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Abstract

The human aorta is the main and largest artery in the human body, transporting oxy-
genated blood, water and vital nutrients to all parts of our bodies. An aortic dissection is
an acute life-threatening cardiovascular disease. It occurs when a small tear in the artery
wall is pressurised by the blood flow, thus causing the tear to propagate. This process
can quickly lead to death due to a restricted supply of blood flow, damage to the aortic
valve or a full rupture of the artery wall. Understanding the fundamental mechanics of
this process is crucial for the prevention and treatment of the disease. The current under-
standing of this process comes from a number of phenomenological studies which do not
fully account for the role of the aortic microstructure. Our arteries are complicated three-
layered structures, with each layer of the artery playing a different crucial mechanical role.
The mechanical properties of each layer are due to their differing microstructures. These
microstructures vary at the cellular level, with some layers being made up on laminated
rows of smooth muscle cells and other layers being made up fibrous bundles of tissue. It
follows that understanding the tearing process from a microscopic perspective is key to
creating a mathematical model of aortic dissections.

The goal of this thesis is to develop a new multiscale model of material failure which
fully explains the role of an arbitrary microstructure at a macroscopic level. To do this
we first begin by introducing the damage phase field method. Using this method, we
create a damage model comprising of two partial differential equations: an equation of
motion and a damage evolution equation. Our model also has several physical constraints,
including the irreversibility of damage and an energetic criterion for damage evolution,
such constraints ground the model in the physical world. By applying this model over an
arbitrary microscopic domain we can approximate the aortic microstructure as a composite
material made of many different constituents. This provides us with an extremely large
set of partial differential equations which one cannot practically work with. However,
by upscaling this microscopic model we create a simpler macroscopic model comprising
of an equation of motion and a damage evolution equation. This is done by employing
asymptotic homogenisation and an assumption of local periodicity at the micro scale.
With careful analysis we can fully upscale all the microscopic modelling constraints to
the macro scale. Our macroscopic model accounts for the microscopic material properties
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and geometry by encoding them in a series of effective macroscopic coefficients. These
coefficients themselves are calculated by solving a series of local cell problems relating the
microscale to the macroscale.

For completeness, we introduce numerical methods for solving our damage phase model.
We apply these numerical methods to both our microscopic and macroscopic models of
material failure. By solving our models in one-dimension we perform a parametric analysis
of both models. This analysis allows us to demonstrate a good agreement between the
microscopic and macroscopic models, as one would expect. We also demonstrate that the
microscopic model converges to the macroscopic model as the ratio of the microscopic and
macroscopic length scales tends towards zero. Next, we use the finite element method
to create a numerical method for solving our damage model in higher dimensions. To
illustrate the utility of our model we consider a set of toy simulations. We achieve this by
simulating a trouser test, where a rectangular configuration is clamped at one end and at
the other end we pull the material apart. This action essentially creates a tear through the
material resulting in a final configuration that looks like a pair of trousers. By performing
a trousers test we are able to convey how our multiscale model can be used to study the
effects of small changes at the micro scale. We find that these small changes can have a
large effect on the outcome of the tearing process at the macroscale.

It follows, then that our developed multiscale model of the damage phase field method
will be a valuable tool for further study into how changes in a materials microstructure
can affect material failure. Throughout the thesis we remark upon how this model can be
applied to the phenomena of aortic dissections. However, before this application can be
performed it is commented upon how we require more data about the aortic microstructure
to be collated. With this information we can calculate the appropriate ranges of effective
coefficients describing the aorta. Allowing us to accurately study a wide variety of physical
situations leading to aortic dissections.
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Chapter 1

Introduction

The cardiovascular system, sometimes called the circulatory system, is responsible for de-
livering nutrient rich, oxygenated blood to every part of the body [60]. Our cardiovascular
system consists of a complex network of organs, arteries, and microscopic blood vessels
dispersed throughout the whole body [36]. At the centre of this network is the heart,
which functions as a muscular pump propelling blood through the cardiovascular system
[70]. This process begins with oxygen depleted blood from the body being pumped into
the heart’s right atrium. Next, blood enters the right ventricle and is sent to the lungs for
oxygenation via the pulmonary artery. After which, the now oxygen rich blood travels up
the pulmonary vein and enters the heart’s left side, first reaching the left atrium. Finally,
this blood is pumped into the left ventricle, ready to enter the body’s network of arteries.

Blood is pumped out of the heart’s left ventricle into a network of arteries. The large
blood vessels carry oxygenated blood away from the heart to various tissues and organs.
Arteries begin to branch into smaller blood vessels called arterioles, which themselves
eventually branch into a system of microscopic capillaries [101]. These thin capillary
vessels cause red blood cells to deform and squeeze out all the oxygen and nutrients they
are carrying. Gases, water and nutrients in the capillary vessels are then diffused through
the capillary walls, feeding the body’s various organs and tissues [60]. Capillaries then
merge into veins, which carry the oxygen depleted blood back towards the heart. These
veins progressively merge into larger vessels, ultimately becoming the superior and inferior
venae cavae, which return blood to the right atrium of the heart [95]. This continuous
flow of blood ensures the proper functioning of tissues and organs.

The human aorta, a vital component of the cardiovascular system, serves as the body’s
main artery. Being the largest blood vessel in the body, it stretches the length of the torso,
emerging from the heart’s left ventricle before arching downwards and travelling towards
the abdomen. Its function is to distribute oxygenated blood from the heart to the entire
body, ensuring that nutrients and oxygen reach every cell and piece of tissue in our body.
To perform this role, the aorta must be able to withstand large pulsating pressure changes.

1



CHAPTER 1. INTRODUCTION 2

The large arteries, including the aorta, have elastic properties, allowing them to expand
and contract [33]. The elasticity of the aorta is crucial for maintaining optimal blood
pressure and ensuring a smooth, continuous flow of blood.

Unfortunately, due to the aorta dealing with such large pressure, it is possible for the
aorta to tear. This phenomenon is called an aortic dissection, which is a serious medical
emergency that can often lead to death [116]. Aortic dissections occur when tears form
on the inner lining of the aorta, allowing blood to flow into the aortic wall and driving
further tearing. As blood flows into the tear, it usually propagates longitudinally down
the aorta, causing the layers of the aortic wall to delaminate [4]. If the tear fully ruptures
the aorta, this will cause an individual to bleed out internally in mere minutes. Usually,
an aortic dissection results in the creation of a ‘false’ lumen, a secondary channel alongside
the ‘true’ lumen for blood to flow into, which may cause the aorta to narrow and even
close off entirely. Simultaneously, the dissection may cause the formation of a thrombus
from which fragments embolize [96]. Aortic dissections occur either spontaneously due to
physiological reasons, which is the interest of this thesis, or they may occur due to physical
trauma [2].

One of the earliest records of an aortic dissection was described in an autopsy of George
II, King of Great Britain and Ireland, by Frank Nicholls in 1760 [26], who was his personal
physician. Our first surgical treatments for aortic dissections were introduced in the 1950s
by Michael DeBakey [29]. Later in 2005, he suffered an aortic dissection and received
surgical treatment to save his life. However, even with our advances in technology, aortic
dissections still carry a mortality rate of around 90% for untreated patients [5] and a
mortality rate in the range of 30% for surgically treated patients [87]. With around 3
in 100,000 cases being reported annually throughout western Europe [78, 88, 99], aortic
dissections are a rare but still all too deadly form of disease.

For this thesis, we are motivated to create new and novel mathematical models that
help us understand the underlying mechanics and causes of aortic dissections. To do this,
we introduce a damage phase field model [31] of dissections to approximate the process
of aortic dissections. With this approach, we can derive a system of equations describing
momentum balance and damage evolution. The former describes the mechanics of the
system, namely through its displacement, and the latter describes a damage variable,
which is used to measure how close a point is to rupturing. Using this approach to
model the aortic microstructure, we can derive a system of partial differential equations
that describes each individual constituent part of the aortic wall. To do this, we must
approximate the aortic wall as a composite material made up of smooth muscle cells,
endothelial cells, collagen, and elastic fibres. From there, we will explain how to upscale
such a model using asymptotic homogenisation [103] and exploiting sharp length scale
separations between the micro and macro scales. This creates a macroscopic model of
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aortic dissections where the role of the aortic microstructure is encoded in a set of effective
macroscopic coefficients. By better understanding the effect of the structure of the aortic
microstructure on the mechanical properties, this work can lead to a statistical discussion
on the variation and ranges, which naturally increase the likelihood of aortic dissections
occurring.

In this chapter, we introduce the relevant background knowledge of the aortic anatomy
and aortic dissections required. We will also introduce the reader to relevant biological
concepts and related literature before outlining possible modelling approaches and previous
mathematical modelling work. Finally, we will lay out the overall goals of this thesis and
outline the contents of each chapter.

1.1 The aorta

In this section, we provide important background information about the aorta. Namely
information about its anatomy and its physiological purpose in §1.1.1. The known me-
chanical behaviour of the aorta in §1.1.2. We shall also provide a detailed description of
an aortic dissection and the disease’s aetiology in §1.1.3.

1.1.1 Anatomy of the aorta

To model the aorta, it is important to understand the anatomy of the aorta. Arteries are
structured to perform a specific job: withstand blood pressure and transport oxygenated
blood through the body. In general, arteries are roughly divided into two types: elastic
and muscular. Elastic arteries have relatively large diameters and are located closer to
the heart, whereas muscular arteries are narrower and located at the periphery. Be aware
that there are exceptions to this rule of thumb, and some arteries exhibit properties of
both elastic and muscular arteries. The aorta is classified as the largest elastic artery in
the human body. We call it elastic because it has a larger percentage of fibrous tissue,
allowing it to stretch more [13, 60]. This allows the aorta to cope with the large variations
in blood pressure.

Here we will focus on the microscopic structure of the artery wall, which is composed
of three distinct layers: the tunica intima, the tunica media, and the tunica adventitia, as
seen in Figure 1.1. We will discuss each of these layers in detail, explaining their overall
function, composition, and the role they play in arterial mechanics. For a more complete
review of the structure and role of arteries, and specifically the aorta, we recommend the
books [60], [36] and [111].
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Figure 1.1: Cross section of an elastic artery wall composed of the tunica intima, media and
adventitia. Here it can be seen that each layer of the artery wall has a unique microscopic
structure built from different constituent parts. Image sourced from [65].

Tunica intima

The innermost layer of the artery, the tunica intima, is a sheet of flattened endothelial
cells resting on a thin layer of connective tissues. The endothelial layer acts as a barrier,
stopping blood plasma from escaping into the arterial wall. There is also a sub-endothelial
layer whose thickness varies with age. For younger people, the intima is very thin and
flexible, so it is often considered to be mechanically insignificant. However, in older people,
the intima stiffens and thickens with age, making it more mechanically relevant. It also
makes it more prone to tearing under higher blood pressure, possibly causing dissections.

Tunica media

The middle layer of the artery, the tunica media, supplies mechanical strength and contrac-
tile power to the arterial wall. It consists of spindle-shaped, smooth muscle cells arranged
circumferentially. Layers of smooth muscle cells lie between elastic laminae interspliced
with elastic collagen fibrils and elastic fibres, providing extra reinforcement. The number
of elastic laminae decreases and increases as the size of the artery increases. Our tunica
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media is bound by two sheets of elastin known as the internal and external elastic laminae.
The circumferential alignment of the medial layers has a slight helical pitch, making

each layer a fibrous helix that provides strength to the structure of the arterial wall. As a
result, the media can resist loads in both the circumferential and longitudinal directions.
Mechanically, the media is regularly regarded as the most important layer in healthy
arteries.

Tunica adventitia

The outermost layer of the artery, the tunica adventitia, is constructed mainly out of thick
layers of collagen fibrils and some elastin fibres, as well as sparse populations of fibroblasts
and fibrocytes (cells that produce collagen and elastin). These fibrous layers are also
arranged helically and serve to reinforce the wall. At low pressures, this layer is far less
stiff than the media, since the collagen fibrils are still quite relaxed and bundled. At high
pressure, the adventitia becomes stiff as the collagen fibrils reach straightened lengths and
reinforce the arterial wall. This helps to prevent the arterial wall from overstretching, thus
maintaining appropriate blood pressure and stopping the wall from rupturing. It should
also be noted that this layer anchors the artery to the surrounding connective tissue and
organs that anchor it in place.

Geometry of the aorta

Anatomically, it is important to understand the macroscopic geometry of the human aorta.
To do this, let us consider the depiction of the aorta illustrated in Figure 1.2. The body’s
aorta starts at the human heart, where blood exits the left ventricle via the aortic valve,
which prevents backflow. From here, blood first travels up the ascending aorta before
beginning to turn as it reaches the aortic arch. Along the ascending aorta, there are two
branches called the coronary arteries, which supply blood to the heart itself. The aortic
arch loops over the left pulmonary artery and heads downward, following the spine. Along
this arched section, a number of arterial branches appear, including the brachiocephalic
trunk, the left common carotid artery, and the left subclavian artery. These branches along
the arch feed blood to the body’s arms and head. At around the fourth or fifth thoracic
vertebrate, we leave the aortic arch and enter the descending aorta. The descending
aorta follows the curve of the spine and is anchored at the back by connecting tissue while
unattached at the front. This section of the aorta extends down through the thoracic torso
into the abdomen. This new part of the aorta is commonly called the abdominal aorta and
is responsible for transporting blood to the lower body. Along this section of the aorta, one
finds many arterial branches: the celiac trunk branches into all of the gastric arteries; the
renal arteries supply the kidneys with blood; the superior and inferior mesenteric arteries
feed blood to the body’s gastrointestinal tracts; and the body’s gonadal arteries feed blood
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to important sexual organs. Finally, the aorta ends by bifurcating into the left and right
iliac arteries, which supply blood to the lower body. Anatomists subdivide the aorta into
two distinct regions: the thoracic aorta and the abdominal aorta. The thoracic aorta is
the part of the aorta located in the thorax that contains the ascending, arched, and upper
parts of the descending aorta. The body’s abdominal aorta is a direct continuation of the
descending aorta and is contained in the abdominal cavity of the body.

Renal arteries

Ascending 
aorta

Abdominal 
aorta

Brachiocephalic 
trunk

Right subclavian 
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Left carotid 
artery

Right carotid 
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Figure 1.2: A diagram of the human aorta, from the heart extending down to the iliac
bifurcation. Each branch from the aorta is labelled along with each section of the aorta.
The body’s thoracic aorta includes the ascending aorta, the aortic arch and the descend-
ing aorta, all contained within the body’s thorax. The body’s abdominal aorta includes
everything below the descending aorta, all contained with the body’s abdominal cavity.
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1.1.2 Mechanical behaviour of arterial walls

Now that we understand the anatomy and structure of the aorta as well as the role each
layer of the aorta plays, we will now discuss the overall mechanical behaviour of the aorta.
As a large elastic artery, the aorta must withstand a normal physiological range of blood
pressures from 80 to 120 mmHg [123]. Physiologically, the aorta has interesting mechanical
properties. These are due to the composite characteristics of arteries; for example, at lower
blood pressures around 80 mmHg, the collagen fibres within the wall are not straightened
and do not contribute to any stresses; however, the elastin fibres are already completely
straightened. As pressure increases, the elastin fibres begin to stretch with little resistance
while the collagen fibres unwind and straighten out. At the upper limit of arterial pressure,
120 mmHg, the collagen fibres are completely straightened, adding greater resistance to
the arterial wall. The reason for this behaviour is that at lower pressures, the arterial
mechanics are dominated by elastin, and therefore the wall can easily stretch. As pressure
increases, the stress in the wall transitions from elastin to collagen fibres, and at high
pressures, the mechanics of the wall become dominated by the collagen fibres. Therefore,
much greater loading forces are now required at higher pressures to continuously deform
the wall. The stiffer collagen fibres also prevent the arterial wall from becoming damaged
or rupturing [49].

The result of the arterial wall’s geometry and overall composition is a non-linear me-
chanical behaviour, as illustrated in Figure 1.3. Physiologically, the purpose of this me-
chanical response is to regulate blood flow. At lower stresses the wall’s mechanics are
dominated by the elastin fibers thus making the wall extremely compliant to deformation.
However, at much higher stresses the wall begins to rapidly stiffen. As a result pressure
waves are dampened thus regulating the blood flow. We can explain these properties
rather simply by considering that every layer of the arterial wall arranges its constituents
in a layered helical/circumferential structure [68]. As a result, when blood pressure in
the radial direction increases, the wall naturally stretches in the circumferential direction.
This causes the fibres to straighten out much faster, and therefore, as blood pressure in-
creases, the stiffness from the wall rapidly increases. An interesting physical phenomena
that does occur due to this mechanical setup is known as a pistol shot pulse. Here the rapid
stiffening of the aortic wall at extremely high blood pressures causes a shock formation to
occur.

Another important physical property of arteries to mention is that they are a pre-
stressed material. That is to say in the absence of any loading force, an artery is not
stress free. A simple way to illustrate this in a laboratory is to cut out a small segment
from an artery. If we measure its initial length after being removed then wait a few hours
and measure it again we would observe a contraction in length. If we instead cut another
arterial segment along the radius over time we would observe the artery opening. Both
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Figure 1.3: Schematic diagram of typical uniaxial stress–strain curves for circumferential
arterial strips, from the media, in passive condition (based on tension tests performed in a
laboratory see [65]): cyclic loading and unloading, associated with stress softening effects,
lead to a pre-conditioned material which behaves perfectly elastically (nearly repeatable
cyclic behaviour) – point I. Loading beyond the elastic domain up to point II leads to
inelastic deformations. Additional loading and unloading cycles display stress softening
again until point III is reached. Then the material exhibits a perfectly elastic response.
The thick solid line indicates the (approximate) engineering response of the material.
Image sourced from [65].

of these observations are due to pre-stress in the aortic wall [65, 66]. This information
is important to consider if one wants to construct an elastic potential density function
which accurately describes arterial mechanics. To go from a stress free configuration of
an arterial strip to the regular reference frame of an artery one would need to consider
bending, extension, torsion and inflation of this strip just to capture all of the pre-stress
and stretch in the artery wall. In other words any elastic potential density function must
account for the elastic potential density already present in the arterial wall due to the
pre-stressed nature of an arterial wall. Only then would we have a realistic model of the
arterial wall.

A very important remark we will make, which is illustrated by Figure 1.3, is that we
can linearise the mechanics of the aortic wall around some residual stress term. This resid-
ual stress term account for all the pre-stress already present in the material as observed
in Figure 1.3. The motivation for linearisation is that it makes modelling simpler, finding
numerical solutions simpler and upscaling our models simpler. We could linearise in mul-
tiple different ways. For example we may introduce a piecewise linearisation of arterial
stress under Hooke’s law. To do this we would introduce a piecewise form of the stiffness
tensor, which would approximate the stress-strain curve visible in the physiological range
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of Figure 1.3. Another method for achieving this would be to introduce a strain energy
density function which is the sum of Hooke’s law potential energy density (explaining the
materials elastic response) and the energy density defined by a residual stress term. This
residual stress term would account for the residual strain in the material and be a known
term. Later we will discuss that our main motivation for linearisation of the mechanics
is to ensure that we can achieve an upscaling of our multiscale model which ensures a
separation between the microscopic and macroscopic variables. We want this because it
will make solving our macroscopic model far more computationally feasible.

1.1.3 Aortic dissections

Aortic dissection refers to a tear in the aortic wall permitting longitudinal propagation of
a blood-filled space within the aortic wall. This usually begins because of aortic tissue
abnormalities or increased aortic wall stress. As a result, a small tear on the tunica intima
occurs, allowing the formation of a small false lumen with minimal effects on blood flow.
The false lumen propagates downstream in a longitudinal direction, and as it grows, the
blood flow is redistributed. As the false lumen reaches its final shape, it may tear back
into the true lumen, allowing blood to flow through either channel. The false lumen may
also reach a stable final form in the tunica media, where the blood pressure is very low
and non-pulsatile. In both cases, it is possible, but not necessary, that a thrombus may
accumulate. However, if a tear ruptures the outer wall of the tunica adventitia, this will
result in death. In Figure 1.4 we can see a simplistic diagram of an aortic dissection and
the various steps that occur during a dissection.

Luckily, many dissections remain in the tunica media, which can still result in death
but are treatable. We believe this is because the most natural way for the aortic wall to
tear open is by delamination between the layers of the tunica media [4]. This process can
be thought of as the path of least resistance. In Figure 1.5 we can see an example CT
scan of an aortic dissection present in the body.

Identifying aortic dissections is itself a challenge. The disease has been called “the
great masquerader” [38] because it can produce symptoms related to virtually any organ.
Common symptoms can include high blood pressure, vomiting, and dizziness, which could
indicate a wide variety of diseases. The most telling symptoms of an aortic dissection are a
severe, abrupt onset of chest or back pain, which are widely known as the classic symptoms
of an aortic dissection [50, 100]. Clinicians often image patients, using ultrasound, that
present unexplainable and severe chest or back pain, looking for a dissection in the thoracic
aorta [38].

If an aortic dissection is identified by a clinician, then it is categorised using the Stan-
ford classification system [118]. This is a pragmatic classification system where aortic
dissections are classified as either Type A or Type B. The key difference between Types A



CHAPTER 1. INTRODUCTION 10

Figure 1.4: This is a simplistic schematic of the process of an aortic dissection. In step
I we have the beginnings of an aortic dissection. With the arrows directing blood flow
and an indication of the true lumen (TL). Initially, we have a small tear on the inner
layer of the aortic wall, the tunica intima. This tear becomes pressurised as blood rushes
in, which as a result propagates the tear. In step II the tear propagation has caused the
layers of the tunica media to delaminate. As a result we now have a false lumen (FL). This
process could now reach a equilibrium causing a large bulge in the wall. The physiological
effects would be irregular blood pressure and probably the formation of a thrombosis. If
the process does not reach an equilibrium and the wall continues to dissect then we have
two potential outcomes. Firstly, in step III we see that the tear re-enters the arteries
true lumen. This outcome is usually not deadly but the existence of the false lumen will
continue to cause irregular blood pressure. The other possible outcome, step IV, is almost
always deadly. In this scenario the dissection ruptures the outer wall, which will result in
the patient bleeding out in mere minutes.

and B is the origin of the dissection in the aorta. This is important because the location of
the dissection usually dictates the treatment of said dissection. Type A dissections orig-
inate in the ascending aorta or the aortic arch and usually require immediate emergency
surgical intervention. Type B dissections, however, originate in the descending aorta and
are usually treated medically at first, with surgical intervention coming later. Another im-
portant surgical classification technique for aortic dissections is the DeBakey classification
[17], which divides the dissections into four types according to the location of the entry
tear, as well as the extent of the dissection. Here Type I and Type II involve entry tears
in the ascending aorta, with Type I propagating past the aortic arch along the descending
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Figure 1.5: CT scan with 3D reconstruction shows a type B aortic dissection of the
descending and abdominal aorta. Here we can see the development of a large false lumen,
which has propagated the length of the aorta. TL - true lumen; FL - false lumen. This
image was originally sourced from [96].

aorta. Type IIIa and Type IIIb involve entry tears originating in the descending aorta,
with the distinction being that Type IIIa propagates further along the aortic wall than
Type IIIb. An illustration of these classification systems can be seen in Figure 1.6.

The development of aortic dissections requires two pathological conditions: medical
degeneration and mechanical wall stress [2]. This can happen at a young age in patients
with Marfan Syndrome, Ehlers-Danlos syndrome or other connective tissue disorders [1, 2].
These diseases result in the blood vessel’s wall lacking the regular mechanical properties
of a regular blood vessel, making it easier for them to tear. In pregnancy, an increased
blood mass raises blood pressure causing extra aortic wall stress. However, many pregnant
people that develop an aortic dissection often have a connective tissue disorder [143, 71].
Atherosclerosis, which causes a build-up of lesions on the arterial wall, has long been
associated with aortic dissections [8, 76].

In other patients aortic dissections can be caused by acquired diseases. A notable ex-
ample is long term steroid usage disrupting the development of collagen fibres, weakening
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Figure 1.6: This is a diagram of different types of aortic dissections, each being labelled by
the appropriate Stanford and DeBakey classifications. On the left we have two dissections
originating in the ascending aortic (Stanford Type A). On the right both dissections orig-
inate in the descending aorta (Stanford Type B). Both sides illustrate how the DeBakey
classification acknowledges the extent of propagation along the artery wall. In the above
setup we have a cross section illustrating a circumferential slice of an aortic dissection,
where one has that: A - false lumen, B - true lumen. This illustration has been sourced
from [17].

the aortic wall and resulting in the development of aortic dissections [61, 120]. Hyper-
tension, also known as high blood pressure, is a very common cause of aortic dissections
[96]. The regular range of blood pressure in the aorta is 80 to 120 mmHg but when a
patient is suffering from hypertension it can be greater than 180 mmHg [123]. This causes
a much greater stress on the aortic wall and can lead to tearing especially in older patients
[117]. Other risk factors, contributing to the likelihood of dissections, include smoking,
cocaine usage, a bad diet and an unhealthy lifestyle [79, 124]. It seems obvious, but it is
important to note unhealthy lifestyle choices can lead to the weakening of the aortic wall
contributing to the risk of a dissection and many other cardiovascular diseases.

The development of theoretical models that allow us to accurately analyse and predict
the causes of aortic dissections is a necessary step in developing new medical technologies.
Aortic dissections are complex events influenced by multiple factors, including arterial
wall mechanics, haemodynamics, and patient-specific conditions. Understanding these
mechanisms through mathematical modeling can significantly improve clinical decision-
making and patient outcomes.
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A complete model of aortic dissections would enable the creation of a statistical emu-
lation, using real patient data, to capture the full range of physiological scenarios. Such
an emulation would encompass all possible outcomes and be readily accessible, allowing
clinicians to quickly analyse patient data and predict likely prognoses. This approach
could dramatically enhance the speed and accuracy of medical assessments, ultimately
leading to better treatment strategies. This is the main motivation and long term goal of
this field of research.

Achieving this goal requires first understanding the experimental findings on arte-
rial mechanics, existing mathematical models of arterial behaviour, and methodologies
in modern literature for developing multiscale models. By integrating these insights, we
can develop a robust framework that not only explains the underlying causes of aortic
dissections but also facilitates predictive analytics for improved patient care. In the next
section we will examine the existing literature.

1.2 Literature review

The aorta has been widely researched by biologists, engineers, and mathematicians, creat-
ing a wide range of important results and literature. In this section, we name and discuss
a series of key papers that cover a variety of theoretical and experimental results. We
will cover important experimental results that revealed many of the aorta’s mechanical
phenomena. Next we will review a number of mathematical models created to explain
arterial mechanics and the numerous mechanical properties arteries have, as discovered in
experiments. This leads us on to a discussion of how researchers are now exploring model-
ing questions about aortic dissections, and more generally damage mechanics. Finally, in
this section we will discuss asymptotic homogenisation, a multiscale modelling technique.

1.2.1 Experimental results

Early anatomical research into the properties of arteries involved studies relating the me-
chanical properties and the structure of the aortic wall. For example the work done by
Glagov et al. found that the organisation of the media is responsible for much of an ar-
teries mechanical properties [138, 137, 22]. One of the earliest mechanical observations
made about the arterial wall is the compressibility of the wall, this was first noted via
compressibility experiments performed by Carew [16]. Researchers have also long known
that arteries do not obey Hooke’s law and behave in a non-linear fashion [110]. An expla-
nation for this non-linear behaviour is the natural anisotropy found in the microstructure
of the aortic wall [136]. Anisotropy can be found in the variations of fibre dispersion in the
arterial wall. Canham et al. [14] found with polarised light microscopy of arterial tissue
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a significant degree of dispersion for collagen fibres in the adventitia and intima layers.
Whereas, the media layer has fair less dispersion of collagen fibers in media layer [14].

Stress that exists in unloaded bodies is called residual stress. As previously mentioned
residual stress is present in, many blood vessels including, the human aorta. The existence
and importance of residual stress was first noted in the experimental research of Choung
and Fung [43, 20]. In their experimental research they removed sectors of rat aorta’s and
cut them once along the radius. This results in the aorta blooming and creating an open
sector, which releases most of the residual stress. The observed opening angle of the aorta
is commonly used to quantify the residual stress. One can calculate the prestretch from the
residual stress with a presumed constitutive law. In addition to radial and circumferential
prestretch, it has been observed that arteries also have prestretch in the longitudinal
direction [34]. This result was first observed by Dobrin, who measured a longitudinal
shrinking in dog arteries once removed from the aorta. Dobrin concluded this elongation
of arteries is a necessary effect preventing the tortuosity of arteries. Subsequent studies by
Dobrin using elastase and collagenase to selectively remove structural components from
the arterial wall, demonstrated that nearly all axial prestretch in healthy arteries is due
to the presence of intramural elastin, not collagen [35]. Over time experiments studying
residual stress in the human aorta have became more advanced. A systematic study
sharing both quantitative and qualitative data by Holzapfel et al. [64] provides us with
a detailed experimental methodology for measuring residual stress and strain. The main
takeaway from that study is that each layer of the arterial wall, the intima, media and
adventitia, all have their own characteristic residual stress and strain. We have also now
concluded that the existence of residual stress and strain is due to the different growth
rates of different components, in arterial walls [15].

Experimental research into the mechanisms of aortic dissection is extremely impor-
tant, it provides us with insights about the underlying mechanics of the phenomena. For
example, Babu et al. [6] studied samples of aortic tissue removed from patients with type
A dissections. Using bi-axial stretch testing, it was observed that the stress strain curves
of these tissue samples were much stiffer compared to a control group of healthy aortic
tissue. They also found that the stiffness of these tissue samples did not correlate with
the age of patients, or the diameter of the artery. Tsai et al. [127] performed an ex vivo
experiment to study the impact of dissection size and number of dissections on the false
lumen pressure. They found in each of their experimental models that the diastolic false
lumen pressure was greater than the diastolic true lumen pressure. This was especially
true when the entry tear is proximal and small with the re-entry tear being distal and
occluded.

The effects of radial tear depth on the propagation pressure of aortic dissections was
studied with an in vitro experiment by Tam et al. [126]. To do this 20 porcine thoracic
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aortas were injected with a saline solution into the medial layer of the artery, creating an
elliptical bleb. A circumferential slit was made on the intima side of each bleb, connecting
the true lumen to the false lumen. From here each aortic true lumen was pressurised
with saline solution, which in turn pressurised the false lumens. The pressure was then
increased until each dissection propagated, the pressure this occurred at was taken to be
the propagation pressure at that particular radial depth. The results of this experiment
showed that the critical propagation pressure increased as the number of elastin layers in
the wall increased. It was also found that the propagation pressure decreases linearly as
the tear depth increases.

To better understand arterial mechanics researchers have studied and catalogued the
mechanical properties of each constitutive part of the arterial wall. These measurements
have been made with a number of different experimental approaches, by a variety of
studies. The three most abundant components of the aortic wall are collagen fibres,
elastin and vascular smooth muscle cells, which each play a very important mechanical
role in arterial mechanics. A great appraisal of their material properties was collated by
Camasão and Mantovanni [13], where they summarised and reviewed the work done by
many researchers to understand the mechanical properties of arterial tissue. Researchers
have found that components of vascular tissue have very different material properties. For
example the Young’s modulus of collagen, elastin and smooth muscles cells are 0.1 − 1

GPa [37, 48], 0.3 − 1 MPa [55, 80] and 0.1 − 2 MPa [85, 13], respectively. It should be
noted that measuring the correct specimen at the correct scale is of key importance. For
example the respective mechanical properties of collagen change massively depending on
whether one is discussing a collagen protein, fibril or fiber. The average Young’s modulus
decreases six fold from a single molecule (≈ 6 GPa) to the fibrillar scale (≈ 0.9 GPa)
[47]. To gather this data researchers are performing a number of innovative tensile tests
on individual cells and fibers, as outlined by Matsumoto et al. [86]. A single molecule
is much stronger than a fibril for a simple reason. When a single molecule is pulled, it
is already straightened and derives its strength from atomic forces. In contrast, a fibril
consists of many molecules that must first unwind and straighten when stretched, making
it more elastic. The same principle applies to fibers, which are even more elastic because
the fibrils within them must also unwind and straighten during stretching.

1.2.2 Mathematical modelling of aortic mechanics

Accurately modelling arterial mechanics has been a very active field of research in biome-
chanics. Many researchers have attempted to create useful models to describe the mechan-
ics of arteries. To discuss these models let us briefly introduce some notation from finite
strain theory [56, 97]. Consider a fixed reference configuration Ω which is assumed to be
stress free. The deformation gradient, a second order tensor, is represented as F which
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transforms a material point X to a new point x during deformation. We define this by
saying that F = dx/dX, and further that the local volume ratio is defined by J = det(F),
such that J > 0. With this notation we can define the Green strain tensor [97]

E =
1

2

(
FTF− I

)
,

where I is the second order identity tensor and FTF is the right Cauchy-Green tensor
[97]. From here we can define a strain energy function that represents the elastic potential
in a material, with this potential one can derive the material stress and hence calculate
material deformations under load. For example consider a linear elastic isotropic material,
this can be described by the St. Venant-Kirchhoff [10] strain energy function

Ψ =
λ

2
tr(E)2 + µtr(E2),

where λ and µ are the first and second Lame parameters [121], respectively. One can use
this strain energy function to derive the associated second Piola-Kirchhoff stress

S =
∂Ψ

∂E
= λtr(E)I+ 2µE.

The second Piola-Kirchhoff stress [10] as expected clearly describes a linear stress-strain
relationship. However, arterial mechanics is dictated by non-linear mechanics and we
therefore must consider more complex forms of strain energy functions. Before we do let
us introduce some useful notation:

C̄ =
(
J− 2

3

)
FTF and Ē =

1

2

(
C̄− I

)
(1.1)

the modified right Cauchy-Green tensor and modified Green-Lagrange strain tensor, re-
spectively. This is commonly done because it allows for easier analysis of both dilation and
distortion parts of material deformation. How this is done is by considering a multiplica-
tive decomposition of the deformation gradient, F. Consider the following multiplicative
decomposition

F =
(
J1/3I

)
F̂, (1.2)

where F̂ represents the distortion of Ω at a constant volume, whereas the term J1/3 rep-
resents the dilation of Ω [41, 98]. Remember that by definition J = det(F) and physically
we may interpret this as the ratio of change in volume, hence if we imagine an idealised
cube, then the cube root of this term gives us the ratio of change in strain. We can see
how (1.2) can be simply recovered from the terms in (1.1) when one performs an analysis
of the system.

In 2000 Holzapfel et al. [65] wrote a systematic review of the state of the art, analysing
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the adequacy of a number of new constitutive laws for the passive response of an arterial
wall. To do this a number of Strain energy functions were used to calculate the stress
distribution of a thick walled circular cylindrical tube, as an approximate arterial geometry.
The tube was subjected to combinations of stretching, inflation and torsion whilst having
an already incorporated residual stress. This analysis showed that each of these popular
strain energy functions could be improved upon for a variety of reasons, as we will mention.
Briefly, we will discuss a couple of these strain energy functions before looking at the
popular Holzapfel-Gasser-Ogden model proposed at the end of the analysis presented by
Holzapfel et al. [65].

One of the earliest proposed strain energy functions is that by Delfino et al. [30],
created to model the mechanics of carotid arteries. The proposed potential was

Ψ =
a

b

(
exp

[
b

2

(
Ī1 − 3

)]
− 1

)
, (1.3)

where a > 0 represents a parameter with dimensions of stress and b > 0 is a non-
dimensional parameter used for strain-stiffening. Here Ī1 is the first invariant of the
modified right Cauchy stress tensor C̄ defined as Ī1 = tr(C̄). This strain energy function
is able to model the typical stiffening effects one would expect in higher pressure domains.
However, it is noted that this strain energy functions is isotropic, which does not comply
well with the highly anisotropic multilayered human aorta. To address this issue many
researchers turned to a strain energy function first introduced by Fung et al. [42]. This
was first used by Humphrey et al. [69] and phenomenologically represented the anisotropy
of arterial tissues through its material parameters. It is suitable for three dimensional
deformation and has the form:

Ψ =
1

2
c [exp (Q)− 1] , (1.4)

where c is a stress-like parameter and Q is given by

Q =b1Ē
2
ΘΘ + b2Ē

2
ZZ + b3Ē

2
RR + 2b4ĒΘΘĒZZ+

2b5ĒZZĒRR + 2b6ĒRRĒΘΘ + b7Ē
2
ΘZ + b8Ē

2
RZ + b9Ē

2
RΘ.

Here bi, i = 1, ..., 9, are non-dimensional numbers and Ēij is the modified Green-Lagrange
strain tensor, referred to the cylindrical coordinates (R,Θ, Z). In the work of Fung [42]
there are no restrictions on the choice of material parameters bi, in fact these parameters
appear to be without any physical meaning. Their purpose is unclear as discussed by
Ogden et al. [65] and Fung et al. [44]. They are generally chosen via non-linear curve
fitting, they can be difficult to calculate and non-uniqueness can become a problem as non-
convexity is not guaranteed in unconstrained parameter optimisation. Ogden et al. [65]
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showed that the convexity, which is necessary to guarantee realistic results and efficiency
of numerical computation may not be satisfied for some choices of bi.

Similarly, Vaishnav et al. [128] introduced a two-dimensional description for the defor-
mation behaviour of the canine thoracic aorta using polynomial expressions. This classic
modelling approach presented three polynomial expressions with 3, 7 or 12 material pa-
rameters. In [128] it was found that the three parameter model was too inaccurate and the
twelve parameter model did not have any significant advantage over the seven parameter
model. So for reference we introduce the seven parameter model as

Ψ =c1Ē
2
ΘΘ + c2ĒΘΘĒZZ + c3Ē

2
ZZ + c4Ē

3
ΘΘ

+ c5Ē
2
ΘΘĒZZ + c6ĒΘΘĒ

2
ZZ + c7Ē

3
ZZ ,

(1.5)

where ci, i = 1, ..., 7, are material parameters with dimensions of stress and ĒΘΘ and ĒZZ

are the components of the modified Green-Lagrange strain tensor in the circumferential
and axial directions, respectively. Due to the cubic nature of this strain-energy function, it
is not convex for any set of values of the material constants. In fact, Fung [44] showed that
two different sets of c1, ..., c7 produced the same mechanical response of the same artery
quite well. This model’s lack of uniqueness can be problematic. It should also be noted
that this model assumed symmetry in the radial direction, which can not be assumed
when considering the complex multilayered aortic wall. Also the aorta is not symmetrical
in the radial direction and assuming so would be a gross simplification.

In Holzapfel et al. [65] we are introduced to the Holzapfel-Gasser-Ogden strain energy
density function more colloquially known as the HGO model. This is by far the most
widely used strain energy function in the field of arterial mechanics, it is also used to
model rubber-like polymer materials. This model accounts for residual stress, anisotropy,
the differing layers of the arterial wall and is motivated histologically, depending on a set
of material parameters. The basic idea of the HGO strain energy density function is to
assume each arterial layer has similar mechanics and can hence all be be described by
a strain energy function of the same form. Then by considering an additive split of the
potential Ψ, we can consider the separate forms of Ψiso and Ψaniso. Here Ψiso is associated
with the isotropic part of the deformation and Ψaniso is associated with anisotropic part
of deformation. We associate the mechanical response of the non-collagenous parts of
the arterial wall with Ψiso, which is dominant in a low pressure regime and assumed to
be isotropic and neo-Hookean. In higher pressure regime the mechanical response of the
collagenous parts of the arterial wall dominates the mechanics and are described by Ψaniso,
an exponential anisotropic strain energy function which only only takes load in tension.

To understand the model consider an incompressible fibre reinforced material with two
sets of helically woven fibers, the direction of which are described by the unit vectors Ai

in the fixed reference configuration Ω, for i = 1, 2. Then one can write the HGO strain
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energy function as

Ψ(Ī1, Ī4, Ī6) =Ψiso(Ī1) +
∑
i=4,6

H(Īi)Ψaniso(Īi), (1.6)

where H is the Heaviside function, only allowing fibers to take stretch loads, defined as

H(x) =

 0 x ≤ 0

1 x > 1.

Here we define Ψiso and Ψaniso as

Ψiso(Ī1) =
c

2

(
Ī1 − 3

)
and Ψaniso(Īi) =

k1
2k2

(
exp

[
k2(Îi − 1)2

]
− 1
)
, (1.7)

where c > 0 and k1 > 0 are parameters with dimensions of stress and k2 is a dimensionless
strain-stiffening coefficient. These potentials depend on the invariants Ī1, Ī4 and Ī6 which
we define as:

Ī1 = tr(C̄), Ī4 = C̄ : A1 and Ī6 = C̄ : A2. (1.8)

Using the HGO strain energy function one can calculate the Cauchy stress of each indi-
vidual layer of the arterial wall with a dependency on residual stress. An example of this
is given in Figure 1.7 illustrating the differences in stress for an arterial wall with and
without residual stress.

Gasser et al. [46] provided the first major update to the HGO model by considering
the dispersion of fibers in the artery wall. Here dispersion means the dispersion of collagen
fibers against local orientations in the artery. The regular HGO model works very well
at modelling the media layer where there is little dispersion of tissue fibers, but fails to
account for the effects fiber dispersion has on the mechanics of the adventitia and intima
[46]. Dispersion of fibers dictates the anisotropy of the arterial wall, to that end Gasser
introduced the parameter κ which measures the “degree of anisotropy”, or in other words
the degree of dispersion. The value of κ can be deduced experimentally or calculated from a
density function, ρ(A) which represents the normalised number of fibres with orientations
A, in a small interval. Using the density function Gasser explained how one can calculate
a second order structural tensor which quantifies the orientation of fibres as

M =
1

4π

∫
ω

ρ(A(Θ,Φ))A(Θ,Φ)⊗A(Θ,Φ) dω (1.9)

where ω is a unit sphere. Note we introduced the two Eulerian angles Θ ∈ [0, π] and Φ ∈
[0, 2π], this is done because A is a unit vector and can be defined simply by the direction it
is pointing in (in other words no radial dependence). To simplify the model Gasser defines
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Figure 1.7: Plots of the principal Cauchy stresses σθθ, σzz, σzz in the circumferential, axial
and radial directions of the aortic wall. Stresses where calculated for the deformed media
and adventitia layers under a physiological pressure of p = 13.33 kPa and an axial stretch
of λz = 1.7. Here we can see two states: (a) without and (b) with residual stress. r − ri
is the distance of a point in the arterial wall from the inner radial surface at ri, and α
is the opening angle with respect to the centre of the artery. The stress distribution is
significantly lower in (b) where the artery has residual stress compared to (a) which has
no residual stress. This figure is Figure 18 from Holzapfel et al. [65].

a pair of preferred referential direction vectors called ai for i = 1, 2. With these preferred
vectors one can represent two orientations of fibers representing two helically woven layers
of fibers. Then following Gasser and using (1.9) one can calculate

Mi = κI+ (1− 3κ)ai ⊗ ai for i = 1, 2. (1.10)

Here Gasser introduces the structure parameter κ that describes the dispersion of fibers.
With Mi the stretch of fibres can be quantified by the invariants:

Î4 = C̄ : M1 and Î6 = C̄ : M2.

Using these invariants we can account for the effects of fibre dispersion in the HGO model,
defined by the potential in equation (1.6). It should be noted that this model reduces to
the original HGO model for κ = 0. The model describes an isotropic distribution of fibres
for κ = 1/3. In this model the invariants Î4 and Î6 characterises the strain in the direction
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of the mean orientation ai of the ith family of fibres.

1.2.3 Mathematical modelling of aortic dissections

Mathematical modelling of aortic dissections possess several interesting mathematical chal-
lenges and is of great interest to applied mathematicians, engineers and clinicians alike. To
model aortic dissections, one must be able to explain the regular mechanics of the aorta,
as previously discussed in §1.2.2 this can be done with a variety of continuum models.
From there one must establish a modelling technique for the dissection of the aorta wall
itself, this is a form of material failure. Researchers have approached this problem with
a variety of modelling methods. All these methods are a form of damage mechanics, a
field dedicated to modelling tear propagation, material failure and damage accumulation.
Generally, to model material failure one models the mechanics as a continuum or discrete
system which is then coupled to a damage model. The damage model alters the mechanical
model when certain material conditions are met which can results in a change of material
properties, a change of material geometry or a combination of both. For a more general
review of damage mechanics and many different modelling techniques of material failure
we would recommend the textbooks [132]. Here we will discuss a series of interesting
approaches, in the literature, taken to model aortic dissections.

The energy release rate (ERR) method was created by Griffith [51] the earliest attempt
at modelling material failure, the original theory was then later further developed by
Irwin [74]. This material failure criterion is an energy-based method that requires one
to calculate the change in potential energy of a creak/tear surface as it is extended by
an infinitesimal surface, we call this the energy release rate G. Next one must define
the material parameter Gc, the critical energy (or Griffith energy) required to destroy all
the bonds at the crack tip. If G > Gc then we have propagation of the tear tip, this is
done numerically by modifying the mesh geometry. If G < Gc then the tear is stationary
and there is no change to the material geometry. For a guide on how to implement this
model we recommend Zehnder et al. [144] which covers many numerical methods for
calculating G. Lei Wang et al. [134] used this method to study how arterial dissection
propagates along the arterial wall. By coupling this failure criterion with a HGO strain
energy density function, they were able to study how inflation of a false lumen propagates
a dissection. The study concluded that the existence of fibres gives the wall more strength
and slows down the ERR, in fact that fibres aligned parallel will decrease the ERR most.
Another interesting conclusion is that the propagation of a tear will only halt when the
surrounding connective tissues have a sufficient stiffness. This result was obvious and
made clear physiological sense, it mainly serves to support the physical realism an ERR
model can have.

One of the simplest approaches is to make use of a cohesive traction separation law as
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a criterion for material failure. Cohesive laws are widely used in numerical simulations to
approximate tear propagation through a material continuum. The purpose of a cohesive
law, as a constitutive law, is to relate the normal and tangential forces on the material
surface at the tip of a tear to a failure criterion. When this criterion is satisfied, a material
discontinuity is enforced with a jump in displacement, emulating a discontinuity in the
material. A cohesive law requires at least two of the following three parameters: the
maximum traction before tearing, the maximum displacement jump, and the fracture
energy. The fracture energy is the area under the curve of traction against displacement
at the tip of the tearing surface. Elices et al. [39] demonstrated that the shape of this curve
can have a significant effect on the outcomes of simulations of material failure, expressing
that careful experimentation is required to determine the values of parameters related to
the cohesive parameters. Originally, this model was developed to study cracks, i.e. tears,
in brittle materials like concrete; however, researchers have recently worked to incorporate
this type of model into studies of arterial dissections. Gasser et al. [45] used the model
to numerically analyse fractures in biological tissue, namely they modelled a peeling test
on an arterial strip under an external load. A peeling test is when we measure the force
required to separate the adhesive bonds which hold together layers of a laminated material
[77]. In Gasser’s case they were numerical testing the required force to dissect an arterial
strip from the media and comparing the results to other experiments. Volokoh et al. [131]
also coupled a cohesive law with the HGO strain energy model and found that the overall
arterial strength is dominated by the medial layer and the residual stress in the arterial
wall. Volokoh et al. [130] also found that the residual stress dominates the overall arterial
strength when modelling with a Fung type description of the arterial mechanics. Another
interesting result found using this approach was by Wang et al. [135] who found when
describing the arterial wall with the anisotropic hyperelastic HGO model that tearing
occurs preferentially along the material axes with the greatest stiffness.

Another modelling technique for material failure is the damage phase field method.
This method finds its roots in the works of Miehe [90] and Marigo [83]. This is a relatively
new approach that approximates material damage, and ultimately failure, through the
introduction of a non-dimensional diffusive variable called the damage phase field, α. It
should be noted that the damage phase field method shares a lot of similarities with
the gradient damage model, their main difference being one of interpretation [11]. To
use this method, one must firstly define the damage phase field α, a non-dimensional
variable with a range from 0 to 1. Where α equals 0 means the material at that point
in space is completely healthy and undamaged, whereas at damage equals 1 the material
has fully ruptured at that point. In this model the damage is constrained such that it is
only monotonically increasing from 0 to 1. In other words, we constrain α such that one
has α̇ ≥ 0. Here the dot above α indicates a derivative with respect to time. To derive a
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model with this method one considers all the material energy due to the material potential
energy and the energy driving a tear. By defining a material potential Ψ that depends on
both the displacement of the material and the damage in the material we can couple the
material deformation to the material damage growth. To ensure these equations describe
smooth continuous fields we approximate the shape of the damage phase field as a diffusive
variable. In other words, damage is not seen as a sharp crack through the material but
instead as a diffusive variable approximated over some local length scale ℓ ≪ 1. To do
this we introduce a constraint on the shape of the damage phase field surface in terms
of α. This results in α being described by a concentrated diffusive field and allows one
to derive a system of partial differential equations. To do this one considers a variational
formulation of the material energy. As a result, one can derive an equation of motion
and an energy balance equation, the former describes the material deformation, and the
latter describes the evolution of α. With this system of partial differential equations one
can simulate a wide variety of possible scenarios and predict damage initiation, location,
branching, changes in geometry due to change. One can also study tear propagation and
arrest in a material due to external loading. With all these useful properties researchers
have used the damage phase field method to describe tearing in biological tissue. Raina
et al. [108] proposed how one could adapt a damage phase field approach to describe
incompressible biological materials. In Chapter 2 we will go into greater detail about the
damage phase field method and rigorously explain how to derive a model for a complex
arbitrary geometry.

1.2.4 Multiscale modelling with asymptotic homogenisation

Real-world physical systems are typically multiscale in nature. Their microstructures are
characterised by heterogeneous constitutive parts and complex geometries, all of which
contribute to the system’s overall macroscopic behaviour. We can think about this in
several ways.

For example, consider water. A mathematician might model it as a liquid—more
precisely, as a continuum—completely ignoring its complex microstructure. However, if
we examine water through an electron microscope, we see that it consists of countless
molecules. Another example is wood. From a human perspective, it appears as a solid
block, but under a microscope, we can observe that it is composed of layers of adhe-
sive cellulosic fibres. These examples highlight the importance of carefully choosing the
appropriate scale when modelling a material.

In many mechanical models, we adopt a macroscopic perspective because the avail-
able data is phenomenological, derived from laboratory experiments that measure the
properties of entire structures rather than the individual constituents of a material. This
approach can overlook the critical interplay between a material’s microstructure and its
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macroscopic response to external effects. However, with modern mathematical techniques,
we can now develop models that incorporate the role of a system’s microstructure. These
techniques include representative volume elements [125], asymptotic homogenisation [63,
103], mixture theory [119] and other advanced methods.

In this thesis, we will make extensive use of asymptotic homogenisation. In this subsec-
tion, we will explore the motivation behind this technique and review the broader literature
on the subject. First, however, we shall examine a mathematical example to motivate the
need for a multiscale model.

To illustrate this, we consider the one-dimensional diffusion-type boundary value prob-
lem, given by:

d

dx

(
D(x)

du

dx

)
= f(x); 0 < x < 1, (1.11)

u(0) = a, u(1) = b ∀a, b ∈ R, (1.12)

where (1.12) represent non-homogenous Dirichlect boundary conditions. Here f(x) is a
known spatially varying volume source, D(x) is the smooth, strictly positive, spatially
varying diffusion coefficient, and u(x) an unknown scalar field. We shall assume that f(x)
is regular enough such that a unique solution for u(x) exists. Boundary value problems
described by (1.11) and (1.12) are quite common in scientific literature and describe a
wide panorama of physical phenomena such as: diffusion of pollutants; the temperature
distribution for heat conduction; the linear elastic displacement of an elastic string.

We are interested in investigating the solutions of u(x) when the diffusion coefficient
D(x) exhibits multiscale spatial variations. In other words when the observed behaviour
of D(x) changes depending on the resolution we take into account. An example of this
is highlighted in Figure 1.8, where a representative solution of (1.11) and (1.12) on the
macroscale can be seen over the full domain. In a small box we have zoomed in to a
smaller microscale where one can clearly observe a radically different behaviour compared
to the macroscale. In fact, the behaviour clearly has a dependence on local spatial scales
when zoomed in.

From Figure 1.8 we can conclude that there exists a clear separation of spatial scales.
The problem clearly holds over the full domain and has a solution u dependent on x. How-
ever, we are interested in separating the macroscopic and microscopic spatial variations
(as is illustrated in Figure 1.8). To do this we can introduce a macroscopic characteristic
length scale L (defined as 1 in the above example) and a microscopic length scale δ (defined
as 4 × 10−3 in the above example. By introducing these characteristic length scales we
can now non-dimensionalise the spatial coordinate x with respect to both the microscale
δ and macroscale L:

x = LxM = δxm. (1.13)
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Figure 1.8: The exact solution u(x) =
(
x+ cϵ sin(x

ϵ
)
)
/
(
1 + cϵ sin(1

ϵ
)
)

of the boundary
value problem (1.11) with boundary conditions (1.12) defined by a = 0, b = 1, with
problem coefficients D(x) = (1 + c cos(x/ϵ))−1 and f(x) = 0. Here we have set c = 0.9
and ϵ = (2/π)×10−3. The exact solution is defined over the microscale and a macroscopic
solution u(x) = x is defined over the macroscale. Notice that over the whole domain [0, 1]
that we cannot distinguish between the two scales.

Here xM represents a non-dimensional coarse scale mapping, as it is non-dimensionalised
with respect to L. Whereas, xm represents a non-dimensional fine scale mapping, as it
is non-dimensionalised with respect to δ. These spatial coordinates are related by (1.13)
with the relation

xm = xM/ϵ, (1.14)

where we define
ϵ =

δ

L
. (1.15)

The small parameter ϵ is a ratio between the micro and macroscales, it is used to measure
their separations.

With this notation now introduced we can make an informal argument. The example
given in Figure 1.8 has an obvious dependence on ϵ in the complete solution over the
microscale. However, the microscale solution does in fact converge to the macroscale
solution as ϵ goes to zero. In other words as the scale separation gets increasingly larger the
microscopic and macroscopic solutions are indistinguishable. This is the key argument in
asymptotic homogenisation. That any physical problem with a necessary large separation
of length scales, ϵ≪ 1, has a macroscopic solution separable from any microscopic spatial
dependency. However, in using asymptotic homogenisation we are also able to incorporate
data about the microscale into a macroscopic solution. This is usually done via a set of
effective macroscopic coefficients that depend on solutions to linear local cell problems,
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which are used to calculate a series of ansatz which define key relations between the micro
and macroscale of the problem.

In order to use asymptotic homogenisation a series of key assumptions must be satis-
fied. We will discuss these in detail in Chapter 3 when we apply the method to create a
multiscale model. For a complete and rigorous introduction to asymptotic homogenisation
we recommend the works by Penta et al. [103] and Holmes [63]. Here we will just mention
the basic assumptions necessary to use asymptotic homogenisation. The first assumption,
as already mentioned, is a large scale separation (ϵ ≪ 1) between distinguishable micro
and macroscales. With this assumption one assumes that any unknown field can have its
spatial dependency decoupled into two independent variables describing the macroscale
and microscale, as seen in (1.13). Then one assumes that every unknown field can be
described by a power series expansion in factors of ϵ. Of course we also must assume that
every unknown field is locally bounded and regular.

With these assumptions in one dimension one can derive a multiscale model of most
problems [103]. However, for problems in higher dimensions we require another assumption
which is much more important. The previous assumptions can be safely made in most
physical systems where a large length scale separation is observed. For higher dimensions
we need to be able to satisfy an assumption of local periodicity. In other words we need
a local microstructure that is periodic. Without it we cannot upscale using asymptotic
homogenisation. In the following section we will discuss how we can safely make that
assumption for an arterial wall.

Now that we have covered the motivation for upscaling both physically and mathe-
matically, as well as the necessary assumptions for asymptotic homogenisation, we shall
cover the literature of the method. Exploring the methods origin, best sources and the
most interesting modern research.

The roots of asymptotic homogenisation can be traced back to the works of Sanchez-
Palencia [114] and Bensoussan [9], published in the early 1970’s. These foundational
studies established a method for upscaling systems of partial differential equations that
describe periodic media into a simplified set of equations. This approach effectively in-
corporates information about the medium’s local geometry and spatially varying material
coefficients into a series of effective macroscopic coefficients. Over the following decades,
the applications of this methodology have expanded significantly.

One of the earliest applications of multiscale modelling with asymptotic homogeni-
sation was in the mechanics of composite materials [18, 104, 105, 109]. A composite
material consists of multiple constitutive components. In a laboratory setting, one might
take a macroscopic perspective, treating the material as a single homogeneous structure,
conducting experiments, and developing a purely phenomenological understanding of its
mechanics. However, from a multiscale modelling perspective, it is much more effective
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to start at the microscale. The challenge, this presents, is that this approach generates
an immense number of coupled partial differential equations—on the approximate order
of magnitude of one over epsilon, with epsilon being very small. Using asymptotic ho-
mogenisation, researchers have successfully upscaled these large systems into a simplified
set of equations that describe the mechanics of a single macroscopic material. This was
first achieved by Bensoussan et al. [9], who wrote a foundational text which system-
atically introduces asymptotic homogenisation for partial differential equations, focusing
on the applications of homogenisation theory. The authors explored how materials with
periodic structures can be analysed using asymptotic homogenisation to derive effective
macroscopic properties from microscopic behaviours.

In the broader literature, asymptotic homogenisation has been applied to upscaling
solid mechanics across a variety of contexts, including finite strain theories, which typically
rely on non-linear mechanical models. Notable examples include the works of Yang et
al. [141] and O’Dea et al. [24, 62], who studied thermoelastic composites and tissue
growth, respectively. These studies, along with others in the field, highlight an important
consideration: a non-linear model does not necessarily allow for a complete separation of
micro- and macroscales.

When performing asymptotic homogenisation, power series approximations of each
field of interest and the separation of scales typically linearise the problem, allowing for an
upscaled macroscopic model that is independent of the microscale. However, this is not
always the case. For instance, Miller et al. [93] investigated balance equations for non-
linear poroelastic composites and found that their non-linear microscopic model was not
adequately linearised by asymptotic homogenisation. As a result, their macroscopic model
retained dependencies on the microscale, and vice versa. This underscores a key lesson:
to achieve an effective macroscopic model that is independent of microscopic variables,
the microscopic model must be one that is properly linearised through the process of
asymptotic homogenisation.

Of course, asymptotic homogenisation does not only apply to solid mechanics, but
it is also used often to model fluid mechanics [23, 113]. One famous example is a new
derivation of Darcy’s law [102, 103] which gives the previously empirical law a solid the-
oretical explanation. This model transformed a microscopic model of Stoke’s law into a
macroscopic model of Darcy’s law. This is an example of how multiscale modelling can
explain differing mechanics at different scales.

The upscaling of fluid mechanics has garnered increasing interest in the field of meta-
materials — man-made materials engineered for specific properties. In solids, this includes
alloys and composites, among others [140]. More intriguingly, meta-fluids [122] have grow-
ing theoretical applications, particularly in the study of liquid crystals, which can be con-
trolled using electromagnetic fields or lasers. This means we can apply a virtual energy
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source to a liquid crystal, manipulate its motion, or even catalyse a chemical reaction.
The primary research application of this technology is in medicine, where liquid crystals
can be used to develop drugs and antibiotics [94].

Understanding this phenomenon through asymptotic homogenisation is essential. Flu-
ids in the human body present an extremely complex modelling challenge, involving fluid-
structure interactions, intricate microscopic geometries, and multiple interacting fluid com-
ponents. At the microscale, such a model would be computationally infeasible. However,
by upscaling and creating a macroscopic model, we significantly reduce the required res-
olution for numerical solutions. This is because the microscopic geometry is effectively
smoothed out, making calculations more manageable. Additionally, each effective macro-
scopic coefficient depends only on macroscale variables, further reducing computational
complexity while maintaining accuracy.

Macroscopic models also allow for a more comprehensive sensitivity analysis of each pa-
rameter, helping researchers understand how variations in microstructure influence macro-
scopic outcomes. This ability to bridge scales and extract meaningful insights is the pri-
mary advantage and motivation behind multiscale modelling.

In Chapter 3 we shall make extensive usage of asymptotic homogenisation and intro-
duce new analytical techniques to upscale a model of material failure. In the following
section we will introduce our modelling framework, thesis aims and outline the content of
each chapter.

1.3 Thesis framework

Our overarching goal is to develop a comprehensive multiscale model of aortic dissection.
However, achieving this in its entirety is beyond the scope of this thesis. Instead, we focus
on constructing a multiscale model of material failure, which represents the first rigorous
multiscale model of a damage phase field. Later in this thesis, we will demonstrate that
this multiscale model converges with its microscopic counterpart. Achieving this will
necessitate the development of new numerical methods for solving damage phase field
problems.

In this section, we outline the general modeling approach used to create a multiscale
model of material failure, with applications to aortic dissections. We also briefly discuss
how to establish a microscopic representation of the aortic microstructure that meets the
local periodicity requirements of asymptotic homogenisation [103]. Finally, we present the
aims of this thesis and summarize the content of each chapter.
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1.3.1 General modelling approach

In this thesis we will create a multiscale model of material failure. To do this we need
to model from a microscopic perspective and upscale to a macroscopic perspective. Our
method is to model material failure of an arbitrary composite microstructure with the
damage phase field method and then upscale, using asymptotic homogenisation. This
general microstructure can be representative of the aortic microstructure. In recent years,
much multiscale modelling has been performed using asymptotic homogenisation to model
complex materials in a wide variety of contexts [104, 32]. Asymptotic homogenisation
is already used in many biological setups due to the hierarchical structure of biological
tissue, and it naturally fulfils the many necessary prerequisites for appropriate usage of
asymptotic homogenisation [23, 109]. However, to the best of this author’s knowledge, no
one has done this while modelling with the damage phase field method. If we describe the
composite microstructure as an elastic composite structure then we can model material
failure from that microscopic perspective. With this approach we can use the damage
phase field method to model the material failure that occurs in the microstructure during
a tear. This will require using a variational formulation to derive a set of partial differential
equations which describe the linear momentum balance and damage evolution.

