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Abstract

Foveated vision draws inspiration from the way many biological vision systems process visual
information. It features space-variant resolution, concentrating high-resolution sampling in a
small area known as the fovea. This approach aims to deliver the same visual acuity and field
of view as uniform vision but with significantly fewer pixels. This reduction in pixel count
can potentially lower the computational demands of subsequent visual processes without com-
promising their effectiveness in performing visual perception tasks. Despite these qualities of
foveated vision, a uniform approach remains the dominant paradigm in computer vision. This
thesis investigates the use of deep neural networks on foveated images, aiming to determine
whether foveated vision can improve the ability of such systems to classify challenging datasets
comprised of natural images.

In Chapter 1, we outline the motivations for exploring foveated vision in conjunction with deep
neural networks, the research gaps, and the corresponding questions that we aim to answer
through this thesis. Furthermore, we provide an overview of biological vision processes, com-
putational models of foveated vision, and the relationship between foveated vision systems and
the active vision paradigm.

In Chapter 2, we explore the application of convolutional neural networks (CNNs) to foveated
images. Prior works have frequently shown that foveated sampling does not improve the ac-
curacy of CNNs. Motivated by this observation, we analyse the implications of convolutional
processing of foveated images through the lens of geometric deep learning. We hypothesise that
the application of CNNs to foveated images often requires imposing a suboptimal coordinate
frame for representing foveated image data, inhibiting classification accuracy. We test this hy-
pothesis through a novel graph convolution layer that allows for coordinate frames to be freely
defined. We show that the classification accuracy of a foveated CNN is highly sensitive to the
choice of coordinate frame.

In Chapter 3, we expand upon the studies conducted in Chapter 2 and explore foveated CNNs
in the presence of visual attention to guide the sensor. We propose a two-stage approach where
a separate CNN first localises objects, informing the foveated classifier where to centre its gaze.
Empirical results corroborate the findings of the previous chapter on the importance of coor-
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dinate frames. Furthermore, our novel graph convolution layer allows us to build a foveated
CNN that significantly outperforms a uniform CNN under an equivalent pixel budget. Further-
more, we propose a novel foveated sensor with a parameterised sampling layout. We show
the sensitivity of classification accuracy to this parameterisation and find that having smaller
higher-resolution foveae for sensors with fewer pixels is favourable.

In Chapter 4, we conduct studies similar to those in Chapter 3, but in the context of non-
convolutional models such as vision transformers. We propose a simple reformulation of image
tokenisation to a foveated setting. We also show how the sampling layout of this method can
be optimised by backpropagation using only gradients from a classification loss. We show that
foveated sensing can improve the classification accuracy of these models and is increasingly
beneficial as the number of total pixels in the sensor decreases. Furthermore, we explore the
parameterisation of the sampling layout and how the optimal configuration is related to the
properties of the data itself. We show that as the range in the scale of objects increases, it be-
comes increasingly beneficial to have smaller, higher resolution fovea in order to classify objects
accurately at all scales.

Chapter 5 explores a sequential approach for foveated vision systems, where they can repeatedly
attend to an image. For each observation, feature vectors are computed using a foveated CNN,
integrated into a single representation, and used as input to a classifier. Despite using only
a single dedicated convolution layer to implement attention, we show that these models can
perform as well as a two-stage method where a dedicated CNN is used to perform attention.
Furthermore, we show that classification accuracy increases the more times the model attends to
an image and that a simple averaging approach suffices for integrating information from multiple
observations. Finally, we explore an architecture based on vision transformers that maintains a
memory of previous observations in all hidden layers. We show that Legendre Memory Units
can effectively replace self-attention and allow such a system to run in O(1) time complexity, as
opposed to self-attention’s O(N) complexity, where N is the number of previous observations.

In Chapter 6, we summarise the contributions made in this thesis in relation to the research
questions we set out to answer and provide several avenues for future work that can further the
field of foveated vision.
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number 2443519, and has appeared in the following papers:
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Chapter 1

Introduction

1.1 Thesis Statement

Computer vision systems typically operate on uniformly sampled visual data. In contrast, many
biological systems exhibit space-variant (or foveated) resolution where high-resolution sampling
is limited to a small area of their field-of-view [4]. The emergence of this strategy in many
species suggests it could play an important role in visual perception. Accordingly, this thesis
aims to build and assess a range of foveated computer vision systems and ascertain whether such
a strategy can also provide important functional benefits for computer vision systems based on
deep neural networks.

1.2 Motivation

Foveated vision systems allocate high-resolution visual processing to a small central region of
the field of view (the fovea) and operate at a comparatively lower resolution for the remainder
(the periphery) (Figure 1.1). Simply, it aims to reconcile three mutually opposing properties:
a wide field of view, high visual acuity and few pixels for the downstream vision system to
process. Each of these properties can offer distinct advantages for a vision system. A wide
field of view lets a system quickly reason about scene information, such as the spatial relations
between objects or see very large objects. High visual acuity lets the vision system extract high-
frequency visual information from a scene, facilitating tasks such as recognizing very small or
very far away objects. Achieving this in as few pixels as possible is highly desirable as most, if
not all, computer vision systems have a computational complexity that scales with the number
of pixels it must process.

While it is possible to achieve a wide field of view and high visual acuity with uniform sampling
(i.e. conventional grid images), foveated vision offers an avenue to realize these same quali-
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ties in far fewer pixels, in turn facilitating a far more computationally efficient system. This is
particularly important given the current climate of computer vision systems, which are typically
based on deep neural networks. Practitioners of deep learning will be well aware of their large
compute requirements, typically necessitating (multiple) powerful GPUs for training to produce
state-of-the-art systems. This also limits their applicability in environments with constrained
computing resources or where rapid inference times are required, like in real-time applications
such as robotics. Moreover, the trend of ever larger deep neural network systems raises en-
vironmental concerns given the corresponding increases in carbon emissions associated with
training and deploying these models [5]. As such, any method that can meaningfully reduce
the computational overhead of these systems, particularly ones that do not noticeably diminish
performance in any way, are of great interest and can have far-reaching benefits for the future of
computer vision.

Despite its promise, foveated vision has seldom been utilized in computer vision, and the con-
ventional uniform approach remains the dominant paradigm. A strong stance would be that a
compelling case for adopting foveated vision in the current climate of computer vision is yet
to be made. However, a cursory glance at biological vision systems will quickly reveal the
prevalence of foveated (or space-variant) strategies, particularly among higher-order animals,
including humans and primates. The efficacy of biological vision is undeniable and still out-
performs computer vision systems in many facets of visual perception. While the prevalence of
foveated vision in biological systems does not guarantee its usefulness in computer vision, it pro-
vides compelling motivation for further research. Especially since, much like computer vision
systems, biological systems desire to be energy efficient. A simple illustration of how foveated
sampling strategies can subserve a more efficient vision system has been made by Schwartz [6],
where he estimates that if the entire field of view of the human eye operated at the resolution of
the fovea, the human brain would weigh upwards of 5000lbs.

1.3 Background

1.3.1 Biological Vision

To provide the reader with some context for this thesis, we will give a brief overview of biolog-
ical vision, specifically human vision, from light entering the eye through to the early stages of
the visual cortex and some of the underlying processes that are believed to be taking place. This
is not a comprehensive and detailed view of all stages, just those that are immediately relevant
to the computer vision systems explored in this thesis. Similarly, in this thesis, we do not seek
to emulate biological processes in any particular way but rather aim to assess whether the prin-
ciples behind foveated vision allow us to build better computer vision systems based on deep
neural networks.
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Foveal Region:
Peripheral Region:

Figure 1.1: A foveated arrangement of 1024 pixels generated by a Self-Similar Neural Network
[1] with a fovea radius of 20% of the field of view. The Self-Similar Neural Network yields a
locally pseudo-uniform lattice, which presents challenges for neural systems such as convolu-
tional neural networks to process as the data does not lie on a regular grid.

Visual information processing begins in the retina, a sheet of photoreceptors that lines the inside
of the eye. The two primary categories of photoreceptors are cone cells and rod cells. Cone
cells have three distinct variations, each responding optimally to different wavelengths of light,
approximately corresponding to red, green, and blue light. Cone cells provide us with colour
vision and decrease in population with eccentricity from the centre of our field of view. The
densest region of cone cells is found in the fovea, a small pit in the retina composed entirely of
cone cells. This region is responsible for the high visual acuity in the centre of the field of view.
Their decreasing population with eccentricity additionally explains why the peripheral regions
of our field of view are blurry.

In contrast, rod cells provide little colour information but are far more sensitive to light intensity
than cone cells and are responsible for vision in low-light scenarios. Rod cells follow a similar
distribution to cone cells but are absent in the fovea . The reader may be aware of their own
experiences of being able to see a dim light in the corner of their eye that disappears when
viewing it directly. The absence of rod cells allows for a higher density of cone cells in the
fovea, making the fovea predominantly responsible for sharp colour vision. For the purposes
of this work, rod cells can largely be ignored, with cone cells being a closer analogue to RGB
pixels we conventionally think of in digitized images.

The excitation of photoreceptors produces signals that are fed to retinal ganglion cells. These
cells come in various forms and have different functionalities. In the fovea, each ganglion cell
may receive input from only a single cone, while in the periphery, many cones might feed
a single ganglion cell, which, in turn, dictates its receptive field. Much like photoreceptors,
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ganglion cells also decrease in population with eccentricity and typically exhibit larger receptive
fields with increasing eccentricity. Additionally, there are relatively fewer ganglion cells than
cone cells. Ganglion cells can be categorized into many distinct subgroups. Magnocellular cells
are responsible for perceiving low-contrast stimuli and rapidly changing stimuli. Parvocellular
cells respond primarily to red and green colour and are responsible for high-resolution visual
processing. Koniocellular cells similarly provide colour processing, but for blue and yellow
colour information [7]. A population of ganglion cells can perform a wide range of functions
relating to the extraction of features such as discerning texture, orientation, and motion direction,
to name a few.

The optic nerve carries information from the ganglion cells to the visual cortex for further pro-
cessing. During this process, an interesting transformation takes place. The left and right hemi-
fields are separated and passed to different sides of the brain. The left side receives input from
the right hemifields of each eye and vice versa for the right. Furthermore, visual data appears to
undergo a geometric transformation. Schwartz [8] provides a model of this transform based on
the log-polar transform, dubbed the log(z+α) transform, which we will discuss further in the
next section.

Following this transformation, the signals from ganglion cells are processed by the V1 layer of
the visual cortex. Hubel and Weisel’s seminal work [9] discovered a range of functionalities that
cells in V1 perform, including edge detection, oriented edge detection and grating detection. The
general interpretation is that these cells detect low-level features that subserve the extraction of
richer features in downstream processing that happen in later stages such as V2 and V4. Similar
observations can be made in convolutional neural networks (CNNs) trained on images, which
learn edge detectors and grating detectors in early layers that exhibit strong similarities to cells
in early visual cortex layers.

Earlier computer vision models such as HMAX [10] and the Neocognitron [11] were heavily
inspired by the human visual pathway and sought to emulate certain stages, particularly the
early visual cortex layers. These went on to inspire the first convolutional neural network ar-
chitecture. Despite their biologically inspired origins, subsequent research on CNNs has mostly
departed from biological inspiration. Nonetheless, for many CNN architectures, we can still
draw loose comparisons between them and biological vision. RGB pixels can be interpreted
as responses from cone cells or ganglion cells, and convolutional layers can be interpreted as
visual cortex layers. Schrimpf et al. [12] devised "brain score" as a metric to compare acti-
vations between neural network architectures and that of human vision. They show that many
convolutional-based architectures are quite predictive of the brain activity of humans, suggesting
that, to a certain degree, they process visual information in a similar way or operate on similar
principles. CNNs are a loose approximation to the visual cortex, nonetheless, an element that is
entirely missing is space-variant (or foveated) resolution and the geometric transform of retinal
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coordinates to cortical coordinates.

1.3.2 Foveated Vision

Many researchers have looked to foveated vision as a source of inspiration for designing com-
puter vision systems. Over time, this has led to many incarnations of this idea, which, while
broadly speaking accomplishing the same underlying goal of sampling visual information at
a higher resolution at the centre of the field of view, do differ somewhat dramatically in their
design.

The log-polar transform is perhaps the most eminent of all foveated imaging techniques. Schwartz
[8] observed that the mapping of retinal information to the cortex follows a log(z+a) formulation
in many animal species. As such, the log-polar transform is interesting as a method for com-
puting foveated representations of visual data and due to its biological plausibility. Changing
the value for alpha allows for better fits to the exact mapping exhibited in different species to
be achieved. This highlights an interesting point: while many species adopt foveated vision or
space-variant vision, there is a reasonable degree of inter-species variation, suggesting the op-
timal strategy could be contingent on each species’ ecological niche and other aspects of their
morphology such as eye positioning (Figure. 1.2). We can hypothesise that for computer vision
systems, there may similarly not be a one-size-fits-all foveated strategy, and instead, the optimal
strategy might depend on the architecture, task, and other computational constraints.

While the log(z+a) transform may be more biologically plausible, in general, the use of a pure
log-polar transform is often preferred as it is comparatively more straightforward to use due to
the discontinuities between visual data in the angular axis being represented at the boundary
of the image, and not within the image itself. log-polar methods yield some interesting prop-
erties in conjunction with convolution, as global rotation and scale transformations manifest as
translations, to which convolution is equivariant. Building a CNN on log-polar images yields
a global scale and rotation invariant system (assuming the CNN is translation invariant). This
transformation equivariance similarly holds for the log(z+a) method, but only for the periph-
eral regions. Schwartz’s transformation does yield some useful qualities for the representation
as, unlike the pure log-polar transformation, it does not oversample visual data in the fovea.
This oversampling is due to the asymptotic nature of the log function creating a singularity of
sampling kernels [13]. Other workarounds for this problem have been proposed in the form of
blindspot log-polar models, in which sampling begins at a fixed radius from the origin, however
this leads to the discarding of some visual data at the centre of the field-of-view. Bolduc and
Levine [14] propose the use of a separate sampling step that fills the missing data by copying
the small missing region from the original image.

As mentioned previously, loose comparisons between convolution and visual cortex layers such
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Figure 1.2: Figure reproduced from Malkin et al. [2]. Left: visual acuity across the field of view
for different animals. Lighter areas denote higher visual acuity. Middle: An image sampled and
displayed with the corresponding resolution of each animal. Right: A representative image of
each animal’s habitat and how it might be sampled and represented in their visual field. Each
animal displays a distinctive space-variant strategy for sampling the visual world.
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as V1 and V2 can be made. This prompts the question of whether this log-polar like transform
also provides some useful functionality in biological vision. Schwartz argues that this transfor-
mation could play some role in perceptual invariances to size and rotation transformations of
visual data [8, 15]. However, Cavanagh questions how much utility it can provide given that it
is limited to transformations centred at the origin (i.e. centre of the field-of-view) and does not
explain perceptual invariances for transformations not at the origin [16]. Cavanagh posits that
the transform may simply facilitate a mapping of visual data to a compact physical represen-
tation for the visual cortex. Ultimately, it remains unclear how much benefit a global mapping
of visual data under this transformation provides. While the application of CNNs to log-polar
images has shown greatly improved generalisation to the aforementioned global rotation and
scale transformations [17, 18, 19], there is also a noticeable decline in general performance in
image classification settings [20, 21].

Cavanagh’s hypothesis [16] that the log(z+a) transform may subserve a compact physical rep-
resentation for foveated visual data does touch on a similar problem that needs to be solved for
certain computer vision systems operating on foveated images. Many computer vision opera-
tions have been built on the presumption that visual signals exist on a grid domain, which, in a
Cartesian coordinate frame, foveated images are not by definition. As such, it is necessary to
geometrically transform this data so that it is grid-aligned. A reasonable strategy for building
foveated sensors is to perform a grid discretisation of an arbitrary coordinate frame and de-
fine a mapping that transforms this grid into a foveated arrangement in image coordinates (i.e.
Cartesian coordinates), which then informs the centres of sampling kernels. The transform be-
tween a log-polar grid to Cartesian coordinates is one such example of this, however other works
have considered sensors that adopt a transform that maintains more Cartesian-like coordinates
[21, 22, 23].

These geometric transformations have interesting implications for processing with convolutional
layers, as filter weights are shared in this new coordinate frame rather than the conventional
Cartesian coordinate frame we think of when processing uniform images. In turn, this affects
the equivariance properties of the layer, as it is now equivariant to transformations that manifest
as translations in this new coordinate frame. In some cases, the transform is well-principled and
provides interpretable functionality that could be beneficial to visual perception, such as in the
case of the log-polar transform providing global scale and rotation equivariance. In other cases,
it is less clear if there is any inherent advantage to the particular transform. We can hypothesise
that in CNN-based systems, the transform should affect task performance due to the change in
weight sharing and equivariance properties.

Another popular choice for implementing foveated sampling, particularly for deep learning sys-
tems, has been to approximate foveation through a series of crops of increasing field-of-view
[24, 25]. This method is closely related to image pyramids and represents foveated images
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through multiple sub-images of differing fields of view and resolutions rather than a singular
contiguous representation. They are simple to implement and have been utilized in many CNN-
based studies [26, 27, 28, 29]. We will refer to this method as the Multi-FoV crop method,
and much like the geometric transformation methods, are convenient to use as they represent
visual data on uniform grids of pixels. The geometric transformation in this method is limited
to rescaling visual data through downsampling, retaining translation equivariance within each
representational level for all translations within their field of view.

There are a few methods which do not produce a foveated image with a uniform grid repre-
sentation. Balasuriya [30] proposed the use of a self-similar neural network [1] to generate a
foveated arrangement of points with a locally pseudo-uniform arrangement that serve as sam-
pling kernel centres. Nakada et al. [31] randomly generated a foveated arrangement of points.
The aforementioned sensors do not have an obvious solution that will map this data to a uniform
grid, posing challenges for their use in conjunction with CNNs. Subsequent works [32, 33] that
have built upon Balasuriya’s method have made use of the Schwartz’ log(z+a) transform and
resampled the data to a uniform grid to circumvent this problem. There is potential utility in
random or pseudo-uniform arrangements in mitigating aliasing problems such as moire patterns
[34]. It is unclear whether such aliasing problems are meaningfully problematic for deep neural
networks. Lukanov et al. [21] demonstrated that adopting a pseudo-uniform arrangement did
not improve the classification accuracy of their system for image classification problems.

1.3.3 Active Vision

Active vision, coined by Aloimonos [35], refers to a subclass of computer vision systems that
can control the geometry of the sensor or camera. Unlike passive vision systems, which process
visual data as provided to the system, active vision systems can intelligently sample new visual
data. Such a strategy offers distinct advantages for visual perception that can be predominantly
understood from the perspective that a visual sensor is typically constrained. As such, a single
observation of a visual scene might not elaborate all possible useful information about a scene.
By actively adjusting the sensor, multiple scene observations can be collected, processed and
integrated into a singular percept. Aloimonos showed that several problems related to funda-
mental visual perception mechanisms, such as shape from texture and structure from motion,
are ill-posed for a passive vision system but well-posed for active systems.

Foveated vision systems naturally align with active vision systems due to the space-variant na-
ture of their resolution. There is a need to fixate (align the foveated sensor’s gaze) on salient
parts of a scene to make adequate use of the high-resolution fovea. In biological systems, this
occurs through eye movements (saccades). In humans, this happens an average of three times
a second and is influenced by top-down and bottom-up attention processes. Furthermore, there
is the possibility of integrating information from these different observations into a unified per-
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cept. Ballard [36] describes systems with this behaviour as having low-resolution (in terms of
the number of pixels they process) but a high virtual resolution. More generally, Tsotsos et al.
[37] argued that fixating on different regions of a scene with a uniform sensor should be help-
ful in a vision system that processes visual information locally and in a hierarchical fashion as
pixels in the centre of the field of view contribute more to the output of the system. CNNs are
an example of such a system, and recent works have demonstrated this bias towards the centre
of the field-of-view [38, 39]. While active vision is a necessary component to adopting foveated
vision, this work will predominantly focus on the latter. For the purposes of this thesis, we will
use "active vision" to describe any system that can control its sensor geometry to influence how
visual information is sampled (e.g. translating the sensor). We will use fixation to refer to the
position in the image that is at the centre of the sensor’s field of view, and the ability to fixate as
the ability to translate the sensor to a fixation location.

1.4 Research Gap

Foveated vision has been researched for several decades but ultimately remains a fringe idea
within the computer vision community. As such, many facets of it remain understudied. Below,
we outline several research gaps within the literature.

While a variety of sensors have been evaluated in the context of deep learning systems [20,
21, 26, 27, 28, 32], there lacks a systematic comparison between them. It is hard to quantify
whether different methods have meaningful differences regarding task performance as they are
individually evaluated on different tasks and with different architectures. Torabian et al. [20] and
Lukanov et al. [21] provide some studies in this area and show that the sensor choice can have a
significant impact on performance. We aim to expand on these works to provide clearer evidence
on how the choice of sensor impacts the system’s performance and highlight, in particular, how
the geometric transformations applied to foveated data play a role in its overall efficacy.

Another aspect of foveated vision that is seldom explored is how sensors should be parameter-
ized. Many proposed sensors can be parameterized (for example changing the size of the fovea)
allowing control over the sampling resolution across the visual field. Evidence from biology
shows that different species have different space-variant resolution strategies [4], suggesting that
the optimal design is not general for all tasks and systems but dependent on these constraints.
To the best of our knowledge, no works have attempted to characterize sensor parameterisation
and how it affects task performance, nor have they attempted to understand any causal factors
that may help us pick better parameterisations without resorting to manual tuning.

The majority of deep learning research adopting foveated vision has done so using a CNN back-
bone [20, 21, 27, 32]. Recently, non-convolutional architectures such as vision transformers
have been shown to be comparable or even outperform CNNs across a variety of vision tasks .
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Relatively few studies [40] have explored the use of foveated sensing; however, we will make the
case that these architectures are highly suitable for such data, while foveated vision is similarly
complementary to them in mitigating their large compute requirements.

From a utilitarian point of view, the motivating principles of foveated sampling could similarly
be realized by other biologically implausible methods, such as those that adapt the sampling
layout of the sensor on a per instance basis [41, 42, 43, 44]. It is essential to contrast these
methods as well as uniform methods to understand where foveated vision stands in the general
field of computer vision. However, such comparisons are yet to be made.

In this thesis, we aim to address the aforementioned research gaps in the foveated vision liter-
ature by building and empirically evaluating a variety of foveated vision architectures based on
deep neural networks. While foveated vision could be applied in various subfields of computer
vision, for this thesis, we will use object recognition on both natural image datasets and syn-
thetic datasets as a representative performance indicator. Accordingly, we outline the following
research questions that this thesis aims to answer.

1.5 Research Questions

In this section, we outline several research questions that guide the research conducted in this
thesis and that we aim to answer in the subsequent chapters.

1. To what degree does the geometric transformation of foveated data to a grid-aligned rep-

resentation play a role in the accuracy of foveated convolutional neural networks?

We show that the change in coordinate frames imposed by the geometric transformations
required to map foveated data to a grid-aligned representation plays a large role in the
accuracy of foveated CNNs. Additionally, we propose a graph convolutional approach to
processing foveated images that allows for arbitrary coordinate frames to be used, yielding
more accurate foveated CNNs.

2. Can foveated computer vision systems outperform uniform systems in object recognition

for a given pixel budget?

We show that foveated object recognition systems can outperform their uniform counter-
parts in terms of classification accuracy for convolutional and non-convolutional systems.
We further show that this performance gap increases as the scale distribution of objects in
the dataset increases.

3. Does adopting foveated vision in non-convolutional architectures such as vision trans-

formers and mixer architectures lead to better classification accuracy than a uniform

sensing approach?
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Recently, non-convolutional architectures such as vision-transformers [45] have emerged
as powerful alternatives to CNNs. We argue that these architectures are a natural fit for
operating on foveated images, as they have fewer image-specific inductive priors and can
perform space-variant computation. We show that such networks exhibit improved per-
formance when using a foveated sampling strategy.

4. Is a foveated sampling strategy more useful for image classification than biologically im-

plausible methods such as learning-to-zoom [44] in terms of classification accuracy?

We show that for convolutional systems, biologically implausible methods slightly out-
perform foveated methods. However, they are approximately on par with each other
when used in conjunction with non-convolutional systems such as ResMLP [46], or Vision
Transformers [45].

5. Is the optimal parameterisation of a foveated sensor (in terms of classification accuracy

of the system) dependent on the architecture, data or both?

Using a foveated sensor in which the sampling resolution and radius can be controlled,
we sweep over a range of parameterisations and show that architectures that operate on
a lower number of total pixels favour smaller, higher resolution fovea and vice-versa.
Furthermore, we show that the scale variation of objects in a dataset plays an important
role in shaping the optimal sampling layout for foveated sensors.

6. Can we learn an optimal parameterisation of a sensor jointly with deep neural network

weights through backpropagation?

Optimizing the sensor layout through hyperparameter tuning is costly for deep neural
networks. We introduce a novel sensor that allows the sampling layout to be learned via
backpropagation. We show that the sensor converges on a similar layout to the optimal
one found via hyperparameter search.

7. For sequential active vision architectures, does integrating visual information from mul-

tiple observations improve classification accuracy and what mechanisms are needed to

achieve this?

