r

′, ω) = − c2

4πω2ρ3
(I− 3eρeρ), (B.3)

where we have omitted the δ(ρ) term.

We can similarly apply the retarded limit, corresponding to long distances ωρ/c≫ 1, where
relativistic effects become significant. This results in,

G
(0)
R (r, r′, ω) = −e

iωρ/c

4πρ
(I− eρeρ). (B.4)

B.2 Reciprocal Half Space

In this section, we present the Green’s tensor for a semi-infinite half-space made up of recip-
rocal media (introduced in 2.1.1). We will then apply to two simple configurations and apply
the near- and far-field limits to simplify the Green’s tensor expressions.

The scattering Green’s tensor for a planar multilayer system with n homogeneous layers (see
e.g. [4]) can be adapted to apply to a semi-infinite half-space with permittivity ϵ(ω) and
permeability µ(ω) where both source and field points are in the vacuum,

G(1)(r, r′, ω) =
iµ1(ω)

8π2

∫
d2k∥

k⊥
eik

∥·(r−r′)+ik⊥(z+z′)
∑
σ=s,p

rσeσ+eσ− , (B.5)

where k∥ ⊥ ez and,

k∥ = (kx, ky, 0), k∥ =
√
k2x + k2y, (B.6)

k⊥ =

√
ω2

c2
− k∥2, Im k⊥ > 0, (B.7)

are the parallel and perpendicular components of the wave vector with respect to the inter-
faces. The polarisation unit vectors for s- and p-polarised waves (perpendicular and parallel
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to the plane of incidence, respectively) in layer 1 are,

es± = es±(k
∥, ω) = ek∥ × ez

=
1

k∥
(kx, ky, 0)× (0, 0, 1) =

1

k∥
(ky,−kx, 0), (B.8)

ep± = ep±(k
∥, ω) =

1

k1
(k∥ez ∓ k⊥1 ek∥)

=
1

k1

[
k∥(0, 0, 1)− k⊥1

k∥
(kx, ky, 0)

]
=

1

k1

(
∓k

⊥
1 kx
k∥

,∓k
⊥
1 ky
k∥

, k∥

)
. (B.9)

For a two-layer system, the Fresnel coefficients can be written as,

rs = rs(k
∥, ω) =

µ(ω)k⊥ − k⊥1
µ(ω)k⊥ + k⊥1

, (B.10a)

rp = rp(k
∥, ω) =

ϵ(ω)k⊥ − k⊥1
ϵ(ω)k⊥ + k⊥1

, (B.10b)

where,

k⊥1 =

√
ϵ(ω)µ(ω)

ω2

c2
− k∥2, Im k⊥ > 0. (B.11)

Using (B.8) and (B.9), we can calculate the components,

es+es− = (ek∥ × ez)(ek∥ × ez)

=
1

k∥2
(ky,−kx, 0)⊗ (ky,−kx, 0) =

1

k∥2

 k2y −kykx 0

−kxky k2x 0

0 0 0

 , (B.12)

ep+ep− =
1

k21
(k∥ez − k⊥1 ek∥)(k

∥ez + k⊥1 ek∥)

=
1

k21

(
−k

⊥
1 kx
k∥

,−k
⊥
1 ky
k∥

, k∥

)
⊗

(
k⊥1 kx
k∥

,
k⊥1 ky
k∥

, k∥

)

=
1

k21


−k⊥2

1 k2x
k∥2

−k⊥2
1 kykx
k∥2

−k⊥1 kx
−k⊥2

1 kxky
k∥2

−k⊥2
1 k2y
k∥2

−k⊥1 ky
k⊥1 kx k⊥1 ky k∥2

 . (B.13)

Now we transform into polar coordinates via the transformations,∫
d2k∥ →

∫
dk∥k∥

∫ 2π

0

dϕ,

kx → k∥ cosϕ, ky → k∥ sinϕ, (B.14)
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(a) Parallel arrangement. (b) Colinear arrangement.

Figure B.1: Two arrangements of two bodies, a donor D and an acceptor A, near a semi-
infinite half-space at z < 0.

resulting in,

G(1)(r, r′, ω) =
iµ1(ω)

8π2

∫
dk∥

∫ 2π

0

dϕ
k∥

k⊥
eik

∥(cosϕ,sinϕ,0)·(r−r′)+ik⊥(z+z′)

×
(
rses+es− + rpep+ep−

)
, (B.15)

where,

es+es− =

 sin2 ϕ − cosϕ sinϕ 0

− cosϕ sinϕ cos2 ϕ 0

0 0 0

 , (B.16)

ep+ep− =
1

k21

 −k⊥2
1 cos2 ϕ −k⊥2

1 cosϕ sinϕ −k⊥1 k∥ cosϕ
−k⊥2

1 cosϕ sinϕ −k⊥2
1 sin2 ϕ −k⊥1 k∥ sinϕ

k⊥1 k
∥ cosϕ k⊥1 k

∥ sinϕ k∥2

 . (B.17)

We now consider two specific arrangements of the source and observation points in rela-
tion to the half-space in an effort to simplify the above Green’s tensor expression. These
configurations are the “parallel” and “colinear” arrangements, and are shown in figure B.1.

B.2.1 Parallel arrangement

We can arrange the bodies so that they are in the xz-plane and equidistant from the surface,
as in figure B.1a, i.e. r = (x, 0, z) and r′ = (x′, 0, z). Defining x− x′ ≡ X, we therefore have
k∥ · (r− r′) = (kx, ky, 0) · (X, 0, 0) = kxX = k∥X cosϕ, where we have transformed into polar
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coordinates via (B.14). So the Green’s tensor (B.15) becomes,

G(1,P )(r, r′, ω) =
i

8π2

∫
dk∥

k∥

k⊥
e2ik

⊥z

∫ 2π

0

dϕeik
∥X cosϕ

(
rses+es− + rpep+ep−

)
, (B.18)

where es+es− and ep+ep− are defined by (B.16) and (B.17) respectively, and P references the
parallel arrangement. We can now perform the angular integration using the results [120],∫ 2π

0

eik
∥X cosϕdϕ = 2πJ0(k

∥X), (B.19a)∫ 2π

0

cosϕeik
∥X cosϕdϕ = 2πiJ1(k

∥X), (B.19b)∫ 2π

0

sinϕeik
∥X cosϕdϕ =

∫ 2π

0

sinϕ cosϕeik
∥X cosϕdϕ = 0, (B.19c)∫ 2π

0

sin2 ϕeik
∥X cosϕdϕ = π

[
J0(k

∥X) + J2(k
∥X)

]
, (B.19d)∫ 2π

0

cos2 ϕeik
∥X cosϕdϕ = π

[
J0(k

∥X)− J2(k∥X)
]
, (B.19e)

where the Jα terms are Bessel functions of the first kind, arriving at the result,

G(1,P )(r, r′, ω) =
i

8π

∫
dk∥

k∥

k⊥
e2ik

⊥z

rs
J0(k

∥X) + J2(k
∥X) 0 0

0 J0(k
∥X)− J2(k∥X) 0

0 0 0



+
c2

ω2
rp


−k⊥2

1

[
J0(k

∥X)− J2(k∥X)
]

0 −2ik⊥1 k∥J1(k∥X)

0 −k⊥2

1

[
J0(k

∥X) + J2(k
∥X)

]
0

2ik⊥1 k
∥J1(k

∥X) 0 2k∥
2
J0(k

∥X)


 ,

(B.20)

where we have made the replacement k1 = ω/c.

