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Abstract

In recent years, the use of dialogue systems and voice assistants commonly implemented
in smart devices has shifted the users’ interest towards online shopping. In turn, online
shopping platforms are gaining popularity and moving towards allowing an interactive
dialogue with users that more accurately depicts a real shopping setting. In this regard,
the task of Conversational Image Recommendation is the state-of-the-art task for conver-
sational recommendation in the fashion domain, where a user has a specific fashion item
in mind, and interacts with the system with natural language feedback on recommended
image items, which guides the system in finding the imagined item in the next turn. Such
systems are trained and evaluated with user simulators as a plentiful surrogate for human
users. A practical problem with CRS performance is that it is primarily evaluated in
terms of successes and is therefore assumed to return the item of interest by a pre-defined
number of turns. In practice, often the item is not returned by the end of a conversation,
therefore leading to conversational failures; this is our particular setting of interest.

In this thesis, we argue that the performance of a Conversational Recommendation Sys-
tem can be predicted to detect when a conversation fails, under different scenarios, across
different turns of a conversation. In this regard, Query Performance Prediction (QPP)
techniques predict the effectiveness of a ranked list result in response to a query without
having access to relevance judgments. We predict the performance of CRS models by
treating them as dense retrieval processes, where both the image retrieved items and tex-
tual feedback can be represented with dense embedded representations. In particular, we
propose a set of coherence-based dense QPPs specifically designed for single-representation
dense retrieval models (ANCE and TCT-ColBERT) and show that the examination of the
relations among dense embedded representations already contained in the document list
is sufficient to provide effective predictions for dense retrieval models. At the same time,
by using a multi-level perspective that jointly considers QPPs and types of queries, we ex-
plain why some QPPs are better for certain types of queries, thus explaining discrepancies
among different evaluation metrics.

At the next stage, we predict the effectiveness of a ranking of image items in Con-
versational Image Recommendation models, which are also based on learned embedded
representations of images, and where user feedback takes the place of a textual query. In-
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deed, we create a novel task which we call Conversational Performance Prediction (CPP),
which predicts conversation success at the conversation level and taking into account
the multi-turn nature of the task, and can differentiate between success predicted over a
short-term and a long-term horizon, thereby predicting current user satisfaction or over-
all satisfaction of a conversation. First, we examine the set of unsupervised predictors
developed for dense retrieval models but applied to state-of-the-art Conversational Image
Recommendation models; a GRU-based model, which mainly considers the feedback of
the previous turn, and an EGE model that considers the entire dialogue history. Our
results show that using correlations is not an optimal evaluation strategy for predicting
conversational failures, as, while correlations are low to medium mainly for short-term
predictions, a lot of inconsistencies are observed among the performance of different pre-
dictors across metrics and datasets (similarly to dense retrieval models). Consequently,
we propose a supervised CPP approach, which treats CPP as a binary classification task,
which predicts whether a target item is returned by a given turn. In this way, we show
that by learning the embedded representations already contained in the CRS models, we
can predict the accuracy of a conversation success using the retrieved items of both single
and multiple turns.

In addition, state-of-the-art CRS models are trained using user simulators with a single
target item in mind, and at the same time, they are assumed to be infinitely patient.
These settings do not reflect a real shopping scenario, where a user might change their
mind according to what a shopping assistant is suggesting. For this purpose, we enhance
the evaluation completeness of CRS models by obtaining real user opinions in a user study
using pooling similar to information retrieval tasks, thus identifying alternative relevance
labels for several target items, and in turn, inform the user simulator with an extended
target space. This increases the completeness of CRS evaluation, and therefore, creates
a more realistic prediction setting for CRS, which leads to improved predictions of user
preferences. Indeed, when we reevaluate the CRS models using the updated simulator
with the identified alternatives as part of the target space, we show that by the single
target setting previously used to evaluate CRS models for a maximum amount of 10 turns
was underestimating the effectiveness of CRS models.

As a final step, we account for the fact that CRS models assume only one type of
recommendation failure, namely the inability of the system to retrieve the target item.
In this regard, we introduce the concept of recommendation scenarios, and specifically,
we adapt our CPP framework for different types of conversational failures, which are
determined by whether the user’s need is clearly defined and whether the target item is
available. Therefore, we propose the removed target scenario (the target is not available
in the catalogue), and the alternative scenario (a user has a more flexible need, which
can be satisfied by either the original target or any of the identified alternatives in the
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collected datasets). Consequently, we detect different types of conversational failure, such
as when a user cannot find an item, versus when the system’s catalogue does not contain
the relevant item. By examining the supervised CPP predictors introduced under these
two novel scenarios, we find that in both cases, there is a marked difference from the
original scenario, and that CPP can indeed be predicted for different recommendation
scenarios.
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Chapter 1

Introduction

In recent years, the use of dialogue systems or voice assistants, such as Amazon Alexa,
Apple Siri, or Google Assistant (Argal et al., 2018; Brill et al., 2019; Dalton et al., 2018)
(often implemented on smart devices) has become more prevalent in information search.
At the same time, online shopping platforms are becoming increasingly popular and move
away from simply displaying items with textual descriptions, thus allowing an interaction
with users that mimics a real shopping setting. For example, a user might have a specific
fashion item in mind, such as a shoe, a dress, or a shirt, and interact with a dialogue
system to find it. The process runs as follows: The system starts by providing a first
recommendation by displaying an image; Based on this recommendation, the user provides
natural language feedback, which aims to guide the system in finding the imagined item
more easily in the next turn recommendation (Guo et al., 2018; Wu et al., 2021a,b) 1.
This process continues until the user’s desired item is reached. However, in practice, some
users may not find their items of interest even after interacting with the system for many
turns. In this regard, some challenges compose the overall problem of retrieval failure by
a conversational system: (i) no mechanism predicts when a conversation would fail, and
which factors contribute to successfully retrieving the correct item, and (ii) there is no
distinction between the different reasons why an item might not be returned, for example,
whether the system is ineffective or because the item is unavailable or simply because the
system cannot incorporate the particular aspects of a user need (for example, take into
account what else they would prefer instead of the original target).

Indeed, we are moving from the more traditional ad-hoc information retrieval paradigm
(a search system returning a list of documents from a collection in response to the user’s
information need (Manning, 2009)) towards a range of Conversational Information Seeking
1 For this thesis, we instantiate the conversational recommendation task using the paradigm of conver-
sational image recommendation as originally proposed by Guo et al. (2018), who treat image retrieval
as a known target item task; the task starts by recommending a random item in the first turn, since no
user feedback exists; from turn 2 and on, the displayed candidate item is affected by the feedback and is
therefore aimed to be as close as possible to the target item. In this regard, the CRS models used in this
thesis use single representations for each item (Guo et al., 2018; Wu et al., 2021a,b)

1
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(CIS) tasks, which refer to a system that helps users to satisfy their information needs by
engaging in an interactive conversation (Zamani et al., 2023). In particular, Conversational
Recommendation Systems (CRS) (Christakopoulou et al., 2016; Li et al., 2018; Sun and
Zhang, 2018; Zhang et al., 2018; Zou and Kanoulas, 2019) assist users with finding items
and with decision making (Sun and Zhang, 2018; Zou and Kanoulas, 2019) by engaging in
a dialogue with users. CRS differ both from (a) traditional recommender systems and (b)
conversational search. In particular, concerning (a), earlier forms of Recommender Sys-
tems (RS) assist users in finding items of interest in cases of information overload (Ricci
et al., 2015) and aid in user exploration (Chen, 2021), but mainly based on user feed-
back in terms of ratings, clicks or reviews. On the other hand, CRS help with dynamic
preference elicitation (Christakopoulou et al., 2016; Li et al., 2018; Sun and Zhang, 2018;
Zhang et al., 2018), as they allow users to provide natural-language feedback in the form of
critiquing (Tou et al., 1982). Critiquing allows users to refine the recommendations itera-
tively towards the user’s desired item(s) in each interaction turn by updating the model of
the users’ preferences according to the user feedback in the previous turn(s) (Chen and Pu,
2012; Yuan and Lam, 2021). Therefore, critiquing-based CRS increase the effectiveness of
recommendations compared to traditional RS (Chen and Pu, 2007, 2012; McCarthy et al.,
2004). Concerning (b), CRS also differ from Conversational Search (CS), which refers
to interactively searching for information with a conversational system using natural lan-
guage conversations (Zamani et al., 2023). Still, while both CS and CRS are ranking tasks
using natural language conversations, CRS involves understanding users’ preferences and
providing suggestions, which requires more complex mechanisms such as keeping track of
the user feedback and system actions (Jannach et al., 2021).

In general, CRS assist users with achieving many goals (Jannach et al., 2021). Rele-
vant to the above example from the fashion domain, Guo et al. (2018) introduced Con-
versational Image Recommendation, a multi-turn task that aims to help users with online
shopping and returns candidate image items at every interaction turn until the user’s target
item is reached. The first CRS model used for this task was based on a Gated Recurrent
Unit (GRU) mechanism (Cho, 2014), which mainly considers how the representation of
the dialogue state should be updated at each turn. More recently, the task was enriched
by also considering the entire dialogue history (Wu et al., 2021b) or displaying a list of
candidates (Yu et al., 2019). In all cases, training and evaluation are done by simulating
real users with a user simulator that uses natural language sentences describing the rela-
tive differences of the target to the candidate image item. While the effectiveness of CRS
is widely studied, much less attention has been shown to the case of retrieval failures, i.e.,
when the system does not return the target item. However, predicting retrieval failure in
CRS is important, as it would lead to a timely identification of the lack of understanding
of user needs and would indicate the factors that contribute to a more effective future CRS
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performance at the various stages of a dialogue. In this case, both user feedback and the
recommendation result list determine the quality of recommendation. To predict the signs
of conversational failure, we need to examine which factors impact system performance.

In this regard, the task of Query Performance Prediction (QPP) (Carmel and Yom-
Tov, 2010; Cronen-Townsend et al., 2002), originally used for ad-hoc retrieval in search
engines, predicts the effectiveness of a ranked list result in response to a query without
having access to relevance judgments. Indeed, this is the paradigm we follow in this the-
sis. For this purpose, the per query value of query performance predictors (QPPs) is
correlated with the corresponding value of a given ranking effectiveness evaluation met-
ric. QPPs can be either pre-retrieval (examine characteristics of the queries or the corpus
before retrieval) (Hauff et al., 2008; He and Ounis, 2006) or post-retrieval, which examine
the content of the retrieved document list (Arabzadeh et al., 2021a,b; Cronen-Townsend
et al., 2002; Datta et al., 2022b; Roitman et al., 2017b; Shtok et al., 2009, 2010, 2016;
Zamani et al., 2018). Since they consider the retrieved documents, post-retrieval predic-
tors are considered more accurate than pre-retrieval ones (Hauff et al., 2008). Over two
decades, a variety of post-retrieval unsupervised predictors have examined either the scores
distribution (Roitman et al., 2017b; Shtok et al., 2009) or the coherence of the sparse rep-
resentations (Arabzadeh et al., 2021a; Diaz, 2007) of the document list. More recently,
supervised predictors (Arabzadeh et al., 2021b; Datta et al., 2022b; Hashemi et al., 2019)
have employed the fine-tuning of BERT-based (Devlin et al., 2019) pre-trained multi-vector
representations to predict mainly sparse model rankings, such as BM25 (Robertson et al.,
1995). Still, none of these predictors were examined concerning their performance on a
multi-turn and multi-modal ranking task such as Conversational Image Recommendation.
In our view, QPP is a promising approach to predict conversational failures if we properly
account for the task difficulties.

1.1 Motivation

As mentioned, CRS performance is primarily evaluated in terms of successes (returning
an item of interest by a pre-defined number of interaction turns) (Christakopoulou et al.,
2016; Jannach et al., 2021; Ren et al., 2022; Zangerle and Bauer, 2022; Zou and Kanoulas,
2019; Zou et al., 2020). In contrast, much less attention is placed on how and when sys-
tem failures happen (item not returned by the end of a conversation). The same holds
for our CRS sub-task of interest, namely Conversational Image Recommendation (Guo
et al., 2018; Wu et al., 2021a), where a system is assumed to be successful by a pre-defined
number of evaluation turns. Instead, to consider real-life scenarios more accurately, in
this thesis, we address the issue of CRS failure by identifying the indicators that relate
to an effective recommendation. Specifically, we detect and predict conversational fail-



CHAPTER 1. INTRODUCTION 4

ures at various stages of a dialogue. Indeed, we consider its multi-turn setting, the user
feedback at each turn, and the reduced returned list (often displaying only the top item).
To this end, only few attempts have examined QPP in a conversational setting, and this
was mainly CS. For example, research has adapted existing score-based predictors to the
question level (the top-item as the answer) to determine the answer quality of a conver-
sational assistant (Roitman et al., 2019), focused on the query ambiguity for determining
whether a clarifying question is needed (Arabzadeh et al., 2022), or considered a geomet-
ric interpretation of the query contents in a conversations with few turns (Faggioli et al.,
2023a).

Still, predicting the performance of Conversational Image Recommendation differs sig-
nificantly, not only from predicting passage retrieval, but also from rankings in Conver-
sational Search. Specifically, CRS do not contain relevance judgment information that
usually comes with information retrieval rankings. Therefore, to predict conversation
success, we need to rely on the ranking of the recommendation list at each turn, which
reflects the result of user feedback on the previous turn. In addition, predicting a ranking
of image items differs from text-based retrieval, where QPP is normally used, and em-
ploying external pre-trained multi-vector retrieval models such as BERT (Devlin et al.,
2019) cannot be generalised to image items. For this purpose, we focus our attention on
single-representation dense retrieval models (Lin et al., 2020; Xiong et al., 2020), which
separately encode queries and documents and retrieve items based on nearest neighbour
search. In this way, we can more easily generalise to the embedded representations of a
multi-modal task, which is composed by text-based user feedback and image-based rec-
ommendation lists. To be more precise, in this thesis, after examining dense embedded
representation based in its original setting and using dense retrieval models, we propose
a variety of both unsupervised and supervised predictors that are based on learning the
embedded representations already contained in CRS models to predict conversational fail-
ures. Also, while QPP is evaluated at the query level, we propose an evaluation at the
conversation level. To summarise, while research has widely studied CRS performance and
at the same time QPP has been studied as an information retrieval task in a single-turn
setting or with independent interaction turns, we fill in the gap of studying predictions in
a multi-turn and multi-modal conversational recommendation setting by proposing a new
evaluation methodology of QPP specifically designed for CRS or as we call it, Conversa-
tional Performance Prediction (CPP). In other words, this thesis lies at the intersection
of CRS and QPP.

Furthermore, the common assumption in the conventional evaluation of CRS systems,
including Conversational Image Recommendation systems, is that the target item exists
in the catalogue and must be returned. However, in a real-life shopping scenario, this
might not always be true. For example, a lot of times, when searching for a fashion item,
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it might be sold out and therefore, does not exist in the item catalogue. In other cases,
a user might have a more flexible need, which is equally satisfied with an item similar to
the original target (in terms of a given criterion such as colour, shape, etc.). Still, these
options are currently not incorporated within the evaluation methodology of the various
state-of-the-art models (Guo et al., 2018; Wu et al., 2021a,b). First, the evaluation of
CRS is limited to single target items; still, this may not reflect the ability of the CRS to
return other items that might also be relevant to the user. To address this, we improve
the evaluation methodology by providing datasets and the corresponding user simulators
with better completeness, inspired by TREC pooling in ad-hoc retrieval. Second, current
evaluation methodologies cannot predict when a system fails to identify an item or it fails
to inform the user that the item does not exist. For this purpose, we introduce the concept
of recommendation scenarios. In this regard, to strengthen our predictions for the different
cases of retrieval failure, we introduce two novel scenarios: one that considers items not
available in the catalogue, and another one that incorporates the pooling judgments for
completeness to address cases of alternative items that are also relevant. Using both
of these additional scenarios, we extend our conversational prediction framework. To
summarise, we fill in the gap of studying CRS performance under different scenarios.

1.2 Thesis Statement

The statement of this thesis is that the performance of a Conversational Recommenda-
tion System can be predicted to detect when a conversation fails, under different scenarios,
across different turns of a conversation. Initially, we can predict the effectiveness of a rank-
ing of textual items for a textual query, by examining the coherence of the top-retrieved
items based on their dense embedded representations. Similarly, we can predict the ef-
fectiveness of a ranking of items in a Conversational Recommendation Systems (CRS),
which are also based on learned embedded representation of images, where user feedback
takes the place of a textual query. Indeed, by introducing a framework of Conversational
Performance Prediction (CPP), we can predict the degree of success of a conversation by
a CRS - such success can be predicted over a short or long time horizon, thereby pre-
dicting current user satisfaction or overall satisfaction of a conversation. Furthermore,
by obtaining user opinions about the relevance of items, we improve the completeness of
the evaluation mechanism by identifying alternatives recommendations for existing target
items, which could be used to both inform the user simulator and therefore improve the
overall evaluation of CRS systems. Finally, using these alternative datasets, and by pre-
dicting conversational performance under different Recommendation Scenarios, we detect
different types of conversational failure, such as when a user cannot find an item, versus
when the system’s catalogue does not contain the relevant item.
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1.3 Contributions

The contributions of this thesis can be summarised as follows:

1. We propose a set of coherence-based dense query performance predictors (QPPs)
that are specifically designed for single-representation dense retrieval models and
adopt an evaluation methodology that explains discrepancies between correlation
results among different evaluation metrics.

The choice of single-representation dense retrieval models is made for the following reasons:
Existing QPPs have mainly been used to predict the rankings of sparse retrieval models
such as BM25; these models contain sparse embedded representations (i.e., TF.IDF em-
beddings), and therefore, cannot be generalised to the dense embedded representations
contained in CRS rankings that also include images rather than documents. Another
choice would be to predict the rankings of more advanced dense models such as Col-
BERT (Khattab and Zaharia, 2020) that contain token-level dense embeddings. Still,
these models are based on token representations, which prevents them from being gener-
alised to image items. Therefore, we opt for predicting the rankings of single-representation
dense retrieval models, the type of models that can more generalisable to a multi-modal
CRS model. More specifically, in Chapter 3, we show that the examination of the rela-
tions among dense embedded representations of the document list is sufficient to provide
effective predictions for single-representation dense retrieval models. For this purpose, we
use two representative single-representation dense retrieval models, namely ANCE (Xiong
et al., 2020) and TCT-ColBERT (Lin et al., 2020). In addition, by using a multi-level
perspective that jointly considers QPPs and types of queries, we explain why some QPPs
are better for certain types of queries for MAP@100, while they are more robust when
correlated with NDCG@10 for dense retrieval models.

2. We create a novel task which we call Conversational Performance Prediction (CPP)
task, which predicts conversation success at the conversation level, and can predict
at what stage of a conversation a retrieval failure is likely to happen, thus extending
the original QPP task to conversational recommendation.

While the QPP task is widely studied, no work has addressed the issue of predicting
conversation success using specific indicators. Therefore, in Chapter 4, we develop a new
evaluation framework which we call Conversational Performance Prediction (CPP), and
show how we can predict conversation failures at different prediction horizons. First, we
examine a range of both score-based and embedding-based unsupervised predictors at the
conversation level and show that using correlations is not an optimal evaluation strategy for
predicting conversational failures. Consequently, we propose a supervised CPP approach,
which treats CPP as a binary classification task and show that by learning the embedded
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representations already contained in the CRS models we can predict the accuracy of a
conversation success using the retrieved items of both single and multiple turns.

3. We obtain real user opinions about the relevance of items, thus identifying alternative
relevance labels for some target items, and in turn, inform the user simulator with
an extended target space. This increases the completeness of CRS evaluation and
therefore creates a more realistic prediction setting for CRS, which leads to improved
predictions of user preferences.

State-of-the-art CRS models are trained using user simulators with a single target item in
mind, and are infinitely patient. These settings do not correspond to a real user shopping
scenario. Therefore, in Chapter 5, we use crowd-sourcing to collect relevance labels for
some identified target items using pooling, thereby creating relevance judgments similar
to information retrieval tasks. Then, we reevaluate the CRS models using the updated
simulator with the identified alternatives as part of the target space and show that by using
a single target for an unlimited amount of turns was underestimating the effectiveness of
CRS models.

4. We adapt our CPP framework for different types of conversational failures, which
are determined by whether the user’s need is clearly defined and whether the target
item is available.

We introduce the concept of recommendation scenarios: First, we consider the case when
the target is not available in the catalogue (removed target scenario) and then the case
where a user has a more flexible (not clearly defined) user need, which can be satisfied by
either the original target or any of the identified alternatives in Chapter 5. In particular,
we examine the supervised CPP predictors introduced in Chapter 4 under these two novel
scenarios, and find that in both cases, there is a marked difference from the original
scenario, and this effect is different according to the rank cutoff of the examined ranking.
This is the chapter that connects Chapter 4 and Chapter 5.

1.4 PhD Programme & Order of Contributions

This thesis is the result of a PhD programme with an integrated study. Specifically, after
the completion of a number of taught courses in the first year, the PhD study lasted for
the next three years. The first few months of the PhD were dedicated to an introductory
project in Recommender Systems and the characteristics of the datasets and state-of-the-
art user simulators used across the thesis. Following this initial period, the main thesis
work began by developing the primary stage of the Conversational Performance Predic-
tion (CPP) framework, as described in the first part of Chapter 4 (before supervised
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prediction). Only a few months later, we introduced the notion of recommendation sce-
narios as a main theme of the thesis. The first scenario we examined was the Missing
Target Scenario, as introduced in Chapter 6. The examination of simple predictors in
both unsupervised and supervised evaluation led to the insight that for a more detailed
study of predicting conversational performance first requires the examination of the QPP
predictors in the original search setting they were designed for. We focused particularly
on single-representation dense retrieval, as this type of representation is more similar to
the representations of the image retrieved items in our task of interest. This work was
conducted in Chapter 3. In parallel, we started implementing our second recommendation
scenario, namely the Alternatives scenario. This required the creation of new, updated
datasets, which should contain relevance labels regarding alternative opinions of real users
to given target fashion items. These collected datasets would be used for two main pur-
poses: (a) To update the existing user simulator with the knowledge of alternatives, which
would make the expression of user needs more realistic and provide a more accurate per-
formance of CRS models. This work was conducted for Chapter 5 extending from the
last few analyses of Chapter 3 until the start of the thesis writing stage; (b) To predict
conversational performance, and therefore update our CPP framework for the alternative
scenario. This work was part of Chapter 6 and was conducted after the completion of
Chapter 5. Finally, we updated our CPP predictions across the three scenarios (existing
setting and our two novel recommendation scenarios) by consulting the insights of Chap-
ter 3 and therefore using embedding-based predictors adapted to the CRS characteristics.
This final step contributed to both Chapter 4 and Chapter 6. The PhD programme ended
with the thesis writing phase.

1.5 Origins of Material

Part of the material presented in this thesis is based on papers published during this PhD
programme. Specifically, for some chapters, we are based on the following papers:

• In (Vlachou and Macdonald, 2024a), we propose a set of coherence-based query
performance predictors and further adapt some others exclusively for the task of
single-representation dense retrieval, while we show how this performance can vary
across different evaluation metrics. The reason for this is because these predictors
are easily generalisable to our multi-modal recommendation task. This work was
published at the ACM ICTIR 2024 conference and contributes to our Chapter 3.

• In (Vlachou and Macdonald, 2022), we introduce our Conversational Performance
Prediction (CPP) evaluation framework, which adapts score-based predictors to pre-
dict Conversational Image Recommendation rankings both at the single-turn and the



CHAPTER 1. INTRODUCTION 9

consecutive-turn level. This work, which corresponds to the early stage of our eval-
uation methodology, was published in the ACM RecSys 2022 KaRS Workshop and
contributes to the first part of Chapter 4.

• In (Vlachou and Macdonald, 2024b), we introduce the concept of alternative options
to a given target item and we collect real user opinions about what they would select
as an alternative in case their desired item does not exist. We further re-train the
CRS models based on the newly obtained "relevance judgments". This work was
published on arXiv and is currently under review, and is the basis for our Chapter 5.

1.6 Thesis Outline

The rest of this thesis is structured as follows:

• Chapter 2 provides background information about the different Conversational Infor-
mation Seeking (CIS) tasks, and emphasises on the relevant literature on the state-
of-the-art Conversational Image Recommendation models, their evaluation method-
ology, and the related datasets and user simulators. In addition, we provide an
overview of the state-of-the-art QPP methods and the different evaluation metrics.

• Chapter 3 presents our dense coherence-based predictors specifically designed for
dense retrieval that consider top to bottom rank relationships of the embedded repre-
sentations already produced by these models. Also, we present a multilevel approach
for studying QPP in different evaluation metrics by considering the contribution of
the different types of queries (Bolotova et al., 2022).

• Chapter 4 presents our novel Conversational Performance Prediction (CPP) frame-
work, which predicts CRS performance at the conversational level, extending over
both short-term and long-term horizons. Next, we focus on examining CPP using a
smaller amount of queries, similar to the QPP setup (Carmel and Yom-Tov, 2010;
Cronen-Townsend et al., 2002). Finally, we extend our evaluation framework to a bi-
nary classification task, which we call supervised CPP, by creating a correspondence
with the different groups of QPP predictors, and propose a supervised predictor
that gradually learns a compressed representation of the retrieved items of previous
turns.

• Chapter 5 presents our Meta-Simulator, an updated user simulator for Conversa-
tional Image Recommendation models (Guo et al., 2018; Wu et al., 2021a) that uses
the new target space created by incorporating the range of identified alternatives for
each original target item that we found in a user study. Consequently, we retrain the
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CRS models by considering each alternative as equally relevant as the target, and
report the results by comparing our Meta-Simulator with the base user simulator.

• Chapter 6 presents our two novel recommendation scenarios, namely the Missing
Target (target item is not available in the catalogue) and the Alternatives (each
identified alternative option from Chapter 5 is equally satisfying for a user that has a
more flexible user need) scenarios. We extend our supervised CPP framework under
the different scenarios and introduce the corresponding types of retrieval failure,
namely catalogue failure and alternatives failure, both of which differ from a regular
system failure.

• Finally, in Chapter 7, we summarise our contributions and provide concluding re-
marks, and end with suggestions that follow as a direction following the results and
insights presented in this thesis.



Chapter 2

Background and Related Work

As mentioned in Chapter 1, this thesis focuses on Conversational Recommendation, which
belongs to the family of Conversational Information Seeking tasks (Zamani et al., 2023).
Broadly defined, information search tasks can be categorised as informational, naviga-
tional, and transactional (Broder, 2002; Jansen et al., 2008). In other words, a user’s
intent is not always informational (i.e, trying to acquire information from a web page); it
can also be navigational (reach a particular site) or transactional (perform some activity
on the web) (Broder, 2002; Jansen et al., 2008). We are particularly interested in the
transactional intent. Specifically, the activity we are interested in is online shopping in
the fashion domain. In particular, we focus on Conversational Fashion Image Recommen-
dation in an interactive setting. The task can be best described in Figure 2.1. A user
has a specific information need that is operationalised with an imagined image item, such
as a shoe. The system first provides an initial recommendation by displaying an image
item of a shoe, on which the user provides natural language feedback after turn 1 that
guides the system in finding items relatively improved than the current recommendation.
At turn 2, the next item is closer to the user need than the previous. In practice, such
systems are trained using user simulators that act as real users to provide feedback on the
recommended item at each turn to provide a sufficient amount of data (Guo et al., 2018;
Wu et al., 2021a).

This example shows a successful recommendation setting, where the system returns
the item of interest at turn 4. In practice, this is quite a realistic setting with a few
interaction turns. However, in many cases, users do not find their desired items even after
a large number of interactions. This is exactly the type of scenario we are interested in.
In particular, we focus on failed dialogues in Conversational Image Recommendation in
online shopping. For this purpose, we aim to predict failure in both the short and long
term of a conversation. We do this through the lens of Query Performance Prediction
(QPP) (Carmel and Yom-Tov, 2010; Cronen-Townsend et al., 2002), originally proposed
for search engines, which we adapt to a conversational recommendation setting. In this

11
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Figure 2.1: Schematic representation of the Conversational Fashion Image recommenda-
tion task. The desired item is shown on the left as the top of a ranking, and at each turn,
the user receives a candidate item to provide natural language feedback on.

regard, we need to take into account the multi-turn nature of the task and the dependence
of one turn on another.

More specifically, in this chapter, we start with an overview of the different Informa-
tion Seeking Tasks in Section 2.1, followed by an overview of the existing state-of-the-art
Conversational Recommendation models in Section 2.2, and continue with more specific
information on our task of interest in Sections 2.2.1 and 2.2.2. Then, we proceed with some
background information referring to the second of our main themes, namely query perfor-
mance prediction in Section 2.3, and the evaluation methods in Section 2.4, specifically
the various evaluation measures of these tasks in Section 2.4.1 and the corresponding user
simulators and existing datasets in Section 2.4.2. After that, we provide some concluding
remarks and a set of limitations in Section 2.5.

2.1 Information Seeking Tasks

When users search for information on the Web, they are driven by a so-called informa-
tion need (Shneiderman et al., 1997). Often, they do not simply search for information
on a web page, but instead look to navigate to another page or to buy online or other
transactions (Broder, 2002; Jansen et al., 2008). Over the years, a variety of Information
Seeking (IS) tasks have been proposed, which aim to satisfy the different types of infor-
mation needs. The common line of these tasks is that a system returns a ranked list of
results that users are likely to find relevant in response to their queries. In other words,
the ranking of IS tasks is based on the relevance of each item to the information need ex-
pressed with a query. Below, we present some IS tasks with examples. More specifically,
in Section 2.1.1, we present the task of ad-hoc retrieval, and differentiate between sparse
and dense retrieval models, and in Section 2.1.2, we present a range of Conversational
Information Seeking (CIS) tasks, namely Conversational Search, Conversational Question
Answering, and Conversational Recommendation.
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2.1.1 Ad-hoc Retrieval

Traditionally, search engines relied on the return of relevant documents to a set of key-
words, a task called ad-hoc retrieval or document retrieval. This task is best described by
a score function s(q,d) as seen in Figure 2.2, which computes the relevance between the
two input elements, a query q resulting from a user information need, and a document
d from a document collection or corpus whose representation is obtained with a process
called indexing, based on the similarity of their embedded representations. The estima-
tion of this relevance score results in an output of a ranked list of retrieved documents
appearing in descending order. Depending on the representation method of the queries
and documents, retrieval systems can be sparse or dense. For this thesis, we will not
examine ad-hoc retrieval in much detail. The extent to which we use it (in Chapter 3) is
to first examine the QPP task in its original setting, to examine how it compares with our
conversational setting (in Chapters 4 and 5). In this section, we provide an overview of
some commonly used sparse and dense retrieval used in the following sections.

Figure 2.2: Schematic representation of the ad-hoc retrieval task. The retrieval function
is determined by query and document representations.

Sparse Retrieval models

Sparse retrieval methods encode queries and documents into sparse vector representations
by creating a vocabulary of all unique terms contained in the collection of all documents.
In this representation, the dimensionality of the vector representation v corresponds to the
sum of all unique terms contained in the collection. Each vector representing a query or a
document in the collection is represented in a way that indicates the presence and frequency
of each of the vocabulary terms. The frequency or the importance of a term can be
expressed with the term frequency (tf, higher weight to terms that appear more frequently).
Specifically, we define a query vector representation as Vq, where Vq = (q⃗1, q⃗2, ..., q⃗|v|) and
q⃗i, i= 1, ...,v is a set of ordered index terms in the query representation, and a document
vector representation as Vd = (d⃗1, d⃗2, ..., d⃗|v|) , where d⃗i, i = 1, ...,v, corresponding to a set
of ordered index terms in the document representation, respectively. Then, the scoring
function measures the similarity between the query and document representations. The
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most common score or similarity function corresponds to their cosine similarity or more
formally:

s(q,d) = cosine(Vq,Vd) (2.1)

This is the simplest form of sparse retrieval models and is called the vector space model (Salton
et al., 1975). One problem with vector space models is that they ignore term-dependence
relationships; for example, certain non-informative tokens need to be ignored from the vo-
cabulary, as they do not add information to the similarity function (Scholer et al., 2002).

For this reason, some weighting schemes have been proposed. For example, the impor-
tance of a term can be expressed with tf or the inverse document frequency (idf, measures
how rare a term is across the collection and gives higher weight to the terms that occur
rarely). First, a score function indicating the relevance score of a query-document pair is
defined as:

s(q,d) =
∑
t∈q∩d

f(η(q, t),η(d,t)) (2.2)

where f(t) is a score function defined on the terms occurring in both a document d and
a query q, and η(q, t) and η(d,t) represent the query and document using their associated
statistics (i.e., term frequency, document frequency, etc.). Then, if we express idf as:

idf(t,d) = log(N +1
Ni+1) (2.3)

where Ni is the number of documents that contain term t and N is the total number of
documents in the collection (+1 is a smooting factor), then the resulting weighting scheme
corresponds to the TF-IDF model (Sparck Jones, 1972), which, as described, combines the
count of index term occurrences. In this case, the score function is formally:

STF.IDF (q,d) =
∑
t∈q∩d

f(η(q, t),η(d,t)) =
∑
t∈q∩d

tf(t,d) · idf(t,d) (2.4)

where tf(t,d) is the frequency of term t in document d and idf(t,d) is the inverse document
frequency.

Some sparse retrieval models are based on probability theory. The most representative
example of probabilistic retrieval models is BM25 (Jones et al., 2000; Robertson et al.,
1995). BM25 incorporates the query and document term weights into the scoring function,
and nowadays it is still a very competitive ranking model, is used as a baseline for all
examined new ranking models and is also used as a first stage retriever for re-ranking
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models. In this case, the score function can be written as:

SBM25(q,d) =
∑
t∈q∩d

f(η(q, t),η(d,t))

=
∏

t∈q∩d
idf(t,d) ·η(q,d) ·η(t,d)

=
∏

t∈q∩d
idf(t,d) · tf(t,q)(1+k2)

k2 + tf(t,q) ·
tf(t,d)(k1 +1)

tf(t,d)+k1(1− b+ b dl
avgdl)

=
∑
t∈q∩d

log(N −Ni+0.5
Ni+0.5 ) · tf(t,q)(1+k2)

k2 + tf(t,q) ·
tf(t,d)(k1 +1)

tf(t,d)+k1(1− b+ b dl
avgdl)

(2.5)

where Ni is the number of documents containing the token ti, k1 and k2 control the scale
the tf , and b is the normalisation of document length dl. In this thesis, we use BM25 as
a baseline setting for QPP compared to dense retrieval QPP approaches.

Dense Retrieval models

In recent years, a novel form of self-attention deep learning models has been proposed
called Transformers (Vaswani et al., 2017), initially applied on natural language process-
ing tasks. The transformer architecture follows an encoder-decoder block structure to
process the data. As a first step, the encoder maps an input sequence to a continuous rep-
resentation for each input element. Then, the decoder uses the embedded representations
to generate an output sequence. In this regard, a number of the pre-trained language mod-
els (PLMs) have been proposed. Most related to our interest, the Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019) model pre-trains deep
bidirectional representations by jointly conditioning on both left and right context in all
layers and is then fine-tuned with an additional output layer to a wide range of tasks. Its
conception is based on a masked language model (MLM) (Taylor, 1953), which randomly
selects input tokens to mask, and then predicts the original vocabulary id of the masked
word based only on its context. The result is contextualised embeddings, which can be
used for several downstream tasks.

Indeed, using the transformer architecture, deep learning architectures have been fine-
tuned for information retrieval tasks with several modifications to their embedded rep-
resentations. In particular, BERT can be used as a re-ranker for a set of retrieved doc-
uments from a sparse retriever, usually BM25. Importantly, due to BERT’s increased
computational cost, for example, compared to sparse retrieval models as explained above,
ColBERT (Khattab and Zaharia, 2020), a ranking model based on contextualized late
interaction over BERT, was proposed. In particular, ColBERT proposes a novel late in-
teraction paradigm for relevance estimation between a query q and a document d, where
queries and documents are separately encoded into two sets of contextual embeddings,
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and relevance is evaluated using cheap computations with a MaxSim operator as:

SMaxSim(q,d) =
|q|∑
i=1

max
{j=1,...,|d|}

ϕTqi
ϕdj

(2.6)

where |q| is a set of query embeddings, |d| is a set of document embeddings, ϕq =
{ϕq1 , ...,ϕq|q|}= EncoderQ(q), and ϕd = {ϕd1 , ...,ϕd|d|}= EncoderD(d).

ColBERT uses a multi-vector dense embedded representation for queries and docu-
ments. In cases where a more time-efficient approach is needed, another type of retrieval
model was proposed called single-representation dense retrieval. In this approach, the
multi-vector representation is passed into a single-vector representation usually via knowl-
edge distillation. One example of this is the TCT-ColBERT model (Lin et al., 2020).
Specifically, TCT-ColBERT distills the knowledge from ColBERT’s MaxSim operator to
compute relevance scores into a simple dot product, thus enabling single-step ANN search.
This is achieved via tight coupling between a teacher model and a student model, produc-
ing the following relevance function:

SPoolDOt(q,d) = ⟨Pool(Eq),Pool(Ed)⟩ (2.7)

where the terms represent two pooled embeddings, and the Pool operator is the average
pooling over token embeddings. Another related single-representation model is Approx-
imate Nearest Neighbour Negative Contrastive Learning (ANCE) (Xiong et al., 2020), a
learning mechanism that "selects hard training negatives globally from the entire corpus,
using an asynchronously updated ANN index". In this way, it overcomes some issues
causing dense retrieval to be outperformed by sparse retrieval models. Indeed, by using
this asynchronous training, ANCE eliminates the problem caused by other dense retrieval
models that use hard negative samples identified by BM25 returned items, such as Dense
Passage Retriever (DPR) (Karpukhin et al., 2020). DPR also uses ANN search like ANCE,
but is less effective than ANCE, as it does not update the dense index during hard nega-
tive sampling. In general, with dense retrieval, a system finds the documents whose neural
embeddings lie closer to the corresponding query embeddings. A schematic representation
of single-representation dense retrieval models is given in Figure 2.3.

2.1.2 Conversational Information Seeking

The recent development and increasing popularity of smart devices is leading users to
switch from traditional search engines to more customised and interactive information
seeking platforms. Nowadays, dialogue systems and voice assistants, such as Amazon
Alexa, Apple Siri or Google Assistant (Argal et al., 2018; Brill et al., 2019; Dalton et al.,
2018) are becoming prevalent when people prefer to engage in a conversation. Indeed,
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Figure 2.3: Schematic representation of the single-representation dense retrieval task. The
retrieval function is enabled after pooling the dense embedded representations to a single-
vector representation, thus allowing search of nearest neighbours.

people use these assistants in various Conversational Information Seeking (CIS) tasks;
these tasks refer to a system that helps users to satisfy their information needs by engaging
in conversations (Zamani et al., 2022). Both inputs and outputs of CIS systems can
be of multiple sources such as natural language text, images, clicks, voice, etc (Deldjoo
et al., 2021; Hauptmann et al., 2020; Lei et al., 2020a). Despite the various definitions of
CIS, researchers agree on the following main requirements for a system to be considered
as CIS: (i) the system is pro-actively involved with supporting the user to satisfy their
information needs, and therefore, it requires mixed-initiative by both the user and the
system (both sides initiate the conversation and can request for more information by asking
questions) (Andolina et al., 2018; Radlinski and Craswell, 2017; Trippas et al., 2018), and
(ii) the dialogue develops over more than one utterance for each conversation participant
(user and system), and therefore, it requires multi-turn interactions, which can be over
one or more sessions and are enhanced by asking clarifying questions (Aliannejadi et al.,
2019). Below, we provide some examples of the most common CIS, namely Conversational
Search, Conversational Recommendation, and Conversational Question Answering.

Conversational Search

While Information Seeking and searching for information has always been considered as
an interactive process (Croft and Thompson, 1987; Oddy, 1977), the progress in machine
learning and natural language processing has allowed users to express their intent in nat-
ural language form (Zamani et al., 2023), and it has led to the development of more
advanced CIS such as Conversational Search. In particular, Conversational Search (CS)
is the type of CIS which refers to interactively searching for information with a conver-
sational system using natural language conversations (Zamani et al., 2023). As for what
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constitutes a CS system, over the last few years, many definitions have been proposed that
generally describe a system that interactively retrieves information between a user and an
agent which allows speech and natural language properties (Anand et al., 2020; Radlin-
ski and Craswell, 2017). Still, some differences exist in terms of the criteria they use to
define such systems. For instance, Radlinski and Craswell (2017) defined a conversational
search system in terms of the properties that need to be met. Specifically, a CS system
is a system for retrieving information that permits interactive dialog or a mixed-initiative
between a user and an agent, where the agent’s actions are determined according to a
model of current user needs. From a different perspective, Anand et al. (2020) defined CS
systems in terms of how they differ from other IR systems or disciplines. For example, it
is an interactive IR system, a retrieval-enhanced chatbot or a "dialog system with retrieval
capabilities".

Radlinski and Craswell (2017) presented a framework for CS where the interactive
dialog process can be initiated by either the system, or the user. The system can select
between different actions, which involve providing a partial or full description of one or
more items, or requesting the user to provide their information need, rating, or natural
language critique at a given turn. In turn, the user actions or responses can be the initial
description of their information need, a rating, a preference or a natural language critique
at a given turn. A particular advantage of CS systems is that they ask questions to the
user, which leads to more accurate understanding of user needs and higher confidence of
the system in its results (Aliannejadi et al., 2019; Zhang et al., 2018). Once the user
provides their response to a given question, the system considers not only the user’s initial
request, but also the content of the response to both provide a ranking list of items and
to generate new questions in the search process (Zhang et al., 2018). More formally, given
a search topic a user wants to learn more about, a conversation c ∈ C can be defined as
a list of user-system interactions with each interaction turn being composed of a query q
and an answer a (Lipani et al., 2021) as follows:

c= [(q1,a1), ...,(qk,ak)] (2.8)

where each pair (qi,ai) is a pair of a query and user response at a conversation turn k.
In contrast to ad-hoc retrieval, CS enables the user to provide their query in natural

language form, which in turn leads to a more natural style. For example, when looking at
Figure 2.2, we see entire long passages being retrieved in a single round in response to a
keyword-based query. On the other hand, Figure 2.4 shows the CS procedure, where the
retrieved information (depicted with a different colour and size to showcase the difference
in type and length) is divided into pieces and is part of an overall turn-taking dialog
process, which is more intuitive and by allowing users to refine their query, it creates
a user need model of preference elicitation (Zamani et al., 2023). In other words, the
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Figure 2.4: Schematic representation of the Conversational Search task. The resulting
multi-turn ranking of passages is shown with a different colour to demonstrate the differ-
ence in length.

retrieved units are short sentences or images instead of passages, and the ranked list of
items is usually shorter, consisting of one or just a few items depending on the platform.

Conversational Question Answering

In general, Question Answering (QA) is a form of information seeking where the user
need is expressed with a question in natural language form (Zamani et al., 2023). Indeed,
unlike traditional retrieval systems that return lists of full documents, QA retrieves short
pieces of information to answer users’ queries in the form of text snippets that contain
the exact answer (Gao et al., 2018; Voorhees et al., 1999), for example, the resulting an-
swer can be a short passage, a sentence or a phrase (Lu et al., 2019). The progress in
conversational assistants has also influenced the recent developments in QA leading to a
new task, namely Conversational Question Answering (Conversational QA or ConvQA).
Specifically, ConvQA is a sub-type of CIS, and its main difference from traditional QA is
that it allows users to express their need with more than one question in a conversation.
This further implies that systems should be able to handle complex linguistic characteris-
tics such as anaphoras (reference to previous conversation turns) (Vakulenko et al., 2021).
In that sense, ConvQA is similar to CS described above, but with a narrower focus (Za-
mani et al., 2023). Due to the varying nature of questions asked and the conversational
nature of the task, ConvQA is sometimes indistinguishable from CS.

Conversational Recommendation: From Traditional to Dialog-based Recom-
mender Systems

Typically, Recommender Systems (RS) refer to applications that help users find items of
interest in cases of information overload (Ricci et al., 2015) and user exploration (Chen,
2021). In addition, in the context of e-commerce settings, RS helps business providers pro-
mote their service (Jannach and Jugovac, 2019). The classical context of recommendation
algorithms is a one-shot interaction process, where the system keeps track of user data over
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time, and when the user enters the system, it provides a set of tailored recommendations.
In this regard, RS recommend items based on user feedback in terms of ratings, clicks or
reviews. For example, an earlier line of research centers around the concept of collaborative
filtering (CF) (Herlocker et al., 2000; Konstan et al., 1997; Schafer et al., 2007; Su and
Khoshgoftaar, 2009; Ungar and Foster, 1998). CF techniques are either neighbourhood-
based (for example, inferring a user’s preference for an item based on similar ratings of
“neighboring” items by the same user) or based on latent factor models, which explain
the ratings by scoring both items and users on some factors that predict how much a user
likes an item based on specific factors). As an evolution to CF, matrix factorisation (MF)
algorithms (Koren et al., 2009; Mehta and Rana, 2017) represent items and users with
latent vectors and combine those representations in a user-item matrix of sparse ratings (a
given user is likely to have rated a small percentage of items). The inner product of user-
item interactions approximates the user’s interest in a given item. Finally, more recently,
neural network-based models have been proposed (Kang and McAuley, 2018; Sun et al.,
2019), which use self-attention and complex network structures such as Gated Recurrent
Units (GRUs) (Cho, 2014) to model user behavior sequences. In particular, sequential
recommendation (Hidasi and Karatzoglou, 2018; Hidasi et al., 2015; Kang and McAuley,
2018) models employ an attention mechanism to use only few actions at each time step to
identify relevant items from a user action history, and use those to predict the next item.

Most of the above examples, and especially the older RS methods (Herlocker et al.,
2000; Konstan et al., 1997; Koren et al., 2009; Mehta and Rana, 2017; Schafer et al., 2007;
Su and Khoshgoftaar, 2009; Ungar and Foster, 1998), have a common aspect, which refers
to their static interpretation of user preferences. This means that they assume an existing
database of user-item ratings or implicit feedback up to a certain time point in an offline
setting, and once the user is logged in the service, a recommendation can be provided
based on a predicted preference. In contrast to this approach, another related CIS task,
namely Conversational Recommendation, provides a more dynamic interpretation and
satisfaction of user needs. As mentioned above, in recent years, online shopping platforms
such as Amazon are becoming dominant when users look for items of interest. As a result,
a variety of Conversational Recommendation Systems (CRS) have been proposed, which
assist users with finding items and with decision making (Sun and Zhang, 2018; Zou and
Kanoulas, 2019). Unlike traditional RS, Conversational Recommendation Systems (CRS)
allow for more complex recommendation settings, since they assist users in several task-
oriented goals in the context of a dialogue (Jannach et al., 2021). CRSs can be useful in
many cases. For example, while users sometimes know their preferences when they visit
a platform or a system, they might still construct their preferences as they enter and find
out about the options (Wang and Benbasat, 2013). Also, during the interaction with the
system, they are informed about the available options (Wärnestål, 2005).
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In general, CRSs share some important common aspects that distinguish them from
traditional RS. In this regard, the CRS definitions that have been proposed are converging.
For instance, Jannach et al. (2021, p. 105) define CRS as "software systems that support
users in achieving recommendation-related goals through a multi-turn dialogue", while Gao
et al. (2021, p. 101) emphasised that CRS can "elicit the dynamic preferences of users
and take actions based on their current needs through real-time multi-turn interactions".
Therefore, an important aspect of CRS is their multi-turn nature (more than one utterance
for each side, user and system). Due to the interactivity with users, CRS help with dynamic
preference elicitation (Christakopoulou et al., 2016; Li et al., 2018; Sun and Zhang, 2018;
Zhang et al., 2018) in CRS is also enhanced by the fact that modern systems allow users
to express their preferences through natural language feedback. Feedback in this context
is called critiquing (Tou et al., 1982). The interactive nature of critiquing-based CRS can
increase the effectiveness of recommendations in a series of interactions (Chen and Pu,
2007, 2012; McCarthy et al., 2004). Another critical aspect of CRSs is that they are goal-
oriented, meaning that they assist in the completion of specific tasks by recommending
products (Jannach et al., 2021).

