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Abstract

The rapid advancements in embedded processing, sensing, artificial intelligence (AI), and
communication technologies have accelerated the adoption of connected and autonomous
systems (CAS). However, as devices in CAS become more intelligent and autonomous,
their application scenarios—such as autonomous driving—are growing increasingly com-
plex and dynamic. To enable intelligent, connected, and autonomous (ICA) nodes to en-
gage in deeper deliberation and mutual understanding, joint decision-making has emerged
as an effective solution. Joint decision-making is a process where multiple autonomous
agents collectively analyze information, deliberate, and reach consensus to make unified
decisions that align with common goals. However, traditional joint decision-making ap-
proaches face significant challenges when applied to the stringent demands of modern
CAS. For instance, centralized decision-making (CDM) offers streamlined processes and
high consistency but suffers from limitations like single points of failure (SPOF), scala-
bility issues, and dependence on centralized infrastructure. By contrast, the decentralized
nature of distributed decision-making (DDM) enhances scalability and system reliability,
leveraging the intelligence of individual nodes to achieve collective intelligence, making
it a promising alternative. In this context, distributed consensus (DC) protocols as a key
element in distributed systems are essential to enabling DDM, with features such as data
consistency and fault tolerance drawing significant research attention in recent years. This
thesis focuses on the application, optimization, and development of wireless DC protocols
to enable ICA nodes in CAS, with a particular focus on autonomous driving, to achieve
robust and expressive joint decision-making.

First, the study proposes Intelligent Distributed Consensus (IDC) and introduces the
first IDC protocol, Intelligent-Raft, which builds upon the traditional Raft algorithm. Ad-
ditionally, to facilitate the deployment of IDC in practical CAS environments, the study
introduces Wireless Intelligent Distributed Consensus System (WIDCS) which leverages
distributed wireless communication combined with the Intelligent-Raft algorithm to en-
able ICA nodes to make collective joint-decisions and ensure fault tolerance. A practical
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hardware module of WIDCS is implemented using microcontroller-based systems, which
is named ‘AIR-RAFT’. To validate the feasibility and effectiveness of WIDCS, we un-
dertake research and evaluations within an autonomous driving scenario, specifically at
uncontrolled intersections, utilizing both mathematical modeling and practical scenario
testing. Numerical and experimental results, in good alignment, demonstrate that WIDCS
substantially improves autonomous driving safety.

Second, this study enhances WIDCS by incorporating the functions of ad hoc net-
work formation, management, and dismissal, improving its ability to provide better data
consistency and joint decision-making services for ICA nodes. Additionally, we have de-
veloped the second-generation WIDCS module, RaBee, which enables distributed nodes
to achieve Intelligent-Raft consensus via a ZigBee-based ad hoc network. In addition,
we develope mathematical probability models to evaluate and compare the reliability of
centralized decision-making systems and WIDCS. Employing autonomous driving in on-
ramp merging as a case study, we further formulated a mathematical model to assess the
safety of Autonomous Vehicles (AVs) under different decision-making frameworks. By
integrating the RaBee module with AV, we conduct safety tests in practical on-ramp sce-
narios, and the results demonstrate that WIDCS notably enhances AV safety, indicating
substantial potential for future CAS.

Third, this study proposes a novel IDC protocol, Converging-Raft, which leverages the
collective intelligence of all nodes to make globally optimal joint decisions—a capability
not present in Intelligent-Raft. To enhance the adaptability, we propose the Heteroge-
neous Intelligent Joint Decision System (HIntS), an architecture which integrates CDM,
Intelligent-Raft, and Converging-Raft within a hybrid network combining ad hoc and cel-
lular networks. Our self-developed hardware module at the core of HIntS, ‘5G-MInd’, is
designed to verify the system’s feasibility and performance in practical experiments. We
develop a mathematical model to analyze and compare the reliability and latency of HIntS
under different working modes and validate these findings through joint-decision experi-
ments using 5G-MInd modules. Our quantitative and qualitative results demonstrate the
advantages and characteristics of different combinations of joint-decision mechanisms and
network structures. These findings highlight HIntS’s adaptability to complex, dynamic en-
vironments and provide critical guidance for the practical deployment of future wireless
joint-decision mechanisms.
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Introduction

1.1 Background of Connected and Autonomous System

Driven by the advancements of Industry 4.0, artificial intelligence (AI), and robotics, au-
tonomous devices are becoming increasingly sophisticated, capable of independently ex-
ecuting and handling complex tasks with greater intelligence and precision. Autonomous
driving is a typical representative of current automation and intelligent systems. Mod-
ern autonomous vehicles (AVs) are now equipped with an array of 20 to 40 specialized
sensors, designed to gather comprehensive data about the environment and support either
human drivers or fully autonomous systems in the decision-making process [3]. These
sensors, which include radar, lidar, cameras, and ultrasonic detectors, monitor aspects
such as vehicle speed, proximity to other objects, road conditions, and pedestrian activity,
creating a rich data landscape for navigating complex environments.

However, current onboard systems primarily support localized and reactive decision-
making, focusing on the individual vehicle’s perspective rather than a collaborative, net-
worked understanding of traffic flow. This limitation means that a vehicle’s intentions re-
main hidden from surrounding traffic, lacking the kind of predictive, coordinated decision-
making that could improve overall safety. Moreover, without a shared understanding, any
malfunction in sensor algorithms or hardware can lead to catastrophic failures. For ex-
ample, when sensor systems misinterpret or miss critical cues due to algorithmic errors or
hardware faults, the AVs may fail to recognize potential hazards, posing severe risks to all
road users.

A striking example of these limitations occurred recently when a Cruise autonomous
vehicle failed to detect a pedestrian in its path, resulting in a tragic accident [4]. Due to an
undetected object detection failure, the vehicle collided with and dragged the pedestrian

1
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for approximately 20 feet (6.1 meters), ultimately stopping with a tire positioned on the in-
dividual’s leg [4]. Such incidents underscore the urgent need for enhanced communication
between autonomous devices and their environments, enabling these systems to anticipate
hazards collectively, reduce reaction times, and avoid accidents stemming from isolated
sensor failures. This example highlights the importance of an integrated approach across
all autonomous systems, where devices operate not just independently but in coordinated
networks, ensuring safer and more resilient collaboration across various applications, from
transportation to industrial automation.

To address the aforementioned challenges and elevate the operational efficiency of
autonomous systems, the concept of connected and autonomous systems (CAS) is emerg-
ing as a powerful solution. CAS envisions a network of interconnected intelligent nodes,
each capable of not only autonomous operation but also dynamic collaboration with other
nodes. By facilitating information exchange, CAS enables these autonomous agents—
whether vehicles, drones, or other robotic entities—to move beyond isolated, reactive
decision-making and toward a model of proactive coordination. This shift holds immense
potential for enhancing safety, resource efficiency, and cooperations across a wide array
of applications, from transportation to industrial automation. Over the past two decades,
rapid advancements in embedded processing, sensing, AI, and communication technol-
ogy have propelled the widespread adoption of novel CAS, notably in applications such
as ambient assisted living, entertainment, logistics optimization, energy management, and
industrial automation [5–9]. For instance, smart grids and energy management systems
equipped with sensors and Internet of Things (IoT) devices can dynamically optimize
energy distribution in response to real-time load data, significantly enhancing energy effi-
ciency and minimizing waste.

The advantages of CAS lie in its ability to create a shared, synchronized understanding
of the environment. With constant data exchange among distributed nodes, CAS allows
each device to “see” beyond its own sensory limitations, leveraging information from
surrounding entities to create a richer, more accurate picture of the world. For example,
in traffic scenarios, vehicles within a CAS network can anticipate each other’s movements
and intentions, enabling more precise navigation and reducing the likelihood of accidents
caused by unexpected actions. Additionally, CAS can streamline operations in sectors like
logistics, where autonomous robots coordinate in real-time to optimize storage, retrieval,
and transportation of goods.

As CAS devices become increasingly interconnected and intelligent, their applications
span highly complex and dynamic environments. Yet, while these systems are capable of
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exchanging large volumes of data, relying solely on basic data exchange often reveals
significant limitations. In many scenarios, data sharing alone is not enough to meet the so-
phisticated, real-time demands of CAS applications. When devices in a network are lim-
ited to transmitting isolated data points—such as speed, position, or object detection—they
often lack the contextual understanding required to anticipate and respond collectively to
emergent conditions. This reliance on fragmented information can lead to suboptimal or
conflicting decisions, especially in scenarios where coordinated action is critical for safety,
efficiency, or operational success.

For instance, in an interconnected AVs network, vehicles can share information about
their current speeds, trajectories, and nearby obstacles. However, without an additional
layer of collective processing, each vehicle must still independently interpret these data,
resulting in decisions that may overlook broader, cooperative objectives. In a multi-vehicle
overtaking scenario, exchanging positional data alone may not provide sufficient informa-
tion for optimal maneuvering. It is beneficial for each vehicle to not only be aware of its
own position but also to infer the intentions and reactions of others to enhance the chances
of smooth and safe coordination. While basic data exchange can help vehicles detect each
other’s presence, the absence of a joint decision-making mechanism may limit their ability
to achieve effective and timely collective coordination during complex maneuvers.

This gap underscores the critical need for joint decision-making within CAS. Build-
ing on basic data exchange, joint decision-making enables CAS nodes to process shared
information as a cohesive unit. This approach allows interconnected devices to synthe-
size data into a unified understanding, evaluate multiple perspectives, and reach consensus
on actions in real time. For example, AVs can collectively deliberate on the best timing
and path for an overtaking maneuver, weighing variables such as speed alignment, lane
availability, and optimal spacing. Through this collaborative approach, vehicles not only
react to each other’s data but actively align their intentions, leading to safer, more efficient
actions that individual data sharing alone could not achieve.

The importance of joint decision-making extends beyond autonomous vehicles to di-
verse CAS applications, such as industrial robotics, drone swarms, and intelligent energy
grids. In each of these domains, joint decision-making transforms data exchange from a
passive process into an active, coordinated strategy, allowing systems to adapt dynamically
to complex environments. By facilitating proactive collaboration, joint decision-making
builds on the foundation of data sharing to enhance the resilience, safety, and overall
intelligence of CAS networks. This evolution from simple data exchange to collective
decision-making marks a pivotal shift, positioning CAS to address increasingly challeng-
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ing demands with a level of coordination previously unattainable.
With the increasing complexity, dynamism, and criticality of CAS application sce-

narios, the requirements for joint decision-making are becoming increasingly stringent.
First, the synchronization of decisions across nodes in CAS is important. Robust synchro-
nization on decisions and information ensures consistent, reliable and efficient operations,
particularly in time-sensitive or coordination-intensive scenarios. However, in real-world
operations, network delays and variations in data processing times can result in informa-
tion asynchrony between nodes, which may lead to task incoordination. For instance,
warehouses equipped with interconnected robotic systems and automated guided vehi-
cles (AGVs) can optimize inventory management. These robots autonomously navigate
aisles, pick and pack products, and restock inventory, all in synchronization with the ware-
house centralized management system. This real-time synchronization not only enhances
the movement consistency and safety of the swarm but also greatly improves efficiency.
Asynchronous information will lead to incoordination between machines, which bring
unnecessary safety threats and economic losses.

Moreover, the demand for high fault tolerance, reflecting robustness in CAS, is in-
creasing rapidly due to the rising system fault rates driven by more dynamic and complex
applications. Fault tolerance guarantee that even if some nodes experiences hardware
limitations or software/algorithm errors such as incorrect AI judgments, the collective
decision-making can still produce accurate global decisions. For example, in intelligent
transportation systems (ITS), vehicles rely on accurate sensor data to prevent collisions
and optimize traffic flow. If a sensor or algorithm fails—such as a radar misreading the
distance or a camera malfunctioning due to adverse weather—the vehicle may transmit
incorrect data to the system. Without a fault-tolerance mechanism, the direct exchange of
faulty speed or position information could lead to unsafe driving decisions, such as pre-
mature acceleration or unnecessary emergency braking. This not only exacerbates traffic
congestion but also increases the risk of chain-reaction accidents.

As mentioned above, CAS has an increasing demand for joint decision-making, and
also requires support for synchronization, consistency, fault tolerance, etc. Therefore, it
is essential to optimize and enhance the existing CAS system to enable intelligent and
autonomous nodes to effectively handle increasingly complex and demanding application
environments.
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1.2 Methodologies and Motivations

1.2.1 Centralized versus Distributed Joint Decision-Making

Joint decision-making in CAS are typically structured around two main frameworks: cen-
tralized or distributed. In a centralized approach, nodes forward their collected data to
a central control hub, which then makes decisions and issues commands for implemen-
tation. The centralized decision-making (CDM) system is widely used across various
industries and fields due to its ability to simplify the decision-making and management
process through a centralized structure. The single source of decision ensure unified con-
trol across all nodes in the network, which enhance system consistency by preventing
individual nodes from making isolated decisions that could disrupt overall operations. In
addition, CDM enables more efficient resource allocation and optimization. The central
control unit can assess the needs and resource status of all nodes, making informed de-
cisions to minimize resource waste. Furthermore, in rapidly changing environments, the
central control can rapidly adjust strategies and issue instructions, allowing the system to
adapt more quickly to external changes.

However, the scalability of CDM is increasingly strained by the growing number and
diversity of connected devices and nodes, alongside escalating cybersecurity risks, push-
ing these systems towards their operational thresholds [10]. For example, centralized
architectures are notably vulnerable to certain risks, such as the single point of failure
(SPOF) and increased susceptibility to cybersecurity threats, especially when sensors op-
erate in open and dynamic environments. In addition to security, privacy concerns emerge
as a critical issue in centralized systems, given the potential aggregation of sensitive data
at a central node. Furthermore, CDM restricts nodes to synchronizing information and
decisions solely with the central node, potentially constraining the overall system perfor-
mance by the weakest connection in the network. This can result in parameters such as
latency and reliability falling below (or above, in case of latency) expected values, po-
tentially resulting in accidents and the loss of human lives [11]. Moreover, the financial
implications of establishing and maintaining a centralized infrastructure can be signifi-
cant, potentially precluding its use or failing to meet the rigorous latency and reliability
demands of certain applications. For example, the deployment of sensors for critical real-
time decision-making processes necessitates connections with a central cloud/edge via 5G
ultra-reliable and low latency communications (URLLC), a capability that might not be
accessible in some rural areas.

As next-generation mobile applications evolve towards a distributed topology, dis-
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tributed decision-making (DDM) leverages the distribution of decision authority among
multiple intelligent nodes to overcome inherent limitations in centralized systems. The
stability of DDM is not reliant on a single node, as data processing and decision-making
are distributed across multiple nodes. This decentralized structure enhances system ro-
bustness and mitigates the risk of SPOF, ensuring the reliable completion of decisions.
Additionally, each node processes only the information relevant to it, which helps safe-
guard user privacy and limits centralized access to sensitive data.

Moreover, DDM systems are not limited by the processing power or spectrum re-
sources of a central node, as each node can independently process information and re-
spond. This allows the system to flexibly scale by adjusting the number of nodes as
needed. For example, in an IoT environment, as the number of devices increases, the
system can seamlessly expand, with each node handling its own data and decisions with-
out relying on a central hub, thereby enhancing both scalability and adaptability.

Another key advantage of DDM is its ability to achieve true swarm intelligence. In this
architecture, each node actively contributes to the decision-making process by utilizing its
own perception and computing resources, rather than relying solely on the intelligence of
a central node. This approach often results in more precise and comprehensive decisions,
as it integrates data and insights from multiple nodes, offering a broader and more diverse
perspective.

Through these characteristics, DDM not only enhances system robustness and scala-
bility, but also improves the transparency and intelligence of the decision-making process.
This makes it particularly well-suited for CAS that require high reliability and support a
large number of devices. In this context, Distributed Consensus (DC) plays a vital role in
enabling DDM and has garnered significant attention in recent research [10,12–16]. At its
core, DC refers to the process by which multiple distributed entities achieve agreement on
a shared state or decision, despite potential communication delays, faults, or conflicting
objectives. Standardized distributed protocols, such as consensus algorithms, provide the
foundation for these agreements, enabling robust and efficient operations even in dynamic
and uncertain conditions [17]. Given its relevance, this research focuses on leveraging DC
mechanisms to address key challenges in CAS. By exploring its application to DDM sce-
narios, this work aims to enhance the safety, coordination, and performance of Intelligent,
Connected, and Autonomous (ICA) systems operating in complex environments.
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1.2.2 Distributed Consensus: An Overview

Over the past few decades, DC technology has evolved from its early roots in computer sci-
ence, including distributed databases and computational problems, to a critical component
of modern distributed networks. Early research focused on achieving consensus in systems
prone to failure, with notable developments such as Lamport’s Paxos algorithm [18] (pro-
posed in 1989, published in 1998) and Barbara Liskov’s Viewstamped Replication [19].
As research advanced, consensus mechanisms were adapted to more complex networks
and failure models, particularly addressing Byzantine faults, where nodes may act mali-
ciously. The Practical Byzantine Fault Tolerance (PBFT) algorithm became a significant
solution for these challenges. In 2008, the advent of Bitcoin ushered in a new era for
distributed consensus. Bitcoin, along with its underlying blockchain technology, demon-
strated the feasibility of secure, decentralized transactions via the Proof of Work (PoW)
mechanism, without the need for a central trusted authority [20]. This innovation not only
popularized cryptocurrencies but also spurred the application of blockchain technology
across various fields.

The core principle of DC is to ensure consistency in distributed systems. Consistency
refers to the ability of multiple nodes to agree on a data value or operation, ensuring that
all non-faulty nodes maintain a uniform understanding of the system’s state. This requires
nodes to reach agreement before updating or operating on data, guaranteeing the accuracy
and synchronization of information. While consistency is the primary focus, fault toler-
ance is a critical characteristic that enables the system to maintain functionality and per-
formance despite node failures or abnormal behavior. Fault tolerance is typically achieved
through redundancy, where multiple nodes store identical data or perform the same func-
tions, allowing other nodes to take over in the event of failures, thereby preserving system
continuity and data integrity.

The consensus process typically follows four key steps: Proposing, Negotiating, Agree-
ing, and Committing [1, 2, 21]. In the proposing phase, a node (often referred to as the
leader or proposer) proposes a value that requires agreement. During the negotiation
phase, other nodes review the proposal and provide feedback, which may include accep-
tance, requests for clarification, or rejection. In the agreeing phase, all non-faulty nodes
work towards reaching consensus on the proposed value. Finally, the committing phase
involves formally recording the agreed-upon value into the system.

DC technology is widely applied in key areas such as distributed databases, distributed
computing, IoT, blockchain and cryptocurrency. These fields leverage DC to enhance data
consistency, system reliability, and security. As the core technology of distributed systems,
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the application prospects of distributed consensus in modern distributed networks will
become increasingly broad.

1.2.3 Distributed Consensus: Byzantine Fault Tolerance

Over the years, researchers have developed various algorithms and protocols for dis-
tributed consensus, including Paxos [21], Raft [2], and Practical Byzantine Fault Tolerance
(PBFT) [1]. These have been applied across distributed systems, such as databases [22],
blockchain [23], and cloud computing [24–26], to ensure system consistency and relia-
bility. These protocols can also function as internal mechanisms, enabling nodes to make
joint-decisions based on collected information. In DC protocols, each participant can
transmit and receive commands to update the state of replicas, adhering to fault-tolerant
protocols [27]. Most DC protocols focus on addressing two types of faults: Byzantine
faults and crash faults.

Byzantine failures refer to malicious behaviors introduced by adversaries, such as
contradictory commands, communication interruptions, or intentional delays of critical
messages [28]. These failures may result from software bugs, hardware malfunctions, or
malicious attacks, causing nodes to provide incorrect information or disrupt system opera-
tions. The concept originates from the Byzantine Generals Problem, where participants in
a distributed system must agree on a strategy, even if some actors are unreliable or mali-
cious. The term ’Byzantine’ refers to this classic problem in distributed computing, where
consensus must be achieved despite the presence of dishonest or faulty participants.

To address this, Byzantine fault tolerance (BFT) mechanisms ensure that the system
continues to operate correctly and reliably despite the presence of Byzantine faulty nodes.
BFT protocols like PBFT and HotStuff BFT [29, 30] maintain a consistent sequence of
node states through quorum intersection, ensuring the correct propagation of information
across the system even in the presence of Byzantine attack. These protocols often use
redundancy, replicating and processing data across multiple nodes, and rely on consensus
mechanisms that allow nodes to agree on the system’s correct state.

PBFT is a consensus algorithm designed to function efficiently in asynchronous dis-
tributed systems and handle Byzantine faults. The workflow of PBFT is shown in Fig. 1.1.
PBFT categorizes nodes into two roles: a primary node, which is responsible for proposing
the order of client requests, and multiple backup nodes, which validate and reach agree-
ment on this proposed order. The algorithm operates in three main phases: Pre-prepare,
Prepare, and Commit. In the Pre-prepare phase, the primary node, upon receiving a client
request, assigns a sequence number to the request and broadcasts a Pre-prepare message
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containing this sequence number and the request details to all backup nodes. The purpose
of this phase is to ensure that all nodes receive the same initial proposal for processing
the client request. In the Prepare phase, the backup nodes, after validating the Pre-prepare
message, broadcast a Prepare message to all nodes, signaling their agreement with the
proposed sequence. The Prepare message serves as confirmation that the node is ready to
process the request. Each node must receive at least 2 f + 1 Prepare messages (where f

is the maximum number of faulty nodes the system can tolerate) before proceeding to the
next phase, ensuring a majority of non-faulty nodes have agreed on the proposal. In the
Commit phase, once a node receives 2 f + 1 valid Prepare messages, it sends a Commit
message to all other nodes. This phase confirms that at least two-thirds of the nodes have
validated the request and are ready to commit the proposed order. Upon receiving 2 f +1
Commit messages, the nodes finalize the request, ensuring that the request has been ac-
cepted by the majority and can be safely executed. This multi-phase process guarantees
that even in the presence of Byzantine nodes, the system can reach consensus and maintain
consistency across all non-faulty nodes.

Figure 1.1: Communication scheme of PBFT [1]

An integral feature of PBFT is its view change mechanism, which ensures system
continuity when the primary node is faulty or unresponsive. If backup nodes detect that
the primary has failed to send expected messages within a defined timeout period, they
initiate a view change by broadcasting View-change messages to all other nodes. When a
quorum of 2 f + 1 nodes agrees that the primary is faulty, a new primary is elected from
the backup nodes following a predefined sequence. The new primary then resumes the
consensus process, ensuring the system remains operational and no progress is lost. This
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mechanism is vital for maintaining liveness and reliability in PBFT, allowing the system
to recover from primary failures efficiently.

PBFT’s strength lies in its safety and robustness. Safety is ensured by requiring that
transactions are only committed after validation by at least 2 f + 1 nodes, preventing in-
consistent decisions across the system. Robustness is achieved through its Byzantine fault
tolerance, allowing the system to handle up to (n−1)/3 faulty nodes where n represents
the total number of nodes, with the view change mechanism further ensuring reliable
recovery from primary failures. These features make PBFT highly effective in permis-
sioned blockchain platforms, providing fast transaction finality and robust fault tolerance.
PBFT’s practical design makes it highly suitable for real-world deployment, offering both
efficiency and reliability in distributed systems.

1.2.4 Distributed Consensus: Crash Fault Tolerance

Although byzantine tolerance enhances security by addressing malicious faults in sys-
tems, its application is not always necessary, particularly in environments where nodes
are authenticated and can be trusted. The complexity of BFT algorithms can significantly
increase communication overhead, decrease system throughput, and hinder scalability,
making it less practical for certain scenarios [17].

Crash faults refer to the sudden and unexpected failure of a node, often caused by hard-
ware malfunctions, software bugs, or network issues, which disrupts the system’s normal
operation. In trusted systems that do not account for Byzantine faults, the risk posed by
node crashes and link transmission failures is significant, as they directly threaten the sys-
tem’s reliability. To address this, crash fault tolerance (CFT) ensures that a distributed
system can maintain functionality even when nodes or communication links fail. This
is typically achieved through replication, where data and processes are duplicated across
multiple nodes, allowing the system to continue operating seamlessly in the event of a
failure. If a node crashes, the remaining nodes take over, ensuring the system remains
functional while the failed node is replaced or restarted. CFT protocols, such as Raft and
Paxos [31], are specifically designed to manage reliable state replication, thereby prevent-
ing system breakdowns caused by node crashes or communication failures.

Paxos is the first CFT consensus algorithm in the field of distributed systems, proposed
by Leslie Lamport in 1998 [18]. The main goal of Paxos is to ensure that a network
of distributed, potentially unreliable (in the sense of crashing or going offline), agents
can agree on a single value (a consensus). This is particularly crucial for databases and
other distributed storage systems, where they need to ensure data consistency across all
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nodes. Paxos operates through a series of proposals, where each proposal is issued by a
proposer, voted on by acceptors, and disseminated by learners. The fundamental guarantee
of Paxos is that if a value is chosen, then every future proposal will also suggest that value.
The protocol is structured such that it ensures that only one value is selected and that all
participants can eventually be aware of that value, despite the potential for failures and
message losses [32]. However, Paxos can be quite complex to implement correctly due to
the intricate interplay of its components. There are simpler versions like Multi-Paxos [33]
and variations [34, 35] developed to handle more complex real-world scenarios, such as
Google’s Chubby [36] and Apache Zookeeper [37]. These derivatives seek to enhance
the efficiency and simplicity of the base Paxos algorithm, yet they continue to exhibit
considerable complexity.

Raft, as a crash fault tolerance (CFT) algorithm, is widely implemented in private,
trusted distributed systems to handle replica failures and ensure system reliability [2].
Compared to the traditional CFT protocol Paxos [21], Raft is known for its simplicity and
ease of implementation, making it more accessible for real-world applications [38–40]. A
Raft-enabled distributed network consists of consensus replicas, which include a leader
and multiple followers. The protocol operates in two primary stages: Leader election and
log replication, as illustrated in Fig. 1.2 and Fig. 1.3 respectively.

Figure 1.2: State change of Raft [2]

In Raft’s consensus algorithm, the Leader election process is initiated when a Follower
node detects the absence of heartbeat messages from the current leader within a predefined
timeout interval. Upon this detection, the Follower transitions into the Candidate state and
commences a new election term. The Candidate node votes for itself and broadcasts a
RequestVote message to all other nodes in the system. Followers that receive this message



CHAPTER 1. INTRODUCTION 12

Figure 1.3: Log replication of Raft

determine whether to grant their vote based on two critical conditions: (1) whether they
have already voted in the current election term, and (2) whether the Candidate’s log is at
least as up-to-date as their own. If both conditions are met, the Follower grants its vote
to the Candidate. The Candidate is elected as the new Leader if it secures votes from a
majority of the nodes in the system, representing more than 50% of the network. Once
elected, the new Leader assumes control by broadcasting heartbeat messages to maintain
its leadership role. If the Candidate fails to achieve a majority, it reverts to the Follower
state, and the election process may repeat until a Leader is successfully chosen.

Following the Leader election, the log replication phase begins. The Leader is respon-
sible for aggregating client requests into log entries and ensuring that these entries are
replicated across all Followers through continuous downlink transmission. Once a fol-
lower receives the replicated log entries, it sends an acknowledgment to the Leader via an
uplink unicast message, confirming the successful reception. When a majority of followers
(over 50%) have acknowledged the receipt of log entries, the Leader commits the log and
instructs the followers to either execute the confirmed commands or update their state in
accordance with the leader’s current term. This log replication ensures consistency across
all nodes in the distributed system, safeguarding the system’s correctness. In practice, the
selection of the Leader may be influenced by the network performance of the nodes, as a
node with more reliable connectivity may be more suited to assume the leadership role,
thereby enhancing the overall system throughput and reducing latency, ensuring robust
and efficient operation in real-time environments.

Raft’s modular deployment, independent functions, low communication complexity,
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and high throughput have made it appealing to the practical system. It has been extensively
studied for validation [41], enhancement [39], and application [42]. Therefore, this study
will focus on the development of the Raft algorithm and its application in practical wireless
scenarios, emphasizing its effectiveness in ensuring consensus and fault tolerance in CAS.

1.2.5 Distributed Consensus for CAS

As application environments become increasingly complex and dynamic, the need for joint
decision-making in CAS continues to grow. As outlined in Section 1.2.1, DDM leverages
its decentralized nature to eliminate reliance on the reliability of central nodes, enhancing
system scalability and strengthening data privacy. Effective cooperative decision-making
requires standardized information exchange between nodes and clear consensus reaching
conditions. Additionally, all nodes should achieve a synchronized and consistent under-
standing of each joint-decision. Therefore, DC is recognized as an effective solution and
has garnered increasing attention due to its features closely aligning with these require-
ments.