We show that foveated object recognition systems benefit from repeated observations of
images. We find that a simple averaging mechanism suffices in image classification over
relatively more complex methods such as self-attention or recurrent networks.
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1.5.1 Thesis Structure

The structure of this thesis is as follows:

• Chapter 2. introduces a graph convolutional approach to processing foveated images and
presents a pilot study comparing classification accuracy when representing foveated vi-
sual data in different coordinate frames. This work is presented in part in Monte-Carlo

Convolution on Foveated Images [47]

• Chapter 3. expands upon the pilot study conducted in the previous chapter and introduces a
fixation mechanism to guide the sensor to salient regions of images. Additional variations
of the graph convolution are also explored. This work is presented in part in Foveation in

the Era of Deep Learning [48]

• Chapter 4. looks towards non-convolutional vision architectures, such as vision transform-
ers [45] and ResMLP [46], as candidates for processing foveated images. Additionally, a
differentiable parameterized foveated sensor is proposed which allows for sampling reso-
lution over the visual field to be optimized via backpropagation.

• Chapter 5. investigates foveated vision architectures that repeatedly attend to visual data
in a sequential manner. In particular, different methods for integrating visual information
over time are compared as well as utilizing recurrent processing in all hidden layers.

• Chapter 6. presents a summary of the findings of the work conducted in this thesis, and
several avenues for future work.



Chapter 2

Convolution on Non-Grid Structured
Visual Data

2.1 Introduction

Convolutional neural networks (CNNs) are a prominent class of vision models that have been
applied effectively to various vision tasks, including recognition, segmentation and detection.
Unsurprisingly, much recent prior work concerned with foveated computer vision systems has
also adopted CNNs for the downstream processing of visual data [20, 21, 27, 32]. An emerging
trend in these prior works is that adopting a foveated strategy over a uniform one does not
yield significant improvements to task performance (i.e. classification accuracy). This is best
illustrated in a study from Torabian et al. [20], which shows that foveated CNNs exhibit lower
classification accuracy than uniform CNNs on the ImageNet-1k dataset [49].

Two reasonable hypotheses can be formulated to explain this trend. Firstly, foveated vision pro-
vides no functional benefit over uniform vision in completing the visual perception tasks covered
in this thesis and prior works (i.e. image classification on natural images), and is an overarching
research question guiding this thesis (RQ.2). Secondly, the application of convolutional neural
networks to foveated image data as conducted in prior works, is sub-optimal, diminishing task
performance. This hypothesis is the subject of this chapter, as to reasonably answer Research
Question 1, it is necessary to seek or devise suitable models for processing foveated data.

In this chapter 1, we attempt to identify any characteristics of foveated CNNs that may indicate
pathologies within the system that hamper performance. In particular, we look at the fundamen-
tal principles of CNNs (i.e. filtering with shared weights) and their implications for operating
on foveated images. We do this through the lens of geometric deep learning [50, 51], a frame-

1The work in this chapter has been presented, in part, in "Monte Carlo Convolution on Foveated Images" [47].

13
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work for understanding machine learning systems in terms of how they utilize the underlying
geometric structure of the data on which they operate.

Through this analysis, we identify the geometric transform of foveated data to a grid-aligned
representation amenable for convolutional processing as a potentially problematic trait of previ-
ous foveated CNN designs. These transforms are necessary because CNNs require data to exist
in a grid-structured domain. However, these transforms impose specific coordinate frames for
representing visual data and change the behaviour of convolution layers in potentially harmful
ways.

To this end, we propose a novel graph convolutional approach to processing foveated images.
Crucially, it allows foveated image data to be represented in arbitrary coordinate frames as it
does not necessitate visual data to lie on a grid. We present a set of pilot experiments exploring
different coordinate frames for representing foveated visual data free from other compounding
factors, such as the specific pixel arrangement of different foveated sensors. We show that the
coordinate frame does indeed play an important role in the overall efficacy of a foveated CNN
in classifying natural images.

2.1.1 Chapter Structure

This chapter is structured as follows:

1. Firstly, we introduce the relevant background knowledge required to understand the work
conducted in this chapter.

2. Secondly, we introduce relevant prior works presented in the literature.

3. The methodology behind the graph convolution approach and the overall model architec-
ture is outlined.

4. We then outline pilot experiments and the corresponding results and analysis.

5. Finally, we provide a discussion of the work conducted in this chapter and its limitations.
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2.2 Background

2.2.1 Inductive Biases

A prominent theme within this chapter is inductive bias, particularly from equivariance (and in-
variance) to transformations of the input data. We can view building a machine learning model
for a given problem as searching a function space for a function that allows us to make pre-
dictions that generalize to unseen data. Inductive biases play a role in biasing or constraining
this search space to functions that we expect to perform well, simplifying this procedure, and
potentially providing some guarantees to how the system behaves.

Inductive biases in machine learning models come in various forms. One example is the use of
a linear or polynomial model for regression tasks. The former constrains the function space to
linear ones, while polynomials consider a broader class of functions that can be characterized
as polynomials up to some maximum order. Using these models as examples, we can comment
on both the advantageous and inhibitory role of inductive biases. Considering a hypothetical
regression task in which there is a highly non-linear relationship between input variables and
target variables, the use of a linear model results in an inductive bias that constrains the function
space to functions that are insufficient to characterize this data correctly, and as such a polyno-
mial model may be favourable due to its ability to represent non-linear functions. Conversely,
suppose a linear function characterizes the data well, the function space of polynomial models
is much broader and have the potential to overfit to spurious features in the training data (e.g.
noise), leading to solutions that do not generalize well to unseen data. In this case, the linear
inductive bias is helpful as the optimal solution lies within the space of linear functions.

2.2.2 Equivariance and Invariance

Convolution exhibits one of the most well-known inductive biases in deep learning models,
namely translation equivariance, which is a product of filtering with shared weights. Formally,
a function f is equivariant to some transformation g of the input x if f (g(x)) = g( f (x)). In the
context of convolution, it is equivariant to translations of the input image. I.e. translating an
image and then applying convolution is equivalent to applying convolution to an image and then
translating. We can visualize this in the form of a commutative diagram (Figure 2.1).

A related concept is that of invariance. While in the case of equivariance, the transformation of
the input manifests as a corresponding transformation of the output, a function f that is invariant
to a transformation g produces the same output for all g in a transformation group. Formally, we
can define this as f (x) = f (g(x)).

The translation equivariance inductive bias of convolution layers means features can be detected
in images regardless of their absolute position. Equivariance over invariance is essential in this
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Filter

Filter

Translate TranslateTranslation
Equivariance

Figure 2.1: A commutative diagram visualizing the equivariance of convolution layers with
respect to transformations from the translation group.

case, as we would like to preserve spatial relationships between features over multiple layers,
which would be lost if convolution was invariant to translation. In the context of image classifica-
tion datasets, it is often assumed that the translation group (for Cartesian images) is a symmetry
of the data and does not change the label. We can say that the label of an image is invariant to
translation of the image. Convolution layers can be used with global pooling layers to build a
translation invariant CNN, which has become the de-facto design in state-of-the-art CNNs. This
incorporates a useful inductive bias into the architecture, as invariance to translations no longer
has to be learned, as we have constrained the function space to translation invariant functions.

2.2.3 Geometric Deep Learning

Convolution layers operate on grid-structured domains. In the context of images, the signal
and the domain come from the discretisation of a visual signal, which conventionally uses a
Cartesian coordinate frame. Convolution leverages the grid structure of the domain to infer
spatial relationships between different parts of the signals, which allows for spatial features to
be extracted from said signals. Furthermore, grids have translation symmetry. Convolution
layers exploit this symmetry via filter weight sharing, yielding translation equivariant filtering
of signals on the domain.

Notably, translation has different meanings depending on the grid-structure’s coordinate frame.
For example, if a Cartesian coordinate frame is used, translations correspond to translations in
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Visualization in Log-Polar Coordinates 

Visualization in Cartesian Coordinates 

Translation

Rotate and Scale

Figure 2.2: Visualisation of the same transformation in different coordinate frames. In log-polar
coordinates, translating visual data corresponds to rotating and scaling visual data, centred at
the origin. Hence, translation equivariant functions applied to log-polar images are equivariant
to Cartesian rotation and scaling.

the Cartesian sense. If a log-polar coordinate frame is used, translations correspond to rotation
and scaling centred at the origin (Figure 2.2). This is why CNNs applied to log-polar images are
rotation and scale invariant, and translation equivariant when applied to conventional images.

In order to apply conventional CNNs to foveated images, the data must be represented on a
grid-structured domain. A foveated sampling arrangement must satisfy two qualities: a foveated
arrangement in Cartesian coordinates and a grid-structured arrangement in another coordinate
frame. We can interpret this as a geometric transform of Cartesian foveated image data to
another coordinate frame, and therefore, this imposes a change to the transformation to which
convolution is equivariant.

As discussed previously, inductive biases can be helpful but also inhibitory. Equivariance to
a transformation of a visual signal is helpful if the transformation is a symmetry of the data,
i.e., a transformation that does not change the task’s relevant semantics. We argue that the
necessary geometric transform of foveated image data to a grid-structure does not necessarily
yield equivariance properties that are helpful for image classification and could explain why
foveated CNNs seldom outperform uniform CNNs. A simple illustration of this is a log-polar
CNN applied to MNIST. The digits 6 and 9 are rotations of each other, so a rotation invariant
CNN will be unable to distinguish between these digits.
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2.3 Related Work

2.3.1 Foveated Convolutional Neural Networks

There have been several attempts to incorporate foveated vision into CNNs. Log-polar prepro-
cessing has been utilized in several works, motivated from the perspective of achieving global
scale and rotation equivariance, implementing foveated vision, or both. [17, 18, 52] apply log-
polar preprocessing as input to a CNN that performs image classification. In particular, they
show that such networks implicitly generalize to global rotation and scaling transformations
much better than CNNs applied to Cartesian images. Kim et al. [17] showed the importance of
wrap-around padding in addressing the discontinuity of the visual representation in the angular
axis and, in turn, improving classification accuracy. An important observation can be made from
Kim et al’s work in that this improved performance only holds for log-polar networks trained
on non-rotated data. When both Cartesian networks and log-polar networks have rotation data
augmentation applied, Cartesian approaches outperform log-polar methods. Esteves et al. [19]
propose Polar Transformer Networks (PTN), an active vision system based on a reformulation of
Spatial Transformer Networks (STN) [43]. PTNs use a separate localisation network to inform
a classifier where to look, giving the system the ability to intelligently fixate on an input image.
They aim to use the log-polar transform to solve rotation and scale transformations, and fixation
to solve translation transformations. As such the network can choose the origin of the log-polar
transform and achieve a jointly rotation, scale and translation invariant system. Dabane et al.
[53] similarly use a log-polar transform in a Spatial Transformer Network, but in the localisation
network and not the classifier. They show that the log-polar transform helps the network localise
objects in the image.

The aforementioned works predominantly focused on relatively simple datasets such as MNIST
[54] and CIFAR10 [55]. Torabian et al. [20] and Lukanov et al. [21] conduct experiments
on ImageNet-1k [49] with fixation mechanisms based on DeepGaze [56, 57, 58] and a heuris-
tic based method using class activation maps [59] respectively. They compare the log-polar
method [13] to uniform approaches. Additionally they compare against Cartesian like foveated
approaches. Lukanov et al. make use of the Cartesian Foveal Geometry sensor proposed by
Martinez et al [22] while Torabian et al. [20] make use of strong barrel distortion. In both works
improved classification accuracy was seen with foveated approaches that were more Cartesian
like. Ozimek et al. [32] conduct a similar study, but without fixations, adopting a GPU accel-
erated version of Balasuriya’s [30] software retina and Schwartz’ log(z+a) transform [8, 15].
They compare against a uniform strategy, and resampling the foveated image back to a uniform
image. It was found that the log(z+a) method performed the worst, and there was a noticeable
performance increase by simply resampling the foveated image back to a uniform grid. In such
a scenario, the amount of visual information remains the same, suggesting that the reduced per-
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formance was not due to the data compression, but rather the way the data was represented and
provided to the CNN.

The Multi-FoV approach mentioned previously and originally proposed by [24, 25], has been
popular approach for implementing foveated vision for CNNs [26, 27, 29, 60]. These systems
function broadly in the same way, but differ slightly in the details. For example, Karpathy et
al. [26] make use of two CNNs, one for processing the foveal crop, and one for processing the
peripheral crop. Sermanet et al [27] and Li et al [60] make use of a similar method, but share
weights between the different streams. Sharing weights might have intuitive relations to some
form of scale equivariance and the similarities of this sensor and image pyramids, while allowing
weights to be decoupled might allow the network to learn more nuanced computations for the
fovea and periphery. Karpathy et al. [26] do show that the foveal and peripheral convolution
layers do learn distinctly different filters suggesting that decoupling the weights might be a good
idea.

Multi-FoV methods, or indeed any sensor that represents visual data as discontiguous sub-
images such as the sensor proposed in [14], also introduce discontinuities in the visual repre-
sentation, as high-resolution foveal data is processed separately to the low resolution peripheral
data. This limits the ability of foveal and peripheral features to interact until they are unified
into a single representation. This unification is typically performed very late in the network
where features are typically high-level, however it may be beneficial to allow lower-level foveal
and peripheral features to interact. Architectures such as Feature-Pyramid Networks [61] offer
potential avenues to address this, but introduce additional complexity and parameters. Beyond
this there is also the non-obvious choices of how many crops to use, what their respective fields-
of-view should be, and how much each should be downsampled. Although we do not explore
this method in great detail in this work, these uncertainties are indicative of the nascent stages of
research into foveated vision and a lack of guiding principles on how best to build such systems.

An important detail to highlight from these works is the continual empirical evidence that the
coordinate frame used to represent the foveated image seems to have a significant impact on
the accuracy of the CNN in image classification problems. The coordinate frame stems from
the geometric mapping required to map the foveated data to a uniform grid, and is an integral
part of allowing convolutional neural networks to operate on certain foveated images. In this
chapter, we attempt to verify that the coordinate frame of the foveated representation is indeed a
contributing factor to this difference in performance. We achieve this through a graph convolu-
tional based approach, which allows us to change the coordinate frame of convolution arbitrarily
as it does not require foveated images to represented as a uniform grid. It should be noted that
this commentary is in the context of object recognition. For other visual perception tasks such
as motion estimation [62] and robotic hand-eye coordination tasks, log-polar preprocessing for
CNNs has shown to be beneficial. Providing commentary on these ideas for a general vision
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system that performs a wide-repertoire of perception tasks is beyond the scope of this work.

2.3.2 Deep Learning on Non-Grid Structured Domains

As discussed previously, CNNs operate on grid-structured domains. In order to explore alter-
native coordinate frames for convolution, we must relax the requirement for grid-structured do-
mains, and seek a more general form of convolution to non-grid structured data. A natural way
to view non-grid-structured visual data is a graph, as grids are simply a special case of graphs
with a specific geometric structure [50, 51]. In turn this suggests graph convolution as a viable
candidate for addressing the aforementioned concerns. Owing to their generality, graphs emerge
in a variety of different contexts, however we can focus the discussion to situations where nodes
in the graph (in our case pixels) can be associated with spatial coordinates, such as graph deep
learning on point clouds [63] and chemical molecules [64].

PointNet [65] stands as a major milestone in neural network approaches to processing point
clouds without resorting to voxelisation. The approach predominantly makes use of multi-Layer
perceptrons (MLPs) to embed each point independently of one another into a higher-dimensional
space before aggregating these embeddings into a single representation by max-pooling over the
spatial dimension. PointNet can be viewed as a particular case of a graph neural network with
an empty edge set. This is distinctly different from CNNs which capture local patterns in a
hierarchical fashion. In the geometric deep learning framework [50], this local and hierarchical
design pattern is referred to as the scale separation prior and has been a common property of
state-of-the-art CNNs, and many other architectures, since their inception.

PointNet++ [66] addresses this by applying PointNet locally and hierarchically improving per-
formance on Point Cloud classification and segmentation. In the context of image classification,
Li et al. [67] demonstrate that PointNet++ is unable to perform better than random guessing on
CIFAR10 suggesting it has limited application to image understanding. PointNets have inspired
a number of successor architectures that aimed to more faithfully introduce the strength of con-
volution to point cloud processing. These architectures incorporate edge information and can be
more readily described as spatial graph convolution. Simonovsky and Komodakis [68] propose
a graph convolution layer for processing point clouds and general graphs with edge conditioned
filters. These filters map the spatial offsets between points through an MLP to filter weights.
Many similar works based on edge conditioned filters have been proposed [63, 69, 70, 71, 72].
Largely they are consistent in mapping spatial offsets between points to filter weights through an
MLP, however Hermosilla et al. [70] and Wu et al. [71] make the connection to Monte-Carlo in-
tegration and introduce a weighting term for each point based on the inverse probability density
function of each point to de-bias the filter approximation to oversampled regions, improving ro-
bustness to non-uniform sampling. Additionally, it is shown that on application to grid data this
formulation recovers the standard discrete convolution operation. Other related architectures
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achieve similar functionality but do not directly use an MLP to produce filter weights. KPConv
[73] interpolates point defined filter weights to match the local sampling pattern. PAConv[74]
applies a small neural network to the spatial offsets of points to softly select weights from a
weight bank. PointCNN [67] learns a non-linear transformation to permute and weight a local
set of points in an attempt to enforce a canonical representation for arbitrary arrangements of
local points.

A few works considered graph convolution processing for foveated images using predefined fil-
ters. Wallace et al. [75] propose a graph based approach for arbitrary space-variant sensors, and
in particular those of the log(z + a) family [8, 15, 76] to address the discontinuities in the vi-
sual representation in the angular axis. They demonstrate that certain filtering operations can be
achieved such as pseudo-laplacian filtering. Our approach builds upon this work by introducing
a parameterised convolution filter able to perform filtering with arbitrary filter functions. In a
similar vein, Balasuriya and Siebert uses a graph convolution method to filter foveated images
[77]. This method uses Gabor filters due to their resemblance to neurons in the visual cortex
[78, 79, 80]. Again, we extend upon this work by reformulating it as a parameterised graph
convolution layer able to learn arbitrary filters.
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2.4 Graph Convolution on Foveated Images

In this section we describe our graph convolutional approach to processing foveated images.
The convolution layers in CNNs typically use filters with a limited spatial support, meaning that
output neurons are locally connected to a set of input neurons based on their spatial proximity.
It is easy to define these local connections on grid structured domains without ever taking into
consideration explicit spatial position information. Instead one can rely on each neuron’s index
within the data structure (e.g. a tensor) to implicitly define the spatial relationships between
neurons. The regular sampling of grid structured domains ensures that these implicit spatial
relationships between connected input and output neurons are consistent for all output neurons.

For some foveated sensors, such as those with pseudo-uniform pixel arrangements [1, 81], there
are not obvious indexing rules that can be used to define local connections limiting the applica-
tion of indexing based methods to define spatial locality. For the purpose of a general form of
graph convolution that can accommodate images with irregular domain structures, we require a
graph construction method that can define local receptive fields on an arbitrary arrangement of
points in a 2D plane.

2.4.1 Graph Construction

Our convolution layer takes as input a set of feature vectors, each associated with a vertex u ∈U

of a 2D planar graph and a position (x,y) that defines the feature’s spatial position within the
feature map. For example, U could be a foveated image, where u is a pixel with an RGB
value and its Cartesian coordinate. Similarly, we define a set of vertices V pertaining to output
features, each with an (x,y) coordinate and a feature vector f̂ that we aim to compute. We define
local connections as the edges E from input neurons U , to output neurons V , to form a bipartite
graph G = (U,V,E). Note that it is not strictly necessary for the size of U and V to be the same.
Decreasing the number of vertices in V relative to U allows for downsampling like operations to
be implemented.

The edges E are determined by finding the K-Nearest Neighbours in U for each v ∈V , based on
the nodes’ spatial coordinates (x,y) and a Euclidean distance metric. K in this case is analogous
to the filter size of the layer. The receptive field of an output neuron v (i.e. the vertices in U that
connect to v ∈V ) is given as R(v) = {u ∈U |(u,v)∈ E} (Figure 2.3). It is possible to use locality
measures other than K-Nearest Neighbours, such as fixed-radius near neighbours. In such cases
|R(v)| can vary for each v ∈V , whereas with K-Nearest Neighbours |R(v)|= K.
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Figure 2.3: Visualisation of the local spatial connections between vertices U and output vertices
V with edges removed for visualisation purposes. Using K-nearest neighbours leads to a fixed
number of elements for each receptive field R(v), which scales the spatial support of the receptive
field as sampling rate decreases.

2.4.2 Edge Conditioned Filters

While the edges E tell us how input neurons are connected to output neurons, it does not say
how we can implement weight sharing. Recall that we are trying to compute the feature vector
f̂v for all v∈V which will be a weighted sum of the features fu associated with u∈R(v), referred
to as fuv from now on for brevity. A naive implementation would be to define a weight vector
w ∈ RK where wu denotes the weight applied to fuv. The feature vector fv is computed as:

f̂v = ∑
u∈R(v)

wu · fuv (2.1)

This method is problematic as it is an asymmetric function and thus not equivariant to the per-
mutation of its variables. This makes it difficult to apply this method to non-uniformly sampled
data, where R(v) might lack a canonical ordering. Moreover, the coordinates associated with
u ∈ R(v) might not be consistent for different v ∈ V . This limits the applicability of using a
single discrete set of weights to compute all the output features.

To address this we leverage edge conditioned convolutional filters [68], which have been suc-
cessfully applied to convolutional processing of point clouds [63, 69, 70, 71, 72]. Rather than
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apply a discrete set of weights, we compute filter weights through a learnable parametesized
function G(·) applied to edge labels. We define the label δuv for edge (u,v) ∈ E as the spatial
offset between vertices u and v, normalized by the average spatial offset for a receptive field
R(v).

δuv =
xu − xv

∑u∈R(v) xu − xv
(2.2)

Where xu and xv are the x coordinates for the vertices u ∈ U and v ∈ V respectively. We have
simplified to the 1D case for simplicity. This allows us to compute f̂v as a symmetric function
invariant to the permutation of input features:

f̂v = ∑
u∈R(v)

G(δuv) · fuv (2.3)

By conditioning filter weights on relative spatial offsets, we allow the graph convolution operator
to model relative spatial relationships much like ordinary convolution operators. Normalizing
the spatial offsets has the effect of scaling the filter function as sampling density becomes sparser
(i.e. in the periphery). Different methods for labelling edges will yield different equivariance
properties within the convolution layer. This allows the graph convolution method to be highly
general. For example, we could use log-polar coordinates to label the edges, or both Cartesian
and log-polar.

2.4.3 Motivation for Coordinate Frame and Filter Scaling

While our graph convolution layer allows for arbitrary coordinate frames to be used, it does not
help us decide which one to actually use. In this work, we have adopted a Cartesian coordinate
frame and rescaling the offsets so that the filter function scales as resolution decreases. This
design is motivated in the following ways.

Firstly, the choice of Cartesian coordinates is motivated due to several empirical results in prior
works showing that log-polar foveated images generally exhibit lower classification accuracy
than Cartesian-like foveated images [20, 21, 32]. The term Cartesian-like is somewhat vague.
In the context of this thesis, we are specifically referring to coordinate frames where moving
in a positive direction in the y axis, always manifests as a positive movement in the y axis in
Cartesian coordinates, but potentially with an additional x component. Moving in a positive
direction in the x axis has corresponding behaviour. In other words, the notions of up down left
and right are largely consistent with respect to Cartesian coordinates.

Secondly, the choice of scaling the filter can be motivated from several angles. Without scaling,
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Convolution on Grid-Aligned Pixel 
Structure
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Figure 2.4: Visualisation of the spatial offsets of pixels in a receptive field, relative to the centre
of the receptive field for grid-structured images and non-grid structured images. On grid-aligned
structures, the offsets are a discrete set of (x, y) coordinates, that are consistent for all receptive
fields. On non-grid-structures, the offsets for a receptive field can be viewed as being drawn
from a distribution of (x,y) coordinates. We visualize the offsets for all receptive fields in blue,
and the offsets for a single receptive field in pink.

the area of the filter is consistent across the field of view. Tiezzi et al. [82] refer to this as the
principle of uniform coverage. This incurs a risk of undersampling the filter in sparse peripheral
regions, leading to poor filter response approximation and aliasing. This could be alleviated by
enforcing large low frequency filters. However, this does not leverage the high-resolution fovea,
as we only extract low frequency features from this region.

Tiezzi et al. [82] propose to address this problem by low passing filters in sparser regions. This
approach could be implemented in our graph convolution layer. However, for the purpose of this
thesis we aim to use a purely convolutional approach without the use of additional specialized
behaviour, beyond our graph convolution, to understand the effect of coordinate frames in isola-
tion. Finally, scaling is also consistent with the receptive fields of neurons in the visual cortex,
which scale with eccentricity.

2.4.4 Implicit Neural Filters

Unlike uniform images, there is the possibility for the edge labels δ on foveated images to take
on any real values rather than a small finite set of discrete values. Conceptually it is easiest
to understand the domain of δ as continuous (Figure 2.4) and thus necessitates that our filter
function G is also continuous over the spatial domain. Note that to compute a given f̂v, we
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Figure 2.5: Visualisation of the process of generating edge conditioned filter weights for an
arbitrary arrangement of pixels. A) shows the spatial positions of pixels where (δxi,δyi) is the
normalized spatial offset between the ith pixel and the centre of the receptive field. B) Spatial
offsets are computed for all pixels in the receptive field. C) an MLP maps each spatial offset to
a filter value. D) Visualisation of the underlying filter function represented by an MLP. Orange
points indicate where the function is evaluated.

only evaluate G using the edge labels δuv for u ∈ R(v). This bears resemblance to Monte-Carlo
integration techniques where we know we can approximate the convolution of two continuous
functions by drawing a finite number of samples for each.

