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Abstract

High-Level Synthesis (HLS) simplifies the hardware design process by generating specialized

hardware directly from an algorithmic software description. Current HLS tools work well on

regular code, but are suboptimal on irregular code with data-dependent memory accesses

and control-flow. This is because they follow a Finite State Machine with Datapath (FSMD)

model of computation, which requires the compiler to schedule operations statically at com-

pile time, failing to adapt to runtime conditions. A Dynamic Dataflow (DDF) model of com-

putation in HLS augments each functional unit with additional scheduling logic that enables

dataflow scheduling at runtime, naturally adapting to the unpredictable conditions in irreg-

ular codes. However, the resulting hardware generated by DDF HLS uses more area and pro-

duces longer critical paths than necessary, because every operator in the circuit is scheduled

dynamically, even if only a few exhibit irregular behavior.

In this thesis, we propose a closer compiler-hardware co-design to make the HLS of irreg-

ular codes more efficient. We make four significant contributions. First, we show how the

FSMD computational model can be extended with DDF behavior without having to sched-

ule the entire circuit dynamically. This is achieved by letting the compiler discover sources

of irregularity that prevent efficient static scheduling and by decoupling the original code

into multiple FSMD instances along the discovered sources of irregularity. Second, we show

how a compiler can automatically generate a Decoupled Access/Execute (DAE) architecture

to enable efficient out-of-order dynamic memory scheduling in HLS, and we show how a

compiler can automatically parametrize hardware structures, such as a Load-Store Queue

(LSQ), to maximize throughput at minimal area usage. Third, we introduce compiler sup-

port for speculation in DAE architectures with two algorithms: one that speculates memory

requests in the access program slice, and another that poisons mis-speculations in the com-

pute slice, all without the need for mis-speculation recovery or synchronization. And finally,

we show that a close compiler-hardware co-design can enable new optimization opportun-

ities by presenting dynamic loop fusion. This novel technique is able to fuse the execution

of sibling loops dynamically at runtime by resolving inter-loop memory dependencies in a

hardware structure parametrized by the compiler. To enable dynamic loop fusion, we intro-

duce a new hardware-optimized program-order schedule inspired by polyhedral compilers

and we exploit the concept of monotonically non-decreasing address expressions—a larger

class of functions than affine expressions required in static loop fusion. Our FPGA-based

experiments show that our four contributions consistently result in at least an order of mag-

nitude area-delay improvement over state-of-the-art HLS tools on irregular codes.
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Chapter 1

Introduction

Digital computer systems consist of layers of abstractions from electrons to algorithms. More

often than not abstraction has a cost in terms of chip area or performance, and also more of-

ten than not that cost is justified. A stable Instruction Set Architecture (ISA), virtual memory,

or precise exceptions are examples of abstractions fundamental to today’s general-purpose

computer systems. However, in some scenarios it makes sense to break some of these ab-

stractions and use specialized hardware—bringing the algorithm closer to the electrons as

illustrated in Figure 1.1. Some computer systems have strict latency or throughput require-

ments that cannot be met with general-purpose CPUs or GPUs; other systems operate at

such a large scale that it makes economic sense to use specialized hardware. Fundamental

limits to transistor technology scaling and the resulting slowdown of CPU and GPU perform-

ance improvements mean that specialized hardware becomes increasingly more popular

and with it the importance of the hardware design process [108].

HLS significantly simplifies the hardware design process by providing an automated path

from an algorithmic description to Register Transfer Level (RTL). Program annotations can

guide the HLS tool to find a desired optimization point in a multi-dimensional space of area

usage, throughput, latency, and circuit frequency . After decades of research [158] on improv-

ing the HLS quality, and as computer architects build more specialized accelerators, HLS has

become a mature tool used in industry. For example, in 2021 Google described its use of HLS

when designing a video coding accelerator for its YouTube video service [193]. The HLS be-

nefits that they cite show why the technology will only become more important in the future

as more accelerators are build:

• High productivity and code maintainability: compared to using RTL 5–10× less code

to write, review, and maintain.

• Accelerated verification: using a higher abstraction layer means 7–8 orders of mag-

nitude faster verification.

• Focusing engineering effort: leaving the cycle-by-cycle data path control logic to the

HLS compiler, means more time spent on algorithm and (macro)architecture design.

• Design space exploration: HLS makes it easy to write parametrized designs, enabling

automated tools to sweep through a large design space of area/throughput trade-offs.

1
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Applications

Programming
Languages

Compilers

System Software

Software/Hardware
Interface

Architecture

Integrated Circuit
Technology

Productivity

Performance

This
Thesis

Algorithms

Figure 1.1: Getting the most performance out of our computer systems requires crossing
the compute stack boundaries. This thesis primarily investigates the co-operation between
compilers and computer architecture.

• Late feature flexibility: architectural adjustments late in the project to support late fea-

ture requests and address challenges exposed in the place and route state of the phys-

ical design are easier to do compared to RTL.

However, the success of HLS today is limited to only regular codes—codes where the com-

piler is able to statically analyze all operation latencies and dependencies. HLS of irregular

codes is an active area of research, which we contribute to in this thesis.

1.1 The Importance of Irregular Code

The terms “irregular code” and “regular code” have no precise definition in the literature, and

they can mean slightly different things in different contexts. In this thesis, a given code is said

to be irregular if it contains dynamic behavior that the compiler cannot predict statically,

such that some code optimization (e.g., loop pipelining) cannot be performed.

Many interesting programs do contain dynamic, runtime-dependent behavior, which is un-

predictable at compile time [138]. Popular domains with irregular codes are graph analytics

(e.g., PageRank), sparse linear algebra (e.g., sparse matrix-vector multiply), error correction

codes (e.g., Low-Density Parity-Check codes), or computational geometry (e.g., Delaunay

Mesh Refinement). Typically, the order of items being processed in irregular codes is not

known at compile time—it is dynamic. This is illustrated in Figure 1.2 showing one step in

a Delaunay Mesh Refinement code. We can see, that the nodes being processed inside the
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Mesh m = readInputMesh();

Worklist wl = {m.getBad()};

while (!wl.empty())

Triangle t = wl.pop();

Cavity c = getCavity(t);

c.retriangulate();

m.updateMesh(c);

wl.push(c.getBad());

(a) Delaunay Mesh Refinement.

Bad triangle (red) in the
cavity (dotted black).

New point after re-
triangulation.

(b) Change in the mesh after one refinement.

Figure 1.2: An example mesh refinement code illustrating the dynamic behavior of irregular
codes. The underlying mesh data structure changes dynamically, resulting in behavior that
is unpredictable at compile time.

loop body cannot be predicted at compile time, because they depend on the calculations

done inside the loop. In contrast, in a regular code, such as a dense matrix product, the order

of items being processed can be analyzed to a much greater extent, allowing the compiler to

parallelize the code. This crucial analysis information is missing in irregular codes, making

the compiler’s job much harder.

1.2 High-Level Synthesis of Irregular Code

Why do existing HLS tools produce sub-optimal circuits for irregular codes, and how can

we improve the state-of-the art with the work in this thesis? To motivate our technical con-

tributions, it helps to identify the specific limitations of existing approaches to the HLS of

irregular codes.

Most HLS tools today [120, 238, 38] follow the Finite State Machine with Datapath (FSMD)

model of computation [105, 110] that requires the compiler to schedule datapath operations

statically at compile time. Because of the reliance on static scheduling, FSMD HLS has to be

conservative during scheduling and thus fails to synthesize efficient hardware for irregular

codes with data-dependent behavior.

In the previous section, we gave a high-level intuition what irregular codes are and why they

are difficult for the compiler to deal with. To illustrate the specific reasons why FSMD HLS

struggles with such codes, it helps to have a small prototype of an irregular code, rather than

an entire application. Consider the loop from Listing 1.1 for example as a representative of

an irregular code.

Listing 1.1: Example of an irregular code (unpredictable memory addresses).

for (int i = 0; i < N; ++i)

if (A[idx[i]] > 0)

A[idx[i]] = f(A[idx[i]]);
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ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]]) st A[idx[i]]

ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]]) st A[idx[i]]

ld A[idx[i]]

Need to stall load to prevent RAW hazard.

Initiation Interval = 4

Every iteration
needs to stall.

Lo
op

 it
er

at
io

ns
cycles

...

(a) Static HLS: one schedule needs to be followed for all iterations.

ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]]) st A[idx[i]]

ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]]) st A[idx[i]]

ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]]) st A[idx[i]]

Initiation
Interval = 1

ld A[idx[i]]
A[idx[i]] >

0
f(A[idx[i]])

Only stall when necessary.

Lo
op

 it
er

at
io

ns

cycles

Initiation Interval = 4

...

(b) Our work: the schedule can adapts to runtime conditions on every loop iteration.

Figure 1.3: Pipelines achieved by current FSMD HLS tools (a) and our work (b) on the ex-
ample loop from listing 1.1. Only the second iteration has a true data dependency, but FSMD
HLS produces the same, sequential schedule for every iteration. Our work produces a sched-
ule that adapts to runtime conditions.

This code contains multiple challenges that make static scheduling difficult:

• Data-dependent memory accesses: the compiler cannot disambiguate individual ac-

cesses at compile time.

• Data-dependent control-flow: the compiler does not know how often the if-statement

body will execute, and thus what the latency of the loop body will be.

• Variable-latency memory access: the compiler does not know what the memory access

latency will be if a memory system non-deterministic latency is used (e.g., DRAM, or

caches).

In FSMD HLS, the compiler assigns loop operations to states in an FSM. Figure 1.4a shows

how our running example might be implemented by FSMD HLS. At runtime, only the op-

erations corresponding to the current state in the Finite State Machine (FSM) controller are

enabled. Pipeline parallelism can be achieved by merging multiple states into one and intro-

ducing pipeline registers to hold on to data that can only be consumed in later cycles. With

perfect pipeline parallelism, we would start a new loop iteration on every clock cycle, en-

suring perfect utilization of our hardware resources and maximum throughput—we say that

the loop Initiation Interval (II) is 1, because one cycle passes between the start of subsequent

loop iterations. However, before introducing any pipeline parallelism, the compiler needs to

ensure that no inter-iteration dependencies would be violated.
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For example, in Figure 1.4a the compiler cannot merge states 4 and 5, because it cannot

prove to itself statically that the load in state 4 will not read from the same address as some

earlier store in state 6—there is an unpredictable RAW dependency. In result, FSMD HLS is

forced to increase the loop II, sometimes completely sequentializing the loop pipeline, as

illustrated in Figure 1.3a. The higher the loop II, the more cycles need to pass between the

start of subsequent loop iterations, lowering the ultimate throughput of the computation.

i=select(0,i+1)

i < N

ld idx[i]

ld A[idx[i]]

A[idx[i]] > 0f(A[idx[i]])

st A[idx[i]]

state 1

state 2

state 3

state 4

state 5

state 6

F
S
M

c
o
n
t
r
o
l
l
e
r

Legend Statically scheduled wire
with pipeline registers

Wire with
predicate

Latency-insensitive
handshaking channel

DDF specific
operator

(a) Static HLS approach using a single FSMD.

branch i < N

ld idx[i]

ld A[idx[i]]

branch

A[idx[i]] > 0

f(A[idx[i]])

st A[idx[i]]

fork i

merge ii + 1 i = 0

exit

loop

sink

L
o
a
d
-
S
t
o
r
e

Q
u
e
u
e

(b) DDF HLS approach with latency insensitivity
introduced around every operator.

i = select(0,i+1)

i < N

ld idx[i]

send ld request

for A[idx[i]]

F
S
M

c
o
n
t
r
o
l
l
e
r

send st request

for A[idx[i]]

i=select(0,i+1)

i < N

receive ld val

A[idx[i]])

A[idx[i]] >

0
f(A[idx[i]])

send st val

{A[idx[i]],valid}

F
S
M

c
o
n
t
r
o
l
l
e
r

L
o
a
d
-
S
t
o
r
e

Q
u
e
u
e

FSMD 1 FSMD 2

(c) Our approach: multiple FSMDs connected with latency-insensitive channels. Dynamic behavior
is introduced selectively. An LSQ enables dynamic, speculative, out-of-order memory accesses.

Figure 1.4: An overview of HLS implementation strategies for the loop from Listing 1.1. Static
HLS (a) produces a sequential pipeline because it cannot guarantee that FSM states can ex-
ecute in pipeline parallel fashion without violating dependencies. DDF HLS is able to ad-
apt to runtime conditions, but uses more area and cycle time than necessary to schedule
everything dynamically. Our work (c) extends the static HLS FSMD model to support dy-
namic behavior by decoupling the original code into multiple FSMDs, introducing dynamic
scheduling only where it is beneficial.
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Unpredictable memory addresses are not the only source of irregularity. Unpredictable con-

trol flow can cause similar problems. Consider the loop in Listing 1.2 for example.

Listing 1.2: Another example of an irregular code (control-dependent reduction).

for (int i = 0; i < N; ++i)

if (condition)

reduction += f(reduction);

Here, we have a clear inter-iteration dependency on the reduction variable—assuming that

the f() function takes more than one clock cycle, the compiler cannot pipeline the loop with

an II of 1. The static schedule needs to allocate enough cycles in the loop to calculate the

f(reduction) value before the next iterations starts, because it might need the result of this

calculation. Crucially, this schedule is rigid and has to be repeated for every loop iteration.

However, if the if -condition is rarely satisfied, then such a schedule would waste quite a

few cycles allocated to calculating f(A[idx[i]]), work which might not even be needed at

runtime.

The above problems are the same challenges that were burdening compiler writers for Very

Large Instruction Word (VLIW) machines a few decades ago [140, 86]. In VLIW machines, as

in FSMD HLS, the goal of discovering ILP lies entirely on the shoulders of the compiler, with

the difference that in VLIW the compiler decides which instructions can execute together by

packing them in a single instruction word, instead of merging FSM states. At a high level, the

problem of scheduling irregular code in VLIW and FSMD HLS is essentially the same. In both

cases, the compiler has limited information about the dependencies and control flow in the

code and has to assume a worst-case scenario, sequentializing most of the execution.

Ultimately, the problem of scheduling VLIW machines for general purpose code, which con-

tains many of the irregularities that we highlight here, was recognized to be intractable.

Today, VLIW machines are mainly used in domains that contain regular codes [147], such as

signal processing or machine learning. Most general-purpose processors are not VLIW ma-

chines; they are RISC machines that contain many hardware structures to enable dynamic,

superscalar, out-of-order execution. Similarly, an efficient HLS of irregular codes calls for

additional hardware structures to guide circuit execution at runtime, at which time the data

dependencies and control-flow become known.

1.2.1 Dynamic Dataflow High-Level Synthesis

Dynamic Dataflow (DDF) HLS forgoes static scheduling completely, leaving the job of schedul-

ing to latency-insensitive handshaking logic that determines the execution of operators at

runtime [126, 74]. Latency-insensitive channels allow for communication between a sender

and receiver without having to rely on their cycle behavior [87]. Each operator in a dataflow

circuit has a wrapper with handshaking logic that stalls the operator until all inputs have

arrived and the output port has space to accept new data. Figure 1.5 shows a simple hand-

shaking protocol.
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Figure 1.5: A latency-insensitive handshaking communication protocol with optional buf-
fering. The stall signal implements backpressure that can cause upstream components to
stall if some downstream component is not able to accept new data.

In recent years, DDF HLS has presented impressive throughput improvements on irregular

codes compared to FSMD-based HLS [126]. However, the quality of results of DDF HLS in

terms of area usage and critical path is still far away from manually written designs. This is

because current DDF HLS implementations use dynamic scheduling throughout the entire

circuit. In practice, irregular codes only have a few sources of irregularity and it is desirable

to enable selective dynamic scheduling to achieve lower critical paths and area usage.

FSMD HLS is able to achieve better area usage due to the fact that static scheduling enables

an efficient sharing of hardware resources—since the compiler knows when each operator

will execute, it can share functional units without using additional wires and logic to do so.

Many recent works try to move the DDF HLS quality of results closer to FSMD HLS by finding

parts of the circuits where handshaking logic can be pruned [239, 50, 47, 50] or by provid-

ing a facility to dynamically share resources [128]. However, the improvements offered by

these works are limited, with the resulting DDF HLS circuits still achieving significantly lower

quality of results than is possible. This is because many parts of a dataflow circuit cannot be

pruned without breaking the DDF computational model. For example, loops in DDF HLS are

implemented by routing iterator value tokens through a series of combinatorial logic oper-

ators (see Figure 1.4b). To sustain their throughput advantage, DDF circuits must complete

this routing in a single clock cycle, otherwise, a loop II of 1 is not possible. Because of this

critical path, even the simple looping structure from Listing 1.1 already has a critical path

overhead in the DDF HLS model.

We believe that a compiler combining static and dynamic scheduling should use the FSMD

compute model by default, and only introduce selective dynamic scheduling where needed.

There should be no performance overhead when synthesizing circuits for regular codes. The

situation where an HLS uses a different compiler depending on if the code has some dynamic

behavior is untenable, not least because most programmers are not familiar with optimizing

compiler theory and are unable to say if a compiler can successfully analyze a given code at

compile time.
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1.2.2 Compiler-Hardware Co-Design in High-Level Synthesis

In this thesis, we propose to enable selective dynamic behavior in the FSMD based compute

model. Figure 1.4c shows how selective dynamic scheduling is introduced for our running

example from Listing 1.1. Most of the operators in our circuit are still scheduled statically,

allowing for greater reuse of functional units. And most importantly, the critical path of the

circuit is not increased by our approach.

HLS compilers instantiate parameterizable IP blocks to implement the compiled code, e.g.,

the compiler might parameterize an LSQ based on the memory access pattern. As we will

argue throughout the chapters, to make HLS work well on irregular code, this compiler-

hardware interface can be exploited to a much greater extend than before. On the one hand,

new IP blocks have to be created that deal better with the unpredictability of irregular codes.

On the other hand, compiler analysis can be used to aggressively specialize the instantiated

IP blocks to the input codes, improving important metrics like circuit area and critical path.

1.3 Thesis Statement & Contributions

Compiler-hardware co-design enables a more efficient HLS of irregular codes. Instead of

choosing between two extremes—everything scheduled either statically or dynamically—

the compiler should automatically choose where to introduce dynamic scheduling in an

FSMD-based circuit based on compile-time information. The foundation of our approach is

automatic program slicing, which enables a decoupled execution of the program, and which,

together with a latency-insensitive communication protocol, is a way to introduce selective

dynamic behavior. Using the foundation of decoupled execution, we propose speculative,

dynamic out-of-order memory interfaces in FSMD HLS, which the compiler can automat-

ically specialize for each program to achieve improved throughput, critical path, and area

efficiency. We also show that decoupled execution and a close compiler-hardware co-design

enables new sources of parallelism by proposing dynamic loop fusion.

We make the following research contributions:

• In Chapter 3, we introduce selective dynamic scheduling into FSMD HLS. We show

that classical static scheduling algorithms can be extended to recursively decouple

an FSMD into multiple components, such that each component can be scheduled

without having to over-approximate terms in the modulo scheduling equations. We

show that that by connecting individual FSMD components using latency-insensitive

channels we can effectively introduce the same dynamic behavior as is enabled in the

DDF HLS model. This work was published in [213].

• In Chapter 4, we focus on the problem of dynamically scheduling memory accesses.

We show that by using decoupled execution, FSMD HLS can be extended with a Load

Store Queue (LSQ) to disambiguate memory accesses at runtime, and that the LSQ can

be significantly optimized for a given code using information from a compiler analysis.

This work was published in [212] and [217].
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• In Chapter 5, we introduce speculative memory requests into FSMD HLS. We show

that dynamic memory scheduling depends on the ability of the address generating in-

structions to be decoupled from of the rest of the program, and we show how the com-

piler can check if such decoupling is possible. Our speculation work restores address

generation decoupling in a class of codes that could not benefit from an LSQ without

our speculation. We also discuss how our compiler speculation support can be used in

the domain of CPU and GPU prefetchers, and Coarse Grained Reconfigurable Arrays

(CGRAs). This work was published in [215].

• In Chapter 6, we introduce the novel concept of dynamic loop fusion, a compiler-

hardware co-design that enables the fusion of loops at runtime, even if they contain

unpredictable memory dependencies. Such fusion introduces a new source of paral-

lelism not exploited before, and is enabled by a new program-order schedule that can

be parallelized and constructed efficiently in hardware; and by exploiting the fact that

most irregular memory accesses form monotonically non-decreasing functions. This

work was published in [216].

Before describing our technical contributions, in Chapter 2 we give some background about

and survey related work in the area of compilers, parallel programming, hardware accelera-

tion, and HLS.



Chapter 2

Background & Related Work

This chapter provides general background on optimizing compilers, hardware design, FP-

GAs, HLS, and FPGA programming models. The technical chapters that follow later include

background and related work that is closer to our technical contributions. The intention be-

hind taking a broader perspective in this chapter is to give the reader more context behind

the motivation of our thesis.

Readers familiar with the basics of compiler design or computer architecture can skip those

sections; we start with the basics because not every person familiar with compilers is familiar

with computer architecture, and vice versa. However, we only describe concepts that are

crucial to our later technical contributions.

2.1 Compiler Preliminaries

We start with introducing essential compiler terminology, which we use extensively in our

technical chapters.

2.1.1 Static Single Assignment Form

All compiler analyses and transformations proposed in this thesis operate on code in Static

Single Assignment (SSA) form [194]. We use the LLVM compiler framework [142] as an imple-

mentation vehicle. We assume that the program consists of a single, fully inlined function—

since in this thesis we are generating hardware, this is a typical and valid assumption.

SSA code implicitly encodes data dependencies through so called def-use chains. For in-

stance, consider the following translation from C on the left to SSA form on the right:

int x = input() + 1;

int y = sin(x) + cos(x);

%0 = call input

%1 = %0 + 1

%2 = call sin, %1

%3 = call cos, %1

%4 = add %2, %3

10
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By convention, SSA register names start with a %1. A given SSA register can only be defined

(or assigned) once. This single assignment policy makes many common compiler optimiza-

tions and analyses trivial, which is important for the scalability of production compilers. For

example, in our example above it is trivial to obtain all the data dependencies of the %4 =

add instruction by walking up the def-use chain of the operands (e.g., starting at operand %2

we obtain the dependencies %1 and %0). We use such def-use chain walks extensively in this

thesis.

2.1.2 Control Flow in Static Single Assignment Form

Branch instructions cause code in SSA from to be divided into basic blocks. A basic block

is a sequence of instructions terminated by a branch instruction, i.e., a branch instruction

can only appear at the end of a basic block. An unconditional branch specifies the successor

basic block to jump to; a conditional branch can specify multiple successor blocks out of

which one will be selected at runtime depending on the branch condition value. A basic

block with just one instruction is possible, with the instruction necessarily being a branch.

By specifying that a basic block is a graph node and that a block branch instruction encodes

a graph edge from the contained basic block to a successor block we obtain the Control

Flow Graph (CFG)—a graph representation of the program control flow. Figure 2.1 shows

an example CFG for a simple C code reduction loop. In LLVM IR, distinct control flow con-

structs like loops, if -conditions, breaks, and continues loose meaning, all taking the form of

branches. An additional control flow analysis is typically used to rediscover loop constructs

[194].

Values which depend on control flow are represented using ϕ-nodes. For example, our Fig-

ure 2.1 example uses “next_sum = phi [if_sum, ifTrueBB] [sum, bodyBB]” to choose

between the sum value coming out of the if -condition body block and the not changed sum

value. A ϕ-node in block j takes a list of N (val uei ,blocki ) pairs, where N > 1,0 ≤ i < N ,

and returns val uei iff blocki was the immediate predecessor of block j on the current CFG

path. By the “current CFG path” we mean that this selection occurs dynamically, at runtime.

The actual implementation of the control-flow selection is implementation dependent—for

a CPU, the compiler would typically emit register conditional move instructions; in the con-

text of hardware synthesis, a multiplexer unit is typically used, which selects between altern-

ative values depending on a predicate value.

ϕ-nodes implementing loop recurrences cause cycles in the def-use chain, e.g., the i, next_i

def-use chain forms a cycle in Figure 2.1. All values which are needed to calculate a given re-

currence belong to the same Strongly Connected Component (SCC) in the def-use graph.

Similarly, loop backedges cause cycles in the CFG, e.g., the latchBB to headerBB edge. Many

graph operations, like topological ordering, are not possible on graphs with cycles, even

1. For readability, we deviate from this convention in the rest of this thesis. We will also use an infix notation
for binary operators, instead of the standard Polish notation, and we will avoid instructions mnemonics; e.g.,
we will write “add %1, %2” as “some_name_1 + some_name_2”
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int sum = 0;

for (int i = 0; i < N; ++i)

if (i % 2 == 0)

sum += 1;

entryBB:

br header

headerBB:

i = phi [0, entryBB]

[next_i, latchBB]

sum = phi [0, entryBB]

[next_sum, latchBB]

loop_condition = i < N

if (condition) br bodyBB

else br exitBB

bodyBB:

mod_res = i % 2

branch_condition = mod_res == 0

if (condition) br ifTrueBB

else br latchBB

ifTrueBB:

if_sum = sum + 1

br latchBB

latchBB:

next_sum = phi [if_sum, ifTrueBB]

[sum, bodyBB]

next_i = i + 1

br headerBB

(a) C code and its SSA form.

i = phi [0, entryBB] 

[next_i, latchBB]

sum = phi [0, entryBB] 

          [next_sum, latchBB]

loop_condition = i < N

if (condition) br bodyBB 

else br exitBB

next_sum = phi [if_sum, ifTrueBB]

       [sum, bodyBB]

next_i = i + 1

br headerBB

mod_res = i % 2

branch_condition = mod_res == 0

if (condition) br ifTrueBB 

else br latchBB

if_sum = sum + 1

br latchBB

br header

entryBB

headerBB

bodyBB

ifTrueBB

latchBB

(b) CFG.

Figure 2.1: Example of a CFG obtained from the SSA form of the original C code.

though they might be desirable in optimization passes. A common technique to sidestep this

issue is to decouple the CFG or def-use chain into subcomponents. For example, by remov-

ing loop backedges from a CFG sub-region representing a loop we can obtain a topological

ordering of the basic blocks for that loop since the remaining blocks form a Directed Acyclic

Graph (DAG). Then separately, at the level whole loops, we can obtain a topological ordering

of the loop forest.
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Other SSA Control Flow Representations

Usingϕ-nodes is not the only approach for implementing control flow. Gated SSA (GSA) uses

three different nodes to represent control flow [174, 109]:

1. The r ← µ(i ni t , car i ed) node replaces ϕ instructions in loop headers and represents

loop carried dependencies whose i ni t value comes from the loop predecessor and

subsequent car r i ed values come from inside the loop.

2. The r ← η(p, v) instruction is used to gate the use of v until the p predicate holds. Its

intended use is to signal that values calculated in loops (e.g., a reduction value) are

ready to use outside the loop.

3. The r ← γ((p0, v0), (p1, v1), ...) selects a value vi if the predicate pi is true—it trans-

forms control flow into data flow in ordinary basic block structures generated from

if -conditions, similar to if -conversion [3].

As of today, the GSA form is not implemented in any commercial compiler, with maybe the

exception of the µ instruction (e.g., the LLVM IR has select instructions and passes to turn

some ϕ nodes into select’s). In practice, it is easy to check in which of the three GSA node

categories a given ϕ-node falls.

It is also possible to represent control flow without any SSA pseudo-instructions. For ex-

ample, the MLIR compiler framework [143] represents basic blocks as functions with argu-

ments. Control flow is implemented by branching to a successor block and providing a list

of arguments to carry forward, making the correspondence between SSA and continuation-

passing style more explicit [131, 25]. In addition, basic blocks can be generalized into typed

regions, like loops or if -statements, that optionally return values, thus providing the same

type of functionality as the original GSA proposal [174] without the need for additional ana-

lyses to rediscover these structures.

In addition to simplifying the SSA representation compared to LLVM, MLIR also offers power-

ful abstractions for user-defined intermediate representations that allow for more precise

problem domain modeling. This approach is especially promising for the hardware design

domain, where tasks like pipelining, timing optimizations, placement, or verification benefit

from a task-specific representation [91].

The HLS tools that we use in this thesis use LLVM, not MLIR, and we will use LLVM termino-

logy in the rest of the thesis. New compilers increasingly choose to use MLIR [81], and porting

efforts are underway to leverage MLIR in existing projects [222].
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header

body

latch

...

preheader

exit

...

Loop
blocks

Executed once
before loop

Executed once
after loop

Figure 2.2: Our canonical loop representation. The body and latch blocks are allowed to be
the same block.

2.1.3 Loop Terminology

We use a standard loop definition. In a CFG, a loop is a maximal SCC with at least one internal

edge, such that there exists one entry block, called the loop header block, that dominates all

other blocks in the SCC—all incoming edges outside of the SCC to the inside of the SCC point

to this header entry block [106]. A basic block A dominates another block B if every CFG path

from the function entry to the function exit that reaches block B goes through block A first—

block A is guaranteed to have executed on the current CFG path if block B executes.

Canonical Loop Form

To simplify our compiler analyses and transformations, we use a canonical loop represent-

ation. Our loop header can only be reached by a loop preheader. Our loops have a single

backedge going from the loop latch block to the loop header block—loops with continue or

break, which otherwise would have multiple backedges, are transformed by inserting new

basic blocks that jump to a single loop latch. Also, we have a single loop exit block, which

is reached from the loop header. Figure 2.2 shows this canonical loop representation, which

closely follows the LLVM loop simplify canonical form [92].

Irreducible Control Flow

We restrict most our analysis’ and transformations to reducible control flow. Some of our

transformation algorithms (e.g., in Chapter 5) would not work on codes with irreducible con-

trol flow. In practice, this is not a big restriction since most code has reducible control flow,

and irreducible control flow can be transformed to have reducible control flow [18, 182]. For

completeness, we define irreducible control flow.
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for (i = 0; i < N; ++i) {

int j = 0;

if (i % 2 )

goto label_a;

else

goto label_b;

label_a:

j++;

goto label_b;

label_b:

if (j < N)

goto label_a;

}

(a) C code with irreducible con-
trol flow.

header

a b

latch

entry

 

(b) The corresponding irre-
ducible CFG.

 

header

a b

latch

entry

latch2

header2

(c) A transformed CFG with
reducible control flow.

Figure 2.3: Example of a code and CFG with irreducible control flow. Every irreducible CFG
can be transformed to a reducible CFG by inserting new basic blocks [18].

A maximal SCC with multiple entry blocks is not a loop. For example, the CFG in Figure 2.3

has the SCC consisting of blocks {a,b}. This is not a loop since both blocks a and b are entry

blocks. On the other hand, the SCC {header, a,b, l atch} is a loop, since only the header is

an entry block. A CFG is said to be irreducible if it contains a cycle (an SCC with at least one

internal edge) that is not a loop, like the a,b cycle in Figure 2.3. Irreducible control flow in

C-like languages can only arise when a goto with a backward label is used.

A common misconception is that accelerators like GPUs or FPGAs fundamentally cannot

deal with irreducible control flow. This is not true. Clearly the algorithms that implement

predicated control flow in GPUs [148, 78] could be extended to deal with non-loop cycles.

Similarly, an FSM generation algorithm that implements control flow in FPGA accelerators

could deal with arbitrary goto [137]. It is more precise to say that popular accelerator pro-

gramming models do not accept goto keywords (and thus irreducible CFGs) out of prag-

matic reasons—the virtual non-existence of goto in computationally intensive loop-based

codes makes the additional code needed to handle them in the compiler not worth it. In

practice, codes for high-performance computers do not use goto. Furthermore, any irredu-

cible CFG can be transformed into a reducible CFG by inserting new basic blocks to turn

non-loop cycles into loops [18, 182].
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for (int i = 0; i < N; ++i) {

    int a = A[i];

    A[f(i)] = some_work(a);

    A[i + 2] = other_work(a);

}

WAW

WAR

RAW
Intra-iteration dependency

Legend

Inter-iteration dependency

Figure 2.4: An example of Read After Write (RAW), Write After Read (WAR), and Write After
Write (WAW) dependencies. The arrows go from a dependency source to a dependency des-
tination (also called sink). We distinguish between intra-iteration and inter-iteration de-
pendencies. Inter-iteration dependencies traverse a loop backedge on the path from de-
pendency source to dependency destination. (Not all dependencies are highlighted.)