The DC mechanism provides ICA nodes with a structured framework to facilitate joint
decision-making through well-defined processes. Each node first forms an initial opinion
based on its own observations and local data, then exchanges information with other nodes
via a preset protocol to reach joint-decisions. This structured approach ensures that even
with a large number of nodes and complex data, the system can maintain orderly decision-
making without falling into chaos. Additionally, DC can enable joint decision-making by
integrating information from multiple nodes, providing a global perspective that mitigates
the limitations of a single node’s local view. As environments become more dynamic, DC
allows for continuous adjustments through ongoing joint decision-making, ensuring the
system can adapt flexibly to changing conditions.

In addition to enabling joint decision-making, DC allows devices to achieve consistent
consensus on data or decisions, which is a critical function in CAS. DC employs a specific
protocol to ensure that each node can compare, synchronize, and integrate the different
data it receives through multiple rounds of communication, ultimately achieving system-
wide data consistency. This consistency is essential for ensuring overall coordination and
security within the system. Moreover, synchronization enhances the transparency and
traceability of system operations, allowing any participating node to verify past actions
and decisions—an important feature for scenarios that demand high levels of trust and
auditability.

DC provides robust fault tolerance for both data consensus and joint decision-making.
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Its decentralized nature ensures that system stability is not reliant on a single control point,
thereby mitigating the risk of single points of failure and significantly enhancing the attack
robustness of CAS. Additionally, even if some nodes in CAS fail, the consensus mecha-
nism can still successfully reach a final agreement. Once failed nodes recover, they can
restore missing data by synchronizing with other nodes via the same consensus process,
thereby enhancing overall system resilience. Furthermore, in the event of a coordinator or
leader node failure, DC protocols support dynamic leader election, allowing the system to
promptly designate a new consensus coordinator and maintain operational continuity.

However, in wireless environments where CAS operates, communication links may
suffer from failures due to channel fading or spectrum interference [43, 44]. These fac-
tors introduce significant challenges for the implementation of DC, as reliable message
exchange is critical to ensuring timely and accurate joint decision-making. Unlike wired
networks, wireless channels are inherently unstable and can lead to packet loss, variable
latency, and degraded synchronization among nodes—all of which directly impact the
convergence, reliability, latency and scalability of DC protocols. Therefore, to effectively
realize joint decision-making in CAS, it is essential to conduct a detailed analysis and per-
formance evaluation of DC mechanisms under realistic wireless conditions. This includes
examining how wireless-specific characteristics influence key performance metrics such
as consensus latency, fault tolerance, and communication overhead, thereby guiding the
design of more reliable and adaptive consensus strategies for CAS.

In summary, DC mechanism provides CAS with a robust, efficient, and secure frame-
work for joint decision-making and system operation, significantly improving overall
functionality and efficiency. These advantages make DC an ideal solution for managing
complex interactions and data synchronization challenges in CAS.

The exploration of DC in CAS spans a wide range of applications and poses numer-
ous challenges. Autonomous driving, as a key example of CAS, relies on advanced ar-
tificial intelligence to process vast amounts of sensor data, enabling real-time individual
decision-making and precise automatic control. With the continuous advancement of V2X
(Vehicle-to-Everything) technology, wireless communication between AVs, pedestrians,
and traffic management systems enhances situational awareness, contributing to safer and
more efficient driving environments.

However, autonomous driving scenarios are highly dynamic, with the speed and rel-
ative positions of AVs constantly changing. As autonomous driving technology becomes
more intelligent and automated, the complexity of these scenarios will also increase. To
address these challenges, joint decision-making has emerged as a promising approach for
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Figure 1.4: Truck lane change



CHAPTER 1. INTRODUCTION 16

enabling AVs to formulate more accurate, safer, and efficient traffic strategies in dynamic
and evolving environments. By sharing real-time data and collaboratively assessing com-
plex traffic conditions, AVs can leverage collective intelligence to formulate optimal action
plans. Additionally, joint decision-making helps to prevent conflicts and enhances overall
traffic flow efficiency.

In addition, data consistency among vehicles is equally critical in autonomous driving.
Inconsistent data between vehicles could lead to conflicting decisions made simultane-
ously within the same scenario, thereby increasing the risk of accidents. To enhance data
consistency, autonomous driving systems should incorporate fault tolerance and recovery
mechanisms. Fault tolerance ensures that when a vehicle experiences hardware sensor fail-
ures, software malfunctions, or communication breakdowns, the system can quickly iden-
tify and isolate the affected vehicle. Meanwhile, decision-making and operations continue
through functioning vehicles to maintain system safety and coordination. Faulty nodes
can be restored and synchronized with accurate data to prevent decision errors caused by
data inconsistencies.

The characteristics and demands of autonomous driving underscore the significance
and potential of DC mechanisms in this field. The strengths of DC can effectively address
the requirements of autonomous driving, including joint decision-making, coordinated
consistency, and system robustness, making it a suitable solution for ensuring safety and
efficiency in dynamic driving environments.

Fig. 1.4 illustrates a specific scenario in which a truck attempts to change lanes, pos-
ing a significant risk due to the presence of an undetected motorcycle in its blind spot.
In this situation, relying solely on the perception and decision-making capabilities of a
single vehicle may result in an incomplete or inaccurate understanding of the surrounding
environment, potentially leading to safety risks.

Joint decision-making, supported by DC mechanisms, is crucial in such scenarios. In
the illustrated case, if the truck can communicate with other vehicles and infrastructure, its
lane change proposal would be rejected by vehicles aware of the motorcycle’s presence.
The truck would reach a consensus with the surrounding vehicles before executing the
lane change, thereby preventing a potential accident. Specifically, when the truck submits
a lane change request, the system broadcasts the request to nearby vehicles and roadside
units (RSUs). These nodes evaluate the request by checking for vehicles in the truck’s
blind spot, assessing the motorcycle’s speed and position, and considering other relevant
information. Using DC protocols like Raft or Paxos, the nodes quickly agree on whether
the lane change is safe. The truck proceeds with the lane change only if a majority of nodes
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confirm it is risk-free. This collaborative approach and information-sharing mechanism
significantly enhance the accuracy and safety of decision-making.

In summary, DC mechanisms offer a promising approach to enhancing the ability of
AVs to navigate complex traffic scenarios more effectively through communication and
collaboration. By supporting joint decision-making and information consistency, DC can
optimize the decision-making capabilities of individual vehicles and improve the overall
coordination and safety of the traffic system, showcasing significant potential for future
intelligent transportation systems (ITS).This research aims to explore the practical imple-
mentation of DC protocols as an optimization strategy within autonomous driving scenar-
ios.

1.3 Objectives and Original Contributions

To fully harness the potential of DC mechanisms in CAS, further research is needed to
develop efficient algorithms and protocols that enhance joint decision-making among in-
creasingly intelligent and autonomous devices. Moreover, rigorous mathematical analysis
is critical for evaluating key performance metrics—such as reliability, latency, and compu-
tational complexity—under wireless communication constraints, which significantly im-
pact the performance of DC. Such analysis enables iterative refinement and optimization
of the proposed solutions.

In addition, this thesis aims to enhance the efficiency and safety of autonomous driv-
ing by applying both traditional and self-developed DC protocols to autonomous driving
scenarios. The primary objective is to enhance reliability and coordination in autonomous
driving cooperation through joint decision-making, thereby mitigating misjudgments aris-
ing from the limitations of single-node perspectives. This approach also improve the col-
lective vehicle intelligence, enabling more effective responses to complex and dynamic
environments. Through an in-depth analysis of DC applications in autonomous driving,
this thesis seeks to offer practical insights and forward-looking guidance for the future de-
ployment of these technologies, while establishing a theoretical foundation for safe joint
decision-making and system optimization in challenging scenarios.

This thesis also aims to design and implement a comprehensive hardware module to
validate the effectiveness and performance of the wireless DC. Another core goal is to
deploy this hardware system on an experimental autonomous driving platform, testing the
potential of wireless DC in enhancing safety and efficiency through real-world application.
The ultimate goal is to establish a robust theoretical and experimental foundation for the
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practical implementation of wireless DC technology, supporting its future deployment in
large-scale autonomous driving systems.

The original contributions in this thesis can be summarized as follows:

• This research introduces the Intelligent Distributed Consensus (IDC), developed
from traditional DC protocols, and presents the first IDC protocol, Intelligent-Raft.
IDC allows nodes within a network to perform more intelligent evaluations and
improve the quality of joint decision-making processes. Furthermore, the study pro-
poses an innovative system architecture called the Wireless-Intelligent-Distributed-
Consensus System (WIDCS), which integrates wireless communication with the
Intelligent-Raft algorithm. The research also involves the design and implemen-
tation of the first WIDCS hardware module, AIR-RAFT, on an embedded plat-
form. Additionally, a novel and secure traffic management scheme for AVs at
uncontrolled intersections is proposed, utilizing joint decision-making facilitated
by WIDCS. Simulation analysis and experimental results confirm the feasibility of
WIDCS, demonstrating significant improvements in the safety of AVs navigating
uncontrolled intersections.

• This thesis addresses the limitations encountered with the first-generation WIDCS
hardware system, AIR-RAFT, and introduces an evolved second-generation system
named RaBee. RaBee incorporates more advanced network management capabili-
ties and richer hardware resources, offering significant improvements in consensus
reliability, scalability, and latency compared to AIR-RAFT. Additionally, this re-
search examines the safety of autonomous driving in on-ramp merging scenarios and
proposes an efficient traffic coordination solution based on WIDCS. By employing
mathematical models, we analyze the probability of AVs safely navigating on-ramp
merging scenarios under three conditions: without a communication system, with a
centralized decision-making system, and with WIDCS. The results demonstrate that
WIDCS significantly enhances safety. This finding is further validated through prac-
tical tests using the RaBee system and experimental AVs, with optimization results
closely aligning with theoretical predictions.

• This thesis introduces a second IDC protocol, Converging-Raft, which enables in-
telligent nodes not only to engage in the joint decision-making process but also to
reach a globally optimal solution through convergence and discussion. Recognizing
that different application scenarios have varying requirements for joint decision-
making and information consensus, this research proposes a unified system that
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integrates multiple consensus mechanisms to adapt to specific needs. To achieve
this, we develop the Heterogeneous Intelligent Joint Decision System (HIntS), an
architecture that combines Centralized Decision-Making (CDM), Intelligent-Raft,
and Converging-Raft within a hybrid ad hoc and cellular network structure. Fur-
thermore, the thesis designs a complete hardware implementation of HIntS, named
5G-MInd. The performance of HIntS is analyzed in five operational modes using
both quantitative and qualitative methods, assessing key factors such as reliability,
latency, global optimality, scalability, transmission coverage, and fault tolerance.
This analysis provides essential insights for the future deployment of wireless joint
decision-making systems.

1.4 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides a comprehensive
literature review, beginning with key studies on Cyber-Physical Systems, followed by an
overview of its subclass, CAV. It then offers a systematic review of DC in wireless en-
vironments, followed by a discussion of state-of-the-art DC applications in autonomous
driving. Finally, Chapter 2 identifies current research gaps, establishing the foundation for
the contributions presented in this thesis.

Chapter 3 builds upon the works “Wireless intelligent distributed consensus enabled
autonomous vehicles’ cooperation at uncontrolled intersection” (first publication in the
List of Publications) and “Design and implementation of a Raft-based wireless consensus
system for autonomous driving” (third publication in the List of Publications). The chap-
ter begins by introducing the new IDC protocol, Intelligent-Raft, detailing its workflow
and underlying principles. It further presents WIDCS, which leverages Intelligent-Raft
to provide consistent joint decision-making services within CAS. The design and imple-
mentation of AIR-RAFT, a practical hardware module for WIDCS, are also discussed.
A secure passage scheme utilizing WIDCS for autonomous driving at uncontrolled inter-
sections is then proposed. The chapter also derives a detailed mathematical model for
AV behavior at uncontrolled intersections, including collision risk assessments for au-
tonomous driving, both with and without WIDCS. For the proposed scheme, Chapter 3
showcases AVs consensus experiments using AIR-RAFT, along with a thorough analy-
sis of the experimental data. Finally, numerical results are presented and conclusions are
drawn.

Chapter 4 builds on the work “Intelligent distributed consensus for connected vehicles:
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Models, implementation and testing” (fourth publication in the List of Publications). It
begins by introducing the enhanced ad hoc networking functions added to the original
WIDCS, encompassing network formation, management, and dissolution. Following this,
the chapter details the design, architecture, usage, and workflow of RaBee, the second-
generation WIDCS hardware module. A secure passage scheme based on WIDCS with
networking capabilities is then proposed for autonomous driving in on-ramp merging sce-
narios. Mathematical models for AV safe passage in on-ramp merging—considering sce-
narios without communication, with CDM, and with WIDCS—are developed, and sim-
ulation results are analyzed. Chapter 4 further includes practical AV experiments using
RaBee, accompanied by an in-depth analysis of the experimental data. Finally, compar-
isons are made, and key conclusions are presented.

Chapter 5 builds on the work “HetIJDS: Heterogeneous intelligent joint decision sys-
tem for intelligent, connected, and autonomous applications” (second publication in the
List of Publications). It begins with a detailed overview of Converging-Raft and HIntS,
concluding with results that highlight the advantages and characteristics of HIntS under
various working modes. Following this, the chapter outlines the design of the practical
HIntS module, 5G-MInd. A mathematical model for assessing the reliability and latency
of HIntS across five distinct working modes is then introduced, with subsequent sections
providing simulations and data analysis based on this model. Chapter 5 further presents
practical experiments conducted with 5G-MInd modules to validate the performance of
HIntS in each of its five modes. Finally, the conclusion is given in the end.

Finally, Chapter 6 concludes the thesis and discusses the future research trends associ-
ated with this topic.



Chapter 2

Literature Review

CAS represent a specialized and rapidly evolving subclass of Cyber-Physical Systems
(CPS), characterized by their ability to perceive complex environments, communicate with
other agents, and make autonomous decisions in real time. CPS, as the broader founda-
tional concept, refers to the integration of computational elements with physical processes,
typically through a tightly coupled loop of sensing, computation, and actuation. The CPS
paradigm has enabled the development of intelligent, adaptive, and resilient systems across
domains such as industrial automation, healthcare, transportation, and robotics.

CAS builds upon this foundation by incorporating advanced features such as dis-
tributed intelligence, inter-agent communication, and real-time cooperative behavior. In
contexts like autonomous driving, these systems are expected not only to process local
sensor data and make self-contained decisions but also to collaborate with surrounding
agents and infrastructure through wireless communication to achieve safe and efficient
outcomes. The transition from traditional CPS to CAS introduces new challenges, particu-
larly in ensuring coordination, robustness, and scalability in highly dynamic and uncertain
environments.

Given that CAS inherits its core principles, system architectures, and many enabling
technologies from CPS, it is essential to first review the existing body of research on
CPS to establish a comprehensive understanding of its underlying methodologies. This
includes an examination of its definitions and architectural frameworks, the significance
and impact of CPS in modern engineered systems, its defining characteristics, and the key
applied domains. Therefore, before addressing literature specific to CAS—particularly in
the context of DC and autonomous driving—this review begins with a focused overview
of relevant CPS research to ground the subsequent discussion in a broader theoretical and
technological context.

21
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2.1 Overview of Cyber-Physical Systems

Many recent review papers have explored the utilization of Cyber-Physical Systems (CPS)
across various emerging application domains. [45] conducted a comprehensive survey of
77 relevant studies, categorizing them into ten application areas, including agriculture,
education, energy management, environmental monitoring, medical systems, process con-
trol, security, smart cities and homes, smart manufacturing, and transportation. [46] pro-
vided a concise overview of CPS, highlighting its applications and associated challenges,
and emphasized its potential to enhance convenience, comfort, and safety in everyday
life. [47] examined existing definitions and application domains of CPS, underlining the
critical role of human factors in system design. They also proposed a domain-independent
definition and metamodel, offering a theoretical foundation for CPS research. In more
domain-specific studies, [48] reviewed CPS applications in healthcare, classifying key
components and methods necessary for implementation, while [49] focused on the inte-
gration of CPS in the chemical industry.

In addition to application-oriented studies, CPS architecture and system characteristics
are widely addressed in the literature. [50] provided an in-depth analysis of CPS architec-
ture, proposing a general framework based on service-oriented architecture (SOA). This
approach emphasizes flexibility in integrating heterogeneous devices, supporting real-time
control, and ensuring system security. Similarly, [51] conducted a systematic review
of human-cyber-physical systems (HCPS), clarifying fundamental concepts and identi-
fying key challenges in establishing a rigorous systems engineering foundation. These
challenges include complex heterogeneity, the absence of suitable abstraction methods,
dynamic black-box integration, and multifaceted functional demands. The authors pro-
posed four targeted research directions to address these issues: abstraction and computa-
tional theory, architectural modeling methods, model specification and verification, and
software-defined HCPS frameworks. [52] further surveyed the state-of-the-art in CPS,
detailing intrinsic features such as autonomy, stability, robustness, efficiency, scalabil-
ity, trustworthiness, consistency, and high precision, alongside methodologies and design
challenges. [53] introduced the core definition of CPS, highlighting its integration of com-
puting, communication, and control technologies, and its strengths in real-time perfor-
mance, safety, and reliability. Their work also identified critical research issues related to
system modeling, information processing, and software architecture. Additionally, [49]
examined the intersection of artificial intelligence (AI) and CPS in the chemical industry,
underscoring AI’s role in enabling cognitive capabilities that allow CPS to interact with
the physical environment in a more autonomous and adaptive manner.
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Topics such as control and optimization architectures, as well as Digital Twins (DT),
are increasingly recognized as essential components of CPS. [54] proposed a new clas-
sification framework and analytical matrix for identifying contemporary CPS security
threats, using quantitative methods to categorize them by attack type, impact, intent, and
event category. [55] conducted a comprehensive review of the role of collective intelli-
gence in industrial CPS, examining its key characteristics, enabling technologies, and pri-
mary application areas, with illustrative examples drawn from automobile assembly lines.
The study also identified and summarized the major challenges involved in implementing
collective intelligence in industrial contexts. [from cite Carolina Villarreal Lozano] pro-
poses an intelligent CPS framework that incorporates mechanisms for autonomy and self-
adaptation, while also improving bandwidth efficiency and reducing energy consumption.
The system is designed to offer fault prediction, enhanced autonomy, and adaptability to
dynamic conditions. [56] investigated smart manufacturing from the perspective of self-
organization, presenting a systematic literature review that summarizes current enabling
technologies, implementation strategies, and future research directions. [57] explored the
application of multi-agent system (MAS) technologies within cyber-physical production
systems (CPPS), employing a SWOT analysis and expert validation to assess the strengths
and limitations of MAS-based architectures. [58] conducted a comprehensive survey span-
ning 14 critical CPS application areas, offering a holistic overview of the current research
landscape, identifying key challenges—particularly in security and data privacy—and out-
lining promising future directions. In parallel, DT-based research has gained momentum,
with [59] highlighting the use of DTs in automotive CPS for enhanced adaptability, shorter
development cycles, and improved scalability. [60] discussed the interconnection between
CPS and DT components in smart manufacturing, while [61] emphasized the role of DTs
in strengthening the resilience and security of CPS and advancing the vision of Industry
4.0.

In summary, the CPS literature provides a solid foundation in system architecture, key
technologies, and application domains. These insights are essential for understanding how
computation and control integrate with physical systems. Building on this foundation, the
next section focuses on CAS, which extend CPS by emphasizing autonomy, connectivity,
and cooperative decision-making in dynamic environments.
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2.2 Overview of CAS

Among the various applications of CAS, Connected and Autonomous Vehicles (CAVs)
represent one of the most prominent and actively studied domains. As a natural evolution
of CPS, CAVs integrate on-board sensing, computation, and communication to enable
real-time perception, information exchange, and vehicles cooperation in complex and dy-
namic environment.

Specifically, the United States Department of Transportation (USDOT) defines three
primary types of connected vehicle communication for CAVs: vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) [62]. The term "V2X"
broadly encompasses communication with various entities, including passengers, other
vehicles, onboard devices, cloud services [63], wireless sensors, and navigation systems.
As illustrated in Fig. 2.1, these communication modes enable CAVs to interact through
V2V, V2I, and infrastructure-to-infrastructure (I2I) channels. In this context, a roadside
unit (RSU) may represent traffic signals or other active traffic management sensors. I2I
refers to communication between infrastructure elements, such as consecutive signalized
intersections, to support functions like green wave coordination [64].

Figure 2.1: Connected vehicle communications

Several ongoing research initiatives in the UK aim to explore the application of V2X
communication in the context of autonomous vehicles. For example, the UKCITE project
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focuses on establishing a real-time testing environment for connected autonomous ve-
hicles by deploying V2X technologies along more than 40 miles of urban roads, dual
carriageways, and motorways across Coventry and Warwickshire [65]. The i-MOTORS
project is dedicated to developing a vehicular cloud computing platform that integrates
vehicle-generated data with environmental information to produce dynamic maps and
real-time hazard alerts [66]. The anticipated outcomes include (i) reduced fuel consump-
tion and travel time through real-time traffic-aware route planning, and (ii) enhanced road
safety via car platooning. Similarly, the G-ACTIVE project targets fuel efficiency im-
provements for a range of drivetrain architectures—conventional, electric, and hybrid—by
utilizing off-board data such as traffic conditions and signal timings to jointly optimize en-
ergy management and vehicle speed [67]. Lastly, the CARMA project seeks to develop
and evaluate cooperative automated driving technologies built upon distributed control
systems and supported by ultra-low latency, high-reliability cloud infrastructure [68].

There are also many studies using various technologies to improve the efficiency of
CAVs in junctions, roundabouts, and interchanges. Various studies have explored strate-
gies to improve intersection performance, focusing on objectives such as reducing traffic
delays, enhancing junction throughput, and mitigating congestion. For instance, [69] pro-
posed a time-independent trajectory optimization method for connected and autonomous
vehicles under reservation-based junction control, aiming to minimize group evacuation
time and maximize intersection efficiency. Similarly, [70] applied dynamic program-
ming and a heuristic approach known as the least extra time (SET) method. Their work
compared the effectiveness of several algorithms—including genetic, branch-and-bound,
heuristic, and dynamic programming—against adaptive control and traditional fixed-cycle
signal systems. The results indicated that their proposed strategy significantly reduced
evacuation time, queue length, and vehicle waiting time. In another study, [71] introduced
a temporal delay Petri net (TdPN)-based control strategy within a cooperative vehicle-
infrastructure system. Simulation results demonstrated that, under high traffic flow condi-
tions (exceeding 1200 vehicles per hour), the TdPN approach outperformed conventional
signal control in terms of delay, average queue length, stop time, and vehicle speed.

Applications of advanced intersection control strategies have been proposed to tackle
real-time coordination challenges involving multiple vehicles and lanes. One approach
integrates ant colony optimization and discrete methods to develop an Autonomous In-
tersection Management system that accounts for individual vehicle behaviors and junc-
tion conditions, showing improvements in throughput, queue length, evacuation time, and
delay [72]. Game-theoretic applications, inspired by the chicken game, have also been
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used to manage CACC-enabled vehicles at unsignalized intersections, enabling real-time
communication with a centralized agent and offering a viable alternative to traditional
control mechanisms [73]. Reservation-based scheduling strategies, such as PriorFIFO
and its extension csPrior-FIFO, model heterogeneous vehicles and centralized schedulers
within a unified framework, achieving better scheduling performance and lower latency
than first-come-first-served methods [74, 75]. Furthermore, time-sensitive programming
has been applied to address real-time data transmission (RTD) challenges, demonstrating
superior efficiency under high traffic flow compared to conventional Autonomous Inter-
section Management (AIM) systems [76].

One of the primary objectives of AIM is to enhance intersection safety. To achieve this,
various strategies have been proposed, focusing on subgoals such as collision avoidance
and conflict resolution. Model Predictive Control (MPC) has been employed to ensure
collision-free traffic flow through intersections, with simulations conducted using VIS-
SIM and CarSim platforms for validation [77]. In a similar effort, a cooperative driving
strategy was developed to reduce intersection-related crashes by enabling vehicles to nav-
igate through decentralized local optimizations, ensuring safe passage without centralized
coordination [78]. Another approach introduced a rule-based control method that deter-
mines optimal vehicle sequencing and braking actions based on real-time collision detec-
tion [79]. This speed control framework helps prevent accidents, clarify vehicle priority,
and facilitate safe traversal of unsignalized intersections.

To mitigate conflicts among AVs at unsignalized intersections, a cooperative strategy
was proposed that employs a cost function to determine optimal vehicle actions upon de-
tecting potential conflicts [77]. In a related effort, a centralized Model Predictive Control
(MPC) framework was introduced to manage AV trajectories and prevent collisions at in-
tersections [80]. The problem was formulated as a convex quadratic program in spatial
coordinates, enabling optimal path planning while incorporating penalized time gaps to
enhance safety under sensor uncertainties. To further improve intersection safety, a real-
time intersection supervisor based on mixed-integer quadratic programming (MIQP) was
developed, capable of overriding vehicle commands when necessary to ensure safe oper-
ation [79]. Addressing the coordination challenge from a distributed perspective, a par-
allelizable optimization method—the augmented Lagrangian-based alternating direction
inexact Newton (ALADIN) algorithm—was proposed to achieve efficient multi-vehicle
coordination at intersections [81].

Despite recent advancements, CAV systems still face critical challenges such as deci-
sion conflicts among agents, uncertainty in communication, and safety risks in complex
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traffic scenarios. These limitations reveal the need for more advanced joint decision-
making mechanisms that enable robust, coordinated behavior among distributed CAVs.
Addressing these challenges requires moving beyond conventional control strategies to-
ward decentralized, consensus-driven approaches capable of supporting real-time, coop-
erative autonomy.

2.3 Oveview of Wireless DC Analysis

With the continued development of wireless technology and CAS, scholars have begun
exploring the application of DC protocols, originally designed for wired networks, in
wireless environments, conducting significant research in this area. For instance, [82]
examines the implementation of the PBFT consensus mechanism in wireless networks,
introducing the concept of a “feasible area” to ensure the minimum number of replica
nodes required for maintaining protocol security and liveness. By analyzing factors such
as coverage range, transmission power, and receiving sensitivity, it proposes a method to
optimize network parameters for energy efficiency and performance improvements. Fur-
thermore, the influence of node count and link transmission reliability on Raft consensus
has been explored in research efforts such as those by [83] and [13]. Introduced by [83]
is the concept of "reliability gain," which reveals a linear relationship between consensus
reliability and transmission link reliability, while also addressing the trade-off between
consensus delay and reliability. Additionally, reliability gain and tolerance gain are used
by [13] to demonstrate a linear correlation between consensus reliability, failure rates, and
the maximum number of tolerable faulty nodes. Collectively, these studies offer valuable
insights into the performance of DC in wireless environments, providing crucial guidance
for future wireless DC protocol deployments.

In addition, several studies have conducted comparative analyses of the performance
of different DC protocols under wireless conditions. A framework for wireless blockchain
networks (WBN) under various commonly used consensus mechanisms, such as PoW,
PBFT, and Raft, was proposed by [17]. The relationship between communication re-
source availability and the performance of consensus mechanisms—covering factors such
as scalability, throughput, latency, and security—was analyzed, highlighting the critical
importance of adequate communication resources for ensuring security and performance
in wireless blockchain networks. Also examined in [84] are the advantages and dis-
advantages of PBFT and Raft, studying performance metrics like success rate, latency,
throughput, and energy consumption in wireless networks, with simulations conducted
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using various signal types such as terahertz and millimeter waves. Moreover, the PICA
paradigm in wireless networks, combining Raft and Hotstuff BFT, was proposed by [85].
The study focused on the protocols’ reliability and latency when facing communication
failures, quantifying the strengths and weaknesses of both approaches. These compara-
tive analyses effectively highlight the distinct advantages and limitations of various DC
protocols while providing theoretical insights for future critical CAS applications in wire-
less networks. However, these studies have only explored certain wireless conditions,
and further research is needed to address the impact of factors like network architecture,
bandwidth, and channel conditions on the performance of DC protocols.

In addition to examining the impact of wireless communication on DC, some studies
also explore how DC affects wireless network. The communication resource allocation
problem for the Raft protocol in wireless networks is addressed by [86], with the goal of
improving decision-making reliability and reducing latency. In this study, communication
resource standards necessary for consensus—such as transmission power, bandwidth, and
the number of nodes—are defined. Several optimization methods are proposed, including
optimizing transmission power through sequential quadratic programming (SQP), opti-
mizing bandwidth allocation using particle swarm optimization (PSO), and determining
the optimal number of nodes under fixed resources. Additionally, [87] investigates the
security performance of wireless blockchain networks that utilize the RAFT mechanism
in environments with malicious interference. This research models blockchain transac-
tions as a wireless network with both uplink and downlink transmissions and employs the
Poisson point process (PPP) assumption to analyze node location and the probability of
successful transactions. These studies offer fresh insights into using DC to impact wireless
environments.