As an aside, we can check that this expression obeys Lorentz Reciprocity (2.75) by taking
the transpose and making the replacement X → −X. Looking at the only non-diagonal
elements, and noting that J1(x) is an odd function and so J1

(
k∥ (−X)

)
= −J1

(
k∥X

)
, we

can see that G
(1,P )
xz (r′, r) ∝ − k∥

k⊥1
iJ1

(
k∥(−X)

)
= k∥

k⊥1
iJ1

(
k∥X

)
∝ G

(1,P )
zx (r, r′). We thus

know that G(1,P )T (r, r′) = G(1,P )(r′, r), meaning Lorentz Reciprocity holds as required.
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B.2.2 Colinear arrangement

It simplifies things significantly to consider the situation where all bodies are positioned
along the z-axis (as in figure B.1b), which we term the colinear arrangement. In this case,
k∥ · (r − r′) = (kx, ky, 0) · (x− x′, y − y′, z − z′) = 0, so we can write the colinear half-space
Green’s tensor as,

G(1,C)(r, r′, ω) =
i

8π2

∫
dk∥

k∥

k⊥
eik

⊥z̄

∫ 2π

0

dϕ
(
rses+es− + rpep+ep−

)
, (B.21)

where we have made the substitution (z+ z′) ≡ Z̄, es+es− and ep+ep− are defined by (B.16)
and (B.17) respectively, and C references the colinear arrangement. Now, since there is no
ϕ dependence in the exponential argument of (B.21), it is simple to perform the angular
integral using, ∫ 2π

0

cosϕdϕ =

∫ 2π

0

sinϕdϕ =

∫ 2π

0

sinϕ cosϕdϕ = 0, (B.22a)∫ 2π

0

sin2 ϕdϕ =

∫ 2π

0

cos2 ϕdϕ = π. (B.22b)

We note that this result only holds for the colinear arrangement, since otherwise a k∥ remains
in the exponential, which would need to be included in the angular integral, leading to more
complicated results. We therefore arrive at,

G(1,C)(r, r′, ω) =
i

8π2

∫
dk∥

k∥

k⊥
eik

⊥Z̄

×

rs
π 0 0

0 π 0

0 0 0

+
c2

ω2
rp

−k
⊥2π 0 0

0 −k⊥2π 0

0 0 2k∥2π




=
i

8π

∫
dk∥

k∥

k⊥
eik

⊥Z̄

rs
1 0 0

0 1 0

0 0 0

+
c2

ω2
rp

−k
⊥2 0 0

0 −k⊥2 0

0 0 2k∥2


 , (B.23)

where we have made the replacement k1 = ω/c. It is clear to see here that Lorentz reciprocity
(2.74) is obeyed by this expression, since the only explicit coordinate dependence is Z̄ ≡ z+z′,
which is unchanged when swapping the positions of the molecules, and the expression is
diagonal, meaning G(1,C)T (r, r′) = G(1,C)(r′, r).

Although the full Green’s tensor expression (B.5) has been significantly simplified with the
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application of these two arrangements, both results (B.20) and (B.23) still contain an infinite
integral that cannot be easily performed due to the fact that the reflection coefficients (B.10a)
and (B.10b) are also dependent on k∥. By implementing the non-retarded and retarded limits,
we can simplify the reflection coefficients enough to perform the integral analytically, further
simplifying our expression.

B.2.3 Limits

In this section, we consider the non-retarded regime by imposing the limit ωρ/c ≪ 1 and
the retarded regime where ωρ/c ≪ 1. The Green’s tensors for the parallel and colinear
arrangements will be considered separately.

In the non-retarded limit, the intermolecular distances are small enough that relativistic
effects become negligible. In this case, the main contribution to the integral in (B.23) is
due to regions of large k∥. Therefore k∥ dominates the ω/c term, so we can make the
approximation k⊥ ≃

√
−k∥2 = ik∥ ≃ k⊥1 . We can make this substitution in the reflection

coefficients (B.10a) and (B.10b) and define new reflection coefficients that no longer depend
on k∥,

rs =
µ(ω)ik∥ − ik∥

µ(ω)ik∥ + ik∥
=
µ(ω)− 1

µ(ω) + 1
≡ rNR

s , (B.24)

rp =
ϵ(ω)ik∥ − ik∥

ϵ(ω)ik∥ + ik∥
=
ϵ(ω)− 1

ϵ(ω) + 1
≡ rNR

p . (B.25)

In the retarded regime, we assume all of the bodies are far enough away from each other and
the half-space for relativistic effects to become significant. Large z means that the integral
in (B.23) oscillates quickly, due to the complex exponential. The dominant wavenumbers are
given by the stationary-phase point dk⊥/dk∥ = 0 so we see that,

d

dk∥

√
ω2

c2
− k∥2 = −k∥√

ω2

c2
− k∥2

= 0, (B.26)

meaning that k∥ = 0 dominates. This means that we can make the substitutions k⊥ ≃ ω/c

and k⊥1 ≃
√
ϵ(ω)µ(ω)ω/c, allowing the definitions of reflection coefficients that don’t depend
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on k∥,

rs =
µ(ω)−

√
ϵ(ω)µ(ω)

µ(ω) +
√
ϵ(ω)µ(ω)

=

√
µ(ω)−

√
ϵ(ω)√

µ(ω) +
√
ϵ(ω)

≡ rRs , (B.27)

rp =
ϵ(ω)−

√
ϵ(ω)µ(ω)

ϵ(ω) +
√
ϵ(ω)µ(ω)

=

√
ϵ(ω)−

√
µ(ω)√

ϵ(ω) +
√
µ(ω)

≡ −rRs . (B.28)

Now we can apply these simplified the reflection coefficients for each of the considered regimes
to the Green’s tensor expressions for the two arrangements.