2.1.4 Dependency Graphs

The SSA def-use chain implicitly encodes what we call scalar (or register) dependencies. In

practice, this representation is not enough in optimizing compilers, because it does not in-

clude memory dependencies. The execution model of C-like languages guarantees a certain

program order of memory loads and stores. To enable parallelism, the compiler can relax this

ordering if it can prove that changing the order of memory operations does not change the

meaning of the program. To prove the correctness of such reordering, the compiler needs to

reason about memory dependencies.

Figure 2.4 shows an example of the type of memory dependencies considered by the com-

piler. SSA form, by definition, only contains scalar (Read After Write) RAW dependencies—

Write AFter Write (WAW) and Write After Read (WAR) scalar dependencies are not possible

in SSA. However, when we are dealing with dependencies through memory, WAR and WAW

dependencies are possible and have to be considered by the compiler.

Dependency Distance

With memory dependencies contained in loops it is useful to talk about the dependency

distance—how many iterations pass between the dependency source definition and the des-

tination consumption. Scalar dependencies in SSA form can only have a dependency dis-

tance of 0 (used in the same loop iteration) or 1 (used in the next iteration). Memory depend-

encies, where the memory location is a function of the loop iterators and constant program

parameters,2 can be analyzed to determine the dependency distance [79, 16, 80, 184]. For

example, the RAW dependency highlighted in Figure 2.4 has a dependency distance of 2.

If the compiler cannot reason about any of address expressions in a given memory depend-

ency, then we say that the dependency distance is unknown. The compiler has to over-

approximate unknown dependency distances to 1. For example, if the compiler cannot ana-

lyze the f(i) address expression in Figure 2.4, then it has to assume that the f(i) address

might be used a store or load in the in the next iteration.

2. A constant parameter is a value that does not change during the loop execution; its value does not have to
be known at compile time.
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// Header block

for (i = 0; i < N; ++i) {

// A block

if (i % 2 == 0) {

// B block

work();

}

}

(a) C code.

 

header

A

B

latch

entry

exit

(b) CFG.

 

header

A

B

latch

entry

exit

(c) CDG.

Figure 2.5: Control dependency example. Block B is control dependent on the A block and
on the header block. Given a Control Flow Graph (CFG), we can generate a Control Depend-
ency Graph (CDG) to quickly query control dependency relations.

Data Dependency Graph

By combining the SSA def-use chain with a memory dependency analysis, we can construct

a Data Dependency Graph (DDG). In a DDG, nodes represent SSA values (including load

and store instructions) and typed edges represent different types of dependencies (scalar,

memory) together with dependency information (RAW, WAR, WAW, dependency distance).

Note that a Data Flow Graph (DFG) is not the same as a DDG. A DFG is the graph that arises

from the SSA def-use chain; a DFG does not include memory dependencies, while a DDG

does.

Loop Initiation Interval

A DDG can be used to calculate the loop II—a number dictating how many cycles need

to pass between the start of subsequent loop iterations. This is achieved by looking at the

cycles (the SCCs) in the loop DDG, and dividing the latency of the instructions in the cycle

by dependency distance of cycle result. This calculation will be described in more detail in

Chapter 3.

Control Dependency

Given a CFG, we can determine if a basic block Y is control dependent on another block

X . Control dependencies are intuitive to understand—the branch in block X determines if

block Y will execute—but the formal definition is a bit more elusive. We use the definition

based on the post-dominance relation proposed by Ferrante et al. [84].
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First, we define the post-dominance relation. Given a CFG, a basic block Y post-dominates

block X iff every CFG path from X to the CFG exit block goes through Y (if a CFG has a

single exit node, then the post-dominance relation is equivalent to the dominance relation

in the reversed CFG, where the direction of every CFG edge is reversed). For example, in

Figure 2.5 the exit node post-dominates all the other nodes; the latch node post-dominates

blocks A and B. Every basic block trivially post-dominates itself (strict dominance and post-

dominance provide irreflexive versions of the definitions).

We now give the definition of control dependency. It helps to have the example of blocks B

and A from Figure 2.5 in mind when reading the definition. Basic block Y is control depend-

ent on block X , X ̸= Y iff:

1. Block Y does not post-dominate block X .

2. There exists a CFG path P from X to Y such that for all Z ∈ P, Z ̸= X , Z ̸= Y Y post-

dominates Z .

In our Figure 2.5 example, B is control dependent on block A.

Control Dependency Graph

Altough control dependencies can be calculated “on the fly” given a CFG, in practice it is

common to pre-calculate all program control dependencies and store them in a graph data

structure, called the Control Dependency Graph (CDG), for quick querying. Nodes in a CDG

represent basic blocks and directed (A,B) edges encode that block A is an immediate control

dependency source of block B .3 Out of the set A of all block A control dependencies, a block

Bi mm is the immediate control dependency block of A iff Bi mm is control dependent on all

blocks in A\ Bi mm . By definition, a block can only have one immediate control dependency.

For example, in Figure 2.5 block A is the immediate control dependency source of block B .

We use the CDG especially in Chapter 5 to calculate source blocks of control dependencies.

Program Dependency Graph

A Program Dependency Graph (PDG) is a graph that combines a DDG and CDG [84]. It can

be implemented by adding a control dependency type edge to the set of existing DDG edge

types. Representing both data and control dependencies in a single graphs makes express-

ing many compiler analyses and transformations easier, including the ones in this thesis. In

practical implementations, including ours, a PDG is an abstraction layer on top of a DDG

and CDG, which are stored separately.

3. Some papers reverse the direction of edges such that the CDG forms a tree with the program entry block as
a root. The direction of edges does not matter as long as it is used consistently.
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2.2 Computer Architecture

In this section, we give a brief overview of the different approaches to architect a program-

mable computer, motivating the need for ASICs and FPGAs as devices that trade off program-

mability for increased performance and energy efficiency. We divide computer architectures

into temporal architectures—instructions are stored in memory, fetched, decoded, executed,

and the results are committed to memory—and spatial architectures—the program is im-

plemented by a set of Processing Elements (PEs) that communicate in a producer-consumer

fashion. Temporal architectures are globally controlled, e.g., by using the Program Counter

(PC). Spatial architectures have distributed control, where the execution of each PE is only

determined by its inputs.

On paper, the global control and the fetch/decode/execute cycle through memory of tem-

poral architectures seem like a clear Instruction Level Parallelism (ILP) overhead (often called

“the on Neumann bottleneck” [17]). In practice, and for good reasons, no practical computer

system today is purely temporal or spatial. The goal of computer architects is to find the

right balance between the different approaches such that the resulting system meets cer-

tain criteria. For example, superscalar CPUs, Very Large Instruction Word (VLIW) CPUs, and

GPUs contain multiple functional units to which instructions must to be mapped, either at

runtime or compile time. Spatial architectures, like Coarse Grained Reconfigurable Archi-

tectures (CGRAs) or FPGAs, need to temporally share functional units in order to implement

programs that would otherwise require more functional units than the machine provides,

and often have localized data and code stores to save communication bandwidth. Nonethe-

less, it is still useful to use the temporal and spatial taxonomy when characterizing modern

computer systems because the two approaches tackle the von Neumann bottleneck in dif-

ferent ways.

2.2.1 Temporal Architectures

CPUs and GPUs amortize the von Neumann overhead by, among other techniques, using

vector execution, following in the footsteps of vector machines like the Cray-1 used in su-

percomputers [82]. A vector instruction can be used to apply the same operation to multiple

scalar elements. In GPUs, vector execution is combined with coalesced memory accesses

over very wide memory busses to further alleviate the von Neumann bottleneck. Recently,

both CPUs [1] and GPUs [172] also provide matrix execution engines, which further alleviate

the fetch/decode/execute bottleneck by increasing the number of operations performed per

accessed memory byte.

From a programmer’s point of view, CPUs are globally controlled by a PC, enabling debug-

gability and precise exceptions [107]. These are essential features for general purpose com-

puting and operating systems. In many of the actual high-performance Out-of-Order (OoO)

CPU implementations, great effort is exerted to relax global control and enable more ILP.

Multiple instructions within a given instruction window are fetched, decoded, and executed

in advance in dataflow order—as soon as their dependencies are satisfied and a suitable
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functional unit is available, even before previous instructions in program order have ex-

ecuted. Memory dependencies are tracked dynamically in a Load-Store Queue (LSQ) struc-

ture. Speculatively executing instructions without waiting for control-flow decisions can fur-

ther increase the ILP, with sophisticated branch predictors deciding which control flow code

path to fetch. Executed instructions are moved to a hardware structure responsible to com-

mit the instructions in the original program order; mis-speculated instructions are detected,

causing the core to revert to a previous checkpoint. In GPUs, the ordering of instructions

is only guaranteed at a coarser-grained level, allowing GPU schedulers to keep the vector

datapath occupied with later instructions, if instructions earlier in program order stall. In

our thesis, we will adapt some of the techniques used to increase ILP in CPUs and GPUs to

the context of HLS.

The Memory Wall

One issue that vector processing, and the recently added matrix processing, do not solve in

temporal architectures is the contention to a single memory interface. Memory throughput

has been steadily increasing over the decades, but not nearly at the same speed as the com-

putational throughput [157]. Caches and prefetching are used to alleviate this bottleneck,

with many research efforts in this direction still ongoing [163, 9, 59, 42, 104, 162]. The scalab-

ility of the register file has also been classically addressed with techniques like architectural

registers, register renaming, hierarchical register files, or functional unit queues (allocation

stations) [195]. The problem is that the memory technology implementing register files has

a limited number of read/write ports, which, together with the dataflow tagging mechanism

used to broadcast functional unit results, become the bottleneck as the number of functional

units is increased in superscalar CPUs.

Multi-threaded GPUs face a similar issue in that a single core in a GPU might be executing

tens of threads in a temporal fashion, requiring the GPU to hold the contexts of all threads in

the register file. As a result, register files in GPUs are even larger, reaching hundreds of kilo-

bytes and consuming tens of Watts [95]. Many research efforts try to minimize the need for

such large register files, e.g., by sharing registers between threads whose lifetimes do not in-

tersect [122], or by compressing the register file contents [144]. On the other hand, the vector

(called warp by NVIDIA; wavefront by AMD; sub-group by the others) execution model al-

lows for easy multi-porting of the register file, making many of the CPU techniques to make

port sharing efficient redundant.
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Decoupled Access/Execute Architectures

The Decoupled Access/Execute (DAE) technique is a popular approach to the memory wall

problem. The idea behind DAE is to let the memory access instructions run ahead of the

main program, thus alleviating any memory latency issues [205]. The idea is general and is

used in many computational models: it is used in specialized FPGA accelerators generated

from HLS [42, 41, 51, 54, 44, 89, 212, 216]; in CGRAs [166, 188, 187, 83, 111, 180, 233, 171];

and in CPU/GPU prefetchers [60, 167, 104, 9, 6, 59, 190]. The common denominator of all

these works is that they rely on either the programmer or the compiler to decouple address-

generating instructions from the rest of the program into an Address Generation Unit (AGU).

The AGU sends load and store requests to the Data Unit (DU), while the DU sends load values

to and receives store values from the Compute Unit (CU). All communication is FIFO based

and ideally the AGU to DU communication is feed-forward (one-directional), allowing the

address streams from the AGU to run ahead w.r.t the CU.

We use the DAE technique throughout the thesis, developing compiler analysis and trans-

formation passes to automatically construct DAE architectures, and contributing a new DAE

speculation technique in Chapter 5. In chapters 3 and 4, we refer to the DU as an LSQ; in

chapters 5 and 6 we use the general DU term.

Static vs. Dynamic Scheduling in CPUs

We mentioned that a CPU can have multiple functional units that can all execute concur-

rently, increasing the ILP. Instructions can be mapped to the functional units either statically

by the compiler (VLIW CPU) [86], or dynamically at runtime by a hardware scheduler (OoO

CPU) [195]. A VLIW instruction encodes how each of the multiple functional units in the ma-

chine should execute. The contrast between these two approaches is the same as between

Finite State Machine with Datapath (FSMD) HLS and Dynamic Dataflow (DDF) HLS, an ob-

servation made by many researchers working in the field. Not surprisingly, VLIW cores are

successful in domains where dependencies can be determined at compile time (e.g., Digital

Signal Processing (DSP), many AI computations), while OoO cores dominate general pur-

pose computing, which contains more irregular code [147]. The notable effort to bring VLIW

to general purpose computing in the form of the Intel Itanium architecture has failed, be-

cause, as extensively discussed in this thesis, a compiler cannot efficiently schedule code

without having full information about its dependencies [234].

2.2.2 Spatial Architectures

The von Neumann bottleneck of temporal architectures was anticipated and described sev-

eral decades ago and research quickly began on computer architectures with more distrib-

uted control that would allow for more parallelism. The idea was to lay down computation

spatially and stream data directly between PEs, rather than stream instructions through a

shared fetch, decode, and execute pipeline.



Chapter 2. Background & Related Work 22

Dataflow computers researched in the 1970s and 1980s were arguably the first spatial ar-

chitectures [11, 66, 102]. PEs in spatial dataflow architectures consume inputs and produce

outputs for other PEs following a producer-consumer communication pattern that avoids

the overhead of shared memory and control. In such an execution model, the machine con-

figuration closely matches the DFG of the code that is being executed. Altough many efforts

were made to commercialize these ideas in the form of a dataflow architecture, e.g., [177, 35,

208, 71], their success in the market was limited due to the difficulty to efficiently compile

codes with complex control flow and data structures [32]. Also, since architectural state in a

pure dataflow machine is distributed among all participating PEs, providing precise excep-

tions and a friendly debugging experience was also challenging—a common saying was that

the machines provided too much parallelism—which meant that the machines were only

used in specialized domains like signal processing. However, many of the ideas developed for

dataflow architectures have eventually found their way into OoO CPU microarchitectures.

Coarse-Grained Reconfigurable Arrays

CGRA accelerators are a modern incarnation of spatial dataflow architectures [171, 179, 171,

113, 233, 166, 179, 65]. A typical CGRA consists of a grid of reconfigurable PEs interconnec-

ted via a network on chip. They closely follow the original dataflow execution model pro-

posed in the 1970s [66], but their role as an accelerator liberates them from the requirements

of general purpose computing, like precise exceptions. Additionally, decades of research of

mapping sequential code to a spatial grid of PEs has improved the quality of results of CGRA

compilers [156]. Today, several commercially successful CGRAs are available: from mW edge

processing [75] to HPC and DSP acceleration [165, 94, 55].

Such design point flexibility of CGRAs is due to the the many design choices that can be

made: one can customize the communication network and PE architecture, have shared PEs

or not, make reconfiguration latency trade-offs, etc. Based on the design choices, a CGRA can

be grouped into one of four categories [232]: systolic (statically scheduled with non-shared

PEs), shared-systolic (statically scheduled with shared PEs), tagged-dataflow (dynamically

scheduled with shared PEs), and ordered-dataflow (dynamically scheduled with non-shared

PEs). A shared PE is time-multiplexed among different stages of the executed program. The

scheduling and mapping problem in CGRAs is similar to scheduling and binding in HLS, with

many similarities in the algorithms that solve these problems. Accordingly, some of the ideas

developed in this thesis are directly applicable to CGRAs, which we highlight throughout the

chapters.
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Figure 2.6: An illustration of a simple FPGA lookup table capable of implementing any binary
logic function. Lookup tables found in commercial FPGAs typically have 4, 6, or 8 input bits,
and include additional registers whose value can be selected to drive the out wire instead of
the lookup table result, e.g., reference [114] describes the lookup table used in Altera FPGA
devices.
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Figure 2.7: Modern FPGAs consist of heterogeneous compute and storage structures. Dia-
gram adapted from [130].

Field-Programmable Gate Arrays

Traditionally, FPGAs consisted of a sea of configurable logic blocks connected via program-

mable switches [31]. The logic blocks are typically made up of a lookup table and a register,

and can be configured to implement any logical operation.4 Figure 2.6 shows an example

lookup table whose configuration is set to implement a logical AND function. Their config-

urability meant that FPGAs were used as fast simulators for other chips under development.

Their high-bandwidth and low latency IO, and sub-word bit manipulation capability has also

made them popular for networking and various sensing applications [159, 130].

In the last decade, as interest in FPGAs for data center and AI application has risen. FPGA

vendors added hardened ALU structures, often called DSP blocks, to their high-end FPGA

devices. With a DSP block, a multiplication (and similar) operation can be executed faster

and more efficiently compared to implementing the same operation using lookup tables.

Recent FPGAs also contain hardened matrix multiplication units. Today, an FPGA is a sea of

heterogeneous compute and memory structures, as illustrated in Figure 2.7.

4. Interestingly, the AVX512 ISA designers were allegedly inspired by this functionality when creating the
VPTERNLOGD ternary logic instruction [90].
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2.2.3 Digital Circuits

In this brief subsection, we describe common digital circuits that we use throughout the

thesis.

Shift Register

A shift register is a very efficient hardware storage structure, especially on FPGAs. An example

shift register is shown in Figure 2.8. The short wires between the registers enable dense pack-

ing and a short delay, increasing area efficiency and maximal frequency of the circuit. How-

ever, the number of registers needs to be kept small for the shift register to be able to be

packed densely on the FPGA chip (modern FPGAs can handle shift registers a few kilobits

in size). Multiple tab points and conditional shifting further decrease the possible shift re-

gister size, since more area needs to be allocated to implement these features. Nonetheless,

if a given function can be implemented in shift registers, this is usually the most efficient

approach on FPGAs. We use shift registers in Chapter 4 to make our LSQ more efficient.

reg 0

bit N

reg 1

bit N

reg 2

bit N

reg 3

bit N

Consumer 1

On every cycle a register:

1. Forwards its current data to the next
register in the chain.

2. Receives a new value from the previous
register in the chain.

A shift register can have multiple tap points.

reg 1

bit 0

reg 2

bit 0

reg 3

bit 0

.
.
.

.
.
.

.
.
.

.
.
.

reg 0

bit 0

Consumer 0

Figure 2.8: An example 4 element N-bit shift register with two tap points. More advanced
shift register architectures can contain more tap points, condition shifting, and multiplexers
before the tap points.

Latency-Insensitive Channel

In shift registers, the communication between subsequent registers is done using wires. A

wire that is driven (written to) on a cycle n delivers its value to the destination on the same

cycle n. In any clock cycle after n, the value is lost. Hence, communicating with wires re-

quires careful cycle level reasoning between the sender and receiver, a requirement that be-

comes increasingly more difficult to satisfy as the complexity of the design grows. Latency-

insensitive channels [87, 39] solve this issue by decoupling the communication protocol

from the cycle level behavior of the sender and receiver. As Figure 2.9 demonstrates, by using

additional wires and storage structures, the sending and receiving of data becomes governed

by the dataflow at runtime. We use latency-insensitive channels throughout the thesis.
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Example Protocol:

valid ∧ ¬stall

valid ∧ stall
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Figure 2.9: An example latency-insensitive channel implementation. The communication
between the sender and receiver does not depend on their cycle behavior, but on the readi-
ness of the receiver and the validity of data. More sophisticated protocols are used in practice
to decrease the critical path of the logic.

We use latency-insensitive channels throughout the thesis to implement communication

between separate modulo scheduling instances. We use the SYCL heterogeneous program-

ming model in this thesis, where the latency-insensitive channel construct is provided in the

form of SYCL pipes. Most HLS programming models provide similar constructs.

FPGA Block RAM

Most FPGAs contain on-chip embedded memories, typically refereed to as BRAMs. A single

BRAM cell typically has a capacity of 5–20 kilobytes and can serve two memory requests

per cycle (at most one of the requests can be a store). The load requests have to be typic-

ally pipelined, with the load address arriving 1–3 cycles before the load response is served,

otherwise the circuit critical path may be impacted. A high-end FPGA can contain several

thousands of BRAMs, resulting in tens of megabytes of on-chip storage capacity. The inter-

esting thing about BRAMs is that, since each out of the thousands of BRAM cells has separate

ports, they can provide tremendous memory throughput if the accelerated algorithm lends

itself to trivial memory partitioning.5 Such memory partitioning of on-chip BRAMs is one

of the most important steps in high-performance HLS designs. We make extensive use of

BRAMs in our LSQ described in Chapter 4.

2.3 Spatial Computing Programming Model

One of the reasons why early dataflow computers [11, 66, 102] did not find widespread adop-

tion was their programming difficulty. As noted in the previous section, and studied by others

in the literature [32], dataflow architectures contain so much implicit parallelism that it is dif-

ficult for the programmer to reason about machine state. Programming languages that gave

explicit control over the machine parallelism failed to gain adoption [123]. Most software

5. For example, assume that a design reads one 64-bit value from a BRAM cell per cycle. A 250MHz design that
uses 1000 such BRAM cells results in a memory bandwidth of 2 terabytes.
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programmers preferred to reason about their program sequentially and let the compiler or

machine discover parallelism for them. This automatic approach continues to this day, with

CGRA and FPGA compilers using sophisticated transformations to map a fundamentally se-

quential user program to the underlying parallel architecture.

On the other hand, hardware programmers have been dealing with parallelism, concurrency,

and explicit spatial architectures for decades, a fact reflected in the programming languages

used in hardware design. Traditional Hardware Description Languages (HDLs) like Verilog,

System Verilog, and VHDL, are structural languages that describe the state and state trans-

ition of every wire and register on every clock cycle. Parallelism is implicit with every opera-

tion executing on every clock cycle unless otherwise stated, and any concurrency issues have

to be managed manually.

Today, advances in making spatial programming easier to use are made from two communit-

ies. The HLS community tries to automatically discover parallelism from a sequential pro-

gram, while the HDL community tries to incorporate features from software languages to

make the already parallel HDLs more productive (these new HDL languages are often called

High-Level Hardware Description Languages (HHDLs)). We believe that both approaches

are needed, since HLS and HDLs serve two slightly different goals. Altough both ultimately

program a spatial architecture, HLS targets loop-heavy programs with a high compute in-

tensity, while HDLs are typically used to generate more complex control programs with very

little feed-forward dataflow.

Our thesis is that the compiler algorithms used in HLS can be extended to also support some

form of irregular control flow. Before describing the HLS background, we mention some not-

able HHDL efforts.

2.3.1 High-Level Hardware Description Languages

HHDLs add features from high-level software languages, like advanced type systems, poly-

morphism, or higher order functions, to make HDL programmers more productive. Most, if

not all, HDDLs compile to Verilog or VHDL to ensure compatibility with existing IP and EDA

tools. Importantly, they do not change the underlying computational model and they do not

apply automatic parallelization. The programmer has explicit control over the hardware re-

sources and has to apply techniques, like pipelining or operator sharing, manually.

HHDLs can be embedded in an existing programming language, or they can form a com-

pletely new language. For example, Chisel extends the Scala language with hardware specific

libraries to generate hardware [203]. Cλlash [15] and Lava [27] do the same, but use Haskell

and focus more on composing generators to produce hardware.
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The Guarded Atomic Actions Computational Model of Bluespec

A notable HHDL is Bluespec [169, 30], because, in additional to providing productivity fea-

tures from software languages, it offers more comprehensive semantics through the Guarded

Atomic Actions (GAA) computational model, which makes reasoning about concurrency

easier. In the GAA computational model, the programmer defines state elements, which in

the case of hardware are registers, wires, FIFOs, etc., and atomic actions, which describe state

transitions. The actions are guarded by side-effect free boolean expressions. The Bluespec

compiler automatically derives a scheduler, which at runtime enables the maximum num-

ber of actions, and implements operator sharing, all while guaranteeing a “one action at a

time” semantics. Additionally, the language provides a number of annotation options about

the execution priority of actions to guide the compiler to the desired schedule.

The GAA approach provides a powerful abstraction to reason about concurrency and shared

structures that, in practice, incurs no area or performance costs, since the logic generated by

the Bluespec compiler is almost always the same as the logic used by Verilog or VHDL pro-

grammers to guard against concurrency bugs and to share resources [7]. The GAA model is

rooted in sound computer science theory—other names for GAAs are Rewrite Rules or Term

Rewriting Systems [134]. The Bluespec implementers took direct inspiration from formal

specification languages that are based on GAAs, e.g., Dijkstra’s Guarded Commands [69] or

Lamport’s Temporal Logic of Actions [141]. Thus, it comes at no surprise that the GAA model

makes the formal verification of Bluespec hardware easier [64, 164].

2.3.2 High-Level Synthesis

HLS, as opposed to HDLs, allows programmers to use familiar sequential languages, such as

C, to generate a hardware design [155].6 The programmer does not need to reason about low-

level hardware structures like memory controllers, functional units, or bus protocols. The

compiler automatically generates the required HDL code, which implements the algorithmic

description written in C. Traditionally, this compilation process has been divided into three

steps: allocation, scheduling, and binding [58, 38].

Allocation determines which hardware resources are used to implement the function (e.g.,

the number of lookup tables, or ALUs). This decision is tightly coupled with the area, circuit

frequency, and power requirements since different types of resources have different delays,

area usages, and power characteristics. The scheduling step decides at which clock cycle a

given operation executes. Allocation influences scheduling in the sense that a larger area

budget gives more opportunities for pipelining by allowing intermediate state to be stored

in registers between clock cycles. The binding step is typically executed after the scheduling

step. It binds program operations to the available hardware resources and decides if multiple

operations should share a resource.

6. Research efforts in HLS of functional programs also exist, although these attempts produce less optimized
circuits at the moment [245].
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Out of the three steps, scheduling is the most complex and has the largest impact on per-

formance. We have briefly described the difference between static and dynamic scheduling

in the previous chapter, however, since the FSMD resource-constrained static scheduling

problem is NP-hard, there are multiple different algorithms that can be used to find a static

schedule [56]. In this thesis, we focus on the scheduling step when trying to make the HLS of

irregular codes more efficient.

Academic HLS Approaches

Most, if not all, commercially successful HLS tools use the C or C++ programming language,

inheriting their sequential semantics [120, 4, 38, 189, 36].7 Recent work on HLS in academia

investigated other language frontends and execution semantics HLS tools.

Kanagawa, developed at Microsoft, is a new HLS language with explicit threads and sim-

ilar semantics to CUDA, which the authors call Wavefront Threading [181]. In addition to

language constructs aimed at hardware design, like pipelined loops, Kanagawa also offers

language constructs for hardware thread synchronization, like atomic operations and wait

barriers.

Dahlia is another new HLS language attempt that focuses on generating hardware with pre-

dictable latency [168]. This is achieved by translating the problem of calculating circuit laten-

cies as an affine type inference problem, with the idea that circuits with unpredictable latency

will fail at the type check stage.

The language called Spatial focuses on providing abstractions based on parallel patterns—

for-each, reduce, map-reduce, stream, etc. [135].8 Such a language makes the Spatial com-

piler much easier to write, since parallelism is explicitly expressed by the programmer.

Another project in the same vein is AnyHLS [176], which uses the AnyDSL [145] framework to

create an HLS DSL in the functional language Impala. AnyHLS produces pragma-annotated

C code accepted by vendor tools. However, these pragmas are not directly exposed to the

programmer. Rather transformations like loop unrolling are first-class citizens implemen-

ted as libraries of partially evaluated functions that can be returned by other functions and

composed together. Users can build on these primitives to provide highly abstract, domain-

specific building blocks for FPGA accelerators.

Many academic works use a functional-style language as the HLS front-end. The Lift [136]

and Aetherling [73] projects have shown that it might also be beneficial to use a functional IR

inside the compiler. Representing different abstraction layers in the compiler as functions—

from an algorithmic description to low-level hardware implementation—together with form-

ally defined lowering rewrite rules results in an elegant compiler design that is much easier to

7. Some of the commercial HLS tools grew out of academic projects [4, 38].
8. The work on mapping parallel patterns to hardware done by the team behind the Spatial language led to
a later development of several academic chips based on the idea [188, 200], which still later evolved into the
chips design company SambaNova [187].
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understand and extend. Later work has shown that a functional IR can also elegantly model

complex memory hierarchies composed of off-chip asynchronous memories, and on-chip

multi-ported, multi-banked memories typically needed to achieve high performance on FP-

GAs [202].

Another thread of work on HLS is the idea of separating the algorithmic description from the

specific optimizations, taking inspiration from scheduling languages like Halide and TVM

[191, 43]. In such an approach, the domain programmer writes sequential code that ex-

presses the algorithmic intent, without worrying about performance. Then, in a separate

step, a schedule of optimizations is built that transforms the original code into a desired

state. Such a separation of concerns allows for separate languages to be used to express the

optimization schedule [206], and enables the algorithm design and the optimization stage to

be divided between two programmers with a clear separation of concerns [22]. As concrete

examples of applying this idea to HLS we can cite HeteroCL [139], which decouples hardware

customizations from the algorithm, and Allo, which also adds support for large design by al-

lowing the optimization schedule to transform interfaces between kernels in a hierarchical

design [40].

The SYCL C++ Programming Model

In this thesis, we stick with the C++ sequential execution model. We implement our contri-

butions as compiler passes that transform the LLVM IR in the Intel SYCL C++ compiler [120]

and as compiler-parametrized IP blocks, also programmed using SYCL C++. SYCL is an open

parallel programming model standard developed by Khronos [133]. Compared to OpenCL, it

provides a higher abstraction layer by leveraging C++ templates and by reducing the amount

of host-device “glue code” that was typically necessary in OpenCL.

SYCL allows to create hierarchical hardware designs composed of multiple kernels. Kernels

can communicate using SYCL pipes (a successor specification to OpenCL channels)—these

are the latency-insensitive channels we have described in Section 2.2.3. One of our contri-

butions, described further in Chapter 3, is the realization that architectures with decoupled

AGU, CU, and DU can be implemented in SYCL using separate kernels for the different units,

and by using SYCL pipes to implement latency-insensitive communication between them.

In Section 7.3, in the last chapter we briefly describe future work on a compilation strategy

and intermediate representation that has the potential to make such decoupling easier from

the compiler engineering perspective.
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2.4 Conclusion

In this chapter, we have provided essential background in the operation of optimizing com-

pilers, hardware design, and the high-level programming of FPGAs, including an overview of

different HLS approaches. We have tried to cover a wide range of topics here, which means

that our treatment of each topic is necessarily incomplete. The technical chapters that follow

next provide a more detailed background on the problems at hand, and describe the related

work more narrowly and thoroughly.

The overarching goal of this chapter was to motivate the use of spatial architectures, in our

case in the form of FPGAs, as a way to achieve high performance and energy efficiency. The

following chapters contribute to this goal by making HLS compilers for spatial architectures

more efficient on irregular codes, significantly improving the state of the art HLS approaches

described in the introduction chapter.



Chapter 3

Compiler Discovered Dynamic Scheduling

In this chapter, we introduce our methodology to selectively introduce dynamic scheduling

into static HLS. As described in the introduction chapter, this is desirable because irregular

codes typically only have a few sources of irregularity that benefit from dynamic scheduling,

and scheduling the entire circuit dynamically introduces unnecessary area and critical path

overheads. Additionally, if there is no dynamic behavior at all, and dynamic scheduling is not

necessary, our compilation strategy will use the Finite State Machine with Datapath (FSMD)

computational model exclusively, taking full advantage of static scheduling.

We propose a compiler algorithm to discover opportunities for dynamic scheduling in an

FSMD circuit. Once an FSMD region is marked for dynamic scheduling, we show how a

mechanized compiler transformation can recursively decouple the original FSMD into mul-

tiple FSMDs, such that each FSMD can be scheduled without having to over-approximate

dependency distances or operations latencies. We further show that connecting the decoupled

FSMDs using latency-insensitive channels to communicate data dependencies achieves the

same dynamic behavior as a Dynamic Dataflow (DDF) circuit, but with the advantage of a

lower area usage and higher circuit frequency. On a set of ten benchmarks, we show that our

approach achieves on average an up to 3.7× and 3× speedup against state-of-the-art FSMD

and DDF HLS tools, respectively.