Figure 2.5: Schematic representation of the Conversational Recommendation System ar-
chitecture (adapted from Jannach et al. (2021)). The state tracker controls the interaction
between the use modeling system and the recommendation engine, while the database with
all available items can be accessed. The user profile is updated at each turn.

As described by Jannach et al. (2021), the typical architecture of CRS includes the
following modules: First, we have the dialog manager or state tracker, which processes
the received user actions, updates the user profile during the dialog, and decides on the
next action. The other main components refer to the user and system side, respectively.
Specifically, the user modeling system controls the user profile that is composed of their
preferences, whether these are long-term or not, and how they are updated during the
dialog. Finally, the recommendation and reasoning engine retrieves recommended items
from the item database, while it can also produce explanations for the recommendation it
provides. All three components may have access to some background knowledge regarding
the specific domains. The architecture is described schematically in Figure 2.5. In general,
the multi-turn nature of CRS assumes some kind of memory functionality during the



CHAPTER 2. BACKGROUND AND RELATED WORK 22

dialog, and therefore, storing past interactions and historical data is important in CRS
systems (Jannach et al., 2021).

CS and CRS have some similarities. Importantly, both tasks aim to rank items based
on their graded relevance and consequently provide users with relevant items according
to the resulting ranking, either through a query (search) or user preference (recommen-
dation) (Belkin and Croft, 1992). Furthermore, both systems will interact with the user
through natural language conversations. Still, while in CS the interaction is based on
written or spoken language, in CRS other modalities such as images are possible. Also,
unlike CS, the purpose of CRS involves understanding users’ preferences and providing
suggestions, which requires more complex mechanisms such as keeping track of the user
feedback and system actions (Jannach et al., 2021). Table 2.1 summarises the various
Information Seeking tasks and their main characteristics, starting from ad-hoc retrieval
and moving on to the various Conversational Information Seeking tasks. While the table
emphasises their main differences, it should be noted that in practice, these differences
are often not easily distinguishable. For example, all types of conversational CIS include
approaches that use the history of the conversation up to a given turn, refer back to an
item mentioned in a previous turn, and use the additional information obtained by asking
clarifying questions to users to formulate a clearer view of their information needs.

To provide a more complete description of the task, we need to refer to specific rec-
ommendation algorithms. Therefore, in the following section, we present the main types
of CRS that have been proposed in the recent years, followed by some concrete examples
of CRS models, and we continue with a presentation of the CRS paradigm that we use in
this thesis, namely Conversational Image Recommendation.

Table 2.1: Summary of Information Seeking (IS) tasks with a description of input and
output elements, number of turns and context of use for each task.

Task Input Output # Turns Context
Ad-hoc retrieval (keyword-based) query passage 1 search engines
Conversational Search natural language query, conversation history, answer to clarifying question sentence-level passage >1 digital assistants
Conversational QA natural language query, conversation history sentence-level passage >1 digital assistants
Conversational
Recommendation (natural language-based) expressed preferences, conversation history, user feedback item(s) (text or image-based)

of interest, answer to clarifying question >1 digital assistants

2.2 Conversational Recommendation Models

In recent years, various CRS models have been proposed, most of which are based on
textual embedded representations of both user feedback and system-suggested items (for
example, system descriptions about a recommended movie and questions to users, or a
user explanation about their preference). Text-based CRSs can be roughly categorised
into attribute-based and topic-guided. Attribute-based CRSs ask about the presence of
certain attributes in the desired item (Christakopoulou et al., 2018; Luo et al., 2020;
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Sun and Zhang, 2018; Zhang et al., 2018), usually in a fixed number of questions until
a recommendation is made at the last turn of the dialog (Lei et al., 2020a,b; Zou et al.,
2020). On the other hand, topic-guided CRSs interact with users through natural language
conversations, which enables more accurate responses and recommendations based on the
dialogue semantics instead of attributes (Chen et al., 2019; Liu et al., 2020; Ma et al.,
2020; Tu et al., 2022; Zhou et al., 2020). This is achieved by following a topic path (Ren
et al., 2022), which is a pattern of preference elicitation guided by the system centered
around a topic of interest. Given a topic path, short-term (historical data) and long-term
(natural language feedback) user preferences can be modeled separately (Ren et al., 2022),
and the system accordingly selects between a clarification question or a recommendation.
In some cases, a hybrid approach is taken where a given algorithm determines when
it is appropriate to ask a clarifying question and recommendations can be made more
than once in a dialog. In this section, we give an overview of some widely used recently
proposed CRS, followed by the state-of-the-art CRS models of our setting of interest,
namely Conversational Image Recommendation. Finally, we briefly introduce the concept
of user simulators in conversational systems and explain how we use such simulators for
this thesis.

2.2.1 Text-based CRS models

For this thesis, we refer to text-based CRS models as the type of CRS models that use
retrieved items as text on top of the text-based feedback. This is to distinguish these
models from our task of interest (described in detail in Section 2.2.2), which retrieves image
items at each turn based on natural language feedback. Most text-based CRSs use a deep
learning approach and typically involve complex architectures to describe each of the CRS
components (see Figure 2.5). Still, these models differ not only in the specific architecture
modifications, but also in their focus on obtaining and updating users’ preferences, asking
clarifying questions, when and how many times an item is recommended during a dialog,
etc. In the following, we present the main CRS models that are related to our approach
and are further mentioned in the remaining chapters of this thesis. Specifically, we start
with the GRU model (Cho, 2014), originally proposed for natural language processing,
which has inspired many CRS models, and then move on to present some examples that
have incorporated GRU functionalities in some of their components.

Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) model (Cho, 2014) was originally proposed for sta-
tistical machine translation (SMT) and used conditional probabilities of phrase pairs.
In general, for an RNN network, an output sequence of symbols is given by p(x) =
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Figure 2.6: Schematic representation of the Gated Recurrent Unit (GRU) hidden activa-
tion function. The update gate z decides whether the hidden state h is updated with a
new hidden state h̃, while the reset gate r decides whether the previous hidden state is
ignored. Adapted from Cho (2014).∏T
t=1 p(xt|xt−1, ...,x1), which is the conditional distribution of an input sequence x =

(x1, ...,xT ). Going further, GRU proposes an encoder-decoder RNN architecture that first
encodes a variable-length sequence into a fixed-length vector representation and then de-
codes the vector representation back into a variable-length sequence; essentially, it learns
the conditional distribution over a sequence conditioned on another sequence or more
formally:

p(y1, ...,yT ′|x1, ...,xT ) (2.9)

where T and T ′ are the input and output sequence, respectively. This is achieved by using
a hidden state h⟨t⟩ which reads each symbol of input x at each timestep and provides a
summary sm of the sequence. In particular, the decoder generates the output sequence
by predicting the next symbol yt given h⟨t⟩ as

h⟨t⟩ = f(h⟨t−1⟩,yt−1, sm) (2.10)

which means that the hidden state is conditioned on the previous symbol and the summary
of the input sequence. The conditional of the next symbol is given by:

p(yt|yt−1,yt−2, ...,y1, sm) = g(h⟨t⟩,yt−1, sm) (2.11)

where g is another activation function. The main contribution of GRU is the new type of
hidden unit which is depicted in Figure 2.6, describing the activation of the j− th hidden
unit as follows:

h
⟨t⟩
j = zjh

⟨t−1⟩
j +(1− zj)h̃⟨t⟩

j ) (2.12)

In other words, the proposed hidden unit is jointly determined by a reset gate rj =
σ([Wrx]j + [Urh⟨t−1⟩]j) and an update gate zj = σ([Wzx]j + [Uzh⟨t−1⟩]j). Then, the up-
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dated hidden state is:
h̃

⟨t⟩
j = ϕ([Wx]j +[U(r⊗h⟨t−1⟩)]j) (2.13)

Therefore, if the reset gate approaches 0, the hidden state ignores the previous hidden
state and is more influenced by or "resets" with the current input x, thereby dropping any
unnecessary information. At the same time, the update gate corresponds to the "memory"
of the previous hidden state, and therefore, it determines how much past information
passes to the current hidden state. In this way, the two parallel gates provide each hidden
unit the opportunity to reflect more short-term (reset gate) or longer-term (update gate)
dependencies. This property of GRU is very useful for CRS models, since it corresponds
to the long and short-term user preference modeling. This is particularly useful in a multi-
turn conversational setting, where it is important to distinguish between recommending
an item based on the feedback of the previous turn or whether information of all past turns
should be considered or even whether the long-term history should contribute to preference
estimation. Consequently, GRU has been adapted for some query suggestion (Sordoni
et al., 2015) and CRS models (Guo et al., 2018; Li et al., 2018; Ren et al., 2022). In what
follows, we present a few examples of CRS models that incorporate the GRU functionality.

Context-aware and topic-guided CRS

REDIAL One early example of CRS that introduced the research setting of conver-
sational movie recommendation was the REcommendations through DIALog (REDIAL)
model (Li et al., 2018). REDIAL proposed a CRS model that acts like an agent chatting
with a partner in a dialogue. Following the style of a friendly discussion, it is assumed
to lead to a pleasant experience and ideas for movies to watch. The development of such
a conversational agent involves a two-party conversation of a recommender and a recom-
mendation seeker, where the seeker is expected to chat with the recommender about their
movie tastes intending to get recommendations in a cold-start setting. The input-output
structure of REDIAL uses the basic concept GRU (Cho, 2014), and specifically the more
recent approach of the hierarchical recurrent encoder-decoder (HRED) as proposed in Sor-
doni et al. (2015), while it is enhanced by further elements to ensure it is adapted to a
recommendation setting. Specifically, the model architecture is composed of:

• A hierarchical recurrent encoder (HRED) (Serban et al., 2016; Sordoni et al., 2015;
Subramanian et al., 2018) that encodes the general purpose sentence representa-
tions (GenSen) from a bidirectional GRU (Cho, 2014) that are pre-trained in the
encoder obtained from Subramanian et al. (2018). In particular, each utterance
Um is modeled as a sequence of Nk words as Uk = (wk,1, ...,wk,Nk) such that
each dialog is encoded as a set of utterances D = ((U1, sr1), ...,(Uk, srK)) (with
dialogue steps where k = 1, ...,K) with roles (seeker or recomender) denoted with
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sr ∈ −1,1. Given an input sequence i1, ..., iT , and learned parameters W∗∗ and
b∗, HRED computes the reset gate rt, update gates zt, new gates h̃t, and for-
ward hidden state ht: rt = σ(Wirit +Whrh⃗t−1 + br), zt = σ(Wizit +Whzh⃗t−1 + bz),
h̃t = tanh(Wih̃it+bih̃+rt⊗(Whh̃h⃗t−1 +bhh̃)), and h⃗t = (1−zt)⊗ h̃t+zt⊗ h⃗t−1. Utter-
ances are passed to the sentence encoder bidirectional GRU, leading to conversational
representations at each turn.

• An RNN component for Movie Sentiment Analysis: The model predicts three labels
for both the seeker and the recommender about whether a movie was suggested
(binary), and seen and liked by the seeker (three-class categorical). This is achieved
by modifying the utterance encoder to take movie entities into account and adding
a dimension to the hidden state in case a movie is mentioned. Applying activation
functions to the last utterance representations, it obtains predicted probabilities for
each category.

• An Autoencoder Recommender, which acts as the dialog component. The model has
no past information about the seeker’s preferences; those are built during the dialog.
This is done by predicting their ratings from a partially observed user-movie matrix:
Representing each user as a vector, it projects it in a smaller space and retrieves it
again in its full version using a denoising autoencoder (Sedhain et al., 2015; Vincent
et al., 2008).

• A Decoder with a Movie Recommendation Switching mechanism: Given |V ′| movies
and at a given dialogue step m, the sentiment analysis predicts whether a seeker liked
a particular movie. The prediction creates an input xm−1 ∈ R|V ′| which produces a
rating vector x̂k−1 ∈ R|V ′|. This combined with the context of previous utterances
from the hierarchical encoder hk−1 are used by the decoder to predict the next
utterance by the recommender using a GRU with a switch to select between word
or movie tokens.

Training such a system is challenging, as a large amount of data is needed to train this
complex neural network structure. In this regard, a two-party conversational corpus was
collected with crowd-sourcing, where one worker acted as the seeker and the other as the
recommender with specific instructions to discuss about movies and mention a number
of them during the dialogue. In the end, further data was collected about whether each
movie was mentioned, seen, or liked by each participant.

TG-DERIAL While REDIAL (Li et al., 2018) provided the basis for conversational
movie recommendation, it cannot semantically guide the conversation towards a goal rec-
ommendation scenario. Therefore, Zou et al. (2020) introduced the concept of topic-guided
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conversational movie recommendation. In particular, it is assumed that a user is associ-
ated with a profile, which corresponds to a set of sentences regarding a user’s interests, and
an interaction history, historical utterances, and the corresponding topic sequence. Given
this context, the model aims to: (i) predict the next topic that is as close as possible to
the target topic (topic prediction), (ii) recommend a movie item (item recommendation),
(iii) generate a response about the topic (response generation).

Again, a new dataset was collected entitled Topic Guided Recommendations through Di-
alogue (TG-REDIAL) using the same style of two-party recommendation dialogues as RE-
DIAL, but this time with topic threads, which guide the seeker from a non-recommendation
to a recommendation scenario through a sequence of topics in a more friendly chit-chat
conversation style. Also, instead of collecting full dialogues, they followed a semi-automatic
controllable annotation method to link user ids with real users from a website.

UPCR Another example of the CRS model is User Preference Conversation Recom-
mender (UPCR) (Ren et al., 2022). The assumption behind this model is that topic
tracking is not sufficient to capture users’ preferences in a dialogue. Instead, the authors
propose a more detailed process for recognising and maintaining users’ preferences at dif-
ferent representation levels. Specifically, to account for the fact that CRS only track the
user’s short-term feedback (during the dialogue), the limited annotations, and the com-
plex semantic relations among items, they introduce an end-to-end variational reasoning
approach to separately model long-term preferences and short-term preferences as latent
variables with topical priors. Notably, the model uses an encoder-decoder representation
architecture to encode text sequences and generate response sequences for short-term and
long-term input representations. Importantly, a policy network predicts topics that lead
to either a clarification question or recommend an item.

UPCR used both the REDIAL and the TG-REDIAL datasets for topic-guided recom-
mendation and produced more accurate results than REDIAL and TG-REDIAL corre-
sponding CRS models.

2.2.2 Conversational Image Recommendation

Apart from text-based CRS, another line of research emphasises retrieving images at each
interaction turn during a multi-turn dialogue in the fashion domain. This research setting
aims to simulate an on-line shopping environment with a digital assistant or a seller, to
satisfy the shopper as fast as possible and fulfill their needs. This setting can be described
as Conversational Image Recommendation and is based on previous research on image
retrieval. In this section, we describe the nature of the task, and continue with some
representative models, training, and evaluation settings.



CHAPTER 2. BACKGROUND AND RELATED WORK 28

Figure 2.7: Schematic representation of the Conversational Image Recommendation task
for the fashion domain. The resulting ranking of images at turn k+ 1 is a result of the
feedback and image representation of the candidate item of the previous turn.

Dialog-based Interactive image Retrieval

Inspired by previous research on image search, visual dialogues, and reinforcement learn-
ing methods, Guo et al. (2018) proposed a new CRS task called dialog-based interactive
image retrieval. Motivated by the neural network-based advances in retrieval systems in
e-commerce (Huang et al., 2015; Liu et al., 2016) and web search (Gordo et al., 2016; Jégou
et al., 2011), they created a system that accounts for the inconsistencies between feature
representations and semantic concepts. Importantly, the user can provide iterative feed-
back to the system that leads to improvements in CRS performance. Indeed, Guo et al.
(2018) based the model’s feedback on older systems that allow users to provide feedback
on recommended items based on their relevance (how similar or dissimilar they are to the
target item) in a binary manner (Rui et al., 1998), or provide relative attribute feedback
which compared candidate and target images with a set of fixed attributes (Kovashka
et al., 2012). In contrast, the task provides a richer form of feedback than these attribute-
based systems, which can be provided in natural language, thus allowing the user to more
directly express their interest by commenting on the conceptual differences between the
retrieved item and what they need. For this purpose, they formulated the task as a rein-
forcement learning problem that optimises the rank of the target image item, with input as
natural language feedback and output as a ranked list of items. Schematically, the task is
shown in Figure 2.10. A conversation C() at each turn k+1 is assumed to be determined
by the image representation of the candidate item at turn k and then the feedback fk

received by the user at turn k. Feedback received produces a new list of ranked image
items at each turn, while the user only sees the top one. The task is applied to real-world
data from the fashion domain, and in particular shoe retrieval. More generally, this is our
task of interest, and we will refer to this task as Conversational Image Recommendation
to describe all CRS models used in this section and across the thesis chapters. In the
following, we describe the basic architecture of the task.
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Model Architecture The detailed architecture that describes the framework of the
dialog-based interactive image retrieval model is presented in Figure 2.8. It corresponds
to a Dialog Manager agent interacting with a user in a multi-turn dialogue. At each turn
k, the dialog manager presents a candidate image αk to the user drawn from a retrieval
database I = Ii

N
i=0. Based on this image, the user provides a natural language utterance

feedback fk, which describes the differences of αk to the user’s desired or target image.
Based on this feedback and the dialog history H = α1,f1, ...,αk,fk up to turn k, the dialog
manager retrieves a new candidate image ak+1 from the database to present to the user.

Figure 2.8: Schematic representation of the end-to-end framework for dialog-based inter-
active image retrieval. Since this model uses a GRU in its State Tracker, we refer to it as
GRU in the context of Conversational Image Recommendation. Adapted from Guo et al.
(2018).

The main components of Dialog Manager are a Response Encoder, which creates an
embedding of both ak and fk and joins them into a unified input representation xk ∈RD, a
State Tracker, which aggregates xk with the dialog history to produce an updated vector
representation sk ∈ RD, and a Candidate Generator, which uses st to produce a new
candidate image αk+1. For the task to be successful, ak is assumed to be similar to sk.
More specifically, each component acts as follows.

Response Encoder As mentioned above, the Response Encoder encodes the visual-
semantic information ak,fk at turn k into xk ∈ RD. This is executed with 3 steps: (i)
Encode the candidate image with a deep convolutional neural network (CNN) and subse-
quently, a linear transformation

ximk = ImgEnc(αk) ∈ RD (2.14)
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where the CNN in this case is an ImageNet pre-trained ResNet-101 (He et al., 2016). (ii)
Encode the user feedback sentences as one-hot vectors and represent them with a linear
projection and a CNN as

xtxtk = TxtEnc(fk) ∈ RD (2.15)

(iii) Concatenate image and text vector representations with a linear transformation to
obtain a response representation for a given turn

xk = P (ximk ⊕xtxtk ) (2.16)

where ⊕ is the concatenation function and P is the linear projection.

State Tracker The State Tracker receives the input representation xk from the Response
Encoder, combines it with the historical information representation from the previous
turn, and produces an updated aggregated representation vector sk. This is achieved with
a gated recurrent unit (GRU) (Cho, 2014). More formally, its update function can be
described as: 

gk,hk =GRU(xk,hk−1)

sk = P sgk
(2.17)

where hk−1 ∈RD is the hidden state, gk ∈RD is the GRU output, hk is the updated hidden
state, P s ∈RDxD is a linear projection, and sk ∈RD is the updated historical information
representation based on information from the current dialog turn. The authors state that
the formulation of the State Tracker leads to a memory-based design that sequentially
considers information from user feedback to identify new candidate items.

Candidate Generator This component aims to select a candidate image αk+1 to
present to the user. In this regard, given the representation of all images in the retrieval
database ximk

N
i=0, where ximk = ImgEnc(Ii) the generator computes a sampling probabil-

ity that minimises the distance between sk and each image representation ximi . For this
purpose, the model uses a softmax distribution over the top nearest neighbours of sk. To
sample an image from the sampling distribution, they use either a stochastic approach
during training time or a greedy approach during inference time.

Based on the GRU model used by the State Tracker, for the rest of this thesis, when
we speak about the base model in Conversational Image Recommendation, we will refer
to it as GRU.
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Training and Evaluating Conversational Image Recommendation Systems

Several CRS models use a reinforcement learning approach to train and evaluate their
models. In this section, we first explain why a RL approach is needed, introduce the reader
to the concept of user simulation used for this purpose, and then describe the state-of-the-
art approaches that were recently proposed as a solution to simulate user behaviour for
training and evaluating reinforcement learning-based CRS, and in particular for the task
of our interest, namely Conversational Image Recommendation.

User Simulation in Reinforcement Learning Approaches In recent years, many
CRS models have been proposed, normally using a multi-turn structure resembling a real
conversation. In this regard, the model optimises a dialogue with either a supervised learn-
ing (SL) or a reinforcement learning (RL) approach. More specifically, in SL approaches,
a policy is used to follow the real user expert actions, which, in turn, requires obtain-
ing data from experts to annotate machine conversations. Most importantly, following a
pre-defined plan of states will miss some state spaces during the exploration of dialogue
training data (Li et al., 2016). This is the reason why in recent CRS systems, such as the
GRU for Image Recommendation described above, a RL policy is preferred, as it allows a
system to learn based on reward signals by optimising a policy through its interaction with
users (Li et al., 2016). In particular, GRU models the ranking percentile as the environ-
ment reward during the learning process to maximise the sum of discounted rewards as:
maxπ υπ = E[∑K

k=1 ξ
k−1rwk|πθ], where rwk ∈R is the reward for the ranking percentile of

the target image item at turn k, K is the number of dialogue turns, θ corresponds to the
network parameters, πθ symbolises the policy, and ξ is a discount factor for the trade-off
between short-term and long-term rewards (Guo et al., 2018).

Still, training a CRS with RL often optimises for long-term rewards (Shi et al., 2019),
i.e. retrieving the correct item in later turns. However, such models require an explo-
ration of the action space, which requires access to a large amount of training data from
real users (Li et al., 2016; Shi et al., 2019). To evaluate CRS, user simulators are used
as a surrogate of human users to mimic human behaviour (Li et al., 2016; Shi et al.,
2019). For text-based conversational systems, a user simulator was proposed following an
agenda-based simulation framework (Schatzmann and Young, 2009), in which a stacked
representation of user states encodes the dialogue history and the user goal, and user
state updates can be modeled as sequences of push and pop operations with stacks. For
image-based CRS, relative captioning is an example simulating real user natural language
feedback trained on human-annotated dialogues, which we explain below.

Relative Captioning and Dataset Creation As mentioned, in RL-based CRS, ex-
tensive data exploration with the environment is needed, and relying on existing dialogue
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corpora does not solve this problem. In the case of the Conversational Image Recommen-
dation task, a user simulator is used called the relative captioner, which generates natural
language feedback based on the relative visual differences between a candidate item at
turn t and the user’s target item (Guo et al., 2018). Note that the generated feedback is
independent of previous feedback or retrieved images from earlier turns, other than the im-
mediate turn. To train the relative captioner with simulated data, a dataset was collected
with crowd-sourcing through Amazon Mechanical Turk, where participants were asked to
describe the differences between each candidate-target image pair. The problem represents
a shopping scenario between a customer and a shopping assistant. The relative captioning
dataset collection process is described in Figure 2.9. a A sentence prefix was given to
prompt annotators for relative feedback, as an instruction for responding to a given image
pair. This example refers to footwear items from the fashion domain. Note that relative
captioning is different from discriminative captioning previously used (Vedantam et al.,
2017) only to describe the target item. Following the collection of the first dataset Guo
et al. (2018), which was based on the Shoes dataset (Berg et al., 2010), a more dedi-
cated relative captioning dataset was collected, again in the fashion domain, with multiple
clothing fashion categories, namely Dresses, Shirts, and Tops & Tees (Wu et al., 2020).
The resulting dataset collection is called FashionIQ and consists of thousands of captions
collected to train the user simulator of a GRU Conversational Image Recommendation
model.

Figure 2.9: Schematic representation of the relative captioning setting. Using a prefix,
the simulator generates natural language feedback or critiques, which describe the relative
visual differences of the target and candidate item at a given turn.

More generally, the process of obtaining training data for the user simulator and their
use for training a CRS is schematically depicted in Figure 2.10. As a first step, train-
ing data is collected through crowd-sourcing. Then, the collected data is used to train
the dedicated CRS component corresponding to the user modeling system described in
figure 2.5, namely the user simulator. The resulting simulated data simulate the user
role in a dialog, which means that each critique produced as user feedback comes from
the simulator to inform the system about user preferences, and could be further used to
potentially respond to clarifying questions.
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Figure 2.10: Schematic representation of an interaction in Conversational Recommenda-
tion Systems.

Estimator - Generator - Evaluator (EGE) model

Since the introduction of GRU for image recommendation (Guo et al., 2018), research
has attempted to modify the main structure and specific elements of its training policy.
For example, Yu et al. (2019) proposed a variation in the number of recommended items;
they displayed the top-ranked list to the user instead of only the top item. In particular,
they present a list of items to the user at each turn, and the user can provide feedback on
items of choice. In this way, they encourage exploration and collect more diverse feedback
information on items. Another approach proposed by Wu et al. (2021b) is the Estimator
- Generator - Evaluator (EGE) model, which models interactive recommendation as a
partially observable Markov decision process (POMDP). As depicted in Figure 2.11, the
EGE model consists of three main components, an Estimator that tracks and estimates
user preferences, a Generator that recommends candidate items based on estimated states,
and an Evaluator that is used to judge the quality of an estimated state at each time point.

The initial setting of Conversational Image Recommendation with GRU (Guo et al.,
2018) is most effective for evaluating short-term interactions. In contrast, the evaluator
component of EGE, and its ability to use both historical feedback and prior recommenda-
tions, enhances its performance for long-term interaction satisfaction. In particular, EGE
learns a policy that depends on observations but also on action histories (historical feed-
back and recommendations), and conditions its actions on the entire history. Therefore,
compared to GRU (Cho, 2014; Guo et al., 2018), it maximises longer-term rewards. This
functionality has led EGE to improved performance in both variants of GRU (Wu et al.,
2021b). In this thesis, GRU and EGE will form the key CRS models that we compare
using the Shoes (Berg et al., 2010; Guo et al., 2018) and FashionIQ (Wu et al., 2021a)
datasets.

Table 2.2 provides an overview of the general performance of the two state-of-the-art
CRS models for Conversational Image Recommendation, as detailed above and based on
the original EGE results. Wu et al. (2021b) developed a version with post-filtering, where
a filter is applied on the CRS model at each turn to prevent previously suggested items
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Figure 2.11: Schematic representation of the EGE model. Adapted from Wu et al. (2021b).

(from previous turns in a dialogue) from being recommended. We see that for both cases,
EGE’s performance is superior to that of GRU. At the same time, we observe a relatively
low performance for both models, especially without post-filtering and particularly for the
Dresses dataset. In the following chapters (and especially Chapter 5), we address part of
this problem by proposing alternative ways to more accurately retrieve items.

Table 2.2: General performance indication summary of existing state-of-the-art CRS mod-
els for Conversational Image Recommendation (GRU and EGE), both without (first two
rows) and after (last two rows) applying a post-filter for preventing the suggestion of
already recommended items in a conversation. Adapted from Wu et al. (2021b).

Dataset Shoes FashionIQ Dresses
CRS model NDCG@10 MRR@10 SR NDCG@10 MRR@10 SR

GRU 0.197 0.171 0.139 0.080 0.062 0.041
EGE 0.283 0.254 0.219 0.102 0.082 0.059

GRU(filter) 0.380 0.354 0.320 0.199 0.177 0.148
EGE(filter) 0.480 0.454 0.418 0.228 0.209 0.185

2.2.3 Limitations of existing CRS Evaluation Settings

All of the above-mentioned CRS settings (as detailed in Sections 2.2.1 and 2.2.2) share a
common ground; they assume that a user’s target item is available in the retrieval database
or catalogue, and consequently, if a system does not return the user’s target by a given
rank and at a given turn, this signals the inability of the system to satisfy the user. We
call this type of failure system failure. This assumption has some limitations.

• Limitation 1a): In general, the purpose of recommender systems is to facilitate
users’ exploratory behaviour (Bursztyn et al., 2021), moving beyond what they have
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already seen or bought. In the case of Matrix Factorisation or Sequential Recom-
mendation algorithms (see Section 2.1.2), user preferences are estimated based on
a given user-item prior representation. However, for our task of interest (Conversa-
tional Image Recommendation) and CRS in general, such information is obtained
during the interaction with the system. Therefore, a system trying to find a single
item that is already known by the user contradicts the recommendation intuition.

• Limitation 1b): In addition, focusing on a single target item without having any
more options to choose from highly restricts system performance. In this way, there
is a chance that the system keeps repeating the same recommendations, thus influ-
encing the distribution of items being recommended.

• Limitation 2a): In some cases, an item requested by the user is not contained in
the item database or catalogue. If a system does not account for this, system failure
will be assigned as a reason to a problem that is best described as catalogue failure.
Specifically, if the database is missing a target item, it will not return it, but this
should not be mistaken for a CRS failure. For this thesis, we will introduce a new
recommendation scenario that corresponds to a missing target item.

• Limitation 2b): In addition, the given context of Conversational Image Recom-
mendation does not allow more generalised user satisfaction where the user has a
vague information need that could be satisfied when the system returns the user’s
target item or another item similar to the original target based on a certain criterion.
For this thesis, we will introduce a new recommendation scenario that represents a
more generalised user need, where the user is more flexible in their choices, can
change their mind, and request alternative items.

• Limitation 3: A further problem with CRS systems is that they do not try to
predict the likelihood of recommendation failures, focusing instead on reporting ef-
fectiveness metrics for system performance. In particular, they assume that they
should continue the recommendation process regardless of the likely condition of the
user (i.e., for an infinite number of feedback turns). For this purpose, we develop
a prediction framework that quantifies the extent to which a given target item will
be returned by a given turn, and use multiple source information to produce those
predictions, together with the corresponding evaluation measures. In this regard, we
take into account the multi-turn information in the setting.

We have presented the limitations in the evaluation of CRSs in state-of-the-art models.
In the next section, we present the main approaches of the prediction framework we
rely on throughout this thesis to build our prediction framework for CRS, namely Query
Performance Prediction (Carmel and Yom-Tov, 2010).
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2.3 Predicting Query Performance

As mentioned, CRS systems lack an overall failure prediction methodology. To predict
why a conversation with a CRS might fail, we need to identify indicators that show when
the user cannot find the target item during the interaction. In this regard, we rely on
existing work from Query Performance Prediction (QPP). QPP was originally proposed
for search engines and predicts the effectiveness of a search result list in response to a
query, without having access to relevance judgments (Carmel and Yom-Tov, 2010). In
general, there are two types of QPP predictors: pre-retrieval, and post-retrieval. Pre-
retrieval predictors are used to estimate the performance of queries before the retrieval
stage, and therefore, can be considered independent of the search ranking model and the
ranked list of results produced by the model (Hauff et al., 2008). This means that pre-
retrieval predictors base their predictions on properties of query terms or corpus-based
statistics (Cronen-Townsend et al., 2002; Hauff et al., 2008; He and Ounis, 2004; Mothe
and Tanguy, 2005; Scholer and Garcia, 2009; Zhao et al., 2008). Table 2.1 shows the
QPP predictors originally proposed for sparse retrieval models such as BM25 and Query
Likelihood. Apart from the distinction between pre-retrieval and post-retrieval predictors,
QPPs are further divided into unsupervised and supervised predictors. Notably, for earlier
predictors developed for sparse retrieval models, unsupervised predictors were exclusively
used. With the recent development of pre-trained language models (PLMs) (Devlin et al.,
2019; Khattab and Zaharia, 2020; Lin et al., 2020; Xiong et al., 2020), more advanced
supervised predictors were proposed that take advantage of the dense embedded repre-
sentations contained in PLMs. Still, these predictors tend to be correlated mainly with
sparse retrieval models. A few attempts have been made to quantify their behaviour or
more advanced models, but the conclusions are not consistent (Faggioli et al., 2023b).
This thesis is mainly focused on the examination of post-retrieval predictors, since the
examination of the contents of the result list can provide richer information that helps
in predicting a future ranking than pre-retrieval predictors (Hauff et al., 2008), and also
because this allows us to extrapolate to an image-based recommendation list in our task
of interest, where examining the content of the result list in one turn can help to make
predictions for the result list of the following turn(s). The set of QPPs is presented in
Table 2.3. In this section, we provide an overview of the existing pre-retrieval predictors
(Section 2.3.1), continue by describing a range of post-retrieval predictors in Section 2.3.2,
including unsupervised and more recent supervised predictors, while also briefly mention
some early attempts to adapt QPP to a conversational setting, which is our main focus
for CRS prediction. Finally, we present some limitations in existing research on QPP in
Section 2.3.3.
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2.3.1 Pre-retrieval Query Performance Predictors

Pre-retrieval predictors are used to estimate the performance of queries before the retrieval
stage, and therefore, are independent of the search performed and the ranked list of re-
sults (Hauff et al., 2008). This means that pre-retrieval predictors base their predictions on
properties of query-terms or corpus-based statistics (Cronen-Townsend et al., 2002; Hauff
et al., 2008; He and Ounis, 2004; Mothe and Tanguy, 2005; Scholer and Garcia, 2009; Zhao
et al., 2008). Examples of pre-retrieval predictors that describe the statistical properties
of the query terms or the corpus include the query length (number of non-stop words in
the query), the query scope, the standard deviation of the inverse document frequency of
the query terms, i.e., σidf , and two related predictors that measure the relative presence
of terms in the query and the collection; the simplified query clarity score (SCS), which
measures the occurrence of a query term in the query relatively to its occurrence in the
collection, and the average inverse collection term frequency (AvICTF), which relates to
measuring the divergence of a collection model from a query model (He and Ounis, 2006).
Another class of pre-retrieval predictors refers to linguistic features of the queries, such
as syntactic complexity (distance between syntactically linked words) and word polysemy
(number of semantic classes to which a word belongs) (Mothe and Tanguy, 2005). More
recently, a few pre-retrieval predictors have been proposed that use the query represen-
tations. For example, a group of unsupervised neural pre-retrieval predictors (Arabzadeh
et al., 2020; Roy et al., 2019) propose geometric semantic similarities of query terms,
which indicate query specificity or contextual similarity and are based on pre-trained neu-
ral embeddings. Still, these predictors are not directly applicable to our task of interest, as
they are based on pre-trained neural embeddings from multi-representation dense retrieval
models and therefore cannot be applied on a task that uses image-based embeddings.

2.3.2 Post-retrieval Query Performance Predictors

Post-retrieval predictors, on the other hand, focus on the list of the top-ranked returned
documents, and therefore use the relevance scores of the returned items. In this section,
we first present the different categories of unsupervised post-retrieval predictors and then
describe some supervised post-retrieval predictors.

Unsupervised Post-retrieval QPPs

Over the last two decades, a wide variety of unsupervised QPPs have been proposed,
including statistical properties, semantic content, and the difference of the result list doc-
uments from the corpus. A first group of post-retrieval predictors refers to the difference
of the result list from the corpus, or the focus of the result list. For example, the Clar-
ity method (Cronen-Townsend et al., 2002) measures the focus of the resulting ranking
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concerning the corpus using the KL-divergence between their language models, while the
Weighted Information Gain (WIG) corresponds to the difference between the average re-
trieval score of the result list and of that of the corpus (Zhou and Croft, 2007). A second
group includes the distribution of the retrieval scores of the top-ranked items. Such pre-
dictors include Normalized Query Commitment (NQC) (Shtok et al., 2009) (the standard
deviation of the retrieval scores in the result list). The standard deviation is considered
to be negatively correlated with the amount of query drift (the non-related information in
the result list) (Mitra et al., 1998). Based on NQC, Roitman et al. (2017b) developed a
robust estimator version, which is based on estimating the standard deviation from mul-
tiple generated samples of the original result list using bootstrapping. This more robust
estimator was found to enhance query performance compared to NQC. Also, the modeling
of retrieval scores is another example, since the top-ranked items could be modeled as a
certain mixture of distributions corresponding to relevant and non-relevant items (Cum-
mins, 2014). Finally, a simple way to predict query performance is to use the maximum
score of the retrieved document list (Roitman et al., 2017a).

A third group of unsupervised post-retrieval predictors examines the coherence of the
top-ranked items’ embedded representations, which contain TF-IDF vectors. One such
related predictor is autocorrelation (Diaz, 2007), which assumes that spatially related
documents receive similar scores. In addition, a set of network metrics (Arabzadeh et al.,
2021a) examine the neighbour degree and density of a given retrieved document, and this
was found to enhance QPP performance when interpolated with score-based predictors.
A low correlation between scores of topically-close documents is assumed to imply a poor
retrieval performance. Additionally, another set of coherence-based predictors creates a
graph of the most similar documents among the top-ranked documents (Arabzadeh et al.,
2021a), based on their TF-IDF representations. For example, Weighted Average Neighbour
Degree (WAND) and Weighted Density (WD) enhanced the performance of score-based
predictors by using linear interpolation.

A fourth group of post-retrieval predictors refers to the relation of the top-ranked
retrieval scores with a particular reference list, which points to external retrieved doc-
ument lists that are found to be either effective or ineffective (Shtok et al., 2016); the
stronger the relation with these external lists, the more indication we have about query
performance. An example refers to the utility estimation framework (UEF) (Shtok et al.,
2010), which estimates the utility of a given ranking in terms of how much it represents
an underlying information need (Lafferty and Zhai, 2001). Utility is estimated by the
expected similarity between a given document ranking and those induced by estimates
of relevance language models (these rankings are assumed to be representative of the in-
formation need) (Lavrenko and Croft, 2017). A similar predictor to the UEF approach
is query feedback (QF) (Zhou and Croft, 2007), which measures the overlap of top items
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between the result list and a reference list retrieved from the corpus using a language
model induced from the result list. Autocorrelation (Diaz, 2007) could also fall under this
category. For example, if we use as a reference to the original result list either a perturbed
version of the scores diffused in space or an averaged value from multiple retrievals. A
more generalised approach for estimating the effectiveness of a ranking is the assump-
tion that high association with pseudo-effective reference lists and low association with
pseudo-ineffective lists improves effectiveness (Shtok et al., 2016). Lastly, another type
of predictor using reference items is the rank-biased overlap (RBO), which measures the
expected average overlap between two rankings (Webber et al., 2010).

Finally, only a few attempts of post-retrieval predictors have been proposed for con-
versational systems. In this regard, some recent work on QPP in a conversational envi-
ronment has only addressed Conversational Search. For example, recent work examines
the effectiveness of top-retrieved documents for deciding to generate clarifying questions,
and specifically some extracted features, such as noun phrases or named entities (Sekulić
et al., 2022). Indeed, clarifications are useful for both the user and the system (Alianne-
jadi et al., 2019; Kiesel et al., 2018; Zamani et al., 2020). More recently, Faggioli et al.
(2023b) proposed a QPP evaluation framework for Conversational Search. In particular,
they suggested that QPP in conversational search systems should be evaluated in differ-
ent settings, based on a single utterance, the previous utterance, or the entire dialogue.
Still, unsupervised QPP for conversational recommendation has not been addressed in the
literature.

In all cases, we can express a QPP function more formally as:

M̂ ← µ(q,Dq,C) (2.18)

where q is a query, C is a document corpus, Dq is a list of retrieved documents, µ is a
query performance predictor which produces a metric M . In other words, predicting query
performance is a function of the query, the retrieved document list, the corpus, and how
the QPP measure is produced.

Supervised Post-retrieval QPPs

Supervised predictors use, in general, more complex indicators than unsupervised predic-
tors to predict query performance. Indeed, they might use multiple sources of information
or other QPPs. For example, one of the first supervised QPP predictors was Neural-
QPP (Zamani et al., 2018), which used a multi-component supervised predictor as the
output of existing unsupervised QPP predictors with weak supervision. Also, based on
Deep-QPP (Datta et al., 2022a), which used information from semantic interactions be-
tween query terms and terms of the top-documents retrieved with it, Datta et al. (2023) go
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one step further to combine it with a second source of information from learning-to-rank
features, which were found as good indicators for query performance (Chifu et al., 2018).

Another group of supervised post-retrieval QPP predictors mainly fine-tune the BERT
model’s (Devlin et al., 2019) embedded representations in multiple ways. For example,
BERT-QPP (Arabzadeh et al., 2021b) fine-tunes BERT by adding cross-encoder or bi-
encoder network layer to produce a final relevance score per query. NQA-QPP (Hashemi
et al., 2019) developed a method for question answering by providing a multi-source su-
pervised score. Extending this, qpp-BERTpl (Datta et al., 2022b) moves to a list-wise
approach that moves beyond simply estimating the relevance of the top document. As for
supervised predictors that consider a more conversational context, NQA-QPP (Hashemi
et al., 2019) developed a method for question answering by providing a multi-source su-
pervised score by also using BERT embeddings in a question answering setup. Apart from
BERT-based predictors, Roitman et al. (2019) examined a constrained retrieval setting,
such as the interaction with a conversational assistant, where the assistant needs to de-
cide whether the provided answer could be accepted. The authors built a classifier that
determines the answer quality by adapting some existing QPPs to the answer level (using
the score of the top item provided as the answer).

Again, while a few supervised predictors have been applied to Conversational Search,
none of the existing works have addressed CRSs. In addition, while these predictors predict
performance at the query level, they do not predict at the conversation level, taking into
account how the information is acquired through the sequence of turns.

2.3.3 Limitations of existing QPP research

From the above, we observe two limitations of current QPP approaches. First, they have
been applied to sparse retrievers (e.g. BM25), which are outperformed by dense retrieval
models (e.g. TCT-ColBERT). Indeed, even supervised predictors are applied mainly to
BM25, and when applied to more advanced retrievers, their performance fails. More
specifically, the limitations of existing QPPs can be summarised as follows:

• Limitation 4: We believe that the problem is that BERT-based QPP predictors
do not use the same model and type of representations between QPPs and retrieval
model. In addition:

• Limitation 5a): While some early attempts have been made to adjust to a conver-
sational setting, they do not consider the task’s multi-turn nature.

• Limitation 5b): At the same time, while these attempts were made on Conversa-
tional Search, no one has addressed QPP in a multi-turn recommendation setting.
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In this thesis, our objective is to quantify a system failure by predicting its performance
across multiple turns. In the next section, we briefly mention QPP in a conversational
context. We are concerned with creating a prediction framework for failed conversations
in a recommendation setting.

2.4 Evaluation Methods

In Section 2.1, we have described a range of information seeking tasks, extending from
ad-hoc retrieval models for web search to more conversational tasks such as conversational
search and recommendation. All these tasks share a common intuition; all of them refer to
ranking task, where a given set of documents or items are retrieved in a ranked list based
on their relevance to a user query or natural language feedback. A variety of evaluation
metrics have been proposed to evaluate ranking tasks that aim to address certain aspects of
a system’s objective performance. In addition, for each of the tasks we use, there are some
dedicated datasets on which the tasks are evaluated. In parallel, for the thesis statement
(Section 1.2), new datasets were collected, aiming at improving either the nature of the task
or the functionality of a system. In this section, we first describe the different evaluation
metrics used for assessing system performance and the strength of an association along
the following chapters, and we continue with a summary of all the datasets mentioned
across the thesis, both the openly available and the collected datasets.

2.4.1 Evaluation Metrics

To evaluate the performance of a system, we can use two main criteria: effectiveness
and efficiency. On one hand, effectiveness of a system evaluates the ability of a system to
retrieve the relevant documents in high rank positions in response to a user’s query or CRS
feedback, respectively. On the other hand, efficiency corresponds to the reduced system
time to return the retrieved document list. For this thesis, we will focus on the effectiveness
of a system, whether it concerns a search engine or a conversational recommendation
system. Evaluation with efficiency metrics out of the scope of this project; to a certain
extent, we assess how much time it takes to return a target item to a simulated user in
Conversational Image Recommendation by counting the number of turns taken to retrieve
it.

Effectiveness Metrics

Before presenting the effectiveness metrics, we introduce some notation. In particular,
given a user query q, the returned documents in response to this query are returned as
a ranked list Rq. In practice, not all documents are returned; the top n documents are
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retrieved and returned as a Rn(q) list. In addition, the set of relevant documents in terms
of the degree to which they satisfy a user query can be denoted as Rel(q). In general, the
retrieved documents that are also relevant can be found at the intersection of Rk(q) and
Rel(q). Based on this, the two main effectiveness evaluation metrics for ranking systems
are Precision and Recall (Cleverdon et al., 1966). First, Precision is defined as:

Pr(q,n) = |Rel(q)∩Rn(q)|
Rn(q) (2.19)

which measures the proportion of documents (items) out of the list of retrieved documents
with a cutoff k are relevant to the query. On the other hand, Recall is calculated as:

R(q,n) = |Rel(q)∩Rn(q)|
Rel(q) (2.20)

which measures the proportion of documents (items) out of the list of relevant documents
with a cutoff k are indeed retrieved in response to the query. Recall-based metrics focus
more on retrieving a larger number of relevant documents by risking to retrieve some more
irrelevant ones. Still, both precision and recall are set-based metrics, and therefore, they
do not directly measure a ranking of items (Robertson, 2008). For this reason, Average
Precision (AP) (Harman, 1995) (a major metric) can be used alternatively, since it takes
into account the rank order and is based on precision and recall metrics. AP is defined as:

AP (q,n) = |
∑n
i=1P (q, i)Reli|
Rel(q) (2.21)

where for each document i, P (q, i) is the precision calculated as Equation (2.19), and Reli
is the binary relevance judgment (1 = relevant, 0 = non-relevant) to the query. Still,
this assesses the performance of a single query. Instead, assessing the system effectiveness
based on a query set Q might be useful. When averaging over AP for each query in Q,
Mean Average Precision (MAP) (Craswell and Hawking, 2002) can be calculated as:

MAP (Q,n) = 1
|Q|

|Q|∑
j=1

AP (qj ,n) (2.22)

As mentioned above, one concern with AP and MAP is that the relevance of docu-
ments to a query can be judged as binary (0 or 1). Sometimes relevance needs to be
assessed with a graded scale. As a solution for this problem, the discounted cumulative
gain (DCG) (Järvelin and Kekäläinen, 2002) was proposed, which uses the concept of
graded relevance extending from non-relevant to highly relevant, i.e., 0, 1, 2, 3; these are
the relevance grades).

