

Aladwani, Tahani (2025) Enhancing data representation in distributed
machine learning. PhD thesis.

https://theses.gla.ac.uk/85246/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/85241/
mailto:research-enlighten@glasgow.ac.uk

ENHANCING DATA REPRESENTATION IN
DISTRIBUTED MACHINE LEARNING

SUPERVISORS:
DR. CHRISTOS ANAGNOSTOPOULOS

DR. FANI DELIGIANNI

TAHANI ALADWANI

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING SCIENCE
COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

SEPTEMBER 30, 2024

© TAHANI ALADWANI

Abstract
Distributed computing devices, ranging from smartphones to edge micro-servers—collectively

referred to as clients—are capable of gathering and storing diverse types of data, such as images
and voice recordings. This wide array of data sources has the potential to significantly enhance
the accuracy and robustness of Deep Learning (DL) models across a variety of tasks. However,
this data is intrinsically heterogeneous, due to the differences in users’ preferences, lifestyles,
locations, and other factors. Consequently, it necessitates comprehensive preprocessing (e.g.,
labeling, filtering, relevance assessment, balancing, etc.) to ensure its suitability for the develop-
ment of effective and reliable models. Therefore, this thesis explores the feasibility of conducting
predictive analytics and model inference on edge computing (EC) systems when access to data
is limited, and on clients’ devices through federated learning (FL) when direct access to data is
entirely restricted.

The first part of this thesis focuses on reducing the data transmission rate between clients and
EC servers by employing techniques such as data and task caching, identifying data overlaps,
and evaluating task popularity. While this strategy can significantly minimize data offloading to
the lowest possible level, it does not entirely eliminate dependence on third-party entities.

The second part of this thesis eliminates the dependency on third-party entities by imple-
menting FL, where direct access to raw data is not possible. In this context, node and data
selection are guided by predictions and model performance. The objective is to identify the most
suitable nodes and relevant data for training by clustering nodes based on data characteristics
and analyzing the overlap between query boundaries and cluster boundaries.

The third part of this thesis introduces a mechanism designed to support classification tasks,
such as image classification. These tasks present significant challenges when building models on
distributed data, particularly due to issues like label shifting or missing labels across clients. To
address these challenges, the proposed method mitigates the impact of imbalances across clients
by employing multiple cluster-based meta-models, each tailored to specific label distributions.

The fourth part of this thesis introduces a two-phase federated self-learning framework,
termed 2PFL, which addresses the challenges of extreme data scarcity and skewness when
training classifiers over distributed labeled and unlabeled data. 2PFL demonstrates the capability
to achieve high-performance models, even when trained with only 10% to 20% labeled data
compared to the available unlabeled data.

The conclusion chapter underscores the importance of adaptable learning mechanisms that
can respond to the continuous changes in clients’ data volume, requirements, formats, and
protection regulations. By incorporating the EC layer, we can alleviate concerns related to data

i

ii

privacy, reduce the volume of data needing offloading, expedite task execution, and facilitate the
training of complex models.

For scenarios demanding stricter privacy-preserving measures, FL offers a viable solution,
enabling multiple clients to collaboratively train models while adhering to user privacy protection,
data security, and government regulations. However, due to the indirect access to data inherent
in FL, several challenges must be addressed to ensure the development of high-performance
models. These challenges include imbalanced data distribution across clients, partially labeled
data, and fully unlabeled data, all of which are explored and demonstrated through experimental
evaluations.

Contents

1 Introduction 1
1.1 Overview & Contributions . 1

1.1.1 Research Questions & Solution Overview 3
1.2 Background . 6

2 Edge Computing, Data & Tasks Offloading and Caching 9
2.1 Introduction . 9
2.2 Related Work . 10

2.2.1 Data Caching . 12
2.2.2 Task Caching . 12
2.2.3 Fuzzy Logic Inference System . 13

2.3 Preliminaries . 14
2.3.1 Target Data Types and Application Scope 14
2.3.2 Service Architecture . 15
2.3.3 Problem Statement . 16

2.4 Methodology . 19
2.4.1 Task Management Factors . 19

2.5 Task Management Reasoning . 23
2.5.1 Fuzzy Logic Inference Modeling . 23
2.5.2 Two-stage Fuzzy Logic-based Reasoning 24

2.6 Performance Evaluation . 28
2.6.1 Experimental Setup for Tasks’ Popularities and Data Overlapping . . . 28
2.6.2 Experimental Setup . 31
2.6.3 Comparative Assessment . 32

2.7 Conclusions . 34
2.8 Limitations & Directions of Enhancement . 35

3 Node and Relevant Data Selection in Distributed Predictive Analytics: A Query-
centric Approach 36
3.1 Introduction . 36

iii

CONTENTS iv

3.1.1 Regulatory Constraints and Privacy in Distributed Data Systems 36
3.1.2 Background . 37
3.1.3 Motivation & Challenges . 38
3.1.4 Contributions . 40

3.2 Related Work . 41
3.2.1 Node Selection in DPA . 41
3.2.2 Data Relevance in DPA . 43

3.3 Problem Fundamentals . 44
3.3.1 Preliminaries & Definitions . 44
3.3.2 Problem Formulation . 46

3.4 Node & Relevant Data Selection . 49
3.4.1 Data Relevance Factors: Overview . 49
3.4.2 Data Relevance based on Factor F1 51
3.4.3 Data Relevance based on Factor F2 53
3.4.4 Data Relevance based on Factor F3 54
3.4.5 Ranking of Suitable Nodes . 55

3.5 Query-centric DML Mechanisms . 56
3.5.1 Best Node Model Learning . 56
3.5.2 Aggregate/Weighted Aggregate Model Learning 58
3.5.3 Ranking-based Federated Learning 59
3.5.4 Ring-based Incremental Learning . 60

3.6 Performance Evaluation . 62
3.6.1 Experimental Setup . 62
3.6.2 Baselines & Mechanisms under Comparison 66
3.6.3 Performance Metrics & Evaluation . 68
3.6.4 Limitations & Directions of Enhancement 81

3.7 Conclusions . 82

4 Cluster-based & Label-aware Federated Meta-Learning for On-Demand Classifi-
cation Tasks 84
4.1 Introduction . 84
4.2 Related Work . 86
4.3 Target Data Types and Application Scope . 87
4.4 Preliminaries . 88
4.5 The CL-FML Framework . 89

4.5.1 Overview . 89
4.5.2 Label-aware Client Clustering . 90
4.5.3 Cluster-based Multiple Meta-model Learning 93
4.5.4 Task-tailored Distributed Meta-model Learning 93

CONTENTS v

4.6 Experimental Evaluation . 95
4.6.1 Experiment Setup . 95
4.6.2 Main Results . 97

4.7 Conclusions . 102
4.8 Limitations & Directions of Enhancement . 103

5 The Price of Labelling: A Two-Phase Federated Self-Learning Approach 104
5.1 Introduction . 104
5.2 Related Work . 106
5.3 Overview & Fundamentals . 107
5.4 The 2-Phase Federated Self-Learning Framework 109

5.4.1 Local Data Augmentation . 109
5.4.2 2PFL Training Phases . 109

5.5 Experimental Evaluation . 112
5.5.1 Experimental Set-up . 112
5.5.2 Experimental Results . 113

5.6 Conclusions . 117
5.7 Limitations & Directions of Enhancement . 117

6 Discussion and Conclusion 118
6.1 Key Contributions . 118

6.1.1 Data and Task Offloading in Edge Computing 118
6.1.2 Node and Data Selection in Distributed Learning 118
6.1.3 Cluster-based & Label-aware Federated Meta-Learning 119
6.1.4 Self-Learning in Federated Learning with Minimal Labeled Data 119

6.2 Addressing Future Challenges: Increasing Complexity in Data 119
6.2.1 Data Privacy and Access Restrictions 120
6.2.2 Increasing Data Heterogeneity . 120

6.3 Future Directions: Adapting to Data Scarcity and Complexity 120
6.4 Final Remarks . 121

List of Tables

2.1 FLI rules inputs and the expected outputs. 26
2.2 𝑇𝑘 Information updating according to suitable node. 28
2.3 table: Tasks popularities. 29
2.4 Queries generation and percentages of data overlapping 29
2.5 𝑆2 decision making based on three factors. 31
2.6 Application types used in the simulation. 32
2.7 Simulation parameters. 32
2.8 The probability of offloading 𝑢𝑘 for each task 𝑇𝑘 according to our mechanism

compared to the other two mechanism. 33
2.9 Table of Symbols for Chapter 2. 35

3.1 Summary of Complexities . 62
3.2 Experimental parameters . 65
3.3 Predictive Model & DML Mechanisms Hyper-parameters 66
3.4 Performance Metrics . 66
3.5 Percentage of data accessed per query across node selection mechanisms in static

and dynamic environments over DS1 and DS2. 73
3.6 MSE (loss) of predictive models based on all the node selection mechanisms

over DS1 across all the query-centric DML mechanisms (static data environment). 74
3.7 MSE (loss) of predictive models based on all the node selection mechanisms over

DS1 across all the query-centric DML mechanisms (dynamic data environment). 75
3.8 MSE (loss) of predictive models based on all the node selection mechanisms

over DS2 across all the query-centric DML mechanisms (static data environment). 76
3.9 MSE (loss) of predictive models based on all the node selection mechanisms over

DS1 across all the query-centric DML mechanisms (dynamic data environment). 77
3.10 Table of Symbols for Chapter 3. 83

4.1 Impact of Labelled-data Augmentation on Model Performance 98
4.2 Comparison of Methods . 100
4.3 Impact of Overlapping/Similarity between Tasks & Clusters on Fine-tuned Mod-

els Performance. 101

vi

LIST OF TABLES vii

4.4 Impact the Label Imbalance on Meta-model Accuracy 102

5.1 Impact of high-confidence pseudo-labels on test accuracy across phases. 114
5.2 Model test accuracy, LDR, and no. of training rounds across all methods. . . . 115

6.1 Acronyms & Abbreviations. 122

List of Figures

1.1 This diagram illustrates the three main methodologies for building models on
distributed data: a) Centralized training: where all clients send their data to
a central server to build the model. b) Edge computing training: where each
subset of clients sends their data to an EC node instead of a remote server to build
models.c) FL: where clients exchange models rather than data to collaboratively
build global models. 7

2.1 A three-layer architecture of EC system. Arrows indicate the data and tasks
transmission between the end-users, the EC, and the cloud layers. 16

2.2 Example of the availability of Cached data. 18
2.3 Tasks offloading decisions. 18
2.4 Tasks demand clusters using subtractive clustering (𝜆 = 5, W = 50). Cluster-

heads are marked with X, and circles represent task requests. 20
2.5 Implementation of FLI on our three factors. 24
2.6 The probability of offloading. 27
2.7 The effect of (𝑝𝑘 , 𝑜𝑘 , 𝑢𝐾) on the probability of offloading (𝑟𝑘). 30
2.8 Data uploading speed and tasks execution Time. 34

3.1 Node & relevant data selection based on a query-centric paradigm. Nodes,
e.g., edge servers, roadside units, receive DPA queries from DPA Apps to train
ML models for predictive analytics. Generated data by Internet of Things (IoT)
devices, e.g., sensors, are selectively accessed from only selected nodes (encircled
in a dashed line) avoiding accessing irrelevant data for each DPA query. 39

3.2 Local models’ prediction errors (loss) over ten nodes compared with the central-
ized model, the average model across all nodes, and the average model across
only the most suitable nodes. 49

3.3 An illustration example of the impact of supportive clusters per query on predict-
ing the relevant data on a node (data are projected onto a 2-dimensional space
for illustration purposes only). 51

3.4 Comparison of BN model (top-1 node) vs. incremental model engaging the
top-3 nodes. 57

viii

LIST OF FIGURES ix

3.5 The spectrum of the query-centric DML mechanisms from (a) Best Bode (BN),
to (b) Aggregation (AM/WAM), (c) Ranking-based Federated Learning (RFL),
and (d) Ring-based Incremental Learning (RIL). 58

3.6 Node selection accuracy 𝛼 for DS2 and DS1 datasets. 69
3.7 Node selection frequency for our mechanism and the optimal one in static data

environments. 71
3.8 Node selection frequency for our mechanism and the optimal one in dynamic

data environments. 72
3.9 Percentage of relevant data accessed per proportion. 73
3.10 Distribution of MSE against proportion (%) of DPA queries (from the query

workloads) using RFL in static and dynamic data environments (DS1). 80
3.11 Distribution of MSE against proportion (%) of DPA queries (from the query

workloads) using RFL in static and dynamic data environments (DS2). 81

4.1 CL-FML instance (clockwise). (i) All clients’ labels L = {𝑎, 𝑏, 𝑐, 𝑑, 𝑓 } and
task’s labels T = {𝑎, 𝑏, 𝑓 }. (ii) Label-aware clustering into C1, C2 groups and
decentralized cluster-based meta-learning. (iii) Decentralized training of 𝑔ℓ for
data augmentation. (iv) Decentralized fine-tuning for task-tailored meta-model
among suitable clients (shaded). 90

4.2 Multiple meta-models’ top-1 accuracy (%) of CL-FML against global meta-
model (G-FML) vs. convergence (samples of two groups). 99

4.3 CL-FML against G-FML vs. convergence (samples of two groups). 99

5.1 The Phases 1, 2 and 2+ of the 2PF framework progressively engaging labelled,
partially-labelled and unlabelled clients in distributed self-learning. 108

5.2 Accuracy vs. training rounds for all methods and datasets (the two vertical dotted
lines correspond to 𝑇1 and 𝑇1 + 𝑇2 round milestones of 2PFL’s phases). 116

5.3 pseudo-labelling ratio of unlabelled samples across datasets and phases. 116

LIST OF FIGURES x

Acknowledgements
AlhamduliLlahi Robil ‘Alamin!

First and foremost, all praise is due to Allah, who guided me to embark on this journey and
granted me strength and support throughout.

I am deeply grateful to my supervisors, Dr. Christos Anagnostopoulos and Dr. Fani
Deligianni, for their unwavering support, invaluable guidance, and immense patience over the
years. Their mentorship has been instrumental in shaping my academic journey and helping me
achieve my goals.

I would like to express my deepest gratitude to my examination panel for their time, effort,
and invaluable feedback. I am particularly thankful to my external examiner, Dr. Nikos Tziritas
from the University of Thessaly, and my internal examiner, Dr. Emma Li, for their thorough
review and insightful comments. Their constructive feedback and thoughtful discussion were
instrumental in enhancing the clarity, structure, and overall quality of this thesis.

I am also sincerely grateful to the viva convener, Dr. Tanaya Guha, for her efforts in
coordinating and facilitating a smooth, well-organized viva.

I would like to express my sincere appreciation to the Saudi Ministry of Education for pro-
viding me with a scholarship and generously funding my travels during my studies. Additionally,
I am thankful for the continued support from the Saudi Arabian Cultural Bureau in the UK,
whose assistance has been crucial in facilitating my academic and professional growth. I would
like to extend my sincere gratitude to TRACE HORIZON, where I joined as a research assistant
in June 2024. The opportunity to collaborate with them has been invaluable to my research
journey.

A heartfelt thank you to my dear friend, Hessa Al-Thabeti, for standing by me and supporting
me during the early stages of my scholarship and travels. her friendship made the transition
smoother, and I will always be grateful for her kindness. I extend my gratitude to my colleagues
and friends, particularly Ghadeer Alsharif, with whom I shared an office. I am also grateful to
Nesreen Alareef and Arwa Alsubhi, whose camaraderie and insightful discussions enriched my
PhD experience. A special thanks goes to Ibrahim Alghamdi from Al-Baha University, whose
guidance in the early stages of my PhD and publication journey was invaluable. I would also
like to acknowledge my friends, Munira Al-Khashan, Alaa Al-Ghamdi, and Ahd Al Jaidi, for
their friendship and encouragement, which have been a source of comfort and strength during
my studies.

Finally, and most importantly, I owe my deepest gratitude to my late father, my lifelong role
model, who did everything in his power to give me the best opportunities. His memory continues

xi

LIST OF FIGURES xii

to inspire and motivate me every day. To my beloved mother, I offer my sincerest thanks for
her boundless love, encouragement, and unwavering support. You have both been my greatest
pillars of strength.

To my siblings—Asmaa, Nadia, Sumaya, Abdullah, Mohammed, Walid, and Abeer—
thank you for your constant encouragement and support. Your belief in me has been an incredible
source of motivation, and I am forever grateful for our shared journey.

Chapter 1

Introduction

1.1 Overview & Contributions

Motivation and Thesis Statement

The rapid advancement of end-user devices, such as smartphones, laptops, and smartwatches,
has equipped them with sensors like cameras, microphones, and GPS. As these devices are
ubiquitously carried by users, they generate an immense volume of private and personal data,
which is stored locally on the devices [1]. This data represents a valuable resource for deriving
actionable insights, supporting dynamic decision-making across diverse domains, and enabling
the development of intelligent applications leveraging deep learning (DL). Such applications
span a range of fields, including autonomous driving, video analytics, surveillance, augmented
and virtual reality, facial and speech recognition, anomaly detection, and natural language
processing [2, 3]. The effectiveness of deep and complex models depends on access to large,
varied datasets. Initially, centralized training on cloud servers was the predominant method
for training large-scale models, which require substantial computational resources for efficient
execution [2]. However, the increasing demands of data-driven applications—such as real-
time processing, rapid decision-making, frequent user requests, and extensive data requirements
relative to available bandwidth—have made centralized approaches increasingly impractical.
Concurrently, growing user awareness regarding data privacy and the risks associated with
centralized data storage has further driven this shift. As a result, there is a notable transition
towards decentralized learning methodologies, leveraging edge computing (EC) or directly
processing data on end-user devices through federated learning (FL).

Incorporating an EC layer between the cloud and end-user devices to train models and execute
analytical tasks can significantly mitigate concerns associated with centralized training while
offering multiple benefits. These benefits include reduced latency and communication delays,
lower energy consumption, enhanced network stability, improved security, increased reliability,
and support for real-time applications [4, 5]. Despite these advantages, EC resources remain

1

1.1. OVERVIEW & CONTRIBUTIONS 2

constrained, particularly given the rapidly increasing volume of requests from end-users. This
constraint presents challenges in the efficient selection of EC servers and the decision-making
process for each analytical task. Effective execution of tasks on EC servers involves more than
merely offloading computations and returning results; it requires minimizing redundant task
offloading and reducing the amount of data that needs to be offloaded. Thus, it is crucial to not
only facilitate task offloading but also to cache frequently accessed content to reduce response
times and decrease network load by minimizing repeated transmissions [6].

Consequently, it is imperative to consider both offloading and caching strategies concurrently,
leading to the formulation of RQ1 (1.1.1). The proposed solution for this research question is
outlined in S1 (1.1.1) and elaborated in Chapter 2.