However, traditional DC protocols, which were designed for wired environments, face
significant challenges when applied directly to wireless networks and often cannot fully
adapt to the needs of many modern applications. As a result, scholars have developed
optimizations and extensions to traditional DC protocols. For instance, an adaptive Raft
consensus protocol tailored to wireless environments is introduced by [88]. The protocol
includes several key phases, such as node counting, leader election, log replication, state
synchronization, and mechanisms for node joining and exiting, all aimed at improving pro-
tocol robustness and efficiency.Additionally, [89] explores the challenge of multi-valued
fault-tolerant DC, particularly focusing on achieving exact output in voting validity. The
study defines voting validity as the requirement that the consensus output of non-faulty
nodes must precisely match the majority of non-faulty node inputs. To ensure this ac-
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curacy, even with arbitrary input values, the authors design a synchronous Byzantine
fault-tolerant protocol, particularly suited for safety-critical scenarios. Meanwhile, [90]
presents a scalable multi-layer PBFT mechanism, which reduces communication com-
plexity by organizing nodes into layers and restricting intra-group communication, effec-
tively addressing the scalability limitations of traditional PBFT in large-scale networks.
These adaptations underscore the ongoing efforts to enhance DC protocols for better per-
formance in wireless applications.

In addition to enhancing existing DC algorithms, some studies have proposed new
consensus mechanisms specifically designed to address critical wireless scenarios. For in-
stance, a referendum consensus based on gossip-broadcasting (GB-RC) is introduced by
[91], improving communication efficiency and consensus performance in large-scale net-
works by combining multi-hop gossiping and single-hop broadcasting. To further address
scalability issues, [91] also proposes a cooperative broadcast-based electoral college con-
sensus (CB-EC), which reduces consensus latency by sacrificing some robustness. More-
over, [92] introduces Random Representative Consensus (R2C), a novel communication-
efficient scheme, and compares its effectiveness against the baseline referendum consen-
sus (RC), while deriving the minimum number of validators needed to ensure resilience
against failed nodes and robustness to missing validators. Additionally, [93] presents a
fully distributed algorithm for achieving average consensus in wireless sensor networks
(WSNs), allowing nodes to converge efficiently to the average of initial measurements
using only local node information. [94] offers an algorithm designed to achieve global
optimal decision-testing consensus in WSNs without the need for a fusion center. This
algorithm is notable for its ability to adapt to multipath and frequency-selective channels,
effectively handle propagation delays, and converge to optimal decisions at an exponential
rate under bounded delay conditions.

Although the aforementioned studies have provided significant insights into the per-
formance of DC protocols in wireless communication, there remains a gap in the analysis
of their application in specific real-world wireless scenarios. Moreover, different scenarios
impose varying requirements on consensus algorithms, necessitating tailored analysis and
further development to address these unique challenges.

2.4 Oveview of DC Applications in CAV

DC mechanisms have garnered significant attention in autonomous driving applications,
including Intelligent Transportation Systems, Cooperative Adaptive Cruise Control (CACC),
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and Vehicular Ad-hoc Networks (VANETs) [95]. Initial consensus algorithms, primar-
ily focused on managing inter-vehicle spacing within platoons, have been extensively re-
searched in recent years. For instance, [96] introduces a consensus algorithm for second-
order dynamic systems, demonstrating how appropriate selection of information states
can solve the formation control problem. Additionally, it unifies existing approaches,
such as leader-follower, behavioral, and virtual structure methods, can be unified within
the general framework of consensus building. Further research, such as [97], proposes a
four-layer framework combining longitudinal and lateral controllers to enhance coopera-
tion and coordination between vehicles across different platoons, enabling more complex
group consensus. Specifically addressing the continuous value range problem in vehicle
platooning, [98] introduces the BFT-ARM (Byzantine Fault Tolerant and Asynchronous
Real-Valued Consensus Protocol), which employs the median validity principle to ensure
that the consensus decision aligns closely with the median of all normal nodes, improv-
ing protocol robustness. Meanwhile, a novel DC control algorithm, designed to coordi-
nate vehicle spacing while considering communication topology and latency, is developed
in [99], which validates its effectiveness in real highway conditions using the Veins simu-
lation platform. Moreover, a distributed control protocol is presented in [100], integrating
local vehicle state actions with data from neighboring vehicles to ensure the stability of
the platoon, with its effectiveness proven using the Lyapunov–Razumikhin theorem.

In addition to vehicles platooning, DC has been applied to other autonomous driving
scenarios as well. Blockchain consensus mechanisms have been integrated into the Inter-
net of Vehicles (IoV) architecture, as demonstrated in [14], [101], [102], and [103], where
technologies like block verification mechanisms and decentralized data management en-
sure the credibility of participating vehicles, prevent data tampering, and promote secure
data exchange. A decentralized trust management system, proposed in [15], allows ve-
hicles to verify messages from neighboring vehicles using a Bayesian inference model,
addressing the issue of information credibility assessment in vehicle networks. Further-
more, a distributed consensus algorithm based on "Proof-of-Eligibility" (PoE) is intro-
duced in [104], which limits the number of vehicles participating in the consensus process,
thereby reducing the impact of malicious vehicles on information dissemination outside
the event area. Additionally, [105] proposes a parallel consensus mechanism using a di-
rected acyclic graph (DAG)-lattice structure to improve the efficiency and adaptability of
blockchain in IoV environments. The R-PBFT consensus algorithm, introduced in [106],
reduces consensus delay by 50%, increases transaction frequency by 24% and throughput
by 50%, and decreases block congestion by 57% through the use of a reputation-based
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mechanism, while also providing resistance to attacks such as Finney, Sybil, eclipse, rout-
ing, and impersonation attacks.

The structure of the literature review is illustrated in Fig. 2.2, providing a clear overview
of the key research domains and their interrelations. Although these studies apply consen-
sus mechanisms to autonomous driving scenarios, several gaps remain in existing research
on wireless DC:

Figure 2.2: Outline of the literature review

• Limited methods on joint decision-making: Most studies emphasize privacy, data
security, or group control, while joint decision-making and its related approach in
autonomous driving scenarios is under explored.

• Insufficient adaptation to intelligent nodes: Current wireless DC research has not
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adequately evolved to leverage the growing intelligence and automation of terminal
devices.

• Lack of practical hardware validation: Most research is confined to simulations
and theoretical analysis, with limited validation on actual hardware systems.

These gaps present challenges in providing constructive guidance for the real-world de-
ployment of wireless DC in future ICA systems.



Chapter 3

Wireless Intelligent Distributed
Consensus enabled Autonomous
Vehicles’ Cooperation at Uncontrolled
Intersection

3.1 Introduction

Chapter 1 highlighted the importance of applying DC in CAS, explaining that traditional
DC was originally developed to ensure consistent storage in distributed systems. As mul-
tiple nodes (e.g., computers or servers) must replicate data or status, but uncertainties like
network delays and node failures make maintaining consistency challenging. To address
this, DC protocols were designed to enable nodes to reach consensus, even amid partial
failures or network disruptions, thereby ensuring reliable system operation. Early DC
protocols, such as Paxos and PBFT, were primarily developed to address this consistency
challenge, particularly in distributed databases, computing, and systems applications.

Nevertheless, in applications involving ICA nodes, the focus shifts beyond merely
maintaining consistent data storage to enabling joint decision-making. Joint decision-
making requires each node to communicate, interpret, and evaluate the data to facilitate
final decisions. However, traditional DC protocols do not evaluate the content of the trans-
mitted data itself. Using Raft as an example, as outlined in Chapter 1: after the Leader is
elected, Raft facilitates log replication under the Leader’s management. The Leader repli-
cates client requests and data to all Followers through downlink transmission and waits
for confirmation from them. When a Follower node receives a log entry, it performs sev-

33



CHAPTER 3. WIRELESS INTELLIGENT DISTRIBUTED CONSENSUS ENABLED
AUTONOMOUS VEHICLES’ COOPERATION AT UNCONTROLLED INTERSECTION 34

eral checks to ensure the log’s order and consistency. First, each log entry contains a term
number, a critical element of the Raft protocol. The Follower verifies whether the Leader’s
term number is greater than or equal to its own. Additionally, to ensure log consistency,
the Follower checks if the log index in the leader’s message conflicts with its own logs.
These checks are essential to achieving Raft consensus, ensuring data consistency among
distributed nodes through strict adherence to the protocol. If the checks pass, the Follower
appends the new log entry to its own log and returns a confirmation to the Leader, signify-
ing successful replication. Once the leader receives confirmation from more than 50% of
the followers, the consensus is considered achieved.

It can be seen that in the traditional Raft protocol, when the Follower confirms the
consensus, it does not interpret or evaluate the data content itself. The checks performed,
such as verifying term consistency or checking log index alignment with the Leader, are
insufficient for supporting joint decision-making processes. As a result, while traditional
DC offers many advantages, it cannot be directly applied to meet the joint decision-making
requirements in CAS without further adaptation.

In addition, traditional DC, originally developed for distributed storage systems, does
not account for the intelligence of nodes. In such systems, each node follows a preset
protocol and fixed verification processes to achieve consistent data storage without re-
quiring high levels of intelligence. However, with the rapid advancement of AI, devices
are becoming increasingly intelligent, autonomous, and capable, such as in the case of
self-driving cars or robots. These ICA nodes often require specialized intelligent algo-
rithms or neural networks to evaluate data and make joint-decisions. Therefore, applying
traditional DC directly to scenarios involving ICA nodes limits their potential. To fully
harness the capabilities of these intelligent nodes, DC protocols must be adapted to ac-
commodate their unique characteristics and requirements, enabling more effective joint
decision-making. Thus, it is necessary to modify traditional DC protocols to better suit
ICA scenarios.

Based on traditional DC, we proposed Intelligent Distributed Consensus (IDC) which
refers to consensus mechanisms within ICA nodes that incorporate advanced inference and
decision methods, such as deep learning models to improve joint decision-making perfor-
mance. Unlike traditional DC mechanisms that rely on pre-defined rules only for data
duplication, IDC enables nodes within a network to make more intelligent evaluations and
judgments on information and enhances the ability to reach collective joint-decisions and
consensus. In addition, IDC leverages the benefits of customized consensus mechanisms
designed for intelligent and automated environments, enhancing system performance. As
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IDC continues to evolve, future ICA nodes will be able to achieve globally optimal joint
decisions through iterative discussions and deliberations, much like human joint decision-
making processes.

This chapter introduces the first IDC protocol, Intelligent-Raft, which builds upon the
traditional Raft algorithm and is specifically optimized for more effective application in
intelligent environments. Additionally, to facilitate the deployment of IDC in practical
CAS environments, this chapter introduces an innovative system architecture called the
Wireless Intelligent Distributed Consensus System (WIDCS) which leverages distributed
wireless communication combined with the Intelligent-Raft algorithm. In addition, this
chapter also realized WIDCS through a prototype named AIR-RAFT, which integrates
extensive hardware (i.e., Radio-Frequency (RF) module) and software architectures (i.e.,
Intelligent-Raft), enabling practical nodes to achieve wireless joint-decisions. This study
represents the first implementation and verification of wireless DC functionality using an
practical hardware system. In addition, this chapter proposes a novel and secure traffic pas-
sage scheme for AVs passing uncontrolled intersections safely by leveraging WIDCS. AVs
can achieve very reliable and efficient collision avoidance with the assistance of WIDCS,
which guarantee the security. We establish a comprehensive mathematical model to accu-
rately capture the position, speed, and arrival time distribution of AVs at uncontrolled in-
tersections. We also derive and analyse the collision risk of AVs under conditions without
and with WIDCS based on the established mathematical model. Through the utilisation of
the AIR-RAFT hardware platform and integration with AVs, we recreate the experimental
uncontrolled intersection environment and successfully demonstrate collision avoidance.
From the perspective of numerical results, the congruence between numerical outcomes
and experimental data robustly substantiates the precision of our theoretical framework
and the viability of our proposed scheme, unequivocally demonstrating that WIDCS sub-
stantially improves autonomous driving safety.

3.2 Methods

3.2.1 Intelligent-Raft

The Intelligent-Raft protocol, which we propose as the first IDC method, builds upon
the traditional Raft algorithm with enhancements tailored to the intelligent demands of
CAS. As in Raft, nodes are categorised into three distinct roles: Follower, Candidate, and
Leader. In addition, Intelligent-Raft also operates through two key stages: leader election
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and log replication. The leader election stage remains consistent with the original Raft
algorithm, where the elected Leader manages the consensus process for each term. How-
ever, log replication diverges from traditional Raft, incorporating joint decision-making
mechanisms, which we will explain through the specific consensus process.

The foundational workflow of Intelligent-Raft is illustrated in Fig. 3.1. Within each
consensus process, a node initiates by submitting a decision proposal. Subsequent to the
acquisition of a majority vote and the successful reception of these vote affirmations by
the leader, the proposal is allowed for action or incorporation. The Intelligent-Raft is intri-
cately subdivided into four sequential steps: Initiative, Distribution, Intelligent Evaluation,
and Commitment.

In traditional Raft, neither Followers nor Leaders can actively initiate consensus; each
consensus process is triggered by a client request to the Leader. Specifically, the client
sends a consensus request to the Leader, which then manages and completes the consensus
process within the cluster. Once the process is finalized, the Leader returns the result to
the client. In contrast, Intelligent-Raft eliminates the distinction between client and server,
meaning no external client is available to initiate consensus. As independent ICA nodes,
Intelligent-Raft nodes must actively initiate consensus based on their own requirements.
Thus, each node must possess both the ability to initiate consensus requests, like a client,
and the capability to handle the consensus process, like a server.

Since each Intelligent-Raft node can actively initiate consensus, there are two situa-
tions for consensus initialization. In the first, a Follower node initiates a consensus pro-
posal to the Leader, which then broadcasts the proposed data according to the Intelligent-
Raft mechanism followed by the standard process. In the second scenario, the Leader di-
rectly initiates the consensus by broadcasting its own proposal, bypassing the step where
Followers submit proposals to the Leader.

The specific workflow of Intelligent-Raft is outlined in detail as follows:

Initiative

Within the ICA scenario, specific triggering conditions enable a Follower to initiate a de-
cision proposal packet to the Leader. Decision proposals are classified into two categories:
real-time and reserved. Real-time proposals, requiring immediate action, take the highest
priority in the intelligent consensus mechanism to prevent conflicts, ensuring only one is
processed at a time. In contrast, multiple reserved proposals can be buffered at the leader
and executed concurrently, enhancing system throughput.
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Figure 3.1: The workflow of Intelligent Raft in PICA architecture of WIDCS

Distribution

In this phase, the Leader first receives the decision proposal from the Follower. Unlike
traditional Raft, Intelligent-Raft does not send replication requests to followers. Instead,
it broadcasts a decision proposal requiring intelligent evaluation by all participating nodes
to assess its feasibility. After broadcasting the proposal, the Leader awaits evaluation
feedback from all Followers, facilitating joint decision-making.

Intelligent Evaluation

During this phase, participating Followers that successfully receive the Leader’s broad-
casted proposal begin the validation process. Unlike traditional Raft, which focuses on
log term and index alignment for simple storage operations, Intelligent-Raft performs an
intelligent feasibility assessment of the proposal. Followers assess both real-time and re-
served proposals by evaluating their safety, feasibility, and potential conflicts with their
own intended maneuvers, leveraging individual reasoning and decision-making capabil-
ities. For instance, in autonomous driving, Followers assess whether a proposed action
could lead to an accident undetected by the proposer’s perceptual systems. After com-
pleting the validation, each Follower uploads its approval or disapproval to the Leader,
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without detailing the underlying assessment. Real-time proposals are prioritized during
the validation and response process.

Commitment

In the commitment phase, Intelligent-Raft concludes the current consensus and joint decision-
making cycle, regardless of the outcome. Upon receiving the response messages, the
Leader tallies the positive feedback from Followers. If more than 50% of the Follow-
ers consent to the proposal, indicating that sufficient validation has been achieved, the
proposal is approved for execution. The Leader then notifies all Followers that decision
consensus has been reached. However, if the Leader fails to gather enough approvals or
receives a majority of rejections, the proposal is denied. In such cases, the reasons for
rejection, along with individual evaluations (if required), are communicated to all partici-
pants. This allows the originating node to reconsider and potentially resubmit the proposal
with adjustments based on the feedback from the validation process.

3.2.2 Wireless Intelligent Distributed Consensus System

Building on IDC, we propose WIDCS to enable the practical deployment of IDC in CAS.
WIDCS incorporates wireless communication for data interaction and joint decision-making
based on the Intelligent-Raft protocol. All ICA nodes equipped with WIDCS are capable
of utilizing distributed data consensus and joint decision-making services.

Its workflow is structured through the Perception-Initiative-Consensus-Action (PICA)
framework, as described in [107]. As shown in Fig. 3.1, the process begins with a node
making an initial request. Intelligent-Raft consensus is then achieved through a network
of relevant nodes working jointly, before executing the actions that reflect the outcome
of the joint decisions. Specifically, the preliminary decision-making (i.e., Perception) is
driven by inputs from local sensors, possibly enhanced by various advanced algorithms.
A request (i.e., Proposal) is then generated based on the node’s local decision and sent to
the consensus network for further joint decision-making (i.e., Consensus). Only decisions
that obtain collective consent are recorded and executed on a global scale (i.e., Action).
Additionally, the consensus is securely logged, preventing any single node from altering
it, ensuring accountability and enabling oversight by authorities or insurance entities in
the event of an incident.
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3.3 Design of Practical WIDCS

3.3.1 AIR-RAFT Framework

Figure 3.2: This picture shows the hardware composition of AIR-RAFT, the conceptual-
ized entity of WIDCS

To address the issue that many studies on wireless DC lack validation with practi-
cal hardware systems, we designed and implemented a fully functional hardware module
based on the principles of WIDCS called AIR-RAFT which is schematically illustrated in
Fig. 3.2.

The hardware composition of the AIR-RAFT system is shown in Table 3.1, which is
mainly divided into five parts: power supply unit, main control unit, memory expansion
unit, communication interface and other peripherals. MP2359 and AMS1117 switching
power supply chips are selected as the power supply unit, and the gradient step-down
mode is used to supply power to the MCU and RF modules. STM32F407ZGT6 chip
is selected as the main control unit (MCU). It integrates the powerful Cortex-M4 core
with the main frequency up to 168MHz, which can efficiently operate the Intelligent-
Raft consensus algorithm. Because the Intelligent-Raft algorithm needs to invoke a large
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Table 3.1: AIR-RAFT System Architecture

AIR-RAFT

Hardware

Power Supply
MCU

External RAM
Communication Interface

Other Peripherals

Firmware
Raft Mechanism

Selective Edge Decision Layer
Transceiver

number of dynamic memory management operations, we add a memory expansion chip
IS62WV51216 with 1 Megabytes capacity for the MCU through the FSMC transmission
protocol. In this way, all dynamic data can be stored in the dynamic memory of the MCU.
The communication interface mainly adopts the UART interface connected to the Lora
RF module, which sends and receives information from the physical layer. Lora is chosen
due to its wide coverage and low power consumption, making it suitable for embedded
systems. Moreover, the signal transmission is stable, and the topology of the network
node connection can be customized flexibly.

As shown in Table 3.1, the frimware of AIR-RAFT module is equipped with FreeR-
TOS which is a real time operational system to manage various task threads of MCU. The
threads in the system are mainly composed of three parts. The most important part is the
Raft consensus algorithm. The second part is called the Selective Edge Decision Layer
(SED) layer which has a certain privilege to process or execute part of the consensus data
as a edge computing unit. The third part manages the communication peripherals, mainly
used to receive or transmit data in the wireless environment.

3.3.2 AIR-RAFT Usage

AIR-RAFT can support different distributed IoT application scenarios. For example, as
shown in the Fig. 3.3, it can be installed on AVs to work cooperatively with in-vehicle
systems and build up a distributed, wireless, reliable and fault-tolerant network. AV sys-
tem is generally divided into three layers: awareness, local decision and execution. The
awareness layer uses a variety of sensors installed in the vehicle (such as millimeter-wave
radar, lidar, depth camera, GNSS, etc.) to perceive the surrounding environment. The local
decision-making layer uses the pretrained or precompiled algorithm to process and anal-
yse these sensor data, which eventually outputs execution instructions for the underlying
mechanical hardware to execute.
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Figure 3.3: This structure shows that how AIR-RAFT is equipped in autonomous driving
system

AIR-RAFT can interact with the in-vehicle system via UART or CAN ports like a sen-
sor. The input to the AIR-RAFT module comes from two primary sources. First, since
Intelligent-Raft supports data consistency consensus, the data can originate from the en-
vironmental information sensed by radar or camera from each independent AV. Through
the consensus network, AVs can share environmental data that may be unknown to other
nodes. With Intelligent-Raft’s consistency guarantees, each node gains a more compre-
hensive perception of the environment, enabling more accurate and safer actions. Ad-
ditionally, AIR-RAFT input can also come from the AV’s local decisions. When multi-
vehicle collaboration is required, an AV can initiate a constructive proposal based on its lo-
cal decision via AIR-RAFT. Intelligent-Raft then facilitates joint decision-making among
AVs, allowing them to coordinate and cooperate based on the agreed decisions. This also
highlights the two primary applications of AIR-RAFT or WIDCS: achieving information-
sharing consensus and enabling joint decision-making.

The output of the AIR-RAFT module follows two distinct data paths. Information
from the consensus network formed by AIR-RAFT can be incorporated into the local
decision layer of an AV, which aggregates other sensors data and makes integrated pre-
dictions and decisions. Another option is to use the AIR-RAFT as a SED layer [108]. It
allows AIR-RAFT to process the committed data directly under certain conditions, and
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transfer the processed data or commands back to in-vehicle system.

3.4 Uncontrolled Intersection and Secure Passage Scheme

In urban and rural driving scenarios, intersections, particularly those uncontrolled with
blind spots, are identified as significant areas of risk on city roads. An uncontrolled in-
tersection is a road intersection where no traffic lights, road markings or signs are used to
indicate the right of way [109]. These intersections lack a direct line-of-sight due to phys-
ical obstructions such as buildings, trees, or terrain, making it difficult for drivers—and,
by extension, AVs—to perceive approaching traffic and potential hazards. For AVs, which
rely heavily on sensor input and line-of-sight data to navigate and make decisions, the
absence of visual cues at uncontrolled intersections severely hampers their ability to op-
erate safely and efficiently. According to the Federal Highway Administration, which is
a division of the U.S. Department of Transportation in Washington, D.C., about 65.7% of
fatalities at U.S. intersections in 2021 occurred at unsignalized intersections [110]. There-
fore, the important issue in order to achieve safety at the uncontrolled blind intersection is
to manage the orderly passage of AVs.

Figure 3.4: The simulation scenario for autonomous driving at uncontrolled intersection

To mitigate collision risks at uncontrolled intersections, where perception systems like



CHAPTER 3. WIRELESS INTELLIGENT DISTRIBUTED CONSENSUS ENABLED
AUTONOMOUS VEHICLES’ COOPERATION AT UNCONTROLLED INTERSECTION 43

cameras and radars in AVs have limited efficacy, a WIDCS-based solution is proposed to
enhance AV safety in these environments. Near the intersection center, AVs and Road-
Side Units (RSUs) form a local wireless ad hoc network (see Fig. 3.4). The RSU, posi-
tioned at the intersection, coordinates network formation and logs consensus-completed
data. Once the network is established, the RSU initiates an Intelligent-Raft consensus re-
quest to manage the sequential passage of AVs across various lanes. In the absence of an
RSU, AVs independently initiate an Intelligent-Raft request upon detecting uncontrolled
intersections which can be characterized by obstructed views and the absence of traffic
signals. This joint decision-making ensures that a majority of AVs recognize and follow
the agreed-upon passage sequence, maintaining consistency. Nodes not initially part of
the consensus are updated through network heartbeat messages and quickly align with
the joint-decisions. AVs then proceed in the established order, ensuring traffic sequence
consistency for safe navigation.

3.5 Mathematical Model Analysis

To evaluate the accident risk associated with AVs at uncontrolled intersections necessi-
tates, we first conducted a theoretical analysis to obtain the spatial positioning and veloc-
ity distribution of AVs in proximity to the intersection. We then derived the probability
density function (PDF) for the time a vehicle reaches the intersection center using a two-
dimensional random variable edge distribution model. Subsequent calculations were made
for the wireless link success rate based on the PDF of the signal-to-interference-plus-noise
ratio (SINR). Additionally, we developed a probability model for the consensus agreement
among AVs facilitated by WIDCS at these intersections. Finally, we integrated the vehicle
arrival time distribution model with the wireless consensus model to analyze the variation
in accident rates with and without the implementation of WIDCS.

As shown in Fig. 3.4, we assume that an observer stands at the center point of an
uncontrolled intersection. We consider the vehicles’ distribution of the four lanes of the
intersection are the same but are independent to each other, so we only consider one lane
situation. For convenience, we use capital letters to denote random variables, and the
corresponding lowercase to the value of random variables. The frequently used notations
are summarized in Table 3.2.
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Notation Definition

Dn Distance between the nth vehicle and RSU at intersection center

DSn Distance between the nth vehicle which is signal source and RSU at

intersection center

DI Distance vector of all interference vehicles

FL CDF of distances between each vehicles

fV Probability density function of vehicles speed

L Distance between each vehicle

N Number of vehicles

NI Number of vehicles in the first lane

V Vehicle speed

C The number of lanes

T Time when will the first vehicle reach RSU

G Time gap between each two head vehicles in each lane

PRISK1 Collision risk of vehicles without consensus system assistance

PRISK2 Collision risk of vehicles with consensus system assistance

PC Probability of successful consensus

Pl Probability of successful link transmission in consensus

PSenseFail Probability of autonomous driving sensor perception failure

P Node transmit power

g(d) Channel path loss model

Table 3.2: Frequently Used Notations

3.5.1 Evaluations of AV Accidents Risk without WIDCS

First we need to know the distribution of vehicle spacing on each lane. We assume that the
number of vehicles passing the observer per unit of time is a Poisson process with mean
λ which means the traffic flow is λ (in vehicles per hour) [111]. There are K discrete
levels of constant speed vi(i = 1, ...,Kvel) on each lane where the speeds are independent
identically distributed (i.i.d.). Denote the rate of arrivals of vehicles at each level of speed
as λi(i = 1, ...,Kvel) where ∑

Kvel
i=1 λi = λ , thus, the occurrence probability of each speed

level is Pi = λi/λ . Thus, the distance between AVs on each lane with observer as the
origin obeys the exponential distribution with parameter λ ∑

Kvel
i=1

Pi
vi

. So the cumulative
distribution function (CDF) of intervehicle distance is:
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FL(l) =

0, if l < 0

1− e−λ ∑
Kvel
i=1

Pi
vi

l
, if l ≥ 0

(3.1)

P(L > l) = 1−FL(l) = e−∑
Kvel
i=1

λi
vi

l

= e−λ ∑
Kvel
i=1

Pi
vi

l
(3.2)

Where Ln is the distance between the nth closest car to the observer and the (n− 1)th

closest car to the observer. The distances between each vehicle are independent.
Given the spatial distribution of vehicles, it becomes imperative to acquire the speed

distribution of each independent AV. It has been widely accepted that the vehicles’ ve-
locity in the free-flow traffic state shows normal distribution and the speeds of vehicles
on different lanes have same distribution. Thus, velocity is distributed according to the
following probability density function (PDF):

fV (v) =
1

σ
√

2π
e
−(v−u)2

2σ2 (3.3)

We can combine the distance distribution between the AVs and the velocity distribution
to obtain the time distribution of the leading vehicle on each lane arriving at the intersec-
tion center. We utilize the edge distribution model of the quotient of two-dimensional
random variables, that is, T = L

V . Therefore, the PDF and CDF for arriving time T are:

fT (t) =
∫

∞

−∞

|v| fL(vt) fV (v)dv (3.4)

FT (t) =
∫ t

−∞

∫
∞

−∞

|v| fL(vu) fV (v)dvdu (3.5)

After integral, we can obtain that the specific distribution function of FT (t):

fT (t) =


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(3.6)
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FT (t) =



e
R2σ2t2

2 −Rµt(erf(
√

2Rσ2t−
√

2µ

2σ
)+1)/2, t < 0

e−Rµt(e
R2σ2t2

2 erf(
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f 2Rσ2t−
√
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))

2

+
e−Rµt(−e
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2 +(erf( µ√

2σ
)+1)eRµt)

2

−
erf( µ√

2σ
)−1

2 , t > 0

(3.7)

Where the R = λ ∑
Kvel
i=1

Pi
vi

, and the σ , µ are the mean and variance of the velocity’s PDF,
respectively.