Previous works have utilized multi-layer perceptrons (MLPs) with ReLU activation as continu-
ous function approximators for edge conditioned filters [68, 70, 71]. Here we make an additional
connection between edge conditioned filters and implicit neural representations [83, 84, 85] to
inform a more principled design for the MLPs used in our convolution layer. Briefly, the aim of
implicit neural representations is to parameterise a neural network such that it maps the domain
of a signal to the value of the signal. It has been shown that ReLU activated MLPs operating
on low dimensional inputs are biased to learning low frequency functions [86]. In the context of
edge conditioned filters this bias may limit the expressivity of the convolution layer and its abil-
ity to extract high frequency information from feature maps. Work from Mildenhall et al. [84]
and Sitzmann et al. [83] has shown that periodic activations or Fourier projections can better
equip an MLP to model high frequency functions over low dimensional domains. Accordingly,
we opt for a single hidden layer sine activated MLP for our function G. Similarly to Sitzmann et
al. we also apply a scalar multiplier ω before the activation functions which is a hyperparameter
to be tuned. A higher ω allows for higher frequency sine activations at initialisation.

2.4.5 Foveated Sampling

In order to produce a foveated image we resample a uniform image using Balsuriya’s proposed
method [81]. This requires a set of sampling locations that serve as the centres for Gaussian
receptive fields. Briefly, we generate a foveated sampling layout (e.g. a log-polar grid) to serve
as receptive field locations. The size of each receptive field is given by the mean distance to its 4
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closest receptive fields. The sigma of the Gaussian is parameterised as 1
3 of this distance. These

Gaussians are then realized as kernels to sample a uniform input image.

2.4.6 Architecture

For all CNNs we use an isometric (sometimes referred to as isotropic) ConvNeXt [87]. They
consist of an initial convolution stage with a filter size of 16 (or 4× 4 on grid-structured) and
downsample the input image by a factor of 4. we use 8 identical ConvNeXt blocks, each con-
sisting of a depth-wise convolution with a kernel size of 9 (equivalent to 3x3 on a grid), followed
by a non-linear feed-forward network that operates in a pointwise manner across the spatial di-
mension. Finally, we apply global average pooling to the final convolution features and use a
single fully connected layer to make class predictions. In the case of application to Log-polar
images, we apply circular padding on the angular axis to address the discontinuity at the 0−2π

boundary.

For all graph convolutional layers we use a single hidden layer MLP with 16 hidden units and
Sine Activation unless stated otherwise. The spatial dimensionality of the feature-maps is the
same for all ConvNeXt blocks which simplifies the implementation of skip connections and re-
moves the need for downsampling operations to be considered. Despite their simplicity, isomet-
ric architectures have demonstrated competitive with the more conventional hierarchical CNN
architectures [88, 89].

2.5 Image Classification on Imagewoof

In these experiments we aim to answer three main questions. Firstly, how sensitive is classifi-
cation accuracy to the coordinate frame used when applying convolution to foveated images?
Secondly, can we achieve better classification accuracy with a graph convolutional approach to
processing foveated images (rather than conventional convolution)? Finally, can foveated CNNs
outperform a uniform CNN in classification accuracy?

We conduct our experiments on Imagewoof [90], a 10-class fine-grained subset of ImageNet-1k
[49]. Our motivation for this choice of dataset is firstly that it exhibits reasonably large image
sizes, suitable for applying foveated downsampling. Secondly, it has a sufficient number of
samples per class, allowing for stable training of each model while still being small in total
size (9,025 training images), allowing for quick iterations in these early stages of development.
Finally, we speculate its fine-grained nature means it can’t rely as heavily on low-resolution cues
such as the general shape of objects.
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Figure 2.6: Schematic overview of the Isometric Foveated Graph ConvNeXt.
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2.5.1 Training Details and Hyperparameters

We consider three methods for generating a foveated sampling layout. A log-polar grid of 80×
160 resolution. A blindspot log-polar grid, with 80×160 resolution, but with a fovea radius of
11 pixels chosen through random hyperparameter search. (i.e sampling begins from a radius of
11 pixels from the origin). A self-similar neural network (SSNN) [1], with a 1122 resolution and
a fovea radius of 30% of the field of view, chosen through random hyperparameter search.

For training, we use the AdamW[91, 92] optimizer with a batch size of 256 and train the network
for 90 epochs. We use a linear warm-up learning rate scheduler for 5 epochs followed by 85
epochs of cosine decay where the maximum learning rate throughout the schedule is 0.003. We
use a weight decay of 0.01 applied to all parameters except the bias terms.

We use a data augmentation procedure of resizing the input image so its shortest side is 256px
and perform a random resized crop of 224x224px and a scale distribution of (0.08 to 1.0). We
additionally use the TrivialAugment [93] data augmentation policy which randomly applies an
additional augmentation to the cropped image. At test time, we resize the image so its shortest
side is 256px and perform of centre crop of 224× 224px. All input images to the network are
normalized by the Imagenet [49] mean and standard deviation.

We train all networks with gradient descent using the cross-entropy loss and use label smooth-
ing of 0.1. Hyperparameter selection was carried out via random search using a validation set
constructed from 10% of the training data. The final reported accuracy is on a held out test set
using the model checkpoint with the highest validation accuracy over the course of training.

2.5.2 Results

Does Coordinate Frame Matter? : We present results for all methods in Table 2.1. We show
that for both log-polar sensor variants, applying Graph Convolution in a Cartesian coordinate
frame improves classification accuracy relative to using a log-polar coordinate frame (71.3% vs
66.4% and 76.6% vs 72.0%). An independent t-test shows both of these results are statistically
significant, p=0.0006 and p=0.0006. Importantly, the only difference between these methods is
the coordinate frame convolution is applied, in verifying that these observations are dependent
on this variable (RQ 1).

It is challenging to ascertain the exact underlying reason as to why one coordinate frame is
better than another. In the context of image data of the natural world, one potential reason is
gravity likely imposes a strong bias in the distribution of rotations. As a result, the rotation
equivariance derived from log-polar coordinate frames might be of limited use in datasets such
as images. Another reasonable hypothesis is that Cartesian-like coordinate frames more closely
resemble translation equivariance, and are useful in cases when fixations can’t be used to address
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Sensor Resolution Convolution
Coordinate Frame Conv Method G Accuracy (%)

Uniform 112×112 Cartesian Conv - 81.4±0.4
Uniform 112×112 Cartesian Graph Conv MLP (Sine) 82.3±0.8

Log-Polar 80×160 Log-Polar Conv - 66.6±1.4
Log-Polar 80×160 Log-Polar Graph Conv MLP (Sine) 66.4±0.3
Log-Polar 80×160 Cartesian Graph Conv MLP (Sine) 71.3±0.8

Log-Polar (B.S) 80×160 Log-Polar Conv - 72.0±0.7
Log-Polar (B.S) 80×160 Log-Polar Graph Conv MLP (Sine) 72.0±0.2
Log-Polar (B.S) 80×160 Cartesian Graph Conv MLP (Sine) 76.6±0.4

SSNN [1] 1122 Cartesian Graph Conv MLP (Sine) 79.0±0.6
SSNN [1] 1122 Cartesian Graph Conv MLP (ReLU) 67.9±1.8

Table 2.1: Classification accuracy on Imagewoof using different sensors and convolution meth-
ods. Log-polar (B.S) refers to the log-polar blindspot method for generating foveated images.
Resolution refers to the number of pixels in the sensor. G refers to the learnable function that
maps edge labels to filter values in the graph convolution. All results are reported on a held-out
test set, averaged over three independent training runs from different random seeds.

translation. In the following chapter we introduce a fixation mechanism to the system to better
verify these findings.

Are Foveated Graph CNNs Viable? : While our graph convolution showed that coordinate
frame has an effect on classification accuracy, it does not guarantee that graph convolution,
even when utilizing a Cartesian-like coordinate frame, outperforms a standard convolutional
approach. We conduct experiments showing that our graph convolution approach, applied to
log-polar sensors, improves performance relative to a standard convolutional approach (+ 4.7%
for the log-polar sensor, and + 4.6% for the blindspot log-polar sensor). Additionally, we show
that our graph convolution can be applied effectively to sensor layouts generated by a self-similar
neural network. Owing to its randomly generated layout, applying CNNs to this pixel structure
usually requires resampling to a grid, as performed by Ozimek et al. [32]. We show that our
graph convolution can be applied directly to this data, without resampling, and also yields the
best performing foveated CNN across all methods.

This performance improvement can be attributed to both the coordinate frame and the use of
a sine activated MLP to represent graph filters. We show that ReLU activated MLPs exhibit
significantly worse performance on the SSNN sensor (79.0% vs 67.9%). We also observe that
our graph convolution achieves the same performance as standard convolution when both using
the same coordinate frames, suggesting they are approximately as expressive as each other. In
the next section we conduct further experiments that support these observations.

Can Foveated CNNs outperform Uniform CNNs? : Despite showing that our graph convo-
lution layer can make significant improvements to the classification accuracy of foveated CNNs,
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we still find that none are able to outperform a standard CNN operating on uniform images
(RQ2). It is likely that in order to fully leverage foveated sensing, a fixation mechanism is
necessary and may explain why no method could outperform a uniform approach in these ex-
periments. In the following chapter we introduce a fixation mechanism to the system to test
this claim and provide more complete answers to Research Questions 1 and 2. Nonetheless,
the graph convolution layer presented in this chapter provides a strong foundation for future
experiments.

2.5.3 Effect of Depth, Hidden Size and Omega Hyperparameters on Clas-
sification Accuracy

In this section we look at how the parameterisation of the MLP used for computing filter weights
affects classification accuracy. Specifically, we look at the effect of activation functions, the ω

pre-activation scaling hyperparameter for Sine activated MLPs, the hidden size of the MLP and
the depth. All experiments are performed on Imagewoof with the SSNN sensor and the same
architecture and hyperparameters as used in the main experiments.

MLP Hidden Size: Figure 2.7 shows the performance for both ReLU and Sine activated MLPs
for over different hidden sizes. We show that Sine activation significantly outperforms ReLU
activation by at least 8% in all cases. We find in the case of ReLU MLPs, scaling the hidden size
does not yield significant performance increases. Beyond 36 nodes the computational overhead
becomes increasingly prohibitive during training. Sine activated MLPs show a small boost of
∼ 2% when increasing the hidden size from 9 to 18, after which performance plateaus. This
provides compelling evidence that Sine activated MLPs learn filters that facilitate the extraction
of more discriminative features relative to ReLU. We also show that Sine activated MLPs only
need a relatively small hidden size to reach a good accuracy, after which there are diminishing
returns.

Omega Scaling Parameter: Motivated by Sitzmann et al. [83] we introduce the ω hyperparam-
eter which applies a scalar multiplier to the pre-activations. This has the effect of increasing the
frequencies of the Sine waves by some factor ω , in which higher values may make it easier for
the MLP to learn higher frequency functions. We sweep over a range of ω values for a 9 hidden
layer MLP (Figure 2.8) and find that values of 4-6 are optimal for our network. Performance is
particularly sensitive to this parameter, for example in the case of ω = 1 and ω = 10, we see a
6% and 3% drop in performance respectively.

MLP Depth: Finally, we probe the effect of increasing the number of hidden layers in the MLP
(Figure 2.9). In all models we use a hidden size 9 and for the Sine activated model we use an
ω value of 6. We find that increasing the depth leads to slight performance increases for both
MLP variants. The effect is more pronounced in ReLU activated MLPs which is likely due to
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Figure 2.7: The effect of increasing the hidden size for both Sine and ReLU activated MLPs on
classification accuracy on Imagewoof. Larger sizes allow for more expressive functions to be
modeled, however we show scaling the size does not yield significant performance gains. This
suggests that small MLPs should suffice to convolutional filters.
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Figure 2.8: The effect of ω , the pre-activation scaling in Sine activated MLPs, on classification
accuracy on Imagewoof. We consider an MLP of hidden size 9 and 1 hidden layer in these
experiments.
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Figure 2.9: The effect of increasing MLP depth on classification accuracy on Imagewoof. Much
like scaling the hidden size, increasing the depth of the MLP only marginally improves perfor-
mance

the additional depth allowing the MLP to model more complex and expressive filter functions.
The additional depth does not contribute to a significant performance increase for Sine activated
MLPs and even degrades performance when 3 hidden layers are used.

2.6 Limitations

The primary limitation of the work conducted in this chapter is the absence of a fixation mecha-
nism. We circumvented this important functionality by leveraging camera bias in image classifi-
cation datasets, which typically means objects of interest occupy a sizeable percentage of the full
image and are centred in frame, and has been employed as a strategy in other works [26, 32].
Nonetheless, this is a loose approximation at best and likely diminishes the performance of
foveated systems. Furthermore, it is possible that the suitability of different coordinate frames
changes under the presence of a fixation mechanism, as translation transformations can be par-
tially addressed through translating the sensor. This necessitates the introduction of a fixation
mechanism to answer Research Question 1 more completely.

A limitation of the graph convolution method is its memory overhead. Unlike, convolution
on a grid, a filter is represented by a unique set of coefficients at each location, as the spatial
relationships between pixels is not necessarily the same for two different receptive fields, despite
being derived from the same underlying function. This entails an O(n) memory complexity
where n is the number of "pixels" in the input, compared to O(1) on grid-structured images.
This limitation can be problematic in layers with many filters or when processing many pixels.
This overhead is significantly mitigated when adopting depth-wise separable convolution layers
[94], which are commonplace in SOTA CNNs [87, 95]. It is also possible to avoid storing the
full weight tensor in memory, and instead computing filter weights as part of inference such as



CHAPTER 2. CONVOLUTION ON NON-GRID STRUCTURED VISUAL DATA 34

in [70], however this incurs extra computation at inference time.

A final limitation of this study is that only a few sensors and corresponding coordinate frames
were compared. We showed that a Cartesian-like coordinate frame was favourable, of which
there are several sensors that exhibit this characteristic [22, 23, 25]. It is important to evaluate
these sensors, not only to support or refute the benefit of Cartesian-Like representations, but also
to ascertain whether a graph convolutional method is strictly necessary.

2.7 Conclusion

In this chapter we looked at the processing of foveated images using convolutional neural net-
works. We made an observation from the empirical results of prior works that the adoption of
a foveated strategy seldom improved the performance of CNNs over a uniform strategy (often
diminishing performance) in image classification tasks on natural image datasets. We hypothe-
sized that this trend could be explained by CNNs, in their conventional form, being ill-suited to
processing foveated images.

We analysed the fundamental properties of convolution and the ramifications of its application
to foveated image data through the lens of geometric deep learning. We identified the geometric
transformation of foveated data to a grid-aligned representation as a potential pathology in the
application of CNNs to foveated images, that may hamper performance in image classification
tasks and is the subject of Research Question 1. Specifically, we speculated that the geometric
transform of foveated images to a grid-aligned representations may often impose a sub-optimal
coordinate frame in which to apply convolutional processing to visual data, as convolution may
no longer capture a useful transformation of visual data that we would like the network to be
invariant to.

In order to test this claim we proposed a graph convolutional approach to processing foveated
images. This layer generalizes the notion of Convolution to non-grid structured image domains
and allows for arbitrary coordinate frames for representing visual data to be used. We use
this layer to build a foveated CNN and perform a series of image classification experiments on
Imagewoof, contrasting different coordinate frames in absence of other compounding variables.
Empirical analysis showed that classification accuracy significantly improved when adopting a
Cartesian-like coordinate frame rather than a log-polar coordinate frame. This indicates that
the geometric transform of foveated data to a grid-aligned representation can indeed yield a
sub-optimal coordinate frame for convolutional processing of foveated data.

Beyond this, our graph convolution layer improves upon previous (Edge-conditioned) graph
convolution layers [68, 70, 71] in the context of our work. We drew insights from the field of
implicit neural representations to derive a more principled method for representing spatial filters



CHAPTER 2. CONVOLUTION ON NON-GRID STRUCTURED VISUAL DATA 35

on a graph. These improvements allow our graph convolution to be a useful operator for building
foveated CNNs in its own right, and not just as an exploratory tool for analysing the impact of
different coordinate frames.

Our overarching research question (RQ2) asks whether Foveated CNNs can outperform Uniform
CNNs in image classification tasks on natural images. We found this not to be the case in this
chapter. Importantly, the models presented in this Chapter lack a crucial functionality, the ability
to fixate intelligently. In the following chapter we extend this line of work, incorporating a
fixation mechanism into the system and address some of the aforementioned limitations.



Chapter 3

Foveated Convolutional Neural Networks

3.1 Introduction

In the previous chapter we looked at the application of convolutional neural networks to foveated
images in the context of image classification. We proposed a novel graph convolution layer for
processing foveated images and showed that coordinate frame used to represent foveated image
data can have a large effect on the classification accuracy of the network. In this chapter,1 we aim
to provide more definitive answers for Research Questions 1 and 2 by addressing the limitations
of work conducted in the previous chapter.

We extend upon the previous line of work by introducing a fixation mechanism into the system
to center the sensor on salient portions of the input image. In particular, we take inspiration from
Spatial Transformer [43] Networks and Polar Transformer Networks [19]. The network lever-
ages differentiable image sampling [43, 96] that allows for end-to-end training of the fixation
mechanism using only class labels as supervision.

We compare against a wider array of foveated sensors, in particular those that adopt a Cartesian-
Like coordinate frame for representing foveated image data on a grid, as well as biologically
implausible methods such as Learning-to-Zoom [44] and Spatial Transformers [43] (Research
Question 4). We conduct our main experiments on ImageNet100, a 100 class subset of ImageNet-
1k [49]. Our main findings corroborate those of the previous chapter, demonstrating the impor-
tance of coordinate frames when applying convolutional processing to foveated images. We
show that our foveated graph CNN significantly outperforms all other foveated CNNs, and all
other non-foveated methods (including a uniform CNN baseline) with the exception of Learning-
to-Zoom [44], promoting the use of graph convolution layers for processing foveated images.

We also make several additional contributions in this chapter. Firstly, we propose a novel

1The work in this chapter has been presented, in part, in "Foveation in the era of Deep Learning [48])

36
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foveated sensor which allows for the parameterisation of the radius and sampling resolution
of the fovea. We conduct experiments sweeping over a range of different fovea radii, to elu-
cidate the sensitivity of classification accuracy to the sampling layout of the sensor (Research
Question 5). Furthermore, several alternative methods for representing spatial filters on graphs
are explored for our graph convolutional layer, specifically as linear combinations of known
basis functions such as Gaussian Derivatives [97].

3.1.1 Chapter Structure

This chapter is structured as follows:

• Firstly, a general overview of how the ability to fixate is introduced to the foveated CNN
described in the previous Chapter is outlined.

• The differentiable GPU accelerated image sampling method is then described along with
our newly proposed foveated sensor.

• We then describe the various instantiations for representing spatial filters on a graph as
linear combinations of known basis functions.

• Our main experiments comparing different foveated CNNs and non-foveated CNNs are
detailed along with results and discussions.

• Experiments pertaining to fovea radius hyperparameters and different methods for repre-
senting graph filters is then reported.

• We conclude with a summary of the work undertaken in this chapter, its main findings and
its limitations.

3.2 Architecture Overview

Before we outline specific details of the system, we will first provide a high-level overview of
the architecture and how it processes visual data. In general, active vision systems are typically
thought of as sequential models that process visual data and then make an action to sample new
visual data. However, this chapter is primarily concerned with feature extraction from foveated
images, not active vision. To evaluate the network’s ability to extract diagnostic features from
an image, it suffices to consider an architecture that produces a single fixation for a foveated
classifier. This allows us to abstract away additional mechanisms, such as memory, from the
system. We consider a simple two stage architecture that first localises the object which in
turn informs a foveated classifier where to center its gaze. This architecture resembles existing
architectures such as region proposal networks and spatial transformers [43, 98].
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Figure 3.1: Visualisation of the forwards and backwards pass of the foveated CNN with fix-
ations. The localisation network computes a single channel feature map which the attention
module uses to compute an (x, y) coordinate where the foveated sensor should centre its gaze.
Differentiable sampling is used to backpropagate through the foveated sampling stage to opti-
mize the localisation network using only gradients from the cross-entropy loss.

Specifically, given a uniform resolution input image, a localisation network consisting of a CNN
computes a fixation coordinate (x,y). Note that the localisation network does not operate on
foveated images. The foveated sensor centres its gaze at this coordinate and samples the full
resolution image to produce a foveated image. The foveated image is then fed to a convolu-
tional classifier which outputs class predictions. Both the localisation network and the classifier
are trained jointly in an end-to-end fashion with gradient descent by leveraging differentiable
image sampling [43, 96]. This also allows the localisation network to be trained without direct
supervision of where objects are (Figure 3.1).

3.3 Localisation Network

In order to fully exploit foveated vision, the sensor needs to be aligned with salient objects
to maximize the amount of useful visual information they provide to the classifier. We use a
localisation network consisting of a CNN and an attention module. Given an RGB input image
I ∈ RH×W×3, where H and W correspond to the height and width respectively, the CNN feature
extractor G(·) computes a single channel latent representation Î ∈ RH ′×W ′×C = G(I), where H ′

and W ′ are the height and width of the feature map. It is not strictly necessary to adhere to
any particular architecture for this feature extractor, however for the purposes of the attention
module it should help for the features to retain some sort of retinotopic organisation. That is to
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Figure 3.2: Visualisation of the attention module. Left: The input image. Middle: The 1
channel saliency map computed by the localisation network. Right: visualisation of the fixation
coordinate computed by the soft argmax operation respective to the saliency map.

say, the spatial positions of features in the output feature map should correlate to their spatial
position within the input image. CNNs satisfy this requirement and have the added benefit of
translation equivariance making it easy for the localisation network to produce correct fixation
coordinates for on object, irrespective of its position in the image.

Exploiting the fact that CNNs tend to learn saliency map like feature representations [99, 100,
101] a simple mechanism for computing fixations would be to take the argmax of the feature
maps. This method has the benefit of avoiding regressing the fixation coordinates directly with
a fully connected network, which are notoriously difficult to train and frequently collapse [102],
however it is non differentiable and prevents training of the localisation network directly from
the classification loss. Instead, we apply a spatial softmax activation and associate each neuron
i ∈ Î with a coordinate (xi,yi) which describes each neurons location respective to the original
image I. A fixation coordinate l (simplified to one dimensional coordinates for brevity) can then
be computed as:

l = ∑
i∈Î

Softmax(Î)ixi (3.1)

This is a soft formulation for producing a fixation coordinate where the value of the feature
map is at its greatest, allowing for backpropagation through this module (Figure 3.2). A similar
method has been described in [19], which computes the centroid of the feature map which is also
differentiable. We initially chose Softmax over the centroid method to explore different temper-
atures, as well as Gumbel-Softmax [103], and how these affected learning fixation behaviours.
In practice we did not find any particular benefit over using the default temperature scaling of
1.0, and similarly found Gumbel-Softmax to be less stable during training. While we maintain
the use of Softmax in our module, we do not claim or attempt to verify if it is better or worse
than the centroid method described by Esteves et al. [19].
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3.4 Differentiable GPU Accelerated Sampling

In this section we outline a simple differentiable GPU accelerated method based on PyTorch
[104] for performing foveated sampling with a variety of different strategies. Simply, our sensor
S requires a set of Cartesian coordinates, referred to as a tessellation T ∈ R2, to serve as the
centres of bi-linear kernels. Adjusting the gaze of the sensor is achieved through adding a
spatial offset to the coordinates in T , which in this architecture is the fixation coordinate l from
the localisation network. The foveated image is given as F = S(I|T, l). Importantly, as shown in
[43, 96] it is possible compute δF

δ l through the accumulation of the gradients of each sampling
kernels output with respect to l. This permits the learning of l through backpropagation, in turn
allowing the localisation network to be trained through the classification loss.

PyTorch provides a grid sample function that can conveniently implement this and handle the
backwards pass as well as batch processing. While we use bi-linear kernels, it is possible to
use other sampling kernels provided that it is possible to compute δF

δ l . Gaussian kernels are a
well motivated choice both from a signal processing perspective and due to their connections to
biological vision and can fulfil this requirement. The implementation of Gaussian kernels in the
pytorch framework becomes more challenging as the spatial support of the kernels varies over
the visual field, necessitating a different number of coefficients for each kernel. It is possible to
realize this idea in a somewhat efficient way using functionalities such as scatter 2, however we
found there was a noticeable overhead. Pilot studies were conducted on classification tasks com-
paring bilinear kernels and Gaussian kernels both for foveated and uniform sampling, however
there was not a noticeable difference in performance. As such, we acknowledge that Gaussian
kernels are favorable from a signal processing perspective however for the purpose of this thesis
we maintain the use of bilinear kernels due to their convenience.

3.5 Sunflower Foveated Sensor

While not essential to this architecture, we propose a new foveated sampling method that has
some convenient properties. Predominantly, this is motivated by the fact that self-similar neural
networks (SSNNs) iteratively converge on a sampling layout and this process can be slow. While
this sampling layout performed best in our previous chapter, it is inconvenient to use when
exploring different hyperparameters such as fovea radius as the iterative procedure has to be run
for the new hyperparameters.