While EC can alleviate some challenges associated with executing analytic tasks in the
cloud, it cannot entirely resolve these issues. For instance, EC facilitates data processing closer
to end-users via local, trusted edge servers, thereby avoiding the traversal of data over the public
Internet [2]. This approach can mitigate privacy and security risks by reducing exposure to
potential attacks. However, it does not eliminate the reliance on third parties to centralize
scattered data. Although data offloading can be reduced to as low as 10% or less, complete
elimination (0% offloading) is unattainable, leaving the data disclosure issue unresolved. This
limitation renders EC an impractical solution in scenarios where data cannot be shared due to
privacy concerns or data protection regulations, such as with medical records, financial data,
and personal information [7]. To address these challenges, significant efforts have been directed
toward enabling DL model training directly on end-user devices through the adoption of FL. FL
allows multiple end-user devices to collaboratively train a DL model without exchanging their
local private data. By adopting FL, data offloading can be reduced to 0%, relying primarily on
model exchange rather than data exchange. FL reduces the need for data centralization, thus,
alleviating concerns about data privacy, decreasing the load on central servers, and minimizing
communication overhead. However, in many real-life scenarios, data heterogeneity is prevalent,
with each user potentially exhibiting unique data distributions, volumes, access patterns, and
feature spaces. This heterogeneity poses significant challenges to developing accurate models
in a distributed environment. Many state-of-the-art methods rely on random node selection as a
straightforward approach. However, this method increases the risk of selecting end-user devices
with low-quality or irrelevant data for a specific task. Consequently, only after models are
trained on randomly selected users can the most suitable nodes be identified based on predictive
performance. This process results in increased time and resource consumption, as well as a
higher network load. Therefore, a comprehensive understanding of the data characteristics and
access patterns of nodes is essential. Such knowledge facilitates the pre-selection of an optimal
subset of nodes for each task prior to model training. Thus, it is crucial to consider the most
suitable nodes by evaluating the availability and relevance of data for each task, leading to the
formulation of RQ2 (1.1.1). The proposed solution for this research question is outlined in S2

1.1. OVERVIEW & CONTRIBUTIONS 3

(1.1.1) and detailed in Chapter 3.
Another primary challenge in FL related to the classification tasks is the heterogeneity of

data and class labels. This issue arises due to various types of distribution shifts among clients,
including feature, label, and concept distribution shifts. A key aspect of this challenge is the
uneven distribution of data across classes: majority classes dominate the dataset, while minority
classes are represented by only a small fraction of the data [8]. The limited availability of labeled
data, exacerbated by disparities in label distributions across clients, hinders the convergence
of classifiers and degrades their performance. This problem is particularly detrimental when
classification involves minority classes [9] or any arbitrary set of labels. Distributed analyt-
ics involving classification tasks necessitate robust models training, particularly for real-time,
arbitrary classification tasks across distributed clients. Federated (Meta)-Learning (FML) has
emerged as a solution for global distributed (meta)-model training, offering generalization across
diverse data and classification tasks. However, current FML approaches often assume fixed
labels, balanced class proportions, uniform data distributions, and consistent task distributions.
As a result, global meta-models are limited to tasks that do not require addressing arbitrary
out-of-distribution label issues. In real-world scenarios, class imbalance and label shifting are
pervasive challenges in clients’ data, and on-demand tasks often involve previously unseen labels.
Consequently, a ’one (meta)-model-fits-all’ approach is insufficient. To address these challenges,
we formulate RQ31.1.1, and the proposed solution for this research question is outlined in
S31.1.1 and elaborated in Chapter 4.

In more changeable realistic FL scenarios, where client data may be unlabelled due to
factors such as labeling costs, time constraints, or a lack of expertise and resources, addressing
these challenges becomes crucial. To tackle this issue, self-learning FL methods have been
proposed, which utilize both labelled and unlabelled data. However, self-learning approaches
typically rely on the availability of ground truth labels for a subset of the data, either on
the server or distributed among clients. Moreover, these methods generally assume that data
are independently identically distributed (IID). In contrast, real-world scenarios often involve
non-IID data, presenting significant challenges in generating high-quality pseudo-labels and
managing data heterogeneity effectively. To address these challenges, we formulate RQ41.1.1,
and the proposed solution for this research question is outlined in S41.1.1 and elaborated in
Chapter 5.

1.1.1 Research Questions & Solution Overview

The thesis focus is on developing methods that increase the likelihood of training models with
the most relevant nodes and suitable data. This is accomplished through a range of techniques,
including assessing data availability and relevance, clustering similar clients, utilizing multi-
meta models, and leveraging self-supervised learning. This section highlights the key research
questions addressed in the thesis and outlines the proposed solutions for each.

1.1. OVERVIEW & CONTRIBUTIONS 4

RQ1: How can we optimize EC server selection to minimize data offloading and reduce
redundant task execution?

S1: This solution introduces a robust approach to optimizing the decision-making process for
offloading and caching analytic tasks by utilizing a proposed EC server selection mechanism.
The approach is designed to efficiently allocate data-driven analytic tasks between EC and cloud
environments, minimizing execution delays and maximizing EC server resource utilization, based
on task management factors and strategic reasoning (elaborated in Chapter 2).

RQ2: How can we efficiently select only the relevant data from each chosen node per
analytics query when access to data is limited?

S2: Due to the growing concerns surrounding data privacy, access to data is becoming in-
creasingly restricted. To address this challenge, this chapter proposes a query-centric approach
to Distributed Predictive Analytics (DPA). For each query, the method privately identifies the
most suitable subset of nodes to participate in the analysis. This selection process leverages
each node’s statistical predictions based on its local data to estimate and rank their relevance.
By focusing only on the most effective nodes, the approach improves model accuracy per query
while minimizing unnecessary access to irrelevant training data. Further details are provided in
Chapter 3.

RQ3: How can we effectively mitigate label shifting and address missing label challenges
in FL, while ensuring that the meta-model generalizes to different data distributions?

S3: The solution introduces a cluster-based approach to federated meta-learning (CL-FML).
This method groups clients by label distributions to better handle label shifts and imbalances.
By using multiple meta-models, each tailored to specific clusters, we ensure that the models can
generalize to different data distributions. Additionally, lightweight data augmentation techniques
are used to improve performance on class-imbalanced tasks (elaborated in Chapter 4).

RQ4: What is the ‘price of learning’ a global model using scarce, skewed, and distributed
labelled data, while capitalizing on partially labelled and fully unlabelled data across
clients?

S4: When data is limited or skewed, it becomes difficult to train accurate models. To solve this,
we propose a two-Phase Federated self-Learning framework, coined 2PFL, that addresses both
extreme data scarcity and skewness in training classifiers over distributed labelled and unlabelled
data. 2PFL demonstrates the ability to achieve high-performance models when trained with only
10% to 20% labelled data compared to the unlabelled data (elaborated in Chapter 5).

1.1. OVERVIEW & CONTRIBUTIONS 5

Academic Contributions to the Research Community

The work presented in this thesis is primarily derived from published research conducted by the
author in collaboration with other researchers. The chapters and the corresponding papers on
which these chapters are based are listed below.

1. Chapter 2: Edge Computing, Data & Tasks Offloading and Caching

• Tahani Aladwani, Christos Anagnostopoulos,Konstantinos Kolomvatsos, Ibrahim
Alghamdi,"Data-driven analytics task management reasoning mechanism in edge
computing." Smart Cities 5.2 (2022): 562-582.

• Tahani Aladwani, Christos Anagnostopoulos,Konstantinos Kolomvatsos, Ibrahim
Alghamdi, "Data-Driven Analytics Task Management at the Edge: A Fuzzy Reason-
ing Approach." 2022 9th International Conference on Future Internet of Things and
Cloud (FiCloud). IEEE, 2022.

2. Chapter 3: Node and Relevant Data Selection in Distributed Predictive Analytics: A
Query-centric Approach

• Tahani Aladwani, Christos Anagnostopoulos,Konstantinos Kolomvatsos, "Node and
Relevant Data Selection in Distributed Predictive Analytics: A Query-centric Ap-
proach." Journal of Network and Computer Applications, Elsevier, 2024: 104029.

• Tahani Aladwani, Christos Anagnostopoulos,Konstantinos Kolomvatsos, Ibrahim
Alghamdi, "Query-driven Edge Node Selection in Distributed Learning Environ-
ments." IEEE 39th International Conference on Data Engineering Workshops (ICDEW),
IEEE, 2023.

3. Chapter 4: CL-FML: Cluster-based & Label-aware Federated Meta-Learning for On-
Demand Classification Tasks

• Tahani Aladwani, Christos Anagnostopoulos,Shameem P. Parambath,Fani Deli-
gianni, "CL-FML: Cluster-based & Label-aware Federated Meta-Learning for On-
Demand Classification Tasks." 11th IEEE International Conference on Data Science
and Advanced Analytics (DSAA 2024), IEEE, 2024.

4. Chapter 5: The Price of Labelling: A Two-Phase Federated Self-Learning Approach

• Tahani Aladwani, Christos Anagnostopoulos,Shameem P. Parambath,Fani Deli-
gianni, "The Price of Labelling: A Two-Phase Federated Self-Learning Approach."
European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases, ECML-PKDD 2024.

1.2. BACKGROUND 6

Thesis Structure

The thesis is structured into six main chapters. The Introduction provides an overview of
the topics discussed in subsequent chapters and summarizes key contributions to the research
community. The second part of the Introduction introduces foundational concepts that are
referenced in later chapters. Chapters 2, 3, 4, and 5 form the core of this thesis. Specifically:
Chapter 2 focuses on improving task execution on EC servers. Chapter 3 addresses the selection
of optimal nodes and relevant data through statistical predictions. Chapter 4 concentrates
on mitigating label shifting and addressing missing label challenges in FL. Chapter 5 explores
approaches to managing extreme data scarcity and skewness in training classifiers over distributed
labeled and unlabeled data. Finally, Chapter 6 offers concluding remarks, discusses limitations,
and outlines potential directions for future work.

1.2 Background

This section explains the key concepts that may be unfamiliar to the reader, offering a concise
overview of the methodologies referenced throughout this thesis. By acquainting the reader with
these fundamental principles, the ensuing discussions and applications within the thesis will be
rendered more comprehensible.

Definition 1 (Computation Offloading). Computation offloading is a concept that applies to both
cloud computing and EC, involving the transfer of some or all computational tasks from end-user
devices to more powerful infrastructure, such as cloud servers or nearby EC servers [4], as in
Figure (a-1.1) and Figure (b-1.1).

Definition 2 (Federated Learning). Federated Learning (FL) is a distributed learning paradigm
that allows multiple clients (e.g., smartphones, laptops, hospitals) to collaboratively train deep
learning (DL) models without sharing their private raw data [10], as in Figure (c-1.1).

Consider a central server S and N client devices. Each client 𝑖 ∈ N possesses its own local
dataset 𝐷𝑖 for 𝑖 = 1, 2, . . . ,N . Each client 𝑖 ∈ N holds 𝑚𝑖 samples, where each sample is
characterized by features 𝑥 ∈ X and associated labels 𝑦 ∈ Y. These samples are drawn from
either IID or non-IID distributions, depending on the degree of data heterogeneity among the
clients. Meanwhile, they utilize similar data features, which can vary based on the type of data:

• Tabular data: For instance, weather-related features such as humidity, temperature, and
pressure, or vehicle parking sensor data like occupancy duration, sensor type (magnetic/
inductive), and air quality, typically used in regression models.

• Image data: For classification models, clients might use popular datasets like MNIST,
Fashion-MNIST, CIFAR-10, and CIFAR-100.

1.2. BACKGROUND 7

D
at
a

Data

Server Server Server

EC Layer

End-users layer

Model

Model Model

Model

a) Centralized Training b) Edge computing Training C) Federated Learning

Figure 1.1: This diagram illustrates the three main methodologies for building models on
distributed data: a) Centralized training: where all clients send their data to a central server to
build the model. b) Edge computing training: where each subset of clients sends their data to an
EC node instead of a remote server to build models.c) FL: where clients exchange models rather
than data to collaboratively build global models.

The primary objective is to train an efficient model 𝜃 using the combined dataset 𝐷 Δ
=⋃

𝑖∈[𝑁] 𝐷𝑖, with the assistance of a server S. This process can be facilitated either through direct
access to the data (computation offloading) or via indirect access to the data (FL).

In the context of computation offloading 1, each client 𝑛𝑖 transmits its local data 𝐷𝑖 to a
central server. The server aggregates all received datasets into a single dataset and trains a global
model 𝜃 with the objective of minimizing a global loss function ℓ(𝜃). Formally, the global
optimization problem can be expressed as:

min
𝜃
ℓ(𝜃) = 1∑N

𝑖=1 |𝐷𝑖 |

N∑︁
𝑖=1

∑︁
𝑥∈𝐷𝑖

ℓ(𝜃; 𝑥), (1.1)

where ℓ(𝜃; 𝑥) represents the loss associated with a data point 𝑥 in the unified dataset, and
|𝐷𝑖 | denotes the size of the dataset 𝐷𝑖.

Once the server has trained the model 𝜃 that minimizes the global loss ℓ(𝜃), the resulting
model 𝜃 is then returned to each client for further use.

In the context of FL 2, the objective is to optimize a global model 𝜃 using the server’s data

1.2. BACKGROUND 8

𝐷S and the data from the clients [𝐷1, . . . , 𝐷N] such that:

arg min
𝜃∈R𝑑

[
ℓ(𝜃) ≜ 1

N

N∑︁
𝑖=1

𝐿𝑖 (𝜃)
]

(1.2)

where 𝐿𝑖 (𝜃) = E(𝑥,𝑦)∼D𝑖 [ℓ𝑖 (𝜃; (𝑥, 𝑦))] denotes the empirical loss for the 𝑘th client, and 𝜃

represents the parameters of the neural network. During each round 𝑡 ∈ [𝑇], a subset of clients
𝑃𝑡 ⊂ [𝑚] is selected at random, and the server S transmits its current model 𝜃𝑡−1 to these selected
clients. Each client then performs optimization to minimize a local empirical risk objective. The
local update for the 𝑖th client at round 𝑡 can be expressed as:

𝜃𝑡𝑖 = 𝜃
𝑡−1
𝑘 − 𝜂∇𝐿𝑖 (𝜃

𝑡−1
𝑖), (1.3)

Where 𝜃𝑡
𝑖
is the updated model parameter for client 𝑖 at round 𝑡, 𝜃𝑡−1

𝑖
is the model parameter from

the previous round 𝑡 − 1, 𝜂 is the learning rate and ∇𝐿𝑖 (𝜃𝑡−1
𝑖
) is the gradient of the local loss

function 𝐿𝑖 with respect to the model parameters at round 𝑡 − 1.

Chapter 2

Edge Computing, Data & Tasks Offloading
and Caching

2.1 Introduction

In recent years, advancements in technology have led to the growing popularity of computation-
ally intensive applications in fields such as surveillance, augmented and virtual reality, facial
and speech recognition, image processing, and natural language understanding[3]. These appli-
cations often rely on DL models, which require substantial computational resources and large
datasets to perform effectively. However, in practice, data is typically dispersed across different
clients (e.g., mobile devices, sensors, companies, etc.). Meanwhile, despite advances in smart
device hardware, many of these devices still cannot handle such intelligent, delay-sensitive,
computationally-intensive applications [11]. Computational offloading on Cloud Computing
(CC) has been proposed as a beneficial way to address the clients’ resource limitations and
execute the intensive tasks remotely [12]. However, CC is inherently centralized, which means it
is often located far from the clients. Consequently, relying solely on CC can result in significant
communication delays and high latency for delay-sensitive applications, low Quality of Service
(QoS) level, as well as increased privacy concerns [3, 5]. To mitigate these drawbacks, consider-
able efforts have been made to push the processing of DL models to edge servers. These servers,
positioned closer to end-user devices at the edge of the network, to enhance computational ca-
pabilities by introducing an additional layer of resources known as EC between CC and clients
[3].

This approach addresses the critical requirements of low latency, reduced communication de-
lays, minimized energy consumption, enhanced network stability, improved security, increased
reliability, and real-time application support [4, 5]. Even though EC servers offer numerous
advantages, their resources are still limited, especially with the rapidly increasing number of
requests from end-users. This limitation presents challenges in selecting efficiently EC servers
and making decisions for each analytic task. Executing analytic tasks on EC servers involves

9

2.2. RELATED WORK 10

more than just offloading computations and returning results. It also requires reducing the need
to offload the same tasks multiple times and minimizing the data required for offloading. Thus, it
is crucial not only to support task offloading but also to cache popular content for future use [13].
Caching popular content or computation results of frequently requested analytic tasks improves
information retrieval efficiency and reduces response time. It also decreases network load by
minimizing repeated transmissions [6]. Therefore, it is crucial to consider both offloading and
caching decisions in parallel. Key decisions include whether a task should be offloaded, which
EC server should handle the task, and whether the task should be cached. Offloading decisions
depend on various factors such as EC server resource availability, the number of tasks, data
requirements for each task, and task priorities (e.g., immediate execution or delay to prioritize
the higher-priority tasks) [12, 14, 15]. Similarly, caching decisions are based on various factors,
such as task popularity, data size, and required computing resources [16]. Therefore, designing
an efficient EC selection mechanism that balances task offloading and caching remains a chal-
lenging issue. Therefore, this chapter presents a robust approach for determining task caching,
offloading decisions, and resource allocation mechanisms aimed at maximizing service provider
revenue while minimizing overall task latency. Our mechanism specifically addresses the follow-
ing critical issues: (i) meeting the stringent requirements of latency-sensitive IoT applications,
(ii) efficiently utilizing resources within Edge-Cloud environments, and (iii) scheduling offload-
ing tasks to reduce overall service time and enhance resource utilization [15]. The chapter’s
optimization objectives can be summarized as follows:

1. Maximize Offloading Probability to Optimal Servers: Ensure tasks are directed to the
most suitable EC server, considering factors like task popularity and data availability.

2. Minimize Data Offloading Rate: Reduce data transfer during offloading by implementing
data caching, thereby enhancing efficiency and lowering bandwidth usage.

3. Increase EC Server Resource Utilization: Maximize use of resources at EC servers to
improve overall system efficiency and performance.

4. Maximize the chance of selecting the right EC Server for each task: Fuzzy Logic
Inference has been adapted to enhance decision-making in server selection.

2.2 Related Work

As discussed in Section 2.1, EC servers are designed to optimize service latency, energy con-
sumption, and communication overhead, while also maximizing total revenue and resource
utilization. However, due to the inherent limitations in resources and storage capacity of EC
servers, it is impractical to offload and cache every task. This challenge necessitates selective
mechanisms whereby certain tasks are executed and cached on EC servers, while others are

2.2. RELATED WORK 11

offloaded to the cloud. These decisions introduce several trade-offs between the requirements
of clients—such as reduced latency and lower energy consumption—and those of EC servers,
including optimized resource usage. As a result, extensive research has been directed towards
developing efficient resource management strategies that can balance these competing needs [12,
14]. Current studies in this field typically concentrate on three core aspects: task offloading, data
caching, and task caching.

Tasks Offloading

Task and data offloading refers to the process of transferring a computational task or workload
from an end-user device to a remote entity, such as an EC server or the cloud, to enhance the
performance and efficiency of the end-user devices while reducing computing delays [16, 17].
Regarding task offloading options, a client can offload either part or all of the computing tasks,
as well as the associated data, to EC servers. Offloading tasks to an EC server, which possesses
greater computing resources and power, can significantly accelerate task execution, conserve the
device’s energy, and decrease response times [18]. Consequently, offloading decisions can be
summarized as follows: First, can a task be executed entirely on the local device, or is offloading
necessary. Second, if offloading is required, should the task be fully offloaded—where the entire
task is migrated to the EC server for execution—or partially offloaded, where part of the task is
processed locally while the remainder is offloaded. Third, when should a task be offloaded, how
many tasks should be offloaded, and to which EC server should they be directed?