Then, we investigate the probability that vehicles on two perpendicular lanes collide.
We assume that the leading vehicles on perpendicular lanes reaching the intersection cen-
ter will collide if the time difference between them is within a certain threshold. The
collision probability is:

PRISK1 = Pr((TimeGap < T hreshold)∩SenseFail)

= Pr(|tx − ty|< m)×PSenseFail
(3.8)

Where tx and ty are the times when the leading vehicle in two lanes arrives at the intersec-
tion and the m represents the threshold of time gap. When the |tx − ty| < m, we consider
there is a certain risk of traffic accidents.

Thus, we investigate the CDF of the time gap between two vehicles, and we use the
distribution formula of the two-dimensional random variable difference in our model. We
set:

G = Tx −Ty (3.9)

Where the G represents time gap. Therefore, the PDF and CDF for time gap G are:

fG(g) =
∫

∞

−∞

fT (g+ ty) fT (ty)dty (3.10)

FG(g) =
∫ g

−∞

∫
∞

−∞

fT (u+ ty) fT (ty)dtydu

=
∫

∞

−∞

FT (g+ ty) fT (ty)dty
(3.11)

Consequently, we can obtain the risk of collision between two AVs as follows:

P(|tx − ty|< m)PSenseFail = (FG(m)−FG(−m))PSenseFail

= PSenseFail

∫
∞

−∞

(FT (m+ ty)−FT (−m+ ty)) fT (ty)dty
(3.12)
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3.5.2 Evaluations of AV Accidents Risk with WIDCS

Wireless Transmission Success Rate

In our framework, the stability of WIDCS is mainly affected by the consensus success
rate, which, in turn, is significantly influenced by the reliability of the wireless link. Con-
sequently, our initial step involves analysing wireless link reliability through the modeling
of SINR. Spatially, we assume that only nodes within a predetermined range, centered
around the intersection, contribute to interference. Furthermore, it is hypothesized that
communication among nodes is unscheduled, with signal transmission occurring sporadi-
cally. The path loss experienced by desired signals is denoted as g(d), where d represents
the distance between the vehicles and the Leader. We assume a uniform transmit power P

for all nodes, and the received SINR can be expressed as:

SINR(DSn,NI,DI) =
Pg(DSn)

∑
NI
i=1 Pg(DIi)+α

(3.13)

where DSn is the distance between the desired vehicle and RSU, DI = [DI1,DI2, ...,DIn] is
the distance vector for all interference nodes, NI is the total number of interference nodes
in four lanes, and α is the noise power. Denote β as the SINR threshold that nodes can
successfully receive information bits.

We can see from Eq. (3.13) that the wireless link reliability of each vehicle varies
depending on the number of AVs and the distribution of vehicle positions. Then, we
analyse the desired signal power and interference separately. For a specific node, the
desired signal power S is a random variable written as S = Pg(DSn), where DSn is the
distance between the signal source node and the Leader. Because the distance between
each vehicle is independent DSn = L1 +L2 +L3 + ...+Ln and Ln satisfies the exponential
distribution, DSn obeys Gamma distribution:

DSn ∼ Γ(n,λ
Kvel

∑
i=1

Pi

vi
) (3.14)

As transmit power P is fixed in this chapter, S is only related to DSn. Therefore, we
obtain that the PDF of desired signal power as:

fSn(S = Pg(dSn)) = fDSn(dSn)

=
(λ ∑

Kvel
i=1

Pi
vi
)ndn−1

Sn e−(λ ∑
Kvel
i=1

Pi
vi
)dSn

(n−1)!

(3.15)



CHAPTER 3. WIRELESS INTELLIGENT DISTRIBUTED CONSENSUS ENABLED
AUTONOMOUS VEHICLES’ COOPERATION AT UNCONTROLLED INTERSECTION 48

Next we investigate the distribution of the received interference and start from the
number of interference nodes NI . As the average number of AVs on each lane at the
intersection has the same distribution, we can obtain the total AVs number distribution:

NI ∼ Poisson(
C

∑
i=1

λ
i) (3.16)

where the C is the maximum value of lanes. In the scenario of uncontrolled intersection,
C = 4 because there are 4 lanes extending from the center.

Then, we investigate the distance DIn between an interference node n and the Leader.
The interference nodes’ distance has the same distribution with signal source node. Then,
we can express the PDF of interference In generated by node n as

fIn(In = Pg(dIn)) = fDIn(dIn)

=
(λ ∑

Kvel
i=1

Pi
vi
)ndn−1

In e−(λ ∑
Kvel
i=1

Pi
vi
)dIn

(n−1)!

(3.17)

The total interference, denoted by I(NI,DI), is related to the number of interference nodes
NI and the distance DI of these interference nodes. From Eq. (3.16) to Eq. (3.17), we have
the PDF of I(NI,DI)

fI(NI = nI,DI = dI) = fNI(nI)Pr(DI = dI|NI = nI) (3.18)

Pr(DI = dI|NI = nI) =
IV

∏
i=I

Pr(Di
I = di

I|Ni
I = ni

I) (3.19)

Pr(Di
I = di

I|Ni
I = ni

I) =
n

∏
j=1

fDi
I j
(di

I j) (3.20)

Where each roman numerals represent the situation on each lane. We accumulate the node
interference for the four lanes centered on the RSU as we need to consider the interference
from all the nodes.

The distribution of SINR is obtained from the joint distribution of signal strength and
noise contribution. As SINR expressed in Eq. (3.13), by applying the marginalization
process to this joint distribution, the PDF of SINR can be expressed as

fSINR(DSn = dSn,NI = nI,DI = dI)

=
∫

∞

−∞

fDSn(SINR ·w) fI(w) ·wdw
(3.21)
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Then, we consider the probability that the SINR is greater than a certain threshold as
the success rate of the communication link:

Pl(dSn,nI,dI) = Pr(SINR > β ) =
∫ ∫ ∫

Ω

fSINRdΩ (3.22)

where Ω is the area of (DSn,NI,DI) that satisfies SINR(DSn,NI,DI) > β . As fSINR is
obtained in Eq. (3.21), we only need to find the satisfied area.

Reliability of WIDCS

The probability of achieving an Intelligent-Raft consensus in the WIDCS system can be
calculated by considering the transmission success rates at different locations and with
varying numbers of autonomous vehicles. Since each vehicle’s transmission success rate
can differ based on the specific circumstances, we employ the exhaustive method to se-
quentially calculate and accumulate the consensus success rate using Eq. (3.23). We use
conditional judgment to identify events that meet the success criteria, calculate their prob-
ability of success, and then accumulate them to obtain the final consensus success rate.

Section 3.2 outlines the description of the communication process and success criteria
for completing a Raft consensus. To analyze the probability of consensus under varying
transmission success rates mathematically, we introduce random events Ai

m and B j
n. Event

Ai
m represents RSU successfully communicate with m random downlink vehicles out of

N − 1, and B j
n represents the successful uplink response of n vehicles out of m to the

RSU. i has a total of Cm
N−1 cases and j has a total of Cn

m cases, where N−1
2 <= n <=

m. Employing the full probability formula, we derive the probability of completing a
consensus, accounting for different transmission success rates and considering all possible
combinations:

PC =
N−1

∑
m=N−1

2

Cm
N−1

∑
i=1

P(Ai
m)P(

m

∑
n=N−1

2

Cn
m

∑
j=1

B j
n|Ai

m) (3.23)

P(Am) =
m

∏
i0=1

Pli0

N−1−m

∏
j0=m+1

(1−Pl j0) (3.24)

P(Bn) =
n

∏
i0=1

Pli0

m

∏
j0=n+1

(1−Pl j0) (3.25)
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AV accident risk with WIDCS

Here, we consider that as long as a consensus can be reached, all active vehicles can
reach final consistency on the passage order of the uncontrolled intersection, and traffic
safety can be guaranteed. Therefore, the probability of accidents occurring at uncontrolled
intersections is:

PRISK2 = Pr(|tx − ty|< m)× (1−PC)×PSenseFail (3.26)

3.6 Experiments

To validate the above-illustrated concepts and designs, we conducted tests to evaluate the
performance of AIR-RAFT. Through the integration of the AIR-RAFT and AVs, we recre-
ate the experimental uncontrolled intersection scenario and demonstrate collision avoid-
ance to verify the feasibility of WIDCS and examine the performance. The following
paragraphs introduce the setup, parameters and conditions of the experiment. Then, we
introduce the steps and the process of the experiments. Finally, we analyze the experimen-
tal data.

3.6.1 Hardware setup

JetRacer Pro, as shown in Fig. 3.5, is a high performance AI Racing Car with fast speed.
JetRacer Pro is powered by NVIDIA Jetson Nano as its main computing unit which is a
small, powerful AI computer. According to the uncontrolled intersection traffic scheme,
we need not only to identify road path and uncontrolled intersection, but also to visually
detect whether there are vehicles passing by. For visual road following in autonomous
driving, we use the in-depth learning framework and tools provided by Snow Official,
which provides high frame rate processing through Torch2trt (PyTorch to TensorRT Trans-
lator) optimising. For object detection, we use the DetectNet of Jetson Inference which
is a deep neural network (DNN) library developed for hardware computing resources of
NVIDIA Jetson. We collected classification datasets of cars, roads and traffic signs, and
then trained our own target recognition neural network model.

In the experiment, AIR-RAFT is installed on each JetRacer cars, facilitating commu-
nication through UART. The Lora module carried by the AIR-RAFT supports half-duplex
mode, with a space speed of 2.4 KB/s, a transmission power of 20 dBm, a transmission fre-
quency of 410 MHz and a bandwidth of 1MHz. In addition, the MCU (STM32F407ZGT6)
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Figure 3.5: JetRacer Pro autonomous vehicles

has an operating principal frequency of 168MHz, and its baud rate for data exchange to
Lora is 115200.

3.6.2 Experimental Setup

Experiment 1

In the first experiment, we evaluate the feasibility of WIDCS by investigating the rela-
tionship between consensus latency and different numbers of AIR-RAFT. Under certain
trigger conditions, one node can propose a packet of data with a fixed length to the leader
node to initialize a Raft consensus. The AIR-RAFT cluster then deals with the consensus
process based on the Raft consensus mechanism. When a consensus is complete, AIR-
RAFT nodes callback the data and execute. The performance of AIR-RAFT is evaluated
by measuring the time required for varying numbers of nodes to achieve consensus.
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Figure 3.6: 2 autonomous vehicles try to pass blind intersection without WIDCS

Figure 3.7: 6 autinomous vehicles assisted by WIDCS at blind intersection
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Experiment 2

In research on the accident risk of AVs at uncontrolled intersections, we post a scene of an
intersection without traffic signal to regulate traffic order, as shown in Fig. 3.6 and 3.7. In
the absence of WIDCS, we let two JetRacer cars drive in two perpendicular lanes at un-
controlled intersections, and they both drive toward the center. Consequently, we defined
the event of two cars passing through an intersection as a random occurrence, dividing the
sample space into two outcomes: collision and non-collision. For each random event, the
departure distances and velocities of the two cars are randomly initialized based on their
corresponding distributions. A collision event is defined as occurring when two vehicles
reach the center of the intersection simultaneously.

To maximize the simulation of the randomness of a vehicle’s initialized parameters,
a software random number process is used to generate the speed and departure distances
of vehicles at each random event. The randomly generated speed satisfies the normal
distribution, and we set the maximum speed to 2.6m/s and the minimum speed to 0.2m/s.
We also set the maximum distance to 10 m. In this experiment, we repeated 100 times and
counted the frequency of collision events. We repeated the experiment 4 times to estimate
the collision probability in this simulated uncontrolled intersection.

Experiment 3

For AIR-RAFT-assisted scenarios, We research the effect of different numbers of vehicles
on the collision probability. We formed distributed clusters consisting of a RSU and two
to six vehicles, and investigated the probability of collisions within each cluster at uncon-
trolled intersections. As with previous settings, we also use the software random number
process to generate the speed and departure distance for each car and treat whether they
collide at the center of the intersection as a random event. When vehicles drive towards
the center of the uncontrolled intersection, one of the leading vehicle who recognises the
intersection through cameras can trigger a consensus within the ad hoc network. When
a consensus is reached, AVs pass in an orderly and safe manner in accordance with the
agreed passage order. We calculate the frequency of collisions by repeating 100 random
events and repeate the above process twice for each cluster to estimate the AIR-RAFT-
assisted accident probability.
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3.6.3 Experimental Results

Experiment 1

Table 3.3: Relationship between Nodes Quantity and Consensus Duration

Quantity Latency (ms) Latency (ms)
of Nodes Start from Followers Start from the Leader

3 928.8 688.2
4 1145.6 900.1
5 1149.1 903.8
6 1370.0 1120.2
7 1373.8 1125.5

Table 3.3 shows the average latency of 20 consensus requests for different numbers
of nodes within a cluster. The second column shows the average latency of a complete
PICA process that followers initiate a consensus in the AIR-RAFT system. As the cluster
expands with more nodes, the duration necessary to achieve consensus correspondingly
increases. This increase in timeis attributed to the leader’s requirement to await additional
responses from the followers, thereby extending the period needed to receive and deter-
mine the attainment of consensus. In addition, Table 3.3 shows that the consensus time of
two adjacent numbers of nodes is basically the same. For example, the consensus duration
of four and five AIR-RAFT nodes is around 1145 ms, and increases by about 210 ms for
each additional level, e.g., from four nodes to six nodes. This is because leader confirm
the success of the consensus immediately after receiving more than half positive feedbacks
from followers in Commitment stage. At this time, the suggestions from the rest of the
nodes do not affect the consensus of this round.

The third column shows the consensus time when the leader initiates a consensus di-
rectly, that is, there is no Initiative stage. It can be seen that when the follower’s initializa-
tion of the proposal to the leader is not required, the time to reach consensus is reduced by
about 250 ms.

Experiment 2

The findings from Experiment 2 are summarized in Table 3.4 which indicate that the prob-
ability of collision between vehicles traveling along two vertical lanes in the absence of
WIDCS assistance is approximately 0.215. This observation underscores a high risk of
accidents for autonomous driving at uncontrolled intersection.
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Table 3.4: Accident Probability without WIDCS

nth test 1 2 3 4
Collision 20 19 23 24
No collision 80 81 77 76
Collision frequency 0.20 0.19 0.23 0.24

Experiment 3

Table 3.5: Accident Probability with WIDCS

Number of nodes(with RSU) 3 4 5 6 7
1th collision frequency 0.06 0.05 0.03 0.03 0.01
2thcollision frequency 0.05 0.05 0.04 0.03 0.01
Average collision frequency 0.055 0.05 0.035 0.03 0.01

The findings listed in Table 3.5 revealed that in the presence of two vehicles and an
RSU (three nodes), the collision probability was determined to be 0.055. Compared to
the case without AIR-RAFT in Experiment 2, the AIR-RAFT system reduces the AV
collision probability by 74.4% with the same number of vehicles. These findings provide
compelling evidence that AIR-RAFT effectively facilitates the establishment of a coherent
passage order at uncontrolled intersections, thereby substantially enhancing the safety of
autonomous driving.

In addition, with an increase to seven nodes (including RSU), the collision probability
reduced significantly to 0.01. This observed trend indicates that augmenting the number
of nodes within the network can lead to a diminished collision probability for autonomous
vehicles.

This reduction in collision probability can be attributed to the achievement of a suc-
cessful consensus among the nodes, and enabling the establishment of a consistent traffic
order for autonomous driving. Nonetheless, it is imperative to acknowledge that there
exists an upper limit on the number of nodes in the network due to inherent constraints
in latency and bandwidth. As the number of nodes continues to increase, the demands
on time and bandwidth resources for consensus attainment also escalate, potentially re-
sulting in prolonged consensus times that could compromise safety and lead to accidents.
Hence, it is crucial to undertake further investigations into the potential risks associated
with higher numbers of nodes in future research endeavors.

While the current experiments are conducted in a controlled laboratory environment,
the results nonetheless reveal key insights with real-world implications. Specifically, the
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findings demonstrate the potential of WIDCS to facilitate both reliable information shar-
ing and coordinated joint decision-making among autonomous agents. In future real-world
deployments, such a system would enable vehicles to exchange real-time environmental
information and collaboratively make context-aware decisions. This enhanced level of in-
teraction is expected to significantly improve the responsiveness, adaptability, and overall
safety of autonomous driving in dynamic and complex traffic scenarios.

3.7 Simulation Numerical Results And Discussion

This chapter focuses on simulated accident probabilities analysis and comparison for au-
tonomous driving with and without the assistance of WIDCS at blind intersections. Firstly,
we evaluate the time distribution for the lead vehicle to reach the center of the intersection
under different traffic flows, average vehicle speeds, and speed standard deviations. By
considering the time difference between two vehicles, we can analyze the collision proba-
bility in the absence of WIDCS. Additionally, we assess the probability distribution of the
vehicle communication SINR exceeding a specific threshold at different distances from
the RSU and with varying numbers of vehicles. Furthermore, we conduct simulations to
estimate the probability of achieving a successful consensus within the cluster. Finally, we
evaluate the collision probability in autonomous driving when WIDCS is utilized.

3.7.1 Simulation Settings

Table 3.6: Summary of Parameters

Parameter Value
Average vehicle speed σ 70 km/h
Speed standard deviation µ 30 km/h
Traffic flow each lane λ 250 veh/h
The radius of considered area 0.5 km
Poisson distribution λ (min) 17 veh/min
Transmit power P 20 dBm
Path model loss g(d) g(d) = d−2.5

Noise power α -104 dBm

To accurately simulate the real-world scenarios of autonomous driving at uncontrolled
intersections, it is crucial to ensure that the preset data closely resembles practical condi-
tions. Therefore, we adopt specific values to capture the realistic aspects of the simulation.
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For instance, we assume an average vehicle speed of 70 km/h, a standard deviation of 30
km/h, and a traffic flow of 250 vehicles per hour. Subsequently, we analyze and compare
the influence of individual parameters by controlling variable method. In terms of inter-
sections, we define a maximum distance of 0.5 km. Accordingly, our model focuses on
AVs within a circular range centered on the RSU with a radius of 0.5 km. The distribution
of AVs across the entire intersection area is controlled by a parameter, λ , which we set to
17 veh/min. To facilitate ease of reference, we summarize all the relevant parameters in
Table 3.6.

3.7.2 Accidents Risk Evaluations without WIDCS

To evaluate the risk of accidents involving autonomous vehicles without WIDCS at blind
intersections, our analysis focus on examining the time it takes for the leading vehicle
on each lane to reach the center of the intersection. This analysis involves studying the
distribution of arrival times, which is computed from Eq. (3.7). Specifically, we derive the
distance distribution FL between vehicles and the probability density function fV of vehicle
speed. Using the edge distribution model of two-dimensional random variables, we obtain
the time distribution function FT for the leading vehicle based on the relationship T = L

V .
Fig. 3.8 illustrates the time distribution function FT of AV arrival with different speed

means. A higher speed mean leads to a higher CDF value at the same time, indicating that
AVs with a higher mean speed are more likely to reach the intersection center in a shorter
time.

Fig. 3.9 presents the time distribution function FT of AV arrival under different speed
standard deviations, while keeping the mean and traffic flow fixed. We observe that a
smaller standard deviation of vehicle speed indicates less dispersion, results in a higher
probability of vehicles reaching the center of the intersection simultaneously.

Fig. 3.10 explores the impact of different traffic flows on the distribution of vehicle
arrival time. As the traffic flow decreases, the probability of vehicles arriving at the center
decreases simultaneously. This is due to the influence of traffic volume on the distance
distribution between autonomous vehicles. According to Yousefi [111]’s model analysis,
lower traffic flow leads to a more uniform distribution of vehicle spacing, reducing the
occurrence of very small spacing. Consequently, vehicles are more likely to arrive over a
relatively longer time period.

Fig. 3.11 illustrates the impact of the time gap threshold on the probability of col-
lisions. The horizontal axis represents the threshold, indicating the range within which
the time gap between two vehicles would result in a collision. As the time gap threshold
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Figure 3.8: Time consuming distribution function with different σ

increases, the probability of collisions also increases. Furthermore, Fig. 3.11 compares
the influence of different traffic flows on the probability of accidents. As the flow of AVs
increases, the probability of accidents under the same time gap threshold also increases.

Notably, for our model and specified parameters (mean speed: 70 km/h, standard de-
viation: 30 km/h, traffic flow: 250 veh/h), the probability of the leading vehicle arriving
within 0.02 hours (1.2 min) is 0.72. In other words, there is a 0.72 probability that the
leading vehicle will reach the intersection center within 1.2 min at any given time. If two
AVs arrive at the intersection within a time interval of less than 5 seconds, the scenario is
classified as a potential collision, resulting in an accident probability of 0.3.

3.7.3 Accidents Risk Evaluations with WIDCS

Here, we investigate the probability of collision accidents with the assistance of WIDCS.
In our simulation, we examine the transmission success rate, denoted as Pr(SINR > β ),
with a single RSU positioned as the leader at the center of the intersection. The ana-
lytical results are computed based on Eq. (3.21). In details, we obtain the PDF of the
distance between the signal source vehicle and the RSU, utilizing Eq. (3.1). Additionally,
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Figure 3.9: Time consuming distribution function with different µ

we employ the Poisson distribution model to describe the number of vehicles within the
considered area. By combining Eq. (3.15) and Eq. (3.18), we derive the distribution of
Pr(SINR > β ), which represents the successful rate for each transmission.

Our investigation delves into the impact of varying distances and vehicle numbers on
the transmission success rate. We consider all other vehicles within the considered area
as potential interference. For simulation purposes, if the received SINR for a transmission
surpasses the threshold value β , it is regarded as a successful transmission; otherwise, it
is counted as a failure.

Fig. 3.12 illustrates the probability Pr(SINR > β ) under different distances to the
RSU and varying vehicle numbers. Notably, as the distance increases, the transmission
success rate experiences a significant decline. This phenomenon can be attributed to the
compounded effects of path energy loss and susceptibility to complex electromagnetic
environments. For instance, at a distance of 2 km, the transmission success rate is approx-
imately 0.1, indicating a considerable low probability of successful transmissions. As a
result, our simulation solely considers vehicles within a radius of 0.5 km from the RSU as
the central area of operation.

The probability of achieving a Intelligent-Raft consensus in the WIDCS system can
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Figure 3.10: Time consuming distribution function with different λ

Figure 3.11: Relationship between the time gap threshold and collision risk of leading cars
in two vertical lanes
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Figure 3.12: The different number of AVs in the network and their distance will affect the
transmission success rate of each node

Figure 3.13: Comparision of PConsensus versus number of autonomous vehicles
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be calculated by considering the transmission success rates at different locations and with
varying numbers of autonomous vehicles. Since each vehicle’s transmission success rate
can differ based on the specific circumstances, we employ the exhaustive method to se-
quentially calculate and accumulate the consensus success rate using Eq. (3.23). Fig. 3.13
illustrates the consensus probability with both analytical and simulation results.

In the simulation, we randomly generate the position of each vehicle and vehicle’s
number following the distance distribution and the Poisson distribution. We repeat the
calculation 200 times to obtain an average consensus success rate in the simulation en-
vironment. For the theoretical case, we calculate the mathematical expectations of the
distance for each vehicle and the quantity, and use them to compute the corresponding
consensus success rate.

Fig. 3.13 demonstrates a close match between the analytical and simulation results
when nodes number is less than 15. Both analytical and simulated consensus success rate
increase with the nodes number. When the number of vehicles is 10, the consensus success
rate is approximately 0.998 for the simulated results and 0.999 for the theoretical expecta-
tion. This observation aligns with the trend observed in experiments. However, when the
number of nodes exceeds 15, the simulated results begin to exhibit great fluctuations and
a decline. This phenomenon arises from the increased interference among nodes as their
density grows in practical scenarios. The resulting reduction in SINR diminishes the suc-
cess rate of communication links, leading to a sharp drop in the overall consensus success
rate. Hence, it is necessary to limit the number of nodes participating in joint-decisions.

Once a round of Intelligent-Raft consensus is successfully completed, vehicles on dif-
ferent lanes are made aware of each other’s presence and their respective passage order,
effectively preventing collisions at uncontrolled intersections. The collision probability
with WIDCS assistance, denoted as PRISK2, can be derived using Eq. (3.26). For PRISK1,
we assume that there is a risk of collision when the time gap between two lead cars is
less than 5s. Therefore, the probability of PRISK1 is 0.05, which has no relations with the
number of vehicles at this moment from Eq. (3.8). We can see from Fig. 3.14 that with the
help of WIDCS, the probability of accidents is significantly reduced, which is consistent
with our experimental conclusion. In addition, as the number of nodes increases, the acci-
dent probability of AVs at uncontrolled intersections decreases to a certain extent. These
results indicate that by facilitating effective information exchange and intelligent joint
decision-making among vehicles, WIDCS proves to be a valuable asset in ensuring safer
navigation and collision avoidance at uncontrolled intersections. These results reaffirm
the notion that the integration of WIDCS technology holds great potential for advancing
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Figure 3.14: Accident probability comparison of autonomous vehicles with and without
WIDCS at uncontrolled intersection

the field of autonomous driving and promoting safer mobility on our roads.

3.8 Conclusion

In summary, this chapter presents significant contributions to the field of autonomous driv-
ing perception and wireless distributed consensus systems. We successfully implemented
the Intelligent-Raft consensus protocol on the embedded hardware platform, AIR-RAFT,
making it the first wireless intelligent distributed consensus system of its kind. Further-
more, we introduced a novel and effective solution for ensuring safe passage at uncon-
trolled intersections through the WIDCS. Our comprehensive mathematical model accu-
rately captures the position distribution, speed distribution, and average time distribution
of vehicles at uncontrolled intersections, enabling analysis of the relationship between
SINR and transmission success rate, as well as the consensus success rate. We also devel-
oped a collision risk model for autonomous driving with and without WIDCS.

To validate our approach, we conducted experiments using the AIR-RAFT hardware
platform, recreating the uncontrolled intersection scenario with JetRacer cars and suc-
cessfully achieving collision avoidance through AIR-RAFT. The consistency between ex-
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perimental and simulation results reinforces the effectiveness of WIDCS in significantly
reducing accident rates in autonomous driving scenarios.

Despite these promising results, several limitations remain. In real-world deployments,
wireless communication environments are highly dynamic and unpredictable, which may
lead to performance fluctuations of WIDCS. Although this study considers communication
reliability, external factors such as node mobility may further impact system robustness. In
addition, while WIDCS improves decision-making efficiency, scalability challenges may
arise as the number of nodes increases, potentially causing consensus delays and network
congestion—especially in dense or rapidly changing traffic environments.

Despite these limitations, the findings provide a solid foundation for future research
aimed at advancing the deployment and refinement of WIDCS in real-world autonomous
driving scenarios.



Chapter 4

Intelligent Distributed Consensus for
Connected Vehicles: Models,
Implementation and Testing

4.1 Introduction

Increasingly intelligent and autonomous systems place critical demands on distributed in-
formation synchronization and joint decision-making, underscoring the potential of DC,
and more advanced IDC, for ensuring joint-decision consistency and providing fault tol-
erance. Chapter 2 successfully verified the effectiveness of WIDCS in enhancing safety
for autonomous vehicles at uncontrolled intersections, demonstrating its potential to opti-
mize traffic flow and reduce collision risks. However, the current WIDCS design focuses
primarily on wireless data transmission and has not considered the importance of the wire-
less ad hoc network. The formation and management of an ad hoc network is not merely a
technical detail but a fundamental requirement for implementing IDC. IDC’s smooth oper-
ation relies on continuous, efficient data exchange between nodes, which in turn depends
on a stable wireless network. Thus, the establishment of the wireless network, along with
any variations in network conditions, will directly impact IDC’s performance.

Wireless ad hoc networks are essential to the functioning of WIDCS. From the engi-
neering feasibility standpoint, these networks enable nodes to identify the communication
addresses of other nodes for data exchange. For example, in autonomous driving scenar-
ios, as depicted in Fig. 4.1, two AVs may need to share environmental perception data
but initially lack knowledge of each other’s communication addresses or frequency bands,
making it difficult to establish effective communication. With the support of the ad hoc
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Figure 4.1: 2 AVs try to establish communication

network, all nodes within the network can identify each other’s communication addresses
and IDs, facilitating seamless data exchange. Furthermore, ad hoc networks significantly
improve the communication link success rates. Once an ICA node joins the network, part
of the communication resources are allocated by protocol to maintaining network activity,
monitoring node status, dynamically adjusting the topology, and managing node entries
and exits. This ensures that data transmission between nodes within the network remains
stable, reducing link failure rates and enhancing the reliability of IDC by minimizing
packet loss. Additionally, the wireless ad hoc network simplifies node management and
coordination, particularly in dynamic environments like autonomous driving, where AVs
frequently join and leave the network. By automatically identifying and managing nodes
involved in the IDC process, the network can quickly determine the number of AVs par-
ticipating in the consensus, ensuring the efficiency and accuracy of joint decision-making.
Moreover, ad hoc networks offer greater scalability and flexibility, adapting to CAS appli-
cations of varying scales while optimizing system performance.