Our proposed foveated sampling layout is based on the Fibonacci (or Sunflower) spiral 3 which
provides an easy method for creating the densest possible packing of congruent circles in a
circle. Of course, in this case we only consider points that serve as the positions of sampling

2https://pytorch.org/docs/stable/generated/torch.scatter.html
3https://physics.nyu.edu/grierlab/fibonacci3b/node2.html
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Figure 3.3: Left to Right: Vogel’s model of a sunflower capitulum [3], our foveated adaptation
(eq. 3.2) where fovea sampling density is well parameterised, and our adaptation where the fovea
sampling density is poorly parameterised.

kernels. By default, this method gives rise to approximately uniformly distributed points within
a circle, however we need the density of points to vary over the visual field such that it is greatest
at the centre and decreases with eccentricity. We achieve this by logarithmically spacing points
outside a given radius. Formally the position of the ith sampling kernel in polar coordinates
(ρ,θ) is given by:

θi = 2πiφ , λ = r
1

d−N , ρi =

r
√

i
d , if i < d −1.

rλ i−d, otherwise.
(3.2)

Where φ is the golden ratio, N is the total number of sampling kernels, d is the number of
sampling kernels in the fovea, and r is the radius of the fovea.

The sampling density of the fovea can be controlled independently from the size of the fovea;
however, setting the number of sampling kernels in the fovea too low will result in an excessively
sparse fovea. This is undesirable as the sampling resolution will not be able to resolve details
in the fovea (Figure 3.3). In practice, we do not tune this parameter in any of our experiments,
instead we search for a value of d such that the sampling resolution in the fovea is approximately
the same as that immediately outside the fovea, resulting in a smooth transition between the
fovea and the periphery. It is easy to extend the design of our sensor to achieve different sampling
densities across the visual field by defining a function ξ (i) to map i to some other value for ρi.
In the next chapter we explore learning the function ξ (i).

This sampling layout shares many similarities with those produced by a SSNN[1]. The fovea
radius can be controlled through a hyperparameter and there is a smooth transition between
foveal and peripheral resolution. Similarly, the peripheral resolution decays logarithmically
with eccentricity. However, unlike the SSNN, this runs in negligible time making it convenient
for experiments involving sampling layout hyperparameters.
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3.6 Basis Filters

The original formulation of our graph convolution used a Sine activated MLP to represent a
learnable function G that maps edge labels to filter weights. Filter weights are learned as a
linear combination of the penultimate activations of the MLP. A parallel can be drawn between
this method and parameterising filters as a linear combinations of known basis filters. In the
case of the Sine activated MLP the penultimate hidden neurons correspond to a learned basis
of Sinusoidal waves where the incoming weights and bias of a neuron correspond to frequency
and phase respectively. This shares similarities to a Fourier basis. Accordingly, we derive a new
formulation for G which is a linear combination of known basis functions.

There are of course many possible basis spaces that could be used to construct arbitrary filters.
Previous works have considered Discrete Cosines [105], Fourier-Bessel functions [106], Gabor
Filters [107], Circular Harmonics [108] and Gaussian Derivatives [97] as candidates for learning
filters from atomic basis functions.

Predominantly, our aim is to see whether the use of suitable basis filters can achieve comparable
or better performance than the Sine activated MLP method. There are two benefits of a basis
approach. Firstly, the basis filters can be computed at initialisation, reducing the amount of
computation during a forward and backward passes during training, in comparison to an MLP.
Secondly, it is possible to leverage certain functionalities from different types of basis. For
example, many basis functions such as Gaussian Derivatives, Circular Harmonics, and Fourier
Bessel functions, are steerable and can be used to build rotation equivariant convolution layers
[108, 109].

For this work, we adopt Gaussian Derivative basis functions for our main experiments. The
basis filters can be computed through the multiplication of a Gaussian windowing function G

and the Hermite polynomials H where Hm(x) computes the mth order partial derivative along the
x axis. Accordingly, a 2-D Gaussian Derivative basis filter can be computed as follows:

B(x,y,σ ,m) = (−1)mxmyHmx

(
x

σ
√

2

)
Hmy

(
y

σ
√

2

)
G(x,y,σ) (3.3)

Where x and y are the coordinates at which the filter is evaluated, σ controls the size of the filter,
and m= (mx,my) defines the order of the partial derivatives in the x and y directions respectively.
The Hermite polynomials are defined as:
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Figure 3.4: Visualisation of Gaussian Derivative Basis Functions. The order of the partial deriva-
tive in the y direction increases from left to right, and the x direction increases from top to bot-
tom. Our choice of basis functions for a given layer is determined by the hyperparameter M.
The basis includes all Gaussian derivatives where the maximum order of their partial derivatives
is ≤ M

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 −2

H3(x) = 8x3 −12x

H4(x) = 16x4 −48x2 +12

H5(x) = 32x5 −160x3 +120x

(3.4)

Additionally, we explore a Cosine basis and a Fourier basis. The Cosine basis is given by:

B(x,y,u,v) = cos(πux)cos(πvy) (3.5)

where x and y are the spatial coordinates where the basis is evaluated, u and v are the frequencies
in the x and y directions respectively. We set the maximum frequency of the cosine waves via
the hyperparameter M such that we consider all directional frequencies from the set (u,v) ∈
{(0,0),(0,1), ...,(M,M)}. The Fourier basis in the complex domain is given as:

B(x,y,u,v) = e2π j(ux+vy) (3.6)
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Figure 3.5: Visualisation of a Cosine Basis, u and v refer to the frequency in the horizontal and
vertical directions respectively. The Gaussian derivative basis bears resemblance to a Cosine
basis multiplied by a Gaussian windowing function.

Again like in the Cosine basis case we we consider all directional frequencies from the set
(u,v) ∈ {(0,0),(0,1), ...,(M,M)}, where M is a hyperparameter. Finally, we separate the com-
plex valued basis functions into their real and imaginary components to avoid the use of complex
weights when linearly combining the basis. Note that in the case of the Cosine and Fourier basis,
we renormalize the edge labels for each receptive field so that the coordinates lie in the range of
(0, 1) rather than (-1, 1) as is the case in the Gaussian Derivative basis or Implicit Neural Filters.

In all cases, it is simple to learn convolution filters via simply learning a linear combination
of the basis functions, for example using a linear layer. We can regularize the learned filters
by truncating the basis space to only use lower frequency basis filters, which may also have
additional benefits with regard to mitigating aliasing.

Our choice for using Gaussian Derivatives in our main experiments was that they were found to
perform best during early development phases. Additionally, there was consideration to exploit
their steerability and relation to scale-space theory to build locally scale and rotation equivariant
convolution layers. Ultimately, this line of work was not pursued as such ideas had already been
explored for uniform images. Nonetheless, this remains an interesting avenue for future work
which we discuss in more detail in the final chapter.
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Real Components Imaginary Components

Figure 3.6: Visualisation of the real and imaginary components of a Fourier basis. u and v refer
to the horizontal and vertical frequencies respectively. Directional frequencies are given by u

v

3.7 ImageNet-100 Classification Experiments

In this section we conduct several experiments on ImageNet-100, a 100-class subset of the
ImageNet-1K dataset [49]. We aim to answer three main questions. Firstly, can foveated
CNNs with with a fixation mechanism outperform Uniform CNNs in an image classification
task (RQ2). Secondly, for foveated sampling layouts with a Cartesian-like coordinate frames,
is accuracy still improved with our graph convolutional approach (RQ1)? Finally, can foveated
CNNs outperform alternative biologically implausible methods (RQ4) such as Spatial Trans-
formers [43] and Learning-to-Zoom [44]?

3.7.1 Implementation Details

We evaluate various foveated convolutional neural networks, including the Multi-FoV crop
method [24, 25, 27], Cartesian Foveal Geometry [21, 22], and the blindspot log-polar method
[13] (A visualisation of each sensor is provided in Figure 3.7). Additionally, we assess Spatial
Transformer Networks [43], which utilize a localisation network to predict an affine transfor-
mation of a uniform sampling grid, enabling zooming and other transformations. Moreover, we
report results for learning-to-zoom [44], which dynamically adjusts the sampling grid to densely
sample salient regions based on the final convolution feature maps generated by the localisation
network. Finally, to provide additional context, we conduct identical experiments using a uni-
form resolution CNN without a localisation network.
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A)

B)

C)

D)

Sensor Sampled 
Image

Figure 3.7: A visualisation of different foveated sampling methods and the resultant image.
From top to bottom. log-polar (not used in experiments), Blindspot log-polar, Cartesian Foveal
Geometry and Multi-FoV crops.
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For the sake of fair comparisons we keep the underlying architectures as similar as possible
for all methods. For all classifiers we use the "atto" variant of the ConvNeXt [87, 110] archi-
tecture which belongs to a family of State-of-the-art CNNs. All classifiers use a sensor with
approximately 1122 pixels except for the full-resolution uniform CNN which uses a 224×224
input. In the case of the 1122 models we remove the final downsampling stage in the ConvNeXt
architecture so that the final feature map has a 7× 7 resolution. Similarly, the localisation net-
works are based on a truncated ConvNeXt atto in which the final convolutional stage is removed
(i.e. the last two ConvNeXt blocks are removed) and replaced with a 1x1 convolution layer that
outputs a 1 channel feature map. All foveated networks use the attention module presented in
section 3.3. In the spatial transformer network the 1x1 convolution is followed by an MLP with
1 hidden layer, ReLU activation and batch normalisation. The MLP regresses the affine matrix
used to transform the uniform sampling grid. In the learning-to-zoom model we use the saliency
sampler as described in [44].

3.7.2 Training Hyperparameters

Networks are trained with a batch size of 64, and the AdamW [91, 92] optimizer. We perform
a linear warm-up on the learning rate for 5 epochs, followed by cosine annealing for 85 epochs
[111]. During training, we use TrivialAugment data augmentation [93], followed by resizing the
shortest side to 256px and a random resized crop of 224×224 and a random scale variation of
(0.08 - 1.0, the Pytorch default). At test time, we resize the shortest side to 256px and perform
a 224× 224 centre crop. Images are normalized using Imagenet mean and standard deviation.
We use a learning rate of 0.004 and a weight decay of 0.005 for the feature extractors. For the
localisation network, we use a learning rate of 0.0004 for the final 1× 1 convolution (or MLP
in case of the full affine spatial transformer) and a learning rate of 0.00004 for the convolution
stages as done in [44]. We avoid weight decay on the localisation network which we found to
be generally conducive to greater training stability, however we did not extensively test other
weight decay values. We found that some methods that use a localisation network were prone to
collapse during training; particularly spatial transformers. Therefore, we use weights pre-trained
on Imagenet-1K for the localisation networks.

Characterizing the fovea radius as a percentage of the radius of the full sensor, we use the
following settings for the log-polar method, we use a blindspot model with a fovea radius of
5%. For our Sunflower sensor, we use a fovea radius of 40% (equivalent to r = 0.4). The
following sensors have their size described analogously for the case of square foveae. For the
Foveal Cartesian Geometry sensor, we use a Fovea radius of 30%. The Multi-FoV sensor has
a fovea of size 50%. We evaluate all methods on the test set using the best-performing model
checkpoint on the validation set. We include the implementation details that are specific to
our graph convolutional ConvNeXt atto in table 3.1. Hyperparameters were optimized through
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Foveated Graph
ConvNeXt atto configuration

Imagenet 100k
Settings

Fovea Radius 40%
Stem - kernel size 16
Stem - sigma 1.0
Stem - max order 4
Blocks - kernel size 49
Blocks - sigma 0.8
Blocks - max order 4
Downsampling - kernel size 4
Downsampling - sigma 0.6
Downsampling - max order 0

Table 3.1: Stem refers to the initial convolution layer in the ConvNeXt architecture, Blocks
refers to the configuration of the depthwise convolution layers in the ConvNeXt Blocks. Down-
sampling refers to the configuration of the downsampling layers that reduce spatial dimension-
ality between stages in the ConvNeXt architecture. Kernel size is analogous to kernel size in
ordinary convolution layers, presented as the total number of spatial elements in the filter. Sigma
determines the size of Gaussian derivative basis filters; max order refers to the maximum order
of partial derivatives used in the basis.

random hyperparameter search [112] using validation accuracy.

3.8 Results and Discussion

We report top-1 accuracy on the Imagenet-100 test set in Table 3.2, along with the number of
parameters and GFLOPs.

Method Operator Sensor # Input Pixels # Fixations Params (M) GFLOPs Accuracy (%)
ConvNeXt Conv Uniform 50176 - 3.7 0.55 78.4±0.5
ConvNeXt Conv Uniform 12544 - 3.7 0.20 70.0±0.7
Ours (non-attentive) Graph Conv Our Sensor 12544 - 3.7 0.20 72.5±0.4
STN Conv Uniform 12544 1 4.8 0.32 72.7±1.0
PTN Conv Log-Polar 12800 1 4.8 0.33 70.7±0.6
FCG-STN Conv FCG 12544 1 4.8 0.33 71.0±0.4
Fov STN Conv Multi-FoV Crops 12800 1 4.8 0.33 71.8±0.5
Fov STN (ours) Graph Conv Our Sensor 12544 1 4.8 0.32 74.2 ±1.1
Learning to Zoom Conv Deformable Grid 12544 1 4.8 0.32 75.8±1.4

Table 3.2: Top-1 Accuracy on Imagenet100. We split the table into two sections. Top: Pas-
sive vision models. Bottom: Active vision models. GFLOPs for graph convolutional models
are reported as local filters but are trained with global filters and masking for computational
efficiency.
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3.8.1 Foveated vs. Uniform CNNs

Comparing the foveated CNNs against uniform CNNs, we show that in all cases classifica-
tion accuracy is improved by adopting a foveated approach, however this comes at the expense
of additional GFLOPs from the localisation network. In some cases, such as in the case of
the log-polar sensor and Cartesian Foveal Geometry sensor, this improvement is minor (only
+0.7% and 1.0% accuracy respectively). In the case of our graph convolutional method with our
newly proposed sensor, as well as the Multi-FoV crop sensor, there is a significant improvement
(+4.2% and +1.8% respectively). Independent t-tests show these to be statistically significant:
T-stat=5.58, P-value=0.01 and T-stat=3.62, P-value = 0.02 for our sunflower sensor and the
Multi-FoV sensor respectively.

Furthermore, we find our graph convolutional method with fixations is able to outperform a
uniform CNN with equivalent GFLOPs by 2.5%. Both experiments pertaining to our graph
convolution method make a strong case for its use in building foveated CNNs as it not only
outperforms a uniform CNN, but all other foveated CNNs built from standard convolution layers.
Research Question 2 asked whether foveated CNNs could outperform uniform CNNs in image
classification. The results presented here and in Chapter 2 suggest that this is the case, a fixation
mechanism is often necessary to achieve this.

This contrasts the recent study by Torabian et al. [20], which found foveated CNNs to perform
worse than uniform CNNs even when fixating. We hypothesize that the difference in our find-
ings can be attributed to the different fixation mechanisms. Torabian et al adopt a pretrained
DeepGaze architecture [56, 57], which aims to predict where humans would look on an image.
There may be a divide between where humans fixate on an image, and where an optimal fixa-
tion would be for a given foveated CNN. In contrast, our method learns a fixation mechanism,
directly by minimizing the classification loss, and may yield more optimal fixations for foveated
CNNs as a result.

3.8.2 Discussion on Coordinate Frames

Our motivation for adopting a graph convolutional approach was driven by the hypothesis that
geometric transforms of foveated images to grid representations imposes sub-optimal coordi-
nate frames for convolution that results in an inhibitory inductive bias for image classification.
We showed previously that a Cartesian-Like coordinate frame was favoured over a log-polar
one. In this chapter we compared against two other foveated sensors that adopt Cartesian-Like
coordinate frames for representing foveated images, Cartesian Foveal Geometry (CFG) [22]
and Multi-FoV crops [25]. Again we show that Cartesian-Like coordinate frames outperform
log-polar coordinate frames. This is minimal in the case of CFG (+0.3%). In the case of our
Graph Convolution Method and Multi-FoV crops this improvement is more noticeable (+3.5%
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Figure 3.8: Visualisation of the Cartesian Foveal Geometry sampling layout in Cartesian Co-
ordinates. In red, we show the shape of 7× 7 filters on various parts of the image. As the
filter moves across the field, its shape is transformed from square in the fovea, to kite like in
the corners. We can describe the shape of the filter as it moves across the visual field through a
projective transform.

and +1.1% respectively). Notably both of these methods share similarities in that with respect to
the original image, filters are only scaled and translated, while on the CFG sensor filters undergo
projective transformations as they move across the visual field (Figure 3.8).

We hypothesize that the reduced performance of CFG relative to other Cartesian-Like methods
is again a result of the coordinate frame imposing a poor inductive bias, or at least one that
does not constrain the function space in a meaningful way. While filters undergoing projective
transformations across the visual field is not intrinsically problematic, it is unclear of its utility.
Berenguel-Baeta et al. discuss a similar problem of filter deformation when applying CNNs to
fisheye images, and present a method to adapt the shape of the kernel to mitigate this defor-
mation, showing improved performance in depth estimation and semantic segmentation. This
provides some supporting evidence that the projective transformations of filters on CFG images
might similarly inhibit performance. In contrast, our graph approach and the Multi-FoV sensor
means filters only scale with eccentricity and may explain why these approaches perform better.

We posit that the performance increase of our method relative to Multi-FoV crops can be at-
tributed in part due to the ability of foveal and peripheral features to interact at intermediate
stages of processing. In the Multi-FoV crop case, they only interact at the end through spatial
pooling. We did consider an alternative approach in which foveal and peripheral regions are con-
catenated in the channel dimension at input. We found this to perform slightly worse (71.0%)
than merging these features after convolutional processing.
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3.8.3 Discussion on Biologically Implausible Methods

In Research Question 4, we asked whether foveated CNNs could outperform biologically im-
plausible methods that operate under similar principles to foveated sensing. We consider two
alternative methods, Spatial Transformers [43] and Learning-to-Zoom [44] that have the ability
to sample parts of a visual scene in greater detail in an adaptive manner, but are not foveated.
Spatial Transformers adaptively regress an affine transformation of a sampling grid, permit-
ting behaviours such as zooming, rotating and translating. Learning-to-Zoom adapts the sam-
pling grid intelligently on a per-instance basis to increase sampling resolution at regions that are
deemed salient by the localisation network.

We find that out of all foveated CNNs, only our graph CNN was able to outperform a Spatial
Transformer (+1.5%). However it could not outperform Learning to Zoom, which achieved
75.8% accuracy, relative to the foveated graph CNN’s 74.2%. This is perhaps unsurprising,
Learning-to-Zoom predicts an optimal sampling layout on a per-image basis, while the sam-
pling layout of the sensor is fixed in foveated CNNs and only adapted via translations. It could
be argued that Learning-to-Zoom is a more expressive generalisation of the principles behind
foveation, i.e. the space-variant allocation of visual computation resources across an image.

This raises an important consideration for foveated vision systems. The assumption is that the
emergence of foveated vision in biological systems is due to it providing some functional benefit,
which may indeed be optimal but only within the constraints of biology. While Learning-to-
Zoom is biologically implausible, the lack of biological constraints may allow for an even more
powerful mechanism than what is possible in nature. This is seldom stated in the literature
concerning foveated vision but it is important to consider. This is not to say that this idea usurps
foveated vision in its entirety, as object recognition is a single task in the repertoire of a general
vision system. Future work should continue to contrast against these biologically implausible
methods in a wider repertoire of visual perception tasks.

3.9 Comparison of Different Basis Functions

In this section we compare our graph convolution layer using different methods for G, the edge
conditioned graph convolution filter (results presented in Figure 3.9). For the purposes of these
experiments we reuse the isometric architecture in Chapter 2, but with the addition of the local-
isation network used in this chapter. Our motivation for the choice of this architecture over the
ConvNeXt atto is that it allows us to remove additional spatial aggregation mechanisms such as
pooling from the architecture. As such it is purely built from our graph convolution operator
and 1x1 convolutions. We conduct experiments on the Imagewoof dataset using the same exper-
imental setup and training scheme as in the Imagenet-100 experiments. For additional context
we also consider models with no fixation mechanism. For Gaussian Derivatives we consider
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derivatives up to a maximum directional derivative of 4 and sigma of 0.8. For the cosine and
Fourier basis we limit the maximum frequency to be 3. These settings were the optimal found
via random hyperparameter search. For MLP based methods, we use single hidden layer MLPs
with 16 hidden neurons.

The initial hypothesis was that all basis functions would perform approximately the same. We
found this not to be the case, and there was in fact noticeable differences in performance be-
tween them. We found MLPs with Sine activation to perform the best. This corresponds to a
learned sinusoidal basis. Gaussian Derivatives also performed well at 80.3% while the Cosine
and Fourier bases performed relatively poorly, at 78.1% and 74.3% respectively. This poor per-
formance is interesting considering the similarities between INF with Sine activation. It is not
exactly clear why there is such a noticeable performance difference. Moreover, the performance
gain from the inclusion of the fixation mechanism differs wildly for different methods. While
we leave this for future work we will offer two hypotheses.

Firstly, MLP based methods learn a basis space for representing filters, while other methods
have a fixed basis space. As such, we do not have to tune the specific properties of the basis
space, and are less reliant on finding good hyperparameters, explaining the Sine activated MLP’s
improvement in performance over the fixed basis methods.

Secondly, of the fixed basis methods, the Gaussian Derivate method performs best. Unlike
the other basis spaces, this one is a product of a Gaussian windowing function and Hermite
polynomials. Note that we used a fixed number of pixels to represent a local patch on a graph
which does not yield consistent spatial arrangements of points, unlike local patches on a grid
which are always of the same shape. The attenuation of distant pixels from the centre of the
receptive field via Gaussian windowing, may improve robustness to the specific arrangement of
pixels that are being filtered, and explain the improved performance of the Gaussian Derivative
method.

3.10 Fovea Radius

Research Question 5 pertains to the parameterisation of the foveated sensor and the sensitivity of
classification accuracy to this parameterisation. In particular, we attempt to find whether the op-
timal parameterisation is solely dependent on the dataset and consistent across all architectures,
or whether it is dependent on the architecture as well.

Our proposed sensor allows for the radius of the fovea and its sampling density to be controlled
by the hyperparameter r and d respectively. Smaller values for r and higher values for d increase
the visual acuity of the fovea at the expense of decreased peripheral resolution. Recall that we
define d so that the foveal resolution, and the resolution immediately outside the fovea, are
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Figure 3.9: Top-1 accuracy on Imagewoof for Foveated Isometric Graph ConvNeXts when using
different edge-conditioned filter methods. INF refers to Implicit Neural Filters 2.4.4. For sake of
comparison between Chapter 2. we perform experiments with and without a fixation mechanism.
All architectures use a fovea radius of 30%.

approximately the same and exhibit a smooth transition between the two regions.

We evaluate three graph convolutional architectures, the ConvNeXt atto with 1122px sensor and
two Isometric ConvNeXt architectures with 1122px and 562px sensors. The internal feature
map resolution of the Isometric architectures is 4 times smaller than the sensor resolution owing
to the initial convolutional downsampling stage (282 and 142 respectively). We refer to these
architectures as Iso-28 and Iso-14 respectively. Architectures are trained on the Imagewoof
dataset using the same hyperparameters and training setup as in section 3.7.2. We sweep over
a range of fovea radii and report results averaged over three runs for each method. Results are
shown in Figure 3.10.

We find that for all cases, architectures with a fovea radius of 0.9, i.e negligible foveation,
exhibit the lowest performance relative to other fovea radii. We also see that extreme amounts
of foveation, e.g. where the fovea radius is just 0.1, also leads to less performant architectures.
Architectures with larger input resolutions and internal resolutions derive less benefit from using
foveated sensors. At their optimal fovea radii values, ConvNeXt atto and Iso-28 only achieve a
marginal performance gain of 1.8% and 1.5% respectively, over a fovea radius of 0.9. The benefit
of foveation is more pronounced in the Iso-14 architecture, where the optimal fovea radius of 0.2
has a 3.4% increase in recognition accuracy compared to the 0.9 radius variant. Additionally, we
see that architectures with a higher input resolution also perform well with relatively large fovea
sizes, while in the Iso-14, there is a notable trend towards increased performance with smaller
more high-resolution foveae.
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Figure 3.10: Top-1 accuracy on Imagewoof for different fovea radii. We contrast three archi-
tectures. ConvNeXt atto operating on a 1122 foveated sensor, and two Isometric ConvNeXt
architectures (depth 8) operating on 1122 and 562 foveated sensors. Each experiment was run
three times with mean and standard deviation reported.

Much like resolution scaling, we can see diminished returns in increasing foveation for architec-
tures that already operate at a relatively high-resolution. Additionally, smaller higher resolution
foveae come at the expense of decreased peripheral resolution. This will likely be a trade-off in
which the loss of useful visual information in the peripheral field of view outweighs the gain in
useful visual information gained by a higher resolution fovea. Furthermore, decreasing the fovea
radius decreases the area of the visual field in which the system has translation equivariance to
visual features. As such systems with a larger radius may be more robust to incorrect fixation
predictions. Again this highlights a trade-off between increasing foveation at the expense of
other desirable qualities we might get with less or no foveation.

There may be several factors that contribute to the optimal fovea radius. These experiments
have presented some preliminary evidence that lower resolution architectures benefit more from
foveation, and this is intuitive. Importantly, this shows that the optimal amount of foveation is
not solely dependent on characteristics of the dataset and is partially dependent on the subse-
quent architecture, but perhaps in non-trivial ways. While searching for optimal parameters over
this space is not wholly unfeasible, it does introduce an additional level of complexity to the hy-
perparameter optimisation of foveated vision architectures. In the next chapter we investigate a
foveated sensor that can be optimized via backpropagation to alleviate this problem.
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3.11 Limitations

The primary limitation of this chapter, particularly with regard to the main experiments were
that of scope. While we answered Research Questions 1 and 2, this was only on one dataset
and with one architecture. These limitations were primarily born out of what was feasible to
complete during this thesis with available computing resources. Nonetheless, in order to better
substantiate the findings in this chapter, it is necessary for experiments on a wider range of
datasets to be conducted.