With this setup we can assume a vast disparity in length scales between the elastic
composites macro and microscales. We may define a representative length scale of the
macroscale to be L. We may also define the representative length scale of the composite
microstructure, defining the size of a representative microscopic unit called δ. This setup
is illustrated with a cylindrical example in Figure 1.9. Assuming L to be much larger that
δ allows us to construct the non-dimensional ratio

ϵ =
δ

L
≪ 1.

As ϵ ≪ 1, then we can clearly say that the macro and microscales are well separated.
Asymptotic homogenisation would allows us to exploit the smallness of ϵ and derive effec-
tive macroscopic equations. Except when upscaling the damage phase field we will see that
certain conditions must be met to ensure irreversibility constraints. This motivates us to
take a new approach with asymptotic homogenisation in order to satisfy these constraints.
We demonstrate how assumptions about local periodicity in the microstructure allow us
to upscale with a number of inequality constraints in the microscopic model. To the best
of our knowledge this modelling approach is novel. As a result we produce a macroscopic
model which embeds plenty of information from the microstructure and still satisfies the
irreversibility constraints of the damage phase field method. This model allows us to
study the effects of the microstructure on the macroscopic results. This is done via a set
of effective macroscopic coefficients. We calculate the coefficients by solving a set of linear
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periodic cell problems for each position in our macroscopic system. These cell problems
account for the geometry and parameter values of the aortic microstructure, embedding
them into the macroscopic system.

Figure 1.9: Diagram of the two different length scales of a macroscopic cylinder with a
periodic microscale. On the left we can see a large macroscopic cylinder with a length
scale of L, from a macroscopic perspective this cylinder looks homogeneous. On the right
we have a zoom in of the cylinder surface, defined by the length scale δ. Here the cylinder
is clearly not homogeneous and in fact a composite structure. This phenomena occurs
often in nature especially with soft tissue, with a length disparity such that L≫ δ.

By solving our macroscopic model numerically we will demonstrate that the micro-
scopic and macroscopic models converge as ϵ → 0. This can be seen with a simple one-
dimensional numerical solution to our multiscale model. Using the finite element method
to solve our numerical model in higher dimensions will allow us to simulate material fail-
ure in higher dimensions. In each case we will need to give special consideration to the
constraints in our multiscale model for our numerical solution to be accurate.

Using our macroscopic system, we can study the effects that various changes of the
microstructure have on the outcome of macroscopic material failure. We demonstrate this
through an example of a two-dimensional trouser test at the end of Chapter 5, studying
the effects of subtle changes in the material’s microscopic properties. The trouser test
works by holding one end of a rectangle-shaped material and pulling the other end apart.
This creates a tear down the middle, making the material look like a pair of trousers. We
find that small changes in the microscale lead to large notable changes in the resulting
macroscopic tearing process. Hence, exemplifying the true utility of our model. With
the correct data to construct accurate periodic cells and calculate effective macroscopic
coefficients. We, as well as other researchers, will be able to analyse aortic dissections
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in-depth. Potentially creating endless clinical applications.

1.3.2 Upscaling of the aortic microstructure

Our motivation is a multiscale model of aortic dissections. In this thesis we create a mul-
tiscale model of material failure, based on the assumptions of asymptotic homogenisation.
Here we will briefly discuss how the biophysics and architecture of the aorta are suitable
for such assumptions.

Firstly and most importantly, asymptotic homogenisation requires a large-scale dispar-
ity between a macroscale and a microscale. With this approach we can model each of the
three main layers of the aortic wall independently and keep a level of arbitrariness in such
a model. Consider Figure 1.9 as an illustration of a cylindrical structure with a periodic
microstructure. This is an excellent and simple approximation of the aorta from a human
scale. Doing so, we can define a representative length scale of the macroscale to be L, which
could be the wall thickness, circumference or the longitudinal length of the aorta itself.
We may also define the representative length scale of the aortic microstructure, defining
the size of a representative microscopic unit called δ, this could be the size of a smooth
muscle cell, as illustrated in Figure 1.9. Estimating L to be measured in millimetres [60]
and δ to be measured in microns [13, 22] allows us to construct the non-dimensional ratio

ϵ =
δ

L
≪ 1.

Hence satisfying the requirement for a disparity between the microscale and macroscale.
The next necessary requirement for using asymptotic homogenisation, in greater than

one dimension, is a locally periodic microstructure. As discussed in §1.1.1 the aorta is a
multilayered structure, with three layers. Each of these layers has a unique local periodic
structure. This local periodic structure was first qualified by Glagov et al. [22, 137, 138]
and has been further reported in numerous medical textbooks [60, 111]. These structures
can be approximated as local elastic composite domains, as illustrated in Figure 1.10.

The first, and innermost, layer of an artery is the tunica intima. This layer is a sheet of
flattened endothelial cells resting on a thin layer of connective tissue [13]. Mathematically
we can easily approximate this locally as periodic adjacent elastic constituents, as seen
in Figure 1.10. Thus satisfying the requirements of asymptotic homogenisation for a
multiscale model. However, mechanically the the tunica intima plays a very small role in
the aorta [65]. It could therefore be simply ignored. The most important role this layer
plays in our multiscale model is that of interacting with the fluid (blood) in the true lumen,
providing a fluid structure interaction as a boundary condition. Another mechanical role
the endothelial cells play is signalling the muscle cells in the arterial wall to contract and
regulate blood pressure [60], when blood pressure is irregularly high of course. As we will
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Figure 1.10: This schematic represents the aortic microstructure. Here we can see how each
of the arteries three layers can be approximated by a simple periodic elastic composite
structure. Firstly, the tunica intima is approximated as a local composite constructed
of adjacent endothelial cells. Secondly, the tunica media is made up of circumferential
layers of spindle shaped smooth muscle cells. Each smooth muscle cell is surrounded
by an extracellular matrix made up of collagen fibers and other fibrous tissue. Each
circumferential layer is then bounded by sheets of elastin. Thirdly, the tunica adventitia is
built up by layers of collagen and elastic fibers. That alternate in helical woven orientations
with each layer.

not account for this in our model then we can further argue to ignore this layer in any
potential multiscale model of aortic dissections.

The middle layer of an artery is called the tunica media. It has a periodic structure
in both the circumferential and longitudinal direction, made up of numerous laminated
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layers [22, 137, 138]. This periodic structure is encapsulated by layers of smooth muscle
cells that lie between elastic laminae interspliced with elastic collagen fibrils and elastic
fibers. This structure has a slight helical pitch [13], making each layer a fibrous helix that
provides extra strength to the structure of the arterial wall. The biomechanics of this layer
are quite simple: the layers of fibrous tissue provide extra strength and resistance against
inflation due to pressure waves of blood. When signalled by the endothelial cells, the layers
of smooth muscle cells in the tunica media can contract. This provides extra resistance
against inflation, thus regulating blood flow [60]. Mathematically we can approximate
this as a simple periodic elastic composite, as seen in Figure 1.10. Here we treat the
extracellular matrix as a host matrix, with elastin sheets and smooth muscle cells as
inclusions within this composite structure. This is a simple mathematical structure and a
composite structure of a host matrix and inclusions is easily upscaled [103, 105].

The final, and outermost, layer of an artery is the tunica adventitia. It is made up of
thick layers of collagen fibrils and elastin fibers, as well as sparse populations of fibrob-
lasts and fibrocytes (cells that produce collagen and elastin) [13]. These fibrous layers
are arranged in alternating helical pitches and serve to reinforce the wall. As the artery
becomes more inflated the layers of fibers in this section unfurl straighten out and stiffen,
providing the wall with more strength. This helps to prevent the wall from overstretching.
It should also be noted that this layer acts as a connective sheath anchoring the artery to
surrounding connective tissue and organs that anchor it in place [60]. Mathematically in
some places this could be treated as a Dirichlect boundary condition, where anchored in
place, or as a stress free Neumann boundary condition, where unattached. To appropri-
ately upscale this layer we require that it can be modelled as a locally periodic cell. We
illustrate how this may be done in Figure 1.10. The adventitia can be modelled mathe-
matically as an elastic composite structure, made up of layers of elastic constituents. Each
layer represents an alternating helically pitched layers of fibrous tissue. This mathematical
structure of a layered composite is easily upscaled [109].

As now discussed we can see that the aorta has a large scale disparity providing a
very small ϵ, as required. We can also approximate each layer of the aortic wall as locally
periodic cells, as required. The final assumptions of asymptotic homogenisation are that
every field can be approximated as a power series in factors of ϵ; that every field is locally
bounded and regular. These are obvious assumptions that can be made since we would be
dealing with a biomechanical problem which is surely locally bounded and regular. Hence
we would argue that the multiscale model that we will derive in this thesis can be applied
to a future multiscale model of aortic dissections.

With a complete multiscale model of aortic dissections, we could study how various
changes in the aortic microstructure affect macroscopic material failure. This would al-
low us to investigate the role of microstructural properties in the progression of aortic
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dissections. Specifically, we could explore how altering the orientations of fibrous tissue
influences dissection behaviour. Additionally, we could examine the effects of stiffened or
relaxed elastin and collagen on initiating aortic dissections.

A numerical solution to this model would enable the simulation of various scenarios
across a broad range of parameters. Using these simulated results, we could develop a sta-
tistical emulator to generate accurate approximations of the model. This approach would
facilitate rapid parametric analysis, allowing for quick exploration of different conditions.
By emulating numerical solutions, we could obtain approximate results in moments, mak-
ing our multiscale model practical for clinical applications.

In the following chapters, we will provide a detailed explanation of how to construct
a multiscale model of material failure capable of addressing these aspects. However, the
aims of this thesis are more general.

1.3.3 Thesis aims

The aim of this thesis is to explain the mechanical factors that drive aortic dissection
by creating accurate multiscale models that do not take a macroscopic phenomenological
approach to modelling. Such models will allow us to understand how microscopic com-
ponents of the aortic wall contribute to dissections. More generally, we want a multiscale
model of material failure that can be used for a wide variety of scenarios. This includes
other soft tissue tearing phenomena and failure of composite materials.

To do this, we will create a model describing the tearing process on a continuum. This
model will then be used to model the aortic wall at the microscale. Using appropriate
upscaling techniques, we will derive a macroscopic system of partial differential equations
from our microscopic system. Our macroscopic model will effectively account for the
role of the aortic microstructure, allowing one to study how the microstructure affects
dissections at the macroscale. Throughout this thesis, we will attempt to answer the
following questions:

1. How can we model the tearing of a continuum using the damage phase field method?

2. How can we upscale a microscopic damage model to a macroscopic modelling frame-
work?

3. How do we account for the effects of the microstructure on the macroscopic tearing
process?

4. Will our model account for the architecture or geometry of the aortic wall in dissec-
tions?

5. Can we analyse with our model which physical parameters play the biggest roles in
dissections?
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6. How do we account for residual stress in our model?

7. Is this work applicable to more soft tissue tearing problems in the human body?

8. Is this work applicable in general for modelling multiscale material failure?

1.3.4 Thesis outline

The rest of the thesis is organised into chapters as follows:

In Chapter 2, we introduce the damage phase field method for modelling sharp tears
through a material. The purpose of this chapter is to provide the reader with all the
necessary background knowledge required to understand this method of material failure
modelling. We begin by introducing the non-dimensional damage phase field that mea-
sures the damage at every point in a material, ranging from completely healthy to totally
ruptured. Next, we explain a series of constitutive choices made to ensure several im-
portant properties of the damage phase field. These properties include the shape of the
damage phase field (an approximation of a Dirac delta function) and that damage is an
irreversible process. For us to perform a variational formulation on the material energy, we
need to introduce the Karush-Khun-Tucker conditions. These conditions will ensure any
variational formulation we perform produces the necessary conditions that ensure the irre-
versibility of damage evolution. With this information we derive a set of partial differential
equations that describe both the mechanics of material displacement and the evolution
of the damage phase field variable in an arbitrary continuum. Using this methodology,
we derive a set of partial differential equations governing the underlying mechanics and
damage evolution for an arbitrary linear elastic composite material. This allows one to de-
scribe the material failure experienced in human tissue, such as the aorta, at a microscopic
level by approximating the tissue as a composite material.

In Chapter 3, a new mathematical model is developed for the macroscopic behaviour of
a damage phase field on an arbitrary composite material. This derivation uses a formal
two scale asymptotic expansion to exploit two well separated length scales: the microscale
of material inclusions in a composite and a large macroscale where the material appears
homogeneous to an observer. As a result, one may use asymptotic homogenisation to
develop a multiscale model described by a system of macroscopic partial differential equa-
tions supplemented by a series of effective macroscopic coefficients. Information on the
effects of the materials microscopic properties and geometry are encoded into the effective
macroscopic coefficients. In deriving this model special considerations must be given to
a system of constraints inherent in the damage phase field method, namely irreversibil-
ity conditions. We show that these constraints are not an obstacle to homogenisation in
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the case of local periodicity. This new model is applicable to the modelling of an aortic
dissection, as well as many other forms of soft tissue tearing.

In Chapter 4, we prove the validity of our multiscale model. This is done by showing
that our macroscopic and microscopic models converge given a large enough disparity in
both the microscopic and macroscopic length scales. To do this we consider a simple one-
dimensional setup that allows us to intuitively create a numerical algorithm for solving our
multiscale model. From there we create the appropriate finite difference schemes required
for solving both the equation of motion and the damage evolution equation. With this new
numerical scheme, we can simulate our one-dimensional model of both our macroscopic
and microscopic models. To finally demonstrate the validity of our model we perform
a parametric analysis of all the model’s parameters against a variety of microscopic and
macroscopic scale disparities. This in turn allows us to gather useful conclusions on the
appropriate scaling of parameters for the multiscale model. The most important conclusion
of this chapter is, however, the convergence of our multiscale model.

In Chapter 5, we create new numerical solutions for solving our model in higher dimen-
sions. This is done with the finite element method, which allows us to create numerical
schemes to solve both the equations of motion and damage evolution for our multiscale
model. Working in higher dimensions also allows us to introduce a mesh that can dy-
namically delete nodes as damage approaches the maximum value of one. As a result,
we can simulate the tearing of a real material. This requires a new numerical algorithm
implementing a dynamic update of the mesh geometry. With this algorithm and the ap-
propriate numerical schemes we can therefore simulate a variety of elastic models that
develop tears due to strong external loads. These numerical schemes allow us to study
how microscopic changes in a material’s microscopic geometry and physical properties af-
fect the material from a macroscopic perspective. We illustrate this through an example
of a two-dimensional trouser test at the end of the chapter, studying the effects of subtle
changes in the material’s microscopic properties. In the trouser test simulation, a rectan-
gular sample is clamped at one end and pulled apart at the other, resulting in a tear that
forms a final shape similar to that of a pair of trousers. We find that small changes in the
materials microscale properties lead to large notable changes in the resulting macroscopic
tearing process. Thereby, illustrating the many uses of our multiscale model for the study
of aortic dissections. This exemplifies the full applicability of our new multiscale model to
study material failure in complex multiscale materials.

In Chapter 6, we discuss the final conclusions of this thesis. This will begin with a
discussion of the most important and novel results of each chapter. We then put all of
our results into a completer picture within the context of aortic dissections and general
soft tissue tearing. Of course, we shall discuss the limitations of this work and how they
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may be over come with more theoretical and/or numerical development. This chapter will
be completed with suggestions for possible future works in the mathematical research of
aortic dissections, damage models and multiscale modelling.



Chapter 2

The damage phase field method

This chapter presents the essential background knowledge required to understand the
damage phase field method. We begin by introducing the damage phase field variable α
and explaining the constitutive choices made to approximate a sharp tear in a continuum.
Ideally, in a reference configuration, the damage phase field exists on a co-dimensional
1 set, making it discontinuous and therefore not differentiable. To address this, we ap-
proximate the damage phase field as a sharply localized diffusive variable. To achieve
this, we construct a functional that describes the energy required to tear a material, en-
suring that the damage phase field remains sharply diffusive. Additionally, we introduce
irreversibility constraints that prevent damage from decreasing, ensuring that it can only
grow over time. These choices are made to ensure that the model remains physically
meaningful and accurately approximates sharp tears in a continuum. A key advantage of
this modelling technique is that it remains within the framework of continuum mechanics.
By employing a variational formulation, we derive a coupled system of partial differential
equations governing momentum balance and damage evolution. These equations describe
both the displacement of the continuum and the evolution of the damage phase field. Since
partial differential equations offer significant advantages—particularly for upscaling—this
approach ensures broad applicability. By generating the most general set of partial differ-
ential equations, the model can be applied to a wide range of scenarios, including crack
formation in concrete, paper tearing or an aortic dissection. Mathematically, this frame-
work also provides a foundation for modelling plasticity and materials that exhibit strain
softening. At the end of this chapter, we derive a damage phase field model for a linear
elastic composite. This extension further generalizes the approach, enabling the modelling
of tearing in hierarchical structures with complex microstructures.

38
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2.1 Damage phase field method

Fractures, also known as tears, are one of the main failure mechanisms of materials under
stress. Modelling of this phenomena has been of keen interest to many engineers and
mathematicians, with the theoretical foundations of this field being created by Griffith
[51] and Irwin [74]. In both these works a crack may propagate through a material if
an energy release rate surpasses a threshold. However, these models cannot predict the
initiation, location, branching or geometry of such tears through a material. Since we are
modelling aortic dissections we want a model that can predict all these properties.

In this section we introduce the damage phase field method which finds its roots in
the work of Marigo [83] and Miehe [90]. One should note that the damage phase field is
sometimes also called the gradient damage model, as they essentially refer to the same
modelling method [11]. The damage phase field method allows us to take a variational
approach to modelling damage in a continuum. The idea behind this method is to define
a non-dimensional damage variable, which describes the degree of damage at every point
X in the reference configuration Ω ⊂ Rn for n ∈ N. With this variable we can later derive
a system of partial differential equations that describe the evolution of damage in our
continuum. This is done with an equation of momentum balance and equation of damage
evolution.

Before we can begin to construct a system of partial differential equations however we
must introduce two essential fields. Both fields are defined in an arbitrary domain Ω, the
reference configuration. Firstly we define α as the the non-dimensional damage variable:

α(X, t) :=

 Ω× T → [0, 1],

(X, t) 7→ α(X, t).

Here T ⊂ R represent an interval of time that we are interested in. We enforce the simple
definitions that α = 0 for completely undamaged material and α = 1 for completely
damaged material. In the damage phase field model, a tear in the material is approximated
by a region where the damage is concentrated and near total. For our model we will require
that α grows monotonically from 0 to 1, making damage an irreversible process. This can
be a gradual process slowly resulting in a degradation of material properties or it can be a
swift process leading to rapid failure in a material. The second field we need to introduce
is the displacement field

u(X, t) :=

 Ω× T → Rn

(X, t) 7→ u(X, t).

The displacement field will inform us on the mechanics of our system. Note that here X
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is the coordinate vector for a reference configuration and that t is time. Here X has no
time dependency and neither does Ω, as they refer to a reference configuration.

Next, to understand how the damage variable α approximates damage in a material we
will explain the constitutive choices we must make. We have two important constitutive
choices to explain: the localisation of the damage phase field and irreversibility constraints.
We will begin by explaining in one dimension how we ensure that the damage phase field
approximates a Dirac delta function and why we do this. After that we will extend
this approximation to higher dimensions, making the model applicable to the real world.
The last constitutive choice we will explain is irreversibility: why we have it and what
constraints enforce it.

2.1.1 Approximation of sharp tears in one dimension

Consider a one dimensional continuum Ω = (−∞,+∞) with a tear defined by the sub-
domain B = {0}. The idealised way to model this with the damage phase field method
would be to create a damage field in the form of a Dirac delta style function, as illustrated
in figure 2.1a. We could define this idealised version of α as the piecewise function

α(X, t) :=

 1 X ∈ B

0 otherwise.
(2.1)

This function gives the profile of α the desired sharpness one would expect of a tear or
fracture in any material. However, this idealised damage phase field defined by (2.1)
is clearly not a continuous or differentiable field. Which is not useful for our purposes
of trying to create a damage model defined by a set of partial differential equations.
Therefore, to ensure our damage phase field is continuous, differentiable and has a sharp
profile throughout the continuum, we approximate the Dirac delta function. This is done
by putting α in the form of a sharp diffusive variable, as illustrated in figure 2.1b. In one
dimension we could approximate this as the solution

α = e−|X|/ℓ, (2.2)

with ℓ acting as a diffusive length scale which localises the width of the damage profile.
Taking the limit ℓ → 0 we can approximate (2.1) with (2.2) as seen in figure 2.1. The
accuracy of this approximation improves as ℓ gets smaller, so we would recommend the
smallest possible choice of ℓ such that 0 < ℓ≪ 1.

Our goal is to develop a variational formulation that enables us to apply calculus
of variations to derive the strong form equations governing the mechanics and damage
evolution of the body Ω. We can use (2.2) to write down a Galerkin-type weak formulation,



CHAPTER 2. THE DAMAGE PHASE FIELD METHOD 41

-0.5 0 0.5
X

0

0.5

1

,

(a) The ideal damage tear profile of the damage variable as defined in (2.1).
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(b) The damage profile of our approximation (2.2) with ℓ = 0.01.

Figure 2.1: For the one dimensional continuum Ω = [−1
2
, 1
2
] with a tear present on the

subdomain B = {0} we have two versions of the damage phase field approximating such
a tear. In (a) we illustrate how we can model the tear with the damage phase field as a
Dirac delta style function where tears are present. In (b) we illustrate an approximation
of (a) by setting up the damage phase field as a sharp diffusive variable.

a functional of α, that describes a sharp diffusive form of α. With some dimensional
analysis we can modify this functional to create a new energy functional. This functional
describes how energy is spent to evolve α, in other words how a tear spreads in Ω. The
advantage of this method is that the functional we write down based on (2.2) will ensure
that α is a sharp diffusive variable that will be continuous and differentiable, unlike (2.1).

To construct such a functional we pair (2.2) with Dirichlet boundary conditions. How-
ever, (2.2) is not differentiable at the point X = 0, as can be seen in Figure 2.1b. So we
must consider how to construct a functional for both cusps in Figure 2.1b from either side
of the non-differentiable point, X = 0. In other words we have two domains to consider
(−∞, 0) and (0,∞). For clarity let us redefine (2.2) as the piecewise function

α =


eX/ℓ when X ∈ (−∞, 0),

e−X/ℓ when X ∈ (0,∞),

1 when X = 0.

(2.3)

In the first domain we will pair (2.3) with the boundary conditions α(−∞) = 0 and
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α(0) = 1. Then we can say that α is the solution to the differential equation

α− ℓ2α′′ = 0 in (−∞, 0). (2.4)

In the second domain we will pair (2.3) with the boundary conditions α(0) = 1 and
α(∞) = 0. Then we can say that α is the solution to the differential equation

α− ℓ2α′′ = 0 in (0,∞). (2.5)

Notice that (2.4) and (2.5) are the same differential equation, over different domains with
different boundary conditions. This differential equation describes the shape of a sharp
function of α at both sides of the tear at X = 0. Using this differential equation we can
construct a functional describing the energy spent in damage evolution. Hence, we may
say that in one dimension the shape of the damage phase field is governed by an equation
of the form

α− ℓ2α′′ = 0 Ω. (2.6)

We have not provided any boundary conditions for (2.6), we will use this equation to
construct a Galerkin-type weak formulation. That functional will be used to create a
functional describing the energy spent evolving α during a tearing process. As a result
this functional will be responsible for constraining the geometry of the phase field α. As
this functional will be one of several terms in a variational formulation it will be paired
with other energy terms that drive the evolution of α. With this in mind let us begin to
construct such a functional.

The differential equation (2.6) represents an approximation of a sharp tear in Ω, de-
scribed by the diffusive variable α and regularised by a local length scale ℓ. Using equation
(2.6) we can construct a Galerkin-type weak formulation of this approximation such that

I(α, α′) =
1

2

∫
Ω

α2 + ℓ2α′2 dX.

The functional I allows us to describe the geometry of the damage phase field α without
explicitly writing the solution of α. In fact all one needs is the functional I paired with
the appropriate boundary conditions for α and we can describe a tear at any point in Ω.
We want to be even more general than this so consider that the units of I are units of
length. Using this functional we can define I = ℓΓℓ such that

Γℓ =
1

2ℓ

∫
Ω

α2 + ℓ2α′2 dX. (2.7)

Here Γℓ is a non-dimensional functional which also represents a Galerkin-type weak formu-
lation describing the diffusive variable α. The reason we have used ℓ to non-dimensionalise
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I is because most of damage profile is defined a distance of ℓ from the point of tearing, as
observed in Figure 2.1b.

The reason we have created this functional Γℓ is to constrain the shape of the damage
profile in Ω. We now want to understand how to use Γℓ to create an energy functional D.
This is done by taking the non-dimensional functional Γℓ and giving it the dimensions of
energy. This can be achieved by multiplying the integrand of Γℓ by some energy function.
Therefore, let us define G(X) a Griffith type fracture energy. Here G(X) is the total
energy required to lift α from 0 up to 1 at each point X ∈ Ω. For any material stretched
to the point of failure, this parameter in an ideal sense would be the area under the curve
of the corresponding stress-strain curve in the zone of plasticity up to the point of material
failure. We can therefore say the energy required or spent damaging our continuum, in
one dimension, is

D[α, α′] =
1

2ℓ

∫
Ω

G(X)
(
α2 + ℓ2α′2) dX. (2.8)

This term can be implemented into a variational formulation of an energy balance in
Ω. Therefore allowing one to derive a set of partial differential equations describing the
mechanics and damage evolution whilst also constraining α to be a sharp diffusive variable.

We have explained this mathematical formulation in one dimension to make the next
steps simpler to follow. Next we will consider the same formulation in higher dimensions,
as the material failure we are interested happens in our three dimensional world.

2.1.2 Approximation of sharp tears in higher dimensions

To generalise the damage phase field method we need to consider how we would approxi-
mate a sharp damage profile in higher dimensions. This is done in a near identical fashion
to that of our previous explanation, in one dimension. Let us consider the continuum
Ω ⊂ Rn as our reference configuration, for n ∈ N. Then a tear in this continuum would be
defined by some co-dimension 1 set B ⊂ Rn−1 such that B ⊂ Ω. To understand why the
tear domain B is a dimension lower than the domain Ω, consider tearing apart a block.
In our world the block is a three dimensional object with a number of surfaces, at least
one. When we tear it into two separate blocks the tear is defined along a newly created
surface. A surface is a dimension lower than a three dimensional block. The same logic
can be applied to the one dimensional case considered in the previous subsection. Where
a tear is defined at a singular dimensionless point. A dimension lower than one dimension.
Hence, ideally, the damage phase field is defined on a lower dimension set, B.

Generally then, a tear in Ω approximated by the damage phase field would ideally be
defined by

α(X, t) :=

 1 X ∈ B

0 otherwise.
(2.9)
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Here α is again idealised as a Dirac delta style function as illustrated in 2D in figure 2.2.
This version of α has the quality of perfectly approximating a sharp tear in Ω but is clearly
not continuous or differentiable.

Figure 2.2: We have illustrated Ω as a two dimensional continuum with a tear present. This
tear is the path B found in the centre of Ω. One should note that generally the tear surface
are in a material is defined at a dimension lower, in other words Dim(Ω) = Dim(B) + 1.

Therefore, just like in the one dimension formulation, we seek to constrain the geometry
of the phase field α to an approximation of a Dirac delta function. We desire that α is
again a diffusive variable regularised by some local length scale ℓ. To do this we define
the differential equation

α− ℓ2∇2α = 0 in Ω, (2.10)

with the Dirichlect boundary conditions α(X) = 1 for all X ∈ B and α(X) = 0 for all
X ∈ ∂Ω. The solution to such a differential equation is a sharp diffusive variable which
rapidly evolves over the local length scale ℓ, as desired. We recast (2.10) as a Galerkin-weak
type formulation such that

I(α,∇α) = 1

2

∫
Ω

α2 + ℓ2∇α · ∇α dV.

The idea here being to incorporate the localisation of α, due to ℓ, into a variational
formulation. This functional has the dimensions of volume for the continuum Ω. We want
a functional that describes the localisation of damage and to do this we define Γℓ = ℓI,
such that

Γℓ =
1

2ℓ

∫
Ω

α2 + ℓ2∇α · ∇α dV. (2.11)

The idea here being that this approximation of the damage localisation improves as ℓ→ 0.
Again, we divided by ℓ so that our functional (2.11) describes the magnitude of the damage
profile around α = 1. In other words we setup Γℓ such that

Γℓ = |B| as ℓ→ 0.
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Therefore our damage profile approximated by α has the same dimensions as B which we
generally describe as co-dimensional 1 to Ω. By defining the magnitude of the damage
profile Γℓ we can also redefine G to be the tearing energy per unit of Dim(B). Here G(X)

is the amount of energy required to create a new tear in Ω. In the context of the damage
phase field method this energy is the amount of energy required to transform α at each
point X ∈ Ω from 0 to 1. We can multiply the integrand of Γℓ by G(X) to define an
energy functional

D[α,∇α] = 1

2ℓ

∫
Ω

G(X)
(
α2 + ℓ2∇α · ∇α

)
dV. (2.12)

First note that (2.12) is simply a generalisation of (2.8) in higher dimensions. Using this
energy functional in a variational formulation we can derive a set of partial differential
equations governing both the mechanics and damage evolution of Ω.

Our wish is to be as general as possible and it is possible to define a more general form
of Γℓ. To do this let us define

Γℓ =

∫
Ω

γ(α,∇α) dV, (2.13)

where we define the integrand γ(α,∇α) as the damage surface area per unit volume. It
is possible that one could define multiple different forms of γ to constrain many different
forms of the damage profile in Ω. For simple sharp tears in Ω we would use

γ(α,∇α) = 1

2ℓ

(
α2 + ℓ2∇α · ∇α

)
, (2.14)

mimicking the integrand of (2.11).
We can actually imbue more physical properties to the damage phase field α by intro-

ducing a structure tensor. The reason we do this is because some materials are naturally
anisotropic and have natural paths a tear would follow. For example consider grain pat-
terns in wood or other laminated composite materials. It is much easier to tear these
composites along the laminated layers than it is tear against those layers. So to incorpo-
rate these physical properties in our model let us rewrite (2.14) as

γ(α,∇α;L) = 1

2ℓ

(
α2 +∇α · L∇α

)
. (2.15)

This is the form of γ that will be used throughout the rest of this thesis. Here we have
introduced the second order tensor anisotropic structure tensor L. This tensor aligns the
damage profile with local fibre orientations that may exist in our continuum Ω. We can
write this as

L = ℓ2 (I+ ωf ⊗ f) ,
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where I is the second order identity tensor. The anisotropy parameter ω regulates a
transition from an isotropic material, at ω = 0, to an anisotropic material, for ω > 0.
Anisotropy in our continuum Ω is described by the unit vector f . For example in a
material with fibers this tensor L aligns the damage profile and also controls the width
of the profile we will later refer to it as a diffusivity tensor when discussing the damage
evolution equation.

Remark. Some interesting conclusion about the function γ were reported in [53]. The
function γ as defined in (2.14), is an isotropic function satisfying the condition γ(α,∇α) =
γ(α,Q∇α), ∀Q ∈ O(3). The tensor Q denotes a rotation and/or reflection in the orthog-
onal group O(3). Similarly the function γ as defined in (2.15), satisfies γ(α,∇α;L) =

γ(α,Q∇α;L), ∀Q ∈ G ⊂ O(3), where G designates a symmetry group as a subset of O(3).

2.1.3 Irreversibility conditions

When we tear an object we naturally assume that to be an irreversible process and that
the damage is permanent. Of course some materials can heal themselves, biological tissues
for example. However, in this thesis we consider materials that cannot heal. That is to
say damage is irreversible. In other words we are assuming damage evolution to be a
completely dissipative process.

As a consequence the natural postulation of the damage phase field method is the
irreversibility of the damage growth. Another way of expressing this is to say that the
growth of the damage surface area is an irreversible process and we can express this
mathematically by saying that

d

dt
Γℓ ≥ 0 and α̇ ≥ 0, ∀X ∈ Ω and ∀t ∈ [0,∞).

Here the dot above α indicates a Lagrangian time derivative in the reference domain Ω,
this notation will be used throughout the thesis. We set these inequalities as a constitutive
choice and from them we can find more general constraints. By recalling (2.11) we can
derive that, generally,

d

dt
Γℓ =

∫
Ω

dγ

dt
dV

=

∫
Ω

∂γ

∂α
α̇ +

∂γ

∂(∇α)
· ∇α̇ dV

=

∫
Ω

(
∂γ

∂α
−∇ ·

(
∂γ

∂(∇α)

))
α̇ dV +

∫
∂Ω

(
∂γ

∂(∇α)
α̇

)
· n dA.

Here we have defined n as an outward unit normal vector on ∂Ω. Therefore as we are
assuming that damage evolution is irreversible we must have that, for all possible evolu-
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tions, ∫
Ω

(
∂γ

∂α
−∇ ·

(
∂γ

∂(∇α)

))
α̇ dV +

∫
∂Ω

(
∂γ

∂(∇α)
α̇

)
· n dA ≥ 0.

Given that Ω is an arbitrary domain we can conclude with the localisation theorem that
in order for damage evolution to be an irreversible process we require that∫

Ω

(
∂γ

∂α
−∇ ·

(
∂γ

∂(∇α)

))
α̇ dV ≥ 0 and

∫
∂Ω

(
∂γ

∂(∇α)
α̇

)
· n dA ≥ 0.

As we are assuming that the constraint α̇ ≥ 0 is true, then for each integral to always be
positive for every domain Ω, the localisation theorem tells us that, we require that(

∂γ

∂α
−∇ ·

(
∂γ

∂(∇α)

))
≥ 0 in Ω, (2.16a)

∂γ

∂(∇α)
· n ≥ 0 on ∂Ω. (2.16b)

These inequalities act as constraints that must be satisfied in order for α to grow mono-
tonically in the positive direction. The former constraint (2.16a) acts as a functional
derivative implying that the damage surface area must grow in the positive direction and
the volume under such a field is positive, therefore enforcing a sharp tear geometry. The
latter constraint (2.16b) acts on the boundary of Ω ensuring that any Neumann type
boundary conditions are positive definite on ∂Ω. In other words any flux must be positive
definite to ensure irreversibility. We can see this by recalling the definition of (2.15), such
that

L∇α · n ≥ 0 on ∂Ω. (2.17)

As flux is always positive or zero then the damage phase field cannot leave the material
Ω, in other words a tear can not travel from one object to another.

Remark. In this thesis we are not discussing materials that can heal. The reason we do
this is because the governing set of partial differential equations we derive couples this dis-
placement u and the damage α. Damage growth is therefore directly linked to the material
deformations. If we allow the system to be reversible then we would allow material healing
to be directly linked to deformation. For example we would be saying that when a material
is stretched it begins to break and tear but as it is compressed it then suddenly begins to
heal, which would not make any physical sense. If one wanted to factor healing into the
system then it would have to be included into the system separate from the deformation
and it would also have to stop healing the material once α has reached zero again. This
is an interesting research question we are not tackling in this thesis. In our opinion most
material failure happens on a time scale much smaller than healing, anyway. So it would
not make to much sense to model them together in a general sense.
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2.2 The damage mechanics

In the previous section we discussed the motivation behind the damage phase field method
and how it can be used to model damage throughout a continuum. Here we are concerned
with deriving a set of governing equations and specifying constitutive choices. In any
damage model we must take care to respect the irreversibility of damage growth and
the degradation of material properties caused by damage. To derive a set of governing
equations we consider the action Π of a balance of energy present in any continuum.
Considering a variational formulation of Π will allow us to derive a constrained system of
partial differential equations which ensure that the irreversibility constraints are met.

As a point of departure let us begin by considering a continuum body at time t0 ∈ T ,
which we refer to as the reference configuration, designated as Ω ⊂ Rn, with the spatial
point X ∈ Ω. Similarly, the deformed body at current time t ∈ T , which we refer to
as the current configuration, is denoted by Ωt ⊂ Rn with the spatial point x ∈ Ωt. The
deformation from the reference configuration to the current configuration is mapped by
the displacement u(X, t), as seen in figure 2.3. For clarity please note that the overdot
notation on the term u̇(X, t) is a Lagrangian time derivative in the reference domain Ω,
as X has no time dependency.

Figure 2.3: The deformation of a solid material. Here we can see the displacement u from
the reference configuration Ω ⊂ Rn at time t0 to the current configuration Ωt ⊂ Rn at
time t. Spatial points are denoted by the vector X in the reference configuration and the
vector x in the current configuration. The boundaries are denoted by ∂Ω in the reference
configuration and by ∂Ωt in the current configuration.

In our modelling we will work in the reference configuration and use a Lagrangian
description of the mechanics to understand material deformation and damage growth. We
will therefore need to create a description of energy balance in the reference configuration.
To do this we will introduce the action Π which has the dimensions of Joule seconds. If we
were dealing with a regular continuum with no constraints on the damage then we could
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say that

Π[u, α] =

∫
T
K[u, u̇, α] +B[u]− P [u, α] dt,

where K is the kinetic energy, B is the external energy from body and surface forces and
P is the elastic potential energy from deformation. The external energy due to external
loading, B, is positive and contributes to the kinetic energy in this Lagrangian. Here K, B
and P would all be functionals calculating the total energy over the reference configuration
Ω. To include the damage mechanics into the formulation we would need to consider firstly
the energy spent creating a tear. We discussed this in detail in the last section and to
include this into our energy balance we would write that

Π[u, α] =

∫
T
K[u, u̇, α] +B[u]− P [u, α]−D[γ,∇γ;L] dt.

Where D is the energy spent creating new damage surface area or the tearing energy
functional. This functional will be informed by the previous discussion, in §2.1, concerning
the damage profile. We could use this form of Π to derive a strong set of governing
equations for u and α but we first must introduce an energetic damage threshold.

Without a threshold for damage growth any slight external loading on Ω would cause
damage growth. That would be senseless, all materials can withstand some level of defor-
mation before either plasticising or failing. So we introduce the energy functional T (α,X).
Here T will act as the damage threshold such that we can only initiate damage growth at
a spatial point X if the elastic potential at that point is greater than the damage thresh-
old. If this is not satisfied then there will no damage growth at the point X. We will
see that the reason both P and T depend on α is because as damage grows the material
properties that they define degrade. We need to think carefully about the sign of T when
we introduced it to the variational formulation Π.

As mentioned the elastic potential energy P is what will drive the tearing in Ω. How-
ever, we must introduce a threshold value to the required energy necessary to begin tearing
Ω. Otherwise we will derive a model where any elastic potential energy will begin to drive
damage evolution. This would not make any physical sense, we know that most materials
have a range of strains they can withstand before the onset of plasticity. Hence the new
energy driving the tearing process is P −T . Here T is a functional representing the energy
density threshold for the onset of material degradation. Therefore in the above variational
formulation, Π, we may simply replace the term potential term P with the term P − T .

By introducing T as the damage threshold of Ω, we can calculate the balance of energy.
This balance of energy describes both the damage evolution and deformation at every point
in Ω. This allows us to model the relationship between the mechanics of a continuum Ω
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and the growth of damage. We can therefore write the action as

Π[u, α] =

∫
T
K[u, u̇] +B[u] + T [α,X]− P [u, α]−D[γ,∇γ;L] dt. (2.18)

Later we will consider a variation of the action, δΠ, this will allow us to derive a system
of partial differential equations describing u and α. Special consideration will be given
to the irreversibility constraints and result in us introducing the idea of Karush-Khun-
Tucker conditions. To do this we must first begin by defining specific forms of all the
energy functionals. Thereby, making a set of constitutive choices on the mechanics and
damage evolution of the system Ω. We will also need to consider how to introduce material
degradation into the model before deriving a system of governing equations.

2.2.1 The energy functionals

Here we will specify the specific forms of each energy functional present in the action
(2.18). Let us first begin by discussing the kinetic energy of Ω, before we proceed it is
important that we comment that damage does not effect the density at any point X in Ω.
Defining ρ(X) as the material density of Ω then the kinetic energy of the body is

K[u̇] =

∫
Ω

1

2
ρu̇ · u̇ dV. (2.19)

Next we account for external loading on our body by considering the energy contribu-
tions from external body and surfaces forces on our system. Consider the external loading
as defined by the external energy functional

B[u] =

∫
Ω

ρb · u dV +

∫
∂Ω

t · u dA, (2.20)

where b(X, t) is defined as the body force per unit mass and t(X, t) is defined as the
traction force per unit area. Body forces and traction would drive the displacement of
material points in Ω. As a result this drives the growth of elastic potential and thus
damage in Ω which inevitably leads to tears. The traction will prescribe a Neumann type
boundary condition by balancing itself against the surface stress of Ω. By keeping the
body force and traction arbitrary we allow our self the opportunity to enforce a wide
variety of external loading.

Throughout this thesis we will be focusing on a linear theory of elasticity for solids.
Here though we can preserve some generality by defining a strain energy density function
in terms of F. Where F is the deformation gradient, defined by

F = ∇x, (2.21)
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with x being a spatial point in the current configuration. The deformation gradient is a
second order tensor that represent the gradient of a mapping function, from the reference
to the current configuration. Note that ∇ is the gradient with respect to the reference
configuration, in terms of X. We may redefine as x = X+u. Therefore, we can write the
deformation gradient as

F = I+∇u. (2.22)

This will be useful later when performing calculating our variational formulation.
The potential energy is probably the most important energy functional we need to

consider. To make constitutive choices about the mechanics of a solid we choose a strain
energy density function Φ(F, α). It governs the stored elastic energy of Ω which in turns
drives the growth of damage in Ω. As a start we may write the potential functional as

P [u, α] =

∫
Ω

Φ(F, α) dV. (2.23)

Here the potential functional depends on both the displacement and the damage. This is
because as the damage grows at every spatial point X the elastic properties of Ω at those
points will degrade. We therefore factor this degradation into the chosen form of Φ. Doing
so will couple the damage evolution and mechanics of Ω.

As mentioned earlier we need to introduce a damage threshold functional T to our
energy balance. The threshold functional T is defined as

T [α,X] =

∫
Ω

Ψ(X, α) dV, (2.24)

where Ψ(X, α) is a volumetric energy density that will ensure damage may only occur
whenever the strain energy density is large enough. In essence for damage evolution we
are adding the constraint that for initial damage at a point we require that

Φ−Ψ ≥ 0.

Another consideration to be made about the damage threshold is its dependence on the
local damage. Generally if a material becomes damaged then it becomes easier to create
further damage. Therefore as damage increases the threshold should decrease. We will
discuss this further in §2.2.2.

The energy functional, D, is the tearing energy functional which is a dissipative process
in Ω and describes how the internal energy of Ω contributes towards the creation of damage.
To calculate this tearing energy (that leads to new tear surface area) we have to consider
what contributes to the dissipation of energy via damage growth. Firstly lets think about
the energy actively used to create new tears. Recall that an approximation to the damage
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profile can be written as described in (2.11). By defining G(X), the energy per units of
the co-dimension 1 of Ω to create a tear at X, we can directly write this functional as

D[α,∇α] =
∫
Ω

G(X)γ(α,∇α;L) dV.

This is the energy used to grow the damage profile and create a new tear surface area. We
may write a more specific form of this functional by choosing a specific form of γ. So to
be as general as possible we use the anisotropic definition (2.15). This allows us to write
our form of the dissipation functional as

D[α,∇α] = 1

2ℓ

∫
Ω

G(X)
(
α2 +∇α · L∇α

)
dV (2.25)

Note that the choice of γ is a particular constitutive choice, we are sticking with our
definition because we are interested in sharp tears, as discussed in §2.1. There are of
course many possibilities for γ which may be constructed to ensure that the damage phase
field α has other geometric properties.

2.2.2 The degradation function

Our damage phase field obviously interacts with the continuum, as a material becomes
more damaged we would expect the material properties to change. We can account for
this by introducing the multiplicative degradation function g(α). This function will allow
us to take account for the effects damage is playing on the material properties. In the
case of the elastic potential Φ(∇u, α) we can assume a multiplicative decomposition of the
potential such that

Φ(∇u, α) = g(α)ϕ(F).

Here ϕ is the elastic potential function of the material if we assume it can never become
damaged. The degradation function however has to have important constitutive properties
in order for this model to make sense. We require that when there is no damage the
material properties are unaffected and when the damage is full (α = 1) the material
properties totally fail. In practicality the material point will lose all elastic resistance
when α = 1.

We also require that degradation is monotonically decreasing, therefore we write the
constitutive properties as

g(0) = 1, g(1) = 0, g′(α) ≤ 0 and g′(1) = 0. (2.26)

The final condition we defined is a mathematical condition, that forces the point α = 1 to
behave as a stable point and stop α diverging in our numerical solutions. These properties
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ensure that g(α) captures the change in material properties as the material degrades with
increasing α. An example of a set of functions that satisfy the conditions (2.26) would be
the family of functions

g(α) = (1− α)p for p ≥ 2.

The simplest choice of these functions would be for the exponent p to be set equal to two.
Though it is important to note that as the exponent p increases this heavily effects the
stress softening of the material [139]. With these ideas in mind we can now write our
potential energy functional which captures the role of damage as

P [u, α] =

∫
Ω

g(α)ϕ(F) dV. (2.27)

In an analogous fashion we introduce the damage degradation function w(α) to model
the degradation of the damage threshold Ψ(X, α). With this in mind we introduce a
multiplicative decomposition of Ψ, such that

Ψ(X, α) = w(α)ψ(X).

Here w(α) is the degradation function for the damage threshold. It shares all the consti-
tutive properties of g(α) as described in (2.26). Analogously then we can write that

w(0) = 1, w(1) = 0, w′(α) ≤ 0 and w′(1) = 0.

Therefore we can write a final form of the threshold energy functional as

T [α,X] =

∫
Ω

w(α)ψ(X) dV. (2.28)

Here ψ is the threshold energy function of the material if we assume it can never be
damaged. As α grows w(α) will decrease towards zero and thus the damage threshold
increases as damage decreases.

2.2.3 Karush-Khun-Tucker conditions

Before we calculate our variational formulation it is important we consider how the con-
straints on the damage phase field will effect that formulation. Let us then consider the
action Π(u, α), a functional that describes how the balance of kinetic and potential en-
ergy of a physical system changes with the trajectories of displacement and damage. The
variation of this action, δΠ, is not only a functional of u and α but also of their admissible
variations v and µ. Usually these admissible variations have no constraints on them, in
our case special consideration must be given to what is an acceptable variation. As we are
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assuming that damage is irreversible then the only admissible variations of α are µ ≥ 0.
The standard approach in a variational formulation is usually to find a minimal sta-

tionary point of the paths represented by Π. This is done by considering

δΠ = 0.

It should be noted that the variation δΠ is linear in terms of v and µ such that

δΠ =

∫
T

∫
Ω

A(u, α) · v +B(u, α)µ dV dt, (2.29)

for some arbitrary vector and scalar functions A and B, respectively. In the standard
approach we use the fundamental lemma of the calculus of variations, and that v and
µ are entirely arbitrary and admissible, to deduce a system of equations. One would
conclude with a set of governing equations defined by A = 0 and B = 0. In our case
v ∈ Rn and µ ∈ R≥0. Hence the variations of damage, µ, are not totally unrestricted and
we can therefore not apply the fundamental lemma of calculus of variations to derive a
model using the standard Euler-Lagrange approach.

Let us thus consider that the variation δΠ(u, α, u̇, α̇) has the property of being a
minimum amongst all possible variations. Then any variation δΠ(u, α,v, µ) where v ∈ Rn

and µ > 0 are virtual velocities can be assumed to satisfy

δΠ(u, α, u̇, α̇) ≤ δΠ(u, α,v, µ)

∀v,∀µ ≥ 0.
(2.30)

This is a mathematical expression of the principle of least action.
First we will show that in the case where one considers no variations in the damage

phase field, µ = 0, the variational problem reduces to δΠ(u, α,v, 0) = 0. Which is just
the regular mechanical variational formulation which should produce an equation of linear
momentum balance. Let the virtual velocity field be v = u̇+ v̄ and µ = α̇. Since µ is an
arbitrary positive field, the choice µ = α̇ is admissible as we have constrained α̇ ≥ 0. So
we have,

δΠ(u, α, u̇, α̇) ≤ δΠ(u, α, u̇+ v̄, α̇). (2.31)

Now also consider the case v = u̇− v̄ and µ = α̇, such that

δΠ(u, α, u̇, α̇) ≤ δΠ(u, α, u̇− v̄, α̇). (2.32)

Thus by the linearity condition (2.29) we must have that

δΠ(u, α, v̄, 0) ≥ 0 and δΠ(u, α, v̄, 0) ≤ 0.
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The only solution that satisfies both of these inequalities is therefore that

δΠ(u, α, v̄, 0) = 0.

Thus we have shown that in the case of assuming no damage variation the variational
formulation of Π reduces to the regular mechanical problem.

Next we want to derive an expression of δΠ that we can use for a localisation process
for the damage problem. Recall that v is not constrained and can take any from such that
v ∈ Rn, whereas µ is a scalar function constrained such that µ≥ 0. We begin by setting
v = u̇ and µ = 0, substitution in (2.30) yields

δΠ(u, α, u̇, α̇) ≤ δΠ(u, α, u̇, 0). (2.33)

We make the second choice v = u̇ and µ = 2α̇ substituting into (2.30) then yields

δΠ(u, α, u̇, α̇) ≤ δΠ(u, α, u̇, 2α̇). (2.34)

Then, again, by the linearity condition (2.29) we have that

δΠ(u, α,0, α̇) ≤ 0 and δΠ(u, α,0, α̇) ≥ 0.

Here the only solution that satisfies both solutions is that

δΠ(u, α,0, α̇) = 0. (2.35)

This alone is not suitable for a localisation process as here α̇ ≥ 0 everywhere in Ω. So we
consider (2.30) for the case v = u̇, if one accounts for (2.29) then its clear that

δΠ(u, α,0, µ) ≥ δΠ(u, α,0, α̇) ∀µ ≥ 0.

Combining this with the result (2.35) we have derived the following Karush-Khun-Tucker
conditions

δΠ(u, α,0, α̇) = 0

δΠ(u, α,0, µ) ≥ 0

∀µ ≥ 0.

(2.36)

With the integral form in (2.36) due to the arbitrariness of the virtual velocity µ this
variational formulation is now suitable for localisation. The derivation of these conditions
are not an original result and they have been discussed before in context with the damage
phase field [84, 106].
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2.2.4 Variational formulation

To derive a governing system of equations that dictate the behaviour of u and α we now
consider the action as originally mentioned in (2.18). Our action describes the balance of
energy as

Π =

∫
T
K[u̇, α] +B[u] + T [α,X]− P [u, α]−D[γ,∇γ;L] dt.

To define Π we substitute in (2.19), (2.20), (2.28), (2.27) and (2.25) to the respective
functionals K, B, T , P and D. Therefore we can write that

Π =

∫
T

∫
Ω

1

2
ρu̇ · u̇+ ρb · u+ w(α)ψ

− g(α)ϕ(∇u)− 1

2ℓ
G
(
α2 +∇α · L∇α

)
dV dt

+

∫
T

∫
∂Ω

t · u dAdt.

This is a weak form statement of our system for all admissible forms of u and α. To create
a strong form set of equations we need to first find a general form of the variation δΠ.
To do these we will use the directional derivative to define the variation. This is done by
calculating

δΠ =

[
d

dh
Π(u+ hv, α+ hµ)

]
h=0

, (2.37)

where v ∈ Rn and µ ≥ 0 are admissible variations of the displacement and damage,
respectively. Here h is a small positive number such that h ≪ 1, this ensures that the
variations are small. It should also be noted that both v and µ have the standard boundary
conditions

v(t0) = v(t1) = 0 and µ(t0) = µ(t1) = 0,

such that T := [t0, t1]. Before we take the directional derivative it is useful for us to first
write down that

Π[u+ hv, α+ hµ] =

∫
T

∫
Ω

1

2
ρu̇ · u̇+ ρhu̇ · v̇

+ ρb · u+ ρb · hv + w(α + hµ)ψ

− g(α + hµ)ϕ(I+∇u+ h∇v)− G

2ℓ
(α + hµ)2

− G

2ℓ
(∇α · L∇α + 2h∇µ · L∇α) +O(h2) dV dt

+

∫
T

∫
∂Ω

t · u+ t · hv dAdt.

Given that the above holds for arbitrary domains Ω, it is therefore possible to derive
a governing set of partial differential equations for any arbitrary domain. We can now
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calculate the variation by taking a derivative with respect to h then setting h = 0. Doing
so leaves us with the variation

δΠ(u, α,v, µ) =

∫
T

∫
Ω

[
−ρü+ ρb+∇ ·

(
g(α)

∂ϕ

∂F

)]
· v

+

[
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
µ dV dt

+

∫
T

∫
∂Ω

[
t− ∂ϕ

∂F
n

]
· v −

(
G

ℓ
L∇α · n

)
µ dAdt.

(2.38)

Here we have made use of the product rule, the definition of the deformation gradient
(2.22) and the divergence theorem twice to put the variation into its most useful form for
our purposes. We also used integration by parts and the boundary conditions for v to
eliminate some other terms.

Now that we have the variation of the action we want to apply the results discussed
in §2.2.3 to derive a set of governing equations. To begin we consider a case in Ω where
we have no damage growth. So let us imagine that the variation µ = 0 everywhere in Ω.
Obviously then we can write that

δΠ(u, α,v, 0) =

∫
Ω

[
ρb− ρü+∇ ·

(
g(α)

∂ϕ

∂F

)]
· v dV +

∫
∂Ω

[
t− g(α) ∂ϕ

∂F
n

]
· v dA.

This variation holds for every v ∈ Rn, so let us consider a minimum. To do this we just
set δΠ = 0 and therefore

0 =

∫
Ω

[
ρb− ρü+∇ ·

(
g(α)

∂ϕ

∂F

)]
· v dV +

∫
∂Ω

[
t− g(α) ∂ϕ

∂F]
n

]
· v dA.

From here we can argue if this is true for all admissible choices of v in Rn then we must
have, by the fundamental lemma of calculus of variations, that

ρb+∇ ·
(
g(α)

∂ϕ

∂F

)
= ρü in Ω (2.39)

t = g(α)
∂ϕ

∂F
n on ∂Ω. (2.40)

The former (2.39) is a momentum balance equation and the latter (2.40) is a traction
boundary condition. This result should be expected because if we ignored any damage
in our model then the action defined by (2.18) would reduce to a classic action. Our
momentum balance equation couples the effects that damage degradation has on the elastic
properties of Ω and therefore the displacement u. This property is also present in our
traction boundary condition (2.40). As a result increased damage causes the degradation
function g(α) to approach zero and therefore softens the material stress in (2.39). This
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means that at every point X as α increases the elastic resistance decreases, as intended.
With the results (2.39) and (2.40) we can re-evaluate our variation of the action. By

doing so we can eliminate all the terms relating to the momentum balance leaving us with
terms relating to the damage evolution. Therefore we rewrite the variation (2.38) as

δΠ(u, α,v, µ) =

∫
T

∫
Ω

[
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
µ dV dt

−
∫
T

∫
∂Ω

(
G

ℓ
L∇α · n

)
µ dAdt,

where u and α are the solutions of (2.39) and (2.40). To derive a damage evolution
equation by making an argument analogous to the above, will not work here because µ
is a constrained function. Therefore we need to form an argument similar to that made
at the end of §2.2.3. To do this let us begin by setting v = 0 and µ ≥ 0 everywhere in
Ω. This now describes a system in which damage evolution is irreversible and u satisfies
δΠ = 0. According to the Karush-Khun-Tucker conditions (2.36) we can derive an integral
constraint ∀µ(X) ≥ 0 such that δΠ(u, α,0, µ) ≥ 0. Therefore, we must have that∫

T

∫
Ω

[
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
µ dV dt

−
∫
T

∫
∂Ω

(
G

ℓ
L∇α · n

)
µ dAdt ≥ 0.

(2.41)

We can not use the fundamental lemma of calculus of variations or the localisation theorem
here to extract any information from the integral constraint (2.41). This is because we
cannot permit every admissible scalar function µ in R. Here the variation µ is constrained
such that µ ≥ 0, this constraint comes from the fact that α̇ ≥ 0. As a result we have
the constrain δΠ ≥ 0 which is an inequality, we require an equality for the fundamental
lemma of calculus of variations and the localisation theorem. Instead we will introduce a
new Lemma, which will allow us to extract a strong form constraint for when µ(X) ≥ 0 is
true.

Lemma 2.2.1. If f : Ω ⊆ Rn → R is continuous ∀n ∈ N and if
∫
Ω
f(X)µ(X) dV ≥ 0 ∀µ

satisfying µ(X) ≥ 0 ∀X ∈ Ω then f(X) ≥ 0 ∀X ∈ Ω.

Proof. Consider a function f(X) : Ω ⊆ Rn → R that is continuos ∀n ∈ N. This function
satisfies the integral constraint

∫
Ω
f(X)µ(X) dV ≥ 0 ∀µ satisfying µ(X) ≥ 0 ∀X ∈ Ω.

Suppose ∃ a ball B centred at X0 with radius δ that is completely contained in Ω and an
ϵ > 0 with f(X) < −ϵ, ∀X ∈ B(X0, δ). If we than take µ such that

µ(X) =

 1− |X−X0|
δ

∀X ∈ B(X0, δ),

0 ∀X ∈ Ω \ B(X0, δ),
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then we can say that ∫
Ω

f(X)µ(X) dV =

∫
B(X0,δ)

f(X)µ(X) dV

< −ϵ
∫
B(X0,δ)

µ(X) dV

< 0.

This is a contradiction as
∫
Ω
f(X)µ(X) dV ≥ 0 ∀µ(X) ≥ 0, hence we must have that

f(X) ≥ 0 ∀X ∈ Ω. Therefore completing the proof.

If we know take the integral constraint (2.41) and apply the Lemma 2.2.1 it is possible
to extract strong form inequality constraints. It is important to remember that when
we do this we can exploit the freedom of choice for µ(X). We can thus write down the
inequalities

− g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)
≥ 0 in Ω (2.42a)

and
G

ℓ
L∇α · n ≤ 0 on ∂Ω (2.42b)

∀µ ≥ 0 in Ω. (2.42c)

These three conditions are what ensure damage irreversibility. The first condition (2.42a)
is the damage criterion, if this is not satisfied then we do not have damage growth and if
it is satisfied at any point X ∈ Ω we can have damage evolution at that point X ∈ Ω. The
second condition (2.42b) is a criterion for damage evolution on the boundary ∂Ω. The
last inequality (2.42c) is an expression of damage irreversibility. Coupling (2.42b) with
the irreversibility constraint (2.17) gives us a Neumann Boundary condition on ∂Ω for α
such that

L∇α · n = 0, (2.43)

which satisfies both inequalities.
At this point it is important that we clarify what exactly our derivation via the Karush-

Khun-Tucker conditions is saying. In other words physically what do the inequalities (2.42)
actually mean. Well this variational formulation is being calculated in the setting that
the damage threshold is being satisfied. We are assuming that there is an energy driving
the growth of α at some point X ∈ Ω. However, this is not always the case in fact
we have two distinct physical regions undergoing different mechanics. The first region is
everywhere that satisfies α̇ = 0, at these points α just remains constant and the mechanics
of our system is dictated by the governing equations (2.39) and (2.40). In these regions
we would only be interested in calculating the displacement u. The damage criterion
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(2.42a) is not satisfied in these regions, you can use this inequality to check which points
will be undergoing damage evolution. Physically this is the correct way to understand
the model, (2.42a) is a criterion not an absolute constraint. At every region in Ω where
(2.42a) is positive definite we will have that α̇ > 0. In those regions the mechanics of Ω
will be dictated by our momentum balance (2.39), a traction boundary condition (2.40),
a damage evolution equation and a boundary condition for the damage phase field.

From here we can now make an argument to derive a strong set of governing equations
for the damage evolution equation. To do this we recall that the last Karush-Khun-Tucker
condition in (2.36) we need to consider, is δΠ(u, α,0, α̇) = 0. We can write this down as∫

T

∫
Ω

[
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
α̇ dV dt

−
∫
T

∫
∂Ω

(
G

ℓ
L∇α · n

)
α̇ dA dt = 0.

As α̇ ≥ 0 everywhere in Ω then we cannot use the fundamental lemma of calculus to derive
a set of governing equations for damage evolution. However, we may apply the localisation
theorem here and extract the integrands of the above integrals to form a set of governing
equations for the damage phase field. From the localisation theorem we therefore have the
following damage evolution equations[

−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
α̇ = 0 in Ω, (2.44)

[
G

ℓ
L∇α · n

]
α̇ = 0 on ∂Ω. (2.45)

Since these expressions are only true for the irreversibility constraint α̇ ≥ 0 we cannot
eliminate the α̇ terms from the left hand side of (2.44) and (2.45). Here (2.44) is a
damage evolution equation which dictates how α changes with respect to deformations
defined by u. We also have another boundary condition defined by (2.45), similar to the
previous boundary condition (2.43) we have already derived.

Hence we have the following system of equations for damage evolution[
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)]
α̇ = 0 in Ω, (2.46a)

L∇α · n = 0 on ∂Ω, (2.46b)

α̇ ≥ 0 in Ω. (2.46c)

These equations and inequality act as a complete system describing the damage evolution
through Ω. The first equation is an energy balance dictating damage evolution. The second
is a no-flux boundary condition, that ensure damage in a material cannot leave one material
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and enter another. Our damage evolution equation clearly treats the elastic potential ϕ
of Ω as a driving energy behind damage evolution and uses the damage threshold ψ as an
energetic threshold for initial damage evolution. This system is better understood when
coupled with a damage criterion that controls where damage takes place. This criterion
for damage evolution at every point X ∈ Ω is

−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)
≥ 0. (2.47)

Note that the equations (2.46a) and (2.47) are independent of each other. We also need to
be careful not to confuse the fact that (2.46a) is a strict equality and (2.47) is a criterion
that prescribes when and where damage evolution takes place in Ω.