However, the current WIDCS has not yet taken into account the function of ad hoc net-
works, which may face certain challenges in real-world deployment. Specifically, factors
such as network establishment time, stability, and the complexity of node management
will directly affect the system’s performance in practical applications. If wireless ad hoc
networks cannot be efficiently established and maintained, IDC performance will be sig-
nificantly degraded, compromising the reliability of CAS in dynamic and complex envi-
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ronments. Few studies [13, 83, 112–114] have explored how transmission modes, such as
unicast, broadcast, and varying wireless communication link conditions, influence the reli-
ability of DC. However, limited attention has been given to the impact of wireless networks
on DC performance, and there is a lack of mathematical models developed for analysis
based on specific scenarios. Therefore, future research must expand the WIDCS design
to encompass the processes of network formation, maintenance, routing management, and
dissolution to improve its feasibility. Additionally, thorough analysis and verification in
real-world CAS scenarios will be necessary to ensure its practical applicability and per-
formance. Furthermore, the first-generation WIDCS hardware module, AIR-RAFT, also
lacks a networking protocol capable of supporting ad hoc networks for joint decision-
making. Consequently, iterations of WIDCS hardware modules with integrated wireless
network functions will also be necessary.

This chapter advances the Intelligent-Raft-based WIDCS by incorporating the capa-
bility to establish and manage wireless ad hoc networks, expanding upon its original
functionality. We have also developed and implemented the second-generation WIDCS
module, called RaBee, which integrates both hardware and software within an embed-
ded framework. RaBee allows distributed nodes to achieve Intelligent-Raft consensus
through a ZigBee ad hoc network. Additionally, Chapter 2 demonstrated that AVs can
use WIDCS to reach consistent joint decisions, improving safety at uncontrolled inter-
sections. However, further scenario testing is necessary to verify WIDCS’s feasibility
and optimization, as well as to devise tailored traffic solutions. This chapter focuses on
utilizing the enhanced WIDCS to tackle the challenges posed by autonomous driving in
on-ramp merging scenarios. We propose the ‘Waiting for Insert Count’ method, supported
by the WIDCS, to enhance on-ramp merging safety for AVs. This approach facilitates
reliable and efficient collaborative control, ensuring safer and more coordinated merging
processes. We establish an analytical reliability model for both centralized and distributed
joint-decision systems operating under a wireless ad hoc network. We also derive and
analyze the safety of AVs under conditions with different joint decision-making schemes
and different on-ramp merging guidance schemes based on the established mathematical
model. Through the utilization of the RaBee platform and integration with practical AVs,
we recreate the experimental on-ramp merging scenario and successfully demonstrate AVs
collaborative merging. The experimental data and simulation results substantiate the accu-
racy of our theoretical analysis, confirming that WIDCS significantly enhances the safety
of autonomous driving in on-ramp merging scenario.
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4.2 Literature Review of CAV in On-ramp Merging

Researchers around the world have been developing various CAV applications to address
traffic-related issues and improve efficiency and safety in specific traffic scenarios, such as
highway on-ramp merging. On-ramp merging is a frequently encountered traffic scenario
whose improper handling might cause heavy traffic congestion even accidents [115, 116].
It could form a traffic bottleneck since the merging vehicles may have to slow down or
even stop at the ramp to wait for a proper opportunity to merge. The AVs on the highway
should also carefully accommodate vehicle speeds and positions to avoid collision with
the merging vehicles from the on-ramp, which has high traffic safety hazards. In addition,
frequent decelerations and stops may also increase the fuel consumption and travel time
of on-ramp vehicles, and reduce merging efficiency [117].

Research on on-ramp merging strategies generally follows two fundamental proce-
dures: establishing the merging sequence (MS) and coordinating vehicle trajectories, typ-
ically in that order. The MS defines the specific order in which vehicles from the main
road and the ramp should merge. The primary objective of the second step, vehicle trajec-
tory coordination, is to adjust vehicle speeds to ensure a smooth merging process, thereby
avoiding disruptions to traffic flow. While strategies in the literature share common fea-
tures, the specific algorithms used to implement these procedures often differ.

Conventional MS is governed by predefined rules, often referred to as ad hoc negotiation-
based strategies. As vehicles approach a junction, they generate short-term schedules and
engage in bilateral negotiations with the Roadside Agent. Initial plans are frequently re-
jected due to timing conflicts, making rescheduling necessary. This strategy follows a
first-in, first-out approach, which allows adjustments but typically results in locally opti-
mal solutions. Its advantage lies in quick response times, making it well-suited for com-
plex traffic convergence scenarios. For instance, in [118], a rule-based decision system
was used to manage merging control effectively in congested traffic conditions. Wang et
al. [119] proposed three basic scenarios to determine the merging sequence for on-ramp
vehicles.

The MS can also be determined through a specific function that considers multiple
criteria, such as safety and priority. In this case, the MS is generated by an upper-level
controller, while a lower-level controller manages the merging maneuvers for each vehi-
cle. As early as 1969, Athans [120] formulated the merging problem as an optimal control
problem for a given sequence, evaluating all possible sequences and selecting the optimal
one. Since then, several approaches have been developed to create the MS. Li et al. [121]
described the solution space of all feasible driving schedules using a spanning tree, based
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on vehicle safe-passing order. Cao et al. [122] generated the MS based on prescribed merg-
ing points, while Jing et al. [123] sought the optimal MS by formulating a cost function
using Game Theory.

The objective of vehicle motion control during merging is to create an adequate gap
between two consecutive vehicles on the highway’s main road and to accurately guide
the merging vehicle into this gap. Several factors influence the merging process, including
safety, passenger comfort, traffic flow efficiency, energy consumption, and time delay. Im-
proved coordination between both mainline and on-ramp vehicles leads to a more efficient
and seamless merging process.

To achieve efficient merging, both centralized and decentralized control methods can
be employed. In a centralized approach, vehicle trajectories are uniformly generated by the
Roadside Agent. Awal et al. [124] focused on minimizing merging time, with particular
emphasis on optimizing the average merging speed. Rios Torres et al. [117] developed an
optimization framework and a closed-form analytical solution for real-time coordination
of CAVs at on-ramp merging zones. Xie et al. and Cao et al. [125] applied the C/GMRES
method to solve the optimal merging path problem, with their system considering the states
of both ramp and main road vehicles, making it a centralized approach. Additionally, Ito et
al. [126] designed a global controller to facilitate a smooth merging process under mixed
traffic conditions.

Decentralized control approaches operate locally among vehicles using vehicle-to-
vehicle (V2V) communication, thereby reducing the communication burden compared
to centralized methods. The distributed control protocol proposed by Dao et al. [127]
focused on assigning vehicles into platoons to improve traffic safety and increase lane
capacity. Lu et al. [128] introduced a vehicle longitudinal control algorithm based on
predecessor-follower (PF) information flow topology and formulated the merging prob-
lem differently depending on the road’s geometric layout (i.e., with or without a parallel
lane). Xu et al. [129] investigated the impact of controlled vehicle rates on highway traf-
fic and found that vehicles equipped with Adaptive Cruise Control (ACC) or Cooperative
Adaptive Cruise Control (CACC) systems show significant potential for improving coor-
dination during highway merging.

Solving these issues necessitates the exchange of information, and advanced commu-
nication technologies, such as V2V and V2I communication, are essential for enabling
cooperative decision-making and motion control in AVs. However, many researches focus
on path planning or control algorithms based on MS, and there are very few and superficial
optimization studies on communication protocol, networking, consensus consistency, etc.
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in on-ramp merging scenario.

4.3 WIDCS with Ad Hoc Network

The ad hoc network function of WIDCS ensures effective consensus and joint decision-
making in complex, dynamic environments. The following detail each key function point
and the process is shown in Fig. 4.2:

Figure 4.2: The process of WIDCS ad hoc network formation, different topologies, and
network dissolution under task-driven.

4.3.1 Formation of WIDCS Ad Hoc Network

The initiation and formation of the WIDCS ad hoc network form the foundation for the
entire distributed consensus process. When a WIDCS node needs to initiate consensus
(such as AVs entering an intersection), the system first detects nearby nodes via wireless
communication and initiates the ad hoc network’s formation. The initiating node broad-
casts a "network establishment request" to determine if surrounding nodes are available
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and capable of joining the network. Nodes receiving the request will respond, providing
their current status and resource information. All nodes that respond positively become
part of the initial network and establish a connection through a networking protocol, such
as ZigBee or Wi-Fi. At this point, the ad hoc network is formed, and nodes can exchange
their IDs, addresses, and resource information, laying the groundwork for the subsequent
consensus process.

4.3.2 Management of WIDCS Ad Hoc Network

WIDCS network management is composed of two key components: node management
and structure management. In node management, new nodes must first support WIDCS
functions before joining the ad hoc network. A joining node broadcasts a request to the ex-
isting network, and the network management node verifies this request through a security
authentication protocol to ensure compliance with network requirements. When a node
leaves, its exit must be confirmed by the network management node to prevent disruption
to the consensus process. The network topology is automatically updated to reflect this
change, reallocating communication resources and adjusting routing tables accordingly.
Additionally, WIDCS includes a node status detection function that monitors each node’s
operational status in real time, such as signal strength, battery level, and activity state. If a
node’s condition deteriorates, the network activates a recovery mechanism to prevent node
failure during the consensus process.

Network management plays a critical role in ensuring the efficient and reliable oper-
ation of the WIDCS ad hoc network. After the network is established, communication
paths and topologies between nodes dynamically evolve. WIDCS employs an adaptive
routing protocol that updates routing paths in response to changes in the network envi-
ronment, such as the addition or departure of nodes or changes in their status. Each node
regularly sends status updates according to the network management protocol to ensure
all nodes maintain the latest routing tables. When a path becomes unavailable due to node
failure or environmental interference, the WIDCS network management function rapidly
identifies an alternative route and re-plans data packet transmission to maintain continuous
and efficient communication. Additionally, WIDCS supports various topologies, includ-
ing star, tree, and mesh structures, providing the flexibility needed to adapt to a dynamic
environment. For instance, in traffic scenarios, the changing speed and position of ve-
hicles require real-time updates to the network structure to ensure the consensus process
proceeds smoothly.
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4.3.3 Dissolution of WIDCS Ad Hoc Network

The dissolution of the ad hoc network must be orderly and secure. After consensus or joint
decision-making is completed, nodes will exit the network gradually based on their current
status and requirements. The dissolution process begins when the network management
node sends a dissolution signal to notify all participating nodes to prepare for network
exit. Subsequently, each node sequentially disconnects its communication links with other
nodes and updates its internal state to mark the network’s termination. In cases where
dissolution is necessary due to a deteriorating communication environment or node failure,
WIDCS includes an emergency dissolution mechanism. In such situations, nodes quickly
disconnect and enter a low-power state to conserve resources. Ensuring a smooth network
dissolution optimizes resource usage and avoids unnecessary communication overhead.

4.4 Design and Implementation of RaBee

4.4.1 RaBee Hardware Architecture

We leveraged embedded technology to design and implement ‘RaBee’, as shown in Fig.
4.3, a fully functional WIDCS utilizing the Intelligent-Raft algorithm and ZigBee, en-
abling us to practically evaluate IDC’s performance. The hardware architecture of RaBee,
as depicted in Fig. 4.4, consists of six main components: the power unit, Micro-Controller
Unit (MCU), RAM expansion unit, ROM expansion unit, human-computer interaction
(HCI) unit, wireless module unit, and communication interface. The STM32F407ZGT6
chip, featuring a powerful Cortex-M4 core with a main frequency of up to 168MHz, is
selected as the MCU. To accommodate the substantial RAM requirements for processing
node information, status parameters, and large network data, an additional 1MB of RAM
chip has been added. An SD card serves as a ROM expansion to provide ample space
for recording processed consensus data. The OLED screen and buttons function as HCI
units for displaying or setting parameters and monitoring consensus progress. The DIGI
XBee3 series model XB3-24Z8UM ZigBee module, operating in the 2.4GHz ISM band,
is used for wireless communication. Various interfaces are reserved to support different
applications.
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Figure 4.3: The hardware module of RaBee (4 copies)

4.4.2 RaBee Software Architecture

Fig. 4.5 illustrates the software system framework of RaBee. The Hardware Abstraction
Layer (HAL) provides drivers for basic MCU hardware resources, such as the UART used
by the ZigBee module. The Scheduling Service acts as the hardware manager, handling
upper-layer drivers for hardware peripherals like the SD card, and processing hardware
interrupts. The application layer comprises three main threads: UI interface management,
communication packet management, and consensus status management.

4.4.3 RaBee Network Architecture

ZigBee is an advanced communication protocol based on the IEEE 802.15.4 standard,
specially designed for Wireless Personal Area Networks (WPAN) in low-power IoT sce-
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Figure 4.4: Hardware structure of RaBee

narios. The self-organizing capability of the ZigBee protocol stands out as a significant ad-
vantage, supporting diverse network topologies, and operating effectively in dynamically
changing environments and situations necessitating adaptable deployment. Consequently,
ZigBee can not only ensure a robust network environment for the upper-layer consensus
mechanisms of WIDCS, but also exhibit substantial engineering viability.

The hierarchical architecture of the distributed consensus ad hoc network of RaBee is
depicted in Fig. 4.6. Powered by ZigBee module, the IEEE 802.15.4 protocol defines the
physical and MAC layers. The network layer utilizes the ZigBee protocol to establish the
wireless distributed ad hoc network, configuring the network ID and allocating addresses
to each node. At the application layer, the Intelligent-Raft manages the consensus process
and status.
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Figure 4.5: Software structure of RaBee

4.4.4 RaBee Workflow

The workflow of Intelligent-Raft is depicted in Fig. 4.7. Following the traditional Raft
protocol, nodes are categorized into followers, candidates, and leaders [2]. Intelligent-
Raft works by electing a leader in a cluster of nodes, where the elected leader receives
all followers initiatives, and broadcasts the initiatives to all network nodes. The followers
then assess the proposed data utilizing intelligent evaluation mechanism and inform the
leader of feedback. Consensus is achieved when the number of feedbacks signaling agree-
ment surpasses the 50% of the cluster nodes. This mechanism ensures fault tolerance,
allowing the system to continue functioning normally as long as the majority of nodes
remain operational. Moreover, each consensus require a collaborative assessment by mul-
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Figure 4.6: The hierarchical ad hoc network architecture of RaBee

tiple nodes on identical information, thereby ensuring synchronization and consistency
across the network.

4.4.5 Potential Applications of RaBee

RaBee supports various distributed IoT application scenarios, and its extensive and diverse
communication interfaces facilitate seamless integration with AV in-vehicle systems. In-
stalling RaBee on an AV facilitates consensus within a wireless, distributed, reliable, and
fault-tolerant network, allowing the synchronized data to integrate with the AV’s local
sensor data for comprehensive predictions and decisions before execution.

4.5 Secure On-Ramp Merging Scheme

In the realm of autonomous driving, WIDCS is capable of enhancing AV safety across
various traffic scenarios through consistent distributed decision-making, with this section
specifically examining the on-ramp merging scenario. On-ramp merging, a crucial high-
way scenario, poses significant risks for AVs as they transition from ramps to main roads.
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Figure 4.7: The workflow of Intelligent-Raft

This situation involves challenges like speed mismatches and blind spots that can obscure
a vehicle’s view, increasing the risk of accidents due to informational asymmetries. More-
over, uncertainty about right-of-way can cause congestion or collisions. Thus, ensuring
safety in on-ramp merging scenarios depends crucially on guiding AVs to merge in an
organized and systematic manner at a macro level.

As listed in Section 4.2, traditional methods like the MS have been developed to en-
sure safe passage in on-ramp merging scenarios. MS prescribes an Sequence Identification
Numbers (SIDs) order for vehicles on both main and ramp roads, determined by a network
proposer. This approach not only clarifies merging priorities but also improves the effi-
ciency of vehicle passage in situations where visibility is compromised. However, tradi-
tional MS solutions encounter significant development challenges, notably the difficulty in
ensuring consistency across all nodes. In addition, it is difficult for the vehicles behind to
know the progress of the current merge, which limits the effectiveness of SID. Moreover,
MS requires real-time updates and dissemination of SIDs, placing vehicle safety heav-
ily on the reliability of the central node, increasing communication and computational
demands, and have low fault tolerance.

To address these limitations, we develop a new method called Wait Insertion Count
(WIC) based on the traditional MS approach. WIC quantifies the number of vehicles in
adjacent lanes that an AV must wait for after the preceding vehicle in its own lane has
passed. For instance, a WIC value of 0 allows an AV to follow the vehicle directly ahead
through the merging area, while a non-zero WIC requires waiting for a specified number
of vehicles in another lane to pass. Since WIC is static, the merging process for each
cluster requires only a single allocation by the communication system in the cases without
overtaking, thus reducing dependency on it.
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Figure 4.8: An illustration of the cooperative highway on-ramp merging scenario

We have also developed a comprehensive passage solution for on-ramp merging using
WIC combined with WIDCS, as depicted in Fig. 4.8. As part of the network integration
process, each vehicle uploads critical data such as speed, position, and the distance to the
preceding vehicle to the network coordinator that could be either Follower or Leader. The
coordinator calculates each vehicle’s estimated time of arrival at the merging point, then
determines the WIC and optimal speed to ensure safe merging. Following this, the coordi-
nator compiles the speeds, positions, distances, and the recommended WIC and merging
speed for each vehicle into the consensus data, initiating the consensus process. During
the intelligent evaluation stage, each network node employs its own evaluation criteria to
assess the accuracy of the proposed WIC and votes to confirm whether a consensus has
been reached.

Once consensus is achieved, all AVs proceed efficiently through the merging area
based on their WIC number of vehicles in another merging road they need to wait for.
The red line in Fig. 4.8 indicates the order in which vehicles merge. For example, the
vehicle on the ramp with a WIC of 2 must allow two vehicles from the main road to pass
after its preceding vehicle has merged. Through the use of WIDCS, each vehicle verifies
the global traffic order via an ad hoc network, diminishing reliance on central nodes.
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4.6 Mathematical Models

In this section, we establish mathematical models for the reliability of joint decision-
making by a centralized system and WIDCS in ad hoc networks. We first obtain the
probability distribution model of SINR by analyzing the free space path loss (FSPL) of
AV’s signal transmission power in the on-ramp merging scenario, and use it to analyze the
communication link success rate. On this basis, we respectively analyze the probability of
AVs safely merging into the on-ramp area under two schemes: one assisted by SIDs within
the centralized decision system, and the other supported by WIC within the WIDCS. In
our model, the probability values derived from the model serve as indicators to rep-
resent the reliability of different communication modes and the safety of AVs. Several
assumptions are established to guide the development of the model.

1. Assumption 1: Since the method of determining traffic order significantly affects
the safety of each AV, the likelihood of an AV safely navigating the on-ramp merging
area varies across different joint decision-making systems.

2. Assumption 2: The scenario is only considered safe when all AVs navigate through
the on-ramp merging area without incident.

3. Assumption 3: Overtaking behavior during the merging process is not considered.

4. Assumption 4: Given that the Roadside Unit (RSU) can be reliably deployed in the
on-ramp area, it is responsible for establishing and managing the entire network.

5. Assumption 5: Joint decision-making require a minimum of three nodes in the
network.

Based upon the assumptions, the frequently used notations are summarized in Table
4.1.

4.6.1 Communication Link Success Rate Model

SINR is a key parameter in wireless communications, which is used to measure the ratio
of signal strength to interference and background noise strength. The higher the SINR,
the better the quality of the communication link is usually, and the lower the error rate of
data transmission. So we can analyze the communication link success rate through SINR,
which can be expressed as:
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Table 4.1: Frequently Used Notations

Notation Definition

PS_Nor Probability of each AV passing the on-ramp merging area

safely without V2X communication

PS_Net Probability of each AV passing the on-ramp merging area

safely with the assistance of wireless network

PS_SID Probability of each AV passing safely under the auxiliary

conditions of centralized decision-making and SID

PS_WIDCS Probability of each AV passing safely under the auxiliary

conditions of WIDCS and WIC

NMAX Number of vehicles that pass through the on-ramp merging

area

nnet Number of nodes that successfully joined the network

non Number of nodes that have successfully joined the network

and are online

psignal Signal power at the receiver

pnoise Environmental noise power

pinter f e Environmental interference power

ptrans Signal power at the transmitter

plink Probability of successful link transmission

PNF Probability of exactly nnet nodes among NMAX nodes suc-

cessfully join the network.

PCenSta Reliability of the centralized network

PDisSta Reliability of the distributed network

PCenDec Probability of successfully completing a centralized deci-

sion

PDisDec Probability of successfully completing an Intelligent-Raft

consensus
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SINRdB = 10log10(
Psignal

Pnoise +Pinter f erence
) (4.1)

Based on the communication scheme we proposed, all nodes will try to access the
Zigbee network and complete Raft consensus collaboration within the network. So we
assume that Pnoise +Pinter f erence is a constant, and we introduce a FSPL model for Psignal .

FSPLdB = 20log10(d)+20log10( f )+20log10(
4π

c
) (4.2)

where FSPL(dB) represents free space path loss in decibels (dB), d is the propagation
distance, f is the signal frequency, c is the speed of light.

Next, we can derive the relationship between propagation distance and SINR through
the SINR and FSPL models:

Psignal(dB) = Ptrans(dB)−FSPLdB (4.3)

SINRdB

= 10log10(Ptrans)−FSPLdB −10log10(Pnoise +Pinter f e)

= 10log10(
Ptrans

d2 f 2(4π

c )2(Pnoise +Pinter f e)
)

(4.4)

Next, we only need to know the communication distance distribution model between
vehicles to derive the SINR distribution model. The number of vehicles passing the ob-
server per unit of time is a Poisson process with mean λ which means the traffic flow is λ

(in vehicles per hour) [111]. There are K discrete levels of constant speed vi(i= 1, ...,Kvel)

on each lane where the speeds are independent identically distributed (i.i.d.). Denote the
rate of arrivals of vehicles at each level of speed as λi(i = 1, ...,Kvel) where ∑

Kvel
i=1 λi = λ ,

thus, the occurrence probability of each speed level is Pi = λi/λ . Thus, the distance be-
tween AVs on each lane with observer as the origin obeys the exponential distribution
with parameter λ ∑

Kvel
i=1

Pi
vi

. So the cumulative distribution function (CDF) of intervehicle
distance is:

FL(D) =

0, if l < 0

1− e−λ ∑
Kvel
i=1

Pi
vi

d
, if l ≥ 0

(4.5)

Where D is the distance between vehicles. The distances between each vehicle are inde-
pendent.
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So we can get the distribution of SINRdB through the distribution of the derived rela-
tional function of random variable d. According to the definition, we assume that when
SINRdB is greater than a certain threshold, its distribution function value is used as the
communication link success rate of the system:

plink = P{SINRdB ≥ SINRthreshold}=

P{10log10(
Ptrans

d2 f 2(4π

c )2(Pnoise +Pinter f e)
)≥ SINRthreshold}

= P{d ≤ P
1
2

trans10−
SINRthreshold

20

4π f
c (Pnoise +Pinter f e)

1
2
}

= 1− exp(−λ

Kvel

∑
i=1

Pi

vi

P
1
2

trans10−
SINRthreshold

20

4π f
c (Pnoise +Pinter f e)

1
2
)

(4.6)

4.6.2 Safety model without Communication Support

In scenarios lacking communication, all AVs must depend solely on their own sensors
and environment exploration to navigate. Under these conditions, with a total of NMAX

vehicles on both the main and ramp roads passing through the on-ramp area, the system’s
overall safety probability is defined as follows:

PPass_Sa f e_NoV 2X = PNMAX
S_Nor (4.7)

where safety is assessed by the successful merging of all AVs through the area.

4.6.3 Safety Model with SID in Centralized Decision System

We first analyze the reliability of the central decision-making system within an ad hoc
network, noting that centralized decisions are feasible only when the network is stable.
The reliability of such a network relies heavily on a single central node and is significantly
affected by the number of nodes it serves. Therefore, we assume that the reliability of the
centralized network conforms to the exponential decay model:

PCenSta = PCenSta_min +(1−PCenSta_min)∗ e−k∗nnet (4.8)

where k is the decay constant and PCenSta_min is the minimum value for central network
reliability.

In centralized decision-making system, all nodes receive and unconditionally execute
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the decisions issued by the central node. Therefore, the reliability of centralized decision-
making is:

P(CenDec|Network) =
P(Network∩CenDec)

P(Network)
(4.9)

P(Network) in (4.9) represents the probability of successfully establishing the net-
work. In the dynamic environments, AVs’ joint decision-making necessitates the for-
mation of a wireless ad hoc network, with a designated coordinator node responsible for
network establishment and maintenance. When AVs enter the coordinator’s range, they at-
tempt to respond to networking requests based on Assumption 4. The coordinator makes
up to X attempts per AV, with one successful response ensuring network entry. Our model
assumes a minimum of three nodes for decision-making, necessitating at least three nodes
in the network.

P(Network) =
NMAX

∑
nnet=3

(PNF(N = nnet)) (4.10)

PNF(N = nnet)

=

(
NMAX

nnet

)
Pnnet

f orming(1−Pf orming)
NMAX−nnet

(4.11)

Pf orming =
X

∑
i=1

((1− plink)
i−1 plink) (4.12)

where Pf orming represents the probability of a node successfully joining the network within
X networking attempts. Based on Assumption 5, P(Network) can be calculated by com-
bining (4.10), (4.11) and (4.12).

P(Network ∩CenDec) indicates the probability of successfully establishing a stable
centralized network where centralized decisions are made concurrently, as calculated by
(4.13) and (4.14).

P(Network∩CenDec)

=
NMAX

∑
nnet=3

(PNF(N = nnet)×PCenSta ×PCenDec)
(4.13)

PCenDec =
nnet

∑
non=0

(

(
nnet

non

)
pnon

link(1− plink)
nnet−non) (4.14)

Next, we determine the safety probability for all AVs navigating under a centralized
network with SID using the conditional probability formula:
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P(Pass_Sa f e_All|(Network∩SID_UD))

=
P(Pass_Sa f e_All ∩Network∩SID_UD)

P(Network∩SID_UD)

(4.15)

P(SID_UD) denotes the aggregate probability of successful SID updates by the com-
munication system for each vehicle merge. In the traditional MS method, a single update
per merge is essential to ensure all vehicles are apprised of the current merging progress.
P(Network∩SID_UD) denotes the probability of both successfully establishing a central-
ized network and updating the SID on each merge, as derived from (4.16) and (4.17).

P(Network∩SID_UD)

=
NMAX

∏
nmax=3

nmax

∑
nnet=0

(PNF(N = nnet)×PCenSta ×PSID_UD)
(4.16)

PSID_UD =
nnet

∑
non=0

(

(
nnet

non

)
pnon

link(1− plink)
nnet−non) (4.17)

P(Pass_Sa f e_All∩Network∩SID_UD) represents the likelihood that successful net-
work formation and centralized SID updates coincide with the safe passage of all AVs.
For the AVs within the network, the safety probability is denoted as PS_Net , while for those
unable to join, it is PS_Nor. Here we accumulate all possible cases by combining (4.18),
(4.19), and (4.20):

P(Pass_Sa f e_All ∩Network∩SID_UD)

=
NMAX

∏
nmax=3

nmax

∑
nnet=0

(PNF(N = nnet)×PCenSta ×PPass_Sa f e_SID)
(4.18)

PPass_Sa f e_SID =
nnet

∑
non=0

(

(
nnet

non

)
pnon

link(1− plink)
nnet−non

∗PPass_Sa f e1)

(4.19)

PPass_Sa f e1 =
PS_SID ∗ (non)

nmax
+

PS_Net ∗ (nnet −non)

nmax

+
PS_Nor ∗ (nmax −nnet)

nmax

(4.20)

The probability of AVs passing safely under the condition of centralized SID updates
with network can be determined by combining (4.16) and (4.18).
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4.6.4 Safety model with WIC in WIDCS

In a distributed network, the reliability does not limited to a single node but rather on the
collective reliability of all nodes involved. We assume that PDisNode is the reliability of
each node, therefore:

PDisSta = 1− (1−PDisNode)
nnet (4.21)

We assume that achieving an Intelligent-Raft consensus must be based upon the estab-
lishment of the network, the reliability of distributed decision-making is:

P(DisDec|Network) =
P(Network∩DisDec)

P(Network)
(4.22)

P(Network∩DisDec) denotes the likelihood of successfully establishing a stable dis-
tributed network and achieving Intelligent-Raft consensus, as calculated by (4.23).