3.1 Introduction

A major objective of HLS tools is loop pipelining. Loop pipelining is the process of starting

new iterations of a loop while previous iterations have not yet finished. The number of cycles

between the start of subsequent loop iterations is called the loop Initiation Interval (II). A

loop with a constant II, N iterations, and a latency of L will execute in L+ (N −1)× I I cycles,

which for N ≫ L can be approximated as N × I I . Thus, a low loop II is crucial to achieving

good performance in HLS, with an II of one being the ideal case where every functional unit

in the loop performs useful work on every clock cycle.

31



Chapter 3. Compiler Discovered Dynamic Scheduling 32

3.1.1 Scheduling in FSMD HLS

State-of-the-art FSMD HLS uses modulo scheduling to map operations to clock cycles at

compile time [196, 37, 173]. To calculate the minimum II of a loop that still guarantees that

data dependencies are honored, modulo scheduling goes over all recurrences (inter-iteration

dependencies) in the loop Data Dependency Graph (DDG) and calculates their del ay (the

number of cycles needed to traverse the whole recurrence path), and their dependency di st ance

(the number of iterations between the definition of a recurrence value and its use). The fi-

nal loop II cannot be lower than the recurrence constrained II, which is calculated as the

maximum over all recurrences in the DDG1:

mi nRecur r enceI I = maxi

⌈
del ayi

di st ancei

⌉
. (3.1)

There may be other factors that increase the final loop II, like area or critical path constraints,

but these issues are completely orthogonal to the problem under study here.

Crucially, static scheduling has to arrive at one II for a loop that needs to accommodate all

control-flow paths through the loop. For example, in the example from Figure 3.1a there is

a recurrence for x. Even if the x > 100 condition would be satisfied only half of the itera-

tions, modulo scheduling needs to allocate cycles for the operations in the if body and will

produce the inferior schedule in Figure 3.1c. In practice, FSMD HLS applies if -conversion

to control-dependent operations like the one above—the branch always executes at runtime

but the result might be discarded depending on control flow.

3.1.2 Scheduling in DDF HLS

DDF HLS uses dataflow scheduling to trigger the execution of operations based on the avail-

ability of data, similar to the principles of first dataflow computers [10]. This allows the II of a

loop to naturally adapt to runtime conditions. For the example code in Figure 3.1a, DDF HLS

would produce the ideal schedule from Figure 3.1d. However, it would do so at the expense

of dynamically scheduling the whole circuit, even if only one part of it exhibits dynamic be-

havior. Such dataflow circuits often use several times more resources and have a significant

critical path overhead compared to FSMD HLS [239].

3.1.3 Combining Static and Dynamic Scheduling

There is a need to systematically and intelligently combine static and dynamic HLS schedul-

ing, which is the problem that we study in this chapter. An initital attempt to achieve this was

made by Cheng et al. [47, 50]. They extended a DDF HLS tool with a methodology, which lets

programmers manually identify static islands in their otherwise dynamically scheduled cir-

cuit. Later, the authors provided formal, automatable guidelines on where static islands can

be beneficial in a DDF circuit. Static islands can be scheduled statically on the inside and

1. A DDG recurrence forms a Strongly Connected Component (SCC).
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for (i = 0; i < N; ++i) {

if (x > 100)

x -= f(x);

x += g(x);

}

(a) Motivating code.

x > 100

x -= f(x)

Control
dependency

Data
dependency

x += g(x)

i < N

++i

0 1

2
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(b) Control and data dependency graph.

x > 100 g(x) x += x

 II = 5 

 II = 5  x > 100

f(x) x -= x g(x) x += xx > 100 f(x)

x -= xf(x)

cycles

(c) A static schedule: a new iteration started every 5 cycles for all iterations.

x += x

 II = 3 

 II = 5  x > 100

x > 100

x -= x g(x) x += xx > 100 f(x)

g(x) x += x

 II = 3 

g(x)

cycles

(d) An ideal schedule: x = x - f(x) is not executed if not required.

Figure 3.1: A motivating example of code with an inter-iteration control-dependent data
dependency (a). Current FSMD HLS needs to create a worst case schedule (c). We propose
to enhance FSMD HLS with analysis and transformation passes which enable the dynamic
schedule in (d).

are wrapped in interfacing logic to communicate results with the dynamic part of the circuit.

The performance and resource usage of such a hybrid approach is promising, but the circuit

critical path is still bottlenecked by the dynamic part. This is due to the way looping is im-

plemented in current DDF HLS tools, which we alluded to in Chapter 1. Furthermore, some

of the restrictions on what can be marked as a static island are prohibitive, e.g., a memory

interface cannot be shared between static islands, nor between the dynamic and static parts

of the circuit [50].

The approach we describe in this chapter has no such restrictions. We propose to intro-

duce dynamic scheduling into FSMD HLS using only constructs available in FSMD HLS. Our

method is directly informed by the scheduling algorithm used in FSMD, and can be directly

integrated with existing HLS tools. We also show in our evaluation that our approach pro-

duces circuits that use strictly fewer resources and achieve better frequencies compared to

the work of Cheng et al. [47, 50], because we introduce dynamic behavior only when it has a

chance of improving throughput.
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3.2 What to Schedule Dynamically

We now describe how to find basic blocks, memory operations, or whole loops that can bene-

fit from dynamic scheduling. The question of how to actually schedule these code fragments

dynamically, while keeping the rest of the circuit on a static schedule, is described in the next

section.

3.2.1 Marking Basic Blocks for Dynamic Scheduling

Modulo scheduling [196, 37, 173] arrives at a minimum recurrence-constrained loop II by

going over all SCCs in the DDG using Equation 3.1. Since modulo scheduling has to arrive

at a single II, it has to necessarily over-approximate the recurrence-constrained II if there

are control-dependent paths through the DDG with a lower del ay , or if the dependency

di st ance is variable or unknown due to control-flow or unpredictable memory accesses.

Our key idea is to selectively decouple parts of the SCC, such that each decoupled SCC in-

stance can be scheduled without having to over-approximate unknown del ay or di st ance

terms.

Algorithm 3.1 describes our analysis for marking basic blocks for dynamic scheduling. We

enumerate all possible control-flow paths through each DDG SCC and calculate the II of that

path. For each SCC path with an I I > 1, we collect DDG nodes that are control-dependent on

anything else but the loop header (every instruction inside a loop body is trivially control-

dependent on the loop header). For every collected DDG node, we obtain all other DDG

nodes from the same basic block and calculate their contribution to the II of the currently

considered SCC path. Specifically, we check if without the collected nodes the path del ay

decreases or the dependence di st ance increases, which would result in a lower loop II. If

true, we mark that block for dynamic scheduling and collect all instructions in the block that

are part of the currently considered SCC path. The block could contain instructions that are

not part of the currently evaluated SCC in which case they will not be marked (they could

still be marked when evaluating a different SCC). One could set a threshold for the del ay

decrease or dependence di st ance increase (e.g. to avoid dynamic scheduling overhead if

the II improvement is small), however, such fine tuning will be implementation dependent.

The GetContr olDependenc ySr c(BB) call in Algorithm 3.1 returns the closest parent of BB

in the Control Dependency Graph (CDG), ignoring loop headers. We use a standard tech-

nique to build the CDG out of the Control Flow Graph (CFG) dominance relationships [84].

The C al cul ateI I (path) call returns the sum of the operation latencies associated with the

operations in the path.
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Algorithm 3.1 Marking Basic Blocks for Dynamic Scheduling

1: Input: DDG, CDG, CFG
2: Output: List of Basic Blocks BBs
3:

4: for SCC ∈ DDG do
5: for every control flow Path ∈ SCC do
6: if C al cul ateI I (Path) = 1 then
7: continue
8: for Node ∈ Path do
9: BB ← B asi cBlock(Node)

10: NodesBB ←GetDDGNodesFor Block(BB)
11: ▷ set difference to get path without DDG nodes originating from the BB block
12: Pr unedPath ← Path \ NodesBB
13: C1 ←GetContr olDependenc ySr c(BB) ̸= LoopHeader
14: C2 ←C al cul ateI I (Pr unedPath) <C al cul ateI I (Path)
15: if C1 and C2 then
16: mark BB for dynamic scheduling

Example

Consider the DDG in fig. 3.1b with two SCCs: (0 → 4) and (1 → 2 → 3). (0 → 4) has a trivial

II of 1, so it is not marked. The second SCC has an II of 5, so we check if it contains any

control-dependent nodes. The blocks containing nodes 1,3 are control-dependent on the

loop header block, so they are ignored. The block containing node 2, however, is control-

dependent on a non-loop-header block, so it is marked for dynamic scheduling.

3.2.2 Marking Memory Operations for Dynamic Scheduling

A pair of memory operations, where at least one of the operations is a store, form memory-

dependency edges in the DDG [84, 132]. Modulo scheduling treats these edges in the same

way as it treats scalar dependencies. The only difference is that the dependence di st ance

between memory operations can be unknown, for example, if the access pattern is data-

dependent or the compiler does not employ a strong enough alias analysis [49, 161]. If the

dependency distance is known, we employ the same strategy as for marking basic blocks,

namely, we check if there is a control flow path through the DDG with a higher dependency

di st ance, and if yes, we check if it is control dependent on anything but a loop header. If

the dependency distance between dependent memory operations is unknown, we immedi-

ately mark them for dynamic scheduling. In such cases, we say that the memory dependency

cannot be disambiguated at compile time.

For any marked pair of memory operations, we also mark all other memory operations that

use the same base pointer for dynamic scheduling. This is because a mix of dynamically

scheduled stores and statically scheduled loads or stores might break the original program

order of memory operations.
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3.2.3 Marking Entire Loops for Dynamic Scheduling

So far, we have collected instructions for dynamic scheduling for cases where static schedul-

ing has to over-approximate operation del ay and operation dependency di st ance terms

in Equation 3.1. In addition to dynamically scheduling such operations inside a single loop,

our methodology extends to whole loops. The first scenario is a nested loop that is control-

dependent on anything else than its parent loop header, and where the parent loop is not

perfectly pipelined because of a dependency in the nested loop. That is, the decoupling of

the inner loop should improve the average II of the outer loop.

The second opportunity for decoupling whole loops is a scenario with multiple sibling loops,

i.e., loops at the same level of nesting. If a loop L1 has a sibling loop L2, then we check if it

is legal to start the second loop before the first one has finished. We mark L2 for dynamic

scheduling if:

1. There are no data dependencies between L1 and L2 calculated by a recurrence, and

with a source in L1 and destination in L2. In other words, if the dependency destination

in L2 needs to wait for the whole L1 to finish, then there is no benefit to decoupling L2.

2. There are no memory dependencies between L1 and L2 such that the address expres-

sions in L1 and L2 cannot be disambiguated at compile time.

Compile time memory disambiguation across loops is often not possible. For example, in the

polyhedral model [23] it would require proving that the L1 and L2 polyhedra do not overlap

at all, which is not possible in non-affine loops. Connecting memory operations in L1 and L2

loops to a Load Store Queue (LSQ) to be disambiguated at runtime would be of little benefit

because the L2 loop would have to wait for all allocations in L1 to finish—an LSQ uses the

equivalent of a program counter to discover operation ordering at runtime, which results in

the problem that the L2 loop cannot know its program counter until the L1 has finished. We

will relax this requirement in Chapter 6 by introducing a new program order schedule op-

timized for hardware that, as opposed to the program counter, allows for parallel execution

of loops.

3.3 Achieving Selective Dynamic Scheduling

This section presents our main contribution: a method for introducing dynamically sched-

uled code regions in modulo-scheduled HLS via latency-insensitive channels.
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Figure 3.2: Our main idea in this chapter: control-flow paths with a higher recurrence-
constrained II are decoupled into separate FSMDs, with data dependencies communicated
via latency-insensitive channels. A recurrence through registers is decoupled into a predic-
ated PE. Figure 3.3 shows how recurrences through memory are handled.

3.3.1 Dynamically Scheduled Basic Blocks

Basic blocks marked for dynamic scheduling are transformed into predicated Processing Ele-

ments (PEs). Figure 3.2a shows a possible CFG for our motivating example code from Figure

3.1a. Figure 3.2b shows a high-level overview of how the marked block B would be decoupled

by our transformation. All instructions collected in the marked block are moved from the

original CFG to the predicated PE. We then collect the set of input and output data depend-

encies between the PE and the original CFG using a simple data flow algorithm: every SSA

value used in the PE but defined in the original CFG is an input dependency from the original

CFG to the PE, and vice versa for output dependency from the PE to the original CFG. All SSA

values collected as input dependencies are replaced with latency-insensitive channel writes

in the original CFG, and with reads in the PE. The dual is done for output dependencies.

Finally, we insert a predicate channel write to the beginning of the decoupled block in the

original CFG which will trigger our predicated PE whenever control transfers to that block

during execution.

The PE is guaranteed not to access any memory directly. If a memory access inside a marked

block was itself marked for dynamic scheduling, then it will be replaced by channel read or

write, which we describe in Section 3.3.2. If the access was not marked, we keep it in the ori-

ginal CFG and communicate its operands as dependencies between the PE and the original

CFG—a load used in the PE becomes an input dependency, a store operand defined in the

PE becomes an output dependency. This is necessary, because accessing a memory from two

concurrently executing PEs without any synchronization might introduce race conditions.
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Figure 3.3: A recurrence through memory is decoupled into an LSQ and an AGU.

Effect of the Transformation

After removing all inter-iteration dependencies that have an unpredictable or variable de-

pendency distance or operation delay, modulo scheduling will find that the Figure 3.1a rec-

curence del ay is now 3 and not 5. Whenever control transfers to the decoupled basic block,

the original loop will trigger the predicated PE and communicate the required input depend-

encies. It will then continue its execution until it encounters an operation that is dependent

on an output dependency from the decoupled block. If such a dependency is encountered,

then the original loop is stalled until the required dependency is communicated from the PE.

Thus, a variable II is achieved which naturally adapts to runtime conditions.

Communication Avoiding Optimizations

As presented so far, our transformation is local to a basic block and does not require updating

SSA values in other blocks. This can change after hoisting redundant channel communica-

tion out of loops. A channel operations in the main CFG can be hoisted out before or after

the loop if the value it is carrying is only used or defined in the predicated PE. For example,

the code in fig 3.1a would not have any channel operations hoisted out, because the x value

would be used in both the PE and the original CFG. If, however, the x += g(x) statement

would be removed, then the channel operations supplying and receiving x could be hois-

ted out because the original CFG would not use its value in the communication sequence:

C FG
x−→ PE

x−→C FG
x−→ PE . This can be checked using a standard dataflow analysis.

Dynamic scheduling of whole loops is achieved in the same fashion as for basic blocks, with

the difference that the dependencies are calculated for the whole loop.

3.3.2 Dynamically Scheduled Memory Operations

Memory operations marked for dynamic scheduling require runtime memory disambigu-

ation machinery, which we provide in the form of an LSQ. An LSQ can check for memory

conflicts at runtime by comparing load and store addresses out-of-order with the actual

memory accesses, and stall the datapath if a true data hazard is detected. One can easily plug

any LSQ design into FSMD HLS, however, this is not enough to achieve ideal throughput.
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For an LSQ to be most effective, it should be able to accept load and store requests ahead of

store values. In DDF HLS, this happens naturally since the production of memory addresses

is decoupled from the actual load and store operations. To achieve the same effect in FSMD

HLS, the address generation should also be decoupled, similar to the principle of Decoupled

Access/Execute (DAE) architectures [205]. Decoupled memory accesses have been studied

before in the context of FPGAs, but only for prefetching and hiding variable latency memory

accesses [42, 51]. We contribute the insight that this approach, together with an LSQ, can

enable dynamically scheduled out-of-order loads in static HLS [217].

In Chapter 4, we describe our approach to automatically generate a DAE architecture in

FSMD HLS, including an analysis to check if address decoupling is profitable in the first

place, and an approach to let the compiler customize key parameters of the LSQ to achieve

ideal throughput at minimal area cost and critical path. In Chapter 5, we introduce compiler

support for speculation in DAE architectures to enable address decoupling on a much larger

class of codes. In this section, we only describe the effect of using the DAE approach and our

LSQ, without going into implementation details. In the evaluation of this chapter, we use an

LSQ similar to previous work [125], without applying our optimizations from Chapter 4.

If the Chapter 4 analysis determines that decoupling of address generation is profitable, then

we proceed to decouple the memory-generating instructions into a separate PE, which we

call the Address Generation Unit (AGU). We copy the original loop CFG and delete from it all

instructions not needed to generate the addresses (these can be easily obtained by walking

the DDG). Channels for input and output dependencies between the new AGU and the ori-

ginal CFG are materialized similarly to Section 3.3.1. Regardless of whether the generation of

memory addresses is decoupled or not, we insert the required channel calls to supply load

and store requests to the LSQ and to supply to it and receive from it store and load values. Fig-

ure 3.3 shows the resulting communication pattern if the address generation is decoupled.

Load and store instructions in block C have been replaced with latency-insensitive channel

reads and writes from and to an LSQ, respectively. The addresses to the LSQ are supplied by a

separate FSMD component, which contains only address-generating instructions. The gen-

eration of load and store addresses in this decoupled component is control-flow equivalent

to the consumption and generation of load and store values in the original CFG.

3.3.3 Composability of Transformations

The presented transformations for introducing dynamically scheduled basic blocks, loops,

and memory operations are composable. A decoupled loop can have a number of its own

basic blocks decoupled, and the basic blocks can include dynamically scheduled memory

operations. The problem of LSQ request ordering across decoupled code regions is solved

by the design of our LSQ. Our LSQ is based on tagged memory operations—each load and

store request is tagged with an integer value which represents the state of the memory at

that point; stores increment the tag before making a request, loads use the tag directly. The

function of the tag inside the LSQ is described in Chapter 4, but suffice here to say that it in
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effect produces a data dependency chain between memory stores and other memory oper-

ations. This tag dependency chain is picked up through our input and output dependency

collection, and as a result is communicated between decoupled code regions according to

runtime control flow, naturally taking care of the correct order of LSQ requests.

3.4 Evaluation

kernel.cpp clang LLVM IR Analysis report.json AST Transformation

kernel.tmp.cpp clang LLVM IR Transformation HLS toolLLVM IR

Figure 3.4: Our tool flow. The AST transformation consists of creating kernel copies, insert-
ing LSQ kernels and creating latency-insensitive channels, which are later used by the trans-
formation operating on the LLVM IR.

We implemented our compiler analysis and transformations in the LLVM framework [142]

and integrated them with the Intel HLS compiler (version 2023.1.0). Figure 3.4 shows an over-

view of our tool flow. Our implementation and this evaluation are publicly available2.

In this section, we evaluate our approach of selectively introducing dynamic scheduling in

FSMD HLS against three other HLS scheduling approaches.

• SS: Pure statically scheduled FSMD HLS using the Intel HLS compiler [120].

• DDF: Pure DDF HLS using the academic Dynamatic compiler [126].

• DASS: A methodology to introduce selective static scheduling into DDF HLS [47] (we

have described the limitations of this approach in Section 3.1.3).

We try to answer the question if our selective dynamic scheduling approach achieves a better

area-delay product compared to the above approaches.

3.4.1 Implementation

We use Intel HLS [120] as a representative of FSMD HLS in this work. Intel HLS uses the

SYCL programming model [118] defined by the Khronos Group and intended as a successor

to OpenCL that offers a higher abstraction layer. In our implementation a SYCL kernel can

be through of as a single FSMD instance; a SYCL pipe is an implementation of a latency-

insensitive channel. Each SYCL kernel has its own static schedule, and kernels can commu-

nicate with each other via SYCL pipes. In the context of our implementation work, SYCL is

advantageous over OpenCL because SYCL pipes are implemented as types, not kernel ar-

guments, making them easier to use in compiler transformations. To the best of our know-

ledge, there is no prior work that shows that dynamic scheduling can be implemented using

off-the-shelf FSMD HLS tools as we do here.

2. https://github.com/robertszafa/elastic-sycl-hls

https://github.com/robertszafa/elastic-sycl-hls
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3.4.2 Evaluation Methodology

Dynamatic is based on Xilinx tools, while our approach is implemented on top of Intel HLS,

which makes a direct comparison in terms of absolute area usage difficult. Because of that,

we compare the normalized area usage of Dynamatic, DASS, and our approach against their

respective static HLS baseline. The register and LUT usage overhead are combined using

geometric mean into a single area overhead. For Dynamatic and DASS we used the post-

synthesis report from Vivado 2020.2 for the Xilinx xc7k160tfbg484; our approach used Quartus

19.2.0 post-synthesis reports for the Altera 10AX115S. Clock cycles were obtained using Mod-

elSim.

We applied our approach to ten benchmarks from the HLS literature [47, 126], which were

made publicly available by Cheng [45]. We describe these benchmarks in Table 3.1. Since

some of the codes have data-dependent behavior, we report worst- and best-case perform-

ance for different input data distributions where applicable. In codes with unpredictable

memory addresses, we use an LSQ adapted to our approach, while Dynamatic and DASS

use the Dynamatic LSQ [125]. Any difference in the experiments due to the different LSQ

designs is left out of the evaluation— we do not include the LSQ areas in the results, and the

throughput of the two LSQs is the same. This means that the area overhead of our approach,

DDF HLS, and DASS HLS is slightly larger than what we report in this Chapter. Chapter 4 fo-

cuses exclusively on dynamic memory scheduling in HLS and provides a more detailed area

cost analysis of our LSQ. All codes evaluated in this chapter use on-chip SRAM, although our

implementation also supports DRAM, which will also be evaluated in the Chapter 4.

We also include two codes that have no dynamic behavior in our evaluation. This is to high-

light that our approach has no overhead when scheduling code with no dynamic behavior.

This is because, fundamentally, our approach just extends existing FSMD HLS tools to sup-

port dynamic scheduling—if there is no dynamic behavior in the code, the single FSMD im-

plementing it will not be decoupled. In contrast, the DDF HLS and DASS baselines, against

which we compare, always have some dynamic behavior in their circuit, even on codes that

can be fully scheduled statically.

3.4.3 Results

Figure 3.5 shows the area overhead and speedup of the DDF approach, the DASS methodo-

logy, and our approach over their respective static scheduling baselines. Table 3.2 at the end

of this chapter features detailed results of all ten benchmarks, which we analyze in the next

paragraphs.
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Table 3.1: Benchmarks used in our evaluation. Benchmarks 1–4 have control-dependent
inter-iteration data dependencies, 5–8 have unpredictable memory hazards, and 9–10 have
no data-dependent behavior and can be optimally scheduled without our transformations.

Kernel Description Class

sparseMat Calculates sparse matrix power. Control-dependent inner loop.
tanh tanh approximation using CORDIC [72]. Control-dependent recurrence.
filterSum Array sum with a filter. Control-dependent recurrence.
vecNorm Vector normalization. Control-dependent recurrence.
histogram Counts number of occurrences per bin. Unpredictable memory access.
sort Simple bubble sort. Unpredictable memory access.
getTanh Applies tanh on an entire array. Unpredictable memory access.
BNN Small binarized neural network. Unpredictable memory access.
covariance Computes the covariance matrix. No dynamic behavior.
gesummv Scalar, vector and matrix multiplication. No dynamic behavior.

sparseMat tanh filterSum vecNorm histogram sort getTanh BNN covariance gesummv
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Figure 3.5: Speedup and area overhead of DDF HLS [126], DASS [47] and this work against
their respective statically scheduled (SS) baselines. The range bars in the speedup plot rep-
resent the range of speedup as the data distribution changes. A speedup below 1 indicates a
slowdown relative to static scheduling.

Area Usage

DDF HLS incurs area overhead for handshaking logic, and the missed opportunity for re-

source sharing: if two hardware components become decoupled via latency-insensitive chan-

nels, then the HLS tool cannot make as many latency assumptions as it could if the two com-

ponents were following the same static schedule. On average, our approach increases area

usage only by a factor of 1.3× over pure FSMD HLS, but for the DDF approach this overhead

rises to 2.7×. The DASS approach improves the area overhead a bit compared to DDF, but at

1.8× overhead it still consumes more area than our approach.
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In cases where modulo scheduling does not have to over-approximate dependency distances

or operation latencies, our approach does not change the static hardware, which results in

no resource usage increase, while DDF and DASS see a resource increase of 2.3× and 1.4×,

respectively, for those benchmarks. The area overhead of DDF HLS and DASS in the sort and

BNN benchmark is the highest. BNN consists of bit-level logic which we could get more ag-

gressively optimized in the more mature FSMD HLS tools compared to the academic Dyna-

matic tool. sort on the other hand has a large number of basic blocks compared to instruc-

tions in them, resulting in a large ratio of dataflow components to functional units in the

dataflow circuits, which use additional units to implement control-flow. We also note that

DDF HLS and DASS use on average 1.6× and 1.1× more DDF HLSPs than static scheduling,

while our approach does not increase DDF HLSP usage at all.

Critical Path

The biggest advantage of our approach is the higher frequency achievable by FSMD HLS

compared to DDF HLS. On codes 1-4, which do not require an LSQ, our approach achieves

on average 0.94× the frequency of FSMD HLS. In contrast, DDF HLS and DASS both see

a 4× frequency drop because they introduce a new critical path to implement their loop

constructs. On codes 5-8, the critical path is increased significantly by the LSQ for all three

approaches. The next chapter shows how this LSQ overhead can be overcome with a closer

compiler-hardware co-design. On codes without dynamic behavior, DDF and DASS see fre-

quency drops, while our approach does not.

Throughput

We achieve the same or better throughput as SS, DDF, and DASS (lower cycle counts in Table

3.2 indicate higher throughput). We perform better than DDF HLS and DASS on getTanh

and BNN because they involve nested, control-dependent loop nests, which current DDF

HLS tools struggle with, because they cannot start executing the next loop in program order

until the previous loop has finished. In contrast, FSMD HLS can overlap the execution of

multiple loops in a loop nest—in this case, the only stalls in the loops will be from waiting

for data dependencies from latency-insensitive channels that our approach has introduced.

DASS performs better than Dynamatic on getTanh when the data distribution favors static

scheduling, but it cannot achieve perfect pipelining when there are no data hazards, because

it cannot start the next iteration of the outer loop until the inner loop has returned from its

static island. On codes without any dynamic behavior DDF HLS and DASS incur non-trivial

overheads, while our approach does not change the FSMD hardware.
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Execution Time

Execution time is the product of the number of cycles and circuit frequency, and since we

benefit from the high frequency of using the FSMD HLS approach, while also achieving the

same (or higher) throughput as DDF, our approach performs better than DDF HLS and DASS.

Across the ten benchmarks our approach is on average up to 3.7× and 3× faster than DDF

HLS and DASS, respectively. The performance of our approach is also more stable and pre-

dictable across varying data distributions. This is visible in Figure 3.5, where the speedup

range bars for DDF HLS and DASS dip below 1 more often (which means a slowdown over

SS)—DDF HLS and DASS would actually be slower on code with data-dependent behavior, if

the underlying data distribution agrees with the decision made by over-approximating terms

during FSMD scheduling. Our approach is only slower than SS in the bubbleSort and getTanh

benchmarks, and only when the data distribution completely favors static scheduling. This

is because the frequency of our circuits for those codes is more than 3× lower than SS due to

the critical path overhead of the LSQ (a shortcoming which is addressed in the next chapter).

3.4.4 Limitations

One limitation of our work is that on codes that require an LSQ, the speedup of our imple-

mentation is less than ideal, because we suffer the same frequency degradation as DDF HLS

and DASS. Thus, a memory disambiguation method with no critical path overhead but with

the same throughput as an LSQ is desired for our approach. We present work towards this

goal in the next chapter.

Another limitation of our implementation is the fact that our II analysis could potentially

diverge from II analysis of the Intel HLS compiler with which we integrate. The II calculation

in Intel HLS is performed in the back-end of the compiler, which is closed source. We do not

have access to the model of operation latencies used in Intel HLS, and we are also oblivious

to optimizations like operator chaining [116]. However, this is not a fundamental limitation;

it is only a symptom of performing experiments with a tool that is not fully open-source.

Ideally, the analysis for finding opportunities for dynamic scheduling should use the same

loop II scheduling implementation and latency model as the compiler back-end.

Similarly, in a production compiler, the implementation of our decoupling transformation

should not rely on SYCL pipes and kernels, which are user-facing features. To this end, fu-

ture work could investigate open-source HLS tools. A promising development is CIRCT [91].

CIRCT is based on the MLIR compiler infrastructure [143] and uses different dialects (inter-

mediate representations) to represent hardware with different semantics. For example, there

exist separate dialects for statically and dynamically scheduled circuits. We will explore the

possibility of fully open source HLS compilers in Section 7.3 in the conclusion chapter.
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3.5 Related Work

Carloni et al. formalized the theory of latency-insensitive design [39]: assuming that mod-

ules can be stalled, their communication protocol separates module communication from

their cycle behavior. Later, Cortadella et al. proposed a simplified latency-insensitive pro-

tocol called SELF, which could be applied in synchronous circuits [57]. The SELF protocol,

or modifications thereof, has since been used as a basis for dynamically scheduled circuits

[129, 113, 219, 126, 224, 88]. Most commercial HLS tools provide a latency-insensitive chan-

nel construct, e.g., SYCL Pipes [133], or AMD Xilinx Streams [4].

Several HLS tools that automatically create dataflow circuits have been developed in aca-

demia [126, 219, 74, 229]. CASH [229] was one of the first C to hardware compilers that used

dynamic scheduling. It differs from recent dynamic HLS in that it used asynchronous hard-

ware. CASH used an explicit dataflow Intermediate Representation (IR) called Pegasus IR

[34], a form of predicated Single Static Assignment (SSA) [174], which implicitly transforms

control-flow into dataflow. Dynamatic by Josipovi et al. [126] is the most recent academic

DDF HLS tool, introducing latency-insensitivity for every def-use SSA value pair that spans

across two basic blocks. The resulting circuits perform well on irregular code, but, as we have

argued in this chapter, they use more dynamic scheduling than required. Instead, we select-

ively introduce the minimum amount of dynamic scheduling to achieve the same through-

put by using the DDG and CDG to connect selected dynamically scheduled producer and

consumer pairs directly. In contrast, Dynamatic materializes dataflow constructs using the

CFG [198] order, which means that a token needs to flow through all basic blocks between a

producer and consumer (although recent work started to address this issue [76]).

Xu et al. [239] proposed to use Linear Temporal Logic (LTL) to prove that certain handshak-

ing signals in a dataflow circuit will never be used or that they are equivalent to other sig-

nals at the time of use, allowing them to be removed without losing correctness. While this

brings the resource usage of dataflow circuits closer to static HLS, there is still a signific-

ant gap between the two, both in terms of resource usage and achievable critical path. Fur-

thermore, model checking of LTL formulas is notorious for its exponential complexity in the

number of transitions in the system, e.g., [239] reports 80 min check time for a code with two

matrix multiply loops. The authors use the abstraction technique to reduce the size of the

state system, but it remains to be seen how this approach performs on more complex codes

that result in a DDG with high connectivity (and thus more states that cannot be abstracted

away). We propose to tackle the problem of resource usage by selectively introducing dy-

namic scheduling into static HLS. We argue that the number of dynamic regions in codes is

much smaller than the number of static regions, making it more beneficial to selectively in-

troduce dynamic behavior into static HLS than vice versa, as is evidenced by our evaluation

and previous work [47]. We also argue that it is easier to find dynamic regions starting from

FSMD HLS than to recover static information in a fully latency-insensitive system, since the

algorithms that produce FSMD schedules (e.g., modulo scheduling) already provide enough

information for this goal.
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There is also a line of work that aims to improve the quality of results from static scheduling

by using source-to-source transformations [67, 153]. For example, Liu et al. [153] applied

polyhedral analysis to split the iteration space based on the minimum II that they can safely

use, generating a separate loop for each split. Derrien et al. [67] proposed to improve loop

pipelining on unpredictable codes by speculative execution realized via a source-to-source

transformation. Source-level approaches are usually tightly coupled to the specific HLS tool

that is being targeted. Our analysis and transformations are expressed at the Control and

Data Dependency Graph level and informed by the fundamental limitations of scheduling

FSMD circuits, making them independent of any particular HLS tool.