We can simplify the system of equations (2.46) by introducing new notation. This
notation must ensure that damage evolution only occurs when the damage criterion (2.47)
is satisfied and is driven by a positive contribution of energy. Accordingly we introduce
the following notation for any positive scalar function f that ensures only positive contri-
butions of f are accounted for

⟨f(X)⟩+ =

f(X) if f(X) ≥ 0

0 otherwise.
(2.48)

We can think of this as a ramp function, known as the Macaulay brackets [89, 31]. They
are commonly used in many engineering problems where irreversibility is an important
requirement. To understand how this notation can simplify the system of equations (2.46)
let us define

F (X) = −g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)
in Ω.

Hence we may write a simplified system of equations

α̇ ≥ 0 in Ω,

F (X)α̇ = 0 in Ω.

The first equation being the damage irreversibility constraint and the second equation
being the damage evolution equation. For this argument we may ignore the boundary
condition (2.46b). The above two equations can be combined into one expression using
the Macaulay brackets. We can do this by writing

⟨F (X)⟩+ = 0,
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thus combining both equations. The reason this works is rather simple. We have two
distinct regions for damage evolution. The first being the region Ωα ⊆ Ω that contains all
X ∈ Ω such that F (X) ≥ 0; and the second region being ΩE ⊆ Ω that contains all X ∈ Ω

such that F (X) < 0. Regions of damage evolution and no damage evolution, Ωα and ΩE,
respectively. We have defined Ωα such that we have α̇ > 0 ∀X ∈ Ωα therefore

F (X)α̇ = 0 ⇐⇒ F (X) = 0 ∀X ∈ Ωα.

Therefore when we have damage growth in Ωα it is defined by the damage evolution
equation F (X) = 0. This may seems as an ill defined damage evolution equation without
boundary conditions but it does implicitly have boundary conditions. If ∂Ωα ⊆ ∂Ω then
we apply the no flux boundary condition (2.46b) but if ∂Ωα ⊆

◦
Ω then we simply apply a

Dirichlet boundary conditions defined by the surrounding fixed values of α. Now consider
the region ΩE where we have no damage evolution such that α̇ = 0 ∀X ∈ ΩE and
therefore

α̇ = 0 ⇐⇒ F (X) < 0.

These two cases can be constructed into a single expression by using the Macaulay brackets.
Physically we are saying that the damage evolution is governed only by the positive definite
energy contributions of the damage criterion (2.47). As a result we may write the simplified
system of equations〈

−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)〉
+

= 0 in Ω, (2.49)

L∇α · n = 0 on ∂Ω. (2.50)

Here we are left with a balance of energy (2.49) which acts as our damage evolution
equation. In essence this is a piece-wise equation where the left hand side is either positive
at some point X hence implying damage evolution at that point to balance the equation,
otherwise it is zero and at that point we have no damage evolution. This therefore ensures
that damage irreversibility conditions are in fact satisfied. Pairing the damage evolution
equation with the boundary condition described in (2.50) we have a complete system
describing damage. This paired with the system describing the displacement gives us a
complete coupled set of partial differential equations with boundary conditions describing
the mechanics and damage mechanics in Ω.

Consider equation (2.49), this is a rate independent equation of damage evolution.
Which means that damage evolution will happen instantaneously. This leads to a lot
of problems when trying to solve the equation numerically. To that end we introduce a
viscous term to our equation of damage evolution which as a result makes the evolution
of damage smoother. We can also therefore use numerical schemes such as the Crank-
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Nicholson method, which generally converge, to make solving our system computationally
feasible. The reason this works is because it effectively changes the definition of our
damage evolution equation from an elliptic type to a parabolic type and we can therefore
solve the model with numerical schemes that are far more likely to converge. Hence we
rewrite equation (2.49) as

ηα̇ =

〈
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)〉
+

in Ω. (2.51)

Here we have introduced the parameter η(X) as the damage viscosity. We therefore now
have a rate dependent model which can recover the rate independent model by taking
η → 0. This idea can be seen in the literature with other models introducing a viscous
term for numerical reasons [28]. For clarity not that the term α̇ on the left hand side
of (2.51) is a Lagrangian time derivative, as this equation is defined in the reference
configuration Ω.

This model is not unique to the literature, its derivation and form share many similar-
ities to other works. One feature however that we have introduced here is the energetic
threshold function ψ, as defined by (2.28) in §2.2.1. As a result we can imbue any material
we are modelling with some natural resistance to damage. It also means that we have a
model that can be used to simulate complex mechanical problems where damage growth
may never take place. In the literature of the damage phase field model a threshold func-
tion is never considered [84, 90, 31, 54], which may mean other models cannot accurately
assess the onset or termination of material failure. If we consider a material in a state of
no damage such that α = 0 and ∇α = 0 everywhere in Ω. Then the damage criterion
(2.47) that would first need to be met such that damage evolution occurs would be

−g′(α)ϕ ≥ −w′(α)ψ.

Here we are simply saying that for the initiation of damage in Ω the elastic potential must
be greater than the required threshold energy.

2.3 Governing equations

For convenience we lay out the governing equations in Ω as a single system of partial dif-
ferential equations. For a single continuum Ω we have a coupled pair of partial differential
equations, (2.39) and (2.51), describing the displacement u and damage α. This is paired
with two Neumann style boundary conditions completing the system, (2.40) and (2.50).
Our system is written as
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ρb+∇ ·
(
g(α)

∂ϕ

∂F

)
= ρü in Ω,

ηα̇ =

〈
−g′(α)ϕ(F) + w′(α)ψ − G

ℓ
α +∇ ·

(
G

ℓ
L∇α

)〉
+

in Ω,

t = g(α)
∂ϕ

∂F
n and

G

ℓ
L∇α · n = 0 on ∂Ω.

(2.52)

The first equation in our system is a linear momentum balance equation describing the
displacement u of Ω. This is coupled with the damage evolution via the degradation
function g(α). Damage growth leads to a degradation of elastic properties, resulting
in material softening. This is done via softening of the stress term in our momentum
balance equation. The second equation in our system is the damage evolution equation
governing the damage phase field α. On the right hand side of this equation we can see
a pair of Macaulay brackets that filter out any negative energy contributions to damage
evolution. Therefore driving an irreversible damage growth in the positive direction. The
damage evolution equation is coupled to the linear momentum equation via the elastic
strain energy function ϕ. To close this differential problem we have two Neumann style
boundary conditions for the displacement and damage on ∂Ω, respectively. The first
boundary condition is a traction boundary condition for the linear momentum balance
equation. The second boundary condition is a flux condition for the damage evolution
equation. It is a no-flux boundary condition, which means that α cannot leave the domain
Ω. Physically you can interpret that as a tear being confined to the body that is being
torn. For example, if you start snapping a piece of wood, a crack will run down its body.
When that crack reaches the boundary of the wood it does not keep travelling and then
suddenly tear apart the bodies surrounding it, like the air. No, it is confined to the wood.

2.3.1 Rate independent model

A convenient feature of our model is the rate dependent property dictated by the viscosity
term η. Our problem will need to be solved numerically and a viscosity term makes
solving our system more numerically convenient, as it ensures our model is a parabolic
type partial differential equation which can be solved with reliable numerical schemes such
as the Crank-Nicholson scheme. Also rate dependency is a common material property of
many materials. Except many materials are modelled as rate independent. To model such
materials we may simply set η = 0 in (2.52). As a result our rate dependent model reduces
to the model defined by (2.39), (2.40), (2.46) and the damage criterion (2.47). This model
is almost identical in every way to the rate independent version. Obviously this version
is also irreversible and satisfies every other constitutive property previously mentioned.
Though it should be noted this model is much harder to work with numerically. Damage
growth happens instantaneously in this model meaning that the elastic properties degrade



CHAPTER 2. THE DAMAGE PHASE FIELD METHOD 65

near instantly making it easier to deform a material. As a result its far more difficult to
create a numerical scheme that converges well for all possible cases.

2.4 Adaption for composite structures

Most materials are not homogeneous materials but are in fact extremely heterogeneous.
This is especially true in biological tissues and materials with hierarchical structures. To
avoid a phenomenological approach of modelling material failure we propose modelling
the entire microstructure of a complex material. Doing this would allow one to attempt
multiscale modelling from this large microscopic model. To do this we the materials as a
continuum made up of many smaller continua, forming a composite structure. In figure
2.4 we propose an approximation of a linear elastic composite. Our idea is to simplify
complex materials by treating them as a composite of elastic continua. We are motivated
to do this because there is a lot of mathematical precedent for multiscale modelling of
composite materials. Since the structure of this setup would be similar to the problem
proposed in §2.2 we would only need to consider an adaption of the variational formulation
to derive a governing system of equations for a linear elastic composite.

Figure 2.4: Here we have a host matrix ΩA which acts as the glue holding a composite
material together. The host matrix is full of inclusions that define the subdomain ΩB.

Formally we can setup a composite materials as a host matrix with a number of dis-
joint inclusions, as illustrated in Figure 2.4. We represent the composite as a bounded
continuum Ω ⊂ R3, such that Ω̄ = Ω̄A ∪ Ω̄B and

◦
ΩA ∩

◦
ΩB= ∅. Here, ΩA represents a host

matrix and

ΩB =
N⋃

β=1

Ωβ

represents a number N of disjoint embedded inclusions Ωβ. Our damage model was setup
over a single continuum but now we must adapt it to this composite setup. This will result
in a momentum balance equation and damage evolution equation for every constituent
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part of the composite. For completion of our differential equations we require a set of
boundary conditions and interface conditions. Therefore we must define our interfaces
and boundaries of the composite as

Γβ = ∂ΩA ∩ ∂Ωβ and ∂Ω = (∂ΩA ∪ ∂ΩB) \

(
N⋃

β=1

Γβ

)
.

∂Ω is the boundary surface of our composite made up of a union of the boundary surfaces
of the host matrix and the inclusions. The subscript A throughout will indicate the host
matrix and the subscript B will indicate the domain of disjoint inclusions. Whereas the
subscript β indicates an individual inclusion in ΩB for β = 1, ..., N . To avoid any confusion,
let us also state that all the inclusions included in ΩB never intersect or even touch. We
write this as

Ωi

⋂
i ̸=j

Ωj = ∅ ∀Ωi,Ωj ⊆ ΩB.

2.4.1 Adaption of variational formulation

In the previous sections we discussed a derivation for a damage model over a single con-
tinuum Ω. Now we want to model damage growth over N +1 continua represented by ΩA

and ΩB. A straightforward approach would be to intuitively adapt (2.52) but we would
then have to effectively guess the interface conditions between subdomains. Therefore, for
completeness, we will replicate the derivation of §2.2 for the composite setup. This will
allow us to derive the necessary interface conditions.

To begin we must introduce new functionals of the kinetic, body force, threshold,
potential and dissipation energies. This can be done by adapting the functionals (2.19),
(2.20), (2.28), (2.27) and (2.25), respectively. As an example we will begin by writing
down a new functional for the kinetic energy. By summing up the contributions of kinetic
energy over our composite setup we can calculate the total kinetic energy. Hence, we write

K[u̇A, u̇β] =

∫
ΩA

1

2
ρAu̇A · u̇A dV +

N∑
β=1

∫
Ωβ

1

2
ρβu̇β · u̇β dV (2.53)

where, for every X ∈ Ω our displacement uA and uβ denotes the restricted displacement of
u in ΩA and Ωβ, respectively. Notice that we have defined two functions of density ρA(X)

and ρβ(X) in each domain ΩA and Ωβ, respectively. Next we calculate the functional for
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body and surface forces as

B[uA,uβ] =

∫
ΩA

ρAb · uA dV +
N∑

β=1

∫
Ωβ

ρβb · uβ dV

+

∫
∂Ω∩∂ΩA

t · uA dA+
N∑

β=1

∫
∂Ω∩∂Ωβ

t · uβ dA.

(2.54)

Here for the body force b(X) and t(X) we do not partition these contributions because
they are external to Ω.

In a similar fashion we want to reformulate the potential energy functional (2.27). We
can write this down as the new potential energy functional

P [uA,uβ, αA, αβ] =

∫
ΩA

gA(αA)ϕA(FA) dV +
N∑

β=1

∫
Ωβ

gβ(αβ)ϕβ(Fβ) dV. (2.55)

Here we define the elastic potentials for the domains ΩA and Ωβ as ϕA and ϕβ, respectively.
The deformation gradients FA and Fβ have been partitioned to each of their domains ΩA

and Ωβ, respectively. The degradation functions gA and gβ for the elastic potentials in the
domains ΩA and Ωβ, respectively. The threshold functional now becomes for the composite
domain

T [αA, αβ,X] =

∫
ΩA

wA(αA)ψA(X) dV +
N∑

β=1

∫
Ωβ

wBβ
(αβ)ψβ(X) dV. (2.56)

The thresholds and degradation functions are defined as wA and ψA for ΩA, analogously
the threshold and degradation is wβ and ψβ for Ωβ. We also introduce for every X ∈ Ω our
damage phase fields αA and αβ denoting the restricted damage in ΩA and Ωβ, respectively.

Lastly we need to introduce a new dissipation functional for our composite domain.
Considering the dissipation functional (2.25) then its clear that we can easily reformulate
a new functional for the composite. This is done by summing up the dissipation for every
subdomain in Ω such that

D[γA, γβ] =

∫
ΩA

GAγA dV +
N∑

β=1

∫
Ωβ

Gβγβ dV

Here we are accounting for the energy dissipated to create new tear surface in both ΩA

and ΩB. The energy per unit surface area parameters GA(X) and Gβ(X) are defined
for their respective domains ΩA and Ωβ. Now we have also defined the damage surface
area densities γA in γβ which control the shape of the damage tear field through their
respective domains ΩA and Ωβ. In our case we want a nice sharp tear that accounts for
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local orientations of fibers. Therefore we recall the definition (2.15) and by substituting
for γA and γβ into the above functional we find that

D[αA, αβ,∇αA,∇αβ] =

∫
ΩA

GA

2ℓ

(
α2
A +∇αA · LA∇αA

)
dV

+
N∑

β=1

∫
Ωβ

Gβ

2ℓ

(
α2
β +∇αβ · Lβ∇αβ

)
dV

(2.57)

The last thing we need to introduce are assumptions about continuity at the interfaces
Γβ for all β. First we will assume that in Ω we have continuity of the damage phase field
on the interfaces. We can formulate this as

αA = αβ on Γβ ∀β,

thereby ensuring continuity over the interfaces for the damage phase field. We make this
assumption for damage so that we can firstly formulate a simple interface condition and
secondly perform a straightforward multiscale formulation in the following chapter. We
will also assume a continuity of displacement on the interface Γβ for all β. In other words
we have assumed that on the interface one can say

uA = uβ and nA = −nβ on Γβ ∀β.

Here nA and nβ are unit normal vectors pointing outwards from the surfaces of there
respective domains ΩA and Ωβ.

Now that we have defined a functional of kinetic, body, threshold, potential and dis-
sipative energies for the composite domain Ω, we set about defining a balance of energy
analogous to that in §2.2. So by balancing these contributions of energy we can reformu-
late the an action as defined in (2.18). Using the new functionals (2.53), (2.54), (2.55),
(2.56) and (2.57) we have the new action

Π =

∫
T

∫
ΩA

1

2
ρAu̇A · u̇A + ρAb · uA + wA(αA)ψA

− gA(αA)ϕA(FA)−
GA

2ℓ

(
α2
A +∇αA · LA∇αA

)
dV dt

+
N∑

β=1

∫
T

∫
Ωβ

1

2
ρβu̇β · u̇β + ρb · uβ + wβ(αβ)ψβ

− gβ(αβ)ϕβ(Fβ)−
Gβ

2ℓ

(
α2
β +∇αβ · Lβ∇αβ

)
dV dt

+

∫
T

∫
∂Ω∩∂ΩA

tA · uA dAdt+
N∑

β=1

∫
T

∫
∂Ω∩∂Ωβ

tβ · uβ dAdt.
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The above action is considerably larger than in the previous derivation however it is
notably similar. The next step in this derivation is to calculate the variation of the
action, δΠ. This is done by taking a directional derivative of the above action in the
direction (u + hv, α + hµ), as defined in (2.37). Here v ∈ Rn are admissible variations
of the displacement and µ ≥ 0 is admissible variations of the damage phase field. These
variations are again equipped with the boundary conditions

v(t0) = v(t1) = 0 and µ(t0) = µ(t1) = 0,

such that T := [t0, t1]. We of course appropriately partition these variations over the
composite domain defined by Ω. Calculating the variation of action gives us

δΠ =

∫
T

∫
ΩA

[
−ρAüA + ρAb+∇ ·

(
gA
∂ϕA

∂FA

)]
· vA

+

[
−g′A(αA)ϕA(FA) + w′

A(αA)ψA −
GA

ℓ
αA +∇ ·

(
GA

ℓ
LA∇αA

)]
µA dV dt

+
N∑

β=1

∫
T

∫
Ωβ

[
−ρβüβ + ρβb+∇ ·

(
gβ
∂ϕβ

∂Fβ

)]
· vβ

+

[
−g′β(αβ)ϕβ(Fβ) + w′

β(αβ)ψβ −
Gβ

ℓ
αβ +∇ ·

(
Gβ

ℓ
Lβ∇αβ

)]
µβ dV dt

+
N∑

β=1

∫
T

∫
Γβ

[
gA(αA)

∂ϕA

∂FA

− gβ(αβ)
∂ϕβ

∂Fβ

]
nA · vA

+

[
GA

ℓ
LA∇αA −

Gβ

ℓ
Lβ∇αβ

]
· nAµA dV dt

+

∫
T

∫
∂Ω∩∂ΩA

[
tA −

∂ϕA

∂FA

nA

]
· vA −

(
GA

ℓ
LA∇αA · n

)
µA dAdt

+
N∑

β=1

∫
T

∫
∂Ω∩∂Ωβ

[
tβ −

∂ϕβ

∂Fβ

nβ

]
· vβ −

(
Gβ

ℓ
Lβ∇αβ · nβ

)
µβ dAdt.

(2.58)

In this variation we can see clear strong form equations that will make up our governing
equations for the composite and their complementary boundary conditions. We have
already derived these strong form equations and boundary conditions for a single arbitrary
continuum. They are the equation of momentum balance (2.39), damage evolution (2.46a),
the traction boundary condition (2.40) and the flux boundary condition (2.46b), found in
§2.2. Here we can apply them directly in the above variational formulation and eliminate
a number of terms. We can therefore say that the first four lines and the last two lines of
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the variation (2.58) go to zero. As a result the above variation reduces to

δΠ =
N∑

β=1

∫
T

∫
Γβ

[
gA(αA)

∂ϕA

∂FA

− gβ(αβ)
∂ϕβ

∂Fβ

]
nA · vA

+

[
GA

ℓ
LA∇αA −

Gβ

ℓ
Lβ∇αβ

]
· nAµA dV dt.

(2.59)

This variation of the action is now formed of what are clearly interface conditions. To
extract them we will follow the same process laid out in §2.2. So to begin we acknowledge
that the above action is true for all admissible forms of v and µ. Our variation of action
(2.59) applies for our arbitrary domains defining the host matrix ΩA and the inclusions
ΩB.

To begin we will consider no variation of the damage phase field by setting µA = 0

and µβ = 0 for all β. Doing so we are only left with a variation of the action due to
variations in the displacement. As the admissible variations of displacement vA and vβ

are unrestricted then to find a minimum of δΠ we just set δΠ = 0. This leaves us with
the expression

0 =
N∑

β=1

∫
Γβ

[
gA(αA)

∂ϕA

∂FA

− gβ(αβ)
∂ϕβ

∂Fβ

]
nA · vA dA.

If we then exploit the fundamental Lemma of calculus of variations we can derive a set of
interface conditions. Therefore, we find that

gA(αA)
∂ϕA

∂FA

· nA = gβ(αβ)
∂ϕβ

∂Fβ

· nA on Γβ ∀β. (2.60)

This interface condition is a stress continuity on the interfaces defined by Γβ ∀β. Plugging
this result back into the variation of action (2.59) leaves us with

δΠ =
N∑

β=1

∫
Γβ

[
GA

ℓ
LA∇αA −

Gβ

ℓ
Lβ∇αβ

]
· nA µA dA

which is true for all admissible damage variations µA. Here we do not need to give
consideration to the Karush-Khun-Tucker conditions because the remaining variation of
action does not drive damage evolution. In fact, what remains is simply an interface
condition. Therefore given that each Γβ is an arbitrary surface then its clear that, by the
fundamental Lemma of calculus of variations, we must have

GA

ℓ
LA∇αA · nA =

Gβ

ℓ
Lβ∇αβ · nA on Γβ ∀β. (2.61)

Which is an interface condition for the damage phase fields throughout our composite.
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With these interface conditions, the governing equations and boundary equations defined
in (2.52) and the continuities of displacement and damage we can describe the coupled
damage evolution and linear momentum balance for a linear elastic composite material,
as defined by the continuum Ω.

2.5 Summary of results

In this chapter we have introduced the damage phase field model and explained how one
can use it to model sharp tears in a continuum. From there we have used a variational
formulation to derive a governing set of equations. This was done by introducing the
Karush-Khun-Tucker conditions coupled with Lemma 2.2.1 to complete a variational for-
mulation of our governing equations. We have adapted our governing materials to a linear
elastic composite domain. To the best of this authors knowledge this is the first time this
has been done. With this model we will show it is possible to derive a novel multiscale
model of the damage phase field model in the next chapter. This model will have many
applications for modelling tears and fractures in complex hierarchical materials that can
not be described as simply homogeneous. It will allow researchers to model the failure of
biological tissues from a microscopic perspective.

We understand this model is not simple, so we will write it out clearly here for conve-
nience. Remember we have defined a system of partial differential equations that explain
the mechanics and damage evolution for a composite domain Ω. This composite domain is
formed by a host matrix ΩA and the inclusions Ωβ for β = 1, ..., N . The interface between
the inclusion and host matrix is denoted as Γβ for all β. Let us first write the governing
equations

ρAb+∇ ·
(
gA(αA)

∂ϕA

∂FA

)
= ρAüA in ΩA,

ρβb+∇ ·
(
gβ(αβ)

∂ϕβ

∂Fβ

)
= ρβüβ in Ωβ ∀β,

ηAα̇A =

〈
−g′A(α)ϕA(FA) + w′

A(α)ψA −
GA

ℓ
α +∇ ·

(
GA

ℓ
LA∇αA

)〉
+

in ΩA,

ηβα̇β =

〈
−g′β(α)ϕβ(Fβ) + w′

β(α)ψβ −
Gβ

ℓ
αβ +∇ ·

(
Gβ

ℓ
Lβ∇αβ

)〉
+

in Ωβ ∀β.

(2.62)

The first two equations are linear momentum balance equations. The next two are damage
evolution equations. These equations show a direct relationship between the displacement
and damage in the system. Here the terms ηA and ηβ are viscosity terms, introduced to
ensure we can solve our model numerically with computationally robust methods like the
Crank-Nicholson scheme. If we want to recover the rate independent version of the model
then we simply take ηA = ηβ = 0 ∀β. This system is of course completed with a set of
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boundary equations and interface conditions

t = gA(αA)
∂ϕA

∂FA

nA and t = gβ(αβ)
∂ϕβ

∂Fβ

nA on ∂Ω ∀β,

GA

ℓ
LA∇αA · nA = 0 and

Gβ

ℓ
Lβ∇αβ · nβ = 0 on ∂Ω ∀β,

gA(αA)
∂ϕA

∂FA

· nA = gβ(αβ)
∂ϕβ

∂Fβ

· nA on Γβ ∀β,

GA

ℓ
LA∇αA · nA =

Gβ

ℓ
Lβ∇αβ · nA on Γβ ∀β,

uA = uβ and αA = αβ on Γβ ∀β.

(2.63)

The first two boundary conditions are traction boundary conditions for the linear mo-
mentum balance equations. The next two are flux boundary conditions for the damage
evolution equations. Next we have a continuity of stress and flux condition on the interfaces
Γβ. This system is complete with continuity of the damage phase field and displacement
on the interfaces.

2.5.1 Concluding remarks

The overall purpose of introducing this composite damage phase field model (2.62) is to
allow us to model aortic dissections from a microscopic perspective. Now that we have
a general model for elastic composites, we need to consider how we would approximate
the aortic microstructure. As discussed in Chapter 1, the aortic wall is a multilayered
structure made up of many constitutive parts. It is important to note that the majority of
dissections are contained within the tunica media. If we then revisit the media’s anatomy
we can begin to create an approximate domain geometry for the aortic microstructure as an
elastic composite. As a result, we can adapt our damage phase field model for dissections in
the aortic microstructure. Therefore, creating a large set of partial differential equations,
boundary conditions and interface conditions, which approximate the displacement and
damage of the aortic wall at the microscale.

Recalling §1.1.1 we can draw a simple schematic of the tunica media in Figure 2.5. Here
we are describing a small section of the media as circumferential layers of smooth muscle
cells which are surrounded by an extracellular matrix. Approximately the tunica media
is: 33.5% smooth muscle cells, 37% collagen and 24.5% elastin [13]. The complimentary
5% would be made up of ground substances such as glycosaminoglycan and proteoglycans.
Importantly, this is only the dry mass of an artery which makes up around 30% of the
arteries mass, because in reality 70% of an artery is water. From this microscopic perspec-
tive we cannot just treat the aorta as a simple single elastic continuum approximation. In
fact, we need to model this as a composite of many continua representing many different
elastic constitutive parts of the tunica media. To do this we just consider a simple host
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Figure 2.5: This schematic represents the tunica media’s microstructure. Here the me-
dia is made up of circumferential layers of spindle shaped smooth muscle cells. Each
smooth muscle cell is surrounded by an extracellular matrix made up of collagen fibers
and other fibrous tissue. Each circumferential layer is then bounded by sheets of elastin.
All these constitutive components provide important physical properties to the aorta at
the macroscale.

matrix setup with a number of constitutive phases, like that in Figure 2.4.
By approximating the extracellular matrix of the tunica media as a host matrix ΩA

and approximating the smooth muscle cells and sheets of elastin as inclusions ΩB. Here
ΩB is the union of the subdomains Ωβ where for each β = 1, ..., N represents a different
inclusion. With this setup we can apply our composite damage phase field model (2.62) as
an approximation of aortic dissections at a microscale. This microscale is defined by the
length scale of a smooth muscle cell. With this setup we can begin to create a multiscale
model.

It should be noted that, as mentioned, around 70% of the artery is water. This obvi-
ously motivates a model that includes viscoelastic effects. Upscaling viscoelastic models
is also possible and has been explored in the literature many times [129, 142]. We have
not come across a damage phase field model that includes viscoelastic effects so such a
derivation would possibly be a new addition to the literature. In this thesis we will not
explore this approach as we are more interested in just finding a general linear multiscale
model of material failure. Though we do want to explicitly note that viscoelastic effects
would be an interesting research idea. It is also a point of order that must be addressed
when creating a more specialised model of aortic dissections in future applications.

To create a multiscale model we will need to assume some form of local periodicity
in the media. However, the media does have a repetitive structure of circumferentially
layered smooth muscle cells, surrounded by layers of collagen and elastin. We discuss
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this assumption in much more detail in §1.3.2. This locally periodic structure was first
observed by Glagov in mammalian elastic arteries [22, 137]. In this work a lamellar unit
was described as a smooth muscle cell surrounded by an extracellular matrix. Using this
idea of periodic lamellar units as a basis for modelling the aortic microstructure we can
formulate an approximation of the microstructure as locally periodic. We are motivated
to do this because there is a lot of mathematical precedent for multiscale modelling of
composite materials, as a locally periodic structure, using asymptotic homogenisation.

With this approximation in mind, in the next chapter we will explore how to upscale our
composite model into a simpler macroscopic system which encodes information about the
microscale. This will allow us to study how variations in the aortic microstructure effect
the outcomes and onset of aortic dissections. It should be noted that many researchers
are finding that degenerative changes in the structure of vascular walls is responsible for
aortic dissections [12], which our multiscale model will allow us to study swiftly.



Chapter 3

Creating a multiscale model

In this chapter, we aim to create an effective macroscopic model of aortic dissections,
accounting for variations in the aortic microstructure. We introduce the theory of asymp-
totic homogenisation and its key assumptions. Next we set up a constitutive framework
for the elastic potential and damage degradation. Then, non-dimensionalisation of our
two-phase damage model and an appropriate approximation of the aortic microstructure,
are carried out to derive a macroscopic model in a prototypical fashion. During our mul-
tiscale analysis, we take special considerations to ensure the irreversibility constraints of
our model apply on the macroscale. Our work will result in a macroscopic model that ac-
counts for microscopic variations in material properties for an arbitrary body. This model
will be formed by a macroscopic damage evolution equation and a momentum balance
equation, completed by appropriate boundary conditions. Information on the effective
contributions of the microscopic system will be stored in a set of effective coefficients,
informing the macroscopic model. By creating such a model, we can study how variations
in the aortic microstructure affect the mechanics and damage evolution at the macroscale.

3.1 Asymptotic homogenisation

Biological tissue is a multiscale system characterised by geometrical complexity, a varying
number of constituents and strong interplay between the hierarchical levels. In fact, most
real-world physical system are usually multiscale in nature. From a modelling perspective
this introduces a very important question: at which scale should one create an effective
model? Modelling the aorta solely from a macroscopic perspective and treating it as a sin-
gle continuum would only be appropriate when embracing a phenomenological approach.
Modelling up from a microscopic perspective, however, we can derive a simplified macro-
scopic system. This allows us to model each constitutive part of the aortic wall and the
interplay among them. Unfortunately, this approach, as seen in the previous chapter,
results in an extremely large set of coupled partial differential equations which cannot be

75
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solved easily. Numerically it would be computationally expensive and inefficient. We are
therefore motivated to create a multiscale model by starting from a microscopic perspec-
tive and then upscaling to a macroscopic model. Since we already have an appropriate
microscopic model, we just need an appropriate upscaling technique. A technique which
provides a computationally feasible macroscopic mathematical model; however, it must
crucially encode the role of the aortic microstructure. Most upscaling techniques lead to
a macroscale description where information on the role of the microstructure is partially
or entirely lost [67].

Asymptotic homogenisation is an analytical technique which is used to study rapidly
oscillating fields. It allows us to exploit systems with sharp length scale disparities by
considering a power series representation of any relevant fields and as a result we can
provide a macroscopic system of partial differential equations. The derived macroscopic
models from this technique encode information from the microstructure into a set of effec-
tive coefficients [103]. Computation of these coefficients require solving a set of differential
problems known as local cell problems which relate the micro and macroscale. A down-
side to this approach is the necessary assumptions one must satisfy to use asymptotic
homogenisation and to decouple the microscale and macroscale spatial variations of the
fields. To perform the calculations, we require a very large-scale disparity, an assumption
of local periodicity and that all fields are sufficiently regular.

As discussed in §1.2.4, we can find the roots of this theory in the work of Sanchez-
Palencia [114] and Bensoussan [9]. Since then, this method has become a crucial tool in
multiscale modelling and has been formalised in several modern textbooks dealing with
mathematical modelling techniques [63, 103]. Popularisation of asymptotic homogenisa-
tion has led to it becoming a crucial tool in many areas of applied mathematics. Despite
asymptotic homogenisation’s requirement for spatial periodicity, it has found many uses
in modelling fluid and solid mechanics. The technique has been extremely relevant in
a bio-mechanical context where work has included modelling of drug advection through
malignant tumours [102] and a new derivation of Darcy’s Law [115]. Modelling of tissue
as a hierarchical structure has also found plenty of uses for multiscale modelling tech-
niques [27]. Here, the motivation is simplifying complex elastic structures into a single
continuum model informed by some complex microstructure. In terms of biomechanics,
researchers have used this approach to study such phenomena as layered hard tissues [109]
and myocardium infractions [92].

In our case we will be dealing with a two-phase composite material and upscaling this
into a single macroscopic continuum model. Composite materials have been studied a lot
for various practical engineering purposes [75, 19]. The use of asymptotic homogenisation
to approach modelling composites is not a new idea and has been championed in recent
years for a variety of problems. This gives us a strong basis to approach our problem
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from. However, none of these works are related to damage mechanics by considering the
coupling between elastic deformations and damage evolution. None of them also deal
with considerations of irreversibility constraints to a physical process. So, the following
multiscale formulation is novel in the multiscale modelling panorama and constitutes the
main theoretical result of this thesis.

3.1.1 Basic assumptions

In §1.2.4 we briefly mentioned the basic assumptions necessary to perform upscaling with
asymptotic homogenisation. Here we will introduce them more formally. In order to
perform upscaling using asymptotic homogenisation there is a set of necessary assumptions
we need to satisfy. Let us first consider the two fields we are interested in: the damage
phase field α(X̃, t) and the displacement field u(X̃, t). Here we are saying that both fields
have a dependency on time t and a single spatial vector X̃ ⊂ Rn, for n = 1, 2, 3 in general.
From a macroscopic perspective this would make sense that we have a single smooth
continuum, that can easily be described from a single spatial variable. Except that we are
modelling a composite material which has many microscopic inclusions and upon zooming
in we can see on a microscopic scale that the material is actually much more complex,
this is illustrated in figure 3.1. This motivates the idea to decouple the microscopic and
macroscopic spatial variables.

Figure 3.1: A 2D schematic representing both the macro and micro scales of a continuum.
On the left-hand side, we see the macroscale domain, where from such a large length scale
perspective, the microscopic structure is smoothed out. On the right-hand side, a zoom in
of, a periodic composite structure representing the microscale is shown, and the difference
between a host matrix and the inclusions is clear. The difference from each perspective, of
the left and right hand image, indicates how large scale perspectives can simplify a clearly
multiscale system.
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One can identify two distinct length scales here the microscale δ and the macroscale
L. The former can describe the length scale of small individual inclusions within a host
matrix, or some other related distinctive feature at the microscale. The latter is related
to the length scale of some large macroscopic dimension. With these length scales we can
non-dimensionalise the spatial coordinate X̃ in two ways:

X̃ = LX = δY.

Here X represents a non-dimensional macroscale spatial variable, whereas Y represents a
non-dimensional microscale spatial variable. This in turn motivates the scale ratio

ϵ =
δ

L
(3.1)

which relates the two spatial coordinates X and Y. In order to satisfy the theoretical
requirements of asymptotic homogenisation we assume ϵ is suitably small, such that ϵ≪ 1.

With this assumption about ϵ we can decouple the spatial variable X̃. By assuming
that for some unknown field f(X̃) dependent on some variable X̃ may be decoupled by
the variables

X̃ = X and Y =
X

ϵ
. (3.2)

It must be clear that what we are assuming is that X and Y are completely independent
of one another. With this new definition of our spatial variables we can now write that
for any unknown field

f(X̃) = f̂(X,Y).

Here f̂ is a function of both X and Y. It is easier to think of X to be the global spatial
variable and Y to be the local spatial variable. With this change of variable the differential
operators transform accordingly by the chain rule:

∇ → ∇X +
1

ϵ
∇Y and ∆→ ∇X · ∇X +

2

ϵ
∇X · ∇Y +

1

ϵ2
∇Y · ∇Y. (3.3)

As discussed previously we intend to make use of a power series expansion of our
damage and displacement variables. So, we also make the assumption that all unknown
fields can be expanded on multiple spatial scales as a power series of ϵ. In other words for
any unknown field f we can define the power series

f(X,Y, t) =
∞∑
j=0

f (j)(X,Y, t)ϵj. (3.4)

Here we have defined each component, f (j), of the power series as a function of X, Y and
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t. We also assume local boundedness of any function f (j) such that

∣∣f (j)(X,Y, t)
∣∣ ̸→ ∞

for all Y and X ∈ Rn for n = 1, 2, 3 in general. To justify this assumption one should also
note that any real world system is not well behaved if it diverges to infinity. Since we are
modelling displacement and damage this seems to be a very reasonable assumption. We
could also say that there exists local upper and lower bounds for each field such that

fm(X) ≤ f(X,Y) ≤ fM(X).

Here fm and fM are the respective lower and upper bounds for the arbitrary function f .
The last important assumption that we must make is local periodicity of the unknown

fields. We can justify this assumption by accounting for the fact that the aortic microstruc-
ture is composed of locally repeating structures. Mathematically we need this assumption
otherwise we would not be able to use asymptotic homogenisation to upscale models in
Rn. We can still have fields with globally varying properties but generally we are assuming
a periodicity in the spatial variable Y. More rigorously one would say that there exists a
family of vectors

V(a1, ..., an) =
n∑

i=1

ai Ei, with ai ∈ Z

and fixed vectors Ei ∈ Rn constituting a basis of Rn. Thereby every unknown field f(X,Y)

is locally periodic such that

f(X,Y) = f(X,Y +V(a1, ..., an)) ∀ ai ∈ Z. (3.5)

Note that this assumption of local periodicity is stated for arbitrarily shaped periodic cells.
Thus, microscopic variations of each field can now be studied on a single local periodic
cell. For a more complete overview of these assumptions and there necessity in asymptotic
homogenisation we refer you to the textbooks by Penta et al. [103] and by Holmes [63].

3.1.2 Homogenisation process

With the above assumptions one can follow a simple process to upscale a microscopic
model to a macroscopic model. Here we will layout the simple steps that are usually
taken when applying asymptotic homogenisation. This will familiarise the reader with
this technique and also make it clear where our derivation of a multiscale model is clearly
deviating from the norm. Here we are assuming that usually a series of constitutive choices
are made with the design of reducing the model to a linear model when scale separations
are assumed. This is a necessary requirement to find a macroscopic model independent of
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the microscopic variables. This is further discussed in §1.2.4.
The goal of asymptotic homogenisation is to produce a multiscale model over two scales:

the microscale and macroscale. This is done by first identifying the scales across which
the variation occurs and defining two (or more) coordinate systems to describe different
geometries. If the non-dimensional ratio between the scales, ϵ, is sufficiently small then the
two scales are well-separated and the two coordinate systems can be assumed as indepen-
dent of one another. Next one can make a series of assumptions about the boundedness
and periodicity of the variables of interest as explained above. All unknown variables
are then expressed as power series expansions in ϵ. Therefore, systems of equations may
then be separated by equating the coefficients of powers of ϵ. Asymptotic homogenisation
captures the behaviour observed over multiple scales by then separating these coefficients
of ϵ and broadly following these next steps:

1. Equate the coefficients of ϵ0 to construct simplified differential equations. Solving
these equations one can establish which macroscopic variables are independent of
the microscale.

2. Next by equating coefficients of ϵ1 and applying the previous results one can construct
a system of differential equations that relate the micro and macroscales. These
equations cannot be directly solved. Therefore one usually exploits the linearity of
these differential equations. As a result one can construct a series of ansatz solutions
to this system. These ansätze solutions are constructed by introducing a number of
auxiliary variables. These auxiliary variables are the solutions to a series of linear
differential equations, which we call local cell problems, derived from our ϵ1 system
of equations. These cell problems inform the macroscopic variables to the effects of
the underlying microstructure.

3. The last step is for one to construct a system of differential equations by equating
coefficients of ϵ2 and taking a local integral average over a local periodic cell Ω.
Then by making use of all the previous results and local periodicity one can simplify
the system into a series of governing macroscopic equations. These macroscopic
equations are defined by a series of effective macroscopic coefficients. Each coefficient
is a local integral average that incorporates the solutions to our local cell problems.
Thereby, encoding the properties of microstructure at the macroscale.

This method results in a homogenised problem which describes the leading order terms of
each field. Our macroscopic system is separate from our cell problems and both problems
are solved separately. As a result by solving different variations of the cell problems we
can study different variations of the underlying microstructure. This could allow us to
study a great variety of physical phenomena relevant to aortic dissections, as discussed in
§1.3.2. Broadly speaking this protocol is standard for most problems involving asymptotic
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homogenisation. In our case we will see further analysis performed in order to ensure that
damage growth is irreversible on every scale of our homogenised problem. For a more
complete study of the procedures of asymptotic homogenisation I would recommend a
number of textbooks [7, 21, 63, 103].

3.2 Multiscale formulation

Let us consider the case of an arbitrary composite material with a host matrix and set of
disjoint inclusions. This geometry is chosen for simplicity but is also applicable for a wide
variety of arbitrary sub-phases. We setup a linear elastic damage problem as defined from
the system of equation (2.62) with the interface and boundary conditions (2.63). This
system describes a balance of momentum and damage evolution equation across a locally
periodic bounded continuum Ω. Here Ω ∈ Rn for n ≥ 2, such that Ω̄ = Ω̄A ∪ Ω̄B and
◦
ΩA ∩

◦
ΩB= ∅. Here, ΩA represents a host matrix and

ΩB =
N⋃

β=1

Ωβ

represents a number N of disjoint inclusions Ωβ. For completion we define our boundaries
and interfaces of Ω as follows:

Γβ = ∂ΩA ∩ ∂Ωβ and ∂Ω = (∂ΩA ∪ ∂ΩB) \

(
N⋃

β=1

Γβ

)
.

To avoid any confusion, let us also state that all the inclusions included in ΩB never
intersect or even touch. We write this as

Ωi

⋂
i ̸=j

Ωj = ∅ ∀Ωi,Ωj ⊆ ΩB.

An illustration of this setup is given in Figure 3.2 for an arbitrary microstructure defined
over a microscale defined by some length scale δ. In this section we will be assuming
that all the basic and necessary assumptions required are met to perform asymptotic
homogenisation.

In the following formulation, we will equate coefficients of ϵk for k = 0, 1, 2, ... for our
linear elastic and damage problem. Doing so allows us to create a homogenised macroscopic
model of our system Ω at the zeroth order. To smooth out this problem and remove any
dependencies on a local microscopic spatial variable Y we perform local integral averages.
We integrate with respect to Y over a local cell Ω. To this end it is important to define
the following operators for local integral averages of any field f(X,Y) over a local cell Ω,
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Figure 3.2: A simple 2D schematic depicting our composite microscale. This is a simple
periodic unit Ω defined across the microscale, δ, with a number of arbitrary local inclusions.
It should be noted that the host matrix ΩA and the inclusions Ωβ are only restricted in
our formulation by local periodicity. In other words one is free to choose a wide variety of
arbitrary setups for a local microstructure.

we define the operators:

{f}Ω =
1

|Ω|

∫
Ω

f(X,Y) dVY;

{f}ΩA
=

1

|Ω|

∫
ΩA

f(X,Y) dVY;

{f}Ωβ
=

1

|Ω|

∫
Ωβ

f(X,Y) dVY,

(3.6)

where |Ω| represents the volume of a periodic cell. Throughout the homogenisation process
we will operate from the perspective of a single periodic cell. Geometric variations will be
smoothed out by the process of a local integral averaging.

3.2.1 Constitutive framework

Before we write down a system of microscopic equations that we would like to upscale
it is important that we make a set of constitutive choices. We are working in the frame
of elasticity but to ensure that we can upscale our microscopic model we will assume a
linearisation of our model. To be as applicable as possible, however, we will setup a system
with some residual stress and strain. This could represent a linearisation around some pre-
stretched material. In our damage phase field model stress and elastic potential are related
so both will be affected by whatever linear elastic energy ϕ we introduce. Taking all of
this into account we introduce ϕ as combination of Hooke’s law for elastic potential and
the potential from some residual stress as

ϕ =
1

2
ξ(u) : C : ξ(u) + σ(X) : ξ(u). (3.7)
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Here, we have introduced the second rank tensor σ which is a constant tensor field ac-
counting for any residual stress in our system. Here we introduce C as the elastic modulus,
a fourth rank tensor that contains both minor and major symmetries [103, 104]. We can
express major symmetries of a fourth rank tensor C as

Cijkl = Cijkl

and similarly we have the left and right minor symmetries:

Cijkl = Cjikl and Cijkl = Cijlk.

We have also introduced the strain tensor, a second rank tensor, defined as

ξ(u) =
∇u+ (∇u)⊺

2
.

It is important to note that this is a symmetric tensor such that, ξ = ξ⊺.
The other important constitutive choice we must make is the form of the damage

degradation function. We require a form of the degradation function that satisfies all of
the constraints described by (2.26), laid out in §2.2.2. Here we will introduce a polynomial
form of the degradation function. Our intention is to choose a form of the degradation
function that satisfies the necessary constraints of the degradation function and that will
also upscale with ease, whilst covering a very wide range of possible degradation functions.
We can write our degradation function as

g(α) = (1− α)p for p ≥ 2 with p ∈ N. (3.8)

Note we can do this for a general exponent p that will regulate the material softening.
The stiffness of C will degrade faster for larger values of p and slower for smaller values
of p. One could introduce a more exact form of the degradation function but here in this
derivation we are trying to be as arbitrary as possible to maximise the applicability of our
multiscale model.

Taking the constitutive choices for elastic potential (3.7) and the degradation function
(3.8), then substituting them into our damage model (2.62) and the interface condition
(2.63) giving us a new damage phase field model. Here we label every field and parameter
with the appropriate subscript: fA for the host matrix and fβ for each inclusion. We write
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our microscopic system as

ρAb+∇ · [(1− αA)
pA (CA : ξ(uA) + σA)] = ρAüA in ΩA,

ρβb+∇ · [(1− αβ)
pβ (Cβ : ξ(uβ) + σβ)] = ρβüβ in Ωβ ∀β,

ηAα̇A =

〈
pA(1− αA)

pA−1

(
1

2
ξ(uA) : CA : ξ(uA) + σA : ξ(uA)− ψA

)
+

− GA

ℓ
αA +∇ ·

(
GA

ℓ
LA∇αA

)〉
+

in ΩA,

ηβα̇β =

〈
pβ(1− αβ)

pβ−1

(
1

2
ξ(uβ) : Cβ : ξA(uβ) + σβ : ξ(uβ)− ψβ

)
+

− Gβ

ℓ
αβ +∇ ·

(
Gβ

ℓ
Lβ∇αβ

)〉
+

in Ωβ ∀β.

(3.9)

Here the first two equations describe the balance of linear momentum in our system for
linear elastic materials with residual stress. Similarly the other two equations are the
damage evolution equations for each subdomain. Here the damage evolution is described
by as the elastic potential from Hooke’s law with contributions from the residual stress.
Now as for our interface conditions they read as

(1− αA)
pA (CA : ξ(uA) + σA) · nA = (1− αβ)

pβ (Cβ : ξ(uβ) + σβ) · nA on Γβ ∀β,
GA

ℓ
LA∇αA · nA =

Gβ

ℓ
Lβ∇αβ · nA on Γβ ∀β.

(3.10)

Our interface conditions describe the continuity of stress and damage flux, respectively. For
our multiscale formulation we do not need to consider boundary conditions. The reason
for this is because when we upscale our model we are constructing a set of governing
equations by taking a local integral average over some representative periodic cell Ω. This
local periodic cell exists in the domains interior and does not require microscopic boundary
conditions for this upscaling. Instead when we have a macroscopic model we can simply
infer some macroscopic boundary conditions.

For every parameter in the system we are assuming that they are continuous and
smooth in X within the domains ΩA and ΩB. However, over the interfaces Γβ we must
note that material properties are not necessarily continuous and in, general, considered to
be discontinuous. Mathematically this can be described by the statement that for every
field fA(X) and fβ(X) one has that

fA(X)− fβ(X) ̸= 0 on Γβ ∀ β.

This principle is true for all the above parametric fields described in the system of equations
(3.9).
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3.2.2 Non-dimensionalisation

Equations (3.9) and the interface conditions (3.10) equipped with appropriate boundary
conditions, represent a complete set of coupled partial differential equations. The next
step in our multiscale formulation is to non-dimensionalise our system, thereby allowing
us to analyse inherent length or time scales in our system. We now rewrite our system in
terms of the non-dimensional variables:

X = LX′, u = Lu′, C = CLC′, L = ℓ2L′,

b =
C

ρr
b′ and t =

√
ρrL

C
t′.

The length scales L and ℓ, represent the macroscopic length scale and the diffusive length
scale, respectively. Here we introduce C and ρr as a pressure gradient and reference density,
respectively. The corresponding governing equations after this non-dimensionalisation
(dropping the primes for simplicity) is

ρ̂Ab+∇ · [(1− αA)
pA (CA : ξ(uA) + σ̂A)] = ρ̂AüA in ΩA,

ρ̂βb+∇ · [(1− αβ)
pβ (Cβ : ξ(uβ) + σ̂β)] = ρ̂βüβ in Ωβ ∀β,

η̂Aα̇A =

〈
pA(1− αA)

pA−1

(
1

2
ξ(uA) : CA : ξ(uA) + σ̂A : ξ(uA)− ψ̂A

)
+ ...

− ĜAαA +∇ · (DA∇αA)

〉
+

in ΩA,

η̂βα̇β =

〈
pβ(1− αβ)

pβ−1

(
1

2
ξ(uβ) : Cβ : ξA(uβ) + σ̂β : ξ(uβ)− ψ̂β

)
+ ...

− Ĝβαβ +∇ · (Dβ∇αβ)

〉
+

in Ωβ ∀β.

(3.11)

Our non-dimensional system is supplemented by the interface conditions

(1− αA)
pA (CA : ξ(uA) + σ̂A) · nA = (1− αβ)

pβ (Cβ : ξ(uβ) + σ̂β) · nA on Γβ ∀β,

DA∇αA · nA = Dβ∇αβ · nA on Γβ ∀β.
(3.12)

We have defined a number of new non-dimensional parameters for this non-dimensionalised
system, each indicated by a hat. Of course every function and field in the above system has
the appropriate subscript indicating which subdomain it exists in. The non-dimensional
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functions introduced above are defined as:

ρ̂(X) =
ρ(X)

ρr
, σ̂(X) =

σ(X)

CL
, η̂(X) =

√
η2(X)

CL3ρr
(3.13)

ψ̂(X) =
ψ(X)

CL
, Ĝ(X) =

G(X)

CLℓ
and D(X) =

G(X)ℓ

CL3
L(X).

Here ρ̂r represents the relative material density, whereas σ̂ and η̂ are the non-dimensional
residual stress and viscosity, respectively. The scalar functions ψ̂ and Ĝ represent the
non-dimensional damage threshold and tearing energy, whereas the second order tensor D
is defined as the non-dimensional damage diffusion.

Remark. When performing asymptotic homogenisation paying special attention to the
scaling of all parameters is extremely important. The key assumption of asymptotic ho-
mogenisation is that every parameter under consideration is asymptotically larger than
O(ϵ). If this assumption is not satisfied then we cannot perform a power series expansion
on the fields of interest about ϵ. However, this is not clear for all the parameters defined
by (3.13). As ℓ is required to be extremely small then it is not clear whether Ĝ and D
are reasonably scaled for asymptotic homogenisation. First consider Ĝ, which could be
much larger than any other terms unless the denominator in this expression is balanced by
the numerator. Since G is the energy per unit of damage surface area then we can make
several obvious assumptions about its scale. First the scale of energy should be similar to
the scale of the elastic potential energy density stretching the material, which as we know
is CL. As this is an energy per unit volume we must multiply it be a characteristic length
scale of a tear surface area which is defined by ℓ. Therefore, it is clear that G ∼ CLℓ and
thus from (3.13) we can safely say that Ĝ is of a regular scale and suitable for upscaling.

Next we are concerned with the scale of D which as defined by (3.13) could be very small.
Again this is because we require that ℓ ≪ 1 ensuring that damage diffusion is narrow,
characterising a sharp tear in a material. However, for asymptotic homogenisation to
work we require that ϵ ≪ 1 is the smallest parameter in our system. Using the scaling
that G ∼ CLℓ and substituting into (3.13) would give us the non-dimensional second-order
tensor

D(X) =
ℓ2

L2
L(X).

If we define τ = ℓ/L then we can say that D ∼ τ 2. As ℓ≪ L then it is obvious that τ ≪ 1.
This could create a major issue when upscaling with asymptotic homogenisation if τ 2 < ϵ.
In this section we are assuming for the sake of upscaling that ϵ is by far the smallest
parameter and hence ϵ≪ τ 2. We could write this in terms of our length scales as δ ≪ ℓ2.
In Chapter 4 we will explore this relationship and show that in order for our macroscopic
model to indeed converge with our macroscopic model that we do in fact require ϵ≪ τ 2.

It would be an interesting further research question to explore if τ ≤ ϵ. Doing so would
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require one to explore a three scaled homogenisation [109]. In such a case one may choose
to introduce a macroscale L, a mesoscale δ and a microscale ℓ. For the purpose of this
thesis we will take all the coefficients to be asymptotically lager than O(ϵ). It is important
though to note that by exploring the extremes of scaling one could study a vastly different
model.

3.2.3 The homogenised problem

In this section we will apply asymptotic homogenisation to the non-dimensional model
described by (3.11) and (3.12). Since ϵ ≪ 1, we enforce the large length scale difference
between the macroscale of Ω and the microscale of the disjoint inclusions ΩB. From now
on we are assuming that all fields and material properties depend on the independent
spatial variables X and Y. Therefore we now have the functions:

uA = uA(X,Y), uβ = uβ(X,Y), αA = αA(X,Y), αβ = αβ(X,Y),

CA = ĈA(X,Y), Cβ = Cβ(X,Y), DA = DA(X,Y), Dβ = Dβ(X,Y),

ρ̂A = ρ̂A(X,Y), ρ̂β = ρ̂β(X,Y), σ̂A = σ̂A(X,Y), σ̂β = σ̂β(X,Y),

η̂A = η̂A(X,Y), η̂β = η̂β(X,Y), ĜA = ĜA(X,Y), Ĝβ = Ĝβ(X,Y),

ψ̂A = ψ̂A(X,Y), ψ̂β = ψ̂β(X,Y) bA = bA(X,Y) and bβ = bβ(X,Y),

which is true for all β. Due to this change of variable the derivatives are transformed
according to (3.3). Therefore the balance of momentum equations in (3.11) become

ϵ2∇X · [(1− αA)
pACA : ξX(uA)] + ϵ∇X · [(1− αA)

pACA : ξY(uA)]

+ ϵ∇Y · [(1− αA)
pACA : ξX(uA)] +∇Y · [(1− αA)

pACA : ξY(uA)]

+ ϵ2∇X · [(1− αA)
pAσ̂A] + ϵ∇Y · [(1− αA)

pAσ̂A] + ϵ2ρ̂AbA = ϵ2ρ̂AüA in ΩA,

(3.14)

ϵ2∇X · [(1− αβ)
pβCβ : ξX(uβ)] + ϵ∇X · [(1− αβ)

pβCA : ξY(uβ)]

+ ϵ∇Y · [(1− αβ)
pβCβ : ξX(uβ)] +∇Y · [(1− αβ)

pβCβ : ξY(uβ)]

+ ϵ2∇X · [(1− αβ)
pβ σ̂β] + ϵ∇Y · [(1− αβ)

pβ σ̂β] + ϵ2ρ̂βbβ = ϵ2ρ̂βüβ in Ωβ ∀β,

(3.15)

and are equipped with the interface conditions

(1− αA)
pA (ϵCA : ξX(uA) + CA : ξY(uA) + ϵσ̂A) · nA

= (1− αβ)
pβ (ϵCβ : ξX(uβ) + Cβ : ξY(uβ) + ϵσ̂β) · nA on Γβ ∀β.

(3.16)
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With this change of variable we have the corresponding damage evolution equations

ϵ2η̂Aα̇A =

〈
pA
2
(1− αA)

pA−1

(
ϵ2ξX(uA) : CA : ξX(uA) + ϵξX(uA) : CA : ξY(uA)

+ ϵξY(uA) : CA : ξX(uA) + ξY(uA) : CA : ξY(uA) + ϵ2σ̂A : ξX(uA)

+ ϵσ̂A : ξY(uA)− ϵ2ψ̂A

)
− ϵ2ĜAαA + ϵ2∇X ·

(
DA∇XαA

)
+ ϵ∇X ·

(
DA∇YαA

)
+ ϵ∇Y ·

(
DA∇XαA

)
+∇Y ·

(
DA∇YαA

)〉
+

in ΩA,

(3.17)

ϵ2η̂βα̇β =

〈
pβ
2
(1− αβ)

pβ−1

(
ϵ2ξX(uβ) : Cβ : ξX(uβ) + ϵξX(uβ) : Cβ : ξY(uβ)

ϵξY(uβ) : Cβ : ξX(uβ) + ξY(uβ) : Cβ : ξY(uβ) + ϵ2σ̂β : ξX(uβ)

+ ϵσ̂β : ξY(uβ)− ϵ2ψ̂β

)
− ϵ2Ĝβαβ + ϵ2∇X ·

(
Dβ∇Xαβ

)
+ ϵ∇X ·

(
Dβ∇Yαβ

)
+ ϵ∇Y ·

(
Dβ∇Xαβ

)
+∇Y ·

(
Dβ∇Yαβ

)〉
+

in Ωβ ∀β,

(3.18)

which are also equipped with the interface conditions:

ϵDA∇XαA · nA + DA∇YαA · nA = ϵDβ∇Xαβ · nA + Dβ∇Yαβ · nA on Γβ ∀β. (3.19)

The above system is also supplemented by the assumption of local periodicity as expressed
in (3.5) and by continuity over the interfaces:

uA = uβ and αA = αβ on Γβ ∀β. (3.20)

To create a macroscopic system of equations we next introduce a pair of power series
expansions about ϵ for the damage and displacement. So by recalling (3.4) we write that

α =
∞∑
j=0

α(j)(X,Y, t)ϵj and u =
∞∑
j=0

u(j)(X,Y, t)ϵj, (3.21)

which will allows us to perform a multiscale expansion of the relevant fields and to collect
coefficients for particular powers of ϵ. A common point of confusion here is considering
how α can ever approach the upper limit of 1 if it is a power series expansion about ϵ.
By observing (3.21) then it is clear that we must have α = α(0) as ϵ → 0. Therefore the
leading order term, α(0) must be of order O(1) and as α→ 1 then clearly α(0) → 1.

By using our power series (3.21) we can collect coefficients of ϵ0 for the equations (3.14),
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(3.15) and (3.16) by considering the limit ϵ→ 0. This yields

∇Y ·
[
(1− α(0)

A )pACA : ξY(u
(0)
A )
]
= 0 in ΩA,

∇Y ·
[
(1− α(0)

A )pβCβ : ξY(u
(0)
β )
]
= 0 in Ωβ ∀β,

(1− α0
A)

pACA : ξY(u
(0)
A )nA = (1− α(0)

β )pβCβ : ξY(u
(0)
β )nA on Γβ ∀β,

u
(0)
A = u

(0)
β on Γβ ∀β,

which is a linear, elastic-type periodic boundary value problem equipped with stress conti-
nuity conditions on the interface Γβ. As this problem is Y periodic and has continuity over
the interface Γβ then its a classic problem in asymptotic homogenisation. For simplicity
we just treat all the terms of the form (1− α)C as simple fourth order elasticity tensors.
Thereby, allowing us to employ a well-known result in asymptotic homogenisation [7, 21],
giving us our solution. By solving for the leading order displacements, u(0)

A and u
(0)
β ∀β,

we see the solutions are Y constant functions over each interface Γβ such that

ū(X, t) = u
(0)
A (X, t) = u

(0)
β (X, t).

Here ū is a simplification of the notation for the leading order displacement. Employing
this result in (3.17), (3.18) and (3.19) allows us write a simplified set of coefficients for
ϵ(0). For the multiscale damage evolution problem by taking ϵ→ 0 we can create a leading
order differential problem for α(0). Collecting all the remaining terms yields〈

∇Y ·
(
DA∇Yα

(0)
A

)〉
+

= 0 in ΩA,〈
∇Y ·

(
Dβ∇Yα

(0)
β

)〉
+

= 0 in Ωβ ∀β,

DA∇Yα
(0)
A · nA = Dβ∇Yα

(0)
β · nA on Γβ ∀β,

α
(0)
A = α

(0)
β on Γβ ∀β,

which is a diffusion-type cell problem. This problem is equipped with continuity over
the interface and local periodicity. Our Macaulay brackets are enforcing irreversibility of
damage growth but are also making this a non-standard diffusion-type problem. To solve
this problem consider an analogous one dimensional example:

⟨f ′(X)⟩+ = 0 in Ω with periodic boundary conditions on ∂Ω. (3.22)

The Macaulay brackets are a piecewise operator enforcing an irreversibility constraint
for damage growth everywhere in Ω. Our one dimensional system is constrained by the
Macaulay brackets such that f ′(X) ≤ 0 everywhere in Ω. For clarity this comes from the
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definition of the Macaulay brackets (2.48). Applying the definition to (3.22) allows us to
write

⟨f ′(X)⟩+ =

 f ′(X) when f ′(X) ≥ 0,

0 when f ′(X) < 0,
(3.23)

⇐⇒ 0 =

 f ′(X) when f ′(X) ≥ 0,

0 when f ′(X) < 0.
(3.24)

From (3.24) it is clear that the positive contributions of f ′(X) are constrained to zero.
Therefore, we can write down the constraint that f ′(X) ≤ 0. As f(X) is periodic on Ω

and assumed to be continuously differentiable then we can introduce the following lemma.

Lemma 3.2.1. Let f : R → R be T -periodic and continuously differentiable. Then if
f ′(x) ≤ 0 ∀x ∈ R then f is constant.

Proof. Let f : R → R be T -periodic, continuously differentiable and f ′(x) ≤ 0∀x ∈ R .
Assume f is not constant then ∃ a, b ∈ Ω with a ̸= b and f(a) ̸= f(b). We can assume that
a < b and that a, b ∈ [0, T ]. If f(a) < f(b) then by the Mean Value Theorem ∃ y ∈ (a, b)

such that
f ′(y) =

f(b)− f(a)
b− a

> 0.