Parallel Arrangement

Applying the non-retarded limit to the expression for the parallel arrangement, (B.20), we
can make the substitutions k⊥ ≃

√
−k∥2 = ik∥ ≃ k⊥1 to obtain,

G
(1,P )
NR (r, r′, ω) =

1

8π

∫
dk∥e−2k∥z

rlims
J0(k

∥X) + J2(k
∥X) 0 0

0 J0(k
∥X)− J2(k∥X) 0

0 0 0



+
c2

ω2
rlimp k∥

2

J0(k
∥X)− J2(k∥X) 0 2J1(k

∥X)

0 J0(k
∥X) + J2(k

∥X) 0

−2J1(k∥X) 0 2J0(k
∥X)


 . (B.29)

Using the integral results [120],∫ ∞

0

dxe−axJ0(bx) =
1√

a2 + b2
, (B.30a)

∫ ∞

0

dxe−axJ2(bx) =

(√
a2 + b2 − a

)2
b2
√
a2 + b2

, (B.30b)∫ ∞

0

dxe−axJ0(bx)x
2 =

2a2 − b2
√
a2 + b2

5 , (B.30c)∫ ∞

0

dxe−axJ1(bx)x
2 =

3ab
√
a2 + b2

5 , (B.30d)∫ ∞

0

dxe−axJ2(bx)x
2 =

3b2
√
a2 + b2

5 , (B.30e)
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we reach,

G
(1,P )
NR (r, r′, ω) =

1

8π

 rlims
X2R+

X
2 + (R+ − 2z)2 0 0

0 X2 − (R+ − 2z)2 0

0 0 0



+
c2

ω2

rlimp
R5

+

8z2 − 4X2 0 12zX

0 8z2 + 2X2 0

−12zX 0 2(8z2 −X2)




=
1

4π

 rlims
X2R+

R
2
+ − 2zR+ 0 0

0 2zR+ − 4z2 0

0 0 0



+
c2

ω2

rlimp
R5

+

R
2
+ − 3X2 0 6zX

0 R2
+ 0

−6zX 0 2R2
+ − 3X2


 , (B.31)

where we have made the defined
√
4z2 +X2 ≡ R+. In the non-retarded limit, intermolec-

ular distance is small, so {R+, z,X} << 1, so R−5
+ terms will dominate. We can therefore

approximate the expression as,

G
(1,P )
NR (r, r′, ω) =

c2rNR
p

4πω2R5
+

R
2
+ − 3X2 0 6zX

0 R2
+ 0

−6zX 0 2R2
+ − 3X2

 , (B.32)

where from (B.25) we know that rNR
p ≡ ϵ(ω)−1

ϵ(ω)+1
. Summing with the non-retarded limit of the

vacuum Green’s tensor, (B.3), we obtain the effective Green’s tensor,

G
(1,P )
NR (r, r′, ω) =

c2

4πω2

 1

X3

2 0 0

0 −1 0

0 0 −1

+
rNR
p

R5
+

R
2
+ − 3X2 0 6zX

0 R2
+ 0

−6zX 0 2R2
+ − 3X2


 .

(B.33)
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Colinear Arrangement

With the simplified reflection coefficients, we can perform the integral in (B.23) using the
following integral results,

∫ ∞

0

dk∥
k∥

k⊥
eik

⊥Z̄ =

ieiZ̄√
ω2

c2
−k∥2

Z̄

∞

0

=
i

Z̄

(
lim

k∥→∞
eiZ̄

√
ω2

c2
−k∥2 − lim

k∥→0
eiZ̄

√
ω2

c2
−k∥2

)

= 0− ieiZ̄
ω
c

Z̄
= −ie

iZ̄ ω
c

Z̄
, (B.34)

∫ ∞

0

dk∥
k∥3

k⊥
eik

⊥Z̄ =

eiZ̄√
ω2

c2
−k∥2

2
√

ω2

c2
− k∥2

Z̄2
+
ik∥2

Z̄
+

2i

Z̄3




∞

0

= − 2

Z̄2
lim

k∥→∞
eiZ̄

√
ω2

c2
−k∥2

√
ω2

c2
− k∥2 − 2

Z̄
lim

k∥→∞
eiZ̄

√
ω2

c2
−k∥2k∥2

− 2i

Z̄3
lim

k∥→∞
eiZ̄

√
ω2

c2
−k∥2 −

(
2ω

cZ̄2
eiZ̄

ω
c + 0 + eiZ̄

ω
c
2i

Z̄3

)
= −0− 0− 0− 2ω

cZ̄
eiZ̄

ω
c − eiZ̄

ω
c
2i

Z̄3

= −eiZ̄
ω
c

(
2ω

cZ̄2
+

2i

Z̄3

)
, (B.35)

∫ ∞

0

dk∥k∥k⊥eik
⊥Z̄ =

−eiZ̄√
ω2

c2
−k∥2

2
√

ω2

c2
− k∥2

Z̄2
+
ik∥2

Z̄
− iω2

c2Z̄
+

2i

Z̄3




∞

0

= eiZ̄
ω
c

(
2ω

cZ̄2
− iω2

c2Z̄
+

2i

Z̄3

)
, (B.36)
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obtaining,

G(1,C)(r, r′, ω) =
i

8π
eiZ̄

ω
c

−iZ̄ rlims

1 0 0

0 1 0

0 0 0



+
c2

ω2
rlimp


−
(

2ω
cZ̄2 − iω2

c2Z̄
+ 2i

Z̄3

)
0 0

0 −
(

2ω
cZ̄2 − iω2

c2Z̄
+ 2i

Z̄3

)
) 0

0 0 −2
(

2ω
cZ̄2 +

2i
Z̄3

)



=
eiZ̄

ω
c

8π

rlims − rlimpZ̄

1 0 0

0 1 0

0 0 0

+
2crlimp
ω

(
c

ωZ̄3
− i

Z̄2

)1 0 0

0 1 0

0 0 2


 . (B.37)

Now we can find expressions for the limits of the colinear Green’s tensor by picking out the
dominant terms in each limit. For the non-retarded limit, z ≪ c/ω so z−3 terms dominate
and eiZ̄

ω
c → 1, resulting in,

G
(1,C)
NR (r, r′, ω) =

c2rNR
p

4πω2Z̄3

1 0 0

0 1 0

0 0 2

 , (B.38)

where rNR
p ≡ ϵ(ω)−1

ϵ(ω)+1
. Summing with the non-retarded vacuum Green’s tensor, (B.3) to get,

GHS,C
NR (r, r′, ω) =

c2

4πω2

 1

Z̄3

−1 0 0

0 −1 0

0 0 2

+
rNR
p

Z̄3

1 0 0

0 1 0

0 0 2


 . (B.39)

In the retarded limit z ≫ c/ω, so z−1 terms dominate, so we find the Green’s tensor to be,

G
(1,C)
R (r, r′, ω) =

eiZ̄ω/crRs
4πZ̄

1 0 0

0 1 0

0 0 0

 , (B.40)

where rRs =

√
µ(ω)−
√

ϵ(ω)√
µ(ω)+
√

ϵ(ω)
and we recall from (B.28) that rRs = −rRp . Similarly, we can sum
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with the retarded limit of the vacuum Green’s tensor to find the effective Green’s tensor for
the system,

G
(1,C)
R (r, r′, ω) =

eiZ̄ω/c

4π

1z
−1 0 0

0 −1 0

0 0 0

+
rRs
Z̄

1 0 0

0 1 0

0 0 0


 . (B.41)

B.3 Non-reciprocal Half-Space

In this section, we briefly outline the derivation of the Green’s tensor given in Ref. [78] for
a layered time-reversal-symmetry-broken topological insulator (TSB-TI), and apply to some
simple geometric arrangements.