While there are many publicly available image classification Datasets there is a degree of diffi-
culty in finding suitable ones to perform the previous experiments on. Datasets such as CIFAR10
[55] and MNIST [54], are too low in resolution to reasonably apply foveated downsampling to.
Other datasets such as Caltech Birds, Stanford Dogs and Oxford Pets are comprised of relatively
high resolution images but are difficult to use when training neural networks from scratch and
typically require pretraining on datasets such as ImageNet1k.

3.12 Conclusion

In this chapter we introduced a fixation mechanism for foveated CNNs that allowed the foveated
sensor to be aligned with objects of interest in an image. This was done in order to better test
the claims made in the previous chapter and provide more comprehensive answers to Research
Questions 1 and 2.

We conducted experiments on Imagenet100, comparing an array of different foveated sensors.
We showed conclusively that, on Imagenet100, adopting a foveated strategy yielded consistent
improvements in classification accuracy relative to the more conventional Uniform paradigm.
This comes with the caveat that the fixation mechanism was necessary to achieve such an im-
provement and this does incur a computational cost.

In the previous chapter, we showed the pivotal role of the coordinate frame used to represent
foveated images had on classification accuracy (RQ 1). Our results in this Chapter further cor-
roborate these findings and that they hold in the presence of a fixation mechanism. In particular,
we again showed that Cartesian-like coordinate frames are favourable however may still be sub-
optimal in some cases such as for the CFG sensor [22]. Our graph convolution operator allowed
us to derive a better coordinate frame for representing foveated visual data, as it did not ne-
cessitate that the coordinate frame yielded a grid-like pixel structure. This allowed our graph
convolutional method to significantly outperform all other foveated CNNs built with standard
convolution layers. This presents a compelling case for adopting our graph convolution when
processing foveated images.
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In Research Question 4 we questioned whether foveated CNNs could outperform biologically
implausible methods that adaptively allocated visual processing resources over the visual field.
Despite these methods being highly related to the guiding motivations of foveated sensing, com-
parisons between them are yet to be made in the literature. We showed that our foveated graph
CNN could outperform Spatial Transformers, but not Learning to Zoom. As mentioned previ-
ously, this does not undermine foveated vision in its entirety, however we argue that it is imper-
ative that future works continue to contrast against such methods in order to properly gauge the
utility of foveated sensing in the wider field of computer vision.

Finally, we explored the sensitivity of classification accuracy to the size and sampling resolution
of the fovea in a foveated sensor (Research Question 5). Using three different instantiations
of a foveated graph convolutional ConvNeXt, we report classification accuracy over a range of
different fovea radii. We showed that both very large and very small fovea decreased classifica-
tion accuracy. Furthermore, we showed that higher resolution architectures generally favoured
larger fovea (i.e. less foveation), and that the architecture was also less sensitive to the fovea
radius parameter. These findings demonstrate that the layout of a foveated sensor does not have
a globally optimal design for all visual data or a given dataset, and is partly dependent on the
subsequent architecture.



Chapter 4

Non Convolutional Foveated Vision
Architectures

4.1 Introduction

The work presented thus far has been in the context of CNNs. Recently, a variety of non-
convolutional vision architectures have been proposed. The most eminent of these is the vision
transformer (ViT) [45], which translates the original transformer architecture [113] (designed
for natural language processing) to a vision context. At their core, they split input images into
visual tokens (small image patches). Spatial features are computed over these tokens using the
self-attention mechanism. Later works explore alternatives for self-attention and show that even
linear layers [46, 114] suffice for building highly performant vision systems.

These architectures are interesting in the context of foveated vision for several reasons. Firstly,
they operate on sequences of visual tokens, not grid-structured images. As such, they are far
more amenable to the space-variant structure of foveated images. Secondly, spatial relation-
ships between the tokens are learned (for example, via positional embeddings). In the previous
chapters we discussed the importance of representing foveated data in suitable coordinate frames
to maximize the performance of the CNN. These architectures circumvent this problem and in-
stead attempt to learn such behaviour via the data itself. Finally, these architectures do not
impose translation equivariant behaviour and can potentially learn different computations for
different regions of the foveated image.

In this Chapter, we predominantly focus on Research Question 3, which asks whether non-
convolutional architectures exhibit improved classification accuracy when operating on foveated
images. In particular, we consider two candidate architectures: Vision transformer, which uses
self-attention, and ResMLP, which uses linear layers for extracting spatial features across tokens.

57
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We propose a simple variation of the image tokenisation procedure that extracts a sequence of
image patches arranged in a foveated fashion. We use this tokenisation method with ’out-of-
the-box’ ViT and ResMLP architectures and show that they can effectively process foveated
arrangements of visual tokens with no extra machinery. We incorporate these systems with
the fixation mechanism described previously. We conduct image classification experiments on
ImageNet100, comparing against a uniform tokenisation method (i.e. the standard method).
Furthermore, we revisit Research Question 4 contrast against Learning-to-Zoom [44] in this
new context. Furthermore, we propose an extension of our foveated tokenisation method in
which the sampling resolution over the visual field can be learned via backpropagation (RQ6).
We show that our method shows emergent foveation and converges on a similar sampling layout
to the optimal one found through hyperparameter tuning.

We perform further experiments pertaining to the sensitivity of classification accuracy to the
sampling layout, again showing that lower-resolution architectures benefit from higher-resolution
fovea 5. Additionally, we explore how properties of the dataset might influence the optimal
amount of foveation. We synthesize several toy datasets derived from MNIST, in which digits
are randomly scaled based on a uniform scale distribution and placed on a 224×224 blank can-
vas. Using a simple Multi-Layer Perceptron (MLP) operating on a foveated sensor comprised of
only 784 pixels, we show that the optimal degree of foveation is linked to the dynamic range of
the scale distribution, with higher resolution foveae becoming increasingly necessary for higher
dynamic ranges.

4.1.1 Chapter Structure

This chapter is structured as follows:

• We first cover relevant related work concerning both foveated and uniform non-convolutional
architectures.

• We then provide relative background knowledge pertaining to spatial feature extraction
using self-attention layers and linear layers.

• Our proposed foveated tokenisation method is then detailed along with an extension that
allows its sampling layout to be learned via backpropagation.

• We then outline the overall architectures that are considered in this Chapter.

• Experiments are then detailed, and results and discussions are then presented.

• Finally, we discuss the limitations of this chapter and summarize its main contributions.
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4.2 Background

Vision transformers [45] stand as the first significant paradigm shift from CNNs in neural net-
work based vision systems. Transformers [113] were originally used for natural language pro-
cessing (NLP), and aimed to address problems with recurrent neural networks in modelling long
range interactions as well as training parallelism. The primary ingredient to this success was
the self-attention mechanism. Briefly, the self-attention mechanism operates on a set of tokens
(vector embeddings of parts of input data, e.g. words or image patches) and constructs query,
key and value embeddings via linear projections. An outer product between queries and keys
describes the attention weights between each token to all other tokens. Softmax activation is
applied to these attention weights, which are then used to perform a weighted sum of values
to arrive at new representations for each token. In its purest form, a transformer operates on
sets and is equivariant to the permutation of said set. As such Transformers do not have any
understanding of the order of tokens. Positional information is added to token vectors via posi-
tional encodings or learned embeddings to make transformers position-aware [45, 113]. Vision
transformers demonstrated extremely good performance with minimal vision inductive priors
and proved to be highly scalable architectures. Subsequent works have extended this original
design in a variety of ways, such as incorporating hierarchical processing akin to CNNs [115],
data-efficient training regimes [116], and local attention [117, 118].

By and large, these architectures all leverage the self-attention operator to model spatial inter-
actions between features. Comparisons can be drawn between convolution and self-attention.
Han et al. show that local self-attention resembles depth-wise convolution [119] with dynamic
weights. That is to say that the weights used to perform weighted sums of spatial features are a
function of the input data itself and not fixed as in convolution. We can draw similarities between
self-attention and our graph convolution proposed in earlier chapters in that neither method as-
sumes a grid-structured domain and uses explicitly provided (or learned) spatial information to
model spatial interactions between features. In fact, both methods can be viewed as specific
flavours of message-passing graph-neural-networks [50, 64].

Vision transformers have inspired several subsequent architectures that use alternatives to the
self-attention operation for spatial interactions. ResMLP [46] and MLP-Mixer [114] concur-
rently proposed a simple linear layer as an alternative to self-attention. In such a formulation,
the attention weights can be considered fixed and content unaware, with positional informa-
tion being implicitly defined by the connections between input and output neurons. Both show
competitive performance to transformer architectures and promising scalability. RepMLP [120]
proposes an extension to CNNs in which a linear layer operates in parallel to convolution during
training. Convolution can be merged into the linear layer at inference, allowing the network to
leverage the locality and translation equivariance priors of convolution while also utilizing linear
layers to model global spatial interactions. Gao et al. [121] present a generalized view of both
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MLP methods and self-attention through their container module, combining content-aware and
static spatial interactions. g-MLP [122] employs a spatial gating mechanism similar to squeeze-
excitation mechanisms [123] but applied spatially rather than channel-wise. Features are split
in the channel dimension, the MLP spatially aggregates information from one split which is
then applied as a multiplicative interaction between the other split. Again, these methods show
competitive performance to transformer architectures, even exceeding, in some cases, at image
recognition. Elsayed et al. [124] propose a locally connected network for vision, which allows
for the same locality prior as convolution but allows filter weights to vary across the visual field.
Weights are regularized to have a low-rank decomposition into a set of basis weights. Unlike the
previously mentioned methods, locally connected layers do not model long-range interactions.

One commonality of these architectures is their relaxation of the translation equivariance prior
in CNNs. As such, they can perform space-variant computation, which has shown to be advan-
tageous in problems such as Face Recognition [125]. These qualities may align particularly well
with space-variant sampling of foveated vision, allowing different computations to be applied
to foveal and peripheral regions, for example. Karpathy et al. [26] showed that separate CNNs
applied to foveal and peripheral regions of a Multi-FoV crop sensor learn different weights, sug-
gesting it may be beneficial to incorporate space-variant processing on foveated images. This
does require the network to learn translation invariant behaviour, unlike CNNs. As such, these
architectures may additionally resonate with the active vision paradigm by solving translation
invariance via eye movements and diminishing the dependence on solving translation generali-
sation through the weights of the neural network.

In the context of foveated vision, there are relatively few architectures that consider non convo-
lutional approaches to processing foveated images. Jonnalagadda et al. [40] proposed a foveated
transformer architecture for image classification, however, foveated sampling is applied to the
output of a convolutional backbone and not utilized through all stages of the network. In con-
trast, the work presented in this chapter uses foveated images as input to a neural network. Min
et al. propose PerViT [126] which extends self-attention with a novel positional embedding
method to segregate tokens into foveal, para-foveal and peripheral regions. While this method
shows improved performance on object recognition benchmarks, it does not leverage foveated
sampling to reduce computational complexity, and instead views foveation in the context of fo-
cusing attention on a particular part of a scene. Mnih et al [28] use a simple MLP, however this
work was primarily concerned with actively attending to scenes in a recurrent fashion and not
the feature-extraction process. Only toy datasets were considered, and the simplistic MLP may
not be feasible to apply to more challenging natural image datasets. Nakada et al. [31] propose
a locally connected network for processing foveated images, again however, only simulated vi-
sual environments are considered and it remains unclear whether such a design extends to more
challenging visual environments.
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4.3 Methods and Materials

We consider two alternatives to convolution for extracting spatial features from a foveated image,
namely self-attention and linear layers.

Self-attention, originally proposed by Vaswani et al. [113], operates on a set of tokens x =

(x1,x2, ...,xN). In the case of vision transformers, a token is a d-dimensional linear projection of
an image patch xi ∈Rd . For each token, self-attention applies a linear projection to create query,
key and value embeddings, creating corresponding Q, K, and V matrices for the whole token
set. Self-attention is then given as:

Attention(Q,K,V ) = So f tmax(
QKT
√

d
)V (4.1)

d, in this case, refers to the dimensionality of the projected query embeddings and predominantly
subserves easier optimisation. In practice it is useful to run multiple different self-attention
operations in parallel, such that each token can attend to the same token in different ways. This
variant is known as multi-head attention and can simply be achieved by running multiple self-
attention layers in parallel, concatenating the outputs and applying a further linear projection.

The linear layers used in architectures such as ResMLP [46] and MLP-Mixer [114] are compar-
atively simpler than self-attention. Considering our set of input tokens x as a matrix X ∈ RN×d ,
a weight matrix W ∈ RN×N and bias terms b ∈ RN associated with the linear layer, the linear
mixing operation is simply given as:

Linear(X) = XTW +b (4.2)

A commonality both with mixer architectures and vision transformers (and many other architec-
tures such as ConvNeXt [87, 110]) is the use of a pointwise feed-forward network. Continuing
with the terminology of tokens to describe the processing steps. After spatial features are com-
puted for each token, a single hidden layer MLP processes each token independently. Typically
a hidden size of 4× the token’s dimensionality is used with GELU activation.

4.4 Patch Based Foveated Sensor

Many transformer-like architectures use an initial convolution layer with non-overlapping filters
to tokenize the input image [45]. While it is possible to use the graph convolution layer proposed
in Chapter 2, we instead propose a simpler method of foveated sampling in which small patch-
sized sampling grids are arranged in a foveated fashion (Figure 4.1). Specifically, we define the



CHAPTER 4. NON CONVOLUTIONAL FOVEATED VISION ARCHITECTURES 62

𝜎 = 0.5 𝜎 = 0.2

−𝜎𝑠! , 𝜎𝑠! −𝜎𝑠! , 𝜎𝑠!

Figure 4.1: Visualisation of the proposed patch sensor. Blue points show the spatial positions of
sampling kernels for the entire sensor. Red points show the spatial centres of each patch. These
centres are generated by the Sunflower sensor proposed in Section 3.5; however, other methods
for generating a foveated arrangement of points are viable.

centre of each patch using the sunflower retina as described in section 3.5. Each centre is the
origin for a p×q grid, which dictates the number of sampling kernels for each patch. the x and y
coordinates of the ith grid lie in the range of (−σsi,σsi) where σsi controls the spatial extent of
the patch. We use a k-nearest neighbours operation to find the average distance between a patch
i and its 2 nearest neighbours to determine si. We introduce a scaling term σ for all patches
to control the amount of overlap between them. A sigma of 0.5 was chosen qualitatively so as
to minimize overlap between patches while still providing good coverage of the pre-sampled
image. While we use the sunflower foveated sensor for this work, it is possible to use arbitrary
foveated arrangements of pixels to serve as the centres of the patches.

Sampling of the input image I can then be performed via bi-linear sampling using the same
method as described in section 3.4. The foveated image Î is a tensor of shape Î ∈ RN×C×pq

where N is the number of patches, C is the number of channels in the input image and p and
q are the spatial dimensions of the patch. Embeddings for each token can be computed by
reshaping the tensor Î from N ×C × pq to N ×Cpq and applying a linear projection to a d-
dimensional embedding for each patch to arrive at z ∈ RN×d , the tokenized representation of I.
For the purposes of all spatial interaction methods, we will frame the mechanism in the context
of how they operate on these tokens.
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4.5 Learnable Sampling Layout

As shown in the previous chapter, the parameterisation of the sampling layout, i.e. how sampling
resolution varies across the visual field, can have a significant effect on classification accuracy.
Finding the optimal parameterisation was achieved through a hyperparameter search, however
this is costly in certain scenarios. Here we explore a foveated sensor which has learnable pa-
rameters that control the sampling layout and can be optimized via backpropagation from a
downstream loss function. This allows us to jointly optimize the architecture weights as well
as the sampling layout, removing the need for hyperparameter optimisation. Additionally, if
optimizing this layout to minimize the classification objective does show emergent foveation,
it can provide compelling evidence that foveation is beneficial to visual perception tasks such
as object recognition. A final note is that while it is technically possible to achieve this with
the graph convolutional architecture, it would require recomputing the graph after each gradient
step which makes it unwieldy. In contrast the architectures considered in this chapter can work
on arbitrary spatial arrangements of patches, and do not explicitly construct a graph , making it
significantly easier to realize a learnable topography.

To achieve this we adopt a similar approach to the sunflower sensor proposed in Section 3.5.
Recall that the sampling distribution is controlled by a function ζ , which is a piece-wise com-
bination of a linear and exponential function to map the radial coordinate of each point in the
sunflower arrangement to a new radial coordinate. Additionally, we discussed that it is trivial to
shape the sampling layout of this sensor by simply using a different function for ζ .

Our previously proposed ζ function is not amenable to backpropagation in its current formu-
lation as there is not a soft differentiable way to assign the points in the arrangement as foveal
and peripheral points. Previous works have considered alternative methods to learn a sampling
layout such as simply optimizing each points coordinates independently [127], or in a separable
way for each x, y coordinate of a grid [41]. [44] imposed a Gaussian smoothing function on
the weights to mitigate the possibility of the points folding over on themselves. In early exper-
iments we considered both the above methods to learn spatial resolution over the visual field,
however we found that allowing too much freedom in positions of patches became challenging
to optimize with a large number of patches.

Instead, we seek a formulation for ζ that utilizes a relatively low number of learnable parameters,
but has the expressivity required to shape the sampling distribution over the full visual field.
We opt for an Nth degree polynomial. We make some assumptions on the ideal form of this
polynomial that allows us to constrain its coefficients. Firstly, we expect ζ to be a monotonically
increasing function, i.e. the sampling density must decrease with eccentricity. We achieve this
by ensuring that all coefficients are positive. Secondly, we expect ζ (0) = 0, ζ (1) = 1, ensuring
that the centre of the field of view is sampled, and sampling extends to the borders of the uniform
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image (note we normalize image coordinates to lie in the range of (-1, 1)). We enforce this
constraint by removing the bias term in the polynomial and normalizing all coefficients such
that they sum to one. A simple way to achieve this in practice is to apply a Softmax across the
polynomial coefficients.

In a similar vein, we learn a polynomial function of eccentricity to determine the scale of the
patch. In this case we reintroduce a bias term that allows for a minimum patch scale to be
learned. Similarly we enforce that this function is monotonically increasing and that the coef-
ficients sum to a 1 via softmax. We introduce a scaling term s as in the fixed static sensor to
provide an upper bound for the scale of the patches. This is applied as a multiplication of each
coefficient.

4.6 Architecture

The architectures considered in this chapter broadly follow the same two-stage design used in the
previous chapter. We maintain the use of a truncated ConvNeXt atto [87]. Our newly proposed
sensor can be aligned using the same method as the previous section, by adding the fixation as an
offset to all sampling kernels. Again we use bilinear sampling kernels and exploit differentiable
image sampling to train the localization network. The architecture is visualized in Figure 4.2.
For the classifiers, we use 49 patch and 196 patch variations of ResMLP and vision transformer.
They are all comprised of a stack of 12 vision transformer or ResMLP blocks. For the ResMLP
models, the final features are pooled in the spatial dimension and passed to linear classifier. For
transformer variants, we append a class token to the input and apply a linear classifier to this
class token at the end.

4.7 Experiments

In this section we conduct image classification experiments on ImageNet100. These experi-
ments aim to answer two questions in the context of non-convolutional vision models. Firstly,
do foveated models perform better than uniform ones (RQ3). Secondly, can foveated models
outperform Learning-to-Zoom, which was highly effective in a convolutional context (RQ4).

4.7.1 Implementation Details

All models are trained for 100 epochs with a batch size of 256, the AdamW[92] optimizer and
cross-entropy loss with label smoothing of 0.1. For all models, we use a maximum learning
rate of 0.004 and a OneCycle learning rate policy with a warm-up period of 33 epochs. For the
learned sensor polynomials we used a slightly higher maximum learning rate of 0.01 (chosen
manually). We use weight decay of 0.1 for all parameters except those pertaining to biases,
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Figure 4.2: Schematic for non-convolutional architectures. The CNN localisation adapts the
sensor, in this case a foveated sensor. The sensor extracts image tokens and feeds them to a non-
convolutional architecture which then makes a class prediction. The primary difference between
all methods evaluated in the next section is the choice of sensor.

normalisation layers, layer-scale, sensor parameters and the final convolution layer in the locali-
sation networks. Due to large model sizes and limited compute we make use of mixed precision
training and four gradient accumulation steps. Using no gradient accumulation may lead to
slightly different results due to the batch normalisation layers in the localisation networks. For
the patch sensor, we use a Fovea radius of 30% for the 49 patch models and 50% for the 196
patch models. Hyperparameters were chosen through random search using a validation set. This
was only performed with the ResMLP-196 backbone, with the optimal hyperparameters being
used for all other backbones. Results are reported on a held out test set and averaged over 4
training runs from different random seeds for the ResMLP models.

4.7.2 Object Recognition on Imagenet-100

Uniform vs. Foveated Sensing: Table 4.1 shows the classification accuracy on the ImageNet-
100 test set for low resolution (49 patch) and high resolution (196 patch) backbones and different
sensing methods. We show that foveated models with fixation mechanisms consistently outper-
form the uniform models with no fixation mechanism. Importantly, this performance improve-
ment could be attributed to the ability to fixate, particularly as these models are not translation
invariant. We report further results on uniform models with fixation mechanisms. We show
that the fixation mechanism improved classification accuracy for ResMLP models by 0.4% and
1.4% for the 49 and 196 patches respectively. Conversely, classification accuracy decreased
for ViT models when incorporating a fixation mechanism. Ultimately, models that used both
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Backbone /
Method ResMLP-49 ResMLP-196 ViT-49 ViT-196

Acc@1 GFLOPs Acc@1 GFLOPs Acc@1 GFLOPs Acc@1 GFLOPs

Baseline 70.2±1.2 0.70 76.3±0.3 2.95 67.9±0.4 1.26 77.2±0.5 5.56
Uniform * 70.6±0.4 0.82 77.7±0.8 3.07 67.7±0.5 1.38 77.0±0.2 5.68
Learnable Crop * 70.4±0.6 0.82 77.8±0.3 3.07 - 1.38 - 5.68
Foveated Sensor * 72.2±0.8 0.82 79.6±0.2 3.07 70.3±0.7 1.38 77.3±0.2 5.68
Learnable Sensor * 72.3±0.6 0.82 79.2±0.2 3.07 69.8±1.0 1.38 76.8±0.7 5.68
Learning to Zoom * 72.9±0.4 0.82 79.9±0.8 3.07 70.1±0.5 1.38 76.4±0.7 5.68

Table 4.1: Top-1 accuracy (Mean and SD over 3 random seeds) on Imagenet100 under a variety
of different image sampling methods and vision backbones. ResMLP-49 indicates a 49 patch
resmlp, with other model names analogously defined. Methods with ’*’ indicate that a separate
network adapts how the image is sampled (e.g. a localisation network). Baseline refers to
backbones in their conventional form i.e. no fixation mechanism.

foveated sampling and a fixation mechanism performed better than their uniform counterparts.
In summary, we find that foveated sensing often allows these non-convolutional models to better
classify the Imagenet-100 dataset.

Our results further support the findings in the previous chapters where we showed it was gen-
erally favourable to have smaller higher resolution fovea for models operating on fewer number
of pixels. We found the optimal Fovea radius for the 49-patch models to be 30% while 50% was
found to be better for the 196 patch models. An interesting observation was that the fixation
mechanism was found to help uniform ResMLP models but not uniform ViT models. We were
unable to ascertain why this was the case. We can speculate that while these models are not
translation invariant, they can learn to be (approximately) and there is no strict reason why they
should benefit from this behaviour.

Foveated Sensing vs. Learning to Zoom: We repeat experiments with the Learning-to-Zoom
method presented by Recasens et al [44] in a non-convolutional context. We find that un-
der the optimal foveated sensor parameterisations, Learning-to-Zoom marginally outperformed
foveated sensing methods. For the ResMLP variants, independent t-tests did not show this
improvement to be statistically significant (p=0.25 and p=0.57 for 49 patch and 196 patch mod-
els respectively). For ViT models, we found that foveated approach marginally outperformed
Learning-to-Zoom in the case of 196 patch model. However, while more significant, an in-
dependent t-test assigns a p-value of 0.1, and does not meet the standard threshold of 0.05
for statistical significance. Ultimately, these results would suggest that foveated sensing and
Learning-to-Zoom are approximately as effective as each other in improving the accuracy of
these non-convolutional systems.

This contrasts our previous study on foveated graph convolutional networks, in which we found
Learning-to-Zoom to outperform foveated methods. While it is hard to ascertain exactly why
this is the case, we can speculate on a few potential reasons. Firstly, in both studies the
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Fixed Sensor Learned Sensor

Fovea Radius 0.1 0.3 0.5 0.7 0.9 n/a

49 Patch 71.54 72.2 72.1 71.4 70.9 72.3 (+1.2) (+0.1)
196 Patch 78.9 79.0 79.6 78.7 78.3 79.2 (+0.9) (-0.4)

Table 4.2: ImageNet-100 classification accuracy with 49 patch and 196 patch ResMLP-S12
models. We consider two variants of each model, one with a fixed foveated sensor in which we
vary the parameterisation by adjusting the radius of the fovea and a learned sensor in which the
sampling density over the visual field is optimized jointly with the network weights. For the
learned sensor we show the absolute difference in accuracy between the worst (left) and best
(right) performing fixed sensor parameterisations.