If f(a) > f(b) then by periodicity a+ T > b and f(a+ T ) > f(b). Therefore according to
the Mean Value Theorem ∃ y ∈ (b, a+ T ) such that

f ′(y) =
f(a+ T )− f(b)

a+ T − b
> 0.

In both cases we have a contradiction as we require that f ′(x) ≤ 0 ∀x ∈ R. Hence f must
be constant.

Therefore by Lemma 3.2.1 we can say in our one dimensional example that the solution
is a constant function. Similarly in Rn for our diffusion type problem we can say that we
have

⟨∇ · F⟩+ = 0,

where F(X) is a continuously differentiable vector valued function. As previously observed
the Macaulay brackets are constraining the function F such that ∇ ·F ≤ 0 everywhere in
Ω. In our case we know can that F is a continuously differentiable function and is periodic
on ∂Ω. We can therefore infer zero flux boundary conditions, which allows us to introduce
the following Lemma.
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Lemma 3.2.2. A continuously differentiable function F : Rn → Rn, for n ∈ N, which
exists in the domain Ω ∈ Rn such that F is periodic on ∂Ω. If ∇ ·F ≤ 0 everywhere in Ω

then F is solenoidal i.e. ∇ · F = 0.

Proof. If F is periodic on the boundary ∂Ω then F has zero flux. Therefore by the
divergence theorem we may write that∫

∂Ω

F · n dA =

∫
Ω

∇ · F dV = 0.

As ∇·F ≤ 0 everywhere in Ω then by the localisation theorem we must have that ∇·F = 0

in Ω. Thus, F is solenoidal.

Now that we are equipped with Lemma 3.2.2 we can apply it to our diffusion type cell
problem. Doing so yields

∇Y ·
(
DA∇Yα

(0)
A

)
= 0 in ΩA,

∇Y ·
(
Dβ∇Yα

(0)
β

)
= 0 in Ωβ ∀β,

DA∇Yα
(0)
A · nA = Dβ∇Yα

(0)
β · nA on Γβ ∀β,

α
(0)
A = α

(0)
β on Γβ ∀β,

which is a standard diffusion type problem with periodic boundary conditions. Being an-
other classic problem in asymptotic homogenisation [103] we can easily solve this problem
for the leading order damage. The solution is a Y constant function over the interfaces
Γβ such that

ᾱ(X, t) = α
(0)
A (X, t) = α

(0)
β (X, t).

Leading order displacement and damage both only depend on time and the macroscopic
spatial variable with this result we can simplify the equations (3.14), (3.15), (3.17) and
(3.18). Equating coefficients of order ϵ1 for our multiscale momentum problem yields:

∇Y · [(1− ᾱ)pACA : ξX(ū)] +∇Y ·
[
(1− ᾱ)pACA : ξY(u

(1)
A )
]

+∇Y · [(1− ᾱA)
pAσ̂A] = 0 in ΩA,

∇Y · [(1− ᾱ)pβCβ : ξX(ū)] +∇Y ·
[
(1− ᾱ)pβCβ : ξY(u

(1)
β )
]

+∇Y · [(1− αβ)
pβ σ̂β] = 0 in Ωβ in Ωβ ∀β,

(1− ᾱ)pA
(
CA : ξX(ū) + CA : ξY(u

(1)
A ) + σ̂A

)
· nA

= (1− ᾱ)pβ
(
Cβ : ξX(ū) + Cβ : ξY(u

(1)
β ) + σ̂β

)
· nA on Γβ ∀β,

u
(1)
A = u

(1)
β on Γβ ∀β.

This a linear elastic-type periodic boundary value problem equipped with continuity and
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stress continuity interface conditions. The above problem reads as a classic auxiliary
problem which arises from the asymptotic homogenisation of a linear elastic composite
[104, 7, 21]. To solve this problem we exploit linearity and introduce the following ansätze:

u
(1)
A = χA : ξX(ū) + ũA and u

(1)
β = χβ : ξX(ū) + ũβ ∀β. (3.25)

These solutions are linear functions in terms of the leading order displacement gradient.
The coefficients of these linear functions are the third rank auxiliary tensor χ and the
auxiliary vector ũ. We took special care to ensure that the ansätze we introduce are all
vectors, just like the displacements. This is why χ is a third rank tensor and ũ is a vector.
By substituting these ansätze back into our ϵ1 problem we can generate a number of local
cell problems which define our auxiliary variables. The third rank auxiliary tensor χ is
the solution to the following local cell problem:

∇Y · CA = −∇Y · [CA : ξY(χA)] in ΩA, (3.26a)

∇Y · Cβ = −∇Y · [Cβ : ξY(χβ)] in Ωβ ∀β, (3.26b)

(1− ᾱ)pA (CA + CA : ξY(χA)) · nA

= (1− ᾱ)pβ (Cβ + Cβ : ξY(χβ)) · nA on Γβ ∀β,
(3.26c)

χA = χβ on Γβ ∀β. (3.26d)

The auxiliary vector ũ is the microscopic residual strain such that it solves the local cell
problem:

∇Y · [CA : ξY(ũA)] = −∇Y · σA in ΩA, (3.27a)

∇Y · [Cβ : ξY(ũβ)] = −∇Y · σβ in Ωβ ∀β, (3.27b)

(1− ᾱ)pA (CA : ξY(ũA) + σA) · nA =

(1− ᾱ)pβ (Cβ : ξY(ũβ) + σβ) · nA on Γβ ∀β,
(3.27c)

ũA = ũβ on Γβ ∀β. (3.27d)

In essence χ and ũ must be solved for this ansatz across each periodic cell in our system.
Therefore one can construct the true solution of u(1) by solving the systems (3.26) and
(3.27), which are linear differential equations. Numerically these are easy to solve and
in fact many solutions already exist for these types of cell problems [3, 52, 82]. These
cell problems are considered classical to the linear elastic homogenisation process and
have been studied extensively, consider the work of Hassani et al. [58, 57, 59]. Our
cell problems (3.26) and (3.27) are closed by their periodic boundary conditions but for



CHAPTER 3. CREATING A MULTISCALE MODEL 93

uniqueness we also impose the requirement that

{χA}ΩA
+

N∑
β=1

{χβ}Ωβ
= 0 and {ũA}ΩA

+
N∑

β=1

{ũβ}Ωβ
= 0 ∀ β.

Remark. Special consideration should be granted to the physical role of the auxiliary vec-
tors ũA and ũβ. Other auxiliary variables only role in our multiscale model is to relay
microscopic information about a single associated parameter up to a macroscopic scale.
This is done via effective macroscopic coefficients. However, ũA and ũβ both encode in-
formation about two associated parameters respectively; CA and σA, Cβ and σβ. This
can be seen in the differential equations (3.27). As a result of this phenomena both the
microscopic elasticity and residual stress terms will play a role in defining a macroscopic
residual stress. A result which is quite different compared to most other effective macro-
scopic coefficients seen in the literature [105, 32, 92]. In Chapter 4, we will see that in one
dimension the effective residual stress is defined by a macroscopic weighted mean of the
local microscopic residual stress, weighted by the residuals of the microscopic elasticities.
This implies that the macroscopic residual stress is dominated by the microscopic residual
stress contributions of regions that are more elastic. Of course, as this is a weighted mean
then the macroscopic residual stress may by dominated by the microscopic residual stress
contributions of the largest regions in our local periodic cell. We find this to be an inter-
esting result because it differs from classical asymptotic homogenisation, where we usually
find that effective coefficients in one dimension are defined by harmonic means of their
respective microscopic contributions.

Now we approach the damage problem for coefficients of ϵ(1), one should note that at
this order the damage and displacement problems are actually independent of each other.
Solving them therefore does not need to be performed in a specific order and each can be
approached individually. If we equate all the ϵ(1) coefficients of (3.17), (3.18) and (3.19)
we have:〈

∇Y ·
(
DA∇XᾱA + DA∇Yα

(1)
A

)〉
+
= 0 in ΩA,〈

∇Y ·
(
Dβ∇Xᾱβ + Dβ∇Yα

(1)
β

)〉
+
= 0 in Ωβ ∀β,

DA∇Xᾱ · nA + DA∇Yα
(1)
A · nA = Dβ∇Xᾱ · nA + Dβ∇Yα

(1)
β · nA on Γβ ∀β,

α
(1)
A = α

(1)
β .

Making use of Lemma 3.2.2 we can drop the Macaulay brackets and simplify this problem.
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Hence we are left with a more classical homogenisation problem

∇Y ·
(
DA∇XᾱA + DA∇Yα

(1)
A

)
= 0 in ΩA,

∇Y ·
(
Dβ∇Xᾱβ + Dβ∇Yα

(1)
β

)
= 0 in Ωβ ∀β,

DA∇Xᾱ · nA + DA∇Yα
(1)
A · nA = Dβ∇Xᾱ · nA + Dβ∇Yα

(1)
β · nA on Γβ ∀β,

α
(1)
A = α

(1)
β on Γβ ∀β,

which is a linear differential problem for α(1)
A and α

(1)
β . Exploiting linearity we can infer

the simple ansatz
α
(1)
A = ζA · ∇ᾱA and α

(1)
β = ζβ · ∇ᾱβ ∀β, (3.28)

which solves the ϵ1 damage problem. The auxiliary variable ζ is a scalar variable connecting
the microscopic and macroscopic fields of damage. To calculate the vector ζ we need to
solve the local cell problem:

∇Y · (DA + DA∇YζA) = 0 in ΩA, (3.29a)

∇Y · (Dβ + Dβ∇Yζβ) = 0 in Ωβ ∀β, (3.29b)

(DA + DA∇YζA)nA = (Dβ + Dβ∇Yζβ)nA on Γβ ∀β, (3.29c)

ζA = ζβ on Γβ ∀β. (3.29d)

This problem is closed by its periodic boundary conditions but for uniqueness we require
that

{ζA}ΩA
+

N∑
β=1

{ζβ}Ωβ
= 0 ∀ β.

In total then we have three auxiliary variables which need to be calculated but they are all
solved linearly. Therefore one can calculate them using simple numerical methods and as
previously mentioned they are classical cell problems. By this we mean there is a wealth of
literature and even existing software codes that exist which one can use as the foundation
of any analytical or numerical methods.

So far we have determined that the leading order fields ū and ᾱ fields depend solely
on the macroscopic spatial variable X and time t. Our cell problems relay the effects the
microscopic parameters have on macroscopic coefficients and create a direct linear relation.
With these results we can now seek to construct a set of leading order governing equations
which can be done by considering the coefficients of ϵ2. To do this we take coefficients of ϵ2

from the momentum balance equations or damage evolution equations sum them together
and take local integral averages. For the ϵ2 coefficients we need to consider the power series
expansions of the degradation function. More specifically by using the binomial theorem
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we can write that

(1− α)p =
p∑

k=0

(
p

k

)
(−α)k

=

p∑
k=0

(
p

k

)( 2∑
j=0

−ϵjα(j)

)k

+O(ϵ3)

=

p∑
k=0

(
p

k

)
(−ᾱ)k +

p∑
k=0

(
p

k

)(
−ϵα(1) − ϵ2α(2)

)k
+O(ϵ3)

= (1− ᾱ)p − ϵpα(1) + ϵ2
(
pα(2) +

(
p

2

)
(α(1))2

)
+O(ϵ3)

with this we can equate the ϵ2 coefficients of the momentum balance equation. Taking
(3.14), (3.15) and (3.16) we can write down the expansions

∇X ·
[
(1− ᾱ)pA

(
CA : ξX(ū) + CA : ξY(u

(1)) + σ̂A
)]

+

∇Y ·
[
(1− ᾱ)pA

(
CA : ξX(u

(1)) + CA : ξY(u
(2))
)]
−

∇Y ·
[
pAα

(1)
A

(
CA : ξX(ū) + CA : ξY(u

(1)) + σ̂A
)]

+ ρ̂AbA = ρ̂A ¨̄u in ΩA,

(3.30)

∇X ·
[
(1− ᾱ)pβ

(
Cβ : ξX(ū) + Cβ : ξY(u

(1)) + σ̂β
)]

+

∇Y ·
[
(1− ᾱ)pβ

(
Cβ : ξX(u

(1)) + Cβ : ξY(u
(2))
)]
−

∇Y ·
[
pβα

(1)
β

(
Cβ : ξX(ū) + Cβ : ξY(u

(1)) + σ̂β
)]

+ ρ̂βbβ = ρ̂β ¨̄u in Ωβ ∀β,

(3.31)

(1− ᾱA)
pA
(
CA : ξX(u

(1)
A ) + CA : ξY(u

(2)
A )
)
· nA

− pAα(1)
A

(
CA : ξX(ū) + CA : ξY(u

(1)
A ) + σ̂A

)
· nA

= (1− ᾱβ)
pβ
(
Cβ : ξX(u

(1)
β ) + Cβ : ξY(u

(2)
β )
)
· nA

− pβα(1)
β

(
Cβ : ξX(ū) + Cβ : ξY(u

(1)
β ) + σ̂β

)
· nA on Γβ ∀β.

(3.32)

We now aim to construct a macroscopic momentum balance equation for our composite
material. To do this we apply the local integral operator (3.6) over ΩA and Ωβ, on (3.30)
and (3.31), for β = 1, ..., N , respectively. We then sum every resulting contribution and



CHAPTER 3. CREATING A MULTISCALE MODEL 96

apply the divergence theorem in Y, accounting for periodicity on ∂Ω, allowing us to obtain:

N∑
β=1

1

|Ω|

[∫
Γβ

(1− ᾱA)
pA
(
CA : ξX(u

(1)
A ) + CA : ξY(u

(2)
A )
)
· nA dAY

−
∫
Γβ

pAα
(1)
A

(
CA : ξX(ū) + CA : ξY(u

(1)
A ) + σ̂A

)
· nA dAY

−
∫
Γβ

(1− ᾱβ)
pβ
(
Cβ : ξX(u

(1)
β ) + Cβ : ξY(u

(2)
β )
)
· nA dAY

+

∫
Γβ

pβα
(1)
β

(
Cβ : ξX(ū) + Cβ : ξY(u

(1)
β ) + σ̂β

)
· nA dAY

]
+

1

|Ω|

∫
ΩA

∇X ·
[
(1− ᾱ)pA

(
CA : ξX(ū) + CA : ξY(u

(1)) + σ̂A
)]
dVY

+
N∑

β=1

1

|Ω|

∫
Ωβ

∇X ·
[
(1− ᾱ)pβ

(
Cβ : ξX(ū) + Cβ : ξY(u

(1)) + σ̂β
)]
dVY

+
1

|Ω|

[∫
ΩA

ρAbA dVY +
∑
β=1

N

∫
Ωβ

ρβbβ dVY

]
=

1

|Ω|

[∫
ΩA

ρA dVY +
∑
β=1

N

∫
Ωβ

ρβ dVY

]
¨̄u.

Exploiting the interface relation (3.32) we can see that all the integrals over the interfaces
Γβ reduce to zero. Finally by accounting for macroscopic uniformity of leading order terms
and our ansatz (3.25) we can simplify our system. We are left with

∇X ·
[
(1− ᾱ)pA {CA + CA : ξY(χA)}ΩA

: ξX(ū) + (1− ᾱ)pA {σ̂A + CA : ξY(ũA)}ΩA

]
+

N∑
β=1

∇X ·
[
(1− ᾱ)pβ {Cβ + Cβ : ξY(χβ)}Ωβ

: ξX(ū) + (1− ᾱ)pβ {σ̂β + Cβ : ξY(ũβ)}Ωβ

]
+ B̄ = ρ̄¨̄u,

(3.33)
which is a macroscopic governing momentum balance equation. Each constitutive part of
the composite Ω has its own unique degradation function governed by an exponent that
controls material softening. In order to simplify this into a macroscopic governing equation
we limit ourselves to the case pA = pβ = p ∀β. Therefore our above formulation yields

∇X ·
[
g(ᾱ)

(
C̄ : ξX(ū) + σ̄

)]
+ B̄ = ρ̄¨̄u, (3.34)

where every variable with a bar is a leading order term and every coefficient marked with
a bar is an effective macroscopic coefficient. We have reintroduced the notation g(ᾱ)

as the damage degradation function (3.8) for the leading order damage. Note that the
macroscopic momentum balance equation is quite similar to the microscopic formulations
of momentum balance.
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Our effective macroscopic coefficients for the momentum balance are defined by:

C̄ = {CA + CA : ξY(χA)}ΩA
+

N∑
β=1

{Cβ + Cβ : ξY(χβ)}Ωβ
,

σ̄ = {σ̂A + CA : ξY(ũA)}ΩA
+

N∑
β=1

{σ̂β + Cβ : ξY(ũβ)}Ωβ
,

ρ̄ = {ρA}ΩA
+

N∑
β=1

{ρβ}Ωβ
, B̄ = {ρAbA}ΩA

+
N∑

β=1

{ρβbβ}Ωβ
.

(3.35)

The effective coefficients C̄ and σ̄ depend on the ansatz solutions to the local cell problems
(3.26) and (3.27). This entangles information about the microscopic parameters and ge-
ometry into the macroscopic variables. However, it is important to note that the coefficient
ρ̄ and B̄, are just a local averaging of the material density and body forces, respectively.

An important thing to note is the large number of parameters in our multiscale model.
Let us first consider the mechanical effective coefficients defined by (3.35) if our model
was in R2, two dimensions: ρ̄ is a scalar accounting for one parameter and B̄ is a vector
accounting for two parameters; the effective residual stress σ̄ is a second rank tensor and
therefore in two dimensions accounts for four parameters; C̄ is a fourth rank tensor and
is defined by sixteen parameters. In total then a two dimensional version of (3.34) would
account for two equations dependent on three unknowns with twenty three parameters.
However, it grows rapidly in higher dimensions. Let us consider R3, the parameters defined
by (3.35) would account for many more parameters: ρ̄ still accounts for one; B̄ accounts
for three; σ̄ account for nine and C̄ accounts for eighty one. That is a total of ninety four
parameters across three equations, defined by four unknowns. Now consider if we tried
to computationally model a damage problem with a full microscopic problem. If in that
problem we had k ∈ N local cells where each of which was made up of N +1 elastic bodies
then in that system, for three dimensions, we would have 94k(N +1) parameters. Defined
across 4k(N + 1) equations with 4k(N + 1) unknowns. This is just not computationally
feasible or efficient in the slightest. We consider this the best argument for why effective
multiscale models are necessary to perform an efficient analysis. It should also be noted
that later in this chapter we shall conclude that C̄ also has minor and major symmetries,
thus lowering the number of parameters it depends on, simplifying our system.

To formulate a macroscopic damage evolution equation we follow a similar process as
the one which derived equation (3.34). So we equate the coefficients of ϵ2 for (3.17), (3.18)
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and (3.19) which yields the system:

ηA ˙̄α =

〈
pA
2
(1− ᾱ)pA−1

(
ξX(ū) : CA : ξX(ū) + ξX(ū) : CA : ξY(u

(1)
A )

+ ξY(u
(1)
A ) : CA : ξX(ū) + ξY(u

(1)
A ) : CA : ξY(u

(1)
A ) + σ̂A : ξX(ū)

+ σ̂A : ξY(u
(1)
A )− ψ̂A

)
− ĜAᾱ +∇X ·

(
DA∇Xᾱ

)
+∇X ·

(
DA∇Yα

(1)
A

)
+∇Y ·

(
DA∇Xα

(1)
A

)
+∇Y ·

(
DA∇Yα

(2)
A

)〉
+

in ΩA,

ηβ ˙̄α =

〈
pβ
2
(1− ᾱ)pβ−1

(
ξX(ū) : Cβ : ξX(ū) + ξX(ū) : Cβ : ξY(u

(1)
β )

+ ξY(u
(1)
β ) : Cβ : ξX(ū) + ξY(u

(1)
β ) : Cβ : ξY(u

(1)
β ) + σ̂β : ξX(ū)

+ σ̂β : ξY(u
(1)
β )− ψ̂β

)
− Ĝβᾱ +∇X ·

(
Dβ∇Xᾱ

)
+∇X ·

(
Dβ∇Yα

(1)
β

)
+∇Y ·

(
Dβ∇Xα

(1)
β

)
+∇Y ·

(
Dβ∇Yα

(2)
β

)〉
+

in Ωβ ∀β,(
DA∇Xα

(1)
A + DA∇Yα

(2)
A

)
nA =

(
Dβ∇Xα

(1)
β + Dβ∇Yα

(2)
β

)
nA on Γβ ∀β. (3.36)

Previously we have made use of Lemma 3.2.2 to account for the irreversibility constraints
enforced by the Macaulay brackets, unfortunately the above problems no longer satisfies
the Lemma 3.2.2. To tackle the irreversibility constraints we need to reformulate the above
problem into an equivalent system of equations that satisfy the irreversibility constraints.
By doing so we can then drop the Macaulay brackets, putting the system into a much
more malleable form to work with. Our irreversibility constraint is that α̇ ≥ 0 and by
considering the power series expansion

α̇ = ˙̄α +
∞∑
i=1

ϵjα̇(j) → ˙̄α as ϵ→ 0,

it is clear that leading order damage irreversibility must satisfy ˙̄α ≥ 0 as ϵ → 0. We
can bypass the Macaulay brackets by considering a different formulation of our damage
evolution equation. Consider α̇ = ⟨F ⟩+ an equivalent formulation is the constrained
system

α̇ [α̇− F (α,u)] = 0 with the constraint α̇ ≥ 0.

Note this formulation is equivalent to Karush-Khun-Tucker conditions for a constrained
variational problem. An interesting paper that remarks on this is Pham et al. [84] which
explores a rate independent damage phase field problem. If we then multiply our ϵ2 damage
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evolution equations through by the leading order damage growth rate, ˙̄α, this yields

˙̄α

[
ηA ˙̄α− pA(1− ᾱ)pA−1

(
1

2
ξX(ū) : CA : ξX(ū) + 2ξX(ū) : CA : ξY(u

(1)
A )

+
1

2
ξY(u

(1)
A ) : CA : ξX(ū) + ξY(u

(1)
A ) : CA : ξY(u

(1)
A ) + σ̂A : ξX(ū)

+ σ̂A : ξY(u
(1)
A )− ψ̂A

)
+ ĜAᾱ−∇X ·

(
DA∇Xᾱ

)
−∇X ·

(
DA∇Yα

(1)
A

)
−∇Y ·

(
DA∇Xα

(1)
A

)
−∇Y ·

(
DA∇Yα

(2)
A

)]
= 0 in ΩA,

(3.37)

˙̄α

[
ηβ ˙̄α− pβ(1− ᾱ)pβ−1

(
1

2
ξX(ū) : Cβ : ξX(ū) + 2ξX(ū) : Cβ : ξY(u

(1)
β )

+
1

2
ξY(u

(1)
β ) : Cβ : ξX(ū) + ξY(u

(1)
β ) : Cβ : ξY(u

(1)
β ) + σ̂β : ξX(ū)

+ σ̂β : ξY(u
(1)
β )− ψ̂β

)
+ Ĝβᾱ−∇X ·

(
Dβ∇Xᾱ

)
−∇X ·

(
Dβ∇Yα

(1)
β

)
−∇Y ·

(
Dβ∇Xα

(1)
β

)
−∇Y ·

(
Dβ∇Yα

(2)
β

)]
= 0 in Ωβ ∀β,

(3.38)

To construct a macroscopic damage evolution equation for our composite material we apply
the local integral operator (3.6) over ΩA and Ωβ, in (3.37) and (3.38), for β = 1, ..., N ,
respectively. We then sum every resulting contribution and apply the divergence theorem
in Y, accounting for periodicity on ∂Ω, allows us to obtain:

N∑
β=1

1

|Ω|

∫
Γβ

˙̄α

[(
Dβ∇Xα

(1)
β + Dβ∇Yα

(2)
β

)
nA −

(
DA∇Xα

(1)
A + DA∇Yα

(2)
A

)
nA

]
dAY

+
1

|Ω|

∫
ΩA

˙̄α

[
ηA ˙̄α− pA

2
(1− ᾱ)pA−1

(
ξX(ū) : CA : ξX(ū) + ξX(ū) : CA : ξY(u

(1)
A )

+ ξY(u
(1)
A ) : CA : ξX(ū) + ξY(u

(1)
A ) : CA : ξY(u

(1)
A ) + σ̂A : ξX(ū)

+ σ̂A : ξY(u
(1)
A )− ψ̂A

)
+ ĜAᾱ−∇X ·

(
DA∇Xᾱ

)
−∇X ·

(
DA∇Yα

(1)
A

)]
dVY

+
N∑

β=1

1

|Ω|

∫
Ωβ

˙̄α

[
ηβ ˙̄α−

pβ
2
(1− ᾱ)pβ−1

(
ξX(ū) : Cβ : ξX(ū) + ξX(ū) : Cβ : ξY(u

(1)
β )

+ ξY(u
(1)
β ) : Cβ : ξX(ū) + ξY(u

(1)
β ) : Cβ : ξY(u

(1)
β ) + σ̂β : ξX(ū)

+ σ̂β : ξY(u
(1)
β )− ψ̂β

)
+ Ĝβᾱ−∇X ·

(
Dβ∇Xᾱ

)
−∇X ·

(
Dβ∇Yα

(1)
β

)]
dVY = 0.

By exploiting our interface condition (3.36) we can reduce the top line of the above equation
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to zero. Now if we introduce the ansatz solutions (3.28) and (3.25) we can construct an
equation of leading order terms ū and ᾱ. To create a macroscopic system of equations its
important that we remind ourselves of the transpose definition for a fourth order tensor
[97, 104].

Definition 3.2.1. Let T be a fourth rank tensor. The transpose of T, denoted by TT , is
the unique fourth rank tensor which satisfies

A : T : B = B : TT : A (3.39)

for all second rank tensors A and B. For any T with components Tijkl with i, j, k, l = 1, 2, 3

then the component-wise representation of the transpose TT reads as Tklij, therefore
T = TT if and only if T contains major symmetries. Applying the component-wise repre-
sentation it is clear that for two four rank tensors S and T, we can find that

(ST)T = TTST .

We further notice that, whenever T is major symmetric, then for every fourth rank tensor
T we have (

ATTA
)T

=
(
AT
(
ATT

)T)
= ATTA, (3.40)

meaning that ATTA is major symmetric.

Now we may exploit the macroscopic uniformity of the leading order variables and
reintroducing the notation for local integral averages (3.6) we can create a number of
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simplifications. So that we may write

˙̄α
1

|Ω|

[∫
ΩA

ηA ˙̄α− pA(1− ᾱ)pA−1

[
1

2
ξX(ū) :

(
CA + 2CA : ξY(χA)+

+ ξY(χA)
T : CA : ξY(χA)

)
: ξX(ū)− ψ̂A +

(
σ̂A +

1

2
ξY(ũA) : CA

)
: ξY(ũA)

+ (σ̂A + CA : ξY(ũA) + σ̂A : ξY(χA) + ξY(ũA) : CA : ξY(χA)) : ξX(ū)

]
+ ĜAᾱ+

−∇X ·
(
(DA + DA∇YζA)∇Xᾱ

)
dVY +

+
N∑

β=1

∫
Ωβ

ηβ ˙̄α− pβ(1− ᾱ)pβ−1

[
1

2
ξX(ū) :

(
Cβ + 2Cβ : ξY(χβ)+

+ ξY(χβ)
T : Cβ : ξY(χβ)

)
: ξX(ū)− ψ̂β +

(
σ̂β +

1

2
ξY(ũβ) : Cβ

)
: ξY(ũβ)

+ (σ̂β + Cβ : ξY(ũβ) + σ̂β : ξY(χβ) + ξY(ũβ) : Cβ : ξY(χβ)) : ξX(ū)

]
+ Ĝβᾱ+

−∇X ·
(
(Dβ + Dβ∇Yζβ)∇Xᾱ

)
dVY

]
= 0.

(3.41)

The above formulation is a macroscopic model with no dependencies on the microscale
defined by Y but it can be massively simplified. To do so we assume as previously that
pA = pβ = p for all β = 1, ..., N . As a result we can now write that

˙̄α

[
η̄ ˙̄α + g′(ᾱ)

(
1

2
ξX(ū) : P : ξX(ū) + κ̄ : ξX(ū)− ψ̄

)
+ Ḡᾱ−∇X ·

(
D̄∇Xᾱ

)]
= 0,

(3.42)
where η̄, P̄, κ̄, ψ̄, Ḡ and D̄ form a set of effective macroscopic coefficients. Note that the
macroscopic damage evolution equation is similar to the microscopic system of equations
for the damage evolution equations. This damage evolution equation is paired with the
macroscopic irreversibility constraint:

˙̄α ≥ 0. (3.43)

We can therefore make use of Macaulay brackets to reformulate the macroscopic damage
evolution equation into a simpler form

˙̄ηᾱ =

〈
−g′(ᾱ)

(
1

2
ξX(ū) : P : ξX(ū) + κ̄ : ξX(ū)− ψ̄

)
− Ḡᾱ +∇X ·

(
D̄∇Xᾱ

)〉
+

. (3.44)

As seen with the macroscopic momentum balance equation we have a set of effective
macroscopic coefficients that encode information from the microscale to the macroscale.
Here the effective macroscopic coefficients for the damage evolution equation are defined
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as:
P̄ =

{
CA + 2CA : ξY(χA) + ξY(χA)

T : CA : ξY(χA)
}
ΩA

+

+
N∑

β=1

{
Cβ + 2Cβ : ξY(χβ) + ξY(χβ)

T : Cβ : ξY(χβ)
}
Ωβ
,

κ̄ = {σ̂A + CA : ξY(ũA) + σ̂A : ξY(χA) + ξY(ũA) : CA : ξY(χA)}ΩA
+

+
N∑

β=1

{σ̂β + Cβ : ξY(ũβ) + σ̂β : ξY(χβ) + ξY(ũβ) : Cβ : ξY(χβ)}Ωβ
,

ψ̄ =

{
ψ̂A +

(
σ̂A +

1

2
ξY(ũA) : CA

)
: ξY(ũA)

}
ΩA

+

+
N∑

β=1

{
ψ̂β +

(
σ̂β +

1

2
ξY(ũβ) : Cβ

)
: ξY(ũβ)

}
Ωβ

,

D̄ = {DA + DA∇YζA}ΩA
+

N∑
β=1

{Dβ + Dβ∇Yζβ}Ωβ
,

Ḡ = {GA}ΩA
+

N∑
β=1

{Gβ}Ωβ
, η̄ = {ηA}ΩA

+
N∑

β=1

{ηβ}Ωβ
.

(3.45)

Recall that the curly brackets are the local integral averages defined by (3.6). The co-
efficients P̄, κ̄, ψ̄ and D̄ depend on the ansatz defined by (3.25) and (3.28), which are
calculated from the local cell problems (3.26), (3.27) and (3.29). P̄ is an effective fourth
order elasticity tensor, κ̄ is an effective second order residual stress tensor, ψ̄ is an effective
damage threshold and D̄ is an effective second order diffusion tensor. The coefficients Ḡ
and η̄ are simply local integral averages of the tearing energy and viscosity, respectively.
These effective coefficients for the damage evolution equation are quite complex and to
the best of our knowledge have not been documented in the literature.

The above system (3.45) gives us a new set of effective coefficients defining our macro-
scopic damage evolution equation (3.44). Let us note how many independent parameters
that (3.45) actually represents as several of our coefficients are tensors of differing orders.
First let us consider a two dimensional case, in R2. Then the scalar functions ψ̄, Ḡ and
η̄ represent three independent parameters. The fourth order elasticity tensor P̄ in two
dimensions represents sixteen independent parameters. The second order tensors κ̄ and D̄
each represent four independent parameters in two dimensions. Therefore, in two dimen-
sions our damage evolution equation depends on twenty seven independent parameters.
This of course dramatically increases when we go to three dimensions, in R3. In three
dimensions we can say that: P̄ depends on eighty one parameters; σ̄ and κ̄ each depend
on nine parameters; ψ̄, Ḡ and η̄ each depend on one parameter. Therefore, in three di-
mensions the effective coefficients defined by (3.45) depend on a total of one hundred and
two parameters. However, as previously mentioned, later in this chapter we will show that
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P̄ has both minor and major symmetries. This will lower the number of parameters our
system depends on, simplifying our model.

A keen observer will note that our macroscopic system at this point has a subtle
inconsistency. Our two sets of effective coefficients, for the momentum balance (3.35) and
damage evolution (3.45), have two pairs of coefficients doing the same job. Here P̄ and C̄
are both the effective macroscopic elasticity tensors while σ̄ and κ̄ are both defined as the
effective macroscopic residual stress tensor. This is a major inconsistency in our system.
How can two coupled equations describing the physical process of the same object have
different material parameters? The fact is they cannot. In the next section we will see that
by exploring the properties of these effective coefficients and their respective cell problems
allows us to make a number of simplifications. In turn we will see that C̄ = P̄ and σ̄ = κ̄,
showing that our macroscopic system of equations is in fact consistent.

Remark. It should be noted that the equations (3.33) and (3.41) along with a set of bound-
ary conditions for ū and ᾱ form a macroscopic system of equations. Unfortunately, every
linear elastic subdomain in Ω has its own unique form of the degradation function in this
system of equations. Making this an extremely difficult system of equations to work with.
This is because one would have to work with a set of N + 1 degradation functions defined
for each linear elastic subdomain in Ω. It would be very possible to implement a numerical
model via software that allows one to have a widely varying degradation function across
the macroscale. For this to work one would have to recalculate the effective coefficients for
every time step, for a number of representative local periodic cells across the macroscale,
possibly more than once if an iterative solver is implemented. Therefore, one could numer-
ically solve (3.33) and (3.41) for the macroscopic variables ū and ᾱ. This system would
be far more computationally feasible than solving the full microscopic system, because it
would require a lower resolution, but it is still less efficient than the system defined by
(3.34) and (3.44).

3.3 Properties of the effective coefficients

At this point of our derivation the partial differential equations (3.34) and (3.44) represent
the macroscopic governing equations of our system. They are parameterised by a set of
complex effective coefficients, (3.35) and (3.45), giving the system most of its properties.
A better understanding of these effective coefficients will help us to simplify the system.
In fact in this section we will see that some simple manipulation of the local cell problems,
defining the ansatze, produce a number of relations that vastly simplify our effective
coefficients. In this section we will prove that C̄ = P̄ and that σ̄ = κ̄, thus simplifying the
macroscopic governing equations. This will also make our system physically consistent by
making sure all the effective coefficients are consistent across our momentum balance and
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damage evolution equations.
In this section we will discuss five effective coefficients: the effective elasticity tensors C̄

and P̄, the effective residual stress tensors σ̄ and κ̄; and the effective threshold function ψ̄.
It should be noted similar analysis of the properties of effective macroscopic coefficients has
been performed [57, 104]. The novelty here is the simplifications these results will cause,
alongside ensuring our model makes complete physical sense. It would be completely
non-nonsensical if P̄ ̸= C̄ and the elasticity of Ω at the macroscale was defined by two
different coefficients. Let us consider that we did not construct a multiscale model and just
modelled from a macroscale treating Ω as a single locally homogenous elastic body. Then
following the derivation of the governing equations in §2.2 we would of course expect to
have a single elasticity tensor at the macroscale. Currently, we have two elasticity tensors
and residual stress tensors in the macroscopic governing equations defined by (3.34) and
(3.44). That is totally inconsistent and hence for our multiscale model and derivation to
be physically consistent we must have C̄ = P̄. Similarly, we can make the same physical
argument that for mathematical consistency we must have σ̄ = κ̄. This motivates our
investigation of the properties of the effective coefficients.

Before we proceed, it is useful to introduce some new notation. This section relies
heavily on summation notation, where summing up repeated indices is understood to be
the norm. The strain tensor ξ appears in all of the local cell problems. So its important
for us to understand how to use this function in summation notation. For a third rank
tensor χ we would write,

ξklij (χ) =
1

2

(
∂χjkl

∂yi
+
∂χikl

∂yj

)
. (3.46)

Similarly for a vector v we would write

ξij(χ) =
1

2

(
∂vj
∂yi

+
∂vi
∂yj

)
.

We also need to introduce some background theory about the properties of ξY(χA) and
ξY(χβ) before we can proceed. The following results where first reported by Penta et al.
[104]. This theory will play a role in proving the positive definiteness of C̄.

Theorem 3.3.1. Let M be the fourth rank tensor defined by

M =

 ξY(χA), Y ∈ ΩA

ξY(χβ), Y ∈ Ωβ.
(3.47)

Then the following facts hold:

1. M possesses both left and right minor symmetries.

2. {M} = 0
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Proof. 1. The tensor M is left minor symmetric as ξY(χA) and ξY(χβ) are both left
minor symmetric, this can be seen in (3.46). Right minor symmetry of M is deduced
from the cell problems in (3.26) employing the right minor symmetry of CA and Cβ.

2. As M is minor symmetric, then {M} is also minor symmetric, accordingly we only
need to prove that for every Y-constant second rank symmetric tensor A that

{M}A = 0.

Let us define

v =

 vA, Y ∈ ΩA

vβ, Y ∈ Ωβ,
(3.48)

vA = χAA and vβ = χβA. (3.49)

We can therefore rewrite {M}A with (3.48) and (3.49) to calculate

{M}A = {MA}

= {ξY(χA)A}A +
N∑

β=1

{ξY(χβ)A}β

= {ξY(vA)}A +
N∑

β=1

{ξY(vβ)}β

=
1

2|Ω|

N∑
β=1

∫
Γβ

(vA − vβ)⊗ nA + nA ⊗ (vA − vβ) dAY

= 0.

Here the contributions over the boundary ∂Ω cancel due to Y-periodicity and we
applied the continuity of the third rank tensors χA and χβ as defined in (3.26),
which in turn implies the continuity of v across the interfaces Γβ, for all β. We have
therefore completed the proof and shown

{M} = 0.

3.3.1 The effective elasticity tensor

Consider a leading order macroscopic potential energy term ψ(0) such that

ψ(0) =
1

2
ξX(ū) : S : ξX(ū) + κ̄ : ξX(ū),
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this implies the existence of a leading order linear stress term. One can therefore directly
calculate a leading order stress term by taking a partial derivative with respect to the
infinitesimal strain tensor. Doing so produces the leading order stress

∂ψ(0)

∂ (ξX(ū))
= S : ξX(ū) + κ̄,

which has an elasticity term S consistent with the leading order elastic potential energy.
This intuitive example is to illustrate how strange it is that the governing macroscopic
equations (3.34) and (3.44) have two different terms representing the effective macroscopic
elasticity. Initially it was thought that this may be due to how different parts of the model
interact with the microscale. However, after careful analysis we can conclude that actually
C̄ = P̄.

We also managed to derive a number of other properties that would be expected of
a leading order elasticity tensor. We will show that C̄ posses both minor and major
symmetries. Then finally we will conclude that C̄ is a positive definite fourth order tensor
as would be expected of an elasticity term. This is all done in the following Theorem 3.3.2.

As C̄ has both minor and major symmetries then the number of parameters it depends
on now decreases. In R2 we can say that C̄ now only depends on six parameters, and in
R3 we can say that C̄ now only depends on twenty one parameters. This result makes our
model simpler and easier to implement numerically later in Chapter 5.

Theorem 3.3.2. Let us consider the fourth rank tensors C̄ and P̄ defined by (3.35) and
(3.45), respectively. These tensors have the following properties:

1. The tensors are in fact equivalent, C̄ = P̄.

2. C̄ has minor and major symmetries.

3. C̄ is positive definite.

Proof. 1. We begin by recalling the local cell problems (3.26) that define χA and χβ for
all β. In summation notation we can write down equations (3.26a) and (3.26b) as

− ∂

∂yj
CA

ijkl =
∂

∂yj

[
CA

ijpqξ
kl
pq(χ

A)
]

and − ∂

∂yj
Cβ

ijkl =
∂

∂yj

[
Cβ

ijpqξ
kl
pq(χ

β)
]
. (3.50)

If we multiply each of these expressions by χA
irs and χβ

irs, respectively, then using
the product rule and the symmetries of the elasticity tensors we can sum these
expressions up and integrate over the local cell Ω. As a result we are left with the
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expression ∫
ΩA

− ∂

∂yj

[
CA

ijklχ
A
irs

]
+ CA

ijklξ
ij
rs(χ

A) dVY

+
N∑

β=1

∫
Ωβ

− ∂

∂yj

[
Cβ

ijklχ
β
irs

]
+ Cβ

ijklξ
rs
ij (χ

β) dVY

=

∫
ΩA

∂

∂yj

[
CA

ijpqξ
kl
pq(χ

A)χA
irs

]
− CA

ijpqξ
kl
pq(χ

A)ξrsij (χ
A) dVY

+
N∑

β=1

∫
Ωβ

∂

∂yj

[
Cβ

ijpqξ
kl
pq(χ

β)χβ
irs

]
− Cβ

ijpqξ
kl
pq(χ

β)ξrsij (χ
β) dVY.

If we now exploit the divergence theorem and local periodicity we can simplify the
above expression. We are now left with

∫
ΩA

CA
ijklξ

rs
ij (χ

A) dVY +
N∑

β=1

∫
Ωβ

Cβ
ijklξ

rs
ij (χ

β) dVY

−
N∑

β=1

∫
Γβ

CA
ijklχ

A
irsn

A
i + Cβ

ijklχ
β
irsn

A
i dAY

= −
∫
ΩA

CA
ijpqξ

kl
pq(χ

A)ξrsij (χ
A)dVY −

N∑
β=1

∫
Ωβ

Cβ
ijpqξ

kl
pq(χ

β)ξrsij (χ
β) dVY

+
N∑

β=1

∫
Γβ

CA
ijpqξ

kl
pq(χ

A)χA
irsn

A
i + Cβ

ijpqξ
kl
pq(χ

β)χβ
irsn

A
i dAY.

We can eliminate the interface terms on Γβ by making use of the interface condition
for elasticity (3.26c) and continuity of χ at the interface (3.26d). Now using notation
for local integral averages (3.6), the definition of the tensor transpose and dropping
the summation notation allows us to define the relation

{CA : ξY(χA)}ΩA
+

N∑
β=1

{Cβ : ξY(χβ)}Ωβ

= −
{
ξTY(χA) : CA : ξY(χA)

}
ΩA
−

N∑
β=1

{
ξTY(χβ) : Cβ : ξY(χβ)

}
Ωβ
.

(3.51)
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If we now plug in this result to the expression for P̄ we will recover C̄:

P̄ =
{
CA + 2CA : ξY(χA) + ξY(χA)

T : CA : ξY(χA)
}
ΩA

+

+
N∑

β=1

{
Cβ + 2Cβ : ξY(χβ) + ξY(χβ)

T : Cβ : ξY(χβ)
}
Ωβ

= {CA + CA : ξY(χA)}ΩA
+

N∑
β=1

{Cβ + Cβ : ξY(χβ)}Ωβ

= C̄

2. To prove major symmetries we use the relationship (3.51) to reformulate C̄ as

C̄ =
{
(I+ ξY(χA))

T : CA : (I+ ξY(χA))
}

ΩA

+
N∑

β=1

{
(I+ ξY(χβ))

T : Cβ : (I+ ξY(χβ))
}

Ωβ

.
(3.52)

This is clearly major symmetric according to linearity and the transpose property
(3.40). To prove minor symmetries of C̄ it is clear that the only terms we need to
show that have left and right minor symmetries are

{CA : ξY(χA)}ΩA
and {Cβ : ξY(χβ)}Ωβ

∀β.

Left symmetries for these terms are employed from the left symmetries of the elastic-
ity tensors. The right symmetries of these terms are deduced from the cell problems
(3.50) employing the right minor symmetries of the elasticity tensors. Thus, C̄ is
both minor and major symmetric.

3. To prove positive definiteness of C̄ it is useful to use the formulation (3.52) of C̄.
We need to show that for every Y-constant, second rank symmetric tensor A that

AC̄A = {BA : CA : BA}ΩA
+

N∑
β=1

{Bβ : Cβ : Bβ}Ωβ
≥ 0,

where we have set:
BA = (I+ ξY(χA))A

Bβ = (I+ ξY(χβ))A ∀ β.

It follows that AC̄A = 0 if and only if BA = 0 and Bβ = 0 for all β. Therefore, to
prove positive definiteness then we only need to show that

A = 0 ⇐⇒ BA = 0 and Bβ = 0 ∀ β.
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Firstly, its obvious that if A = 0 then we must have BA = 0 and Bβ = 0 for all β.
On the other hand if we have BA = 0 and Bβ = 0 for all β then we must consider

{I+ ξY(χA)}AA+
N∑

β=1

{I+ ξY(χβ)}β A = 0 ∀ β.

We can simplify this expression by making use of the definition for M in (3.47). This
allows us to write

{I+M}A = 0.

Theorem 3.3.1 tells us that {M} = 0 and we know that {I} = 1. Thus we must have
that A = 0, completing the proof of positive definiteness for C̄ .

3.3.2 The effective residual stress tensor

The effective coefficient σ̄ defines the residual stress term in equation (3.34), similarly
κ̄ defines the residual stress term in equation (3.44). It does not seem intuitive that a
multiscale model of one system would have two effective coefficients fulfilling the same
role in different equations. To overcome this we can derive a relation from the local cell
problem (3.27) which defines the auxiliary vectors ũA and ũβ for all β. Using this relation
we will show that κ̄ = σ̄, this is done in the following Theorem 3.3.3. The benefit of
this work is a simplification in the notation and providing physical consistency to the
multiscale model.

Theorem 3.3.3. Consider the second rank residual stress tensors σ̄ and κ̄ defined by
(3.35) and (3.45), respectively. It is true that κ̄ = σ̄.

Proof. We begin by recalling the local cell problem that defines ũA and ũβ for all β. In
summation notation we can write down equations (3.27a) and (3.27b) as

−
∂σ̂A

ijkl

∂yj
=

∂

∂yj

[
CA

ijpqξ
kl
pq(ũ

A
pq)
]

and −
∂σ̂β

ijkl

∂yj
=

∂

∂yj

[
Cβ

ijpqξ
kl
pq(ũ

β
pq)
]
∀ β. (3.53)

We multiply each of these expressions by χA
irs and χβ

irs, respectively, then using the product
rule we can sum up these expressions and integrate over a local cell Ω. As a result we are
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left with the expression∫
ΩA

− ∂

∂yj

(
σ̂A
ijχ

A
irs

)
+ σ̂A

ijξ
rs
ij (χ

A) dVY

+
N∑

β=1

∫
Ωβ

− ∂

∂yj

(
σ̂β
ijχ

β
irs

)
+ σ̂β

ijξ
rs
ij (χ

β) dVY

=

∫
ΩA

− ∂

∂yj

(
CA

ijpqξpq(ũ
A)χA

irs

)
− CA

ijpqξpq(ũ
A)ξrsij (χ

A) dVY

+
N∑

β=1

∫
Ωβ

− ∂

∂yj

(
Cβ

ijpqξpq(ũ
β)χA

irs

)
− Cβ

ijpqξpq(ũ
β)ξrsij (χ

β) dVY.

Making use of divergence theorem, local periodicity, the interface condition (3.26c) and
continuity conditions on the interface (3.26d) we can simplify the above expression. We
can now write down∫

ΩA

σ̂A
ijξ

rs
ij (χ

A) dVY +
N∑

β=1

∫
Ωβ

σ̂β
ijξ

rs
ij (χ

β) dVY

= −
∫
ΩA

CA
ijpqξpq(ũ

A)ξrsij (χ
A) dVY −

N∑
β=1

∫
Ωβ

Cβ
ijpqξpq(ũ

β)ξrsij (χ
β) dVY.

Dropping summation notation and making use of the local integral average notation (3.6)
we have the expression

{σ̂A : ξ(χA)}A +
N∑

β=1

{σ̂βξ(χβ)}β

= −{ξ(ũA) : CA : ξ(χA)}A −
N∑

β=1

{ξ(ũβ) : Cβ : ξ(χβ)}β .

If we now plug this expression into κ we find that

κ̄ = {σ̂A + CA : ξY(ũA) + σ̂A : ξY(χA) + ξY(ũA) : CA : ξY(χA)}ΩA
+

+
N∑

β=1

{σ̂β + Cβ : ξY(ũβ) + σ̂β : ξY(χβ) + ξY(ũβ) : Cβ : ξY(χβ)}Ωβ
,

= {σ̂A + CA : ξY(ũA)}ΩA
+

N∑
β=1

{σ̂β + Cβ : ξY(ũβ)}Ωβ
,

= σ̄
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3.3.3 The effective damage threshold

The last effective coefficient we are interested in is, ϕ̄, the effective damage threshold.
Currently it has a lot of contributing microscopic terms, such as microscopic residual
stress, elasticity and of course the damage threshold. By manipulating the local cell
problems (3.27), which defines the auxiliary vectors ũA and ũβ for all β, we can find a
relation that will simplify ϕ̄. This is done in Lemma 3.3.4 and follows a similar procedure
to Theorem 3.3.2 and 3.3.3.

Lemma 3.3.4. It can be shown from the local cell problem (3.27) that the following equality
holds:

−{ξY(ũA) : CA : ξY(ũA)}ΩA
−

N∑
β=1

{ξY(ũβ) : Cβ : ξY(ũβ)}Ωβ
=

{σA : ξY(ũA)}ΩA
+

N∑
β=1

{σβ : ξY(ũβ)}Ωβ
.

Proof. We begin by recalling the local cell problem that defines ũA and ũβ for all β. In
summation notation we can write down equations (3.27a) and (3.27b) as

−
∂σ̂A

ijkl

∂yj
=

∂

∂yj

[
CA

ijpqξ
kl
pq(ũ

A
pq)
]

and −
∂σ̂β

ijkl

∂yj
=

∂

∂yj

[
Cβ

ijpqξ
kl
pq(ũ

β
pq)
]
∀ β. (3.54)

We multiply each of these expressions by ũA
i and ũβ

i , respectively, then using the product
rule we can sum up these expressions and integrate over a local cell Ω. As a result we are
left with the expression∫

ΩA

− ∂

∂yj

(
σ̂A
ijũ

A
i

)
+ σ̂A

ijξij(ũ
A) dVY

+
N∑

β=1

∫
Ωβ

− ∂

∂yj

(
σ̂β
ijũ

β
i

)
+ σ̂β

ijξij(ũ
β) dVY

= −
∫
ΩA

∂

∂yj

(
CA

ijpqξpq(ũ
A)ũA

i

)
+ CA

ijpqξpq(ũ
A)ξij(ũ

A) dVY

−
N∑

β=1

∫
Ωβ

∂

∂yj

(
Cβ

ijpqξpq(ũ
β)ũβ

i

)
+ Cβ

ijpqξpq(ũ
β)ξij(ũ

β) dVY.

Making use of divergence theorem, local periodicity, the interface condition (3.27c) and
continuity conditions on the interface (3.27d) we can simplify the above expression. We
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can now write down∫
ΩA

σ̂A
ijξij(ũ

A) dVY +
N∑

β=1

∫
Ωβ

σ̂β
ijξij(ũ

β) dVY

= −
∫
ΩA

CA
ijpqξpq(ũ

A)ξij(ũ
A) dVY −

N∑
β=1

∫
Ωβ

Cβ
ijpqξpq(ũ

β)ξij(ũ
β) dVY.

Dropping summation notation and making use of the local integral average notation (3.6)
we have the expression

−{ξY(ũA) : CA : ξY(ũA)}ΩA
−

N∑
β=1

{ξY(ũβ) : Cβ : ξY(ũβ)}Ωβ
=

{σA : ξY(ũA)}ΩA
+

N∑
β=1

{σβ : ξY(ũβ)}Ωβ
.

3.4 Summary of results

In this Chapter we have derived a novel multiscale model of the damage phase field method.
We have homogenised both the mechanical behaviour and damage evolution of an arbitrary
linear elastic composite in Rn. This is a novel mathematical model which will allow us
to study a large variety of microscopic variations from a macroscopic perspective. We
understand that the model is large and complicated so in this section we will write the
model out clearly and compactly, using all the simplifications derived in §3.3.

We have derived two governing equations in the form of partial differential equations,
which must be solved at every macroscopic point in space. Asymptotic homogenisation
has reduced the number of necessary governing equations from 2N +1 equations for every
local cell to just two equations at the macroscale. Inferring the results of Theorem 3.3.2,
3.3.3 and Lemma 3.3.4 we can simplify the model even further. To do this we recall the
macroscopic equations (3.34) and (3.44) for the composite domain Ω with local periodicity
and large scale disparity such that ϵ is necessarily small. Writing it down we have the
macroscopic equation of motion

∇X ·
[
g(ᾱ)

(
C̄ : ξX(ū) + σ̄

)]
+ B̄ = ρ̄¨̄u, (3.55)

which governs the macroscopic displacement ū. Similarly we can write down a simplified
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version of the damage evolution equation

η̄ ˙̄α =

〈
−g′(ᾱ)

(
1

2
ξX(ū) : C̄ : ξX(ū) + σ̄ : ξX(ū)− ψ̄

)
− Ḡᾱ +∇X ·

(
D̄∇Xᾱ

)〉
+

, (3.56)

which governs the macroscopic damage ᾱ. Applying the results of Theorem 3.3.2, 3.3.3
and Lemma 3.3.4 we can reduce the list of effective coefficients from ten to eight and
further simplify several terms. Doing so allows us to write the list of effective coefficients
as:

C̄ = {CA + CA : ξY(χA)}ΩA
+

N∑
β=1

{Cβ + Cβ : ξY(χβ)}Ωβ
,

σ̄ = {σ̂A + CA : ξY(ũA)}ΩA
+

N∑
β=1

{σ̂β + Cβ : ξY(ũβ)}Ωβ
,

ρ̄ = {ρA}ΩA
+

N∑
β=1

{ρβ}Ωβ
, B̄ = {ρAbA}ΩA

+
N∑

β=1

{ρβbβ}Ωβ
,

ψ̄ =

{
ψ̂A +

1

2
σ̂A : ξY(ũA)

}
ΩA

+
N∑

β=1

{
ψ̂β +

1

2
σ̂β : ξY(ũβ)

}
Ωβ

,

D̄ = {DA + DA∇YζA}ΩA
+

N∑
β=1

{Dβ + Dβ∇Yζβ}Ωβ
,

Ḡ = {GA}ΩA
+

N∑
β=1

{Gβ}Ωβ
, η̄ = {ηA}ΩA

+
N∑

β=1

{ηβ}Ωβ
.

(3.57)

Here, C̄ is the fourth order elasticity tensor, σ̄ is the second order residual stress tensor,
ψ̄ is the effective damage threshold and D̄ is the second order effective diffusion tensor.
The rest of the macroscopic coefficients ρ̄, B̄, Ḡ and η̄ are local integral averages. ρ̄ is
the macroscopic density, B̄ is the macroscopic body force, Ḡ is the macroscopic tearing
energy and η̄ is the macroscopic viscosity. As discussed earlier, since many of these ef-
fective coefficients are tensors, then in reality our system depends on many independent
spatial parameters. We can simplify this by applying the conclusions of minor and major
symmetries of C̄ as seen in Theorem 3.3.2. In two dimensions then our system would
depend on twenty independent spatial parameters and in three dimensions this would be
forty six spatial parameters.

However, the number of independent spatial parameters in the full three dimensional
microscopic problem would depend on is 46k(N + 1), where k ∈ N is the number of local
cells and N ∈ N is the number of subdomains defining each local cell. As k and N get large
this quickly becomes unfeasible to compute. Especially as the full microscopic problem
would depend on 4k(N + 1) coupled partial differential equations.
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The effective coefficients in our multiscale model are dependent on a set of auxiliary
variables. To calculate these auxiliary variables we must solve a series of local cell problems
informed by the microscopic geometry and the associated physical parameters. These
local cell problems have now been simplified in our model since we have simplified the
degradation functions such that pA = pβ = p for all β = 1, ..., N . Therefore we have the
first local cell problem defining the third order auxiliary tensors χA and χβ,

∇Y · CA = −∇Y · [CA : ξY(χA)] in ΩA,

∇Y · Cβ = −∇Y · [Cβ : ξY(χβ)] in Ωβ ∀β,

(CA + CA : ξY(χA)) · nA = (Cβ + Cβ : ξY(χβ)) · nA on Γβ ∀β,

χA = χβ on Γβ ∀β.

(3.58)

The next local cell problem defines the auxiliary vectors ũA and ũβ,

∇Y · [CA : ξY(ũA)] = −∇Y · σA in ΩA,

∇Y · [Cβ : ξY(ũβ)] = −∇Y · σβ in Ωβ ∀β,

(CA : ξY(ũA) + σA) · nA = (Cβ : ξY(ũβ) + σβ) · nA on Γβ ∀β,

ũA = ũβ on Γβ ∀β.

(3.59)

Our final local cell problem defines the auxiliary vectors ζA and ζβ,

∇Y · (DA + DA∇YζA) = 0 in ΩA,

∇Y · (Dβ + Dβ∇Yζβ) = 0 in Ωβ ∀β,

(DA + DA∇YζA)nA = (Dβ + Dβ∇Yζβ)nA on Γβ ∀β,

ζA = ζβ on Γβ ∀β.

(3.60)

All of the above defines our complete multiscale model of a damage phase field model on
a linear elastic composite material with residual stress.

3.4.1 Concluding remarks

This chapter contains the main theoretical result of this thesis. We have derived the
homogenised macroscopic model for the coupled mechanical behaviour of a composite
material, incorporating the damage evolution into the model. To the best of the authors
knowledge, this is the first time such a model has been derived, making it a novel result.
It is also believed to be the first upscaling of a damage phase field model. Other authors
have attempted to derive such a multiscale model of the damage phase field method but
have not properly incorporated the microscopic contributions of damage evolution or the
constraints of irreversibility and the damage criterion into their models [40, 81]. Instead,
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they either ignored the constraints of irreversibility and the damage criterion, or they did
not include the damage phase field in the upscaling whatsoever.

In the work by Fantoni et al. [40], they simply derived a multiscale model of the mo-
mentum balance with no coupled damage degradation or damage evolution, in fact there
was no damage phase field incorporated in their multiscale derivation at all. Instead once
a multiscale model of the momentum balance was obtained they then post hoc coupled a
damage evolution equation to the momentum balance by multiplicatively decomposing the
effective macroscopic elasticity. This totally ignores how we ensure that the microscopic
irreversibility constraints and damage criterion’s of the damage phase field are effectively
upscaled. It also means that the macroscopic coefficients in the damage evolution equa-
tion will not be effective equations that encode any representative information about the
microscale. Effectively they ignored any microscopic variations in the damage phase field.

In the work by Ma et al. [81], they performed an asymptotic homogenisation upscaling
of a coupled momentum balance and damage evolution equation. This model is similar to
our model in structure at the microscale. The issue with their model is that they simply ig-
nored any requirement of damage irreversibility and a damage criterion at the microscale.
These were again added post hoc after upscaling at the macroscale. This approach, un-
like our model, lacks mathematical rigour as it neither accounts for the upscaling of the
irreversibility constraint or the damage criterion.

Either of the discussed above modelling simplifications will not produce a model which
truly encapsulates the full contribution of the damage phase field on the microscale. As a
truly multiscale model, we have created an approach to modeling complex heterogeneous
structures from small microscopic samples that accounts for all the necessary constraints
required with the damage phase field method. This allows one to then study material
failure on a macroscopic level. Using these new theoretical results researchers can take a
non-phenomenological macroscopic approach to evaluating material failure due to micro-
scopic variations in a material.

An interesting feature of our model are the non-linear terms present in the macroscopic
model. In the macroscopic equation of motion, the degradation function is a non-linear
polynomial function in terms of ᾱ. Similarly, in the macroscopic damage evolution equa-
tion, the elastic potential term and gradient of the degradation function are non-linear
terms of the macroscopic displacement ū and damage ᾱ. This is interesting because the
local cell problems are all linear. Meaning that calculation of the auxiliary variables and
effective coefficients is fast and easy. Whereas, the more interesting non-linear features of
the model behave on the macroscale.

One of the main advantages of a multiscale model is found in its computational effi-
ciency. The calculation of the macroscopic coefficients and auxiliary variables need only
be done once, as they have no time dependencies. As the microscale has been effectively
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homogenised into the macroscopic model, instead of solving a computational model with
many microscopic variations, we need only solve for a singular smooth homogenised contin-
uum model. This means solving a numerical model with far fewer spatial nodes. Overall,
this means saving lots of computational time and thus improving efficiency.

It should be noted the model is not perfect. Asymptotic homogenization relies on
several assumptions. It would be a vast improvement if, in the future, we could derive
a multiscale model that does not require an assumption of local periodicity. Further, it
should be noted that we upscaled a linear elastic composite model. To improve upon
this, a non-linear elastic composite model would allow one to model much more generally.
Our current approximation uses an elastic potential that includes contribution from an
inherent residual stress.

The overall objective of this thesis is to create a multiscale model of aortic dissections.
In this chapter we have created a multiscale model of the damage phase field method for
an arbitrary linear elastic composite material with residual stress. It is possible to model
all three layers of the aorta as a linear elastic composite material with residual stress, as
discussed in §1.3.2. One could therefore use our multiscale model as a good approximation
for studying aortic dissections. In our case it would allow one to study how microscopic
changes at each macroscopic point effects the outcome of a dissection. This can be done by
studying changes in a local microscopic geometry or local physical properties. We would
be able to therefore study a wide variety of biological conditions that effect the aortic wall
and see in theory whether they contribute to a dissection or play in a role in determining
the outcome of a dissection. First, though we need to consider how to solve this model
numerically.