The origin of the non-reciprocity in topological insulators is the ability to mix electric E and
magnetic induction B fields [63, 64]. Therefore, when calculating the Green’s tensor, the
cross components of the unit vectors of the s, p polarizations must also be considered. So,
we can write the Green’s tensor as [78],

G(1)(r, r′, ω) =
iµ1(ω)

8π2

∫
d2k∥

k⊥
eik

∥·(r−r′)+ik⊥(z+z′)
∑
σ=s,p

∑
τ=s,p

rσ,τeσ+eτ−, (B.42)

where we have newly defined Fresnel coefficients for a TSB-TI [78],

rs,s =

(
µ(ω)k⊥ − k⊥1

)
Ωϵ − k⊥k⊥1 ∆2(

µ(ω)k⊥ − k⊥1
)
Ωϵ + k⊥k⊥1 ∆

2
, (B.43a)

rp,p =

(
ϵ(ω)k⊥ + k⊥1

)
Ωµ − k⊥k⊥1 ∆2(

ϵ(ω)k⊥ − k⊥1
)
Ωµ + k⊥k⊥1 ∆

2
, (B.43b)

rs,p =
−2µ(ω)k⊥k⊥1 ∆(

ϵ(ω)k⊥ − k⊥1
)
Ωµ + k⊥k⊥1 ∆

2
, (B.43c)

rp,s =
−2µ(ω)k⊥k⊥1 ∆(

µ(ω)k⊥ − k⊥1
)
Ωϵ + k⊥k⊥1 ∆

2
, (B.43d)

where ∆ = αµ(ω)(Θ1 − Θ)/π, Ωϵ = µ(ω)(k⊥ϵ(ω) + k⊥1 ), Ωµ = µ(ω)(k⊥µ(ω) + k⊥1 ) and α is
the fine structure constant.

Θ(r, ω) is termed the axion coupling in particle physics, which in electromagnetism merely
acts as a space and frequency dependent coupling parameter [121]. It takes even multiples of
π in a conventional magnetodielectric and odd multiples of π in TSB-TI, with the magnitude
and sign of the multiple determined by the strength and direction of the time-symmetry-
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breaking perturbation [122].

For layered homogeneous media, Θ(r, ω) = Θ(ω) and the effects of axion coupling are only
felt at interfaces where the properties of the medium change [78]. When Θ1 − Θ → 0, this
means that there is no change in the axion coupling over the interface, which corresponds to
an interface between reciprocal media and a vacuum. In this case, we note that the coefficients
rs,p, rp,s → 0 and rs,s and rp,p reduce to the usual Fresnel coefficients for reciprocal media, rs
(B.10a) and rp (B.10b) respectively.

The cross terms are found to be,

es+ep− = (ek∥ × ez)(k
∥ez + k⊥1 ek∥) =

1

k∥
(ky,−kx, 0)⊗

1

k∥k1

(
k⊥1 kx, k

⊥
1 ky, k

∥2
)

=
1

k1k∥
2

kykxk
⊥
1 k2yk

⊥
1 kyk

∥2

−k⊥1 k2x −k⊥1 kxky kxk
∥2

0 0 0

 , (B.44)

ep+es− = (k∥ez − k⊥1 ek∥)(ek∥ × ez) =
1

k∥k1

(
−k⊥1 kx,−k⊥1 ky, k∥

2
)
⊗ 1

k∥
(ky,−kx, 0)

=
1

k1k∥
2

−kykxk
⊥
1 k2xk

⊥
1 0

−k⊥1 k2y k⊥1 kxky 0

kyk
∥2 kxk

∥2 0

 . (B.45)

Transformed to polar coordinates via (B.14) we get,

G(1)(r, r′, ω) =
iµ1(ω)

8π2

∫
dk∥

∫ 2π

0

dϕ
k∥

k⊥
eik

∥(cosϕ,sinϕ,0)·(r−r′)+ik⊥(z+z′)

×
(
rs,ses+es− + rp,pep+ep− + rs,pes+ep− + rp,sep+es−

)
, (B.46)

where

es+ep− =
1

k1

k
⊥
1 sinϕ cosϕ k⊥1 sin2 ϕ k∥ sinϕ

−k⊥1 cos2 ϕ −k⊥1 sinϕ cosϕ k∥ cosϕ

0 0 0

 , (B.47)

ep+es− =
1

k1

−k
⊥
1 sinϕ cosϕ k⊥1 cos2 ϕ 0

−k⊥1 sin2 ϕ k⊥1 sinϕ cosϕ 0

k∥ sinϕ k∥ cosϕ 0

 , (B.48)

and es+es− and ep+ep− are defined by (B.16) and (B.17) respectively.
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The Green’s tensor can equivalently be written in the form,

G(1)(r, r′, ω) =
iµ1(ω)

8π2

∫
dk∥

k∥

k⊥
eik

⊥(z+z′)

∫ 2π

0

dϕ eik
∥(cosϕ,sinϕ,0)·(r−r′)Rij, (B.49)

where the definitions from section B.2 apply and Rij(k∥, kz) is a reflectivity tensor with
components,

Rxx = sin2 ϕ rs,s − cos2 ϕ
k2z
k21
rp,p + sinϕ cosϕ

kz
k1

(
rs,p − rp,s

)
, (B.50a)

Ryy = cos2 ϕ rs,s − sin2 ϕ
k2z
k21
rp,p − sinϕ cosϕ

kz
k1

(
rs,p − rp,s

)
, (B.50b)

Rxy = − sinϕ cosϕ

(
rs,s +

k2z
k21
rp,p

)
+
kz
k1

(
sin2 ϕ rs,p − cos2 ϕ rp,s

)
, (B.50c)

Ryx = − sinϕ cosϕ

(
rs,s +

k2z
k21
rp,p

)
− kz
k1

(
cos2 ϕ rs,p − sin2 ϕ rp,s

)
, (B.50d)

Rxz =
k∥

k1

(
− cosϕ

kz
k1
rp,p + sinϕ rs,p

)
, (B.50e)

Rzx =
k∥

k1

(
cosϕ

kz
k1
rp,p + sinϕ rp,s

)
, (B.50f)

Ryz =
k∥

k1

(
sinϕ

kz
k1
rp,p − cosϕ rs,p

)
, (B.50g)

Rzy =
k∥

k1

(
sinϕ

kz
k1
rp,p − cosϕ rp,s

)
, (B.50h)

Rzz = −k
∥2

k21
rp,p, (B.50i)

which is in agreement with Ref. [78]. We will now apply this result to two simple configura-
tions shown in figure B.1.