More specifically, using this approach, the relevance grade of each document is treated
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as a "gained value" for its ranked position in the result list, and this gain is summed
progressively from ranks 1 to n. In other words, a ranked list of documents is transformed
into a list of gain values by replacing the document IDs with their relevance scores (0 to
3, 3 denoting high value, 0 no value) (Järvelin and Kekäläinen, 2002). Then, if we denote
Gi as the graded relevance of document i in the ranked list of the gain vector G⃗, then the
cumulated gain vector C⃗G is defined recursively as:

CGi =


G1, if i= 1

CGi−1 +Gi, otherwise
(2.23)

As mentioned above, users tend to examine highly relevant documents in the top ranks
and gradually ignore documents in lower ranks (Robertson, 2008). In particular, as we
move down the ranks, the share of the document score added to the cumulative gain
becomes smaller. Therefore, a discount factor is needed to assign higher weights to the
relevance of documents that are ranked later in the list and lower weights to those ranked
higher. One way to achieve this is to divide the document score by the log of its rank.
In other words, the discount helps diminish the value of relevant items further down the
ranking (Järvelin and Kekäläinen, 2002). Specifically, the Discounted Gain vector (DCG)
is defined as:

DCGi =


CGi, if i < b

DCGi−1 +Gi/
blogi, if i≥ b

(2.24)

where b is the base of the logarithm, while the selection of the base of the logarithm can
discount sharply or smoothly model according to model variations. A further problem that
DCG might cause is that the different queries have a different length of relevant result
list. To account for this, a normalising factor is added to enable the comparison across
multiple queries (Järvelin and Kekäläinen, 2002). Specifically, the normalised discounted
cumulative gain (nDCG) is defined as:

nDCG(Q,n) = 1
|Q|

|Q|∑
j=1

DCG(qi,n)
IDCG(qj ,n) (2.25)

where IDCG(qj ,n) is perfect ranking of a query and is further defined as:

IDCG(q,n) =
RELn∑
i=1

2Reli−1
log2(i+1) (2.26)

where RELn is the list of relevant documents ordered by their relevance in the corpus up
to n.

Finally, there are cases where a single document might be relevant for a query, or
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simply a user might be biased to click on the top-ranked result (Craswell et al., 2008). In
this regard, Reciprocal Rank was proposed, or in other words, the reciprocal of the rank
of the first relevant document in the result list. To average over all queries in a query set
Q, the Mean Reciprocal Rank (MRR) is used. Specifically, MRR is defined as:

MRR = 1
|Q|

|Q|∑
j=1

1
rankqj

(2.27)

where rankqj is the rank of the top relevant document for query qj in query set Q. Despite
its frequent use, MRR has been criticised as a measure. Specifically, Fuhr (2018) in
his SIGIR Forum article stated some limitations of MRR in IR system evaluation. For
example, MRR provides results opposite to those when examining the average rank, mainly
due to properties of the expected value. Additionally, the reciprocal rank (RR) is an
ordinal scale and not an interval, the average cannot be computed, and the median would
be preferable (Stevens, 1946). For this thesis, we use MRR and compare with other metrics
to provide a complete evaluation picture. Finally, it is important to know whether the
system returns the desired item or document. Success Rate (SR) can be used in this case.

For the rest of this thesis, we will use the above-mentioned metrics for both CRS and
ad-hoc retrieval evaluation. In particular, for the task of Conversational Image Recom-
mendation, we will use nDCG@10, MRR@10 and SR at different cutoffs. In this case, SR
indicates whether the target item was returned by the system above or at rank k. To ex-
amine whether it was the one shown to the user, we are interested in SR@1; if we examine
the ranked list, other cutoffs can be used, such as SR@10. For the case of experimental
results on QPP (described above), we will be using MAP@100, nDCG@10, and MRR@10.
Note that for QPP results, we will not be using the effectiveness metrics independently,
but about how well they correlate with a QPP predictor. Also, note that in the context
of Conversational Image Recommendation, a query qj corresponds to a conversation with
a target image item j in a relative captioning dataset.

Correlation for QPP

More specifically, the correlation (or strength of association) is measured between two
quantities; the per query effectiveness measure and the per query QPP predictor value.
For this purpose, three correlation measures are used. First, the Pearson’s r correla-
tion (Pearson, 1896) is a measure of the linear relationship between two numeric variables.
Let X be a random variable where xi denotes the per query QPP predictor value, and Y

another random variable corresponding to the per query effectiveness measure value yi.
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Then, Pearson’s r is defined as:

r =
∑|Q|
i=1(Xi−X)(Yi−Y )√∑|Q|
i=1(xi−x)∑|Q|

i=1(yi−y)
(2.28)

where ∗ denotes the average value. Other correlation measures are calculated after X and
Y have been ranked, transformed to values between 1 and Q (De Winter et al., 2016). For
example, Spearman’s ρ (Spearman, 1987) random variables and into ranked variables and
assesses the monotonic relations based on the rank of the observations (Temizhan et al.,
2022). Specifically, ρ transforms Xi and Yi into ranked variables rxi and ryi. Then, for
ordinal data (such as two ranked lists measured on an ordinal scale), the scores of one are
assumed to be monotonically related to the other with no ties. Denoting d = rxi− ryi,
both variables receive a rank of i= 1, ...,Q, and ρ can be calculated as:

ρ= 1− 6∑
d2
i

Q(Q2−1) (2.29)

The strength of association between ordinal data can also be assessed with Kendall’s τ
correlation (Kendall, 1938). In particular, τ is the least strict correlation measure, as it
is distribution-free and makes fewer assumptions than r and ρ. In particular, denoting C
as the the number of concordant pairs (how many larger ranks are below a given rank of
a ranked list), D as the number of discordant pairs (how many smaller ranks are below a
given rank in a ranked list), Kendall’s τ can be calculated as:

τ = C−D
Q(Q−1)/2 = 2(C−D)

Q(Q−1) (2.30)

In all cases, the correlation values range between -1 and 1. As for the strength of associ-
ation, interpreting the correlation coefficient can be particularly challenging. In general,
some guidelines for cutoff points have been proposed, where the values ≤ 0.35 are consid-
ered low or weak correlations, the values of 0.36 to 0.67 correspond to moderate correla-
tions, and the values ≥ 068 are strong or high correlations (Schober et al., 2018; Taylor,
1990; Tryon, 1929). However, these descriptors based on the cut-off points mentioned
above are arbitrary, as the results of multiple studies are inconsistent, and therefore, they
should be used judiciously (Schober et al., 2018). Throughout the thesis, we will use all
three correlation measures, using the proposed classification of strength of associations as
an indicator with caution and considering the overall trend of results in the QPP litera-
ture. In addition, we will show why the assessment of the relationship between different
quantities should not be exhausted on the correlation results.
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2.4.2 Evaluation Datasets

In this section, we introduce and provide an overview of the datasets used in this thesis. In
particular, we separately describe the datasets for the two main tasks we use: Conversa-
tional Image Recommendation for many goals and Query Performance Prediction (QPP)
for dense retrieval. For the former, which corresponds to most works in this thesis, we use
some recently collected multi-modal datasets of the relative captioning setting. These refer
to image items and natural language feedback phrases or sentences, and some metadata
with relevant information about the items. A summary of all datasets along with their
corresponding task is presented in Table 2.4. Specifically, the first dataset collected specif-
ically for dialog-based interactive image retrieval was based on the Shoes dataset (Berg
et al., 2010). Following that, Wu et al. (2020) collected the FashionIQ dataset to provide
a resource for developing dialog-based interactive image retrieval models. Three fashion
item categories were selected: Dresses, Shirts, and Tops & Tees.

Specifically, each dataset contains multiple data sources: (i) triples for training and
testing the user simulators, where each row has the form of ⟨target,candidate,caption⟩,
where each relative caption describes the visual differences between the target and can-
didate images. These were obtained by showing candidate-target pairs to real users with
crowd-sourcing. (ii) images of the fashion products that can be used for training and
testing recommendation models. (iii) side information (textual descriptions and prod-
uct meta-data, attribute labels). To select images, the authors used a product review
dataset (He and McAuley, 2016) and used the link to the product website contained in
the dataset, which in turn allowed them to obtain the product information. For example,
from the textual information, they used fashion attributes from the title, the product sum-
mary, and the product descriptions. While this information is useful, it is not directly used
for training and evaluation of a CRS. For this thesis, we do not examine side information
further.

While these datasets provide useful information for assessing CRS performance in
multiple ways, some questions remain open, which we will detail in the following chapters.
To answer the questions to the thesis statement, we collected our datasets. First, we
used the existing relative captioning datasets to produce relevance labels for certain image
items. In particular, we used crowd-sourcing and asked participants what items, out of a
set of presented images, they would prefer instead of the presented assumed target item
they would like to buy. Participants’ preferences were noted as relevant in the items they
found as sufficient alternatives, and the rest as non-relevant. Therefore, we note for each
target, the corresponding candidate and the alternative "targets", which are then used
to train an updated user simulator that accepts alternative options. The data collection
process is described in more detail in Chapter 5.

As a secondary task, and to provide insights to our main task of interest, we conduct
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QPP experiments using search datasets. For this purpose, we use the corresponding
state-of-the-art datasets for dense retrieval models. In particular, we use the MAchine
Reading COmprehension (MSMARCO) passage ranking corpus dataset (Nguyen et al.,
2016), which contains 8.8 million passages extracted from document web pages, where for
each training query in the collection, there are on average 1.06 judged relevant passages.
To distinguish relevant from non-relevant passages, triplets are used for each training
instance with positive (relevant) and negative (non-relevant) passages for each query in
the training set. As for query sets, we use two state-of-the-art neural retrieval datasets,
namely TREC Deep Learning Track 2019 and 2020. In particular, TREC 2019 Deep
Learning track (Craswell et al., 2020) contains 43 test queries with an average of 153.4
relevance judgements per query, while the TREC 2020 Deep Learning track (Craswell et al.,
2021) contains 54 test queries with 39.26 relevance judgements per query on average.

2.5 Conclusions

In this chapter, we have presented the background knowledge related to Conversational
Recommender Systems (CRS) and dialog-based interactive image recommendation, as well
as predicting query performance from multiple sources.

First, we presented an overview of the various Information Seeking tasks in Section 2.1,
ranging from ad-hoc retrieval to conversational search and recommendation. We showed
that their common ground is that they are all ranking tasks. We elaborated more on
the different CRS models in Section 2.2, the background information for the influential
Gated Recurrent Unit (GRU) model in Section 2.2.1, and our setting of interest, namely
Conversational Image Recommendation in Section 2.2.2. At the end of Section 2.2, we
presented a summary of limitations of existing CRS models. Then, in Section 2.3, we
described the existing query performance prediction (QPP) methods and measures, which
will be useful to predict failure in CRS performance. We ended this section by presenting
the limitations in current CRS approaches, pointing out that no one has addressed it in
CRS and a multi-turn setting. We continued with the included datasets and evaluation
metrics used across the thesis in Section 2.4, where we detail both the openly available
datasets we use in this thesis and our own collected datasets during the PhD programme.

This thesis focuses on developing a framework for predicting and improving the various
types of retrieval failure in Conversation Recommendation Systems in the fashion domain.
For this purpose, we examine QPP using state-of-the-art retrieval models in ad-hoc re-
trieval. In particular, we will examine the coherence of the top-retrieved items to discover
semantic relations responsible for improved query performance. We will attempt to use
QPPs aligned with the corresponding retrieval models in Chapter 3. This addresses Lim-
itation 4 (see Section 2.3.3), according to which BERT-based QPP predictors do not use
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the same model and type of representations between QPPs and retrieval model. After hav-
ing carefully studied QPP in its original context, in Chapter 4, we develop a Conversational
Performance Prediction (CPP) framework that takes into account the multi-turn nature of
the task, thereby addressing Limitation 5a) (While some early attempts have been made
to adjust to a conversational setting, they do not take into account the multi-turn nature
of the task.). We will also extend our evaluation methodology to a recommendation set-
ting, thus addressing Limitation 5b) (While these attempts were made on Conversational
Search, no one has addressed QPP in a multi-turn recommendation setting).

Then, in Chapter 5, we address Limitation 1b) (Focusing on a single target item
without having any more options to choose from highly restricts system performance. In
this way, there is a chance that the system keeps repeating the same recommendations, thus
influencing the distribution of items being recommended.) By extending the user prefer-
ence elicitation. We do this by conducting a user study, asking users about alternative
preferences to given target items, and then informing the simulator and the system perfor-
mance estimation. In this way, we also extend the intuition of recommendation scenarios
from a user perspective and examine the user as a more flexible shopper that changes
their mind in a realistic everyday context. In addition, Chapter 5 addresses Limitation
1a) (A system trying to find a single item that the user already knows contradicts the
recommendation intuition), thus aiding users’ exploratory behaviour, by allowing them to
reconstruct their preferences during the interaction and opt for an alternative item that
is close to what they see as a current suggestion. Finally, in Chapter 6, we introduce our
novel recommendation scenarios, including a missing target scenario, and an alternative
user preference scenario. In this way, we address Limitation 1a) (A system trying to find
a single item that the user already knows contradicts the recommendation intuition, and
extend our CPP evaluation setting to the scenarios. To conclude, overall, in Chapters 5
and 6, we address Limitation 2a) (In some cases, an item requested by the user is not
contained in the item database or catalogue. If a system does not account for this, system
failure will be assigned as a reason to a problem that is best described as catalogue fail-
ure) and Limitation 2b) (The given context of Conversational Image Recommendation
does not allow more generalised user satisfaction where the user has a vague information
need that could be satisfied when the system returns the user’s target item or another item
similar to the original target based on a certain criterion.), since we propose two novel
recommendation scenarios and account for various types of recommendation failure.



CHAPTER 2. BACKGROUND AND RELATED WORK 49

Table 2.3: Existing Pre- and post-retrieval Query Performance Predictors, including cur-
rent state-of-the-art QPPs.

Type Predictor Description
Pre-retrieval

st
at

ist
ic

al

query length (Hauff
et al., 2008)

number of non-stop words in the query

query scope (Hauff
et al., 2008)

relates to the ambiguity of a query

σidf (Hauff et al.,
2008)

standard deviation of the inverse document frequency of the
query terms

SCS (Hauff et al.,
2008)

occurrence of a query term in the query relatively to its occurrence
in the collection

AvICTF (Hauff et al.,
2008)

divergence of a collection model from a query model (before retrieval)
lin

gu
ist

ic syntactic complex-
ity (Mothe and
Tanguy, 2005)

distance between syntactically linked words

word poly-
semy (Mothe and
Tanguy, 2005)

number of semantic classes a word belongs to

ne
ur

al neural speci-
ficity (Arabzadeh
et al., 2020)

geometric relations between terms in the embedding space,
capturing term semantics

PClarity (Roy et al.,
2019)

ambiguity of each query term by estimating the number of
‘senses’ of each word

Post-retrieval

fo
cu

s Clarity (Cronen-
Townsend et al., 2002)

KL-divergence between ranking and corpus language mod-
els

WIG (Zhou and Croft,
2007)

difference between the average retrieval score of the result
list and that of the corpus

sc
or

e-
ba

se
d NQC (Shtok et al.,

2009)
standard deviation of the retrieval scores in the result list

mixture of distri-
butions (Cummins,
2014)

retrieval scores as mixture of relevant and non-relevant items

RSD (Roitman et al.,
2017b)

bootstrap-based robust standard deviation

MAX (Roitman et al.,
2017b)

maximum score

co
he

re
nc

e Autocorrelation (Diaz,
2005)

KL-divergence between ranking and corpus language mod-
els

WAND,
WD (Arabzadeh
et al., 2021a)

difference between the average retrieval score of the result
list and that of the corpus

re
fe

re
nc

e
lis

t UEF (Shtok et al.,
2010)

utility of ranking based on similarity with relevance language
models

QF (Zhou and Croft,
2007)

overlap of top items between result list and list from the corpus
using language models induced from result list

autocorrelation (Diaz,
2007)

original result list with either a perturbed version of the scores
diffused in space or an averaged value from multiple retrievals

pseudo-(in)effective
lists (Shtok et al.,
2016)

ranking effectiveness based on pseudo lists

RBO Webber et al.
(2010)

expected average item overlap between two rankings

su
pe

rv
ise

d Neural-QPP (Zamani
et al., 2018)

multi-component supervised predictor as the output of existing
unsupervised QPP predictors with weak supervision

BERT-
QPP (Arabzadeh
et al., 2021b)

BERT fine-tuning with an additional cross-encoder or bi-encoder
network layer to produce a relevance score

qpp-BERTpl (Datta
et al., 2022b)

BERT fine-tuning with a list-wise approach, training supervised
model in chunks of documents

NQA-QPP (Hashemi
et al., 2019)

multi-source supervised score using BERT embeddings for
QA

Deep-QPP Datta
et al. (2022a)

information from semantic interactions between query
terms and terms of the top-documents retrieved with it
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Table 2.4: Summary statistics of the relative captioning datasets used for training and
evaluation of Conversational Image Recommendation systems. Each dataset contains
several target-candidate pairs together with a caption and several image items.

Shoes Dresses Shirts Tops & Tees
Train Test Train Test Train Test Train Test

Triples 10,751 - 11,970 4,034 11,976 4,096 12,054 3,924
Images 10,000 4,658 7,182 2,454 8,555 2,966 8,387 2,808



Chapter 3

Coherence-based Query Performance
Prediction

In Chapter 1, we introduced our task and setting of interest, which is centered on Conver-
sational Recommendation in the fashion domain. This setting mimics an online shopping
scenario, where a customer interacts with a shopping assistant and provides feedback about
how each recommended item is relevant to their desired item. Still, as we described in
Section 1.1, existing evaluation methodologies in fashion CRSs do not account for whether
or to what extent a system fails. In addition, current systems do not explain specific in-
dicators of performance, and thus, do not aid failure prediction (see also Section 2.2.3).
For that reason, it is important to provide a general framework of CRS performance, to-
gether with an evaluation methodology that describes the factors that are responsible for
that performance. In this regard, we are inspired by a previously proposed methodology
initially used for search tasks, namely Query Performance Prediction (QPP) (Carmel and
Yom-Tov, 2010). More specifically, in this chapter, we experimentally test the first hy-
pothesis of the thesis statement: Initially, we can predict the effectiveness of a ranking
of textual items for a textual query, by examining the coherence of the top-retrieved items
based on their dense embedded representations. This addresses Limitation 4 BERT-based
QPP predictors do not use the same model and type of representations between QPPs and
retrieval model. Indeed, as mentioned in Section 2.1, Conversational Recommendation
belongs to the family of ranking tasks, which implies that insights drawn from QPP in
search tasks can also guide the prediction of CRSs by developing the corresponding indi-
cators of performance. In particular, Conversational Image Recommendation, a subset of
CRS tasks, is also based on dense retrieval, in the sense that both text-based critiques and
image-based recommendation lists (both text and images) can be represented at the em-
bedding space. Therefore, drawing inspiration from a task originally developed for search
systems using only text, we inform recommendation systems that contain both text and
images. In this way, we predict the multi-turn rankings of another form of dense retrieval.

51
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Specifically, we do this by proposing QPPs specifically designed for dense retrieval, exam-
ining the relations of the embeddings of the top-retrieved items, and show how those can
be indicative of query performance. After testing our proposed predictors in their original
search setting, we evaluate their usefulness for CRS in Chapter 4.

Figure 3.1: Schematic representation of recent QPP pipelines, together with our proposed
approach (Step 2, bottom). Top: A BM25 ranking consisting of TF.IDF vector repre-
sentations (Step 2) (Arabzadeh et al., 2021a; Diaz, 2007), and fine-tuning BERT-based
models on top of existing rankings (Step 3) (Arabzadeh et al., 2021b; Datta et al., 2022b;
Hashemi et al., 2019; Zamani et al., 2018). Bottom: Dense retrieval ranking with dense
embedded representations. Numbers denote each step in the pipeline.

As we mentioned in Section 2.3, Query Performance Prediction (QPP) aims to predict
the effectiveness of a search result in response to a query without having access to relevance
judgments (Carmel and Yom-Tov, 2010). Indeed, retrieval effectiveness in search engines
can vary across different queries (Harman and Buckley, 2004; Voorhees et al., 2003). Being
able to accurately predict the likely effectiveness of a search engine for a given query may
facilitate interventions, such as asking the user to reformulate the query (Belkin et al.,
2001; Lioma and Ounis, 2008; Rieh et al., 2006; Wang et al., 2020). In the last two
decades, a number of query performance predictors have been proposed, which can be
grouped in two main categories: Pre-retrieval predictors (introduced in Section 2.3.1)
estimate query performance using only linguistic or statistical information contained in
the queries or the corpus (Hauff et al., 2008; He and Ounis, 2004; Mothe and Tanguy,
2005; Scholer and Garcia, 2009; Zhao et al., 2008). On the other hand, post-retrieval
predictors (introduced in Section 2.3.2) use the relevance scores or contents of the top
returned documents, by measuring, for example, the focus of the result list compared to
the corpus (Cronen-Townsend et al., 2002; Zhou and Croft, 2007), or the distribution of
the scores of the top-ranked documents (Cummins et al., 2011; Pérez-Iglesias and Araujo,
2010; Roitman et al., 2017b; Shtok et al., 2009; Tao and Wu, 2014). Predictors based on
NQC (Shtok et al., 2012) (the standard deviation of relevance scores) have been found
to be surprisingly accurate. A further group of predictors that are of particular interest
for our purpose, as outlined in the thesis statement (Section 1.2) examine the pairwise
similarities among the retrieved documents (Arabzadeh et al., 2021a; Diaz, 2007). Still,
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a problem with these predictors (as described in Section 2.3.3) is that thus far, they
have been applied using traditional bag-of-words representations. While examining the
coherence between returned documents is useful, as we show, these representations are not
suitable for predicting the query performance of more advanced retrieval methods.

Indeed, in Section 2.1.1, we mentioned that more recently, pre-trained language mod-
els (PLMs) have introduced neural network architectures that encode the embeddings of
queries and documents (Devlin et al., 2019; Khattab and Zaharia, 2020; Lin et al., 2020;
Xiong et al., 2020), and have led to increased retrieval effectiveness. Often, a BERT-based
model is trained for use as a reranker of the result retrieved by (e.g.) BM25 (Robertson and
Walker, 1994) - such cross-encoders include BERT_CLS (Nogueira and Cho, 2019) and
monoT5 (Nogueira et al., 2020). On the other hand, dense retrieval approaches (Karpukhin
et al., 2020; Xiong et al., 2020) are increasingly popular, whereby embedding-based repre-
sentations of documents are indexed, and those with the similar embeddings to the query
are identified through nearest-neighbour search (e.g. ANCE (Xiong et al., 2020), TCT-
ColBERT (Lin et al., 2020), see Section 2.1.1). Compared to reranking setups, dense
retrieval is attractive as recall is not limited by the initial BM25 retrieval approach, and
improvements in the PLM can improve all aspects of the retrieval effectiveness. Therefore,
dense retrieval models inspire us to develop predictors that are effective for predicting their
rankings.

In parallel, neural architectures have also been adopted as methods to predict query dif-
ficulty. As briefly mentioned in Section 2.3.2, these post-retrieval methods are supervised,
and use refined neural architectures to produce a final performance estimate (Arabzadeh
et al., 2021b; Datta et al., 2022b; Hashemi et al., 2019; Zamani et al., 2018). For instance,
BERT-QPP (Arabzadeh et al., 2021b) fine-tunes BERT (Devlin et al., 2019) embeddings
for QPP by estimating the relevance of the top-ranked document retrieved for each query.
However, its performance is lower or outperformed by unsupervised predictors when using
advanced retrieval methods and the TREC Deep Learning datasets Faggioli et al. (2023b).
In our view, the problem lies in the mismatch of representations between predictor and
ranking, which is best described in Figure 3.1. In Figures 3.1 (a) & (b) we see pipelines
resulting from a BM25 ranking, while in (c) & (d) those resulting from a dense retrieval
system (Karpukhin et al., 2020; Xiong et al., 2020). Existing coherence-based predictors,
such as spatial autocorrelation (Diaz, 2007) and WAND (Arabzadeh et al., 2021a), operate
on the sparse representations of documents; On the other hand, while BERT-based QPP
techniques, e.g BERT-QPP, (Figure 3.1(b)) can be used to predict the effectiveness of
BM25 (Arabzadeh et al., 2021b; Datta et al., 2022b; Hashemi et al., 2019; Zamani et al.,
2018), they use different representation information than that for ranking (indeed, we
argue that BERT-QPP is in effect application of a cross-encoder to score the top-ranked
document). Similarly, when BERT-QPP is applied on a dense retrieval model, a similar
mismatch occurs (Figure 3.1(c)). Instead, to create predictors applicable for dense re-
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trieval, we argue to use the existing embedded representations of dense retrieval models.
Indeed, by considering patterns among the embeddings of the retrieved documents, we can
update existing unsupervised predictors from traditional sparse (Arabzadeh et al., 2021a;
Diaz, 2007) to dense representation-based. This eliminates the need to employ an external
multi-representation pre-trained model such as BERT (Devlin et al., 2019).

At the same time, the selection of an evaluation measure (introduced in Section 2.4.1)
can have an impact on the conclusions of QPP experimental results. This observation
becomes more prominent if we consider, for example, that unsupervised QPP predictors
such as NQC (Shtok et al., 2009) were primarily optimised for MAP at deeper cutoffs
(100 or 1000); on the other hand, more recent supervised predictors were either optimised
for RR@10 (Arabzadeh et al., 2021b; Hashemi et al., 2019) or used both NDCG@10 and
RR@10 (Datta et al., 2022b) providing comparable results between the two measures, but
in both cases, results for MAP were missing. As a result, it is impossible to provide fully
generalisable insights, as missing to report either of them can lead to biased results and
incomplete conclusions. Moreover, we believe that designing experimental studies should
be aligned with the idea that the different measures are not interchangeable, and that pro-
posed predictors could be complemented with the case where the predictor fails, together
with the explanation of the reasons why this happens.

One explanation for why a QPP predictor fails could be that query performance is
further mediated by query categorisation. To this point, only a few works have examined
how QPP varies with query categories (Carmel et al., 2006; Faggioli et al., 2021a). Indeed,
knowing which queries are more difficult to answer may inform us about how to develop
more refined predictors. Recently, a query taxonomy was proposed (Bolotova et al., 2022),
where the identified question categories were placed in a labelled dataset together with a
classifier that enables researchers to apply this categorisation to other datasets. In this
work, certain question categories were found to be more difficult to answer compared to
others, in particular the questions belonging to Debate, Experience, and Reason categories.
In addition, to complement the non-factoid types of questions, a group of factoid questions
was extracted and added to the resulting dataset together with a "not-a-question" type,
indicating queries submitted to web searches without a question intent. Since this dataset
and classifier are relatively new, there has been no attempt to examine how it affects
the prediction of query performance. Still, the original study used datasets from TREC
and MSMARCO to check the distribution of questions, which directly relates with QPP
research especially for advanced retrieval models. Therefore, in this Chapter, we also
quantify the extent to which query categories are responsible for the unstable performance
of QPPs across different evaluation measures.

In short, our contributions for this Chapter can be summarised as follows:

• We predict the effectiveness of rankings created by single-representation dense re-
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trieval models (ANCE & TCT-ColBERT), emphasising the differences with sparse
retrieval models more traditionally used in QPP research.

• We propose some embedding variants of existing unsupervised coherence-based pre-
dictors that employ neural embedding representations and our own extension pair-
Ratio, an unsupervised predictor which uses pairwise relations of embedding vectors.
In this way, we create predictors specifically designed for dense retrieval.

• We study existing predictors and our own proposed predictors to two state-of-the-
art single-representation dense retrieval models, namely ANCE (Xiong et al., 2020)
and TCT-ColBERT (Lin et al., 2020), as well as BM25 and show that changing the
representations increases performance significantly not just for dense but also sparse
retrieval.

• We conduct an extensive study by using all three evaluation metrics currently used
for QPP, and highlight when each predictor behaves under each measure.

• By also comparing with supervised predictors, we show that applying a BERT-
based model for dense QPP is an unnecessary step in the pipeline that decreases
QPP performance.

• Going deeper, we select the most representative and best performing predictors to
study the importance of differences among predictors and query types (resulting from
applying the recent query classifier (Bolotova et al., 2022)) on query performance.

• Consequently, we apply multilevel statistical models (Curran et al., 1997; Field et al.,
2012; Maxwell et al., 2017; Singer and Willett, 2003) in QPP to quantify the rela-
tionship between query categorisation and the unstable QPPs. In our analyses, we
measure the performance of different QPPs and how these are related to the total
QPP variation that can be attributed to the categorisation or as we term query types.
At the same time, we detect a unique sensitivity of dense retrieval methods, which
are affected by query type (up to 35% increase in query performance variations due
to query categorisation) and exhibit larger differences between predictors, a pattern
which is not apparent in sparse retrieval.

• We obtain insights from some coherence-based predictors on state-of-the-art retrieval
models and datasets to inform our task of interest for conversational recommenda-
tion, taking advantage of the embedding-based nature of contemporary CRS mod-
els (Guo et al., 2018; Wu et al., 2021a).

The findings of this Chapter can be summarised as follows: (i) Using coherence-based
unsupervised predictors can sufficiently predict dense retrieval models for many of the ex-
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amined contexts, and although we are inspired to predict dense retrieval, they are also ef-
fective for BM25. (ii) Our proposed predictors provide the highest correlations for the more
precision-oriented NDCG@10 for all retrieval models, while NDCG@10 and MRR@10 pro-
vide similar results. (iii) In our experiments on the TREC Deep Learning Track datasets,
we demonstrate improved accuracy upon dense retrieval using the dense versions of co-
herence predictors (up to 92% compared to sparse variants for TCT-ColBERT and 188%
for ANCE). (iv) Our multilevel perspective proposes a solution to correlation instabilities
between measures, by showing how the interplay with query types differently influences
each of the measures. In other words, we provide an analytical point that can explain
any predictor, and show how our proposed predictors mainly optimise the measure that
is less influenced by query variations. Using existing distribution-based evaluation QPP
measures and a particular type of linear mixed model, we find that query types further
significantly influence query performance (and are up to 35% responsible for the unsta-
ble performance of QPP predictors), and that this sensitivity is unique to dense retrieval
models. (v) In particular, we find that in the cases where our predictors perform lower
than score-based predictors, this is partially due to the sensitivity of MAP@100 to query
types. Our novel analysis provides new insights into dense QPP that can explain poten-
tial unstable performance of existing predictors and outlines the unique characteristics of
different query types on dense retrieval models.

The structure of the rest of this chapter is as follows: We present related work in
Section 3.1, and present our new extended predictors in Section 3.2. Then, we follow with
traditional correlation analysis of QPP predictors in Sections 3.3 and 3.4, continue with an
extended linear mixed model analysis to test for query type in Section 3.5, and conclude
with some final remarks in Section 3.6.

3.1 Related Work on Existing QPP Predictors

In this chapter, we focus our attention on post-retrieval QPPs, since, as we mentioned
in Section 2.3.2, they are in general more accurate than pre-retrieval QPPs (Hauff et al.,
2008). There are two main reasons why we eliminate pre-retrieval predictors from our
focus. First, existing unsupervised neural pre-retrieval predictors (Arabzadeh et al., 2020;
Roy et al., 2019; Saleminezhad et al., 2024) propose geometric semantic similarities of
query terms (see Section 2.3.1). Since these predictors examine queries at the token-level,
they do not apply to single-representation dense retrieval. Second, information based on
queries can, in general, provide limited information on ranking effectiveness.

Furthermore, we eliminate some post-retrieval QPPs, which mainly refer to term-based
relations. In particular, Clarity (Cronen-Townsend et al., 2002) and Utility Estimation
Framework (UEF) (Shtok et al., 2010) (Section 2.3.2) examine the focus on the result
list induced by language models and rely upon term probabilities. Therefore, they are
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not feasible for extending our predictions to dense retrieval. Also, since pseudo relevance
feedback approaches for dense retrieval are still in their infancy (Wang et al., 2021; Yu
et al., 2021), we do not consider Query Feedback (QF) Zhou and Croft (2007) further.

Below we discuss the main types of QPPs that could be applied to dense retrieval,
specifically score-based unsupervised predictors (Section 3.1.1) and document representation-
based predictors (Section 3.1.2).

3.1.1 Score-based QPP

Score-based predictors such as the Maximum Score (Roitman et al., 2017a), Normalised
Query Commitment (NQC) (Shtok et al., 2009), and the different variations of NQC that
further enhance its performance (Cummins et al., 2011; Pérez-Iglesias and Araujo, 2010;
Roitman et al., 2017b; Tao and Wu, 2014) and especially Robust Standard Deviation esti-
mator (RSD) (Roitman et al., 2017b), which estimates a more robust version of variance
with bootstrapping (Section 2.3.2) are easily applicable to dense retrieval, since scores are
computed by each retrieval method. These QPPs correspond to step 1 in Figure 3.1, both
sparse and dense pipelines.

3.1.2 Document Representation-based QPP

Predictors based on document representations (Arabzadeh et al., 2020, 2021a,b; Datta
et al., 2022b; Diaz, 2007; Faggioli et al., 2023a; Hashemi et al., 2019; Roy et al., 2019;
Saleminezhad et al., 2024) capture semantic relations either between queries, documents,
or their interaction (Devlin et al., 2019; Lin et al., 2020), which makes them particularly
important for examination in a dense retrieval setting.

Unsupervised Coherence Predictors

In general, effective unsupervised predictors that consider document representations are
preferable, since they require less computation than supervised predictors. Examples
include coherence-based predictors such as spatial autocorrelation (Diaz, 2007) and network
metrics such as Weighted Average Neighbour Degree (WAND) and Weighted Density
(WD) (Arabzadeh et al., 2021a), which examine lexical representations of documents
(Section 2.3.2) One limitation of these predictors (shown in Figure 3.1 (a)) is that they
were proposed for sparse (TF-IDF) document representations and have not previously
been applied to dense embedded representations.

Supervised & Neural Predictors

Supervised QPPs (Section 2.3.2) are attractive due to the varying sources of indicators
for inferring query performance (Roitman et al., 2017a; Zamani et al., 2018). At the
same time, they are computationally complex compared to unsupervised predictors. For
example, BERT-QPP (Arabzadeh et al., 2021b) fine-tunes a BERT model for the QPP
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task by adding cross-encoder or bi-encoder layers that estimate an effectiveness measure
(e.g. NDCG) based on the contents of the top returned document in response to the
query. While BERT-QPP can also be applied to the dense retrieval rankings, it uses a
different model to that used by the dense retrieval approach itself. Out of the two BERT-
QPP variants, the bi-encoder version is closer to the intuition of single-representation
dense retrieval. Finally, qppBERT-PL (Datta et al., 2022b) adds an LSTM network on
top of the BERT representation to model both document contents and the progression of
estimated relevance in the ranking. Compared to BERT-QPP, this approach has promise
as it considers more information than just the top-ranked document.

To summarise, existing predictors have either focused on sparse document representa-
tions or retrieval scores on the unsupervised side, or have introduced neural pre-trained ar-
chitectures to create more complex supervised predictors. However, no work has addressed
unsupervised predictors using dense embedded representations, as are readily available in
dense retrieval configuration. Instead, we argue that by using simple predictors that
consider document representation resulting from dense models (Figure 3.1 (d)), we can
accurately predict effectiveness without the need for supervised cross-encoder-based meth-
ods (Figure 3.1 (b) and (c)). In the next section, we detail existing predictors that can be
applied to dense retrieval.

3.2 Coherence Predictors for Dense Retrieval

In this section, we first describe some existing sparse coherence-based predictors in Sec-
tion 3.2.1, and then show how these can be adapted to be better suited for dense retrieval
settings in Section 3.2.2.

3.2.1 Sparse Coherence-based Methods

Sparse coherence-based predictors include spatial autocorrelation (Diaz, 2007) and some
network metrics (Arabzadeh et al., 2021a). Below, we see their definitions as originally
proposed.

Spatial Autocorrelation (AC)

First, consider d to be a document’s TF.IDF vector. Then, the inner product of two
documents at ranks i and j is given by sim(di,dj). We can obtain a pairwise similarity
matrix among n top-ranked documents as follows:

W =


sim(d11) sim(d12) ... sim(d1n)

... ... ... ...

sim(dn1) sim(dn2) ... sim(dnn)

 (3.1)
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where n is the cutoff number of the top-k documents. For brevity of notation, let
sim(dij) = sim(di,dj). Projecting (multiplying) each element of the matrix Wij on the
vector of the original retrieved scores, Score(d⃗), we can obtain a new list of diffused scores
as:

Score(d̃) =W ·Score(d) (3.2)

Thereafter, an estimate of the spatial autocorrelation (AC) (Diaz, 2007) is obtained by
using the Pearson correlation between the two vectors:

AC = corr(Score(d̃),Score(d)) (3.3)

which quantifies the relation between the initial and diffused scores. Indeed, as mentioned
above, a low correlation between the original retrieval scores (i.e. Score(d)) and those
weighted by their topical similarity (the diffused scores, Score(d̃)) was found to imply
poor retrieval performance (Diaz, 2007).

Network Metrics

As mentioned above, the matrix W represents all pairwise similarities between the top-
retrieved documents. This matrix is equivalent to a fully connected network, where each
node VG corresponds to the d TF.IDF vector, and each edge EG corresponds to each
entry sim(dij) (Arabzadeh et al., 2021a), or more formally G(q,D(k)

q ) = {VG,EG,W}.
In this regard, to avoid all edges being considered equal without attention to the edge
weight, the network is further pruned via thresholding (Christophides et al., 2015), where
the similarities higher than the mean similarity value are selected as neighbours1.

Consequently, we have the following definitions, which correspond to some recently
proposed network metrics (Arabzadeh et al., 2021a) for QPP:

AverageNeighbourDegree(AND) = 1
k

k∑
i=1

( 1
|Ndi
|

∑
j∈Ndi

|Ndj
|) (3.4)

where Ndi
is the neighbourhood of document di. Typically, Equation (3.4) is applied

on the pruned graph that only contains edges between the most similar documents, and
hence corresponds to the more accurate Weighted AND (WAND) measure (Arabzadeh
et al., 2021a).

Another way to think about coherence is to count the observed edges or similarities
over the set of all possible edges. This results in the Density measure, as follows:

Density(D) = 2|EG|
|VG|(|VG|−1) (3.5)

1 In this Chapter, we use the definitions for two of the metrics described in the original paper.
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(a) Effective Query (b) Ineffective Query
Figure 3.2: Heatmap of pairwise similarity matrix of the top-100 TCT-ColBERT doc-
ument embeddings for returned for the best (query id 104861 with NDCG@10=1) and
worst performing queries (query id 489204 with NDCG@10=0.189) from the TREC DL
19 queryset.

Similarly, Equation (3.5) is applied on the pruned graph (dges below the overall average
edge weights in the graph are pruned (Christophides et al., 2015), as applied in the original
paper (Arabzadeh et al., 2021a)) which contains the edges of the most similar documents,
and hence corresponds to the Weighted Density (WD) measure (Arabzadeh et al., 2021a).
In short, a higher neighbourhood degree and a higher density of a graph network indicates
a more coherent set of top-retrieved results. The general intuition behind these measures is
that the presence of coherence, as reflected by highly similar documents in a top-retrieved
set indicates the ability of the retrieval method to distinguish relevant from non-relevant
documents, and therefore, return the relevant ones at the top of the list.

3.2.2 Dense Coherence-based Methods

We now derive the embedding representation variants of the above predictors to make
them suitable for the prediction of neural dense retrievers. We first create the variants for
embedding-based AC and network metrics, and then introduce a new variant that extends
AC by considering rank groupings.

AC-embs

Let ϕd and ϕq respectively represent the dense embedded representation of a document
and a query. Firstly, we adapt autocorrelation, such that instead of TF.IDF vectors we
consider the embedded document representations. Let the inner product of two documents
at ranks i and j (with embeddings ϕi and ϕj) be written sim(ϕdij), then we can define
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the pairwise similarities of the top n ranked documents as:

Wϕ =


sim(ϕd11) sim(ϕd12) ... sim(ϕd1n)

... ... ... ...

sim(ϕdn1) sim(ϕdn2) ... sim(ϕdnn)

 (3.6)

We can then apply autocorrelation (denoted as AC above) as per Equations (3.2) & (3.3).
We denote this as AC-embs.

Network-embs

Similarly, and as we showed that the similarity matrix is equivalent to a fully connected
network set of edges, we can apply WAND and WD as per Equations (3.4) & (3.5), denoted
as WAND-embs and WD-embs, respectively.

pairRatio

We now introduce an extension of AC-embs inspired by visually exploring embedding rela-
tions. Specifically, in Figure 3.2, we visualise the pairwise similarity matrix (Wϕ) obtained
using TCT-ColBERT (Lin et al., 2020) embeddings for the top-100 passages for the one
high and one low performing query in the TREC Deep Learning Track 2019 queryset. For
the best performing query, there is higher pairwise similarity among documents of top
ranks (top left corner, indicated by a group of lighter shading), and lower correlation for
lower ranks (darker shading). On the other hand, for the worst query, elements of darker
shading appear at high ranks, indicating that the top-ranked documents may not be as
coherent. In addition, there is less dark shading in low ranks compared to the best query.
These observations inspire us to explore the trend of average top vs. bottom rank pairwise
similarities of top-ranked embeddings.

Specifically, let Wϕ
ψ1..ψ2

denote the (diagonal) subset of Wϕ between ranks ψ1 and ψ2.
Then, for a given rank threshold ψ (a rank position from 1 up to ψ or from ψ to k), we
can measure the ratio between the mean pairwise similarity above and below rank ψ, i.e.
Wϕ

0..ψ and Wϕ
ψ..k as follows:

pairRatio(Wϕ) = (Wϕ
1..ψi

) · (Wϕ
ψj ..k

)−1 (3.7)

where Wϕ denotes the mean of the given matrix, ψi corresponds to the end of the upper
matrix, and ψj symbolises the start of the lower matrix (we use the two cutoff points
as separate hyperparameters). We called this predictor pairRatio. Unlike WAND and
WD, we consider the magnitude of this contrast as indicative of query performance. We
believe that, since this relates to the retrieval method itself, it should be indicative of
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query performance especially for advanced retrieval methods.
Still, the similarity matrix Wϕ can only provide information about the relative sim-

ilarity of documents. Introducing some information about the document scores would
increase performance prediction accuracy, since it relates to the absolute ranking of each
document. Let A be an adjusted matrix, where each entry, for a document pair i and j is
multiplied by the final similarity of the query to each of the documents:

Aij =Wij · (ϕi ·ϕq) · (ϕj ·ϕq)

A better encodes similarity of the query among the pairwise document similarities. pairRa-
tio (Equation (3.7)) can then be applied upon A, which we denote as adjusted pairRatio,
or A-pairRatio.

In short, we are interested in the effectiveness of these predictors based on dense docu-
ment representations and how they perform compared to their sparse versions. Table 3.1
summarises the limitations of each QPP predictor type concerning their relevance for pre-
dicting single-representation dense retrieval models, as described in Section 3.1, as well
as the advantages of our proposed predictors, as described in this Section. Based on
these observations, and connecting back to Figure 3.1, the pipeline variations of existing
post-retrieval predictors can be described as:

Pipescore-based =RetrievalBM25orDense≫ Correlation (3.8)

Pipesparse-coherence =RetrievalBM25≫ TD.IDF coherence≫ Correlation (3.9)

Pipedense-coherence =RetrievalBM25≫ Emb-based coherence≫ Correlation (3.10)

Pipesupervised =RetrievalBM25≫ Fine-tuningBERT ≫QPP estimation≫ Correlation
(3.11)

We see that Equation (3.8) contains the least steps, since the scores are already computed
by each retrieval model (taking an average or a standard deviation does not require further
computational cost). Then, Equations (3.9) and (3.10) indicate that sparse and dense
coherence-based predictors only require the representation pattern calculation before the
final correlation. Finally, Equation (3.11) shows that supervised predictors require an
additional fine-tuning step before calculating the final predictor, thus requiring the highest
computational cost. We test the performance of our proposed dense coherence-based
predictors compared to score-based and supervised predictors in Section 3.4 using the
above equations for the computation of each predictor type.
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Table 3.1: Summary of limitations of existing QPP predictors of multiple types with exact
correspondence in QPP pipelines as detailed in Figure 3.1 and the proposed solutions
brought by our proposed predictors.

Predictor
Type

Figure 3.1
part

Limitations/Advantages

Pre-
Retrieval

N/A They do not provide semantic information relevant for
single-representation dense retrieval or provide it only at
the token level.

Score-based all (Step 1) They do not incorporate semantic information as found in
dense retrieval models.

Coherence -
Sparse

a They do not support representations that match dense re-
trieval models, dense retrieval model structure requires the
extensions of their intuitions.

Coherence -
Dense

d They match the representations of dense retrieval models,
facilitate extended intuitions with semantic information, and
eliminate the need to employ an external model.

Supervised b & c They are computationally expensive, result in representation
mismatch with dense (and sparse) retrieval model represen-
tations, and result in worse performance when applied to
advanced models.

3.3 Experimental Setup

In this section, we begin with a traditional evaluation of QPPs with correlations. To
achieve this, our experiments address the following research questions:

RQ3.1 How do unsupervised coherence-based predictors compare to unsupervised
score-based predictors in dense and sparse retrieval?

RQ3.2 How do unsupervised predictors perform compared to supervised predictors in
dense and sparse retrieval?
To address these research questions, our setup is as follows:

Datasets: We use the MSMARCO passage ranking corpus, and apply the TREC
Deep Learning track 2019 and 2020 query sets, containing respectively 43 and 54 queries
with relevance judgements. In particular, each query in these querysets contains many
judgements obtained by pooling various distinct retrieval systems.

QPP Predictors: As unsupervised score-based predictors, we apply Maximum score
(MAX) (Roitman et al., 2017a), and NQC (Shtok et al., 2009). As a representative
variant of NQC, we choose RSD. This bootstrap-based predictor is the most recent NQC
variant and was shown to outperform other score-based predictors. Specifically, we use the
RSD(uni) version which samples documents uniformly. Our choice of this RSD variant
is indicated by the fact that the other two variants are based on sampling documents
according to other term probability-based predictors; instead, a uniform sample is in
line with all three retrieval models and especially the single-representation dense retrieval
models. For each cutoff, we sample from 0.60 to 0.80 of the initial result list size. We
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use spatial autocorrelation (AC) (Diaz, 2007), WAND and WD (Arabzadeh et al., 2021a),
and the interpolation of WAND and WD with NQC (following the findings of the original
paper (Arabzadeh et al., 2021a), which suggest that network metrics further increase
the performance of NQC). We also report our embedding variants (AC-embs, WAND-
embs, WD-embs, PairRatio, A-PairRatio). For each unsupervised predictor, we tune the
hyperparameters of each dataset on the other. Specifically, to tune the cutoff value for
the top-k documents all unsupervised predictors including ours, we use a grid of values
[5,10,20,50,100,200,500,1000]. For PairRatio and A-PairRatio, we also vary the other
upper and lower rank threshold hyperparameters ψi and ψj .