ImageNet-100 dataset was used suggesting that this difference in observations is due to the archi-
tectures. In this chapter, the classification networks are identical for all methods, whereas in the
graph convolution study, our foveated architecture used graph convolutions and the Learning-
to-Zoom method used ordinary convolution. This could suggest that the graph convolution, or
its hyperparameterisation, was still suboptimal for operating on foveated images. Alternatively,
it may be possible that weight sharing (in terms of spatial convolution) on foveated images is
an overly restrictive inductive bias and as such ResMLP and ViT are more suited to processing
foveated image data. In a similar vein, this may indicate that our choice of coordinate frame
is still suboptimal in our graph convolution layer. As discussed, ResMLP and ViT learn spatial
structure from data and may arrive at better solutions than our hand designed method.

4.7.3 Learnable Sampling Layout

As observed in the previous chapter, the sampling layout can have a significant impact on the
performance of the network, however hyperparameter search is inconvenient, particularly in
high data settings and large architectures. In this chapter we introduced a learnable sensor in
which the sampling layout is learned via gradient descent jointly with neural-network weights
and circumvents the need for this costly tuning.

In Table 4.2 we show the results of a sweep over the fovea radius of our fixed foveated sensor for
two ResMLP architectures of different spatial resolutions and compare this to the learned sensor.
We show that for both models, our learned sensor can outperform the worst parameterisation
of the sensor by 0.9% for the 196 patch model and 1.2% for the 49 patch model. We found
that the performance of the learned sensor was comparable to that of the optimal found by
hyperparameter search.

To further support the claim that the learnable sensor is converging on an optimal layout we
compare the learned sampling layout with the fixed layouts. Recall that for both sensors, the
coordinates of each patch centre are dictated by a mapping function ζ (·) that maps the radial
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Figure 4.3: Graph of ζx for different fovea radii parameterisations of the Sunflower Sensor 3.5
(solid lines) and a learned parameterisation represented by a polynomial (dashed line). Darker
lines represent better performing parameterisations on Imagenet100 and 49 Patch ResMLP.

coordinate of a uniform sensor to a new radial coordinate. We plot the ζ functions for different
fixed sensor parameterisations as well as the learned sensors in Figures 4.3 and 4.4.

We show that the learned ζ function has a high correlation, particularly in the foveal regions,
with the optimal ζ functions found by hyperparameter search. When moving to the peripheral
regions the correlation begins to diverge with the learned ζ functions favouring a more linear
function in these regions. Nonetheless the learned functions resemble the optimal fixed sensor
parameterisation most closely suggesting that it is possible to learn the sampling layout jointly
with the neural network and mitigate the reliance on hyperparameter search. Importantly, the
fixed sensor ζ function does not cover the full space of possible sampling layouts and it is pos-
sible that the optimal layout is not possible in its current formulation. In contrast, the learned
sensor uses a polynomial and can comparatively represent a much larger range of possible sam-
pling layouts, particularly as the order of the polynomial increases.

4.7.4 To Crop or Not to Crop

A question one may have with regard to foveated sampling is if its benefits towards visual per-
ception could similarly be realized by a crop. Note that both our fixed formulation and our
learned formulation guarantees that sampling covers the full visual field. I.e. it extends to the
borders of the pre-sampled image. As such there is no parameterisation of either method that
could yield crop like behaviour. To verify that the best parameterisations found either through
hyperparameter tuning or through gradient descent are not simply an approximation to an opti-
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Figure 4.4: Graph of ζx for different fovea radii parameterisations of the Sunflower Sensor 3.5
(solid lines) and a learned parameterisation represented by a polynomial (dashed line). Darker
lines represent better performing parameterisations on Imagenet100 and 196 Patch ResMLP.
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Figure 4.5: Illustration of the region of an input image that is sampled by the learnable crop
sensor for different values of S. Note that the cropped region is always resampled to a consistent
size (e.g. 224× 224). As such, a lower value of S yields a higher resolution sampling of the
input image.
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mal crop we conduct experiments with a uniform sensor and fixation mechanism and introduce
a learnable parameter S that controls the spatial extent of the sampling grid. As S decreases the
crop becomes tighter resulting in a higher-resolution sampling of the pre-sampled image (Figure
4.5). We refer to this as the learnable crop method.

As shown in Table 4.1, the learnable crop method does not outperform foveated methods and
in fact performs worse than the baseline models with no fixation mechanism in the case of
ResMLP-49. Inspecting the parameterisation of the grid over the course of training showed that
S would decrease from its initial value of 1.0 resulting in tighter crops, before increasing and
converging back to values around 1.0 by the end of training. This suggests that the network
found it was generally more optimal to sample the full visual field than only part of the visual
field at higher resolution. We speculate that the decrease in performance may be due to the
changing sampling grid over the course of training may and a shift in the statistics of the patch
embeddings over the course of training. In turn this may necessitate a longer training time for
subsequent network weights to converge.

This speculation would similarly hold for the learnable sensor proposed in this chapter, how-
ever we show a significant performance improvement over the learnable crop methods for both
ResMLP models by approximately 2%. This suggests that foveated sampling may indeed repre-
sent a more powerful way to sample visual information than is possible with a uniform arrange-
ment of pixels and that foveation is not simply an approximation of an optimal crop of the input
data.

4.8 MNIST Experiments

So far we have shown that foveated sampling can increase the classification accuracy of object
recognition systems. However, we have also seen that it is important to use the right amount of
foveation in order to achieve good performance and a compelling explanation for the optimal
choice remains elusive. In this section we attempt to elucidate some causal factors that explain
when foveation is useful. Specifically, in this work we look at the scale distribution of objects
in the dataset as a potential driving factor that informs the optimal amount of foveation. For the
purposes of this we use MNIST [54] to derive a highly controlled setting to control the scale
distribution of objects.

For all networks we use a 3 hidden layer MLP with 128 hidden neurons in each layer and a
linear classifier on the end. For foveated sampling we use the foveated patch sensor with 196
patches and average pool each patch value rather than projecting to a higher-dimensionality with
a linear layer. Again, the extreme dimensionality reduction of the input data through the sensor
poses challenges for classifying very small digits. All networks were trained for 8 epochs, at a
learning rate of 0.1 and batch size of 512 and no weight decay. OneCycle [128] learning rate
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Figure 4.6: Visualisation of MNIST digits with different values for M. As M increases, digits
take up a smaller percentage of the full image.

schedule is used with a warm-up period of 1 epoch.

We train foveated classifiers at four different fovea radii (0%, 20%, 50%, 100%), where 0% and
100% correspond to extreme foveation and no foveation respectively. We consider 6 variations
of Scaled-MNIST where the digits are randomly scaled between a range of 1 and an upper bound
M where M is either (2, 4, 8, 16, 32 or 64). The higher the scale value the smaller percentage of
the visual field the digit takes up (Figure 4.6).

In Figure 4.7 we plot classification accuracy as a function of object scale. Specifically, the
unscaled digit is said to have a spatial extent of -1 to 1 in both the x and y axes. The scale factor
is how many times smaller the spatial extent of the digit is in these axes, i.e. the new spatial
extent is given in image coordinates as ± 1/ (scale factor). For example a scale factor of 2 refers
to a spatial extent of -0.5 to 0.5.

Broadly, we show that a foveated sampling is significantly more robust to a high dynamic range
of scale variation within the dataset. Considering subfigure F as an example. The foveated sensor
with a 0% radius is the only method able to reliably classify digits across the entire scale range.
Note that in the case of 0% radius this is similar to a pure log-polar transform with oversampling
at the origin. As expected, all methods can reliably classify large objects, however even at 20%
radius this accuracy drops off dramatically as objects become smaller and smaller, and for >
20% radius foveae this degrades into no better than random guessing for extremely small digits.
While scale equivariance is a guarantee for log-polar images, leveraging this property directly
requires a translation equivariant vision system such as a CNN. In these experiments we use an
MLP, meaning the ability to classify objects over this scale range is a purely learned behaviour,



CHAPTER 4. NON CONVOLUTIONAL FOVEATED VISION ARCHITECTURES 72

and not because of any specific inductive bias.

From subfigure A we can see that the foveated strategy is not better in all cases. With minor
scale variation with a scale factor range of 1 - 2, we show that a 0% radius fovea performs worse
than all other instantiations in classifying digits, albeit only marginally. A simple explanation
for this is that with a fixed pixel budget, increasing the resolution of the fovea, decreases the
resolution of the periphery. As such for large objects, the reduction in sampling resolution in the
periphery hinders classification accuracy. This provides some explanations as to why in previous
studies extreme amounts of foveation were found to hinder performance. Comparing each graph
shows that the optimal amount of foveation will be in part dependent on the scale distribution
of the objects in dataset. We can also comment on potential train test divides that may influence
the optimal amount of foveation. Referring to subfigure C, we can see that over the full scale
range, the 0% radius fovea is a good choice for classifying most objects in this scale range well.
However, if the test set only contained objects in a scale range of 1-2, we would still favour
larger fovea radii, despite being trained on a dataset with higher scale variation.

Some interesting observations can be made on the general shape of the curves. In subfigure
A we can see a conspicuous drop off at the limits of each scale range, i.e scales of 1.0 or 2.0.
We see that the decline in accuracy at a scale of 1.0 becomes more pronounced as the scale
distribution increases for all methods. For example in subfigure A, the accuracy at this range is
approximately 97% for all methods, however in subfigure F it is approximately 80%. Similarly
we see the same drop off at the end of the spectrum, however this begins to be dominated by
the inability to resolve small digits for the methods with larger fovea radii. However, for the 0%
radius method this drop still seems to occur albeit slightly. Noticeably, these drops in accuracy
at the limits of the scale distribution seem to be invariant to the range of this scale distribution.
Concretely, we can hypothesise that regardless of the scale distribution, the classification rate
will be lower at the limits of the scale range. Unfortunately we could not isolate the exact cause
of this observation and leave this for future work.

4.9 Limitations

Similar to the previous chapter, our experiments are limited in that only the ImageNet100 dataset
is considered. To further substantiate the claims made in this chapter, evaluation on other
datasets are required, however this was infeasible due to time and computing resources. An
additional detail in the context of architectures such as ViT and ResMLP, is that owing to having
fewer image specific inductive biases than CNNs, they are comparatively data hungry and are
prone to overfitting on smaller datasets. As such, it would be useful to repeat this experimental
procedure on far larger datasets as these architectures have been shown to excel in this large data
regime.
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Figure 4.7: Classification Accuracy of Foveated Neural Networks with different fovea radii on
the scaled MNIST dataset. Each subfigure plots the classification accuracy at different scales,
with each subfigure representing a different scale distribution (or scale range). Characterized by
an approximately flat response in classification accuracy, we can show that foveation is helpful
in classifying objects that exhibit a high dynamic range of scale variation.
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Our MNIST experiments demonstrated the importance of higher resolution foveae as the dy-
namic range of object scales increases. While MNIST allowed us to synthesize a tightly con-
trolled setting to perform this evaluation, MNIST digits are easily classified by most architec-
tures and do not necessarily confirm their efficacy on more challenge datasets such as those
comprised of natural images. Ideally, bringing this controlled setting to more challenging clas-
sification tasks would allow for stronger claims to be made with regard to whether this be-
haviour similarly contributes to the optimal fovea radius parameterisation on datasets such as
ImageNet100.

4.10 Conclusion

In this Chapter we explored non-convolutional architectures, namely ViT and ResMLP, for pro-
cessing foveated images. While they have origins in Natural Language Processing, these ar-
chitectures have demonstrated great success in vision tasks and set themselves apart from con-
volutional neural networks in several ways. Firstly, they do not necessitate data exists on a
grid-structured domain, and instead operate on sets or sequences of visual tokens. This makes
them convenient to apply to foveated images, which do not possess a grid-structured domain in
the Cartesian coordinate frame.

Secondly, they do not implicitly assume any spatial structure between visual tokens and instead
learn this through data, represented in the form of learned positional embeddings or implicitly
through connections between neurons. In the previous chapters we expressed the importance of
finding suitable coordinate frames to represent foveated image data, which Convolution layers
then use to infer spatial structure of the visual signal. Learning spatial structure via data has the
potential to surpass hand designed methods and resonates with Sutton’s bitter lesson [129].

Finally, they have the potential to learn space-variant computation over the visual field. There
is of course no strict reason why the same computation should be performed for each part of
the visual field. This seems particularly intuitive for foveated vision architectures as they have
space-variant resolution and translation of visual signals can be addressed through fixating.

Our primary goal of this chapter was to answer Research Question 3, which asks whether a
foveated sensing approach is beneficial to these architectures. We proposed a simple method for
creating a foveated arrangement of visual tokens that can be used with ViT and ResMLP without
specifically modifying them for a foveated context. We conducted experiments on ImageNet100
and showed that such architectures did indeed exhibit improved classification accuracy under
this regime. We found that the introduction of a fixation mechanism to these architectures also
improved classification accuracy, even with a uniform sensor. We posit that this behaviour is
useful for such architectures by improving robustness to translation of objects, which they do
not inherently generalize to unlike CNNs.
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We revisited the biologically implausible method of learning to zoom (RQ4) and showed that
for these architectures they performed on par with a foveated approach, contrasting our previous
study with CNNs in which we found Learning-to-Zoom to outperform foveated methods. We
hypothesize two potential reasons for this. Firstly, Learning-to-zoom does not use a fixation
mechanism to translate the sensor and as such may be less robust to translations. Secondly,
this could indicate that our Cartesian-like coordinate frame used in the graph convolution layer
could still be improved, and the data driven approach for obtaining spatial structure used in these
architectures has converged on a better solution than our hand designed method.

In further experiments we compared the sensitivity of classification accuracy to the sampling
layout, by comparing performance across a range of different fovea radii. Again, we observed
that lower resolution models favoured higher resolution foveae, and the importance of tuning
the fovea radius hyperparameter. Hyperparameter optimisation is costly for these large architec-
tures. In Research Question 6 we asked whether we can learn this parameterisation via back-
propagation. We proposed a simple extension of our foveated tokenisation method that described
the sampling resolution over the visual field through a learnable polynomial. We showed that
this method would converge on a sampling layour similar to the optimal found via hyperparam-
eter search without the need for costly tuning.

In our final experiments we revisited how properties of data influenced the optimal sampling
layout of a sensor (RQ5). In particular, we explored the scale distribution of objects. We used
MNIST to synthesize several toy datasets where digits were randomly rescaled according to a
uniform scale distribution. We showed that as the scale distribution increased, increasingly high
resolution foveae were favourable. Conversely, if the scale distribution was small, more uni-
form sensors were favourable. In experiments with natural images we observed that having too
high resolution fovea or too low would decrease classification accuracy. Based on our MNIST
experiments, we hypothesize that these observations could be indicative of the underlying scale
distribution of objects present in the ImageNet100 dataset.



Chapter 5

Sequential Active Vision Architectures

5.1 Introduction

Thus far we have considered two-stage architectures which first localise salient regions of an
image, which a foveated classifier then attends to. An alternative design is that of a sequential
approach, in which a single neural network jointly extracts image features that can be used for
classification, and for predicting where to look in the next time step.

This design is interesting for two reasons. Firstly, the network can be run over many timesteps,
accumulating information from multiple viewpoints. We hypothesise that integrating this infor-
mation across different views may lead to better classification accuracy, as multiple regions can
be viewed with foveal resolution. In Ballard’s terminology [36], such a system operates at low
resolution (in terms of the number of pixels processed in a single timestep) but exhibits a high
virtual resolution.

Secondly, it may be possible to share most of the computation between localisation and classifi-
cation processes, requiring only minimal extra machinery to implement the fixation mechanism,
in contrast to a two-stage approach which utilizes a dedicated CNN for localisation. This be-
comes particularly interesting in application to video data. In such a scenario, it may be possible
to predict fixations for the next frame from the current frame, amortizing the cost of fixating so
that it incurs very minimal overhead. While we do not perform any experiments on video data in
this thesis, we include these ideas as motivation for pursuing such architectures and are promis-
ing avenues for future work. Importantly, if we expect such architectures to work on video data,
we should equally expect them to work on image data, and so it provides a reasonable framework
for investigations into these systems at relatively nascent stages.

In this chapter we explore sequential systems applied to ImageNet100 and Imagewoof. Ulti-
mately, we aim to show whether sequential architectures derive improvements from attending
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to images multiple times, rather than the single-shot approach of two-stage architectures, and
what additional mechanisms are needed to achieve this (RQ7). We perform several experiments
with various architectures, exploring design considerations for sequential systems. Firstly, we
present a simple sequential architecture based on the foveated CNNs analysed in Chapter 3. The
architecture comprises a single foveated CNN and predicts fixation for the next time step by
applying the attention module presented in section 3.3 to the final convolutional feature maps.
Observations are integrated into a single prediction by averaging predictions over all time steps.
We perform experiments analysing the ability of such networks to classify the ImageNet100
dataset.

An important mechanism for implementing sequential systems is some form of memory to store
previous observations. We present further experiments where we compare more expressive
mechanisms, namely self-attention [113] and Legendre Memory Units (LMUs) [130] to as-
certain whether they facilitate better classification accuracy.

Furthermore, we examine the behaviour, in terms of classification accuracy, of the aforemen-
tioned system as the number of times it is allowed to attend to an Image is increased. Addi-
tionally, we revisit Research Question 5 and explore whether the optimal parameterisation of
a foveated sensor, in terms of fovea radius, is dependent on the number of times the network
attends to an image.

Finally, we propose a proof-of-concept sequential architecture for examining the use of memory
not just for the final feature representations but for intermediate feature representations as well.
The architecture is a reformulation of vision transformers to a sequential form. In this archi-
tecture, we forego a foveated sensor and instead treat a visual token (i.e. image patch) as the
output of a uniform sensor with a very restricted field of view. We consider two mechanisms for
implementing memory, self-attention and LMUs. We adopt data-agnostic policies for attending
to images, a raster scan policy and a random one. These policies, in conjunction with the paral-
lel form of each memory mechanism, allow us to efficiently train these systems over many time
steps to examine the behaviour in the limit of attending to all locations in a scene.

5.1.1 Chapter Structure

This chapter is structured as follows:

• We first provide the reader with relevant background knowledge of prior works pertaining
to memory in neural networks and sequential vision systems.

• We then present a simple sequential foveated CNN and present experiments showing its
ability to classify ImageNet100, contrasting against the two stage approach presented in
Chapter 3.
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• Following this, we present further experiments analysing the performance of the system
when utilizing more expressive mechanisms for implementing memory, as well as the
behaviour of such a system as it is allowed to make more time steps and with different
fovea radii.

• Finally, we present the proof-of-concept architecture based on sequential vision trans-
formers and perform classification experiments on ImageNet100.

• We conclude with a discussion on the limitations and contributions made in this chapter

5.2 Background and Related Work

5.2.1 Memory in Neural Networks

The problem of processing sequential or temporal data frequently requires some form of mem-
ory to provide context for future inputs and is a common problem within machine learning.
Recurrent neural networks (RNNs) [131] are an early well-known incarnation of a neural mech-
anism to achieve this and have been applied to a variety of problems, including NLP [132],
video understanding [133] and speech recognition [134]. They run on sequences of data and
maintain a hidden state to influence the computation at the current time step based on previous
time steps. RNNs presented difficulties for training over long sequences as they could not be
parallelized and were prone to vanishing gradient problems. Long Short Term Memory (LSTM)
RNNs [135] were proposed to alleviate vanishing gradients by introducing gating mechanisms
and a memory cell in the neural circuit. This allows LSTMs to selectively forget and remember
information and control the flow of information over long sequences. Gated Recurrent Units
(GRUs) [136] operate in a similar fashion but make use of fewer gating mechanisms relative to
LSTMs. Neural Turing Machines [137] are a differentiable analogue to Turing machines that
allow the network to read and write data to a memory store, meaning they can store and retrieve
information over long periods of time. Bahdanau et al. [138] proposes an attention mechanism
for a bidirectional RNN to selectively introduce parts of the input sequence into the hidden state
for machine translation to overcome the bottleneck of encoding long sequences into a fixed-sized
vector.

Self-attention [113] can be seen as a successor to the work of Bahdanau et al. [138] and Graves
et al. [137]. Self-attention departs from the more conventional RNN approach for sequence
problems and instead caches intermediate representations of information processed in previous
time steps. Future inputs can attend to these cached representations giving self-attention the
possibility of operating over arbitrarily long sequence lengths given enough compute. Self-
attention addressed key limitations of recurrent approaches in mitigating gradient flow problems
and training parallelism and allowed for significant advances in NLP over recent years. As we
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have already discussed, it has permeated through much of deep learning and become a ubiq-
uitous element in many state-of-the-art systems, not just for sequence problems [45]. One key
limitation of self-attention with respect to recurrent neural networks is its complexity over long
sequences. Running a single time-step inference in an RNN completes in constant time as it uses
a fixed-size hidden state during each time step. In contrast, self-attention has an O(n) complexity
where n is the number of previous time steps. This is assuming the self-attention mechanism
employs causal masking such that it can only attend to previous time steps.

More recently, a family of mechanisms named state-space models (SSMs) aim to reconcile the
constant time complexity of RNNs with the training parallelism and ability to operate over long
sequences of self-attention [130, 139, 140, 141, 142]. The key difficulty of bringing parallelism
to RNNs is the non-linear dynamics of the memory necessitating each time step is computed
consecutively. State space models, in contrast, have linear dynamics with regard to memory and
a non-linear hidden state. They permit both a parallel formulation and a recurrent formulation,
allowing for efficient training and inference, respectively. They have demonstrated impressive
performance over long sequences, comparable to that of self-attention but with significantly
reduced inference costs. Works have additionally replaced self-attention in vision transformers
with SSMs and demonstrated that they can effectively solve vision tasks as well as or even better
than vision transformers [143, 144, 145], however, the parallel nature of visual processing means
the recurrent form of these architectures is not used.

Other methods for implementing memory in neural mechanisms include Hopfield networks
[146]. They are a form of associative memory that allows a full memory to be reconstructed
from a subset of the inputs. In their original formulation, Hopfield networks were limited to
binary vectors. Recently, Modern Hopfield networks [147] have been shown to work with con-
tinuous vectors and have a greater capacity. Hochreiter et al. [148] show that the update rule to
retrieve information from Modern Hopfield networks is equivalent to self-attention and addition-
ally show that Hopfield networks can take on several forms to provide associative memory for
neural networks, including forms that can operate like RNNs. While Modern Hopfield networks
are not explored in this work we mention them as a potential avenue for future research.

5.2.2 Sequential Vision Systems

Many prior works can be described as sequential vision models, both foveated and non-foveated,
that observe and act to accumulate new information in service to completing a task.

Many of these works have made use of an Elman RNN [131]. Mnih et al.’s seminal work [28]
uses a Multi-FoV crop sensor, processed by an MLP. The MLP features are fed to an RNN that
accumulates information into a hidden state and predicts where to look next at each time step.
They train the network with Reinforcement learning due to the hard nature of the fixation and
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image sampling mechanism. This study was limited in that it was only applied to an augmented
MNIST dataset.

Mnih et al.’s work inspired many subsequent works. Ba et al. [149] extend the system to
classifying multiple digits in a single image on the SVHN dataset [150]. Sermanet et al. [27]
apply the model to the ImageNet-1k dataset [49], and make use of a GoogLeNet [151] instead
of an MLP. Interestingly, when the sensor has a field-of-view that spans the full image, they did
not see significant improvements in accuracy when attending to the image multiple times. In the
case of a small field-of-view, observations improved accuracy to a greater degree.

Li et al. [152] similarly extend Mnih et al.’s work while foregoing a foveated sensor. Instead
they make use of an adaptive crop which can zoom in on salient image regions. An interesting
addition to Mnih et al.’s work is the use of a dynamic stopping condition, where the network
can decide it has enough information to make a decision. They show that they can achieve the
accuracy of a network running for 5 time steps (i.e. 5 observations) in 3.6 time steps on average,
saving time and computational resources.

Wang et al. propose Adafocus [153], a hard attention model for video understanding. It can be
considered a recurrent extension of the two stage localisation classification architectures adopted
in works such as spatial transformers and our method in Chapter 3. Each frame is processed by
a lightweight CNN to find the most informative region of a frame, which is then cropped and
passed to a classifier. Rather than using an RNN, the localiser and classifier use a GRU [136] to
leverage temporal information. The network is trained using reinforcement learning, and they
show that their method outperforms previous methods, such as 3D-CNNs, in terms of FLOPs and
accuracy on the Something Something dataset [154]. Adafocus requires an impractical three-
stage pretraining process to make it feasible to train the system with reinforcement learning.
In follow-up work, Wang et al. propose AdaFocus V2 [155], which provides an end-to-end
training scheme leveraging differentiable sampling as used in [43, 96] and our work. They show
improved performance over AdaFocus on a variety of video understanding datasets.

RNNs [130, 131, 135, 136]are characterized by a fixed size hidden state that has an O(1) space
complexity with respect to the number of observations. Similarly, they exhibit O(1) time com-
plexity. Such qualities are useful in keeping inference cost low, or at least consistent, when
applied to sequential problems over many time steps. However, RNNs present challenging train-
ing dynamics, such as vanishing gradients, due to the Non-linear memory state. Self-attention
[113] avoids these problems and has been utilized in many recent works concerning sequential
vision systems, however it has an O(n) time and space complexity with respect to the number of
observations made.

Jonnalagadda et al. [40] apply foveated pooling to the output of a ResNet [156]. Foveal features
are maintained in memory allowing future observations to attend to previous foveal features
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through self-attention. Attention weights for peripheral features are used to inform where to look
next. Previous attention maps (modulated by a decay parameters) are subtracted from the current
attention maps to inhibit attention to already attended locations. GliTr, proposed by Rangrej
et al [157], is a visual attention model based purely on transformers for video understanding.
Each frame is sampled with a restricted field-of-view (i.e. a small crop of the image) reducing
computational overhead, and fed to a transformer. The transformer jointly classifies and predicts
a fixation for the next frame and stores frame embeddings and uses self-attention to integrate
information across frames.