B.3.1 Parallel Arrangement

As in section B.2.1 and shown in figure B.1a, we can place the bodies in the xz-plane and
equidistant from the surface and define x− x′ ≡ X to express our Green’s tensor (B.49) as,

G(1,P)(r, r′, ω) =
iµ1(ω)

8π2

∫
dk∥

k∥

k⊥
e2ik

⊥z

∫ 2π

0

dϕ eik
∥X cosϕRij, (B.51)
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where Rij is defined via (B.50). We can now perform the angular integral using the results
(B.19) and obtain,

G(1,P)(r, r′, ω) =
iµ1(ω)

4π

∫
dk∥

k∥

k⊥
e2ik

⊥zRij
P , (B.52)

with

Rxx
P =

J1(k
∥|X|)
|X|

(
rs,s +

k2z
k21
rp,p

)
− J0(k∥|X|)

k2z
k21
rp,p, (B.53a)

Ryy
P = −

J1(k∥|X|)
|X|

(
rs,s +

k2z
k21
rp,p

)
− J0(k∥|X|)rs,s

 , (B.53b)

Rxy
P =

kz
k1

[
J1(k

∥|X|)
|X|

(
rs,p + rp,s

)
− J0(k∥|X|)rp,s

]
, (B.53c)

Ryx
P =

kz
k1

[
J1(k

∥|X|)
|X|

(
rs,p + rp,s

)
− J0(k∥|X|)rs,p

]
, (B.53d)

Rxz
P = −Rzx

P = −ik
∥kz
k21

J1(k
∥X)rp,p, (B.53e)

Ryz
P = i

k∥

k1
J1(k

∥X)rs,p, (B.53f)

Rzy
P = −ik

∥

k1
J1(k

∥X)rp,s, (B.53g)

Rzz
P = −J0(k∥|X|)

k∥
2

k21
rp,p. (B.53h)

By examining the off-diagonal components, we can see that the Green’s tensor does not
satisfy Lorentz Reciprocity (2.75) as expected. This is demonstrated explicitly below,

Rxy
P (r′, r) ̸= Ryx

P (r, r′) unless rs,p = rp,s, (B.54a)

Rxz
P (r′, r) = Rzx

P (r, r′), (B.54b)

Ryz
P (r′, r) ̸= Rzy

P (r, r′) unless rs,p = rp,s. (B.54c)

It is interesting to note here that if rs,p = rp,s, then G(1,P)(r, r′) = G(1,P)T(r′, r) and reciprocal
behaviour will be exhibited.
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B.3.2 Colinear Arrangement

As in section B.2.2, we can position the bodies along the z-axis and use the integral results
(B.22) to arrive at,

G(1,C)(r, r′, ω) =
iµ1(ω)

8π

∫
dk∥

k∥

k⊥
eik

⊥Z̄Rij
C , (B.55)

where Z̄ ≡ z + z′ and the components of Rij
C are,

Rxx = Ryy = rs,s −
k2z
k21
rp,p, (B.56a)

Rxy = −Ryx =
kz
k1

(
rs,p − rp,s

)
, (B.56b)

Rxz = Rzx = Rzy = Ryz = 0, (B.56c)

Rzz = −k
∥2

k21
rp,p, (B.56d)

which we can rewrite as,

G(1,C)(r, r′, ω) =
iµ1(ω)

8π

∫
dk∥

k∥

k⊥
eik

⊥Z̄


rs,s − k2z

k21
rp,p

kz
k1

(
rs,p − rp,s

)
0

−kz
k1

(
rs,p − rp,s

)
rs,s − k2z

k21
rp,p 0

0 0 −k∥
2

k21
rp,p

 .

(B.57)
By examining the off-diagonal elements, we can again see that Lorentz reciprocity (2.74) does
not hold as we would expect, since G

(1)
xy (r, r′) = −G(1)

yx (r′, r), so G(1)(r, r′) ̸= −G(1)T (r′, r).
However, as for the parallel case, we note that if rs,p = rp,s then reciprocal behaviour will
be exhibited. This can be seen by the fact that for this arrangement, rs,p = rp,s means
that G

(1)
xy (r, r′) = 0 = G

(1)
yx (r′, r), and so the Green’s tensor becomes diagonal, so clearly

G(1)T (r, r′) = G(1)T (r′, r).

B.4 Spherical Green’s tensor

To describe a system with rotational symmetry, it is convenient to use spherical coordinates.
We set r = (r, θ, ϕ), where r is the radial distance, θ is the polar angle, and ϕ is the azimuthal
angle as shown in figure B.2. Without loss of generality, we can place the two bodies in the
xz-plane and assume that the bodies are on opposite sides of the z-axis, such that one body
has ϕA = 0 and the other has ϕB = π. So we can set up two bodies at positions rA and rB
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Figure B.2: Spherical coordinate system used in this work.

defined in spherical coordinates as,

rA = (rA, θA, 0), rB = (rB, θB, π). (B.58)

In this section, we consider an environment of a spherical body in a vacuum. The Green’s
tensor for this system can be split into a bulk and scattering part, as explained in 2.2.1. To
find the bulk part, we transform the vacuum Green’s tensor given in (B.1) into spherical
coordinates.

B.4.1 Bulk Green’s tensor

Our chosen coordinates of rA and rB (B.58) can be equivalently given in Cartesian coordinates
using the conversion,

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ, (B.59)

giving us,

rA = (rA sin θA, 0, rA cos θA), (B.60a)

rB = (−rB sin θB, 0, rB cos θB). (B.60b)

The vacuum Green’s tensor (B.1) in our chosen coordinates is given by,

G(0)(rA, rB, ω) = −
c2eiωρAB/c

4πω2ρ3AB

[
a
(
−iρABω/c

)
I− b

(
−iρABω/c

)
eABeAB

]
, (B.61)
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where a(x) ≡ 1 + x+ x2, b(x) ≡ 3 + 3x+ x2, eAB = ρAB/ρAB and we can calculate,

ρAB =rA − rB = (rA sin θA + rB sin θB, 0, rA cos θA − rB cos θB), (B.62a)

ρAB =|ρAB| =
√

(rA sin θA + rB sin θB)2 + (rA cos θA − rB cos θB)2

=
√
r2A(sin

2 θA + cos2 θA) + r2B(sin
2 θB + cos2 θB) + 2rArB(sin θA sin θB − cos θA cos θB)

=
√
r2A + r2B − 2rArB cosΘ, (B.62b)

eAB =ρAB/ρAB = (rA sin θA + rB sin θB, 0, rA cos θA − rB cos θB)/ρAB, (B.62c)

where we have defined Θ = θA + θB and used the geometic identities sin2 x + cos2 = 1 and
cosx cos y − sinx sin y = cos(x+ y).