For supervised predictors, we report the bi-encoder and cross-encoder variants of
BERT-QPP (Arabzadeh et al., 2021b). To achieve this, we retrained the BERT-QPP
cross-encoder and bi-encoder models specifically for each of the dense retrieval models.
These supervised predictors exhibit their highest correlations mainly for MRR, which
means that they train models that estimate the relevance of the top document of a rank-
ing. In this regard, we check whether an alternative supervised predictor (which we call
top-1(monoT5)) that uses only the top-retrieved document to a monoT5 model (Nogueira
et al., 2020) – i.e. trained for relevance estimation and ranking rather than performance
prediction – can perform well in dense retrieval. Note that we deliberately use the term
QPP Predictors instead of baselines, since our purpose is not to demonstrate the superi-
ority of a single predictor, but rather how a group of predictors behaves under different
contexts and retrieval models.

Retrieval Systems: We deploy three retrieval approaches: BM25 sparse retrieval
(applying Porter’s English stemmer and removing standard stopwords) as implemented
by Terrier (Ounis et al., 2006), and two single-representation dense retrieval approaches,
namely ANCE (Xiong et al., 2020), and TCT-ColBERT (Lin et al., 2020) with PyTer-
rier (Macdonald et al., 2021) integrations.2

Measures: Following the TREC 2019 Deep Learning Track Overview (Craswell et al.,
2020), we measure system effectiveness in terms of NDCG@10 and MAP@100. We further
add MRR@10, following some recent work (Arabzadeh et al., 2021b; Hashemi et al., 2019).
To quantify the accuracy of the QPP techniques, we adopt Kendall’s τ correlation measure,
as typically reported in QPP literature (Cronen-Townsend et al., 2002; Diaz, 2007; Hauff
et al., 2008; Shtok et al., 2009, 2010, 2012; Zamani et al., 2018).3

2 https://github.com/terrierteam/pyterrier_dr
3 In general, Kendall’s τ gives lower scores than Pearson’s and Spearman’s correlation, but makes the
least assumptions about a linear relationship between variables. Therefore, instead of reporting multiple
correlation measures, we prefer to report three evaluation measures.
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Table 3.2: Kendall’s τ correlations of unsupervised and supervised predictors for TREC DL
2019. The highest correlation by an unsupervised predictor in each column is emphasised
in bold and (*) indicates significance at α = 0.05.

BM25 ANCE TCT
MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10

Effectiveness 0.232 0.479 0.639 0.332 0.643 0.806 0.402 0.720 0.898
Score-based

Max 0.171 0.157 0.087 0.428* 0.316* 0.241* 0.297* 0.250* 0.015
NQC 0.322* 0.281* 0.075 0.499* 0.463* 0.216 0.335* 0.243* 0.171

RSD(uni) 0.328* 0.288* 0.077 0.495* 0.467* 0.264* 0.335* 0.228* 0.227
Sparse Coherence-based

AC 0.156 0.073 0.071 0.111 0.081 0.061 0.080 -0.198 -0.051
WAND 0.209* 0.126 0.111 0.187 0.113 0.025 0.189 0.095 -0.006

WD 0.158 0.101 0.087 0.158 -0.004 -0.009 0.184 0.121 0.015
WAND(NQC) 0.258* 0.148 0.124 0.178 0.113 0.025 0.189 0.095 -0.01

WD(NQC) 0.200* 0.186 0.035 0.158 -0.008 -0.012 0.18 0.135 0.006
Dense Coherence-based

WAND-embs -0.096 -0.232 -0.019 0.138 -0.157 -0.029 -0.036 0.139 0.041
WD-embs 0.224* -0.170 0.014 0.089 -0.219 -0.241* -0.147 -0.033 0.045
AC-embs 0.373* 0.144 0.098 0.437* 0.285* 0.261* 0.056 0.018 -0.129

pairRatio(ours) 0.171 0.270* 0.194 0.295* 0.334* 0.087 0.200 0.248* -0.060
A-pairRatio(ours) 0.446* 0.352* 0.142 0.382* 0.403* 0.216 0.280* 0.259* 0.171

Supervised
BERT-QPP (bi) 0.229* 0.305* 0.260* 0.162 0.144 0.067 0.111 0.048 0.083

BERT-QPP(cross) 0.264* 0.254* 0.174* 0.198 0.117 0.038 0.211* 0.088 0.041
top-1(mono-T5) 0.180 0.294* 0.359* 0.224* 0.294* 0.470* 0.058 0.038 0.086

3.4 Correlation QPP Results

In this section, we report the QPP results with the well-established evaluation methodology
based on correlations with system effectiveness. In this way, we compare the performance
of our own proposed predictors with other relevant predictors across a variety of contexts
consisting of different retrieval models and evaluation metrics. In this regard, Tables 3.2
and 3.3 show the accuracy of all our examined predictors on the TREC DL 2019 and
2020 query sets, respectively. Within each table: groups of columns denote the various
retrieval approaches; the uppermost row reports the mean effectiveness of each ranking
approach for each evaluation measure; the next group of rows contains the Kendall’s τ
correlation of the score-based predictors (using Equation (3.8)), the next one the unsuper-
vised lexical coherence-based predictors (using Equation (3.9)); then we report the results
for the embedding-based predictors (using Equation (3.10)); and finally for the supervised
predictors (Arabzadeh et al., 2021b) (using Equation (3.11)).

3.4.1 RQ3.1: Score-based vs Coherence-based Predictors

As expected, for BM25, distribution-based score predictors (NQC and RSD(uni) show
high accuracy for MAP@100 and NDCG@10, while their accuracy is lower for MRR@10,
especially for DL 19. However, unlike older datasets, sparse coherence predictors exhibit
very low correlations for TREC DL datasets. As for dense coherence predictors, surpris-
ingly, AC-embs variant is the best performing predictor for AP@100, and for NDCG@10
on 2020. As for our pairRatio variants, they are less effective than other unsupervised pre-
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Table 3.3: Results on TREC DL 2020. Notation as per Table 3.2.

BM25 ANCE TCT
MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10

Effectiveness 0.275 0.493 0.614 0.363 0.607 0.803 0.454 0.686 0.831
Score-based

Max 0.215* 0.214* 0.184 0.213* 0.285* 0.337* 0.342* 0.243* 0.062
NQC 0.526* 0.438* 0.281* 0.443* 0.082 0.172* 0.454* 0.246* 0.133

RSD(uni) 0.568* 0.431* 0.288* 0.403* 0.275* 0.155 0.335* 0.341* 0.208*
Sparse Coherence-based

AC -0.199* 0.017 -0.097 -0.115 -0.022 -0.014 0.018 -0.118 0.030
WAND 0.189* -0.031 -0.026 0.130 0.009 -0.065 0.208* 0.220* 0.023

WD 0.183* 0.006 -0.036 0.158 0.044 0.01 0.225* 0.216* 0.018
WAND(NQC) 0.220* 0.101 -0.024 0.130 0.005 -0.067 0.202* 0.213* 0.188

WD(NQC) 0.253* 0.160 0.036 0.148 0.023 -0.010 0.223* 0.192* 0.004
Dense Coherence-based

WAND-embs 0.038 0.137 0.042 0.291* 0.300* 0.077 -0.05 0.107 -0.066
WD-embs 0.099 0.158 0.028 0.213* 0.289* 0.394* 0.127 0.127 -0.161
AC-embs 0.607* 0.443* 0.339* 0.324* 0.219* 0.149 0.121 0.137 -0.002

pairRatio(ours) 0.271* 0.203* 0.130 0.178 0.186 -0.132 0.364* 0.318* -0.280*
A-pairRatio(ours) 0.482* 0.316* 0.189 0.348* 0.270* 0.115 0.429* 0.363* -0.244*

Supervised
BERT-QPP (bi) 0.322* 0.315* 0.351* 0.274* 0.047 0.058 0.353* 0.195* 0.083

BERT-QPP(cross) 0.375* 0.345* 0.403* 0.180 0.043 0.012 0.261* 0.173 0.041
top-1(mono-T5) 0.371* 0.400* 0.534* 0.259* 0.237* 0.365* 0.279* 0.240* 0.159

dictors, such as NQC and AC-embs (except for MRR@10), as well as supervised predictors
on MRR@10.

Next we consider the two dense retrieval settings, i.e. ANCE & TCT-ColBERT. For
TCT-ColBERT, we observe that our pairRatio predictors outperform not only supervised
predictors, but also NQC (the best performing unsupervised predictor) for NDCG@10 and
MRR@10 for both datasets, are only behind RS(uni) for MRR@10 in the DL 2019 dataset,
and are competitive for AP@100. Another observation is that A-pairRatio has increased
the accuracy compared to pairRatio, particularly for the TCT-ColBERT model, which
indicates the need for including document-query relations. In summary, for NDCG@10
and MRR@10, for TREC DL 2020, in all four cases our dense coherence-based predictors
(any of them considered) outperform score-based predictors; for TREC DL 2019, in two
of the four cases ours are higher, in one case RSD is higher, and in one case they are iden-
tical. For ANCE, WAND-embs and WD-embs are better than score-based predictors for
NDCG@10 and MRR@10 for the 2020 dataset, while they are only slightly behind them
in the 2019 dataset. Overall, for MAP@100, NQC or RSD (uni) consistently outperform
coherence-based predictors, while for NDCG@10 and MRR@10, the picture is more unsta-
ble; however, in most cases, coherence-based predictors win for dense retrieval. Further, as
might be expected, changing the type of representations from sparse to dense increases the
performance of coherence-based predictors across the dense retrieval settings (for ANCE,
in 7 out of 9 (QPP, Measure) cases in TREC 2019, and 9 out of 9 for TREC 2020; for
TCT-ColBERT, our pairRatio variants are more effective), as the updated representations
match those of the retrieval methods. To answer RQ3.1, for dense retrieval, score-based
predictors perform well for MAP@100, while coherence-based predictors show increased
accuracy for NDCG@10 and MRR@10. For sparse retrieval, dense coherence predictors
are in general better than score-based predictors.
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3.4.2 RQ3.2: Unsupervised vs. Supervised Predictors

Next, we compare the performance of unsupervised with supervised QPP predictors for
each retrieval method. For BM25, we can reproduce the results of the bi-encoder and
cross-encoder variants of BERT-QPP, as reflected by the higher values in MRR and the
competitive correlation on the other two metrics. For BM25, we used the authors’ check-
points, while we re-trained the method for ANCE & TCT-ColBERT. However, their values
are still lower than NQC, (a simple score-based unsupervised predictor), and RSD(uni)
(NDCG@10 on the TREC 2019 queryset), our pairRatio (MRR@10 on the 2019 queryset),
AC-embs (AP@100 on 2019, AP@100 on 2020, NDCG@10 on 2020), and top-1 monoT5
(MRR@10 on both datasets). Most importantly, for the two dense retrieval methods, su-
pervised predictors are not as effective as unsupervised predictors, such as Max and NQC.
For TCT-ColBERT, supervised predictors are less effective than our pairRatio variants
for NDCG@10 and MRR@10, and NQC and RSD(uni) for all metrics. The strongest
observed correlations of BERT-QPP variants in dense retrieval are for AP@100. However,
they have a cost to deploy (applying a BERT model on the top-ranked result). We ar-
gue that this resource would be better spent on re-ranking the top results. In addition,
the simpler "supervised" variant, top-1(mono-T5), which uses the monoT5 score of the
top-ranked document is a more accurate predictor than BERT-QPP across all retrieval
methods, particularly for MRR@10, which is the metric that BERT-QPP is most compet-
itive. This surprising result shows that BERT-QPP is itself just a relevance estimator for
the top-ranked document that has been trained to predict MRR@10; using any effective
relevance estimator can do as good a job, if not better. To answer RQ3.2, we find that the
existing BERT-QPP supervised predictors are less accurate than unsupervised predictors
(existing and ours) for dense retrieval.

3.4.3 Conclusions from Correlation Results

In summary, we observe that answering RQ3.2 is more straightforward than answering
RQ3.1, mainly because both score-based and dense coherence-based predictors outperform
supervised predictors, but when they are compared with one another, different results are
observed according to the researcher’s choices (i.e., metric, model, etc.). Our main difer-
ence from previous research (Arabzadeh et al., 2020, 2021a,b; Datta et al., 2022b; Hashemi
et al., 2019; Shtok et al., 2009, 2010) is that we explicitly mention that out of a variety of
contexts, our proposed predictors are suitable for a subset of those. In particular, we show
that in most cases (and excluding interpolations with score-based predictors), our dense
coherence-based predictors achieve significant improvements compared to their sparse ver-
sions especially for ANCE. For TCT-ColBERT, the best performing dense coherence-based
predictors are our own extensions pairRatio and A-pairRatio, which is expected, since the
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intuitions for them were developed based on TCT-ColBERT embedding visualisations.
We also showed that while the main improvements are observed for NDCG@10, we see
high correlations also for MRR@10 in many cases especially for TCT-ColBERT. While our
predictors seem to optimise the more recall-based metric, we still acknowledge the impor-
tant contribution of score-based predictors, especially in the cases of predicting rankings
with MAP@100 (more recall-based metrics). In the next section, we provide a set of ex-
planations for the reasons why this happens. We claim that further factors play a role
and further influence query performance, such as query categorisation, which is modeled
together with other information used in QPP.

3.5 Modeling Query Differences in QPP

As observed in Section 3.4, the performance of dense coherence-based predictors is par-
ticularly accurate in certain dense retrieval settings (for TCT-ColBERT: pairRatio and
A-pairRatio, for ANCE: WAND-embs and WD-embs) and shows superior performance
for especially NDCG@10. Still, score-based predictors are often better for MAP@100.
This difference in QPP correlations among evaluation metrics motivates us to explore
whether the relationship between QPPs and retrieval effectiveness is mediated by the type
of query. For this purpose, we adopt the query taxonomy originally proposed in Bolotova
et al. (2022), where the authors proposed a categorisation of questions and a corresponding
classifier to facilitate the transfer of these insights to other datasets. In the original study,
some query categories, for instance the ones belonging to Experience, Reason, and Debate,
were found to be more difficult to answer than the rest (Bolotova et al., 2022). Then, the
authors applied their taxonomy to existing known datasets, some of which are similar to
the ones we use for this Chapter. We, therefore, apply their proposed classifier to the two
TREC Deep Learning query sets. The results are observed in Table 3.4. We observe a class
imbalance very similar to the original study, where they also observed fewer examples of
Experience and Reason queries for the TREC and MSMARCO datasets. Instead, for our
query sets, as well as the original study, a lot more example of Factoid and Evidence-based
queries are included, which is expected due to the nature of the query sets. This result
does not prevent us from studying further the effect of query categorisation or query types,
as we use it. In the rest of the section, we describe how we achieve to quantify the effect
of query types in combination with QPP performance of different predictors.

In particular, for this purpose, we apply a distribution-based QPP evaluation approach
based on the scaled Absolute Rank Error (sARE) (Faggioli et al., 2021b). Specifically, the
sARE value each query is calculated as: sAREqi = |rp

i −re
i |

|Q| where rpi and rei are the ranks
assigned to query i by the QPP predictor and the evaluation metric, respectively (one
sARE value is obtained per query, instead of a point estimate), while Q is the set of queries.
This further allows using sARE in statistical models (Faggioli et al., 2021b, 2023b). Unlike
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Faggioli et al. (2021b) and Faggioli et al. (2023b) who use ANOVA, we use Linear Mixed
Effects (LME) models (Curran et al., 1997; Field et al., 2012; Maxwell et al., 2017; Singer
and Willett, 2003), which also belong to Generalised Linear Models (GLM) (Madsen and
Thyregod, 2010; Nelder and Wedderburn, 1972), but split the total explained variance in
sARE into 2 levels. At this point, it should be noted that we could have instead opted
for repeated measures ANOVA to model the repeated measurement of the same query
over multiple QPP predictor measurements. However, we opt for Linear Mixed Models,
as they make fewer assumptions and are less influenced by the class imbalances (ANOVA
is a method more influenced by the number of observations in each group). In addition,
as we show in the rest of the section, Linear Mixed models allow us to provide exact
proportions of explained variances caused separately by QPPs and query types, which is
a useful indicator of the extent of influence of each factor. Next, we describe the 2-Level
approach.

Table 3.4: Classification of queries from the two TREC Deep Learning query sets according
to the classifier provided by Bolotova et al. (2022). Numbers indicate the amount of
queries in each category.

dataset
Query Type TRECDL2019 TRECDL2020

Factoid 14 28
Reason 1 3

Evidence-based 26 20
Instruction 1 2
Experience 0 1

Not-a-question 1 0

Specifically, Level 1 specifies the within-query variations (how each query changes or
the per query variance over different QPP predictors). Level 2 specifies the between-query
differences; it further explains each part of Level 1 by showing how it changes according to a
between-query factor - here we use the type of query or query type as proposed in (Bolotova
et al., 2022). A 2-Level approach is necessary to model the interplay of QPPs with query
types; while sARE can vary between QPP measurements (each query receives a separate
sARE value for each QPP predictor), each measurement might fluctuate differently based
on what type of query we use (multiple queries in the same type share a similar behaviour
regarding query performance), and are, therefore, nested within their group (each query
belongs to only one level of query type). Thus, the multilevel approach allows splitting the
total variation in sARE into within (due to QPPs - Level 1)- and between-query (due to
query types - Level 2) variation. Using separate models for each evaluation measure allows
us to check which measure is more affected by query types. Note also that a Linear Mixed
Models analysis requires us to move from a query-level dataset (as shown in Table 3.6) to
a query-qpp measurement dataset (Table 3.7). The new dataset format allows us to have
multiple measurements by splitting the original QPP columns to separate rows with value
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Table 3.5: Explanation of terms included in the linear mixed effects full model.

Parameter Interpretation
Fixed effects

γ00
average true sARE for the reference QPP predictor for
the reference (without the effect of) query type

γ01
average difference in sARE between different query
types for the reference QPP predictor

γ10

average true rate of change in sARE per unit change
in QPP predictor for the reference (without the effect of)
query type

γ11
average difference in sARE between different query
types per unit change in QPP predictor

Random effects

ζ0i, ζ1i
allow individual true query trajectories to be scattered
around the average query true change trajectory

ϵij
allows individual query data to be scattered around
individual query true change trajectory

Variance Components

σ2
ϵ

level 1 (residual) variance, variability around each
query’s true change trajectory

σ2
0, σ1

1

level 2 variance in reference predictor and rate of
change per predictor measurement, how much between-
query variability is left after accounting for query type

σ01

residual covariance between true sARE for the reference
(initial) predictor and rate of change, controlling for
query type, across all queries

and measurement. Next, we describe LMEs in detail.

Table 3.6: Query-level dataset originally used in modeling QPP

Entry qid sARE1 sARE2 . . . sARE11 QPP1 QPP2 . . . QPP11 QueryType
1 1 0.3 0.4 . . . 0.5 3.3 13.6 . . . 10.4 Factoid
2 2 0.2 0.5 . . . 0.7 4.5 4.7 . . . 9.6 Experience
3 3 0.4 0.2 . . . 0.6 7.9 6.5 . . . 18.5 Reason
... ... ... ... ... ... ... ... ... ... ...

97 97 0.4 0.7 . . . 0.8 4.6 8.7 . . . 13.2 Evidence

3.5.1 Linear Mixed Model Definitions

First, the full model (Curran et al., 1997; Field et al., 2012; Maxwell et al., 2017; Singer
and Willett, 2003) (the model that contains all parameters of interest), which we denote
here as LMEfull, is defined as:
Level 1

Yij = π0i+π1i(XWithin)+ ϵij (3.12)

with ϵij ∼ N(0,σ2
ϵ )

where XWitihn is the within-subject or within-item predictor (depending on whether the
unit of measurement is a person or an item) Yij is the outcome variable of subject or item
i at within-subject or within-item predictor measurement j, π0i is the intercept (initial
status) of subject or item i’s change trajectory (reference within predictor, i.e., the first
measurement), π1i is the slope (rate of change) in Y (per predictor unit), and ϵij are the
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Table 3.7: Query-QPP level dataset using the multilevel approach in modeling QPP as
proposed in this Chapter.

Entry qid sARE QPP value QPP measurement QueryType
1 1 0.3 3.3 WAND-embs Factoid
2 1 0.4 13.6 WD-embs Factoid
... ... ... ... ... ...

11 1 0.5 10.4 RSD Factoid
12 2 0.2 4.5 WAND-embs Experience
13 2 0.5 4.7 WD-embs Experience
... ... ... ... ... ...

22 2 0.7 9.6 RSD Experience
23 3 0.4 7.9 WAND-embs Reason
24 3 0.2 6.5 WD-embs Reason
... ... ... ... ... ...

33 3 0.6 18.5 RSD Reason
... ... ... ... ... ...
... ... ... ... ... ...

1057 97 0.4 4.6 WAND-embs Evidence
1058 97 0.7 8.7 WD-embs Evidence

... ... ... ... ... ...
1067 97 0.8 13.2 RSD Evidence

deviations of a subject or item’s equation on each measurement. This is also a way for
Level 1 to check for statistically significant differences between predictors. In our case,
the within-item or more precisely the within-query predictor is the QPP predictor, and
therefore, Equation (3.12) becomes:
Level 1

sAREij = π0i+π1i(QPPPredictor)+ ϵij (3.13)

with ϵij ∼ N(0,σ2
ϵ )

where sAREij is the sARE of query i at QPP predictor measurement j, π0i is the intercept

Table 3.8: LMEs comparison and corresponding variance reduction type. Each row shows
the Pseudo−R2 of interest together with its definition.

Models compared Quantity Definition

LMEaverage, LMEQPP Pseudo−R2
ϵ

σ2
ϵLMEaverage

−σ2
ϵLMEQP P

σ2
ϵLMEaverage

LMEQPP , LMEFull Pseudo−R2
0

σ2
0LMEQP P

−σ3
0LMEfull

σ2
0LMEQP P

LMEQPP , LMEFull Pseudo−R2
1

σ2
1LMEQP P

−σ3
1LMEfull

σ2
1LMEQP P
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Table 3.9: Resulting LME models for each retrieval method and all metrics.
BM25

sAREMAP sAREij = [0.29−0.009(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]
sARENDCG sAREij = 0.26+ ζ0i+ ϵij
sAREMRR sAREij = 0.30+ ζ0i+ ϵij

ANCE
sAREMAP sAREij = [0.28−0.008(QPPPredictorij)+0.25(NotAQi)+0.05(NotAQi)(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]
sARENDCG sAREij = 0.25+ ζ0i+ ϵij
sAREMRR sAREij = [0.35−0.008(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]

TCT-ColBERT
sAREMAP sAREij = [0.32−0.01(QPPPredictorij)+0.05(Experiencei)(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]
sAREMAP sAREij = [0.32−0.01(QPPPredictorij)+0.02(Reasoni)(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]
sARENDCG sAREij = [0.32−0.008(QPPPredictorij)]+ [ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]
sAREMRR sAREij = 0.32+ ζ0i+ ϵij

Table 3.10: Proportion of explained variance per component and included fixed effects
in each LME for all three retrieval methods. ✓indicates the presence of a fixed effect in
LMEs, while ✗shows the absence of either an important contribution of a factor (top) or
a fixed effect (bottom).

BM25 ANCE TCT-ColBERT
sARE → MAP NDCG MRR MAP NDCG MRR MAP NDCG MRR

Pseudo−R2
ϵ 13.4% ✗ ✗ 7.5% ✗ 16.5% 12.4% 14.6% ✗

Pseudo−R2
0 ✗ ✗ ✗ 17.2% ✗ ✗ 2.2% 9.9% ✗

Pseudo−R2
1 ✗ ✗ ✗ 35.6% ✗ ✗ 22.8% 8.1% ✗

γ00 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

γ01 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

γ10 ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗

γ11 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

(initial status) of query i’s change trajectory (reference QPP predictor, i.e., the first QPP
measurement), π1i is the slope (rate of change) in sARE (per predictor unit), and ϵij are
the deviations of a query’s equation on each measurement. Also, Level 2 of Equation (3.12)
is defined as:
Level 2 

π0i = γ00 +γ01(Xbetween)+ ζ0i

π1i = γ10 +γ11(Xbetween)+ ζ1i
(3.14)

with ζ0i

ζ1i
∼ MVN


0
0

 ,
σ2

0σ01

σ01σ1
1




where γ00 and γ10 are the average true Y for the reference level of Xbetween (the between-
item or between-subject factor) in the initial status and rate of change, respectively. Sim-
ilarly, γ01 and γ11 show the effect of the between-item or between-subject factor on Y ,
for the initial status and rate of change. Similarly to the further specification of Level 1,
Level 2 is further specified in our example as:
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Level 2 
π0i = γ00 +γ01(QueryType)+ ζ0i

π1i = γ10 +γ11(QueryType)+ ζ1i
(3.15)

where γ00 and γ10 are the average true sARE for the reference query type in the initial
status and rate of change, respectively. Similarly, γ01 and γ11 show the effect of the
between-query factor on sARE, for the initial status and rate of change.

For convenience, we use LMEfull in an equivalent compact form (Levels 1 and 2) as:

sAREij = [γ00 +γ10(QPPPredictorij)+γ01(QueryTypei)
+γ11(QueryTypei)(QPPPredictorij)]

+[ζ0i+ ζ1i(QPPPredictorij)+ ϵij ]

(3.16)

Table 3 shows the interpretation of each of the LMEfull parameters. Next, we introduce
two reduced models. We start with LMEaverage that only assumes an average sARE value:

sAREij = γ00 + ζ0i+ ϵij (3.17)

Finally, we obtain LMEQPP as follows:

sAREij = γ00 +γ10(QPPPredictorij)+ ζ0i+ ζ1i(QPPPredictorij)+ ϵij (3.18)

In what follows, we use a model selection strategy, as indicated in Table 4, where each
row shows the models being compared, the quantity of interest, and its definition. The
difference between LMEaverage and LMEQPP is the effect of QPP predictor; Pseudo−R2

ϵ

tells us how much of the total variability within queries can be attributed to QPPs. Simi-
larly, when comparing σ2

0 and σ2
1 of LMEfull with the ones of LMEQPP , these two models

differ in the inclusion of the terms γ01(QueryType) and γ11(QueryType). Pseudo−R2
0

and Pseudo−R2
1 tell us how much of the total variability between queries in initial sta-

tus and rate of change, respectively, are due to query type. Starting from LMEaverage,
we sequentially move to LMEQPP and LMEfull, if needed. At each step, we compare
between the model that contains the added factor and the one that does not. The deci-
sion is made based on the significance of fixed effects and the model Deviance (Maxwell
et al., 2017; Singer and Willett, 2003), indicating the goodness-of-fit (the lower, the bet-
ter). The deviance in this case is: Deviance=−2LLMax, where LLMax is the maximised
log-likelihood of each model. We implement the proposed LMEs using the lme4 R pack-
age (Bates et al., 2009; Team, 2021), with Full Maximum Likelihood Estimation. We
merge the two TREC DL query sets, and each query is assigned to one of the following
query types: Evidence-based, Factoid, Experience, Instruction, Reason, and Not a Ques-
tion Bolotova et al. (2022). In our analysis, we only include predictors that are most
representative for dense retrieval: NQC, RSD(uni), Max, dense coherence-based predic-
tors, and supervised predictors. To properly match the type of representations, for BM25,
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we use the sparse version of coherence predictors, as they were originally used for BM25
rankings4. We repeat the procedure for the sARE resulting from each evaluation metric
separately and obtain the selected models in each case. We now address the following
research questions:

RQ3.3 Is the accuracy of query performance prediction influenced by query type more
for dense retrieval than sparse retrieval?

RQ3.4 How sensitive are the different evaluation measures to (a) query types and (b)
QPPs?

3.5.2 RQ3.3 - Importance of Query Type

Table 3.9 provides the resulting LMEs from our model comparison strategy, as outlined in
Section 3.5. For the dense retrieval models, Equations with sAREMAP contain a coefficient
that indicates sensitivity to a particular type of query, (the first line of ANCE refers to
Not-A-Question queries, and the first two lines in TCT-ColBERT refer to Experience and
Reason queries). The corresponding BM25 LMEs do not contain a query type coefficient.

Most importantly, in Table 3.10, the top half shows the proportions of gained explained
variance for both levels (with ✗ indicating no significant gains), while the bottom half
highlights the included effect terms. The first row shows that variations due to QPPs are
similar for the three retrieval methods (similar Pseudo−R2

ϵ values). However, the next
two rows have much higher relative gain in explained variance for the two dense models
than BM25, especially for Pseudo−R2

1, reaching 35% and 23% for ANCE and TCT-
ColBERT, respectively. Indeed, as Pseudo−R2

1 includes query type, this means that a
noticeable proportion of the variance is attributed to query type. Therefore, for dense
retrieval, some query types are more accurately predicted by certain QPPs, and other
query types work better for other QPPs. This indicates that QPP performance cannot be
judged in isolation from query taxonomies, which in some cases are more influential than
the predictor itself. To answer RQ3.3, the accuracy of the query performance is influenced
more by the query type for dense retrieval than sparse retrieval.

3.5.3 RQ3.4 - Sensitivity of Evaluation Measures

Figure 3.3 plots the TCT-ColBERT LMEFull of sARE prediction for both sAREMAP

(a) and sARENDCG (b). In each plot, the sARE (y-axis) values are plotted as a function
of QPP predictor (x-axis), with each query type as a separate plot, and colouring indi-
cates different QPP predictors (from left: starting with dense coherence-based predictors,
then supervised, and score-based on the right). For sAREMAP , the trends for two query
types, Experience and Reason, behave differently than the rest; these two types show
4 As a sanity check, we also conducted a separate analysis using the dense coherence predictors to obtain
sARE from BM25, and the results were similar.
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(a) MAP@100

(b) NDCG@10
Figure 3.3: LME results from the full model for TCT-ColBERT.

better performance (lower sARE) for coherence-based than score-based predictors, while
the opposite holds for Instruction and Not-A-Question queries. As for Evidence-based
and Factoid queries, there is higher variance in sARE among different queries, but for
dense coherence-based predictors, the variance is smaller than score-based predictors, as
indicated by the corresponding colours. In general, for sAREMAP , performance seems
to be affected by the different types of queries, which make QPPs more unstable. In-
deed, Experience and Reason were found as harder questions in the original categorisation
study (Bolotova et al., 2022). This result reflects the selected model for sAREMAP , which
was LMEFull (effect of query type across QPP measurements).

On the other hand, for sARENDCG, QPP performance for different query types seems
more uniform. The trend still looks different for Experience and Not-A-Question queries
compared to the rest, but those represent only a small portion of the total queries. For the
remaining types, the structure is similar, with some variations in strength. Importantly,
for Evidence-based, Factoid, Instruction, and Reason queries, there is increasing vari-
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ance across queries for score-based compared to dense coherence-based predictors. This
indicates that our proposed predictors are less sensitive to query type compared to score-
based and supervised predictors. Note that while we plot the full model, for sARENDCG,
LMEQPP was preferred, i.e., only an effect of QPP predictor. This is complemented by
Table 3.9, where sARENDCG contain a coefficient for QPPs, but not for query types or
their interaction with QPPs.

To summarise, in Section 3.4, we observed that score-based predictors showed improved
performance for MAP@100, but our LME analysis showed that this result is susceptible
to influential query types. Instead, our dense coherence-based predictors showed higher
correlations mainly for NDCG@10, and with the LME analysis (lack of query type terms
and Pseudo−R2 terms at Level 2), we showed that this is more stable across different
query types. Therefore, our predictors provide promising evidence for generalisability
compared to existing predictors. In other words, while both MAP@100 and NDCG@10
are sensitive to QPPs, NDCG@10 is less sensitive to query type variations than MAP@100,
thereby answering RQ3.4.

3.6 Conclusions

In this chapter, we relied on the dense embedded representations of single-representation
dense retrieval models to provide us with useful information regarding patterns among top-
retrieved documents that can be indicative of query performance. In particular, we studied
and answered the first hypothesis of the thesis statement (Section 1.2) that examining the
coherence of the top-retrieved items based on their dense embedded textual representa-
tions, we can predict the effectiveness of a dense retrieval ranking. This is very important
for contemporary CRS systems which consist of image-based result lists and text-based
feedback, both of which are represented by dense embedded representations. Therefore,
by examining the top-retrieved textual results for Query Performance Prediction applied
on dense retrieval models, we can easily transfer the insights to conversational recom-
mendation models, taking advantage of the similarity of their dense embeddings. Indeed,
throughout the chapter, we examined the accuracy of QPP upon two single-representation
dense retrieval methods (ANCE (Xiong et al., 2020) and TCT-ColBERT (Lin et al., 2020)).
In particular, in Section 3.2, we proposed new variants of unsupervised coherence-based
predictors and managed to increase their performance for dense retrieval. Specifically,
starting from existing sparse coherence-based predictors (Section 3.2.1), we revisited the
existing intuitions and also further developed our intuition to propose a group of dense
coherence-based predictors specifically designed to optimise single-representation dense
retrieval rankings (Section 3.2.2). We achieved this by carefully visualising the dense em-
beddings of TCT-ColBERT (Figure 2.3) and showing that it is sufficient to consider the
ranking method reasoning to predict the corresponding ranking. In this way, we showed
that changing the representations from TF.IDF to neural embeddings provided by the
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dense retrieval models together with some further modifications is enough to generalise
the performance of unsupervised predictors compared to supervised ones. Indeed, with in-
creasing effectiveness brought by dense retrieval methods, our proposed predictors become
more competitive, especially for NDCG@10 (Tables 3.2 and 3.3 second group of columns)
and MRR@10 (Tables 3.2 and 3.3 third group of columns). Also, throughout the chap-
ter, we highlighted that focusing on a single evaluation measure to optimise a proposed
predictor can be problematic and may falsely inform future studies, since MAP@100 and
NDCG@10 cannot be used interchangeably.

At the same time, we demonstrated the interplay between the different QPP predic-
tors, evaluation metrics, and the particular types of queries. Indeed, in Section 3.5, we
introduced a new perspective to study QPP on the different retrieval models (Table 3.8).
Specifically, we examined a series of Linear Mixed models, which allow the simultaneous
modeling of QPPs and query types (resulting from classifiers of query taxonomies) as two
Levels or different sources of variation in query performance. With this methodology, we
showed in Section 3.5.2 that dense retrieval models are more sensitive to query types (Ta-
bles 3.9 and 3.10) and that MAP@100 is more sensitive than NDCG@10 (Section 3.5.3).
Importantly, we showed that while score-based predictors remain very competitive for
MAP@100, our examined statistical models indicate that MAP@100 is highly influenced
by the type of query. Instead, using NDCG@10, QPP performance is more stable across
queries, and since our proposed predictors show higher performance on this metric, this is
a promising result for more generalisable performance in dense retrieval (Figure 3.3). In
general, in this chapter, we validate the first claim of the thesis statement: Initially, we
can predict the effectiveness of a ranking of textual items for a textual query, by examining
the coherence of the top retrieved items based on their dense embedded representations.

Although our insights provide a useful starting point, some limitations remain. For
example, QPP results are limited to a small number of retrieval models and the wide range
of QPP predictors have not been applied to recommendation settings, in a Conversational
Image Recommendation setting, to directly test them in the setting of our focus. In addi-
tion, predictors have not been examined in a multi-turn setting, taking advantage of the
nature of Conversational Image Recommendation ranked lists of items, which correspond
to our task of interest. Therefore, in Chapter 4, we test these predictors to the state-of-
the-art models of Conversational Image Recommendation, namely GRU (Guo et al., 2018;
Wu et al., 2021a) (see Section 2.2.1) and EGE (Wu et al., 2021b) (see Section 2.2.2).



Chapter 4

Conversational Performance
Prediction (CPP)

In Chapter 2, we introduced Conversational Recomendation Systems (CRSs), which assist
users in many task-oriented recommendation goals (Jannach et al., 2021; Sun and Zhang,
2018; Zou and Kanoulas, 2019) by allowing a multi-turn dialogue using natural language
feedback or critiques (Chen and Pu, 2012; Tou et al., 1982). Furthermore, in Section 2.2.2,
we introduced the paradigm of Conversational Fashion Image Recommendation (Berg et al.
(2010); Guo et al. (2018); Wu et al. (2021b)), a summary of which is given in Figure 4.1.
In short, the user has a target item in mind and provides a critique to direct the system
towards retrieving images of fashion products more similar to their target item. In this
offline evaluation setting, the conversation is evaluated across a pre-defined number of
turns. The system is expected to return the user’s target item by turn 10; the earlier the
turn the item is retrieved, the better the objective performance of a system. However,
in practice, not all conversations produce a satisfactory result for the user. For example,
the system is unable to retrieve the relevant item even after a large number of turns (Wu
et al., 2021b; Yu et al., 2019). Therefore, exploring the space might result in an increased
number of turns, which, on one hand, might mean more engaged users (Jin et al., 2019),
but at the same time suggests that often the conversations might fail (i.e., target item not
found). In this regard, we are interested in identifying indicators that can detect how this
happens – for example, a conversation could fail because the system is unable to find the
target item or because the target item is not available.

With this in mind, we are inspired by the QPP task (introduced in Section 2.3) applied
to ad-hoc retrieval ranking tasks (and models) and aim to apply it to conversational
recommendation. In this regard, in Chapter 3, we examined the coherence of the top-
retrieved items (based on their dense embedded representations of text), and found that
this helps to predict ranking effectiveness, thus validating the first hypothesis of the thesis
statement (Section 1.2). These results provide us with useful insights, primarily regarding
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Figure 4.1: Example of Dialog-based recommendation in CRS. Pictures and dialogues
from the Shoes dataset (Berg et al., 2010; Guo et al., 2018).

the performance of queries in dense retrieval models, and consequently for transferring
the QPP problem to other tasks. Although, at first glance, predicting query performance
in dense retrieval appears to be independent of predicting systems such as in Figure 4.1,
we show that by adapting the various QPP techniques according to the special nature
of the task, we can obtain predictive information about ranking lists in contemporary
Conversational Recommendation Systems (CRS), which address result lists consisting of
embedded representations based on both text and images.

Still, predicting performance (success) in Conversational Image Recommendation presents
various challenges. These are related to (a) task-specific settings in CRS systems, such
as the dependence of a feedback utterance on the previous turn results and the lack of
relevance judgments (which holds both for traditional RSs and CRSs), and (b) the content
of the ranked list results, which contain images instead of text. Also, as we described in
Section 2.1.2, the task provides a more dynamic process of satisfaction of user needs. In
particular, conversation success in a CRS dialogue is determined by how well the sys-
tem can interpret: (i) the feedback utterance provided by the user and (ii) the quality
of the recommendations indicated by the results list, both of the previous turn(s). All
these parameters make CRS-based predictions more complex than QPP in its retrieval-
based setting, and blur the lines between pre-retrieval (introduced in Section 2.3.1) and
post-retrieval (introduced in Section 2.3.2) predictions. Importantly, knowing whether a
conversation is likely to be successful allows the CRS to adjust accordingly - for instance,
changing its retrieval strategy, or asking a clarifying question.

As a starting point, the coherence-based predictors examined in Chapter 3 relate to
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our task of interest; still some clarifications need to be made: First, they inform us how
the semantic information (contained in embeddings) and the relations either among the
retrieved documents or between the query and the documents can be used to predict a
document ranking, but the nature of the ranking lists is different. Specifically, as we
mentioned in Section 2.2.2, unlike text retrieval, at every turn, a ranked list is com-
posed of image items, of which the user only sees the top one, on which they provide
textual feedback. Therefore, we need to check whether such predictors can work with
multimodal information and shorter rank cutoffs. Second, in Chapter 3, we focused on
single-representation dense retrieval models, and obtained insights that can be transferred
to image embeddings. Still, this was a single-turn context, and it is not clear whether the
same predictors could work in a complex multi-turn CRS setting. Third, in Chapter 3, we
found that QPP is dependent on the choice of ranking model and evaluation metric. We,
therefore, examine whether these evaluation settings are suitable to measure conversation
success. We believe that evaluation of query performance in a CRS is dependent on the
multi-turn and multi-modal nature of the task.

In this regard, this chapter aims to predict the performance of conversations and
the effectiveness degree of CRSs. For this purpose, we address the second hypothesis
in the thesis statement (Section 1.2): Similarly, we can predict the effectiveness of a
ranking of items in a Conversational Recommendation Systems (CRS), which are also
based on learned embedded representation of images, where user feedback takes the place
of a textual query. Indeed, by introducing a framework of Conversational Performance
Prediction (CPP), we can predict the degree of success of a conversation by a CRS - such
success can be predicted over a short or long time horizon, thereby predicting current user
satisfaction or overall satisfaction of a conversation. This addresses Limitation 5a)
(While some early attempts have been made to adjust to a conversational setting, they do
not take into account the multi-turn nature of the task) and Limitation 5b) (While these
attempts were made on Conversational Search, no one has addressed QPP in a multi-turn
recommendation setting). Specifically, in what follows, we predict conversational failures
by identifying specific indicators associated with failure. In particular, we determine the
quality of multi-turn CRS by proposing predictors that consider the multi-turn aspect
of conversational recommendation. The proposed predictors address characteristics that
mainly refer to the content of the retrieved results lists of image items, but following the
feedback received after a system recommendation. In summary, this chapter contributes:

• We propose a framework for Conversational Performance Prediction (CPP), which
extends the existing work on QPP to a conversational recommendation setting and
aims to predict conversation failures by considering the recommendation ranking
at different turns of a conversation, either one turn at a time, or by considering
consecutive turns. In this regard, we adapt post-retrieval predictors to address the
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multi-turn nature of the CRS task.

• As a first step, we address characteristics of the retrieved scores of the top-recommended
items and predict performance across a shorter or longer number of turns. In other
words, we adapt QPP evaluation methodologies to a multi-turn conversational set-
ting, which allows us to evaluate CPP predictors, which we call short- and long-term
prediction horizons.

• As a next step, we extend to embedding-based predictors introduced in Chapter 3,
still on the unsupervised side, and compare the performance of score-based and
embedding-based predictors by using information of a given ranking to predict the
ranking of the next turn.

• As a final step, we introduce Supervised Conversational Performance Prediction
(Supervised CPP). To achieve this, we move away from employing external ranking
models as used in retrieval-based QPP (Arabzadeh et al., 2021b; Datta et al., 2022b;
Hashemi et al., 2019; Meng et al., 2023), and focus instead on using the already
existing recommendation models (an insight obtained from Chapter 3) to develop
predictors that gradually learn the representations of the retrieved items at various
turns. In particular, we use both score-based and embedding-based supervised CPPs,
which either use the existing predictors to classify the conversations as successful or
not, and move on to propose a supervised predictor that is based on learning a
compressed representation of the top items.

• We evaluate our proposed predictors on the Shoes (Berg et al., 2010; Guo et al.,
2018) dataset and the Fashion IQ Dresses and Shirts categories (Wu et al., 2020),
using a state-of-the-art user simulator (Guo et al., 2018).

Indeed, our CPP findings in a range of evaluation contexts can be summarised as:

• When examining score-based predictors using the full relative captioning datasets
on the various prediction horizons, short-term prediction gives higher correlations
than long-term prediction. In particular, long-term prediction is not possible. Also,
short-term prediction works better for earlier turns of a conversation.

• When moving to a more traditional QPP-based evaluation setting by considering
a sample of 200 target items per dataset and correlating CPP predictors (score-
based and embedding-based) with traditional IR ranking metrics, we find that score-
based predictors (especially NQC) perform better in general, although in some cases
embedding-based predictors show improved performance for later turns.
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• In general, CPP correlations are much lower than correlations in a QPP setting,
which leads us to develop a new evaluation methodology for predicting dialogue
failures.

• When moving to a classification-based CPP evaluation, we observe quite high pre-
dictive accuracy for multiple predictors, for both single-turn and multi-turn settings.
In particular, our new proposed predictor that learns a compressed representation
of the retrieved item in previous turn(s) shows improved performance compared to
other CPP predictors.

The rest of the chapter is structured as follows: Section 4.1 presents the existing re-
search on QPP, including pre- and post-retrieval predictors; Section 4.2 outlines our new
proposed framework by providing the formal definitions (Section 4.2.1), our Experimen-
tal Setup in Section 4.3.1, and the unsupervised results in Sections 4.3.2, 4.3.3, 4.3.4,
and 4.3.5. Next, Section 4.4 explains our supervised version of CPP framework together
with the proposed predictor definitions in Section 4.4.1. In Sections 4.4.3 and 4.4.4, we
present the results for our supervised CPP for single-turn and multi-turn predictions, re-
spectively. Finally, we end with some concluding remarks in Section 4.5. Overall, we
find some promise in score-based retrieval predictors for correlation-based CPP, obtain-
ing medium strength correlations with conversation difficulty - for instance, observing a
Spearman’s ρ of 0.423 on the Shoes dataset, which is comparable to correlations observed
for standard QPP predictors on ad-hoc search tasks. Still, our strongest results come when
we introduce supervised CPP, which also demonstrates the usefulness of taking advantage
of the item embedded representations.

4.1 Related Work: QPP from single-turn to conver-
sational

As mentioned in Section 2.3, Query performance predictors are generally grouped into pre-
retrieval, and post-retrieval. For a more detailed description of pre-retrieval predictors,
please refer to Section 2.3.1 of this thesis. In addition, for a more detailed description of
post-retrieval predictors, please refer to Section 2.3.2 of this thesis.

While QPP has been widely explored for single-turn queries in search settings, its study
in conversational settings has received much less attention. Some examples are provided by
research on conversational search. For example, Sekulić et al. (2022) examine the predicted
effectiveness of the top-retrieved documents for deciding to generate clarifying questions,
and specifically some extracted features, such as noun phrases or named entities. In this
regard, Krikon et al. (2012) proposed a similar approach that employs named entities to
determine if a passage contains the answer to the user’s question. Indeed, clarifications
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are useful for both the user and the system (Aliannejadi et al., 2019; Kiesel et al., 2018;
Zamani et al., 2020). For this, Aliannejadi et al. (2019) test the type of question the
system needs to ask next to understand what the user is looking for by examining the
user’s previous answers with a post-retrieval QPP predictor (Pérez-Iglesias and Araujo,
2010). Also, Arabzadeh et al. (2022) aimed to predict whether the system needs to ask
a clarifying question to properly understand the user’s query by constructing a coherency
network and computing the resulting centrality measures.

Another line of research has focused on adapting existing predictors to the conversa-
tional search settings. For example, Roitman et al. (2019) examined a constrained retrieval
setting, namely the interaction with a conversational assistant, where the assistant needs
to decide whether the provided answer could be accepted. The authors built a classifier
that determines the answer quality by adapting some existing QPPs to the answer level
(using the score of the top item, which is provided as the answer). In addition, Meng
et al. (2023) examined some existing predictors (mainly score-based and supervised) in
the context of conversational search by showing how these can be evaluated with suitable
metrics and evaluation settings. Finally, another evaluation approach for QPP in conver-
sational search comes recently and is parallel to our work. In particular, Faggioli et al.
(2023a) proposed a geometric framework for QPP, which separates the evaluation of a
single-turn utterance regardless of which conversation it is part of from predicting entire
conversations. This framework projects queries and documents at the embedding space
and examines geometric relations among them, where the documents form a hyperspace
together with the query, and computes how densely the documents distribute around the
query (the more dense this hyperspace, the more the semantic correlation of the query
with the documents). Moreover, they proposed two embedding-based predictors based on
this intuition and found that these outperform other score-based unsupervised predictors
when predicting rankings of conversational search models.