These decisions are influenced by various factors such as required computational power,
data volume, task dependency, and task priority [12]. Given the resource constraints of EC
servers, selecting appropriate server selection mechanisms and offloading strategies is crucial,
particularly as EC servers often manage a high volume of requests from end-users [19].

Extensive research has been conducted to enhance offloading strategies for diverse scenarios
and optimization goals [5].

These studies can be categorized into three groups based on their objectives related to
data and task offloading: The first category emphasizes application characteristics, such as
computational and communication demands, as well as latency sensitivity, as discussed in [14,
20, 21, 22, 23]. The second category focuses on the characteristics of EC resources, including
EC service latency, energy consumption, and cost, as highlighted in [24, 15, 25]. The third
category examines both application and EC resource characteristics, aiming to minimize trade-
offs between application requirements (e.g., latency constraints and computational demands) and
system requirements (e.g., maximizing resource utilization) [26, 24, 27, 28, 29, 30].

2.2. RELATED WORK 12

2.2.1 Data Caching

Another important feature provided by EC servers is caching capacity, which represents a
promising approach to enhancing the execution of remote tasks and the QoS. Data caching in
EC servers is a widely adopted technique for storing copies of data to expedite retrieval for
future request [31]. This technique serves various purposes, including improving efficiency in
information retrieval, reducing data access latency, enhancing QoS, improving energy efficiency,
and reducing network load [13]. There has been extensive research aimed at improving data
caching in EC servers, with a focus on optimizing system performance, enhancing energy
efficiency [22, 32, 33], and optimizing network resource utilization while reducing transmission
costs and response times [31, 34, 35, 36]. For instance, researchers have applied data selection
mechanisms to cache popular data and content at EC servers, although measuring data popularity
for each data point can be computationally intensive [37, 33]. All these studies aim to design
an optimal caching strategy that maximizes cache performance and delivers popular content
efficiently to clients. However, many of these solutions overlook the heterogeneity in analytic
task requirements. For instance, in an EC server when 50% of data may be popular across
all tasks, the remaining 50% could be popular for specific analytic tasks only, the second 50%
should be cached or not? There is also a need to address unpopular data that may be filtered out
due to lack of popularity. Moreover, these solutions often neglect scenarios where required data
is missing for example, when a client needs data that is not cached on the selected EC server.
In such cases, it is crucial to determine whether the client should retrieve this data from another
EC server or directly from end-users devices or the task should be migrated to another EC server
(when the amount of missing data is significant and it can be available on another EC server, or
to an EC server with low load at this moment). This practical scenario is overlooked in current
research efforts.

2.2.2 Task Caching

In this subsection, we introduce task caching as a service provided by EC servers. Task caching
involves storing the task application, related data, and associated running environment in EC
servers or the cloud [16, 38]. When an end-user device requests an analytic task that needs to be
offloaded to the EC server, the server checks if the task is already cached. If the task has been
cached, the EC server informs the end-user that it exists and directly computes the result. This
approach eliminates the need for the end-user to offload the task again. Conversely, if the task
is not cached, the end-user must offload it to the EC server for processing. Task caching offers
numerous advantages for the network, end-user devices, and EC servers, including reduced
energy consumption, costs, offloading delays, and task completion times [39]. However, as
mentioned earlier, EC servers have finite computation resources and storage capacity. Therefore,
making caching decisions becomes challenging due to task heterogeneity, data sizes, and varying

2.2. RELATED WORK 13

computational and storage requirements [16]. Previous research has proposed various caching
strategies to determine which tasks should be cached. Some strategies prioritize caching based
on task popularity [40]. For example, in [41, 42], EC servers assume knowledge of end-users’
demand patterns by observing their contextual information. However, this approach necessitates
maintaining a significant amount of context information within EC servers.

While other works focused on the computing capabilities. [38] introduced a task caching
algorithm that considers both the constraints of EC servers’ caching and computing capabilities,
as well as user mobility, under the assumption of unknown user requests. Both [16, 43] proposed
task caching algorithms for heterogeneous computing tasks, considering the required computing
resources and data size for each task.
In previous studies, the concept of caching has been integrated with analytic tasks, wherein
the application and its associated data are entirely offloaded as a single unit to the EC server.
However, as discussed in Section 2.2.1, the amount of data required by an analytic task that is
already cached on the EC server has often been overlooked. This oversight can lead to excessive
data uploading if there is no careful consideration of the match between cached data and the data
needed for a new analytic task. Therefore, it is crucial to identify the overlap between cached
data and the incoming analytic task that needs to be offloaded and cached.

Moreover, most related works tend to focus on one of three aspects independently: task
offloading, data caching, or task caching. Nevertheless, an efficient task offloading mechanism
must consider the consistency between the cached data on the EC server and the requirements of
the new tasks. Additionally, determining whether a task should be cached is contingent upon the
likelihood of it being requested again by another client. Finally, when a client needs to offload
an analytic task, it is imperative to decide whether to offload the task entirely from scratch along
with all its requirements or to leverage related data that is already cached on the EC server.

In this chapter, unlike previous studies, we integrate task and data offloading and caching
under the assumption that user requests are dynamic but can be tracked, and that EC servers
have a certain amount of cached data. We propose a data-driven decision-making mechanism for
task offloading and caching. The goal is to improve the task completion rate while minimizing
communication costs and efficiently meeting the clients’ demands, all within the constraints of
EC servers’ resources.

2.2.3 Fuzzy Logic Inference System

Fuzzy Logic Inference System (FLI) has been utilized in offloading and caching decision-making.
As defined by Welstead in [44], it is a set of rules and regulations that defines boundaries and
provides guidelines for successfully solving problems within these boundaries. This type of
logic tries to mimic human behavior in decision-making by avoiding strict boundaries between
categories, in contrast to crisp logic. FLI depends on studying the degree of membership and
belonging, making it an excellent option for managing real-world uncertainty due to rapidly

2.3. PRELIMINARIES 14

changing scenarios [45]. Consequently, it has been employed for solving online and real-time
problems. For example, it has been used in decision-making processes for heaters according
to the weather, defining a person’s relative age group, and determining security levels in online
shopping or trading. In our context, FLI has been applied in numerous studies to make execution
decisions in EC models.

In [46], FLI has been employed to reduce the number of failed tasks resulting from trans-
mission collisions and to support real-time applications. The proposed FLI system is designed
to determine the optimal execution environment for each task—whether it should be processed
by its own resources, a local edge server, or the cloud. The decision-making model is divided
into two stages: the first stage focuses on determining where to place the incoming task, while
the second stage identifies the most suitable location for task processing. However, this study
primarily emphasizes resource availability, without taking into account data assessment and task
popularity. Similarly, in [14], FLI is utilized to make processing decisions for tasks, either in the
EC server or in the cloud. Their FLI system is based on three key parameters: CPU utilization,
WAN bandwidth, and delay sensitivity. This model demonstrates favorable results in terms of
reducing the average number of unsuccessful tasks and improving resource utilization when
compared to benchmark algorithms. However, despite considering task sensitivities, the model
does not address data access.

In general, FLI has been discussed in many studies to improve EC QoS. However, to the
best of our knowledge, the incorporation of task popularity and data overlap as inputs to FLI
systems to optimize offloading and caching mechanisms in EC has not yet been explored within
this domain.

2.3 Preliminaries

This section mainly focuses explain the target data types and application scope, service architec-
ture, and the problems formulation.

2.3.1 Target Data Types and Application Scope

The Chapter primarily focuses on distributed data with minimal privacy constraints—data that
can be offloaded and cached on external servers for task execution. This includes sensor data,
edge-generated data, and other forms typically handled within edge computing environments.
The proposed framework is particularly well-suited for data-driven analytics tasks such as weather
prediction, pollution monitoring, and healthcare diagnostics, which often involve spatio-temporal
features like temperature and humidity. Such data are typically distributed across multiple edge
nodes or centers. In our experiments, we used real-world datasets collected by Unmanned Sur-

2.3. PRELIMINARIES 15

face Vehicles (USVs) GNFUV (1 that gathered time-series environmental data (e.g., sea surface
temperature and humidity) from various coastal regions. The framework is also applicable to
other domains such as smart agriculture, where edge sensors monitor soil moisture and tem-
perature; intelligent transportation systems, where roadside units collect traffic flow and vehicle
telemetry; and smart buildings, where IoT devices track environmental conditions for energy
optimization. These types of tasks can be significantly accelerated and improved by adopting our
fuzzy inference-based offloading framework, as they involve continuous data collection, demand
timely processing, and benefit greatly from efficient edge resource utilization.

2.3.2 Service Architecture

The EC general architecture consists of a three-layer service architecture for data-driven task
offloading. These layers are the End-Users/Applications layer, the EC servers layer, and the
Cloud Computing layer, as shown in Figure 2.1.

• End-Users/Applications Layer: This layer encompasses data generated by a myriad
of devices, including mobile phones, computers, wearable smart devices, cameras in
smart cities, and various sensors (e.g., speed sensors in smart cars, environmental sensors
deployed in specific areas) [37]. These devices typically possess limited and varying
computing and storage capabilities [47]. Consequently, the analytic tasks required by the
end-users or applications are processed by EC servers or cloud infrastructure, with the
results subsequently relayed back to the end-users or applications.

• EC servers Layer: The EC servers layer is an intermediate layer located between the
cloud and End-users/Applications layers. This layer includes a set of collaborative EC
servers that provide computing services for computationally intensive, real-time, and
delay-sensitive tasks [48]. It contains computing, storage, and network resources such as a
micro data center with a virtualized environment, gateways, control units, storage units, and
computing units [25]. This enables it to perform some tasks that were originally offloaded
to the cloud. Since this layer has been placed close to end-user devices, which means
the transmission distance is significantly shortened, leading to a considerable reduction in
transmission time [21].

• Cloud Layer: This layer has unlimited computing and storage capabilities. Beside its
ability to macro-control the entire EC architecture. Thus, tasks can be offloaded to the
cloud through, e.g., Base Stations (BSs) from the EC layers due to limited resources
or failure in completing tasks. However, its centralized and remote infrastructure leads
to substantial communication delays, which are cannot satisfy the requirements of the
delay-sensitive analytic tasks [5].

1https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+
sensor+data

 https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data
 https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data

2.3. PRELIMINARIES 16

However, the decision regarding which layer the analytic tasks should be executed in must be
based on a node selection mechanism. This mechanism should consider various factors such as
task size, time constraints, task popularity, data access rate, and resource availability to make the
offloading decision. As we will discuss in the next section.

Ω

Cloud Computing Layer

EC Layer

End-user Layer

Figure 2.1: A three-layer architecture of EC system. Arrows indicate the data and tasks trans-
mission between the end-users, the EC, and the cloud layers.

2.3.3 Problem Statement

We consider an EC system comprising a set of N EC servers, denoted by N = {𝑛1, 𝑛2, . . . , 𝑛𝑁 }.
Each EC server 𝑛𝑖 collects𝑁𝑖 real-valued contextual data points, represented as x = [𝑥1, 𝑥2, . . . , 𝑥𝑑]⊤ ∈
R𝑑 . Here, x is a 𝑑-dimensional vector where each dimension corresponds to a specific feature,
such as temperature or humidity. The 𝑛𝑖 server stores them locally in the dataset D𝑖 = {x𝑘 }𝑁𝑖𝑘=1.
Each server 𝑛𝑖 has a neighborhood N𝑖 ⊂ N of directly communicating servers 𝑛 𝑗 ∈ N𝑖. Moreover,
server 𝑛𝑖 communicates with the end-users/applications and the cloud. These EC servers have
specific computing capabilities, which in turn forms (and contributes to) the resources available
in the EC servers layer [15]. Meanwhile, end-users, denoted as U = u1, u2, . . . , u𝑁 , generate
computationally intensive analytic tasks with stringent real-time data processing requirements,
represented as T = 𝑇1, 𝑇2, . . . , 𝑇𝑁 . These tasks vary in the number of requests (i.e., task pop-
ularity), data size, and computational capacity requirements. Consequently, they consider as
computational intensive tasks for the limited computing resources available on end-user devices
U. Therefore, these N servers can provide the end-users/ applications with computing resources
to help them process certain analytic tasks [12]. In this study, we address the scenario where
the number of end-users U exceeds the number of tasks T (U > T). This scenario arises be-
cause certain computing tasks are highly popular and may be repeatedly requested by different

2.3. PRELIMINARIES 17

end-users. Consequently, we assume that different end-users can request the same task based on
their preferences [39]. Additionally, the number of tasks T exceeds the number of EC servers N𝑖
(T > N𝑖). As a result, tasks T are queued until a decision is made regarding their execution or
offloading [20]. Given the limited capacity of EC servers to handle all tasks T, it is imperative
to make informed decisions regarding whether to execute tasks locally or offload them to other
infrastructure. To determine the appropriate offloading decision for each 𝑇 ∈ T, each EC server
𝑛𝑖 must obtain specific information regarding the analytic tasks 𝑇 based on several key factors.
First, the rate of task requests: A server 𝑛𝑖 monitors the number of requests for each analytic
task 𝑇𝑘 , which arrive at different request rates 𝜆𝑘 from end-users or applications. By analyzing
these request rates 𝜆𝑘 , the EC server 𝑛𝑖 can identify the most popular tasks. Tasks with higher
request rates are preferably executed locally to minimize delays. This also aids in predicting
future task requests based on current demand and popularity. Additionally, server 𝑛𝑖 can cache
popular tasks for future reuse, potentially reducing response time and resource consumption.
Less popular tasks may be offloaded to neighboring servers or the cloud. Second, according
to the task request rate 𝜆𝑘 , some tasks are either extremely popular compared to other tasks or
extremely rare. These are referred to as outlier tasks. Each server 𝑛𝑖 can locally identify its
own outlier tasks, as will be elaborated later. Generally, outlier tasks with high popularity (i.e.,
highly demanded tasks) will be executed locally. On the other hand, outlier tasks with very low
popularity can be offloaded to an available neighboring node 𝑛𝑖 or, if none are available, then
they are offloaded to the cloud. The non-outlier tasks have all three options (local execution,
offloading to available neighbor(s), or to the cloud). Third, as previously stated, each server 𝑛𝑖
collects real-valued data and stores it locally in D𝑖. It’s worth noting that the type and amount
of data in each EC server 𝑛𝑖 significantly impact whether a task should be executed locally or
offloaded. Since we primarily focus on analytical tasks (e.g., ML model training and inference),
such tasks require a specified amount of data from D𝑖 to be executed.

Imagine, for instance, an analytic task as a series of value-range queries, which define a
specific data subspace over the server 𝑛𝑖’s available data in D𝑖. In this case, the analytic task
𝑇𝑘 might require a large portion of the necessary data (e.g., >75%) found in server 𝑛1, while
only a small fraction (e.g., >10%) is available in another server 𝑛2, as illustrated in Figure 2.2.
Consequently, offloading such a data-driven task to server 𝑛 𝑗 may result in additional latency,
increased resource usage, and the need for data transmission from 𝑛1 to 𝑛2.

In Figure 2.2, task 𝑇1 is shown to be assigned to server 𝑛2, which holds only 20% of
the required data. This decision reflects a non-optimal offloading scenario, often caused by
the lack of global knowledge about data distribution across the system. It highlights a core
challenge in distributed environments: EC servers typically make decisions based on partial,
local information, which can lead to suboptimal task placements and inefficient use of resources.
This example motivates the need for a coordinated, context-aware offloading mechanism that
jointly considers task popularity and data availability factors when selecting an execution node.

2.3. PRELIMINARIES 18

𝒏𝟏

𝒏𝟐𝒏𝟑

𝒏𝟒

T1

• 𝒏𝟏 has 40% of required data
• 𝒏𝟐 has 20% of required data
• 𝒏𝟑 has 25% of required data
• 𝒏𝟒 has 75% of required data

Figure 2.2: Example of the availability of Cached data.

Therefore, our mechanism considers the amount of accessible data required for a given task
to make the offloading decision. Hence, given an incoming task 𝑇𝑘 at EC server 𝑛𝑖, the server
locally estimates the probability of this tasks to be outlier (based on a recent history of demand
rates) and the percentage of available data required. This information is used by EC server 𝑛𝑖 to
come up with the first two decisions/actions: 𝑎0 = ‘local tasks execution’ or 𝑎1= ‘task offloading’,
and if action 𝑎1 is selected, then the server 𝑛𝑖 should swiftly decide in which neighboring EC
server 𝑛 𝑗 ∈ N𝑖 the task 𝑇𝑘 should be offloaded (action 𝑎11) or offload that 𝑇𝑘 to the cloud (action
𝑎12), as in Figure 2.3.

𝑎!

𝑎"#

𝑎"

𝑎""

Execute 𝑇$locally

Offload
 𝑇$

Offlo
ad

 𝑇 $
 to

 𝑛 %

Offload
 𝑇$ 	to the cloud

Figure 2.3: Tasks offloading decisions.

2.4. METHODOLOGY 19

2.4 Methodology

In this section, our goal is to optimize the decision-making process for offloading and caching
analytic tasks based on the proposed EC servers selection mechanism. That aims to efficiently
assign data-driven analytic tasks to EC/cloud to minimize the task execution delay and increase
EC servers resource utilization. We firstly introduce the tasks’ management factors that have
been adopted in this study. Then, the task management reasoning.

2.4.1 Task Management Factors

We detail the core factors of the proposed task management mechanism, which determines
the optimal execution decision for each task 𝑇𝑘 on each server 𝑛𝑘 . These factors include the
popularity of tasks, outliers, and the corresponding data access availability.

Task Popularity

We first elaborate on a methodology for determining the popularity of a task 𝑇𝑘 in a specific
server 𝑛𝑖 within a sliding time window of size 𝑊 . Specifically, we assume a discrete time
domain 𝑡 ∈ T = {1, 2, . . .}. At each time instance 𝑡, the server 𝑛𝑖 observes a number of demands
for each task 𝑇𝑘 from end-users/applications. The demand for task 𝑇𝑘 is associated with a
request rate 𝜆𝑘 as requested by end-users/applications and monitored within the time window
(horizon) 𝑊 . Thus, given server 𝑛𝑖, a series of tasks {𝑇1, 𝑇2, . . . , 𝑇𝑘 , . . .} arrive with rate 𝜆𝑘 .
The demands for each task 𝑇𝑘 in the 𝑊 recent time instances are recorded in the task requests
vector v𝑘 = (𝑣𝑡−1+𝑊 , 𝑣𝑡−2+𝑊 , . . . , 𝑣𝑡), where 𝑣𝑡−𝑙+𝑊 element indicates the number of the incoming
requests of task 𝑇𝑘 by end-users to server 𝑛𝑖 at time instance 𝑙 = 1, . . . ,𝑊 . The requests vector
v𝑘 over the time window𝑊 plays a significant role in storing the recent historical trends of each
task 𝑇𝑘 ’s demands, which will be used for estimating the popularity of the task 𝑇𝑘 in a server 𝑛𝑖.
To derive the popularity of 𝑇𝑘 , the server 𝑛𝑖 groups the corresponding task demands within the
time window by adopting lightweight unsupervised clustering. The clustering algorithm divides
the task demands of v𝑘 into groups (clusters). Each cluster contains a set of demands that are
similar to each other according to the task arrivals within the time window. Specifically, we
adopt Subtractive Clustering [49] as unsupervised clustering algorithm. It is widely used in
decision-making problems to categorize data into meaningful groups. In this chapter, Subtractive
Clustering is used because it does not require the number of clusters to be known beforehand,
making it well-suited for dynamic demand trends. As shown in Figure 2.4, this method clusters
task requests over a time window into several groups, where each cluster has a centroid (cluster-
head). The number and density of these clusters help quantify the task’s popularity.