The standard unit vector conversions are,

er =(sin θ cosϕ, sin θ sinϕ,+cos θ),

eθ =(cos θ cosϕ, cos θ sinϕ,− sin θ),

eϕ =(− sinϕ, cosϕ, 0). (B.63)

Applying to our coordinates produces the spherical unit vectors at rA and rB,

erA =(sin θA, 0, cos θA), erB = (− sin θB, 0, cos θB), (B.64a)

eθA =(cos θA, 0,− sin θA), eθB = (− cos θB, 0,− sin θB), (B.64b)

eϕA
=(0, 1, 0), eϕB

= (0,−1, 0). (B.64c)

We want to express the vacuum Green’s tensor in terms of these spherical unit vectors. The
rr component, for example, of the Green’s tensor in our coordinates is given by,

G(0)
rr (rA, rB, ω) = erA ·G(0)(rA, rB, ω) · erB

= −c
2eiωρAB/c

4πω2ρ3AB

[
a
(
−iρABω/c

)
erA · erB − b

(
−iρABω/c

)
(erA · eAB)(erB · eAB)

]
. (B.65)
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We can use (B.64a) and (B.62c) to calculate,

erA · erB =(sin θA, 0, cos θA) · (− sin θB, 0, cos θB) = cosΘ, (B.66a)

erA · eAB =(sin θA, 0, cos θA) · (rA sin θA + rB sin θB, 0, rA cos θA − rB cos θB)/ρAB

=
(
rA sin2 θA + rB sin θA sin θB + rA cos2 θA − rB cos θA cos θB

)
/ρAB

=(rA − rB cosΘ) /ρAB, (B.66b)

erB · eAB =(− sin θB, 0, cos θB) · (rA sin θA + rB sin θB, 0, rA cos θA − rB cos θB)/ρAB

=(rA cosΘ− rB) /ρAB, (B.66c)

and substitute these in to (B.65) to give the rr component of the vacuum Green’s tensor.
Similarly, we can calculate the other components of the Green’s tensor using,

erA · eθB = eθA · erB = − sinΘ, eθA · eθB = − cosΘ, eϕA
· eϕB

= −1, (B.67a)

erA · eϕB
= eθA · eϕB

= eϕA
· erB = eϕA

· eθB = 0, (B.67b)

eθA · eAB =
rB sinΘ

ρAB

, eθB · eAB = −rA sinΘ

ρAB

, eϕA
· eAB = eϕB

· eAB = 0. (B.67c)

Substituting these in to (B.61),we find the non-zero components of the Green’s tensor to be,

G(0)
rr (rA, rB, ω) = −

c2e−ξ

4πω2ρ3AB

[
a (ξ) cosΘ− b (ξ) (rA − rB cosΘ) (rA cosΘ− rB)

ρ2AB

]
, (B.68a)

G
(0)
rθ (rA, rB, ω) =

c2e−ξ

4πω2ρ3AB

[
a (ξ) sinΘ− b (ξ) (rA − rB cosΘ) rA sinΘ

ρ2AB

]
, (B.68b)

G
(0)
θr (rA, rB, ω) =

c2e−ξ

4πω2ρ3AB

[
a (ξ) sinΘ + b (ξ)

(rA cosΘ− rB) rB sinΘ

ρ2AB

]
, (B.68c)

G
(0)
θθ (rA, rB, ω) =

c2e−ξ

4πω2ρ3AB

[
a (ξ) cosΘ− b (ξ) rArB sin2Θ

ρ2AB

]
, (B.68d)

G
(0)
ϕϕ(rA, rB, ω) =

c2e−ξ

4πω2ρ3AB

a (ξ) , (B.68e)

where we have defined ξ ≡ −iωρAB/c. This result is in agreement with [4, 123].

B.4.2 Scattering Green’s tensor

We now calculate the Green’s tensor for a spherical macroscopic body. We choose the centre
of the spherical body to align with the origin of the coordinate system, as in figure B.3. The
scattering Green’s tensor for two bodies near a dielectric sphere with radius R can be written
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Figure B.3: Two bodies A and B near a sphere of radius R. Adapted from [123].

in this coordinate system as [4, 123],

G(1)(rA, rB, ω) =
iω

4πc

∞∑
n=1

2n+ 1

n(n+ 1)

n∑
m=0

(n−m)!

(n+m)!
(2− δ0m)

×
∑
p=±1

[
BM

n Mnm,p(rA, ω/c)Mnm,p(rB, ω/c) +BN
n Nnm,p(rA, ω/c)Nnm,p(rB, ω/c)

]
, (B.69)

where Mnm,p(r, q) and Nnm,p(r, q) are even (p = +1) and odd (p = −1) spherical wave
vector functions, given below,

Mnm,−1(r, q) =
m

sin θ
h(1)n (qr)Pm

n (cos θ) cos(mϕ)eθ − h(1)n (qr)
dPm

n (cos θ)

dθ
sin(mϕ)eϕ, (B.70a)

Mnm,+1(r, q) = −
m

sin θ
h(1)n (qr)Pm

n (cos θ) sin(mϕ)eθ − h(1)n (qr)
dPm

n (cos θ)

dθ
cos(mϕ)eϕ,

(B.70b)

Nnm,−1(r, q) =
n(n+ 1)

qr
h(1)n (qr)Pm

n (cos θ) sin(mϕ)er

+
1

qr

d
[
qrh

(1)
n (qr)

]
dr

(
dPm

n (cos θ)

dθ
sin(mϕ)eθ +

m

sin θ
Pm
n (cos θ) cos(mϕ)eϕ

)
, (B.70c)

Nnm,+1(r, q) =
n(n+ 1)

qr
h(1)n (qr)Pm

n (cos θ) cos(mϕ)er

+
1

qr

d
[
qrh

(1)
n (qr)

]
dr

(
dPm

n (cos θ)

dθ
cos(mϕ)eθ −

m

sin θ
Pm
n (cos θ) sin(mϕ)eϕ

)
, (B.70d)
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where h(1)n (x) is the spherical Hankel function of the first kind and Pm
n (x) is the Legendre

function. The coefficients BM
n and BN

n are the Mie reflection coefficients [124] given by,

BM
n (ω) =

µ(ω)
[
zJn(z)

]′
Jn(z1)− Jn(z)

[
z1Jn(z1)

]′
µ(ω)

[
zHn(z)

]′
Jn(z1)−Hn(z)

[
z1Jn(z1)

]′ , (B.71a)

BN
n (ω) = −

ϵ(ω)
[
zJn(z)

]′
Jn(z1)− Jn(z)

[
z1Jn(z1)

]′
ϵ(ω)

[
zHn(z)

]′
Jn(z1)−Hn(z)

[
z1Jn(z1)

]′ , (B.71b)

where Jn(z) is the spherical Bessel function of the first kind, z = ωR/c, z1 =
√
ϵ(ω)µ(ω)z0

and the prime denotes differentiation with respect to the respective argument.