Finally, a further attempt has been made to explore the possibility of QPP applications
on entirely image-based retrieval systems. For example, Poesina et al. (2023) proposed
an approach called image Query Performance Prediction (iQPP), where the query is also
an image, and they found that adapting predictors does not always lead to improved per-
formance. Still, this attempt does not refer to a multi-turn recommendation scenario. In
addition, the user’s query is still textual information in our task of interest. Therefore,
while some attempts have been made to adapt QPP to more interactive retrieval settings
or image-based queries, QPP for conversational recommendation, and especially conver-
sational image recommendation, has not been addressed. In particular, we are interested
in creating a prediction framework for identifying poorly performing or failed conversa-
tions in a recommendation setting. We postulate that these predictors can be helpful in
several use cases, for instance, knowing when to ask for clarifications, or when the user’s
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target item cannot be found. Towards achieving this goal, we explore score-based and
embedding-based predictors on the unsupervised and supervised side, adapting to the
multiple turn nature of the task. In the next section, we define the CPP task, and provide
details about how we define our CPP framework.

4.2 Conversational Performance Prediction (CPP)

This section outlines our prediction framework specifically designed for Conversational
Image Recommendation systems. To predict the likelihood of success of a conversation,
we need to consider the salient aspect of the conversational setting, such as the users’
feedback and the iterative turn-based nature of the interaction process. Our proposed
framework works primarily as an evaluation methodology that allows predictions in CRSs
and at a further point, extends the intuitions of predictors by creating custom predictors
for this evaluation methodology. As introduced in Section 2.2.2, at turn k, the user
provides textual feedback fk on the current top-ranked candidate item αk,1. Based on this
feedback, the conversational recommendation system C() provides a new ranking , i.e.:
C(αk,1,fk)→ Sk, where Sk is a ranking of n items with corresponding descending retrieval
scores s1 . . . sn, i.e.: Sk = [⟨αk+1,1s1⟩, . . .⟨αk+1,n, sn⟩].

Also, in Section 2.2.2, we introduced the relative captioning datasets used to train the
user simulators in conversational image recommendation, which contain representations of
the target image item, the candidate image item, and the critique. In some cases, even at
the end of the evaluation turns, the target item may not be returned. Therefore, predicting
the likelihood of a user being satisfied with a conversation may improve user experience.
We note some key differences of our approach from the approaches in Section 4.1: (i) We
consider the ranking quality across both single and multiple turns to predict the user’s
satisfaction of a conversation. (ii) Our retrieval units are images with the corresponding
retrieval scores and embedded representations. (iii) Our query units are critiques, based
on the retrieval of the previous turn. Therefore, we argue that there is no clear distinction
between pre-retrieval and post-retrieval predictors, since what is considered post-retrieval
of one turn could be seen as a pre-retrieval predictor of the following turn.

In the rest of the section, we present our CPP framework in detail. In particular, we
first adapt some score-based predictors to the nature of our task, as outlined above, and
introduce the concept of prediction horizons to differentiate between shorter and longer-
term predictions in Section 4.2.1 and in particular in 4.3.2 and 4.3.3. In this way, we
focus on the evaluation settings while keeping the predictors at their simplest form. Then,
in Sections 4.3.4 and 4.3.5, we continue by comparing existing (adapted) score-based and
embedding-based unsupervised predictors using the most effective identified prediction
horizon. We find pretty diverse results across datasets. All these prepare us for what
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follows later in Section 4.4, where we introduce the concept of Supervised Conversational
Performance Prediction, where we essentially move away from a correlation-based evalu-
ation approach of query performance. In other words, the results from the unsupervised
CPP evaluation indicated that the lower correlation values obtained across predictors
point towards predicting instead whether a target item is identified by a given turn and
a given rank in a dialogue in the form of a classifier that predicts the class of the item.
We achieve this by proposing the corresponding supervised predictors that learn the item
representations across turns.

4.2.1 CPP Framework Definitions

To build our framework, we are inspired by post-retrieval predictors that study the dis-
tributions of retrieval scores, the semantic similarity-based predictors, and the use of
reference lists, as introduced in Section. In this regard, we define recommendation success
as the identification of the target image item by the system before a maximum number
of turns is reached, corresponding to a user being satisfied with the conversation. More
formally, the CPP task can be described as a function of the form

CPP (F,S)→ R (4.1)

where F is a sequence each containing f feedback critiques over 1 or more turns, and S

is a sequence of results (recommendation) lists consisting of retrieval scores or embedded
representations contained in retrieved image items, over 1 or more turns. While Equa-
tion (4.1) holds for a general description of our framework, it is important to note that
this framework can be instantiated for single-turns, or multiple turns. For instance, in a
single-turn setting, we can instance the CPP task at a given turn k, i.e.:

CPPsingle([fk], [sk]). (4.2)

In this case, fk is the equivalent to what we described as pre-retrieval predictors in Sec-
tion 2.3.1, since it uses the information contained in the feedback, and therefore, retrieval
information is ignored. The main difference is that fk can also be considered as post-
retrieval, for example, when using this information to predict the ranking of a later turn
within the same conversation, in the sense that this feedback has influenced the follow-up
result list. Similarly, sk is the equivalent to what we described as post-retrieval predictors
in Section 2.3.2, including the content of the top-retrieved items of both score-based and
representation-based unsupervised predictors adapted to our task. On the other hand, for
two consecutive turns, k and k+1, prediction takes the following form:

CPPconsecutive([fk,fk+1], [sk, sk+1]). (4.3)
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In this case, we are interested in how the contents of either the feedback utterances or the
results lists interact between two consecutive turns. While the information in the feedback
utterances contains information about a user’s "query", for our CPP task, we mainly focus
on the contents (image items, scores, and embeddings) of the recommendation list, as
these provide richer information across multiple turns. In addition, the feedback from
one turn to the next can be very similar, and is therefore, not extremely indicative of
the turn’s performance. With this in mind, and adapting the notation above to disregard
the feedback sequences, we define some unsupervised CPPs for single turns by modifying
Equation (4.2) to take the form

CPP ([sk]). (4.4)

Similarly, for consecutive turns, we modify Equation (4.3) into the following:

CPP ([sk, sk+1)]. (4.5)

Our proposed CPP predictors are described in Table 4.1. Here, we include both score-
based and embedding-based unsupervised predictors. We use Equation (4.4) to derive the
single-turn predictors. For instance, top-1 denotes the maximum score of any retrieved
item (and it is the equivalent to the MAX score predictor (Roitman et al., 2017a) used in
Chapter 3); when applying these predictors, we also denote the turn k that the predictor
is calculated, i.e. top-1@k is the maximum score of any item retrieved in the ranking
produced for turn k. Mean denotes the average of the scores of the retrieved items.
Also, the sd (standard deviation) of top-n items is the equivalent of NQC (Shtok et al.,
2009). As for the embedding-based predictors, we use the CPP equivalents of AC-embs
used in Chapter 3 adapted from Diaz (2007), the two network metric predictors that we
adapted from Arabzadeh et al. (2021a), namely WAND-embs and WD-embs, our proposed
dense coherence-based predictors from Chapter 3, namely pairRatio and A-pairRatio,
and finally the geometric-based predictor proposed by Faggioli et al. (2023a), namely
Reciprocal Volume (RV). Additionally, we use Equation (4.5) to derive the consecutive-
turn predictors. For score-based predictors, we use either the difference in maximum score
or the overlap of top-ranked items between two consecutive turns. Finally, for embedding-
based predictors, we use the cosine similarity between the embedded representations of the
retrieved items of two consecutive turns. The derived predictor values described above
are then correlated with an objective ranking effectiveness metric, with higher values
indicating a stronger association with a recommendation list.

To address the salient aspects upon the nature of the predictors (single-turn and con-
secutive turn), we propose the accuracy of the predictors on different prediction horizons,
i.e., at what point can a prediction be made, and how does it correspond to the effec-
tiveness of the CRS, as measured at a later turn. In particular, we measure short-term
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horizons (i.e., can we predict the effectiveness of the next turn?); and long-term horizons
(i.e., can we predict the effectiveness of the last turn); as well as measuring the longevity of
the prediction (i.e., how useful is an early prediction?). Also, for explaining the predicted
success of a conversation using the proposed predictors overall, we have the following
intuitions that concern successful interactions in the CRS task:

• For a single turn, if the score of the top-ranked item(s) is high, then the system has
a clear representation of the user’s desired item, and it can find item(s) that closely
matches that representation.

• Similarly, if the embedding-based predictor value of the top-ranked items is high,
then the system is doing a good job in predicting the user’s desired item, and it is
more likely to find item(s) that closely match this representation.

• In a successful conversation, the retrieval scores of the top-ranked item(s) will in-
crease across multiple turns, as the system becomes more confident in its predictions.

• In a successful conversation, the retrieved items become more similar across turns
as the system becomes more confident in its predictions and focuses on the correct
part of the item catalogue.

• For two consecutive turns, it is only possible to test the short-term predictions be-
tween two turns of the same conversation rather than making a long-term prediction.

Overall, from the above different formulations, it is clear that CPP is a distinct task
from QPP that can be addressed by different families of predictors. In this chapter, we
adapt two categories of unsupervised QPP predictors into the CPP framework. In the
remainder of the chapter, we evaluate these predictors on several conversational fashion
recommendation datasets.

Table 4.1: Proposed CPP predictors according to number of turns involved.

Single-turn
Score-based Embedding-based

Top-1 item score (maximum score) AC-embs
Mean score of top-n items Network-embs

Standard deviation (sd) of top-n items (A)-pairRatio
Geometric

Consecutive-turn
Difference in maximum score Embedding cosine similarity
Overlap of top-ranked items

4.3 CPP Experiments (Unsupervised)

In this section, we first detail the Experimental Setup for our unsupervised CPP exper-
iments in Section 4.3.1, and then we continue with the full results corresponding to the
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RQs defined in it, namely the results for the single-turn score-based predictors in Sec-
tion 4.3.2, and the consecutive-turn score-based predictors in Section 4.3.3, thus covering
the investigation of prediction horizons. We then move on to describing how a variety of
predictors perform in predicting conversational performance by adopting settings of QPP
scenarios in Sections 4.3.4 and 4.3.5, where we mainly examine score-based against other
representation-based unsupervised predictors. Finally, we conclude with the main insights
we obtain throughout the CPP experiments on the unsupervised side in Section 4.3.6,
where we highlight the main limitations of studying CPP under the lens of QPP settings
and motivate ourselves to create a more customised conversational prediction task.

4.3.1 Overview of Experimental Setup

In the first set of experiments, we focus our interest in evaluating CPP across different
prediction horizons, as introduced in Section 4.2. For this purpose, we will examine the
score-based predictors of Table 4.1 in three different settings. In this regard, for the single-
turn predictors, we use three different ground truth settings: the rank of the target item at
the end of the conversation (turn 10); the rank of the target item during the conversation,
i.e. at a given turn k; and the rank of the target item directly after the prediction is made
(i.e. k+ 1 for a prediction at turn k). Through these different ground truth settings, we
can measure CPP accuracy at both short-term and long-term horizons, as well as their
longevity. On the other hand, for the consecutive-turn predictors, it is only possible to
evaluate with the short-term horizon. Taking all that into account, our first set of research
question is:

RQ4.1 Can we predict conversation performance with predictors based on retrieval
scores of a single turn, in terms of (a) long-term and (b) short-term prediction, as well as
(c) longevity?

RQ4.2 Can we predict conversation performance with predictors based on (a) differ-
ences in retrieval scores between consecutive turns and (b) overlap in retrieved items of
two consecutive turns?

For this purpose, we use the Shoes dataset (Berg et al., 2010; Guo et al., 2018), which
contains one relative critique (describing relative differences between recommended and
target image pairs) for pairs of shoe images, and the Dresses & Shirts categories of the
Fashion IQ dataset (Wu et al., 2020), which contains two relative captions per candidate-
target pair. As for the CRS recommendation model, we apply the supervised learning-
based version of the GRU sequential recommendation model (Guo et al., 2018; Hidasi
et al., 2015) already introduced in Section 2.2.2, which is trained using triplet loss and
uses the natural language feedback and the previous recommended images as input, thus
maximizing short-term rewards. The model is configured to retrieve 100 items at each turn.
For model training, we use the state-of-the-art user simulator for dialog-based interactive
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image retrieval based and the relative captioning task (Guo et al., 2018), already described
in Section 2.2.2.

In QPP, the accuracy of predictors is evaluated at the query level (a given query is
easy or difficult compared to other queries in a set). Specifically, a ranking of queries
by the effectiveness of a system, i.e., in terms of Mean Average Precision (ground truth)
is correlated with a ranking induced by a predictor. In contrast, we will evaluate CPP
predictors at the conversation level (across multiple dialog turns), and therefore, for the
ground truth, we evaluate the effectiveness of each conversation at identifying the user’s
target item – more specifically, by considering the rank of the target item at a specific
turn of the conversation. Following existing CRS work (Guo et al., 2018; Wu et al., 2020,
2021a,b; Yu et al., 2019), we set the maximum number of turns to be 10. Finally, for
quantifying the correlations, we report Spearman’s ρ 1. Significance testing is achieved by
examining the p-value associated with ρ, which indicates the probability of an uncorrelated
ranking producing a Spearman correlation as high as that observed.2

In the second set of experiments, we focus on evaluating the different categories of
CPP predictors in terms of their effectiveness and how they perform concerning the tradi-
tional QPP evaluation and corresponding metrics. For this purpose, we examine both the
score-based predictors and embedding-based predictors of Table 4.1 using the prediction
horizon that is identified as the most reasonable based on the results of the first set of
experiments. In this way, we obtain an equivalent set of results with Chapter 3 and test
to what extent the examined predictor families can be generalised to a Conversational
Image Recommendation setting. Therefore, we again use the Shoes (Berg et al., 2010;
Guo et al., 2018) and Fashion IQ Dresses ( Wu et al. (2020)) datasets3 and the same
user simulator (Guo et al., 2018) as above. However, this time we also compare between
recommendation models; specifically between the GRU (Guo et al., 2018; Hidasi et al.,
2015) and the EGE model (Wu et al., 2021b) as discussed in Section 2.2.2. In addition, we
will correlate the predictor values using traditional ranking evaluation metrics (described
in Section 2.4), similarly to the analyses we conducted for QPP in Chapter 3, to compare
the performance of the equivalent predictors across tasks. In particular, we use NDCG@10
and MRR@10 of a given turn. Finally, following the common practice in QPP-based eval-
1 For this thesis, we consider Spearman’s correlations as similar to the Kendall’s correlations in Chapter 3
(although Kendall’s τ provides in general lower correlation values and accounts differently for ties), in the
sense that they do not assume a strictly linear relation between the variables.
2 See also https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.
html
3 While in the first set of unsupervised CPP experiments we used three datasets, namely Shoes, Dresses,
and Shirts, in the second set of unsupervised experiments and for the rest of the thesis, we use two
datasets, Shoes and Dresses. This is because from that phase and for the rest of the thesis, we used a
PyTerrier implementation of Conversational Image Recommendation, unlike the first set of experiments,
where we used the original implementation of Guo et al. (2018). In particular, in the new implementation,
an issue occurred with a missing index of the Shirts dataset, which resulted in proceeding with Shoes and
Dresses.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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uation (Arabzadeh et al., 2021b; Datta et al., 2022b; Faggioli et al., 2023a,b; Meng et al.,
2023), especially using recent Deep Learning query sets (Craswell et al., 2020, 2021), we
will move from evaluating the entire number of image items in the datasets to sampling
a subset of 200 images from each with diverse per-query effectiveness (see for example
Chapter 3, where we used the TREC DL query sets with a limited number of queries).
For all experiments in the second set, we use a PyTerrier (Macdonald et al., 2021) imple-
mentation of both the GRU and EGE CRS models4. For this purpose, our second set of
research question is as follows:

RQ4.3 How do score-based CPP predictors compare to embedding-based CPP pre-
dictors in short-term prediction?

RQ4.4 How do CPP predictors in general compare across: (a) CRS models (b) eval-
uation metrics, and (c) datasets?

In what follows, we test our RQs and present the CPP results for the unsupervised
evaluation.

Table 4.2: Results of single-turn predictors for short and long-term prediction of rank of
target items at various turns. * denotes significant correlations; for Shoes, all correlations
are significant, so * is omitted (p < 0.05).

Prediction at turn k with rank@turn10 Prediction at turn 2 with rank@turn k Prediction at turn k with rank@turn k+1
k top-1@k mean@k sd@k rank@k top-1@k mean@k sd@k k, rank@k top-1@k mean@k sd@k

Shoes
2 -0.144 -0.141 -0.081 2 -0.405 -0.385 -0.059 2,3 -0.423 -0.413 -0.201
3 -0.145 -0.145 -0.097 3 -0.423 -0.413 -0.201 3,4 -0.356 -0.355 -0.254
4 -0.148 -0.148 -0.105 4 -0.357 -0.349 -0.183 4,5 -0.318 -0.317 -0.211
5 -0.155 -0.153 -0.089 5 -0.314 -0.309 -0.177 5,6 -0.293 -0.292 -0.180
6 -0.165 -0.165 -0.093 6 -0.270 -0.267 -0.163 6,7 -0.254 -0.254 -0.135
7 -0.173 -0.173 -0.100 7 -0.230 -0.226 -0.140 7,8 -0.235 -0.234 -0.126
8 -0.178 -0.177 -0.073 8 -0.213 -0.210 -0.136 8,9 -0.208 -0.207 -0.067
9 -0.184 -0.183 -0.064 9 -0.175 -0.173 -0.1149 9,10 -0.183 -0.183 -0.064
10 -0.183 -0.181 -0.026 10 -0.144 -0.141 -0.081

Dresses
2 0.012 0.003 -0.036 2 -0.281* -0.279* -0.161* 2,3 -0.248* -0.256* -0.197*
3 -0.017 -0.015 -0.004 3 -0.248* -0.256* -0.197* 3,4 -0.262* -0.257* -0.075*
4 -0.045* -0.047* -0.014 4 -0.187* -0.198* -0.173* 4,5 -0.246* -0.239* -0.038
5 -0.055* -0.051* -0.007 5 -0.128* -0.140* -0.137* 5,6 -0.206* -0.198* -0.008
6 -0.063* -0.063* -0.041* 6 -0.079* -0.092* -0.102* 6,7 -0.172* -0.168* -0.034
7 -0.069* -0.072* -0.033 7 -0.052* -0.067* -0.091* 7,8 -0.139* -0.142* -0.044*
8 -0.075* -0.076* -0.021 8 -0.039 -0.051* -0.072* 8,9 -0.103* -0.101* -0.000
9 -0.073* -0.071* -0.018 9 -0.005 -0.018 -0.053* 9,10 -0.073* -0.071* -0.018
10 -0.080* -0.078* 0.003 10 0.0127 0.003 -0.036

Shirts
2 -0.092* -0.089* -0.074* 2 -0.305* -0.298* -0.141* 2,3 -0.297* -0.305* -0.201*
3 -0.124* -0.119* -0.033 3 -0.297* -0.305* -0.201* 3,4 -0.336* -0.326* -0.03*
4 -0.145* -0.137* 0.011 4 -0.264* -0.273* -0.192* 4,5 -0.323* -0.308* 0.019
5 -0.148* -0.142* -0.016 5 -0.228* -0.231* -0.157* 5,6 -0.305* -0.293* 0.018
6 -0.139* -0.134* -0.003 6 -0.198* -0.206* -0.155* 6,7 -0.248* -0.238* 0.026
7 -0.152* -0.150* -0.003 7 -0.166* -0.168* -0.122* 7,8 -0.203* -0.196* 0.017
8 -0.160* -0.153* 0.031 8 -0.1346* -0.135* -0.096* 8,9 -0.192* -0.184* 0.049*
9 -0.149* -0.142* 0.003 9 -0.120* -0.118* -0.089* 9,10 -0.149* -0.142* 0.003
10 -0.147* -0.138* 0.053* 10 -0.092* -0.089* -0.074*

4 https://github.com/cmacdonald/pyterrier_fcrs/tree/main

https://github.com/cmacdonald/pyterrier_fcrs/tree/main
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4.3.2 RQ4.1 - Results of Single-Turn Score-based Predictors

Table 4.2 shows the results for the three single-turn predictors, namely: the score of the
top-ranked item at a given turn k (denoted top-1@k); the mean value of all top-ranked
items in the recommendation list at a given turn (mean@k); and the standard deviation
values of the scores of all top-ranked items (sd@k). In the first group of columns, bold
values denote the maximum correlation over all turns for the same predictor and the same
ground truth value. For the other two sets of columns, bold values denote the highest
performing predictor of the three examined single-turn predictors in the given evalua-
tion setting for each turn – this is because comparison of correlation values across turns
(rows) is not possible, since the ground truth changes for each row. Note that the table
is grouped into three sets of columns defining the prediction turn and the ground truth
turn or the corresponding prediction horizon accordingly. Specifically, Prediction at turn k
with rank@turn10 addresses long-term prediction; the middle group, Prediction at turn 2
with rank@turn k, addresses whether prediction at an early turn can help identify success
at early or late turns; finally, the third group, Prediction at turn k with rank@turn k+1,
addresses short-term prediction.

We first examine the first group of columns, which aims to determine the extent that
the overall conversation can be successfully predicted (i.e. the ground truth is the rank of
the target item at turn 10). Overall, the correlations5 are weak (-0.184 is the strongest
observed for Shoes, and -0.160 for Shirts; Dresses is lower still at -0.080), yet significant
(p < 0.05). This suggests the difficulty of the long-term prediction task. We do observe
that correlations are relatively higher as the prediction turn increases - thus indicating
that it is easier to predict performance at turn 10 using evidence of the ranking at turn
10. Finally, among the predictors, the maximum score at each turn, along with the mean
score, exhibit higher correlations than the standard deviation. To answer RQ4.1(a), we
cannot sufficiently predict long-term conversation performance using single-turn score-
based predictors.

Turning next to the second group of columns, we observe comparatively stronger cor-
relations. Indeed, the overall higher correlations suggest that predicting at turn 2 gives
more accurate predictions, particularly when aiming to predict conversation performance
at turn 2 or shortly thereafter. In particular, for the Shoes datasets, medium strength
correlations of -0.423 are observed - these are in line with the best accuracy of some
QPP predictors for adhoc search tasks (Cronen-Townsend et al., 2002; Shtok et al., 2009,
2010; Zhou and Croft, 2007). Correlations of -0.305 and −0.281 are observed for Shirts
and Dresses, respectively. Among the predictors, top-1@k is again most successful on
5 In our analysis, we ignore the sign of the correlation - indeed, the observed correlations are negative,
as our CRS system uses representation distances rather than similarities. In this way, lower distances
indicate higher effectiveness.
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Figure 4.2: Results of the difference in the top-1 ranked item (maximum score) between
pairs of consecutive turns as a consecutive turn CPP predictor for each of the datasets.

Shoes, but on Dresses and Shirts, where correlations are lower, the overall picture is less
clear across different prediction horizons (i.e. as the ground truth k is varied). For these
datasets, mean is the most accurate for most values of k ≥ 2. In general, when predict-
ing conversation performance using single-turn retrieval scores, prediction becomes less
accurate as the longevity of the prediction increases, thus answering RQ4.1(c).

Finally, the last set of columns of the table shows the correlation of the scores of each
turn k (as a predictor) when the effectiveness of the following turn k+ 1 is used as the
ground truth (i.e. applying a short-term horizon). The scores of both the top-ranked item
and the average score of the top-ranked items at turn k sufficiently predict the rank of
turn k+1, especially for early turns. This trend weakens as the number of turns increases,
but the observed correlations remain quite high for some cases. For example, for Shoes,
we start with a correlation of -0.423 (maximum score) and -0.413 (average score) for turns
2,3 and at turns 8−9 the correlation is still -0.20. For Shirts, the maximum and average
score of top items sufficiently predict the ranking of turn 3 at -0.30 and the score of turn
8 still at -0.20. Finally, although weaker than the other two datasets, the two predictors
work reasonably well for Dresses, achieving a maximum value of -0.26 for predicting the
rank of turn 3. These values suggest some evidence for short-term prediction when using
single-turn score-based predictors, to answer RQ4.1(b).

Overall, we observe that there is some evidence for short (score of one turn predicting
the rank of the following turn) and early prediction (a score of initial turn predicting
the rank of some turns ahead). The score of the top-ranked item and the mean scores
of the recommendation list are shown to be the most promising single-turn score-based
predictors. However, contrary to previous QPP research (Shtok et al., 2009), the results
for the standard deviation are not as encouraging. The results for long-term prediction
are weaker, but still, the score of the initial turn is predictive of later stages. In general,
prediction of the system performance (whether it finds the target in the context of a
conversation) is possible by using single-turn score-based predictors, particularly for the
success of the conversation at early turns and prediction of the next turn. Also, it is
obvious that short-term (next turn prediction) is the most promising CPP setting, and
this is the one we focus on in the following experiments.
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(a) Shoes (b) Dresses (c) Shirts

Figure 4.3: For each dataset, results for overlap of top-ranked items as a consecutive
predictor for all pairs of turns k,k+1 for several rank cutoff values.

4.3.3 RQ4.2 - Results of Consecutive-Turn Score-based Predic-
tors

Figure 4.2 presents the results of our first score-based consecutive-turn predictor, namely
the difference in maximum score (top-1 item) for each pair of turns k,k+1 when predicting
the rank of the target item at turn k+ 1. Within the figure, each dataset is represented
as a separate curve. Considering the different datasets, for Shirts and Dresses, we observe
a similar trend across turns, starting from a correlation of -0.18 (the maximum value
obtained for this predictor) at turns 2-3, which gradually decreases as the number of turns
increases. In contrast, Shoes does not achieve any correlation stronger than -0.016 at
turns 3-4. Therefore, we observe only weak correlations for this predictor at short-term
prediction, although some correlations are significant. To answer RQ4.2(a), using the
scores of two consecutive turns, does not sufficiently predict conversation performance,
and is indeed generally less effective than the single-turn predictors examined in RQ4.1.

Next, we test the overlap of top-ranked items (i.e., the size of intersection) between
consecutive turns. We considered various rank cutoff values for calculating the overlap,
ranging from rank 5 to rank 1000, and all pairs of turns. Figure 4.3 reports the observed
correlations (y-axis), where each pair of turns is a curve, and the x-axis is the rank cutoff
at which overlap is calculated. Recall that we expect that when the retrieved items are
generally similar, this may be indicative that the CRS is reaching a stable conclusion of
the likely relative items. If this occurs at a later turn, we may be further confident in the
likely positive performance of the system.

On analysing Figure 4.3, we note that Dresses & Shirts (Figure 4.3(b) & (c), respec-
tively) – which are both Fashion IQ datasets – we observe a strengthening trend in the
correlations as we increase the rank cutoff value (more items are considered). This hap-
pens for all pairs of turns except the initial turn. In addition, the correlations are stronger
for later turns than earlier turns, indicating that this predictor is more useful for later
turns (as expected). Indeed, improved prediction at later turns is particularly notable, as
this contrasts with our results in RQ4.1, where earlier prediction was more accurate.

On the other hand, for the Shoes dataset, the highest correlations are observed for
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turns 3-4 and 4-5, and for cutoff values at 50 and 100. The correlations for item overlap in
Shoes are weaker than the other two datasets, contrasting with the observations in RQ4.1
(where Shoes exhibited higher correlations for the single-turn predictors than Dresses or
Shirts). We note that, as a CRS dataset, Shoes is “easier” than Dresses (e.g. the GRU
model can attain Mean Reciprocal Rank 0.2 at turn 10 on Shoes, compared to Mean
Reciprocal Rank 0.075 at turn 10 on Dresses Wu et al. (2021b)). We postulate that early
single-turn prediction works well on Shoes, as more conversations are answered at earlier
turns; in contrast, on Dresses, more critiques are required for successful conversations, and
the overlap-based evidence later in the conversation is therefore more useful for prediction.

Overall, these results suggest some weak-medium correlations (upto -0.25 ρ) on the
overlap-based consecutive turn predictor, thereby answering RQ4.2(b).

Table 4.3: Short-term horizon CPP results (prediction at turn k with metric (MRR and
NDCG) at turn k+ 1) for the Spearman’s correlations of all examined unsupervised pre-
dictors for the GRU model for both datasets, Shoes and Dresses. * denotes significant
correlations at significance level α = 0.05. Bold denotes the best performing predictor in
each row.

Shoes
MRR

k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV
2,3 -0.247* 0.339* -0.235* -0.023 -0.010 0.011 0.006 0.095 0.211*
3,4 -0.212* 0.288* -0.197* -0.021 0.054 0.090 0.077 0.098 0.207*
4,5 -0.184* 0.247* -0.176* -0.072 -0.040 -0.091 0.113 0.093 0.199*
5,6 -0.174* 0.273* -0.168 -0.059 0.028 -0.071 0.092 0.080 0.193*
6,7 -0.198* 0.300* -0.195* 0.057 -0.143 -0.087 0.122 0.134 0.226*
7,8 -0.202* 0.291* -0.193* -0.041 -0.083 -0.034 0.068 0.125 0.226*
8,9 -0.185* 0.279* -0.180* -0.041 -0.042 -0.011 0.274* 0.234* 0.221*

NDCG
k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV

2,3 -0.141 0.232* -0.126 -0.070 -0.032 -0.028 0.111 -0.212* 0.127
3,4 -0.141 0.245* -0.122 0.069 -0.007 0.018 0.124 0.059 0.159*
4,5 -0.078 0.155* -0.069 0.12 -0.125 -0.081 0.052 0.130 0.102
5,6 -0.046 0.135 -0.041 -0.055 -0.040 -0.047 -0.167* -0.003 0.061
6,7 -0.107 0.177* -0.103 0.069 -0.088 -0.065 0.019 0.070 0.152
7,8 -0.071 0.154 -0.06 -0.183* -0.069 -0.108 0.026 0.038 0.110
8,9 -0.091 0.156 -0.086 -0.087 -0.073 -0.057 0.063 0.074 0.161*

Dresses
MRR

k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV
2,3 -0.121 0.183* -0.087 0.020 0.119 0.191* 0.106 0.070 0.015
3,4 -0.233* 0.280* -0.199 -0.008 0.122 0.103 0.046 -0.106 0.114
4,5 -0.262* 0.294* -0.243* 0.120 0.044 0.045 0.110 0.076 0.140
5,6 -0.280* 0.270* -0.269* 0.105 -0.023 -0.026 0.079 0.085 0.178*
6,7 -0.244* 0.269* -0.234* 0.015 0.021 0.006 0.044 0.173* 0.120
7,8 -0.240* 0.266* -0.233* 0.019 0.010 0.005 -0.007 -0.044 0.146
8,9 -0.201* 0.250* -0.176 0.019 -0.014 -0.022 0.222* 0.221* 0.141

NDCG
k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV

2,3 -0.103 0.071 -0.063 0.139 0.058 0.042 0.093 -0.116 0.044
3,4 -0.154 0.167* -0.129 -0.112 0.060 0.052 0.193* 0.176* 0.103
4,5 -0.180* 0.135 -0.160 -0.122 0.068 0.068 0.087 0.057 0.098
5,6 -0.182* 0.154 -0.166* -0.037 0.016 0.013 0.137 0.057 0.088
6,7 -0.176* 0.172* -0.158* -0.059 0.029 0.017 0.086 0.049 0.096
7,8 -0.192* 0.179* -0.175* -0.086 -0.006 -0.007 0.017 0.008 0.137
8,9 -0.160 0.171* -0.152 0.000 0.028 0.019 0.170* 0.170* 0.107
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Table 4.4: Short-term horizon CPP results (prediction at turn k with metric (MRR and
NDCG) at turn k+ 1) for the Spearman’s correlations of all examined unsupervised pre-
dictors for the EGE model for both datasets, Shoes and Dresses. * denotes significant
correlations at significance level α = 0.05. Bold denotes the best performing predictor in
each row.

Shoes
MRR

k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV
2,3 -0.092 0.282* -0.041 -0.155 -0.124 0.072 0.217* -0.198* 0.165
3,4 -0.052 0.241* -0.027 -0.055 -0.037 -0.010 -0.089 -0.176* 0.098
4,5 0.083 0.044 0.095 -0.039 -0.193* -0.180* -0.100 -0.018 0.136
5,6 0.090 0.029 0.127 -0.124 -0.084 -0.108 0.171 -0.080 0.184*
6,7 0.139 -0.023 0.155 -0.048 -0.087 -0.055 0.091 -0.126 0.140
7,8 0.173* -0.064 0.193* -0.013 -0.042 -0.042 0.063 -0.028 0.044
8,9 0.152 -0.064 0.168 -0.011 -0.035 -0.037 -0.036 -0.123 0.115

NDCG
k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV

2,3 -0.100 0.180* -0.035 -0.118 -0.233* -0.216* 0.195 -0.106 0.231*
3,4 -0.107 0.176* -0.051 0.090 -0.212 -0.188* -0.080 -0.113 0.291*
4,5 0.026 0.111 0.062 -0.178* -0.176* -0.091 0.095 -0.024 0.273*
5,6 0.104 0.141 0.131 0.051 -0.204* -0.157 0.080 -0.034 0.205*
6,7 0.133 -0.028 0.146 -0.068 -0.192* -0.178* 0.100 -0.119 0.197*
7,8 0.155 -0.023 0.179* 0.029 -0.193* -0.177* 0.110 -0.121 0.138
8,9 0.141 -0.039 0.155 -0.111 -0.038 -0.025 0.034 -0.171* 0.122

Dresses
MRR

k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV
2,3 0.048 0.078 0.080 0.000 0.072 0.092 0.025 -0.065 -0.030
3,4 0.038 0.087 0.084 0.009 0.043 0.061 0.070 -0.020 0.012
4,5 0.044 0.116 0.066 -0.013 0.041 0.044 -0.021 -0.093 0.040
5,6 -0.018 0.094 -0.001 0.110 -0.036 -0.026 0.095 0.035 0.098
6,7 -0.037 0.195* -0.025 -0.002 -0.041 -0.037 0.095 -0.046 0.098
7,8 -0.008 0.185* 0.009 -0.049 -0.007 -0.003 0.042 -0.025 0.061
8,9 -0.061 0.149 -0.023 0.022 -0.047 -0.048 0.010 0.043 0.090

NDCG
k, rank@k Mean NQC Max AC-embs WAND-embs WD-embs pairRatio A-pairRatio RV

2,3 -0.101 0.127 -0.094 -0.082 -0.078 -0.063 0.015 0.109 0.096
3,4 -0.077 0.111 -0.054 -0.112 -0.088 -0.08 0.033 -0.004 0.103
4,5 -0.060 0.095 -0.044 -0.122 -0.083 -0.084 0.040 -0.037 0.093
5,6 -0.124 0.185* -0.101 0.084 -0.113 -0.110 0.079 0.112 0.149
6,7 -0.119 0.139 -0.103 0.003 -0.130 -0.133 0.053 0.150 0.137
7,8 -0.113 0.139 -0.102 -0.022 -0.096 -0.106 0.132 0.027 0.129
8,9 -0.096 0.166 -0.088 0.108 -0.055 -0.074 0.034 0.093 0.129

4.3.4 RQ4.3 - Score-based vs Embedding-based CPP Predictors

For studying RQ4.3, we examine all potential unsupervised predictors that can be used in
a CPP setting instantiated with Equation (4.4). First, we turn our attention to the GRU
supervised learning recommendation model. The GRU results are presented in Table 4.3,
where at the first half, we see the Shoes results (NDCG and MRR), and in the second
half, the results for Dresses. Overall, we see that among all predictors, NQC is the best-
performing one in most cases. This contradicts the results presented in Section 4.3.2, where
the top-1@k (maximum score) and the mean score of the top-recommended items were
more effective in predicting (short-term) conversational performance. We believe that this
contradiction is related to the change of setting, as now we are closer to a QPP setting with
fewer target items. Still, Mean and Max are quite effective for correlations with MRR,
sometimes for earlier and sometimes for later turns. This implies that the pattern observed
in Section 4.3.2, where single-turn score-based predictors work better for earlier turns is not
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fully replicated; instead, performance is improved across various turns. Overall, switching
from a setting where all target items of a dataset were considered to the more query set-
based evaluation of sampled items with varying effectiveness levels improves correlation
values for score-based predictors at multiple time points of a conversation, especially for
NQC.

On the other hand, the picture is less consistent for embedding-based predictors.
Specifically, the correlations for AC-embs and the two network-based metrics (WAND-
embs and WD-embs) are very low. This indicates that predictors that are based entirely
on the semantic relations between retrieved items cannot fully capture the underlying
relationships with prediction rankings. As for our own proposed dense coherence-based
predictors, namely pairRatio and A-pairRatio, they are mainly useful in predicting later
turns (particularly the final turn) when using MRR (and NDCG for Dresses). In other
words, when considering the contrast of top/bottom rank semantic information and their
interaction with feedback information, we can obtain some indication of conversational
performance right before the conversation is coming to an end. This is in line with our
intuitions in Section 4.2.1, that as the turns progress, the system learns a better repre-
sentation of the target item. Finally, we consider the Reciprocal Volume (RV), which
was found to outperform other unsupervised predictors by Faggioli et al. (2023a) in a
conversational search setting. While the RV values are encouraging for correlation with
MRR for the Shoes dataset, for the rest of the cases, they are considerably lower and
are outperformed by score-based predictors. This indicates the hyperspace formed by the
feedback-retrieved items combination has a different shape in our case, and it might not
be as consistent as with TREC query sets.

Shifting our attention to the EGE model results, we note that score-based predictors
are not as effective as with GRU. Specifically, Mean and Max values are consistently low,
while NQC is only slightly effective for predicting early turns for Shoes and later turns for
Dresses. Despite some encouraging results, in general, correlations are lower than their
corresponding values in QPP settings. As for the embedding-based predictors, the values
are generally low, except for specific cases: (i) WAND-embs for Shoes in a few turns,
(ii) A-pairRatio for both datasets when correlating with NDCG for later turns, (iii) RV
is the only predictor performing well for shoes, especially when correlating with NDCG
early to mid-turns. This is important, as it indicates a promising use of embedding-based
predictors for a conversation in CRSs.

Overall, we observe that score-based predictors outperform embedding-based predic-
tors especially for the less effective CRS model (GRU), while embedding-based predictors
show some more promising results for the more effective EGE model, thus answering
RQ4.3. Still, these results are not consistent. In general, no predictor outperforms all
others across all cases.
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4.3.5 RQ4.4 - Sensitivity of CRS models, Evaluation Metrics
and Datasets

For RQ4.4, we now turn our attention to the differences between evaluation settings based
on our choices, in particular the CRS models, metrics, and datasets. We first answer
RQ4.4 (a) by comparing how the different predictors compare across CRS models. In
particular, we observe the same pattern as in Chapter 3, where the increasing effectiveness
and complexity of a retrieval model results in reduced correlation values. This implies that
the predictors are unable to capture the underlying complexity of the interactive process
in a more advanced recommendation model. In addition, embedding-based predictors,
and especially RV, become more effective when moving from GRU to EGE, while for
GRU, score-based predictors and especially NQC more sufficiently predict conversational
performance.

To answer RQ4.4 (b), we compare the performance of the same predictors between
the two evaluation metrics, namely NDCG and MRR. In general, for the GRU model, we
do not observe major deviations between the two metrics for the same predictors, with
the most notable differences being for RV Shoes and Mean Shoes. For the EGE model,
we observe a similar pattern; some examples of more marked differences are RV for both
Shoes and Dresses and WAND-embs Shoes. Finally, we compare between datasets to
answer RQ4.4 (c). In general, correlations are higher for Shoes compared to Dresses. Still,
in some cases, correlations for Dresses are higher for some score-based predictors, mainly
for later turns.

4.3.6 Insights from Unsupervised CPP predictors

In this section, we have presented a novel framework for conversational performance pre-
diction (CPP) that aims to detect the factors that indicate effective performance by taking
into account the multi-turn aspect of the task of conversational interactive image retrieval.
In this regard, we proposed several predictors that can be used for both short-term and
long-term prediction, and explored the retrieval scores and retrieved items, of both a single
turn and consecutive turns. We conducted our analyses on widely-used relative captioning
datasets for conversational recommendation systems (CRS) and examined the extent to
which our proposed predictors are indicative of the ranking of the users’ target items in
the recommendation list. In our analyses of single-turn predictors, we found that exam-
ining the score of the top-ranked items had a medium correlation with the effectiveness
of the conversation, particularly the effectiveness at early turns. Indeed, we observed a
Spearman’s ρ of 0.423 on the Shoes dataset, which is comparable to correlations observed
for standard QPP predictors on adhoc search tasks (Cronen-Townsend et al., 2002; Shtok
et al., 2009, 2010; Zhou and Croft, 2007). However, these single-turn predictors became
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less useful at predicting the success of later turns. On the other hand, among consecutive
turn predictors, simply examining the overlap of the retrieved lists had a weak-medium
correlation with late turn effectiveness on two out of our three datasets.

Consequently, we examined a wider variety of unsupervised predictors using an evalu-
ation setting more similar to traditional QPP. In this case, we observed some deviations
from the original CPP results. For example, the correlations for score-based predictors be-
came more consistent, while in some cases, they are still outperformed by embedding-based
predictors. While the weak-medium correlations observed for our simple unsupervised pre-
dictors of different families provide some promising results, it is still obvious that overall
the correlations are significantly lower than QPP settings. This suggests that there is
significant scope to extend this work, for instance by introducing supervised predictors.
In particular, we assume that correlating a per-query CPP predictor value with the per-
query effectiveness metrics is not the optimal way to measure CPP performance. This
is because a simple correlation might not be able to capture the underlying nature of a
successful conversation. For that reason, we aim to extend our analyses to a classification
task that aims to predict whether a conversation would fail, as well as testing the efficacy
of interventions for failing conversations. In the next section, we present our supervised
approach along with a supervised predictor that gradually learns the representations of
the top-recommended items of the various turns.

4.4 Supervised Conversational Performance Predic-
tion (Supervised CPP)

In the previous section, we introduced our CPP Framework for predicting conversational
failures. In particular, we were more interested in post-retrieval predictors, which focus on
the result list of the top-ranked retrieved documents, use their relevance scores (Cronen-
Townsend et al., 2002; Diaz, 2007; Shtok et al., 2009, 2010; Webber et al., 2010; Zhou
and Croft, 2007) or their semantic relations (Arabzadeh et al., 2021a; Diaz, 2007; Faggioli
et al., 2023a). For this purpose, we adapted various QPP predictors to our CPP task,
and evaluated them on different prediction horizons, of which the short-term was found
to be the most effective. This notion is related to the view of QPP as prediction using
reference lists (high association with pseudo-effective reference lists and low association
with pseudo-ineffective lists is indicative of effectiveness (Shtok et al., 2016)). Therefore,
our proposed Conversational Performance Prediction (CPP) framework, as introduced in
Section 4.2, applies QPP predictors in a conversational multi-turn setting, and is used to
predict the rank of a target item at a certain turn. However, our first attempt was an
unsupervised approach, evaluated using correlational measures. Our extended experiments
with unsupervised predictors revealed that correlations might not be the ideal way to
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evaluate a complex relationship of conversational performance and the identification of a
target image item at a top rank. Therefore, in this section, we aim to correctly classify
conversation failures, through application of CPP in a supervised setting. Specifically, we
conduct conversation performance prediction as a classification task, to correctly classify if
a given conversation will result in the user’s target item being successfully retrieved or not.
For this purpose, we examine a variety of CPP predictors in the new evaluation setting:
(i) score-based predictors, (ii) coherence or embedding-based predictors as examined in
Section 4.2, (iii) our proposed supervised predictor that learns the representations across
turns and produces a classification score. Below, we present how we derive these predictors.

4.4.1 Supervised CPP Definitions

As mentioned in Section 4.2, in our framework, we are interested in predicting perfor-
mance in the context of recommendation models at the conversation level. Therefore, we
differentiated between predicting at the shorter-term (using predictor turns at turn k and
predicted turns at turn k+1), and at the longer-term (using predictor turns at each turn
k and predicted turns at turn 10). Still, some findings indicated that long-term prediction
does not work under this specified evaluation setting, while short-term predictions provide
small to medium correlations. For this reason, we consider a further specification for CPP:
In particular, we treat CPP as a classification task, where we consider conversation success
as the return of the target item by a given rank either at given turn or by a given turn.
The success is determined by the resulting label of the target item(s), which can be either
found or not found. We now adapt the notations defined in Section 4.2 to adapt our CPP
definitions for the classification setting.

Specifically, for a conversation C consisting of k turns of user feedback utterances or
critiques f1, . . .fk, and ranking of retrieved items r1, . . . rk, we define a classifier which aims
to predict if conversation C will be successful or not as follows:

cls(XC,k)→{0,1} (4.6)

where XC,k is the feature representation for a given conversation at a given turn k, which
can predict the label of a conversation in a binary classification. Note that for this task, we
treat CPP as a binary classification problem, since we are interested in whether the target
item is returned or not. Therefore, we leave extensions of success definitions which can
be operationalised with multi-label classification for future work. The classifier uses the
feature representation of the conversation to predict the resulting success of these features
for a conversation, and therefore, the label of each target. As a feature representation
XC,k, we apply various predictors following both our unsupervised CPP definitions and
the QPP predictor families. Similarly to the unsupervised setting, we focus on adapting
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the different groups of post-retrieval QPP predictors. Next, we explain how we derive each
of them.