2.4. METHODOLOGY 20

Figure 2.4: Tasks demand clusters using subtractive clustering (𝜆 = 5, W = 50). Cluster-heads
are marked with X, and circles represent task requests.

To derive the set of clusters C over the task demand vector v𝑘 , we apply the subtractive
clustering algorithm, which identifies high-density regions in the input space without requiring
the number of clusters in advance. Specifically, for each observed demand value 𝑣 𝑗 in the time
window 𝑊 , the algorithm computes a potential score that reflects its closeness to other demand
values. The potential of each point is given by:

𝑃 𝑗 =

𝑊∑︁
𝑞=1

exp

(
−
(𝑣 𝑗 − 𝑣𝑞)2

𝑟2
𝑎

)
(2.1)

where 𝑟𝑎 is a radius that defines the neighborhood size. The point with the highest potential is
selected as the first cluster-head 𝑐1. After selecting a cluster-head 𝑐ℓ, the potentials of neighboring
values are reduced to avoid choosing nearby points as subsequent cluster-heads:

𝑃𝑞 ← 𝑃𝑞 − 𝑃 𝑗 exp

(
−
(𝑣𝑞 − 𝑐ℓ)2

𝑟2
𝑏

)
(2.2)

where 𝑟𝑏 > 𝑟𝑎 controls the suppression radius. This process continues iteratively until all cluster
centers {𝑐1, . . . , 𝑐 |C|} are identified. Each cluster Cℓ is then formed by assigning nearby demand
values to the closest cluster-head 𝑐ℓ, enabling the estimation of demand patterns for task 𝑇𝑘
during the recent time window𝑊 .

After the subtractive clustering derives a set C of |C| clusters over the demands of task 𝑇𝑘
across the most recent W time instances, each cluster is represented by a task demands clusterhead
𝐶ℓ ∈ C, ℓ = 1, . . . , |C|. The clusterhead will help us in estimating the demands density for the
arriving task 𝑇𝑘 during the time window 𝑊 and the amount of requests per cluster as will be
elaborated below. Given these (recently historical) statistics, we can define the popularity of the
task 𝑇𝑘 based in its demanding behaviour within the time window. If the task is associated with

2.4. METHODOLOGY 21

relatively many clusters within the specific time horizon 𝑊 , then it is (statistically) considered
more popular than other tasks associated with less clusters. Moreover, the more clusters are
derived from the clustering, the higher the variability and amount of task demands with different
rates occur during the time window. Therefore, we define the cluster density, which indicates
the amount of demands of the 𝑇𝑘 within a specific time duration. Specifically, consider the
ℓ-th cluster Cℓ, which maintains the demand values 𝑣 𝑗 ∈ Cℓ and represented by the cluster-head
demand 𝑐ℓ. We then define the cluster variance 𝜎2

ℓ
= 1
|Cℓ |

∑
𝑣 𝑗∈Cℓ (𝑣 𝑗 − 𝑐ℓ)2. Hence, we introduce

the cluster density 𝑑ℓ as the amount of the task demand values being within a squared distance
of the cluster variance from the corresponding clusterhead (centroid), i.e.,

𝑑ℓ = |𝑣 𝑗 ∈ Cℓ : (𝑣 𝑗 − 𝑐ℓ)2 ≤ 𝜎2
ℓ |. (2.3)

The density 𝑑ℓ represents the number of task demands within a distance from the centroid that is
less than the deviation. The deviation 𝜎ℓ is adopted to define our strategy concerning; if we want
to be very ’strict’ and require many demand values to be very close to the centroid to conclude
a high density. Within a cluster, there are historical demand values for task 𝑇𝑘 observed over
the most recent 𝑊 time instances. We pay significant attention to the clusters exhibiting a high
density around the centroid. This density is strong evidence that multiple task demand values
are concentrated around the centroid. To aggregate the demand information conveyed by the
clusters, we define a weighting scheme that assigns a high weight to clusters with high density.
Specifically, based on the derived clusters, the popularity index 𝑝𝑘 for the tasks 𝑇𝑘 is defined as
the linear combination of the derived clusters weighted by their normalized densities.

𝑑ℓ =
𝑑ℓ∑|C|
𝑗=1 𝑑 𝑗

(2.4)

and thus, the popularity demand index 𝑝𝑘 for task 𝑇𝑘 within the recent 𝑊 time instances across
all the derived clusters is defined as:

𝑝𝑘 =

|C|∑︁
ℓ=1

𝑑ℓ𝑐ℓ . (2.5)

Outlier Tasks

To support the decision-making process in the proposed mechanism, we introduce the concept
of the task outlier. Classifying a task as an outlier helps identify statistically extreme (unusual)
demands of tasks 𝑇 within the recent 𝑊 time instances. This mechanism is responsible for
annotating some tasks as outliers based on their popularity compared to other tasks on a server.
The outlier tasks are divided into two classes: outliers that have relatively very high popularity
than the usual trend, and outliers that have relatively very low popularity. These classifications
are based on a lightweight process using the Median Absolute Deviation (MAD) around the

2.4. METHODOLOGY 22

median across the popularity indices of the tasks in T requested in node 𝑛𝑖 over the last𝑊 time
instances. The median of the popularity indices 𝑝 is used as a separating point between the
high and low popularity tasks. Based on the popularity median 𝑝 over the popularity values
{𝑝1, . . . , 𝑝𝑀}, we can then calculate the MAD of the tasks T :

MAD(T) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑘=1,...,𝑀 (|𝑝𝑘 − 𝑝 |) (2.6)

Given this statistic, we define the outlier indicator 𝐼𝑘 for task 𝑇𝑘 based on its popularity 𝑝𝑘 as:

𝐼𝑘 =
|𝑝𝑘 − 𝑝 |

MAD(T) . (2.7)

The task 𝑇𝑘 is outlier if 𝐼𝑘 is greater than the empirically derived threshold 𝜙 = 2.5, i.e., the
outlier indicator is:

𝑜𝑘 =

{
1 (outlier) if 𝐼𝑘 ≥ 𝜙
0 (non-outlier) if 𝐼𝑘 < 𝜙

(2.8)

Based on the outlier tasks identification and the associated popularity indices of these tasks, the
server 𝑛𝑖 can get more certain decisions, either locally executing a very popular (outlier) task or
offloading a very low popular (outlier) task. Nonetheless, the amount of data required for those
outlier tasks (and of course of all the tasks), will further help the server to proceed with a right
offloading decision as it will be elaborated later. As an informal guideline, the outliers filter
selects those tasks with high popularity while having a high data overlapping with the servers
thus can select action 𝑎0. In contrast, very low popular tasks with low data overlapping will
select action 𝑎12.

Task’s Data Overlapping

To further support the decision-making process in the proposed mechanism, we introduce the
concept of data overlapping, which indicates an estimation of the percentage of data required for
executing the analytic task 𝑇𝑘 out of the entire dataset D𝑖. In this research, we focus on analytic
tasks such as training machine learning models on distributed data, which has gained popularity
and proven beneficial in recent years for applications like weather forecasting, traffic prediction,
and more [12]. In this context, for instance, data points 𝑥 in a node 𝑛𝑖 represent real-values,
such as sensed data collected from IoT devices. These data form the basis for determining
the suitability of executing an analytic task 𝑇𝑘 locally in node 𝑛𝑖. However, the availability of
required data for each task varies from node 𝑛𝑖 to node 𝑛 𝑗 . Therefore, if a task 𝑇𝑘 offloaded to 𝑛𝑖
has only 20% of the data it needs for execution, it implies that 80% of the required data would
need to be brought in to execute the task locally. This situation can lead to increased resource
consumption, network load, and response time. Given the representation of an analytic task 𝑇𝑘
via a (range) selection query q𝑘 = [𝑞min

1 , 𝑞max
1 , . . . , 𝑞min

𝑑
, 𝑞max

𝑑
] over a data sub-space defined be

2.5. TASK MANAGEMENT REASONING 23

the dataset D𝑖, we define the data overlapping as the ratio of the data points satisfying the task
query q𝑘 out of the data points stored in node’s dataset D𝑖. That is, a data point x ∈ D𝑖 satisfies
the range query q𝑘 if the following statement S(q𝑘 , x) holds true:

S(q𝑘 , x) ≡ (𝑞min
1 ≤ 𝑥1 < 𝑞

max
1) ∧ . . . ∧ (𝑞

min
𝑑 ≤ 𝑥1 < 𝑞

max
𝑑) (2.9)

Hence, the degree of data overlapping 𝑢𝑘 of task 𝑇𝑘 represented via the query q𝑘 is defined as:

𝑢𝑘 =
|x ∈ D𝑖 : S(q𝑘 , x) ≡ TRUE|

|D𝑖 |
(2.10)

2.5 Task Management Reasoning

2.5.1 Fuzzy Logic Inference Modeling

Given a EC server 𝑛𝑖 receiving demands for the analytics task 𝑇𝑘 over the EC server’s datasetD𝑖,
we derive the corresponding factors: popularity 𝑝𝑘 , outlier 𝑜𝑘 , and data overlapping 𝑢𝑘 . This
section introduces a reasoning mechanism that integrates these factors to guide task offloading
decisions, balancing between the task demands, EC servers’ capability and data availability.
To facilitate decision-making under uncertainty, FLI inference has been adapted to handle the
inherent uncertainty and approximation of these factors in dynamic environments. Since it
is one of the most prevalent strategy for dealing with rapid change in uncertain systems [14,
50]. This is achieved by adapted fuzzy inference rules with linguistic variables, effectively
modeling the uncertainty associated with these factors. Performing such inference locally on
a EC server offers several advantages. First, it can easily cope with multi-criteria decision-
making models by incorporating multiple factors in the same model. Second, it is capable of
dealing with uncertainty in a dynamic context without complex mathematical models. Third,
it offers lightweight computational complexity while providing an explainable decision-making
methodology [48]. This explainability is based on the linguistic variables which reflect the
uncertainty derived from the values of the factors 𝑝𝑘 , 𝑜𝑘 , and 𝑢𝑘 . In this context, the popularity
(fuzzy variable) is associated with three linguistic fuzzy values {High,Medium,Low} reflecting
a high, medium, and low value of popularity for a specific task. Similarly, the data overlapping
(fuzzy variable) is associated with the linguistic values {High,Medium,Low} reflecting a high,
medium, and low value of data overlapping derived from the task’s query data subspace over
node’s data space. The outlier indicator 𝑜𝑘 (as a fuzzy variable) takes two linguistic values
{Yes,No} reflecting whether 𝑇𝑘 is outlier or not, as depicted in Figure 2.5. Given a linguistic
value linked to a fuzzy variable, a membership function 𝜇 : R → [0, 1] is defined in order to
indicate the possibility that a value of the variable belongs, at certain degree, to the linguistic
value. Specifically, given a data overlapping value 𝑢𝑘 = 𝑥, we associate this value with the
linguistic value High via the membership function 𝜇𝐻𝑢 (𝑥) ∈ [0, 1]. For instance, if the data

2.5. TASK MANAGEMENT REASONING 24

overlapping 𝑢𝑘 = 0.7 for task 𝑇𝑘 , then this can possibly be considered as a High data overlapping
with possibility 𝜇𝐻𝑢 (0.7) = 0.88. We similarity define these membership functions for the rest of
the linguistic values for all the factors. There are different membership functions forms that can
be adapted for fuzzy based reasoning, such as trapezoidal, piecewise linear, singleton, triangular,
and Gaussian [51]. In our context, we consider the triangular form to represent the membership
functions, which is considered as the most common form according to [46]. Summarizing, we
obtain the next sets of membership functions of the fuzzy linguistic values for task popularity
𝑝𝑘 , data overlapping degree 𝑢𝑘 and outlier indicator 𝑜𝑘 , respectively:

𝐹𝑢𝑘 (𝑥) = {𝜇𝐿𝑢𝑘 (𝑥), 𝜇
𝑀
𝑢𝑘
(𝑥), 𝜇𝐻𝑢𝑘 (𝑥)} (2.11)

𝐹𝑜𝑘 (𝑥) = {𝜇𝑁𝑜𝑜𝑘 (𝑥), 𝜇
𝑌𝑒𝑠
𝑜𝑘
(𝑥)} (2.12)

𝐹𝑝𝑘 (𝑥) = {𝜇𝐿𝑝𝑘 (𝑥), 𝜇
𝑀
𝑝𝑘
(𝑥), 𝜇𝐻𝑝𝑘 (𝑥)}

0 5 10 15 20 25 30 35 40

Average of Popularities (Out of 40)

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
b

e
rs

h
ip

 F
u

n
c

ti
o

n

Task Popularities

Low
Medium
High

0.0 0.2 0.4 0.6 0.8 1.0

Outliers Task

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
b

e
rs

h
ip

 F
u

n
c

ti
o

n

Outliers Task

Yes
No

0 20 40 60 80 100

Average of Data Overlapping (%)

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
b

e
rs

h
ip

 F
u

n
c

ti
o

n

Data Overlapping

Low
Medium
High

Figure 2.5: Implementation of FLI on our three factors.

2.5.2 Two-stage Fuzzy Logic-based Reasoning

Given the set of membership functions, we introduce a novel two-stage FLI reasoning engine
that makes the decision of task execution locally (actions 𝑎0), offloading to another EC server
𝑛 𝑗 ∈ N𝑖 (action 𝑎11) or offloading to the cloud (action 𝑎12). Handling all these decisions in a
single stage FLI is a complicated operation [48]. Therefore, we have adapted a two stage FLI
system in order to reduce the system complexity . The first inference stage (S1) deals with the
decisions (actions) 𝑎0 =‘local task execution’ and 𝑎1 =‘task offloading’. The output of S1 is the
offloading probability for a task 𝑇𝑘 given the input 𝑝𝑘 , 𝑢𝑘 , and 𝑜𝑘 , as will be elaborated later in
this section. The second inference stage (S2) is based on the S1’s output. In particular, if 𝑎1

action is selected (having the highest probability), then EC server 𝑛𝑖 swiftly decides in which
neighboring EC server 𝑛 𝑗 ∈ N𝑖 the task 𝑇𝑘 should be offloaded (action 𝑎11), or offload 𝑇𝑘 to
the cloud (action 𝑎12). The proposed tow-stage reasoning mechanism runs on a specific EC

2.5. TASK MANAGEMENT REASONING 25

server 𝑛𝑖 which plays the role of the ‘leader’ in the neighborhood N𝑖. This role is periodically
assigned to EC servers from the neighborhood when certain criteria are met, e.g., remaining
energy, computational capacity and communication availability. This assignment is achieved
via certain leader election mechanisms. We do not elaborate on these mechanisms, since it is
beyond of the scope of this chapter. In the remainder, for simplicity of notation, we assume that
node 𝑛𝑖 is assigned with this leadership role to execute the Two-stage reasoning engine, where
all neighboring EC servers 𝑛 𝑗 ∈ N𝑖 directly communicate with their leader 𝑛𝑖. Both stages of the
FLI system essentially follow the same steps, but with varying numbers of tasks. The first stage
handles all tasks, whereas the second stage focuses exclusively on the subset of tasks that could
not be executed locally.

First Stage Reasoning (S1)

The S1 reasoning engine on 𝑛𝑖 for each task 𝑇𝑘 goes through the following steps: The first step of
FLI is fuzzification of the inputs (𝑝𝑘 , 𝑜𝑘 , 𝑢𝑘) into their fuzzy linguistic terms via the membership
functions. It takes all these factors as numerical values (crisp values), then it assigns each value
to the corresponding fuzzy values (e.g., Low, Medium, High) [14, 46]. The second step is the
activation of the Fuzzy Inference Rules (FIRs), which interpret the logic behind the decision
making for the offloading probability. The obtained fuzzy values are then used to activate a set
of FIRs, a.k.a., fuzzy knowledge base. Each FIR is represented via an IF-THEN statement [48].
The antecedent part (‘IF’ part) is a set of logical conjunctions over the fuzzy linguistic variables.
The consequent part (‘THEN’ part) of the FIR is a fuzzy term from the set of linguistic terms
{Low, Medium, High} that expresses the offloading probability 𝑟𝑘 . The generic format of the
FIR statements used in our S1 engine is as follows:

IF 𝑝𝑘 IS 𝑋1 AND 𝑜𝑘 IS 𝑋2 AND 𝑢𝑘 IS 𝑋3 (2.13)

THEN 𝑟𝑘 IS 𝑋4

where the linguistic terms 𝑋1, 𝑋3, 𝑋4 ∈ {Low, Medium, High} and 𝑋2 ∈ {No, Yes}. For
instance, the following FIR:

IF 𝑝𝑘 IS HIGH AND 𝑜𝑘 IS YES AND 𝑢𝑘 IS HIGH (2.14)

THEN 𝑟𝑘 IS LOW.

This rule expresses the decision of the task 𝑇𝑘 to be offloaded with low probability, i.e., action
𝑎0 is preferred more than action 𝑎1, due to the fact that this task has very high popularity
(thus being also an outlier) and the data required by this tasks can be fully available to EC
server 𝑛𝑖 (high degree of overlapping). Hence, in this case, 𝑇𝑘 can be locally executed on EC
server 𝑛𝑖 and not being offloaded (i.e., low offloading probability). Our S1 engine requires

2.5. TASK MANAGEMENT REASONING 26

18 FIRs in the fuzzy knowledge base in order to cover the whole decision space; there are
3 × 2 × 3 = 18 membership function involved in the three fuzzy variables: popularity, outlier
and data overlapping, respectively. The FIRs of S1 engine are provided in Table 2.1, which
reflects the reasoning behind the decision on the actions 𝑎0 or 𝑎1 represented via the offloading
probability. The last step of S1 is the defuzzification of all the offloading probability values of

Table 2.1: FLI rules inputs and the expected outputs.

𝑅𝑖 𝑝𝑘 𝑜𝑘 𝑢𝑘 𝑟𝑘

1 Low Yes Low High
2 Low Yes Medium Medium
3 Low Yes High Medium
4 Low No Low High
5 Low No Medium High
6 Low No High Medium
7 Medium Yes Low Medium
8 Medium Yes Medium Medium
9 Medium Yes High Low
10 Medium No Low High
11 Medium No Medium Medium
12 Medium No High Medium
13 High Yes Low Medium
14 High Yes Medium Low
15 High Yes High Low
16 High No Low Medium
17 High No Medium Low
18 High No High Low

the activated FIRs [46, 48], which results in a scalar probability 𝑟𝑘 = 𝑃(𝑎1) for the task 𝑇𝑘 .
There are certain defuzzification operators for deriving scalar output over the activated FIRs.
We adapt the centroid defuzzifier, which not only is considered as the most common operator
but also the defuzzified value directly represents probability, which is aligned with the notion of
𝑟𝑘 , calculated as:

𝑟𝑘 =

∫
𝑥∈[0,1] 𝑥𝜇

𝜈
𝑟𝑘
(𝑥)∫

𝑥∈[0,1] 𝜇
𝜈
𝑟𝑘 (𝑥)

, (2.15)

where 𝜈 is a {Low, Medium, High} linguistic terms of the offloading probability. The defuzzified
offloading probability 𝑟𝑘 ranges between 0% and 100%. In order to transform this probability
to a decision, as Figure 2.6 depicts, we define the decision threshold to be 30%, that is, if
𝑟𝑘 = 𝑃(𝑎1) ≤ 0.3 (i.e., 𝑃(𝑎0) > 0.7), then, node 𝑛𝑖 locally executes the task 𝑇𝑘 . That means 𝑇𝑘
will be processed locally by the leader 𝑛𝑖.