Chapter 4

Convergence of the multiscale model

In Chapter 3 we derived a novel multiscale model for material failure. The goal of this
chapter is to test the validity of the model and explain how we can solve it numerically. By
focusing on the one-dimensional rate independent case, we can test the case of a bar being
stretched to the point of tearing. A one-dimensional reduction will also allow us to design a
numerical method for approximating the solutions, satisfying the irreversibility constraints
and damage criterion. Once we have an algorithm, we can explain how in one dimension we
can solve each part of our model numerically. This will require creating a scheme for solving
the linear momentum balance and returning a solution for the displacement, and a scheme
for solving the damage energy equation and returning a solution for the damage. Each of
these numerical schemes are implemented using finite difference approximations. Putting
all of this together we will have a numerical method that we have implemented in MATLAB
[72]. All code for the simulations in this chapter can be found in Appendix A. The
final step in this chapter will be to perform a parametric analysis of our one-dimensional
example, studying how varying each variable with respect to the scale separation, ϵ, effects
the convergence of the microscopic and macroscopic models. As a result we will present
numerical evidence of convergence of the microscopic model to the macroscopic model.

4.1 One dimensional test case

To create a numerical scheme for studying the convergence of our multiscale model we
can reduce our problem to one dimension. It is convenient, easier and requires much less
computational power than simulating a two or three dimensional test case. In fact, if our
macroscopic model required 103 nodes and we consider a scale separation of ϵ = 0.01 then
we would require at least 105 nodes for the microscopic model. Evidently, this shows that
one of the main advantages of our macroscopic model is saving significant computation
time, because computing the macroscopic solution require significantly less nodes by at
least two orders of magnitude compared to the microscopic solution. These computational
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savings will compound as dimensions increase.
In this Chapter we will be interested in one simple but mechanically interesting ex-

ample of material failure. Consider the case illustrated in Figure 4.1, where we have a
one-dimensional bar clamped on the left boundary whilst being displaced on the right
boundary. The displacement at the right boundary is U = kt where k is a speed and t

is time. This choice of boundary condition ensures, in one dimension, that at every time
step we can apply a Dirichlet boundary condition which gives us increased control over our
simulations. The reference state of the bar is the domain Ω := [0, 1]. The bar could be a
composite or homogeneous material. In our case we will consider a homogeneous domain
and material properties with rapidly oscillating coefficients. This example will provide ev-
idence that our macroscopic model converges with the respective full microscopic problem
as ϵ→ 0. A similar one dimensional case was studied in Pham et al. [83].

Figure 4.1: This is a schematic of a one dimensional bar. The bar is clamped at the left
hand side, X = 0. On the other end atX = 1, the bar is being displaced. The displacement
on the right hand side is defined as U(1, t) = kt, which is a linear displacement to the
right with respect to time. Here k acts as a non-dimensional speed.

This mechanical problem will allow us to test the convergence between our microscopic
and macroscopic models. We will test that the microscopic and macroscopic models do
in fact converge as ϵ → 0. By varying the scaling of each microscopic coefficients we can
test how this affects the error between between our microscopic and macroscopic models.
This test will be performed using the rate independent version of the microscopic and
macroscopic model. We do this because the rate dependency was only introduced in §2.2.4
as a feature to make numerical solutions more efficient. Recall that the rate independent
model is the original form of the damage model derived in Chapter 2. Without any rate
dependency in the damage evolution equations then damage will grow instantaneously to
satisfy all the energy requirements. Therefore, showing the microscopic and macroscopic
models converge in a rate independent environment is a strong demonstration of our
multiscale convergence. In Chapter 5 we will consider the rate dependent damage model,
because this helps guarantee numerical convergence when, in higher dimensions, we use
the finite element method.

An advantageous detail about this test is that the the structure of partial differential
equations defining microscopic model (2.46), for a homogeneous domain, is the same as
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the macroscopic model defined by (3.55) and (3.56). Therefore, we can solve both models
with the same numerical scheme. The only difference will being the coefficients used and
the necessary resolution for spatial and temporal nodes to solve each model.

We are considering a single domain Ω to show the convergence of our multiscale model,
where our microscopic coefficients can be spatially piecewise discontinuous or rapidly oscil-
lating in Ω. This therefore mimics a composite material whilst simplifying the complexity
of our numerical model, because the microscopic model will not require the interface con-
ditions defined by (3.10). In the same domain we will be solving the same set of partial
differential equations, for the microscopic and macroscopic model. The main difference
between the models will be the coefficients: microscopic coefficients will be rapidly oscil-
lating or piecewise discontinuous; the macroscopic coefficients will be calculated from the
microscopic conditions. The other difference is that when we solve the microscopic model
numerically this will require a significantly larger resolution than the macroscopic model,
depending on the scale ratio ϵ.

In the rest of this section we will mathematically define the exact problems we are
solving. Then we will explain in one dimension how to calculate the effective coefficients
for the macroscopic problem.

4.1.1 Problem setup

We are not the first to attempt to solve this form of damage model numerically. Pham
et al. [84] and Miehe et al. [90] used a strategy of numerical minimisation to solve the
weak form of (4.1). We found this to be a simple methodology to implement with many
numerical software packages already having inbuilt tools for numerical minimisation but
it was quite inefficient, with one dimensional simulations of one hundred spatial and time
nodes taking around four hours to complete. In this thesis we solve all of our numerical
problems using the strong forms of the governing equations.

Now that we have a particular problem we directly formulate our one dimensional
system of partial differential equations. As mentioned the macroscopic model defined by
(3.55) and (3.56) are effectively the same as the microscopic model defined by (2.46).
This is especially true as we are only considering a single domain material with rapidly
oscillating material properties. Such a material with sharp variations in its coefficients at
such a small scale is a great approximation of a composite material but far easier to solve
numerically. As we are interested in the physical problem illustrated in Figure 4.1 then
we can ignore all body forces in our problem. Since this problem is also meant to be the
simplest case possible we assume that the one dimensional bar is isotropic and linear elastic
without any residual stress. Reducing our problem to one dimension allows us to write our
problem in terms of the one dimensional displacement in the horizontal direction U(X, t)
and the damage variable α(X, t). Here, X ⊂ Ω is our one dimensional spatial variable
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and t ⊂ T is time. There is a final simplification that can be made here to make this the
simplest test possible. That would be to drop the inertial terms present in the equation of
linear momentum balance, effectively reducing the equation to an equilibrium equation.
Since we have control of k it can always be taken small enough such that the inertial terms
can be ignored, this would be the case if we were to pull the one dimensional bar very
slowly. In Chapter 3, asymptotic homogenisation focused on upscaling and encoding the
effects of spatial, and not temporal, variations in the material. Hence, we limit ourselves
to the equilibrium equation, which is an elliptic partial differential equation and can be
solved numerically using a variety of techniques.

Let us write down the microscopic and macroscopic models we want to solve numeri-
cally. For the microscopic model, we are interested in solving

∂

∂X

[
g(α)

(
C
∂U

∂X

)]
= 0,〈

−g′(α)

(
1

2
C
(
∂U

∂X

)2

− ψ

)
−Gα +

∂

∂X

(
D
∂α

∂X

)〉
+

= 0.

(4.1)

Let us also reintroduce the coefficients and variables of the equation for convenience of the
reader. The microscopic variables of interest are the one dimensional horizontal displace-
ment U(X, t) and the damage phase field α(X, t). Our microscopic equilibrium equation
is dependent on the scalar elasticity function C(X). In the rate independent case we
may call the damage evolution equation the damage energy equation. It depends on the
unique microscopic scalar coefficients: ψ(X) the positive semi-definite energy threshold
for damage; G(X) the tearing energy and D(X) the damage diffusion coefficient. In this
one dimensional problem setup we have two equations, two unknowns and four parame-
ters of interest. The equilibrium equation and damage energy equation are coupled by the
damage degradation function. The damage degradation function was introduced in §2.2.2,
it has the necessary constraints

g(0) = 1, g(1) = 0, g′(1) = 0 and g′(α) ≤ 0.

In Chapter 3, we restricted the specific form of our damage degradation function to a
polynomial function such that

g(α) = (1− α)p such that p ≥ 2 ∈ N. (4.2)

To complete the microscopic model we require a set of boundary conditions. For the
displacement field we have the Dirichlet boundary conditions, as discussed in Figure 4.1,

U(0, t) = 0 and U(1, t) = kt. (4.3)
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The damage phase field has a set of no flux boundary conditions which in one dimension
can be written as

D
∂α

∂X
(0) = D

∂α

∂X
(1) = 0. (4.4)

In a similar fashion let us write down the corresponding macroscopic model. For the
macroscopic model, we are interested in solving

∂

∂X

[
g(ᾱ)

(
C̄
∂Ū

∂X

)]
= 0,〈

−g′(ᾱ)

(
1

2
C̄
(
∂Ū

∂X

)2

− ψ̄

)
− Ḡᾱ +

∂

∂X

(
D̄
∂ᾱ

∂X

)〉
+

= 0.

(4.5)

The macroscopic unknowns of interest are Ū(X, t) and ᾱ(X, t) the macroscopic one dimen-
sional horizontal displacement and damage, respectively. Note that every parameter and
variable with a bar is the macroscopic counterpart to the microscopic model. Also note
here we are performing a clear abuse of notation, by setting X as both the spatial variable
over the full microscopic domain and macroscopic domain. This does not cause any issues
with our analysis in this chapter. The macroscopic coefficients in this model are as follows:
C̄(X) the scalar macroscopic elasticity; the scalar positive semidefinite macroscopic energy
threshold ψ̄(X); the scalar macroscopic tearing energy Ḡ(X) and the scalar macroscopic
damage diffusion D̄(X). Again, in this one dimensional setup we have two unknowns,
two equations and four scalar parameters. The damage degradation function couples the
equilibrium equation and damage energy equation. To complete the macroscopic problem
we need a set of boundary conditions. For the displacement field we have the Dirichlet
boundary conditions, as discussed in Figure 4.1,

Ū(0, t) = 0 and Ū(1, t) = kt. (4.6)

The macroscopic damage phase field has a set of no flux boundary conditions which in
one dimension can be written as

D̄
∂ᾱ

∂X
(0) = D̄

∂ᾱ

∂X
(1) = 0. (4.7)

As we have mentioned (4.1) and (4.5) are the same set of partial differential equations for
two differing sets of of coefficients, and hence unknowns. They have the exact same set of
boundary conditions for the displacements, (4.3) and (4.6). The damage no flux conditions
are the same, (4.4) and (4.7), for both microscopic and macroscopic models only differing
in terms of diffusion coefficients. Hence, we only need to develop one numerical scheme to
solve both of these models, as we will do in this chapter.

The above system of equations describe both the macroscopic and microscopic models.
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In a sense by solving both the macroscopic and microscopic models will allow us to show
multiscale convergence such that

lim
ϵ→0

U = Ū +O(ϵ) and lim
ϵ→0

α = ᾱ +O(ϵ).

It should be noted that all the coefficients in this chapter have been reduced to one di-
mension. When performing our simulations the microscopic models coefficients will be
provided and known. We can then calculate the macroscopic coefficients, using these mi-
croscopic coefficients, as defined in (3.57). This will require solving a set of one dimensional
cell problem to then calculate the macroscopic coefficients. We can do this analytically in
one dimension and we shall explain how to do this in the following subsection.

4.1.2 One dimensional effective coefficients

Our macroscopic model depends on a series of effective coefficients related to a series of
microscopic coefficients. In one dimension we can actually calculate the effective coeffi-
cients analytically in terms of the microscopic coefficients. We are going to calculate the
one dimensional effective coefficients in this section. It should be noted these are not novel
results and in the field of asymptotic homogenisation they are considered classic results
[103].

The macroscopic coefficients ψ̄ and Ḡ are local integral averages, they can therefore
already be directly calculated. We can write this in one dimension as

ψ̄(X) =
1

P

∫
ω

ψ(X, Y ) dY and Ḡ(X) =
1

P

∫
ω

G(X, Y ) dY, (4.8)

where ψ and G are the microscopic coefficients, Y is the microscopic spatial variable and
P is the length of the periodic cell ω. These averages can be calculated very easily with
Matlab on the one dimensional local cell ω, defined to be [0, P ]. The relation between the
macroscopic and microscopic coefficients here are very clear and the integral averages can
be seen to in a sense smooth out the microscopic variations.

The effective macroscopic coefficients C̄ and D̄ (3.57) depend on the solutions to the
ansätze (3.58) and (3.60) defining χ and ζ, respectively, as seen in Chapter 3. In one
dimension we can say that C̄ and D̄ are calculated as

C̄ =
1

P

∫
ω

(
C+ C

∂χ

∂Y

)
dY and D̄ =

1

P

∫
ω

(
D+ D

∂ζ

∂Y

)
dY. (4.9)

Here C and D are the microscopic coefficients of elasticity and damage diffusivity. Clearly
to calculate these effective coefficients we need to find the derivatives of χ and ζ. To
find these derivatives we need to solve the local cell problems defined for χ and ζ defined
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in (3.59) and (3.60), respectively. In one dimension for a homogenous domain Ω we can
reduce these local cell problems into the following:

∂

∂Y

[
C
∂χ

∂Y

]
= −∂C

∂Y
and

∂

∂Y

[
D
∂ζ

∂Y

]
= −∂D

∂Y
. (4.10)

These differential problems can be solved by taking local periodicity on the cell bound-
ary ∂ω into account. The periodicity conditions can be used by defining the boundary
conditions

χ(0) = χ(P ) and ζ(0) = ζ(P ). (4.11)

Using the periodicity conditions (4.11) we can calculate the general solutions of (4.10) for
χ and ζ in one dimension as

χ(Y ) = −Y +
P∫ P

0
C−1(Y ) dY

∫ Y

0

1

C(s)
ds+ C1,

ζ(Y ) = −Y +
P∫ P

0
D−1(Y ) dY

∫ Y

0

1

D(s)
ds+ C2.

(4.12)

Here C1 and C2 are constants of integration and s is a dummy variable for integration.
We do not need these general solution but rather their derivatives. We can write these
down, using (4.12), as

∂χ

∂Y
= −1 + P C−1(Y )∫ P

0
C−1(Y )dY

and
∂ζ

∂Y
= −1 + P D−1(Y )∫ P

0
D−1(Y )dY

. (4.13)

Substituting the derivatives (4.13) into our cell problems (4.9) allows us to calculate our
effective coefficients of C̄ and D̄ in terms of the microscopic coefficients C and D. Doing
so leaves us with

C̄(X) =
P∫ P

0
C−1(X, Y )dY

and D̄(X) =
P∫ P

0
D−1(X, Y )dY

. (4.14)

We can see this is clearly not just an integral average and the effective coefficients C̄ and
D̄ are encoding microscopic information. In fact the one dimensional effective coefficients
(4.14) are a pair of harmonic means for the microscopic coefficients, C and D, over the
local cell ω.

Now we have defined all of our one dimensional macroscopic coefficients in terms of
the microscopic coefficients as seen in (4.8) and (4.14). Therefore if we find a numerical
solution for the one dimensional partial differential equations (4.1) we can use that solution
to solve a microscopic problem and a macroscopic problem. We can therefore compare
the solutions of these problems and show that the microscopic and macroscopic solutions
converge as ϵ→ 0.
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Remark. In this chapter we are omitting the macroscopic residual stress σ̄ but we should
note that it can also be calculated in terms of the microscopic coefficients C and σ. Here
we will briefly comment on this solution because it is somewhat interesting compared to the
macroscopic coefficients C̄ and D̄ (4.14). In one dimension we can define the macroscopic
residual stress, defined in (3.57), as

σ̄ =
1

P

∫
ω

(
σ + C

∂Ũ

∂Y

)
dY. (4.15)

To calculate σ̄ we must first calculate the one dimensional ansatz Ũ . This can be done by
solving the following one dimensional cell problem, reduced from (3.59),

∂

∂Y

(
C
∂Ũ

∂Y

)
= − ∂σ

∂Y
in ω.

Here our differential problem is defined on ω, our one dimensional local periodic cell [0, P ].
The periodicity condition is defined as

Ũ(0) = Ũ(P ).

Using this periodicity condition we can write down the general solution of the local cell
problem as

Ũ = −
∫ Y

0

σ(s)

C(s)
ds+

∫ P

0
σ(Y )C−1(Y ) dY∫ P

0
C−1(Y ) dY

∫ Y

0

C−1(s) ds+ C3,

where C3 is a constant of integration. To calculate (4.15) we do not need the general
solution of Ũ but rather its derivative with respect to the microscopic spatial variable Y .
This derivative can be written down as

∂Ũ

∂Y
= −σ

C
+

∫ P

0
σ(X, Y )C−1(X, Y ) dY∫ ω

0
C−1(X, Y ) dY

C−1(Y ),

substituting this result into (4.15) gives us the desired solution

σ̄(X) =

∫ P

0
σ(s)C−1(X, Y ) dY∫ P

0
C−1(X, Y ) dY

. (4.16)

What makes this so interesting in comparison to C̄ and D̄ is that they are clearly harmonic
means as seen in (4.14). Whereas, σ̄ is a weighted mean as we can see in (4.16), in fact it
is weighted by the residual of the local elasticity. It is very interesting to question why the
residual stress has its own unique solution in one dimension in comparison to the other
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effective coefficients.

4.2 One dimensional numerical solution

In this section we introduce a numerical solution for our damage model. This numerical
solution guarantees that all of our modelling constraints are met. We will need to satisfy
damage irreversibility and ensure that damage growth only occurs when the damage cri-
terion is met. The damage criterion is defined by the terms inside the Macaulay brackets
of (4.1) such that we have damage growth at any point that satisfies

−g′(α)

(
1

2
C̄
(
∂U

∂X

)2

− ψ̄

)
− Ḡα +

∂

∂X

(
D̄
∂α

∂X

)
> 0. (4.17)

To the best of this author’s knowledge all numerical methods used in the literature are
iterative in the following sense: we would iterate between solving for the displacement
and solving for the damage field. This allows us to correctly calculate the damage field,
the displacement field, satisfy the damage criterion and irreversibility constraint. To do
this we assume that α(X, t) is fixed at time t then we can use it to solve the displacement
immediately at time t. We can then take that solution for the displacement substitute it
into the damage criterion and find which points have damage growth. With that informa-
tion we can solve the damage energy equation (4.1) at every point where damage growth
is occurring and every point can remain constant. Then we repeat the process over using
this new updated solution for the damage phase field α at time t.

This is an iterative scheme where we will solve the displacement problem, then use the
damage criterion to find out where we can apply the damage energy equation. By repeating
this process until α converges to an appropriate tolerance that we control. We choose to
use finite differences to approach this problem. A great resource for finite differences is
the textbook Numerical recipes [107]. Our numerical method was fully implemented in
Matlab and can be found in Appendix A.

The reason we are using separate numerical schemes to solve for the displacement and
damage phase field at each time step instead of solving both fields at each time step (with
a monolithic numerical scheme) is because our methodology saves us a lot of time. We
found that solving every field monolithically at every time step with an iterative Newton-
Raphson scheme was incredibly slow. For comparison solving a simple damage phase field
model, as defined by (2.6), for 1000 evenly spaced nodes over 1000 time steps with the
monolith method took around four hours and with our separation method we found the
same problem took around 7 minutes.
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4.2.1 Numerical algorithm

To introduce a numerical algorithm we need to break our problem down into three distinct
parts for every time step. Then we need to structure how each part interacts with one
another and how we flow through the algorithm. Let us begin by breaking our problem
into smaller simpler parts. In Figure 4.1 we begin with a bar in a reference configuration
where all initial information is known. When we stretch the bar we displace the right
hand side by U(1) = kδt, where δt is a small positive forward time step. If we assume that
there is no damage growth then we can easily calculate the solution to the equilibrium
equation. Let us call this part of the problem the elastic phase where we are assuming
we are in some configuration with no damage growth, just a simple linear elastic problem.
To check whether this is true or not we substitute our solution directly into the damage
criterion (4.17). At this point there are two distinct possibilities: the damage criterion is
satisfied everywhere and we have no damage growth; the damage criterion is not satisfied
everywhere and we must have damage growth.

If in the first case we have satisfied the damage criterion everywhere then we can move
forward onto the next time step and repeat the whole process. However, if we have not
satisfied the damage criterion then we need to solve the damage energy equation. To do
this we can define a field called the criterion field, we establish the field such that at every
point the damage criterion is not satisfied the criterion field is 1 and at every other point it
is 0. Using this field we can solve the damage energy equation assuming that the damage
equation criterion only applies at every point where the criterion field is 1 and constant at
every other point where the criterion field is 0. To solve the damage energy equation we
will have to use a iterative scheme because the problem is non-linear. Once we calculate
the damage phase field we can recalculate the displacement starting the process again.
Once the damage phase field converges using this method we can say we have solved this
time step and move onto the next one.

This logic is the basis of our algorithm and now we need to write it down more formally
with pseudocode. Before we do this let us introduce some useful notation and language
so that the algorithm is clear. Firstly we split the algorithm into calculating the solution
to three distinct partial differential equations. The first of which we call the elastic phase,
which is our equilibrium problem. In the elastic phase we solve for the displacement U
using the assumed damage phase field α and the current time t which informs the boundary
condition. Next we calculate the criterion, the damage criterion, we do this by using our
solution for U and α, the solution to this criterion is a field which tells us where the
damage criterion is and is not satisfied. Finally we solve the damage phase, which is our
damage energy equation. We solve the damage energy equation using our current solution
for the displacement U , the time step δt and the criterion which informs where the damage
energy equation is assumed to be valid and where damage stays constant. The structure
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of this algorithm can be seen in Algorithm 1. It should be noted that similar numerical
algorithms where proposed in the works of Pham et al. [84] and Miehe et al. [90].

Algorithm 1 Algorithm for calculating the damage and displacement at each time step.
t = t0 + δt
while t ≤ T do

U (k) = ElasticPhase(α(k−1), t)
Crit = Criterion(U (k), α(k−1))
if any Crit ≥ 0 then

α(p) = "guess"
α(p−1) = α(k−1)

while Norm
(
α(p) − α(p−1)

)
≥ tolerance do

α(p−1) ← α(p)

α(p) = DamagePhase(U (k),Crit, δt)
U (k) = ElasticPhase(α(p), t)
Crit = Criterion(U (k), α(p))

end while
α(k) ← α(p)

end if
t = t+ δt

end while

In this algorithm our iterative scheme for finding the correct damage phase field runs till
a desired tolerance is met. The tolerance should be appropriately set such that its smaller
than the order of the implemented finite difference schemes. In our implementation we
usually set a base tolerance of 10−8. The code we created that makes use of this algorithm
can be found in §A.2.

4.2.2 The elastic problem

The elastic problem we solve in Algorithm 1 is our linear momentum balance equation
(4.1). Since we assume that the damage phase field is a known constant field α(X, t) then
we can write down a solution of the equilibrium equation. Doing so we can say in general
that the solution for the displacement is

U(X, t;α) = UL + (UR − UL)

∫ X

0
(g(α)C(s))−1 ds∫ L

0
(g(α)C(X))−1 dX

. (4.18)

Here UL and UR are the boundary conditions in one dimension at the left and right
most bounds, respectively. In one dimension we can see that C is a stiffness defined
by Hooke’s law, with units of force per unit length. As we solved this generally we are
assuming that the domain we worked in is [0, L], where L is just some length of a one
dimensional domain. To calculate the displacement here we have two options: if C is
appropriate then we directly calculate the integrals in (4.18); if we cannot calculate the
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integrals analytically then we can solve these them in one dimension with simple numerical
integration. Importantly when we solve our damage energy equation (4.1) we only need
the gradient of displacement. We can save ourselves some work then by directly calculating
the displacement gradient. Therefore,

∂U

∂X
= (UR − UL)

(g(α)C(X))−1∫ L

0
(g(α)C(X))−1 dX

. (4.19)

In our particular case, depicted in Figure 4.1, we are interested in a domain defined across
[0, 1]. We have a set of boundary conditions defined by (4.3), so we can plug those in
directly. Doing this we have the particular solution for the displacement field

U(X, t;α) = kt

∫ X

0
(g(α)C(X))−1 ds∫ 1

0
(g(α)C(X))−1 dX

. (4.20)

Of course we can extend this solution directly onto the displacement gradient. Which we
write as

∂U

∂X
= kt

(g(α)C(s))−1∫ 1

0
(g(α)C(X))−1 dX

. (4.21)

These solutions can be directly implemented in software for some discretized domain.
We reiterate that here we are assuming that α is a known constant field because this
solution is part of an iterative process, as illustrated in Algorithm 1. These solutions were
implemented in code and can be found in §A.3.

4.2.3 The damage criterion

The one dimensional damage criterion (4.17) tells us in our iterative process where damage
growth is taking place. So after calculating the displacement field, we must check whether
our current displacement field and damage field satisfy the damage criterion. Therefore
what we are calculating is the criterion field we call “Crit”. This is done such that such that
Crit = 1 anywhere the damage field is not satisfied and Crit = 0 anywhere the damage
field is satisfied. In other words we are defining a piecewise function such that

Crit(X) =

 1, F > 0

0, F ≤ 0
(4.22)

where F is shorthand notation for the damage criterion (4.17). We can write this as

F (U, α) = −g′(α)

(
1

2
C̄
(
∂U

∂X

)2

− ψ̄

)
− Ḡα +

∂

∂X

(
D̄
∂α

∂X

)
.
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To implement this in software one can easily discretize Crit(X) and F then substituting
in our assumed solutions of U and α will return a solution. In a discretized solution using
finite differences, Crit will simply be a long vector of 1’s and 0’s, essentially a binary string
that will inform our iterative scheme, in Algorithm 1, where we have to calculate a new
solution for α. This method can also easily be extended to higher dimensions for some
discretized domain. For one dimension we implemented this method in code, which can
be found in §A.4.

4.2.4 The damage problem

The damage energy equation (4.1) is the most complicated part of our numerical algorithm.
To solve it, special consideration must be given to the non-linear terms and the Macaulay
brackets which induce a criterion for damage growth. Using the function Crit(X) (4.22),
we know where in our iterative scheme to implement the damage energy equation. In
other words we have to iteratively solve two problems depending of the value of Crit(X)

on that region, whilst also satisfying the boundary conditions.
Since Crit(X) and U(X) are fixed when we solve the damage energy equation in this

iterative scheme it is a fairly straight forward process. To simplify the notation we define
Q as the driving energy behind a tear. We define this term as

Q(U ;C, ψ) =
1

2
C
(
∂U

∂X

)2

− ψ(X). (4.23)

Recall that ψ is a positive semidefinite scalar function and its physical role is to act as
the energy threshold for when a materially can initially be damaged. Therefore, we can
generally say that for a growth of damage we require Q > 0, but we will never have any
growth of damage if Q < 0. The role of the driving energy will become clear by writing
the problem down. The problem we are solving can be expressed as

α̇ = 0 where Crit(X) = 0,

− g′(α)Q(U ;C, ψ)−Gα +
∂

∂X

(
D̄
∂α

∂X

)
= 0 where Crit(X) = 1,

D
∂α

∂X
(0) = D

∂α

∂X
(1) = 0 on the boundaries.

(4.24)

Numerically this is a very straight forward problem, we can think of it as a classic non-
linear problem that can be solved with Newton’s method in one dimension [107]. It is
generally non-linear because of the degradation function (which is a polynomial function
of lowest order two) and hence g′(α) is a non-linear polynomial for every case except
the lowest order case of the degradation function. For our numerical scheme we want to
implement Newtons method to solve (4.24) at every discrete point where Crit(X) = 1 and
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simply implement that α remains constant at every other point. The boundary conditions
in (4.24) can be accounted for by making use of fictitious nodes at the boundaries. We
implemented our solution to (4.24) with the code that can be found in §A.5.

An important point of consideration for the numerical scheme described by (4.24) is
what boundary conditions do we apply for every damage growth region contained entirely
within the interior of Ω. How we deal with this, as it is implicitly described in (4.24), is
to apply the fixed values of α on the boundaries of these regions as a Dirichlet boundary
condition to the damage energy equation. In one dimension this methodology works really
well in our numerical scheme. However, in Chapter 5 we will point out that we must allow
for numerical diffusion throughout Ω to facilitate numerical convergence.

Remark. The rate independent problem defined in (4.24) is solved with Newton’s method.
If this were the rate dependent case of the model as defined in (3.56), then we would
need to take time into account. To do this we found using the Crank-Nicholson method
[107] to be extremely effective. In fact the Crank-Nicholson scheme for the rate dependent
case is much more computationally robust and runs a lot faster in comparison to the rate
independent case. Therefore, for practical purposes we would recommend using the rate
dependent model with a Crank-Nicholson scheme, as will be seen in Chapter 5. However,
we should be aware that when the viscosity η → 0 then the Crank-Nicholson scheme requires
a much larger number of time steps to ensure convergence of the numerical scheme.

4.2.5 Convergence of the numerical scheme

Now that we have a numerical scheme as described above, one of the first things we should
do is reassure ourselves that the numerical scheme does converge to a consistent solution.
To do this we are going to consider a test case with a set of coefficients, as defined by
the damage phase field problem (4.1) with the boundary conditions (4.3) and (4.4). The
test case we will consider is illustrated in Figure 4.1, the stretching of a one dimensional
bar on its right boundary whilst it is clamped, stationary, on its left boundary. To check
that our numerical scheme does converge we will solve the same problem multiple times
with an increasing resolution each time. If our numerical scheme is consistent then as our
resolution increases our solutions will converge.

As we are only testing the convergence of our numerical scheme then we can define
simple constant coefficients. They are defined as

C(X) = 1, ψ(X) = 1 + 0.9 cos(2πX), G(X) = 1, and D(X) = 10−4. (4.25)

Our choice of ψ was made to ensure that our one dimensional bar in Figure 4.1 will have a
weak point at the centre of the bar where ψ is at its minimum. The final constitutive choice
we must make before we can employ our numerical scheme is the choice of degradation
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function. As discussed in Chapter 2 the damage degradation function is constrained to
ensure physical realism, see §2.2.2. In Chapter 3 we limited our choice of degradation
function to a polynomial form (4.2). Here we will use the simplest option, which is

g(α) = (1− α)2. (4.26)

An important thing to note is when our numerical scheme terminates. It will terminate
if either of the following two events occur. The first event being our numerical scheme
reaches the final time step. For example, if we have that initial time is t0 and the final
time tf then we terminate when we calculate the time step where t = tf . The other
situation that causes our numerical scheme to terminate, in one dimension, is if we have
a tear in our domain Ω. In other words if we have a point XT ∈ Ω such that α(XT ) = 1.
If this happens then the domain Ω is essentially split in two pieces (or more points if
multiple tears occur simultaneously). Hence, we terminate the numerical scheme when a
tear occurs.

Now the first simple check we may do to see if our numerical scheme is converging is
to solve the above described damage phase field problem for increasing mesh resolution.
In each case our mesh will be defined by evenly spaced nodes on the domain Ω := [0, 1]

starting from a low resolution of 100 nodes up to the high resolution of 10, 000 nodes. If
these numerical solutions are converging then our numerical scheme is in fact consistent.
As can be seen in Figure 4.2 our simulations are in fact converging towards the same
solution as resolution increases. Another check we can do to ensure that our solutions are
consistent as our mesh resolution increases is to see at what time a tear occurs. A tear
here being of course when at some point X ∈ Ω we have that α(X) = 1. These times
are displayed in Figure 4.3 and it is clear that as the mesh resolution increases the final
tearing times do converge. Another indication that our numerical scheme is consistent.

In conclusion we can say it is clear that our numerical scheme is converging as the mesh
resolution increases, and is therefore a consistent numerical scheme. With this reassurance
we can now consider checking the convergence of our multiscale model (4.5) with the full
microscopic problem (4.1). This analysis is performed in the next section.
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Figure 4.3: A plot of the final tearing times, when α = 1, for a simulation of a one
dimensional bar being stretched till it breaks, as described by the governing equations
(4.1), with the boundary condition k = 1 on the right hand side and the microscopic
coefficients are as described in (4.25). The red line in the above graph demonstrates the
final tearing time for the high resolution simulation of a 10,000 nodes. The blue circles
represent our low resolution simulations. In these simulations we can see that the final
tearing times of the simulations converge as mesh resolution increases.

4.3 Parametric analysis

As we have explained in §4.2 how one can solve our microscopic and macroscopic damage
models, then we can now illustrate that the models do converge. To do this we are going to
consider a test case with a set of microscopic coefficients. Then by varying each microscopic
coefficient one by one we can analyse how well the microscopic and macroscopic solutions
converge as ϵ decreases. This is done by implementing the above numerical methods in
Matlab using finite difference methods as explained.

The test case we will consider is illustrated in Figure 4.1 governed by the system of
microscopic equations (4.1), with the boundary conditions (4.3) and (4.4). The microscopic
coefficients we will vary around will be defined by

C(X) =
1

1 + A cos
(
2πX

ϵ

) , ψ(X) = 1 +B cos(2πX),

G(X) = C, and D(X) = D.

(4.27)

Here A and B are constants that let us vary the microscopic coefficients C and ψ. These
microscopic coefficients are locally periodic on a one dimensional cell with the general
domain [0, ϵ], or in microscopic coordinates Y a domain defined by [0, 1].
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Our corresponding macroscopic system of equations is defined by (4.5), with macro-
scopic boundary conditions (4.6) and (4.7). We can directly calculate the macroscopic
coefficients in terms of the microscopic coefficients (4.27) as discussed in §4.1.2. By re-
membering that Y = X/ϵ, then we can write down the macroscopic coefficients

C̄(X) = 1, ψ̄(X) = 1 +B cos(2πX),

Ḡ(X) = C, and D̄(X) = D.
(4.28)

Note thatG and D in this example have no microscopic dependency and are thus equivalent
to their corresponding macroscopic coefficients. This setup will perfectly illustrate both
the pros and cons of our multiscale model. The function ψ was chosen so that our one
dimensional bar in Figure 4.1 will have a weak point at the centre of the bar where ψ
is at its minimum. It should be noted that if we performed a simulation where all the
physical properties are uniform then we would have a uniform displacement and damage
field. Such a scenario would be highly unrealistic, since it would be like assuming some
material in nature is truly perfect and uniform in every way and furthermore when the
damage phase field in that scenario grows to the point where α = 1, this would happen
simultaneously at every point in our system.

The final constitutive choice we must make for our parametric analysis is the form
of the damage degradation function. As discussed in Chapter 2 the damage degradation
function must satisfy a number of constraints, see §2.2.2. Furthermore our multiscale
model as defined in Chapter 3 is limited to a polynomial form (4.2) for the degradation
function. We therefore select the simplest option, which is

g(α) = (1− α)2 . (4.29)

With this defined we can now perform all of our simulations.
An important thing to note is when our numerical scheme terminates. It will terminate

if either of the following two events occur. The first event being our numerical scheme
reaches the final time step. For example, if we have that initial time is t0 and the final
time tf then we terminate when we calculate the time step where t = tf . The other
situation that causes our numerical scheme to terminate, in one dimension, is if we have
a tear in our domain Ω. In other words if we have a point XT ∈ Ω such that α(XT ) = 1.
If this happens then the domain Ω is essentially split in two pieces (or more points if
multiple tears occur simultaneously). Hence, we terminate the numerical scheme when a
tear occurs.
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4.3.1 Varying the elasticity

To begin we consider varying the microscopic elasticity C(X). As defined in (4.27) we can
see that the constant A must lie in the domain [0, 1). At A = 0 we clearly have C = C̄
but as A increases C becomes a rapidly oscillating function with larger oscillations. In
fact at A = 0.99 it can be shown that C would oscillate roughly between the lower limit
0.5 and the upper limit 100, with a period of ϵ. The macroscopic counter-part, C̄, in this
case is a constant equal to 1. According to our multiscale model this macroscopic effective
coefficient is adequate for approximating the rapidly oscillating microscopic coefficient C,
as long as we have a large enough scale separation such that ϵ ≪ 1. To illustrate then
how well our macroscopic and microscopic models converge let us consider the examples
illustrated in Figure 4.4.

Here we are considering the case where A = 0.9 and decreasing ϵ for each case. We
can clearly see that for ϵ = 0.1 we have good agreement for the displacement. However,
this is not the case for the damage, they disagree, especially at the maximum centred
around the point X = 0.5. The convergence between the microscopic and macroscopic
damage does improve in the case ϵ = 0.05 and even more so for ϵ = 0.01, as seen in Figure
4.4. In each case as ϵ decreases we can see that the agreement, for both fields of the
microscopic and macroscopic models, improves drastically. In other words we can see a
clear improvement in the convergence as ϵ→ 0. In our research we have of course tested
our one dimensional simulation for a wide variety of scenarios and every time we have found
that the microscopic and macroscopic models converge as ϵ→ 0. Even more interestingly,
we found that the macroscopic effective coefficient C̄ = 1 accurately approximates all the
variations of A in the microscopic coefficient C as described in (4.27). The convergence of
our multiscale modelling works as expected no matter how large the oscillations of C are.
As long as the oscillations are occurring rapidly then we find in general great convergence,
because rapid oscillations describe ϵ → 0. If we did these simulations for a composite
material, instead of considering rapid oscillations we would consider very small local cells,
equivalent to an extremely small scale ratio ϵ.
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Another, more direct way to test our convergence is to consider the mean absolute error
at every single time step. At every time step we can simply calculate the mean absolute
error between the macroscopic and microscopic models. We define the mean absolute error
(MAE) between two fields f(X, t) and g(X, t) on a discretised domain as

MAE(t) =
1

N

N∑
i=1

|f(Xi, t)− g(Xi, t)| , (4.30)

where N is the number of nodes. It should be noted that the mean absolute error defined
by (4.30) is analogous to the L1 norm. Using (4.30) we produce the plots shown in Figure
4.5. Here it can be seen that in each case our models do in fact agree really well across all
time steps. As damage grows so does this error, which happens for a mixture of reasons.
Firstly, the error will compound with every time step, which can be dealt with by a mixture
of increasing spatial nodes and time steps. Secondly, in the model itself damage growth can
compound exponentially. The reason for this can be seen in the damage criterion (4.17). As
α increases at each point X ∈ Ω, at that same point the damage criterion itself degrades.
In other words it takes less elastic potential energy to cross the energetic threshold for
damage and to cause the growth of α. Therefore, if damage grows a little faster or a little
slower in the microscopic models this effect can compound leading to a divergence as we
move through each time step. However, we can see that the mean absolute error between
microscopic and macroscopic models is decreasing as ϵ decreases. At the final time steps,
however, we do see a rapid growth in the mean absolute error. This is because damage
grows most rapidly when α is closest to 1. Therefore the error compounds exponentially
around α ≈ 1. This problem can again be resolved by increasing spatial nodes and/or the
number of time steps to ensure convergence of the numerical scheme. Overall though we
can see that the models do converge as ϵ → 0, which is a very strong demonstration of
the validity of our multiscale model. It should be noted that since the macroscopic model
requires far less nodes to solve, in comparison to the microscopic model, and it can be
solved in far less time.

Another interesting measure of if the microscopic and macroscopic models do converge
would be to consider at what time do the models reach a complete tear. In other words
when does each simulation reach the maximum of α = 1. Well in Figure 4.6 we can see
that the final tearing times for the microscopic and macroscopic models demonstrate good
agreement. Most importantly they appear to have an error within the order of O(ϵ). This
is another indication that the theory presented in Chapter 3 is correct. That our multiscale
model of the damage phase field method correctly homogenises a microscopic model into
a macroscopic model. Overall, we can conclude that varying the material elasticity does
not negatively effect the convergence of our multiscale model. We have found that the
multiscale model does in fact converge as ϵ→ 0, for a large variety of scenarios.
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Figure 4.5: Plots of the mean absolute error between the macroscopic and microscopic
models. Here we are simulating a one dimensional bar being stretched on one side till
breaking as described by the governing equations (4.1). The microscopic coefficients are
setup with A = 0.9, B = 0.9, C = 1 and D = 0.01 as described in (4.27) and the
macroscopic coefficients are as described in (4.28). In these simulations we can see that
the mean absolute error decreases for each time step as ϵ→ 0.
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Figure 4.6: A plot of the final tearing times, when α = 1, for a macroscopic model and the
associated microscopic models for ϵ = 0.1, 0.05 and 0.01. This is for a simulation of a one
dimensional bar being stretched till it breaks, as described by the governing equations (4.1),
with the boundary condition k = 1 on the right hand side. The microscopic coefficients
are setup with A = 0.9, B = 0.9, C = 1 and D = 0.01 as described in (4.27) and the
macroscopic coefficients are as described in (4.28). In these simulations we can see that
the final tearing times of the models demonstrate good agreement.

4.3.2 Varying the diffusivity

The diffusivity tensor is an important parameter in the damage phase field model. This
parameter plays a significant role in controlling the geometry of the damage phase field
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and influencing the damage energy equation. In one dimension of course this tensor has
been reduced to a scalar parameter. As noted in Chapter 2 the damage phase field depends
on an artificial length scale ℓ ≪ 1, which localises damage. After non-dimensionalisation
and other transformations, as introduced in §3.2.2, it can still be seen that the diffusiv-
ity should be scaled such that D ≪ 1. This presents an interesting problem in terms of
asymptotic homogenisation. For asymptotic homogenisation to work we require that ϵ is
asymptotically smaller than any other parameter, otherwise the macroscopic and micro-
scopic models will not converge.

To show this we begin by considering the final tearing times for a variety of diffusivities,
D. If we therefore consider the scenarios presented in Figure 4.7, it can be seen that the
diffusivity being smaller than ϵ is leading to a divergence. However, we can still see that ϵ
being of a smaller or similar scale to D, produces microscopic and macroscopic results that
are converging. Therefore when we use our multiscale model we must be careful to check
that parameters are scaled such that ϵ < D≪ 1 (this is generally true for all parameters).
This feature will of course be present in higher dimensions and one should be careful to
choose a diffusivity tensor which has a norm larger than ϵ.

Another illustration of the importance of picking an appropriate scale for D can be
seen in Figure 4.8. Here we can see for a set of simulations with D = 10−4 that the
microscopic and macroscopic models still converge as ϵ decreases. We can also see that
the simulations last for a larger number of time steps as ϵ decreases. This is because as
the material properties oscillate more rapidly, since ϵ is smaller, then according to the
theory of asymptotic homogenisation the overall material properties homogenise from a
macroscopic perspective. Therefore the sharp diffusivity of damage does not force the
damage growth to completely localise, meaning it can diffuse more smoothly and thus will
grow slower since all the energy spent creating a new tear is not focused entirely at one
point.

4.3.3 Varying the tearing energy

The microscopic tearing energy, defined by G, is homogenised in our macroscopic model
by a local integral average (4.8), defined by Ḡ. Any microscopic dependencies in this
parameters are essentially just smoothed out at the macroscale. As a physical parameter
though it does have an effect on the time it takes for material failure to occur. The time it
takes for the evolution from α = 0 to α = 1 does play an interesting role in the convergence
of the multiscale model. If G is small then it does not require a lot of elastic potential
energy to create damage in our material, therefore damage can increase rapidly for less
energy. Conversely, if G is large then it does require a lot of elastic potential energy to
create damage in our material, meaning damage increases more slowly. We can explain
this behaviour by studying the damage energy equation (4.24). It is very clear in this
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Figure 4.7: Plots of the final tearing time for two set of simulations with different values
for diffusivity. The simulations are of a one dimensional bar clamped on one side and
stretched on the other until breaking, this is described by the governing equations (4.1).
Here on the right hand side the boundary condition is set as k = 1, the microscopic
coefficients are setup with A = 0.5, B = 0.9 and C = 1 as described in (4.27), except the
diffusivity which is specified above. The macroscopic coefficients are described by (4.28).
In (a) we can see that as ϵ and D are of similar magnitudes we see a strong agreement
between the microscopic models and corresponding macroscopic model. In (b) we can see
that D is of a much lower order of magnitude than ϵ, as a result the final tearing times of
the microscopic models and macroscopic models do not agree well. These plots show that
convergence requires ϵ to be the smallest parameter, as we would expect.

damage energy equation that the term with the coefficient G balances the driving energy
term Q. Hence, large G implies more driving energy is necessary to create a tear and
small G implies less driving energy is necessary to create a tear. It should be noted that
the driving energy is proportional to the elastic potential energy which is proportional to
the strain.

In theory we obviously anticipate this behaviour from the tearing energy G. In Figure
4.9 we demonstrate that a larger choice of G leads to a slower damage growth and larger
tearing time; whereas a smaller choice of G leads to a faster damage growth and smaller
tearing time. Note that the complete damage growth in Figure 4.9a is completed at time
t ≈ 0.60. Whereas the damage growth in Figure 4.9b took longer, due to the larger value
of G as expected, completing at time t ≈ 0.93.

Here G can have an effect on the convergence of the microscopic and macroscopic
damage phase fields. In theory this is because if G is quite large then the growth of the
damage phase field will be small in comparison to the relative strain, making it easier to
resolve our numerical scheme, as with each time step we do not expect rapid changes in the
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Figure 4.8: Plots of the mean absolute error between the macroscopic and microscopic
models. Here we are simulating a one dimensional bar being stretched on one side till
breaking as described by the governing equations (4.1). The microscopic coefficients are
setup with A = 0.5, B = 0.9, C = 1 and D = 10−4 as described in (4.27) and the
macroscopic coefficients are as described in (4.28). In these simulations we can see that
the mean absolute error decreases for each time step as ϵ→ 0.

damage phase field. The converse is also true, if G is small then the growth of the damage
phase field will be large to balance the elastic energy from related strains. Therefore a
convergence issue can occur due to a lack of spatial nodes. To fix this issue we can just
generally add more spatial nodes, this method should resolve this issue. Again though we
can see that in Figure 4.9b we have generally great convergence if ϵ is the smallest order
parameter in the model. We know that convergence issues between the microscopic and
macroscopic models only occur at the final few time steps when an increases in damage
happen most rapidly. This can be seen by considering the mean absolute error for each
time step of the damage phase field described in 4.9a.

We illustrate this in Figure 4.10. Here we can see that across most time steps the error
is between the microscopic and macroscopic cases is extremely negligible. However, at the
final few time steps there is a big jump in the mean absolute error. It happens because of
how rapid the damage growth is for a small value of G. To counteract this issue we find
that to resolve α well we simply require more spatial nodes. However, if we are modelling
using our multiscale model we will be saving ourselves many spatial nodes by at least an
order of magnitude, saving back plenty of computing time.

4.3.4 Varying the damage threshold

The last parameter we have to comment on is the damage threshold ψ(X). It does not
really have much of an interesting physical role to play in our model, in terms of the
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Figure 4.9: Plots of the final damage phase field for two set of simulations with different
values for G. The simulations are of a one dimensional bar clamped on one side and
stretched on the other until breaking, this is described by the governing equations (4.1)
with the red line representing the microscopic case and the blue representing the macro-
scopic case. Here on the right hand side the boundary condition is set as k = 1, the
microscopic coefficients are setup with A = 0.5, B = 0.9 and D = 0.01 as described in
(4.27), except for the tearing energy which is prescribed above. The macroscopic coeffi-
cients are described by (4.28).
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Figure 4.10: Plots of the mean absolute error between the macroscopic and microscopic
models. Here we are simulating a one dimensional bar being stretched on one side till
breaking as described by the governing equations (4.1). The microscopic coefficients are
setup with A = 0.5, B = 0.9, C = 0.1 and D = 0.01 as described in (4.27) and the
macroscopic coefficients are as described in (4.28).
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convergence. All it really does is control how early and where we can expect the initiation
of damage growth to take place. Throughout these simulations we found that ψ affected
the outcomes of the model as expected. A simple example of this is the final tearing times
of the microscopic and macroscopic models for two different cases: B = 0.6 and B = 0.99,
as defined in (4.27). These two sets of final tearing times are illustrated in Figure 4.11. As
should be expected the case with the smaller value of ψ(X) reaches α = 1 first. We can
also see that yet again the final tearing times of the microscopic and macroscopic models
all demonstrate good agreement.
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(b) B = 0.9

Figure 4.11: Plots of the final tearing time for two set of simulations with different values
for diffusivity. The simulations are of a one dimensional bar clamped on one side and
stretched on the other until breaking, this is described by the governing equations (4.1).
Here on the right hand side the boundary condition is set as k = 1, the microscopic
coefficients are setup with A = 0.5, C = 1 and D = 0.01 as described in (4.27), except for
B. The macroscopic coefficients are described by (4.28).

4.4 Summary of results

This chapter focused on two main goals: firstly to explain how we can solve our damage
model numerically and secondly use these numerically methods to illustrate the conver-
gence of the microscopic and macroscopic models. Both of these goals where fulfilled, we
now have a simple methodology for solving our damage model numerically as explained
in §4.2. Using our new numerical schemes we were able to perform many simulations on a
model problem of a stretched one dimensional bar, illustrated in Figure 4.1. The results
of these simulations are outlined in §4.3, where we found for every case we tested that the
microscopic and macroscopic models converge as ϵ decreases.
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In doing many simulations we also found that the model does behave as expected. The
threshold function does control damage initiation, damage growth only occurs when the
criterion is satisfied, damage is irreversible and diffusion controls the localisation of the
damage phase field. All of these properties where originally outlined in Chapter 2 and
we now know that after the upscaling performed in Chapter 3 that all these properties
are still satisfied. Not only that but we have strong evidence that the theory presented in
Chapter 3 is in fact correct and that our novel multiscale model correctly homogenises a
microscopic damage phase field model.

The macroscopic model also proved itself to be very computationally efficient. As
it uses a significantly smaller mesh size than the microscopic model we found that the
macroscopic model can be solved exceptionally quicker than the microscopic model. The
difference between solving a model described by 103 rather than 105 nodes is the difference
between minutes and hours. In higher dimensions when the multiscale model is used to
model something much more practical, like an aortic dissection, this time saving will be
extremely important.

4.4.1 Concluding remarks

To create a multiscale model of aortic dissections we cannot treat an aorta as a one di-
mensional object. It is a complicated multilayered three dimensional structure. Therefore,
we need to expand the numerical work of this chapter to higher dimensions. We can do
this by using the finite element method and by introducing a new numerical algorithm,
which we will do in the following chapter. However, this chapter has fulfilled its goal, we
have provided evidence that the theoretical work of Chapter 3 appears to be correct. So
we should trust that we have a good multiscale model of damage evolution in an arbitrary
material. Applying that model to the human aorta will allow us to study in great depth
how many possible microscopic factors contribute to aortic dissections.



Chapter 5

Applications in higher dimensions

In this chapter, we will introduce a set of numerical methods for solving our multiscale
models in higher dimensions. To do this, we use the finite element method, which allows
us to solve our multiscale model in any dimension. We can implement this solution in
any domain Ω ⊆ Rn with n ∈ N, for a large variety of external loading conditions. An
added advantage of working in higher dimensions (dimensions greater than one) is that we
can implement a tear in Ω whenever a localised region of Ω becomes completely damaged.
This will require us to construct a new numerical algorithm that accounts for a changing
domain Ω. To implement these tears numerically we alter the mesh that approximates
Ω as a localised region of this mesh becomes completely damaged. This will allow us to
visualise how tears spread through Ω.

In this chapter we will introduce the finite element method, a new numerical algorithm
which accounts for a tearing mesh and the required numerical methods to solve both
the equation of motion and the damage evolution equation. This method was directly
implemented into Matlab [72] and used to perform all the simulations in this chapter. All
the code used in this chapter can be found in Appendix B. Using our code we can explore
our model through an example of a trouser test. During the trouser test simulation, a
rectangular piece of material is held steady at one end while force is applied to the other,
splitting it down the middle. This tearing process produces a configuration that visually
resembles trouser legs. By considering two simulations that are entirely similar except for
their microscopic geometries, we will be able to convey how small microscopic changes
affect outcomes on the macroscale.

5.1 Finite element method

In modern applied mathematics, science and engineering many multidimensional models
cannot be solved analytically. The approach most commonly adopted to solve these mod-
els numerically is the finite element method, which finds its roots in the works of Ritz
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and Galerkin [133]. With modern computing we can use their work to approximate the
solutions for extremely complicated setups of partial differential equations. We do this
by approximating the domain Ω ∈ Rn we are solving over into a mesh, where n ∈ N.
The essence of the finite element method is to partition the domain of the problem into
non-overlapping elements and to provide an approximate solution that has a simple form
within each element. When using the finite element method we locally discretise our vari-
ables by describing them as approximate sums of N polynomial functions, where N ∈ N.
As these local forms are simple, accuracy is achieved by making the elements as small as
possible. When using this method we discretise the damage and displacement variables
as follows:

u(X, t) ≈ uh(X, t) =
N∑
i=1

p(i)(X)u(i)(t),

α(X, t) ≈ αh(X, t) =
N∑
i=1

p(i)(X)α(i)(t)

such that p(i)(X) : Ω→ R.

(5.1)

Here, uh and αh are the approximate solutions of the displacement and damage, respec-
tively. With h representing the spacing of nodes, a proxy for the size of elements, as
h → 0 the approximation of course improves. The subscript i indicates the indices of
all the discretised nodes, across a meshed domain. We have also introduced the scalar
shape functions p(i) which interpolate the solutions of displacement and damage inside
each element. This is done with a linear interpolation between nodes that construct an
element. Here our shape functions satisfy the general definition

p(i)(X) =

 1, X = Xi

0, X = Xj, j ̸= i,
(5.2)

where j are all the nodes neighbouring i. Here we define neighbouring nodes as nodes that
belong to the same elements. It should be noted that every shape functions satisfies the
property

N∑
j=1

p(j)(X) = 1,

such that uh(Xi, t) = u(i)(t) and αh(Xi, t) = α(i)(t). Local elements, described by the
shape functions, can generally be any shape. In our coding the shape functions will be
defined by triangles constructed out of three nodes, one for each vertex, because it is simple
and easy to implement. With the finite element method one can efficiently approximate
any geometry given that h≪ 1, for whatever shape function is chosen.

By considering a weak form of our governing macroscopic equations, (3.55) and (3.56),
we can use the above method of discretisation to construct systems of equations in terms
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of ui and αi. We can solve these systems of equations for every ui and αi using general
linear methods and iterative methods, respectively. For a better introduction to the finite
element method we would recommend the textbook by Wait et al. [133] and of course
Numerical Recipes [107].

5.2 Problem Setup

In this chapter we will not solve the most general version of our macroscopic model as
defined in (3.55) and (3.56). We will instead solve a simplified version of the model, to
make things easier to solve numerically. Here we shall assume that the equation of motion
is steady state and that our problem has no residual stress. The assumption of a steady
state is made to ensure our equation is motion is not a hyperbolic partial differential
equation. We are ignoring residual stress in our model because we are not currently
modelling any physical phenomena that experiences residual stress, so we ignore them
to make calculating our numerical solution simpler. As a result we can write down the
simplified version of the model as

∇X ·
[
g(ᾱ)C̄ : ξX(ū)

]
+ B̄ = 0 in Ω, (5.3a)

η̄ ˙̄α =

〈
−g′(ᾱ)

(
1

2
ξX(ū) : C̄ : ξX(ū)− ψ̄

)
− Ḡᾱ +∇X ·

(
D̄∇Xᾱ

)〉
+

in Ω. (5.3b)

In this setup Ω ⊆ Rn is our reference configuration, with n ∈ N. Note here we employ the
rate-dependent version of the model, as it transforms the damage evolution equation from
an elliptic to a parabolic partial differential equation. This will make our model much
more computationally robust because we will be able to implement a Crank-Nicholson
style numerical scheme which will be more efficient for simulating a larger number of
nodes (as we would expect in higher dimensions). Using the contents of the Macaulay
brackets in (5.3b) we can define our multidimensional damage criterion. We write this as

−g′(ᾱ)
(
1

2
ξX(ū) : C̄ : ξX(ū)− ψ̄

)
− Ḡᾱ +∇X ·

(
D̄∇Xᾱ

)
> 0, (5.4)

which is comparable to the one-dimensional damage criterion (4.17) defined in Chapter 4.
The governing equations are of course completed with a set of appropriate boundary

conditions. For the macroscopic equation of motion (5.3a) we apply traction boundary
conditions to complete the model. This boundary condition is defined on ∂Ω as

t =
(
C̄ : ξX(ū)

)
· n on ∂Ω. (5.5)

For the macroscopic damage evolution equation we of course apply a no flux boundary
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conditions on ∂Ω such that (
D̄∇ᾱ

)
· n = 0 on ∂Ω. (5.6)

Note that one can also apply Dirichlet boundary conditions for the macroscopic displace-
ment ū. External loading is applied to our system through two mechanisms: the body
force in (5.3a) and the surface traction defined by (5.5).

For clarity let us be explicit about the number of equations, the number of unknowns
and the number of parameters in our system (5.3) for a given n-dimension. The number of
equation of motions described by (5.3a) is equal to n and the damage evolution equation
(5.3b) is a scalar equation, hence we have a system of n+1 equations. As the displacement
and damage are defined such that u ∈ Rn and α ∈ R, respectively, then our system depends
on n+ 1 unknowns. Here our effective coefficients define a number of parameters: C̄ is a
fourth order rank tensor with minor and major symmetries that defines 6 parameters in
two dimensions and 21 parameters in three dimensions; B̄ is a vector with n parameters;
η̄ is a scalar parameter; ψ̄ is a scalar parameter; Ḡ is a scalar parameter and D̄ is a second
order tensor with n2 parameters. In total our system (5.3) depends on: 6 parameters in
one dimension; 20 parameters in two dimensions and 46 parameters in three dimensions.

5.2.1 Effective coefficients

Our macroscopic model (5.3) depends on a series of effective coefficients to encode and
upscale information about the microscopic materials properties and geometry. This is
done by calculating the effective coefficients using local integral averages of the micro-
scopic coefficients. As the effective coefficients do not have any time dependencies, then
we only need to do this once in software which is conveniently efficient. For a clearer
understanding recall the macroscopic coefficients (3.57) and the associated local cell prob-
lems (3.58), (3.59) and (3.60), all of which can be found in §3.4. Consider Figure 5.1 of a
two dimensional local microscopic geometry defined by the domain ω ⊆ Rn, where n ∈ N
is the dimension of ω. This geometry is of a host matrix ωA with a number of inclusions
ωβ for β = 1, . . . , B with B ∈ N. Hence we can say our microscopic domain ω is defined
such that

ω = ωA ∪

(
B⋃

β=1

ωβ

)
. (5.7)

For completion we define the boundaries and interfaces of ω as follows:

∂ω = (∂ωA ∪ ∂ωβ) \ Γβ where Γβ = ωA ∩ ωβ. (5.8)

Here ∂ω is the boundary of our local cell and Γβ is the interface between the host matrix
and each respective inclusion. For our purposes in each subdomain we will say the material
properties are uniform which still gives us the freedom to choose a complex microscopic
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composite geometry with large variations in material properties per subdomain. We set
the material properties in each subdomain as uniform, for convenience, when calculating
the macroscopic effective coefficients. To avoid any confusion, let us also state that all the
inclusions ωβ ∀β = 1, ..., B never intersect or even touch. We write this as

ωi

⋂
i ̸=j

ωj = ∅ ∀i, j = 1, .., B.

It should be noted that we when calculating effective coefficients using our numerical
scheme, as found in Appendix B, we never experienced any issues when using domains
with sharp corners. We are mentioning this so that the reader does not feel limited by the
visualisation in Figure 5.1, however please note that in soft tissue problems (which we are
motivated by) sharp corners are extraordinarily rare.

Figure 5.1: An example of the two dimensional microscopic geometries we can generate
in Matlab. This microscopic geometry encapsulates a host matrix with three inclusions of
various shapes and sizes. Each subdomain has its own uniform material properties.

Let us begin by explaining how to calculate the simplest form of effective coefficients:
local integral averages. The local integral averages, defined by notation from Chapter 3
(3.6), as presented in (5.3) can be written as

ρ̄ = {ρA}ωA
+

B∑
β=1

{ρβ}ωβ
, B̄ = {ρAbA}ωA

+
B∑

β=1

{ρβbβ}ωβ
,

ψ̄ =
{
ψ̂A

}
ωA

+
B∑

β=1

{
ψ̂β

}
ωβ

, Ḡ = {GA}ωA
+

B∑
β=1

{Gβ}ωβ

and η̄ = {ηA}ωA
+

B∑
β=1

{ηβ}ωβ
.

(5.9)
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All of these local integral averages can be calculated quickly and easily in software. This
can be seen by considering Figure 5.1, we can use this approximate geometry in Matlab
to calculate the local integral averages (5.9). To do this at every single macroscopic
point X ∈ Ω we approximate the local integral averages as Riemann sums. This is done
by discretising our microscopic coefficients over the microscopic domain. The geometry
presented in Figure 5.1 is discretised by a number of pixels, where at each pixel we define
the local microscopic properties. For example consider the macroscopic coefficient ρ̄, we
can discretise ρA and ρβ for all β such that

ρA =
M∑
k=1

ρ
(k)
A and ρβ =

M∑
k=1

ρ
(k)
β ∀β = 1, . . . , B, (5.10)

where M ∈ N is the number of pixels we are discretising the microscopic geometry by.
Each pixel is being indexed by the subscript k. The functions ρ(k)A and ρ

(k)
β are the local

values of ρA and ρB in each pixel k, respectively. Here we have

ρA : ωA → R and ρβ : ωβ → R ∀β = 1, . . . , B, (5.11)

such that we can discretise these functions as seen in (5.10), where

ρ
(k)
A : ω

(k)
A → R and ρ

(k)
β : ω

(k)
β → R ∀β = 1, . . . , B. (5.12)

For clarity we define ρ(k)A and ρ(k)β ∀β to be

ρ
(k)
A (X,Y) =

 ρA(X,Y
(k)) if Y ∈ ω(k)

A ,

0 otherwise ,

ρ
(k)
β (X,Y) =

 ρβ(X,Y
(k)) if Y ∈ ω(k)

β ,

0 otherwise
∀β = 1, . . . , B.