Score-based Predictors

At a first stage, the simplest method is to examine the score-based post-retrieval query
performance predictors originally used as unsupervised QPP predictors. Specifically, let
Sc,k be the scores of the retrieved items at a given turn k. Then we can calculate a feature
representation at a given turn k based on the retrieved scores, as follows:

Xsingle
C,k = [max(Sc,k),mean(Sc,k),stddev(Sc,k)] (4.7)

Indeed, stddev(Sc,k) can be interpreted as NQC (Shtok et al., 2009), while max(Sc,k) is
the equivalent to the MAX score (Roitman et al., 2017a). While each one of these score-
based values was used as an unsupervised predictor, their combination to produce a final
score based on various indicators is more relevant to previously-proposed supervised QPP
predictors such as the WPM estimator (Roitman et al., 2017a) and Neural-QPP (Zamani
et al., 2018). However, when making performance predictions at any turn k > 1, we can
access both the current retrieved item ranking, as well as the previous historical rankings.
Therefore, a richer feature representation for turn k uses the predictors calculated at all
previous turns (1 . . .k− 1), as well as the present turn. Therefore, the above single-turn
supervised predictor now becomes:

Xmultiple
C,k = [ max(Sc,1), . . . ,max(Sc,k),

mean(Sc,1), . . . ,mean(Sc,k),
stddev(Sc,1), . . . ,stddev(Sc,k) ] (4.8)

Coherence-based Predictors

Still, as already mentioned in Chapter 3, examining the embedded representations of the
retrieved documents provides valuable information about the semantic relations either be-
tween the documents or between the queries and documents. Therefore, predicting the
performance of a conversation at any turn or at the end of a dialogue can still be pre-
dicted by capturing these underlying relations. For this reason, we propose a (simple)
supervised version of the embedding-based or coherence-based predictors already intro-
duced in the QPP for dense retrieval context (see Chapter 3) and further developed for
unsupervised CPP in Section 4.2. Following the intuitions for the feature representations
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in Equation (4.7), we can obtain a semantic equivalent for single-turn prediction as follows:

Xsingle
C,k = [CPPfunction(Φc,k)]

= [Coherence(Φc,k)]
(4.9)

where Φc,k is the embedded representation of the retrieved items at turn k, and CPPfunction(Φc,k)
corresponds to any coherence-based CPP predictor at that turn. Consequently, for multi-
turn predictions, Equation (4.9) can be updated as:

Xmultiple
C,k = [CPPfunction(Φc,1), . . . ,CPPfunction(Φc,k)]

= [Coherence(Φc,1), . . . ,Coherence(Φc,k)]
(4.10)

where we use the coherence-based predictor up to turn k to predict turn k+ 1. Note the
difference with Equation (4.8), where we used multiple indicators to create a supervised
predictor. Instead, in Equation (4.10) and in Equation (4.9), we only use a single CPP
value per turn to predict the label of a given conversation. This is because each of the
embedding-based predictors is based on the intuition of coherence and essentially captures
the same underlying relationship among items. In addition, since the underlying semantic
information of the same retrieved item between different turns can be autocorrelated, we
introduce a new predictor in the embedding-based family that accounts for this problem.
Specifically, we apply a Lasso-based classifier, which uses the L1 norm regularisation and
a shrinkage factor λ, which results in some of the features to be set to zero. In this way,
only the important dimensions of the feature representations contribute to the prediction
of the label of the conversation. Specifically, we have a new predictor as:

Xmultiple
C,k = [Lasso(Φc,1), . . . ,Lasso(Φc,k)] (4.11)

where the Lasso loss is given by Error(Y − Ŷ ) + λ
∑n

1 |wi|; still, instead of the Mean
Squared Error, we use this function as a classifier to calculate the resulting predictive
accuracy on the test set. Therefore, Equations (4.9), (4.10), and (4.11) can be instantiated
by any of the embedding-based predictors (see in Chapter 3 and Section 4.2): WAND-embs
and WD-embs, pairRatio and A-pairRatio, and RV (Faggioli et al., 2023a).

Neural Representation-based Predictors

Finally, inspired by neural supervised QPP predictors (Arabzadeh et al., 2021b; Datta
et al., 2022b; Hashemi et al., 2019; Zamani et al., 2018), we create our own CPP predictor
that learns the representations of the retrieved items using the classification labels on the
train set and makes predictions on the test set. For this purpose, we use a linear Auto-
Encoder (AE) that learns an overall output function hw,b(XC,k) which is the result of the
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output layer or the reconstructed embedded representation values. In particular, w is the
set of input parameters of the retrieved item representations and b is the model bias. AE
aims to produce a reconstructed representation of these embedded representations ˆXC,k

that is as similar as possible to the input representation XC,k based on the activation func-
tion applied to its hidden layer. This is done with an Encoder-Decoder structure, which
compresses the input representation into a lower dimensional space and then reconstructs
it, which produces a Mean Squared Error (MSE) = (hw,b(XC,k)−XC,k)2 corresponding
to the reconstruction error at the output layer. Our intuitions for this network structure
in the conversational setting are the following:

• To predict the top-ranked item of a recommendation model (the item that the user
sees), it is sufficient to use the top-ranked item for training.

• To predict an entire ranking of a recommendation model (the item that the user
sees), we need to train on the full set of top-ranked items, since their distributions
look more similar.

• Over time (turns), to predict the success of a conversation, we can use the retrieved
item representations of all turns up to a given turn, and this can increase predictive
performance compared to semantic information from one turn.

Therefore, for a single-turn prediction, we use:

Xsingle
C,k = [(hw,b(XC,k)−XC,k)2(Φc,k,1)]

= [AE(Φc,k,1)]
(4.12)

where we examine the top-ranked item of the recommendation list. In turn, for the multi-
turn prediction, we use a richer representation as follows:

Xmultiple
C,k = [(hw,b(XC,k)−XC,k)2(Φc,1), . . . ,(hw,b(XC,k)−XC,k)2(Φc,k)]

= [AE(Φc,1), . . . ,AE(Φc,k)]
(4.13)

where we examine the top-k representation of all rankings up to turn k− 1 to predict
turn k. Note that our AE-based predictor is different from the AE variant proposed in
iQPP (Poesina et al., 2023), where they proposed a pre-retrieval predictor using corpus
information. In the following, we experiment to determine the utility of our supervised
CPP framework.

Table 4.5 presents a summary of our proposed Supervised CPP predictor and variant
classifiers for both single and multi-turn prediction, as described above.
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Table 4.5: Summary of our proposed Supervised CPP predictors and variants for both
single- and multi-turn prediction.

Predictor Abbreviation Description

sin
gl

e score-based Random Forest score-based our variant of multiple score-based QPPs from one turn into a Random Forest classifier
coherence (RV) Random Forest RV(RF) our variant of Reciprocal Volume from one turn into a Random Forest classifier
AutoEncoder top-1 item AE obtain a compressed representation of the top-ranked item of a single turn

m
ul

ti score-based Random Forest score-based our variant of multiple score-based QPPs from multiple turns into a Random Forest classifier
coherence (RV) L1-regularisation RV(L1) our variant of Reciprocal Volume from multiple turns into a Lasso (L1-based) classifier
AutoEncoder top-k items AE obtain a compressed representation of the set of top-ranked items of multiple turns

4.4.2 Overview of Experimental Setup

For implementing the CRS models, we follow a similar procedure described in Section 4.3.1,
namely use the Pyterrier fcrs implementation6. Then, regarding our CPP predictors,
the procedure was as follows: First, we examine the single-turn prediction using Equa-
tions (4.7), (4.9), and (4.12), and consequently, the multi-turn predictors using Equa-
tions (4.8), (4.11), and (4.13). For the score-based predictors, as already specified in
Equations (4.7) and (4.8), we use a combination of the mean, maximum score, and the
standard deviation of the retrieved item scores and use the scikit-learn implementation
of the Random Forest classifier 7 (denoted Score-based (RF)). For the coherence-based
multi-turn predictor as specified in Equation (4.11), we select among the coherence-based
predictors the one that showed the most promising performance in Section 4.2, namely
Reciprocal Volume (RV) (Faggioli et al., 2023a), and we apply the L1-based classifier with
a regularisation factor λ equal to 0.1 by adapting the scikit-learn implementation of the
Lasso Regression8 (denoted RV(L1-based)). For the corresponding single-turn embedding-
based predictor based on Equation (4.9), we use a Random Forest-based classifier for RV
(denoted RV(RF)), since we only use a single predictor value to predict the ranking, and
therefore, applying regularisation does not add anything. For both Random Forest and
L1-based classifiers, we split the available conversations 70% for training, 30% for testing.

Finally, for our new AE-based CPP predictor (denoted AE), we use a Pytorch-based9

Auto-Encoder with classification capabilities by adding two losses: (i) An MSE reconstruc-
tion loss, which forces the network to output a representation as similar as possible the
input representation by producing its compressed version, (ii) A classification loss; here,
we use the cross-entropy (CE) loss, which takes the compressed representation and target
labels and calculates the negative log-likelihood loss (this leads the Encoder to output a
compressed representation that aligns with the target class). We also add a loss multiplier
to control the contribution from each loss, adding equal weight to reconstruction and clas-
sification accuracy. We use a linear activation on the first hidden layer and a ReLU on the
6 https://github.com/cmacdonald/pyterrier_fcrs/tree/main
7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html 8 https:
//scikit-learn.org/stable/modules/linear_model.html 9 https://pytorch.org

https://github.com/cmacdonald/pyterrier_fcrs/tree/main
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://pytorch.org
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second hidden layer, and we train the model with an Adam optimizer with a learning rate
of 0.01 for a total of 100 epochs. For single-turn prediction, we predict the performance
of a conversation by simply examining the top-ranked item of turn k to predict a ranking
(or the top-ranked item) of turn k+ 1, and therefore, we use the contents of one turn
for training and the rest for testing. This contradicts the traditional concept of allocating
more data for training than testing, but in this case, it is according to our CPP short-term
evaluation scenario. In contrast, for multi-turn prediction, we inevitably use more data
for training, as we consider the top-100 returned item representations of all turns up to
k to predict turn k+ 1. We report Accuracy as a measure of classification performance.
More specifically, in this section, we answer the following research questions:

RQ4.5 How do the different types of CPP predictors (score-based, coherence-based,
AE-based) perform in single-turn prediction?

RQ4.6 How do the different types of CPP predictors (score-based, coherence-based,
AE-based) perform in multi-turn prediction?

4.4.3 RQ4.5: Supervised Single-turn CPP Prediction

First, we examine our proposed supervised CPP predictors in the single-turn setting. For
this, we look at Tables 4.6 and 4.7. First, we examine the results of the GRU model
in (Table 4.6; this table contains the predictive accuracy results on the test set of each
classifier as described in Section 4.4.2, where each group of columns indicates a different
prediction rank cutoff (ranks 1, 20, and 100). For single-turn prediction, we use the
retrieved items of turn k (which is denoted as train turn in the table) and we use the
ranking (recommendation list) of turn k+1 to make predictions (denoted as test turn). In
particular, when predicting the top-ranked item (the cutoff which we denote as found at
rank 1), we observe that the results are mixed across both datasets. For Shoes, all three
types of predictors perform better at different turns, with AE scoring higher most of the
times and especially as the turns progress. For Dresses, score-based predictors seem to
perform highest, but with only marginal differences, since all predictors seem to perform
equally across turns. For predicting a successful conversation by considering returned
target items by rank 20 (found at rank 20), the results again diverge between datasets; for
Shoes, there is a clear trend for a better performance of score-based predictors, while for
Dresses, AE performs best across turns. Finally, when examining a ranking of the top-100
items (found at rank 100), our AE-based classifier performs best for both datasets, and
especially for Dresses, the difference is notable with other predictors.

Next, we turn to the EGE results in Table 4.7. Again, when predicting successful
conversations at the top-ranked item in the first group of columns, the results are mixed,
with Shoes indicating a split between all predictors at various turns, while Dresses indicate
that AE is performing best. As for the items found by rank 20, we observe a similar



CHAPTER 4. CONVERSATIONAL PERFORMANCE PREDICTION (CPP) 105

Table 4.6: Single-turn CPP Supervised Predictor Accuracy results for the GRU model.
Results for the Shoes dataset are shown in the top part of the table, while the bottom part
shows the results for Dresses. Each group of columns indicates a different prediction rank
cutoff (ranks 1, 20, and 100). The first two columns indicate the turn used to produce
the predictor (denoted train) and the single turn whose ranking is used for prediction
(denoted test). In each group of columns, bold denotes the best performing predictor for
that specific rank cutoff. In case all predictors obtain identical values in a certain cutoff,
none of them is denoted with bold.

found at rank 1 found at rank 20 found at rank 100
Shoes

train test score RV(RF) AE score RV(RF) AE score RV(RF) AE
2 3 0.90 0.88 0.88 0.68 0.60 0.56 0.77 0.63 0.77
3 4 0.88 0.77 0.84 0.70 0.63 0.48 0.67 0.65 0.78
4 5 0.82 0.83 0.83 0.65 0.53 0.52 0.70 0.60 0.81
5 6 0.80 0.67 0.83 0.63 0.48 0.57 0.77 0.70 0.81
6 7 0.78 0.77 0.84 0.63 0.55 0.59 0.77 0.77 0.80
7 8 0.80 0.70 0.82 0.68 0.63 0.58 0.75 0.75 0.79
8 9 0.77 0.73 0.81 0.52 0.50 0.59 0.70 0.68 0.22
9 10 0.78 0.70 0.78 0.60 0.55 0.57 0.73 0.67 0.77

Dresses
train test score RV(RF) AE score RV(RF) AE score RV(RF) AE

2 3 0.98 0.98 0.96 0.82 0.82 0.97 0.57 0.58 0.97
3 4 0.98 0.97 0.97 0.87 0.77 0.98 0.63 0.58 1.00
4 5 0.98 0.97 0.97 0.82 0.78 0.99 0.57 0.57 1.00
5 6 0.97 0.92 0.97 0.82 0.73 0.98 0.53 0.72 1.00
6 7 0.97 0.97 0.94 0.75 0.72 0.98 0.57 0.60 0.98
7 8 0.97 0.93 0.95 0.72 0.68 0.99 0.72 0.60 0.99
8 9 0.97 0.92 0.95 0.77 0.67 0.98 0.60 0.63 0.98
9 10 0.95 0.90 0.94 0.75 0.70 0.99 0.55 0.62 0.98

pattern with the GRU model: in the Shoes dataset, score-based predictors perform higher
(with RV being the highest in the middle turns), while for Dresses AE shows the highest
performance. Finally, looking at a ranking of the top-100 items, and similarly to Table 4.6,
for both datasets, AE shows higher performance than both score-based and RV.

Overall, we do not observe large deviations between the two recommendation models
(except for some turns in "found at rank 1"), unlike the results in Section 4.2, where we saw
that the CPP correlations were significantly lower when moving from GRU (a less effective
CRS model) to EGE (a more effective CRS model). Also, there is no large deviation
between datasets, although in general, the accuracy is higher for Dresses than for Shoes.
This contradicts the results in Section 4.2, where Shoes exhibited larger correlations.
Indeed, while Dresses was found as a more difficult dataset in previous studies (Wu et al.,
2021a,b), the supervised single-turn CPP results indicate that our proposed predictors
can effectively predict a successful conversation by using its success label at various ranks.
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Table 4.7: Single-turn CPP Supervised Predictor Accuracy results for the EGE model.
Notation as per Table 4.6.

found at rank 1 found at rank 20 found at rank 100
Shoes

train test score RV(RF) AE score RV(RF) AE score RV(RF) AE
2 3 0.97 0.87 0.90 0.57 0.50 0.56 0.78 0.50 0.82
3 4 0.90 0.80 0.88 0.65 0.53 0.50 0.77 0.53 0.83
4 5 0.88 0.90 0.84 0.52 0.53 0.46 0.85 0.53 0.15
5 6 0.77 0.73 0.80 0.50 0.62 0.53 0.82 0.62 0.86
6 7 0.77 0.72 0.79 0.73 0.52 0.54 0.77 0.52 0.83
7 8 0.80 0.63 0.79 0.62 0.57 0.55 0.82 0.57 0.86
8 9 0.87 0.70 0.77 0.73 0.52 0.46 0.80 0.52 0.87
9 10 0.73 0.58 0.76 0.52 0.43 0.57 0.85 0.43 0.87

Dresses
train test score RV(RF) AE score RV(RF) AE score RV(RF) AE

2 3 0.97 0.97 0.98 0.82 0.77 1.00 0.60 0.48 0.99
3 4 0.95 0.92 0.97 0.77 0.62 1.00 0.58 0.60 1.00
4 5 0.95 0.95 0.94 0.77 0.73 0.99 0.55 0.55 1.00
5 6 0.92 0.90 0.95 0.77 0.68 0.99 0.57 0.52 0.99
6 7 0.90 0.90 0.95 0.77 0.65 0.99 0.42 0.43 0.99
7 8 0.87 0.85 0.93 0.77 0.72 0.98 0.53 0.43 0.99
8 9 0.87 0.85 0.94 0.73 0.67 0.99 0.48 0.50 0.99
9 10 0.87 0.87 0.95 0.72 0.75 0.95 0.53 0.53 0.95

Finally, we note that our AE-based predictor performs best in various settings, and is
consistently optimal for predicting a top-100 ranking. This is quite surprising: While
learning a compressed representation of the top-ranked item is expected to perform well
to predict the top-1 ranking, we see that it also shows promising results for a full ranking.
This is encouraging as a less expensive supervised predictor for single-turn prediction that
only needs the top item of an embedded representation already contained in the CRS
models. To answer RQ4.5, score-based predictors perform quite well on predicting the
top-item and items found at rank 20 only for Shoes, while the new AE-based predictor
shows promising performance across more settings, and RV (which performed quite well
in Section 4.2) performance is encouraging only in a few cases for single-turn prediction.

4.4.4 RQ4.6: Supervised Multi-turn CPP Prediction

We now examine the supervised CPP performance for multi-turn prediction. For this, we
look at Tables 4.8 and 4.9 for GRU and EGE, respectively, where we use the contents of all
turns up to turn k to produce the predictor (denoted train, which means CPP values up to
turn k) and the single turn whose ranking is used for prediction (denoted test, which means
the turn that comes after the multi-turn predictor. Similarly to single-turn prediction,
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Table 4.8: Multi-turn CPP Supervised Predictor Accuracy results for the GRU model.
Results for the Shoes dataset are shown in the top part of the table, while the bottom
part shows the results for Dresses. Each group of columns indicates a different prediction
rank cutoff (ranks 1, 20, and 100). The first two columns indicate the final turn up to
which we use the contents to produce the predictor (denoted train, which means CPP
values up to turn k) and the single turn whose ranking is used for prediction (denoted
test, which means the turn that comes after the multi-turn predictor). In each group of
columns, bold denotes the best performing predictor for that specific rank cutoff. In case
all predictors obtain identical values in a certain cutoff, none of them is denoted with bold.

found at rank 1 found at rank 20 found at rank 100
Shoes

train test score RV(L1) AE score RV(L1) AE score RV(L1) AE
2 3 0.90 0.97 0.88 0.68 0.57 0.98 0.77 0.77 1.00
3 4 0.90 0.92 0.84 0.72 0.55 1.00 0.78 0.78 1.00
4 5 0.85 0.87 0.83 0.75 0.53 0.98 0.63 0.77 1.00
5 6 0.82 0.85 0.82 0.63 0.48 0.99 0.75 0.77 1.00
6 7 0.82 0.83 0.82 0.70 0.52 0.99 0.80 0.80 1.00
7 8 0.78 0.83 0.81 0.72 0.63 1.00 0.82 0.80 1.00
8 9 0.80 0.82 0.80 0.68 0.60 0.99 0.70 0.75 0.99
9 10 0.82 0.82 0.77 0.72 0.63 1.00 0.73 0.78 1.00

Dresses
train test score RV(L1) AE score RV(L1) AE score RV(L1) AE

2 3 0.98 0.98 0.98 0.87 0.87 0.99 0.57 0.62 0.97
3 4 0.98 0.98 0.98 0.85 0.83 0.99 0.62 0.57 1.00
4 5 0.98 0.98 0.97 0.83 0.85 1.00 0.60 0.62 1.00
5 6 0.97 0.97 0.97 0.82 0.82 1.00 0.70 0.55 1.00
6 7 0.97 0.97 0.97 0.78 0.80 1.00 0.55 0.53 0.98
7 8 0.97 0.97 0.97 0.78 0.78 1.00 0.60 0.50 0.99
8 9 0.97 0.97 0.96 0.83 0.83 0.99 0.68 0.52 0.98
9 10 0.97 0.97 0.96 0.75 0.78 0.99 0.63 0.47 0.98

we use three different rank cutoffs to make predictions. First, we observe that for the
deeper rank cutoffs ("found at rank 20" and "found at rank 100"), our AE-based predictor
outperforms the other two types across both CRS models and datasets. This is the case
where the predictor learns the entire top-100 ranking representations of all turns up to turn
k used to predict the ranking of turn k+1. Therefore, we expected the predictor to show
higher performance for these deeper rankings, and especially the predictions of top-100
ranking result in a train-test pattern correspondence. On the other hand, for predicting
successful conversations on the top item ("found at rank 1"), we observe mixed results. For
Dresses, our AE-based predictor still shows optimal performance for EGE, while for GRU
it performs equally well with the other predictors (all of them show high performance). For
Shoes, we observe that either score-based predictors or RV perform best for EGE, while for
GRU, our L1-based version of RV is the best-performing predictor. Therefore, we see that
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Table 4.9: Multi-turn CPP Supervised Predictor Accuracy results for the EGE model.
Notation as per Table 4.8.

found at rank 1 found at rank 20 found at rank 100
Shoes

train test score RV(L1) AE score RV(L1) AE score RV(L1) AE
2 3 0.97 0.97 0.90 0.57 0.53 0.99 0.80 0.78 1.00
3 4 0.88 0.90 0.88 0.55 0.48 1.00 0.80 0.82 1.00
4 5 0.92 0.88 0.84 0.67 0.52 0.99 0.83 0.87 1.00
5 6 0.82 0.85 0.80 0.57 0.52 1.00 0.82 0.82 1.00
6 7 0.87 0.83 0.79 0.65 0.53 1.00 0.82 0.82 1.00
7 8 0.83 0.82 0.79 0.57 0.48 1.00 0.85 0.85 1.00
8 9 0.80 0.82 0.77 0.57 0.48 0.99 0.83 0.83 1.00
9 10 0.82 0.78 0.76 0.57 0.42 1.00 0.88 0.88 1.00

Dresses
train test score RV(L1) AE score RV(L1) AE score RV(L1) AE

2 3 0.97 0.97 0.98 0.82 0.83 0.99 0.60 0.68 1.00
3 4 0.95 0.95 0.97 0.78 0.78 1.00 0.52 0.55 1.00
4 5 0.95 0.95 0.96 0.77 0.78 1.00 0.52 0.55 1.00
5 6 0.92 0.92 0.96 0.75 0.75 1.00 0.55 0.53 1.00
6 7 0.90 0.90 0.94 0.77 0.78 1.00 0.53 0.55 1.00
7 8 0.87 0.87 0.95 0.77 0.78 1.00 0.52 0.57 1.00
8 9 0.87 0.87 0.94 0.80 0.78 1.00 0.50 0.55 1.00
9 10 0.87 0.87 0.95 0.77 0.77 1.00 0.58 0.53 1.00

using regularisation on the multi-turn representations of this embedding-based predictor
is particularly useful in these cases and using the important features helps in the top-item
prediction. On the other hand, score-based predictors do not offer that much added value
in supervised CPP multi-turn prediction. In general, learning a compressed representation
of the top-ranked items from previous turns (AE) shows improved performance for CPP
multi-turn prediction, the L1-based RV shows improved performance in some cases for
predicting the top item, and score-based predictors can still be used as a strong baseline,
thus answering RQ4.6.

4.5 CPP Conclusions

In this Chapter, we have presented our novel Conversational Performance Prediction
(CPP) (Section 4.2) framework, which proposes indicators of effective performance of
a conversation in Conversational Image Recommendation dialogues. In our framework,
our main focus is to take into account the multi-turn aspect of the task of conversational
interactive image retrieval task. For this purpose, we proposed some CPP predictors that
cover various evaluation settings. In particular, we started with simple score-based pre-
dictors and used them for both short-term and long-term prediction, both for single-turn
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and consecutive-turn prediction (Section 4.2.1). We performed our experiments using
the widely-used relative captioning datasets for conversational recommendation systems
(CRS) and examined the extent to which our proposed predictors are indicative of the
ranking of the users’ target items in the recommendation list (Sections 4.3.2, 4.3.3). In
short, we found that for single-turn prediction, score-based predictors are quite effective
at early turns, but for consecutive-turn prediction, examining the overlap of the retrieved
lists had only a weak-medium correlation with late turn effectiveness on two out of our
three datasets. Furthermore, we extended our evaluation to a more similar setting to tra-
ditional QPP (Sections 4.3.4 and 4.3.5) by using a subset of target items and also including
embedding-based predictors that were already examined in Chapter 3. We found that in
general, score-based predictors outperform embedding-based predictors in most cases, but
embedding-based predictors show improved performance for earlier turns in short-term
settings (RQs 4.3 and 4.4). Overall, the observed correlation values for CPP were much
lower than the corresponding values observed in traditional QPP settings (Arabzadeh
et al., 2021a,b; Cronen-Townsend et al., 2002; Datta et al., 2022b; Faggioli et al., 2021b,
2023a; Hashemi et al., 2019; Meng et al., 2023; Roitman et al., 2017b; Shtok et al., 2009,
2010; Zamani et al., 2018; Zhou and Croft, 2007). These results indicated that CPP
evaluation could be extended to a more appropriate setting that better captures the na-
ture of the task. In particular, in Section 4.4, we introduced a supervised version of our
CPP framework, where we based our analyses on a classification task that aims to predict
whether a conversation would fail, as well as testing the efficacy of interventions for failing
conversations. We further proposed a new embedding-based supervised predictor (inspired
by supervised QPP predictors) that learns a compressed representation of the retrieved
item(s) of previous turn(s). In our experiments (Sections 4.4.3 and 4.4.4), we found that
using classifier-based evaluation and the predictive accuracy of a predictor on the test set
more effectively captures the underlying nature of a multi-turn conversation and shows
high accuracy across both single-turn and multi-turn predictions (RQs 4.5 and 4.6). In
addition, we found improved performance across multiple rank cutoffs and predictors.
Overall, in this chapter, we have validated the second claim of the thesis statement that
we can predict the effectiveness of a ranking of items in a Conversational Recommendation
Systems (CRS), which are also based on learned embedded representation of images, where
user feedback takes the place of a textual query. Indeed, by introducing a framework of
Conversational Performance Prediction (CPP), we can predict the degree of success of a
conversation by a CRS - such success can be predicted over a short or long time horizon,
thereby predicting current user satisfaction or overall satisfaction of a conversation.

While our CPP framework shows promising results for predicting the success of a
conversation in our task of interest, some limitations have not been addressed in this
Chapter. In particular, we addressed different levels of dialogue success based either
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on a correlation or labels of success with a classifier. In these cases, dialogue failure is
considered to be a failure of the system to deliver the target user’s item by a certain turn,
and this is what we tried to predict. Still, system failure is not the only reason why a
target item is not returned. It might be the case that the target item does not exist in
the catalogue. Therefore, when making predictions about conversation success, we need
to differentiate between system failure and unavailability. Furthermore, while the user can
have a more strict information need, which is restricted in a single target item, sometimes a
user can have a more flexible need, which can be equally satisfied with multiple alternative
items. Indeed, QPP evaluation is more reliable when there are more than a single relevant
document (Datta et al., 2022b; Faggioli et al., 2023b). In Chapter 5, we collect real user
opinions about the relevance of alternative items to given target items for the Shoes and
Dresses datasets. This dataset has better knowledge of alternative relevant items, and we
use that to reevaluate CPP in Chapter 6.



Chapter 5

Evaluating User Simulators with
Alternatives

In Chapter 4, we introduced our framework of Conversational Performance Prediction
(CPP), which extends the traditional Query Performance Prediction in search tasks to a
Conversational Image Recommendation setting. In this way, we predicted the rankings
resulting from multi-modal CRS, and more generally, we showed how we can predict the
degree of success of a conversation with a CRS, namely the second proposition of the thesis
statement (Section 1.2). In this regard, we confirmed our hypothesis that by considering
the multi-turn aspect of our task of interest, we can predict conversation success over
multiple horizons - in a shorter or longer time-frame, and therefore, differentiate between
current user satisfaction and overall user satisfaction in a dialogue context. Still, to be
able to adequately predict conversational performance, we need to take into account the
context in which it takes place. This means that we need to make predictions in a re-
alistic setting that sufficiently mimics a real-life user shopping scenario. In this chapter,
we account for this requirement by collecting a dataset with real user opinions (in the
form of relevance judgments) about alternative fashion items to evaluate CPP under this
new alternatives-based evaluation setting. In particular, we experimentally test our third
hypothesis of the thesis statement, which revolves around the following: Furthermore,
by obtaining user opinions about the relevance of items, we improve the completeness of
the evaluation mechanism by identifying alternatives recommendations for existing target
items, which could be used to both inform the user simulator and therefore improve the
overall evaluation of CRS systems. This addresses Limitation 1a) (A system trying to
find a single item that is already known by the user contradicts the recommendation in-
tuition) and Limitation 1b) (Focusing on a single target item without having any more
options to choose from highly restricts system performance. In this way, there is a chance
that the system keeps repeating the same recommendations, thus influencing the distribu-
tion of items being recommended).

111
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Figure 5.1: Example of a fashion Conversational Image Recommendation scenario. At
each turn, the user provides natural language feedback on a candidate item. In existing
systems, users are assumed to have a specific target in mind (green). Instead, the presence
of a single alternative (orange) or multiple alternative (blue) items can guide the system
to find a target of a certain type.

Indeed, as we mentioned in Section 2.2.2, for training and evaluation, many CRSs
use a reinforcement learning approach (Guo et al., 2018), which ideally requires access
to a large amount of data from interactions with the environment (Shi et al., 2019). To
compensate for the lack of human data at large scale, a common solution is to rely on
interactions with a simulated user to train the system, and similarly evaluation is done
in an offline setting. In Section 2.2.2, we also described our setting of interest, namely
Conversational Image Recommendation. In this context, a user has a desired or target item
“in mind" and provides relative feedback on the current or candidate item at each turn.
An example of such a context, where a user interacts with a CRS, is shown in Figure 5.1.
Here, the system starts with a random suggestion at the first turn, and the user provides
textual feedback on the recommended item, aiming to guide the system to their assumed
target item. The process and the different variants of the task were described in detail
in Sections 2.2.2 and 2.2.2. In all cases, the overall setting is suggestive of a known-item
type of task (Broder, 2002), where the target item is assumed to be defined and exist in
the item catalogue.

The next turn in Figure 5.1 displays the options that a hypothetical (simulated) user
could behave in existing CRSs. Currently, a simulator supports the first case (shown in
green), where the same pattern follows the previous turn after Candidate 1. Instead, a
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user could react more flexibly; they could ask the system for another item that is not their
initial target, but is quite similar to it, and provide one ("instead I would be interested
in X") or more ("something like X, Y, or Z") additional preferences. In other words, in
existing user simulators, there is no option for a (simulated) user to request one (orange)
or more (blue) alternatives to their target item, which is something that happens in a
real life shopping scenario. This problem connects back to the recommendation scenarios
presented already in Section 2.2.3 (Limitations 1a and 1b). In this chapter, we provide a
solution to the scenarios or strategic changes of users’ preferences, which could have an
impact on the evaluation of system performance (through changes in generated feedback).

Indeed, we argue that the current fashion recommendation evaluation setting presents
some limitations: First, the realisticity of an interaction does not necessarily aid user
experience. Specifically, the user is assumed to be infinitely patient, and willing to in-
teract with the CRS for a large number of turns until the target item is found. This
setting is not representative of a real user experience, where a user might become frus-
trated. To complement this, a simulated user is assumed to be single-minded, meaning
that it is not flexible enough to change its strategy or initial plan. On the contrary, rec-
ommender systems are typically used to aid exploratory user behaviour (Broder, 2002;
O’Brien, 2006), and therefore, by persisting on a single desired item, users are not explor-
ing the product space. Moreover, unlike information retrieval systems, which are evaluated
using test collections that aim to provide a reasonably complete coverage of relevant doc-
uments (Craswell et al., 2020; Dalton et al., 2020a), recommender systems suffer from a
lack of completeness (Chaney et al., 2018; Jadidinejad et al., 2020, 2021). In particular, as
mentioned in Section 2.1, search engines use pooling of documents retrieved from various
systems and a per query relevance judging of pooled documents to obtain more complete
assessments (Craswell et al., 2020; Dalton et al., 2020a). For example, the MSMARCO
test collection has thousands of queries containing shallow judgements, while the TREC
Deep Learning track provided ∼100 queries with deeper judgements (Craswell et al., 2020).
In this regard, it was found that the sparse MSMARCO assessments are not a suitable
replacement for more complete assessments (MacAvaney and Soldaini, 2023). Similarly,
the presence of more reliable relevance judgments for CRS would benefit the reliability of
their evaluation. In this chapter, we show that more relevance judgments for CRS items
can be obtained by directly asking users about their alternative preferences, thus allowing
the user to update their preferences during the dialogue. A summary of the limitations of
existing user simulators (or relative captioners, as described in Section 2.2.2) can be seen
in Table 5.1, along with the reasons why we decided to address them. Overall, we aim to
provide a more realistic setting from the user side (in terms of how a user expresses their
preferences), which in turn leads to a more exploratory nature of a CRS, and contributes
to more reliable and generalisable conclusions.
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Table 5.1: Summary of the limitations in existing user simulators in a Conversational
Image Recommendation setting.

Limitation CRS function Reason for addressing
infinitely patient user allows evaluation for multiple turns realisticity of a CRS

single-minded user single know target image item to aid user’s exploratory behaviour
lack of item completeness not established way of assessing relevance to aid reliability of evaluation

In short, this chapter makes the following contributions:

• The first extended dataset for fashion recommendation that contains labels about
the presence of sufficient alternatives for some known target items by real users
on different fashion item categories. The fashion categories (shoes and dresses)
are derived from two popular fashion-related CRS datasets, namely Shoes (Berg
et al., 2010; Guo et al., 2018) and FashionIQ (Wu et al., 2021a). In this way,
we contribute to evaluation completeness for relevance and create a parallel with
information retrieval

• Consequently, the first user simulator that uses relevance judgments about alterna-
tives or as we term, a meta-user simulator, which wraps an existing user simulator
to provide feedback for possible alternative items. Our proposed improved user sim-
ulator allows simulated users not only to express their preferences about alternative
items to their original target, but also to change their mind and level of patience.

• A study of existing CRS models evaluated with and without alternatives. In this
regard, whether a user changes their mind based on their target item in the previous
turn might be influential for system performance. In other words, opting for an
alternative item would produce feedback with slightly altered semantic information,
thus leading the system to produce a considerably improved ranking of items.

Importantly, the main findings of this chapter are: (i) CRS performance improvements
are observed across all three CRS systems and evaluation metrics. In particular, using
the knowledge of alternatives by the simulator can have a considerable impact on the
evaluation of existing CRS models. In other words, the existing single-target evaluation of
CRS underestimates their effectiveness, and when simulated users are allowed to instead
consider alternatives, the system can rapidly respond to more quickly satisfy the user. (ii)
The exact level of patience of a user before switching to an alternative does not impact
performance to a great extent. (iii) Users tend to select an alternative, and the earlier they
do this, the more they get an earlier increase in satisfaction. (iv) Introducing alternatives
results in a slight reordering of the different CRS models. The rest of the chapter is
organised as follows: We present some related work on Conversational Recommendation,
user simulators, and data pooling in Section 5.1, and introduce our alternative-based user
simulator in Section 5.2. Furthermore, we introduce the way we collected our alternatives



CHAPTER 5. EVALUATING USER SIMULATORS WITH ALTERNATIVES 115

extended datasets in Section 5.3. We continue with our experimental setting, evaluation
measures, and results in Section 5.4, and finish with some conclusions in Section 5.5.

5.1 Related Work

The main differences of Conversation Image Recommendation from text-based CRS are
that: (a) recommended items are displayed as images, and more specifically, a user only
sees the top-ranked image item at each turn, and (b) the setting does not differentiate
between user feedback and providing the user need, since the user feedback is provided in
natural language form and describes specific attributes of the desired item. Examples of
such systems were provided in Section 2.2.2. The common assumption in these approaches
is that the dialog with the user proceeds with a narrowly-defined target item. However,
by being single-minded and not allowing for any other option, the evaluation setting is
not realistic, while the user cannot adequately explore the product space. Moreover, while
displaying the top-ranked images resembles the context of online shopping, a more natural
conversation usually involves a user that changes their mind, and does not wish to interact
for an infinite number of turns. In contrast, in our work, we allow the user to reconsider
after a certain threshold and provide alternative options. In the rest of this section, we
present some related work to our proposed approach for collecting alternative opinions for
our meta-simulator. For this purpose, we start with some information on user simulation
in CRSs (Section 5.1.1) and continue with existing approaches in information retrieval
that use pooling to create realistic and representative relevance judgments (Section 5.1.2).

5.1.1 User Simulation for Evaluating CRS

In this section, we present a more detailed view of user simulators in conversational sys-
tems. Training CRS systems in a multi-turn setting requires a large amount of data (Li
et al., 2016; Shi et al., 2019). To compensate for the increased need for real users, user
simulators are used as a surrogate of human behaviour (Li et al., 2016; Shi et al., 2019).
Indeed, several approaches have been proposed that employ user simulators in interactive
systems (Chung, 2004; Griol et al., 2013; Owoicho et al., 2023; Sun et al., 2023; Verberne
et al., 2015; Zhang and Balog, 2020; Zhang et al., 2022). For example, Owoicho et al.
(2023) observed improved performance of mixed-initiative conversational search systems
with multiple rounds of simulated user feedback, while Sun et al. (2021) simulated user
satisfaction with training data from annotators who judged the level of satisfaction of
each turn from the dialogue context. As for CRSs, recent work on user simulators builds
on an agenda-based framework that uses push and pull operations to update the user
needs per turn (Balog, 2021; Schatzmann et al., 2007; Vakulenko et al., 2019; Zhang and



CHAPTER 5. EVALUATING USER SIMULATORS WITH ALTERNATIVES 116

Balog, 2020). For Conversational Image Recommendation, the state-of-the-art simulator
framework is explained in Section 2.2.2.

For evaluating CRS systems, some approaches compare the resulting dialogue with
human dialogues using different performance metrics (Sun et al., 2021; Wu et al., 2021a;
Zhang and Balog, 2020; Zhang et al., 2022). In addition, some simulation approaches
collect annotated datasets for training CRSs. However, they are usually limited to rating
the level of dialogue success or user satisfaction (Sun et al., 2021). On the other hand,
our work is focused on extending the completeness of the ground truth by introducing
more options to the target space. In other words, we aim to enrich our simulated users
with a target group instead of single target items in a relative captioning setting. In that
sense, our approach is similar to Sun et al. (2023), where they assume an analogical
thinking of users, i.e., users comparing new items with prior knowledge. Still, they do not
necessarily provide other preference options. Instead, the basis of our work is to inform the
user simulator with alternatives to provide more helpful feedback and simulate a realistic
scenario.

5.1.2 Data Pooling and Evaluation Completeness

In general, the evaluation of recommender systems is plagued by a lack of completeness,
as typically past interactions are “replayed” and the prediction ability of the recommender
system to predict the hidden “future” interaction(s) is measured by classical evaluation
measures such as MRR and NDCG. This tends to favour systems that behave similarly to
the system originally deployed when the user interactions were collected (Chaney et al.,
2018; Jadidinejad et al., 2020, 2021). In contrast, search engine evaluation uses test collec-
tions (Sanderson et al., 2010), which combine two techniques for obtaining a more complete
coverage of relevant documents: the pooling of documents retrieved by some diverse effec-
tive systems; and the explicit judging of the relevance of all pooled documents to a user’s
query. Incomplete test collections are well known to result in unreliable evaluation (Buck-
ley and Voorhees, 2004; Buckley et al., 2007). Recently, Craswell et al. (2020) found
a good correlation between evaluation using thousands of single known relevant queries
versus using deeply judged TREC queries, however, pseudo-relevance feedback techniques
have been shown to work on the latter but not the former (Wang et al., 2023).

Pooling and assessing is typically not used for recommendations, as the user’s exact
information needs are not clear. However, for fashion-based CRS, where the user has a
target item in mind, we argue that it is possible to ask a 3rd party assessor to reasonably
interpret their need and consider what other items they may have considered as relevant
alternatives. In this way, we develop more complete test collections for fashion-based CRS
(using alternative target items), and a more realistic user simulator that can make use of
these alternatives during evaluation.



CHAPTER 5. EVALUATING USER SIMULATORS WITH ALTERNATIVES 117

5.2 Proposed Approach: Simulated Users with Al-
ternatives

In this section, we outline our proposed approach for an alternative-based user simulator
that expresses user needs adaptively. In particular, we build on the state-of-the-art user
simulators used in Conversational Image Recommendation, as introduced in Section 2.2.2,
and we extend the user’s target space from a single target to a target group, based on real
user relevance judgments. More specifically, as mentioned in Section 2.1.2, conversational
recommendation with image items in the fashion domain is another example setting of a
dialog-based ranking task, where, at each interaction turn, the user provides a critique of
the current recommendation, aimed at directing the recommender system towards their
desired target item. This assumes a list of ranked image items at each turn, where the
ranking of a given turn is updated based on the user feedback received in the previous
turn. At the same time, to stay in line with the reinforcement learning (RL) approach
adopted by the task, which allows optimizing the decision process based on the long-term
rewards (Shi et al., 2019), the system needs to be interacting with the environment, and
obtaining many samples is hard by relying on real users (Li et al., 2016; Shi et al., 2019).
This challenge is dealt with by human surrogates or the state-of-the-art user simulator,
which is used for training and evaluating such systems. In our task of interest, a user
simulator is termed as the relative captioner (Section 2.2.2), whose generated feedback was
found to correlate with human satisfaction (Guo et al., 2018). Therefore, in the remainder
of the section, we first describe the user simulator in the existing conversational image
recommendation settings, namely relative captioning. Then, we continue by introducing
our meta-user simulator, which takes into account relevance judgments obtained from
real users regarding alternatives to a given target image: We describe its conception and
functionality, and specifically how it uses the knowledge of alternatives to inform the CRS
about user preferences. In addition, we provide some explanations about the actions of
the simulator and the system.

5.2.1 User-simulator based evaluation in CRS

We first start by providing some general notation, providing the general principles of a user
simulator. More formally, at a given interaction turn k, the user provides textual feedback
fk on the current top-ranked candidate item αk,1. Based on this feedback, the conversa-
tional recommendation system C() provides a new ranking of items in the next turn, i.e.:
C(αk,1,fk)→ {αk+1,1, ...αk+1,n}. In this regard, as briefly introduced in Section 2.4.2, a
relative captioning dataset contains tuples of the form: ⟨ϕtarget,ϕα,fα,target⟩ where ϕtarget
is a representation of the target item (for instance an image), ϕα is the (representation
of the) current candidate item being presented to the user and fα,target is the critique by
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the user on the candidate, which directs the system more towards the target. Therefore,
datasets of this type are used as training data for the simulator or relative captioner. In
other words, a User Simulator using relative captioning is an object with a single function
defined as

Usersim.critique(user, top_ranked, target)→T (5.1)

which takes as input the user’s id user, the current top-ranked image, top_ranked, and
the user’s actual target image target. It then calls a learned relative captioning model,
which has been trained given target to critique top_ranked, and returns as output a text
string describing the visual differences between top_ranked and target.

5.2.2 A Meta User Simulator for Evaluation with Relevant Al-
ternatives

After describing the user simulators currently used in conversational image recommenda-
tion studies, we aim to extend them to be able to take alternative relevant items as input.
More specifically, we present a set of intuitions for a user that considers alternative items
as follows:

Intuition 1 (I1): A user’s patience when critiquing a single candidate item may
run out after number of turns (the user gets frustrated when a certain amount of
time is exceeded and their target item is not returned by the system).

Intuition 2 (I2): When a user selects an alternative item as a new target, they are
influenced by the current item they see. In other words, the choice (or not) of an
alternative item is influenced by the top-ranked candidate item at the given turn.

Intuition 3 (I3): Once an alternative item is chosen by the user, the existing
relative captioner-based user simulator can be called with the alternative as a new
target.

These intuitions are operationalised with a new updated user simulator, as shown in
Figure 5.2, and will be detailed below.

The pseudocode for our meta-user simulator procedure is provided in Algorithm 1.
More specifically, our MetaUserSim firstly requires knowledge of all possible alternative
items for target items. This is akin to the “qrels” in test-collection based evaluation. Then,
when the meta-user simulator is called, if the turn number exceeds the patience tolerance
parameter, alternatives are considered (line 2, addressing in Intuition I1); Among all of the
alternatives for a given target, we select the alternative that is closest in image similarity
to the current top ranked image as the target (lines 5 & 6, addressing I2). The existing
relative-captioning based user simulator is then asked to critique the current top-retrieved
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Figure 5.2: Schematic representation of our meta-simulator that uses alternatives to pro-
duce feedback.
item, this time with respect to the newly selected target (line 8, I3); Note that we choose
to consider the target as part of the alternatives, so that the ranker can choose between
the nearest item at a later stage. Finally, we instrument Algorithm 1 (our proposed
meta-simulator algorithm) to provide data about how often alternatives are chosen.

Algorithm 1 Meta-User Simulator
Require: Usersim: base user simulator for Conversational Image Recommendations
Require: sims: function to find the similarity of a set of image from a given query image
Require: tolerance: patience parameter referring to the turn a user starts to ask for an

alternative
Require: all_alternatives: A set of known alternative relevant images for all targets

1: procedure MetaUserSim.critique(turn,top_ranked, target)
2: if turn > tolerance then
3: alternatives= all_alternatives[target]
4: alternatives.target(target)
5: all_dists= sims(alternatives, top_ranked)
6: target= alternatives[argmax(all_dists)]
7: end if
8: return Usersim.critique(turn,top_ranked, target)
9: end procedure

Using the new meta-simulator algorithm, the updated learned relative captioning
model, can be written as:

Metausersim.critique(user, top_ranked,all_targets)→T (5.2)

which has been trained given each targeti to critique top_ranked, and this time returns a
text string describing the visual differences between top_ranked and either of the targeti.
In this way, Metausersim is still a critiquing method using a user simulator, with the dif-
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ference being that the assumed simulated user is more flexible, changes their mind, loses
their patience, and their behaviour resembles more a real-user shopping scenario. Table 5.2
provides a summary of the intuitions of our met-simulator in comparison with the cor-
responding functionality of the base (non-alternative) simulator. Importantly, Figure 5.2
shows a schematic representation of our new proposed meta-simulator with alternatives.
In particular, we consider the case when the user’s patience is exceeded (turn > toler-
ance). In this case, each of the identified alternatives is also encoded together with the
candidate and target images. Consequently, when a given turn exceeds the tolerance level
and given a set of known alternatives to a target image, the simulator is asked to critique
the candidate with respect to one of the alternatives, provided that one of them is close
enough to the candidate (otherwise the simulated user will not opt for an alternative).
Here we see that the feedback is modified (in green). This happens as the instruction from
the user simulator is given to the Dialog Manager, which leads to the modification in the
generated textual response or feedback. In the next section, we discuss how our dataset
with alternatives is created to be used as input data for the new simulator.

Table 5.2: Summary of differences of our meta-simulator from the base simulator (relative
captioner) according to our proposed intuitions.