The second stage of inference is introduced to deal with decision making on those tasks
which have been determined to be offloaded as suggested by the S1 inference engine, i.e., their
probability of offloading 𝑟𝑘 > 0.3. After finishing S1, the leader EC server 𝑛𝑖 has two types of
tasks: those that should be locally executed belonging to the set T0 ⊂ T (associated with the
action 𝑎0), and tasks belong to the set T1 ⊂ T (associated with the offloading action 𝑎1). The
aim of the 𝑆2 inference engine is to proceed with decision over the tasks in T1 under the actions:

2.5. TASK MANAGEMENT REASONING 27

0 20 40 60 80 100

Average of offloading probabilities (%)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

Fu
nc

tio
n

Offloading probabilities

Low
Medium
High

Figure 2.6: The probability of offloading.

𝑎10 (offload to another node) or 𝑎11 (offload to the cloud). Hence, 𝑆2 passes through two steps:
tasks information updating and determine offloading probability. If the leader EC server 𝑛𝑖 has
not had enough resources for 𝑆2 inference, then another EC server 𝑛 𝑗 ∈ N𝑖 can be elected as a
leader according to specific leader election mechanisms. In this case, the old leader 𝑛𝑖 just sends
only the tasks T1 to the new leader 𝑛 𝑗 in order to make the offload decisions.
Tasks information updating: The leader EC server 𝑛𝑖 collaborates with its neighbors to update
the information regarding the tasks in T1 based on the 𝑆2 engine. For each task, a neighboring
available and suitable EC server can be assigned based on the following reasoning. Firstly, the
leader 𝑛𝑖 considers the task contextual information (𝑝𝑘 , 𝑜𝑘 , 𝑢𝑘) for each task 𝑇𝑘 ∈ T1 from each
neighbouring 𝑛 𝑗 ∈ N𝑖. The goal is to determine how popular a task 𝑇𝑘 ∈ T1 is and how much
data access it requires in EC sever 𝑛 𝑗 . Once 𝑛 𝑗 receives the request from leader 𝑛𝑖, it sends over
(𝑝𝑘 , 𝑜𝑘 , 𝑢𝑘) for each task in T1 according to its dataset D 𝑗 . In turn, 𝑛𝑖 compares between the its
tasks information and neighbor’s tasks information. When 𝑛𝑖 receives information from 𝑛 𝑗 , it
then has two tables: the main table that it gets from S1 and a new one that it receives from 𝑛 𝑗 .
It then updates the T1 tasks information from 𝑛 𝑗 based on the following rule given a task. The
rule states that the task 𝑇𝑘 ’s information (𝑝𝑘.𝑖, 𝑢𝑘.𝑖) in leader EC server will be updated if the
corresponding values from the neighbouring 𝑛 𝑗 are greater; otherwise, the task’s information
will not be updated. The rationale behind updating tasks information is based on achieving lower
𝑟𝑘 . Therefore, if the 𝑝𝑘 and 𝑢𝑘 are not greater than the ones in leader EC server, that means 𝑟𝑘
will increase, and this leads to increase the probability of offloading task to unsuitable EC server
or to the cloud. In order to avoid this, they will not be updated. This process will be repeated for
all the tasks getting information form each neighboring EC server 𝑛 𝑗 ∈ N𝑖 sequentially. Hence,
with each received task information from the next node 𝑛 𝑗+1 ∈ N𝑖, if the rule is fired, the leader’s
task information keeps updating. By the end of this process, leader 𝑛𝑖 will have updated all the
required information as shown in Table 2.2 according to the most suitable node.

2.6. PERFORMANCE EVALUATION 28

Table 2.2: 𝑇𝑘 Information updating according to suitable node.

Task Old information Update to New information

T1 8.37, Yes, 15% n2 9.64, No, 31.5%
T3 2.69, Yes,45.5% n4 2.01, Yes, 85.4%
T4 14.8, Yes, 67.8% n2 13.71, No, 52.89%
T6 7.563,Yes, 31.8% n3 5.88, No, 52.88 %
T7 14.848, Yes, 15.67% n2 26.45, No, 70%
T10 8.5,Yes, 21.3% n4 7.25, No, 66.2%

Determine the offloading probability: Even though leader has updated with the most
suitable EC server for each task, still there is a need to execute the 𝑆2 fuzzy inference engine
for those tasks in T1, since this updating process only determines the best place for a task across
neighboring EC servers 𝑛 𝑗 ∈ N𝑖 regardless of the 𝑟𝑘 . Meanwhile, 𝑆2 is applied in order to get a
specific 𝑟𝑘 for each task in T1. If 𝑟𝑘 is low, the (action 𝑎11) is decided, otherwise, (action 𝑎12) is
preferred. Finally, the updated task information will be treated as input for 𝑆2 and it will pass
through the same steps as in 𝑆1, i.e., fuzzification, activation of FIR and defuzzification. By
introducing 𝑆2, it helps the leader 𝑛𝑖 to decide clearly where each task 𝑇𝑘 should be executed
according to the corresponding 𝑟𝑘 comparing with 𝑆1 inference engine.

2.6 Performance Evaluation

In this section, we employ synthetic datasets to simulate task popularities, while the data overlap-
ping experiment is conducted using real datasets and analytics queries. Additionally, we utilize
the CloudSim Plus simulator to assess the impact of our mechanism on upload/download data
rates for each task and resource utilization.

2.6.1 Experimental Setup for Tasks’ Popularities and Data Overlapping

This experiment has been applied on two types of datasets: real datasets and synthetic datasets.
The real datasets were collected by four Unmanned Surface Vehicles (USVs) operating as nodes
N, which gather sensor data from a coastal area GNFUV (2, accessed on 20 October 2020).
Each USV node 𝑛𝑖 maintains a neighborhoodN𝑖 ⊂ N of directly communicating nodes 𝑛 𝑗 ∈ N𝑖.
Furthermore, node 𝑛𝑖 interacts with end-users or applications to collect data, storing it locally
in their datasets D𝑖 for predictive analytic tasks. The data comprises two features: sea surface
temperature and humidity, i.e., x = [𝑥1, 𝑥2]⊤ ∈ R𝑑 . One node 𝑛𝑖 ∈ N acts as the leader,
receiving a set of analytic tasks 𝑇𝑘 and deciding whether 𝑇𝑘 should be executed locally (action
𝑎0) or offloaded (action 𝑎1).

2https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+
sensor+data

 https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data
 https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data

2.6. PERFORMANCE EVALUATION 29

At the beginning, the leader 𝑛𝑖 has received ten analytic tasks and is evaluating three factors:
popularity (𝑝𝑘), overlap (𝑜𝑘), and utility (𝑢𝑘)—for each task 𝑇𝑘 . For task popularity (𝑝𝑘),
a synthetic dataset of task demands for each 𝑇𝑘 is generated using Poisson distribution with
different rates (𝜆𝑘) over a time window of size𝑊 = 150. The Poisson distribution is a commonly
used tool for generating a set of requests according to a specific rate.

After constructing the request vector v𝑘 = (𝑣𝑡−1+𝑊 , 𝑣𝑡−2+𝑊 , . . . , 𝑣𝑡) for each task 𝑇𝑘 , the
Subtractive Clustering algorithm is applied to group task demands based on their similarity.
The cluster density 𝑑ℓ for each cluster 𝐶 is then calculated using Equation (2.3). The leader 𝑛𝑖
determines 𝑇𝑘 ’s popularity, as shown in the second column of Table 2.3.

Table 2.3: table: Tasks popularities.

𝑻𝒌 𝒑𝒌 𝒐𝒌 𝒖𝒌

𝑇1 8.37 No 67.8%
𝑇2 28.31 No 15.67%
𝑇3 2.69 Yes 15.46%
𝑇4 14.848 No 22.88%
𝑇5 29.977 No 81%
𝑇6 7.563 Yes 6.8%
𝑇7 26.848 No 31.8%
𝑇8 39.49 Yes 21.3%
𝑇9 34.399 Yes 69%
𝑇10 8.5 No 45.5%

Regarding the outliers indicators 𝑜𝑘 , the statistical threshold 𝜙 = 2.5 is applied, allowing 𝑛𝑖 to
generate the two sets of outliers and non-outliers, as shown in the third column of Table 2.3. To
obtain the task’s data overlapping 𝑢𝑘 , each local dataset D𝑖 is defined by the feature boundaries
max and min values: D𝑖 = [𝑥min

1 , 𝑥max
1 , 𝑥min

2 , 𝑥max
2]. Then, queries q𝑘 are generated uniformly

at random for ten tasks, such that q𝑘 = [𝑞min
1 , 𝑞max

1 , . . . , 𝑞min
𝑑
, 𝑞max

𝑑
] for each task 𝑇𝑘 , in order to

obtain the data subspace needed for the execution of analytic task 𝑇𝑘 , as shown in Table 2.4.

Table 2.4: Queries generation and percentages of data overlapping .

Task 𝒒min
1 𝒒max

1 𝒒min
𝒅 𝒒max

𝒅
Points Including Per (%)

𝑇1 19 32 49 57 130/899 14.46%
𝑇2 19 29 44 46 164/899 18.24%
𝑇3 26 28 43 58 75/899 8.3%
𝑇4 22 32 42 53 160/899 17.79%
𝑇5 20 32 38 58 885/899 98.44%
𝑇6 20 29 41 55 310/899 34.48%
𝑇7 21 25 48 53 48/899 5.33%
𝑇8 22 33 38 55 600/899 66.74%
𝑇9 20 32 50 57 470/899 52.28%
𝑇10 19 28 36 50 251/899 27.91%

Evidently, there are some tasks 𝑇𝑘 with high data overlap (e.g., 𝑇5); 𝑢𝑘 reaches 98%, while
there are tasks with low 𝑢𝑘 , such as 𝑇3 and 𝑇7. Therefore, by executing tasks with high 𝑢𝑘 locally,
such as 𝑇5, it is expected to reduce the percentage of data offloading from 100% to 2%. In

2.6. PERFORMANCE EVALUATION 30

contrast, executing tasks with low 𝑢𝑘 locally, such as 𝑇7, is expected to increase data offloading
percentages to almost 95%, which is clearly inefficient. The FLI engine has been developed in
MATLAB considering the popularity 𝑝𝑘 of tasks 𝑇𝑘 between [1, 40] and outlier 𝑜𝑘 either 0 or
1, while the percentages of data overlapping 𝑢𝑘 are between [0%, 100%]. All these are inputs
to the FL system, while the probability of offloading 𝑟𝑘 is the output in [0%, 100%]. As shown
in Figure (A- 2.7), increasing 𝑝𝑘 and 𝑢𝑘 for task 𝑇𝑘 leads to a decrease in the probability of
offloading 𝑟𝑘 . This implies an increase in the probability of executing this locally (action 𝑎𝑜).
On the other hand, in Figure (B- 2.7), decreasing 𝑝𝑘 and 𝑢𝑘 for task 𝑇𝑘 leads to increasing the
probability of offloading 𝑟𝑘 . This means that increasing the probability of offloading 𝑇𝑘 either to
another node (action 𝑎11) or to the cloud (action 𝑎12).

Figure 2.7: The effect of (𝑝𝑘 , 𝑜𝑘 , 𝑢𝐾) on the probability of offloading (𝑟𝑘).

For task information update, ten tasks 𝑇𝑘 are considered, six of which require offloading
(action 𝑎1) according to Table (2.5). To determine the most suitable node 𝑛 𝑗 ∈ N𝑖 for each task
𝑇𝑘 , the information (𝑝𝑘 , 𝑜𝑘 , and 𝑢𝑘) is updated.

During 𝑆2, leader 𝑛𝑖 will have the task information as shown in Table 2.5. The output of 𝑆2
is 𝑟𝑘 for each task in T1. 𝑆2 is applied with the same steps as in 𝑆1. According to the results, 𝑇1,
𝑇3, 𝑇6, and 𝑇7 will offload to 𝑛 𝑗 ∈ N𝑖 (action 𝑎11), while 𝑇4 will offload to 𝑛 𝑗 ∈ N𝑖 (action 𝑎11) if
there are available resources. However, tasks 𝑇4 and 𝑇10 have a very high offloading probability;
therefore, they will be offloaded to the cloud (action 𝑎12).

2.6. PERFORMANCE EVALUATION 31

Table 2.5: 𝑆2 decision making based on three factors.

Task Node 𝑷𝒌 𝒐𝒌 𝒖𝒌 𝒓𝒌 Rule

T1 𝑛2 Low No Low 82%, High rule 4.
T3 𝑛4 Low Yes High 49%, Medium rule 3
T4 𝑛3 Medium No medium 58%, Medium rule 11
T6 𝑛2 Low No Medium 84.4%, High rule 5
T7 𝑛3 High No Medium 44%, Medium rule 11
T10 𝑛2 Low No Medium 51%, Medium rule 5

2.6.2 Experimental Setup

CloudSim Plus has been utilized to create the considered scenarios and to evaluate the perfor-
mance of our mechanism. In this experiment, two types of parameters have been considered:
data-driven task characteristics and EC/cloud parameters. Data-driven tasks characteristics vary
according to the nature of tasks. Some tasks are affected by delays, while others are not; some
tasks could execute on EC servers, while others are beyond EC servers’ capabilities and should
be offloaded to the cloud. To simulate real-life scenarios, ten different data-driven tasks (ap-
plications) have been used. To decide the application types, we looked at the most common
data-driven tasks (weather prediction, air pollution prediction, traffic jam prediction, compute-
intensive tasks, and health apps, etc.).Table 2.6 contains tasks information chosen based on [48].
The upload/download data size represents the type of data sent/received from EC/Cloud since it
could increase or decrease according to data overlapping percent, and this is what distinguishes
our mechanism against other task offloading mechanisms. For instance, (50,000 MB, 100 MB)
denotes the size of uploaded data (humidity, temperature, wind, etc.) that will be used to build
a ML model, and downloads depict the model that the application will receive as a result of
data collection and training in EC/cloud computing. According to our mechanism, if the data
overlapping percentage is high (e.g., 90% or more) the uploading data could be reduced from
50,000 MB to 10 MB. Task length determines the number of Million Instructions (MI) and the
required CPU resource to complete a data-driven task. We considered ten tasks arriving at 𝑛𝑖
with specific features, which include task length and upload/download data. According to data
overlapping, we made the range of this parameter fluctuate from low values with some tasks to
high values with others, while resource consumption and task delay sensitivity have been set up
according to the applications indicated in [48].

2.6. PERFORMANCE EVALUATION 32

Table 2.6: Application types used in the simulation.

Task Application Task Length Upload/Download Data

T1 Deep learning 10,000 50,000/100
T2 Traffic jam prediction 20,000 200,000/300
T3 Air pollution prediction 15,000 200,000/400
T4 Healthcare diagnosis 30,000 80,000/100
T5 Weather prediction 8500 50,000/50
T6 Compute-intensive task 20,000 300,000/500
T7 Fraud detection 18,000 300,000/250
T8 Virtual assistants 25,000 20,000/50
T9 Alerting And Monitoring 14,000 100,000/300
T10 Social Media Analysis 21,000 60,000/80

Other simulation parameters that reflect the computational capabilities of EC/Cloud servers,
such as bandwidth, the number of Virtual Machines(VM), and host MIPS, are listed in Table 2.7.

Table 2.7: Simulation parameters.

Parameters EC Cloud

Bandwidth WAN 500 MB/s LAN 10 GB/s

Number of VM 2 8

Number of cores 2 8

VM CPU speed 10 MB 100 MB

HOST MIPS 1000 10,000

2.6.3 Comparative Assessment

First, we evaluate the efficiency of the proposed mechanism by considering both tasks’ polarities
(𝑝𝑘) and data overlapping (𝑢𝑘). We compare its effectiveness against two alternative mechanisms
designed to handle the same tasks and datasets. The first alternative mechanism (𝑀2) [41]
considers only tasks’ popularity (𝑝𝑘) and outliers (𝑜𝑘) when making offloading decisions. The
second mechanism (𝑀3) focuses solely on the percentages of data overlapping (𝑢𝑘) between the
tasks (𝑇𝑘) and EC servers (𝑛 𝑗 ∈ N𝑖). The experimental results in Table 2.8 demonstrate the
performance of the proposed mechanism, referred to as (𝑀1). According to the optimal solution
(OS) shown in the last column of the same table, (𝑀1) achieves the highest performance. As
shown, (𝑀2) focuses on task popularity (𝑝𝑘) in each EC server while completely ignoring data
overlapping (𝑢𝑘). This means that the (𝑀2) mechanism will distribute tasks (𝑇𝑘) among the
servers (𝑛 𝑗 ∈ N𝑖) without considering whether the selected EC server can reduce response time
and resource consumption. On the other hand, (𝑀3) only considers the percentages of data
overlapping (𝑢𝑘). It uses the node’s data efficiently, regardless of task popularity. Consequently,
popular or urgent tasks (𝑇𝑘) could be offloaded to the cloud (action 12) or remain in the execution
queue if they have lower data overlapping with the servers (𝑛 𝑗 ∈ N𝑖). (𝑀1) aims to balance both
task popularity (𝑝𝑘) and data overlapping (𝑢𝑘). The results show that (𝑀1) provides accurate

2.6. PERFORMANCE EVALUATION 33

offloading probabilities (𝑟𝑘) close to 90% according to the OS boundaries, whereas (𝑀2) and
(𝑀3) achieve accuracies of 70% and 60%, respectively.

Table 2.8: The probability of offloading 𝑢𝑘 for each task𝑇𝑘 according to our mechanism compared
to the other two mechanism.

𝑷𝒌 𝒐𝒌 𝒖𝒌 𝒓𝒌 𝑴1 𝑴2 𝑴3 𝑶𝑺

T1 Low Yes Low 83% 84% 57% High

T2 Med No High 30.4% 32% 42% Med

T3 Low No Low 85% 86% 72.92% High

T4 Med No med 65% 68.9% 53% Med

T5 High No High 23% 17.6% 35% Low

T6 Low Yes Low 85% 86.5% 72.7% High

T7 Med No Med 44.7% 37% 47% Med

T8 High Yes High 14.4% 14.5% 17.7% Low

T9 High Yes High 15% 15.8% 27.1% Low

T10 Low Yes Low 83% 85% 67.2% High

- - - - 10/10 8/10 6/10 -

Second, in terms of resource utilization, we compare the effectiveness of our mechanism
against two alternative mechanisms under the same task simulation conditions. The first alter-
native is a cloud-based mechanism [37], where EC servers collect sensor data and send it to the
cloud to reduce the energy consumption of sensors, which would otherwise occur if the data
were sent directly to the cloud. The second mechanism is an EC-based approach, as suggested
in several studies [14, 48], where tasks are sent to the EC server with the highest availability,
bandwidth, and sensitivity to task delay.