Our approach to dynamic scheduling resembles Decoupled Software Pipelining (DSWP) pro-

posed by Ottoni et al. [175]. In DSWP, the DDG and CDG of a loop are partitioned into SCCs,

which are decoupled into separate CPU threads communicating via FIFOs. Although aimed

at multicore CPUs, the decoupling approach works especially well on FPGAs where FIFO

communication is efficient, e.g., S. Cheng et al. used the DSWP principle to minimize stalls

resulting from cache misses on reconfigurable accelerators [51]. Although similar in nature,

our approach is fundamentally different because our goal is the selective introduction of

dynamic scheduling and we perform the decoupling inside an SCC, while DSWP decouples

entire SCCs. To illustrate the difference, consider the DDG and CDG in Figure 3.1b. DSWP

would decouple the whole recurrence SCC 1 → 2 → 3, while we would decouple only node 2.

3.6 Conclusion

In this chapter, we have presented an algorithm for identifying code regions that can be-

nefit from dynamic scheduling in FSMD HLS and contributed a novel method for realizing

dynamically scheduled basic blocks, loops, and out-of-order memory operations in FSMD

HLS. Our main idea is to decouple parts of control-flow paths that increase the loop II into

separate FSMD components connected via latency-insensitive channels. On ten irregular

code benchmarks, our approach achieves an average 3.7× speedup over state-of the-art DDF

HLS, while also using less area.

One key limitation of the work in this chapter is the fact that using an LSQ in our circuits

to schedule memory operations dynamically significantly increases the circuit critical path,

thus losing much of the performance edge over statically scheduled FSMD HLS. In the next

chapter, we address this problem with a closer compiler-hardware co-design.
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Table 3.2: Evaluation of our approach against pure FSMD HLS (SS), DDF HLS [126], and the DASS methodology [47]. Three sets of benchmarks:
benchmarks 1–4 have control-dependent inter-iteration data dependencies, 5–8 have unpredictable memory hazards, and 9–10 have no data-
dependent behavior and can be optimally scheduled without our transformations.

Area ×SS DSPs ×SS FMax (MHz) Cycles (thousands) Execution Time (µs)
[126] [47] Us [126] [47] Us SS [126] [47] Us SS [126] [47] Us SS [126] [47] Us

sparseMat 2.5 1.3 1 2 1 1 415 161 161 334 1.8–11 0.3–11 0.3–11 0.1–11 4.3–26.5 1.9–68.3 1.9–68.3 0.3–32.9
tanhDouble 1.1 1.2 1.5 1 1 1 371 161 161 372 38 1 1 1 102.4 6.2 6.2 2.7
filterSum 2.8 1.7 2 1 1 1 425 185 189 411 5 1–5 1–5 1–5 11.8 5.4–27 5.3–26.5 2.4–12.2
vecNorm 2.6 2.4 2 4 1.4 1 374 185 201 379 12 6.1 6.7 6.1 32.1 33 33.3 16.1
hmean 1.9 1.5 1.4 1.7 1.1 1 1 0.43 0.44 0.94 1 0.14–0.34 0.14–0.34 0.09–0.34 1 0.33–0.78 0.33–0.78 0.12–0.36
histogram 2.1 2.4 1.2 1 1 1 356 146 146 168 9 1 1 1 25.3 6.8 6.8 6
sort 7.1 7.5 1.6 1 1 1 447 139 136 168 20 10–20 10–20 10–20 44.7 71.9-143.9 73.5-147.1 59.5-119
getTanh 3.5 1.3 1.7 2 1 1 368 119 119 161 44-56 2.5–66 2.5–56 1–56 120–152 21–554.6 21–470.6 6.2–331.3
BNN 6.8 2.9 1.4 3 1 1 447 124 119 174 60 30 30 10 134.2 241.9 252.1 57.5
hmean 4.4 2.8 1.4 1.6 1 1 1 0.33 0.32 0.42 1 0.2–0.5 0.2–0.32 0.12–0.18 1 0.6–1.54 0.62–1.5 0.29–0.88
covariance 3.4 1.6 1 1.8 1.8 1 434 86 100 434 68 72.9 84 68 156.7 847.7 840 156.7
gesummv 1.6 1.3 1 2.2 1.7 1 410 113 163 410 65.8 262 68.8 65.8 160.5 2318.6 674.5 160.5
hmean 2.3 1.4 1 1.4 1.3 1 1 0.23 0.3 1 1 2.07 1.13 1 1 8.84 4.75 1

all hmean 2.7 1.8 1.3 1.6 1.1 1 1 0.3 0.35 0.74 1 0.39-0.71 0.32-0.5 0.22-0.39 1 1.21-2.2 0.99-1.77 0.33-0.68



Chapter 4

Dynamic Out-of-Order Memory Scheduling

In this chapter, we describe how dynamic out-of-order memory operations can be efficiently

implemented in Finite State Machine with Datapath (FSMD) HLS. As we saw in the previous

chapter, most sources of irregularity are memory operations with unpredictable memory

addresses. To make the execution of such irregular codes efficient, HLS tools must support

dynamically scheduled memory operations. The most common approach in this situation is

to use a Load-Store Queue (LSQ), which can disambiguate data hazards at circuit runtime.

We have already used an LSQ in the previous chapter, where we focused on the idea of com-

bining dynamic and static scheduling in general. In this chapter, we describe our LSQ design

in more detail and analyze the performance impact of our design choices.

In previous work, the increased throughput from using an LSQ typically came at the price of

lower clock frequency and higher resource usage compared to circuits without an LSQ. The

lower frequency often nullifies any throughput improvements over static scheduling, while

the resource usage becomes prohibitively expensive with large queue sizes. We show how

our compiler can automatically parameterize crucial LSQ parameters to significantly reduce

the overhead of using an LSQ in HLS.

We show that in order to take advantage of an LSQ in FSMD HLS, the LSQ address generation

needs to run ahead w.r.t. the rest of the circuit. We propose to achieve such run-ahead be-

havior by using a Decoupled Access/Execute (DAE) architecture, and we show how the com-

piler can automatically generate DAE architectures in HLS. We also introduce the concept

of speculative LSQ memory requests to preserve address decoupling in the face of Loss of

|Decoupling (LoD) events due to control dependencies, a capability not present in previous

LSQs for HLS. On a set of benchmarks with data hazards, our approach achieves an average

speedup of 11× against static HLS and 5× against dynamic HLS that uses a state of the art

LSQ from previous work. Our LSQ also uses several times fewer resources, scaling to queues

with hundreds of entries.

48
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// idx = 0, 1, 1, 2, 2, ...

for (int i = 0; i < N; ++i) {

  int x = data[idx[i]];

  data[idx[i]] = f(x);

} RAW data
hazard

(a) Motivating source code with a
RAW data hazard.

ld f(x) st

ld f(x) st
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op
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(b) A static schedule: a new iteration started every 3 cycles
for all iterations.

ld f(x) st

ld f(x) st

ld f(x) st
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(c) An ideal schedule: a new iteration started every 1.5 cycles
on average.

Figure 4.1: A motivating example of code with a data hazard. Current static HLS tools need to
create a worst case schedule at compile time (b). HLS with dynamically scheduled memory
operations can achieve the schedule in (c).

4.1 Introduction

As described in the previous chapter, one of the first steps in scheduling an FSMD circuit is

determining the minimum number of cycles between the start of subsequent loop iterations,

such that data dependencies across iterations are honored. For example, modulo scheduling

uses Equation 3.1 to find the maximum recurrence-constrained Initiation Interval (II) across

all recurrences for a given loop. Equation 3.1 uses the dependency di st ance term, which

is the number of iterations between the definition of a recurrence value and its use. FSMD

HLS compilers rely on an accurate memory dependency analysis to discover the depend-

ency di st ance of a Data Dependency Graph (DDG) recurrence through memory. Work on

memory dependency analysis, such as the polyhedral model, are directly applicable in this

case [161, 153, 49, 185, 246]. However, there is a large class of codes where the calculation of

the dependency distance is fundamentally impossible due to limited compile time informa-

tion. Take the code in Figure 4.1 as an example. The code contains data-dependent memory

reads and writes that form a recurrence in the DDG. For such codes, the dependency dis-

tance cannot be obtained and has to be conservatively set to one, i.e., it is assumed that

every iteration needs to wait for all previous iterations to finish, eliminating any possibility

for loop pipelining, resulting in the pipeline from Figure 4.1b.

The alternative to the FSMD scheduling approach is to schedule memory accesses dynam-

ically at runtime, when the unpredictable memory accesses become known. We have briefly

described our approach to introducing dynamic memory scheduling into FSMD HLS in Sec-

tion 3.3.2. Our approach, like most other approaches [125, 236], uses an LSQ. The context of

HLS and the nature of distributed on-chip memories on FPGAs allows to use separate LSQs

for separate base addresses. Such distributed smaller LSQs are typically more efficient than

one large monolithic LSQ.
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The LSQ allows out-of-order loads by checking store address histories—loads can execute

before all previous stores in program order have committed, as long as no data hazard is

violated. Such out-of-order dynamic load execution is essential for pipelining codes with

unpredictable memory accesses. For our example code from Figure 4.1a, HLS with an LSQ

can achieve the ideal schedule in Figure 4.1c. However, all previous LSQs intended for HLS,

including the one we used in the previous chapter, incur non-trivial resource and critical

path overheads, often nullifying any throughout advantage [126, 48].

In this chapter, to unleash the full potential of HLS circuits using dynamic memory schedul-

ing, we propose an LSQ with a faster critical path, lower area overhead, and better scalability

than previous work (Section 4.4). This is achieved by a closer compiler-hardware co-design,

allowing us to parametrize our LSQ exactly to the specific code for which we HLS is per-

formed (Section 4.6). We also give more detail about how dynamically scheduled memory

operations can be enabled in FSMD HLS in the first place, irrespective of what LSQ is used;

and we provide a brief motivation and intuition for speculative LSQ memory requests (Sec-

tion 4.5).

4.2 Background & Related Work

There are two main approaches to enable out-of-order loads: address-based approaches

compare addresses of loads and stores; value-based approaches speculatively execute loads

and replay the datapath on misspeculation [236].

4.2.1 Value-Based Memory Disambiguation

Thielmann et al. investigated the use of load speculation in reconfigurable hardware [220]. In

their framework, if a speculated load value turned out to be incorrect, then only the compu-

tation depending on the load had to be repeated, not the whole pipeline. Nonetheless, codes

with loop-carried dependencies, which are the focus of our work, had a high misprediction

penalty that was a problem. Dai et al. [62] also used value speculation to enable pipelining

of loops with irregular memory accesses. They proposed a source-to-source transformation

that replaces hazardous accesses with virtualized accesses to an independent array. These

independent array accesses are then handled by a custom Hazard Resolution Unit which

speculatively executes loads, performs store-load forwarding, and sends misprediction sig-

nals to the datapath. Misprediction triggers a squash and replay action, which adds over-

head.

The benefit of value-based disambiguation is that it can pipeline loops where the store op-

eration is control-dependent on a load [220]. The disadvantage is that squash-and-replay

is prohibitively expensive. Budiu el al., who developed one of the first dynamically sched-

uled HLS compiler [33, 229], noted that “implementing a generic prediction scheme (be it

branch prediction or value prediction) in a dataflow model is hindered by the difficulty of
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building a mechanism for squashing the computation on the wrong paths" [32]. We address

this fundamental issue in the next chapter by proposing a compiler transformation that can

disambiguate memory accesses on speculated paths with no requirement for squash-and-

replays, i.e., with no misspeculation cost. In this chapter, we show how our LSQ can support

such speculative memory requests.

4.2.2 Address-Based Memory Disambiguation

Address-based memory disambiguation compares the addresses of loads and stores out-of-

order with the actual load/store operations, allowing non-conflicting loads to execute even

if earlier stores have not yet committed. Such functionality is most often implemented as

an LSQ. Most LSQs aimed at HLS have a similar operating principle as LSQs used in out-

of-order CPUs [236]. For example, the Dynamatic LSQ [125] has a single store queue buffer

which holds stores in-flight to memory, together with metadata needed to recover program

order. Dependent loads check this structure for aliasing using the memory address and other

metadata, deciding if a load is safe to perform, if a store value can be forwarded, or if the

load has to wait. It is this single-cycle Content Addressable Memory (CAM) access that maps

poorly to FPGA technology, resulting in a high critical path and area usage [151].

Our LSQ design described in this chapter is fundamentally different. We recognize that LSQs

for HLS do not have to be as general as CPU LSQs since we can use compiler analysis to spe-

cialize an LSQ exactly for a given program. We propose to break up the single store queue

CAM into two separate shift-register-based queues, one holding just store address requests

and the other store commits. Compiler analysis allows us to size the shift registers exactly.

Instead of the single-cycle CAM access in Dynamatic, we spread our memory disambigu-

ation checks into multiple pipeline stages for an improved critical path and resource usage.

This is enabled by using a DAE architecture, which allows for the generation of LSQ memory

requests to run ahead w.r.t. load value consumption, easing the latency requirement on the

LSQ. Another major difference is our support for speculative address requests, enabled by

having separate store request and commit queues, which paves the way for efficient specu-

lative memory requests described in the next chapter. Our LSQ approach can be seen as a

generalization of shift-registers-based approaches to pipelining of loops with statically ana-

lyzable dependency distances [2], e.g., sparse matrix-vector multiply accelerators [121].

4.2.3 Program-Order Representation

The central question in LSQ designs for spatial computing is how to recover program order of

memory requests without a Program Counter (PC) that can be used in CPU LSQs. Josipovi et

al. proposed to allocate LSQ addresses from a single basic block in parallel and sequential-

ize the execution of basic blocks [125]. Memory operations within a single basic block can

be disambiguated statically, while the semantics of their dataflow circuits guaranteed the

sequential execution of basic blocks in program order. Our LSQ does not rely on the sequen-

tial execution of basic blocks. Instead, we recover program order by tagging each memory
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request with a unique integer representing the state of memory at that time. Our tags are

similar to the work by Elakhras et al. [77] who addressed the sequentialized block request

problem of the Dynamatic LSQ by introducing virtual data dependencies between blocks

with LSQ accesses. However, in addition to ordering the request of addresses, we also use the

actual tag values for disambiguation inside the LSQ.

4.3 The Memory Disambiguation Problem

We define an LSQ memory request as an (addr ess, t ag ) tuple. The tag is an integer indic-

ating the state of memory expected by the request—it is used to recover the program order

sequence of memory operations, similarly to how the PC is used in CPU LSQs. We define

memory states as a sequence σ = {0,1,2, ...}, where each i ∈ σ corresponds to the memory

state of the original sequential program after the i -th store, with the state at i = 0 represent-

ing the initial memory state.

The inputs to our LSQ are the following streams: a sequence of load requests; a sequence of

store requests; a sequence of store values where each stV aluei corresponds to stor eRequesti .

We require that requests and values within streams retain program order. The LSQ outputs

a sequence of load values, which correspond to the sequence of previously made load re-

quests. The tag of a load request indicates which memory state is expected by the load; the

tag of a store request represents the new memory state after the store.

Problem Definition

Given any pair of loadRequesti and stor eRequestk , if the two conditions hold:

loadRequesti .addr ess = stor eRequestk .addr ess,

loadRequesti .t ag ≥ stor eRequestk .t ag ,
(4.1)

then loadRequesti cannot be served before observing the side-effect of stor eRequestk .

Finally, we define a store commit as an (addr ess, val ue) tuple. Our LSQ holds a sequence of

store commits internally, representing values in-flight to memory. Store commits can be used

to forward stored values directly to aliasing loads. Note the omission of program ordering in-

formation from the store commits. In previous LSQs, in the case when a load aliases multiple

store commits, the forwarding logic had to pick the youngest store commit. In our case, this

would require adding a t ag field to the store commit tuple, and finding a store commit with

the maximum t ag value. We avoid the need for this logic by keeping store commits ordered,

and by ensuring that the store commits do not contain stores that, in program order, come

after a load that has not yet been served.

It is the responsibility of the compiler to instrument the Address Generation Unit (AGU) with

code that generates the above information.
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Figure 4.2: Our shift-register-based LSQ design. Load requests are checked for aliasing over
multiple pipeline stages. The store commits and store requests queues are sized automat-
ically by our compiler by analyzing the code where the LSQ is used. Store values carry an
optional val i d bit, allowing the LSQ to support speculative memory requests, which we ex-
ploit in Chapter 5.

4.4 LSQ Design

We now present the design of our LSQ, showing how loads and stores are executed. We also

show how our LSQ can support speculative memory requests, a feature that we exploit in the

next chapter.

4.4.1 LSQ Overview

Figure 4.2 shows an overview of our LSQ, protecting a memory with one load and one store

port. Load/store request queues and the store commit queue are implemented as shift re-

gisters, obeying FIFO order. Shift-register-based queues have a lower critical path compared

to circular buffer based queues used in previous LSQ designs for HLS [125, 112]. Our store

queue is broken up into two separate queues: one for requests and one for commits. Store-

forwarding is the only latency-critical logic in our LSQ, and decoupling it allows the rest of

the LSQ to be pipelined (such decompositions have been proposed before for CPU LSQs

[20], but never for LSQs used in HLS). We implement store-to-load-forwarding using a store

commit queue, which holds store address, value pairs for the duration between store issue

and memory commit—the store commit queue size must be equal to the maximum store

latency.

Our LSQ accepts one load request per cycle for every available load port to memory. Mul-

tiple load request sequences can be served in parallel as long as the number of sequences

is not greater than the number of load ports. If there are more load request sequences than

available load ports to memory, then the sequences are multiplexed according to program

order (as is the case in Figure 4.2). Multiple store request sequences, and their corresponding
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store value sequences, are always multiplexed in program order, regardless of the amount of

memory store ports available. Using a single store port protects us against Write After Write

(WAW) hazards by construction, since the store requests/values arrive in program order to

the LSQ.

4.4.2 Load Execution

A given loadRequesti at the head of the load request queue compares its tag to the tag

of the last accepted store request, and waits if its tag is higher than the store tag. This tag

check ensures that all store requests coming before loadRequesti in program order have

arrived to the LSQ. Next, loadRequesti checks all store requests in the store request queue

for conflicts using Eq 4.1. This involves comparing the load address against the address of

all requests in the store requests queue—this is the most expensive operation in our LSQ. In

previous LSQs, this check needed to be done in a single clock cycle, significantly increasing

the circuit critical path [125]. we do not have such a restriction. Because the LSQ is used in a

DAE architecture, where the production of load requests runs well ahead of their consump-

tion, and because our store request queue is decoupled from the store commit queue, we

have the cycle budget to pipeline this check and avoid an increase in the circuit critical path.

If the load finds no conflicts in the store requests queue, then the store commit queue is

checked next. At this point, the store commit queue is guaranteed to hold only stores that

come before loadRequesti in program order. In the commit queue, we check from the

youngest to the oldest store and forward the first (i.e., youngest) store value that matches

the loadRequesti address. This check is not pipelined, to decrease the latency between the

production of a store value and its forwarding to a dependent load. If there are no hits in the

commit queue, then we can safely issue the load request to the memory system. Eventually,

a load value (either forwarded or loaded from memory) is returned to the LSQ client via a

non-blocking, latency-insensitive channel.

4.4.3 Store Execution

A given stor eRequest j at the head of the store request queue waits for its corresponding

store value to arrive. On the arrival of the awaited store value, a store is immediately issued to

memory and a stCommi t j , holding the store address and store value, is shifted into the store

commit queue. The corresponding stor eRequest j is shifted away from the store request

queue. A store can only be in the store request or store commit stage, but never both. The

store commit queue is sized such that it holds on to the store value until it is guaranteed to

have been committed to memory.
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4.4.4 Speculation Support

Our LSQ can support speculative store requests by extending each store value with a valid bit.

Valid store values are handled without change. Invalid store values are not stored to memory

and are not shifted into the store commit queue, but they still cause the corresponding store

request to be shifted away from the store requests queue. This mechanism allows to specu-

latively allocate store addresses to the LSQ with no requirement for replays because a mis-

speculated store request is never actually committed. The next chapter shows how the com-

piler can create speculative requests, enabling more memory parallelism in codes that could

previously not benefit from an LSQ.

4.4.5 Considerations for Memory Technology

Our LSQ design can be used to protect both on-chip memory (e.g., BRAM on FPGAs) and

off-chip memory (e.g., DRAM) from data hazards. Our LSQ can use multiple load ports in

parallel. Multiple store ports cannot be exploited by our design—to automatically protect

WAW hazards, we multiplex multiple store sequences onto one store port.

To support multi-cycle memory (e.g., DRAM) we grow the size of the store commit queue

to cover the maximum store latency. To avoid stalls in the LSQ when issuing a multi-cycle

variable-latency memory operation, we decouple the load and store ports from the LSQ

pipeline and connect them using latency-insensitive buffers with a deterministic write-to-

read latency. To preserve the correctness of memory disambiguation, we grow the store com-

mit queue by this added latency.

4.5 Compiler Generated DAE Architecture

In this section, we show how an FSMD HLS compiler can use our LSQ, and how to enable

dynamically scheduled out-of-order loads in FSMD HLS by automatically generating a DAE

architecture. Figure 3.3 from the previous chapter shows an abstract view of a DAE archi-

tecture, consisting of: an AGU, which sends memory requests to our LSQ; an LSQ, which

executes loads and stores; and a Compute Unit (CU), which implements the computation

part of the circuit, consuming load values and producing store values.

4.5.1 LSQ Placement

We use the compiler analysis described in Section 3.2.2 to find memory base addresses with

data hazards. Each selected base address uses its own LSQ (in stark contrast to a CPU LSQ,

which is shared by the entire core, putting pressure on the queue sizes). All memory op-

erations using a selected base address are transformed into read/writes from/to latency-
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insensitive channels connected to an LSQ. The channels to an LSQ can be reused across

basic blocks if they are guaranteed not to execute in the same clock cycle, similar to how

FPGA block RAM ports can be shared—this information can be directly obtained from the

schedule of the FSMD component that uses these channels.

Our LSQ design uses integer tags to recover program order of memory operations. Each ad-

dress generating unit has a tag corresponding to a single LSQ, which is initialized to zero

at the start of the circuit execution. Store requests increment the tag before using it, while

load requests use the tag directly. This creates a data dependency between a store request

stor eRequest j and any other LSQ request that follow stor eRequest j in program order, thus

ensuring the correct order of the store request sequence.

4.5.2 Generating a DAE Architecture

The throughput of circuits using an LSQ depends on the number of addresses that can be

disambiguated ahead of their actual memory operation execution—this number is often

referred to as the out-of-order address window. In a statically scheduled pipeline, the out-

of-order address window can be at most one—address generation and memory access pro-

ceed in lockstep. In Dynamic Dataflow (DDF) circuits, the generation of memory addresses

is naturally decoupled from the memory operation and allows for much larger out-of-order

address windows, essentially only limited by the buffer sizes of the latency-insensitive chan-

nels. To achieve the same effect in FSMD HLS, we decouple the generation of memory ad-

dresses into a separate static pipeline, similar to the principle of DAE architectures [205, 103,

42]. The AGU will contain only address generating instructions and will run ahead w.r.t. the

CU, increasing the out-of-order address window in our LSQ.

Our compiler implements a DAE architecture automatically using the following steps:

1. AGU: Starting with the original code, for each memory operation to be decoupled, we

change it to a send_ld_request/send_st_request function that sends memory ad-

dress, tag pairs to the LSQ.

2. CU: Dually, the CU starts with the original code, but each memory operation to be de-

coupled is changed to a consume_value/produce_value function that receive/send

values to/from the DU.

3. Dead Code Elimination (DCE): We run a standard DCE pass in the CU to remove the

now unnecessary address generation code. In the AGU, we delete all side effect in-

structions that are not part of the address generation def-use chains, and then also

run a standard DCE pass. We also use a control-flow simplification pass that removes

empty blocks potentially created by DCE.
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4.5.3 The Loss of Decoupling Problem

In some cases, address generation decoupling cannot result in the run-ahead of address re-

quests. Such LoD events [103] arises when the address generation for a given base address

depends on values loaded from the same base address, i.e., a load value from an array is used

to generate a load/store address to the same array.

Definition 4.1 (General Loss of Decoupling). Given a set of address generating instructions

G for a given base address, and a set of memory access instructions A using addresses gen-

erated by instructions in G , there is a LoD if:

∃i ∈ G , such that i depends on an instruction j ∈ A, i.e., there is a path from i to j in

the DDG; or there is a path from a branch instruction k to j , such that the basic block

containing i is control-dependent on the basic block containing k, and k is not a loop

branch.

Address decoupling is not possible in such cases, because the address requests and their

memory operations need to be in effect synchronized. This is not a drawback of using a DAE

architecture and FSMD HLS since a fully dynamically scheduled DDF circuit would also have

to synchronize the two sequences.

The loss of decoupling resulting from control dependencies can be solved with speculation,

which our LSQ supports. In this chapter, we will only give an informal intuition of how such

speculation can be implemented in a DAE architecture. In the next chapter, we will study

the LoD problem in more detail and provide a formal mechanism for general compiler sup-

port for speculation in DAE architectures. By using speculative memory requests in the next

chapter, we will only have to consider direct data dependencies, ignoring control dependen-

cies in definition 4.1 and allowing us to maintain a high out-of-order address window, even

in cases where a fully dynamic HLS compiler would suffer from loss of decoupling.

4.5.4 Intuition for Speculative Memory Requests

A memory operation using a given base address can be control-dependent on a branch con-

dition that itself is data-dependent on a value loaded from the same base address. Consider

the code in Figure 4.3a as an example. Here, the execution of the stores to v is control de-

pendent on the if -condition, which itself uses values loaded from v. Under the execution

model of both DDF HLS [126] and our DAE, there is no possibility for out-of-order memory

operations in this code—the Figure 4.3a code has a LoD event due to the control depend-

ency. We propose the concept of speculative address requests to relax this restriction.

Consider the code in Figure 4.3a again. Although the store execution is control-dependent,

the store addresses have no data dependency on values loaded from v. We can hoist the

address instructions out of the if -condition in the Control Flow Graph (CFG) of the AGU,

as illustrated in Figure 4.3c. As a result, store address allocations will be produced without

having to evaluate the if -condition.
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for (int j = 0; j < num_edges; ++j) {

int s = e[j].src;

int d = e[j].dst;

if (v[s] < 0 && v[d] < 0) {

v[s] = d;

v[d] = s;

}

}

(a) Maximal matching code.

loop header

st s, v[d]

st d, v[s]

loop latch

...

vs = ld v[s]

vd = ld v[d]

cond = vs < 0 && vd < 0

branch cond
Control-dependent
stores. Condition
depends on loads
from same array

 

(b) Maximal matching CFG.

loop header

block C

loop latch

send ld request v[s]

send ld request v[d]

send st request v[s]

send st request v[d]

loop header

send invalid st value

send invalid st value

loop latch

consume ld value

consume ld value

send valid st value

send valid st value

AGU CU

Control-dependent
store requests are
hoisted

(c) Our transformation: speculative address requests in the AGU, and invalidated store value writes
on misspeculation in the CU.

Figure 4.3: Speculative store address requests in the maximal matching graph code.

Store requests sent to the LSQ, but later not used, are said to be misspeculated. Misspecula-

tions are handled in the CU CFG by inserting invalid LSQ store value writes on CFG paths

containing misspeculations, as illustrated in Figure 4.3c. An invalid LSQ store has the val i d

bit set to 0 and will result in the deallocation of the misspeculated address allocation in the

LSQ (Section 4.4.2 describes the LSQ support). Handling misspeculated loads is trivial, since

a load does not have side effects (at least in our execution model) and the loaded value can

simply be discarded.

This compiler speculation approach can achieve a high degree of out-of-order loads on codes

such as in Figure 4.3a, without having to suffer the cost of expensive misspeculation replays

common in load-value-based speculation approaches. In the next chapter, we will show how

the compiler can guarantee that order of store values generated in the CU (valid or invalid-

ated) matches the order of the store requests generated in a speculative AGU.
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4.6 Compiler LSQ Parametrization

Apart from the optimizations aimed at improving the LSQ critical path described in the pre-

vious section, we also let the compiler parameterize the LSQ queue sizes to achieve ideal

throughput for a given code, while using the least amount of area possible.

As mentioned in the previous section, the size of the store commit queue should be equal to

the maximum possible store latency. The HLS tool is aware of the target memory system, so

this information is available directly to the compiler.

The optimal sizing of the LSQ store request queue requires more work, because it depends

on the target loop II. Assume a target II of 1, and a loop datapath as presented in our mo-

tivating example in Figure 3.1a. Assume f(x) has a latency of L and that there are no true

data hazards, so an actual II of 1 is possible at runtime. To achieve this II, at iteration N

our LSQ should be able to disambiguate a load address for iteration N +L. This requires the

LSQ to be able to hold L store requests to cover all store addresses for the [N , N +L] itera-

tion range. Thus, the optimal store request queue size in this case is equal to the maximum

latency between a dependent load and a store, call this maxLoadToStor eDel ay (for most

codes, this is equal to the recurrence constrained II obtained using Equation 3.1). The op-

timal size will increase if there are multiple stores in the loop datapath; call the number of

stores numStor esInLoop. All of the above information is static, allowing us to find an op-

timal store request queue size at compile time:

stor eQueueSi ze =
⌈

maxLoadToStor eDel ay

t ar g et I I
×numStor esInLoop

⌉
(4.2)

Table 4.1 in the evaluation section shows how the resource usage and critical path of our LSQ

scales with the size of the store request queue, showing that by using lower queue sizes we

are able to save significant circuit area.

4.7 Deadlock Freedom

The original DAE paper [205] discussed that deadlocks are impossible to arise in their CPU-

based implementation if a given instruction interleaving of the access and execute threads

is followed. In this section, we extend their discussion to our specific context of a DAE archi-

tecture realized on a spatial compute platform. We prove that our compiler-generated DAE

architecture cannot result in deadlock by proving that none of the blocking channel opera-

tions in the AGU and CU FSMD will ever block forever. In the next chapter, we extend this

proof to include speculative memory requests.

In this discussion, we treat the LSQ as a black box, assuming that it itself can never deadlock

if the AGU does not deadlock—the LSQ will always eventually accept a given load request,

store request, or store value; and for every accepted load request, it will always eventually

return the corresponding load value. Specifically, given a loadRequesti with t ag = k, the
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LSQ will return a ldV aluei , if stor eRequest j with a t ag = l , l ≥ k has arrived to the LSQ;

and given a stV alue j , the LSQ is guaranteed to free the store queue entry corresponding

to stor eRequest j . These LSQ properties can be formalized using linear temporal logic [19],

but this is beyond the scope of this discussion (the proof would be similar to proofs for CPU

LSQs).

Figure 3.3 shows the communication pattern between AGU, CU, and LSQ components after

our transformations. First, notice that there is a duality between the channels in the CU and

AGU. In both components, the same memory instruction is replaced with either a channel

read or a channel write call to the same channel; each channel operation in the AGU has a

counterpart in the CU. This gives us two tuples of channel operations, where the first element

belongs to the address generation kernel and the second to the compute kernel:

(loadRequesti , ldV aluei ),

(stor eRequest j , stV alue j ).

These tuples have two properties which we use in the proof, and which are guaranteed by

our design:

Property 1: Every channel in the AGU has equivalent control flow to its counterpart

channel in the CU.

Property 2: The channel in the CU will block until its counterpart channel in the AGU

has finished writing. Thus, a loop iteration i of the CU cannot finish before the iteration

i of the AGU has finished.

Theorem 4.1 (DAE Deadlock Freedom). None of the blocking channel operations introduced

by our Section 4.5.2 transformation and depicted in Figure 3.3 can result in a deadlock of the

DAE architecture.

Proof. There three cases where deadlock might arise, making theorem 4.1 false. Each case

involves a component waiting forever to read from an empty channel, or waiting forever to

write to a full channel. We show that none of the three cases can arise in our DAE architec-

ture. We prove theorem 4.1 for specific points in time, i.e., for specific load and store requests

in a sequence of load and store requests. Extending this to the entire request sequence using

induction is trivial and is left out of the proof.

Case 1 The loadRequesti channel write and the ldV aluei channel read cannot result in

deadlock because of property 1, i.e., for each load request write in the AGU, there will be a

load value read in the CU. Our LSQ guarantees that for a given loadRequesti with t ag = k,

ldV aluei will be returned to the compute kernel if stor eRequest j with t ag = l , l ≥ k has

been accepted by the LSQ. But property 2 tells us that since loadRequesti with t ag = k has

arrived, stor eRequest j with t ag = l = k must have already arrived.