It is useful to split the sum into its four constituent terms,

G(1)(rA, rB, ω) =
iω

4πc

∞∑
n=1

2n+ 1

n(n+ 1)

[
Σ(1)

m + Σ(2)
m + Σ(3)

m + Σ(4)
m

]
, (B.72)

where we have defined,

Σ(1)
m =

n∑
m=0

CnmB
M
n Mnm,−1(rA, ω/c)Mnm,−1(rB, ω/c), (B.73a)

Σ(2)
m =

n∑
m=0

CnmB
M
n Mnm,+1(rA, ω/c)Mnm,+1(rB, ω/c), (B.73b)

Σ(3)
m =

n∑
m=0

CnmB
N
n Nnm,−1(rA, ω/c)Nnm,−1(rB, ω/c), (B.73c)

Σ(4)
m =

n∑
m=0

CnmB
N
n Nnm,+1(rA, ω/c)Nnm,+1(rB, ω/c), (B.73d)

where we have defined,

Cnm ≡
(n−m)!

(n+m)!
(2− δ0m). (B.74)

Beginning with the Σ
(1)
m term and considering rA and rB separately, we can calculate from

(B.70a),

Mnm,−1(rA, q) =
m

sin θA
h(1)n (qrA)P

m
n (cos θA)eθA , (B.75a)

Mnm,−1(rB, q) =
m

sin θB
h(1)n (qrB)P

m
n (cos θB) cos(mπ)eθB , (B.75b)
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where we have used,

cos(mϕA) = cos(0) = 1, sin(mϕA) = sin(0) = 0, (B.76)

cos(mϕB) = cos(mπ), sin(mϕB) = sin(mπ) = 0. (B.77)

Substituting these into (B.73a) we find,

Σ(1)
m = BM

n

Q
(1)
n eθAeθB

sin θA sin θB

n∑
m=0

m2CnmP
m
n (cos θA)P

m
n (cos θB) cos(mπ), (B.78)

where we have defined,
Q(1)

n = h(1)n (rAω/c)h
(1)
n (rBω/c). (B.79)

Likewise, we can rewrite the other three terms that make up (B.72) in a similar way, giving
us,

Σ(2)
m = BM

n Q
(1)
n eϕA

eϕB

n∑
m=0

Cnm
dPm

n (cos θA)

dθA

dPm
n (cos θB)

dθB
cos(mπ), (B.80)

Σ(3)
m = BN

n Q
(4)
n

c2

rArAω2

eϕA
eϕB

sin θA sin θB

n∑
m=0

m2CnmP
m
n (cos θA)P

m
n (cos θB), (B.81)

Σ(4)
m =

c2

rArBω2
BN

n

[
Q(1)

n n2(n+ 1)2erAerB

n∑
m=0

CnmP
m
n (cos θA)P

m
n (cos θB) cos(mπ)

+Q(4)
n eθAeθB

n∑
m=0

Cnm
dPm

n (cos θA)

dθA

dPm
n (cos θB)

dθB
cos(mπ)

+ n(n+ 1)Q(2)
n erAeθB

n∑
m=0

CnmP
m
n (cos θA)

dPm
n (cos θB)

dθB
cos(mπ)

+n(n+ 1)Q(3)
n eθAerB

n∑
m=0

Cnm
dPm

n (cos θA)

dθA
Pm
n (cos θB) cos(mπ)

]
, (B.82)

where we have defined,

Q(2)
n =h(1)n (rAω/c)

[
zh(1)n (z)

]′
z=rBω/c

, (B.83a)

Q(3)
n =h(1)n (rBω/c)

[
yh(1)n (y)

]′
y=rAω/c

, (B.83b)

Q(4)
n =

[
yh(1)n (y)

]′
y=rAω/c

[
zh(1)n (z)

]′
z=rBω/c

. (B.83c)

To perform the summations over m in (B.72), we can make use of the addition theorem for
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spherical harmonics [58],

n∑
m=0

CnmP
m
n (cos θ)Pm

n (cos θ′) cos(mϕ) = Pn(ψ), (B.84)

where,
ψ = cos θ cos θ′ + sin θ sin θ′ cosϕ. (B.85)

To tackle the sums in Σ
(1)
m and Σ

(3)
m , we differentiate (B.84) twice with respect to ϕ. For the

left hand side we get,

d2

dϕ2

n∑
m=0

CnmP
m
n (cos θ)Pm

n (cos θ′) cos(mϕ) =
n∑

m=0

CnmP
m
n (cos θ)Pm

n (cos θ′)
d2

dϕ2
cos(mϕ)

= −
n∑

m=0

m2CnmP
m
n (cos θ)Pm

n (cos θ′) cos(mϕ), (B.86)

and the right hand side gives,

d2

dϕ2
Pn(ψ) =

d

dϕ

(
d

dϕ
Pn(ψ)

)
=

d

dϕ

(
d

dϕ
Pn(ψ)

dψ

dψ

)
=

d

dϕ

(
dψ

dϕ

dPn(ψ)

dψ

)
=
d

dϕ

(
dψ

dϕ

)
dPn(ψ)

dψ
+
dψ

dϕ

d

dϕ

(
dPn(ψ)

dψ

)
=
d2ψ

dϕ2

dPn(ψ)

dψ
+
dψ

dϕ

d

dϕ

(
dPn(ψ)

dψ

)
dψ

dψ

=
d2ψ

dϕ2

dPn(ψ)

dψ
+

(
dψ

dϕ

)2
d2Pn(ψ)

dψ2
. (B.87)

Combining the left and right hand sides, we can write,

n∑
m=0

m2CnmP
m
n (cos θ)Pm

n (cos θ′) cos(mϕ) = −d
2ψ

dϕ2

dPn(ψ)

dψ
−
(
dψ

dϕ

)2
d2Pn(ψ)

dψ2

= sin θ sin θ′

(
cosϕ

dPn(ψ)

dψ
+ sinϕ

d2Pn(ψ)

dψ2

)
, (B.88)

where we have used the definition of ψ given in (B.85) to calculate and substitute in,

dψ

dϕ
= − sin θ sin θ′ sinϕ,

d2ψ

dϕ2
= − sin θ sin θ′ cosϕ. (B.89)

To apply this to (B.78), we make the substitutions θ → θA, θ′ → θB and ϕ → π. Applying
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this to (B.85) results in,