Works under the umbrella of active visual exploration have utilized transformers to sequentially
attend to images with a sensor with a restricted field-of-view. Jha et al propose SimGlim [158],
which is a pure transformer based encoder-decoder architecture. The encoder operates on a
sequence of partial observations (patches of the full image). The decoder aims to reconstruct the
full image in an autoencoder fashion. Simultaneously, a fully connected network aims to predict
the reconstruction loss for the full image. The region where the reconstruction loss is greatest
is used as the next fixation location (i.e. the next patch that should be sampled). Pardyl et al.
[159] propose a similar architecture but rather than using reconstruction loss they use Shannon-
Entropy on the self-attention weights to find which unsampled patches the network is most
uncertain about, circumventing the need for an additional loss. Both these works additionally
experiment with a foveated approach based on Multi-FoV crops. Although not in all cases,
foveated approaches were often found to perform worse than a simple crop based method.

Olszewski et al. [160] extend on Pardyl et al.’s work and propose a modification to the trans-
former architecture to make the encoder more computationally efficient. Motivated by miti-
gating the O(n) complexity of self-attention, they limit self-attention between patches to later
stages in the network, and employ independent feed-forward processing per observation in ear-
lier stages. They show that this method can both reduce FLOPs and improve accuracy in classi-
fication and reconstruction tasks compared to the method proposed by Pardyl et al. They provide
ablation studies that show that decreasing the amount of self-attention in the network does de-
grade performance, however this only becomes noticeable when most of the self-attention is
removed.

An interesting property of the models proposed by Pardyl et al. and Olszewski et al. is that
intermediate layers of the feature extractors use self-attention to attend to previous features.
In contrast, many of the works discussed here first extract spatial features, and then temporal
features. This may be useful behaviour as it allows intermediate features to be contextualized by
previous observations. However, this behaviour is expensive, hence Olszewski et al.’s proposal
to remove this behaviour in earlier network layers.

The works relating to self-attention store previous observations as a sequence of tokens. A few
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works operate on similar principles but store the tokens in a spatial feature map corresponding
to the spatial location where the observation was made. In such a scenario the memory size is
constant. However, the memory size is typically in relation to the number discrete observations
that could be made on an image, and may not be practically more efficient than storing as a
sequence of visual tokens.

For example, Seifi et al. present several works where they propose the use of spatial memory
maps. Features from observations are stored in these spatial memory maps and features between
observations are integrated in various ways such as self-attention or fully connected layers [161]
and convolutional layers [162]. Elsayed et al. propose Saccader [163] in an attempt to address
the difficulties of training recurrent hard attention models with reinforcement learning such as
those relating to Mnih et al.’s work [28]. In parallel, they compute observations across a full
input image and store these in a feature map. An attention policy is trained on this feature
map to iteratively select observations from this feature map which are passed to a classifier
with predictions averaged over time. Importantly, the attention module uses all observations to
select the next observation and so is not strictly sequential. They show that their model, unlike
RNN approaches, is able to generalize to longer sequences than it was trained on and steadily
improves in accuracy as it is allowed to make more observations.

In this chapter we make the following contributions to this area of research. Firstly, we conduct
our studies with foveated sensors that have a large field-of-view that spans the entire image when
fixating at the centre. Most prior works have adopted small crop sensors or foveated sensors with
a very small field-of-view. Two exceptions are Lukanov et al. [21] and Sermanet et al. [27] Our
work differentiates itself from these prior works by comparing a wider range of foveated sensors,
and being end-to-end differentiable trained only through backpropagating the classification loss.
We also contrast the performance of these models against a two-stage approach to contextualize
their performance against other methods. Furthermore, no studies have attempted to contrast dif-
ferent methods for implementing memory, we provide experiments for self-attention, LMUs and
averaging, mechanisms. We also explore sensor parameterisation in relation to these sequential
models. Finally, we explore memory in intermediate layers. Ozlewski et al. [160] and Pardyl et
al. [159] propose models that have this behaviour. We make the contribution of exploring the
use of LMUs instead of self-attention to achieve the same behaviour in O(1) time complexity.

5.3 A Simple Sequential Model

In this section, we outline a simple sequential architecture based on a foveated CNN (Figure
5.1). Our aim is to explore the simplest possible architecture in the absence of extra machinery
and examine its ability to perform image classification tasks in a sequential manner.

It consists of a singular foveated CNN, based on ConvNeXt atto. At time step 0, the network
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Figure 5.1: Overview of the simple sequential model. At each time step, a foveated CNN makes
a class prediction followed and a fixation location for the next time step. This fixation is used
to adjust the sensor at the next time step. After T iterations the class predictions are averaged to
arrive at a final class prediction.

receives an initial fixation at the centre of the image. The image is then sampled with a foveated
sensor at this location and processed by the CNN, producing a set of feature maps. These
feature maps are then fed to the attention module as used in the two-stage architecture. To
briefly reiterate, a 1x1 convolution is applied to produce a single channel feature map followed
by Softmax activation. An elementwise product between each pixel and its corresponding (x,
y) location is then computed and summed over, giving the predicted fixation coordinate. This
fixation is then used in the next time step to inform the sensor where to centre its gaze. Lukanov
et al. describe a similar architecture but instead apply argmax over the final feature maps. Our
approach differentiates itself in that it is end-to-end differentiable, facilitating the possibility of
adding dedicated network layers for fixation behaviour.

At each time step, the final feature maps (i.e. those that are used as input to the attention module)
are also fed to a memory module. For the purposes of our first experiments, we consider a
simple mechanism that simply averages over previous observations. Concretely, we apply global
average pooling to the feature maps yielding a single feature vector. These are stored in memory
over all time steps. The final feature representation is then computed by averaging over these
vectors and subsequently fed to a linear classifier. While this is not particularly expensive in
terms of memory, an efficient implementation is to apply temporal averaging after the linear
classifier to the class logits and maintain a running average.

5.4 Classifying ImageNet100 with Sequential Foveated CNNs

In this section we perform several experiments using our sequential model with different foveated
CNN backbones, applied to ImageNet100 and aim to answer two main questions. Firstly, does
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Method Operator Sensor # Input Pixels # Fixations Params (M) GFLOPs Accuracy (%)
ConvNeXt [110] Conv Uniform 50176 - 3.7 0.55 78.4±0.5
ConvNeXt Conv Uniform 12544 - 3.7 0.20 70.0±0.7
Ours (non-attentive) Graph Conv Our Sensor 12544 - 3.7 0.20 72.5±0.4
STN [43] Conv Uniform 12544 1 4.8 0.32 72.7±1.0
PTN [19] Conv Log-Polar 12800 1 4.8 0.33 70.7±0.6
FCG-STN Conv CFG [22] 12544 1 4.8 0.33 71.0±0.4
Fov STN Conv Multi-FoV Crops 12800 1 4.8 0.33 71.8±0.5
Fov STN (ours) Graph Conv Our Sensor 12544 1 4.8 0.32 74.2 ±1.1
Learning to Zoom [44] Conv Deformable Grid 12544 1 4.8 0.32 75.8±1.4
Sequential Conv CFG [22] 12800 2 3.7 0.41 70.2±0.8
Sequential Conv Log-Polar 12800 2 3.7 0.41 70.4±0.5
Sequential Conv Multi-FoV Crops 12800 2 3.7 0.41 72.8±1.3
Sequential (Ours) Graph Conv Our Sensor 12544 2 3.7 0.41 73.8±0.6
Sequential (Ours) Graph Conv Our Sensor 12544 3 3.7 0.61 76.5±0.4

Table 5.1: Top-1 Accuracy on the Imagenet100 test set. We split the table into three sections.
Top: non-attentive models. Middle: Spatial Transformer like models. Bottom: Sequential
Models.

a sequential model improve as it is allowed to attend to an image more times? Secondly, can
sequential models perform as well as a two-stage architecture in a similar number of FLOPs,
despite not using a dedicated network for fixation behaviour.

5.4.1 Implementation Details

We conduct our main experiments using a graph convolutional ConvNeXt atto as described in
Chapter 3. It uses the sunflower foveated sensor described in section 3.5 with 1122 pixels and a
fovea radius of 0.4 and analyse its performance when allowed to attend to an image for 1, 2 and
3 timesteps. Additionally, we perform experiments with sequential foveated CNNs operating on
a log-polar sensor, the Cartesian Foveal Geometry sensor, and the Multi-FoV crop sensor oper-
ating for 2 time steps and contrast against their corresponding two-stage counterparts. Again,
these CNNs are based on the ConvNeXt atto architecture and use sensors with approximately
1122 pixels. We use the same hyperparameters as used in section 3.7.2 for all architectures.
Results are reported on a held out test set, averaged over three separate training runs.

5.4.2 Classification Accuracy vs. Time Steps

We present results on ImageNet100 in Table 5.1. for the foveated graph convolutional sequen-
tial model. 1, 2, and 3 time step models achieve classification accuracies of 72.5%, 73.8%
and 76.5%. This steady increase in classification accuracy supports the hypothesis that image
classification improves when the system is allowed to integrate information from multiple ob-
servations when making a final prediction. We speculate that this trend is partly due to viewing
multiple regions of the image at Foveal resolution, coinciding with Ballard’s idea of these sys-
tems having a high internal resolution [36].

An important caveat is that this architecture is Markovian in nature, as the fixation for the next
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time step is dependent only on the current observation and maintains no memory of where
it has already looked meaning there is the potential for the system to re-attend to the same
locations. Nonetheless we observe a dramatic increase in performance from 2 to 3 timesteps
(+2.7%). We speculate on two potential reasons for this. Firstly, the model initially fixates on
the centre of the image and may not be be sufficiently aligned with objects of interest in order
to make a robust classification. The contribution of this initial fixation is comparatively lower
in the three step model and could explain this dramatic increase in performance. A second
consideration is that viewing the image at similar but nonetheless different fixation locations
provides functionality similar to that of test-time augmentation which has shown to improve
robustness in image classification [164].

5.4.3 Contrasting Against a Two Stage Approach

We report results in Table 5.1 comparing two-stage foveated CNNs against their sequential coun-
terparts. In general we observe a decrease in classification accuracy when adopting a sequential
design. In most cases this decrease is relatively small. For example, in case the sequential graph
CNN a 0.4% decrease in classification accuracy is observed. Interestingly, we observe improved
performance for the Multi-FoV CNN in a sequential regime. This method is distinct from the
other foveated CNNs in that the low resolution region is a uniform downsampling of the full
field-of-view. The application of the CNN to this low resolution region is translation equivari-
ant. We speculate that the improved performance of this method, and conversely the decreased
performance for the other methods is that this translation equivariant behaviour aids in the abil-
ity to localise salient objects. Nonetheless, we still find the sequential graph CNN approach to
outperform this method.

While the sequential approaches exhibit lower classification accuracy in general, and a slightly
higher FLOP count, the ability to attend to the image is only at the expense of minimal extra
parameters from the convolution layer in the attention module (321 parameters). As we dis-
cussed in the introduction, these architectures could be particularly interesting when applied to
video data, if the fixation process could be distributed across multiple frames, with each frame
being attended to only once. We have shown that even this very simple sequential design mostly
suffices for achieving comparable performance to an architecture with a dedicated network for
attending to scenes on images. Architectures such as AdaFocus [153] have demonstrated the
feasibility of this design on video data when using image crops. A promising line of future work
is to explore similar systems using foveated sensing.
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5.5 Memory in Sequential Foveated CNNs

The sequential architecture covered in the previous section used an averaging mechanism to
maintain a memory of previous observations that could then be used for classification. In this
section we explore the use of more sophisticated mechanisms for implementing memory. In
particular, we consider self-attention [113] and Legendre Memory Units (LMUs) [130]. Self-
attention has been a highly effective mechanism for integrating information over long sequences.
While powerful, self-attention is computationally expensive as it requires caching previous ob-
servations and has a O(n) complexity per timestep where n is the number of observations. In line
with the goal of foveated sensing to improve computational efficiency, we also consider Legen-
dre Memory Units. LMUs have been shown to have excellent memory capacity in contrast to
GRUs [136], LSTMs [135] and other State of the Art RNNs. Unlike self-attention, previous ob-
servations aren’t cached, but instead maintained in a hidden memory state and operate in O(1)
time per observation. We take the sequential model from the previous model, but replace the
averaging mechanism with two consecutive ’transformer’ blocks, with self-attention or LMUs
for combining information between timesteps.

5.5.1 Implementation Details

We use the same foveated graph CNN backbone and experimental set up as in the previous
section along with the same hyperparameters. We utilize self-attention in two consecutive trans-
former blocks with causal masking and a class token. For the self-attention layers, we use
multi-head self-attention, with 8 heads and a dimensionality of 40 for the query, value and key
projection layers. The feedforward network in the transformer block expands the dimensional-
ity by a factor of 4, applies GELU activation, and then projects the dimensionality back to 320.
After the transformer blocks, the class token is fed to a linear classifier. We did not perform any
hyperparameter tuning for the self-attention layers.

In the LMU variant, we replace self-attention in the transformer blocks with LMUs. Each LMU
uses a hidden size of 320 and a memory size of 256. The memory size corresponds to the
number of legendre basis polynomials that the observation history is projected onto. The theta
parameter controls the time window, i.e. the number of observations, to be stored in memory.
We consider a 3 time step architecture in this case and use a theta value of 3 seconds, where
delta t is 1 second. We use the final time step representation after the LMU blocks as input to a
linear classifier.

Additionally, for both methods we explore the use of positional encoding to allow the fixation
location to be encoded with the observations. We use sinusoidal positional encodings as de-
scribed by Dosovitskiy et al. [45] to encode a fixation coordinate as a 320 dimensional vector
which is added to the image features after global average pooling of the final feature maps. Our
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Averaging Self-Attention Legendre Memory Unit

w/ Pos Enc - 74.9% 75.0%
w/o Pos Enc 76.5% 74.7% 75.2%

Table 5.2: Results on the ImageNet100 test set. We omit Positional Encoding for the Averaging
method as it has no mechanism to make use of this information.

motivation is to allow the memory layers to incorporate knowledge of the spatial relationships
between two different observations.

5.5.2 Results on ImageNet100

In Table 5.2 we show the accuracy of the different methods on ImageNet100. Surprisingly,
despite utilizing two additional transformer like blocks, neither the self-attention nor the LMU
methods outperformed a simple averaging approach. We found the LMU without positional
encoding to perform best, at 75.2% accuracy, out of the more complex mechanisms. In gen-
eral, the performance difference between the more complex mechanisms is relatively small. The
averaging mechanism was substantially better, by approximately 1.5%. We did not observe sig-
nificant improvements by incorporating positional encodings, and in fact marginally decreased
performance for the LMU.

We can speculate on many potential reasons for the above results. Simple explanations such as
more hyperparameter tuning, longer training, and the need for more training data may all apply
here. An alternative hypothesis is that averaging suffices for combining information in this
image classification task. A reasonable avenue for future work is to explore these mechanisms
on other visual tasks. One possibility is that of image captioning, which requires the system to
reason about multiple parts of a visual scene. For example, Xu et al [165] apply a non-foveated
sequential architecture to image captioning tasks and adopt an LSTM for memory. Repeating
these experiments in such a setting may better elucidate any potential benefits of these more
complex mechanisms.

5.6 Optimal Sensor Layout in a Sequential Context

In this section we investigate the optimal parameterisation of the fovea radius in the Sunflower
sensor for a sequential system. There are two reasons why one might expect the optimal sensor
parameterisation to change in a sequential context.

Firstly, smaller higher resolution foveae allocate more visual processing resources to a smaller
region of the field of view, at the expense of peripheral processing resources. It may be beneficial
for these systems to operate over many time steps to increase the area that is sampled at foveal
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Figure 5.2: Classification accuracy on the Imagewoof test set for different fovea radii and num-
ber of timesteps. The optimal fovea radius is largely invariant to the number of time steps the
network is allowed to perform.

resolution. Secondly, fixation predictions are made from foveated images (as opposed to uniform
ones in the two-stage architecture). It may become increasingly difficult for sensors with lower
peripheral resolutions to localise objects in these regions of the field-of-view.

We conduct image classification experiments on Imagewoof[90], and compare how Fovea radii
affects classification accuracy of a sequential graph CNN when allowed to attend for a given
number of time steps. Beyond this, we also use these experiments to further verify whether
multiple observations of an image improve classification accuracy.

5.6.1 Implementation Details

We use the Isometric Graph ConvNext presented in Chapter 2 as the CNN backbone for the
model and the Sunflower sensor proposed in section 3.5. We use the simple sequential model
design with the averaging mechanism described earlier in this chapter. The training scheme
and hyperparameters is the same as in section 3.7.2, except that we use a batch size of 64, and 4
steps of gradient accumulation, to yield an effective batch size of 256. We consider the following
range of fovea radii: 0.1, 0.3, 0.5, 0.7 and 0.9. We evaluate architectures that run for up to 5
time steps including the initial fixation at the centre of the image.
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Figure 5.3: Lines of best fit for Figure 5.2. In general steeper lines can be observed for small
fovea radii, suggesting that they benefit more greatly from attending to images multiple times.

5.6.2 Results on Imagewoof

Figure 5.2 shows the performance of each run on the Imagewoof test set, each result averaged
over three training runs. In general we see, with the exception of some slight variation, the
optimal fovea radius is largely invariant to the number of timesteps the network is allowed to
perform. Again we find that both a large fovea radius (i.e. 90%) and a very small fovea radius
(i.e. 10%) typically exhibit worse performance and find the optimal amount to be 30%. This
correlates with the optimal radius found in the previous study which was around 20%.

In Figure 5.3 we show lines of best fit for each radius. We show that smaller fovea radii, in
general, have steeper lines of best fit, suggesting they improve more quickly with more fixations
than larger fovea radii. This explanation seems intuitive as larger fovea radii result in a more
uniform sampling of the visual field. In such cases the sampled visual information differs mainly
in translation, but does not acquire much new information as the periphery and the fovea have
approximately the same resolution. It is unlikely that these lines of best fit can be extrapolated
very far as we should expect diminishing returns on more fixations. Furthermore, running the
network for many fixations does incur significant overhead, and as such we are mainly concerned
with the behaviour of the network at a low number of timesteps as this is when the network is
still computationally efficient. Ultimately, these experiments show that we can largely discount
the number of timesteps as a factor for the optimal sensor parameterisation. A limitation of
this study was to only compare this trend when using averaging to aggregate information over
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timesteps. Future work should assess these trends with other mechanisms such as self-attention
and recurrent networks to see if the same observation still holds.

5.7 Memory for Intermediate Layers

One question we can ask about sequential models is where is memory needed. The aforemen-
tioned models only integrate information from different fixations at the very end of the network.
However, it may be the case that intermediate layers of the feature extractor could benefit from
the ability to utilize intermediate representations from previous time steps as part of the calcula-
tion for the intermediate representations of the current time step.

We know that to some degree it is useful to have memory in intermediate layers as we can view
a vision transformer as a sequential vision model which operates with a restricted field of view
(i.e. the size of an image patch). A problem with adopting self-attention in all intermediate
layers of a network is that it is computationally expensive. In concurrent work, Olszewski et al.
[160] highlight this problem and propose to remove self-attention for attending to tokens from
previous time steps from earlier network layers to improve computational efficiency. They show
on classification tasks, accuracy is robust to the removal of self-attention in earlier layers, but
degrades more rapidly when removed in later layers.

Our work is similar in spirit and complementary to Olszewski et al.’s work, but differentiates
itself in that rather than exploring the removal of self-attention, we explore their replacement
with Legendre Memory Units (LMUs). Our primary aim is to explore the possibility of a com-
putationally efficient way to implement memory in intermediate network layers. As mentioned
previously, LMUs run with constant time complexity, rather than O(n) of self-attention. As
such they have the potential to be far more computationally efficient, particularly over long se-
quences. We propose a toy architecture based on a reformulation of a vision transformer. We
conduct experiments on ImageNet100 contrasting classification accuracy when using LMUs or
self-attention. We make some omissions in this work. Firstly, we do not use a foveated sensor,
instead opting to treat a single visual token as the output of a sensor which performs a small
crop of an image. We also do not use a learned fixation policy, as this allows us to exploit the
parallelism of both self-attention and LMUs to evaluate the behaviour of both mechanisms over
long sequences, which in this case is exhaustively attending to all regions of an image. At the
end of this section we propose how these omissions could be reintroduced in future work.

5.7.1 Transformers as Sequential Vision Models

The architectures considered in this section are based on vision transformers. They consist of
an initial convolution stage, with non overlapping filters. While the sensor is not foveated in
this case, it bears resemblance to foveated sensors as it samples only a small region of the full



CHAPTER 5. SEQUENTIAL ACTIVE VISION ARCHITECTURES 91

LMU

MLP

N x

LMU

MLP

Linear 

Classifier
“Beagle”

Linear 

Projection

Linear 

Projection

t = 0 t = T

Figure 5.4: Schematic overview of our sequential model based on a reformulation of vision
transformers. The red region indicates the small cropped region that is viewed on a given time
step. This patch is flattened and linearly projected, before being processed by N transformer
blocks (N = 12 in our experiments). Intermediate representations from previous time steps are
used in future time steps through the form of a memory module (we use an LMU as an example).

image at high resolution. The output of the convolution layers is T visual tokens which are
linear projection of image patches. We can interpret this as a sequence of observations after
exhaustively attending to all regions of an image with a small crop sensor.

After convolution, a stack of N transformer blocks are then applied to the tokens. A single block
consists of a memory layer (either self-attention or an LMU) followed by an MLP, in line with
a ViT block [45]. In the case of the self-attention variant, we employ causal masking. This
ensures that tokens can only attend to previously seen tokens which is necessary for a sequential
interpretation of a vision transformer. Legendre Memory Units implicitly interpret tokens in a
sequential manner and do not need Causal Masking to be explicitly applied. We visualize the
sequential interpretation of our model in Figure 5.4.

5.7.2 Fixation Policies

We aim to explore the behaviour of each memory mechanism over long sequences, particularly
in the limit of exhaustively attending to all regions of the image with small crops. To make
this computationally feasible, we can exploit the parallelism of both self-attention and LMUs,
and the initial convolution stage, so that all time steps can be computed in parallel. However,
the process of making a decision on where to look next from previous observations, as done
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by the previous sequential architectures, is a non-linear process, with no obvious parallelizable
implementation. This necessitates that we train these architectures sequentially, and cannot
leverage their parallel forms. We circumvent this problem by adopting data agnostic fixation
policies.

In particular we consider a random policy, and a raster scan policy (Figure 5.5). The output of
the convolution stage is a sequence of d-dimensional vectors of length T . In the random policy
visual tokens, prior to their processing with transformer blocks, are randomly permuted. This is
equivalent to randomly attending to the image. This permutation is applied per sample. In the
raster scan policy, the sequence is unchanged, and is arranged left to right, top to bottom.

Furthermore, for the random policy we consider two different positional embedding schemes,
a temporal one and a spatial one. In both cases, we learn T positional embeddings that are
added to the tokens. In the temporal approach this is applied after permuting the sequence, and
allows the positional embeddings to denote the order in which visual tokens are received. In
the spatial approach, the embeddings are added prior to permuting the sequence, and denote the
spatial position of the visual token. In the raster scan policy we also apply learned positional
embeddings.

The random policy is representative of a worst case scenario, in which the fixation policy exhibits
no intelligent behaviour nor can any underlying dynamics in the fixation behaviour be leveraged
by the network. While the raster scan policy is similarly unintelligent, it does have consistent
dynamics in how it traverses an image. It may be possible for the networks to leverage these
more predictable dynamics and may be more representative of a learned policy.

5.7.3 Implementation Details

The tokenisation stage is a convolution layer with a filter size of 16x16, a stride of 16 and 384
output channels. This applied to a 224× 224 RGB image, yielding 196 tokens (T = 196). We
use N = 12 transformer blocks. For the self-attention variant we use Multi-head self-attention.
We use 8 heads, each with a dimensionality of 48. For the LMU, we use a hidden size of 384,
and a memory size of 256. Theta controls the sliding window history of the layer, we use a theta
of 196 as the sequence length is 196. The MLP in each transformer has a hidden size of 1536
and uses GELU activation. The output size of the MLP has a dimension of 384. After processing
all tokens, we take the final token in the sequence and apply a linear classifier to it to get a final
class prediction. We adopt the same hyperparameters and training scheme as in section 4.6, and
results are reported on a held-out test set, averaged over three training runs.
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Figure 5.5: Visualisation of fixation patterns for each policy for two different samples. Each
square represents a cropped region viewed at a given time step. The raster scan policy scans left
to right, top to bottom and is the same for all samples. The random policy randomly attends to
the image and is different for each sample.

Identity
Self-Attention

(No Causal Mask)
Self Attention
(Causal Mask)

Legendre Memory
Unit

Raster Scan Policy 37.7% 74.7% 74.2% 70.9%
Random Policy
(Temporal PE) n/a n/a 67.4% 66.2%

Random Policy
(Spatial PE) n/a n/a 72.2% 66.6%

Table 5.3: Classification Accuracy on Imagenet100 test set when using different methods for
aggregating visual information from different fixations. Identity refers to the case when no ag-
gregation mechanism is used (i.e. the layer is replaced by an identity transform). We omit results
for self-attention with no Causal mask and identity for random policies as they are equivalent to
the raster scan policy
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5.7.4 Results on ImageNet100

We report results for each method in table 5.3. Interestingly, we find that applying a causal
mask in vision transformers does not significantly affect performance, only reducing accuracy
by 0.5% and 2.5% for the raster scan policy, and random policy with spatial positional embed-
dings respectively. The difference in performance between the random policy and the raster
scan policy suggests that the latter might naturally favour our dataset. It is likely that the most
important tokens for image classification are ones near the centre of the image as that is likely to
align with the location of objects in the image owing to camera bias. A raster scan policy might
provide these important tokens with enough context to lead to accurate classification which may
not always be the case in a random policy.