P(Network∩DisDec)

=
NMAX

∑
nnet=3

(PNF(N = nnet)×PDisSta ×PDisDec)
(4.23)

PDisDec in (4.23) represents the probability of reaching an Intelligent-Raft consensus,
a process that entails the leader sending messages via downlink, as defined in (4.24), and
receiving responses through uplink, as specified in (4.25).

PDownlink =

(
nnet −1

m1

)
pm1

link(1− plink)
nnet−1−m1 (4.24)

PU plink =

(
m1

m2

)
pm2

link(1− plink)
m1−m2 (4.25)

The probability of achieving a successful Intelligent-Raft is defined by the leader’s
ability to receive more than (NMAX −1)/2 uplink messages from followers. Therefore, m2

in (4.25) and (4.26) must not be less than (NMAX −1)/2.

PDisDec =
nnet−1

∑
m1=⌈ nnet−1

2 ⌉
(

(
nnet −1

m1

)
(1− plink)

nnet−1−m1

pm1
link

m1

∑
m2=⌈ nnet−1

2 ⌉
(

(
m1

m2

)
pm2

link(1− plink)
m1−m2))

(4.26)

where we consider all possible situations in which Intelligent-Raft consensus can be com-
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pleted when there are NMAX AVs that need to pass.
Then, we determine the probability of AVs safely navigating the on-ramp merging area

with assistance from WIDCS and WIC, employing a conditional probability method:

P(Pass_Sa f e_All|(Network∩DisDec))

=
P(Pass_Sa f e_All ∩Network∩DisDec)

P(Network∩DisDec)

(4.27)

P(Pass_Sa f e_All∩Network∩DisDec) quantifies the probability of simultaneous suc-
cessful network formation, IDC regarding WIC allocation, and safe passage for all AVs.
Thus, we get:

P(Pass_Sa f e_All ∩Network∩DisDec)

=
NMAX

∑
nnet=3

(PNF(N = nnet)×PDisSta ×PPass_Sa f e_DisDec)
(4.28)

PPass_Sa f e_DisDec consider all potential AV passage cases across different numbers of
network nodes and their consensus outcomes. Therefore:

PPass_Sa f e_DisDec

=
nnet−1

∑
m1=⌈ nnet−1

2 ⌉
(

(
nnet −1

m1

)
pm1

link(1− plink)
nnet−1−m1

m1

∑
m2=⌈ nnet−1

2 ⌉
(

(
m1

m2

)
pm2

link(1− plink)
m1−m2PPass_Sa f e2))

(4.29)

PPass_Sa f e2 = Pm2
S_WIDCSPnnet−m2

S_Net PNMAX−nnet
S_Nor (4.30)

The probability of AVs passing safely under the condition of IDC with distributed
network can be determined by combining (4.23) and (4.28).

4.7 Simulations

In this section, we conduct simulations on the safety model of on-ramp merging under
three distinct scenarios: no communication, SID scheme within centralized decision sys-
tem, and WIC scheme within WIDCS. Moreover, we compared the reliability of two dif-
ferent decision-making systems in ad hoc networks through simulation.
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4.7.1 Wireless Link Success Rate

According to Eq. (4.6), we derive the link success rate when the SINR strength at the
receiving node exceeds a specified threshold, using this value as the link success rate
parameter plink for subsequent simulations. In the FSPL model adhering to the IEEE
802.15.4 protocol, the physical layer operates in the 2.4 GHz frequency band with f set
to 2.4 GHz. For the SINR models in Eq. (4.1) and Eq. (4.3), we set the transmission
power Ptrans at 50 dBm and the combined noise and interference power Pnoise + Pinter f e at
10 dBm. We then evaluate the vehicle distance distribution model in Eq. (4.5), assuming
a vehicle flow rate of 30 to 60 veh/min and an average vehicle speed of 40 km/h with a
standard deviation of 25 km/h and the number of speed level Kvel is 7.

Figure 4.9: Relationship between the preset SINR threshold and wireless link success rate

Fig. 4.9 shows the relationship curve between the communication link success rate and
the preset SINR threshold. It can be seen that as the SINR threshold is set higher, it will
become more and more difficult to reach such SINR for each data signal, and the success
rate of the communication link will naturally decrease. Here we assume that the receiving
SINR threshold is -10 dbm, and the communication link success rate is 0.99. We can use
this value as a reference for subsequent Simulations.
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4.7.2 Decision-Making Reliability

Table 4.2: Summary of Parameters

Parameter Value
Probability of successful link transmission plink 0.99
Centralized network reliability PCenSta 0.99
Node reliability in distributed network PDisNode 0.99
Safety without V2X PS_Nor 0.990
Safety with network PS_Net 0.995
Safety with centralized decision and SID PS_SID 0.995
Safety with WIDCS and WIC PS_WIDCS 0.999

We assess the reliability of IDC across varying node counts and network complexities,
detailed in (4.22), alongside the reliability of centralized decision-making systems, out-
lined in (4.9). For ease of reference, all relevant parameters are summarized in Table 4.2,
and adjustments are made based on specific conditions.

Fig. 4.10 illustrates that as the number of nodes requiring passage through the on-ramp
merge area increases, the probability of achieving distributed consensus exhibits fluctua-
tions with a general upward trend, in contrast to the reliability of centralized decision-
making, which declines. This divergence stems from the inherent fault tolerance of dis-
tributed consensus mechanisms. Specifically, Intelligent-Raft reliability is less likely to
decrease with the addition of nodes due to its distributed nature. Conversely, centralized
decision-making’s reliability is heavily reliant on the central node’s reliability, which di-
minishes as the node count and consequent load increase. Furthermore, Fig. 4.10 also
shows the reliability of the distributed Intelligent-Raft consensus system consistently sur-
passes that of centralized decision-making. Thus, compared to centralized systems, dis-
tributed consensus significantly enhances the reliability and stability of intelligent, con-
nected, and autonomous systems.

Additionally, the difficulty of establishing or joining the network significantly influ-
ences the reliability of subsequent decisions. As depicted in Fig. 4.10, both centralized
decision-making and distributed Intelligent-Raft systems demonstrate that higher Pf orming

increases the likelihood of successful decision outcomes, thereby boosting the overall re-
liability of the decision-making process. This effect is more pronounced and stable in
scenarios with a higher total number of nodes. The findings indicate that the reliability
of the wireless ad hoc network improves the reliability of both centralized and distributed
decision-making systems.
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Figure 4.10: Reliability of centralized and distributed decision making system under wire-
less ad hoc network

4.7.3 AVs Safety in Different Decision-Making Systems and Schemes

The probabilities of safe passage with the WIC scheme within WIDCS, with the SID
scheme in a centralized decision-making system, and without Internet of Vehicles support
are calculated using (4.27), (4.15), and (4.7), respectively.

It can be seen intuitively from Fig. 4.11 that the safety probabilities under varying con-
ditions exhibit a declining trend as the total number of nodes increases. In addition, with
the help of the WIC solution based on WIDCS, the probability of AVs passing the on-ramp
merging area safely is always much higher than the other two cases. The probability of
AVs passing safely with the assistance of the SID solution based on centralized decision-
making is also higher than without any communication interaction. Setting PS_SID and
PS_WIDCS at 0.999 still shows WIDCS as safer than centralized decision systems. Further-
more, even when both PS_Nor and PS_SID are set at 0.995, centralized systems outperform
non-communicative scenarios. This demonstrats that the substantial safety benefits of both
WIDCS and centralized decision-making in enhancing on-ramp merging safety for AVs,
with WIDCS offering superior improvements.
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Figure 4.11: Safety of AVs in on-ramp merging scenarios without communication sys-
tems, with centralized decision-making system, and with WIDCS

Regarding the foundational principles, the reliability of centralized decision-making
is primarily dependent on the central node, as illustrated in (4.14). As node numbers
increase, the central node’s reliability diminishes, adversely impacting the safety of au-
tonomous driving reliant on this system. Conversely, distributed decision-making demon-
strates improved reliability with an increasing number of nodes, as defined in (4.26). Be-
cause this reliability derives from the collective reliability of all participating nodes, rather
than a single one, underscoring the enhanced safety provided by WIDCS. Vehicles lacking
communication systems are forced to depend solely on their internal perception and judg-
ment, lacking crucial collaborative data. This shortcoming makes them less safe in certain
situations compared to systems that utilize communication-based decision-making.

4.8 Experiments

In this section, we verify the feasibility of WIDCS by practically testing the throughput
and consensus success rate of the RaBee. In addition, through the integration of the RaBee
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and AVs, we recreate the experimental on-ramp merging scenario to examine the impact
of different decision-making methods and different traffic schemes on AV safety. The
following paragraphs introduce the setup and the process of the experiments. Finally, we
analyze the experimental data.

Figure 4.12: JetRacer Pro autonomous vehicle equipped with a RaBee module

4.8.1 Hardware Setup

As shown in Fig. 4.12, the JetRacer Pro is a high-performance AI racing car noted for its
rapid speed. It is equipped with the NVIDIA Jetson Nano, a small but powerful AI com-
puter that provides the computing power needed for tracking roads and detecting objects.
In the experiment, each Jetracer AV is equipped with a RaBee module that communicates
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Figure 4.13: 2 JetRacers assisted by RaBee pass on-ramp merging area

Figure 4.14: 6 JetRacers assisted by RaBee pass on-ramp merging area
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via UART. The ZigBee module manufactured by DIGI carried by the RaBee supports half-
duplex mode, with a data speed of 250 Kb/s, a transmission power of 20 dBm, a trans-
mission frequency of ISM 2.4GHz. In addition, the MCU (STM32F407ZGT6) has an
operating principal frequency of 168MHz, external expansion heap memory size is 1MB,
and the SD card size is 4GB for storing history consensus log and data. Moreover, during
the data transmission stage (same for reception), the data needs to be transferred from the
MCU to the ZigBee module first, and then transmitted to the free space wirelessly. The
slowest link in each transmission will affect the performance of the entire system. So we
increase the baud rate of the MCU’s UART protocol as much as possible, and set the baud
rate for interaction with the ZigBee module to 921600.

4.8.2 Experimental Setup

Experiment 1

In research of the consensus throughput of RaBee, various numbers of integrated modules
are tested to evaluate system performance. Initially, upon activation, the RaBee nodes
automatically establish an ad hoc network via their ZigBee modules and prepare for the
consensus process. Following consensus, RaBees store the data on SD cards before exe-
cution. Throughput is assessed by measuring the time required for different node counts
to achieve consensus, averaging results across 30 trials.

We also investigates how the consensus success rate varied from different number of
RaBee nodes. We tested three rounds of experiments in total, and took the average of the
three experiments as the final consensus success rate. For each round of experiments, we
test the consensus success rate when there are 3 to 9 RaBees in the network. For each test,
we repeatedly triggered the consensus initialization 100 times and recorded the number
that the consensus was finally completed.

Experiment 2

To evaluate the enhancement of on-ramp merging safety by the RaBee system with WIC
schemes, we conducted an experimental scenario, depicted in Fig. 4.13 and 4.14. We
established a distributed cluster consisting of one RSU and two to eight JetRacers, each
equipped with a RaBee module that autonomously established a ZigBee network at the
start of the experiment. The RSU initiates a round of consensus to determine the merging
order, with all AVs merging according to their assigned WIC. The safety probability for all
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vehicles during merging is denoted as PS_WIDCS if the consensus is successful, and PS_Net

if not.
For comparison, we also assessed the safety of AVs under a centralized decision-

making system, which relies on real-time SID updates by the central node for vehicle
merging. The safety probability for each JetRacer under successful SID updates is PS_SID,
and PS_Net if updates fail. We evaluate the system safety by monitoring the collision rate
among JetRacers in each cluster.

To clearly demonstrate the influence of the communication decision system on AV
safety, we preset the parameters as follows: PS_Nor = 0, PS_Net = 0.5, PS_WIDCS = 0.95, and
PS_SID = 0.9. In the experiment, each vehicle simulates its accident rate using a software
random process based on its specific conditions and preset parameters.

4.8.3 Experimental Results

Experiment 1

Table 4.3: RaBee Quantity versus Consensus Performance

Quantity Latency (ms) Consensus
of Nodes Start from Followers Success Rate

3 328.8 0.980
4 355.6 0.980
5 359.1 0.990
6 400.3 0.997
7 405.8 0.997
8 452.1 1.00
9 455.0 1.00

Table 4.3 presents the average latency for RaBee consensus under varying node counts.
As node numbers increase, consensus time clearly rises, since the leader must coordinate
more followers, lengthening the confirmation process. Notably, consensus times for ad-
jacent node counts are similar; for example, clusters of four and five nodes both take
around 350 ms. This is because consensus is achieved as soon as the leader receives
successful acknowledgments from over half the nodes. Once this threshold is met, the
leader updates and broadcasts the heartbeat, rendering additional acknowledgments from
remaining nodes irrelevant to the current round’s consensus. Thus, three successful ac-
knowledgments are needed regardless of whether there are four or five nodes.

The third column of Table 4.3 presents the consensus success rates for varying numbers
of RaBee nodes. With three nodes in the network, the success rate is approximately 0.98,
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increasing to 0.997 when the node count reaches six. Beyond six nodes, the probability of
achieving successful consensus nears 1.0. Experimental results show a consistent upward
trend in the success rate as node numbers increase, suggesting enhanced system fault
tolerance in line with theoretical simulation. This progression highlights the increasing
robustness of WIDCS with additional nodes.

Experiment 2

Table 4.4: AV Safety under Different Conditions

Quantity AV Safety with WIC AV Safety with SID
of Nodes and RaBee and Central Decision System

3 0.84 0.76
4 0.82 0.64
5 0.78 0.52
6 0.72 0.40
7 0.70 0.34
8 0.68 0.26
9 0.64 0.22

Table 4.4 shows the frequencies of AVs safely navigating the on-ramp merging area
under various conditions. Both in IDC frameworks and centralized decision-making sys-
tems, the safety of AVs declines as the number of nodes increases, aligning with simulation
results. The data also reveal that AVs assisted by the distributed Intelligent-Raft generally
exhibit higher safety levels compared to those managed by centralized decision-making
systems. These experimental results conclusively demonstrate that the WIDCS enhances
the safety of autonomous driving in on-ramp merging scenarios.

Although the experiment is conducted in a laboratory setting, the results provide mean-
ingful implications for real-world on-ramp merging scenarios. In practice, AVs equipped
with WIDCS would be able to exchange real-time information—such as speed, posi-
tion, and intent—with surrounding vehicles, enabling further coordinated joint decision-
making. This level of interaction allows AVs to negotiate merging sequences more smoothly,
reduce uncertainty, and respond to dynamic traffic conditions, thereby enhancing overall
safety and traffic flow in real highway environments.

4.9 Conclusion

In this chapter, we successfully implemented the Intelligent-Raft consensus protocol on
the embedded hardware platform RaBee, pioneering practical IDC systems with ad hoc
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network capabilities. The IDC-based method, known as WIC, is introduced to enhance
the safety of autonomous driving during on-ramp merging. Our developed mathematical
model demonstrates the reliability of both centralized and distributed decision systems
and analyzes the safety of AVs navigating on-ramp merging scenarios under different
decision-making frameworks. Simulation results highlight the advantages of applying
DC and confirm that AV safety with WIDCS significantly outperforms traditional central-
ized decision-making approaches. Experimental validation was also conducted using the
RaBee module in recreated on-ramp merging scenarios with JetRacer AVs. The consis-
tency between experimental and simulation outcomes underscores the efficacy of WIDCS
in reducing accident rates, laying a solid foundation for further exploration of its practical
deployment.

Nevertheless, several limitations should be acknowledged. The RaBee system utilizes
the ZigBee communication protocol, which may not meet the stringent requirements of
automotive-grade applications, potentially limiting its applicability under high-demand
conditions. Furthermore, while the Intelligent-Raft protocol shows promise, additional
empirical studies are needed to verify its performance across dynamic and heterogeneous
environments and to assess its adaptability to varying decision-making processes. Even
with these limitations, the present work provides a strong basis for future research aimed
at advancing wireless IDC systems for real-world autonomous driving scenarios.



Chapter 5

HIntS: Heterogeneous Intelligent Joint
Decision for Connected and
Autonomous System

5.1 Introduction

Joint decision-making enables CAS to execute advanced automation tasks and enhance
cooperation, becoming more essential as the individual intelligence encounter more chal-
lenges in increasingly complex and dynamic scenarios. Joint decision-making mecha-
nisms are primarily categorized into centralized and distributed approaches, each offering
distinct advantages [130–132]. CDM enables nodes to upload data to a central control hub,
which makes decisions and issues commands for execution [133]. By centralizing deci-
sion power, CDM has simplified joint-decision process and can lead to more efficient and
straightforward service, which is ideal for situations requiring rapid decision response.
In addition, the single source of decision ensure unified control across all nodes in the
network, which enhance system consistency by preventing individual nodes from making
isolated decisions that could disrupt overall operations [134]. The efficiency and unifor-
mity of CDM have long established it as the primary solution for joint-decision [135–137].

However, due to performance limitations such as reliability, privacy, scalability, and
the risk of single points of failure, CDM faces challenges in certain practical applications,
particularly in scenarios with a large number of nodes or stringent robustness require-
ments [138–140]. Distributed decision-making has recently gained widespread attention
for addressing limitations inherent in centralized systems. Decentralizing decision power
reduces system reliance on a central control node, thereby enhancing both robustness and
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scalability while mitigating the risk of single points of failure.
IDC, as a novel distributed decision-making mechanism, has recently gained substan-

tial attention in academia. This mechanism enables ICA nodes to reach joint-decisions
through mutual agreement facilitated by standardized distributed protocols. In addition
to the inherent advantages of distributed decision-making, IDC mechanism also provides
fault tolerance and data consistency, a feature lacking in CDM.

Despite the various advantages of IDC and CDM, they still encounter challenges in
practical applications. First, current IDC mechanisms struggle to achieve globally optimal
solutions. Moreover, relying on a single type of joint-decision mechanism is insufficient
to meet the diverse requirements of various applications. This chapter addresses these two
challenges and proposes solutions, which are subsequently verified and analyzed.

5.1.1 Challenge 1

Figure 5.1: The workflow of Intelligent-Raft and proposed Converging-Raft
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IDC is not always able to achieve a globally optimal decision. We use Intelligent-Raft,
an IDC protocol adapted from the Raft crash fault tolerance algorithm and designed for in-
creasingly intelligent and autonomous nodes, as an example. Intelligent-Raft implements
the joint-decision process based on a decision proposal made by one node, as shown in
the workflow in Fig. 5.1. All participating nodes independently vote to either accept or
reject the proposal based on their intelligent evaluation, without the option to modify or
improve it [2] [12]. This limitation often results in a suboptimal joint decision, which can
negatively impact overall system performance. For instance, in an vehicles platooning,
if one AV proposes a suboptimal route due to incomplete traffic data, other vehicles may
follow this decision, leading to delays or inefficient navigation.

It is inspiring that if nodes are able to discuss and improve the proposal during the con-
sensus process, a globally optimal joint-decision could be achieved for specific scenarios.
However, no existing IDC mechanism currently takes this capability into account. Thus,
there is a need for an enhanced IDC protocol that is thoroughly analyzed and verified, ca-
pable of leveraging the collective intelligence of all nodes to facilitate convergence toward
a globally optimal joint-decision.

5.1.2 Challenge 2

Centralized and distributed decision-making mechanisms each have their strengths and
weaknesses. For example, CDM enables fast decision-making but relies heavily on trusted
public infrastructure. On the other hand, IDC excels in scalability and fault tolerance, but
consensus-based protocols often bring more latency. Due to their unique characteristics, a
single type of mechanism is insufficient to meet the diverse requirements of all scenarios in
a complex application. We use autonomous driving as an example. In vehicle platooning
scenario, AVs demands real-time traffic information updates. CDM efficiently meets these
requirements, whereas the complexity of IDC may introduce unnecessary latency. On the
other hand, complex urban scenarios often include a large number of nodes and need high
robustness for reaching joint-decision, while CDM faces challenges.

Additionally, the implementation of the joint-decision mechanism must rely on the
underlying wireless network structure. Each network structure possesses unique charac-
teristics that directly affect the joint-decision performance. For instance, while ad hoc
network improve scalability of cellular networks, their limited transmission range restricts
joint-decision to smaller areas.

Consequently, heterogeneous joint-decision mechanisms and network structure may
be needed depending on the situation especially in dynamic and complex scenarios. To
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more accurately tailor the solution, it is worth to analyze the performance of various com-
binations of joint-decision mechanisms (e.g., CDM, Intelligent-Raft, Converging-Raft)
and network architectures (e.g., cellular networks, distributed ad hoc networks), and inte-
grates them into one system to better meet the diverse requirements of different applica-
tions.

5.1.3 Literature Review

In recent works, there are few related studies on proposing and analyzing DC protocols in
wireless communication scenarios. [141] introduced a belief model based on Dempster-
Shafer theory to address uncertainty in multi-agent systems and proposed a method to gen-
erate random networks that ensure consensus decision-making under trust boundary con-
straints. Enhancing decision-making performance in dynamic environments, [142] pro-
posed a cooperative algorithm called "Restarted Bayesian Online Change Point Detection"
(RBO-Coop-UCB), which combines change point detection with multi-agent information-
sharing mechanisms. Similarly, [143] developed a distributed consensus algorithm that
improves efficiency, robustness, and credibility in service-oriented IoT by optimizing
multi-parameter matching values and leveraging cluster-based local consensus calcula-
tions. The reliability of Raft under low communication link reliability was analyzed
by [83], providing deployment guidelines for its application in the Industrial Internet of
Things. Moreover, [17] examined the communication resources required for various DCs
in wireless networks, highlighting their respective challenges and advantages. These stud-
ies primarily focus on either designing novel consensus algorithms to achieve efficient
data consensus in uncertain wireless environments or analyzing the performance of tra-
ditional DC mechanisms in these settings. However, the influence of node intelligence
on distributed consensus mechanisms remains underexplored. With advancements in AI,
wireless devices are becoming increasingly intelligent, requiring joint decision-making
processes that allow nodes to deeply deliberate and seamlessly exchange opinions to reach
consensus. Additionally, many studies neglect the global optimality of the decisions made,
a critical aspect as different joint decisions can have varying impacts on intelligent sys-
tems, including potentially negative ones. Further research is needed to develop DC proto-
cols that not only address performance in wireless environments but also ensure globally
optimal joint decisions that positively impact smart devices.

Other studies have explored DC algorithms to address challenges across diverse ap-
plication scenarios. For instance, a novel DC algorithm tailored for blockchain systems
in multi-hop wireless IoT networks was introduced by [144], targeting the complexities
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of wireless environments while achieving asymptotically optimal time complexity and en-
ergy efficiency. To enhance decision-making in underwater passive target detection, [145]
proposed an autonomous distributed consensus network that employs relative entropy for
effective information fusion, enabling multiple sensor nodes to achieve consistent detec-
tion outcomes in complex environments. A general DC algorithm enabling each sensor
node in a wireless sensor network to compute the average log-likelihood ratio (LLR) of
local observations and obtain a complete information vector—or its estimate—was pro-
posed by [146], significantly improving decision-making capabilities. Addressing energy
constraints in wireless sensor networks, [147] presented a multi-period scheduling ap-
proach based on a distributed consensus algorithm to optimize sensor working modes and
maximize network utility. [148] combines a two-hop Raft-based consensus mechanism
with dynamic negotiation to improve the coordination and reliability of driving decisions
in delay-sensitive applications. However, these studies typically focus on a single type
of DC protocol and do not explore combining different consensus protocols to optimize
system performance across various applications. Relying solely on one joint decision pro-
tocol may fail to address the diverse requirements of different applications, such as balanc-
ing latency, scalability, or achieving optimality. This limitation underscores the need for
further research into hybrid approaches that leverage the strengths of multiple consensus
mechanisms.

In addition, most research in this area remains theoretical or simulation-based, with
few tangible hardware implementations or verification. It’s more inspiring to design a
hardware platform to practically verify the feasibility and improvement of wireless joint-
decision protocol. Furthermore, the effect of wireless network structure on the perfor-
mance of joint-decision is often underestimated or neglected.

5.1.4 Contributions

In this chapter, we propose Converging-Raft, a novel IDC protocol designed to leverage
the integrated intelligence of all nodes to achieve a globally optimal solution, addressing
Challenge 1. To address Challenge 2, We propose HIntS, a versatile joint-decision ar-
chitecture that integrates CDM, Intelligent-Raft, and Converging-Raft mechanisms within
a hybrid wireless ad hoc and cellular network framework, designed to meet diverse ap-
plication requirements in ICA scenarios. We design and implement the practical HIntS,
designated as 5G-MInd, which is a fully functinoal hardware module that integrates both
hardware and software within an embedded framework. We develop an analytical reli-
ability model of HIntS and derived the latency under its different working modes using
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the established Markov chain model. The simulation results combined with qualitative
analysis demonstrate the different advantages of HIntS working modes and offer valu-
able guidance for future joint-decision mechanism deployment. Utilizing the 5G-MInd
platform, we experimentally tested the reliability and latency performance across differ-
ent working modes. The experimental data validate the simulation results and theoretical
analysis.

5.2 Methods and Results

This section presents the principles of Converging-Raft and HIntS, and summarizes the
main results, providing a comparative analysis of fault tolerance reliability, and la-
tency performance across different modes. Detailed mathematical models, simulation
analyses, and experimental results will be presented in subsequent sections.

5.2.1 Converging-Raft

While Intelligent-Raft falls short in certain applications due to limitations imposed by the
initiator’s intelligence, we introduce Converging-Raft which is an IDC mechanism that
derived from traditional Raft protocol with the workflow depicted in Fig. 5.1. Following
the Raft protocol, nodes are categorized as followers, candidates, and a leader [2]. Each
Converging-Raft process comprises five stages: Topic Establishment, Opinion Expression,
Converging Discussion, Opinion Vote, Decision Commitment.

Converging-Raft operates by electing a Leader from within a cluster of candidates prior
to initiating the consensus process, with the Leader managing the consensus converging
procedure. Once the Leader is elected, the remaining Candidates revert to Follower status.
During the Topic Establishment stage, the Leader broadcasts a joint-decision topic requir-
ing further discussion to all nodes. In the Opinion Expression stage, participating ICA
nodes broadcast their proposals to all other nodes based on their individual perspectives
about the topic in order to allow them to think about all ideas, although these proposals
may not represent optimal solutions. In the Converging Discussion stage, nodes evalu-
ate and analyze all received proposals. Regarding this joint-decision topic, since nodes
have seen all the solutions proposed by others, they can carefully compare these solutions
and select the one they believe is best based on their own analysis. Alternatively, after
comparing the proposals, nodes may recognize potential for optimization and calculate an
improved proposal. The Converging Discussion stage plays a critical role in providing
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Table 5.1: Performance Comparison of Different Working Modes of HIntS

HIntS Modes Fault Tolerance Global Optimal Transmission Scalability Reliability LatencySolution Coverage
Intelligent-Raft within

Strong No Medium High High Low
Ad Hoc Network

Converging-Raft within
Strong Yes Medium High Lowest High

Ad Hoc Network
CDM within

Ad Hoc Network
Intelligent-Raft within

Strong No Wide Medium Highest Medium
Cellular Network

Converging-Raft within
Strong Yes Wide Medium Low Highest

Cellular Network
CDM within

Weak No Wide Medium Dynamic Lowest
Cellular Network

crucial optimization process of joint-decision. In the Opinion Vote stage, nodes vote for
their preferred solution, submitting their choice to the Leader based on prior discussions
and analysis. In the Decision Commitment stage, a consensus is reached when more than
50% of the nodes evaluate the same one proposal as the optimal solution. The Leader then
updates the final optimal proposal in the cluster network for the following execution.

Through comparison, iteration, and convergence among ICA nodes, the final joint-
decision reflects the collective intelligence of the cluster, ensuring the safest and most
efficient performance for the system. However, this protocol also bring new challenges
such as leading to higher latency owing to increased interacting procedures. Thus, it’s
necessary to analyze and compare the performance of Converging-Raft with Intelligent-
Raft and CDM in Section 5.5, with the results summarized in Section 5.2.3.