(5.13)

Here ω(k)
A and ω

(k)
β are the subdomains defined by each pixel in Figure 5.1 and Y(k) is

the central point in each of these subdomains. Using this discretisation method we can
approximate our local integral average by calculating

ρ̄(X) ≈ 1

|ω|

(
M∑
k=1

ρ
(k)
A (X,Y)

∣∣∣ω(k)
A

∣∣∣+ B∑
β=1

M∑
k=1

ρ
(k)
β (X,Y)

∣∣∣ω(k)
β

∣∣∣) . (5.14)

Accuracy in (5.14) increases as M gets large, analogous to how the accuracy of a Riemann
sum approximation of an integral increases. We apply the above approximation of the
local integral average (5.14) in software for all the macroscopic coefficients which are



CHAPTER 5. APPLICATIONS IN HIGHER DIMENSIONS 151

simply local integral averages. As the material properties are assigned at every pixel in
Figure 5.1 then we can very simply sum up the volume fractions of the subdomains in
Matlab to calculate the integrals. The implementation of this methodology for calculating
local integral averages can be found in Appendix B.3.

Our macroscopic problem (5.3) has two more effective coefficients that are more difficult
to calculate. This is because the macroscopic coefficients C̄ and D̄ depend on a series of
ansätze, which we need to calculate from a series of linear cell problems (3.58) and (3.60).
We can write these effective coefficients as

C̄ = {CA + CA : ξY(χA)}ωA
+

B∑
β=1

{Cβ + Cβ : ξY(χβ)}ωβ
,

D̄ = {DA + DA∇YζA}ωA
+

B∑
β=1

{Dβ + Dβ∇Yζβ}ωβ
,

(5.15)

with the ansatz χA, χβ, ζA and ζβ calculated from the local cell problems:

∇Y · CA = −∇Y · [CA : ξY(χA)] in ωA,

∇Y · Cβ = −∇Y · [Cβ : ξY(χβ)] in ωβ ∀β,

(CA + CA : ξY(χA)) · nA = (Cβ + Cβ : ξY(χβ)) · nA on Γβ ∀β,

χA = χβ on Γβ ∀β

(5.16)

and
∇Y · (DA + DA∇YζA) = 0 in ωA,

∇Y · (Dβ + Dβ∇Yζβ) = 0 in ωβ ∀β,

(DA + DA∇YζA)nA = (Dβ + Dβ∇Yζβ)nA on Γβ ∀β,

ζA = ζβ on Γβ ∀β.

(5.17)

The key to calculating the effective coefficients (5.15) is exploiting local periodicity. Fortu-
nately, these local cell problems are what we would consider as classic problems in the field
of asymptotic homogenisation, which for us means that the numerical solutions for (5.15)
exist in the literature [3, 52, 82]. It should be noted that a great resource for studying the
effective coefficients, their properties and roles can be found in the work of Hassani et al.
[58, 57, 59].

In the literature we found an excellent paper by Andreasen et al. [3] which provides
code for calculating the effective coefficients in (5.15). We have since adopted it and it can
be found in the Appendix B.3, it can not be understated how useful a resource this is. To
use the code we provide discretised domains of ω as can be seen in Figure 5.1. This code
does have limitations for what form the microscopic elasticity and diffusion can take.

First, let us consider the microscopic elasticity C, which is a fourth order tensor. In this
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chapter we will assume that the elasticity is isotropic for all microscopic constituents which
allows us to use the code provided by Andreasen et al. [3]. We can define an isotropic
elasticity in terms of the first and second Lamé parameters: λ and µ, respectively. The
Lamé parameters will be constant within the local cell ω. Thus we define the microscopic
elasticity as

Cijkl(X,Y) = λ(X)δijδkl + µ(X) (δikδjl + δilδjk) , (5.18)

where δij is the Kronecker delta, defined such that

δij =

 0 if i ̸= j

1 if i = j.

Similarly, for the effective microscopic diffusion we are limited to an uniform case. There-
fore we can define the microscopic diffusion as a diagonal matrix such that

Dij(X,Y) = d(X)δij, (5.19)

where d is some non-dimensional scale for diffusion. As expected we need to set ϵ < d≪ 1

for proper asymptotic homogenisation to work, this result was discussed in detail in §4.3.

Remark. If we take d as a length scale for the diffusion then we need to be very careful
to choose an appropriate size for our finite elements. Setting h as the length scale for the
finite elements then a general rule of thumb that should be considered is

2h < d.

This will provide the numerical scheme with the appropriate amount of resolution to cap-
ture the behaviour of the problem. If we do not satisfy this need in general for diffusive
problems when using the finite element method then we will either have code that fails to
converge or unrealistic non-smooth results.

5.3 n-dimensional numerical solution

In this section we introduce a numerical solution for the damage problem introduced in
§5.2 and defined by the equations (5.3a) and (5.3b), for the macroscopic displacement
and damage, respectively. We will of course need to correctly satisfy the irreversibility of
damage growth and the damage criterion. Fortunately, we already solved this problem in
§4.2 and introduced Algorithm 1 for solving the one dimensional damage problem. This of
course also applies at higher dimensions but we need to introduce a finite element solution
for both the elastic and damage problem, which solve the displacement and damage,
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respectively. Other works that mention finite element solutions for the damage phase field
can be found in the works of Miehe et al. [90] and Wu et al. [139].

In higher dimensions we can actively change the topology of our problem as our mesh
is torn. The mesh becomes torn whenever we have a localised concentration of nodes such
that ᾱ = 1. To implement this feature to our numerical solution, we will need to firstly
consider how we will actively change the mesh at each time step. Secondly, we will need
to consider how this will effect how we solve our problem. Of course if we change the mesh
this could change the result calculated at each time step, we therefore must reformulate
our numerical algorithm to account for this.

Throughout the rest of this section we will explain what geometries we can consider for
our damage problem. Introduce a number of methods for deleting nodes actively in our
code, which is written again in Matlab [72]. Next we will introduce a new algorithm for
solving our damage problem in dimensions greater than or equal to two. After this we will
introduce the specific methods to solve the elastic problem, calculate our damage criterion
and solve the damage problem. The full implementation of our numerical techniques can
be found in the code listings throughout Appendix B.

5.3.1 Mesh generation

The greatest utility of the finite element method is our ability to approximate any geometry
using a mesh defined by a simple local element. In our case we construct our finite
elements using triangles constructed by three nodes defining the vertices of the triangles.
Our elements are of course then these triangles, and this approach of creating a mesh
with triangles can be easily done for any dimension greater than one. It should be noted
that the accuracy of this method could be greatly improved by increasing the numbers of
nodes used to define the triangles. In our case we use three nodes, one for each vertex,
which is called a linear triangle in finite element analysis [133]. The accuracy of our
method can be increased by using a shape function defined by more nodes. For example
we could define a shape function as a triangle described by six nodes (P2 elements): three
for the vertices and three for the midpoints of each edge. Here we will use three nodes
for each of our triangles to keep everything simple. Conveniently most software packages
will convert most geometries to an approximate mesh constructed by these triangular
elements. In Matlab this can be done using a number of the functions available in the
partial differential equations toolbox [73]. When we generate a mesh we create vectors
for each spatial dimension in X that record the positions of every node in each spatial
dimension. The triangles used to construct the mesh are described by a connectivity
matrix which has all the information about which nodes form which triangles. This is
done by defining the connectivity matrix to be three columns for the nodes by the number
of triangles for the rows. In each row of this matrix you will find three whole numbers
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referring to the indices for three nodes in our mesh which together form a single triangular
element. This is a very elegant methodology to work with and is the universal approach
to finite element analysis in software.

Using this approach we can construct a variety of interesting geometries. For example
in Figure 5.2 we have created an example of two complicated macroscopic geometries
approximated by nothing more than simple triangular elements. We have an annulus which
of course is made up of curved lines but we can see is well approximated by triangular
elements. Our other geometry is a star which is also very well approximated by triangular
elements. These are of course two dimensional approximations but we can easily extend
this methodology to higher dimensions using Matlab’s inbuilt partial differential equation
toolbox. Our implementation of creating a mesh can be found in Appendix B.1.

(a) An annulus geometry (b) A star geometry

Figure 5.2: A simple example of two different possible geometries one can generate using
triangular elements. These where created in Matlab using the partial differential toolbox,
in particular the “polyshape” and “generate mesh” Matlab functions.

5.3.2 Deletion of nodes

As mentioned one of the great advantages of working in higher dimensions is the ability
to actually simulate tears through our material. In software it is possible to implement a
system where at any point X that ᾱ = 1 we can simulate a tear, just like a material being
torn. This can be a rather difficult process to implement and requires careful consideration.
To implement this idea in software we need to consider two things: how close does the
damage α have to be to one for us to consider it fully torn and which nodes should we
delete from our mesh?

The best way to evaluate a tear in software is to consider a small interval [1 − δ, 1]

with δ ≪ 1. Whenever ᾱ falls into this interval it is best to consider that point effectively



CHAPTER 5. APPLICATIONS IN HIGHER DIMENSIONS 155

torn and set ᾱ = 1 at the relevant node. We do this because if in our iterative method
the solution for ᾱ skips above 1 it is possible that ᾱ may diverge upwards. It is also
extremely unlikely that an iterative scheme will ever fully reach a stable node like ᾱ = 1

because numerical methods at best produce approximations and not exact solutions. Since
we know the desired upper limit of ᾱ is 1 then its easy for us in software to set ᾱ = 1

whenever ᾱ is really close to one. Now just because a node has ᾱi = 1 does not mean we
should remove that node from the mesh.

We have in fact found three methodologies for when we should delete nodes based
on the local values of ᾱi. Our first approach is the simplest where we of course just
delete any nodes from the mesh when that node satisfies ᾱi = 1, followed by an update
to the connectivity matrix and mesh as appropriate. The second approach is to delete
any triangles (rows of the connectivity matrix) when all of its vertices have reached ᾱi =

1. Then one can delete nodes when they are no longer referenced by any rows in the
connectivity matrix. The third, and final, approach is to delete any node at when in all
the elements it is a part of we have that all of the nodes satisfy ᾱi = 1. When we use this
approach we would need to remove all the relevant rows from the connectivity matrix and
delete the node common to all of these elements from the mesh. In the many simulations
we have done we found all of these methods work well. In our simulations we will use
the second method. We make this choice because we have found it to provide the best
computational feasibility and usually allows our simulations to converge for more time
steps and more efficiently.

To track the changes in the mesh we can simply define the indicator function Torn(X),
which relays information in our numerical solution about which points X ∈ Ω have reached
α(X) = 1. We define this in a very similar way to the field Crit(X), defined by (4.22) in
§4.2. So for numerical convenience let us define

Torn(X) =

 1, ᾱ(X) = 1,

0, otherwise.
(5.20)

This can easily be discretised across our mesh and defined at every node. Our implemen-
tation of the techniques discussed in this subsection can be found in Appendix B.8.

Remark. As the mesh changes due to the deletion of nodes then so does the boundary ∂Ω
of our domain Ω. This of course raises a very important question: what happens to our
boundary conditions? Well as we delete nodes in Matlab and alter the connectivity matrix
we can use the inbuilt Matlab function “freeBoundary” [72] to find which nodes now define
our boundary ∂Ω from our altered connectivity matrix. Our code then simply applies our
boundary conditions on these new boundary nodes.
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5.3.3 Numerical algorithm

As we are creating a numerical solution for a multidimensional problem, introducing finite
element solutions and allowing for the mesh to change as damage evolves, we must intro-
duce a new numerical algorithm to compensate. In §4.2 we introduced Algorithm 1 which
does solve the damage problem over a series of time steps but does not account for any
change in the mesh. Our new algorithm will facilitate for a possibly changing mesh by
adding a new nested iterations that account for the effects of changing the mesh at each
time step and how that effects the solution to our damage problem. This is achieved by
using the methods discussed in §5.3.2 and by defining a new step to our algorithm called
“Update Mesh”. The purpose of this step is to change the mesh given the current solution
for the damage phase field.

Let us begin by considering the process that we would have to go through at each time
step. Firstly, our time would be updated by a small positive step δt, this information
will be used to update any time dependent boundary conditions. Our first step is to
calculate the displacement, in the elastic phase, assuming that the damage is fixed from
the previous time step. Next we would calculate the criterion for our new displacement
which returns Crit(X) a field providing information on which points are not satisfying the
damage criterion. If all points satisfy the criterion we have no need for damage growth
and simply move onto the next time step. However, if we do have a positive Crit at some
points X then we must have damage growth. In that case we enter an iterative scheme
to solve this time step. The first thing we must do is setup a new field called Torn(X)

as defined by (5.20). Once this is setup we enter a nested iterative step for calculating
the solution for the damage, in the exact same fashion as explored in §4.2. Once this
iterative method is satisfied we then use the solution for damage in the next step called
“UpdateMesh”. Here we calculate how to change the mesh depending on the solution of
damage at every point X ∈ Ω. This provides a new solution for Torn(X). We iteratively
repeat this process until the mesh topology settles and the form of Torn(X) converges. A
pseudocode outline of this numerical algorithm can be found below in Algorithm 2.

In this algorithm our iterative scheme for finding the correct damage phase field runs
till a desired tolerance is met. The tolerance should be appropriately set such that it
is smaller than the order of the implemented finite elements. Our implementation of
Algorithm 2 can be found in Appendix B.4.

5.3.4 The elastic phase

To solve the elastic phase, and calculate the displacement, in Algorithm 2 we consider
the steady state problem (5.3a). To simplify the problem in our numerical scheme we are
assuming that ᾱ(X, t) is fixed, and we use whatever solution we currently have for α in
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Algorithm 2 Algorithm to calculate damage, displacement and torn points at each time
step.
t = t0 + δt
while t ≤ T do

ū(k) = ElasticPhase(ᾱ(k−1), t)
Crit = Criterion(ū(k), ᾱ(k−1))
if any Crit ≥ 0 then

Torn(r) = "guess"
Torn(r−1) = Torn(k−1)

while Norm
(
Torn(r) − Torn(r−1)

)
̸= 0 do

Torn(r−1) ← Torn(r)

ᾱ(p) = "guess"
ᾱ(p−1) = ᾱ(k−1)

while Norm
(
ᾱ(p) − ᾱ(p−1)

)
≥ tolerance do

ᾱ(p) ← ᾱ(p−1)

ᾱ(p) = DamagePhase(ū(k),Crit)
ū(k) = ElasticPhase(ᾱ(p), t)
Crit = Criterion(ū(k), ᾱ(p))

end while
if Max(ᾱ(p)) = 1 then

Torn(r) = UpdateMesh(ᾱ(p))
end if

end while
ᾱ(k) ← ᾱ(p)

Torn(k) ← Torn(r)

end if
t = t+ δt

end while

our iterations. In order to construct a finite element solution to this problem we need to
rewrite the problem in the weak form. In Chapter 2, we can see lots of weak form problems
that described both the displacement and damage. Here we will multiply equation (5.3a)
by any admissible test function P ∈ Rn and by integrating over the whole domain Ω we
may write the weak form equation∫

Ω

[∇X · (g(α)C : ξ(ū))] ·P+ B̄ ·P dV = 0. (5.21)

By applying the product rule, the divergence theorem and our traction boundary condi-
tions (5.5) we can transform (5.21) such that∫

Ω

∇P :
(
g(ᾱ)C̄ : ξ(ū)

)
dV =

∫
Ω

B̄ ·P dV +

∫
∂Ω

t ·P dA. (5.22)
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All the terms on the right hand side of (5.22) are external loading terms, which are balanced
by the stress term on the left hand side. To create a solution for the displacement here
we are going to say that α is a fixed term. Next we want to write equation (5.22) in
summation notation, where summation over double indices is implied, such that∫

Ω

∂Pi

∂Xj

g(ᾱ)C̄ijklξkl(ū) dV =

∫
Ω

B̄i ·Pi dV +

∫
∂Ω

ti ·Pi dA. (5.23)

Recalling the definition of the strain tensor ξ allows us to write

1

2

∫
Ω

∂Pi

∂Xj

g(ᾱ)C̄ijkl
∂ūk

∂Xl

dV +
1

2

∫
Ω

∂Pi

∂Xj

g(ᾱ)C̄ijkl
∂ūl

∂Xk

dV

=

∫
Ω

B̄i ·Pi dV +

∫
∂Ω

ti ·Pi dA.

(5.24)

This expression can be deeply simplified by exploiting the minor symmetries present in
the macroscopic elasticity C̄, as shown in Theorem 3.3.2. Then by remembering that the
indices i, j, k, l are all dummy variables we can write that∫

Ω

∂Pi

∂Xj

g(ᾱ)C̄ijkl
∂ūk

∂Xl

dV =

∫
Ω

B̄i ·Pi dV +

∫
∂Ω

ti ·Pi dA. (5.25)

With expression (5.25) we can begin to create a linear system of equations that approxi-
mate a solution for ū. To do this we need to first substitute in a specific form for P. We
choose P = PIEI , where EI is an orthogonal basis vector of Rn and PI is some arbitrary
function as defined by (5.2). Using this form of P allows us to write down a linear solution
for one dimension of the steady state problem defined by (5.25). Thus we have,∫

Ω

∂PI

∂Xj

g(ᾱ)C̄Ijkl
∂ūk

∂Xl

dV =

∫
Ω

B̄IPI dV +

∫
∂Ω

tIPI dA, ∀I = 1, ..., n. (5.26)

This can be thought of as the weak form of each equation of motion described by (5.3a).
Now we can create an approximate solution for ū by substituting in the approximate
interpolation defined by (5.1). Here we write that

PI = p
(a)
I and ūk(X, t) =

N∑
b=1

ū
(b)
k (t)p

(b)
k (X), (5.27)

approximating our system in terms of the shape functions. By substitution we find that
∀I = 1, . . . , n and ∀a = 1, . . . , N

N∑
b=1

∫
Ω

∂p
(a)
I

∂Xj

g(ᾱ)C̄Ijkl
∂p

(b)
k

∂Xl

dV ū
(b)
k =

N∑
b=1

∫
Ω

B̄Ip
(b)
I dV +

N∑
b=1

∫
∂Ω

tIp
(b)
I dA. (5.28)
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The above expression appears daunting but we can easily write it as a simple linear system
which solves for each term of ū(b)

k . It should be noted that (5.28) is a linear system in
terms of ū(b)

k . We can write this down as the following linear system

K11 . . . K1R . . . K1n

... . . . ...
...

KI1 . . . KII . . . KIn

...
... . . . ...

Kn1 . . . KnR . . . Knn





U1

...
UR

...
Un


=



T1

...
TI

...
Tn


. (5.29)

Here the above expression has introduced new notation: each KIR is an N × N matrix
of integral coefficients on the left hand side of (5.28), each UR is a vector of N elements
each representing the Rth displacement elements on the left hand side of (5.28) and each
TI is a vector of N elements representing the terms on the right hand side of (5.28). Here
R is defined for R = 1, . . . , n and informs us what dimension of the displacement our
integral coefficient matrix is interacting with. Our matrices KIR have two possible values,
the diagonal terms and the off diagonal terms in (5.29), defined as

(KII)ab =

∫
Ω

∂p
(a)
I

∂Xj

g(ᾱ)C̄IjIl
∂p

(b)
I

∂Xl

dV ∀I = 1, . . . , n,

(KIR)ab =

∫
Ω

∂p
(a)
I

∂Xj

g(ᾱ)C̄IjRl
∂p

(b)
R

∂Xl

dV ∀I, R = 1, . . . , n.

(5.30)

Keep in mind that n is the dimension of Ω. It should also be noted that each

KIR = KT
RI , (5.31)

this symmetry cuts the computing time of the coefficients in our linear matrix in half.
This symmetry comes from the formulation of (5.28). We also define the notation

(TI)b =

∫
Ω

B̄Ip
(b)
I dV +

∫
∂Ω

tIp
(b)
I dA, ∀I = 1, . . . , n. (5.32)

These vectors account for the external loading at every node in our discretised domain.
Finally, we define for each dimension

UR =
[
ū
(1)
1 , . . . , ū

(b)
R , . . . , ū

(N)
n

]T
, ∀R = 1, . . . , n. (5.33)

With this linear system of equations we can calculate an approximate solution for the
displacement. It is very easy to code this linear system and in general many finite element
type software packages already exist which solve this type of problem, where we have no
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damage evolution. Our implementation of this numerical scheme can be found in Appendix
B.5.

Remark. When implementing the integral coefficients (5.30) and the external loading
vector (5.32) in code there is an important fact we must remember to save ourselves a lot
of computational time. All of the piecewise shape functions labelled as p(b)I do not need
to be integrated over the full domain Ω when calculating our linear system of equations
(5.28). This is because the piecewise shape functions for each element are defined by (5.2)
such that they are 1 at the central node of the element and 0 at every other node. We
also do not need to calculate the integrals of the derivatives of shape functions over the
full domain. This is because outside the finite element the shape function is a constant
zero and thus the derivative with respect to Xj for j = 1, . . . , n is zero outside the finite
element.

To illustrate this we can define the subdomain for each finite element Ω(b)
E ⊂ Ω for all

b = 1, . . . , N . If we integrate any shape function p
(b)
I over the domain Ω then we find that

∫
Ω

p
(b)
I dV =

∫
Ω

(b)
E

p
(b)
I dV and

∫
Ω

∂p
(b)
I

∂Xj

dV =

∫
Ω

(b)
E

∂p
(b)
I

∂Xj

dV. (5.34)

Using the fact illustrated by (5.34) will save us a lot of computational time because we
do not need to calculate the integrals in (5.30) and (5.32) over the full domain but only
subsets of the full domain. This efficiency trick is very present throughout our code as can
be seen in Appendix B.

5.3.5 The damage criterion

The n-dimensional damage criterion (5.4) tells us in our iterative process where damage
growth is taking place. So after calculating the displacement field, we must check whether
our current displacement field and damage field satisfy the damage criterion. We have
already done this for a one dimensional damage criterion in §4.2. Similarly, what we
are calculating is the criterion field we call “Crit” for our n-dimensional system. This is
done such that such that Crit(X) = 1 anywhere the damage field is not satisfied and
Crit(X) = 0 anywhere the damage field is satisfied. It should be noted that Crit(X) can
also be thought of as an indicator function just like the torn function (5.20). In other
words we are defining a piecewise function such that

Crit(X) =

 1, F > 0

0, F ≤ 0
(5.35)
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Figure 5.3: A schematic of a triangle with three vertices defined by position vectors. The
position vectors are Xj for j = 0, 1, 2. On this triangle we have illustrated two directional
vectors v1 and v2, that transport you from X1 or X2 towards X0, respectively. Using
these position vectors and directional vectors we can exploit the definition of a directional
derivative to calculate the regular gradient of a function defined at the positional vectors.

where F is shorthand notation for the damage criterion (5.4). We can write this as

F (ū, α) = −g′(ᾱ)
(
1

2
ξX(ū) : C̄ : ξX(ū)− ψ̄

)
− Ḡᾱ +∇X ·

(
D̄∇Xᾱ

)
. (5.36)

To implement this in software one can easily discretize Crit(X) and F , then substituting
in our assumed solutions of ū and ᾱ will return a solution. In a discretized solution using
finite differences, Crit will simply be a long vector of 1’s and 0’s. Essentially a binary
string that will inform our iterative scheme, in Algorithm 2, where we have to calculate
a new solution for α. This method can easily be extended to higher dimensions where
we would use indices values to indicate locations in some discretized domain. Similar to
Chapter 4 we implemented this technique in code, which can be found in Appendix B.6.

In one-dimension calculating derivatives is quite a straight forward process, we would
use methods of forward, centre or backward differences. This is done on a mesh, that is
usually uniform, but not necessarily. Importantly, in one dimension we can only travel
along the same line. In n-dimensions this is not the case and when using the finite
element methods there is absolutely no guarantee of mesh uniformity. In the code we
implemented we used triangles to generate a mesh of Ω. Consider a triangle with three
vertices defined by the points Xi for i = 0, 1, 2. This simple set-up is illustrated in Figure
5.3. We can generally calculate the derivatives of the displacement or damage at X0

using the directional derivative. This is done by exploiting the definition of the directional
derivative

∂vf = ∇f · v

|v|
, (5.37)

for some scalar function f = f(X) in the direction of the vector v which is a vector
connecting two vertices of our standard triangle. If we want to calculate derivatives at the
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vertex X0 then we need to define two vectors. Let us define

v1 = X0 −X1 and v2 = X0 −X2, (5.38)

which are the direction vectors taking us from each of the other vertices to X0, as seen on
Figure 5.3. Next we can define two directional derivatives

∂v1f = ∇f · v1

|v1|
and ∂v2f = ∇f · v2

|v2|
, (5.39)

which can be used to form a linear system thus allowing us to calculate ∇f . Doing so we
can write that [

1
|v1|v

T
1

1
|v2|v

T
2

]
∇f =

[
∂v1f

∂v2f

]
. (5.40)

Calculating the directional derivatives in the linear system (5.40) can be implemented in
code very easily. Assuming the triangle is adequately small then the lengths of the triangle
edges are small enough to simply perform a forward difference. If we then define the value
of f at each node as f0, f1 and f2 then we can approximate the directional derivatives as

∂v1f ≈
f0 − f1
|v1|

+O(|v1|) and ∂v2f ≈
f0 − f2
|v2|

+O(|v2|). (5.41)

Substituting the approximation (5.41) into (5.40) gives us a simplified linear system[
vT
1

vT
2

]
∇f =

[
f0 − f1
f0 − f2

]
, (5.42)

using this linear system we can quickly calculate ∇f . To improve the result of this calcu-
lation in code we can calculate the derivative of a node using every triangle that contains
it and then take a weighted average based on the area of these triangles. Another way
to improve the accuracy of this result is to use shape functions of triangles defined by
more than three nodes. If each triangle was defined by six nodes, three nodes for the ver-
tices and three for the midpoints of each edge, then we could do a second order accurate
approximation of the directional derivatives.

This methodology is used consistently in our numerical methods, for calculating deriva-
tives of known values. For example when calculating the damage criterion with known
values and for calculating the driving force in the damage phase. The implementation of
this technique can be seen in Appendix B.6. The accuracy of this method improves as
the size of the elements decreases, similar to how finite differences improves as the space
between nodes decreases.

It should be noted the above example calculation (5.42) was done with a triangle



CHAPTER 5. APPLICATIONS IN HIGHER DIMENSIONS 163

on a plane in mind. Which is only a two dimensional setup but this method can be
easily extended to higher dimensions where finite elements are constructed out of more
triangles accounting for the extra dimensions to be calculated in ∇f . For example in three
dimensions the finite elements are constructed out of tetrahedrons.

5.3.6 The damage phase

In our numerical solution to calculate ᾱ in higher dimensions we again need to use an
iterative solution just as we did in §4.2. Here though we are dealing with the rate dependent
version of the model and will not be able to implement Newtons method while using the
finite element method. Instead we will use a Crank-Nicholson scheme [107] to calculate
steps forward in time. Though as we are fixing ū as a constant that we know, that vastly
simplifies the problem. To begin consider the damage evolution equation (5.3b) such that

η ˙̄α = ⟨F (ᾱ; ū)⟩+ , (5.43)

here F is as defined in (5.36) and this problem is just the rate dependent damage problem,
with a fixed displacement ū. Recall that the angular brackets in our damage evolution
equation are Macaulay brackets (2.48) as defined in Chapter 2 §2.2.4 on page 61. Using
the Crank-Nicholson method we can discretise the damage evolution equation in time such
that

r
(
ᾱ(k) − ᾱ(k−1)

)
= ⟨F (ᾱ; ū)⟩(k)+ + ⟨F (ᾱ; ū)⟩(k−1)

+ . (5.44)

In this setup we have defined r(X) = 2η(X)/∆t and the superscript indicates the discreti-
sation in time. Here ∆t is of course just the difference in time such that ∆t = t(k)− t(k−1).
The time step k is the current time step which we want to calculate and k − 1 is the
previous time step which we have a solution for.

The next step in solving the damage evolution equation is to create an iterative scheme
which solves (5.44). To do this we multiply (5.44) by any admissible test function P (X)

and integrate over Ω. Doing so we have the weak form∫
Ω

P
[
r
(
ᾱ(k) − ᾱ(k−1)

)
− ⟨F (ᾱ; ū)⟩(k)+ − ⟨F (ᾱ; ū)⟩

(k−1)
+

]
dV = 0. (5.45)

The next step is to introduce a discretisation of P (X) and ᾱ(X, t), we do this using the
formulations defined by (5.1). One can therefore say that

P (X) = pi(X) and ᾱ(k)(X) =
N∑
j

ᾱ
(k)
j pj(X). (5.46)
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Substitution into (5.45) then gives us the weak form

N∑
j=1

(
ᾱ
(k)
j − ᾱ

(k−1)
j

)∫
Ω

rpipj dV −
∫
Ω

pi

(
⟨F (ᾱ; ū)⟩(k)+ + ⟨F (ᾱ; ū)⟩(k−1)

+

)
dV = 0. (5.47)

This is close to being a numerical system we can solve, we need to consider how to handle
the Macaulay brackets in this expression. Since we know the solutions for the previous
time step we can define

⟨F (ᾱ; ū)⟩(k−1)
+ = f̃ .

If we next interpolate the function f̃ using our shape functions we can write

f̃ =
N∑
j=1

f̃jpj(X), (5.48)

similar to how we interpolate the functions ᾱ and ū, see (5.1). If we substitute this into
(5.47) we are now left with

N∑
j=1

(
ᾱ(k) − ᾱ(k−1)

) ∫
Ω

rpipj dV − f̃j
∫
Ω

pipj dV −
∫
Ω

pi ⟨F (ᾱ; ū)⟩(k)+ dV = 0. (5.49)

So now, as we can see, the last step is to deal with the final Macaulay bracket term in
(5.49). To do this we implement the Crit(X) function, it will inform us where we should
or should not solve the damage problem. Here we are going to assume we have to solve for
a positive damage criterion and hence can drop the Macaulay brackets. We will explain
later how to handle cases where we do not have damage evolution. So for now we may
simplify (5.49) and say that

N∑
j=1

(
ᾱ(k) − ᾱ(k−1)

) ∫
Ω

rpipj dV − f̃j
∫
Ω

pipj dV −
∫
Ω

piF
(k)(ᾱ; ū) dV = 0. (5.50)

The last part of this problem now is to simply discretise F (k) which we can do by consid-
ering (5.36). From (5.36) we can immediately say that∫

Ω

piF
(k)(ᾱ; ū) dV =

∫
Ω

pi
[
−g′(ᾱ(k))Q(ū(k))− Ḡᾱ(k) +∇ ·

(
D̄∇ᾱ(k)

)]
dV

=

∫
Ω

pi
[
−g′(ᾱ(k))Q(ū(k))− Ḡᾱ(k)

]
−
(
D̄∇ᾱ(k)

)
· ∇pi dV

Here we have applied the product rule, the divergence theorem and applied our no flux
boundary conditions (5.6) for the damage variable. We have also introduced the driving
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force Q(ū), defined by the elastic potential and threshold function,

Q(ū) =
1

2
ξX(ū) : C̄ : ξX(ū)− ψ̄. (5.51)

If we next substitute in our discretisation of ᾱ (5.46) then its clear that

∫
Ω

piF
(k)(ᾱ; ū) dV =−

N∑
j=1

ᾱ
(k)
j

∫
Ω

Ḡpipj dV −
N∑
j=1

ᾱ
(k)
j

∫
Ω

(
D̄∇pj

)
· ∇pi dV

−
N∑
j=1

∫
Ω

pig
′(ᾱ(k))Q(ū(k)) dV.

Notice we have not substituted an approximation for the derivative of the degradation
function. That is because the function is not necessarily linear. Therefore we need to
introduce an approximation of this function. What we do here is setup our iterative
scheme by creating an approximation of g′(ᾱ(k)) based on a previous iteration. Therefore
we define the following iterative approximation

g′(ᾱ(k)) =
N∑
j=1

g̃
(k,m−1)
j pj where g̃

(k,m−1)
j = g′(ᾱ

(k,m−1)
j ), (5.52)

where k indicates the time step and m indicates the iterative step in our solution. If we
put everything together we can write down the following iterative scheme

N∑
j=1

[
ᾱ
(k,m)
j

∫
Ω

(
r + Ḡ

)
pipj dV + ᾱ

(k,m)
j

∫
Ω

(
D̄∇pj

)
· ∇pi dV

]

=
N∑
j=1

[
f̃j

∫
Ω

pipj dV + ᾱ
(k−1)
j

∫
Ω

rpipj dV − g̃(k,m−1)
j

∫
Ω

Q(ū(k))pipj dV

]
.

(5.53)

One can use this iterative system to calculate each term of ᾱ(k)
j at the time step k ∀ j. For

convenience we can convert this into a simple linear system, which we do by writing

BA(m) = −H1g
(m−1) +H2f +H3a. (5.54)

This linear system defined by matrices and vectors is convenient for coding in Matlab.
Here though we have defined the following vectors at step m of our iteration as

A(m) =


...

ᾱ
(k,m)
j
...

 g(m−1) =


...

g̃
(k,m−1)
j

...

 f =


...
f̃j
...

 a =


...

ᾱ
(k−1)
j
...

 . (5.55)
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Next we have four matrices making up all the coefficients of this linear system. These can
be written as

(B)ij =
∫
Ω

(
r + Ḡ

)
pipj +

(
D̄∇pj

)
· ∇pi dV (5.56a)

(H1)ij =

∫
Ω

Q(ū(k))pipj dV (5.56b)

(H2)ij =

∫
Ω

pipj dV (5.56c)

(H3)ij =

∫
Ω

rpipj dV (5.56d)

We would run this iterative scheme for M ∈ N iterations until the values of ᾱ(k,m) and
ᾱ(k,m−1) converge to an acceptable tolerance. The appropriate way to implement this
iterative scheme in the context of simulating a real scenario with material failure is outlined
in Algorithm 2.

To correctly implement this numerical scheme for the damage phase field we need to
use the field Crit(X). With the criterion field we know where this numerical scheme should
and should not be implemented in our domain Ω. However, a problem that will occur if
we implement the above numerical scheme for the damage phase field in its present form
as defined by (5.54), with the damage evolution informed by the criterion field, is that our
above numerical scheme will actually fail to converge. This happens because the criterion
field controls which region in Ω where damage evolution can occur, which restricts the
diffusion of damage to that strict region. If that region is too small then the diffusive
profile of the damage phase field cannot converge using the finite element method. In
Chapter 4 we do not have this same issue, this is because in one dimension we use a
finite difference method which can correctly converge even if the damage evolution is only
allowed to occur at a single node in our system.

We therefore cannot follow the same methodology used in Chapter 4, laid out in §4.2.4,
to implement our finite element method. So in dimensions greater than one in order for
the damage phase field to correctly converge using the above numerical scheme we need
to allow the damage phase field to diffuse throughout our domain. To do this we need
to consider what terms in the damage evolution controls the diffusion and shape of the
damage phase field. We can isolate this from the tearing energy and the diffusion term in
(5.56a). Therefore at every point Crit(X) = 0 we will solve the linear problem

BA(m) = 0. (5.57)
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In the rows where we have Crit(X) = 0 we will have that

(B)ij =
∫
Ω

Ḡpipj +
(
D̄∇pj

)
· ∇pi dV. (5.58)

In summary the iterative scheme we will implement must make use of the criterion
field and also the torn field. We write the iterative scheme (5.54) as

BA(m) = −H1g
(m−1) +H2f +H3a, (5.59)

where the vectors A(m), g(m−1), f and a are defined by (5.55). We run this iterative scheme
until A(m) and A(m−1) converge to an acceptable tolerance. To implement the criterion
and torn fields into this iterative system we define the elements of the matrices in (5.59)
to be piecewise functions. Here we define them to be

(B)ij =


1 if Torn(X) = 1,∫
Ω

(
r + Ḡ

)
pipj +

(
D̄∇pj

)
· ∇pi dV if Crit(X) = 1,∫

Ω
Ḡpipj +

(
D̄∇pj

)
· ∇pi dV if Crit(X) = 0,

(5.60a)

(H1)ij =

 0 if Crit(X) = 0 or Torn(X) = 1,∫
Ω
Q(ū(k))pipj dV if Crit(X) = 1,

(5.60b)

(H2)ij =

 0 if Crit(X) = 0 or Torn(X) = 1,∫
Ω
pipj dV if Crit(X) = 1,

(5.60c)

(H3)ij =


1 if Torn(X) = 1,∫
Ω
rpipj dV if Crit(X) = 1,

0 if Crit(X) = 0.

(5.60d)

Defining these matrix elements in terms of piecewise functions makes it far simpler to
create a code. Notice that for nodes that are completely damaged we have setup our
iterative scheme (5.59) so that the node stays constant as ᾱ = 1. This was implemented
in the above form of the matrices (5.60) for the cases where Torn(X) = 1. We implemented
the above iterative scheme in Matlab, our code can be found in Appendix B.7.

Remark. When we implement the scheme discussed in this subsection we need it in code to
be as efficient as possible. To do that we made use of two main techniques: sparse matrices
and adaptive time steps. Sparse matrices allow us to store large matrices in memory by
only storing data about non-zero elements in the matrix. This is done by storing the rows,
columns and elements as three column vectors. Sparse matrices are far more efficient than
regular matrices when the matrices are not very dense. In our case each row represents
the interactions a single node in our mesh has and the columns represent all the other
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nodes it is interacting with. If we have a hundred nodes in our system and each node is
only connected in our Delaunay triangulation to around 12 other nodes then the matrix
will be at least 80% empty. Generally then, when using finite element methods it is best to
always set up our mass matrices in our numerical schemes as sparse matrices. Another
common issue with iterative schemes is the quality of the initial guess that we make. In
our iterative scheme (5.59) our initial guess will be the current or previous solution for the
damage phase field. If the damage phase field needs to make a large sudden growth then
it may not converge. To deal with this if the solution does not converge we perform an
adaptive time step. This is done by taking a smaller time step forward and we can keep
making the time steps smaller until our numerical scheme converges. Of course if the time
step becomes to small we simply terminate the iterative scheme.

5.4 The trouser test

Now that we have explained our numerical methods, and have a code as can be seen in
Appendix B, the first thing we should do is a test case. In damage mechanics a classic toy
simulation is the trouser test. A trouser test consists of a simple block square or rectangle
that is clamped at one end and at the other end has the top half pulled upwards and the
bottom half pulled downwards. As a result the block should get torn along the middle
tearing the block into the approximate shape of trousers, hence a trouser test. Figure 5.4
outlines this toy simulation. To be clear we are gripping two regions of Ω and pulling one
upwards and one downwards.

Since we are doing a toy simulation here and want to illustrate the full utility of our
macroscopic model then we will consider two simulations with comparatively different mi-
croscopic geometries. This will be a useful example of how small changes in the microscale
can effect the macroscale. To do this we will consider two cases with the exact same
material properties but differing microscopic geometries. The first microscopic geometry
we will consider is a case of laminated vertical strips and the second will be of a host
matrix with a singular circular inclusion. In each case we have two subdomains forming
the microscopic cell and both subdomains will encompass exactly half of the microscopic
domain.

In the rest of this section we will introduce the microscopic domains, their physical
properties and calculate the related effective macroscopic coefficients. After which we will
compare the outcome of each simulation. For a simple comparison we will define a two
dimensional local cell ω := [0, 1] × [0, 1] with two subdomains ωA and ωB. Here we have
that |ω| = 1 such that |ωA| = 0.5 and |ωB| = 0.5. All the physical properties of ωA and ωB

will be exactly the same. Except, for the elasticity instead ωA will be a stiff material and
ωB will be a comparatively elastic material. So for the rest of this section let us define all
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Figure 5.4: In the above figure we have a diagram of the trouser test. On the left we have
a referential domain of some block, which is clamped on its left boundary and on its right
we can striped regions where forces are being applied to pull the block up an down. On
the right we have the current domain where the block has been displaced and torn down
the middle by the forces pulling it apart.

of microscopic material properties as:

ρA = ρB = 10, dA = dB = 0.05, ψA = ψB = 0.01,

µA = 15× 104, λA = 15× 104, µB = 104, λB = 104,

GA = GB = 1 and ηA = ηB = 1.

(5.61)

We can instantly calculate all the effective coefficients for all the material coefficients
except for the elasticity. Let us write them down as

ρ̄ = 10, ψ̄ = 0.01, Ḡ = 1,

η̄ = 1 and D̄ = 0.05I2×2,
(5.62)

corresponding to the coefficients in the macroscopic model (5.3). Here I2×2 is the identity
matrix of order 2. Finally for both of our simulations we will need to apply some external
loading. As mentioned in the trouser test we will apply external loading on the right, where
the top half of our block is pulled upwards and the bottom half is pulled downwards. We
won’t apply any surface stress and instead apply the following uniform microscopic body
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force as loading

bA = bB =


500tE2, ∀X ∈ [0.8, 1]× (0.5, 1]

−500tE2, ∀X ∈ [0.8, 1]× [0, 0.5)

0, otherwise,

(5.63)

where E2 is a vertical unit vector in the reference domain. Since the density and body
forces are uniform on the microscale then we can define the effective body force to be

B̄ = ρ̄bA = ρ̄bB. (5.64)

Here our external loading (5.63) is not smooth across the domain Ω, which makes the gov-
erning equations across the regions where forces are applied and not applied discontinuous.
This certainly leads to a number of problems when trying to solve any diffusive model an-
alytically, it can also create issues when solving models numerically. In our case we have
not had any issues performing simulations with such sharp external loading terms but
when implementing our model generally we advice making considerate choices of smooth
external loading functions. The other form of external loading we can apply is surface
traction. For this test case we will simply set the traction to zero everywhere on ∂Ω such
that

t = 0 on ∂Ω. (5.65)

Lastly, we need to define a damage degradation function for our damage model (5.3). For
ease we will make the simplest choice

g(α) = (1− α)2 , (5.66)

which has the derivative
g′(α) = −2 (1− α) . (5.67)

We now have everything we need to setup our two local cell problems calculate their
effective elasticity tensors and perform the simulations. After which we can compare the
results. We must also clarify what the threshold is for considering a node to be torn. In
other words how close does α(X) at that point X ∈ Ω need to be to one. In the following
simulations we set a point X ∈ Ω as being torn if α ≥ 0.97. We can therefore alter the
definition of Torn(X), (5.20), to be

Torn(X) =

 1, ᾱ(X) ≥ 0.97,

0, otherwise.
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5.4.1 Vertical strip setup

The first microscopic geometry we are interested in is laminated vertical strips. Consider
a square cell ω composed of two laminated vertical strips ωA and ωB, respectively. For
simplicity we will give each subdomain all the same physical properties except for the
elasticity. Instead ωA will be a stiff material and ωB will be a much more compliant
material. An illustration of this setup can be see in Figure 5.5.

Figure 5.5: Two dimensional representation of the microscopic geometry. In this case we
have two laminated vertical strips. Here the blue strip is much stiffer than the yellow
strip.

Using our code and the methods discussed in §5.2.1 alongside the geometry provided
in Figure 5.5 we can calculate the effective elasticity tensor. Using the Lamé parameters
provided in (5.61) allows us to quickly find the effective elasticity tensor. However, before
we calculate this effective elasticity tensor let us discuss some notation for clarity. As we
are working in two dimensions with a fourth order elasticity tensor that has minor and
major symmetries then we can write this down in the following shorthand notation

C̄ =

C̄1111 C̄1122 C̄1112

C̄2211 C̄2222 C̄2212

C̄1211 C̄1222 C̄1212

 , (5.68)

which is a convenient way to write the tensor down as a representative 3 × 3 symmetric
matrix which encapsulates the minor and major symmetries in our fourth order tensor.
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Using this shorthand notation we can calculate our effective elasticity tensor to be

C̄ ≈

56250 18750 0

18750 219583 0

0 0 18750

 , (5.69)

Here we rounded to whole numbers. It illustrates that effective elasticity coefficients
calculated from isotropic elasticity coefficients are not also necessarily isotropic. You can
also intuitively explain the material properties of (5.69) by imagining how external loading
to the setup in Figure 5.5 would play out. Notice that C̄1111 is significantly smaller than
C̄2222. That is because if we apply loading purely in the horizontal direction the stiff
component ωA will not be as compliant as ωB, therefore ωA will resist stretching in the
horizontal direction whilst ωB begins to stretch just like an accordion. If we only applied
external loading in the vertical direction then the deformation would predominantly be in
the domain of, the soft material, ωB along the direction parallel to the pulling. Whereas
the stiff material ωA will not be as compliant and thus not allow the material to stretch
vertically. In terms of material shearing the geometry present in Figure 5.5 does not have
any preferential bias hence why C̄1122 = C̄1212.

5.4.2 Inclusion setup

The second microscopic geometry we are interested in is a square cell ω consisting of a
host matrix ωA with a circular inclusion ωB. We can see an illustration of this setup in
Figure 5.6. Again we will assume all material properties are uniform, except the elasticity,
as described in (5.61).

Using our code and the methods described in §5.2.1 alongside the geometry provided
in Figure 5.6 will allow us to calculate the effective elasticity tensor. We find that

C̄ ≈

159484 35557 0

35557 159484 0

0 0 30840

 , (5.70)

which is another interesting solution, here we rounded to whole numbers and made use of
the shorthand notation defined by (5.68). Here in (5.70) we can see that in this case that
the effective elasticity is also no longer isotropic. This can be explained by noting that the
microscopic geometry in Figure 5.6 is obviously not isotropic. Again we can intuitively
explain the material properties of (5.70) by imagining how external loading to the setup
in Figure 5.6 would play out. Notice that C̄1111 = C̄2222 which is because our microscopic
geometry in Figure 5.6 has a rotational symmetry of 90◦ degrees. The most interesting
observation we can make is how different (5.70) is from (5.69). Both microscopic domains
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Figure 5.6: Two dimensional representation of the microscopic geometry. In this case we
have a host matrix in blue with a circular inclusion in yellow. The radius of this circular
inclusion is R =

√
05
π

, such that ωB = 0.5. Here the blue host matrix is much stiffer than
the yellow inclusion.

have the exact same material properties and the same proportion of each material in their
composite domain, however the microscopic geometry can massively sway the effective
macroscopic elasticity. Now lets analyse how this small difference in the microscale will
effect the damage evolution and tearing process.

5.4.3 Comparison of simulation results

In Matlab, using our code in Appendix B, we run both our simulations with the microscopic
setups described in §5.4.1 and §5.4.2. The simulation ran from t = 0 to t = 1, unless the
code failed to keep converging due to us altering the mesh by deleting nodes that are
completely damaged, this loss of nodes in the mesh lowers the resolution and can lead
to the numerical scheme not being able to converge. If this occurs we simply terminate
our simulation early, this is an interesting numerical problem that can be revisited in the
future: How to have a changing mesh that does not affect the numerical schemes ability
to converge? At each time step the external loading applied is described by the effective
body forces (5.64). In this subsection we will discuss a few comparative plots to illustrate
how small changes in the microscale can cause large differences at the macroscale. First
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though let us define our reference domain as a unit square such that Ω = [0, 1] × [0, 1].
Using our code we will set the maximum element size to be h = 0.01 as a result we will
produce a mesh with 11, 717 nodes and a connectivity matrix with 23, 032 elements. For
reference we plotted the mesh in Figure 5.7.
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Figure 5.7: The mesh approximation of our reference domain Ω = [0, 1]× [0, 1]. Using our
code in Appendix 5.3.1 we produced a mesh with 11, 717 nodes and a connectivity matrix
with 23, 032 elements.

We simulated both the scenarios described by §5.4.1 and §5.4.2, until completion. In
both cases the simulation ended abruptly when each numerical scheme was no longer
capable of converging. This was because as mentioned altering the mesh and deleting
nodes does affect the numerical schemes ability to converge, and when it fails to converge
we simply terminate our simulation. However, we still have plenty of comparable data
from these simulations. Let us begin by comparing how frankly different the outcome of
both simulations are at the same time step. Consider Figure 5.8 both simulations are at
the same time t ≈ 0.3653. We can see a huge difference in both simulations the vertical
strip scenario is only slightly deformed whereas the inclusion setup has a large tear through
it. Because the inclusion setup has suffered a tear through its domain we can see that
this has allowed for a greater deformation. In fact we can see that the inclusion setup is
beginning to form the desired shape of trousers. Figure 5.8 is a great indicator of how
different the macroscopic displacement ū is due to the differing microscopic geometries.

To compare the damage phase fields of our two simulations we use contour plots, as
seen in Figure 5.9. Again these contour plots are at times t ≈ 0.3653 and we can see that
both our microscopic geometries have very different damage phase fields. The vertical
strip setup is less concentrated and not that steep but we can see that a peak is beginning
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(a) Vertical strip setup.
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(b) Inclusion setup.

Figure 5.8: Two plots of the deformed meshes with different microscopic geometries at
time t ≈ 0.3653. In (a) we have our vertical strip setup as described in §5.4.1 and in (b)
we have our inclusion setup as described in §5.4.2. The simulation we performed was done
with the physical parameters and external loading described in §5.4.

to form on the right edge of Ω. Whereas, in the inclusion setup we can see that the damage
phase field is further evolved. We can see a sharp concentration protruding from the right
hand side that is comparable to the tear visible in Figure 5.8b. The main conclusion
though is that the damage phase fields in Figure 5.9a and 5.9b are clearly not the same.
Again this is due to differing microscopic geometries.

In Figure 5.9 we can see a clear discrepancy in the maximum values of the damage phase
field. Therefore, to get a clear comparison of how different each damage evolution process
was due to the microscopic geometries, let us consider a plot of the maximum damage
against time, as can be seen in Figure 5.10. In that figure it is abundantly clear that the
inclusion setup of the microstructure fails far more rapidly in this physical scenario. The
inclusion setup reaches the maximum damage of ᾱ = 1 at time t ≈ 0.35635 compared to
the vertical strip setup which reaches the maximum damage later at time t ≈ 0.37147.

A final qualitative result we consider is a stress-strain curve comparison of both mi-
croscopic geometries. To do this let us consider the material point X̃ = [1, 0.5] ∈ Ω, in
particular let us look at the vertical components of stress and strain in the vertical direc-
tion. Firstly, let us define the components of our displacement as ū = (ū, v̄), where u is the
horizontal component of displacement and v is the vertical component of displacement.
Then in two dimensions we may define the vertical components of stress and strain in the
vertical direction as

σY Y =
[
g(ᾱ)C̄ : ξ(ū)

]
22

and ξY Y (ū) =
∂v̄

∂Y
. (5.71)
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(a) Vertical strip setup.
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(b) Inclusion setup.

Figure 5.9: Two contour plots of the damage phase fields with different microscopic ge-
ometries at time t ≈ 0.3653. In (a) we have our vertical strip setup as described in §5.4.1
and in (b) we have our inclusion setup as described in §5.4.2. The simulation we performed
was done with the physical parameters and external loading described in §5.4.
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Figure 5.10: This is a plot comparing the maximum damage of both simulations at each
time step against time. The two simulations we are comparing are the inclusion setup
described in §5.4.2 and the vertical setup described in §5.4.1. Our trouser test and external
loading process is described thoroughly in §5.4. Here we can see that the inclusion setup
is far less resistant to damage evolution compared to the vertical strip setup.

We may now plot these stress and strain components as defined by (5.71) against each
other at the point X̃ as seen in Figure 5.11. Here we can see an interesting example of
plasticity. In Figure 5.11 we have marked the point where damage evolution begins and
ends. The point were damage begins marks when in the deformation of the trouser test
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Figure 5.11: Here we are plotting the stress σY Y against the strain ξY Y as defined by
(5.71) for our trouser test simulations. In particular this is the stress-strain curve of the
vertical components in the vertical direction at the point X̃ = [1, 0.5] ∈ Ω. The red line
is the microscopic inclusion geometry and the blue line is the microscopic vertical strips
geometry. The crosses on the left indicate the strains when damage evolution begins to
occur and the crosses on the right indicate the strains when a tear occurs, in other words
when α(X̃) = 1.

we begin to soften the material stiffness. Whereas, the point the where damage ends indi-
cates when a tear occurs in the material. Comparatively we can see that the microscopic
inclusions geometry experiences far more stress, as defined by (5.71), than the microscopic
vertical strips geometry. This larger stress in turns means a proportionally larger linear
elastic potential energy, which of course drives the damage evolution. As a result we can
understand why the damage evolution occurs more rapidly for the inclusions geometry, as
seen in Figure 5.10. This result was of course expected because we are in the realm of
linear elasticity to understand which material would have the larger vertical component
of stress in the vertical direction one would only need to inspect the stiffness tensors. In
particular we would need to inspect the component C̄2222 in §5.4.1 and §5.4.2, and we of
course would see, as expected, that this component is larger for the microscopic vertical
strip geometry compared to the microscopic inclusion geometry. Another interesting fea-
ture we can remark upon in Figure 5.11 is that we can clearly see that a tear in Ω occurs
for a smaller strain in our trouser test simulation for the microscopic inclusion geometry
compared to the strain where a tear occurs for the microscopic vertical strips geometry.
However, we can also note that the microscopic vertical strip geometry begins damage
evolution for a smaller strain in our trouser test simulation.

From the simulations in this section it is clear how we can use our multiscale model
to study the effects the microscale geometry and material properties can have on the
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damage evolution process at the macroscale. This comparison was done with elements of
maximum size h = 0.01, by performing a more detailed simulation we would obviously get
a more accurate result and could make more definitive conclusions about the macroscopic
material properties. However, even with such low resolution at the macroscale we where
able to interpret the effects the microscale geometry can have on the tearing process. By
being able to simulate these processes we can save researchers a lot of time and money
with the investigations of material properties.

5.5 Summary of results

The focus of this chapter was to convey how we can use our multiscale model to study
tearing processes in higher dimensions. To do this we began by explaining how we can
use the finite element method to solve our macroscopic model. This included introducing
methods from the literature to calculate the effective macroscopic coefficients [3] and a
new numerical algorithm to handle altering our mesh so that we may simulate tears in Ω.
The main body of this numerical work was introduced in §5.3 with the corresponding code
available in Appendix B. With our code we preformed a set of simulations to highlight
what is possible with our multiscale model. Through a trouser test example we illustrated
how we can study the effects of slight changes in the microscale. What we found is that
a small change at the mircoscale can have a large effect at the macroscale. Hence, our
model makes it possible to study the full role that the microscale plays in macroscopic
tearing processes.

5.5.1 Concluding remarks

This chapter has introduced a large avenue of future directions for research. With our
multiscale model it is now possible to perform a large set of in silico experiments, studying
the effects that microscopic changes will have on aortic dissections. However, to perform
these experiments we need more data to model the aortic microstructure for each of the
three layers making up the aortic wall. This would include calculating the residual stress,
tearing energy and threshold energy for each constitutive part of the aortic microstructure.
Getting this data will require a mixture of scouring the literature and collaborating with
experimentalists.

To judge how well the model can approximate a real aortic dissection would require
a statistical comparison to the medical data. Though we do believe this is an exciting
research opportunity. The first step of which would be to extend our code to three di-
mensions and improve the efficient of said code, this could be done in collaboration with
software engineers. One we have a fully implemented code that can perform three dimen-
sional simulations then we can perform as many in silico experiments as we want.
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It should be noted that this multiscale model of the damage phase field method is not
solely limited to modelling aortic dissections. We could model many different scenarios
of soft tissue tearing. Consider the tearing of tendons and ligaments, modelling them
effectively could provide new insights for prevention and recovery from injury. We are
also not solely limited to the human body; the field of material science could gain many
insights from having a more effective method of studying microscopic changes in materials.

Engineers could benefit from the ability to study the effects microscopic materials
have on overall material failure. It could be possible to study composite, alloy or fibrous
materials with our model. Through many simulations we have learned our model can be
used to study more than sharp tears. We can use our multiscale model to investigate
cyclic damaging, say from general wear tear like walking on a pavement. Plasticity in
many materials could also be investigated using our model via the degradation function.
All these future research possibilities simply require some upgrades to our current code,
in Appendix B.



Chapter 6

Discussion

This thesis has provided several interesting advances in the modelling of aortic dissections,
the damage phase field method and the usage of asymptotic homogenisation. In this
chapter the main findings of the thesis will be reviewed, the key assumptions of the thesis
discussed and possible future work based on these conclusions will be suggested.

6.1 Thesis summary

In Chapter 1, we discussed our interest in aortic dissections and the development of a
multiscale model to account for how changes in the aortic microstructure affect dissections.
With this objective in mind, this thesis focuses on deriving a novel multiscale model of
the damage phase field. We aimed to maintain the model’s general applicability while
ensuring its relevance to aortic dissections.

Starting in Chapter 2, we present a re-derivation of the damage phase-field method to
provide a complete introduction to the method. We began with the fundamental assump-
tions of the damage phase-field method which we used to construct an energy balance
described by the displacement and damage. From there, we employed the Karush-Khun-
Tucker conditions which allowed us to utilise calculus of variations to derive a model
incorporating damage. As a result our damage model has a criterion for damage evolution
and is constrained by the irreversibility of the damage phase field. Our model was not
completely original and is heavily based on the works of Miehe et al. [90] and Marigo et
al. [83]. However, we did introduce some new ideas to the theory: a threshold function
to set an energetic bound to material damage evolution and we expanded the model to a
composite domain. This was done with foresight, we created a damage model on as general
as possible of an arbitrary composite domain. Hence allowing our approach to maximise
the scope of what we can describe. Using our composite model we approximated tearing
in the human aorta at the microscale with a system of partial differential equations.

In Chapter 3, we derived an original multiscale damage phase-field model, using asymp-
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totic homogenisation to upscale our microscopic damage phase-field model. This began
with us making the appropriate constitutive choices for the form of the damage degra-
dation function as a polynomial function and that the strain energy density would be a
linearised choice, in our case we used a combination of Hooke’s law and a residual stress
term. Next we introduced the appropriate scaling of the microscale across the constitutive
parts of composite domain and the macroscale across the full domain. Assuming that
the scale ratio ϵ of the micro to macroscale is reasonably small then we can decouple the
spatial scales. By introducing some novel analysis we could appropriately upscale the full
model and all its constraints to the macroscale. In order to do this we had to use the
local periodicity at every scale of our homogenisation process, we found that the assump-
tion of local periodicity guarantees that the irreversibility and damage criterion can be
upscaled to the macroscale. The resulting system of partial differential equations consists
of equation of motion and a damage evolution equation, that encodes information about
the microstructure into the coefficients of the model. These coefficients are computed
by solving appropriate cell problems and calculating a series of local integral averages,
which reflect the complexity of the given microstructure. On top of this we prove rigor-
ous properties of the coefficients, simplifying the model. We prove that the macroscopic
elasticity tensor has major and minor symmetries; and is positive definite. Similar results
about macroscopic coefficients have been reported in the literature [104]. However, this
is the first multiscale model of the damage phase-field which satisfies all the modelling
constraints and formally upscaled all the models’ properties.

As our multiscale model was based on assumptions of local periodicity and required
new analysis, we compared the numerical simulations of the full microscopic model and the
corresponding macroscopic model to show that both models converge as the scale ratio
ϵ decreases towards zero. This numerical analysis was performed in Chapter 4, where
we set about explaining the required numerical methods to solve our damage model. As
our model was constrained by a damage criterion, and irreversibility constraints we knew
our numerical methods would be unorthodox. Therefore, we reduced the problem to one
dimension and assumed a simplistic setup of a one-dimensional bar being stretched at one
end. In one dimension we were able to analytically calculate the macroscopic effective
coefficients in terms of the microscopic coefficients. One interesting observation we did
make is that the effective coefficients of the elasticity and diffusion where both harmonic
means in terms of their microscopic components. Interestingly, we also remarked upon
how the effective residual stress term took the form of a weighted mean in terms of the
microscopic residual stress. From here we produced a numerical algorithm for solving the
problem numerically. Our numerical method was then implemented in Matlab and can be
seen in Appendix A. Using this code we performed a parametric analysis and consistently
found that the full microscopic problem and its macroscopic approximation do converge as
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ϵ goes to zero. This gives evident backing to all the theoretical work found in this thesis.
Another important observation made in Chapter 4 was the importance of correctly scaling
all the modelling parameters. In one dimension we found that if the diffusion was set to
be of an order of magnitude lower than ϵ then the microscopic and macroscopic models
would fail to correctly converge. This makes sense as in asymptotic homogenisation we
require that ϵ goes to zero and is essentially the smallest parameter value. However, the
diffusion is also set artificially small to localise the damage phase field so one must be
careful to ensure that diffusion is small but still larger than ϵ. It should also be noted
in Chapter 4 we found that regularly that the macroscopic and microscopic solutions of
our simulations where converging within two to three significant figures of one another at
a value of ϵ = 0.1, which is not very small. This is a significant observation because it
means our damage model could be used to model even more structures in nature with ϵ

much larger than one would think plausible.
Lastly, in Chapter 5 we wanted to provide a numerical framework for our multiscale

model in higher dimensions. Aortic dissections, and other forms of soft tissue tearing, are
not one-dimensional processes but rather they take place in complex three-dimensional
geometries. To solve our multiscale model in higher dimensions we used the finite element
method. First, we introduced the finite element method to the reader. Next, we adapted
our numerical algorithm from Chapter 4 to higher dimensions, accounting for a mesh
that evolves to approximate tears in our domain. From here we used the finite element
method to create numerical schemes for both our equation of motion and damage evolution
equation. This involved taking careful account of irreversibility constraints and the damage
criterion. Our numerical framework was then implemented in Matlab and this code can be
found in Appendix B. Using a trouser test, we illustrated how we can use our multiscale
model to study how slight differences in the microscopic geometry can majorly affect the
outcome of the macroscopic tearing processes.

We believe that this work has expanded the current literature. There are of course
many extensions to the possible future research developed by this thesis and have specif-
ically commented on this throughout the thesis. Overall, there is a variety of novel work
throughout this thesis that could still be developed further in order to increase our current
understanding of multiscale modelling, damage modelling and aortic dissections.