Simulating our mechanism resulted in high data upload speeds, ranging from one to ten
minutes. In contrast, the upload speed in the cloud-based model ranges from 28 to 60 minutes,
while the upload speed in the EC-based mechanism, which does not consider data overlapping,
is nearly double the speed achieved with our mechanism (see Figure 2.8 (a)) .

2.7. CONCLUSIONS 34

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Tasks

0

10

20

30

40

50

60

T
im

e
in

 M
in

u
te

s

Data Uploading Speed According to Data Overlapping

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Tasks

0

10

20

30

40

50

60

T
im

e
in

 M
in

u
te

s

Tasks Execution Time

(a) Data uploading speed. (b) Data-Driven tasks execution time.

Figure 2.8: Data uploading speed and tasks execution Time.

In terms of execution time, we have considered both data offloading time and the main
execution time. This is because, in data-driven tasks, data are an integral part of task execution.
(Figure 2.8(b)) shows that the execution time is significantly reduced compared to the cloud-based
model.

2.7 Conclusions

In this work, we introduced a mechanism for data-driven analytics tasks in an EC environment to
efficiently exploit resources and reduce response time. This mechanism focuses on three factors:
task popularity, outliers, and data overlapping to make execution and caching decisions for
each task. Task popularity investigates each task’s demands, while outliers identify statistically
extreme (unusual) task demands. Data overlapping examines the percentage of data overlap
between tasks and access nodes. These three factors are input into a two-stage FLI (Fuzzy
Logic Inference) system to make the final decision for each task. The performance of our
mechanism has been evaluated based on the probability of offloading data-driven analytics tasks
to the appropriate nodes, compared to the optimal solution and two other mechanisms. The
results demonstrate that our mechanism significantly outperforms the benchmark mechanisms
in decision-making accuracy. Furthermore, this mechanism can reduce the probability of a task
being offloaded to an unsuitable node by up to 95%.

Our method has also been evaluated in terms of resource utilization, showing that it provides
higher data uploading speeds compared to EC-based and cloud-based methods. Consequently,
data-driven analytic task execution times have been minimized.

2.8. LIMITATIONS & DIRECTIONS OF ENHANCEMENT 35

2.8 Limitations & Directions of Enhancement

This mechanism offers significant benefits in reducing data offloading rates and addressing data
privacy concerns. However, its applicability is limited in scenarios where data privacy is strictly
regulated, such as with medical records, financial data, or personal information, where data
sharing with third parties is prohibited. Privacy regulations in these areas restrict the use of
this mechanism, a limitation that is expected to become more pronounced as awareness of data
privacy continues to grow across various domains.

Moreover, this mechanism may not achieve high generalization in final models since models
are trained independently without collaborative learning. Additionally, the mechanism focuses
on specific end-user tasks that must be executed within a defined timeframe, leaving devices
with only two options: either having sufficient resources to execute the task or not. This binary
approach overlooks the potential for devices to contribute partially to task execution, such as
training local models on local data.

To address these limitations, FL and Distributed Learning have been proposed. These
approaches eliminate the need for data offloading, enable complete task execution on end-user
devices, and enhance model generalization through the aggregation of local models.

Therefore, the subsequent three chapters of this thesis concentrate on distributed learning
and federated learning. These approaches align with the growing emphasis on data privacy, the
rapid expansion of data, the demand for models with greater generalization and efficiency, and
the necessity for real-time task execution.

Table 2.9: Table of Symbols for Chapter 2.

Symbol Definition
𝑁 Number of EC servers
𝑛𝑖 𝑖-th EC server
𝐷𝑖 Dataset stored locally on server 𝑛𝑖
𝑥𝑘 A real-valued data point from dataset 𝐷𝑖
𝜆𝑘 Request rate for task 𝑇𝑘
𝑊 Sliding time window
𝐶ℓ Cluster head for demand cluster
𝜎2
ℓ

Cluster variance
𝑑ℓ Cluster density
𝑎0 Local task execution decision
𝑎1 Task offloading decision
𝑎11 Offloading task 𝑇𝑘 to a neighboring EC server
𝑎12 Offloading task 𝑇𝑘 to the cloud
𝑇𝑘 A task in set of computational tasks 𝑇
N Set of neighboring EC servers
𝑃𝑘 Task Popularity
𝑜𝑘 Outlier Tasks
𝑢𝑘 Task’s Data Overlapping
𝑟𝑘 Probability of offloading

Chapter 3

Node and Relevant Data Selection in
Distributed Predictive Analytics: A
Query-centric Approach

3.1 Introduction

3.1.1 Regulatory Constraints and Privacy in Distributed Data Systems

In recent years, the landscape of data accessibility has been significantly reshaped by the emer-
gence of stricter privacy regulations and sector-specific governance frameworks. Legislation
such as the General Data Protection Regulation (GDPR) in Europe and the California Con-
sumer Privacy Act (CCPA) in the United States has introduced substantial constraints on how
data can be collected, stored, and processed—particularly in sectors such as healthcare, finance,
and telecommunications [52, 53]. For example, in healthcare, the Health Insurance Portability
and Accountability Act (HIPAA) restricts the sharing of patient data across institutions with-
out explicit consent, making centralized data aggregation impractical[54]. Similarly, financial
institutions must comply with data localization and anti-money laundering regulations, which
prohibit cross-border data transfers. Although these laws protect privacy, they create significant
barriers to collaborative model training, often resulting in models with reduced generalization
and robustness. To overcome these limitations, it is essential to design machine learning methods
that preserve privacy while enabling the effective use of decentralized data. In response, this
chapter proposes a query-centric approach to DPA. The method selectively engages only the most
relevant nodes for each query, based on their local statistical evaluations, without requiring raw
data sharing. This adaptive and privacy-aware mechanism ensures that sensitive data remains
local, in compliance with data protection regulations, while still enabling high-quality predictive
modeling. It also minimizes unnecessary communication and exposure, reducing the risk of
privacy breaches. Importantly, this approach is compatible with a wide range of decentralized

36

3.1. INTRODUCTION 37

learning paradigms—including FL [10], Incremental Learning, and other distributed learning
frameworks—by focusing data access only on nodes most likely to contribute meaningfully to a
given task.

3.1.2 Background

Distributed Machine Learning (DML) pushes model training, inference and prediction tasks to
the network edge addressing concerns related to data privacy, centralized data transfer, and high
communication costs [55]. Traditionally, predictive analytics relies on collecting vast amounts of
data in Cloud infrastructure before training ML models for tasks like classification and regression
[56]. A contrasting approach, distributed predictive analytics (DPA) [57], where code and models
for training and inference are distributed to places where data are collected, has been emerged
due to (i) increased processing power and memory capacity available in e.g., distributed micro-
/edge-servers and road-side units at the network edge, and (ii) increased demands for improved
data privacy.

DPA rely on a federated learning based infrastructure that enables many disparate sources of
data owned by many organisations to contribute to training and using large-scale DML models
for inference by exchanging only models among distributed nodes. Models are trained using only
data that are requested for specific DPA tasks, referred to as queries. These queries include tasks
such as regression, classification, outlier and novelty detection, and missing value substitution.

DPA amalgamates distributed knowledge without requiring data sharing, thereby eliminating
the dependency on centralized training, which necessitates data sharing [58]. However, DPA is
still in the early stages of developing models with quality that can be compared to centrally trained
models for analytics queries. DPA copes with heterogeneous nodes in terms of data distribution,
data size, and access patterns. Such heterogeneity hinders the development of accurate models.
Understanding nodes’ data characteristics like distribution, outliers, and quality, along with query
access patterns across nodes, is essential. Such holistic knowledge enables the tailored selection
of a subset of nodes for each DPA query. Such nodes should be involved in (i) predicting
the relevant distributed data for each query and (ii) learning ML models for each query in a
distributed fashion. However, this approach is neither directly applicable nor trivial in DML
environments due to concerns about violating nodes’ data privacy as elaborated in [59].

The straightforward approach of selecting random nodes to engage in model training per
query is not sufficient and effective especially when dealing with heterogeneity in query access
patterns. Fundamentally, random node selection neither considers the aforementioned data
characteristics nor the query requirements. A federated infrastructure for DPA based on random
selection of nodes’ data has a significant impact on massively distributed ML models [60]. With
the growth in real-time analytics tasks and the variability of distributed data, a comprehensive
DPA task scheduling policy is required to ensure timely and efficient model training.

Ignoring this knowledge increases the likelihood of selecting arbitrary nodes with irrelevant

3.1. INTRODUCTION 38

data compared to what the model actually needs for training, as evidenced by [57]. This
inevitably leads to situations where nodes’ local models negatively impact the final predictive
performance due to potentially irrelevant training samples, as opposed to the data required by the
queries. Consequently, aggregating irrelevant local models deteriorates the overall performance
and quality of the model for each analytics query, as discussed by [61], [62], and [63].

3.1.3 Motivation & Challenges

In DML environments, nodes (e.g., edge servers and road-side units in smart cities) collect
large-scale contextual data as shown in Figure 3.1. In practice, not all of a node’s data are
needed for a given query; however, some parts may be relevant and useful for improving model
performance [64]. Our challenge is that these relevant data parts are usually distributed across
nodes. Therefore, it is essential to leverage DPA to train a holistic model using only the relevant
data for each query aiming to (i) improve prediction performance and (ii) avoid accessing
irrelevant training data. Consequently, we must ensure that the model is trained exclusively with
the required and relevant data for each query.

The objective of DPA on query-centric node selection, which significantly impacts the global
model’s quality, has not been thoroughly investigated. Most existing approaches use the random
selection paradigm to engage nodes in distributed training, irrespective of the analytics queries,
as in [65, 66]. Such approaches do not consider the specific requirements of queries that demand
engaging only the most relevant and appropriate nodes. Our research question is: How can we
select only the relevant data from each chosen node per query given limited access to the data?

Two fundamental strategies are to be established in node and data relevant selection challenge:
(S1) Engage only those nodes in DML model training hosting the most appropriate data for each
query without transferring data; (S2) Migrate data (or part of them) to nodes or the Cloud so
DPA queries can be centrally processed [67], [68]. However, S2 strategy is not applicable in
edge computing environments due violation of nodes’ data privacy and data transfer. Whereas,
S1 strategy seems promising in DML environments, nonetheless, the key challenge still lies
in selecting which data to be selected thus avoiding accessing irrelevant data for DPA query
processing. This data selectivity challenge requires a DPA paradigm to learn and predict the
relevant data that are expected to be accessed and processed in each query.

We tackle this challenge by learning the relevant data across the data features exploiting the
access patterns of queries issued by DPA applications (see Figure 3.1). Learning of relevant data
is achieved by extracting dependencies between queries and local datasets, while rejecting data
that are irrelevant to model learning.

Example: Consider several smart city DPA applications for real-time monitoring of on-street
parking, surface parking lots in shopping malls, train stations, and corporate campuses in a city as
shown in Figure 3.1. Such applications initiate DPA queries across nodes installed in e.g., parking
areas and road-side units for e.g., (i) ranking the places with the highest parking occupancy in the

3.1. INTRODUCTION 39

Figure 3.1: Node & relevant data selection based on a query-centric paradigm. Nodes, e.g., edge
servers, roadside units, receive DPA queries from DPA Apps to train ML models for predictive
analytics. Generated data by Internet of Things (IoT) devices, e.g., sensors, are selectively
accessed from only selected nodes (encircled in a dashed line) avoiding accessing irrelevant data
for each DPA query.

last 30 minutes, (ii) local (re)training of time-series forecasting models to predict the expected
parking capacity (per parking area) in the next hour, (iii) updating city council recommender
ML applications that inform drivers about available parking spaces in real-time (way-finding
& interactive parking maps), (iv) updating local predictive maintenance ML models with the
status of the surface sensors installed in each parking area, and (v) train traffic ML models for
updating parking duration pricing based on city drivers’ parking habits and daily schedules. The
nodes deployed across diverse areas in the smart city should be able to predict which data they
need to access for DML model training for each query improving e.g., urban decision making
and planning. Awareness of relevant data emerged as a necessary feature of nodes [69]. Nodes
benefit if they are aware of the trends and query access patterns of incoming DPA queries over
their data [70], [71].

Our query-centric paradigm is proposed to enhance data selection by balancing nodes’ privacy
concerns with the need for high-accuracy analytics and efficient data processing. In real-world
analytics applications as above-mentioned, model performance depends not only on the data
volume but also on its relevance to the training process. Often, only a small subset (such as 20
percent or less) of data in each node is relevant to a specific analytic task [69]. In our example
in Figure 3.1, for instance, at time 11:00am, a DPA application generates a query requesting
parking sensors’ data in the last 30 minutes for those sensors which have been occupied from 30

3.1. INTRODUCTION 40

to 60 minutes (vehicles detected parked from 30 minutes to 1 hour) and stage-of-charge ranges
between 60% and 80%. These data of interest need e.g., to train predictive models to forecast
parking slot occupancy in a smart city or for incrementally updating pre-trained forecasting ML
models. In e.g., banking sector, as another example, an analytic task normally involves nested
queries, such as determining the number of customers who have both a credit score between 700
and 800 and an annual income between $50, 000 and $100, 000, and who have made at least three
mortgage payments in the last six months. Additionally, the task might require understanding
the impact of these customers’ loan repayment behaviors on the bank’s overall risk profile. By
measuring the overlap between the data each node hosts (e.g., parking sensor occupancy rate
within a time window and sensor battery level, or credit scores and income levels) and the specific
query requirements, one can efficiently retrieve the relevant data needed for training models that
predict pollution levels in a smart city or default risk in light of optimizing urban planning or
loan offerings, respectively. Such DPA queries are common across various sectors, including
finance [71], weather forecasting [72], healthcare [73], sports analytics [74], manufacturing [75],
transportation and logistics [76], energy [77], and marketing [78], among many other fields that
rely heavily on quantitative and predictive analysis. Compared to other methods [59, 79, 80, 79,
80, 81, 82, 55, 59], our mechanism reduces the need to access 100% of the data in each node for
relevant data selection and training purposes.

3.1.4 Contributions

In this work, we introduce DPA query-centric mechanisms for predicting the most appropriate
subset of nodes involved in DPA per query. By leveraging on nodes’ statistical signatures over
their local data helps predict and rank superior nodes that accelerate the overall model accuracy
per query while avoiding redundant access to irrelevant training data. The main technical
contributions of our paper are:

• We introduce a novel proactive, query-centric node and relevant data selection mechanism
for DPA. This approach focuses on identifying relevant data to be accessed in advance,
as indicated by each DPA query. This, in turn, determines the suitability of a node to be
engaged in the DML process.

• We propose query-centric DML algorithms that utilize relevant data and node ranking for
each query. We further elaborate on the complexity and effectiveness of these algorithms.

• We provide a comprehensive performance evaluation and comparative assessment using
real data and query workloads. Our evaluation showcases the efficiency of our mechanism
across various DML mechanisms, compared against baseline approaches and the relevant
methods [57], [55], [81],and [83] found in the literature.

3.2. RELATED WORK 41

The rest of the chapter is organized as follows. In Section 5.2, we shed light on the related
work elaborating on node and node and relevant data selection. Section 3.3 provides extensive
discussion of the theoretical aspect of our problem and elaborates on the problem formulation
along with preliminaries and definitions. In Section 3.4, we introduce our node and relevant
data selection mechanisms, while Section 3.5 elaborates on the proposed query-centric DML
mechanisms. Section 3.6 reports on the comprehensive performance evaluation, comparative
assessment, discusses on the limitations of our approach and future directions for enhancement.
Section 3.7 concludes the article.

3.2 Related Work

It has been evidenced in [84], [85] and [86] that the performance of a distributed learned model
is greatly influenced by the quality of the distribution of data across the nodes. Therefore, many
studies have focused on improving the model’s performance through node selection and/or data
selection. In light of this, we provide an overview of the most relevant studies on node selection.
Additionally, we show how relevant data have been selected within each chosen node, according
to previous approaches.

3.2.1 Node Selection in DPA

Most approaches adopt random node selection. Consequently, averaging across randomly se-
lected nodes often leads to insufficient performance due to the heterogeneity of the nodes [59].
The heterogeneity of the nodes fundamentally determines how each individual node’s data con-
tributes to distributed model training. [55] considered various factors for node selection, such
as edge device computational capability, network bandwidth, and energy consumption. The
decision mechanism in [82] is based on the importance of user data by inspecting the current loss
of the model at each training round. Both aforementioned mechanisms perform node selection
decisions after model training. This means that resources are consumed in advance, and then it
is decided whether engaging a node is worth it. This is not applicable in our case. For a given
query, we need to predict in advance the most suitable nodes to be engaged in DML training,
thus avoiding unnecessary resource consumption.

[81] introduced a mechanism where the selection criteria are based on choosing nodes with
data different from what the models have previously learned. However, this approach also
requires first training the model and then choosing the nodes. Additionally, it runs the risk of
training a model on irrelevant data, which can be detrimental to the final model’s performance.
[80] proposed using a data quality score, computation score, and communication score as criteria
to quantify the capabilities of the selected nodes. Meanwhile, [79] introduced a reward selection
function based on the remaining energy budget (for mobile edge nodes), expected computation

3.2. RELATED WORK 42

load, and communication status. In both mechanisms, a model must be trained in advance to
assess data quality and the computational load used.

[59] proposed the Federated Trace mechanism to track model training and data distribution
across a random set of nodes. Similarly, [87] introduced a mechanism for nodes selection
mechanism based on measuring each node’s contribution in the previous round of the model
training, which is mainly quantified as the prediction accuracy of the globally (and currently)
trained model before and after aggregating it with each node’s local model. In these approaches,
it is mandatory a (global) model to have been trained in advance helping to choose node selection
for future engagement. Finally, [88] proposed a node selection approach based on a fairness
mechanism. With such mechanism, each candidate node obtains the same chance to get involved
during the training process. The fairness is quantified based on a pre-trained model (before node
selection).

Node selection has been investigated in time-optimized sequential decision making and
on-line learning systems. There is a category of online decision-making deriving from Rein-
forcement Learning (RL) known as the Multi-Armed Bandits (MAB) [89] tackling specifically
this problem. There has been a rise in the utilisation of MAB algorithms powered by RL examin-
ing the crucial balance between exploration and exploitation in sequential decision-making [90],
[91]. The objective of MAB is to determine the best possible arm (node or sub-set of nodes in
our case) from a group of possible arms (nodes) containing previously rewards. This is accom-
plished by picking a single arm sequentially and then tracking the reward that is realized [92].
The contextual MAB problem expands the core MAB by incorporating reward functions that rely
on the context [60], [83] like queries in our case. Such works cast the node selection problem
as a MAB problem in light of identifying the most appropriate node for maximizing expected
rewards. An additional expansion of the MAB, the combinatorial MAB problem permits choice
of multiples groups of arms [93], [94]. Notably, the work in [83] studies the impact of utility
functions in these types of problems including node selection. In addition, the approach in [95]
adopts deep RL to choose appropriate distributed node locations while utilising deep Q-learning
method to ensure load balancing. The work in [96] introduced deep RL to enable actual time
and low-overhead computation offloading and allocation of resources. However, it is essential
to point out that these studies do not take into account the possibility of reducing data access
redundancy nor select a sub-set of nodes to be engaged in a specific query, which are not their
principled objectives. In addition, regarding the choice of offloading task to edge server(s), our
paradigm takes into consideration the decision in which node(s) to offload the model training task
for each query, which relates to the query access pattern over the node’s data. On the contrary, the
above-mentioned methods do not take into consideration any query characteristics for learning
task offloading decisions while some of them involving data migration and mandatory full data
access; the former is not applicable in our case, while the latter is inefficient especially when
involving irrelevant training data as elaborated in our comparative assessment in Section 3.6.