Case 2 The stor eRequest j channel write could deadlock if the LSQ cannot accept new

store requests. The only scenario where this is possible is if the store queue is full. However,

by our earlier assumption of no deadlocks inside the LSQ, our store queue is guaranteed

to always eventually have available space. Assume for the sake of argument that the store
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queue is full and the AGU tries to send stor eRequest j . Since our ordering of stores follows

sequential program order, it is guaranteed that all stor eRequestk for 0 ≤ k < j have already

arrived to the LSQ. Property 1 tells us that if a stor eRequest j−1 has been accepted into the

LSQ, stV alue j−1 is guaranteed to be supplied as well. Once a stV alue j−1 has been accepted

into the LSQ, the store queue entry corresponding to stor eRequest j−1 will eventually be

freed. Thus, it is guaranteed that the store queue will eventually have a free entry for the

stor eRequest j to be accepted, and the stor eRequest j channel will not result in deadlock.

Case 3 The stV alue j channel write could result in deadlock if the LSQ cannot accept new

store values. The LSQ will not accept a stV alue j only if the corresponding stor eRequest j

has not been previously accepted. But this is not possible because of property 2—if a stV alue j

channel write call was made, then a channel write call with stor eRequest j must have been

made in the AGU.

4.8 Evaluation

In this section, we show that the close compiler-hardware co-design of our LSQ results in

circuits with a lower critical path and lower area usage than previous LSQs for HLS. We also

show that our speculative memory requests preserve address decoupling in codes where

previous work suffers from LoD events, resulting in a significant throughput improvement

of our LSQ over previous work on such codes. We show this by evaluating our LSQ against

the DDF HLS compiler Dynamatic [126] that uses a state-of-the-art LSQ [125]. we also com-

pare against two commercial FSMD HLS compilers (Intel HLS [120] and Vivado HLS [238]),

to show that dynamically scheduled memory significantly improves circuit performance on

irregular codes. We also discuss how our LSQ design scales with the size of its store allocation

queue. Our implementation and this evaluation are available as a public artifact [211].

4.8.1 Methodology

We extend our implementation described in Section 3.4.1 with the generic LSQ template,

and compiler analysis’ and transformations described in this chapter. We automatically find

data hazards in the input code, decouple the address generation into separate FSMD com-

ponents (separate SYCL kernels), and connect memory requests to an LSQ specialized to the

input code. The LSQ specialization involves instantiating a C++ template with parameters

obtained from the compiler analysis’.

We evaluated our work against the DDF HLS tool Dynamatic using a research artifact from

their most recent paper [77]. Cycle counts were obtained using ModelSim and are compared

directly between all tools. Dynamatic uses Vivado for synthesis, while we use Intel tools,

making a direct comparison of area and circuit frequency in absolute terms difficult. In-

stead, we again compare the normalized frequency, execution time, and area overhead of
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Dynamatic and our approach against their respective static HLS baseline. For Dynamatic we

used Vivado 2019.2 and the Xilinx xc7k160tfbg484 FPGA. For our approach, we used Quartus

19.2 and the Altera 10AX115S FPGA. When comparing against Dynamatic, we only consider

codes using on-chip BRAM; DRAM accesses are not supported in Dynamatic.

We applied our approach to benchmarks with data hazards used in previous work [47, 126].

The first four benchmarks are the same as in the previous chapter and do not require spec-

ulation (described in table 3.1). These additional three benchmark codes also do not need

speculation to preserve address decoupling.

• vecTrans applies a polynomial expression on elements of a sparse array.

• spmv is a sparse matrix-vector multiply.

• chaosNCG is a function from a chaos engine with data-dependent loads and stores.

The remaining benchmarks have control-dependent stores, making our speculative address

allocation approach applicable:

• histogramIf is similar to histogram, but the store is control dependent on the load

value.

• matching is the code example from Figure 4.3a.

• floydWarsh finds shortest paths in a weighted digraph.

• sort sorts a list of integers using a bitonic merge network.

We report worst- and best-case performance, which depends on the true number of data

hazards in the input data distribution. We automatically choose our store allocation queue

size according to sec. 4.6. For Dynamatic, we manually choose the smallest queue size that

enables perfect pipelining in the case of no data hazards, following their manual approach

described in [151].

4.8.2 Results

Speedup

Figure 4.4 shows that our approach achieves a higher speedup than Dynamatic when com-

paring each tool to their respective static HLS baseline. On most codes, the higher speedup

is due to the higher frequency achievable by our LSQ. On some codes (e.g. chaosNCG), we

also achieve a better throughput than Dynamatic, because we can support the required large

store queue size and Dynamatic cannot. The maximum store queue size that we could use

in Dynamatic was 32 (Table 4.1).

Table 4.3 at the end of this chapter shows detailed benchmark results. On average, designs

with our LSQ achieve 90% of the frequency achieved by Intel HLS, whereas Dynamatic LSQ

designs achieve a frequency of 35% compared to Vivado. Dynamatic sees a higher through-

put overhead when the data distribution favors static scheduling (more iterations with a true

data hazard), resulting in an average 1.4× more cycles to finish than the Vivado designs,
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Figure 4.4: Speedup and area overhead of our work and Dynamatic [77] compared to their
static HLS baselines (Intel HLS and Vivado, respectively). The range bars represent the spee-
dup range, with a value below 1 indicating a slowdown.

rising to 3.67× more execution time due to their lower frequency. On average, our approach

has no overhead in execution time compared to its Intel HLS baseline. The slight overhead in

the number of cycles for some codes is only for data distributions that repeatedly read and

write to the same memory location, which is a highly unlikely scenario.

The last four codes benefit from our speculation scheme, allowing us to preserve address

decoupling and enabling speedups over our static HLS baseline. The dataflow circuits pro-

duced by Dynamatic suffer a LoD problem on these codes and do not result in any through-

put improvements compared to a static pipeline.

Area Overhead

In addition to a better speedup, our LSQ also has a lower area overhead than Dynamatic. On

average, we see a 4.9× area overhead compared to 12.3× for Dynamatic, and that is despite

the fact that for several codes we use larger LSQ queue size.
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Store Queue Scaling

Table 4.1 shows how the frequency and area usage changes with the size of our store alloc-

ation queue. Previous LSQ designs targeting FPGAs are notorious for their poor scalability

[236, 151]. Our LSQ scales better, allowing for store queues with hundreds of entries. Even

though larger store queues still degrade the achievable circuit frequency, the degradation is

sub-linear and is more than compensated by the increased potential throughput compared

to statically scheduled memory accesses. For example, for a 256 entry store queue, the circuit

frequency drops by 2×, but the potential throughput increases by 256× in the best case.

Table 4.1: Scalability of our store request queue compared to the store queue in Dynamatic
[77] on the histogram benchmark.

Queue
Size

Freq (MHz) Area (Slices / ALMs)
Dyn × Ours × Dyn × Ours ×

No LSQ 379 1 379 1 129 1 1814 1
2 173 0.46 338 0.89 409 3.2 9155 5
4 178 0.47 337 0.89 684 5.3 9305 5.1
8 163 0.43 331 0.87 1554 12 9847 5.4

16 155 0.41 313 0.83 5582 43 10705 5.9
32 92 0.24 271 0.72 22580 175 12509 6.9
64 - - 274 0.72 - - 14140 7.8

128 - - 258 0.68 - - 23623 13
256 - - 195 0.51 - - 39598 22

4.8.3 Using Off-Chip DRAM

Table 4.2 at the end of this chapter shows the speedups over static Intel HLS that are possible

when using our LSQ to protect DRAM. In this experiment, we report execution time when

running in hardware on the Intel PAC Arria 10 GX FPGA board using dual-channel DDR4

memory. On average, using our LSQ results in an 4–10× speedup over Intel HLS. The store

commit queue, needed to cover the maximum store latency to DRAM, has a cache-like effect

which is more noticeable in DRAM codes, compared to codes using BRAM. As a result, our

LSQ still offers a significant speedup even if most of the iterations have a true data hazard.

Circuits with DRAM connections use more resources, making the area overhead of our LSQ

smaller (1.4× for DRAM vs. 3.4× for BRAM). For some codes, using our LSQ results in virtually

no resource increase. This is because the Intel HLS baseline uses more costly bursting DRAM

load-store units, while we use simpler, pipelined units.

The DRAM benchmarks achieve on average a 7–10× lower throughput than the BRAM codes.

Our DRAM load-store units do not take advantage of DRAM coalescing that amortizes the

large off-chip memory latency in typical HLS designs by coalescing multiple memory re-

quests into one wide request that uses the whole DRAM width. For example, instead of send-

ing a store request to the DRAM memory controller for every 32 bit value, we could accumu-
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Table 4.2: Performance comparison of our LSQ against Intel HLS when protecting off-
chip DRAM.

Kernel
Exec. Time (µs) Freq. (MHz) Area (ALMs)

I O O/I I O O/I I O O/I

histogram 363 43.7–61.3 0.12–0.17 273 272 1 19832 19647 1
tanh 564 36.9–150 0.08–0.27 281 205 0.73 27365 35559 1.3
getTanh 396 35.8–122 0.09–0.31 281 235 0.84 26018 29051 1.1
BNN 4167 336–636 0.08–0.15 264 241 0.91 10916 17459 1.6
vecTrans 441 40.6–182 0.09–0.37 305 241 0.79 20217 22814 1.1
spmv 158 40.8–63.5 0.26–0.34 287 256 0.89 7826 18313 2.3
chaosNCG 687 63.3–502 0.09–0.54 270 170 0.63 21190 37314 1.8
histogramIf 362 34.2–61.8 0.09–0.17 274 248 0.91 19903 20950 1.1
matching 496 53.5–175 0.11–0.35 289 227 0.79 8655 19907 2.3
floydWarsh 300 59.9–98.4 0.21–0.33 257 250 0.97 31280 32173 1
sort 319 33.9–53.3 0.11–0.17 270 241 0.89 12587 24781 2

hmean 0.1–0.25 0.84 1.4

I—Intel HLS O—Our work

late 16 such values into one request to use the entire 512 bit DRAM channel width. It is un-

likely that DRAM coalescing could be used effectively in an LSQ, because the memory access

pattern of codes using LSQs is seldom contiguous. The issue of memory coalescing will be

explored further in Chapter 6.

We challenge this limitation in Chapter 6 by proposing an alternative memory disambigu-

ation method to the LSQ that is able to take advantage of such coalesced DRAM requests, in

addition to having other properties helpful in increasing memory parallelism in HLS.

4.9 Conclusion

In this chapter, we have presented a novel, shift-register-based LSQ design adapted to spatial

architectures and tightly coupled with an HLS compiler that can specialize parts of the LSQ

to a given target code. We have also presented how a compiler can automatically generate

a DAE architecture, which together with our LSQ enables dynamically scheduled, out-of-

order memory loads in FSMD HLS. We have shown that the DAE approach relaxes the latency

requirement in our LSQ, allowing us to use more pipeline stages for a better critical path.

Additionally, we have shown that the close compiler-hardware co-design of various parts

of the LSQ decreases the amount of resources used by our LSQ. Our LSQ design achieves a

higher frequency and lower area overhead compared to previous LSQs used in HLS, resulting

in an average speedup of 11× compared to static HLS and 5× compared to dynamic HLS. Our

LSQ scales to queues with hundreds of entries, and can protect both on-chip and off-chip

memory.
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One limitation of our DAE approach is the fact that decoupling the address generating in-

structions from the rest of the program is not always possible due to dependencies between

the AGU and the CU that cause synchronization (Section 4.5.3). In this chapter, we have

shown that speculative memory requests generated in the AGU can be an effective way to

mitigate most LoD problems. We have shown how our LSQ can support such speculation

and we gave an informal intuition how the compiler can transform the AGU and CU CFGs

to support speculation in a DAE architecture. However, from our discussion it is not clear

that speculation support is general enough to apply to any CFG. We tackle this problem in

the next chapter by proposing a general compiler support for control speculation in DAE

architectures.
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Table 4.3: A comparison of our work against Vivado, Dynamatic [77], and Intel HLS. All codes use on-chip BRAM.

Kernel
Cycles (thousands) Freq. (MHz) Execution time (µs) Area (Slices / ALMs)

V D I O V D I O V D D/V I O O/I V D D/V I O O/I

histogram 2 1–3 2.1 1-2 379 155 379 337 5.3 6.5-19.4 1.23–3.68 5.5 3–6 0.55–1.1 129 5582 43.3 1814 9847 5.4
tanh 14 1–19 13.1 1–17 304 96 330 297 46.1 10.7–198 0.23–4.3 39.8 3.5–57.3 0.09–1.44 245 22103 90.2 3803 16730 4.4
getTanh 68 2.5–79 56.2 1.1–59 266 89 377 346 263 28.1–888 0.11–3.47 149 4.1–224 0.03–1.51 572 22399 39.2 1825 12753 7
BNN 20 15–30 20.7 10.4–20.4 258 116 365 284 77.5 129–259 1.67–3.34 56.9 36.8–72 0.65–1.26 1214 7466 6.2 4214 20222 4.8
vecTrans 30 1.5–31 30.1 1.1–33 304 97 365 291 98.7 15.9–320 0.16–3.24 82.5 3.6–113 0.04–1.38 125 22997 184 1811 11672 6.4
spmv 2.3 0.8–2.7 3.6 0.8–2.7 263 152 328 280 8.7 5.2–17.6 0.6–2.02 10.9 3–9.8 0.28–0.9 494 5628 11.4 5255 23406 4.5
chaosNCG 72 37–74 74.3 2.1–77 308 155 335 246 234 239–477 1.02–2.04 222 8.4–313 0.04–1.41 779 2017 2.6 5274 32960 6.2
histogramIf 2 5–6 2.1 1-2.5 388 117 379 328 5.15 42.7-51.3 8.29–8.3 5.5 3.1–7.7 0.57–1.4 155 5395 34.8 1814 10452 5.8
matching 6 6–8 7.6 2–8.8 404 110 246 291 14.9 54.6–72.7 3.67–4.9 30.9 7–30.2 0.23–0.98 141 3778 26.8 7713 18310 2.4
floydWarsh 6.2 7–11 6.3 3.4 366 90 229 299 16.9 77.8–122 4.59–7.2 27.3 11.3 0.42 255 2226 8.7 807 5056 6.3
sort 3.1 2.6–6.1 9.6 1.5 300 97 248 305 10.4 26.9–62.8 2.58–6 38.8 4.8 0.12 51 5683 111 911 5424 6

hmean 0.15–1.4 0.07–0.64 0.35 0.9 0.45–3.67 0.09–0.62 12.3 4.9

V—Vivado HLS D—Dynamatic I—Intel HLS O—Our work



Chapter 5

Compiler Support for Speculation in DAE

Architectures

In this chapter, we focus on the speculation technique introduced in the previous chapter

describing our Load-Store Queue (LSQ) design and automatic Decoupled/Access Execute

(DAE) architecture generation. We propose general compiler support for speculation in DAE

architectures. We make the claims made in Section 4.5.4 concrete by showing that our spec-

ulation approach works on arbitrary, reducible control flow and we prove that it preserves

the sequential consistency of the original program.

DAE is a common technique used in CPU/GPU prefetchers and specialized accelerators to

tackle the problem of memory and communication latencies in irregular codes. The tech-

nique relies on the compiler to separate memory address generation from the rest of the

program, but such a separation is not always possible due to control and data dependen-

cies between the access and execute slices, resulting in a Loss of Decoupling (LoD) event.

We present compiler support for speculation in DAE architectures that preserves decoup-

ling in the face of control dependencies.1 We propose algorithms that implement speculat-

ive memory requests in the access slice and that kill mis-speculations in the execute slice

without the need for costly recovery or synchronization.

Altough we focus explicitly on HLS generated accelerators in this thesis, the DAE principle

is widely used in the computer architecture field. We show that our speculation compiler

support, in addition to HLS accelerators, applies to a wide range of architectural work on

CPU/GPU prefetchers and Coarse Grained Reconfigurable Arrays (CGRAs), citing concrete

examples from the literature. Supporting DAE speculation makes these works applicable to

a wider range of codes than before. In our evaluation on HLS accelerators that use our LSQ,

we show that our speculation support allows us to preserve address decoupling and thus

achieve a higher level of memory parallelism compared to using our LSQ without specula-

tion.

1. LoD due to data dependencies can still occur, but this is not as common as control dependencies.

68
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Data
Unit

Compute
Unit

Load Request

for (i = 0; i < N; ++i)

    if (C[i] < MAX)

        send_ld_addr(A + idx[i])

        send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)

    if (C[i] < MAX)

        a = consume_ld_val()

        send_st_val(f(a))

Access Execute

Store Request

Load Value

Store Value

(a) An architecture with decoupled address generation, memory access, and compute.
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Data
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Unit

Load Request

for (i = 0; i < N; ++i)

    send_ld_addr(A + idx[i])

    if (consume_ld_val() < MAX)

        send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)

    a = consume_ld_val()

    if (a < MAX)

        send_st_val(f(a))

Store Request
Load Value

Store Value
Load Value

(b) Loss-of-decoupling between the AGU and memory access due to a dependency on the
memory value.

Address
Generating

Unit

Data
Unit

Compute
Unit

for (i = 0; i < N; ++i)

    send_ld_addr(A + idx[i])

    // speculative store request

    send_st_addr(A + idx[i])

for (i = 0; i < N; ++i)

    a = consume_ld_val()

    if (a < MAX)

        send_valid_st_val(f(a))

    else

        send_invalid_st_val()

Load Value

{Store Value,
Valid Bit}

Load Request

Store Request

(c) Our contribution in this chapter: compiler support for speculation removes loss-of-
decoupling due to control dependencies.

Figure 5.1: A generic DAE architecture template. In this thesis, the AGU and CU are imple-
mented as separate FSMD components in reconfigurable hardware; another implementa-
tion might use CPU/GPU threads, or separate PEs in a CGRA architecture.

5.1 Introduction

As alluded to in our thesis introduction chapter, irregular codes are common in domains like

graph analytic and sparse linear algebra. They are characterized by data-dependent memory

accesses and control flow, for example:

for (int i = 0; i < N; ++i)

if (C[i] < MAX)

A[idx[i]] = f(A[idx[i]]);
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This code has unpredictable control flow that causes frequent branch mis-predictions on

CPUs and thread divergence on GPUs. Because of these limitations and challenges with

Moore’s Law and Dennard performance scaling computer architects are interested in adding

CPU/GPU support to accelerate such code patterns, or even to use accelerators specialized

for a given algorithm [108].

Many of the proposed architectures follow the decades-old idea of a DAE architecture shown

in Figure 5.1. In DAE, memory accesses are decoupled from computation to avoid stalls res-

ulting from unpredictable loads [205]. The Address Generation Unit (AGU) sends load and

store requests to the Data Unit (DU), while the DU sends load values to and receives store

values from the Compute Unit (CU). All communication is FIFO based and ideally the AGU

to DU communication is feed-forward (one-directional), allowing the address streams from

the AGU to run ahead w.r.t the CU. Figure 5.1a shows an example of such a DAE architecture

implementing the earlier code snippet.

As the gap between memory speeds and compute has grown over the years, the importance

of the DAE technique has only increased. DAE is a general technique applicable to many

computational models: it is used in specialized FPGA accelerators generated from HLS [42,

41, 51, 54, 44, 89, 212, 216]; in CGRAs [166, 188, 187, 83, 111, 180, 233, 171]; and in CPU/GPU

prefetchers [60, 167, 104, 9, 6, 59, 190]. For example, recently NVIDIA introduced hardware-

accelerated asynchronous memory copies in the Ampere architecture and later extended the

idea to the Tensor Memory Unit (TMA) in the Hopper architecture [6]. The CUDA program-

mer can provide a “copy descriptor” of a tensor to copy and the hardware will run ahead and

generate the corresponding addresses in the TMA.

The common denominator of all these works is that they rely on either the programmer or

the compiler to decouple address-generating instructions from the rest of the program. How-

ever, it has long been recognized that such a decoupling is not always possible [26, 223]. If

any of the instructions generating an address for an array A depend on a value loaded from

A, then there is a LoD event [103], a problem briefly described in Section 4.5.3 in the pre-

vious chapter. Access patterns such as A[f(A[i])] are rare, but control dependencies that

involve loads from A are commonplace. For example, consider replacing C[i] with A[i] in

our running example:

for (int i = 0; i < N; ++i)

if (A[i] < MAX) A[idx[i]] = f(A[idx[i]]);

Here, there is a LoD, because the store to A is control-dependent on a branch that loads from

A. Whereas before the load from C could be prefetched, now the AGU/DU communication

is synchronized, because the AGU waits for A values from the DU before deciding if a store

address should be generated (see Figure 5.1b). In turn, the load waits for the store address to

ensure that there is no aliasing—the store address is needed for memory disambiguation. As
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RAW check 0send ld addr 0
send st addr 0 send ld addr 1

send st addr 1 send ld addr 2
send st addr 2

Load Initiation Interval = 1

RAW check 1
RAW check 2 DU stage

Legend

AGU stagesend ld addr 3

(a) Pipeline of decoupled address generation from figure 5.1a.

send ld addr 0 send st addr 0consume ld 0 if a < MAX
send ld addr 1

Load Initiation Interval = 4

RAW check 0
RAW check 1Waiting for 

store address

 

(b) Pipeline of non-decoupled address generation from figure 5.1b.

Figure 5.2: Comparison of a decoupled and non-decoupled address generation. Non-
decoupled address generation results in a later arrival of the store address, which stalls the
RAW check for the next load, lowering load throughput.

a result, the AGU cannot run ahead of the CU anymore, as illustrated in Figure 5.2 pipeline

diagram. In the previous chapter, the code in Figure 4.3a and the last four codes in the evalu-

ation section have this behavior, resulting in a stark performance degradation if speculation

is not used (e.g., see the Dynamic Dataflow (DDF) HLS results in the Section 4.8).

One approach for restoring decoupling in these cases is control speculation. As shown in

Figure 5.1c and briefly described in Section 4.5.4, we can hoist the store request out of the if -

condition in the AGU (speculation), and later poison the store in the CU on mis-speculation

(store invalidation). However, it is unclear how the compiler should coordinate the spec-

ulation and recovery transformations across two distinct control-flow graphs. While the ex-

ample from Figure 5.1c is trivial, the task quickly becomes complicated with more speculated

stores and nested control-flow, as we demonstrate in the Section 5.1.1. The key challenge here

is to guarantee that the order of store requests sent from the AGU, matches the order of store

values or kill signals sent from the CU on all control-flow paths.

General compiler support for speculated stores in DAE architectures is an open question that

we tackle in this chapter, making the following contributions:

• We give a formal description of the fundamental reasons why address generation can-

not always be decoupled from the rest of the program (Section 5.3).

• We describe compiler support for speculative memory in DAE architectures, effect-

ively solving the LoD problem due to control dependencies. We propose an algorithm

for introducing speculative memory requests in the AGU, and an algorithm for pois-

oning mis-speculations in the CU (Section 5.4).

• We prove that our speculation approach preserves the sequential consistency of the

original program and does not introduce deadlocks (Section 5.5).

• We show that our work enables the use of DAE on a wider class of codes than before,

with applications in CPU/GPU prefetchers, CGRAs, and accelerators.
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for (i = 1; i < N - 1; ++i) {

    a = A[i];

    if (a > 0) {

        if (a < MAX1)

            A[i + 1] = a + 1;  // st0

        else

            A[i - 1] = a + 1;  // st1

    } else {

        A[i] = a + 1;          // st2

    }

}

ld a

if (a > 0)

if (a < MAX)

st0 st1

st2

latch

(a) Code and CFG of a loop with three control-dependent stores causing a loss-of-decoupling.

a = consume ld val

if (a > 0)

poison st2

if (a <

MAX)

poison st1

send st0

poison st0

send st1

poison st0

poison st1

send st2

// Assume AGU store request order was:

//     s2, s0, s1

for (i = 1; i < N - 1; ++i) {

    a = consume_ld_val();

    if (a > 0) {

        poison_st2()

        if (a < MAX1) {

            poison_st1();

            send_st0(a + 1);

        } else {

            poison_st0();

            send_st1(a + 1);

    } else { 

        poison_st0();

        poison_st1();

        send_st2(a + 1);

    }

}
latch

(b) Code and CFG of CU implementing an incorrect misspeculation strategy. Depending on control
flow, the order of store values can be: (s2, s1, s0), (s2, s0, s1), (s0, s1, s2), but only (s2, s0, s1) is correct.

Figure 5.3: Poisoning speculated stores immediately when they become unreachable results
in an ordering mismatch between AGU store requests and CU store values.

• We evaluate our DAE speculation approach on accelerators generated from HLS im-

plementing codes from the graph and data analytics domain. We achieve an average

1.9× (up to 3×) speedup over the baseline HLS implementations. We show that our

approach has no mis-speculation penalty and minimal code increase impact with an

average accelerator area increase of < 5% (Section 5.7).

5.1.1 Motivating Example

Here, we briefly show why an obvious approach to speculation in DAE architectures is incor-

rect, motivating the contributions of this chapter.

The FIFO-based nature of DAE requires that the order of memory requests (speculative or

not) generated in the AGU matches exactly the order of load/store values (poisoned or not)

in the CU. The motivating example in Figure 5.1c contains just one speculative store and

one path through the compute Control Flow Graph (CFG) where the speculation becomes

unreachable, making the problem of ordering trivial in that case.
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Consider the more complex code in Figure 5.3a with three stores s0, s1, and s2. Speculating all

store requests in the AGU might result in the store request order (s2, s0, s1). In the CU, we need

to guarantee the same order of corresponding store values (poisoned or not) on every pos-

sible control-flow path through the loop. Unfortunately, the obvious approach that worked

for the trivial example in Figure 5.1c does not work here. If we poison values at points where

the corresponding speculations become unreachable, as illustrated in Figure 5.3b, we end

up with three possible orderings of store values depending on the CFG path in the CU, but

only one of the orderings is correct. This is why any previous implementations of speculat-

ive stores in DAE architectures has only considered trivial triangle or diamond shaped CFGs

[104], like the one in 5.1c. Generalized compiler support for store speculation that guaran-

tees the correct order of poisoning is the key challenge that we solve in this chapter.

5.2 Architectural Support

In the previous chapter, we have described how our own LSQ for HLS can support specu-

lative memory requests in Section 4.4, and we have show how a compiler can automatically

generate a DAE architecture in Section 4.5. In this section, we describe the general architec-

tural support needed to enable our approach to speculative memory requests in DAE archi-

tectures.

Our speculation technique requires architectural support for predicated stores and FIFOs to

communicate between the AGU, DU, and CU. Store values communicated from the CU are

tagged with a poison bit that, when set, causes the corresponding store request to be dropped

in the DU without committing a store. We say that a store request gets killed (or poisoned) if

its corresponding store value has the poison bit set. This is a lightweight form of speculation

that does not require replays in the CU and does not result in out-of-bounds stores, because

mis-speculated stores are never committed.

Predicated stores are cheap to support in hardware since the underlying memory protocol

usually already uses a valid signal. Architectural FIFOs are also commonly added in works

on CPU/GPU microarchitecture or can be relatively cheaply implemented in software; ac-

celerators often use FIFOs as primitives. We discuss concrete examples of architectures that

can benefit from our work in Section 5.6. Here, we give a general overview of how our work

applies to these domains.

Predicated Stores in CPU/GPU Prefetchers

Academic works on DAE CPU/GPU prefetchers add architectural FIFO queues and extend

the Instruction Set Architecture (ISA) with instructions for producing load/store addresses

and consuming/producing store values [60, 167, 104, 9, 6, 59, 190]. The prefetcher from [104]

supports predicated stores through a store_inv instruction, but the authors support specu-

lation only on simple triangle or diamond control flow patterns, calling for future work on

general speculation support.
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Predicated Stores in Spatial Accelerators

Adding predicated stores to specialized spatial accelerators is trivial, and in many cases does

not require any protocol changes, e.g., the commonly used AXI4 interface protocol [8] has a

strobe signal to indicate which write data bytes are valid. We evaluate our work on accelerat-

ors generated from HLS, where we have complete control of the memory interfaces and we

add predicated store support.

Speculative Loads

Speculative loads are relatively simple to support, because they are usually side-effect free

in accelerators—a mis-speculated load can simply be discarded. A speculative load request

could potentially have an out-of-bounds address, but this can be easily handled in the DU

(e.g., by omitting out-of-bounds loads and instead returning dummy values).

5.3 Loss-of-Decoupling Analysis

As discussed in Section 4.5.3, LoD arises when the address generation for a given memory

access depends on a load that cannot be trivially prefetched, causing the AGU, DU, and CU

communication to be synchronized. By non-trivially prefetched we mean loads that have a

RAW hazards, i.e., the DU needs to receive all previous store addresses in program order to

perform memory disambiguation before executing the load. In Section 4.5.3, we have given a

general definition of LoD, which did not distinguish between a control and data dependency.

In this chapter, we are more precise and separate definitions for the two cases.

Given a set of address-generating instructions G , and a set of memory load instructions A

using addresses generated by instructions in G , there is a loss of decoupling if:

Definition 5.1 (Loss of Decoupling due to a Data Dependency). There exists a path in the

def-use chain from a ∈ A to g ∈G . While encountering a ϕ-node on the def-use chain leading

to g , we also trace the def-use paths of the terminator instructions T in the ϕ-node incoming

basic blocks to see if any terminator instruction in T depends on any a ∈ A.

Definition 5.2 (Loss of Decoupling due to a Control Dependency). There exists an instruc-

tion g ∈ G that is control-dependent on a branch instruction b, and there is a path in the

def-use chain from a ∈ A to b.

Definition 5.3 (Loss of Decoupling Control Dependency Source). If g ∈G experiences a LoD

due to a Control Dependency on branch instruction b, then we can we call the basic block

that contains b the LoD control dependency source. The LoD control dependency source need

not be the immediate control dependency of g , and that g might have multiple LoD control

dependencies.
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Algorithm 5.1 Control-flow hoisting of AGU requests

1: Input: sr cBlocks list of blocks that are the source of a LoD control dependency
2: Output: SpecReqM ap {basic block: list of hoisted requests to this block}
3:

4: for sr cBB ∈ sr cBlocks do
5: for f r omBB ∈ r ever sePostOr der (sr cBB) do ▷ traverse DAG up to loop latch
6: if f r omBB contains memory requests then
7: hoist f r omBB requests to the end of sr cBB
8: add requests to SpecReqM ap[sr cBB ]

Depending on the hardware context, the definition of the A set can be expanded or nar-

rowed. For example, if the AGU is implemented in hardware with limited control flow sup-

port, then A could include all branch instructions. On the other hand, given an address gen-

erating instruction, we could limit A to only include loads from the same array for which the

given address is generated—this could be useful if we only want to preserve decoupling for

that array and do not care about losing decoupling for other arrays. Our speculation tech-

nique applies equally well to all these definitions.

An example of a LoD data dependency is the access A[f(A[i])]. Our speculation approach

does not recover decoupling for such cases, but fortunately such code patterns are rare. An

example of a more common LoD data dependency is the code pattern if (A[i]) A[i++]

= 1. In this case, the def-use chain leading to the definition of the store address contains a

ϕ-node defining the current value of i, which depends depends on a load from A. Such a pat-

tern is sometimes found in algorithms that operate on dynamically growing data structures,

e.g., queues or stacks. Our speculation technique does not work on such cases either, but this

is not a large limitation, since performance oriented codes typically do not use dynamically

growing structures, instead opting for implementations with bounded space requirements

that can be allocated statically [241].

An example of LoD due to a control dependency is shown in Figure 5.1b. This case is much

more common than a direct data dependency and is the focus of this chapter.

5.4 Compiler Support for Speculation

We now describe our dual compiler transformations that enable speculation in the AGU and

poison mis-speculations in the CU.