6.1.1 Key assumptions of the thesis

The conclusions of this thesis are based on a number of assumptions. These assumptions
are necessary for the proper use of asymptotic homogenisation and we made them safely
understanding that most structures in nature do somewhat obey them. One of the key
assumptions made is the local periodicity of the microstructure, without which you can-
not perform asymptotic homogenisation in dimensions greater than one. You also cannot
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upscale the damage evolution equation and all its constraints without the assumption of
local periodicity as widely observed in Chapter 3. Performing asymptotic homogenisation
without assuming local periodicity is still not possible. Another assumption we made for
the benefit of asymptotic homogenisation was the linearisation of the strain energy density.
We linearised around some residual stress term σ which meant when we analysed our full
damage problem at the scales of ϵ0 and ϵ1 we only found linear relationships. Obviously,
in nature many materials do not obey linear elasticity. That is why we linearised around
a residual stress term, to account for any pre-existing stress in the material. However, it
should be noted that progress is now being made in the literature with performing asymp-
totic homogenisation on non-linear systems [24, 62, 92, 112, 141]. It would be interesting
at a later date to revisit the work in this thesis and model the aortic microstructure with
non-linear properties. For the damage phase-field method to localise we assumed that
the length scale of diffusion is extremely small, similar to the scale ratio ϵ. As already
mentioned, in Chapter 4, we know that for the model to correctly homogenise we must be
sure to set diffusion on a scale equable or larger than ϵ. Otherwise, the full microscopic
and macroscopic models will not converge.

6.1.2 Directions for future research

The work in this thesis has opened up lots of exciting potential future research opportuni-
ties. We can divide these into two different areas: theoretical and experimental work. Lots
of new theoretical questions can now be explored using the multiscale modelling techniques
illustrated throughout this thesis. This of course will require a collection of microscopic
data to test any new potential models, such as our multiscale model of aortic dissections.

The first theoretical question that will need to be explored is the design of accurate
microstructures to represent many different parts of the aortic wall for each of the wall’s
three layers. This will of course require exploring much of the existing literature and
consulting with anatomical researchers. With this information we can begin to calculate
a physiologically accurate range for the effective coefficients. This will require cataloguing
all the correct material properties for the microstructure. Material properties such as the
Young’s Modulus or the range of Poisson’s ratio for collagen, smooth muscle cells and other
elastic fibres are well documented in the literature [13, 47, 145]. However, our multiscale
damage phase field model requires information about the energy threshold for damage
initiation and the tearing energy. These are not well reported in the literature, mainly
because the damage phase field method is a rather new technique. Therefore, experimental
work will have to be conducted at the cellular level to obtain accurate physiological ranges
for these parameter values. Diffusion on the other hand needs to be set to some small
value to force the localisation of damage evolution. It should be noted however that using
existing data we could at least constrain the model parameters. Then using a number of
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statistical methods it would be possible to estimate the realistic range of these parameters
by testing our model against existing medical data. This approach includes statistical
methods such as maximum likelihood estimations [91] and Bayesian estimators [25].

An interesting question that will need to be asked when performing experimentation
will be choosing which mechanical properties to use. Consider collagen, if you look at
collagen molecules, fibrils and fibres at each scale they have very different mechanical
properties [13]. The collagen molecules of course are the stiffest and require the most
energy to break, then the same properties for collagen fibrils are of a lower order of
magnitude and the fibres are again of an even lower order of magnitude. Therefore, when
all the data is collected careful consideration must be made when using it to calculate the
effective coefficients.

From here it will be possible to perform both interesting and informative simulations.
To do this well collaboration with software engineers would allow us to construct a very ef-
ficient piece of software. Importantly we would need to extend the software in Appendix B
to do three dimensional simulations and to include contributions from the residual stress.
Using this new software, we would be able to perform a wide range of simulated aortic dis-
sections. Comparing the results to real medical data we could make a series of conclusions
about the utility of our model. From there we could make any necessary adjustments
to our model. After which in collaboration with statisticians we could perform a large
statistical emulation. This would require performing many simulations for a huge variety
of aortic microstructures, macroscopic geometries and microscopic material properties. In
effect this would be a large sensitivity analysis of all possible parameters within relation
to an aortic dissection. With the help of statisticians, we could take the results of these
many simulations and perform a large emulation. In a sense interpolating across the range
of all possible solutions for all physiologically possible scenarios. This would create a pow-
erful tool in software to quickly simulate and determine the outcome of many potential
dissection scenarios.

With this tool we could work with clinicians and test how accurately our model predicts
and simulates an aortic dissection. We could gain many new insights with such a tool
by being able to predict the potential causes of aortic dissections and the outcome of
different treatments for the disease. The practical applications alone would be tremendous
if clinicians could accurately prevent and treat the disease whilst being better informed by
our model. However, any inaccuracies in our models’ predictions would of course be used
to better inform our theoretical setup. This is of course how we do research, with theory
being informed by experimental results and experiments being devised by theoretical ideas.

Moreover, other than potential future research related to our model for aortic dissec-
tions, there are potentially many other clinical applications. Soft tissue tearing in the
body could be modelled in general with our multiscale damage phase-field model. This
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could include physical conditions such as the tearing of tendons and ligaments. The appli-
cations could include better prevention of the tears and a more informed recover process
for clinicians and patients alike. Our model is also not restricted to biological problems
either, we could model many other structures in nature. Material science is of course very
important for engineering purposes. A more complete understanding of how alloys, com-
posites or laminated materials can break or degrade could be achieved with our multiscale
model. The scope of engineering applications would be quite large. Our model has also
shown the ability in simulations to model less sudden forms of damage like dissections.
We can model fatigue in structures and cyclic damaging. Practically this could be used
to model how structures slowly fail over time, like roads or bridges. We can also use our
model to study plasticity in more elastic materials, to gain a better understanding of how
composite structures fail.

Overall, this thesis has been a necessary first step in introducing an approach to multi-
scale modelling of soft tissue tearing. More generally we would say that we have introduced
a multiscale technique for studying material failure in many different scenarios. We do
hope that eventually the work in this thesis does lead to a practical tool for clinicians
which helps to prevent and treat aortic dissections.



Appendix A

Finite difference method code

This appendix contains the code used to perform all the simulations discussed in Chapter
4. For a breakdown of how the code is structured and the key ideas behind our numerical
algorithm and schemes please see §4.2. Each of the following sections will give a brief
description of what each script or function of code does. All of this code was designed
for and ran in Matlab [72]. It should be noted however, many software languages are
extremely similar and converting this code would not be an ordeal.

A.1 Input code

The first piece of code is the input script as seen below in the Listing A.1, and the purpose
of this script is for us to setup an appropriate simulation. We have freedom to choice the
size of our one dimensional reference domain and the time domain we want to simulate
over. The next information we need to provide is the coefficients describing the material
properties we would wish to simulate. Of course we can set an error tolerance for our
iterative scheme and setup our displacement boundary conditions. The damage degrada-
tion function can also be setup here but one should be careful to choose an appropriate
function for damage degradation as thoroughly discussed in Chapters 2 and 3.

When the Listing A.1 is ran it will call the function “SolveProblem” which of course
performs the simulations. After the results of the simulation are calculated the last job
this script will perform is to create a set of plots. First of which are two plots of the final
displacement and damage fields at the final time step. The other two plots are surfaces
which illustrate the damage and displacement evolution throughout the one dimensional
simulation.

Listing A.1: A Matlab script which allows us to input all the necessary data for our one
dimensional simulation. The script then calls our main function to perform the simulation
and then produces some plots of the simulation results.

186
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1 % In this code we define a spatial domain, time domain and

boundary

2 % condition.

3 %

4 % We also define our elasticity, threshold, diffusion and

energy at every

5 % node.

6
7 clc

8 close all

9 clear Usol Asol T

10 beep off

11 format long

12
13 % We begin by defining our domain of interest and the number of

nodes

14 % we wish to solve for. Note that larger n means a better

resolution

15 % but more computational time.

16
17 % Our epsilon.

18 epsilon = 1;

19
20 % Define our bounds.

21 xlim = [0 1];

22 tlim = [0 1];

23
24 % Number of time steps we wish to save.

25 Nt = 1000;

26
27 % Define domains and nodes for damage and displacement.

28 n_x = 1000;

29 X = linspace(xlim(1),xlim(2),n_x);

30
31 % Error tolerance.

32 tol = 1e-6;

33
34 % Our Displacement Boundary Condition.
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35 k = [0 1]; % Some stretch factor

36
37 % Our initial Damage and displacement.

38 a0 = zeros(1,n_x);

39 u0 = zeros(1,n_x);

40
41 % Define our degredation function.

42 g = @(y) (1 - y).^2;

43
44 % Our Problem Coefficients

45 E = ones(1,n_x); % Elasticity

46 P = 1 + 0.9*cos(2*pi*X); % Threshold

47 G = ones(1,n_x); % Energy

48 D = 1e-2*ones(1,n_x); % Diffusion

49
50 % Code we run.

51 tic

52 [Usol,Asol,T] = SolveProblem(X,tlim,Nt,k,g,u0,a0,E,P,G,D,tol);

53 toc

54
55 % Reinterperate data.

56 x = linspace(X(1),X(end),100);

57 t = linspace(T(1),T(end),100)';

58
59 Asurf = interp2(X,T,Asol,x,t);

60 Usurf = interp2(X,T,Usol,x,t);

61
62 % Plots of the final solution.

63 figure(1)

64 hold on

65 plot(X,Asol(end,:))

66 title('Final Damage')

67 xlabel('Position X')

68 ylabel('Damage')

69 ylim([0 1])

70 hold off

71
72 figure(2)
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73 hold on

74 plot(X,Usol(end,:))

75 title('Final Displacement')

76 xlabel('Position X')

77 ylabel('Displacement')

78 hold off

79
80 % Surfaces of the solutions U(X,t) and A(X,t).

81 figure(3)

82 hold on

83 surf(x,t,Usurf)

84 title('Displacement Field')

85 xlabel('X Position'), ylabel('t Time'), zlabel('Displacement')

86 hold off

87
88 figure(4)

89 hold on

90 surf(x,t,Asurf)

91 title('Damage Field')

92 xlabel('X Position'), ylabel('t Time'), zlabel('Damage')

93 zlim([0 1])

94 hold off

A.2 Numerical algorithm

In §4.2.1 we introduced Algorithm 1 which was designed to iterate between numerical
schemes that independently calculate solutions for the displacement field, damage criterion
and damage field. In Listing A.2 we present our Matlab function which performs the role
of Algorithm 1. For efficiency in Listing A.2 instead of saving the solutions of damage and
displacement at every time step in memory we instead export the solutions to appropriate
text files. At the completion of all time steps or when the damage reaches the maximum
of 1 we reload all the data from our text files into memory as solution matrices. In these
solutions every row is a time step and the columns represent nodes throughout the one
dimensional domain.

Listing A.3 below is a short Matlab function which calculates the first and second
partial derivative of the degradation function with respect to the damage phase field. We
require the first partial derivative because the damage criterion (4.17) of course depends
on the first partial derivative of the degradation function. The second partial derivative
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is needed for our Newton method style solution of the damage evolution equation (4.24).
Therefore, calculating both of these derivatives early in Listing A.2 allows us to save them
in memory and call on them whenever we need them.

Listing A.2: This listing is a Matlab function that performs the role of Algorithm 1. The
role of this Matlab function is to go through each time step of our simulation correctly
iterating between solving the displacement and damag field. Solutions of each time step
are saved in the appropriate text files which is efficient when memory is sparse because
we are dealing with many time steps, nodes or both.

1 % This code takes all our input data and proceeds to solve the

2 % damage phase field problem.

3
4 function [Usol,Asol,T] = SolveProblem(X,tlim,Nt,k,g,u0,a0,E,P,G

,D,tol)

5
6 % All the solved time steps are to be solved and saved as rows

in seperate

7 % text files as follows. Here we

8 % are saving the first time steps as the initial values.

9 damage_file = fopen('Damage.txt','w');

10 displacement_file = fopen('Displacement.txt','w');

11 fprintf(damage_file,'%d,',a0);

12 fprintf(damage_file,'\n');

13 fprintf(displacement_file,'%d,',u0);

14 fprintf(displacement_file,'\n');

15
16 % Firstly we define the matrices dU, U and A, strain,

displacement and

17 % damage respectively. The first row represents the previous

time step, the

18 % second row reprsent the current time step.

19 A = [a0 ; a0];

20 U = [u0 ; u0];

21 dU = zeros(size(U));

22
23 % Next we calculate the first and second partial derivative of

the

24 % degradation function for convience.

25 [g1,g2] = DegradationPartials(g);
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26
27 % Now we move onto the first time step to be solved, so

importantly we

28 % calculate the step size for each time steps as follows.

29
30 step = (tlim(2) - tlim(1))/(Nt - 1);

31
32 % Firstly we caculate the final time step and the first time

step t we are

33 % solving.

34 tfinal = tlim(2);

35 t = tlim(1) + step;

36 % Track previous time step.

37 t0 = tlim(1);

38
39 % Now we can initalise the problem solving process as a while

function

40 % where we condition the loop to run till we pass the final

time step

41 % tfinal or if a tear occurs in our model.

42
43 % Loop we are solving.

44 while t <= tfinal

45 % Display the step to track the progress of the code.

46 disp(['At time ' num2str(t,12)])

47
48 % Update our BCs at each time step as the dirchlect

conditions.

49 BC = [k(1)*t k(2)*t];

50
51 % The first thing we do is calculate the current

displacement i.e.

52 % U(:,2) to do this we use the elastic phase function.

53 [U(2,:), dU(2,:)] = ElasticPhase(BC,g,A(1,:),E,X);

54
55 % Next we calculate if the damage criterion is satified

anywhere and

56 % hence we have damage growth. To do this we calculate the
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criterion as

57 % follows.

58 Crit = CriterionCheck(g1,A(2,:),dU(2,:),E,P,G,D,X);

59
60 % Next we check to see if the criterion is or is not

satisfied at every

61 % point. If it is satisfied everywhere we move on to the

next time

62 % step. However if it is not then we work to solve all the

unsatisfied

63 % points coupled with the satisfied points.

64 if sum(Crit) > 0

65 % Now we set up an iterative process to solve for A

(2,:).

66 Y_curr = A(2,:);

67 Y_old = -ones(size(A));

68 while norm(Y_curr - Y_old, Inf) > tol

69 % disp(['The Norm is ' num2str(norm(Y_curr - Y_old,

Inf))])

70 Y_old = Y_curr;

71
72 % Solve the damage problem.

73 A = DamagePhase(A,g1,g2,dU,E,P,G,D,Crit,X);

74
75 % Firstly we try to satisfy the time step with an

elastic sol.

76 [U(2,:), dU(2,:)] = ElasticPhase(BC,g,A(2,:),E,X);

77
78 % Then we check if we have satisfied the criterion.

79 Crit = CriterionCheck(g1,A(2,:),dU(2,:),E,P,G,D,X);

80
81 % Update iteration

82 Y_curr = A(2,:);

83
84 % Break condition if criterion is satisfied

85 if sum(Crit) == 0

86 break

87 end
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88 end

89 end

90
91 if max(A(2,:)) <= 0.99

92 % Save data for this time step.

93 fprintf(damage_file,'%d,',A(2,:));

94 fprintf(damage_file,'\n');

95 fprintf(displacement_file,'%d,',U(2,:));

96 fprintf(displacement_file,'\n');

97 % Update our current damage and displacement fields.

98 A = [A(2,:) ; A(2,:)];

99 U = [U(2,:) ; U(2,:)];

100 dU = [dU(2,:) ; dU(2,:)];

101 % Update time.

102 t0 = t;

103 t = t + step;

104
105 % Conditions for time step.

106 elseif max(A(2,:)) > 0.99

107 if max(A(2,:)) <= 1

108 % Save data for this time step.

109 fprintf(damage_file,'%d,',A(2,:));

110 fprintf(damage_file,'\n');

111 fprintf(displacement_file,'%d,',U(2,:));

112 fprintf(displacement_file,'\n');

113 break

114 elseif max(A(2,:)) > 1

115 A = [A(1,:) ; A(1,:)];

116 U = [U(1,:) ; U(1,:)];

117 dU = [dU(1,:) ; dU(1,:)];

118 t = t - (t-t0)/2;

119 end

120 end

121 end

122
123 % Note that the column vectors U and D are saved here as rows,

transpose

124 % the data.
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125 fclose(damage_file);

126 fclose(displacement_file);

127
128 % Convert files to solutions U(x,t) and D(x,t).

129 Usol = readmatrix('Displacement.txt');

130 Asol = readmatrix('Damage.txt');

131 T = Usol(:,end)/k(2);

132
133 end

Listing A.3: This Matlab function calculates the first and second partial derivative of the
degradation function with respect to the damage phase field.

1
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %

4 % Calculate Partial Derivative of Degradation Function.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function [g1,g2] = DegradationPartials(g)

8 syms y

9
10 g1 = eval(['@(y)' char(diff(g(y)))]);

11
12 g2 = eval(['@(y)' char(diff(g1(y)))]);

13
14 clear y

15 end

A.3 Elastic phase

In Listing A.4 we have the code that calculates the solution to the displacement field and
the gradient of the displacement field. This is based of the analytical solutions calculated
in §4.2.2. Of course we are working with a discretised domain so the solutions of the
displacement field (4.18) and its gradient (4.19) are calculated on the same discretised
domain. To do this we have employed the Matlab function “cumtrapz” which calculates
integrals over a discretised domain using the cumulative trapezoid method. The integrals
we are calculating are the ones present in the analytical solution of the displacement field
(4.18) and the gradient of the displacement field (4.19).
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Listing A.4: This Matlab function calculates the analytical solutions of the displacement
field (4.18) and the gradient of the displacement field (4.19). Here we make use of the
Matlab function “cumtrapz” which calculates integrals using the cumulative trapezoid
method.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function solves the Elastic phase problems implicitly.

4 %

5 % d/dx( (1-D)^2 E dU/dX ) = 0 ~ basic elastic problem.

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function [U , dU] = ElasticPhase(BC,g,A,E,X)

9
10 % g is our degredation function, BC our dichlect BCs, A is our

damage phase

11 % field, E our elasticity and X our domain.

12
13 % Define the left and right boundary conditions.

14 UL = BC(1);

15 UR = BC(2);

16
17 % Define the Integral term.

18 Int = cumtrapz(X,1./(E.*g(A))) ;

19
20 % Solution to U.

21 U = UL + (UR - UL) * (Int./Int(end)) ;

22
23 % Derivative of U;

24 dU = (UR - UL) * (1./(E.*g(A)))/Int(end) ;

25
26 end

A.4 Damage criterion

In §4.2.3 we introduced the notion of the criterion field. The criterion field tracks all
the points in the reference domain for the current iterative step which do not satisfy the
damage criterion. As defined by (4.22) we set Crit(X) = 1 at every point that does not
satisfy the damage criterion and Crit(X) = 0 at every point that does satisfy the damage
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criterion. We coded this step up for our numerical method as seen in Listing A.5. Here we
use our current solutions for the displacement and damage fields to calculate the damage
criterion as defined by (4.17). This is done in our Matlab function “DamageEquation”
which is described by Listing A.6.

To calculate the damage criterion (4.17) we use the code in Listing A.6. This function
is using the solutions of the displacement field and damage field to calculate the damage
criterion. We calculate the derivatives present in the damage criterion with second order
centre difference methods across the discretised reference domain. For the boundary nodes
we make use of first order forward and backward difference methods to employ fictitious
nodes.

Listing A.5: This Matlab function uses the current solutions of the displacement and
damage field to calculate the damage criterion defined by (4.17). With these solutions it
assigns the correct value for Crit(X) at every point in our discretised domain, as defined
by (4.22).

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we simply check at which points we are passing the

damage criterion.

4 % We also check that the time resolution is good, with a

tolerance check.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function Crit = CriterionCheck(g1,A,dU,E,P,G,D,X)

8
9 F = DamageEquation(g1,A,dU,E,P,G,D,X);

10
11 Crit = 0 * (F<=0) + 1 * (F>0);

12
13 end

Listing A.6: A Matlab function for calculating the damage criterion (4.17). This function
makes use of finite difference approximations to calculate the damage criterion at every
node in the mesh.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function calculates the damage criterion/equation and we

store it

4 % here instead of retyping it over and over.
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5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function F = DamageEquation(g1,A,dU,E,P,G,D,X)

8
9 % Our spatial discretisation step size.

10 h = (X(end) - X(1))/(length(X) - 1);

11
12 % We start by solving all the internal values of the damage

criterion from

13 % i = 2 to i = n-1.

14
15 % We define the Second Order Centre second Derivative for this

step.

16 Cntr = @(y,h) [0 y(3:end) - 2*y(2:end-1) + y(1:end-2) 0]/h^2;

17
18 % Calculate the damage criterion.

19 Q = - g1(A).*(0.5*E.*dU.^2 - P) - G.*A + 0.5*(Cntr(D.*A,h)...

20 + D.*Cntr(A,h) - A.*Cntr(D,h));

21
22 % Next we deal with the boundary conditions which have nuemann

BCs for

23 % damage.

24
25 % Boundary Conditions.

26 LeftBC = - g1(A(1))*(0.5*E(1).*dU(1).^2 - P(1)) - G(1).*A(1)...

27 + (1/(h^2))*(D(2) + D(1))*(A(2) - A(1)) ;

28
29 RightBC = - g1(A(end))*(0.5*E(end).*dU(end).^2 - P(end)) - G(

end).*A(end)...

30 + (1/(h^2))*(D(end-1) + D(end)) * (A(end-1) - A(end)) ;

31
32 % Check Criterion at every step.

33 F = [LeftBC Q(2:end-1) RightBC];

34 end



APPENDIX A. FINITE DIFFERENCE METHOD CODE 198

A.5 Damage phase

In §4.2.4 we discussed how we calculate the damage phase field whilst assuming our current
solution for the displacement is a fixed constant. This is done while using the criterion
field to explain where damage evolution is taking place in the reference domain. With
that information we can proceed to solve the damage evolution equation described by the
system of equations (4.24). We use Newtons method to solve this system of equations
as can be seen in Listing A.7. Since we are working in a one-dimensional discretised
domain with n nodes then the number of discretised equations we will be solving is also
n. This system will of course be non-linear because of the degradation function present in
(4.24). Thus Newtons method is an appropriate iterative scheme for solving our discretised
damage evolution equations. In Listing A.7 we have defined two other Matlab functions
which calculate the solutions of the damage evolution equation and of course the required
Jacobian matrix for Newtons Method.

The Listing A.8 calculates the required solution of the damage evolution equation
(4.24) using the code in Listing A.6 which is discussed in §A.4. Here we also use Crit(X)

to correctly inform our numerical scheme on where damage evolution is actually occurring.
Multiplying element by element with Crit(X) will keep all the information required for
any node where damage evolution is taking place, whilst setting all the other nodes to
zero and thus ensuring those nodes do not experience damage evolution.

To calculate the Jacobian matrix we use the code in Listing A.9. This code makes
use of sparse matrices to be as efficient as possible and allow us to work with really high
resolution meshes. We also make use of Crit(X) to eliminate rows from the Jacobian that
correspond to nodes not experiencing damage evolution. As a result any node that does
not experience damage evolution will remain constant.

Listing A.7: This Matlab function uses Newtons method to calculate solutions for the
damage phase field and solve the damage evolution equation defined by (4.24).

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function solves the damage phase of our problem using an

iterative

4 % scheme.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function A = DamagePhase(A,g1,g2,dU,E,P,G,D,Crit,X)

8
9 % Tolerance for newtons method and constant.

10 tol = 1e-12;
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11
12 % Here we are iteratively going to calculate A(2,:) to do this

we represent

13 % Y_curr and Y_old as the iterations of A(2,:).

14 Y_curr = A(2,:);

15 Y_old = -ones(size(X));

16
17 while norm(Y_curr - Y_old, "inf") > tol

18 Y_old = Y_curr;

19
20 % Create the RHS of our newtons equation

21 RHS = RightHandSide(A(2,:),g1,dU(2,:),E,P,G,D,Crit,X);

22
23 % Create the Jacobian

24 J = Jacobian(A(2,:),g2,dU(2,:),E,P,G,D,Crit,X);

25
26 % Update our solution.

27 B = J\RHS;

28 Y_curr = B' + Y_old;

29
30 % Update Damage Phase field and eliminate any rounding

errors.

31 A(2,:) = max(Y_curr,A(1,:));

32 end

33
34 end

Listing A.8: This Matlab function calculates the solutions of the damage evolution equa-
tion for previous iterative solution of the damage phase field. In this function we make
use of the function shown in Listing A.6.

1 %&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

2 %

3 % Creates the Right Hand side of our newtons method for non-

linear

4 % damage phase field problem.

5 %

6 %&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

7 function RHS = RightHandSide(A,g1,dU,E,P,G,D,Crit,X)
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8
9 % Calculate the damage equations for the known and unknowns.

10 F = DamageEquation(g1,A,dU,E,P,G,D,X);

11
12 % Use the criterion to setup the RHS properly.

13 RHS = -(Crit.*F)';

14 end

Listing A.9: This Matlab function calculates the required Jacobian matrix to solve our
Newton method solution in Listing A.7. In this function we make use of sparse matrices
to make this code more efficient allowing us to use a much higher resolution.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This calculates our Jacobian for our problem. This will be a

4 % very large sparse matrix.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function J = Jacobian(A,g2,dU,E,P,G,D,Crit,X)

8
9 % Discretised step size for X.

10 h = (X(end) - X(1))/(length(X) - 1);

11 n = length(X);

12
13 % Saves us notation

14 Q = 0.5*(dU.^2).*E - P;

15
16 % Main body of derivatives

17 F = - g2(A(2:end-1)).*Q(2:end-1) - G(2:end-1)...

18 - (D(3:end) + 2*D(2:end-1) + D(1:end-2))/(2*h^2);

19 % Main upper diag.

20 F_U = (1/(2*h^2))*(D(2:end-1) + D(3:end));

21 %Main Lower diag

22 F_L = (1/(2*h^2))*(D(1:end-2) + D(2:end-1)) ;

23
24 % Create internal Jacobian

25 K = sparse(1:n-2,1:n-2,Crit(2:n-1).*F_L,n-2,n) +...

26 sparse(1:n-2,2:n-1,1 + Crit(2:n-1).*(F - 1),n-2,n) +...

27 sparse(1:n-2,3:n,Crit(2:n-1).*F_U,n-2,n) ;
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28
29 clear F_L F_U F

30
31 % Next we build the left boundary condition.

32 L1 = - g2(A(1)).*Q(1) - G(1) - D(1)/(h^2);

33 L2 = D(1)/(h^2);

34
35 L = [1 0] + Crit(1).*([L1-1 L2]);

36
37 LeftBC = [L zeros(1,n-2)];

38
39 % Next we build the right boundary condition.

40 R1 = - g2(A(end)).*Q(end) - G(end) - D(end)/(h^2);

41 R2 = D(end)/(h^2);

42
43 R = [0 1] + Crit(n).*([R2 R1-1]);

44
45 RightBC = [zeros(1,n-2) R];

46
47 % Finally we create the jacobian matrix.

48 J = [LeftBC; K; RightBC];

49
50 end



Appendix B

Two-dimensional finite element code

This appendix contains the code used to perform all the simulations discussed in Chapter
5. For a breakdown of how the code is structured and the key ideas behind our numerical
algorithm and schemes please see §5.3. Each of the following sections will give a brief
description of what each script or function of code does. All of this code was designed
for and ran in Matlab [72]. It should be noted however, many software languages are
extremely similar and converting this code would not be an ordeal.

B.1 Mesh generation

The first step in our numerical method is to create a mesh approximating the macroscopic
geometry, as discussed in §5.3.1. This mesh will encapsulate the referential domain. To
generate the mesh we make use of Matlabs’ partial differential equations toolbox. As
this code is designed for a two dimensional geometry, we can define a number of vertices
approximating the convex hull of our desired geometry. Next we make use of Matlabs’
inbuilt tools to generate a triangulated mesh. Matlab does this by using a Delaunay
triangulation which subdivides the convex hull of our macroscopic geometry into triangles
whose circumcircles do not contain any of the nodes which are not the triangles vertices.
We can set the maximum and minimum radii of these circumcircles. Thus controlling the
size of our finite elements and the accuracy of our numerical solution. The output of this
process is saved as two text files, the first is all the coordinates and the second is the
corresponding connectivity matrix. All of this is done in code Listing B.1. It should be
noted we run this Matlab script separate from the others as a piece of preprocessing work.

Listing B.1: This matlab code allows us to generate a macroscopic two-dimensional
geoemtry. Then discretise it into a triangular mesh using Delaunay triangulation methods.
All the functions in this code are inbuilt Matlab functions.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

202
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3 % Here we create a delauney triangulation of our desired 2D

geometry.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 clear DTR X Y TR q Nodes gm triangles

7 clc

8
9 % Coordinates for Polyshape

10 X = [1 0 0 1];

11 Y = [0 0 1 1];

12
13 % Firstly create a standard square mesh.

14 polyout = polyshape(X,Y);

15
16 % Create Mesh

17 TR = triangulation(polyout);

18 gm = fegeometry(TR);

19 gm = addVertex(gm, 'Coordinates', [1 0.5]);

20 gm = generateMesh(gm,"GeometricOrder","linear", Hmax = 0.01);

21
22 % Create Delauney Triangulation.

23 q = gm.Mesh;

24 triangles = q.Elements';

25 Nodes = q.Nodes';

26
27 Triangles_file = fopen('Triangles.txt','w');

28 for i = 1:size(triangles,1)

29 fprintf(Triangles_file,'%d,',triangles(i,:));

30 end

31 fclose(Triangles_file);

32
33 Nodes_file = fopen('Nodes.txt','w');

34 for j = 1:size(Nodes,1)

35 fprintf(Nodes_file,'%d,',Nodes(j,:));

36 end

37 fclose(Nodes_file);

38
39 disp(gm.Mesh)
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40 figure

41 pdemesh(gm.Mesh)

42 axis padded

B.2 Input code

Now that we have setup our macroscopic geometry and its discretised mesh we must define
all the other parameters our model relies on. This is done in Listing B.2 where we begin
running our code by defining the microscopic material properties and geometry that are
required for calculating the effective coefficients. We also must choose our time domain
and the number of time steps we want to calculate a solution for. It is also important
that we define the degradation function which plays a crucial role in damage evolution.
When we run Listing B.2 our code will take all the information mentioned and calculate
solutions at every time step saving all the data in accessible text files. For convenience
at the end of Listing B.2 we produce some useful figures to help the user visualise the
outcome of this process.

In Listing B.2 we call a number of custom functions for our convenience. The first
of these is called “Elements” which loads into memory our Delaunay triangulation of the
macroscopic geometry. This code can be found in Listing B.5. We also use custom Matlab
functions to define the external loading being applied throughout the simulation. This is
done in the functions “BoundaryCondition” and “AppliedForces”, which define the traction
and body force contributions of external loading at each time step, respectively. These
codes can be found in Listings B.4 and B.3, respectively. Most importantly we run our
function “FEMSolver” which is our implementation of Algorithm 2 and actually performs
the jobs of solving our damage model.

Listing B.2: This script is how we input all the appropriate microscopic properties and
geometry we want our microscale to have. We also setup the time steps we want to
solve over and load into memory our discretised mesh. Next we calculate the effective
macroscopic coefficients and use them to calulate our numerical solution at every time step.
These solutions are loaded into memory for the macroscopic displacement and damage,
then used to produce some useful figures.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This is our initial attempt at creating a FEM method to solve

the

4 % equilibrium equation and damage equations in two dimensions.

5 %
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6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7
8 % First we clear the cache and command window.

9 clear all; close all; clc;

10
11 % Just stop the silly beep.

12 beep off

13 warning('off','all')

14 format long

15
16 % Time Domain and steps we want to save.

17 tlim = [0 1 1e-8];

18 Nt = 1000;

19
20 % Read in our Delauney triangulation from saved files for linux

.

21 DTR = Elements;

22
23 % Small Reminder of the grid size.

24 disp(['Its Alive!! The grid size is ' num2str(numel(DTR.Points

(:,1))) ])

25
26 % Initial values of the system.

27 a0 = zeros(size(DTR.Points(:,1)));

28 u0 = zeros(size(DTR.Points(:,1)));

29 v0 = zeros(size(DTR.Points(:,1)));

30
31 % Traction BCs for trouser test.

32 Traction = @(x,y,t) BoundaryCondition(x,y,t);

33 BodyForce = @(x,y,t) AppliedForces(x,y,t);

34
35 % Define Our Material Properties.

36 % Note Poison Ratio = Lambda/2*(Lambda + Mu).

37 % Must be between -1 and 0.5

38 % The first entry in each vector are the host matrix and the

second is the

39 % inclusion.

40 Lambda = 1000*[150 10]; % First Lame Parameter.
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41 Mu = 1000*[150 10]; % Second Lame Parameter.

42
43 % Microscopic density, diffusion, threshold and viscosity.

44 rho = 10*[1 1];

45 diff = 0.05*[1 1];

46 energy = 0.1*[1 1];

47 psi = 0.01*[1 1];

48 eta = [1 1];

49
50 % Microscopic Geometry.

51 Lx = 1;

52 Ly = 1;

53 phi = 90;

54 R = sqrt(0.5/pi);

55 N = 300;

56
57 % Calculate our Macroscopic Parameters.

58 [C,Rho,D,G,Psi,Eta] = MacroscopicParameters(Lambda,Mu,rho,diff,

energy,psi,eta,phi,Lx,Ly,R,N);

59
60 % tol sets the maxiumum and minimum acceptable tolerances.

61 tol = 1e-6;

62
63 % Delta sets the acceptable max and min interval to delete a

node.

64 delta = 3e-2;

65
66 % Degradation function, keep this piecewise scalar.

67 g = @(y) (1 - y).^2 + delta^2;

68 g1 = @(y) 2*y - 2;

69
70 tic

71 [Usol,Vsol,Asol,T,Torn,Tol] = FEMsolver(g,g1,Psi,C,Rho,G,D,Eta

,Traction,BodyForce,u0,v0,a0,tlim,Nt,DTR,tol,delta);

72 toc

73
74 % Create points and triangles.

75 X = DTR.Points(:,1);
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76 Y = DTR.Points(:,2);

77 triangles = DTR.ConnectivityList;

78
79 % Triangle of final Mesh.

80 [FinalTriangles,~] = UpdatedMesh(Asol(:,end),triangles,delta);

81
82 % Figure of our final mesh.

83 figure('visible','off')

84 hold on

85 trisurf(FinalTriangles,X,Y,Usol(:,end))

86 title('Horizontal Displacement')

87 xlabel('X-axis')

88 ylabel('Y-axis')

89 zlabel('U displacement')

90 xlim([min(X) max(X)])

91 ylim([min(Y) max(Y)])

92 view(3)

93 hold off

94 saveas(gcf,'figure1.jpg')

95
96 % Figure of our final mesh.

97 figure('visible','off')

98 hold on

99 trisurf(FinalTriangles,X,Y,Vsol(:,end))

100 title('Vertical Displacement')

101 xlabel('X-axis')

102 ylabel('Y-axis')

103 zlabel('V displacement')

104 xlim([min(X) max(X)])

105 ylim([min(Y) max(Y)])

106 view(3)

107 hold off

108 saveas(gcf,'figure2.jpg')

109
110 % Figure of our final mesh.

111 figure('visible','off')

112 hold on

113 trisurf(triangles,X,Y,Asol(:,end))
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114 title('Damage Field')

115 xlabel('X-axis')

116 ylabel('Y-axis')

117 zlabel('Alpha')

118 xlim([min(X) max(X)])

119 ylim([min(Y) max(Y)])

120 zlim([0 1])

121 view(3)

122 hold off

123 saveas(gcf,'figure3.jpg')

124
125 % Figure of our final mesh.

126 figure('visible','off')

127 hold on

128 triplot(FinalTriangles,X+Usol(:,end),Y+Vsol(:,end))

129 title('Our Final Mesh')

130 xlabel('X-axis')

131 ylabel('Y-axis')

132 xlim([min(X+Usol(:,end))-0.5 max(X+Usol(:,end))+0.5])

133 ylim([min(Y+Vsol(:,end))-0.5 max(Y+Vsol(:,end))+0.5])

134 hold off

135 saveas(gcf,'figure4.jpg')

136
137 figure('visible','off')

138 hold on

139 semilogy(T,Tol);

140 title('Convergence at each time step')

141 xlabel('Time')

142 ylabel('Tolerance')

143 axis padded

144 yscale log

145 hold off

146 saveas(gcf,'figure6.jpg')

Listing B.3: This function allows us to define the body forces in our mesh for each time
step. This is a very important part of our external loading as it allow us to pull apart our
macroscopic mesh however we want.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %

3 % Simple piecewise funcion for calculating the applied body

forces.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function Z = AppliedForces(x,y,t)

7
8 if y > 0.5 && x >= 0.8

9 % Upwards vertical force.

10 Z = 500*t*[0 1];

11 elseif y < 0.5 && x >= 0.8

12 % Downwards vertical force.

13 Z = -500*t*[0 1];

14 else

15 % No Force.

16 Z = [0 0];

17 end

Listing B.4: This function allows us to define the traction stress tensor that is applied on
the boundary at each time step. Effectively this allows us to define a boundary condition
for the displacement.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%#

2 %

3 % Simple piecewise funcion for calculating the traction stress

tensor

4 % applied at the boundary.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function Z = BoundaryCondition(x,y,t)

8
9 if y > 0.5 && x == 1

10 % Upwards vertical force.

11 Z = 0*t*[0 1; 1 0];

12 elseif y < 0.5 && x == 1

13 % Downwards vertical force.

14 Z = 0*t*[0 1; 1 0];

15 else

16 % No Force.
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17 Z = [0 0; 0 0];

18 end

Listing B.5: In this matlab function we load into memory from two text files the coor-
dinates and conectivity matrix that define our discretised mesh. We then use this data
to form a Delaunay triangulation in Matlab and produce a plot of our referential mesh
domain.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Elements function creates the triangles and mesh etc.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6
7 function DTR = Elements

8
9 % Read in presaved Mesh information.

10 T = readmatrix('Triangles.txt');

11 N = readmatrix('Nodes.txt');

12
13 % Setup triangles and nodes vectors.

14 triangles = zeros(size(T,2)/3,3);

15 nodes = zeros(size(N,2)/2,2);

16
17 % Reshape.

18 for i = 1:size(T,2)/3

19 triangles(i,:) = T(3*(i-1) + 1:3*i);

20 end

21 for i = 1:size(N,2)/2

22 nodes(i,:) = N(2*(i-1) + 1:2*i);

23 end

24
25 % Build the delaunay triangulation of the grid points

26 DTR = triangulation(triangles,nodes);

27
28 % % % Figure of our reference mesh.

29 figure('visible','off')

30 hold on

31 triplot(DTR)
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32 title('Our Reference Mesh')

33 xlabel('X-axis')

34 ylabel('Y-axis')

35 axis padded

36 hold off

37 saveas(gcf,'figure0.jpg')

38
39 end

B.3 Effective coefficients

Calculating the effective macroscopic coefficients allows us to encode microscopic informa-
tion about a materials local properties and composite structure into our multiscale model.
We define all of our microscopic properties and geometry first in the input script, Listing
B.2. Then we use the function “MacroscopicParameters” to calculate our effective coeffi-
cients, as discussed in detail in §5.2.1. The code for this can be seen in Listing B.6. The
first job this code performs is to define an array outlining the composite structure of our
microscopic domain, this role is performed in the function “Inclusion”. The code can be
found in Listing B.7, where we define an array structure for every discrete point in our
microscopic domain. In Listing B.7 we set each point to either be evaluated as a 1 or a
2. Referring back to this array will allow us to know what microscopic properties apply
at which point. In Listing B.7 we can essentially setup the microscopic structure of our
multiscale model. Here we can see that we have setup the scenario for a single circular
inclusion in a host matrix, as outlined in §5.4.2.

Next we use this array and the microscopic properties of the elasticity and the diffusion
to calculate our effective macroscopic elasticity and diffusion. To calculate these effective
properties we use the Matlab codes provided by Andreasen et al. [3]. We will not report
on this code here as it is not our own and recommend that the reader should look at
cited paper. However, the codes are here for completeness and can be seen in Listing B.9
and Listing B.10, which respectively calculate the effective elasticity and diffusion. The
remaining effective coefficients are simply local integral averages and we calculate them
using our custom function “LocalIntegralAverage”, the code for which can be found in
Listing B.8. The purpose of this Matlab function is to calculate local integral averages
as defined by (3.6), which we approximate using (5.14). With these Matlab codes we can
calculate a great number of effective coefficients for a wide variety of microscopic scenarios.
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Listing B.6: The role of this Matlab function is to outline the calulcation of our effective
macroscopic coefficients. Firstly, the code generates an appropriate microscopic geometry
as an array of points labelled with a number. Using this information we calculate the
effective macroscopic coefficients of the diffusion and elasticity with a Matlab function
provided by Andreasen et al. [3]. The remaining effective coefficients are calculated as
local integral averages. We then define all of these coefficients as functions in Matlab using
function handles so they can be quickly recalled at any point in our following calculations.
We also have the oppourtunity to interpolate these effective coefficients if the microscale
varies across the macroscale or apply some form of rotation if we are in a polar domain.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function calculates the macroscopic parameters by

solving the local

4 % cell problems then taking integral averages.

5 %

6 % Here the small letters are the microscopic parameters and

capital letters

7 % are the macroscopic parametrs we are calculating.

8 %

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 function [C,Rho,D,G,Psi,Eta] = MacroscopicParameters(Lambda,Mu,

rho,diff,g,psi,eta,phi,Lx,Ly,R,N)

11
12 % Create the microscopic geometry.

13 % Inclusions creates an array of 1s and 2s for a circle at the

centre, radius R,

14 % of the rectangle with dimensions Lx by Ly.

15 X = Inclusion(Lx,Ly,R,N);

16 figure('visible','off')

17 hold on

18 imagesc(X);

19 xlabel('X-axis')

20 ylabel('Y-axis')

21 axis tight

22 axis image

23 axis off

24 hold off

25 saveas(gcf,'figureMicro.jpg')
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26
27 % Effective Macroscopic Parameters.

28 C = homogenizeElasticity(Lx,Ly,Lambda,Mu,phi,X);

29 D = homogenizeDiffusion(Lx,Ly,[0 0],diff,phi,X);

30
31 % Local Inegral Average Macroscopic Parameters.

32 Rho = LocalIntegralAverage(Lx,Ly,rho,X);

33 G = LocalIntegralAverage(Lx,Ly,g,X);

34 Psi = LocalIntegralAverage(Lx,Ly,psi,X);

35 Eta = LocalIntegralAverage(Lx,Ly,eta,X);

36
37
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 %

40 % Second part of this code is for rotations and interpolation

of results.

41 %

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 % Make spatial functions.

44 C = @(x,y) C;

45 Rho = @(x,y) Rho;

46 D = @(x,y) D;

47 G = @(x,y) G;

48 Psi = @(x,y) Psi;

49 Eta = @(x,y) Eta;

50 end

Listing B.7: This Matlab function creates our local periodic cell that defines the microscale.
To do this we create an array where each subdomain of our microscale is defined by a whole
number as a label. In the below example we create a circular inclusion at the centre of
the host matrix.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function creates a periodic cell with a circular

inclusion at its

4 % centre. 1's for host and 2's for inclusion.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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7 function X = Inclusion(Lx, Ly, R, Nodes)

8
9 % Host matrix

10 X = ones(Nodes,Nodes);

11
12 % local dimensions.

13 x = linspace(0,Lx,Nodes);

14 y = linspace(0,Ly,Nodes);

15
16 % Circular inclusions.

17 for i = 1:Nodes

18 for j = 1:Nodes

19 if (x(i)-Lx/2)^2 + (y(j) - Ly/2)^2 - R^2 < 0

20 X(j,i) = 2;

21 else

22 X(j,i) = 1;

23 end

24 end

25 end

26
27 end

Listing B.8: This Matlab function calculates the local integral averages as defined by
(3.6). Here we make use of the approximation (5.14) as outlined in §5.2.1 to calculate the
approximate local integral averages.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function calculates the local integral averages of the

microscopic

4 % parameters. Here Lx is the width of the cell and Ly is the

height.

5 % Read Andreasen et al. for more detail. X is a map of the

inclusions.

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function Y = LocalIntegralAverage(Lx,Ly,y,X)

9
10 % Volume of the cell.
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11 V = Lx*Ly;

12 dV = V/numel(X);

13
14 % Calculate the integral average.

15 Y = (sum(sum(X == 1))*y(1)*dV + sum(sum(X == 2))*y(2)*dV)/V;

16
17 end

Listing B.9: This Matlab functions purpose is to calculate the effective coefficient of
elasticity as explained in §5.2.1. To do this we have used this code provided by Andreassen
et al. [3], for a better explanation of how the code works we recommend reading the
publicaiton.

1 function CH = homogenizeElasticity(lx, ly, lambda, mu, phi, x)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % lx = Unit cell length in x-direction.

4 % ly = Unit cell length in y-direction.

5 % lambda = Lame's first parameter for both materials. Two

entries.

6 % mu = Lame's second parameter for both materials. Two

entries.

7 % phi = Angle between horizontal and vertical cell wall.

Degrees

8 % x = Material indicator matrix. Size used to determine

nelx/nely

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %% INITIALIZE

11 % Deduce discretization

12 [nely, nelx] = size(x);

13 % Stiffness matrix consists of two parts, one belonging to

lambda and

14 % one belonging to mu. Same goes for load vector

15 dx = lx/nelx; dy = ly/nely;

16 nel = nelx*nely;

17 [keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2,

phi);

18 % Node numbers and element degrees of freedom for full (not

periodic) mesh

19 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
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20 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1);

21 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2

-1],nel,1);

22 %% IMPOSE PERIODIC BOUNDARY CONDITIONS

23 % Use original edofMat to index into list with the periodic

dofs

24 nn = (nelx+1)*(nely+1); % Total number of nodes

25 nnP = (nelx)*(nely); % Total number of unique nodes

26 nnPArray = reshape(1:nnP, nely, nelx);

27 % Extend with a mirror of the top border

28 nnPArray(end+1,:) = nnPArray(1,:);

29 % Extend with a mirror of the left border

30 nnPArray(:,end+1) = nnPArray(:,1);

31 % Make a vector into which we can index using edofMat:

32 dofVector = zeros(2*nn, 1);

33 dofVector(1:2:end) = 2*nnPArray(:)-1;

34 dofVector(2:2:end) = 2*nnPArray(:);

35 edofMat = dofVector(edofMat);

36 ndof = 2*nnP; % Number of dofs

37 %% ASSEMBLE STIFFNESS MATRIX

38 % Indexing vectors

39 iK = kron(edofMat,ones(8,1))';

40 jK = kron(edofMat,ones(1,8))';

41 % Material properties in the different elements

42 lambda = lambda(1)*(x==1) + lambda(2)*(x==2);

43 mu = mu(1)*(x==1) + mu(2)*(x==2);

44 % The corresponding stiffness matrix entries

45 sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).';

46 K = sparse(iK(:), jK(:), sK(:), ndof, ndof);

47 % Ensure Matlab recognises K as a symmetric matrix

48 K = 0.5*(K + K');

49 %% LOAD VECTORS AND SOLUTION

50 % Assembly three load cases corresponding to the three strain

cases

51 sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).';

52 iF = repmat(edofMat',3,1);

53 jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)];

54 F = sparse(iF(:), jF(:), sF(:), ndof, 3);
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55 % Solve (remember to constrain one node)

56 chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:);

57 %% HOMOGENIZATION

58 % The displacement vectors corresponding to the unit strain

cases

59 chi0 = zeros(nel, 8, 3);

60 % The element displacements for the three unit strains

61 chi0_e = zeros(8, 3);

62 ke = keMu + keLambda; % Here the exact ratio does not matter,

because

63 fe = feMu + feLambda; % it is reflected in the load vector

64 chi0_e([3 5:end],:) = ke([3 5:end],[3 5:end])\fe([3 5:end],:);

65 % epsilon0_11 = (1, 0, 0)

66 chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1));

67 % epsilon0_22 = (0, 1, 0)

68 chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1));

69 % epsilon0_12 = (0, 0, 1)

70 chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1));

71 CH = zeros(3);

72 cellVolume = lx*ly;

73 for i = 1:3

74 for j = 1:3

75 sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*

keLambda).*...

76 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));

77 sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*...

78 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));

79 sumLambda = reshape(sum(sumLambda,2), nely, nelx);

80 sumMu = reshape(sum(sumMu,2), nely, nelx);

81 % Homogenized elasticity tensor

82 CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*

sumMu));

83 end

84 end

85 CH = 0.5*(CH + CH');

86 disp('--- Homogenized elasticity tensor ---'); disp(CH)

87
88 %% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (
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NUMERICALLY)

89 function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b,

phi)

90
91 % Constitutive matrix contributions

92 CMu = diag([2 2 1]); CLambda = zeros(3); CLambda(1:2,1:2) = 1;

93
94 % Define the quadrature for integration

95 % Two Gauss points in both directions

96 xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx;

97 ww=[1,1];

98
99 % Initialize

100 keLambda = zeros(8,8); keMu = zeros(8,8);

101 feLambda = zeros(8,3); feMu = zeros(8,3);

102
103 %

104 L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1;

105
106 for ii=1:length(xx)

107 for jj=1:length(yy)

108 % Integration point

109 x = xx(ii); y = yy(jj);

110 % Differentiated shape functions

111 dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)];

112 dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)];

113 % Jacobian

114 J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi

/180)-a; ...

115 -b -b b b]';

116 detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);

117 invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)];

118 % Weight factor at this point

119 weight = ww(ii)*ww(jj)*detJ;

120 % Strain-displacement matrix

121 G = [invJ zeros(2); zeros(2) invJ];

122 dN = zeros(4,8);

123 dN(1,1:2:8) = dNx;
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124 dN(2,1:2:8) = dNy;

125 dN(3,2:2:8) = dNx;

126 dN(4,2:2:8) = dNy;

127 B = L*G*dN;

128 % Element matrices

129 keLambda = keLambda + weight*(B' * CLambda * B);

130 keMu = keMu + weight*(B' * CMu * B);

131 % Element loads

132 feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1]))

;

133 feMu = feMu + weight*(B' * CMu * diag([1 1 1]));

134 end

135 end

Listing B.10: This Matlab functions purpose is to calculate the effective coefficient of
Diffusion as explained in §5.2.1. To do this we have used this code provided by Andreassen
et al. [3], for a better explanation of how the code works we recommend reading the
publicaiton.

1 function D = homogenizeDiffusion(lx, ly, lambda, mu, phi, x)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % lx = Unit cell length in x-direction.

4 % ly = Unit cell length in y-direction.

5 % lambda = Lame's first parameter for both materials. Two

entries.

6 % mu = Lame's second parameter for both materials. Two

entries.

7 % phi = Angle between horizontal and vertical cell wall.

Degrees

8 % x = Material indicator matrix. Size used to determine

nelx/nely

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %% INITIALIZE

11 % Deduce discretization

12 [nely, nelx] = size(x);

13 % Stiffness matrix consists of two parts, one belonging to

lambda and

14 % one belonging to mu. Same goes for load vector

15 dx = lx/nelx; dy = ly/nely;
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16 nel = nelx*nely;

17 [keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2,

phi);

18 keMu(1:2:end,1:2:end) = keMu(1:2:end,1:2:end) + keMu(2:2:end,

2:2:end);

19 % Node numbers and element degrees of freedom for full (not

periodic) mesh

20 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);

21 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1);

22 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2

-1],nel,1);

23 %% IMPOSE PERIODIC BOUNDARY CONDITIONS

24 % Use original edofMat to index into list with the periodic

dofs

25 nn = (nelx+1)*(nely+1); % Total number of nodes

26 nnP = (nelx)*(nely); % Total number of unique nodes

27 nnPArray = reshape(1:nnP, nely, nelx);

28 % Extend with a mirror of the top border

29 nnPArray(end+1,:) = nnPArray(1,:);

30 % Extend with a mirror of the left border

31 nnPArray(:,end+1) = nnPArray(:,1);

32 % Make a vector into which we can index using edofMat:

33 dofVector = zeros(2*nn, 1);

34 dofVector(1:2:end) = 2*nnPArray(:)-1;

35 dofVector(2:2:end) = 2*nnPArray(:);

36 edofMat = dofVector(edofMat);

37 ndof = 2*nnP; % Number of dofs

38 %% ASSEMBLE STIFFNESS MATRIX

39 % Indexing vectors

40 iK = kron(edofMat,ones(8,1))';

41 jK = kron(edofMat,ones(1,8))';

42 % Material properties in the different elements

43 lambda = lambda(1)*(x==1) + lambda(2)*(x==2);

44 mu = mu(1)*(x==1) + mu(2)*(x==2);

45 % The corresponding stiffness matrix entries

46 sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).';

47 K = sparse(iK(:), jK(:), sK(:), ndof, ndof);

48 %% LOAD VECTORS AND SOLUTION
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49 % Assembly three load cases corresponding to the three strain

cases

50 sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).';

51 iF = repmat(edofMat',3,1);

52 jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)];

53 F = sparse(iF(:), jF(:), sF(:), ndof, 3);

54 % Solve (remember to constrain one node)

55 chi = zeros(ndof,2); chi(3:2:ndof,:) = K(3:2:end,3:2:end)\[F

(3:2:end,1) F(4:2:end,2)];

56 %% HOMOGENIZATION

57 % The displacement vectors corresponding to the unit strain

cases

58 chi0 = zeros(nel, 8, 3);

59 % The element displacements for the three unit strains

60 chi0_e = zeros(8, 3);

61 % ke = keMu + keLambda; % Here the exact ratio does not matter,

because

62 % fe = feMu + feLambda; % it is reflected in the load vector

63 chi0_e(3:2:end,1:2) = keMu(3:2:end,3:2:end)\[feMu(3:2:end,1)

feMu(4:2:end,2)];

64 % epsilon0_11 = (1, 0, 0)

65 chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1));

66 % epsilon0_22 = (0, 1, 0)

67 chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1));

68 % epsilon0_12 = (0, 0, 1)

69 chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1));

70 CH = zeros(3);

71 cellVolume = lx*ly;

72 for i = 1:2

73 for j = 1:2

74 sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*

keLambda).*...

75 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));

76 sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*...

77 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));

78 sumLambda = reshape(sum(sumLambda,2), nely, nelx);

79 sumMu = reshape(sum(sumMu,2), nely, nelx);

80 % Homogenized elasticity tensor
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81 CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*

sumMu));

82 end

83 end

84 % Grab diffusion tensor from results.

85 D = CH(1:2,1:2);

86 disp('--- Homogenized diffusion tensor ---'); disp(D)

87
88 %% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (

NUMERICALLY)

89 function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b,

phi)

90 % Constitutive matrix contributions

91 CMu = diag([1 1 0]); CLambda = zeros(3);

92 % Two Gauss points in both directions

93 xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx;

94 ww=[1,1];

95 % Initialize

96 keLambda = zeros(8,8); keMu = zeros(8,8);

97 feLambda = zeros(8,3); feMu = zeros(8,3);

98 L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1;

99 for ii=1:length(xx)

100 for jj=1:length(yy)

101 % Integration point

102 x = xx(ii); y = yy(jj);

103 % Differentiated shape functions

104 dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)];

105 dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)];

106 % Jacobian

107 J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi

/180)-a; ...

108 -b -b b b]';

109 detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);

110 invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)];

111 % Weight factor at this point

112 weight = ww(ii)*ww(jj)*detJ;

113 % Strain-displacement matrix

114 G = [invJ zeros(2); zeros(2) invJ];
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115 dN = zeros(4,8);

116 dN(1,1:2:8) = dNx;

117 dN(2,1:2:8) = dNy;

118 dN(3,2:2:8) = dNx;

119 dN(4,2:2:8) = dNy;

120 B = L*G*dN;

121 % Element matrices

122 keLambda = keLambda + weight*(B' * CLambda * B);

123 keMu = keMu + weight*(B' * CMu * B);

124 % Element loads

125 feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1]))

;

126 feMu = feMu + weight*(B' * CMu * diag([1 1 1]));

127 end

128 end

B.4 Numerical algorithm

In Chapter 5 we outlined Algorithm 2 in §5.3.3 for solving our multiscale model step by
step. We have implemented that numerical algorithm here in Matlab and this can be
found in Listing B.11. This code is extremely similar to Listing A.2 in Appendix A which
implements numerical algorithm 1. The main difference between these Listings is that
the one in this section must account for a changing mesh. We have also implemented
an adaptive time step method in this code to ensure that at each time step the solution
converges to a desired tolerance. Importantly, we setup a serious of text files in our
implementation to save all the important data we want to calculate, this data is only saved
at the desired time steps. We create text files for the horizontal and vertical displacements,
the damage at every point, which nodes are torn, the time at each step and the tolerance
each step converged to.

When we use this implementation the first thing we do is calculate the first derivative
of the degradation function using Listing B.12. From there we perform an iterative loop
to solve every time step. At each time step we call the function “ElasticPhase” to calculate
the displacement of our system. Next we use the function “CriterionCheck” to calculate
the criterion at every node at our system. If at our time step the damage criterion is
not satisfied at every point we then enter a set of iterated loops to calculate the damage
evolution and potential changes in the mesh due to tearing. To do this we iteratively
loop over the “ElasticPhase” and the “DamagePhase” functions. When the solutions from
“DamagePhase” for the damage phase field have converged we cease the iterative solution.
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Next we check if our mesh needs to be updated. If it does then we iteratively loop again
and check that the sudden change in the mesh still allows our solution to converge for this
time step. If it does the time step is complete and we save the data and move onto the
next time step until all the steps are complete.

If we fail to converge at any point of the time step then we use our inbuilt adaptive time
stepping to perform a smaller step forward in time. However, if the time steps becomes to
small due to failure to converge then we halt the code and return the solutions as they are.
This may happen because the parameters are poorly defined. It can also happen when the
mesh becomes totally degraded due to many nodes being deleted and the damage phase
field becoming prominent everywhere, leading to all the material properties degrading
everywhere. This causes the numerical method to become unstable and then the model
fails. To overcome this we recommend using an extremely fine mesh with a model that
also has a very small diffusion.

Listing B.11: This Matlab function is the implementation of Algorithm 2 as outlined
in §5.3.3. Following the algorithm step by step allows us to solve for our displacement
and damage at every time step. The solutions at each time step are saved in text files
so that the memory in used efficiently. Our code also makes use of an adaptive time
stepping method to ensure that the code always converges to a desired tolerance. Failure
to converge for an adequately small time step will cause the iterative scheme to halt and
report back the solutions up to the most recently solved time step.

1 function [Usol,Vsol,Asol,T,Torn,Tol] = FEMsolver(g,g1,Psi,C,Rho

,G,D,eta,Traction,BodyForce,u0,v0,a0,tlim,Nt,DTR,tol,delta)

2
3 % All the solved time steps would be saved to respective text

files for the

4 % horizontal displacement, vertical displacement and damage.

Then at the

5 % end of this scheme we will reload those time steps as pages

in Usol, Vsol

6 % and Asol respectively.

7 Horizontal_file = fopen('Horizontal.txt','w');

8 Vertical_file = fopen('Vertical.txt','w');

9 Damage_file = fopen('Damage.txt','w');

10 Torn_file = fopen('Torn.txt','w');

11 Time_file = fopen('Time.txt','w');

12 Tol_file = fopen('Tolerance.txt','w');

13
14 % We define our TornNodes which records where a tear has
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occured.

15 TornNodes = zeros(numel(DTR.Points(:,1)),2);

16
17 % Setup the current and previous time steps for damage and

displacement.

18 U = [u0 u0];

19 V = [v0 v0];

20 A = [a0 a0];

21
22 % % Next we calculate the first and second partial derivative

of the

23 % % degradation function for convience.

24 % [g1,~] = DegradationPartials(g);

25
26 % Now we move onto the first time step to be solved, so

importantly we

27 % calculate the step size for each time steps as follows.

28 step = (tlim(2) - tlim(1))/(Nt-1);

29
30 % Firstly we caculate the first time step we will be solving

for.

31 t = tlim(1) + step;

32 t_frame = t;

33 t0 = tlim(1);

34
35 % Secondly, set up triangles and coordinates.

36 X = DTR.Points(:,1);

37 Y = DTR.Points(:,2);

38 OriginalTriangles = DTR.ConnectivityList;

39 triangles = OriginalTriangles;

40
41 % Setup data printing.

42 fprintf(Horizontal_file,'%d,',u0);

43 fprintf(Vertical_file,'%d,',v0);

44 fprintf(Damage_file,'%d,',a0);

45 fprintf(Torn_file,'%d,',TornNodes(:,1));

46 fprintf(Time_file,'%d,',t0);

47 fprintf(Tol_file,'%d,',tol);
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48
49 % Setup Not Converging condition and StepCondition.

50 NotConverging = false;

51 StepCondition = true;

52
53 % Loop we are solving.

54 while t <= tlim(2)

55
56 % Define Boundary Conditions for this time step.

57 BC = @(x,y) Traction(x,y,t);

58 BF = @(x,y) BodyForce(x,y,t);

59
60 % Solve the equilibrium equation at this time step.

61 [U(:,2),V(:,2)] = ElasticPhase(g,A(:,1),C,Rho,triangles,X,Y

,BC,BF);

62
63 % Setup tolerance,

64 K = 0;

65
66 % Check the criterion at every time step.

67 Crit = CriterionCheck(g1,A(:,2),U(:,2),V(:,2),Psi,C,G,D,

triangles,X,Y,TornNodes(:,2));

68
69 % If We have Critical points then we must solve a damage

problem.

70 if sum(Crit == 1) > 0

71 % Now we set up an iterative process to solve for A

(:,2).

72 [~,T_curr] = UpdatedMesh(A(:,2),OriginalTriangles,delta

);

73 T_old = -ones(size(T_curr));

74
75 while norm(T_curr - T_old,"inf") ~= 0 && ~NotConverging

76 % Update T_old.