3.2. RELATED WORK 43

Finally, the approaches in [97], [98] and [99] address the problem of selecting nodes for tasks
and/or data offloading based on the Optimal Stopping Theory. However, encrypted information
trading, as opposed to open access to shared data, reduces confidentiality and privacy upon data
offloading. Our paradigm diverges from simple task offloading by focusing on selecting a sub-set
of the most suitable nodes derived from the overlapping between any arbitrary DPA query and
their data for training ML models. In our eco-system there is no data offloading while the model
training tasks are offered by the selected nodes. All the decisions are tailored to the incoming
DPA queries, which yields the novelty of our paradigm in DML environments.

In all the above-mentioned approaches, it is required, at least, one model training round
before choosing the participant nodes for model learning. This evidently yields unnecessary
time, irrelevant data access, and resource consumption, which in principle does not hold in our
mechanism. Nonetheless, the associated node selection decisions in such approaches are not
tailored to DPA queries, thus, focusing only on building generic models untied from specific
tasks. Contrary to our mechanism, these approaches are unaware of the tasks requirements and
needs of predictive applications. Furthermore, the node selection decisions do not take into
consideration the relevance of the data residing on the nodes with the incoming DPA queries.
That is, even if a node is selected, its data should also be ‘scrutinised’ in advance to reassure
that these are relevant for being used in the DML process. On the other hand, our decision
mechanism is purely driven by feeding the distributed learning with the most relevant data out
of the most suitable nodes as it will be elaborated later.

3.2.2 Data Relevance in DPA

Since multiple nodes might be involved in the DML process, it is important to consider that
not all data in the selected nodes may be relevant given a DPA query. It is crucial not only to
select the most suitable nodes but also to identify the relevant data within these nodes. Including
irrelevant data from nodes can negatively impact the performance of the derived predictive model.
Excluding nodes whose some data are considered irrelevant might seem like a straightforward
solution. However, such approach may not always be beneficial since it might lead to removal of
valuable information that could have contributed to the predictive capacity of the models.

[100] proposed a mechanism to identify relevant data for model training based on a relatively
small benchmark dataset. The benchmark-trained model evaluates the relevance of each individ-
ual data sample at every node to determine the relevant samples in a centralized location (e.g.,
a server). This mechanism requires sharing each sample’s prediction errors, which can reveal
specific information about each sample. [101] proposed a data relevance detection method using
relevance scores for each sample, which account for inherent noise. In this approach, irrelevant
(noisy) data are gradually excluded during the DML process. The data relevance is determined
based on the noise of the training samples, regardless the specific DPA query. This differs
significantly from our notion of data relevance. Both of the aforementioned mechanisms assess

3.3. PROBLEM FUNDAMENTALS 44

each data sample individually based on the model predictive performance. They do not consider
the relevance specific to the DPA query. In contrast, our mechanism identifies relevant data as a
fundamental part of the selection decision for each query.

To the best of our knowledge, our approach is the first proactive query-centric node and
relevant data selection mechanism yielding in building tailored DML models. Our work dras-
tically departs from our recent preliminary study in [102] about the necessity and impact of
identifying the relevant data in building DML models. This guided us to establish in this chapter
(i) the fundamentals of the node selection problem per DPA query, (ii) identifying the minimum
sufficient statistics required for selecting the most suitable nodes in advance to be engaged in
the DML training phase, and (iii) introducing query-centric DML mechanisms that leverage the
selected nodes for building models tailored to DPA queries.

3.3 Problem Fundamentals

3.3.1 Preliminaries & Definitions

DML aims to train a model over a distributed dataset D estimating the input-output mapping
𝑦 = 𝑓 (x; 𝜃), with 𝑑-dim. input x = [𝑥1, . . . , 𝑥𝑑]⊤ ∈ X ⊂ R𝑑 , output 𝑦 ∈ Y ⊂ R, and 𝜃 being the
model’s parameters from a parameter space. Fundamentally, the difference with the centralized
ML is that D is distributed over 𝑁 nodes, denoted as N = {𝑛1, 𝑛2, . . . , 𝑛𝑁 }. Each node in
N utilizes similar data features, such as weather data like humidity, temperature, and pressure,
vehicle parking sensors data like occupancy duration, magnetic/inductive sensor type, air quality.

We assume a network of nodes represented via the graph G(N , E) with N nodes (vertices)
and edges E such that nodes 𝑛𝑖 and 𝑛 𝑗 directly communicate (bilaterally) if there exist edges
𝑒𝑖 𝑗 = 𝑒 𝑗𝑖 ∈ E Each node 𝑛𝑖 ∈ N has its own local dataset D𝑖 = {(x, 𝑦)ℓ}𝐿𝑖ℓ=1, which consists of
𝐿𝑖 samples. Each datasetD𝑖 represents a subset of the entire datasetD = ∪𝑁

𝑖=1D𝑖. When a node
𝑛𝑖 receives a DPA task represented as a query q, this node 𝑛𝑖 acts as the ‘leader’ for that query
q. The leader node is responsible for establishing a mechanism to select the most suitable nodes
N ′ ⊂ N to execute the query q with the lowest possible global loss.

The loss function of the DML model 𝑓 , denoted by L(𝑓 (x; 𝜃), 𝑦) = L(�̂�, 𝑦), measures the
difference between the predicted output �̂� = 𝑓 (x; 𝜃) and the actual output 𝑦 given an input x.
This loss function is convex. For regression models, it can be L(�̂�, 𝑦) = |𝑦 − �̂� | or (𝑦 − �̂�)2. For
binary classification models, it can be L(�̂�, 𝑦) = max{0, (1 − 𝑦�̂�)}, with 𝑦 ∈ {−1, +1}. Each
node 𝑛𝑖 ∈ N can have different data, which impacts the model 𝑓 differently [87]. For example,
some nodes N ′ ⊂ N could improve the model 𝑓 ’s performance, while others might negatively
affect it.

We consider a discrete time domain 𝑡 ∈ T. At each instance 𝑡 = 1, 2, . . ., we are given a
DPA query q𝑡 . A query q𝑡 defines the boundaries B of the input subspace X, such that the

3.3. PROBLEM FUNDAMENTALS 45

samples contained therein are requested for training a DML model 𝑓 (x; 𝜃 (q)) given query q.
The parameters 𝜃 (q) of this model depend explicitly on the query q, meaning this model should
ideally be built from the distributed data:

D(q) = {(x, 𝑦) ∈ D : x ∈ B}. (3.1)

The data space B is a 𝑑-dimensional space embedded in X:

B = {x ∈ X : ∧𝑑𝑖=1𝑞
min
𝑖 ≤ 𝑥𝑖 ≤ 𝑞max

𝑖 }, (3.2)

where the query q specifies the min 𝑞min
𝑖

and max 𝑞max
𝑖

boundaries for each dimension in X. In
this chapter, we adopt a 2𝑑-dimensional range-based vectorial representation of a hyper-rectangle
DPA query:

q = [𝑞min
1 , 𝑞max

1 , . . . , 𝑞min
𝑑 , 𝑞max

𝑑] . (3.3)

Note that this does not affect the analysis and generalization of our approach to define the
distributed dataset D(q) ≡ ⋃𝑁

𝑖=1D𝑖 (q). A query requested by a DPA application represented
as a 2𝑑-dimensional vector results in selections of data samples across data dimensions. Range
queries are integral part of real world DPA applications [103], e.g., calculating average pollution
level across regions for city planning, selecting data from geo-spatial databases with GPS signals
mining duration of individuals staying in locations, crime index indicators in city regions,
e.g., neuroDB [104]. In this work, we deal with multidimensional data vectors representing
multivariate contextual data for DPA applications (see our example in Section 3.1.2).

The lowest and highest boundary values {𝑞min
𝑗
, 𝑞max

𝑗
}𝑑
𝑗=1 are drawn from an unknown un-

derlying joint probability distribution 𝑃(𝑞min
1 , 𝑞max

1 , . . . , 𝑞min
𝑑
, 𝑞max

𝑑
) = 𝑃(q). The geometric

representation of D(q) is a hyper-rectangle defined by the lowest and highest boundary values
linked to an interval range query. Other query types could be adopted to represent a query q,
which do not spoil our data retrieval fromD, e.g., 𝑘-nearest neighbors queries [105], [106], [107]
or radius query [108], [103], [109]. The latter refers to as: D(q) = {x ∈ D : ∥q′ − x∥𝑝 ≤ 𝜓}
under norm 𝐿𝑝 = ∥x−x′∥𝑝 = (

∑𝑑
𝑖=1 |𝑥𝑖−𝑥′𝑖 |𝑝)

1
𝑝 . The geometrical representation of a radius query

is a hyper-sphere in 𝑑-dimensional space defined by center q′ = [𝑞′
𝑖
]𝑑
𝑖=1 with 𝑞′

𝑖
= 1

2 (𝑞
max
𝑖
+ 𝑞min

𝑖
)

and radius 𝜓 ∈ R+. If 𝑝 = ∞, the query represents a hyper-rectangle centered at q′ with extent
2𝜓 on each dimension; for 𝑝 = 2, the query region is a hyper-sphere.

We focus on query-based data selection for DPA represented by ranges over data dimension,
e.g., ranges in date and time (temporal window of interest), city regions, vehicle’ parking
occupancy duration, vehicle detection indicators, and sensor types (e.g., magnetic, inductive).
Query ranges can also include image features like texture, colour, and shape represented as
𝑑-dimensional intervals for image clustering and classification tasks, e.g., [110]. Selection over

3.3. PROBLEM FUNDAMENTALS 46

other types of data like sub-graphs and moving images is beyond of the scope of this work and
is left our future work.

Finally, it is worth noting that in a DML environment, the dataset D(q) is distributed across
nodes and depends on the query q. Given two different queries q1 and q2, the required datasets
D(q1) and D(q2) for building the models 𝑓 (x; 𝜃 (q1)) and 𝑓 (x; 𝜃 (q2)), respectively, can differ.
Additionally, the nodes containing the corresponding data for the two queries can also be different
and dependent on the queries. We summarize our notations in Table 3.10 and abbreviations in
Table 6.1.

3.3.2 Problem Formulation

Given a DPA query q, we seek the subset of nodes N ′ ⊂ N that can be participating in training
a model 𝑓 over their distributed data. However, nodes may have different data, where only the
relevant ones are needed to be accessed for training 𝑓 . Consider the following example, with a
network of 𝑛 = 10 nodes, each one having its own local datasets D𝑖, and a query q that needs to
access relevant data. We have three main cases for handling this query:

(C1) Centralized Case: One could gather all the data D ≡ ∪{D𝑖}𝑛𝑖=1 from all nodes in a
central server and train a global model 𝑓𝐺 over D for the query q, as in [111]. We then obtain
the average prediction error 𝑒𝐺 corresponding to 𝑓𝐺 . This means that we do have access to all
participating nodes’ data, which violates our principles for query-centric DPA in terms of data
privacy.

(C2) Individual Case: Each node 𝑛𝑖 can individually and locally train its local model 𝑓𝑖 over
local dataset D𝑖. In this case, we obtain the (local) average error 𝑒𝑖 for each node 𝑛𝑖 ∈ N given
the query q. Evidently, in this case, no data are shared. On a first thought, one might claim that
since the central server possesses complete knowledge, its predictions would be better (in terms
of error) compared to those of each node. This is not always the case. It depends on the local
data densities of each node, which are unknown in advance given a query. As it is evidenced
in Figure 3.2, the performance of the global model 𝑓𝐺 in terms of accuracy is better than some
of the nodes’ local models, i.e., from a sub-set of nodes N0 ⊂ N , whose local errors 𝑒 𝑗 > 𝑒𝐺

for nodes 𝑛 𝑗 ∈ N0. On the other hand, there are some nodes, whose models perform better than
the global one. These are the most suitable nodes N1 ⊂ N with local errors 𝑒𝑘 < 𝑒𝐺 , 𝑛𝑘 ∈ N1.
This means that there exists a subset of nodes whose models are more accurate than the global
one. However, to identify this subset of nodes, one must first engage all the nodes in advance
and train local models for each of them. Additionally, a global model would need to be built by
transferring all the data and then selecting those nodes inN1. Evidently, this approach is neither
practical nor applicable since we need to identify those nodes in advance given a query without
training a global model.

Theorem 1. Let 𝑒𝐺 and 𝑒𝑖 denote the prediction error of a central node/server and a local node

3.3. PROBLEM FUNDAMENTALS 47

𝑛𝑖 ∈ N . It is not always the case that 𝑒𝐺 < 𝑒𝑖,∀𝑛𝑖 ∈ N .

Proof. We prove Theorem 1 with two counterexamples. Consider the simple mean regression
algorithm 𝑓 +, i.e., given an input x, its predicted output �̂� is the sample mean �̄�, and the 𝑘-nearest
neighbors regression model 𝑓 ∗, i.e., the output is the average output of the 𝑘-th closest input
points to the input x. Consider that each D𝑖 follows a Gaussian N(𝜇𝑖, 𝜎2

𝑖
), with 𝜎2

𝑖
→ 0 and

|𝜇𝑖 − 𝜇 𝑗 | >> 0, 𝑖 ≠ 𝑗 . Evidently, the central node’s data set D = ∪𝑛
𝑖=1D𝑖 follows the mixture

N(𝜇, 𝜎2) with 𝜇 =
∑𝑛
𝑖=1 𝑎𝑖𝜇𝑖, 𝜎

2 =
∑𝑛
𝑖=1 𝑎𝑖 ((𝜇𝑖 − 𝜇)2 + 𝜎2

𝑖
), with 𝑎𝑖 > 0,

∑𝑛
𝑖=1 𝑎𝑖 = 1. If we

were told that all inputs followed N(𝜇 𝑗 , 𝜎2
𝑗
) for some 𝑗 , 1 ≤ 𝑗 ≤ 𝑛 then we should have engage

only node 𝑛 𝑗 , thus, yielding (i) 𝑒 𝑗 < 𝑒𝐺 in case of 𝑓 + and (ii) 𝑒 𝑗 = 𝑒𝐺 in case of 𝑓 ∗, and avoiding
engaging all nodes 𝑛𝑖 or, even, constructing the global model in the central node by transferring
all the data. Furthermore, consider that allD𝑖 follow exactly the same distribution; consequently,
the central node’s data follows the same distribution. Then, regardless of any knowledge on the
densities of inputs, we could randomly select one node fromN , thus, yielding 𝑒𝑖 = 𝑒𝐺 ,∀𝑛𝑖 ∈ N ,
and avoiding constructing the central node and/or engaging all nodes. □ □

(C3) Model Aggregation Case: The query q can be sent to all nodes in parallel. Each node
𝑛𝑖 locally builds a model 𝑓𝑖 and sends it to a central node. The central node, after receiving all
models, aggregates them and finally sends the aggregated model 𝑓𝐴 = 1

𝑛

∑
𝑛𝑖∈N 𝑓𝑖 to all nodes,

where each one stores it locally. The performance of 𝑓𝐴 is expected to be higher than that of the
global model 𝑓𝐺 . Some of the nodes have similar or lower performance compared to the global
model on the central node, while other nodes achieve much higher performance, as shown in
Figure 3.2. Moreover, an aggregated model across only those nodes in N1 can potentially have
higher performance than 𝑓𝐴 (since models from nodes in N0 have been excluded), as shown in
Figure 3.2 (black dash-dot line). Therefore, the models that belong to the nodes in N1 could
minimize the expected error of the desired model, while the rest of the models do not contribute
to improving the predictive performance. However, the nodes inN1 cannot be known in advance
and are unlikely to be the same for each query.

For each incoming query, all nodes need to communicate to obtain an average estimate. This
implies that all nodes are equally considered available for providing a model per query. Ideally,
given a query q, it would be preferable to identify the subset N ′ ⊂ N of nodes whose average
model’s estimate �̂�′ = 1

|N ′ |
∑
𝑛𝑖∈N ′ 𝑦𝑖 would be (almost) the same as �̂�. This estimate �̂� could be

either the prediction of 𝑓𝐺 or 𝑓𝐴. More interestingly, it would be ideal if we could select the
minimum subset of nodes whose average estimate is as close to �̂� as possible for each query.
Evidently, we desire to obtain the minimum subset N ′ ≡ N1 in advance for each query, without
engaging all the nodes and/or transferring their data to a central location. This is a NP-hard
problem as explained below.

Theorem 1. Given a query q, the problem of finding the minimum subset N ′ ⊂ N of nodes,
whose average estimate �̂�′ results to same error as �̂� is NP-hard.

3.3. PROBLEM FUNDAMENTALS 48

Before proceeding with the proof of Theorem 1, let us recall the Subset Sum Problem (SSP):
Consider a pair (I, 𝑠), where I = {𝑖1, 𝑖2, . . . , 𝑖𝑛} is a set of 𝑛 > 0 positive integers and 𝑠 is a
positive integer. SSP asks for a subset of I whose sum is as large as possible, but not larger than
𝑠. SSP is NP-complete. Consider now the following problem, referred to as Minimum Subset
Average Problem (MSAP): Given (I, 𝑠), find the minimum subset I′ with average 𝑠′ such that
⌊𝑠′⌋ = 𝑠 or ⌈𝑠′⌉ = 𝑠.

Theorem 2. The MSAP is NP-hard.

Proof. If there is a polynomial-time algorithm for MSAP, then a polynomial-time algorithm
can be developed for SSP. Suppose that there exists a polynomial algorithm, 𝐴(I, 𝑠) that solves
MSAP, i.e., 𝐴(I, 𝑠) finds in polynomial time the minimum subset I′ s.t. 𝑠. Then 𝐴(I, 𝑠) can
be used to solve the SSP with (I, 𝑛𝑠), 𝑛 = |I |. In general, any solution 𝐵(I, 𝑠) of SSP with
(I, 𝑠) can be formulated as the Algorithm 1. If the polynomial-time complexity of 𝐴(I, 𝑠) is a
polynomial 𝑃(𝑛), then the complexity of 𝐵(I, 𝑠) is 𝑂 (𝑛𝑃(𝑛)). But, this implies that there is a
polynomial-time algorithm for SSP. Hence, no polynomial-time algorithm exists for MSAP.

□

Algorithm 1 𝐵(I, 𝑠)
I, 𝑠 I′

for 1 ≤ 𝑘 ≤ |I| do call 𝐴(I, 𝑠
𝑘
) If a subset I′ of I with 𝑘 elements is found, whose elements

have an average 𝑘′ such that ⌊𝑘′⌋ = 𝑠/𝑘 or ⌈𝑘′⌉ = 𝑠/𝑘 Then obviously their sum is 𝑠, so exit and
return I′

Based on the outcome of the Theorem 2, we can now proceed with the proof of the Theorem
1.