ψ → cos θA cos θB + sin θA sin θB cosπ

=cos θA cos θB − sin θA sin θB = cosΘ = γ, (B.90)

where we have defined Θ ≡ θA + θB and γ ≡ cosΘ. Applying this to (B.88) gives,

n∑
m=0

m2CnmP
m
n (cos θA)P

m
n (cos θB) = sin θA sin θB cos π

dPn(γ)

dγ

= − sin θA sin θBP
′
n(γ). (B.91)

We can use this to rewrite (B.78) and (B.81) as,

Σ(1)
m =−BM

n Q
(1)
n P ′

n(γ)eθAeθB , (B.92)

Σ(3)
m =− c2

rArAω2
BN

n Q
(4)
n P ′

n(γ)eϕA
eϕB

. (B.93)

To perform the sum in Σ
(2)
m , we again make use of the addition theorem for spherical harmonics

(B.84), but this time we differentiate with respect to θ and θ′. Applying to the right side of
(B.84) results in,

d

dθ′
d

dθ
Pn(ψ) =

d

dθ′

(
dPn(ψ)

dθ

dψ

dψ

)
=

d

dθ′

(
dPn(ψ)

dψ

dψ

dθ

)
=
d

dθ′

(
dPn(ψ)

dψ

)
dψ

dθ
+
dPn(ψ)

dψ

d

dθ′

(
dψ

dθ

)
=
dψ

dθ′
d2Pn(ψ)

dψ2

dψ

dθ
+
dPn(ψ)

dψ

d2ψ

dθ′dθ
. (B.94)

From the definition of ψ from (B.85) we can calculate,

dψ

dθ
=− sin θ cos θ′ + cos θ sin θ′ cosϕ, (B.95a)

dψ

dθ′
=− cos θ sin θ′ + sin θ cos θ′ cosϕ, (B.95b)

d2ψ

dθ′dθ
=sin θ sin θ′ + cos θ cos θ′ cosϕ. (B.95c)

Again making the substitutions θ → θA, θ′ → θB and ϕ → π which we know from (B.90)
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results in ψ → cosΘ ≡ γ, where Θ ≡ θA + θB, we find,

dγ

dθA
=− sin θA cos θB − cos θA sin θB = − sin(θA + θB) = − sinΘ, (B.96a)

dγ

dθB
=− cos θA sin θB − sin θ cos θ′ = − sinΘ, (B.96b)

d2γ

dθBdθA
=sin θA sin θB − cos θA cos θB = − cosΘ. (B.96c)

Making these substitutions in (B.94) we arrive at,

d2Pn(γ)

dθAdθB
=sin2Θ

d2Pn(γ)

dγ2
− dPn(γ)

dγ
cosΘ

=(1− cos2Θ)P ′′
n (γ)− P ′

n(γ) cosΘ

=(1− γ2)P ′′
n (γ)− γP ′

n(γ). (B.97)

We can use the Legendre Equation (see e.g. Ref. [58]) to rewrite this expression. The
Legendre Equation is given as,

d

dx

[
(1− x2)dP

dx

]
+ n(n+ 1)P = 0. (B.98)

By use of the chain rule this can be written as,

d

dx

[
(1− x2)

] dP
dx

+ (1− x2)d
2P

dx2
+ n(n+ 1)P

= −2xdP
dx

+ (1− x2)d
2P

dx2
+ n(n+ 1)P = 0

(1− x2)d
2P

dx2
− xdP

dx
= x

dP

dx
− n(n+ 1)P. (B.99)

We can use this to rewrite (B.97) as,

d2Pn(γ)

dθAdθB
= γP ′

n(γ)− n(n+ 1)Pn(γ) = −Fn(γ), (B.100)

where we have defined
Fn(x) = n(n+ 1)Pn(x)− xP ′

n(x). (B.101)

Bringing this back to the addition theorem (B.84), we have,

n∑
m=0

Cnm
dPm

n (cos θA)

dθA

dPm
n (cos θB)

dθB
cos(mπ) = −Fn(γ), (B.102)
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which can directly be substituted into the expression for Σ
(2)
m , (B.80), giving,

Σ(2)
m = −BM

n Q
(1)Fn(γ)eϕA

eϕB
. (B.103)

Finally, for Σ(4)
m we can differentiate the addition theorem (B.84) by θ and and θ′ separately.

From (B.96a) and (B.96b) we have,

dγ

dθA
= − sinΘ =

dγ

dθB
, (B.104)

which means that,

d

dθA
Pn(γ) =

dPn(γ)

dγ

dγ

dθA
= − sinΘ

dPn(γ)

dγ
=

d

dθB
Pn(γ) =

dPn(γ)

dγ

dγ

dθB
. (B.105)

Applying this to the addition theorem (B.84) gives,

n∑
m=0

CnmP
m
n (cos θA)

dPm
n (cos θB)

dθB
cos(mπ) = − sinΘP ′

n(γ)

=
n∑

m=0

Cnm
dPm

n (cos θA)

dθA
Pm
n (cos θB) cos(mπ). (B.106)

Substituting this into (B.82), along with (B.84) and (B.102), gives,

Σ(4)
m =

c2

rArBω2
BN

n

[
Q(1)

n n2(n+ 1)2erAerBPn(γ) −Q(4)
n eθAeθBFn(γ)

−n(n+ 1) sinΘP ′
n(γ)

(
Q(2)

n erAeθB +Q(3)
n eθAerB

)]
. (B.107)

Now we can substitute our results, (B.92), (B.103), (B.93) and (B.107), into (B.72) to gen-
erate an expression for the spherical Green’s tensor,

G(1)(rA, rB, ω) =
∑

i,j=r,θ,ϕ

G
(1)
ij (rA, rB, ω)eiAejB , (B.108)
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with the non-zero components given by,

G(1)
rr (rA, rB, ω) =

ic

4πωrArB

∞∑
n=1

n(n+ 1)(2n+ 1)BN
n (ω)Pn(γ)Q

(1)
n , (B.109a)

G
(1)
rθ (rA, rB, ω) = −

ic sinΘ

4πωrArB

∞∑
n=1

(2n+ 1)BN
n (ω)P ′

n(γ)Q
(2)
n , (B.109b)

G
(1)
θr (rA, rB, ω) = −

ic sinΘ

4πωrArB

∞∑
n=1

(2n+ 1)BN
n (ω)P ′

n(γ)Q
(3)
n , (B.109c)

G
(1)
θθ (rA, rB, ω) = −

iω

4πc

∞∑
n=1

2n+ 1

n(n+ 1)

[
BM

n (ω)P ′
n(γ)Q

(1)
n +

c2BN
n (ω)

ω2rArB
Fn(γ)Q

(4)
n

]
, (B.109d)

G
(1)
ϕϕ(rA, rB, ω) = −

iω

4πc

∞∑
n=1

2n+ 1

n(n+ 1)

[
BM

n (ω)Fn(γ)Q
(1)
n +

c2BN
n (ω)

ω2rArB
P ′
n(γ)Q

(4)
n

]
. (B.109e)
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