Intuition base simulator alternative-based simulator
I1 infinitely patient user (tolerance exceeds the final turn) tolerance parameter (patience ran out after a given threshold)
I2 user remains with the option of the initial target user selects the most similar alternative to the given candidate
I3 user critiques the top-ranked candidate item user has the option to critique the alternative instead

5.3 Enriching of CRS Datasets with Alternatives

To train our meta-simulator, we assume that a dataset’s representativeness is a crucial
factor in training a user simulator, since it can have an impact on guiding the system, and
in turn, its performance. Therefore, we need to ensure that we obtain a reliable dataset
that follows some general principles in information retrieval. As mentioned in Section 5.1.2,
information retrieval evaluation is done with TREC test collections (Craswell et al., 2020,
2021; Dalton et al., 2020a,b), where pooling is applied. In our case, we attempt to create a
parallel evaluation setting for CRS systems, by taking into account the following intuition,
according to which a smaller number of representative deeper relevance judgments is not
interchangeable with thousands of shallower examples and recent techniques were found
to work better for them (MacAvaney and Soldaini, 2023; Wang et al., 2023). Therefore, we
believe that a careful selection of target items guarantees a representative sample. We now
describe how we enriched two fashion CRS datasets with alternative judgements to create
our dataset of alternative judgements consisting of different fashion categories (shoes and
dresses).
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5.3.1 Original Datasets

To build our dataset, we use the two popular datasets in the conversational fashion rec-
ommendation domain, namely the Shoes (Berg et al., 2010; Guo et al., 2018) dataset, and
the FashionIQ Dresses dataset (Wu et al., 2021a), as mentioned in Section 2.4.2. In par-
ticular, Shoes contains 4658 test target images, while Dresses contains 2454 test images.
Since these datasets were originally collected to train and evaluate CRS in the relative
captioning setting (Guo et al., 2018; Wu et al., 2020), each target image is accompanied
by a corresponding paired candidate image, as well as a relative critique or caption per
candidate-target pair, which describes the relative visual differences between the candi-
date and target image pairs and are used as training data for the user simulator. For
our task, we focus on the target images contained in the original datasets. We obtain
labels of relevance (whether a set of candidate images are a sufficient alternative to a given
target image) for a portion of the target images in the original datasets, which we treat
as different fashion categories1.

5.3.2 User Study Details

In this section, we describe the details of our user study, which can be further divided
into two main stages: target pooling (described in section 5.3.2) and data collection
(described in section 5.3.2). In particular, we use Amazon Mechanical Turk2 to obtain
assessments on alternative items. Target pooling was completed in August 2023, while
data collection extended from 18 August 2023 until 4 October 2023. It involved several
smaller test batches for each fashion category before the final deployment of the image set.
A schematic representation of our user study in steps is presented in Figure 5.3. Next, we
describe further how each of the two sub-tasks was conducted.

Target Pooling

The purpose of the study was to collect relevance judgments for CRS systems to introduce a
parallel to the test collection paradigm in information retrieval test collections. Therefore,
we need to ensure that we select some representative target image items (as the queries
in test collections) for which users will provide their opinions about relevant alternatives.
This brings two requirements: (i) Select a sufficient amount of items to achieve a level
of generalisability. (ii) Select items with prior knowledge derived from different systems -
this ensures a variety in the sample of items that are more representative of the underlying
population of items. To account for the first requirement, we estimate the required number
1 Our new collected dataset with alternative labels of relevance for Shoes and FashionIQ dresses (shoes
and dresses) together with the source code of our meta-simulator can be found at https://github.com/
mariavlachou/AlterEval_CRS 2 https://www.mturk.com

https://github.com/mariavlachou/AlterEval_CRS
https://github.com/mariavlachou/AlterEval_CRS
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Figure 5.3: Schematic representation of the user study with both data pooling and data
collection steps.

of sampled target images with a power analysis (using the pwrR package (Champely et al.,
2018)) using the reported correlation values of our Conversational Performance Prediction
analysis (as described in Chapter 4) as effect sizes (by converting the correlation values
to Cohen’s d with the ’effectsize’ R package (Ben-Shachar et al., 2022)), a significance
level (alpha value) of α= 0.05, to achieve a power of 90%. The power analysis estimation
provided a number lower than 200 targets for each fashion category (shoes, dresses), but
we opted for 200 from each to obtain a sufficient amount of targets. Table 5.3 shows
the exact required sample size. We see that our sample of 200 targets from each dataset
already exceeds the required sample.

To account for the second requirement, we select the target images by sampling 200
target items from each fashion category with varying levels of difficulty (we checked this by
conducting a preliminary QPP analysis of the sampled items using score-based predictors
(as introduced in Section 2.3.2). In addition, for assessment, we derive a pool of candidate
images for each target by using existing state-of-the-art CRS models for conversational im-
age recommendation, specifically GRU (Guo et al., 2018; Hidasi et al., 2015) and EGE (Wu
et al., 2021b) (detailed further in Section 5.4.1 below). In particular, we select both the
nearest neighbours (in their corresponding image embedding spaces) to the target (60%)
and their top-retrieved images of the final evaluation turn (40%). We place more impor-
tance on the nearest neighbours, because we are more interested in the similarity of the
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images rather than how each CRS model ranks them. Specifically, we use the top-4 ranked
nearest neighbours of each target item from each CRS model, and the top-3 top-ranked
results from each CRS model at turn 10. This results in a total of 14 candidate images per
target item. To ensure no duplicates, we checked how many items overlap between the two
CRS models (both for nearest neighbours and retrieved results), and in case of common
entries, we replaced them with additional items from lower ranks. In summary, we followed
a detailed strategy for data pooling, which resulted in an amount of precisely estimated
and representative target items from each fashion category, which already exceed both
the more recent TREC Deep Learning (Craswell et al., 2020) test collection query sets by
roughly four times and the TREC CAsT for conversational tasks (Dalton et al., 2020a,b).

To summarise, for this thesis, we define an alternative as the image item(s) that are
judged by the participants of our crowd-sourcing study as relevant for satisfying the same
information need (perhaps to a smaller extent) as the original target image item would
satisfy if it existed in the item catalogue. Below, we present some details of our data
collection and interface.

Table 5.3: Summary of the required sample size of target image items from each original
dataset resulting from the power analysis.

Dataset Spearman’s ρ Cohen’s d Required Sample
Shoes -0.423 -0.933 54

Dresses -0.281 -0.585 128

Data Collection

We conduct our study on Amazon Mechanical Turk, which has been used as a platform
for data collection in several online studies for various conversational systems (Jurcıcek
et al., 2011; Owoicho et al., 2023; Sun et al., 2021; Sun and Zhang, 2018) and CRS
systems (Liu et al., 2020; Zhang and Balog, 2020; Zhou et al., 2020), and also in our setting
of interest, namely relative captioning, where the original datasets were obtained with
crowd-sourcing (Guo et al., 2018; Wu et al., 2020). We take some additional steps to ensure
the representativeness and the knowledge level of our sample. Specifically, participants are
selected based on their location (US, to ensure an adequate level of English) and to the
extent they could identify with a person who wears dresses or women’s shoes (familiarity
with and knowledge of the target items), and are paid based on the rules of Mechanical
Turk. We obtained institutional ethical approval for the study, and we paid participants
$0.63 for each MTurk task (or HIT) for a total duration of 3 minutes (this is above the
living wage in our country), making a total cost of the study was $305 (we rejected only
3 HITs for spammy behaviour). In our study, we simulate a real user (online) shopping
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Figure 5.4: Example HIT (Amazon Mechanical Turn task) from our user study for the
Dresses dataset. The target item appears at the top, while the worker is instructed to
select one or more alternatives from the items appearing below as candidates.

scenario. Participants are instructed that each presented target image is an item they want
to buy. Simultaneously, participants see a set of candidate image items that could be a
sufficient alternative to the target, which, as instructed, is not available in the catalogue.
The task is to select, out of the displayed set of candidates, the ones (if any) that best
satisfy the user need as an alternative to the target item. Finally, participants are asked
to indicate the reason for their selection (this also works as an attention check, as we ask
them to respond with a full sentence and set a minimum required length). Each participant
was allowed to complete one or more HITS. For each of the resulting alternative labelled
fashion categories of our dataset, there were on average 3.5 identified relevant alternatives
per target image. We performed a second round of assessment on 40 target items (10% from
each dataset), and measured assessor agreement. We observed a Cohen’s κ between the
two sets of judgements of 0.87, demonstrating a high level of agreement. In the following,
we now analyse three representative fashion CRS systems using the alternatives-based user
simulator from Section 5.2, and using the alternatives dataset for 200 target items. An
example HIT for the Dresses dataset of our user study can be seen in Figre 5.4.

The collected data are used as input to the user simulator with alternative, which is a
similar critiquing methodology. Our collected dataset also contains relevance assessment
annotation as follows: (i) A csv file, where each row denotes the target image and the
columns represent a relevance for each presented alternative option from 1 to 14, (ii) A
csv file, with each row containing the image names (docnos) of all identified alternatives
of a given target image included in the sample. Below we present our experimental setup.

5.4 Experiments

In this chapter, we investigate the impact of our alternative-based simulator on CRS
performance. For this purpose, we test the performance of a number of CRSs with both
simulators, as described in Section 5.2. We are also interested in how our introduced



CHAPTER 5. EVALUATING USER SIMULATORS WITH ALTERNATIVES 125

patience parameter further influences this performance. In addition, we check the resulting
changes after applying the new simulator, such as the resulting ranking of CRSs and
how frequently a user switches to an alternative in relation to how the system behaved
previously. In this section, we experiment to address the following research questions:

RQ5.1 What is the impact of using an alternative-based user simulator on the evalu-
ation of existing CRS models?

This requires us to check the objective performance of the different CRSs with both
simulators (using Equations (5.1) and (5.2)). This allows us to measure the relative
improvement (if any) brought to the systems due to the new simulator.

RQ5.2 (a) What is the impact of patience of an alternative-based user simulator and
(b) how does it behave for each CRS model?

With RQ5.2 (a), we test the impact of the introduced tolerance parameter and check
for any sensitivity that might be crucial for system performance. RQ5.2 (b) tests our hy-
pothesis about the representativeness of the collected dataset and checks for the reliability
of the evaluation setting, in the sense that a performance that is not extremely variable
across systems indicates that our dataset is diverse. We check this in relation to other
predictors, such as tolerance.

RQ5.3 Does introducing patience change conclusions about what are the most effective
models?

This RQ tests the relative ordering of the different systems and how this changes when
alternatives are introduced.

RQ5.4 How often do users prefer an alternative over their initial target item?
With this, we measure the amount of times a simulated user opts for an alternative

instead of the original target. To provide a more precise view, we compare this with how
the system was doing before and after the user changed their strategy.

In the rest of this section, we provide an overview of the deployed CRS models (Sec-
tion 5.4.1) and evaluation measures (Section 5.4.2) used in our experiments, and answer
our RQs in Sections 5.4.3 to 5.4.6.

5.4.1 Setup: Conversational Recommendation Systems (CRS)

We deploy three existing CRS models using both the original relative captioning single-
target evaluation setting and our own meta-simulator with alternatives. Each system
retrieves 100 top items per turn and the conversation stops at turn 10 (the default final
evaluation turn in the task (Guo et al., 2018). The CRSs are the following:

• A GRU model (Guo et al., 2018; Hidasi et al., 2015) with reinforcement learn-
ing (GRU-RL), which combines input representation with the historical information
representation from the previous turn to produce an updated aggregated represen-
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tation vector and is, therefore, optimised for maximising short-term rewards. For a
detailed description of the model, please refer to Section 2.2.2.

• A GRU variant trained with supervised learning (GRU-SL), i.e. lacking short-term
rewards during training. Due to this limitation, this GRU variant was found to be
less effective than GRU-RL (Guo et al., 2018).

• The Estimator - Generator - Evaluator (EGE) model (Wu et al., 2021b), which
learns a policy that depends on observations but also on action histories (historical
feedback and recommendations), and conditions its actions on the entire history.
Therefore, it maximises longer-term rewards. For a more detailed description of the
model, please refer to Section 2.2.2.

Note that we retain the original training for these models in the cases where we use a user
simulator that considers a single target item (base simulator). For the cases where we use
our proposed meta-simulator, we modify the evaluation setting, as described next.

5.4.2 Setup: Evaluation Measures

In Section 2.4.1, we gave an overview of commonly used evaluation metrics in IR and
recommender systems. In this line, and following existing work in CRS (Guo et al., 2018;
Liu et al., 2020; Wu et al., 2020, 2021b, 2023; Zhang and Balog, 2020; Zhou et al., 2020), we
use classical IR evaluation measures to evaluate the ability of each CRS system to retrieve
relevant items. In particular, we measure the ability of the CRS to show the user’s desired
target at rank 1 (Success Rate @ 1) at each turn of the conversation; Moreover, as there
is a ranking of images created at each turn, we use nDCG@10 and MRR@10 to evaluate
the presence of target items in the ranking. Examining a variety of metrics provides a
stronger indication of a generalisable system performance. Following Guo et al. (2018)
and Wu et al. (2021b), we terminate conversations at turn 10 (the last evaluation turn);
if a target item has been found before turn k, then all evaluation measures after turn k

are set to 1. Finally, and differing from previous work, we consider the alternatives as
relevant items for evaluation - in this case, a conversation is successful if any alternative
(or the original target) is retrieved (this holds for evaluating the meta-simulator; we still
use the classical evaluation setup for the base simulator). In what follows, we answer the
above RQs.

5.4.3 RQ5.1 - Impact of alternative-based user simulator on the
evaluation of existing CRS models

Tables 5.4 and 5.5 show the performance of the three CRS models at turns 3 (early turn),
5 (middle turn) and 10 (end of evaluation turn) of a conversation for the three evaluation
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Table 5.4: Performance Results of the three CRS models of the Shoes dataset at various
turns after applying our meta-simulator. (w/o) Indicates before and (w/) after introducing
alternatives. The numbers in brackets indicate the percentage of improvement compared
to traditional non-alternative user simulators.

NDCG@10 MRR@10 SR@1

CRS Model turn
3 5 10 3 5 10 3 5 10

GRU-SL (w/o) 0.178 0.201 0.209 0.161 0.181 0.196 0.100 0.110 0.150
GRU-SL (w/) 0.205 0.252 0.237 0.346 0.437 0.495 0.257 0.352 0.436
% Improv. (14.11) (22.82) (12.88) (72.76) (82.69) (86.47) (87.95) (104.76) (97.61)
GRU-RL(w/o) 0.234 0.275 0.303 0.218 0.255 0.291 0.150 0.180 0.240
GRU-RL (w/) 0.227 0.248 0.230 0.356 0.459 0.543 0.257 0.368 0.489
% Improv. (-3.03) (-10.32) (-29.31) (48.08) (57.14) (60.43) (52.58) (68.61) (68.31)
EGE (w/o) 0.197 0.242 0.277 0.171 0.216 0.263 0.080 0.140 0.210
EGE (w/) 0.240 0.277 0.286 0.350 0.474 0.611 0.236 0.384 0.552
% Improv. (19.68) (13.48) (3.19) (68.71) (74.78) (79.63) (98.73) (93.13) (89.76)

Table 5.5: Performance Results of the three CRS models of the Dresses dataset at various
turns after applying our meta-simulator. Notation as per Table 5.5.

NDCG@10 MRR@10 SR@1

CRS Model turn
3 5 10 3 5 10 3 5 10

GRU-SL (w/o) 0.071 0.078 0.072 0.058 0.069 0.068 0.071 0.078 0.072
GRU-SL (w/) 0.131 0.139 0.125 0.235 0.306 0.353 0.127 0.238 0.316
% Improv. (59.64) (55.44) (53.87) (120.24) (126.33) (135.12) (56.81) (100.68) (125.57)
GRU-RL (w/o) 0.073 0.088 0.075 0.066 0.080 0.074 0.035 0.045 0.045
GRU-RL (w/) 0.110 0.121 0.099 0.209 0.257 0.269 0.127 0.177 0.216
% Improv. (40.84) (31.76) (27.19) (103.53) (105.11) (113.12) (113.99) (119.20) (131.21)
EGE (w/o) 0.060 0.074 0.085 0.055 0.072 0.084 0.060 0.074 0.085
EGE (w/) 0.157 0.200 0.225 0.317 0.419 0.541 0.233 0.327 0.472
% Improv. (88.48) (91.79) (90.22) (140.24) (140.85) (146.22) (117.35) (126.18) (138.70)

metrics after applying our proposed alternative-based simulator on the different fashion
categories (coming from the original Shoes and FashionIQ Dresses datasets), respectively.
To indicate the difference in how accurately system performance is estimated due to the
use of the updated user simulator and the larger number of relevant items, we include
the percentage of improvement compared to the traditional evaluation setting with the
single-target base user simulator. For this purpose, we fix the tolerance (user patience)
parameter at turn 2, which resembles a real shopping scenario, in the sense that a real
user would provide feedback for a couple of turns, and if the assistant’s suggestion was
not close to their desired item, they would start changing their strategy. Note that we
examine the performance at turns 3, 5 and 10 for the following reasons: (a) Turn 3 comes
after the tolerance threshold, which means that we observe what happens immediately
after the user stops being patient and decides to consider other target items. Also, turn
3 is an early turn, and we are interested in how early the new simulator can impact the
evaluation preciseness of current systems; (b) Turn 5 is a medium-term turn, which means
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we allow some time for the user to adapt their search behaviour, and also to observe any
impact on system performance. (c) Turn 10 in relative captioning settings is the final
evaluation turn, i.e., the end of a dialogue, and therefore, we would like to see what the
impact of our new simulator is at that stage (by the end of a conversation).

Overall, we observe improved performance estimation due to our new meta-simulator
on all three evaluation metrics and both Shoes and Dresses. More specifically, as shown
in Table 5.4, for the Shoes dataset, there are considerable improvements on MRR@10 and
Success Rate across all three CRS models. For instance, the highest improvement in both
MRR@10 and Success Rate is observed for the GRU-SL model, followed by EGE with only
small differences. Surprisingly, for NDCG@10, we observe negative values for GRU-RL,
which means that CRS performance does not improve or even drops for this model when
introducing alternatives. Note that typically comparing performance over different "qrels"
is not common practice, since, due to the increased number of relevant items, we should
expect higher performances on datasets with larger numbers of relevant items. Still, we
opt for this type of analysis, as it shows us how changing the user simulator can increase
performance on the same models by more accurately representing the same user need.
Also, in this case, the CRS was performing relatively well for GRU-RL, and therefore,
introducing alternatives would not lead to the same improvement compared to a worse
performing CRS model. If we compare these numbers with the first row of Table 5.8, the
estimation improvements are proportionally related to the initial ranking of systems in the
traditional relative captioning setting; the system that is initially performing worst (GRU-
SL) demonstrated the highest improvement in performance estimation, and the opposite
holds for GRU-RL, which improves the least. User need estimation improvements are in
general greater when checking CRS objective performance using MRR@10 and Success
Rate than NDCG@10.

As for the Dresses dataset, we observe improved performance estimation when compar-
ing the resulting performance with all three evaluation metrics, especially for the initially
worst-ranked system (GRU-SL, see also Table 5.8). Unlike Shoes, for Dresses we observe a
positive difference in all cases, and specifically for MRR@10 and Success Rate, the estima-
tion of performance is greatly improved when adding the alternative options. Finally, the
estimation is already improved at turns 3 and 5, which means that when a user switches
their behaviour at turn 2, they don’t have to wait very long to see an alternative product.
To answer RQ1, the impact of using an alternative-based simulator is marked positive
when evaluating existing CRS models. This suggests that the previous single-target-based
user simulators underestimated the effectiveness of the CRS for real users, and when our
meta-simulator is used, we manage to improve the way a user’s need is represented by
changing the number of judged relevant items.
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(a) GRU-SL (b) GRU-RL (c) EGE

Figure 5.5: nDCG@10 for the various tolerance levels before selecting an alternative for
the Shoes dataset.

5.4.4 RQ5.2 - Impact of patience on alternative-based simulator

We approach this RQ with two separate analysis methods, which highlight both the average
and the per-target image performance of each CRS model. More specifically, to answer
RQ5.2 (a), we consider the average performance of each CRS model for each tolerance
level and also compare it with how the performance is estimated using the base simulator
(without alternatives). For this, we turn to the graphical results in Figures 5.5 and 5.6,
which show the NDCG@10 average (for all target images) system performance at various
tolerance levels for Shoes and Dresses, respectively. The solid lines correspond to the
different tolerance levels, while the dashed line denotes the baseline evaluation setting
without alternatives for each system. Our observations can be summarised as follows:
(i) In general, the earlier a simulator “loses" its patience, the earlier the turn there is
a boost in performance estimation. However, when tolerance increases (i.e., patience is
lost at later turns), there is a higher difference in the accuracy of the information need
(compared to the non-alternative simulator) in the long-term. (ii) Strangely, for Shoes,
we observe a decrease in NDCG@10 for all tolerance levels for GRU-RL (the initially best
performing system), but this difference is more prominent in later turns; for earlier turns,
performance estimation is quite similar with the base simulator. (iii) In general, values
between tolerance levels do not differ significantly. To sum up, the impact of patience is
more direct in the turns that follow the tolerance turn, but it is not necessarily different
across different levels, thus answering RQ5.2 (a).

To answer RQ5.2 (b), we turn our attention on the per target (using the individual
target image results) NDCG@10 results for each system, and study the influence of some
factors on CRS performance using statistical modeling. We treat the per target NDCG@10
at each turn as a repeated measurement dependent variable, and we examine the effect
of CRS model and tolerance as independent factor variables. In particular, we test this
relationship with a two-way repeated measures ANOVA with CRS model and level of
tolerance as within-target image factors and NDCG@10 at each turn as the repeated
measures dependent variable. We examine the data for each fashion dataset (Shoes and
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(a) GRU-SL (b) GRU-RL (c) EGE

Figure 5.6: nDCG@10 for the various tolerance levels before selecting an alternative for
the Dresses dataset.

Dresses) in separate models. For this purpose, we compare between some models as
follows:

Yijk = β0 +β1j +β2k +(β1β2)jk + ϵij(FM1)
Yijk = β0 +β2k +(β1β2)jk + ϵij(RM1a)
Yijk = β0 +β1j +(β1β2)jk + ϵij(RM1b)

Yijk = β0 +β1j +β2k + ϵij(RM1c) (5.3)

Equation (5.3) presents a series of ANOVA models that test for the presence of 3 effects,
2 main effects (CRS model and tolerance) and their interaction on NDCG@10 at each
turn. We start with the full model (FM1), where each β1j denotes the fixed effect of CRS
model, the β2ks denote the fixed effect of tolerance, and (β1β2)jk is the interaction effect
of CRS model*tolerance, while ϵij is the residual variance. Yijk is the NDCG@10 of target
image i of CRS model j at the k− th level of tolerance. To test for each main effect of
CRS model and tolerance, we compare with a reduced model where β1j (RM1a) and β2k

(RM1b) are set to zero, while RM1c checks for the interaction effect where (β1β2)jk is
set to zero. For each comparison, the RM corresponds to an Hnull, while the FM to the
Halternative. We hypothesise that CRS performance does not vary systematically between
CRS models and tolerance levels.

Table 5.6: Results of Two-way Repeated Measures ANOVA for each fashion category. P-
values and effect sizes are shown for each specified model.

Shoes Dresses
p-value η2

p p-value η2
p

CRS model < 10−4 1% < 10−4 5.30%
tolerance < 10−4 0.11% < 10−4 0.20%

CRS model*tolerance 0.186 - 0.097 -

Table 5.6 shows the results of the repeated measures ANOVA models for both shoes and
dresses. While both CRS model and tolerance level are significant, they account for a
very small percentage of the explained variance in system performance, as indicated by
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the small effect sizes η2
p. Indeed, this is expected, since our goal for designing our dataset

collection was to have a dataset that when used, would show similar performance across
different CRS models, and would not be extremely influenced by the specific time of
strategic changes.

We conduct a further analysis to check for the influence of interaction turn and fashion
category on system performance. For this, we use a mixed ANOVA model on the combined
dataset (merging shoes and dresses). Here, we treat turn and fashion category as fixed
factors, and treat the specific target images as a random factor, since they would not be
the same if the experiment was repeated with another sample. To test for the main effect
of turn and fashion category, we compare the following models:

Yij = β0 +β1j +νi+ ϵij(FM2)
Yij = β0 +νi+ ϵij(RM2) (5.4)

Equation (5.4) outlines the models for the mixed effects ANOVA, where β1i is the fixed
effect of turn (or fashion category), and νi is the random effect of target image. The
reduced model (RM2) includes no effect of turn. Note that we assume that σ2

β1ν
= 0

parameter is not included in the model because these data can’t distinguish the interaction
from the error. This is because there is only one measurement per combination of target
image and the fixed factor condition. We fit separate models for the turn and fashion
category. The RM corresponds to an Hnull where β1j = 0, while the FM to the Halternative

where at least one β1j ̸= 0.We hypothesise that CRS performance does not differ to a great
extent between fashion categories, while we assume that there is a slight effect of turn.
The results are shown in Table 5.7. Indeed, turn and fashion category account for a small

Table 5.7: Results of two-way mixed-model ANOVA for the target images of both fashion
categories. (*) indicates that for both examined models, a significant effect of the random
factor target image was found.

p-value ω̂2

turn (*) < 10−4 0.80%
fashion category (*) < 10−4 0.64%

percentage of variation, which implies that a noticeable amount of variance is due to the
random variation of the random factor target image. This indicates that our collected
dataset is indeed diverse and representative of a population of images. To answer the
second part of RQ2, the system performance change due to the new simulator differs only
slightly for different CRS models. These results are in line with previous results on query
performance (Faggioli et al., 2023b), where the topic in a TREC collection was found to
explain a much higher proportion of the total variance compared to other experimental
factors.
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Table 5.8: Resulting ordering (based on NDCG@10, as shown in the numbers within
brackets) of the 3 CRS models at turn 10 (end of dialogue evaluation setting) using the non-
alternative simulator and the various tolerance levels of the alternative-based simulator.

Simulator type Shoes Dresses
no alternatives GRU-RL(0.309) > EGE (0.277) > GRU-SL (0.209) EGE (0.085) > GRU-RL (0.075) > GRU-SL (0.072)

tolerance 1 EGE (0.288) > GRU-SL (0.237) > GRU-RL (0.211) EGE (0.194) > GRU-SL (0.110) > GRU-RL (0.105)
tolerance 2 EGE (0.286) > GRU-SL (0.237) > GRU-RL (0.230) EGE (0.225) > GRU-SL (0.125) > GRU-RL (0.099)
tolerance 3 EGE (0.286) > GRU-SL (0.237) > GRU-RL (0.230) EGE (0.225) > GRU-SL (0.125) > GRU-RL (0.099)
tolerance 4 EGE (0.300) > GRU-SL (0.487) > GRU-RL (0.239) EGE (0.258) > GRU-SL (0.133) > GRU-RL (0.104)

5.4.5 RQ5.3 - Role of patience in the ordering of CRS models

We test this RQ by examining how the CRS models perform in comparison to one another
before and after introducing our alternative-based meta-simulator. Table 5.8 shows the
NDCG@10 ordering of the three CRS models before (first row) and after (remaining rows,
each at another tolerance level) introducing the meta-simulator. For both datasets, the
relative ordering changes at tolerance 1 compared with the non-alternative setting, but
then the ordering remains stable with the varying tolerance levels, with one main differ-
ence; for Shoes, there is a swap between the first and the second systems (EGE is ranked
first when alternatives are introduced, and GRU-RL moves to the second place), while for
Dresses, patience reorders the second and third systems (GRU-SL is improved compared
to GRU-RL). To answer RQ5.3, introducing patience partially changes conclusions about
the effectiveness of models, but this change is not further influenced by the increasing level
of patience and is not replicated across fashion categories.

5.4.6 RQ5.4 - Frequency of selecting an alternative

In Section 5.2, we mentioned that we instrument our proposed meta-simulator algorithm
to provide data about how often alternatives are chosen. Therefore, to address this RQ,
we use this information. Specifically, Figure 5.7 shows the number of times, out of the 200
sampled target items, the simulated user opts for an alternative over the initial target, for
an earlier (turn 1) and a later (turn 3) tolerance level. Each line corresponds to a separate
CRS model. While the pattern is similar between the two fashion categories, simulators
trained on Dresses tend to select on average more alternative items than simulated users
trained on Shoes. This might be explained by the fact that in the initial stage before
introducing alternatives, all three systems performed worse when trained on Dresses. In-
deed, they might benefit more when there is an option to make an alternative selection. In
addition, there is an increased tendency to select alternative items as turns increase and
the user’s patience decreases, which seems reasonable. For this reason, a further check
is necessary to check the immediate change in system performance with respect to the
tolerance level.

To compare the system performance (in the same evaluation setting, i.e., when focusing
on estimating CRS performance when using our meta-simulator) before and after the
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(a) Shoes, tolerance = 1 (b) Dresses, tolerance = 1

(c) Shoes, tolerance = 3 (d) Dresses, tolerance = 3

Figure 5.7: Number of target images for which the simulator selects an alternative over
the target for the three CRS models for tolerance 1 and 3.

alternative selection more precisely, we examine system performance in terms of how many
times a system has identified the target item. Specifically, Figure 5.8 shows for tolerance
levels 1 and 3, how many target items were found (had SR = 1) at the turn before and the
turn after the strategy change (user switching to an alternative target). In general, we see
that the improvement in target identification between turns is more rapid when the user
patience is lost at an earlier stage (tolerance = 1), for example, changes between turns 1
and 2 compared to changes between turns 3 and 4 (tolerance = 3). Losing patience after
turn 3 still leads to small improvements in some cases, but overall this is when system
behaviour is becoming more stable.

Returning to Figure 5.7, we see that the selection of alternatives is more frequent
for the EGE model for both fashion categories compared to the two GRU-based models.
This result is a bit surprising, but can be linked to the following: System performance
over different relevance assessments is usually not compared, as the increased number of
relevant items is expected to lead to higher performances on datasets with larger numbers
of relevant items. Still, our aim is to some extent to study the simulator behaviour under
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(a) Shoes, tolerance 1 (b) Shoes, tolerance 3

(c) Dresses, tolerance 1 (d) Dresses, tolerance 3

Figure 5.8: Number of target image items that achieve an SR@1=1 for for an early tol-
erance level (patience = 1) and later tolerance level for each of the alternative fashion
categories.

different contexts. In this regard, the different simulator settings are expected to lead
the meta user simulator to change feedback when it changes to an alternative, and this
may confuse a system that might be working quite well previously, which might explain
this behaviour. In general, observing the high frequency of alternatives indicates that the
lower performance of CRS models cannot be solely attributed to their retrieval ability, but
also to the lack of sufficient target items. In short, users often tend to pick an alternative
when they have the option to do so, thus answering RQ5.4.

5.5 Concluding Remarks

In this chapter, we have addressed the issue of obtaining relevance judgments in Conversa-
tional Recommendation Systems to achieve a more realistic recommendation setting and
more accurately predicting user preferences, thus addressing the third hypothesis of our
thesis statement as outlined in Section 1.2. In particular, we have introduced a new rele-
vance annotation approach which is based on directly asking real users about the relevance
of items with respect to their similarity with a given target item. For this purpose, we have
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conducted a user study that used crowd-sourcing to expand the existing well-used Shoes
and FashionIQ Dresses datasets into a unified dataset with alternatives. In this way, we
managed to extend the target space of a simulated user in the Conversational Image Rec-
ommendation setting by including the identified alternatives into the input datasets used
to train the user simulator. In this regard, we have shown how a sufficient amount of target
items can be identified based on precise estimations that include pooling from diverse sys-
tems and various levels of difficulty, moving away from a perspective that selects a dataset
size with a fixed number of items. As a result, we ended up with an equivalent to TREC
collections in information retrieval. Consequently, we created a more realistic novel dialog-
based recommendation scenario, where a user is assumed to have a more widely-defined in-
formation need, is flexible to adjust their strategy during a conversation according to what
they see and have the opportunity to change their mind. This was done by introducing
a meta-user simulator that uses the alternative relevant items for training and evaluation
of CRSs. Our simulator informs the existing base (non-alternative) user simulator with
knowledge of the alternative options to given target items, and therefore, allows the (sim-
ulated) users to change their mind during the CRS interaction. Therefore, in addition to
proposing a new recommendation scenario and user perspective, we proposed an evaluation
methodology that adapts the user simulator based on the newly collected annotation data.

Overall, we found that the way a system estimates a user need (as reflected in the CRS
performance) is improved when changing the way a user simulator requests for a given
item. For the same CRS models, using these extended datasets and the corresponding
meta-simulator for evaluation, we showed that previous (single-target) evaluations may
underestimate the effectiveness of CRS systems on these datasets. Indeed, if they accept
other alternative items, and are willing to switch strategy, then the system may satisfy
them sooner. In particular, we obtained an improved estimation of performance on the
same CRS models up to 140% compared to the previous setup (Tables 5.4 and 5.5). At
the same time, our experiments showed that the patience of a simulated user (indicated
by the turn at which they choose to change their feedback) has only a small impact
(Table 5.6), but is noticeably different from the base simulator (Figures 5.5 and 5.6),
while a similar performance is observed for across CRS models. In contrast, some degree
of variation in performance is due to the random variation in target images (Table 5.7),
proving that our collected dataset is indeed diverse. To summarise, users indeed tend to
prefer alternatives when they have the option (Figure 5.7, and the earlier they do this,
the more immediate the increase in performance at the next turn (Figure 5.8). Overall, in
this chapter, we have validated the third claim of the thesis statement, according to which
by obtaining user opinions about the relevance of items, we improve the completeness of
the evaluation mechanism by identifying alternatives recommendations for existing target
items, which could be used to both inform the user simulator and therefore improve the
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overall evaluation of CRS systems.
As for our collected dataset with alternatives, its use is not restricted to a multi-turn

recommendation setting. For example, it could also be used for single-turn image retrieval,
which is a concept more similar to traditional TREC collections. Additionally, it could be
used for different recommendation settings by modifying our meta-simulator accordingly.
Still, one limitation of our dataset is that it does not provide annotations at scale, while
it could also incorporate more fashion categories. This is something that we plan to do in
the near future. As a further limitation, we note that while our meta-simulator supports
opting for alternatives, and therefore a wider information need, it does not support cases
where a user’s target is not contained in the available database. Therefore, in the following
chapter, we extend our set of recommendation scenarios with a third scenario that includes
predictions for cases with missing items together with predicting recommendation success
with alternatives. Finally, in the following chapter (Chapter 6), we use our collected
alternative datasets to evaluate our CPP framework under a new scenario that includes
alternatives in addition to the original target.



Chapter 6

Predicting Conversation
Performance across
Recommendations Scenarios

The results of Chapter 4 indicated that predicting the success of a conversation within
the context of interacting with a conversational agent is possible, since it can predict
both the degree of success of a conversation and the stage when the item is more likely
to be returned. In particular, we introduced a novel framework of Conversational Per-
formance Prediction (CPP), which transforms the task of Query Performance Prediction
(QPP) (Carmel and Yom-Tov, 2010; Cronen-Townsend et al., 2002) from the query level
(search task) to the conversation level (conversational recommendation task). In this
regard, we considered the multi-turn aspect of the task and showed how we can differen-
tiate between predicting current user satisfaction or overall satisfaction of a conversation.
Specifically, we predicted the CRS rankings consisting of image items by using traditional
QPP evaluation measures, and then followed by proposing a classification-based evaluation
approach, where we predicted the success label of a conversation on the test set. Indeed,
while correlation-based evaluation does not properly capture the underlying relationship
between per-query predictor and metric values (therefore providing lower correlations than
what those observed in QPP) (Section 4.2), treating CPP as a binary success prediction
task, and specifically learning the embedded representations of the image items contained
in the train set, provided a promising solution for detecting conversational failures and to
what extent using multi-turn features adds value to a single-turn predictor (Section 4.4).
In this way, we confirmed the second proposition of the thesis statement (Section 1.2)
Still, although we used a variety of predictors and evaluation settings, our CPP task (as
defined in Chapter 4) only involves the base settings of the Conversational Image Recom-
mendation task, as these were defined in Section 2.2.2. For example, it assumes a clearly
defined target item which is always available in the item database. However, in practice,

137
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Figure 6.1: Description of the Conversational Image Recommendation steps, expressed in
terms of a ranking task as introduced in Section 2.1.2. The different parts of the Dialog
Manager receive user feedback f at turn k, which is influenced by the user’s target item to
produce a recommendation list of items at turn k+1. Two issues arise in this process not
currently taken into account by CRSs: (i) The target item might not be available in the
Item Catalogue (Step 2), which we call Scenario 2, and (ii) The target item is not always
clearly defined (Step 1), which we call Scenario 3.

the situation is more complicated, and the definition of recommendation success can vary
accordingly.

More relevant to this, in Chapter 5, we highlighted the importance of evaluating pre-
dictions in a realistic setting that sufficiently mimics a real life user shopping scenario.
Indeed, within the context of reinforcement learning-based simulated conversations (Guo
et al., 2018) (as mentioned in Section 2.2.2), a user provides a relative feedback utterance
or critique that describes the visual differences between the presented item and their de-
sired item. In Chapter 5, we redefined the meaning of this target item that the user has
“in mind", not at each turn but overall in a conversation. More specifically, we detected
a limitation in all the different variants of the task (Guo et al., 2018; Wu et al., 2020,
2021b; Yu and Grauman, 2017), namely that the target item suggests a known-item type
of task (Broder, 2002), where the target item is assumed to be defined and exist in the
item catalogue of the system. Still, in a real shopping scenario, a user might have multiple
equally desired options that can be considered as alternative target items. For this pur-
pose, we collected real user opinions for the relevance of several alternative image items
for different fashion categories and retrained three CRS models. In this way, we showed
that by extending the target space and making user needs more flexible and realistic, we
can more accurately measure CRS performance, which was previously considered ineffec-
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tive, thereby confirming the third hypothesis of the thesis statement (Section 1.2). At
the same time, while we managed to increase the performance of three CRS models when
introducing our concept of alternatives, predictions about the success of a conversation
are not yet explored using the CPP task.

In other words, to predict conversational performance for a facet of user needs, we need
to consider the particular context and variations of the Conversational Image Recommen-
dation task, and in particular the settings of the different parts of the task (as defined in
Section 2.2.2). Examples of these variations in the task setting can be seen in Figure 6.1.
This image describes two variation factors that can lead to modifications in the CRS func-
tionality; Step 1 denotes whether the user’s target item is clearly defined, while Step 2
refers to whether the same target item is available in the corresponding item catalogue.
The traditional task setting (Section 2.2.2) corresponds to a clearly defined target that is
available in the catalogue. We call this case Base Scenario or Scenario 1. Sometimes, a
user can have a unique target item, but this item might be unavailable. In this case, the
item will not be returned, simply because it does not exist in the item catalogue; we call
this Missing Target Scenario or Scenario 2. Finally, while the catalogue might be rich
and multiple items are available, a user might have only a vague need or a more flexible
definition of a target. In this case, multiple items can satisfy their need, which could be
seen as alternatives. In this case, we refer to this as the Alternative Scenario or Scenario
3. Scenario 3 results from what we introduced as alternative options in Chapter 5.

Therefore, in this chapter, we account for these variations by examining different rec-
ommendation scenarios as part of the CPP task. In particular, we experimentally test our
fourth hypothesis of the thesis statement (Section 1.2), which states the following: Finally,
using these alternatives datasets, and by predicting conversational performance under dif-
ferent Recommendation Scenarios, we detect different types of conversational failure, such
as when a user cannot find an item, versus when the system’s catalogue does not contain
the relevant item. In this way, we create different variations of the CPP task by adapting it
to more realistic real user settings. Overall, we address Limitation 1a) (A system trying
to find a single item that is already known by the user contradicts the recommendation
intuition), Limitation 2a) (In some cases, an item requested by the user is not contained
in the item database or catalogue. If a system does not account for this, system failure
will be assigned as a reason to a problem that is best described as catalogue failure) and
Limitation 2b) (The given context of Conversational Image Recommendation does not
allow more generalised user satisfaction where the user has a vague information need that
could be satisfied when the system returns the user’s target item or another item similar
to the original target based on a certain criterion.), since we propose two novel recommen-
dation scenarios and account for various types of recommendation failure. In particular,
the contributions of this chapter can be described as follows:
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• We introduce the concept of Recommendation Scenarios in the task of Conversational
Image Recommendation by considering two factors of variation (the definition and
the availability of the target item). Therefore, we define the Missing Target and the
Alternative scenarios.

• We introduce the different types of recommendation failures resulting from each
scenario, and consequently, we differentiate between the system not being able to
retrieve the correct item and the item not being available.

• We experimentally test and extend our CPP framework on the two new recommen-
dation scenarios under different CRS models and datasets and using a variety of
CPP predictors. We compare the results of each new scenario with our base CPP
evaluation setting (Scenario 1).

• Essentially, this Chapter links the Alternatives options (obtained in Chapter 5) to
CPP (proposed in Chapter 4). In this way, on top of proposing two novel CPP rec-
ommendation scenarios, we investigate whether the conclusions about CPP change
when using the alternative-based evaluation.

Consequently, the main findings of this chapter can be summarised as:

• For both single-turn and multi-turn prediction, moving to Scenario 2 (Removed
Target) increases CPP performance when predicting the top item, while it decreases
its performance when predicting deeper rank cutoffs (items found by rank 100). This
implies that after removing targets, predicting the effectiveness by using items found
at rank 1 is an easier task than the same prediction in Scenario 1 (target exists),
while predicting the effectiveness by using items found by rank 100 is more difficult
than the same prediction in Scenario 1.

• For both single-turn and multi-turn prediction, moving to Scenario 3 (Alternatives)
decreases CPP performance when predicting the top item, while it increases its
performance when predicting deeper rank cutoffs (items found by rank 100). This
implies that after introducing alternatives, predicting the effectiveness by using items
found at rank 1 is a more difficult task than the same prediction in Scenario 1 (single
target), while predicting the effectiveness by using items found by rank 100 is easier
than the same prediction in Scenario 1.

• In some cases, our proposed embedding-based predictor, which is based on selecting
the important embedding features of a multi-turn conversation, namely the L1-
based variant of RV (introduced in Section 4.4.1, and in other cases, our proposed
AE-based predictor (introduced in Section 4.4.1) lead to change of the ordering of
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CPP predictor performance from Scenario 1 (target exists) to Scenario 2 (missing
target).

• Our proposed AE-based predictor helps in generalising CPP behaviour across Sce-
narios 1 (single target exists) and 3 (alternatives equally relevant to the target),
which shows that it is a promising predictor of conversational performance.

• The differences in CPP results indicate the difficulty of predicting conversational
performance under different scenarios, and the pattern is different according to the
depth of the predicted ranking.

The rest of the chapter is organised as follows: We present our new recommendation
Scenarios and corresponding CPP evaluation for each of them in Section 6.1, we continue
by outlining our Experimental Setup in Section 6.2, and present the results for Scenario 2
in Section 6.3 and for Scenario 3 in Section 6.4. Finally, we end with concluding remarks
in Section 6.5.

6.1 CPP Scenarios

In this Section, we introduce and detail the two novel recommendation scenarios (Scenario
2: Missing Target and Scenario 3: Alternatives) for our CPP Framework and explain
how they differ from the base scenario (Scenario 1: Target Exists). First, we describe
the settings of each recommendation scenario (Section 6.1.1) and later in Section 6.1.2,
we explain how we transform the proposed CPP predictors of Chapter 4 to match the
requirements of each scenario.

6.1.1 Recommendation Scenarios Definition

As we introduced in Figure 6.1, the traditional setting of the Conversational Image Rec-
ommendation task (Section 2.2.2) can vary. This variation can be induced by two different
variation factors: whether the target is clearly defined, and whether it is available. First,
we examine the case of a clearly defined user target image item. In this case, the evalu-
ation settings are similar to the traditional scenario (where a single target is defined by
the user and is assumed to exist in the catalogue, we call this Scenario 1), in the sense
that only one item is considered as relevant. Still, if the target item is not returned, there
are two likely scenarios: First, the system is unable to return the target because the CRS
model is ineffective, and second, the target simply does not exist. In current CRS models,
only the first scenario is considered, and therefore, any failure to return the target to the
user is considered as a model defect; we call this system failure. While this is true in
some cases, a lot of times in a real user shopping scenario, the target item is not available.
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If the user is not aware of it, they will keep providing feedback without success. This
type of failure is different from system failure, as it results from the product unavailability
rather than an inability of the system to retrieve the target item; we call this catalogue
failure and the corresponding recommendation setting as the Missing Target Scenario or
Scenario 2. Consequently, to compare CPP performance between Scenarios 1 and 2, we
need to differentiate between two types of failures: system failure and catalogue failure.
More formally, the CPP task under Scenario 2 can be described as a function of the form

CPP (F rem,Srem)→ R (6.1)

where F rem is a sequence each containing f feedback critiques over 1 or more turns when
the target item is missing, and Srem is a sequence of results (recommendation) lists re-
turned when the target item is not available, over 1 or more turns.

Next, we consider the case of a user target image item that is not clearly defined, for
example when the user has a vague user need that could be satisfied by more than one
item. In this case, the evaluation settings are not in line with the traditional scenario
(Scenario 1), since more than one items are considered as relevant. In Chapter 5, we
accounted for this limitation in current CRSs by creating a new CRS evaluation setting,
where multiple identified alternatives are considered equally relevant to a given target
item and are included in the new resulting target space. In this case, if the target item is
not returned, it means that the system was not able to return either the original target
or any of the alternatives. In the current CRS evaluation, any failure to return any item
of a target space to the user was not previously considered, and this was part of our
motivation for Chapter 5. We call this recommendation scenario Alternatives Scenario or
Scenario 3. Therefore, to compare CPP performance between Scenarios 1 and 3, we need
to differentiate between system failure and alternative failure. More formally, the CPP
task under Scenario 3 can be described as a function of the form

CPP (F alt,Salt)→ R (6.2)

where F alt is a sequence each containing f feedback critiques over 1 or more turns when
there are multiple alternative target items, and Salt is a sequence of results (recommen-
dation) lists returned when the user is looking for an item with a more flexible user need,
over 1 or more turns.

6.1.2 CPP Predictors Definitions Per Scenario

We now explain how we adapt the CPP definitions from Chapter 4 to each of the recom-
mendation scenarios. Starting with Scenario 2 and following the notation introduced in
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Equation (6.1): Similarly to Equation (4.1) in Chapter 4, Equation (6.1) can be instanti-
ated for single-turns, or multiple turns. For example, for the single-turn setting, the CPP
task at a given turn k, i.e.:

CPPsingle([f remk ], [sremk ]). (6.3)

where [f remk ] the information contained in the feedback at turn k that describes an item
that does not exist, and [sremk ] includes both score-based and representation-based features
contained in the retrieved list of items of turn k resulting from feedback describing an item
that does not exist. Similarly, for the consecutive turn setting, we define the task as:

CPPconsecutive([f remk ,f remk+1 ], [sremk , sremk+1]). (6.4)

where the notation for feedback and retrieved contents is similar to Equation (6.3), but
for two consecutive turns. Finally, and more relevant to our setting, we define the CPP -
Scenario 2 under the classification setting. Specifically, following Equation (4.6), we define
a classifier which aims to predict if conversation Crem will be successful or not as follows:

cls(XCrem,k)→{0,1} (6.5)

where XCrem,k is the feature representation for a given conversation at a given turn k in
a missing target setting. Consequently, each of the supervised CPP predictors defined in
Chapter 4 can be used in the same way as defined in Equations (4.7) to (4.13).