5.4.1 Speculating Memory Requests

Algorithm 5.1 describes our approach to introducing speculation in the AGU. Given a LoD

control dependency source block sr cBB , we hoist all memory requests that are control de-

pendent on sr cBB to the end of sr cBB . There can be multiple blocks with memory requests

that have a LoD control dependency on sr cBB , which poses the question in which order
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should they be hoisted to sr cBB . We use reverse post-order in Algorithm 5.1. Assuming re-

ducible control flow, the CFG region from sr cBB to the loop latch is a DAG. The reverse

post-order of a DAG is its topological order. Topological ordering gives us the following use-

ful property.

CFG Topological Ordering Property

Given two distinct basic blocks A and B in a given loop, if A ≺ B in any path through the loop

then A ≺ B in the topological ordering. Note that there can be multiple topological orderings

for a DAG, but it does not matter which one is chosen in our algorithm.

Algorithm 5.1 traverses the CFG region from sr cBB to the end of its loop (or to the end of the

function if sr cBB is not any loop). During the traversal, we ignore CFG edges leading to loop

headers—we do not enter loops other than the innermost loop containing sr cBB .

Hoisting Example

Consider the CFG from Figure 5.4a. There are three LoD control dependency source blocks

(2, 3, 5) and five blocks with memory requests (blocks 2, 4, 5, 6, 7 with memory requests a,

c, b, d , e, respectively). Assume that the blocks hold a single memory requests—multiple

memory requests within the same block are treated in the same way by our algorithms. Fig-

ure 5.4c shows the topological order of the loop (block 1 is omitted for brevity). Algorithm 5.1

will hoist b, e to the end of block 2, and c, d , e to the end of block 3—the result is presented in

Figure 5.4b. Note that the requests b and e were hoisted to both block 2 and 3, because they

are reachable from both blocks. Nothing is hoisted to block 1 since it is not a LoD control

dependency source.

Nested LoD Control Dependencies

Block 5 in Figure 5.4b does not contain any speculative requests because it itself has a LoD

control dependency on block 2 and 3. Algorithm 5.1 considers only LoD control dependency

source blocks that are not themselves the destination of another LoD control dependency.

Given a chain of nested LoD control dependencies, we only consider the chain head. For ex-

ample, the Figure 5.4a CFG has two LoD control dependency chains: 2, 5 and 3, 5—Algorithm

5.1 considers only blocks 2 and 3.

Why Topological Ordering in Algorithm 5.1?

Topological order is needed to make it possible to match the order of speculative requests

made in the AGU with the order of values that will arrive from the CU on all its possible CFG

paths. Consider the example of requests b and c in Figure 5.4a. We first want to hoist c to

block 3 before hoisting b, because there exists a CFG path where c comes before b, but not

vice versa. If b were hoisted before c, then the speculative requests order would be b ≺ c,

which would be impossible to match with values in the CU on the CFG path 3, 5, 7.
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Figure 5.4: An example of introducing speculative memory requests in the AGU (section
5.4.1); and poisoned stores in the CU (section 5.4.2).

5.4.2 Poisoning Mis-speculated Stores on CFG Edges

Our strategy for killing misspeculations in the CU is to first map poison calls to CFG edges,

and then to map poisoned CFG edges to poison store calls contained in basic blocks.
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Algorithm 5.2 Mapping Poison Stores to CFG Edges in CU

1: Input: SpecReqM ap {basic block: list of requests hoisted to this block in Algorithm 5.1}
2:

3: for specBB , specRequest s ∈ SpecReqM ap do
4: for path ∈ al l PathsToLoopLatch(specBB) do
5: tr ueBlocks ←∅ ▷ set keeps insertion order
6: for r ∈ specRequest s do
7: tr ueBB ← block where r is true
8: tr ueBlocks.i nser t (tr ueBB)

9: for ed g e ∈ path do
10: for tr ueBB ∈ tr ueBlocks do
11: if ed g ed st = tr ueBB then
12: tr ueBlocks.r emove(tr ueBB)
13: break ▷ to the next edge

14: if tr ueBB not reachable from ed g ed st then ▷ ignore loop backedges
15: poison tr ueBB requests on ed g e ▷ Algorithm 5.3
16: tr ueBlocks.r emove(tr ueBB)

Algorithm 5.2 describes the first step. Given block specBB that contains speculative memory

requests specRequest s, we consider each path in the DAG from the specBB to the loop

latch in the CU. We call the block where a r ∈ specRequest s becomes true the tr ueBB (for

example, the tr ueBB for request b in Figure 5.4a is block 5). For each CFG path, we use

the tr ueBlocks list to keep track of which requests were already used or poisoned on the

path—the list contains the tr ueBB for each r ∈ specRequest s.

Given an edge in the traversal, the edge is skipped if the next tr ueBB ∈ tr ueBlocks is still

reachable from ed g ed st . This guarantees that the order of speculative requests in the AGU

matches the order of values in the CU, i.e., a speculative request for a given tr ueBB block is

not poisoned immediately when tr ueBB becomes unreachable if there is an earlier specu-

lative request that can still be used.

Example of Mapping Poison Stores to CFG Edges:

Figure 5.4c shows which CFG edges are poisoned given the original CFG in Figure 5.4a and

the AGU CFG in Figure 5.4b. For example, the path 3 → 5 → L will have: poi son(c) on the

3 → 5 edge; and poi son(d), poi son(e) on the 5 → L edge (4th path from BB 2 in Figure 5.4c).

5.4.3 Mapping Poisoned CFG Edges to Basic Blocks

Algorithm 5.3 shows how poisoned CFG edges are mapped to actual poison calls placed in a

concrete basic block. Given a poisoned request r on ed g e, there are three cases:

1. There exists a path from tr ueBB to ed g ed st . In this case, we cannot insert poi son(r )

in ed g ed st , because we would end up with a CFG path where the store is both true

and poisoned. To avoid this, we create a new poi sonBB block on ed g e and append

poi son(r ) it.
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Algorithm 5.3 Poisoning Stores on Edges in CU

1: Input: store request r ; CFG ed g e; block specBB where r was speculated; block tr ueBB
where r is true

2:

3: poi sonBl ockReuse ←∅ ▷ preserve set across Algorithm calls
4: if ed g ed st is reachable from tr ueBB then
5: poi sonBB ← create new block on ed g e or
6: get from poi sonBl ockReuse if exists
7: append poi son(r ) to the end of poi sonBB
8: poi sonBl ockReuse.i nser t (poi sonBB)
9: else if specBB does not dominate ed g ed st then

10: poi sonBB ← create new block on ed g e
11: append poi son(r ) to the end of poi sonBB
12: ▷ create ϕ recursively on specBB → ed g esr c paths
13: create ϕ(1, specBB) value in ed g esr c

14: branch from ed g esr c to poi sonBB on ϕ= 1
15: else
16: append poi son(r ) to the start of ed g ed st

2. There exists a path from the loop header to ed g ed st that does not contain specBB .

In this case, we cannot insert poi son(r ) in ed g ed st , because we would end up with

a CFG path where r was not speculated in the AGU, but was poisoned in the CU. To

avoid this, we create a new block poi sonBB on the edge and append poi son(r ) to

it. We also add steering instructions to the path from specBB to poi sonBB that will

branch from ed g esr c to poi sonBB only if specBB was encountered on the current

CFG path.

3. Otherwise, poi son(r ) can safely be prepended to the start of ed g ed st .

Algorithm 5.3 is executed only once per (ed g e, r ) tuple—a given request is poisoned at most

once on a given edge. Also, poison blocks created in case 1 in Algorithm 5.3 can be reused to

poison other requests.

Example of Mapping Poison Edges to Basic Blocks

Consider how the poisoned edges in Figure 5.4c are mapped to basic blocks in Figure 5.4d.

This example exercises all three cases in Algorithm 5.3.

Case 1

Store c is poisoned on the 3 → 5 edge. Since there is a path from the true block of c (block 4)

to the edge destination block (block 5), we create a new block on the 3 → 5 edge and append

poi son(c) to it.
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Figure 5.5: Basic blocks with the same list of poison stores and the same immediate suc-
cessor can be merged in the CU.

Case 2

Store d is poisoned on both the 5 → 7 and 5 → L edges. The specBB for d is block 3. Since

there exists the path H → 1 → 2 → 5 that does not contain block 3, we create a new block

on the 5 → 7 edge with the poi son(d) call. We add steering instructions to the 3 → 5 and

3 → 4 → 5 paths that will cause block 5 to branch to the new poison block on the 5 → 7 edge

only if block 5 was reached from a path containing block 3.

Case 3

Store c is also poisoned on the 3 → 6 edge, but here it is safe to prepend poi son(c) to the

start of block 6.

5.4.4 Merging Poison Blocks

Case 1 and 2 of Algorithm 5.3 might create multiple poison blocks for the same store on dif-

ferent CFG edges. It is possible to merge two poison blocks into one if they contain the same

list of poison stores and if they have the same list of immediate successors (when merging,

we keep instructions from just one block). We apply such merging iteratively after algorithms

5.2 and 5.3. For example, Figure 5.5 contains a CFG sub-region of our running example from

Figure 5.4. Algorithm 5.3 inserted poison blocks 10,11,12,13 to poison stores d and e. Block

pairs (11,13) and (10,12) can be merged, because they contain equivalent poison calls and

the same list of immediate successors.

5.4.5 Consumption of Speculative Loads

To match the order of load_consume calls made in the CU with the order of speculative

send_load_addr calls in the AGU we can hoist the load_consume calls to the same block

where the corresponding send_load_addrwere hoisted in the AGU. Then, the CU can either

use the load value or discard it. After hoisting, we need to update all ϕ instructions that use
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Figure 5.6: The hoisting of load consume calls in the CU requires changing ϕ-nodes to select
instructions.

the load value, since the basic block containing the loaded value will have changed. Altern-

atively, we can transform ϕ instructions using the load value into select instructions, as

shown in Figure 5.6, provided that the branch conditions needed to build the select pre-

dicate dominate the basic block where the select will be placed.

Similarly to the effect of store speculation, the hoisting of instructions needed to implement

the consumption of speculative loads might result in empty basic blocks. These can be re-

moved using standard CFG simplification passes.

5.5 Safety and Liveness

In this section, we prove that our transformations preserve the sequential consistency of the

original program and that they do not introduce deadlock. In Section 4.7 in the previous

chapter, we proved that our DAE transformation without speculative memory requests does

not result in deadlock. We now extend this proof to also consider speculative memory re-

quests introduced in this chapter. Since our speculation transformation causes some stores

to not be committed to memory, we consider sequential consistency in this section. Dead-

lock freedom is a corollary of sequential consistency, so we focus only on the latter. As shown

in Chapter 4, deadlock can only occur when there is a mismatch between the number of gen-

erated memory requests in the AGU, and the number or order of loads and stores in the CU.

We show that on every CFG path the order of speculative store requests in the AGU matches

the order of store values in the CU, and that the non-poisoned store value sequence in the

CU matches the store sequence of the original code. Thus, from the preservation of sequen-

tial consistency follows the fact that the number of memory requests made from the AGU

matches the number of loads and stores in the CU.
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In the following discussion, we assume blocks with a single store; the proof trivially extends

to blocks with multiple stores since all speculative stores in the same block are treated the

same. We also assume that all stores are speculative, since the relative order between non-

speculative and speculative stores is guaranteed by definition. Given a a non-speculative

store s1 and a speculative store s2, our Algorithm 5.1 will not change the relative program

order of s1 and s2, i.e., if s1 ≺ s2 in the original program order, then it is not possible to hoist

s2 such that s2 ≺ s1. This follows from the control dependency definition (Section 5.3)—s2

hoisting stops at its LoD control dependency source sr cBB , which must come after the block

containing s1 in topological order. If sr cBB came after s1 in topological order, then the block

containing s1 would also have a LoD control dependency on sr cBB and would have been

hoisted. Since s1 was assumed to be non-speculative, this would create a contradiction. A

similar argument can be made if s2 ≺ s1 in the original program order.

Intuition for Proof

Algorithm 5.2 goes over every possible path through the CU CFG. On any given such path

traversal, it will insert at most one store poison call per store request. A request whose true

block is reached in a given path will not be poisoned on the same path.

Theorem 5.1 (Sequential Consistency Preservation of DAE Speculation). Given an ordered

list of n speculative store requests La = {a0, a1, ..., an−1} made in the AGU loop CFG on some

fixed iteration k, Algorithms 5.2 and 5.3 transform the CU CFG such that every possible path

through its loop CFG on iteration k produces an ordered list of n tagged store values Lv =
{(v0, p0), (v1, p1), ..., (vn−1, pn−1)}, such that each (ai , vi , pi ),0 ≤ i < n triple corresponds to

a A[ai ] ← vi store in the original program CFG, and pi = 1 (poison bit) if that store is not

executed on the path through the original loop CFG on iteration k.

Proof. We use a proof by induction on the transformed CFG.

Base Case La =∅ (no speculated requests in the AGU). Algorithm 5.2 does not change the

CU CFG. Thus, the order of store addresses in the AGU and store values in the CU trivially

matches, La = Lv =∅.

Inductive Hypothesis Assume Lemma 5.1 holds at basic block Bi in the current CFG path.

All store requests a j ∈ La contained in blocks reached before Bi in the path were matched

with the correct store value call (v j , p j ) ∈ Lv , such that p j = 1 if A[a j ] ← v j was not executed

on the path in the original loop CFG.

Inductive Step The next store address in the AGU La sequence is a j+1 ∈ La . The next store

value in the CU CFG path should be (v j+1, p j+1) ∈ Lv , where p j+1 = 1 iff the store A[a j+1] ←
v j+1 is not reached on the current CFG path in the original program. Algorithm 5.2 considers

the ed g esr c → ed g ed st next. There are three cases:

1. ed g ed st = tr ueBB , where tr ueBB is the block containing the store A[a j+1] ← v j+1

in the original program CFG. In this case, Algorithm 5.2 will not poison this store on

this path through the CU CFG, i.e. the next item in the Lv sequence will be the correct

(v j , 0).
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2. ed g ed st ̸= tr ueBB and tr ueBB is not reachable from ed g ed st , in which case Algorithm

5.2 will insert a poison store on this edge. Algorithm 5.3 will map this poison store to

a basic block, with the effect that taking the ed g e will result in the poison call being

executed and control transferring to ed g ed st . The next item in the Lv sequence will be

the correct (v j , 1).

3. ed g ed st ̸= tr ueBB and tr ueBB is reachable from Bl , in which case Algorithm 5.2 will

traverse the path until Case 1 or 2 is matched.

Since theorem 5.1 holds for the base case, for basic blocks on the path up to Bi , and for some

successor block of Bi , it must hold at any block on the path. If it holds at any block on the

path, it holds for the whole path. Since a given store request r is poisoned at most once on a

given CFG edge and since, by definition of Algorithm 5.2, any given path will contain at most

one edge where r is poisoned, we conclude that Lemma 5.1 holds for all paths.

5.6 Applications

In this section, we highlight two applications, other than HLS-generated accelerators, that

can benefit from our speculation implementation: DAE-based prefetchers in CPUs/GPUs,

and memory systems in CGRAs. In the next section, we use HLS as an evaluation vehicle to

study the effectiveness of our speculation transformation. However, we emphasize that our

speculation support in DAE does not rely on any HLS-specific features and can be applied

wherever speculation is combined with the DAE technique.

5.6.1 CPU/GPU Prefetchers

Most existing works on CPU/GPU prefetchers follow the DAE principle and rely on the com-

piler to decoupled address generation from compute [60, 167, 104, 9, 6, 59, 190]. All of these

works suffer from the control-dependency LoD problem (Section 5.3). The work in [104] dis-

cusses adding speculation and predicated stores to the CPU microarchitecture to mitigate

LoD, but their compiler only supports simple diamond and triangle control flow shapes.

In this paper, we have demonstrated generalized compiler support for speculation in DAE,

making these works viable for general control flow and thus applicable to a broader set of

codes.

Concrete Example

The CPU prefetcher proposed in [104] (on which most of the other cited work is based) separ-

ates address generation from compute and extends the ISA with store_addr, load_produce

store_val, load_consume, and store_inv instructions that can be directly targeted by our

compiler.
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5.6.2 Coarse Grain Reconfigurable Architectures

A CGRA consists of an array of Processing Elements (PEs), each with small memories, con-

nected by a network. A CGRA compiler is typically co-designed with the hardware, as the PEs

are typically statically scheduled. The job of the compiler is to map the Control/Data Flow

Graph (CDFG) to the PEs, and many works follow the DAE technique to tackle the memory

wall problem [166, 188, 187, 83, 111, 180, 233, 171]. Our work can help mitigate LoD events

when mapping to CGRAs.

Concrete Example

The CGRA proposed in [171] is a popular example of modern streaming dataflow CGRA. All

communication in the CGRA is FIFO-based, and address generation is explicitly decoupled

at compile time into specialized AGUs. The CGRA compiler generates commands to produce

address streams and to consume/produce values. Control flow is handled with predication

and there is a SD_Clean_Port command to throw away a value from an output port that can

implement predicated stores. Our speculation approach can be directly used in this work.

5.6.3 High-Level Synthesis

In HLS, the CDFG of an algorithm is implemented directly in hardware following a spatial ex-

ecution model. Such an execution model and the freedom to customize the memory system

make decoupling easier in HLS compared to the temporal CPU/GPU execution model. Thus,

HLS-generated accelerators can directly benefit from our work today without any changes,

and it is in this domain that we evaluate our implementation in the next section.

As explained in the introduction chapter, although existing HLS compilers are successful in

building non-trivial accelerators for regular code (e.g., [192]), their static scheduling tech-

niques are sub-optimal for irregular codes. Many research works in academia and industry

have exploited DAE in HLS to improve the efficiency of HLS-generated accelerators for irreg-

ular codes [42, 41, 51, 54, 44, 89, 212, 213, 216]. By adding compiler speculation support, DAE

in HLS can be used on a broader set of codes, which we demonstrate in the next section.

Dynamic Loop Fusion

Another useful application of speculation in a DAE architecture is dynamic loop fusion in

HLS, which will be demonstrated in the next chapter. In that application, it is important that

for every loop iteration all memory requests are send to a specialized DU, even if they will

ultimately not be executed due to control flow. Speculation, as presented in this chapter, is

the most efficient way to achieve this requirement. This application is described in more

detail in Section 6.6 in the next chapter.
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5.7 Evaluation

In the evaluation section from the previous chapter, we have compared our LSQ with spec-

ulation support to the state-of-the-art Dynamatic LSQ [125]. Altough we have shown that

our speculation support enables us to achieve a much better speedup on codes with LoD

problems than previous work, we have focused on evaluating the entire LSQ, not just the

impact of speculation. In this section, we study the impact of speculation in more detail and

we answer the following questions:

• What is the performance benefit of using a DAE architecture (enabled by our specula-

tion approach) to accelerate codes with LoD control dependencies?

• What is the cost of mis-speculation in our approach?

• What is the impact on code size (accelerator area usage) of our speculation approach?

• What is the scalability for nested control flow, which increases the number of poison

stores and basic blocks?

We make the implementation work and evaluation of this chapter publicly available [209].

5.7.1 Methodology

We generate algorithm-specific accelerators using HLS targeting an Intel Arria 10 FPGA. The

C input codes are taken directly from benchmark suites without adding any HLS-specific an-

notations (excluding dynamic structures, e.g., queues, where these were replaced with HLS-

specific libraries).

We use the LLVM-based Intel SYCL HLS compiler version 2023.1.0 [118] applying the stand-

ard DAE transformation (Chapter 3) and our proposed speculation transformation (Section

5.4) as LLVM passes. The codes use deterministic dual-ported on-chip SRAM capable of 1

read and 1 write per cycle. To enable Out-of-Order (OoO) loads, we use our LSQ with specu-

lation support from Chapter 4.

We report cycle counts from ModelSim simulations. We do not report circuit frequency since

our all four approaches have a similar critical path (±10%). Accelerator area usage is ob-

tained after place and route using Quartus 19.2.

Baselines

For each benchmark, we synthesize the following architectures which represent current state-

of-the-art approaches to HLS :

• STA: the default, industry-grade approach using static scheduling [118]. Loads that

cannot be disambiguated at compile time execute in order.

• DAE: a DAE architecture without speculation. OoO loads are enabled by an LSQ. This is

our approach to the HLS of irregular codes described in Chapter 3 and the current

state-of-the-art in academia [213]. This approach suffers from control-dependency

LoDs.
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• SPEC: the same as DAE, but with our speculation technique which mitigates control-

dependency LoDs.

• ORACLE: the same as DAE, but all LoD control dependencies are removed manually

from the input code. This means that there are no control dependencies causing a

LoD anymore and the AGU can be decoupled, but the final result in memory will likely

be wrong, because some stores not meant to execute in the original code are executed

by the ORACLE. The ORACLE results are used as an upper a bound on the performance

of SPEC and show its area overhead.

Benchmarks

DAE architectures optimize the latency between memory and compute and are most be-

neficial for memory-bound codes [104], especially codes with an irregular memory access

pattern that prevents static prefetching [60]. We evaluate nine such benchmarks from the

graph and data analytics domain, using the GAP graph benchmark suite [21] and an HLS

benchmark suite [45] of irregular programs. We select only codes that can benefit from our

SPEC approach, i.e., codes with LoD control dependencies:

• bfs: breadth-first traversal through a graph.

• bc: betweenness centrality of a single node in a graph.

• sssp: single shortest path from a single node to all other nodes in a graph using Dijk-

stra’s algorithm.

• hist: histogram, similar to Figure 5.1b (size 1000).

• thr: zeroes RGB pixels above threshold (size 1000).

• mm: maximal matching in a bipartite graph (2000 edges).

• fw: Floyd-Warshall distance calculation of all node-to-node pairs in a dense graph

(10×10 distance matrix).

• sort: using bitonic mergesort (size 64).

• spvm: sparse vector matrix multiply that skips zero columns (20×20 matrix).

For the graph codes (bfs, bc, sssp) we use a real-world graph email-Eu-core with 1005

nodes and 25,571 edges. The small input sizes are due to long simulation times; the results

scale to larger datasets executed in hardware.

5.7.2 Performance Results

Figure 5.7 reports normalized speedups of each technique over STA. Our SPEC approach

gives on average a 1.9× (and up to 3×) speedup over STA. This is within 5% of the ORACLE

performance. In contrast, DAE without speculation sees a dramatic performance degrada-

tion over STA, because the AGU, DU, CU communication is sequentialized.
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Figure 5.7: Speedup and area overhead of DAE, SPEC and ORACLE normalized to STA. SPEC
achieves an average 1.9× (up to 3×) speedup over STA at a modest average area overhead of
1.36×. Using a DAE architecture without speculation results in a substantial slowdown (the
DAE results).

Table 5.1: Absolute performance and area usage of the four evaluated approaches. (*bc uses
two LSQs).

Kernel
Poison Branches Cycles (1000s) Area (1000s of ALMs [115])

BBs Calls executed STA DAE SPEC ORACLE STA DAE SPEC ORACLE

bfs 1 1 5% 37.2 399 27.6 21.6 7.4 7.5 13.4 13.7
bc 2 2 5%, 18% * 109 406 51.1 42.9 9.7 10.9 16.6 16.6
sssp 1 1 5% 109 391 51.2 48.2 10.6 11.7 17.4 17.4
hist 1 1 98% 2.1 11.1 1 1 2.4 2.8 3.1 3.1
thr 1 3 3% 2.1 13.1 1.1 1 5.7 6.1 6.3 6.6
mm 1 2 69% 12.2 25.1 4.1 4 5.1 5 7.8 7.5
fw 1 1 15% 6.8 16.5 3.3 3.2 3.4 4.2 4 4
sort 1 2 51% 2.4 11.1 1.7 1.7 2.8 4.4 5.3 5.3
spmv 1 1 68% 13.3 18.7 8 8 3.9 5.1 4.4 4.3

Harmonic Mean: 1 3.2 0.51 0.48 1 1.16 1.42 1.36

Branch Taken Rate

The performance gap between SPEC and ORACLE is highest on the bfs and bc codes, because

of its deep pipeline between the load and store that form a RAW hazard. The deep pipeline

means that more store allocations need to be held by the LSQ [151] to guarantee perfect

pipelining. This, together with a low branches executed rate in these benchmarks (Table 5.1),

can cause the LSQ to fill with store addresses that are mis-speculated, potentially stalling
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later loads that have to wait for future store addresses to arrive. This problem can be solved

by increasing the store queue size in the LSQ. The increased number of requests and the

need for more buffering is one of the limitations of our approach. Codes with a shallower

pipeline that do not need large LSQ sizes have no mis-speculation penalty.

To prove this, we choose three benchmarks where we can instrument the input data so that

we can vary the mis-speculation rate. Table 5.2 shows how the mis-speculation cost changes

as a function of the branch taken rate. As can be seen, there is no correlation between the

branch taken rate and the mis-peculation cost, with the slight variability in clock cycle counts

attributable to the subtle difference in the number of true RAW hazards due to the varying

data distribution.

Table 5.2: SPEC cycle counts and standard deviation as rate of branches executed changes.

Kernel
Mis-speculation rate

σ
100% 80% 60% 40% 20% 0%

hist 1044 1013 1029 1029 1012 1051 16
thr 1082 1109 1047 1073 1058 1071 21
mm 4107 4096 4074 4063 4106 4081 18

To summarize, in geneal mis-speculations are not expensive in our approach, because there

is no additional bookkeeping needed to be done on mis-speculation, as opposed to the high

cost of mis-speculations in an OoO CPU. The sole purpose of our speculation is to allow for

the runahead of address generation, and discarding mis-speculated addresses in the DU is

trivial compared to flushing the pipeline of an OoO CPU.

5.7.3 Area Usage

Our speculation approach can increase the number of blocks in the CU, especially for codes

with deeply nested control flow. An increased number of blocks can result in a higher area

usage due to increased scheduler complexity [196].

Table 5.1 shows the absolute area usage of all accelerators. We observe virtually no area

overhead of SPEC over ORACLE on the evaluated benchmarks. This is because most of the

codes have at most two control-flow nesting levels where new poison blocks are inserted,

and sometimes it is possible to reduce the number of blocks using our merging technique

(e.g. two poison blocks in mm merged into one).
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Figure 5.8: Change in area and performance overhead of SPEC over ORACLE as the number of
poison blocks and calls grows.

Impact of Nested Control Flow on Area

To give a more meaningful measure of how nested control flow impacts the area overhead

of our SPEC approach, we create a synthetic benchmark template where we can tune the

number of poison blocks generated by SPEC:

if x > 0 then

stor e1

if x > 1 then

stor e2

if x > 2 then

...

Each nesting level in this template will result in one poison block in the SPEC architecture.

With n stores and assuming one store per nesting level, there will be n poison blocks and∑n
i=1 i = n×(n+1)

2 poison calls.

Figure 5.8 shows how the area and performance overhead of SPEC over ORACLE changes as

more poison blocks are needed. The performance overhead is close to 0% and does not

change with more poison blocks. The area overhead of the AGU unit is similarly close to 0%,

because SPEC hoists stores out of the if -conditions, causing the blocks to be deleted. The

area overhead of the CU unit grows by a few percent (< 5%) with each added poison block,

but even for the pathological case of eight nested if -conditions the overhead is below 25%.

In real codes, with more compute and lower control-flow nesting, the area overhead of SPEC

should be minimal (within a few percent, as demonstrated in Table 5.1).
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5.8 Related Work

Program Slicing

Program slicing is used beyond DAE architectures. Decoupled Software Pipelining (DSWP)

[175] is a popular compiler transformation that decouples strongly connected components

in the program dependence graph into separate pipeline stages mapped over multiple PEs

communicating via FIFOs. The PEs can be CPU threads, or pipeline stages in an accelerator

generated by HLS [150]. Control dependent pipeline stages in DSWP can also be executed

speculatively, although stages with memory operations require versioned memory [225].

Other decoupling policies than the original DSWP formulation are also possible [166, 167,

44], as is time-multiplexing multiple pipeline stages over the same PE [179, 230]. Our work

is different in that we decouple only address generating instructions and speculate only on

memory operations,

Control Speculation

Control speculation has its roots in compilers for Very Large Instruction Word (VLIW) ma-

chines. Instruction scheduling in HLS is very similar to VLIW scheduling (no hardware sup-

port for speculation, static mapping to functional units, etc.), with many algorithms like

modulo-scheduling and if -conversion originally developed for VLIW directly applicable to

HLS [196, 3, 178]. Most recently, predicated execution in the form of gated SSA was proposed

for HLS with speculation support [97]. The speculation support in this and other works re-

quires costly recovery on mis-speculation [127, 220, 14, 154, 93, 231]. Efficiently squashing

speculative computation on the wrong paths in a spatial dataflow architecture is hard, be-

cause the architectural state is distributed [32]. Our speculative DAE sidesteps this issue, not

requiring any recovery: we speculate early (run ahead) in the AGU, and later handle mis-

speculations in the CU by taking an appropriate path in its CFG.

Control Flow Handling in GPUs

Control-flow handling in GPUs is most commonly implemented via predication. The al-

gorithms used to calculate predicate masks and re-convergence points bear a striking re-

semblance to our work [148]. The Single Instruction Multiple Threads (SIMT) stack approach

in GPUs pushes predicate masks onto the stack when entering a control-flow nesting level,

and performs a pop when exiting. Our Algorithm 5.1 implementing speculative requests can

be seen as a pass through the CFG with only push operations, where the push is onto in-

dividual stacks of control-dependency sources. Dually, our Algorithm 5.1 inserting poison

calls can be seen as a pass through the CFG with only pop operations where the placement

of the pops follows a certain policy instead of popping at the immediate post-dominator as

in the traditional SIMT formulation. Modern SIMT implementations often employ CFG path

analysis to optimize the placement of pops to prevent SIMT deadlock/livelock or to improve

performance [78].
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5.9 Conclusion

This chapter demonstrated our general compiler support for speculative memory operations

in DAE architectures that tackles the LoD problem resulting from control dependencies. We

have proposed CFG transformations implementing speculation in the AGU, and poisoning

of mis-speculations in the CU, with a proof of correctness.

We have presented three applications where our work improves support for the efficient

execution of irregular codes: DAE-based CPU/GPU prefetchers that require compiler sup-

port, CGRA architectures, and HLS-generated specialized accelerators. We have evaluated

our work on HLS-generated accelerators, showing an average 1.9× (up to 3×) speedup over

non-DAE accelerators on a set of irregular benchmarks where DAE is not possible without

our speculation. Our approach has no mis-speculation cost and a small area overhead, scal-

ing well to deeply nested control flow.

Future work could extend our speculation approach with support for vector-parallelism by

filling a vector of speculative requests in the AGU and producing a store mask in the CU,

similar to the recent work on decoupled vector runahead prefetching in CPUs [163].



Chapter 6

Dynamic Loop Fusion

Dynamic Dataflow (DDF) HLS uses additional hardware to perform memory disambiguation

at runtime, increasing loop throughput in irregular codes compared to Finite State Machine

with Datapath (FSMD) HLS. However, most irregular codes consist of multiple sibling loops1,

which currently have to be executed sequentially by all HLS tools. FSMD HLS can perform

loop fusion only on regular codes, while DDF HLS relies on loops with dependencies to run

to completion before the next loop starts.

In this chapter, we present dynamic loop fusion for HLS, a compiler-hardware co-design

approach that enables multiple loops to run in parallel, even if they contain unpredictable

memory dependencies. Our only requirement is that memory addresses are monotonically

non-decreasing in inner loops. The choice of restricting address expressions to monotonic-

ally non-decreasing functions allows us to perform memory disambiguation across loops,

which is not possible with existing methods based on Load-Store Queues (LSQs), which

make no assumptions about the underlying memory address distribution. As we show in

Section 6.3, this monotonicity requirement is not too restrictive, with many codes falling

into this class.

We also present a novel program-order schedule for HLS, inspired by polyhedral compilers,

that together with our address monotonicity analysis enables dynamic memory disambigu-

ation that does not require searching of address histories and sequential loop execution. Our

evaluation shows an average speedup of 14× over FSMD HLS and 4× over DDF HLS.