5.2.2 Heterogeneous Intelligent Joint-Decision System

To enable ICA nodes to utilize various joint-decision mechanisms and network structures,
we propose HIntS, a unified system that integrates heterogeneous joint-decision mecha-
nisms with diverse network architectures, as illustrated in Fig. 5.2. The heterogeneous
joint-decision mechanisms of HIntS include CDM, Intelligent-Raft and Converging-Raft.
The heterogeneous network structures include ad hoc network and cellular network. This
integration results in five possible working mode combinations: Intelligent-Raft within
an ad hoc network, Converging-Raft within an ad hoc network, Intelligent-Raft within a
cellular network, Converging-Raft within a cellular network, and CDM within a cellular
network. Each mode has its own strengths and limitations, making it a tangled choice in
real-world applications in order to balance the needs of different prospects.
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Figure 5.2: HIntS Architecture

5.2.3 Main Results

In this section, we would like to first present the main results in Table 5.1 to identify the
strength of different combination of joint-decision mechanisms and network architectures,
providing guidance for future deployment strategies. We will give the detailed mathe-
matical analysis in Section 5.4 and simulated results in Section 5.5. We exclude the
case of CDM within ad hoc network since CDM heavily depends on a central control
server, which is designed for high capacity and flexibility. In contrast, ad hoc network
nodes are less reliable as the central nodes compared to a dedicated central control server.
Therefore, this article focuses on the remaining five modes, with an initial analysis of each
indicator.

Thanks to the fault tolerance of the IDC mechanism, both Intelligent-Raft and Converging-
Raft can withstand up to 50% node failure, offering greater robustness compared to CDM.
Additionally, the distributed nature of IDC supports leader reelection in the event of the
Leader crash, ensuring system robustness and continuity. Converging-Raft’s key advan-
tage is its ability to achieve a globally optimal joint decision, making it ideal for applica-
tions that prioritize optimal performance. In addition, the choice of network architecture
also impacts transmission coverage and scalability. While ad hoc networks have a smaller
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geographical coverage than cellular networks, they can support a larger number of nodes
to reach consensus.

Next, we discuss the reliability performance. As shown in Table 5.1, Intelligent-Raft
within a cellular network offers the highest system reliability due to its relatively simple
process and the mature, stable architecture of cellular networks. Conversely, Converging-
Raft within an ad hoc network exhibits the lowest reliability. CDM reliability is dynamic,
decreasing as the number of connected nodes grows, due to the central control node’s
heavy dependence on the total number of nodes.

In terms of latency, CDM has the fastest decision rate due to its simplicity, whereas
Converging-Raft within a cellular network experiences the longest latency due to its com-
plex protocol and the relatively slower network transmission in cellular networks. It is
also clear that the complexity of the joint-decision mechanism has a greater impact on
final latency than the network structure.

The results demonstrate that each working mode of HIntS presents distinct advan-
tages. Intelligent-Raft within an ad hoc network excels in reliability and latency, provid-
ing a well-rounded solution. Converging-Raft within an ad hoc network enables global
optimal decision-making across a large number of devices. Intelligent-Raft within a cellu-
lar network offers the highest reliability, while Converging-Raft within a cellular network
extends optimal decision-making over a wide area. CDM, with the fastest processing,
supports rapid decision-making over long distances.

5.3 Design of 5G-MInd Module

5.3.1 5G-MInd Architecture

5G-MInd, short for 5G Mind Induction, is a fully functional HIntS module, as shown
in Fig. 5.3. For the hardware, a high-performance embedded MCU, specifically the
STM32F407ZGT6 chip with a powerful Cortex-M4 core running at up to 168MHz, pro-
vides the necessary computing power for joint-decision mechanisms. To support the mech-
anism’s memory requirements to manage a large number of parameters, data and runtime
status, an additional 1MB RAM chip (IS62WV51216) is connected to the MCU via a
Flexible Static Memory Controller (FSMC) parallel interface. For ease of debugging, we
integrated an OLED display and buttons as a human-computer interface (HCI) for status
monitoring, parameter setting, etc. Additionally, the power unit supplies stable power to
the system, and an SD card is used for ROM expansion, offering ample space to store
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processed consensus data.
Another key feature of 5G-MInd is the heterogeneous network architecture. For the

wireless ad hoc network in HIntS, we implemented the ZigBee network using the DIGI
XBee3 module, XB3-24Z8UM, operating in the 2.4GHz ISM band. The 5G architecture,
utilizing Quectel’s RM500Q-GL module, provides cloud connectivity for 5G-MInd, en-
abling seamless integration with cellular networks. The stackable design, illustrated in
Fig. 5.3, provides a compact structure for 5G-MInd, with the MCU system board and
RM500Q-GL dongle exchanging data via the UART interface using AT commands.

Figure 5.3: The hardware of 5G-MInd (2 copies)

The 5G-MInd software framework is designed to implement joint-decision mecha-
nisms and support network communication. The software application comprises five pri-
mary threads: three dedicated to CDM, Intelligent-Raft, and Converging-Raft, respec-
tively; one for HCI management; and one for managing the communication transceiver.
The 5G and ZigBee modules are connected to the MCU via UART interfaces, providing
wireless communication resources for the MCU tasks. Additionally, data agreed upon
through different joint-decision mechanisms are stored in a shared data pool, tagged ac-
cording to different working modes for traceability. 5G-MInd provides a comprehensive
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set of peripheral interfaces, allowing seamless integration into various ICA nodes, such as
AVs and industrial robots, to provide joint-decision services.

5.3.2 5G-MInd Network

Nodes equipped with 5G-MInd modules can perform joint-decision through the ZigBee
network. ZigBee, an advanced communication protocol based on the IEEE 802.15.4 stan-
dard, is specifically designed for low-power IoT scenarios. Its self-organizing capabil-
ity is a key advantage, supporting diverse network topologies—including star, tree, and
mesh—and operating effectively in dynamically changing environments. In cases of node
failure or environmental changes that block communication paths, the ZigBee network can
automatically reconfigure routes to maintain stable communication. This ensures a robust
network environment for the upper-layer joint-decision mechanisms of HIntS.

In addition, 5G-MInd nodes can provide joint-decision service through the cellular
network. In CDM, all participating nodes are connected to a central server which aggre-
gates the information uploaded by the nodes, generates a central decision, and distributes
it to all ICA nodes for execution. For Intelligent-Raft and Converging-Raft, the MQTT
protocol is required for network transmission.

MQTT (Message Queuing Telemetry Transport) is a lightweight protocol designed to
simplify communication between small devices and enhance data transmission efficiency
in bandwidth-limited environments. It involves three main roles: Publishers, who publish
messages to specific topics; Subscribers, who receive messages from topics they subscribe
to; and Broker, a third-party server that manage message delivery between publishers and
subscribers. In MQTT, a node can function as either a Publisher or a Subscriber. If data
needs to be transferred between two nodes, the sending node must first publish the data to
the Broker Server, which then forwards it to the receiving node. As the Broker continually
distributes messages across these nodes, the joint-decision will eventually be completed.

The following is an example of implementing Intelligent-Raft within a 5G cellular net-
work. All ICA nodes first establish a connection with the MQTT Broker, which manages
message forwarding and delivery essential for Intelligent-Raft using its publish-subscribe
model. In MQTT, a node can function as either a Publisher to send messages or a Sub-
scriber to receive them. The Leader publishes its messages to the topic <Intelligent-Raft:
LEADER>, to which all Followers subscribe in order to receive updates. Conversely,
Followers publish their messages to the topic <Intelligent-Raft: FOLLOWER>, which
the Leader subscribes to for receiving follower responses. As the Broker continually dis-
tributes messages across these topics, the Intelligent-Raft will eventually be completed.
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5.4 Mathematical Models

In this section, we establish mathematical models to analyze the reliability and latency of
the five working modes of HIntS to support the main results in Section 5.2. The frequently
used notations are summarized in Table 5.2.

5.4.1 Joint-Decision Reliability Analysis of HIntS

Intelligent-Raft Reliability within Ad Hoc Network

In ICA application, both nodes and links may fail in a wireless network at any stage
of the uplink or downlink in the Intelligent-Raft. We define consensus reliability as the
probability of successfully completing a consensus and use a fault tolerance model to
assess the impact of node and link reliability on Intelligent-Raft in wireless environments.

We assume that each node’s reliability and each communication link’s reliability are
random variables. Let the threshold for the number of faulty nodes be defined as f =

⌊n
2

⌋
,

given that Intelligent-Raft can tolerate up to half of the followers failing. We consider the
stage where the leader sends messages to followers as one downlink (DL) communication,
and the stage where a follower responds to the leader as one uplink (UL) communication.
Let Ω= {N1,N2,N3, . . . ,Nn} represent the set of n followers connected to the leader. Addi-
tionally, let the reliability of node i be a random variable PN

i , the reliability of the downlink
between node i and the leader be PDL

i , and the reliability of the uplink between node i and
the leader be PUL

i . During the consensus, let S1,x,S2,y,S3,z ⊆ Ω represent the set of non-
faulty nodes, the set of followers that successfully receive the leader’s message via DL,
and the set of followers whose messages are successfully received by the leader via UL,
respectively. The sizes of these sets are given by |S1,x| = x, |S2,y| = y, and |S3,z| = z. The
probability P(S1,x,S2,y,S3,z) represents the probability that all followers in S1,x are non-
faulty, all followers in S2,y have successful DL communication, and all followers in S3,z

have successful UL communication.
In the Intelligent-Raft consensus protocol, only the non-faulty nodes can receive mes-

sages from the leader by DL communication, and only the nodes that receives the leader’s
message can send the response back to the leader by UL communication. Therefore,
S3,z ⊆ S2,y ⊆ S1,x ⊆ Ω and z ≤ y ≤ x ≤ n. In addition, for the next state, the last state
contains all the information of previous states for the state transitions, e.g. the condi-
tional probability P(S3,z|S1,x,S2,y) is equal to P(S3,z|S2,y). Thus P(S1,x,S2,y,S3,z) can be
calculated as:
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Table 5.2: Frequently Used Notations

Notation Definition

f Maximum number of faulty nodes in IDC

n Number of followers in IDC

N Number of total nodes in HIntS

PN Node reliability

PUL Probability of successful uplink communication in ad hoc net-

work

PDL Probability of successful downlink communication in ad hoc net-

work

PMT DL Probability of successful downlink communication in cellular net-

work through MQTT

PMTUL Probability of successful uplink communication in cellular net-

work through MQTT

PIR_AH Probability of successful Intelligent-Raft in ad hoc network

PCR_AH Probability of successful Converging-Raft in ad hoc network

PIR_Cel Probability of successful Intelligent-Raft in cellular network

PCR_Cel Probability of successful Converging-Raft in cellular network

PCDM_Cel Probability of successful CDM in cellular network

DNode Node latency expectation

DLink Communication link latency expectation in ad hoc network

DBroker Broker expected state transfer Latency in cellular network

DIR_AH Latency of successful Intelligent-Raft in ad hoc network

DCR_AH Latency of successful Converging-Raft in ad hoc network

DIR_Cel Latency of successful Intelligent-Raft in cellular network

DCR_Cel Latency of successful Converging-Raft in cellular network

DCDM_Cel Latency of successful CDM in cellular network
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P(S1,x,S2,y,S3,z) = P(S1,x)P(S2,y | S1,x)P(S3,z | S2,y) (5.1)

where P(S1,x) represents the joint probability that the nodes in S1,x are non-faulty while
in CΩS1,x are faulty; P(S2,y|S1,x) represents the joint probability that downlink with nodes
in S2,y are successful while that in CS1,xS2,y are faulty; P(S3,z|S2,y) represents the joint
probability that uplink with nodes in S3,z are successful while that in CS2,yS3,z are faulty.

To facilitate the derivation, assuming node reliability, UL reliability and DL reliability
of different followers are independent, we have:

P(S1,x) = ∏
u∈S1,x

PN
u ∏

v∈CΩS1,x

(1−PN
v ) (5.2)

P(S2,y | S1,x) = ∏
u∈S2,y

PDL
u ∏

v∈CS1,x S2,y

(1−PDL
v ) (5.3)

P(S3,z | S2,y) = ∏
u∈S3,z

PUL
u ∏

v∈CS2,y S3,z

(1−PUL
v ) (5.4)

According to the Intelligent-Raft protocol, when the number of messages the leader
receives from the followers z is no less than n− f , where f =

⌊n
2

⌋
, the cluster will reach

consensus. Therefore, the probability that the cluster successfully reaches an Intelligent-
Raft consensus within ad hoc network, PIR_AH , is the sum of probabilities of all the
(S1,x,S2,y,S3,z) satisfying n ≥ x ≥ y ≥ z ≥ n− f and Ω ⊇ S1,x ⊇ S2,y ⊇ S3,z

PIR_AH = ∑
n≥z≥n− f ,Ω⊇S3,z

∑
n≥y≥z,Ω⊇S2,y⊇S3,z

∑
n≥x≥y,Ω⊇S1,x⊇S2,y

P(S1,x,S2,y,S3,z)
(5.5)

The three summations is to traverse all possible combinations of possible node sets for
given x, y and z. Through mathematical derivations, we transform Eq. (5.5) as:

PIR_AH = ∑
n≥k≥n− f ,Ω⊇SJ,k

∏
u∈SJ,k

PIRsub1
u ∏

v∈CΩSJ,k

(1−PIRsub1
v ) (5.6)

where S j,k is a running variable of subset of nodes with |SJ,k| equal to k and PIRsub1
i =

PN
i PDL

i PUL
i .

According to Eq. (5.1)–(5.6), we can analyze the influence of the reliability of each
node/link on the final consensus reliability which can be universally applied to arbitrary
practical situation as long as the reliability of node, UL and DL are given.
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Converging-Raft Reliability within Ad Hoc Network

Although Converging-Raft and Intelligent-Raft are both Raft extensions designed for joint-
decision applications, Converging-Raft includes additional stages for decision conver-
gence, which can impact system reliability. As outlined in Section 5.2, the Converging-
Raft consists of five stages: Topic Establishment, Opinion Expression, Converging Discus-
sion, Opinion Vote and Decision Commitment. With the exception of Opinion Expression
and Converging Discussion, which utilize fully connected communication, all other stages
depend on either UL or DL communication with the leader. We use the parameters defined
in the ad hoc network model, where the reliability of node i is PN

i , the reliability of the DL
between node i and the leader is PDL

i , and the reliability of the UL is PUL
i . For the fully

connected Converging Discussion and Opinion Vote stage, we assume that their reliability
follow a binomial distribution with the number of non-faulty nodes.

In Converging-Raft, let S1,x ⊆ Ω represents the set of non-faulty nodes, S2,y,S5,q ⊆ Ω

represent the sets of followers that successfully communicate with the leader and S3,z,S4,p ⊆
Ω represent the sets of nodes that successfully survive the Converging Discussion and
Opinion Vote stages. As only nodes that survived the previous stage can execute the next
stage, we derive the following:

P(S1,x,S2,y,S3,z,S4,p,S5,q)

= P(S1,x)P(S2,y | S1,x)P(S3,z | S2,y)P(S4,p | S3,z)

P(S5,q | S4,p)

(5.7)

We assume that the survival criterion of a node during the Converging Discussion and
Opinion Vote stages is that it remains active and receives at least one message in each
stage. The success rate of each node, PS(a,b), in these two stages is:

PS(a,b) = PN
a (1− ∏

v∈b−1
(1−PDL

v )) (5.8)

Where the a indicates which node and the b represents the number of nodes from the
previous stage. From this, we can derive the reliability for the Converging Discussion and
Opinion Vote stages:

P(S3,z | S2,y) = PCD_AH

=

(
S2,y

S3,z

)
∏

u∈S3,z

PS(u,S2,y) ∏
v∈CS2,y S3,z

(1−PS(v,S2,y))
(5.9)
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P(S4,p | S3,z) = POV _AH

=

(
S3,z

S4,p

)
∏

u∈S4,p

PS(u,S3,z) ∏
v∈CS3,zS4,p

(1−PS(v,S3,z))
(5.10)

Where PCD_AH denotes the reliability of the Opinion Vote stage, while POV _AH represents
the reliability of the Converging Discussion stage.

According to the Converging-Raft protocol, when the number of messages the leader
receives from the followers in Opinion Vote q is no less than n − f , where f =

⌊n
2

⌋
,

the cluster will reach consensus. Therefore, the probability that the cluster successfully
reaches a Converging-Raft consensus in ad hoc network, PCR_AH , is the sum of proba-
bilities of all the (S1,x,S2,y,S3,z,S4,p,S5,q) satisfying n ≥ x ≥ y ≥ z ≥ p ≥ q ≥ n− f and
Ω ⊇ S1,x ⊇ S2,y ⊇ S3,z ⊇ S4,p ⊇ S5,q.

PCR_AH = PCD_AHPOV _AH×

∑
n≥k≥n− f ,Ω⊇SJ,k

∏
u∈SJ,k

PCRsub1
u ∏

v∈CΩSJ,k

(1−PCRsub1
v ) (5.11)

where SJ,k is a running variable of subset of nodes with |SJ,k| equal to k and PCRsub1
i =

PN
i PDL

i PUL
i .

Intelligent-Raft Reliability within Cellular Network

To implement Intelligent-Raft in cellular networks with the MQTT protocol, as described
in Section 5.3, the key difference from ad hoc networks is the Broker’s role in forwarding.
Each message transfer is split into two segments: Follower to Broker and Broker to Leader.
The Broker’s failure rate at each sub-stage of the process is denoted as PBrokerS.

Additionally, we assume the link success rate of node i accessing the MQTT Broker
is a random variable PMT linkS

i , the reliability of the DL between the leader and node i is
PMT DL

i , and the reliability of the UL between node i and the leader is PMTUL
i . To simplify

the differentiation, we assume that the random variables for the MQTT’s DL and UL of
each node are identical. Therefore, we can obtain:

PMT DL
i = PMTUL

i = PMT linkS
i ×PBrokerS ×PMT linkS

i (5.12)

To facilitate the derivation, assuming node reliability, UL reliability and DL reliability
of different followers are independent. We can still apply Eq. (5.1) to derive the reliability
of Intelligent-Raft in a cellular network. Additionally, by replacing the communication



CHAPTER 5. HINTS: HETEROGENEOUS INTELLIGENT JOINT DECISION FOR
CONNECTED AND AUTONOMOUS SYSTEM 113

link model in Eqs. (5.3) and (5.4) with the MQTT link model, we obtain the following:

P(S2,y | S1,x) = ∏
u∈S2,y

PMT DL
u ∏

v∈CS1,x S2,y

(1−PMT DL
v ) (5.13)

P(S3,z | S2,y) = ∏
u∈S3,z

PMTUL
u ∏

v∈CS2,yS3,z

(1−PMTUL
v ) (5.14)

As mentioned above, the fault tolerance threshold of Intelligent-Raft is f =
⌊n

2

⌋
. There-

fore, the probability that the cluster successfully reaches an Intelligent-Raft consensus
with ad hoc network PIR_Cel is the sum of probabilities of all the (S1,x,S2,y,S3,z) satisfying
n ≥ x ≥ y ≥ z ≥ n− f and Ω ⊇ S1,x ⊇ S2,y ⊇ S3,z

PIR_Cel = ∑
n≥k≥n− f ,Ω⊇SJ,k

∏
u∈SJ,k

PIRsub2
u ∏

v∈CΩSJ,k

(1−PIRsub2
v ) (5.15)

where S j,k is a running variable of subset of nodes with |SJ,k| equal to k and PIRsub2
i =

PN
i PMT DL

i PMTUL
i .

Converging-Raft Reliability within Cellular Network

For Converging-Raft within cellular network, we still consider reliability by analyzing
each consensus stages. let S1,x ⊆Ω represents the set of non-faulty nodes, S2,y,S3,z,S4,p,S5,q ⊆
Ω represent the sets of nodes that successfully survive the Topic Establishment, Opinion
Expression, Converging Discussion and Opinion Vote stages, respectively. We can still
apply Eq. (5.7) to derive the reliability of Converging-Raft in cellular network.

In addition, we use the parameters defined in previous cellular network model, where
the reliability of node i is PN

i , the reliability of the DL between node i and the leader
is PMT DL

i , and the reliability of the UL is PMTUL
i . We replace the communication link

model used in Converging-Raft within ad hoc network with the MQTT link model which
is illustrated in Eq. (5.12). So the success rate of each node in Converging Discussion and
Opinion Vote stage is:

PS_MT (a,b) = PN
a (1− ∏

v∈b−1
(1−PMT DL

v )) (5.16)

By substituting PS in Eq. 5.9 and Eq. 5.10 with PS_MT , we can derive the reliability for
the Converging Discussion and Opinion Vote stages as PCD_Cel and POV _Cel , respectively.

As the fault tolerance of Converging-Raft is also f =
⌊n

2

⌋
, the probability that the

cluster successfully reaches a Converging-Raft consensus within cellular network PCR_Cel
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is the sum of probabilities of all the (S1,x,S2,y,S3,z,S4,p,S5,q) satisfying n ≥ x ≥ y ≥ z ≥
p ≥ q ≥ n− f and Ω ⊇ S1,x ⊇ S2,y ⊇ S3,z ⊇ S4,p ⊇ S5,q.

PCR_Cel = PCD_CelPOV _Cel×

∑
n≥k≥n− f ,Ω⊇SJ,k

∏
u∈SJ,k

PCRsub2
u ∏

v∈CΩSJ,k

(1−PCRsub2
v ) (5.17)

where SJ,k is a running variable of subset of nodes with |SJ,k| equal to k and PCRsub2
i =

PN
i PMT DL

i PMTUL
i .

CDM Reliability within Cellular Network

The reliability of CDM depends on the reliability of the central server and the number of
nodes it connects to. Given that its stability diminishes as the number of nodes increases,
we assume it has the following distribution:

PCDM_Cel = PCenSta_max −λ ∗ e−k∗10−N/10 (5.18)

where k is the decay constant and PCenSta_max is the maximum value for central server
reliability.

5.4.2 Joint-Decision Latency Analysis of HIntS

Intelligent-Raft Latency within Ad Hoc Network

In ad hoc networks, node and link latency vary with their state changes, affecting over-
all latency. Since each state transition depends only on the current state, the consensus
process, considering node and link latency, satisfies the Markov property. Thus, Markov
chains can be used to model the state transition matrix of nodes and links, deriving the
steady state to estimate latency expectations. The overall latency is then derived based on
the operation of Intelligent-Raft in the ad hoc network. We begin with the state transition
matrix of ICA nodes.

We divide nodes into four states, namely Idle, Working, Busy, Crash. There is a certain
probability that these states can transition between one another. For example, when the
node is Idle, there is a probability of pnode

IW = P(Working|Idle) to transfer to the Working

state, that is, the ICA node processing consensus data. Similarly, the Idle state also has a
probability of pnode

II = P(Idle|Idle) to maintain its state. When the node is in the Working

state, there is a probability of pnode
WI = P(Idle|Working) that it will finish processing the
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data and return to the Idle state.
We assume that the status changes between Idle, Working, and Busy must be continu-

ous and cannot jump. For example, Busy can only be transferred to Working first before it
can continue to be transferred to Idle. In addition, each node status has a certain probabil-
ity of Crash. In the Crash state, there exists a probability pnode

CI = P(Idle|Crash) that the
system will return to the Idle state. So the state transition probabilities are summarized:

Pnode =


pnode

II pnode
IW pnode

IB pnode
IC

pnode
WI pnode

WW pnode
WB pnode

WC

pnode
BI pnode

BW pnode
BB pnode

BC

pnode
CI pnode

CW pnode
CB pnode

CC

=


p11 p12 0 p14

p21 p22 p23 p24

0 p32 p33 p34

p41 0 0 p44

 (5.19)

4

∑
j=1

pi j = 1, i = 1,2,3,4. (5.20)

Since the Crash probability of a node depends solely on its current state, we can as-
sume a fixed value for pnode

IC , pnode
WC , pnode

BC , pnode
CC during the simulation. As the number of

nodes increases, the frequency of communication requests rises, making the transition
from the Idle state to the Working state more likely, and from the Working state to the
Busy state more frequent. We model these transitions using an exponential distribution,
as described by pnode

IW = (1− pnode
IC )(1− e−λW N), pnode

WB = (1− pnode
WC )(1− e−λBN). How-

ever, both the Working state returning to the Idle state and the Busy state returning to the
Working state can be modeled by pnode

WI = (1− pnode
WC )e−λRN and pnode

BW = (1− pnode
BC )e−λRN ,

respectively. The remaining probability is allocated to the likelihood of remaining in its
current state.

Next, we can find the steady-state distribution column

π
node =

[
πnode

Idle πnode
Working πnode

Busy πnode
Crash

]
(5.21)

by solving the Markov chain, which satisfies:

π
nodePnode = π

node (5.22)

As the latency of a node in each state is different, we can use the node’s steady-
state probability to calculate the latency expectation. We assume a latency space DN =[
DIdle DWorking DBusy DCrash

]T
, where each value corresponds to the average latency

of a node in this state. The latency expectation of each node is:
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DNode = π
nodeDN (5.23)

We use the same method to analyze link delay expectations. First, we define the state
space of communication link in distributed network. Idle means that no node occupies
the channel bandwidth resource; Engaged means that there are nodes that are using the
link resources; Congested means that there are many nodes occupying resources at the
same time, causing communication congestion. So the state transition probabilities are
summarized:

Plink =

plink
II plink

IE plink
IC

plink
EI plink

EE plink
EC

plink
CI plink

CE plink
CC

 (5.24)

We also assume that the status changes between each state must be continuous and
cannot jump, so plink

IC and plink
CI equals to zero. In addition, we model the transition from

the Idle state to the Engaged state and from the Engaged state to the Congested state
using an exponential distribution, represented by plink

IE = 1−e−λE N and plink
EC = 1−e−λCN ,

respectively. Recovery probabilities are similarly modeled as plink
EI = e−λRN , plink

CE = e−λRN .
Then we define the steady-state probability distribution column of communication link

as π link =
[
π link

Idle π link
Engaged π link

Congested

]
and satisfy:

π
linkPlink = π

link (5.25)

Similarly, we assume a latency space DL =
[
DIdle DEngaged DCongested

]T
, where

each value corresponds to the average latency of the link in this state. We can derive the
latency expectation of each link is:

DLink = π
linkDL (5.26)

Next, we analyze the system latency of Intelligent-Raft in a distributed ad hoc network.
According to the consensus process shown in Fig. 5.1, when the proposal is initiated by a
follower, the system delay is mainly divided into three link delays, three node delays and
an intelligent evaluation delay. When the proposal is initiated directly by the Leader, the
system delay is mainly divided into two link delays, two node delays and an intelligent
evaluation delay. Then we can conclude that the total system latency DIDC_AH is:
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DIR_AH_LeaIni = 2DLink +2DNode +DEvaluation (5.27)

DIR_AH_FolIni = 3DLink +3DNode +DEvaluation (5.28)

DIR_AH =
1
n

DIR_AH_LeaIni +
n−1

n
DIR_AH_FolIni (5.29)

Converging-Raft Latency within Ad Hoc Network

Based on Eq. (5.23) and (5.26), we can construct the Converging-Raft latency model in
ad hoc network. Similar to Intelligent-Raft, a consensus may be initiated by either a fol-
lower or a leader. During the Opinion Expression, Converging Discussion, and Opinion
Vote stages, nodes intelligently evaluate the content received in the previous stage, such as
topics and proposals. The latency of these intelligent evaluations is also considered sep-
arately. Therefore, the total Converging-Raft latency within the ad hoc network, DCR_AH ,
is:

DCR_AH_LeaIni = 4DLink +4DNode +3DEvaluation (5.30)

DCR_AH_FolIni = 5DLink +5DNode +3DEvaluation (5.31)

DCR_AH =
1
n

DCR_AH_LeaIni +
n−1

n
DCR_AH_FolIni (5.32)

Intelligent-Raft Latency within Cellular Network

For the latency characteristics of Intelligent-Raft based on cellular network, we build a
Markov chain model for the server Broker in the MQTT protocol to describe latency ex-
pectations through its steady-state matrix. First, we assume the Broker’s state space. We
divide the Broker’s status into 5 states, namely S1: the message has not reached the Bro-
ker; S2: the message has arrived at the Broker and is waiting to be processed; S3: the
message is being processed; S4: the message is processed and is waiting to be sent to
client; S5: Message sent. The state transition probabilities are summarized:
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P =


pB

11 pB
12 0 0 0

0 pB
22 pB

23 0 0
0 0 pB

33 pB
34 0

0 0 0 pB
44 pB

45

pB
51 0 0 0 pB

55

 (5.33)

Different from the Markov chain model in ad hoc network, this model includes not
only the processing and waiting delays of the Broker itself, but also the delays of message
arrival and sending. For example, the transfer from S1 to S2 depends on network traffic
and the Broker’s ability to receive messages. The transfer from S2 to S3 depends on the
current workload and processing capabilities of the Broker. The transfer from S3 to S4
is determined by message processing time. The transfer from S4 to S5 depends on the
broker’s ability to send messages and network traffic. So we do not define the delay in
each state here, but focus on the delay of each state transition. That is, for each non-
zero element pi j in the state transition matrix P, a corresponding transition delay τi j is
determined, which represents the average time it takes to transition from state i to state
j. Based on this, we create a transfer delay matrix T corresponding to the state transition
matrix P.