When using temporal positional embeddings the performance decrease becomes noticeable (-
7.3%). It is clear that in such networks it is important to provide information about how tokens
are spatially related to one another. This is unsurprising as temporal position embeddings do not
provide the network with much meaningful extra information under a random policy. Ultimately,
we can show that when framing a sequential network as a causal vision transformer, we can
nearly match the performance of a classical vision transformer with no causal mask.

We find that the Legendre Memory Unit network performs comparatively worse than self-
attention. Again, the raster scan policy performs best at 70.9% accuracy, with random policies
performing approximately 3.5% worse. Nonetheless, these networks still perform far better than
the identity method (only 37.7%), which can be considered a bag of visual tokens, suggesting
this method is still allowing each token to aggregate meaningful level of information from other
tokens to inform classification. Importantly, while these networks performs worse than self-
attention, they can be run recurrently, meaning the processing of each new token in a sequence
completes in O(1) time. Comparatively, self-attention completes in O(n) time where n is the
number of seen tokens. This improvement in complexity may mean that the LMU networks are
favourable in practice, especially if run for many timesteps.

We find the LMU to be agnostic to any positional encoding information. As part of its natural
formulation, LMUs implicitly interpret tokens as a temporal sequence regardless of any posi-
tional encodings. This is unlike self-attention which don’t make any implicit assumptions about
the relationships between tokens, as fundamentally its an operation applied to a set. The lack
of performance gain when providing spatial positional encodings suggests that the LMU does
not learn to make use of this information to any reasonable degree and may still fundamentally
treat tokens as a temporal sequence which we have shown in the case of self-attention to hamper
performance.

While these models are not representative of the foveated models explored previously in this
thesis, we have shown that LMUs can be utilized as memory mechanisms in intermediate layers



CHAPTER 5. SEQUENTIAL ACTIVE VISION ARCHITECTURES 95

and perform competitively with self-attention while operating in O(1) time complexity. Re-
cently, many recurrent alternatives to self-attention, such as Mamba [140], have been proposed
that may be able to further improve over LMUs. In the following chapter we discuss some
potential extensions to this architecture that could be explored in further work.

5.8 Limitations

The primary limitation of this chapter were that for foveated models, we were only able to ex-
plore sequential models for a low number of time steps. This was born of computational and
time constraints. A difficulty in training these sequential models is that they must be trained
sequentially and cannot be parallelized over time. This is due to the fact that future observations
are dependent on previous ones. In our final experiments, we did explore these models over
many timesteps, but did so without a learned fixation policy. Future work could look to address-
ing training parallelism of such models or training regimes that can make the training of these
models more feasible over many time steps.

With regards to model design, our sequential models were limited in that they did not incorporate
inhibition of return and as such run the risk of re-attending to the same portions of the image
multiple times. At early stages, we experimented with applying an LMU to the output of the
localisation networks attention module, however we were unable to successfully train these
models. We speculate that it may be important to utilize memory prior to the computation of a
single (x,y) fixation coordinate. This would allow inhibition to take into account visual features,
rather than being unaware of them and only having a sequence of (x,y) coordinates to influence
the next fixation. We discuss inhibition of return more greatly in the future work section of the
following chapter.

5.9 Conclusion

In this Chapter we explored several vision models that operate in a sequential fashion. At a given
timestep, the input image is sampled at a certain fixation point. Features are extracted from this
sampling and used to make a prediction as to where to look next. Features are integrated over all
timesteps into a unified representation that are then used as input to a classifier. Our motivation
for exploring such systems was two-fold. Firstly it allows them to attend to images multiple
times, increasing their internal resolution which we hypothesised could increase classification
accuracy. Secondly, it may be possible to share much of the computation between fixation
processes and classification processes. This becomes particularly interesting for future work
on their application to video data, as it may be possible to amortize the cost of fixation across
frames and consequently incur very minimal extra computation.
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We asked whether a simple sequential model, where predictions are averaged over all timesteps,
could outperform the two-stage approach from the previous chapters. We found performance of
sequential models to be generally lower but still comparable at approximately the same number
of FLOPs. Importantly, the sequential model achieves similar performance at the expense of no
extra parameters beyond the attention module. In contrast the two-approach requires a dedicated
CNN to guide fixations. We speculate on two reasons for reduced performance. Firstly, the
reduction in sampling resolution in the periphery may make it challenging for the network to
attend objects that exist in this part of the field-of-view. Secondly, using a single CNN for
both fixation and classification may require a compromise when learning optimal filters for the
corresponding processes. This compromise is not present in the two-stage approach as there is
a dedicated network each process.

Our choice of averaging predictions was so that integration of information from different ob-
servations could be performed in a parameter free way, subserving fairer comparisons between
the two-stage and sequential approach. We further tested whether classification accuracy can
be improved over averaging with more sophisticated mechanisms (i.e self-attention and LMUs).
Interestingly we found that performance did not improve when switching to these learnable
mechanisms, and in fact degraded classification accuracy. We can relate the averaging approach
to that of global average pooling in CNNs, which is commonplace in most state-of-the-art CNN
architectures. We speculate that on image classification tasks, this paradigm is largely sufficient
for integrating spatial information into a single vector for classification. A reasonable line of
future work is to reevaluate these mechanisms on tasks that might require better knowledge of
spatial structure such as Image Captioning or Segmentation.

Finally, we explored a proof of concept sequential model that used memory in intermediate net-
work layers rather than just at the end. We made the observation that when using causal masks in
vision transformers, they can be viewed as sequential vision models that use a small crop sensor
and self-attention for memory. Self-attention has an O(n) complexity where n is the number of
previous timesteps. The primary aim of this work was to ascertain whether LMUs, which have
an O(1) complexity, could replace self-attention as a more computationally efficient alternative.
We compared these two mechanisms under two different data agnostic fixation policies (raster
scan and random) which exhaustively explore the full image. We found that LMUs performed
worse in general (-5.6% in the worst case scenario), but nonetheless significantly improved over
having no memory mechanism in intermediate layers. This deficit may be justifiable if the O(1)
complexity can provide meaningful computational savings for a given problem. Furthermore,
many O(1) self-attention alternatives, such as Mamba, have been proposed in recent years that
may close this gap further.
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Conclusion

6.1 Contributions

In this section we will revisit the research questions outlined at the start of this thesis and high-
light the main corresponding contributions made in answering them.

1. To what degree does the geometric transformation of foveated data to a grid-aligned
representation play a role in the accuracy of foveated convolutional neural networks?

Previous studies from Torabian et al. [20] and Ozimek et al. [32] showed that foveated
CNNs did not outperform uniform CNNs. We analyzed the implications of applying
CNNs to foveated images to identify potential pathologies that may explain these ob-
servations. Through the lens of geometric deep learning [51] we identified the geometric
transform of foveated image data to a grid-aligned representation as a potential factor.
Specifically, we argued that these geometric transforms imposed sub-optimal equivari-
ance properties for convolution layers and may yield unhelpful or potentially inhibitory
inductive biases for image classification.

We tested this hypothesis through a novel graph convolution layer, which generalized
convolution to non-grid aligned image data, and allowed for coordinate frames to be freely
specified. We compared foveated CNNs utilizing a Cartesian-like coordinate frame and
a log-polar coordinate frame and showed the latter to yield a significantly more accurate
foveated CNN. This supports the hypothesis that the coordinate frame used to represent
foveated data plays a crucial role in the classification accuracy of foveated CNNs.

2. Can foveated CNNs outperform uniform CNNs in image classification for a given pixel
budget?

In Chapters 2 and 3, we looked at the application of CNNs to foveated images. Across
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a range of different foveated sensors, we showed that in the presence of a fixation mech-
anism to guide the sensor, foveated CNNs exhibited better classification accuracy than
uniform CNNs when operating on the same number of input pixels. This contrasts a simi-
lar previous study from Torabian et al. [20]. We speculate that this difference is partly due
to our fixation mechanism being optimized directly to solve the task rather than mimicking
human fixations.

In many cases, the improvement in classification accuracy relative to a uniform CNN
was small. When adopting our graph convolution layer we found this improvement to
be significantly more pronounced, performing the best out of all foveated CNNs. This
highlights that our graph convolution layer has utility beyond an explorational tool for our
first research question and can serve as a promising convolutional operator for processing
foveated images in its own right.

3. Does adopting foveated vision in non-convolutional architectures such as vision trans-
formers and mixer architectures lead to better classification accuracy than a uniform
sensing approach?

In Chapter 4, we looked at processing foveated images with non-convolutional architec-
tures, namely ViT and ResMLP. We speculated that these architectures are highly suitable
for processing foveated images for two reasons. Firstly, they circumvent the coordinate
frame problem associated with CNNs as they do not use this geometric structure to inform
how to extract spatial features. Secondly, they can perform space-variant computation,
which may resonate with the space-variant nature of foveated images.

We proposed a novel foveated sensor that extracted a foveated arrangement of visual to-
kens processed by a Vision Transformer or ResMLP. Like CNNs, we observed better
classification accuracy for foveated systems over uniform ones on ImageNet100. Further-
more, we synthesized a toy dataset by randomly rescaling MNIST digits (based on a scale
distribution) and placing them on a blank canvas. We showed that as the scale distribution
foveated sensing was necessary to accurately classify digits across this scale distribution
while a uniform approach failed. Although this toy dataset is not representative of more
visually complex scenes, we speculate from these results that the benefit of foveated sens-
ing will become more apparent for visual tasks that require accurately recognizing objects
that exhibit a high dynamic range of scale variation.

4. Is a foveated sampling strategy more useful for image classification than biologically
implausible methods such as learning-to-zoom [44] in terms of classification accuracy?

An important consideration is that the emergence of foveated vision in biological vision
systems may be a product of biological constraints. These constraints may not apply to



CHAPTER 6. CONCLUSION 99

computer vision systems. We contrasted against learning-to-zoom and spatial transform-
ers, two biologically implausible approaches that exhibit similar functionality to foveated
sensors in sampling select portions of the visual field at greater resolution. We showed
that for CNN-based models, foveated sensing exhibited better classification accuracy than
spatial transformers but not learning-to-zoom. For non-convolutional models, we found
the performance between the two methods to be approximately the same. While this does
not allow for a decisive claim about one approach’s superiority to another, it highlights the
importance of contextualizing work concerning foveated vision systems with alternative
approaches that operate on similar principles.

5. Is the optimal parameterisation of a foveated sensor (in terms of classification accuracy
of the system) dependent on the architecture, data or both?

Using sensors that allowed for the radius and sampling resolution to be controlled through
hyperparameters, we performed several experiments analyzing the sensitivity of classifi-
cation accuracy to these hyperparameters. We showed that both convolutional and non-
convolutional architectures that operated on fewer pixels generally favoured smaller and
higher resolution foveae. In Chapter 5, we explored the use of sequential vision archi-
tectures. We showed that the optimal fovea radius was mostly agnostic to the number of
times the network was allowed to attend to an image. Furthermore, we showed that se-
quential architectures with smaller and higher resolution foveae derived more benefit from
attending to an image multiple times.

A common trend could be observed in the relationship between classification accuracy
and fovea radius. Both very small high-resolution foveae (i.e. extreme foveation) and very
large fovea (i.e. an approximately uniform sensor) exhibited the worst classification accu-
racy over the range of possible parameterisations. In Chapter 4 we provided a potential ex-
planation for this trend through our experiments on the Scaled MNIST dataset. We showed
that when all digits in the dataset were approximately the same size, lower amounts of
foveation were preferred, and excessive foveation degraded performance. Conversely, as
the scale variation between digits increased, higher resolution Fovea were necessary to
classify digits over the full-scale range, while more uniform sensors could not classify all
but the very largest digits. We speculate that the trends observed between fovea radius
and classification accuracy in other experiments are partly reflective of the underlying
scale distribution.

6. Can we learn an optimal parameterisation of a sensor jointly with deep neural network
weights through backpropagation?

We showed the importance of optimizing the fovea radius parameter to achieve good clas-
sification accuracy with foveated vision models. However, this is a costly procedure with
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large models and datasets. In Chapter 4, we proposed an extension of our foveated sensor
that allowed its sampling layout to be optimized directly with gradient descent by back-
propagating classification loss gradients from the classifier. We showed that this sensor
converged on a similar layout to one found via hyperparameter search and yielded a sim-
ilarly accurate classifier. This entirely mitigated the need to tune this parameter through
hyperparameter search and saved a significant amount of time as a result.

7. For Sequential Vision architectures, does integrating visual information from multi-
ple observations improve classification accuracy and what mechanisms are needed to
achieve this?

The majority of our work with active vision models used a two-stage architecture with a
dedicated CNN to perform fixations. In Chapter 5 we looked at a sequential design where
a single foveated neural network jointly classifies and performs fixations, and can perform
this behaviour sequentially over many time steps.

We showed that applying a very lightweight attention module to the final convolutional
feature maps of a foveated classifier allowed it to fixate on regions of a scene and achieve a
similar performance to the two-stage architecture but with significantly fewer parameters.
We showed that, for a simple sequential model that averaged its predictions over all time
steps, classification accuracy steadily improved the more times they were allowed to attend
to an image. In subsequent experiments, we explored more sophisticated mechanisms
beyond averaging, namely self-attention and Legendre Memory Units. Surprisingly, we
did not find these to improve performance relative to the averaging approach.

In our final experiments, we explored the use of self-attention and Legendre Memory
Units for implementing memory in intermediate network layers. We drew a comparison
that vision transformers, when using a causal mask, can be interpreted as sequential vision
models that use a small crop sensor. We created two variations of a vision transformer,
one with self-attention and causal masking, and one with Legendre Memory Units for inte-
grating information from previous observations. We showed for the self-attention variant
that performance was comparable to that of a conventional vision transformer. We also
showed the importance of spatial positional embeddings so that the network could use the
spatial relations between observations. We found the Legendre Memory Unit variant to be
slightly worse than self-attention but crucially achieves this behaviour in O(1) time com-
plexity rather than self-attention’s O(N) complexity. We showed in this scenario that the
more sophisticated mechanisms significantly improved the classification accuracy relative
to a simpler averaging approach.
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6.1.1 Summary

The aim of this thesis was to build and assess a range of foveated computer vision systems and
ascertain whether such a strategy can also provide important functional benefits for computer
vision systems based on deep neural networks. We have shown through various image classifi-
cation experiments that adopting foveated sampling in neural networks can improve their ability
to classify images. In particular, we found foveated sampling to be increasingly beneficial when
the number of pixels in the sensor decreased and when there was greater variation in the scale
of objects that needed to be classified. In the following section, we provide several avenues for
future work that can extend this line of research.

6.2 Future Work

6.2.1 Image Classification Datasets for Foveated Vision Systems

In this thesis, we used image classification datasets to evaluate the efficacy of different methods.
It should be noted that image classification datasets, particularly those such as ImageNet-1k
[49], are highly curated in that objects of interest typically occupy a large portion of the total
image. Notably, architectures such as CoCa [166] achieve over 90% accuracy on ImageNet-1k
at a resolution of 288×288.

If we interpret the 1.2 million ganglion cells in the human vision system as RGB pixels, this is
a factor 14 decrease in the number of pixels the system has to process. Yet, CoCa still performs
incredibly well on ImageNet. This may indicate that the visual perception problems that biolog-
ical systems have to solve require significantly higher resolution processing than those required
to solve such classification datasets.

A reasonable line of work could simply employ foveated vision in such architectures to reduce
their computational footprint as much as possible. It would also be very interesting to explore
the application of foveated sensing for tasks that necessitate a uniform resolution that is compu-
tationally intractable for architectures such as CoCa.

We alluded to one possible scenario in Chapter 4 in our MNIST experiments. This dataset
required classifying digits that exhibited a wide range of scale variation, from very small to very
large. This necessitated that the network could resolve fine details to classify small digits and a
large field-of-view to classify larger digits accurately. When constraining the number of pixels in
the sensor to 784, we found a uniform approach failed while a foveated approach was successful.
A limitation of this study was the complexity of the visual perception task, as MNIST can be
readily classified to a high degree of accuracy with very simple neural networks.

Accordingly, we suggest that a prudent line of future work is to devise a dataset that exhibits the
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same degree of scale variation in objects that need to be classified, but in much more visually
complex scenes. Ideally, this dataset would exhibit the same visual complexity as ImageNet
and be similarly large in scale. This would no doubt be challenging to collect. A reasonable
stepping stone could be through leveraging virtual environments to generate data. For example,
Li et al. [167] use Unity3D1 to generate virtual data for traffic sign detection algorithms used
in automated driving systems. This would allow large quantities of visual data to be collected
quickly while allowing for control over the scale of objects and their distance from the camera
in a semi-realistic visual scene.

6.2.2 Beyond Image Classification

In this thesis, we have used image classification as a representative indicator of the performance
of foveated vision systems. In Chapter 5, we explored sequential vision models and speculated
on their application to vision problems that were also temporal in nature. The two-stage archi-
tectures presented in Chapters 3 and 4 used a dedicated CNN for fixating, while the sequential
networks shared most of this behaviour with the classifier and used a lightweight attention mod-
ule, which had a negligible contribution to the overall amount of computation. While repeatedly
attending to a single image with a sequential model is still computationally expensive, on tem-
poral vision problems, it may be possible to distribute this behaviour across frames, processing
each once and amortizing the cost of fixating. We suggest a reasonable line of future work is to
ascertain whether it is possible to distribute fixations across frames, for which we will suggest a
few potential candidate tasks.

The simplest approach is to apply the sequential models to video classification tasks. Many pop-
ular benchmark datasets may be suitable for this task, such as Youtube-8m [168], UCF101 [169]
and Kinetics [170]. This could also be extended to more challenging tasks such as video cap-
tioning and video question answering. Furthermore, this may serve as a fruitful testing ground to
re-examine the different memory mechanisms tested in Chapter 5 in a more challenging visual
perception task.

An alternative approach is to test these models in environments with an agent that must com-
plete tasks based on visual input. Such an agent must process visual input and make actions,
of which attending could be a subset. Such a scenario is very representative of Active Vision
in general and potentially much more similar to the environments in which biological systems
operate. These environments could be virtual, for example, VizDoom [171] or Deepmind Lab
[172], which would provide a convenient testing ground to explore such systems in these early
stages. Nonetheless, the same principles could be extended to real-world scenarios. For exam-
ple, researchers at Deepmind use the ALOHA platform[173], which aims to perform robotic
manipulation in various real-world contexts, such as shoelace tying. They used a a CNN and

1https://unity.com
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diffusion to predict robotic actions from camera input. It seems reasonable that some tasks, such
as threading a needle, could benefit from a high-resolution fovea.

6.2.3 Architectural Design and Training Schemes

Feature Extraction From Foveated Images: We considered both convolutional and non-
convolutional architectures for processing foveated images. For CNNs we found our graph
convolution to be conducive to a more accurate model, however it is contingent on finding a
good coordinate frame in which to represent the visual data. It is difficult to know what a good
coordinate frame is apriori. Non-convolutional architectures such as Transformers circumvent
this problem and learn it from the data. However, unlike CNNs, which typically use small
local filters when extracting spatial features, these architectures use a global context, which is
computationally expensive and goes against one of the motivating principles of foveated vision.

A reasonable approach to addressing the limitations of each approach is to use a locally con-
nected network. Input and output neurons can be connected via their spatial proximity in Carte-
sian coordinates, as we performed with our graph convolution layer. Crucially, however, weights
are not shared between these connections, unlike convolution. Local connectivity facilitates
greater computational efficiency relative to the global context of architectures such as ResMLP.
In removing weight sharing, we remove the equivariance inductive prior present in convolution
layers and, consequently, the onus of finding a good coordinate frame for representing the visual
data.

Inhibition of Return In this work, we adopted a very simple attention mechanism which con-
sists of computing the soft argmax of a feature map and does not incorporate knowledge of
where the system has already attended. A well-known phenomenon concerning this behaviour
is Inhibition of Return [174]. This decreases the likelihood of attending to a portion of a scene
that has recently been attended to and seems intuitive behaviour for such systems in mitigating
redundant computation, particularly when operating on static scenes. Several approaches have
been proposed, which could be applied to the sequential systems presented in this thesis and
evaluated in the same experimental setup.

We would like to highlight that this behaviour may require careful consideration for its imple-
mentation depending on the context in which the system is operating. For example, on temporal
data, inhibition of return must account for the fact that the scene can evolve over time. Further-
more, it must be able to account for the fact that the viewpoint (beyond the fixation) can change,
for example, in the case of an agent operating in a 3D world.

Owing to this apparent complexity, we suggest that the easiest approach to accounting for this
behaviour might simply be to leverage sufficiently expressive neural network layers and data
and learn this behaviour. A suitable study to verify that this approach is viable is to contrast
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Figure 6.1: A visual search task where the system must find the orange triangle among blue
triangles and orange circles.

against such a system with the hand-designed approaches proposed in works such as [40, 162].
Image classification can serve as a testing ground before moving to complex scenarios.

Conditional Fixations: Another interesting extension to fixations mechanisms is to allow it to
be conditioned on inputs beyond visual stimuli. Visual question answering would be a useful
framework to begin exploring these ideas. An NLP model, such as a transformer, can encode a
question. The attention module can condition its behaviour on the output of this model. Cross-
modal attention between the hidden states of the attention module and the NLP model could be
employed here.

We should expect fixations to be different based on the question asked. For example, if we ask
what object is in the bottom left of the image, the fixation mechanism should behave differently
than if we ask what object is in the bottom right. It seems intuitive that a general vision sys-
tem should be able to condition its behaviours on its current goals rather than using the same
behaviour irrespective of them.

Training Active Vision Models: A significant challenge for active vision models is training
the fixation mechanism, as it is typically hard and not amenable to differentiation. In this work
we used differentiable image sampling owing to its convenience. An important detail is that the
gradients are highly local as they are the accumulation of subgradients from many bilinear sam-
pling kernels. As such, they lead to poor gradient propagation and may impede learning. Jiang
et al. [175] et al. propose linearized multi-sampling to alleviate this problem, but ultimately, it
remains unclear how suitable this approach will be across a wider range of tasks.
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There are several alternatives to differentiable image sampling that could be used. Reinforce-
ment learning has been frequently used in prior works [27, 28, 163] but comes with many as-
sociated challenges, such as training stability and balancing exploration vs exploitation. Other
approaches have used heuristics such as Shannon-entropy or argmax of attention maps [40, 159].
However, these do not directly leverage gradient descent to train the fixation mechanism. Both
an interesting and important line of future work is to ascertain the limitations of each of these
approaches. A reasonable first step in this direction could be to evaluate different methods on
their ability to perform visual search tasks, such as finding an object in the presence of other
districts (Figure 6.1). This could initially be performed on simple synthetic datasets that can
be generated algorithmically and could incorporate conditional attention processes discussed
earlier.

6.2.4 Biologically Inspired Models

We did not seek to emulate any particular facets of biological vision systems beyond foveated
sampling in this work. Future work could attempt to build a more biologically plausible foveated
vision system by incorporating structures known to exist in the visual cortex. It may be the
case that the structures and processes found in the visual cortex are specialized specifically for
foveated sensing, and might explain why a reductionist approach (e.g. simply applying CNNs to
foveated images) does not perform very well. In the following paragraph, we will suggest some
initial steps.

Visual cortex layers are known to process a region of the visual field at multiple scales and
multiple orientations. Gaussian derivatives have also been used as models of cortical neurons
[176, 177]. It is simple to extend our graph convolution layer to a multi-scale and orientation
basis. In particular, the steerability of Gaussian derivatives could be used to compute responses
at different orientations efficiently. There is no known mechanism for weight sharing in the
brain. We previously discussed using locally connected networks for processing foveated im-
ages, which do not use weight sharing. We suggest that a biologically plausible model should
use an independent set of weights for combining responses to basis filters rather than sharing
weights between them.

Hawkins [178] presents a theory that challenges the classical view of how information is pro-
cessed in the cortex, which could also serve as biological inspiration for foveated neural net-
works. Briefly, they suggest that cortical columns found in the neocortex all independently
build a model of the world. Each column receives input from a region of the field of view as
well as sensorimotor input. They suggest that these columns process sequences of visual and
sensorimotor inputs. Columns collectively vote on what is being perceived and how to act next.

This bears resemblance to our sequential vision transformer presented in section 5.7. We can
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interpret this model as a cortical column. Visual input is a small patch of the input image,
while the positional encoding could be considered a sensorimotor input, and this information
is processed as a sequence through self-attention or LMUs. An interesting line of work could
be to consider many of these models operating in parallel, with their receptive fields arranged
in a foveated fashion with voting on perception and actions being performed by applying a
transformer to the outputs of the columns, for example.

This is a simplification of Hawkins’ proposal, as it omits various additional concepts, such as
sparse representations and continuous learning. In the context of computer vision, such a model
can be viewed as a combination of our sequential vision transformer and the Olszewski et al.’s
model[160], which are well motivated in regard to reducing computational complexity of active
vision models. As such, this line of work is interesting in supporting alternative theories of how
the brain operates and due to its potential utility in computer vision.
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