Next, we define the task for Scenario 3 following the notation introduced in Equa-
tion (6.2). For the single-turn setting, the CPP task at a given turn k, i.e.:

CPPsingle([faltk ], [saltk ]). (6.6)

where [faltk ] the information contained in the feedback at turn k that describes an item
that is either the original target or the alternative item that is most similar to the current
candidate item, and [saltk ] includes both score-based and representation-based features
contained in the retrieved list of items of turn k resulting from feedback describing any of
the original target or an alternative. Similarly, for the consecutive turn setting, we define
the task as:

CPPconsecutive([faltk ,faltk+1], [saltk , saltk+1]). (6.7)

where the notation for feedback and retrieved contents is similar to Equation (6.6), but for
two consecutive turns. Finally, the supervised CPP - Scenario 3 task for a conversation
Calt is defined as:

cls(XCalt,k)→{0,1} (6.8)

where XCalt,k is the feature representation for a given conversation at a given turn k in
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an alternative-based setting. Again, each supervised CPP predictor defined in Chapter 4
is the same way as defined in Equations (4.7) to (4.13). Specifically, these predictors
consider the features of a retrieved recommendation list at a given turn k to predict turn
k+1 (single-turn predictors), or they consider the contents of lists up to turn k to predict
turn k+1 (multi-turn predictors). As explained in Section 4.4.1, these predictors examine
score-based features (combining the mean, maximum score, and standard deviation of a
results list), or the embedding based features that adapted the Reciprocal Volume (RV)
initially proposed for Conversational Search (Faggioli et al., 2023a), and finally our novel
AE-based predictor that gradually learns a compressed version of the embedded repre-
sentations. After testing their CPP performance in the base scenario, in this chapter,
we extend the CPP predictions to our two novel recommendation scenarios by comparing
CPP performance with Scenario 1 on these predictors. Next, we describe how we conduct
our experiments.

6.2 Experimental Setup

For our experiments, we first compare CPP performance of Scenario 2 with Scenario 1
(base scenario), and therefore, test the case of catalogue failure against system failure
(which one is easier to detect with CPP). For this purpose, we address the following
research questions:

RQ6.1 How do single-turn CPP predictors compare between Scenarios 1 and 2 (after
removing a portion of the target items) for (a) predicting the top-ranked item and (b)
predicting a full ranking of items?

RQ6.2 How do multi-turn CPP predictors compare between Scenarios 1 and 2 (after
removing a portion of the target items) for (a) predicting the top-ranked item and (b)
predicting a full ranking of items?

More specifically, we define a successful conversation as one where the target item is
retrieved by a given rank (1 or 100) at a given turn (these are easy items), and a system
failure otherwise (difficult items). To induce Scenario 2, we select 30% of easy items and
prevent their retrieval to emulate catalogue failures. The reasoning behind our choices is
the following: For Conversation Failure Ground Truths, we consider three cases for any
conversation: (i) the conversation is successful, as the target item is retrieved; (ii) the
conversation fails, because the system is unable to retrieve the target item based on the
user’s feedback before a fixed number of turns expires (i.e., a system failure); and (iii) the
conversation fails because the system’s does not contain the target item (i.e., a catalog
failure). In practical terms, for difficult items, which the system struggles to retrieve, there
is no difference between system and catalog failures. Therefore, to emulate catalog failures,
we sample easy items (which the system can normally retrieve successfully), and prevent
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them from being retrieved, to emulate catalog failures. When doing so, we recalculate the
CPP features.

Next, we will compare CPP performance of Scenario 3 with Scenario 1 (base scenario),
and therefore, test the case of alternative failure against system failure.. For this purpose,
we address the following research questions:

RQ6.3 How do single-turn CPP predictors compare between Scenarios 1 and 3 (after
introducing alternatives) for (a) predicting the top-ranked item and (b) predicting a full
ranking of items?

RQ6.4 How do multi-turn CPP predictors compare between Scenarios 1 and 3 (after
introducing alternatives) for (a) predicting the top-ranked item and (b) predicting a full
ranking of items?

To induce Scenario 3, we use the evaluation setting of Chapter 5 that we termed as
"after alternatives" or "(w/)". For each CRS model, we use the evaluation setting and
train the models as defined in Section 5.4.

Similary to Section 4.4.2, use the PyTerrier FCRS implementation1 for the implemen-
tation of the GRU and EGE CRS models. For all three scenarios, we study single-turn
predictors with Equations (4.7), (4.9), and (4.12), and the multi-turn predictors using
Equations (4.8), (4.11), and (4.13) (see also Section 4.4.2on Scenario 1). For Scenario 3,
we use the tolerance level after turn 2, similarly to Section 5.4. We examine the CPP
predictors by using two rank cutoffs in the ground truth turn: rank = 1 and rank = 100.
Similarly to Chapter 4, we compare CPP results for the GRU (Guo et al., 2018; Wu et al.,
2021a) and EGE (Wu et al., 2021b) CRS models, and use the Shoes (Berg et al., 2010;
Guo et al., 2018) and FashionIQ Dresses (Wu et al., 2021a) datasets. This time, we use
two baseline classifiers: First, we deploy one that always predicts the majority class in
the training data (denoted Most Frequent), as well as a random classifier that predicts
classes based on their training likelihood (denoted Stratified). For all three scenarios, we
use the 200 sampled target items from each dataset used in Chapters 4 and 5. We report
Accuracy as a measure of classification performance, thus inducing a setting with a smaller
number of per query-based results, similarly to the traditional QPP evaluation setting.
We compare the CPP results of each of our novel recommendation scenarios with Scenario
1 in the following Sections.

6.3 Results Missing Target (Scenario 2) vs Existing
Target (Scenario 1)

In this Section, we present the results for the Missing Target Scenario and compare them
with the results of the base scenario or Scenario 1 with a target that exists. First, we test
1 https://github.com/cmacdonald/pyterrier_fcrs/tree/main

https://github.com/cmacdonald/pyterrier_fcrs/tree/main
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the single-turn results in Section 6.3.1, and then we continue with the multi-turn results
in Section 6.3.2. For each section and the corresponding rank cutoff, a brief summary of
the main results is provided.

6.3.1 Single-turn CPP Results (Missing Target vs Base Sce-
nario).

(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.2: CPP Single-turn Results for Scenario 2 for the GRU model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset. The CPP
predictor notation follows the one described in Section 4.4.2.

We examine the single-turn CPP results in Figures 6.2 and 6.3, which show the CPP
classification accuracy for the GRU and the EGE model, respectively. In each plot, the
x-axis shows the ground truth turn of a conversation used for predictions, and the y-
axis is the predictive accuracy on the test set; each curve corresponds to a separate CPP
predictor. The solid lines represent the CPP predictors in Scenario 1 (base scenario),
while the dashed lines correspond to the same predictors after removing selected target
items (Scenario 2) (see Section 6.2 for how we selected targets to remove). To indicate
the presence of Scenario 2, the corresponding lines are denoted with ("removed") in the
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(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.3: CPP Single-turn Results for Scenario 2 for the EGE model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset.

legend. The Shoes results are shown on the left and the Dresses results on the right. In
each figure, the two top plots show the results for predicting the success of a conversation
at rank = 1, and the two bottom plots show predictions at rank = 100.

We start by describing the results for predicting the top-ranked item, for both the
GRU (Figures 6.2 (a) and (b)) and the EGE model (Figures 6.3 (a) and (b)). In all cases,
we observe the following: (i) For Scenario 1 (Existing Target), there is a downward trend
for all predictors as turns increase; (ii) The results of Scenario 2 (Missing Target) cannot
easily be distinguished from the ones of Scenario 1 (as we see the dashed lines intersecting
with the solid lines), but this trend is more prominent for Shoes; for Dresses, we see some
relative improvement in accuracy in the removed target Scenario for EGE; (iii) In general,
the ordering of predictors in Scenario 2 in each plot follows the ordering of Scenario 1.
In other words, the predictors follow a similar pattern across scenarios. In addition, for
both CRS models, we note that the RV(RF)’s performance is lower than the rest for both
scenarios. On the other hand, the performance of AE varies with datasets: For Shoes, it
is slightly worse or comparable with score-based and the two baselines, while for Dresses,
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it is equal to them but drops after turn 6 (GRU) or increases after turn 5 (EGE). We
also note that when removing a portion of target images, AE performs better than the
other predictors in all cases except for EGE Dresses, where it is comparable to all others
except RV. Overall, we observe that it is not easy to distinguish performance between
the two scenarios, since the differences in accuracy levels between the scenarios for each
predictor are very small; still, the general trend shows a slight increase compared to the
base scenario. We observe a more marked increase for Dresses than Shoes: note that when
removing targets for items found at rank = 1, we replace the easy items returned at rank
1 by the end of a conversation (turn 10) with a label = 0 (not found), and this number is
larger for Shoes (15) than for Dresses (3). Therefore, removing more items based on model
performance in Scenario 3 seems to blur the performance effect of Scenario 2 for the same
number of initial targets in the base scenario. To answer RQ6.1(a), CPP performance in
Scenario 2 is comparable for the two scenarios for Shoes, and is slightly higher for Dresses.

Scenarios 1-2 - Single-turn - found@rank1
• The ordering of predictors and the downward trend across turns is similar

between the two scenarios.

• Removal of target items found at rank = 1 is not sufficient to observe a de-
crease in accuracy from Scenario 1 to Scenario 2: For Shoes, performance is
comparable between scenarios; for Dresses, performance slightly improves in
Scenario 2 compared to Scenario 1.

Next, we turn our attention to the items retrieved by rank 100 and therefore predicting
conversational success, examining full rankings (up to the rank cutoff of the CRS model
retrieved items, which is set to 100). For this, we look at Figures 6.2 (c) and (d) and Fig-
ures 6.3 (c) and (d) for the GRU and the EGE model, respectively. Overall, we observe
that going from Scenario 1 to Scenario 2 (after removing target items), the predictive
accuracy of CPP predictors drops significantly (in the case of GRU Dresses this decrease
is only marginal, and for AE there is a drop in performance instead). Also, we note that
while in Scenario 1 AE performs notably better than the other predictors, in Scenario 2
this trend changes, and all predictors become comparable (AE is still the best predictor
for EGE, but this difference is decreased to a great extent compared to the base scenario).
Note that when removing selected target easy items for predicting items returned by rank
100, we replace 52 targets from Shoes and 27 from Dresses. Therefore, the number of re-
moved target items is much larger than when predicting the top-ranked item and therefore
affects the accuracy of CPP to a greater extent than what we observed in RQ6.1(a); this
demonstrates the difficulty of the task of predicting a full ranking in the removed target
case, thus answering RQ6.1(b).
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Scenarios 1-2 - Single-turn - found@rank100
• While AE in Scenario 1 was the highest performing predictor, in Scenario 2 it

becomes comparable to the rest.

• When predicting items found by rank 100, there are more removed target
items, which leads to a notable decrease in accuracy of all predictors when
moving from Scenario 1 to Scenario 2.

6.3.2 Multi-turn CPP Results (Missing Target vs Base Scenario)

(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.4: CPP Multi-turn Results for Scenario 2 for the GRU model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset. The CPP
predictor notation follows the one described in Section 4.4.2.

To examine the multi-turn CPP behaviour in the Removed Target Scenario, we focus
on the multi-turn CPP predictors by examining the results in Figures 6.4 and 6.5, which
display the CPP classification accuracy for the GRU and the EGE model, respectively.
First, we examine the items found at rank 1 (Figure 6.4 (a) and (b), and Figure 6.5 (a)
and (b)) for both CRS models. In general, in all cases, we observe a similar pattern



CHAPTER 6. CPP ACROSS RECOMMENDATION SCENARIOS 150

(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.5: CPP Multi-turn Results for Scenario 2 for the EGE model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset.

to the single-turn CPP results in RQ6.1(a); CPP performance slightly increases for all
predictors after removing targets, and this is consistent across turns. Furthermore, we
observe a reverse ordering of predictors. In most cases, while AE was lower than RV(L1-
based) and the rest of predictors that mainly converge with RV(L1-based) in Scenario
1, after removing targets (Scenario 2), AE becomes the best performing predictors (with
a marked difference for Dresses and marginally for Shoes); on the other hand, for EGE
Dresses, RV(L1-based) (together with score-based and the two baselines) outperforms AE,
which was previously the best-performing predictor in Scenario 1. The differences among
predictors are larger for Dresses than for Shoes. To answer RQ6.2(a), multi-turn CPP
predictors change from Scenario 1 to Scenario 2 when predicting the top-ranked item, and
in most cases AE increases when removing targets.
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Scenarios 1-2 - Multi-turn - found@rank1
• The ordering of predictors (mainly between RV(L1-based) and AE) changes

when moving to Scenario 2.

• A similar trend to single-turn prediction is observed for the same rank cutoff
(slight increase of predictors when moving to Scenario 2, mainly for Dresses).

Finally, we focus on the deeper ranking cutoff multi-turn results (Figure 6.4 (c) and
(d), and 6.5 (c) and (d)). A general trend observed across CRS models and datasets is
that our proposed AE-based predictor stops being effective when introducing the removed
target setting and its performance becomes comparable with other predictors (Dresses)
or is outperformed by RV (Shoes). Indeed, for the multi-turn prediction case in deeper
rankings, we see the usefulness of introducing a shrinkage-based predictor, and note its
contribution to the change of evaluation setting in Scenario 2. Another general observation
is that similarly to RQ6.3(b), CPP accuracy values decrease significantly when we move
from Scenario 1 to Scenario 2. Once again, in most cases it is difficult to distinguish the
performance of the two baselines from most other predictors, which shows the increased
difficulty of predicting at the conversation level, especially in the new scenario. Overall, the
lower accuracy values in Scenario 2 indicate the difficulty of the new task (CPP prediction
under the new introduced scenario) and indicate that CPP the predictive accuracy values
among predictors start to converge, thus answering RQ6.2(b).

Scenarios 1-2 - Multi-turn - found@rank100
• AE is outperformed by RV(L1-based) when moving to Scenario 2.

• In general, predictive accuracy drops when moving to Scenario 2.

Therefore, based on the results obtained in our experiments that compare the CPP
performance of Scenario 2 (Missing Target) with Scenario 1 (Existing Target), we conclude
that: (i) To predict the effectiveness of a ranking by predicting items found by rank
1, predicting catalogue failure is slightly easier than system failure. (ii) To predict the
effectiveness of a ranking by predicting items found by rank 100, predicting catalogue
failure is a more difficult task than predicting system failure.

6.4 Results Alternatives (Scenario 3) vs Single Target
(Scenario 1)

In this Section, we present the results for the Alternatives Scenario, where we used the
alternative datasets collected in Chapter 5 and our new meta-simulator. In particular, we
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compare the CPP Results of the Alternatives Scenario (Scenario 3) with the base scenario
with a single target (Scenario 1). First, we test the single-turn results in Section 6.4.1,
and then we continue with the multi-turn results in Section 6.4.2. For each section and
the corresponding rank cutoff, a summary of the main results is provided.

6.4.1 Single-turn CPP Results (Alternatives vs Base Scenario)

(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.6: CPP Single-turn Results for Scenario 3 for the GRU model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset. The CPP
predictor notation follows the one described in Section 4.4.2.

We examine the single-turn CPP results in Figures 6.6 and 6.7, which display the CPP
classification accuracy for the GRU and EGE models, respectively. While in Section 6.3
we examined the single target items that were available or missing from the catalogue, in
this section, we compare the single and existing target of Scenario 1 with the Alternative
Scenario or Scenario 3, which indicates the alternatives included in the target. In each
plot, the x-axis shows the ground truth turn of a conversation used for predictions, and the
y-axis is the predictive accuracy on the test set; each curve corresponds to a separate CPP
predictor. The solid lines represent the CPP predictors in Scenario 1 (base scenario), while
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(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.7: CPP Single-turn Results for Scenario 3 for the EGE model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset.

the dashed lines correspond to the same predictors after introducing alternatives (Scenario
3, also denoted in the legend with the indication ("alternatives")) with a tolerance level
after turn 2. The Shoes results are shown on the left and the Dresses results are shown
on the right. Also, in each figure, the two top graphs show the results of predicting the
success of a conversation at rank = 1, and the two bottom graphs show predictions at
rank = 100.

We start by describing the GRU results in Figure 6.6. First, we observe that when
predicting the top-ranked item (Figures 6.6 (a) and (b)), the results after introducing
alternatives indicate a marked difference from Scenario 1. In particular, all solid lines
show higher accuracy across turns than dashed lines. However, one issue for Scenario
1 CPP is that the baseline classifiers perform equally well and cannot be distinguished
from both score-based and AE-based predictors up to turn 6; from turn 7, AE improves
and (marginally) outperforms both baselines, and RV shows lower performance for Shoes,
while for Dresses, there is no change. In contrast, in Scenario 3, for Shoes, while all
predictors perform markedly lower, the two baselines drop to a great extent after turn
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5, and they are outperformed by both AE and score-based after turn 8. Also, for both
scenarios, AE is generally the best performing predictor (especially after the first turns
when system performance is becoming more stable), while the performance of RV(RF) is
improving compared to the other predictors when introducing alternatives. On the other
hand, the alternative-based setting affects Dresses differently; although the downward
trend compared to the base scenario is similar to Shoes, both AE and RV perform lower
than score-based, but still, the performance of baselines is competitive. The trend is only
reversed towards the two final turns.

Moving on to the EGE model, we look at Figure 6.7 (a) and (b). For both datasets,
we observe a similar pattern with GRU when moving from the base scenario to alterna-
tives. Indeed, the dashed lines correspond to lower accuracy values than the solid lines,
which indicates that when introducing alternatives, CPP performance drops significantly
compared to a single target in the case of predicting the top-ranked item (or items found
at rank 1). The only exception to this overall pattern is the performance of RV, which
improves when introducing alternatives, and is also higher than all predictors in the base
scenario after turn 6. Still, there is a difference between datasets in Scenario 3: For Shoes,
our proposed predictors (especially RV(RF) and AE) improve compared to the baselines
when introducing alternatives, while for Dresses, RV(RF) and AE replicate the pattern of
Scenario 1, which means they are lower than the baseline classifiers, while score-based per-
form equally well with them for both scenarios. Overall, the fact that in a lot of cases our
baseline predictors do not outperform the baselines indicates the difficulty of predicting
the top-ranked item, and indeed, this is an added difficulty compared to traditional QPP
which focuses on predicting the effectiveness of a ranking by correlating QPP values with
metrics at deeper rank cutoffs. Also, for both models, the decreased accuracy when moving
from Scenario 1 to Scenario 3 indicates the difficulty of predicting conversational success
in the alternative-based scenario, especially when we want to predict retrieved items at
rank 1. We believe that part of this observation is due to the new evaluation setting that
we introduced in Chapter 5. Specifically, each identified alternative for a given target item
is now part of the new target space and is considered equally relevant. However, when we
predict the top-returned item, only one of these alternatives is examined, and it might not
be the alternative that was critiqued (because it was closer to the candidate at a given
turn). Therefore, we believe that this is confusing for predicting items found at rank =
1, and therefore, results show reduced CPP performance compared to the clearly defined
target Scenario 1. This answers RQ6.3(a).
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Scenarios 1-3 - Single-turn - found@rank1
• Our predictors do not always outperform the baselines in Scenario 3, especially

for early turns. However, in later turns, AE is the best performing predictor
for GRU and RV(RF) for EGE for both Scenarios.

• The difficulty in predicting items found at rank 1 in Scenario 3 is related to
our alternative-based evaluation setting (each alternative for a target is in the
new target space; however, only one of these is examined, and it might not be
the alternative that was critiqued).

Next, we turn our attention to the items retrieved by rank 100, and therefore, pre-
dicting conversational success, examining full rankings. First, we look at the GRU model
(Figures 6.6 (c) and (d)), where we see that the introduction of alternatives in Scenario 3
increases the accuracy of all CPP predictors and across turns. Also, we note that AE is the
only predictor that performs higher than the baseline classifiers for both scenarios (except
for Scenario 1 at turns 9 and 10). In contrast, RV(RF) performs lower than the baselines
in both cases (except for Scenario 1 Dresses turns 5-7), while score-based is equal to them.
Moving to the EGE model (Figures 6.7 (c) and (d)), we observe that the introduction of
alternatives does not decrease performance. Still, we observe differences between datasets.
Specifically, for Shoes, each predictor performs equally for Scenario 1 and 3, and the only
observed differences are the ones among predictors; in this case, score-based predictors are
comparable with the baselines, RV(RF) is markedly lower, and AE, while initially much
lower, significantly increases and marginally outperforms the rest after turn 6. In con-
trast, for Dresses, we see that introducing alternatives increases CPP performance across
predictors, while the performance of most predictors is indistinguishable except for AE,
which remains the highest in both scenarios (and is not increased, since it was already
high). We believe that the overall change of pattern from Scenario 1 to Scenario 3 (com-
pared to predicting the top-ranked item) is observed because this time we are predicting
effectiveness using a deeper rank cutoff, which contains the full set of target items. These
results indicate that our proposed predictors are quite effective for predicting items found
by rank 100, which is, however, an easier task compared to RQ6.3(a). In any case, the
increased accuracy is encouraging to show that we can effectively predict rankings in both
scenarios, with an increased CPP effectiveness when adding alternatives, thus answering
RQ6.3(b). In addition, we see that our proposed AE-based predictor is effective across
scenarios.
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Scenarios 1-3 - Single-turn - found@rank100
• Our AE is the best performing predictor on both scenarios, especially for later

turns. RV(RF) is sometimes indistinguishable from or lower than baselines.

• The accuracy of all predictors increases when moving from Scenario 1 to Sce-
nario 3, as we make predictions using a deeper rank cutoff, which contains the
full set of target items.

6.4.2 Multi-turn CPP Results (Alternatives vs Base Scenario)

(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.8: CPP Multi-turn Results for Scenario 3 for the GRU model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset. The CPP
predictor notation follows the one described in Section 4.4.2.

Here, we focus on the multi-turn CPP predictors by examining the results in Fig-
ures 6.8 and 6.9, which display the CPP classification accuracy for the GRU and the EGE
model, respectively. First, we examine the items found at rank 1 (Figures 6.8 (a) and
(b), and 6.9 (a) and (b)) for both CRS models. In general, in all cases, we observe a
similar pattern to the single-turn CPP results in RQ6.3(a); CPP performance drops for
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(a) Shoes rank=1 (b) Dresses rank=1

(c) Shoes rank=100 (d) Dresses rank=100

Figure 6.9: CPP Multi-turn Results for Scenario 3 for the EGE model for a target item
found at rank 1 (top figures) and rank 100 (bottom figures) for each dataset.

all predictors when introducing alternatives, and this is consistent across turns. For GRU
on Shoes, we observe that RV(L1-based) is the best-performing predictor for both scenar-
ios, while the rest of the predictors are either comparable or slightly worse than the two
baseline predictors. For GRU on Dresses, the picture is similar, but this time, AE and
RV are equal for Scenario 1, while with alternatives, after turn 5 all predictors converge.
Next, we turn to the EGE single-turn results (Figures 6.9 (a) and (b)). Again, we see
a slight difference between datasets, while the overall pattern is similar (lower accuracy
when introducing alternatives). More specifically, for Shoes, we see that apart from AE,
which performs slightly worse for both Scenarios, RV and score-based predictors display
similar performance with the two baseline classifiers, especially for earlier turns. On the
other hand, for Dresses in Scenario 1, we see that while RV(L1-based), score-based, and
the two baselines converge to the same accuracy across turns, AE is marginally better.
Still, when we move to Scenario 3, its performance drops compared to the rest, and the
different predictors start to converge. In general, the behaviour of the different classifiers
for predicting conversation success at rank 1 mimics the results of RQ6.3(a) for the same
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cutoff, and we see that for both single-turn and multi-turn predictors, the task of pre-
dicting the top-ranked item is very demanding, not only when we introduce alternatives,
but also in the base scenario. This highlights the difficulty of the CPP task in general,
but some results need to be highlighted for specific cases: Our proposed shrinkage-based
RV(L1-based) variant is quite effective especially for both models for the Shoes dataset
in the base scenario, while AE is effective mainly for EGE Dresses. Also, we still believe
that the decreased CPP accuracy when changing scenario (after introducing alternatives)
in the case of predicting items returned at rank 1 is related to the new evaluation method-
ology that we proposed in Chapter 5. In particular, when we only examine rank = 1, it
is less likely that the particular item of all set of alternatives that was critiqued will be
returned, and therefore CPP performance is decreased, as it is confusing for the system
when predicting items found at rank 1. This answers RQ6.4(a).

Scenarios 1-3 - Multi-turn - found@rank1
• Our RV(L1-based) variant is effective especially for both models for the Shoes

dataset in the base scenario, while AE is effective mainly for EGE Dresses.

• Overall, the accuracy is decreased when moving to Scenario 3, which shows a
similar pattern with single-turn prediction for the same rank cutoff.

Finally, we focus on the deeper ranking cutoff multi-turn results, which are displayed
in Figures 6.8 (c) and (d), and Figures 6.9 (c) and (d). A general trend observed across
CRS models and datasets is that for both scenarios, our proposed AE-based predictor
is very effective and does not change when introducing alternatives. Another general
observation is that similarly to RQ6.3(b), CPP accuracy values increase when we move
from Scenario 1 to Scenario 3. Still, in all cases, except for AE, the rest of the predictors
display very similar behaviour and their displayed accuracies are not separated. Therefore,
while predicting a deeper ranking (at the conversation level) seems like an easier task than
predicting what is returned as the top item, the task of predicting the top-100 items also
leads to the following result: Our proposed AE-based predictor is the one that converges
results from both scenarios, both for single-turn predictors, but most importantly for
multi-turn predictors. This result makes sense, as for the multi-turn predictor variant, we
use the top-100 item representations, of which the predictor learns a compressed version.
This answers RQ6.4(b).
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Scenarios 1-3 - Multi-turn - found@rank100
• CPP accuracy increases when moving from Scenario 1 to Scenario 3 for both

models and datasets.

• AE converges results from both scenarios, both for single-turn predictors, but
most importantly for multi-turn predictors. This result makes sense, as for
the multi-turn predictor variant, we use the top-100 item representations, of
which the predictor learns a compressed version.

Therefore, based on the results obtained in our experiments that compare CPP per-
formance of Scenario 3 (Alternatives) with Scenario 1 (Single Target), we conclude that:
(i) For predicting the effectiveness of a ranking by predicting items found by rank 1, pre-
dicting alternative failure is more difficult than system failure. (ii) For predicting the
effectiveness of a ranking by predicting items found by rank 100, predicting alternative
failure is an easier task than predicting than system failure.

6.5 Concluding Remarks

In this chapter, we have extended our Conversational Performance Prediction (CPP)
framework (introduced in Chapter 4), which proposed predicting performance of CRS
models at the conversation level using indicators of effective performance of a conver-
sation under different evaluation settings. In particular, we introduced the concept of
recommendation scenarios (Section 6.1.1), and transferred the CPP framework to a range
of real-world applications. To achieve this, we introduced two parameters or variation
factors, which influence the nature and flow of the Conversational Image Recommenda-
tion task and result in modified settings. More specifically, based on the availability of
the user’s target item in the item catalogue, we can have a Missing Target Scenario (or
Scenario 2), which indicates the item is missing from the catalogue and cannot be re-
turned to the user. Additionally, based on how clearly a target is defined, we can have
the Alternative Scenario (or Scenario 3), where some equally reinforcing items can satisfy
the user need, and therefore can be characterised as alternatives to the original target and
join a common target space. Based on Scenarios 2 and 3, we defined two additional types
of conversational failure different from the one introduced in Chapter 4 (system failure),
namely catalogue failure and alternative failure. After redefining the CPP task for each
recommendation scenario (Section 6.1.2), we tested both catalogue failure and alternative
failure in comparison to the traditional system failure in Sections 6.3 and 6.4 using both
the single-turn and the multi-turn variants of CPP predictors.

Starting with Scenario 2, the examination of single-turn predictors when predicting the
top-ranked item (RQ6.1(a) in Section 6.3.1) showed that system and catalogue failures
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cannot easily be distinguished; there is only a marginal increase in CPP performance
when moving to Scenario 2, and this is mainly because very few items were removed
as easy items. In contrast, when predicting conversation performance at deeper rank
cutoffs (using items found at rank 100) (RQ6.1(b) in Section 6.3.1), we noted a noticeable
decrease in CPP performance in most cases. This demonstrates the difficulty of predicting
full rankings in the Removed Target Scenario, and these results are more representative
of the actual effect of Scenario 2, since we removed a sufficient amount of items (based
on the criterion of being returned by rank 100). The results of single-turn prediction are
generally replicated when using multi-turn predictors to compare Scenario 2 to the base
scenario; for predicting the top item (RQ6.2(a) in Section 6.3.2), there is a slight increase
in Scenario 2, while for deeper rankings (RQ6.2(b) in Section 6.3.2), we have not just a
decrease in CPP performance, but also a change in the ordering of predictors. Contrary
to the results of Scenario 2, the results for Scenario 3 display a different pattern overall.
In particular, when predicting the top-ranked item, we observe a marked decrease in CPP
performance after introducing alternatives, both for single-turn (RQ6.3(a) in Section 6.4.1)
and for multi-turn (RQ6.4(a) in Section 6.4.2) predictors. We believe that this result is
due to the confusion induced by predicting the top-ranked item while more target items
are considered as equally relevant. On the other hand, when predicting items returned by
rank 100, we note an increase in CPP performance across predictors for both single-turn
(RQ6.3(b) in Section 6.4.1) and multi-turn (RQ6.4(b) in Section 6.4.2) prediction. This
is in line with the fact that predicting a deeper ranking is likely to contain the entire new
target space with alternatives.

Therefore, we see that while for Scenario 2 (Missing Target), predicting items found at
deeper rank cutoffs such as rank 100 is an easier task than predicting the top-ranked item,
for Scenario 3 (Alternatives), predicting target items using deeper rankings is an easier
task than relying on predictions about target items returned at the top rank. This finding
is reasonable, since for the alternatives case, predicting items found at rank 1 is more
likely to lead to conversation failure, while for the removed target case, predicting a full
ranking after removing items returned at a deeper rank (easier items) would likely result
in a catalogue failure. Overall, our results indicate that predicting conversational failures
under different evaluation settings (scenarios) is indeed insightful, and reveal that based on
the nature of the task, CPP can differently affect predictions according to both the depth
of the ranking and the specific CPP predictors. We further accomplished a connection of
CPP task to the new evaluation setting introduced in Chapter 5, where we collected a
dataset with real user relevance judgments about alternative options. Consequently, we
showed that CPP is an evaluation framework that depends on the specific recommendation
scenario, and therefore, can be extended to other QPP-based tasks, such as QPP in ad-
hoc retrieval or Conversational Search. In any case, we showed that CPP, in the same
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way as QPP, is a task (in the supervised case) that can sufficiently be predicted by using
the embedded representations already contained in the CRS models, thus linking back
to Chapter 3. Finally, overall in this chapter, we have validated the fourth claim of the
thesis statement which stated that by using these alternatives datasets, and by predicting
conversational performance under different Recommendation Scenarios, we detect different
types of conversational failure, such as when a user cannot find an item, versus when the
system’s catalogue does not contain the relevant item. For future work, we aim to further
refine our CPP predictors with more complicated structures and test whether this would
better capture the underlying complexity of the CRS model behaviour.



Chapter 7

Conclusions

7.1 Identified Challenges

This thesis addressed the problem of predicting the different types of retrieval failure
that can occur during an interaction with a multi-turn and multi-modal Conversational
Recommendation System (CRS). In particular, we argued that the performance of a Con-
versational Recommendation System can be predicted to detect when a conversation fails,
under different scenarios, across different turns of a conversation. In Chapter 1, we posed
some challenges for predicting conversational performance, which can be summarised as
follows:

• Challenge 1: How to predict the effectiveness of ranking lists of items in multi-
modal Conversational Recommendation Systems (CRS) that are composed of image-
based result lists resulting from text-based user feedback (This is linked to Limita-
tion 3 in Section 2.3.3);

• Challenge 2: How to predict the degree of success of a multi-turn CRS conver-
sation and to differentiate between predicting the current user satisfaction or the
overall satisfaction of a conversation (This is linked to Limitations 4a) and 4b)
in Section 2.3.3);

• Challenge 3: How to make fashion CRS system interactions more realistic by
accounting for more flexible user needs and preferences, for example by examining
more options as desired fashion items, to create the foundations for more accurate
predictions (This is linked to Limitations 1a) and 1b) in Section 2.2.3);

• Challenge 4: How to account for the type of conversational failure (CRS responding
differently when a user cannot find an item than when the underlying catalog does
not contain the item) and therefore, make predictions under various conversational
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recommendation settings (This is linked to Limitations 1a), 2a), and 2b) in
Section 2.2.3).

7.2 Contributions and Conclusions

To address the aforementioned challenges, the contributions of this thesis are as follows:

• We proposed some embedding-based query performance predictors for text-based
dense retrieval. As we explained in Chapter 3, Conversational Image Recommenda-
tion models can be seen as a subset of dense retrieval models that use image-based
results lists rather than text.

• We contributed a new evaluation framework that considers the multi-turn aspect of
the Conversational Image Recommendation task, and proposed some unsupervised
and supervised predictors within the context of this framework.

• We collected user opinions for alternatives to existing target items, thus improv-
ing the completeness of CRS evaluation, and finally, we proposed two novel rec-
ommendation scenarios that more accurately capture the span of user needs and
recommendation failures. We tested the ability to detect these scenarios using our
alternative-based datasets.

In the following, we discuss in more detail our main conclusions in addressing these
challenges, before we explain how we answer each claim of the thesis statement:

• Conclusion 1: Coherence-based Query Performance Measures for Dense
Retrieval: To address the first challenge, we studied the query performance predic-
tion (QPP) task in the text-based dense retrieval setting, before transferring it to a
multi-turn CRS recommendation setting, with a purpose of detecting which factors
affect query performance of the type of retrieval models that can easily be gener-
alised to our multi-modal task of interest (see Chapter 3). In this regard, we studied
QPP on two popular single-representation dense retrieval models, ANCE (Xiong
et al., 2020) and TCT-ColBERT (Lin et al., 2020), and proposed a set of dense
coherence-based predictors (Section 3.2.2), which are based on the intuition of av-
erage top vs. bottom rank pairwise similarities of top-ranked embeddings (higher
pairwise similarity among documents of top ranks, and lower correlation for lower
ranks). The results of Section 3.4 demonstrate that our proposed predictors can sig-
nificantly improve performance compared to state-of-the-art supervised predictors,
while they improved performance compared to score-based predictors for NDCG@10
and MRR@10. Moreover, in Section 3.5, we proposed a multi-level statistical ap-
proach to further explain why our predictors displayed lower correlations than score-
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based predictors for MAP@100. The results of Section 3.5.3 showed that the inter-
play of QPPs with query types (as these were proposed by Bolotova et al. (2022)),
contributes to the unstable performance of QPPs only for MAP@100.

• Conclusion 2: Conversational Performance Prediction (CPP) To address
the second challenge, we proposed a framework for Conversational Performance Pre-
diction (CPP), which predicts retrieval failures in a conversational recommendation
setting by considering the recommendation ranking at different turns of a conver-
sation, using both single-turn and consecutive-turn predictors (Section 4.2). In this
framework, we predict performance in the context of recommendation models at the
conversation level going further than the single ranking focus in QPP literature. In
this regard, after focusing on simple score-based predictors to test the difference
between prediction horizons in Sections 4.3.2 and 4.3.3, we tested our proposed pre-
dictors from Chapter 3 in the new setting (Sections 4.3.4 and 4.3.5). Overall, the
findings of Section 4.2 indicated that long-term prediction does not work under this
specified evaluation setting, but short-term predictions provide small to medium cor-
relations, and in all cases, correlations were consistently lower than the ones in the
QPP setting. To account for this, we also examined a supervised CPP evaluation
methodology (Section 4.4), where we treated CPP as a binary classification task clas-
sifying if a given conversation will result in the user’s target item being successfully
retrieved or not. In this regard, we further proposed a new embedding-based super-
vised predictor (inspired by supervised QPP predictors) that learns a compressed
representation of the retrieved item(s) of previous turn(s) up to the turn before the
evaluation turn. In our experiments (Sections 4.4.3 and 4.4.4), we found that using
classifier-based evaluation and the predictive accuracy of a predictor on the test set
more effectively captures the underlying nature of a multi-turn conversation and
shows high accuracy across both single-turn and multi-turn predictions.

• Conclusion 3: Evaluating User Simulators with Alternatives To address the
third identified challenge, in Chapter 5, we addressed the issue of evaluation com-
pleteness in CRS models. In particular, we collected real user opinions in a dataset
for fashion recommendation that contains labels about the presence of sufficient al-
ternatives for some known target items on different fashion item categories, namely
Shoes and Dresses (Section 5.3). This was achieved by using pooling from different
CRS models with a process described in detail in Section 5.3.2. Next, using this new
dataset with the updated target space, we modified the original user simulator using
a new Meta-Simulator that provides feedback by considering the identified alterna-
tives (Section 5.2) and reran the CRS models. In our experiments in Section 5.4,
we found improved CRS performance compared to the non-alternative setup, indi-
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cating that evaluation with user simulators applying a single target, as has been
used in all previous CRS literature for these datasets, were underestimating system
performance.

• Conclusion 4: Predicting Conversation Performance across Recommen-
dations Scenarios Finally, to address our fourth identified challenge, we introduced
the concept two novel recommendation scenarios in Chapter 6. Specifically, by con-
sidering two factors of variation, namely the definition and the availability of the tar-
get item, we define the Missing Target or Scenario 2 and the Alternative or Scenario
3 scenarios (Section 6.1). Scenario 3 uses the alternative relevance labels identified
in Chapter 5. Consequently, we introduce different types of recommendation failures
resulting from each scenario, and consequently, we differentiate between the system
not being able to retrieve the correct item and the item not being available. For
this purpose, we use the CPP predictors defined in Chapter 4. Our experiments in
Sections 6.3 and 6.4 indicated that it is worth exploring CPP under different recom-
mendation scenarios, as the prediction accuracy differences are marked, both when
we use Scenario 2 and Scenario 3.

Based on the results obtained in Chapters 3 to 6, we validate the thesis statement in
Section 1.2, according to which the performance of a Conversational Recommendation
System can be predicted to detect when a conversation fails, under different scenarios,
across different turns of a conversation. Below, we discuss how the main experimental
results obtained in each chapter validate each corresponding claim of the thesis statement.

• Claim 1: Initially, we can predict the effectiveness of a ranking of textual items
for a textual query, by examining the coherence of the top-retrieved items based on
their dense embedded representations. Our experiments in Chapter 3 validated this
claim by showing that our proposed dense coherence-based predictors on the TREC
Deep Learning Track datasets demonstrate improved accuracy upon dense retrieval
(up to 92% compared to sparse variants for TCT-ColBERT and 188% for ANCE
when we correlate with NDCG@10) (Tables 3.2 and 3.3). We also showed that this
pattern is unique to dense retrieval (Tables 3.9 and 3.10), a type of retrieval models
that our CRS task of interest is a part of, due to the interaction of QPPs with
the types of queries. This was particularly evident for one of the metrics, namely
MAP@100 (Figure 3.3), while for metrics such as NDCG@10 and MRR@10, our
proposed predictors more consistently outperform the baselines due to the reduced
influence of query types.

• Claim 2: Similarly, we can predict the effectiveness of a ranking of items in a
Conversational Recommendation Systems (CRS), which are also based on learned
embedded representation of images, where user feedback takes the place of a textual
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query. Indeed, by introducing a framework of Conversational Performance Prediction
(CPP), we can predict the degree of success of a conversation by a CRS - such success
can be predicted over a short or long time horizon, thereby predicting current user
satisfaction or overall satisfaction of a conversation. We validated this claim in
Chapter 4, where we proposed a novel Conversational Performance Prediction (CPP)
Framework, aiming to predict performance of CRS systems at the conversation level
instead of at the query level in CRS systems. First, the results using all target
image items contained in the relative captioning train datasets, namely Shoes (Berg
et al., 2010; Guo et al., 2018) and FashionIQ (Wu et al., 2021a), showed that it is
possible to predict the performance of a conversation using score-based predictors
in the short-term, especially for Shoes (Table 4.2 first group of rows reaching up to
a 0.423 Spearman’s correlation for early turns), while it is also sufficient for Shirts
(Table 4.2 last group of rows reaching up to a 0.336 Spearman’s correlation for
early turns). Next, we examined an evaluation setting using sampled target items,
corresponding to the QPP query sets and focusing on short-term prediction, and
showed that mainly score-based CPP predictors perform well for GRU (Table 4.3 up
to a Spearman’s correlation of 0.339 for Shoes, NQC, MRR@10), while for EGE, the
results are split; in some cases, score-based predictors are more effective (Table 4.4
up to 0.282 correlation for Shoes, NQC, MRR@10), while in others, embedding-
based predictors win (Table 4.4 up to 0.291 correlation for Shoes, RV, NDCG@10).
Finally, we empirically tested the supervised version of CPP as a classification task,
which revealed the most promising results. Specifically, the results for both single-
turn predictors (Tables 4.6 and 4.7) and the multi-turn results in Tables 4.8 and 4.9
indicate high accuracy values for the various CPP predictor supervised variants, and
especially for multi-turn prediction (train turns up to a given turn and prediction at
the next turn), supervised embedding-based predictors consistently performed with
an accuracy above 95% for various rank cutoffs.

• Claim 3: Furthermore, by obtaining user opinions about the relevance of items, we
improve the completeness of the evaluation mechanism by identifying alternatives
recommendations for existing target items, which could be used to both inform the
user simulator and therefore improve the overall evaluation of CRS system. We
validated this claim in Chapter 5. Indeed, we collected pooled relevance judgments
that reflect the simulator’s knowledge of alternatives. We re-evaluated three CRS
models before and after alternatives and as it can be seen in Tables 5.4 and 5.5,
CRS performance is noticeably higher after introducing alternatives, reaching up
to 99% improvement for Shoes EGE for SR@10, and up to 146% for Dresses EGE
for MRR@10. We also observed that the specific tolerance level is not statistically
significant for CRS performance (Figures 5.5 and 5.6, and Table 5.6). This means
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that while introducing alternatives changes the magnitude of CRS performance, the
specific turn at which a user loses patience is not particularly crucial. Still, the
tolerance level is crucial for how rapid the increase in performance is (Figure 5.8).

• Claim 4: Finally, using these alternatives datasets, and by predicting conversational
performance under different Recommendation Scenarios, we detect different types of
conversational failure, such as when a user cannot find an item, versus when the sys-
tem’s catalogue does not contain the relevant item. Indeed, we validated this claim in
Chapter 6, where we tested our proposed supervised CPP predictors from Chapter 4
under the different recommendation scenarios. The main intuitions can be sum-
marised as: (i) For both single-turn and multi-turn prediction, moving to Scenario 2
increases CPP performance when predicting the top item, while it decreases its per-
formance when predicting item found at deeper rank cutoffs (Figures 6.2 to 6.5). On
the other hand, for both single-turn and multi-turn prediction, moving to Scenario
3 decreases CPP performance when predicting the top item, while it increases its
performance when predicting items found at deeper rank cutoffs (Figures 6.6 to 6.9).
Overall, the CPP differences among scenarios indicate the presence of different cases
of conversational failure under different scenarios and according to the depth of the
predicted ranking. In addition, we linked the previously identified alternative items
to a given target with CPP prediction in the corresponding novel scenario.

We have validated all the claims, and therefore, the thesis statement (Section 1.2) has been
validated. Next, we describe some future directions that arise from the insights obtained
in the experiments of this thesis.

7.3 Future Directions

Here, we propose some possible directions for future steps to enhance both our CPP
framework and also incorporate the insights obtained in this thesis to improve CRS models.

Probabilistic Interpretation of CPP: In Chapter 4, we posed the argument that in
the multi-turn recommendation setting, it is difficult to distinguish what pre-retrieval and
post-retrieval predictors mean. In this regard, a probabilistic framework was originally
proposed for QPP (Shtok et al., 2016), which assumes pre-retrieval predictors can be
considered as prior information and post-retrieval predictors can be considered as posterior
information, according to a Bayesian interpretation. One possible direction is to extend
this approach into a multi-turn recommendation setting with the possibility of combining
textual and image representations to predict performance. In particular, a CPP approach
needs to show how the textual embedded representations (resulting from user feedback)
can be used in parallel with image embedded representations (resulting from retrieved
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images at a given turn) to predict the performance of CRS systems. For example, a CPP
predictor that can address the multi-turn aspect in CPP should be able to quantify the
predictions at each turn, update the predictive probability of success to the next turn, and
result in a final probability at the end of a conversation. Also, it should address the nature
of CRS that includes multiple modalities (i.e., both text and images), thus accounting for
the interplay between these modalities and their link across turns. In this way, any new
turn could be added and evaluated as new test input data, and the final probability of
conversational success could be measured at a given "final" turn.

Interventions with CPP predictions and Alternatives: In Chapters 4 and 6, we
showed that conversational performance in CRS models can be predicted across different
scenarios. Still, currently, our CPP insights are not used to enhance the performance
of CRS models by incorporating these predictions. Existing Conversational Image Rec-
ommendation models (Guo et al., 2018; Wu et al., 2021a,b) recommend items from the
beginning until the end of a dialogue, but do not ask clarifying questions or update user
preferences systematically. This delays the target item, while informative statements by
the system would result in its faster identification (earlier turn). For example, using spe-
cific insights resulting form QPP or CPP indicators when the system informs the user or
when it makes a new recommendation would result in improved CRS performance. In
this regard, CPP predictors would be indicative of when to make an intervention, which
is more reasonable than relying on a static number of turns. Also, we could modify the
system to provide instructions about what the catalogue contains, and what differentiates
the ranked results from the rest. This would also require validation with a user study.

Prediction Differences of CRS from Conversational Search: While some pre-
dictors were found to be effective for QPP in a Conversational Search setting (Faggioli
et al., 2023a; Meng et al., 2023), they do not seem to predict equally well in a CRS setting,
as indicated by our CPP experiments in Chapters 4 and 6. Instead, for CPP, we need to
take into account the learned representations in a sequential way throughout the conversa-
tion. At the same time, it would be useful to examine the differences between the queries
Conversational Search, and the captions in Conversational Image Recommendation. For
example, a feedback utterance might contain certain aspects that lead a conversation to
be more or less effective, and this in turn, influences predictions. We avoided this due to
only having user simulator feedback in this thesis. Therefore, it would be useful to also
examine and compare the content of the critiques between the tasks.

7.4 Concluding Remarks

This thesis has addressed the topic of evaluation in Conversational Image Recommen-
dation models in the fashion domain. In particular, this thesis has proposed a novel
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evaluation framework for predicting different types of failure in Conversational Recom-
mendation Systems (CRSs). We have demonstrated that performance of a CRS can be
predicted to detect when a conversation fails, under different scenarios, across different
turns of a conversation. In addition, we have shown that using multi-turn predictions
for our prediction framework works best when we treat the problem as a classification
task that predicts whether a target item is found at a given turn. In Section 7.3, we
have proposed new directions for the methodology proposed in this thesis. While we have
shown how we can detect retrieval failure under different recommendation settings, we
believe that incorporating these insights into current CRS models and further developing
the evaluation methodology interactively across turns is a promising direction for future
work in conversational recommendation.
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