T =


τ11 τ12 0 0 0
0 τ22 τ23 0 0
0 0 τ33 τ34 0
0 0 0 τ44 τ45

τ51 0 0 0 τ55

 (5.34)

Since all nodes must connect to the Broker server and wait for message distribution,
the time required for the Broker to buffer or process messages increases as the number of
nodes grows. Thus, we can model this as p12 = e−λ12N , p23 = e−λ23N , p34 = e−λ34N , p45 =

e−λ45N . Additionally, we assume that p51 remains constant.
We define the steady-state probability distribution column of communication link as

π =
[
π1 π2 π3 π4 π5

]
and satisfy:

πP = π (5.35)

In this case, the calculation of the overall delay expectation will no longer be a simple
weighted sum of state delays, but a weighted sum of state transition delays. Then the
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overall delay expectation E[T ] can be expressed as:

DBroker = E[T ] =
n

∑
i=1

n

∑
j=1

πi pi jTi j (5.36)

Where n is the total number of states, πi is the probability of being in state i for a long time,
pi j is the probability of transitioning from state i to state j, and Ti j is the corresponding
transition delay.

Next, we analyze the system throughput of Intelligent-Raft within cellular network.
Similarly, a consensus may be initiated by either a follower or a leader. Then, we can
conclude that the total system latency DIR_Cel is:

DIR_Cel_LeaIni = 2DBroker +2DNode +DEvaluation (5.37)

DIR_Cel_FolIni = 3DBroker +3DNode +DEvaluation (5.38)

DIR_Cel =
1
n

DIR_Cel_LeaIni +
n−1

n
DIR_Cel_FolIni (5.39)

Converging-Raft Latency within Cellular Network

Based on (5.23) and (5.36), we can construct the latency model in a cellular network
following the Converging-Raft process. Since the Broker latency model encompasses
both the Broker’s inherent latency and the data transmission latency, we can get the total
system latency DCR_Cel:

DCR_Cel_LeaIni = 4DBroker +4DNode +3DEvaluation (5.40)

DCR_Cel_FolIni = 5DBroker +5DNode +3DEvaluation (5.41)

DCR_Cel =
1
n

DCR_Cel_LeaIni +
n−1

n
DCR_Cel_FolIni (5.42)

CDM Latency within Cellular Network

Here, we use the latency model of Broker server as the central control server. According
to the CDM working process, the latency mainly depends on the central server and the
decision-making. We can derive the total latency of CDM within cellular network:
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DCDM_Cel = DBroker +DEvaluation (5.43)

5.5 Simulation Numerical Results And Discussion

This section presents a performance analysis of the reliability and latency of HIntS’s five
working modes, with the key results summarized in Section 5.2.

5.5.1 HIntS Reliability

First, we analyze the simulated reliability results of CDM, Intelligent-Raft, and Converging-
Raft within two network structures: ad hoc network and cellular network. In our model,
we decouple node failure probability from link failure probability and use the control
variable method to individually assess their impact on system reliability. Although the re-
liability of nodes, uplink, and downlink are modeled as random variables, we assume their
mathematical expectation to be PN = PUL = PDL = PBrokerS = 0.95 and PMT linkS = 0.995
by default.

Figure 5.4: Intelligent-Raft reliability in ad hoc network
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Figure 5.5: Converging-Raft reliability in ad hoc network

Figs. 5.4, 5.5, 5.6, and 5.7 illustrate that as the number of nodes participating in the
joint-decision process increases, the reliability of both Intelligent-Raft and Converging-
Raft improves, though with some fluctuations across different networks. The simulation
results show that all reliability factors—node reliability, link reliability, MQTT link reli-
ability, and broker reliability—contribute positively to the overall reliability of the joint-
decision mechanisms. As these factors improve, the overall reliability of HIntS exhibits a
consistent upward trend.

In Figs. 5.4 and 5.5, the red and blue curves represent the impact of varying node
reliability and communication link success rates on IDC mechanisms, respectively, while
holding the other factor constant. In ad hoc networks, whether using Intelligent-Raft or
Converging-Raft, node reliability directly influences the maximum value to which joint-
decision reliability converges. In contrast, link reliability has minimal impact on this
maximum value, primarily affecting the amplitude of reliability fluctuations. Figs. 5.6
and 5.7 show that broker reliability has a greater impact on the final converged value of
IDC mechanisms compared to MQTT link reliability in a cellular network, while keeping
node reliability constant.

Fig. 5.8 compares the reliability of HIntS’s five working modes under the conditions
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Figure 5.6: Intelligent-Raft reliability in cellular network

PUL = PMT linkS = PDL = 0.98, and PN = PBrokerS = 0.99. As the number of nodes in-
creases, the reliability of joint-decision under various conditions also increases where their
order of magnitude remains unchanged, with the exception of CDM. Since the reliability
of CDM is limited by the stability of the central server, its stability gradually decreases
as the number of connected nodes increases. In other cases, the reliability follows this or-
der: Intelligent-Raft within cellular network > Intelligent-Raft within ad hoc network >

Converging-Raft within cellular network > Converging-Raft within ad hoc network. This
comparison also shows that Converging-Raft is less stable and reliable than Intelligent-
Raft under the same conditions, highlighting the need for heterogeneous joint-decision to
leverage different strengths for various requirements. Additionally, the same joint-decision
mechanism is more stable in a cellular network compared to an ad hoc network.

5.5.2 HIntS Latency

Then, we analyze the simulated latency results of HIntS’s five working modes. In ad hoc
network, latency is primarily composed of three components: node delay, communication
link delay, and intelligent evaluation delay. We simulate the Markov chain models for
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Figure 5.7: Converging-Raft reliability in cellular network

nodes and links separately, analyzing the convergence of their state transition matrices
to obtain delay expectations, which are then used to calculate the overall joint-decision
latency. We assume the latency space of the nodes as:

DN =
[
DIdle DWorking DBusy DCrash

]T
=
[
10 15 25 1000

]T
(5.44)

and the latency space of the communication links as:

DL =
[
DIdle DEngaged DCongested

]T
=
[
10 15 25

]T
(5.45)

with all values in milliseconds (ms). We also assume the exponential distribution pa-
rameters for node model to be λW = 0.1,λB = 0.15,λR = 0.2, and pnode

IC = 0.01, pnode
WC =

0.03, pnode
BC = 0.05, pnode

CC = 0.7. For link model, we assume that λE = 0.1,λC = 0.15,λR =

0.2, and plink
II = plink

EE = plink
CC = 0.4.

In the cellular network with MQTT protocol, latency is primarily composed of three
components: node delay, Broker state delay, and intelligent evaluation delay. Since our
model of the Broker accounts for the delays in the MQTT uplink, Broker forwarding,
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Figure 5.8: Different joint-decision modes reliability within different network

and MQTT downlink processes, the steady-state delay of the Broker can be considered
equivalent to link delay in an ad hoc network. We assume the distribution parameters to
be λ12 = λ23 = λ34 = λ45 = 0.1, and pB

51 = 0.95. The corresponding transfer delay matrix
of the Broker is then assumed to be:

T =


20 10 0 0 0
0 15 10 0 0
0 0 15 10 0
0 0 0 20 10

10 0 0 0 5

 (5.46)

By calculating the convergence delay expectation of nodes, links and the Broker from
the steady state, we can calculate the total latency across different HIntS working modes.
Fig. 5.9 shows the convergence process of the five working modes. The delay is the highest
for Converging-Raft within cellular network, followed by Converging-Raft within ad hoc
network, Intelligent-Raft within cellular network, Intelligent-Raft within ad hoc network,
CDM within cellular network. The comparison reveals that, for the same joint-decision
mechanism, total latency is higher in the cellular network than in the ad hoc network. This
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Figure 5.9: Overall Latency

is because the greater routing path between nodes in cellular network leads to longer data
forwarding times, while ad hoc networks typically use direct communication over shorter
distances, resulting in lower latency. Additionally, within the same network, Converging-
Raft has higher latency than Intelligent-Raft due to its more complex process. CDM within
cellular network has the lowest latency, given its simplicity.

The results demonstrate that different HIntS working modes have distinct advantages
and drawbacks. For example, Converging-Raft within a cellular network supports a broad
network range and can achieve a globally optimal joint decision, but it also exhibits the
highest latency. CDM within cellular network is the easiest to deploy and has the lowest
latency, but it lacks fault tolerance, with the system’s performance being heavily reliant on
the central server. These findings underscore the importance of HIntS, which integrates
heterogeneous joint-decision mechanisms and network structures to ensure optimal system
performance in various applications.
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5.6 Experiments

In this section, We practically test the reliability, latency of practical HIntS, 5G-MInd. The
following paragraphs introduce the setup and the process of the experiments. Finally, we
analyze the experimental data.

5.6.1 Experimental Setup

Hardware Setup

In the experiment, the ZigBee module manufactured by DIGI carried by the 5G-MInd
supports half-duplex mode, with a data speed of 250 Kb/s , a transmission power of 20
dBm, a transmission frequency of ISM 2.4GHz. We set the MCU’s UART baud rate to
a maximum value, 921600, for communication with the ZigBee module. In addition,
the MCU (STM32F407ZGT6) has an operating principal frequency of 168MHz, external
expansion heap memory size is 1MB, and the SD card size is 4GB for storing history
consensus log and data.

For the 5G module, we use the 5G module RM500U manufactured by Quectel. Its
operating frequency is Sub-6G Hz and is compatible with LTE mode. Under the 5G-SA
architecture, the maximum DL is 2Gbps and the maximum UL is 1Gbps; under the 5G-
NSA architecture, the maximum DL is 2Gbps and the maximum UL is 575Mbps. Its
interactive mode uses 3GPP TS27.007 and Quectel Enhanced AT commands.

Experiment 1

In the first experiment, we examine how varying the number of 5G-MInd nodes and their
distances impact the joint-decision success rate. We tested the success rates of Intelligent-
Raft and Converging-Raft under ad hoc network based on ZigBee and 5G networks. CDM
is not tested due to the insufficient number of modules required to reach its scalability
limit. In both protocols, consensus is reached when the Leader receives successful feed-
back from more than N−1

2 nodes at the final stage. For this experiment, we first fixed the
Leader’s position within the 5G-MInd nodes and evenly placed follower nodes on a ring
with a radius of 300 to 400 meters around the Leader. To minimize signal interference
among followers, a certain distance was maintained between each node. Once all 5G-
MInd nodes were powered on, their wireless modules automatically established either the
ad hoc network or the 5G cellular network based on preset parameters, readying the system
for joint-decision processes. We conducted three rounds of experiments in each network
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environment, averaging the results to determine the final consensus success rate. In each
round, we tested the joint-decision success rate with 3 to 9 nodes, triggering consensus
initialization 200 times per test and recording the frequency of successful joint-decisions.

Experiment 2

In research of the throughput of 5G-MInd, we used varying numbers of 5G-MInd modules
to evaluate performance. We measured the latency of Intelligent-Raft and Converging-Raft
in both ZigBee network and 5G network. We positioned the leader node at the center and
evenly placed follower nodes on a ring with a radius of 300 meters. Once the network
was established, a node could initiate a round of joint-decision with the leader to start the
Intelligent-Raft process (excluding cases where the leader directly initiates a consensus).
We assessed 5G-MInd’s performance by testing the time required for different numbers
of nodes to reach consensus across various network environments. Each test was repeated
200 times, with only the time taken to successfully reach a joint-decision averaged as the
result.

5.6.2 Experimental Results

Figure 5.10: 5G-MInd reliability within 325m
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Figure 5.11: 5G-MInd reliability within 350m

Fig. 5.10, 5.11, 5.12 and 5.13 shows the success rate of joint-decision with varying
numbers of 5G-MInd modules at different distances. The success rate increases as the
number of nodes grows. At a distance of 325 meters from the leader, the reliability across
different network conditions and joint-decision modes aligns with theoretical predictions:
Intelligent-Raft within a 5G cellular network > Intelligent-Raft within a ZigBee ad hoc
network > Converging-Raft within a 5G cellular network > Converging-Raft within a
ZigBee ad hoc network. At 350 meters, the reliability of Intelligent-Raft and Converging-
Raft within the ZigBee network is slightly lower than at 325 meters but still consistent with
simulation results. However, at 375 meters and 400 meters, the reliability of joint-decision
in the ZigBee network significantly drops, as power dissipation, noise interference hinder
effective data transmission over such distances. This highlights that joint-decision com-
pletion in ad hoc networks is heavily distance-dependent. In contrast, the success rate in
5G cellular networks remains nearly unaffected by distance.

Fig. 5.14 shows the average latency results for 5G-MInd nodes with varying numbers
of participants. Consensus time increases across all modes, except CDM within the cellu-
lar network, as the number of nodes grows. This is due to the leader needing to coordinate
more followers and taking longer to receive and tally responses. The experimental results
confirm that the average consensus time follows the order: Converging-Raft in 5G cellular
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Figure 5.12: 5G-MInd reliability within 375m

Figure 5.13: 5G-MInd reliability within 400m
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Figure 5.14: 5G-MInd latency

network > Converging-Raft in ZigBee ad hoc network > Intelligent-Raft in 5G cellular
network > Intelligent-Raft in ZigBee ad hoc network > CDM in 5G cellular network,
aligning with theoretical simulations.

This experiment demonstrates that different networks and joint-decision protocols of-
fer distinct advantages in fault tolerance reliability, latency and coverage. The experi-
mental data validates our theoretical findings and offers valuable insights and data for the
practical deployment of joint-decision mechanisms.

5.7 Conclusion

In this chapter, we first proposed Converging-Raft, an IDC protocol that enables ICA
nodes to achieve globally optimal joint decisions through discussions. Additionally, we
introduced HIntS, a heterogeneous system that integrates three joint-decision mechanisms
(CDM, Intelligent-Raft, and Converging-Raft) with two network structures (ad hoc and
cellular networks) to enhance adaptability for ICA nodes. We also designed and imple-
mented 5G-MInd, a fully functional HIntS physical module built on an embedded plat-
form. Our mathematical models provided a detailed analysis of the reliability and latency
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performance across HIntS’s five working modes. Simulation results demonstrated that
Intelligent-Raft in cellular networks achieves the highest reliability, while CDM in cel-
lular networks offers the lowest latency. Experimental validation using 5G-MInd further
confirmed the alignment between the simulated and experimental results. By combining
quantitative and qualitative analyses, we summarized the advantages and characteristics of
different joint-decision mechanisms across various network structures, providing valuable
guidance for future practical deployments and demonstrating the significant potential of
HIntS for industrial CAS applications.

Despite these contributions, several limitations warrant attention. While Converging-
Raft aims to achieve globally optimal decision-making, its practical implementation re-
mains challenging due to potential information asymmetry and coordination difficulties
among distributed nodes. Furthermore, although HIntS embraces multiple decision mech-
anisms to improve adaptability, the integration and dynamic switching between heteroge-
neous mechanisms in complex real-world scenarios introduce additional system complex-
ity that requires further investigation. Nonetheless, this work provides a strong foundation
for future research on scalable, adaptive, and high-reliability joint decision-making in in-
dustrial CAS environments.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis provides a comprehensive study on the characteristics of wireless IDC, its
performance across various wireless networks, and the requirements and optimizations
needed for diverse application scenarios, particularly autonomous driving. First, two novel
IDC algorithms, Intelligent-Raft and Converging-Raft, are introduced in Chapters 3 and
4, respectively, to address limitations of traditional DC algorithms within CAS systems.
Intelligent-Raft addresses the traditional Raft algorithm’s inability to enable nodes to intel-
ligently assess data requiring consensus by introducing an Intelligent Evaluation process.
Converging-Raft expands on traditional Raft by adding steps such as Converging Discus-
sion, allowing ICA nodes to achieve a globally optimal solution on specific topics through
sharing, comparison, updates, and voting. The achievement of this global optimal solu-
tion integrates the wisdom of all ICA nodes in the cluster. These two IDC protocols offer
distinct advantages and can be adapted to different CAS scenario.

In addition, this thesis also introduces two system architectures to support the practical
deployment of IDC: WIDCS and HIntS. WIDCS implements the PICA architecture within
CAS, leveraging wireless communication and the Intelligent-Raft protocol to provide ICA
nodes with data consistency storage and joint decision-making capabilities. Chapter 4
enhances WIDCS by incorporating ad hoc network functions such as formation, man-
agement, and dissolution, thereby improving its engineering feasibility and expanding its
utility for CAS applications. To address the complex requirements that cannot be met
by a single IDC protocol or network architecture, Chapter 5 presents HIntS, which in-
tegrates three joint decision-making protocols—CDM, Intelligent-Raft, and Converging-
Raft—and two network architectures: ad hoc and cellular networks. HIntS can adaptively
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select the appropriate protocol and network structure to optimize performance based on
specific application scenarios. Chapter 5 also provides a detailed mathematical analysis of
HIntS performance across various operating modes, offering valuable guidance for future
deployment of joint decision-making systems.

Moreover, this thesis also introduces the design and iteration of three generations
of hardware modules to enable wireless joint decision-making in practical applications.
The first-generation system, AIR-RAFT, implements the basic functions of WIDCS via
P2P communication based on the Lora protocol, as detailed in Chapter 3. The second-
generation system, RaBee, extends AIR-RAFT with an added ZigBee module to enable
ad hoc networking, enhancing both the stability and throughput of joint decision-making,
as discussed in Chapter 4. The third-generation system, 5G-MInd, is developed based on
the new HIntS architecture and described in Chapter 5. This system integrates ZigBee and
Quectel 5G modules to support both ad hoc and cellular networking functions, respec-
tively. By incorporating the three protocols within HIntS, 5G-MInd can facilitate various
joint decision-making processes. Chapter 5 also presents experimental tests conducted
using 5G-MInd, with results aligning closely with theoretical predictions.

To verify the feasibility and performance of the proposed IDC protocol and system
architecture, this paper analyzes two AD scenarios and presents safe passage solutions en-
abled by WIDCS. First, at uncontrolled intersections, AVs can achieve consistency in pas-
sage order using WIDCS. Mathematical analysis and comparison with scenarios lacking a
communication system confirm that this ordered approach enhances AV safety. Similarly,
in on-ramp merging scenarios, AVs can reach a joint decision on merging order through
WIDCS, allowing for sequential passage. Comparative mathematical analyses across var-
ious conditions demonstrate that the probability of AVs safely navigating on-ramp merges
is higher with WIDCS than with CDM or without network support. This thesis imple-
ments AVs’ safe passage at uncontrolled intersections and on-ramp merging scenarios
based on joint decisions in a laboratory environment, using AIR-RAFT and RaBee hard-
ware modules. Experimental data further validate the feasibility and optimization achieved
by WIDCS.

However, this programme also presents several inherent limitations. In particular, the
cross-layer and interdisciplinary nature of WIDCS requires strong integration across di-
verse fields such as wireless communication, distributed consensus, networked systems,
and autonomous driving. Achieving effective collaboration across these domains demands
substantial cross-disciplinary expertise and often results in long and complex research cy-
cles, making it difficult to address all aspects comprehensively. Moreover, due to the lim-
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ited real-world deployment of highly intelligent autonomous driving systems, it remains
challenging to validate our theoretical and hardware research—such as WIDCS proto-
cols and embedded consensus modules—in practical, large-scale scenarios. The lack of
industrial-scale platforms also makes collaboration with industry challenging, increasing
the risk that the research may diverge from practical application needs.

6.2 Future Trends

6.2.1 Evolution of IDC Protocol and Adaptive Algorithm

Although this thesis has developed the Intelligent-Raft and Converging-Raft protocols,
and has explored the application of Intelligent-Raft in two autonomous driving scenar-
ios—uncontrolled intersections and on-ramp merging—many other CAS scenarios remain
to be optimized. These diverse contexts highlight the need for future research to develop
more flexible and application-aware IDC protocols capable of addressing the varied de-
mands of intelligent agents in complex and dynamic environments. Beyond the AD sce-
narios analyzed in this paper, IDC holds significant potential for other applications, such
as roundabouts. In roundabouts, AVs encounter intricate traffic flows and yielding rules,
requiring real-time decision-making in multi-vehicle interactions. Vehicle intentions (e.g.,
entering, navigating, or exiting the roundabout) directly impact safety. Using the IDC pro-
tocol, vehicles approaching the roundabout can share their intentions, speeds, positions,
and projected paths in real-time. This collective data enables each vehicle to anticipate
and interpret the potential actions of others, reducing the reliance on individual sensor data
and providing a comprehensive understanding of the surrounding dynamic environment.
This shared awareness minimizes misjudgments arising from uncertainty. Additionally,
the complex pathways within roundabouts necessitate precise avoidance and safe passage
within limited space. By sharing and optimizing path decisions, IDC protocols enable each
vehicle to choose a safer, more efficient path. This coordination allows vehicles to adjust
paths relative to nearby traffic before entering the roundabout, maximizing traffic flow and
minimizing collision risks associated with excessive speed or improper lane selection.

Beyond autonomous driving, IDC demonstrates strong application potential across
various CAS scenarios, such as drone swarms and distributed logistics and warehous-
ing. For drone swarms performing tasks like disaster search and rescue, environmental
monitoring, and logistics transport, real-time collaboration and data sharing are essential
within the mission area. IDC enables drones to coordinate route planning, task alloca-
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tion, and obstacle avoidance in dynamic environments. Through IDC, drones can rapidly
reach consensus on optimal paths or task distribution, reducing delays and collision risks.
In cases of drone malfunction, IDC allows for swift reallocation of tasks among other
drones, ensuring mission continuity.

Similarly, in large-scale logistics and warehousing, multiple automated sorting robots
require coordination for sorting, packaging, and transport. IDC facilitates rapid task align-
ment among robots, preventing redundant actions and path conflicts. During peak periods,
IDC can dynamically adjust resource and task allocations based on real-time data, improv-
ing overall logistics efficiency. Furthermore, IDC supports real-time monitoring of device
status, ensuring that tasks can be immediately reassigned to functioning robots when oth-
ers fail, thereby maintaining operational stability and efficiency.

As space exploration missions grow increasingly ambitious, the complexity of man-
aging distributed systems in harsh and unpredictable environments becomes a significant
challenge. Tasks such as spacecraft formation control, resource coordination, and real-
time autonomous decision-making are difficult to achieve through traditional centralized
methods, which often struggle with scalability, responsiveness, and resilience. IDC offers
a promising framework to address these challenges by enabling decentralized coordina-
tion and collaboration among spaceborne agents. In spacecraft formations and constel-
lations—critical for applications such as Earth observation, deep space exploration, and
communication—IDC allows satellites to autonomously negotiate trajectory adjustments,
share resources, and recover from faults without relying on constant ground control. Sim-
ilarly, for deep space probe networks operating under extreme latency and bandwidth con-
straints, IDC enables localized, autonomous decision-making, real-time data fusion, and
adaptive task allocation. By reducing dependence on Earth-based intervention, IDC signif-
icantly enhances the robustness, adaptability, and efficiency of distributed space systems,
demonstrating strong potential for future space missions.

Beyond the development of customized IDC protocols for specific scenarios, future
research will focus on heterogeneous IDC systems and adaptive algorithms. The goal
is for future smart devices to progress toward human-like decision-making, capable of
independently and flexibly reaching joint-decisions without reliance on a single protocol.
Adaptive algorithms will enable devices to autonomously assess scenario requirements
and adjust the joint decision-making process, achieving “adaptive protocol selection” and
reaching consensus without the need for centralized control. This advancement promises a
more responsive and intelligent framework for distributed decision-making across diverse
applications.
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6.2.2 Intelligent Wireless Network Management Protocol

In Chapter 4, we introduced a network management protocol integrated within WIDCS
to improve its operational reliability and adaptability under dynamic conditions. This in-
tegration enhanced the system’s ability to handle node fluctuations and communication
uncertainty. However, this general-purpose protocol, such as ZigBee, still falls short in
fully supporting the stringent demands of consensus execution and joint decision-making
in large-scale ICA networks. Given the tight coupling between network behavior and
distributed coordination performance, there is a pressing need for a dedicated network
management protocol tailored specifically to the needs of WIDCS—one that facilitates
flexible and efficient node management, resource adaptability, robust security, rapid con-
sensus formation, and ensures robust node participation throughout the decision-making
process.

In highly dynamic scenarios, such as when AVs enter or leave a designated area, the
network must quickly identify, verify, and integrate new nodes, ensuring that exiting nodes
do not disrupt ongoing consensus processes. To achieve this, the protocol must support
automatic discovery and rapid verification. Upon a new node’s entry, the protocol should
automatically detect and authenticate it to confirm compliance with security and resource
requirements. Following authentication, network addresses and resources are swiftly al-
located to enable seamless integration into network activities. Additionally, a distributed
node status monitoring system is essential for real-time tracking of node availability, re-
source status, and task execution. As nodes enter or exit the network, the system should
automatically update the topology and reorganize resource allocations and communica-
tion paths. To prevent disruptions during consensus processes, the protocol should also
implement a locking mechanism: nodes engaged in consensus are temporarily locked,
restricting exit or disconnection until consensus is reached. This ensures decision consis-
tency and integrity.

Secondly, in complex and dynamic environments, network nodes often experience im-
balanced load and resource demands. A new network management protocol should there-
fore support dynamic resource management to meet varying node requirements. The pro-
tocol should allocate network bandwidth, storage, and computing resources based on each
node’s current status, data traffic, and computing tasks. Through resource monitoring and
forecasting, it can adjust allocations according to task priority and real-time demand, op-
timizing efficiency under high load conditions. Additionally, with dynamic path selection
and load balancing, the protocol can intelligently distribute communication tasks to avoid
overloading or resource depletion in certain nodes. Furthermore, a hierarchical resource
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control strategy is needed to dynamically adapt node resource usage according to network
scale and evolving scenario demands.

Furthermore, the new network management protocol should offer enhanced security
and fault tolerance. As ICA nodes operate in increasingly open and potentially hostile
environments, the protocol must be resilient against malicious intrusions, data tamper-
ing, and signal interference. Additionally, it should include dynamic fault detection and
repair mechanisms to promptly isolate faults and reconfigure the network in response to
anomalies in any device or node, thereby ensuring system continuity and stability.

6.2.3 AI-enhanced ICA Nodes Interaction and Cooperation

At the current stage, the IDC protocols developed in this work primarily utilize AI infer-
ence capabilities as auxiliary tools for intelligent evaluation. However, the integration be-
tween IDC mechanisms and AI models remains relatively superficial. In future research,
IDC should move toward a deeper fusion with AI—enabling intelligent reasoning not
merely as a supporting component, but as a core driver of distributed consensus processes.
Such integration has the potential to enhance decision quality, adaptivity, and autonomy,
particularly in complex and uncertain environments. AI can support IDC protocols in
achieving real-time optimization and adapting automatically to changes in network topol-
ogy and node status. For instance, in complex scenarios with node failures or communi-
cation disruptions, AI-enhanced IDC can employ anomaly detection and deep learning to
continuously monitor node health and automatically identify faulty or Byzantine nodes.
Upon fault detection, the protocol can use ML models to predict optimal repair methods
and paths, quickly reconfiguring the network to ensure system stability and security.

Moreover, while IDC protocols rely on fixed consensus processes, AI-enhanced IDC
can learn node behaviors and interaction patterns, generating adaptive consensus strategies
for the current environment. Through reinforcement or federated learning, AI enables IDC
protocols to make intelligent joint-decisions autonomously, allowing each node to oper-
ate with incomplete information and continuously optimize strategies through distributed
collaboration.

Future IDC protocols will also need to support cross-platform collaboration, facilitat-
ing seamless interaction among various ICA systems (e.g., drones, smart transportation,
and smart grids). AI-enhanced IDC can achieve cross-platform compatibility by using re-
inforcement learning and multi-objective optimization to adjust communication protocols
and data formats intelligently. Each system maintains independent consensus processes
and optimization strategies while enhancing the ecosystem’s connectivity and intelligence
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through selective sharing of strategies and information.
Looking forward, we envision intelligent nodes evolving beyond the limitations of

predefined protocols to engage in highly flexible, human-like deliberations. These nodes
could autonomously exchange data, discuss critical tasks, and achieve joint decisions dy-
namically, adapting seamlessly to diverse scenarios. Leveraging semantic communication,
these systems could go beyond mere data transmission to exchange contextually rich in-
formation, enabling deeper mutual understanding and more nuanced decision-making pro-
cesses. By interpreting intent and meaning behind the data, nodes could achieve higher
levels of efficiency and safety in their interactions, surpassing human capabilities in both
speed, reliability and accuracy.
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