6.1 Introduction

HLS increases designer productivity, makes code more maintainable, accelerates verifica-

tion, and makes design space exploration easier [193]. However, this is usually only true for

regular codes where the compiler can discover instruction- and memory-level parallelism

statically [196, 37]. Domains like graph analytics and sparse linear algebra contain irregu-

1. Loops with the same loop depth and the same loop parent.

92
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for (i = 0; i < N; ++i)

A[f(i)] = workA(A[f(i)]);

for (j = 0; j < M; ++j)

B[g(j)] = workB(A[g(j)]);

(a) Two sibling loops with non-affine access patterns.

A[5] A[7] A[8]A[1]

A[2] A[4] A[6] A[8]i-loop
j-loop

(b) Pipeline achieved by current static and dynamic HLS tools. The j -loop needs to wait for the
i -loop to finish.

A[2] A[4] A[6] A[8]

A[5] A[7] A[8]A[1]    

i-loop
j-loop

(c) Pipeline achieved by our work. The A[1] access in the j -loop is deemed safe because the most
recently accessed address in the i -loop is 2 and we know that the i -loop address expression is
monotonically non-decreasing—we know that the i -loop will not access address 1 after it has
accessed address 2.

Figure 6.1: Dynamic Loop Fusion enables fine-grained parallelism across loops with
memory dependencies.

lar codes with unpredictable memory dependencies and control flow, which break the tra-

ditional static scheduling approach. This prompted research into DDF HLS [126] and ap-

proaches to combine it with existing industry-grade FSMD HLS compilers, which we have

described in the previous chapters [214].

As described in Chapter 4, DDF HLS uses Load-Store Queues (LSQs) to perform dynamic

memory disambiguation at runtime [112, 125, 212, 97, 61, 62]. These works effectively pipeline

single loops with arbitrary memory dependencies, but they have to sequentialize multiple

loops if they share a memory dependency. For example, they would sequentialize the i- and

j-loops in Figure 6.1a, resulting in the Figure 6.1b pipeline. But, as shown in Figure 6.1c, there

might be plenty of parallelism across the two loops at runtime when the address values be-

come concrete.

There are two reasons why current DDF HLS tools have to sequentialize these loops. Firstly,

they use a program-order schedule that relies on loops to run to completion before the next

loop starts. For example, the LSQ used in Dynamatic HLS sequentializes LSQ requests based

on the program order of basic blocks [125]; other approaches carry explicit dependencies

through the pipeline, preventing downstream loops from starting without resolving the de-

pendency [77, 212]. Secondly, they rely on the checking of address histories to detect hazards,
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without making any assumptions about the underlying address distributions. This makes

them general, but requires them to wait for all addresses from one loop to be produced be-

fore they can start processing the next loop. These are two key challenges that we tackle in

this paper.

Static loop fusion (called kernel, operator, layer, or task fusion in other domains) also fails to

fuse the loops in our Figure 6.1a example, because the fused loop may introduce a negative

dependency distance [132]—the compiler gives up if it cannot prove that f (i ) = g ( j ) =⇒ i <
j . This is assuming that the f (i ) and g (i ) functions can be analyzed by the compiler in the

first place. If that is not the case, e.g., if they involve an array access, then loop fusion is also

not applied. Optimizing compilers can apply preparatory transformations like loop peeling,

interchange, or shifting to increase the chances of loop fusion being legal [244], however,

these preparatory transformations do not integrate well with the instruction scheduling al-

gorithms used in HLS [196, 37]. They often introduce additional control flow, loop exits, and

new dependencies, which can result in a worse schedule produced by the HLS tool [246].

Moreover, if there are more than two loops, deciding the best subset of loops to fuse becomes

NP-complete [63], and this is even before deciding if preparatory transformations should be

used.

Our dynamic loop fusion approach can automatically synthesize a Read After Write (RAW)

check that will protect the A[g ( j )] read in the Figure 6.1 code, achieving the fine-grained

inter-loop parallelism from Figure 6.1c. We decouple each loop into an independently sched-

uled Processing Element (PE). Memory dependencies across loops are handled in a Data

Unit (DU) specialized by our compiler for the program. Our only requirement is that the f(i)

and g(j) functions are monotonically non-decreasing in the innermost loop (outer loops

can be non-monotonic). This is a weaker requirement than the affine functions expected

by static loop fusion, allowing us to fuse more loops, including codes with data-dependent

addresses.

To the best of our knowledge, we are the first to propose dynamic memory disambiguation

that can work across loops. We make the following contributions in this chapter:

• A compiler analysis, based on the chain of recurrences theory [16, 80], that checks

if addresses are monotonically non-decreasing in inner loops, and that detects non-

monotonic outer loops (Section 6.3).

• A hardware-efficient program-order schedule representation that does not require se-

quentializing loops. We show how the compiler instruments Address Generation Units

(AGUs) with instructions that generate the schedule for each memory operation. We

also show how outer loop that are not monotonic can be integrated with our schedule

(Section 6.4).

• A parameterizable DU performing dynamic memory disambiguation across loops. We

show how the compiler can specialize the DU given the dependency graph of the pro-

gram and the address monotonicity analysis. We discuss how the DU optimizes DRAM

bandwidth by using dynamic coalescing and on-chip store-to-load forwarding (Sec-

tion 6.5).
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Figure 6.2: An example DAE streaming FPGA architecture.

• An evaluation on irregular applications showing an average speedup of 14×over FSMD

HLS and 4× over DDF HLS. We discuss which codes benefit from dynamic fusion and

we study the impact of store-to-load forwarding (Section 6.7).

6.2 Background

In this paper, we focus on codes using DRAM, as its unpredictable latency and limited band-

width pose greater challenges than BRAM. There is no fundamental reason why we could

not protect BRAM or use a memory hierarchy with BRAM caches, which we briefly discuss

in Section 6.8.

In this section, we describe FPGA streaming architectures commonly used with DRAM. We

discuss techniques to optimize DRAM bandwidth in irregular codes that inform the design

of our DU. And we describe existing loop fusion approaches and their compiler theory, in-

forming the design of our program-order schedule representation.

6.2.1 Baseline Streaming Architecture

Streaming FPGA architectures are a popular choice for implementing DRAM-based codes

[53, 221, 199, 85, 226]. They decouple memory accesses and compute into separate PEs,

either automatically [85, 226] or manually [53, 221, 199]. The use of a streaming architecture

is predicated on an accurate memory dependency analysis so that memory shared between

PEs can be transformed into FIFO communication. If the analysis fails, as it invariably does

for irregular codes, then the shared data has to be communicated via DRAM and the execu-

tion of PEs has to be sequentialized, thus losing much of the benefits of using a streaming

FPGA architecture.

To tackle the problem of irregular memory accesses, we propose to use a DU parameterized

by our compiler, shown in Figure 6.2, that protects memory shared across loops by perform-

ing dynamic memory disambiguation at runtime. The DU interfaces with DRAM, but is also

able to directly forward values from producer to consumer PEs if the respective load/store

operations exhibit temporal locality, thus saving DRAM bandwidth as in traditional stream-

ing FPGA architectures.
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Figure 6.3: Example decoupling of a loop forest. A leaf loop is decoupled into its own PE,
which includes loop control of the outer loops. Parent loop body instructions are included
only if they come before the leaf loop in the topological order. FIFOs are used to commu-
nicate scalar data dependencies (e.g. from loop 1.1.1 in PE 0 to loop 1.1.2 in PE 1). FIFOs are
written in the loop exit block and read in the loop pre-header block. Each loop PE might have
an AGU producing memory requests fo the accesses in that loop PE.

Using DRAM Bandwidth Efficiently

We use Altera’s DRAM IP generated by its HLS compiler to implement DRAM Load-Store

Units (LSUs). Our DU can have multiple LSUs connected to the DRAM controller using a ring

topology, depending on the number of load/store operations in the input program. To use

DRAM bandwidth efficiently, the LSUs coalesce multiple loads/stores into one wide request

to the memory controller in order to use the full DDR channel width (512-bit in our case).

To achieve this for codes with irregular access patterns, the LSUs use additional logic and

buffering to perform coalescing dynamically [235, 12]. DRAM requests are buffered until the

largest possible burst can be made. If no new requests arrive in N consecutive cycles, then

an incomplete burst is made (in our case N is set to 16 by the FPGA vendor).

Asynchronous address supply is essential for efficient use of DRAM, because of the high ac-

cess latency, and to allow the dynamically bursting LSU to look ahead in the address stream—

addresses should be supplied in advance of the corresponding consumer/producer execu-

tion. Streaming FPGA architectures achieve this by following the decades-old Decoupled Ac-

cess/Execute (DAE) principle [205], where the address generation is decoupled into its own

thread of execution, running ahead of the compute threads that consume and produce val-

ues [166, 42, 51, 89]. Note that dynamic loop fusion is not limited to DAE architectures; it can

be realized in other model of computations, e.g., with dynamic dataflow [126].

DAE Transformation

A DAE architecture is automatically generated by our compiler, following approach described

in previous chapters. For completeness, we describe the steps of this transformations here

as well, taking the context of codes with multiple loops into account.

Given a forest of loop trees, loop Compute Units (CUs) and AGUs are decoupled into their

own PEs following the strategy from Figure 6.3. AGUs feed addresses to the DU; the DU sends

load values to and receives store values from CUs. All communication is FIFO based, fol-

lowing a latency-insensitive protocol [88]. To analyze which values should be computed by
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which decoupled unit and which values should be communicated, we use the def-use chain

encoded in the SSA form of the code (each SSA value usage can be traced to its unique defin-

ition [194]). We follow a standard approach to automatically generate a DAE architecture

[214]:

1. AGU: Each memory operation to be decoupled is changed to a send_address FIFO

write that sends the memory address to the DU.

2. CU: Dually, in the CU each memory operation to be decoupled is changed to a con-

sume_value or produce_value FIFO read function that receive or send values to or

from the DU.

3. Dead Code Elimination (DCE): We apply DCE in the CU to remove any unnecessary

address generation code. In the AGU, we delete side effect instructions that are not

part of the address generation def-use chains, and then also apply DCE followed by

control-flow simplification to remove redundant basic blocks.

6.2.2 Static Loop Fusion

Polyhedral compilers represent memory operations inside loop nests as integer sets [96, 29,

98]:

1. The domain set describes the set of loop iterations in which a statement is executed.

2. The schedule set maps domain elements to a point in time. Given two schedule in-

stances, we can determine which one comes first in program order.

3. The access set maps domain elements to a point in space, representing the accessed

memory location.

For example, the domain (D), schedule (S), and access (A) functions of the i-loop store stA

and j-loop load ldA in Figure 6.1a are:

DstA = {stA[i ] : 0 ≤ i < N }, SstA = {stA[i ] → [0, i ]}, AstA = {stA[i ] → f (i )}

DldA = {ldA[ j ] : 0 ≤ i < M }, SldA = {ldA[ j ] → [1, j ]}, AldA = {ldA[ j ] → g ( j )}

The set intersection of two access relations can be used to find dependencies between the

two corresponding operations.

Static loop fusion for the code in Figure 6.1a can be expressed as a transformation on the

schedule of the load: TFusi on = {[1, j ] → [0, i ]} (together with transformations to account for

N ̸= M). TFusi on might introduce a new dependency between the store and load. The trans-

formation is only legal if the dependency distance of the new dependency is non-negative:

this implication has to hold AstA [k] = AldA [l ] =⇒ k < l , where k, l are some iterations in the

fused loop. In other words, if in the original program a given store writes to an address that

a given load later uses, then in the fused loop the store must execute in an earlier iteration

than the load.
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The legality of loop fusion can be reduced to checking the legality of pairwise loop permuta-

tion [186]—the permutation should not break dependencies. However, if the address expres-

sions do not form affine functions, then the legality check does not have enough informa-

tion about dependency distances to be useful. One can over-approximate non-affine func-

tions as affine [23], but this does not help in all cases, e.g., over-approximation can introduce

spurious dependencies on codes with data-dependent addresses. Our dynamic loop fusion

is more lenient, requiring only monotonically non-decreasing addresses. However, we stress

that our aim is not to replace the polyhedral approach to static loop fusion. Clearly, static

loop fusion is preferable whenever possible, especially since it can be combined with other

transformations in one framework [186]. Rather, we aim to enable fusion in cases where

static approaches are fundamentally infeasible.

6.3 Address Monotonicity

We now describe the concept of address monotonicity in more detail and contrast it with

affine addresses.

6.3.1 Motivation for Monotonicity

Assume that we have a memory dependency across loops. If we can prove at compile time

that the address of the dependency source is monotonically non-decreasing, then at runtime

the loop with the dependency destination only has to check if the address it accesses is

lower than the most recently accessed address in the source loop—the dependency destin-

ation does not need to see the full history of memory accesses made in the other loop. This

paves the way for our efficient hardware dynamic memory disambiguation across loops de-

scribed in Section 6.5. We now describe how addresses can be proven to be monotonically

non-decreasing.

6.3.2 Monotonic Chain of Recurrences

Compilers can represent expressions inside loops as a Chain of Recurrences (CR) [16, 80, 184]:

{base,⊙, step},

where base and step can themselves be a CR, and ⊙ ∈ {+,×,÷}. To reason about memory

addresses, we typically use the constraints: base, step ∈N if they are not a CR; and ⊙= {+,×}.

Both LLVM and GCC provide a CR analysis called Scalar Evolution (SCEV) [24, 183].

A CR is affine iff it is an add recurrence and iff its step is a constant expression not containing

any CRs [98]. A CR is monotonically non-decreasing iff its step is non-negative [237]. For

brevity, we use the term monotonic to mean monotonically non-decreasing in the rest of the

paper.
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Monotonic CRs are more general than affine CRs and handle control flow better [237]. For ex-

ample, the CR of a row-major N ×N matrix traversal is affine and monotonic: {{0,+, N },+,1}.

But the CR for an FFT traversal is not affine anymore, only monotonic: {{0,+,1},+, {2,×,2}}.

An address expression is monotonic w.r.t. a given loop depth iff the loop CR expression con-

sists of only monotonic CRs. Monotonically non-increasing addresses (i.e., using step ∈ Z

and adding ÷ to ⊙) can also be supported by just flipping signs in the hazard detection logic,

but we do not discuss this further in this paper.

6.3.3 Monotonicity in Real Codes

Most codes which traverse data structures produce addresses that are monotonic [101]. For

example, graph representations, such as an adjacency list, store nodes in such a way that

the traversal over all nodes, or over all neighbors of a node, produces monotonic addresses.

Another examples are codes with variable stride accesses, such as FFT-like traversals found

in many signal processing workloads, which also produce monotonic addresses.

Programmer Annotated Address Monotonicity

Data-dependent accesses cannot be analyzed using the CR formalism, yet their underly-

ing access pattern is often monotonic. For example, sparse matrix formats like Compressed

Sparse Row (CSR) produce address sequences that retain the partial order of the original row-

major matrix traversal. Other data-dependent accesses that are not monotonic by definition

can be made monotonic with pre-sorting. To support dynamic loop fusion on these codes,

we allow the user to annotate memory operations asserting that the address is monotonic in

a given loop.

6.3.4 Non-Monotonic Outer Loops

We require a monotonic CR for the innermost loop of the memory dependency source; the

outer loop CRs can be non-monotonic. Consider this producer-consumer example:

for (i=0; i<ITERS; ++i)

for (j=0; j<N; ++j)

store A[j];

for (k=0; k<M; ++k)

load A[k];

The store innermost j -loop is monotonic, but the outer i -loop is not—advancing the i -loop

causes the store address to reset. We encode this information in our schedule (Section 6.4),

so that in this case our DU will know that it has to wait for the last i -loop iteration to be sure

that a given A[ j ] store address in the j -loop will not be repeated.
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For any given schedule n-tuple, where n is the nesting level of the corresponding memory

operation, our compiler detects which, if any, of the n −1 outer loops has to wait for its last

iteration to be sure that the address is not reset in the n-th loop (the innermost loop). For

each such loop depth, we add an additional bit to the schedule signaling to the DU if that

schedule element was generated on the last iteration of its corresponding loop. Our DU uses

this information in the hazard detection logic. This bit is only a hint and is not essential for

the correctness of the hazard detection logic, as will be explained in Section 6.5. No last-

iteration-hint bits are generated for monotonic loop depths.

Detecting Non-Monotonicity

Given an address expression f (i1, i2, ..., in) nested within n loops (where n is the innermost

loop depth), a k,1 ≤ k < n loop depth is non-monotonic if there exists a j > k loop depth such

that C Rk .step < (C R j .step × tr i pCount j ), where C Rk .step is the step component for loop

k, and tr i pCount j is the number of times loop j executes. In other words, a given outer loop

k is non-monotonic if there exists a deeper nested loop whose entire execution contributes a

larger value to the address value than one k-loop iteration. A C Rk for loop k might not exist,

in which case that loop depth is trivially marked as non-monotonic.

For example, the outer loop in a row-major N × M , N > 1, M > 1 matrix traversal is mono-

tonic, because its step is M , which is not lower than C R.step × tr i pCount = M of the inner

loop. On the other hand, the outer loop in a column-major traversal is non-monotonic, be-

cause its step value is 1, which is lower than C R.step × tr i pCount = M × M of the inner

loop.

The above expressions are usually symbolic. We substitute symbols with their maximum

values (after a value range analysis). This makes our monotonicity checks conservative—

we might get false positives, but never false negatives. The checks could be performed at

runtime instead, which would make the result precise. However, false positives did not oc-

cur in our evaluation, so we leave this for future work.

6.4 Program-Order Schedule for Hardware
Our schedule representation allows multiple loops to run in parallel, as opposed to being se-

quentialized as in existing dynamic memory disambiguation approaches for HLS [112, 125,

212, 97, 62]. Section 6.2.2 discussed the schedule representation used in polyhedral com-

pilers. We use a similar representation at runtime, but with the following optimizations for

hardware:

1. Each loop depth is represented by one element in the schedule tuple, instead of a

multi-dimensional point.

2. Each schedule element is incremented by 1 for each invocation of the loop body cor-

responding to that element—no dependencies between schedule elements are intro-

duced across loops. Repeated invocations of inner loops do not cause the correspond-

ing schedule elements to wrap around.
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3. Schedule comparisons between two operations involve just one comparison between

the schedule elements corresponding to the innermost shared loop depth of the oper-

ations, as opposed to comparing whole tuples as is the case in the polyhedral sched-

ules.

Consider these two nested loops for example:

for (i=0; i<N; ++i)

for (j=0; j<2; ++j)

ld_0;

st;

for (k=0; k<4; ++k)

ld_1;

Our DAE pass will decouple this code into two loop PEs:

for (i=0; i<N; ++i)

for (j=0; j<2; ++j)

ld_0;

st;

for (i=0; i<N; ++i)

for (k=0; k<4; ++k)

ld_1;

Assume i = 1, j = 0 for the left PE; and i = 0,k = 3 for the right PE. The st schedule will

be {2,3}; the ld1 schedule will be {1,4}. To check if a st schedule instance comes before

a ld1 schedule instance in program order, written as schedulest ≺ scheduleld1 , we com-

pare the schedule elements corresponding to the i -loop. Similarly, to check schedulest ≺
scheduleld0 , we compare the j -loop schedule elements.

The below table shows the difference in evolution of our and the polyhedral schedule rep-

resentation for the st operation:

loop iterations: i=0, j=0 i=0, j=1 i=1, j=0 i=1, j=1

polyhedral schedule: {0, 0, 0, 1} {0, 0, 1, 1} {1, 0, 0, 1} {1, 0, 1, 1}

our schedule: {1, 1} {1, 2} {2, 3} {2, 4}

The additional dimensions in the polyhedral schedule are used to represent program or-

der within loops. How can we avoid the additional dimensions in our schedule and still

recover program order within loops? For example, we want to know that scheduleld0 ≺
schedulest even when both schedules will be equal to {2,3}. Our insight is to configure the

schedule comparator based on the topological order of memory operations in the program.

In a schedul eld0 [1]⊙ schedulest [1] comparison, where the index 1 refers to the i -loop, we

will configure ⊙ =≤. Dually, to check schedulest ≺ scheduleld0 , we would synthesize the

comparison: schedulest [1] < scheduleld0 [1].
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Pending Buffers 

ACK Schedule ACK Address
REQ Schedule REQ Address

load/store 1

. . .

ACK Schedule ACK Address
. . .

load/store n

Hazard Detection Logic

Figure 6.4: Data Unit (DU) consisting of of n Load Store Units.

In summary, our compiler pass statically configures schedule comparators used in the DU

for each dependency pair, so that we can recover total ordering without additional schedule

dimensions and without the need to compare entire schedule tuples.

6.4.1 Integration of Non-Monotonic Outer Loops

For each non-monotonic outer loop k, we add a l ast I ter bit to the schedule that will be set

in the AGU if the corresponding request was generated on the last k-loop iteration. Our DU

uses l ast I ter bits as hints to expedite disambiguation—they are not essential for correct-

ness. Non-monotonic loops for which l ast I ter bits cannot be generated are still supported.

6.4.2 Schedule Generation in AGUs

Our compiler adds schedule-generating instructions for each AGU memory request as fol-

lows:

1. At the start of the AGU, an n-tuple schedule is initialized to 0, where n is the request

loop depth.

2. At each loop depth 1 ≤ i ≤ n, a schedule[i ] increment instruction is inserted to the

beginning of the first non-exiting basic block of the i -loop body.

3. For each non-monotonic loop k, we add a l ast I ter [k] comparison instruction that

evaluates to true if this is the last k-loop iteration. This involves calculating loop pre-

dicates one iteration in advance. The l ast I ter bit is just a hint and is set to false if the

loop predicate cannot be calculated one iteration in advance.

4. At the end of the AGU, each schedule element is set to a sentinel value that signals to

the DU that there will be no more requests from this AGU.

Schedules are implemented in 32-bit registers and are shared between all memory opera-

tions in the same AGU. Future work could use range analysis to decrease schedule bit sizes.
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6.5 Data Unit with Hazard Detection

Each program base pointer that has unpredictable dependencies, or that has dependencies

across loops that cannot be fused statically, is assigned its own DU to perform dynamic dis-

ambiguation. Given a producer-consumer memory dependency pair, the responsibility of

the DU is to stall the consumer memory access until the dependency is resolved by the pro-

ducer. Figure 6.4 shows a high-level DU organization. In our implementation, each program

load and store gets its own port; future work could study port sharing.

Each load and store keeps track of the address and schedule corresponding to the most re-

cent ACK received from, and the next request to be sent to, the memory controller. It also has

buffers to hold addresses, schedules, and values (in case of stores) for pending requests (not

yet acknowledged requests) .

The hazard detection logic compares the address and schedule of its next request with the

address and schedule of the most recent ACK of its dependency sources. The next request

will only be sent to the memory controller and moved to the pending buffer if the check suc-

ceeds. The check and enqueueing logic is spread across multiple pipeline stages—there is no

negative load latency impact, because, thanks to the DAE architecture, load addresses run

ahead of load consumers giving us ample cycle budget. The pending buffers are implemen-

ted in registers to enable associative searching needed for store-to-load forwarding (Section

6.5.5)—their size depends on the DRAM burst size.

In the rest of this section, we describe how the monotonicity property and our schedule rep-

resentation are used to enable dynamic memory disambiguation across loops.

6.5.1 Hazard Detection Problem Statement

We are trying to check if a memory operation a has a data hazard with memory operation b.

Assume a is nested in n loops, b is nested in m loops, and they both share a loop at depth

k,k ≤ n,k ≤ m. Informally, given a r eq.schedulea and r eq.addr essa corresponding to the

next a request, and ack.scheduleb and ack.addr essb corresponding to the most recent

ACK for operation b, our hazard detection logic deems the next a request safe if either of the

two conditions holds:

1. The next a request comes before the most recent b ACK in program order.

2. The next a request comes after the most recent b ACK in program order, however,

r eq.addr essa will not be accessed by operation b in the the schedule range from

ack.sdcheduleb to r eq.schedulea .

We now describe each of these points in more detail, before composing the equations imple-

menting these two checks into a general Hazard Safety Check. In the following discussion,

we use the term “(schedulea , scheduleb) time range” to mean the sequence of memory

requests b′ such that schedul ea[k] < scheduleb′[k] < scheduleb[k], where k is the inner-

most common loop depth of operation a and b. We use open parenthesis and box brackets

to represent open and closed intervals, respectively.
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6.5.2 Comparing Schedules

If operations a and b do not share any loops (k = 0), then the relative schedule program

order will always match their topological program order and we do not need to synthesize

any comparisons. Otherwise, if the shared loop depth k > 0, we synthesize the following

comparison to check if the next a request comes before the most recent b ACK:

(Program Order Safety Check)

r eq.schedulea[k]⊙ack.scheduleb[k] ∥(
r eq.schedulea[k]⊙ r eq.scheduleb[k] & noPendi ng Ackb

)
Where ⊙ =≤ if a ≺ b in topological program order, else ⊙ =<. The noPendi ng Ack term is

a single bit that is set if b is not waiting for any ACKs. The second equation line makes sure

that the a request is deemed safe if there are no further b requests in the [ack.scheduleb ,

r eq.schedulea) time range.

Since we only use the schedule element corresponding to the innermost shared loop of the

two memory operations, we do not need to synthesize the rest of the schedule.

6.5.3 Checking Address Reset in Schedule Range

If the above check fails, then for request a to be safe we check that operation b will not ac-

cess r eq.addr essa in the (ack.scheduleb , r eq.schedulea) time range. If all operation b

loop depths are monotonic, this is a simple r eq.addr essa < ack.addr essb check. If some b

loops are non-monotonic, we need to guarantee that ack.addr essb will not be reset in the

considered schedule range:

(No Address Reset Check)

l ast I terC heck & r eq.schedulea[l ] = ack.scheduleb[l ]+δ

Here, δ= 1 if a ≺ b, else δ= 0; l is the deepest non-monotonic loop depth in the b operation

loop nest such that l ≤ k; and the l ast I terC heck term is an AND-reduction of the b l ast I ter

bits:

ack.l ast I terb = (bi t1, ...,bi tk ,bi tk+1, ...,bi tm−1︸ ︷︷ ︸
AND-reduction

,bi tm),

where bi t j ,1 ≤ j ≤ m is set to 1 at compile time if the j loop is monotonic and thus optimized

away from the reduction; otherwise bi t j will be set dynamically on the last iteration of the j

loop according to the procedure from Section 6.4.1.

The first term in the No Address Reset Check guarantees that all non-monotonic child loops

of k are on their last iteration, and thus will not reset the b address. The second term guaran-

tees that the b address will not reset as a result of advancing in some parent loop of k. Only

bits corresponding to non-monotonic loop depths are considered in the AND-reduction. Sim-

ilarly, if all [1,k] loops are monotonic, then the second term is omitted.
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Example

Consider the following code:

for (; a < A; ++a) // depth 1: non-monotonic

for (; b < B; ++b) // depth 2: monotonic

for (; c < C; ++c) // depth 3: non-monotonic

for (; e < E; ++e) // depth 4: monotonic

mem_op_b;

for (; d < D; ++d) // depth 3

mem_op_a;

Here, the b address is non-monotonic at loop depth 1 and 3. The innermost common loop

depth of operations a and b is k = 2. The innermost non-monotonic b loop depth that is

lower than k is l = 1. Thus, the No Address Reset Check synthesizes r eq.schedulea[1] =
ack.scheduleb[1] to guarantee that b will not have any more l-loop iterations until reaching

the r eq.schedulea point. And it will check if ack.l ast I terb[3] is set to guarantee that the b

address will not reset by advancing in the non-monotonic 3 > k loop.

6.5.4 Hazard Safety Check

With the ability to compare program order schedules and guaranteeing that addresses do

not reset in a given schedule range, we can now construct a general data hazard check. The

next a request is safe to execute w.r.t the most recent b ACK if:

(Hazard Safety Check)

Pr og r amOr der Sa f et yC heck ∥(
r eq.addr essa < ack.addr essb & No Addr essResetC heck

)
Complexity

The Hazard Safety Check simplifies to just one r eq.addr essa < ack.addr essb comparison if

a and b do not share loops. If b has non-monotonic loops, then the No Address Reset Check

adds at most one AND reduction and one equality check. The number of comparisons grows

to three if there is a shared loop thanks to the Program Order Safety Check. In general, given a

program with n operations, if we check every possible dependency pair, then the number of

comparisons is O (n2)—reducing complexity becomes important as the number of loads and

stores grows. Loads do not have to check for hazards against other loads. Also, Write After

Read (WAR) checks where the written value depends on the read value can be omitted, as

previous work has already pointed out [124].

However, by exploiting the transitive property of our Hazard Safety Check we can prune

many more hazard pairs. Assume that we have three memory operations with the follow-

ing topological program order c ≺ b ≺ a. The safety check of a against c can be omitted,

since a already checks against b, and b checks against c. Operation c still has to be checked
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for ...

for ...

ld0

ld1

st0

st1

for ...

ld2

ld3

st2

st3

Before prunning:

44 hazard pairs

After pruning:

10 hazard pairs

WAR pairs pruned due to

write depending on read:

2

Pairs pruned due to transitive

property of Hazard Safety Check:

32

Figure 6.5: Result of pruning hazard pairs in the later evaluated FFT code. Each memory
operation checks for safety against at most one operation per loop depth (e.g., ld0 checks
against st3 in its first loop depth, and against st1 in the second).

against a if there is a Control Flow Graph (CFG) path via a loop backedge from a to c. With

pruning, the worst case number of comparisons reduces to O (nd), where d is the maximum

loop depth. For example, in the an FFT code which we later evaluate, the above pruning pro-

cedure decreased the number of hazard safety checks from 44 to 10 (32 checks were pruned

due to our transitivity property, 2 due to a store to load dependency). Figure 6.5 shows the

result of such pruning.

6.5.5 Store-to-Load Forwarding

We support store-to-load forwarding by allowing loads to directly access values from a de-

pendent store’s pending buffer. We specialize the Hazard Safety Check for RAW dependen-

cies: instead of using the address and schedule of to the most recent store ACK, we use the ad-

dress and schedule of the next store request. In addition, we perform an associative search of

the pending store buffer, using the load address as a key. If the modified RAW check succeeds,

then the dependent value will either already have been committed and acknowledged, or it is

in the store pending buffer and our associative search will find it. Hits from the buffer search

can be used by the load directly, without issuing a DRAM request. If there are multiple val-

ues with the same address in the pending buffer, the youngest is chosen (this is cheap to

implement in FIFO buffers).

The case where two stores that can both forward a value with the same address to the same

load is impossible. Assume the following program order of operations that all use the same

address: stor e0 ≺ stor e1 ≺ load . The stor e1 will not be able to move its value to its pending

buffer until after the stor e0 value has been acknowledged—its Write After Write (WAW) haz-

ard detection will stall it. Conversely, the load will not use the stor e0 value, because it will

stall on the RAW check against stor e1—the load will wait for stor e1 to move its value to its

pending buffer.
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With forwarding, some WAW checks cannot be pruned anymore, because load RAW checks

do not use store ACKs. In our above example, if all operations are in the same loop, then

the stor e0 WAW check against stor e1 cannot be pruned, because the load ACK might be

updated as a result of store forwarding from stor e1, with the forwarded value not yet being

acknowledged in stor e1.

6.5.6 Intra-Loop RAW Hazards

A timely disambiguation of RAW hazards, where both the load and store are in the same loop

PE, is crucial since any unnecessary stalls would be repeated on every iteration, resulting

in a large throughput reduction. As our evaluation in Section 6.7 will show, store-to-load

forwarding becomes crucial in intra-loop RAW dependencies.

In addition to forwarding, there is another term needed in the RAW Hazard Safety Check to

make intra-loop RAW hazard checks timely. Consider this simple code:

for (i = 0; i < N; ++i)

d = data[i];

data[i] = work(d);

The load and store address distribution is {0,1,2, ...}—there is no actual RAW hazard, but

assume that we do not know this at compile time. In this situation, the RAW Hazard Safety

Check for a given load at iteration k will only succeed once the next store request in the DU

is for iteration k −1 and there are no outstanding store ACKs. If the next store request is for

an earlier iteration, e.g., an earlier store request is waiting for its store value, then the load

would have to be stalled, even though it would be perfectly safe to execute it.