77 T_old = T_curr;

78
79 % Now we set up an iterative process to solve for A

(:,2).
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80 Y_curr = [A(:,1) A(:,2)];

81 Y_old = -ones(size(Y_curr));

82 % Setup adaptive time step condition.

83 Condition_Old = -1;

84 Condition_New = norm(Y_curr(:,2) - Y_old(:,2), Inf)

;

85
86 % Setup Counter

87 stuck = false;

88 SkipStep = true;

89 N = 0;

90 while abs(Condition_New) > tol || N < 5

91 % Update Y_old.

92 Y_old = Y_curr;

93
94 % Adaptive time step Method.

95 if stuck || (Condition_New/Condition_Old >= 1

&& N > 10)

96
97 % Adaptive Time Steps.

98 step = step/10;

99
100 % First case the time step is smaller than

acceptable.

101 if step < tlim(3)

102 % Break and end the program.

103 NotConverging = true;

104 break

105
106 % Second case the time step is in

acceptable range.

107 elseif step >= tlim(3)

108 t = t0 + step;

109
110 % Reset all fields.

111 U(:,2) = U(:,1);

112 V(:,2) = V(:,1);

113 A(:,2) = A(:,1);



APPENDIX B. TWO-DIMENSIONAL FINITE ELEMENT CODE 228

114
115 % Reset Torn Nodes.

116 TornNodes(:,2) = TornNodes(:,1);

117
118 % Reset BCs.

119 BC = @(x,y) Traction(x,y,t);

120 BF = @(x,y) BodyForce(x,y,t);

121
122 % Reset our Mesh appropriatley.

123 [triangles, ~] = UpdatedMesh(A(:,2),

OriginalTriangles,delta);

124 T_curr = TornNodes(:,2);

125
126 % Reset iterative process.

127 Y_curr = A;

128 Y_old = -ones(size(Y_curr));

129
130 % Keep Count.

131 Condition_New = -1;

132 T_old = T_curr;

133 StepCondition = false;

134 SkipStep = true;

135 N = 0;

136 K = 0;

137 end

138 end

139
140 % If all triangles are destroyed stop and send

a warning.

141 if isempty(triangles)

142 NotConverging = true;

143 disp(['Connectivity Matrix is now empty, at

time '...

144 num2str(t,10)])

145 break

146 end

147
148 % Now we resolve the elastic Phase;
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149 [U(:,2),V(:,2)] = ElasticPhase(g,Y_curr(:,2),C,

Rho,triangles,X,Y,BC,BF);

150
151 % Then we check if we have satisfied the

criterion.

152 Crit = CriterionCheck(g1,Y_curr(:,2),U(:,2),V

(:,2),Psi,C,G,D,triangles,X,Y,TornNodes(:,2)

);

153
154 % Solve the damage problem.

155 [Y_curr(:,2), stuck] = DamagePhase(g1,Y_curr,U,

V,Psi,C,G,D,eta,Crit,triangles,X,Y,step,tol,

TornNodes(:,2));

156
157 if ~(stuck) && ~(SkipStep)

158 % Adaptive time step Condition.

159 Condition_Old = Condition_New;

160 Condition_New = norm(Y_curr(:,2) - Y_old

(:,2), Inf);

161
162 % Update Alpha.

163 A(:,2) = Y_curr(:,2);

164 elseif SkipStep == true

165 SkipStep = false;

166 end

167
168 % Keep count of iterations.

169 N = N + 1;

170 end

171
172 if any(A(:,2).*(1 - TornNodes(:,2)) >= 1 - delta)

173 % Update our Mesh appropriatley.

174 [triangles, TornNodes(:,2)] = UpdatedMesh(A

(:,2),OriginalTriangles,delta);

175 T_curr = TornNodes(:,2);

176 end

177 K = max(K,Condition_New);

178 end
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179
180 % Adaptive time stepping

181 if StepCondition && N <= 10

182 step = 10*step;

183 if step > (tlim(2) - tlim(1))/(Nt-1)

184 % Reset the step size if convergence is

fast.

185 step = (tlim(2) - tlim(1))/(Nt-1);

186 end

187 else

188 StepCondition = true;

189 end

190 end

191
192 % Save Data

193 if (~NotConverging)

194 if t >= t_frame

195 % Save data for this time step.

196 fprintf(Horizontal_file,'%d,',U(:,2));

197 fprintf(Vertical_file,'%d,',V(:,2));

198 fprintf(Damage_file,'%d,',A(:,2));

199 fprintf(Torn_file,'%d,',TornNodes(:,2));

200 fprintf(Time_file,'%d,',t);

201 fprintf(Tol_file,'%d,',K);

202
203 % New t_frame.

204 t_frame = t_frame + (tlim(2) - tlim(1))/(Nt-1);

205 end

206
207 % Update our current damage and displacement fields.

208 A = [A(:,2) A(:,2)];

209 U = [U(:,2) U(:,2)];

210 V = [V(:,2) V(:,2)];

211 TornNodes = [TornNodes(:,2) TornNodes(:,2)];

212
213 % Stop Criterion is code is not converging.

214 else

215 break
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216 end

217
218 % Message display.

219 disp(['At time ' num2str(t,10) ' number of torn points is '

...

220 num2str(sum(TornNodes(:,1)),10) ', the max damage is '

...

221 num2str(max(A(:,2).*(1-TornNodes(:,1))),10)...

222 ' and tolerance is ' num2str(K,4)'.'])

223
224 % Update time.

225 t0 = t;

226 if sum(Crit == 1) == 0

227 t = t0 + (tlim(2) - tlim(1))/(Nt-1);

228 else

229 t = t0 + step;

230 end

231 end

232
233 if NotConverging == false

234 % Display that we are finished.

235 disp('Completed all time steps.')

236 end

237
238 % Here we close the open text files which are saved local in

this folder.

239 fclose(Horizontal_file);

240 fclose(Vertical_file);

241 fclose(Damage_file);

242 fclose(Torn_file);

243 fclose(Time_file);

244 fclose(Tol_file);

245
246 % Read in all the data as a single vector.

247 U = readmatrix('Horizontal.txt');

248 V = readmatrix('Vertical.txt');

249 A = readmatrix('Damage.txt');

250 Torn = readmatrix('Torn.txt');
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251 T = readmatrix('Time.txt');

252 Tol = readmatrix('Tolerance.txt');

253
254 % This fixes weird bug where readmatrix adds an extra entry of

NaN at the

255 % end of U and V. Very strange indeed.

256 RemainderU = rem(length(U),numel(X));

257 if RemainderU > 0

258 U(end) = [];

259 end

260 RemainderV = rem(length(V),numel(X));

261 if RemainderV > 0

262 V(end) = [];

263 end

264 RemainderA = rem(length(A),numel(X));

265 if RemainderA > 0

266 A(end) = [];

267 end

268 RemainderTorn = rem(length(Torn),numel(X));

269 if RemainderTorn > 0

270 Torn(end) = [];

271 end

272
273 % Reshape these nodes into spatial meshes, each page is a time

step.

274 Usol = reshape(U,numel(X),[]);

275 Vsol = reshape(V,numel(X),[]);

276 Asol = reshape(A,numel(X),[]);

277 Torn = reshape(Torn,numel(X),[]);

278
279 % Finally Reshape Time and Tol.

280 RemainderT = rem(length(T),size(Usol,2));

281 if RemainderT > 0

282 T(end) = [];

283 end

284 RemainderTol = rem(length(Tol),size(Usol,2));

285 if RemainderTol > 0

286 Tol(end) = [];
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287 end

288
289 % Reshape these nodes into vectors, each row is a time step.

290 T = reshape(T,[],1);

291 Tol = reshape(Tol,[],1);

292
293 end

Listing B.12: This Matlab function calculates the first and second derivatives of the degra-
dation function. It then saves the solution as a function handle that we can call upon at
any point in the code.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Calculate Partial Derivative of Degradation Function.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [g1,g2] = DegradationPartials(g)

7 syms y

8
9 g1 = str2func(['@(y)' char(diff(g(y)))]);

10
11 g2 = str2func(['@(y)' char(diff(g(y),2))]);

12
13 clear y

14 end

B.5 Elastic phase

In §5.3.4 we outline with the finite element method how to calculate the displacement
from our equation of motion (5.3a), whilst assuming that the damage phase field remains
constant. Implementing the finite element method can be a very delicate process and
difficult to debug. We implemented numerical scheme in Listing B.13 for calculating the
displacement. Doing so required a number of custom Matlab functions each for doing
very particular jobs. Firstly though, we should note that to make our code as efficient as
possible we perform all our calculations with sparse matrices. For convenience, we also
create an array at the start of this calculation of all the surface normal unit vectors at
each boundary node, by using Listing B.14. We also use inbuilt Matlab tools to create a
list of all the nodes in our system which are boundary nodes so we can correctly apply
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boundary conditions. With this information our code can begin to create a sparse matrix
by iterating through every node in the system, where each row of our sparse matrix
represents a particular node. For each row of the sparse matrix we calculate the correct
corresponding columns which represent the interaction between the current node we are
interested in and one of its neighbouring nodes in our Delaunay triangulation. We use
Listing B.15 to find each of these neighbouring nodes commonly shared triangles, thus
defining a domain for us to integrate over. To do these calculations we use our numerical
scheme in §5.3a, which tells us every column we are calculating corresponds to an integral
coefficient. Using our custom function “DisplacementMatrix”, Listing B.16, we are able to
calculate the correct integral coefficient for each matrix element.

Listing B.16 for each node and a neighbouring node takes into account all the commonly
shared triangles and then performs the necessary integral calculation over each triangle,
iteratively summing the solution. These integrals for each triangle are calculated by the
function “ElementIntegralDisplacement” which is Listing B.17. In this Listing we use a
Newtons-Cotes method for approximating all of the integrals. This method is very accurate
even with only three nodes for each integral. As the triangles are going to be very small
then the three nodes provide a great approximation. Of course if we defined our triangles
quadratically with six nodes the accuracy would increase to a much higher order. These
integrals require us to calculate the gradient of the piecewise shape functions, which we
can quickly calculate using a Matlab function, Listing B.18.

So far we have only explained how to produce the mass matrix for the numerical
scheme implemented in Listing B.13. This leaves the external loading contributions from
traction and surface forces. It should be noted though that one could easily implement
Dirichlect boundary conditions at each node instead of external loading. The external
loading contributions are calculated by the functions “SurfaceForces” and “BodyForces”.
Surface forces are calculated in Listing B.19 and the Body forces B.20 are calculated
in Listing. With all parts of the numerical scheme calculated we can finally solve a
simple linear system to gain our solution for the horizontal and vertical displacement
contributions.

Listing B.13: This Matlab function implements the numerical schemes outlined in §5.3.4,
for calculating the solutions of the displacement whilst assuming that α remains constant
everywhere. The numerical scheme implemented in this listing is a finite element scheme.
With this code we can apply a number of different external loading conditions or Dirichlect
boundary conditions.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Elastic Phase to solve the displacement problem.

4 %
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5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [U,V] = ElasticPhase(g,A,C,R,triangles,X,Y,BC,BF)

7
8 % Stiffness matrix is initially an empty (N+1)x(N+1) matrix

9 Nodes = numel(X);

10
11 % Setup Trimesh system.

12 TR = triangulation(triangles,X,Y);

13
14 % Find Boundary Points.

15 Facets = freeBoundary(TR);

16 Boundary = unique(Facets);

17
18 % Calculate the NormalVector.

19 NormalVector = BoundaryNorms(Boundary,Facets,X,Y);

20
21 % % Stop NaN.

22 % [tt,~] = find(A == 1);

23 % A(tt) = 1 - tol;

24
25 % Setup a counter for I,J,V which are the rows, cols and values

for their

26 % respective sparse matrices. Here N just progresses the rows

they are on.

27 N = 0;

28
29 I11 = zeros(10*Nodes,1);

30 J11 = zeros(10*Nodes,1);

31 V11 = zeros(10*Nodes,1);

32
33 I12 = zeros(10*Nodes,1);

34 J12 = zeros(10*Nodes,1);

35 V21 = zeros(10*Nodes,1);

36
37 I21 = zeros(10*Nodes,1);

38 J21 = zeros(10*Nodes,1);

39 V12 = zeros(10*Nodes,1);

40
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41 I22 = zeros(10*Nodes,1);

42 J22 = zeros(10*Nodes,1);

43 V22 = zeros(10*Nodes,1);

44
45 % RHS of the system representing body and surface forces, this

term incorporates

46 % the boundary conditions.

47 RHS1 = zeros(Nodes,1);

48 RHS2 = zeros(Nodes,1);

49
50 % For every grid point.

51 for j = 1:Nodes

52 % Obtain the index of the node.

53 idx_i = j;

54 % Filter out torn points from our linear FEM system.

55 if sum(sum(triangles == idx_i)) == 0

56 RHS1(idx_i) = 0;

57 RHS2(idx_i) = 0;

58
59 I11(N+1) = idx_i;

60 J11(N+1) = idx_i;

61 V11(N+1) = 1;

62
63 I22(N+1) = idx_i;

64 J22(N+1) = idx_i;

65 V22(N+1) = 1;

66
67 N = N+1;

68
69 % Now to solve the actual linear problem.

70 else

71 % Find all the triangles containing this node.

72 [tt,~] = find(triangles == idx_i);

73
74 % Now we find all the adjacent nodes connected by the

triangles.

75 idx_k = unique(triangles(tt,:));

76
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77 % Establish if this is a boundary node,

78 if any(j == Boundary)

79 % Left edge.

80 if X(idx_i) == min(X)

81 RHS1(idx_i) = 0;

82 RHS2(idx_i) = 0;

83
84 I11(N+1) = idx_i;

85 J11(N+1) = idx_i;

86 V11(N+1) = 1;

87
88 I22(N+1) = idx_i;

89 J22(N+1) = idx_i;

90 V22(N+1) = 1;

91
92 N = N+1;

93 % Right edge.

94 elseif X(idx_i) == max(X)

95 % % Dirchlect BCs

96 % RHS1(idx_i) = 0;

97 % RHS2(idx_i) = BC(X(idx_i),Y(idx_i));

98 %

99 % I11(N+1) = idx_i;

100 % J11(N+1) = idx_i;

101 % V11(N+1) = 1;

102 %

103 % I22(N+1) = idx_i;

104 % J22(N+1) = idx_i;

105 % V22(N+1) = 1;

106 %

107 % N = N+1;

108
109 S = SurfaceForces(NormalVector,Boundary,BC,X,Y,

idx_i,idx_k);

110 % B = BodyForces(R,BF,X,Y,triangles,idx_i);

111
112 RHS1(idx_i) = S(1);

113 RHS2(idx_i) = S(2);
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114 % Internal Stress.

115 for i = 1:length(idx_k)

116 idx = idx_k(i);

117
118 % Obtain the triangles that contain both

idx_i and idx

119 Domain = LocalElements(triangles,idx_i,idx)

;

120
121 % Here We generate the stiffness Matrix

122 [Q11, Q12, Q21, Q22] = DisplacementMatrix(g

,Domain,idx_i,idx,A,C,X,Y);

123
124 % Log the entries for each matrix.

125 I11(N+1) = idx_i;

126 J11(N+1) = idx;

127 V11(N+1) = Q11;

128
129 I12(N+1) = idx_i;

130 J12(N+1) = idx;

131 V12(N+1) = Q12;

132
133 I21(N+1) = idx_i;

134 J21(N+1) = idx;

135 V21(N+1) = Q21;

136
137 I22(N+1) = idx_i;

138 J22(N+1) = idx;

139 V22(N+1) = Q22;

140
141 N = N+1;

142 end

143 else

144 % Traction and Surface forces affects RHS of

the sytem.

145 S = SurfaceForces(NormalVector,Boundary,BC,X,Y,

idx_i,idx_k);

146 % B = BodyForces(R,BF,X,Y,triangles,idx_i);
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147
148 RHS1(idx_i) = S(1);

149 RHS2(idx_i) = S(2);

150 for i = 1:length(idx_k)

151 idx = idx_k(i);

152
153 % Obtain the triangles that contain both

idx_i and idx

154 Domain = LocalElements(triangles,idx_i,idx)

;

155
156 % Here We generate the stiffness Matrix

157 [Q11, Q12, Q21, Q22] = DisplacementMatrix(g

,Domain,idx_i,idx,A,C,X,Y);

158
159 % Log the entries for each matrix.

160 I11(N+1) = idx_i;

161 J11(N+1) = idx;

162 V11(N+1) = Q11;

163
164 I12(N+1) = idx_i;

165 J12(N+1) = idx;

166 V12(N+1) = Q12;

167
168 I21(N+1) = idx_i;

169 J21(N+1) = idx;

170 V21(N+1) = Q21;

171
172 I22(N+1) = idx_i;

173 J22(N+1) = idx;

174 V22(N+1) = Q22;

175
176 N = N+1;

177 end

178 end

179
180 % If it is not a boundary node then it must clearly be an

internal
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181 % node.

182 else

183 % Here we apply the body forces applied to the RHS of

the system.

184 B = BodyForces(R,BF,X,Y,triangles,idx_i);

185
186 RHS1(idx_i) = B(1);

187 RHS2(idx_i) = B(2);

188 for i = 1:length(idx_k)

189 idx = idx_k(i);

190
191 % Obtain the triangles that contain both idx_i and

idx

192 Domain = LocalElements(triangles,idx_i,idx);

193
194 % Here We generate the stiffness Matrix

195 [Q11, Q12, Q21, Q22] = DisplacementMatrix(g,Domain,

idx_i,idx,A,C,X,Y);

196
197 % Log the correct indice values for each matrix.

198 I11(N+1) = idx_i;

199 J11(N+1) = idx;

200 V11(N+1) = Q11;

201
202 I12(N+1) = idx_i;

203 J12(N+1) = idx;

204 V12(N+1) = Q12;

205
206 I21(N+1) = idx_i;

207 J21(N+1) = idx;

208 V21(N+1) = Q21;

209
210 I22(N+1) = idx_i;

211 J22(N+1) = idx;

212 V22(N+1) = Q22;

213
214 N = N+1;

215 end
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216 end

217 end

218 end

219
220 % Delete all empty entries;

221 [tt,~] = find(V11 == 0);

222 I11(tt) = [];

223 J11(tt) = [];

224 V11(tt) = [];

225
226 [tt,~] = find(V12 == 0);

227 I12(tt) = [];

228 J12(tt) = [];

229 V12(tt) = [];

230
231 [tt,~] = find(V21 == 0);

232 I21(tt) = [];

233 J21(tt) = [];

234 V21(tt) = [];

235
236 [tt,~] = find(V22 == 0);

237 I22(tt) = [];

238 J22(tt) = [];

239 V22(tt) = [];

240
241 % Create the correct matrices.

242 K11 = sparse(I11,J11,V11,Nodes,Nodes);

243 K12 = sparse(I12,J12,V12,Nodes,Nodes);

244 K21 = sparse(I21,J21,V21,Nodes,Nodes);

245 K22 = sparse(I22,J22,V22,Nodes,Nodes);

246
247 % Here we create the stiffness Matrix, exploit symmetry to

lessen calculation.

248 K = [K11 K12; K21 K22];

249
250 % Create our RHS of the linear system.

251 RHS = [RHS1; RHS2];

252



APPENDIX B. TWO-DIMENSIONAL FINITE ELEMENT CODE 242

253 % Solve the linear system.

254 Solution = K\RHS;

255
256 % Solution Matrix Space.

257 U = Solution(1:Nodes);

258 V = Solution(Nodes+1:end);

259
260 end

Listing B.14: This Matlab functions calculates all the boundary nomal unit vectors. To do
this we input all the boundary nodes, then loop through every single boundary node. We
can find both the neighbouring nodes, using this geometric information we can take the
average of the normalised path vectors through this neighbourhood of nodes. Performing
an anticlockwise rotation of this normal vector allows us to find, a perpendicular, unit
normal vector at each boundary node.

1 function NormalVector = BoundaryNorms(Boundary,Facets,X,Y)

2
3 % Number of nodes.

4 N = length(Boundary);

5
6 % Our Norm Matrix, column 1 is the x component and column 2 is

7 % the y component.

8 Norms = zeros(N,2);

9
10 % Generate ID Vector.

11 ID = Boundary;

12
13 for i = 1:N

14 [rows,~] = find(Facets == Boundary(i));

15 A = Facets(rows(1),:);

16 B = Facets(rows(2),:);

17
18 % Calculate each FacetNorm.

19 FacetNorm1 = ([X(A(2)) Y(A(2))] - [X(A(1)) Y(A(1))])'/norm

([X(A(2)) Y(A(2))] - [X(A(1)) Y(A(1))]);

20 FacetNorm2 = ([X(B(2)) Y(B(2))] - [X(B(1)) Y(B(1))])'/norm

([X(B(2)) Y(B(2))] - [X(B(1)) Y(B(1))]);

21
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22 % Take the average and Rotate.

23 Norms(i,:) = 0.5*[0 1;-1 0]*(FacetNorm1 + FacetNorm2);

24 end

25
26 % Now we combine the norms with the IDs.

27 NormalVector = [Norms ID];

28
29 end

Listing B.15: This Matlab function calculates all the commonly shared triangles two
neighbouring nodes share. To do this all we require is the connectivity matrix and the
node index for each node. This function is used many times throughout the code.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function finds the triangles that contain both nodes,

essentially

4 % finding the domain we will define our integrals and basis

functions over.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7
8 function [Domain] = LocalElements(triangles,idx_i,idx)

9
10 [rows1, ~] = find(triangles == idx);

11 Domain = triangles(sort(rows1),:);

12 [rows2, ~] = find(Domain == idx_i);

13 Domain = Domain(sort(rows2),:);

14
15 end

Listing B.16: This Matlab function calculates the integral coefficients for each of the
elements in the mass matrix. We calculate each integral over a single triangle and then
sum the solution up over the fintie element.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we calculate the value at K(i,j) for the displacement

stiffnes

4 % matrix. To do this we require the local elements, index i,j
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and the

5 % geometry X,Y,

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function [K11,K12,K21,K22] = DisplacementMatrix(g,Domain,idx_i,

idx,A,C,X,Y)

9
10 % Number of elements we have to calculate over.

11 loop = size(Domain,1);

12
13 % Let K = 0, to reset the memory.

14 K11 = 0;

15 K12 = 0;

16 K21 = 0;

17 K22 = 0;

18
19 % Loop to calculate

20 for i = 1:loop

21
22 Triangle = Domain(i,:);

23
24 % Calculate each integral over

25 [I11,I12,I21,I22] = ElementIntegralDisplacement(g,Triangle,

idx_i,idx,A,C,X,Y);

26
27 % Calculate the integral over every triangle.

28 K11 = I11 + K11;

29 K12 = I12 + K12;

30 K21 = I21 + K21;

31 K22 = I22 + K22;

32 end

33
34 end
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Listing B.17: This matlab function calculates integrals over each triangle in our system
using the Newtons-Cotes method. All this requires is that over our triangle we sum up
the product of the elasticity elements and the gradient of the piecewise shape functions.
Then take the average by dividing by three the number of vertices on the triangles and
multiplying by the area of said triangle.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Calculate the integrals over each individual element for the

4 % displacement.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function [I11,I12,I21,I22] = ElementIntegralDisplacement(g,

Triangle,idx_i,idx,A,C,X,Y)

8
9 % Define the vertices of the triangle.

10 x1 = [X(Triangle(1)) Y(Triangle(1))];

11 x2 = [X(Triangle(2)) Y(Triangle(2))];

12 x3 = [X(Triangle(3)) Y(Triangle(3))];

13
14 % Calculate the area over the element.

15 TriangleArea = 0.5*det([x1 1; x2 1; x3 1]);

16
17 % Calculate the Basis functions for idx and idx_i.

18 Grad_i = GradPhi(Triangle,idx_i,X,Y);

19 Grad_j = GradPhi(Triangle,idx,X,Y);

20
21 % Setup sums.

22 C11 = 0;

23 C12 = 0;

24 C13 = 0;

25 C22 = 0;

26 C23 = 0;

27 C33 = 0;

28
29 % Sum of Coefficients at the vertices.

30 for i = 1:length(Triangle)

31 % Calculate the elastic tensor.

32 E = C(X(Triangle(i)),Y(Triangle(i)));
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33
34 % Calculate the sum of each component.

35 C11 = C11 + E(1,1)*g(A(Triangle(i)));

36 C12 = C12 + E(1,2)*g(A(Triangle(i)));

37 C13 = C13 + E(1,3)*g(A(Triangle(i)));

38 C22 = C22 + E(2,2)*g(A(Triangle(i)));

39 C23 = C23 + E(2,3)*g(A(Triangle(i)));

40 C33 = C33 + E(3,3)*g(A(Triangle(i)));

41 end

42
43 % Calculate the integral volume, newton-cotes method.

44 I11 = (1/3)*(C11*Grad_i(1)*Grad_j(1) + C13*Grad_i(1)*Grad_j(2)

...

45 + C13*Grad_i(2)*Grad_j(1) + C33*Grad_i(2)*Grad_j(2))*

TriangleArea;

46
47 I12 = (1/3)*(C13*Grad_i(1)*Grad_j(1) + C12*Grad_i(1)*Grad_j(2)

...

48 + C33*Grad_i(2)*Grad_j(1) + C23*Grad_i(2)*Grad_j(2))*

TriangleArea;

49
50 I21 = (1/3)*(C13*Grad_i(1)*Grad_j(1) + C33*Grad_i(1)*Grad_j(2)

...

51 + C12*Grad_i(2)*Grad_j(1) + C23*Grad_i(2)*Grad_j(2))*

TriangleArea;

52
53 I22 = (1/3)*(C33*Grad_i(1)*Grad_j(1) + C23*Grad_i(1)*Grad_j(2)

...

54 + C23*Grad_i(2)*Grad_j(1) + C22*Grad_i(2)*Grad_j(2))*

TriangleArea;

55
56 end

Listing B.18: This Matlab function calculates the gradient of each piecewise shape func-
tion. To do this we take the triangle we are interested in with the vertex we want to
calculate the derivative at. Then by using the positions of nodes we can directly calculate
the derivate of the basis function.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %

3 % Calculates the Gradient of our basis function at each point.

x1 is where

4 % the basis equals 1 and 0 at x2 and x3. This function is

linear. We solve

5 % this by using a transformation from a reference triangle.

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function Grad_i = GradPhi(Triangle,idx_i,X,Y)

9
10 % This is a really annoying algorithim we set up to designate

x1, x2 and

11 % x3.

12 loop = length(Triangle);

13
14 x2NotExists = true;

15 x3NotExists = true;

16
17 for i = 1:loop

18 if Triangle(i) == idx_i

19 x1 = [X(Triangle(i)) Y(Triangle(i))];

20 elseif (x2NotExists)

21 x2 = [X(Triangle(i)) Y(Triangle(i))];

22 x2NotExists = false;

23 elseif (x3NotExists)

24 x3 = [X(Triangle(i)) Y(Triangle(i))];

25 x3NotExists = false;

26 end

27 end

28
29 % Now we do some very simple linear algebra to find the

gradient of phi.

30 % At is a transposed matrix.

31 At = [x2-x1; x3-x1];

32
33 Grad_i = -At\[1;1];

34
35 end
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Listing B.19: This Matlab function calculates the contribution of surface forces for ex-
ternal loading as defined in (5.32) at each boundary node given the surface stress tensor,
node position and shape of the local boundary. To do this we use our boundary condi-
tion, the normal vector and the length of the path integral to perform a Newton-Cotes
approximation of this integral.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function calculates the contribution of surface forces.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function S = SurfaceForces(NormalVector,Boundary,BC,X,Y,idx_i,

idx_k)

7
8 % Calculate the unit Norm and traction vector.

9 Norm = NormalVector(NormalVector(:,3) == idx_i,1:2);

10 P = (BC(X(idx_i),Y(idx_i))*Norm')';

11
12 % Neighbouring Nodes

13 Neighbours = intersect(idx_k,Boundary);

14 idx_remove = Neighbours == idx_i;

15 Neighbours(idx_remove) = [];

16
17 % Find position of nodes making up line element.

18 x1 = [X(idx_i) Y(idx_i)];

19 x2 = [X(Neighbours(1)) Y(Neighbours(1))];

20 x3 = [X(Neighbours(2)) Y(Neighbours(2))];

21
22 % Calculate domain length.

23 ds = norm(x1-x2) + norm(x3-x1);

24
25 % Calculate surface force.

26 S = P*ds/3;

27
28 end
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Listing B.20: This Matlab function calculates the contribution of body forces to external
loading as defined in (5.32). We can calculate this contribution with a very simple Newton-
Cotes approximation. By multiplying the area of the finite element by the force and density
of the node at the centre then taking an average we find our approximation.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % This function calculates the contribution of the body forces.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function B = BodyForces(R,BF,X,Y,triangles,idx_i)

7
8 % First we calculate the total area of the element, by summing

up the area

9 % of all the triangles which form it.

10 [tt,~] = find(triangles == idx_i);

11 TriangleArea = 0;

12
13 for i = 1:length(tt)

14 % Define a triangle.

15
16 Triangle = triangles(tt(i),:);

17 % Define the vertices of the triangle.

18 x1 = [X(Triangle(1)) Y(Triangle(1))];

19 x2 = [X(Triangle(2)) Y(Triangle(2))];

20 x3 = [X(Triangle(3)) Y(Triangle(3))];

21
22 % Calculate the area over the element.

23 TriangleArea = TriangleArea + 0.5*det([x1 1; x2 1; x3 1]);

24 end

25
26 % Finally we define the Body force.

27 B = (1/3)*TriangleArea*R(X(idx_i),Y(idx_i))*BF(X(idx_i),Y(idx_i

));

28
29 end
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B.6 Damage criterion

In Chapter 4 and 5 we introduced the idea of creating a “Crit” function which is our
criterion field. In §5.3.5 we explained that the criterion field tracks all the points in the
reference domain for the current iterative step which do not satisfy the damage criterion.
As defined by (5.35) at every point where Crit(X) = 1 we have not satisfied the damage
criterion and expect damage evolution to take place. Whereas, at every point Crit(X) = 0

we have that no damage evolution is taking place. However, to ensure that the damage
phase field can diffuse properly throughout the reference domain we also define the points
where Crit(X) = 2 which are all the nodes neighbouring nodes that are experiencing
damage evolution. To do this we use our Matlab function ”CriterionCheck” which can
be seen in Listing B.21. The overall role of the criterion field is to inform our numerical
scheme for calculating the damage phase field.

To calculate the criterion field we must begin by evaluating the damage criterion (5.4)
at every node in our mesh. This is done with our Matlab function ”DamageEquation”
which directly calculates the damage criterion (5.4), this can be seen in Listing B.22. This
calculation is performed very directly, the first thing we do is calculate the driving force
term which accounts for the energy per unit volume driving damage growth. We calculate
this using the Matlab function “Driving force” which can be seen in Listing B.23. This
requires calculating the gradients of strain and then performing the double dot product
against the elasticity tensor twice. We can use the gradients of displacement to calculate
the Jacobian at every point in our mesh.

As mentioned we calculate gradients whilst calculating the Driving force in our damage
criterion, we also need to calculate the flux of the damage phase field throughout our
reference domain. Calculating gradients of any variable at any point in a triangular mesh
is not as simple as finite differences on a uniform mesh. We discussed in §5.3.5 how we
can use a two dimensional triangular mesh to calculate the triangular derivative and then
perform a transformation to find the regular derivatives. To do these calculations we make
use of the Matlab function “TriGradient” as can be seen in Listing B.24. When calculating
the directional derivatives we use first order finite difference methods.

Listing B.21: This Matlab function calculates the Criterion field (5.35) at every point in
our mesh. This is done by calculating the damage criterion (5.4) at each point using the
code in Listing B.22. Then we assign Crit = 1 at every point where the damage criterion
is not satisfied and the Jacobian is equal to or greater than one. We automatically assign
every other point to be Crit = 0. Then we assign every node that is Crit = 0 but close to
any point Crit = 1 to be Crit = 2 so that we know this point must account for diffusion
of the damage phase field.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %

3 % Check which points are in the damage phase and need

recalculated.

4 % Criterion == 0 means no damage growth.

5 % Criterion == 1 means damage growth.

6 % Criterion == 2 means damage diffusion.

7 %

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 function Crit = CriterionCheck(g1,A,U,V,Psi,C,G,D,triangles,X,Y

,TornNodes)

10
11 % Calculate the damage equation to test the criterion.

12 [F,J] = DamageEquation(g1,A,U,V,Psi,C,G,D,triangles,X,Y);

13
14 % Finds the exact points where the equation is not satisfied.

15 Crit = (0*(F<0) + 1*(F>=0)).*(1*(TornNodes ~= 1) + 0*(

TornNodes == 1)).*(0*(J<1) + 1*(J>=1));

16
17 % Find all the 1st and 2nd neighbours of each Crit point.

18 if sum(Crit) > 0

19
20 % Find all the critical points.

21 Q = find(Crit == 1);

22
23 % Determine all neighbouring points in the diffusion scale.

24 % That are not a critical point.

25 for i = 1:length(Q)

26 k = Q(i);

27 for j = 1:length(X)

28 if Crit(j) == 0

29 if norm([X(k) Y(k)] - [X(j) Y(j)]) <= 100*max(

max(D(X(k),Y(k))))

30 Crit(j) = 2;

31 end

32 elseif Crit(j) == 1

33 Crit(j) = 1;

34 end

35 end
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36 end

37 end

38
39 % Remove all compressed points.

40 Crit = Crit.*(1*(TornNodes ~= 1) + 0*(TornNodes == 1)).*(0*(J

<1) + 1*(J>=1));

41
42 end

Listing B.22: This Matlab function calculates the damage criterion (5.4) at every point in
the mesh. It should be noted this Listing is used multiple times in the code as it represents
the right hand side of the damage evolution equation (5.3b).

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Calculate the RHS of the damage equation.

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [F,J] = DamageEquation(g1,A,U,V,Psi,C,G,D,triangles,X,

Y)

7
8 % Total Number of Nodes.

9 Nodes = numel(X);

10
11 % Here we calculate the driving force of the damage.

12 [Q,J] = DrivingForce(U,V,Psi,C,triangles,X,Y);

13
14 % Empty Matrices that will hold the X and Y components of D*

Grad(a) on each

15 % page respectively.

16 P1 = zeros(Nodes,1);

17 P2 = zeros(Nodes,1);

18 H = zeros(Nodes,1);

19 K = zeros(Nodes,1);

20
21 % First Derivative of Alpha.

22 [ax, ay] = TriGradient(A,triangles,X,Y);

23
24 for i = 1:Nodes
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25 Diffusion = D(X(i),Y(i));

26 P1(i) = Diffusion(1,:)*[ax(i) ; ay(i)];

27 P2(i) = Diffusion(2,:)*[ax(i) ; ay(i)];

28 H(i) = g1(A(i));

29 K(i) = G(X(i),Y(i));

30 end

31
32 % These are the X and Y components of the divergence term.

33 [DivergenceX,~] = TriGradient(P1,triangles,X,Y);

34 [~,DivergenceY] = TriGradient(P2,triangles,X,Y);

35
36 % Damage Equation.

37 F = -H.*Q - K.*A + DivergenceX + DivergenceY;

38
39 end

Listing B.23: This Matlab function calculates the driving force behind the damage evo-
lution in our material. To do this we need to calculate the linear elastic energy potentil
minus the threshold at every point. This requires calculating the displacement gradients
at every point which we can use to caulcate the Jacobian at every point.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Calculate the linear elastic energy minus the threshold i.e.

the driving

4 % force.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function [Q,J] = DrivingForce(U,V,Psi,C,triangles,X,Y)

8
9 % Reset Q the driving force

10 Q = zeros(numel(X),1);

11
12 % Reset J the determinant of the Gradient function.

13 J = zeros(numel(X),1);

14
15 % Symetric Gradient Matrix.

16 [ux, uy] = TriGradient(U,triangles,X,Y);

17 [vx, vy] = TriGradient(V,triangles,X,Y);
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18
19 for i = 1:numel(X)

20 % Infintisemal Strain

21 Chi = [ux(i) 0.5*(uy(i) + vx(i)); 0.5*(uy(i) + vx(i)) vy(i

)];

22
23 % Elastic Tensor.

24 E = C(X(i),Y(i));

25
26 Q(i) = 0.5*(E(1,1)*Chi(1,1)^2 + 4*E(3,3)*Chi(1,2)^2 + E

(2,2)*Chi(2,2)^2)...

27 + Chi(1,1)*E(1,2)*Chi(2,2) + 2*Chi(1,2)*E(2,3)*Chi(2,2)

+ 2*Chi(1,1)*E(1,3)*Chi(1,2)...

28 - Psi(X(i),Y(i));

29
30 % Displacement matrix.

31 A = [1+ux(i), uy(i); vx(i), 1+vy(i)];

32
33 % Jacobian.

34 J(i) = det(A);

35 end

36
37 end

Listing B.24: This Matlab function is used to calculate the horizontal and vertical gradients
at each node of our triangular mesh. To do this at each node we use all the triangles that
node is contained within. We can calculate for each triangle a pair of directional derivatives
connecting the other vertices to our node. Then we use a simple transformation (5.37) to
generate the horizontal and vertical derivatives at the node. We take the average of all of
the results from each triangle.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Calculate the gradient at the vertices of triangular elements

in our mesh

4 % system.

5 %

6 % To do this we must calculate the triangular derivative from

each triangle
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7 % in the mesh and then assign the average to that point.

8 %

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 function [Fx, Fy] = TriGradient(F,triangles,X,Y)

11
12 % Number of nodes that exist is the size of Fx and Fy

respectively.

13 Nodes = numel(F);

14
15 Fx = zeros(Nodes,1);

16 Fy = zeros(Nodes,1);

17
18 % We need to go Node by node so we do this with a loop.

19 for i = 1:Nodes

20
21 % Firstly we identify a triangular element associated

with the node.

22 [tt,~] = find(triangles == i);

23
24 % Filter between points that exist and are destroyed.

25 if isempty(tt)

26 continue

27 else

28 % Reset derivative sums.

29 Dx = 0;

30 Dy = 0;

31
32 for k = 1:length(tt)

33 % Current triangle.

34 Triangle = triangles(tt(k),:);

35
36 % Short algorithim to label the vertices of the

triangle.

37 x1NotExists = true;

38 x2NotExists = true;

39
40 for j = 1:length(Triangle)

41 if Triangle(j) == i
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42 x0 = [X(Triangle(j)), Y(Triangle(j))];

43 f0 = F(Triangle(j));

44 elseif (x1NotExists)

45 x1 = [X(Triangle(j)), Y(Triangle(j))];

46 f1 = F(Triangle(j));

47 x1NotExists = false;

48 elseif (x2NotExists)

49 x2 = [X(Triangle(j)), Y(Triangle(j))];

50 f2 = F(Triangle(j));

51 x2NotExists = false;

52 end

53 end

54
55 % Now we create a linear system relating the

directional derivative to the euclidean

derivative.

56 B = [(x1 - x0); (x2 - x0)];

57
58 % The right hand side represents the

directional derivative.

59 C = [(f1 - f0); (f2 - f0)];

60
61 % Now we can calculate the euclidean

derivatives.

62 Derivatives = B\C;

63
64 % Then we seperate the x and y derivatives into

our solutions.

65 Dx = Dx + Derivatives(1);

66 Dy = Dy + Derivatives(2);

67 end

68 % Take average of each triangle to calculate the

derivative.

69 Fx(i) = Dx/length(tt);

70 Fy(i) = Dy/length(tt);

71 end

72 end

73 end
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B.7 Damage phase

In §5.3.6 we explained how to calculate the damage phase field using the finite element
method. We implemented this method of calculating the damage phase field in code, which
can be seen in Listing B.25. The code is essentially implementing an iterative method for
solving a Crank-Nicholson Galerkin method. To make the iterative method simpler we
are assuming here that the displacement is fixed in place and we are only solving for the
damage phase field. In §5.3.6 we outline the iterative scheme that we must calculate. To
do this we need to construct a number of matrices (5.60) and vectors (5.55) before we can
calculate a new solution for α. Using this solution to update our iterative method we can
calculate another solution, and repeat the process until our solution for α converges to a
desired tolerance. Importantly, this is done whilst using the criterion field and the torn
nodes field to inform us on how each node is calculated.

Constructing all the necessary matrices (5.60) can be difficult. So we devised three
Matlab functions to do the job for us. The first of these is the function “DamageMatrix”
which can be found in Listing B.29. We use this function to calculate the matrix (5.60a) in
our iterative scheme, which essentially forms the mass matrix of (5.59). The next function
is “RightHandSide2” which can be found in Listing B.26. This function is used to calculate
the matrices (5.60b) and (5.60c) on the right hand side of our linear system (5.59). We
also needed to create the function “RightHandSide” to calculate (5.60d), the final matrix,
on the right hand side of (5.59). The code for this can be found in Listing B.28.

All of the matrices in the linear system (5.59) have integral coefficients for each of
their elements. So we created the Matlab function “InnerProduct” in Listing B.27. This
function calculates an integral using the newtons cotes method the accuracy of which
increases as the triangular elements get smaller. Notice that we call on this function in
Listings (5.60b), (5.60c) and (5.60d).

For the left hand side of the linear system (5.59) we use two custom functions. The
first is “LeftHandSide” which can be found in Listing B.30. The second is “LeftHandSide2”
which can be found in Listing B.31. Both of which use Newtons-Cotes method to calculate
the integral coefficients for each element in the matrix (5.60a). We use the function
“LeftHandSide” for all the points where Crit(X) = 1 and the function “LeftHandSide2” for
all the points Crit(X) = 2. Both of these functions also use the Newtons-Cotes method
to calculate the necessary integrals. At all the points where the we have Torn(X) = 1 or
Crit(X) = 0 we are sure to set up our linear system such that no damage evolution takes
place.
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Listing B.25: This Matlab function takes the current solution for the displacement and
all the other relevant model parameters to calculate the solution for the damage phase
field at each time step. To do this we implement the iterative shceme laid out in §5.3.6.
The iterative scheme solves a non-linear Crank-Nicholson style problem, using the finite
element method.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we use an iterartive method to solve a non-linear crank

nicholson

4 % Galerkin Method. Refer to Chapter 5 of my thesis.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function [Alpha, stuck] = DamagePhase(g1,A,U,V,Psi,C,G,D,eta,

Crit,triangles,X,Y,step,tol,TornNodes)

8
9 % Tolerance for newtons method and constant.

10 tol = min(max(tol*1e-2,1e-12),1e-6);

11 r = zeros([size(X)]);

12 N = 0;

13 stuck = false;

14
15 % Generate r = 2*eta/timestep.

16 for j = 1:numel(X)

17 r(j) = (2*eta(X(j),Y(j)))/step;

18 end

19
20 % Here we are iteratively going to calculate A(:,2) to do this

we represent

21 % Y_curr and Y_old as the iterations of A(:,2).

22 Y_curr = A(:,2);

23 Y_old = -ones([size(A(:,2))]);

24
25 % Calculate the damage equation approximation for the previous

time step.

26 [F,~] = DamageEquation(g1,A(:,1),U(:,1),V(:,1),Psi,C,G,D,

triangles,X,Y);

27 F1 = RightHandSide2(ones(length(F),1),ones(length(F),1),

triangles,X,Y);



APPENDIX B. TWO-DIMENSIONAL FINITE ELEMENT CODE 259

28
29 % Next term on the right hand side.

30 F2 = RightHandSide(r,Crit,triangles,X,Y);

31
32 % Last right hand side term dependent on the most recent

displacement.

33 Q = DrivingForce(U(:,2),V(:,2),Psi,C,triangles,X,Y);

34 F3 = RightHandSide2(Q.*(Crit == 1),Crit,triangles,X,Y);

35
36 % Create the Damage Matrix this never changes.

37 J = DamageMatrix(r,G,D,Crit,triangles,X,Y);

38
39 % Limit for ensuring that max alpha is equal to or below one.

40 Aold = A(:,1);

41 f1 = F1;

42 f2 = F2;

43 f3 = F3;

44 j = J;

45
46 % Restate the problem for points where alpha = 1.

47 if any(TornNodes)

48 % First delete all the relevant rows.

49 [M,~] = find(TornNodes);

50 f1(M,:) = 0;

51 f2(M,:) = 0;

52 f3(M,:) = 0;

53 j(M,:) = 0;

54 Aold(M) = 1;

55
56 % Next change the indicies.

57 K = sub2ind(size(j),M,M);

58 j(K) = 1;

59 f2(K) = 1;

60 end

61
62 while norm(Y_curr - Y_old,Inf) > tol

63 % Convergence problem.

64 if N > 100
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65 stuck = true;

66 Alpha = A(:,1);

67 return

68 end

69
70 % Update iteration.

71 Y_old = Y_curr;

72
73 % Create the terms dependent on the iteration.

74 g = DegradationApproximation(g1,Y_old);

75
76 % Update our solution.

77 Y_curr = j\(f1*max(F,0) + f2*Aold - f3*g);

78
79 % Irreversibility.

80 Y_curr = min(max(Y_curr,Aold),1);

81
82 N = N + 1;

83 end

84
85 % Final solution.

86 Alpha = Y_curr;

87
88 end

Listing B.26: This Matlab function is used to calculate the elements of matrices (5.60b)
and (5.60c). We defined these matrices in §5.3.6 they are used to formulate our iterative
scheme (5.59). All the elements in the matrices are integrals and we calculate them using
the Newtons-Cotes method. However, we only do this for nodes that have Crit(X) = 1

otherwsie we set up our matrices such that no damage evolution takes place.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we create the matrix on the right hand side of the

damage phase for

4 % iteration method RHS = integral of ( Function X Phi_i X Phi_j

).

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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7 function RHS = RightHandSide2(Z,Crit,triangles,X,Y)

8
9 % Number of Nodes in the system.

10 Nodes = numel(X);

11
12 % Setup a counter for I,J,V which are the rows, cols and values

for their

13 % respective sparse matrices.

14 I = zeros(10*Nodes,1);

15 J = zeros(10*Nodes,1);

16 V = zeros(10*Nodes,1);

17
18 % Here N just progresses the rows they are on.

19 N = 0;

20
21 % Loop to calculate

22 for i = 1:Nodes

23 idx_i = i;

24 if Crit(idx_i) == 1

25 % Find all the triangles containing this node.

26 [tt,~] = find(triangles == idx_i);

27
28 % Now we find all the adjacent nodes connected by the

triangles.

29 idx_k = unique(triangles(tt,:));

30 for j = 1:length(idx_k)

31 % j node.

32 idx_j = idx_k(j);

33
34 % Obtain the triangles that contain both idx_i and

idx

35 Domain = LocalElements(triangles,idx_i,idx_j);

36
37 % Calculate the corresponding point in the damage

matrix at

38 % i,j.

39 Q = InnerProduct(Domain,idx_i,idx_j,Z,X,Y);

40
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41 % Setup Sparse Matrix.

42 I(N+1) = idx_i;

43 J(N+1) = idx_j;

44 V(N+1) = Q;

45
46 % Update the counter.

47 N = N + 1;

48 end

49 end

50 end

51
52 % Delete all empty entries.

53 [tt,~] = find(V == 0);

54 I(tt) = [];

55 J(tt) = [];

56 V(tt) = [];

57
58 % Create our sparse system.

59 RHS= sparse(I,J,V,Nodes,Nodes);

60
61 end

Listing B.27: This Matlab function is used to calculate the integrals that formulate the
matrices being calculated in Listing B.26. We do this using a Newtons-Cotes method
which requires us to calculate the area of each triangular element and take the average
of each node contribution. Summing up the contribution from each triangle in the finite
element gives us our full approximate solution.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we calculate the value at Q(i,j) for the damage matrix

on the Left

4 % hand side for our iterative damage method.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function Q = InnerProduct(Domain,idx_i,idx_j,Z,X,Y)

8
9 % Number of elements we have to calculate over.

10 loop = size(Domain,1);
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11
12 % Let Q = 0, to reset the memory.

13 Q = 0;

14
15 % Loop to calculate

16 for i = 1:loop

17
18 Triangle = Domain(i,:);

19
20 % Define the vertices of the triangle.

21 x1 = [X(Triangle(1)) Y(Triangle(1))];

22 x2 = [X(Triangle(2)) Y(Triangle(2))];

23 x3 = [X(Triangle(3)) Y(Triangle(3))];

24
25 % Calculate the area over the element.

26 TriangleArea = 0.5*det([ x1 1; x2 1; x3 1]);

27
28 % Centroid of the element.

29 x = (x1 + x2 + x3)/3;

30
31 % Calculate the Basis functions for idx and idx_i.

32 Phi_i = Phi(Triangle,idx_i,X,Y,x);

33 Phi_j = Phi(Triangle,idx_j,X,Y,x);

34
35 % Averages.

36 F = sum(Z(Triangle))/3;

37
38 % Calculate the integral volume, newton-cotes method.

39 I = F*Phi_i*Phi_j*TriangleArea;

40
41 % Calculate the integral over every triangle.

42 Q = I + Q;

43 end

44
45 end
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Listing B.28: This Matlab function is used to calculate the elements of matrix (B.29). We
defined this matrix in §5.3.6 and it is used to formulate our iterative scheme (5.59). All
the elements in the matrix are integrals and we calculate them using the Newtons-Cotes
method. However, we only do this for nodes that have Crit(X) = 1 otherwsie we set up
our matrix such that no damage evolution takes place.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we create the matrix on the right hand side of the

damage phase for

4 % iteration method RHS = integral of ( Function X Phi_i X Phi_j

).

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function RHS = RightHandSide(Z,Crit,triangles,X,Y)

8
9 % Number of Nodes in the system.

10 Nodes = numel(X);

11
12 % Setup a counter for I,J,V which are the rows, cols and values

for their

13 % respective sparse matrices.

14 I = zeros(10*Nodes,1);

15 J = zeros(10*Nodes,1);

16 V = zeros(10*Nodes,1);

17
18 % Here N just progresses the rows they are on.

19 N = 0;

20
21 % Loop to calculate

22 for i = 1:Nodes

23 idx_i = i;

24 if Crit(idx_i) == 1

25 % Find all the triangles containing this node.

26 [tt,~] = find(triangles == idx_i);

27
28 % Now we find all the adjacent nodes connected by the

triangles.

29 idx_k = unique(triangles(tt,:));
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30 for j = 1:length(idx_k)

31 % j node.

32 idx_j = idx_k(j);

33
34 % Obtain the triangles that contain both idx_i and

idx

35 Domain = LocalElements(triangles,idx_i,idx_j);

36
37 % Calculate the corresponding point in the damage

matrix at

38 % i,j.

39 Q = InnerProduct(Domain,idx_i,idx_j,Z,X,Y);

40
41 % Setup Sparse Matrix.

42 I(N+1) = idx_i;

43 J(N+1) = idx_j;

44 V(N+1) = Q;

45
46 % Update the counter.

47 N = N + 1;

48 end

49 elseif Crit(idx_i) == 0

50 % Setup Sparse Matrix.

51 I(N+1) = idx_i;

52 J(N+1) = idx_i;

53 V(N+1) = 1;

54
55 % Update the counter.

56 N = N + 1;

57 end

58 end

59
60 % Delete all empty entries.

61 [tt,~] = find(V == 0);

62 I(tt) = [];

63 J(tt) = [];

64 V(tt) = [];

65
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66 % Create our sparse system.

67 RHS= sparse(I,J,V,Nodes,Nodes);

68
69 end

Listing B.29: This Matlab function is used to calculate the elements of matrix (5.60a). We
defined this matrix in §5.3.6 and it is used to formulate our iterative scheme (5.59). All
the elements in the matrix are integrals and we calculate them using the Newtons-Cotes
method. However, we only do this for nodes that have Crit(X) = 1 otherwsie we set up
our matrix such that no damage evolution takes place. Unless we have Crit(X) = 2 then
we set up the matrix so it accounts for damage diffusion.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we calculate the value of J(i,j) the damage matrix for

the right

4 % hand side at the nodes (idx_i,idx_j).

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function DamageMatrix = DamageMatrix(r,G,D,Crit,triangles,X,Y)

8
9 % Number of Nodes in the system.

10 Nodes = size(X,1)*size(X,2);

11
12 % Setup a counter for I,J,V which are the rows, cols and values

for their

13 % respective sparse matrices.

14 I = zeros(10*Nodes,1);

15 J = zeros(10*Nodes,1);

16 V = zeros(10*Nodes,1);

17
18 % Here N just progresses the rows they are on.

19 N = 0;

20
21 % Loop to calculate

22 for i = 1:Nodes

23 idx_i = i;

24 if Crit(idx_i) == 1

25 % Find all the triangles containing this node.
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26 [tt,~] = find(triangles == idx_i);

27
28 % Now we find all the adjacent nodes connected by the

triangles.

29 idx_k = unique(triangles(tt,:));

30 for j = 1:length(idx_k)

31 % j node.

32 idx_j = idx_k(j);

33
34 % Obtain the triangles that contain both idx_i and

idx

35 Domain = LocalElements(triangles,idx_i,idx_j);

36
37 % Calculate the corresponding point in the damage

matrix at

38 % i,j.

39 Q = LeftHandSide(Domain,idx_i,idx_j,r,G,D,X,Y);

40
41 % Setup Sparse Matrix.

42 I(N+1) = idx_i;

43 J(N+1) = idx_j;

44 V(N+1) = Q;

45
46 % Update the counter.

47 N = N + 1;

48 end

49 elseif Crit(idx_i) == 2

50 % Find all the triangles containing this node.

51 [tt,~] = find(triangles == idx_i);

52
53 % Now we find all the adjacent nodes connected by the

triangles.

54 idx_k = unique(triangles(tt,:));

55 for j = 1:length(idx_k)

56 % j node.

57 idx_j = idx_k(j);

58
59 % Obtain the triangles that contain both idx_i and



APPENDIX B. TWO-DIMENSIONAL FINITE ELEMENT CODE 268

idx

60 Domain = LocalElements(triangles,idx_i,idx_j);

61
62 % Calculate the corresponding point in the damage

matrix at

63 % i,j.

64 Q = LeftHandSide2(Domain,idx_i,idx_j,G,D,X,Y);

65
66 % Setup Sparse Matrix.

67 I(N+1) = idx_i;

68 J(N+1) = idx_j;

69 V(N+1) = Q;

70
71 % Update the counter.

72 N = N + 1;

73 end

74 elseif Crit(idx_i) == 0

75 % Setup Sparse Matrix.

76 I(N+1) = idx_i;

77 J(N+1) = idx_i;

78 V(N+1) = 1;

79
80 % Update the counter.

81 N = N + 1;

82 end

83 end

84
85 % Delete all empty entries.

86 [tt,~] = find(V == 0);

87 I(tt) = [];

88 J(tt) = [];

89 V(tt) = [];

90
91 % Create our sparse system.

92 DamageMatrix = sparse(I,J,V,Nodes,Nodes);

93
94 end
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Listing B.30: This Matlab function is used to calculate the integrals that formulate the
matrices being calculated in Listing B.29. Here we account for the contributions of damage
diffusion, the tearing energy and therate of change of damage. We do this using a Newtons-
Cotes method which requires us to calculate the area of each triangular element and take
the average of each node contribution. Summing up the contribution from each triangle
in the finite element gives us our full approximate solution.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Here we calculate the value at Q(i,j) for the damage matrix

on the Left

4 % hand side for our iterative damage method.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function Q = LeftHandSide(Domain,idx_i,idx_j,r,G,D,X,Y)

8
9 % Number of elements we have to calculate over.

10 loop = size(Domain,1);

11
12 % Let Q = 0, to reset the memory.

13 Q = 0;

14
15 % Loop to calculate

16 for i = 1:loop

17
18 Triangle = Domain(i,:);

19
20 % Define the vertices of the triangle.

21 x1 = [X(Triangle(1)) Y(Triangle(1))];

22 x2 = [X(Triangle(2)) Y(Triangle(2))];

23 x3 = [X(Triangle(3)) Y(Triangle(3))];

24
25 % Calculate the area over the element.

26 TriangleArea = 0.5*det([ x1 1; x2 1; x3 1]);

27
28 % Centroid of the element.

29 x = (x1 + x2 + x3)/3;

30
31 % Calculate the Basis functions for idx and idx_i.
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32 Phi_i = Phi(Triangle,idx_i,X,Y,x);

33 Phi_j = Phi(Triangle,idx_j,X,Y,x);

34
35 % Calculate the Basis functions for idx and idx_i.

36 Grad_i = GradPhi(Triangle,idx_i,X,Y);

37 Grad_j = GradPhi(Triangle,idx_j,X,Y);

38
39 % Averages.

40 R = sum(r(Triangle));

41 g = 0;

42 DiffusionTerm = 0;

43 for j = 1:length(Triangle)

44 g = g + G(X(Triangle(j)),Y(Triangle(j)));

45 DiffusionTerm = DiffusionTerm + dot(D(X(Triangle(j)),Y(

Triangle(j)))*Grad_j,Grad_i);

46 end

47
48 % Calculate the integral volume, newton-cotes method.

49 I1 = (1/3)*(R + g)*Phi_i*Phi_j*TriangleArea;

50
51 I2 = (1/3)*DiffusionTerm*TriangleArea;

52
53 I = I1 + I2;

54
55 % Calculate the integral over every triangle.

56 Q = I + Q;

57 end

58
59 end

Listing B.31: This Matlab function is used to calculate the integrals that formulate the
matrices being calculated in Listing B.29. Here we account for the contributions of damage
diffusion and the tearing energy. We do this using a Newtons-Cotes method which requires
us to calculate the area of each triangular element and take the average of each node
contribution. Summing up the contribution from each triangle in the finite element gives
us our full approximate solution.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %
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3 % Here we calculate the value at Q(i,j) for the damage matrix

on the Left

4 % hand side for our iterative damage method.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function Q = LeftHandSide2(Domain,idx_i,idx_j,G,D,X,Y)

8
9 % Number of elements we have to calculate over.

10 loop = size(Domain,1);

11
12 % Let Q = 0, to reset the memory.

13 Q = 0;

14
15 % Loop to calculate

16 for i = 1:loop

17
18 Triangle = Domain(i,:);

19
20 % Define the vertices of the triangle.

21 x1 = [X(Triangle(1)) Y(Triangle(1))];

22 x2 = [X(Triangle(2)) Y(Triangle(2))];

23 x3 = [X(Triangle(3)) Y(Triangle(3))];

24
25 % Calculate the area over the element.

26 TriangleArea = 0.5*det([ x1 1; x2 1; x3 1]);

27
28 % Centroid of the element.

29 x = (x1 + x2 + x3)/3;

30
31 % Calculate the Basis functions for idx and idx_i.

32 Phi_i = Phi(Triangle,idx_i,X,Y,x);

33 Phi_j = Phi(Triangle,idx_j,X,Y,x);

34
35 % Calculate the Basis functions for idx and idx_i.

36 Grad_i = GradPhi(Triangle,idx_i,X,Y);

37 Grad_j = GradPhi(Triangle,idx_j,X,Y);

38
39 % Averages.
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40 g = 0;

41 DiffusionTerm = 0;

42 for j = 1:length(Triangle)

43 g = g + G(X(Triangle(j)),Y(Triangle(j)));

44 DiffusionTerm = DiffusionTerm + dot(D(X(Triangle(j)),Y(

Triangle(j)))*Grad_j,Grad_i);

45 end

46
47 % Calculate the integral volume, newton-cotes method.

48 I1 = (1/3)*g*Phi_i*Phi_j*TriangleArea;

49
50 I2 = (1/3)*DiffusionTerm*TriangleArea;

51
52 I = I1 + I2;

53
54 % Calculate the integral over every triangle.

55 Q = I + Q;

56 end

57
58 end

B.8 Updating the mesh

The last part of our code that we need to explain and introduce is the function “Up-
dateMesh”, which can be found in the below Listing B.32. This function uses the methods
discussed in §5.3.2 to decide when to change the connectivity matrix. By deleting rows
from the connectivity matrix we basically remove the interactions between nodes that are
all sufficiently damaged. A node is sufficiently damaged when we have that α ≥ 1 − δ,
where δ ≪ 1. We assign Torn(X) = 1 for each of these nodes in this function, which
the rest of our code will use to inform us if a node has reached the max damage. If all
the triangles related to a node are removed from from the connectivity matrix then it has
effectively been deleted. Visible tears in the macroscopic mesh form as sufficiently many
triangles are deleted from the connectivity matrix.
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Listing B.32: This Matlab function is used to update the connectivity matrix and record
which nodes in our system are sufficiently damaged such that we can list them as torn.
To do this we update our torn field such that Torn(X) = 1 for any node where α ≥ 1− δ,
where δ ≪ 1. Using this list of torn nodes in our system we can remove any triangle from
the connectivity matrix where all the vertices are torn.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % So this function creates the updated connectivity list based

on the

4 % TornNodes in our system.

5 %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 function [triangles, TornNodes] = UpdatedMesh(A,

OriginalTriangles,delta)

8
9 % Foward Nudge to get Alpha == 1.

10 TornNodes = 0.*(A < 1 - delta) + 1.*(A >= 1 - delta);

11
12 % Setup broken triangle array.

13 Broke = zeros(size(OriginalTriangles,1),1);

14
15 % Systematically delete all triangles surronded by torn points.

16 for i = 1:size(Broke,1)

17 K = OriginalTriangles(i,:);

18 if sum(TornNodes(K)) >= length(K)

19 Broke(i) = 1;

20 end

21 end

22
23 % Locate all broken triangles

24 [B,~] = find(Broke == 1);

25 OriginalTriangles(B,:) = [];

26
27 % Hence our mesh is.

28 triangles = OriginalTriangles;

29
30 % Lastly update TornNodes to include all points that are no

longer
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31 % connected to the mesh.

32 for i = 1:length(TornNodes)

33 if sum(sum(triangles == i)) == 0

34 TornNodes(i) = 1;

35 end

36 end

37
38 end
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