We solve this issue by adding a NoDependence single-bit term to the RAW Hazard Safety

Check. For each intra-loop RAW hazard pair, NoDependence is set in the AGU to the result

of r eq.addr essload > r eq.addr essstor e , where r eq.addr essload is the next load address to

be sent to the DU, and r eq.addr essstor e is the most recent store address that was sent to the

DU. When NoDependence is true, and the No Address Reset Check evaluates to true, then

the load can be deemed safe since the monotonicity property implies that all store addresses

up to r eq.scheduleload are lower than r eq.addr essload .

Note that a similar check is not needed for intra-loop WAW dependencies, since stores do

not stall the datapath if sufficient buffering is provided for the store values.
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for ...

if (cond)

store;

load;

(a) Store in if -condition.

send st req

br cond

header

latch

send st req

send ld req

hoisted

(b) AGU speculates requests.

br cond

header

latch

consume ld

send

valid st

send in-

valid st

(c) CU kills mis-speculations.

Figure 6.6: Memory requests in if -conditions are speculated using the transformations de-
scribed in chapter 5.

6.6 Handling Control Flow

The Hazard Safety Check relies on the ability of the DU to detect that a given memory oper-

ation has completed a certain schedule time range or a certain address range. This assumes

that AGUs supply an operation’s schedule and address for every loop iteration. This assump-

tion is broken by operations inside if -conditions, which can lead to a deadlock. Consider

the code in Figure 6.6(a). If the if -condition in this loop is never true, then the store will

never update its ACK address and schedule, and thus the RAW Hazard Safety Check in the

DU would never succeed. Eventually, the AGU would fill the load request FIFO, resulting in

a deadlock.

This could be avoided by using separate AGUs for each memory operation—the store AGU

would be guaranteed to at least send a final sentinel value, which would eventually cause the

RAW hazard check to succeed. However, this would again mean that some loops need to run

to completion before the check can be performed.

A better approach is to speculatively send memory requests. We adapt our work from the

previous chapter that implements speculation in a DAE architecture. In our example, the

store request can be hoisted out of the if -condition in the AGU. Then, the store values going

to the DU from the CU can be tagged with a valid bit that signals if the value should be

committed or not, depending on the actual control flow at runtime. Figure 6.6 shows the

AGU and CU CFGs that implement such speculation.

Previous work used speculation to remove Loss of Decoupling (LoD) problems in DAE archi-

tectures [212, 104, 103]. A LoD arises when the AGU has dependencies on values that have

to be loaded from a DU or calculated by a CU, preventing the AGU from running ahead [26].

Our approach is the same as previous work, but we apply it to all if -conditions with the goal

of producing an (addr ess, schedule) pair for each loop iteration in the AGU. As a side be-

nefit, speculation also makes us immune to the control-dependency LoD problem.
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Figure 6.7: Handling of mis-speculated stores in the DU. Before being moved to the pending
buffer, invalid stores are also checked for safety to uphold the transitive property of the
Hazard Safety Check. They do not submit DRAM requests. When reaching the head of the
pending buffer, they update the ACK registers without having to wait for an ACK.

Mis-speculated loads are executed normally in the DU. The read in the CU CFG is moved to

the same location where it was speculated in the AGU. This guarantees that the order of load

requests made from the AGU is the same as the order of load value consumption in the CU,

on every CFG path. After reading a speculated load value, the CU can simply not use it if it

takes a CFG path where the load value is not needed. Since the basic block location of the

speculated load value consumption changes, we also need to adjust any ϕ-nodes that use

the load value.

Mis-speculated stores are detected using the valid bit in store values coming from the CU.

Invalid stores are never committed to memory—there is no need for costly rollbacks. How-

ever, invalid stores should eventually update the ACK registers to signal that a given time and

address range was completed by the store. Figure 6.7 shows our approach to this.

If a whole loop that contains memory operations is under an if -condition, then we fold the

if -condition into the loop body and execute the whole loop speculatively. This was not a per-

formance problem in our evaluation, but future work could investigate a whole loop specu-

lation scheme that does not require executing all loop iterations.

6.7 Evaluation

We implemented our compiler-hardware co-design in the Intel HLS compiler [117] version

2023.1.0. Figure 6.8 shows our tool flow. We have a generic DU template which is paramet-

erized given information about the input code gathered by our compiler analysis, such as

the number of memory operations and their respective address expression monotonicity

analysis, the dependency pairs for which hazards need to be checked, and their respective

topological ordering in the program CFG, which is used to check the respective program or-

der of two memory operations efficiently. Our implementation and evaluation are publicly

available [210].
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Figure 6.8: Our compiler/hardware co-design flow. We use the Intel HLS tool in this paper.
Our DU is parametrized by the number of loads and stores. The DU disambiguation logic is
parameterized for each hazard pair (dependency source and destination) based on the loop
nest monotonicity of the dependency source; and the relative topological ordering of the
dependency source relative to the destination.

6.7.1 Methodology

We evaluate dynamic loop fusion on ten benchmarks where there is a possibility for parallel-

ism across loops that is not exploited by current static and DDF HLS tools. All baselines use

the Intel HLS compiler:

• STA: baseline Intel FSMD HLS compiler performing automatic static loop fusion. This

approach uses the same dynamically coalescing LSU as our DU.

• LSQ: an implementation of dynamic scheduling within the Intel HLS compiler using

the work from the precious chapters [214]. An LSQ is used for memory accesses, but

without support for dynamic coalescing. This approach is representative of all current

LSQ implementations in HLS [112, 125, 212, 97, 61, 62].

• FUS1: the dynamic loop fusion approach described in this paper, but with no store-to-

load forwarding.

• FUS2: FUS1 with store-to-load forwarding enabled.

We execute our benchmarks in hardware on the Altera Arria 10 GX1150 FPGA board [119]

with 2 banks of DDR4 memory (the memory controller uses two 512-bit channels). We use

large datasets to ensure data is distributed across DRAM pages, resulting in variable latency.

Each code is executed three times and the minimum time is reported. Area, reported as Ad-

aptive Logic Modules (ALMs) [115], and frequency are taken from Quartus 19.2 reports after

place and route. Our approach does not increase the number of DSPs or BRAMs.

6.7.2 Benchmarks

We use irregular codes from DDF HLS research [45, 126, 214], choosing codes where there

are sibling loops that can benefit from our dynamic loop fusion. For some benchmarks, we

unroll outer loops to expose two inner loops that can be dynamically fused; or we compose

multiple kernels to simulate applications composed of multiple tasks. Some codes have ad-

dress expressions that can be analyzed for monotonicity; some codes use data-dependent

accesses that are asserted to be monotonic by the programmer. We now list our benchmarks

and the parameters used in this evaluation:
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• RAWloop, WARloop, WAWloop: each benchmark has two loops, each with one memory

access, forming a RAW, WAR, or WAW dependency across loops. We use these bench-

marks to compare our speedup to the maximum theoretical speedup. Complexity O (n).

We set n = 10000000.

• bnn: one layer of a sparse binarized neural network. There are two loops, both with

data-dependent accesses that prevent fusion. We mark the inner loops as monotonic

since we know that the sparse representation is monotonic. Complexity O (n2). We set

n = 10000.

• pagerank: uses a compressed sparse row (CSR) format to iterate over the graph. An-

other two loops in the algorithm have a regular access pattern, but they cannot be

fused because the irregular loop is between them. The complexity is O (i ter s×(nodes+
ed g es)). We set i ter s = 10, nodes = 325729, ed g es = 1497134 using the graph called

web-NotreDame from [146].

• fft: an FFT with the middle loop unrolled by a factor of two. The non-affine accesses

prevent loop fusion. The LSQ and STA approach is equivalent for fft, because there

are no hazards within loops that would need an LSQ. Complexity O (n log n). We set

n = 1048576.

• matpower: sparse matrix power using the CSR format with the outer loop unrolled by

a factor of 2. Complexity O (nz3), where nz is the number of non-zero matrix values.

We set nz = 4096.

• hist+add: addition of two histograms. The STA approach can fuse the two histogram

loops, but not the addition. Three O (n) loops. We set n = 10000000.

• tanh+spmv: t anh applied to a vector before it is used in a COO sparse matrix-vector

multiplication. The t anh loop has a store in an if -condition, which we speculate. One

O (n) loop followed by a O (nz) loop, where nz is the number of non-zero matrix values.

We set n = 10000, nz ≃ 10000.

6.7.3 Results

Table 6.1 printed at the end of this chapter shows detailed area and performance results

for the four approaches that we evaluate. Figure 6.9 visualizes the speedup of dynamic loop

fusion over the other approaches, together with the area overhead. Dynamic loop fusion with

forwarding is on average 14× faster than FSMD HLS and 4× faster than DDF HLS that uses

an LSQ.

The following paragraphs describe the results in detail.
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Figure 6.9: Speedup and area usage normalized to the FSMD HLS approach. A speedup be-
low 1 for the LSQ approach implies a slowdown relative to the FSMD approach.

Theoretical Speedup

The RAW/WAR/WAW loop benchmarks have a theoretical speedup of 2×, but FUS2 achieves

a speedup of around 1.7×. The lower speedup is due to the lower FUS2 circuit frequency on

these benchmarks. The LSQ approach sees a slowdown relative to STA in the RAW/WAR loop

benchmarks, because it cannot use a dynamically bursting LSU which stalls the load loop

significantly (the LSQ used in [214] uses a non-bursting LSU to guarantee that hazards are

not violated [212]). Store loops, e.g., WAWloop, do not suffer as much from a lack of bursting

in the LSQ approach, because stores do not stall the LSQ pipeline.

Impact of Store-to-Load Forwarding

We observe that forwarding has no observable benefit on codes where the forwarding hap-

pens across loops, e.g., RAWloop. This is expected in our evaluation setup, since without

forwarding, the only penalty is an initial wait for the store ACK to be updated. Forwarding

across loops may become beneficial if the DRAM bandwidth becomes a bottleneck, which is

likely to occur in practice once data parallelism is exploited. Forwarding becomes crucial if

the store and load are in the same loop and the dependency distance is lower than the store

latency (e.g., fft, matpower, or pagerank). Future work could use a more precise cost model

and enable forwarding only where beneficial, e.g., always use forwarding for RAW depend-

encies inside loops, but for RAW dependencies across loops enable it only once the memory

bandwidth is saturated.
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Which Codes Benefit from Dynamic Loop Fusion?

It only makes sense to fuse loops with similar time complexities. Consider the pagerank

benchmark as an example where fusion offers only a modest 1.1× speedup over the LSQ ap-

proach. The code consists of two O(n) loops which go over graph nodes and one O(n2) loop

which goes over edges. Even if all three loops are fused, the runtime will still be dominated

by the O(n2) loop. We used the web-Google graph [146] with 875,713 nodes and 5,105,039

edges, which only has a theoretical speedup of ≈ 1.3 over LSQ.

We see the biggest benefit of using dynamic loop fusion in the ability to unroll outer loops

of irregular codes without having to worry about breaking data dependencies (e.g., fft and

matpower), and in the ability to perform task fusion at a fine-grained level (e.g., hist+add

and tanh+spmv).

Area Overhead

Dynamic loop fusion with forwarding comes at an average area increase of 24% and fre-

quency degradation of 9% over FSMD HLS. The most area-hungry component is the dy-

namically coalescing LSU. The STA approach also uses the costly coalescing LSUs, which

amortizes the area overhead of fusion. The LSQ approach uses a simpler LSU, which explains

its low area overhead.

For example, in the RAWloop benchmark, the FUS2 DU consumes 1,550 ALMs (1,200 of

which are dedicated to the pending buffers and its associative searching), whereas a single

load LSU consumes 2,840 ALMs and the DRAM interconnect consumes 68,089 ALMs. If the

OpenCL kernel runtime and DRAM interconnect are not counted, then our area overhead

of dynamic loop fusion with forwarding increases to 2.1×. However, codes not using DRAM

will not need the area budget for pending buffers, resulting in an overhead closer to what we

report in table 6.1.

Hazard pairs pruning has a large impact on the area and critical path of codes with many

loads and stores. For example, the FFT code uses two DUs, each with 4 loads and stores. The

unpruned FFT FUS2 version uses 32% more area and achieves a 28% lower frequency than

the pruned version. Our DU implementation is not particularly optimized and we expect its

already modest critical path and area overhead can be brought down significantly, especially

if the logic between the bursting LSU and our DU can be shared—due to the closed source

nature of the HLS tool that we used in this evaluation, this was not possible in this work.
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6.8 Limitations

Our dynamic loop fusion approach can be integrated with common loop transformations

used in HLS. For example, loop tiling does not break the monotonicity of inner loops. Data-

flow designs—concurrent loops communicating via FIFOs–are automatically generated by

our compiler given the program loop forest, as shown in Figure 6.3. Loop unrolling—that is

replicating the datapath of the inner loop—is also compatible with our DU, since we do not

impose any limits on the number of memory ports. However, our current implementation

does not work with automatic loop unroll pragmas, and manual unrolling is needed instead.

This is because unrolling pragmas are typically implemented in the closed-source back-end

of vendor compilers, and our compiler passes operate on LLVM IR in the middle-end. We do

not study unrolling in this work, because the types of irregular codes that we consider in this

paper do not lend themselves to the same automatic parallelization as regular codes, e.g.,

due to unpredictable loop-carried dependencies.

In this work, we consider DRAM streaming applications, relying on a dynamically bursting

and coalescing LSU to discover memory parallelism at runtime and on store-to-load for-

warding to increase temporal locality. In our current design, the amount of on-chip data

reuse is limited by the size of the pending buffers, which have to be kept small to make asso-

ciative searching feasible. A cache memory hierarchy implemented in BRAM could further

decrease the number of DRAM requests and increase temporal locality. Recent work has ad-

vanced the state-of-the-art of non-blocking caches on FPGAs by storing Miss Status Holding

Registers (MSHRs) in BRAM and using hash-based, instead of associative, searching [240,

13]. In a DU with cache, the pending buffers could be changed to MSHRs with added sched-

ule information and our store-to-load forwarding could be removed altogether, since tem-

poral locality would be provided by the cache. We will explore this future work in Section 7.3

in the next, concluding chapter.

Using a BRAM-based cache and loop unrolling are orthogonal goals—supporting multiple

memory ports is cheaper to do in BRAM than in DRAM, both in terms of the circuit area

and available bandwidth. However, since the automatic partitioning of BRAM into multiple

banks cannot be performed for irregular code, a memory arbiter would have to be integrated

to support multiple BRAM ports, as for example in [46, 243, 242].

6.9 Related Work

Our loop monotonicity analysis benefits from decades of research on abstract interpreta-

tion of recurrences [5, 28, 149, 16, 80, 184]. Loop monotonicity has first been exploited in a

practical setting by Gupta et al. to synthesize race detection runtime checks in fork-join par-

allel programs [101]. However, they did not consider shared loops and non-monotonic outer

loops.
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We have already discussed the basics of the polyhedral compiler transformation framework

in Section 6.2.2, stating that codes with non-affine memory addresses or loop bounds can-

not be analyzed. Recent work has combined the Inspector/Executor (I/E) approach [201,

160, 70] with polyhedral transformations [207, 197, 228]. The idea behind the I/E approach

is to generate inspector code which gathers values of variables unknown at compile-time;

and/or rearranges data structures in memory for better locality and to increase dependency

distances. The small overhead of the inspector code is offset by the throughput improve-

ment obtained in the executor code. For example, Strout el al. proposed the Sparse Polyhed-

ral Framework which uses “uninterpretable functions” to represent non-affine terms such

as data-dependent memory accesses [207]. By proving basic properties about an uninter-

pretable function in the inspector code (e.g., monotonicity) a large amount of potential data

dependencies can be ruled out, allowing the executor code to exploit more parallelism [227].

Most recently, [52] proposed sparse fusion, an I/E technique that inspects the access pat-

terns of multiple irregular loops and then creates an execution schedule that allows sibling

loops to execute in parallel. Although we share the same goal as these works, our approach is

fundamentally different. Instead of relying on inspector code to discover data dependencies,

we resolve data dependencies “on the fly” in our DU. We also provide a finer-grained mono-

tonicity compiler analysis, discovering which specific loop depths cause an address expres-

sion to visit an earlier value, rather than deciding on the monotonicity of. Our dynamic loop

fusion work has no such limitation.

All previous work on dynamic memory disambiguation in HLS sequentializes loops that

share a data dependency [125, 77, 212, 2, 97]. Cheng el al. investigated compile time checks

to prove that two loops do not access the same memory locations [48]—their approach is

the same as existing polyhedral optimizers, but uses a different formulation. Others have

exploited the SCEV framework to augment the static analysis with dynamic checks in HLS

[152, 153, 68]—these approaches are similar to multi-versioned SIMD CPU code, where the

fast (SIMD) path is taken if a set of conditions evaluates to true at runtime. All these works

either only improve the throughput of single loops, or execute separate loops in parallel only

if all iterations are independent. They rely on the commutative property because they can-

not guarantee sequential consistency of accesses to the same memory spaces. Our dynamic

loop fusion work has no such limitation.

6.10 Conclusions

In this chapter, we have presented dynamic loop fusion, a compiler-hardware co-design ap-

proach that enables dynamic memory disambiguation across loops without the need for

address history searches. Our hazard detection logic is enabled by constraining our trans-

formation to monotonic loops and by a novel program-order schedule representation, and

by assuming monotonically non-decreasing addresses are in inner loops. We have presented

a compiler analysis, based on the chain of recurrences formalism, to detect loop monoton-

icity. We have also shown that most codes contain addresses that are monotonic, making our
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approach applicable to a large class of applications. On an evaluation of 10 irregular codes,

dynamic loop fusion provided an average speedup of 14× over FSMD HLS and 4× over DDF

HLS. As far as we know, our work is the first attempt to exploit parallelism across loops with

memory dependencies in irregular codes.
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Table 6.1: Performance, area usage, and circuit frequency of the STA, LSQ [214], FUS1, and FUS2 approaches. The second column reports the
number of PEs and DUs generated by our FUS approach, together with loads and stores per DU.

Kernel
Number of Area in 1000s of ALMs Freq in MHz Time in seconds

PE DU LD ST STA LSQ FUS1 FUS2 STA LSQ FUS1 FUS2 STA LSQ FUS1 FUS2

RAWloop 2 1 1 1 78 79.6 82.5 83.3 304 268 263 239 6.8 33.3 3.9 4.4
WARloop 2 1 1 1 78.1 79.6 82.2 82.2 279 264 261 261 7.1 33.5 4.1 4.1
WAWloop 2 1 1 1 78.3 80.8 88.4 88.4 294 269 251 251 6.8 7.5 4.1 4.1
bnn 2 1 2 2 78.9 85.1 93.5 95.2 279 244 266 257 39.2 3.2 1.6 1.6
pagerank 3 2 2/1 2/1 81.5 87.8 114.1 115.2 262 237 246 246 35.7 0.8 1.6 0.7
fft 2 2 4/4 4/4 102.7 102.7 150.4 152.2 246 246 221 219 7.8 7.8 2.8 1.7
matpower 2 1 4 2 82.1 97.6 105.4 108.6 274 193 260 257 18 3.7 12.3 1.6
hist+add 3 2 2/2 1/1 79.2 87.9 97.0 99.3 286 220 282 270 3.9 1 0.2 0.2
tanh+spmv 2 2 2/1 1/1 80.2 93.1 99.5 101.8 274 225 260 264 4.4 0.9 0.5 0.5

Harmonic Mean: 1 1.07 1.22 1.24 1 0.86 0.92 0.9 1 0.12 0.1 0.07



Chapter 7

Conclusion

In this chapter, we summarize our research contributions and show how they contribute to

our thesis that a closer compiler-hardware co-design enables a more efficient HLS. Then, we

discuss future work that will address the limitations of our existing implementation. Finally,

we conclude with an open-ended discussion of the remaining research challenges in the

fields of HLS and spatial computing and we describe possible research efforts that could

address them.

7.1 Summary

This thesis shows that closer co-operation between the compiler and the instantiated hard-

ware IPs during the HLS process can result in hardware that achieves higher throughput, uses

fewer resources, and can operate at a higher frequency when synthesizing irregular codes

compared to previous state-of-the-art HLS tools.

The above goal was achieved by proposing selective dynamic scheduling discovered by the

compiler in Chapter 3, which compared to the state-of-the-art Dynamic Dataflow (DDF)

HLS tool [126] lowers the area usage by 2.1×, increases the maximum circuit frequency by

2.5×, while also increasing throughput in many codes by 2×—resulting in an area-delay im-

provement of over 10×. The foundational technique enabling selective dynamic scheduling

is automated program slicing, informed by our compiler analysis, which decouples the pro-

gram along sources of irregularity. We have shown that such a decoupled execution is a more

efficient way to introduce dynamic behavior into circuits compared to previous state-of-the-

art approaches.

In Chapter 4, we have shown that a closer co-design of a Load-Store Queue (LSQ) IP and the

compiler passes that instantiate the LSQ, together with a compiler-based DAE transforma-

tion decoupling the address generation part of the code, results in a much lower cost of sup-

porting dynamic memory scheduling than previous state-of-the-art works. This work further

improves the area efficiency and maximum circuit frequency of our approach compared to

DDF HLS [126] when an LSQ is needed, with an area-delay improvement of 14×.

118
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In Chapter 5, we have extended our dynamic memory scheduling approach, which relies on

the DAE technique, with speculation support in the compiler. This contribution is not only

vital in the context of using DAE in HLS-based accelerators, but as we have argued in [215], it

also enables the use of DAE speculation in many different high-performance architectures.

This contribution further increases our area-delay advantage by a factor of two, meaning

that our approach results in an area-delay improvement of up to 30× compared to DDF HLS

[126] on codes that can benefit from our speculation.

Finally, in Chapter 6, we have demonstrated that a close compiler-hardware co-design and

the idea of compiler-based decoupling can enable new forms of parallelism by proposing

dynamic loop fusion. If the memory addresses in an irregular code are monotonically non-

decreasing, then dynamic loop fusion can replace the LSQ-based memory memory disam-

biguation proposed in Chapter 4, allowing us to execute multiple loops in parallel, where

they had to be sequentialized before. Even single-loop programs, the Data Unit (DU) from

the dynamic loop fusion chapter can reduce the area usage and critical path compared to

our LSQ, because it does not rely on expensive address history searches. When possible, dy-

namic loop fusion gives us another > 4× area-delay improvement over DDF HLS by enabling

parallelism across loops.

In summary, our thesis makes several important steps to make the HLS of irregular codes

more efficient. On codes that can benefit from all our contributions, our approach to HLS of

irregular codes can result in up to two orders of magnitude over the previous state-of-the-

art DDF HLS approach [126]. This proves our claim made in the introduction chapter that

a closer compiler-hardware co-design and the idea of decoupled execution can improve the

quality of the HLS of irregular code by orders of magnitude.

7.2 Composability of Transformations

Our transformations proposed throughout the technical chapters are composable. A given

irregular code might be decoupled into multiple Finite State Machines with Datapath (FS-

MDs) using the technique from Chapter 3. Then, memory operations in individual FSMDs

might be connected to our LSQ as described in Chapter 4. This involves decoupling the

FSMD that holds the memory operation further to create a DAE architecture. The case where

multiple FSMDs produce memory requests for the same LSQ, and thus have to communic-

ate tag tokens, is also covered by treating the tag tokens as input and output dependencies

in the Chapter 3 transformation. Similarly, the algorithms from Chapter 5 that implement

speculative memory requests in such a DAE architecture compose without issues with the

above transformations.
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In our actual implementation, the transformations are expressed as rewrite rules1. We first

analyze the input code to determine which of the transformations are beneficial, creating the

required rewrite rules. During the analysis stage, we can already calculate how many FSMDs

are required, and we map each rewrite rule to a specific FSMD. Then, we apply the actual

transformations by creating the required number of FSMDs, and we iteratively apply match-

ing rewrite rules (we order the rewrite rules according to a predetermined partial order).

The dynamic loop fusion transformation from Chapter 6 can be seen as a specialization of

the LSQ from Chapter 4. The DU in dynamic loop fusion also performs dynamic memory

disambiguation, but it does so across the entire program in parallel, instead of in one loop

at a time, and it is more efficient in terms of area usage and critical path because there is no

need for an address history search as is the case in an LSQ. However, whereas the LSQ can

work on an arbitrary memory address distribution, the DU in dynamic loop fusion can only

work on monotonically non-decreasing addresses. Thus, when possible, an implementation

should choose to use the DU from Chapter 6 for dynamic memory disambiguation, even

when the program has a single loop, and fallback to an LSQ when the address distribution

cannot be proven to be monotonic.

7.3 Limitations & Future Work

Our implementation has several limitations, highlighted throughout the technical chapters,

that can be addressed with future work.

Support for Vector Parallelism

Our current memory interfaces can be extended to support a vectorized datapath. Such a

support would not be able to just use existing techniques, since there might be data hazards

between the elements within a vector. This is the main reason why our evaluations we did

not included vectorized code.

General vector execution support for irregular code is a hard problem. Vector ISAs in CPUs

use masking to support irregular code. Our memory interfaces (the LSQ from Chapter 4 and

the DU from Chapter 6) could use a similar approach. In fact, the typically memory protocols

like AXI or BRAM requests already support the masking of individual bytes.

1. https://github.com/robertszafa/elastic-sycl-hls/blob/main/include/

AnalysisReportSchema.h

https://github.com/robertszafa/elastic-sycl-hls/blob/main/include/AnalysisReportSchema.h
https://github.com/robertszafa/elastic-sycl-hls/blob/main/include/AnalysisReportSchema.h
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Support for a Cache Hierarchy

To further increase data locality in HLS-based accelerators for irregular codes we could use

a cache hierarchy, exploiting the high throughput of FPGA BRAMs. Recent work has ad-

vanced the state-of-the-art of non-blocking caches on FPGAs by storing Miss Status Holding

Registers (MSHRs) in BRAM and using hash-based, instead of associative, searching [240,

13]. We could apply the same principles of a closer compiler-hardware co-design to pro-

duce finely tuned cache hierarchies specialized for a given code. A cache would subsume

the store-to-load forwarding of the DRAM-based LSQ in Chapter 4 and of the dynamic loop

fusion forwarding in Chapter 6, increasing the data locality compared to our current imple-

mentation.

More Robust Code Splitting

Implementing our ideas in the Intel SYCL C++ compiler meant that we could high-quality

achieve results relatively quickly, however, a more realistic implementation would need to

use a different design. This is because the backend of Intel SYCL C++ compiler is closed

source, introducing a number of complications. One of the complications is that our code

splitting transformations that automatically generate a DAE architecture have to be imple-

mented using SYCL kernels. SYCL kernels are a user facing feature, and from an engineering

perspective are undesirable as an implementation vehicle of optimization transformations,

not to mention that each additional SYCL kernels incurs area overhead due to the runtime

having to manage its invocation, arguments, completion, etc.

Due to these problems, future work could implement our ideas in an open-source HLS com-

piler, that would allow for a more robust handling of the DAE code splitting transformation.

One could go even further by using an IR and computational model with explicit support

for decoupling sections of code, something we discuss in the next section. We discuss CIRCT

[91] as one possible such tool in the next section.

More Accurate Cost Model

Another problem of using a closed source HLS tool is that its cost model of the operation

latencies, throughput, and area usage is not accessible. An accurate cost model is crucial to

our analysis from Chapter 3 that decides if a given code section should be scheduled dy-

namically or statically. In our work, we have solved this problem with micro benchmarks to

gather estimates of these metrics for our specific FPGA board. However, as we have men-

tioned in the limitations section in Chapter 3, such an approach is not scalable and might

not produce accurate results. For example, the closed-source back-end tool might decide to

perform operation chaining under certain conditions—executing multiple dependent oper-

ations in a single clock cycle—which would throw of our analysis. As mentioned in the above

paragraph, an open source HLS tool would solve this problem by providing a direct API to its

underlying cost model.
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7.4 Discussion & Future Directions

In this section, we discuss future work that goes beyond the implementation problems of

this thesis and provides a more forward-looking treatment of HLS and the field of spatial

computing.

7.4.1 High-Level Synthesis from Sequential Control Flow to

Guarded Atomic Actions

We discussed the Guarded Atomic Actions (GAA) computational model in Section 2.3, and

mentioned that it has the potential of making our decoupling transformations developed

in this thesis easier to implement from the compiler engineering perspective. We believe

that the GAA model could provide the semantics needed to reason about decoupling sec-

tions of code without the need for explicit code splitting. The GAA computational model is

already used to implement latency-insensitive designs composed of multiple co-operating

Finite State Machines [170]—such architectures are very similar to the DAE architectures

generated by our compiler passes.

The difficult part of using the GAA model in HLS is the translation of sequential control flow

to GAA. The challenge lies in composing the rules in such a way that parallelism is maxim-

ized, but the accesses to shared state do not break sequential consistency encoded in the

sequential control flow program. In a way, this is approach is attacking the problem of gen-

erating pipelined designs from a new vantage point and might turn out to have more poten-

tial than existing static pipelining algorithms and dataflow circuits. Furthermore, the GAA

model has strong formal foundations, making circuits generated by an HLS tool using this

model potentially easier to verify [64].

Guarded Atomic Actions MLIR Dialect

Future work could develop an MLIR dialect to model the GAA computational model. As

mentioned above, a GAA dialect could significantly reduce the complexity of the decoupling

transformations developed in this thesis. Such a dialect, together with a translation from a

sequential control flow MLIR dialect (e.g., scf) could be used as a core of a new HLS tool.

CIRCT [91] is a framework of MLIR hardware-oriented dialects and tooling that provides,

among other things, an HLS driver. A new GAA-based HLS tool could reuse the existing

CIRCT infrastructure.



Chapter 7. Conclusion 123

7.4.2 New Intermediate Representations for High-Level Synthesis

Starting with the development of LegUP HLS at the University of Toronto [38], all current

commercial HLS tools use LLVM IR. Recently, MLIR (described in Section 2.1.2) has emerged

as a tool which significantly simplifies the creation of new IRs. Since then, many efforts have

been made in the HLS community to encode hardware specific information in the IR by cre-

ating new MLIR dialects. Most of the efforts can be found in the CIRCT project, which con-

tains tens of hardware-specific dialects aimed at making domain problems like scheduling

or verification easier [91].

We believe that there is still a greater innovation potential in using hardware-specific IRs.

One step towards this is efforts like the LLHD IR proposed in [204], which in addition to

solving many of the pain points of using Verilog or VHDL as an IR passed between tools,

enables spatial co-ordinate information to be attached to the IR. Such additional informa-

tion can be used to enable high-level tools, like HLS compilers, to guide low level tools, like

place & route tools, in order to achieve a given performance metric. Today, such an interface

is starkly lacking, but will become increasingly important as the size of FPGAs grows and a

greater co-operation between low- and high-level tools becomes necessary [100, 99].

7.4.3 New Spatial Dataflow Architectures

Using FPGAs is challenging because of their fine-grained reconfigurable architecture, which

is requires lengthy place & route procedures to create a design. On the other hand, the recon-

figurability is desirable as an insurance policy against future algorithmic changes that could

not be accommodated by an ASIC. However, there is a large design space between FPGAs

and ASICs in the level of reconfigurability. CGRAs trade bit-level configuration ability for a

higher compute density and a shortened reconfiguration time [187, 165, 94]. It is safe to say

that innovation in this field will continue and many of the techniques developed for HLS

compilers, including the contributions of this thesis, will also make CGRA compilers work

better on irregular codes.

7.4.4 The Inspector/Executor Approach

Finally, we would like to highlight a technique that can further increase the efficiency of ac-

celerators for irregular code. In the Inspector/Executor approach, the original code is trans-

formed to extract an inspector code section with the aim of executing it before the actual

Executor computation to gather crucial parameters not available at compile time [228, 207].

We believe that such an approach would integrate well with the popular accelerator offload

model where the host CPU sends data and invokes an accelerator kernel—the CPU could run

the inspector code relatively cheaply, without having to provision area on the accelerator to

implement the inspection. This would extend the close compiler-hardware co-design pro-

posed in this thesis with additional co-operation with the runtime.
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As a concrete example take the problem of dynamic memory disambiguation. In the in-

spector code on the CPU, we could gather the dependency distances and stream them to

the FPGA accelerator. The FPGA could use the dependency distances to delay operations

exactly the number of cycles needed for the dependency to be resolved. Such an approach

would not require to use the LSQ, thus reducing circuit area and potentially increasing the

frequency.
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