Proof. Let 𝑒 = | �̂�− 𝑦 | and 𝑒′ = | �̂�′− 𝑦 |. In order to show that the problem of finding the minimum
subset N ′ with 𝑒′ = 𝑒 is NP-hard, it suffices to show that the problem | �̂� | = | �̂�′| is NP-hard.
Consider the set I𝑅 = {| �̂�𝑖 |𝑛𝑖=1}, | �̂�𝑖 | > 0,∀𝑖. Since MSAP, which deals with set of positive
integers, is NP-hard from Theorem 2 then a variant of MSAP with (I𝑅, �̂�) is, also, NP-hard.

□

Nonetheless, if one is able to find the minimum set N ′ of nodes for a given query (let 𝑛
be very small), then, this is meaningless. That is because, in order to obtain N ′ for a given
query, once has firstly to query all nodes and, consequently based on their estimates, produce
N ′. Hence, one has to predict in advance the most appropriate subsetN ′, which results to same
or less error than that of N . Furthermore, out of those nodes in N ′, we should select those
nodes whose datasets satisfy the query boundaries B. Therefore, we propose a mechanism for
proactive selection of nodes for each query, where these nodes will be engaged in training the
model 𝑓 (x; 𝜃 (q)).

3.4. NODE & RELEVANT DATA SELECTION 49

At any instance 𝑡, our mechanism predicts a subset N ′𝑡 ⊂ N whose selected nodes provide
a good model for query q𝑡 . Good model relates to (i) obtain a relatively small prediction error
𝑒𝑡 as possible and (ii) achieve predictions �̂� close to �̂�𝐺 (if the latter is able to be determined)
denoting that 𝑒𝑡 = 𝑒𝐺,𝑡 + 𝜀 for some tolerance 𝜀 > 0 or, if possible, 𝑒𝑡 < 𝑒𝐺,𝑡 .

Problem 1. Given a query q𝑡 at time instance 𝑡, predict whether a node 𝑛𝑖 ∈ N is suitable for
contributing to train the model 𝑓 requested by the query, i.e., if 𝑛𝑖 is a candidate to be added to
N ′𝑡 , based on minimum sufficient information node 𝑛𝑖 has a-priori conveyed.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Nodes

0

1

2

3

4

5

6

Lo
ss

Local models loss
Average loss for all nodes
Central loss
 Average loss for the suitable nodes

Figure 3.2: Local models’ prediction errors (loss) over ten nodes compared with the centralized
model, the average model across all nodes, and the average model across only the most suitable
nodes.

In Problem 1, a suitable node selection decision should be achieved before model building
given a DPA query. This entails predicting nodes’ memberships to N ′𝑡 for each query at time
𝑡. This in turn, requires sufficient statistical information about the nodes’ datasets without
disclosing or accessing the actual data. Our mechanism should exploit such information to
determine whether a node’s data (or even parts of data) are relevant to query boundaries B in
question. This enables a node to be included in N ′𝑡 , thus participating in the DML training
process of model 𝑓 .

3.4 Node & Relevant Data Selection

3.4.1 Data Relevance Factors: Overview

We first introduce the factors the determine the notion of node’s data relevance per query with a
running example and then elaborate on the node selection mechanism based on ranking.

Consider a node 𝑛𝑖, which is randomly selected to participate in training model 𝑓 given a
query q. For illustration purposes only, Figure 3.3 shows the node’s data and the data region

3.4. NODE & RELEVANT DATA SELECTION 50

defined by the query (area in a rounded rectangle) projected onto a 2-dimensional plane (e.g.,
the axes could refer to the first two principal components of the data feature space).

The data samples enclosed in the region defined by the query are the relevant samples w.r.t.
query boundariesB for training the model 𝑓 . Using the entire node’s data results in incorporating
irrelevant samples for the query. Consequently, training the model 𝑓 with all data leads to a drift
from the most accurate model [82]. Our challenge is to eliminate the impact of irrelevant samples
with respect to the query on the model’s training stage, especially when we do not have actual
access to the node’s data. The identification of a node’s relevant and irrelevant data per query,
which determines the training samples for building 𝑓 , is not trivial. Our mechanism should
identify only the relevant data per selected node per query by acquiring the minimum sufficient
information from the data. Sufficient information can initially be conveyed by quantizing node’s
data. This can help separate relevant from irrelevant data per query.

We distinguish three factors determining the notion of data relevance w.r.t. query’s boundaries
over clustered data: (F1) The overlapping area between clusters’ boundaries and the query’s
boundaries. (F2) The number of samples per cluster. (F3) The number of relevant samples per
cluster. Each factor plays a specific role in assessing whether node 𝑛𝑖’s data are relevant for
model training given a query.

In our example in Figure 3.3, we assume that node 𝑛𝑖 has 𝐿𝑖 = 6000 samples clustered into
six clusters {𝐶1, . . . , 𝐶6} using, for example, 𝑘-means clustering algorithm. The samples are
distributed per cluster as {1000, 800, 900, 1200, 1100, 1000}, respectively. As shown in Figure
3.3, the areas of clusters𝐶1,𝐶2, and𝐶3 have a higher overlap with the query’s boundaries. These
clusters, hereinafter referred to as supportive clusters, contain relatively many relevant samples
w.r.t. the query. This contrasts with clusters 𝐶4, 𝐶5, and 𝐶6, which have either very small or zero
overlap with the query’s boundaries.

Considering factor F1, we determine the membership of node 𝑛𝑖 based on the degree of
overlap per cluster, without actually accessing the data. It is sufficient to obtain the minimum and
maximum values of each dimension per cluster and compare these against the query’s boundaries.

Considering factor F2, the number of samples per cluster can further support the decision
on selecting node 𝑛𝑖. This information can be easily obtained from the clustering process. A
supportive cluster with a few samples and relatively high overlap with the query’s boundary
could be mistakenly considered more relevant for model building than a supportive cluster with
more samples and medium overlapping rate. For instance, 𝐶1 contains more samples than the
other two supportive clusters, 𝐶2 and 𝐶3. Therefore, 𝐶1 has the highest probability of providing
more relevant samples for model building. This probability can be empirically calculated as the
proportion of samples in each supportive cluster relative to the total number of samples across
all supportive clusters. In our case, we obtain (𝑝1, 𝑝2, 𝑝3) = (0.37, 0.29, 0.34) for 𝐶1, 𝐶2, and
𝐶3, respectively.

By considering both factors F1 and F2, we can order the supportive clusters based on their

3.4. NODE & RELEVANT DATA SELECTION 51

probabilities, from the most supportive, 𝐶1, to the moderately supportive, 𝐶3, and finally to the
least supportive, 𝐶2. However, as shown in Figure 3.3, all the samples in 𝐶2 are relevant w.r.t.
the query. Therefore, 𝐶2 should be ranked first, not 𝐶1. This indicates that the information from
factors F1 and F2 alone is insufficient for accurately determining node 𝑛𝑖’s participation.

Consequently, we introduce factor F3, which focuses only on the samples from a supportive
cluster that fall within the query’s boundaries (rather than considering all samples from the
cluster). A cluster’s high density does not necessarily mean its samples are relevant to the query.
F3 aims to exclude irrelevant samples from supportive clusters. In our example, 25.5%, 87.5%
and 22.2% of the samples in supportive clusters 𝐶1, 𝐶2, and 𝐶3, respectively, fall within the
query’s boundary and are thus relevant. These percentages help revise the ranking probabili-
ties based on the proportion of relevant samples. Consequently, the updated probabilities are
(𝑝1, 𝑝2, 𝑝3) = (0.22, 0.60, 0.18), indicating that𝐶2 is now the most supportive and relevant clus-
ter, while 𝐶3 is the least relevant. These factors lead us to a more accurate ranking of supportive
clusters for node 𝑛𝑖, and hence a more precise node selection based on query-data relevance.
Importantly, the determination of relevant samples relies on all factors work without disclosing
nodes’ data.

Supportive clusters

Unsupportive clusters

Query

Boundary between the
supportive clusters and
unsupportive clusters

 Area1

Area2

C4

C5
C6

C1 C2 C3

Figure 3.3: An illustration example of the impact of supportive clusters per query on predicting
the relevant data on a node (data are projected onto a 2-dimensional space for illustration purposes
only).

3.4.2 Data Relevance based on Factor F1

Consider a query q which defines the boundaryB over the data, and a node 𝑛𝑖 with a local dataset
D𝑖. The overlap between the query’s boundary and node’s data indicates an estimation of the
percentage of data from the entire dataset D𝑖 required for accessing and training the model 𝑓 .
This is associated with node 𝑛𝑖’s contribution to model training.

As discussed in Section 3.4.1, F1 assesses the participation of a node and the corresponding
relevance of its data from the supportive clusters. Specifically, node 𝑛𝑖 has first quantized its
input data space into 𝐾 clusters ∪𝐾

𝑘=1{C𝑘 } ≡ D𝑖, associated with 𝑑-dimensional cluster heads

3.4. NODE & RELEVANT DATA SELECTION 52

{c𝑘 ∈ X ⊂ R𝑑}𝐾
𝑘=1, which minimizes the quantization error:

min
{c1,...,c𝐾 }

𝐾∑︁
𝑘=1

∑︁
(x,𝑦)∈D𝑖

∥x − c𝑘 ∥2. (3.4)

Our goal in this step is to find the number of clusters 𝐾′ out of 𝐾 that have a high overlap with the
query boundary across all dimensions. A high overlap with many clusters 𝐾′ in node 𝑛𝑖 indicates
that this node has data patterns similar to those requested by the query, which is expected to
increase the chance of that node being selected as a participant in the learning process.

Let us define the 2𝑑-dimensional vector:

c′𝑘 = [𝑥min
1,𝑘 , 𝑥

max
1,𝑘 , . . . , 𝑥

min
𝑑,𝑘 , 𝑥

max
𝑑,𝑘]

⊤, (3.5)

which contains the minimum and maximum values for each dimension of all the data inputs
x ∈ C𝑘 belonging to the cluster C𝑘 , 𝑘 = 1, . . . , 𝐾 . Specifically, 𝑥min

𝑗 ,𝑘
= min{𝑥 𝑗 ,𝑘 : x ∈ C𝑘 }

and 𝑥max
𝑗 ,𝑘

= max{𝑥 𝑗 ,𝑘 : x ∈ C𝑘 }, 𝑗 = 1, . . . , 𝑑. The vector c′
𝑘

represents the (hyper) rectangle
boundary of the cluster C𝑘 .

It might be the case that the underlying distribution of the data can change due to concept
drift in, e.g., the input domain. This leads to potential changes in some of the cluster heads c𝑘
of a node 𝑛𝑖, and in turn, updates the corresponding boundary vectors c′

𝑘
. We then rely on the

principles of incremental learning of the current cluster heads upon receiving a new batch of
input vectors {x(𝜏) , x(𝜏+1) , . . .} by adopting the following update rule upon an incoming x(𝜏):

c(𝜏+1)
𝑘

=

{
c(𝜏)
𝑘
+ 𝜉 (x(𝜏) − c(𝜏)

𝑘
) 𝑘 = arg min

𝜅
∥x(𝜏) − c(𝜏)𝜅 ∥2,

c(𝜏)
𝑘

otherwise.
(3.6)

This means, if node 𝑛𝑖 receives a data x(𝜏) at time instance 𝜏, then the closest cluster-head c(𝜏)
𝑘

is
updated by update rate 𝜉 ∈ (0, 1) towards the new data x(𝜏) .

Given an arrival of T new data points {x(𝜏) , x(𝜏+1) , . . . , x(T)}, for those cluster-heads which
have been updated using (3.6), the corresponding boundary vectors c′

𝑘
are updated based on the

membership of the newly incoming data points to their cluster-heads. Given the query q and
the vectorized 𝑘-th cluster boundary c′

𝑘
, we calculate the percentage of overlap ℎ𝑘 (q) ∈ [0, 1]

between these two hyper-rectangles (across all dimensions):

ℎ𝑘 (q) =
1
𝑑

𝑑∑︁
𝑗=1

ℎ 𝑗 ,𝑘 (q), (3.7)

3.4. NODE & RELEVANT DATA SELECTION 53

where

ℎ 𝑗 ,𝑘 (q) =



𝑞max
𝑗
−𝑥min

𝑗

max(𝑥max
𝑗
,𝑞max
𝑗
)−min(𝑥min

𝑗
,𝑞min
𝑗
) if 𝑞max

𝑗
≤ 𝑥max

𝑗
,

𝑥max
𝑗
−𝑞min

𝑗

max(𝑥max
𝑗
,𝑞max
𝑗
)−min(𝑥min

𝑗
,𝑞min
𝑗
) if 𝑥max

𝑗
≤ 𝑞max

𝑗
,

0 if 𝑞max
𝑗
≤ 𝑥min

𝑗
,

or 𝑥max
𝑗
≤ 𝑞min

𝑗
.

(3.8)

A cluster C𝑘 is considered supportive w.r.t. query q if and only if ℎ𝑘 (q) ≥ 𝜖 based on a
DPA application specific overlapping threshold 𝜖 > 0. Hence, for node 𝑛𝑖, we obtain 𝐾′ ≤ 𝐾
supportive clusters:

C′ ≡ ∪{C𝑘 : ℎ𝑘 (q) ≥ 𝜖}. (3.9)

The overall support of the supportive clusters towards the query q is then defined as:

𝑟𝑖 (q) =
1
𝐾′

𝐾 ′∑︁
𝑘=1

ℎ𝑘 (q). (3.10)

So far, we argue that the samples belonging to the supportive clusters are considered relevant for
the query q, i.e., should node 𝑛𝑖 be selected in N ′, then the samples in:

D′𝑖 = {(x, 𝑦) ∈ D𝑖 : x ∈ ∪𝐾 ′𝑘=1C𝑘 }, (3.11)

can be used for model training.

3.4.3 Data Relevance based on Factor F2

The overlapping degree ℎ𝑘 (q) is not enough to decide whether node 𝑛𝑖 is suitable to participate
in model training, as discussed in is Section 3.4.1 in terms of F2. For instance, assume two
nodes 𝑛1 and 𝑛2 both have 𝐾1 = 𝐾2 = 3 clusters, with node 𝑛1 having 𝐾′1 = 1 supportive cluster
and node 𝑛2 having 𝐾′2 = 2 supportive clusters with respect to 𝜖 . We could rank the nodes based
on their percentage of supportive clusters. For example, we obtain

(
𝐾 ′1
𝐾1
,
𝐾 ′2
𝐾2

)
=

(
1
3 ,

2
3

)
for 𝑛1

and 𝑛2, respectively. Hence, 𝑛2 can be considered more suitable than 𝑛1. However, the number
of samples may differ across clusters. If the supportive cluster of node 𝑛1 had more samples
than the total number of samples in the two supportive clusters of node 𝑛2, then 𝑛1 should have
been ranked first and not 𝑛2. This will not happen unless the number of samples per supportive
clusters has been taken into consideration.

The number of training samples is important to obtain a good model fit. Especially, in DPA
models, by decreasing the sample size yields a model unable to capture the relationship between
the input and output accurately, thus, leading to lower predictive performance as evidenced by

3.4. NODE & RELEVANT DATA SELECTION 54

[112]. Let |C𝑘 |, 𝑘 = 1, . . . , 𝐾′ be the number of samples of a supportive cluster C𝑘 ∈ C′ of node
𝑛𝑖. Then, we extend (3.10) by adding the size of the supportive clusters:

𝑟′𝑖 (q) =
𝐾 ′∑︁
𝑘=1

ℎ𝑘 (q)𝑎𝑘 (q), with 𝑎𝑘 (q) =
|C𝑘 |∑𝐾 ′
𝜅=1 |C𝜅 |

, (3.12)

such that
∑
𝑘 𝑎𝑘 (q) = 1.

So far, given factors F1 and F2, we have obtained the overlapping degree ℎ𝑖 (q) and the sizes
of supportive clusters for node 𝑛𝑖 with respect to a query q. These indicators will be used to
rank the suitability of 𝑛𝑖 for model building, by using only the selected samples in the dataset
D′
𝑖
⊆ D𝑖, as derived in (3.11).
At that stage, the minimum sufficient statistic, which can be provided by each node, is the

cluster boundary vectors {c′
𝑘
} associated with the clusters C𝑘 . This can be shared among node

𝑛𝑖’s neighborhood N𝑖 in advance. Based on this, a node from a neighborhood, which receives
a query q, plays the role of a ‘leader’ to locally determine the suitability of each neighbor node
without accessing the neighbors’ data. Specifically, each neighboring node shares its cluster
boundary vectors in advance, so there is no need for further communication with the leader node
for each query. The leader node can efficiently compute the metric ℎ 𝑗 (q) for each neighboring
node 𝑛 𝑗 upon receiving a query q. This computation can be efficiently performed locally in
𝑂 (𝐾𝑑) time.

3.4.4 Data Relevance based on Factor F3

The samples in D′
𝑖

for a node 𝑛𝑖 are determined based on the boundaries of its supportive
clusters, which have been identified w.r.t. the overlap between the query and cluster boundaries.
However, according to factor F3 in Section 3.4.1, not all the samples in a supportive cluster can
be considered relevant to the query boundaries. The fact that a supportive cluster overlaps with
the query boundaries does not imply that all its samples are relevant. Relevance depends on the
local density and distribution of samples within the supportive cluster itself.

To gain further insights into the relevance of the samples in supportive clusters, each node can
include in its sufficient statistic the ratio of samples in supportive clusters that also falls within
the query boundary. This means that each neighboring node must locally examine whether each
input sample x from (x, 𝑦) in D′

𝑖
satisfies the query boundary B as well. In this case, when the

leader node receives a query q, it requests each neighbor to identify the subset of their dataset
that is relevant to the query:

D ′′𝑖 = {(x, 𝑦) ∈ D′𝑖 : x ∈ B}. (3.13)

That is, each node locally can estimate the size of relevant samples out of all the samples in a
supportive cluster |C′

𝑘
| such that C′

𝑘
= {(x, 𝑦) ∈ C𝑘 : x ∈ B}. Hence, the node can return to the

3.4. NODE & RELEVANT DATA SELECTION 55

leader node the revised support information:

𝑟
′′
𝑖 (q) =

𝐾 ′∑︁
𝑘=1

ℎ𝑘 (q)𝑏𝑘 (q), with 𝑏𝑘 (q) =
|C′
𝑘
|/|C𝑘 |∑𝐾 ′

𝜅=1 |C′𝜅 |/|C𝜅 |
, (3.14)

such that
∑
𝑘 𝑏𝑘 (q) = 1.

In this case, the sufficient statistic requires 𝑂 (∑𝐾 ′

𝑘=1 |C𝑘 |𝑑) time to be calculated on each
member node for the query q, which needs to be sent to the leader.

3.4.5 Ranking of Suitable Nodes

Based on factors F1 and F2, only the leader node locally estimates the metric ℎ𝑖 (q) in (3.12)
for each member 𝑛𝑖 given a query. This requires that in advance each member has sent over
the cluster vector boundaries to the leader once. This comes with 𝑂 (1) communication in the
neighborhood of the leader and only local processing on the leader once, independent on the
number of the incoming queries {q1, . . . , q𝑇 } up to horizon 𝑇 . By incorporating factor F3, the
leader node requires each member to estimate the metric in (3.14) locally per query. Then, each
member sends this over to the leader. This requires 𝑂 (𝑇) communication and local processing
on each member.

Taking into account all factors, we rank the suitability of a node 𝑛𝑖 for a query q. Nodes
are sorted by {𝑟′1, . . . , 𝑟

′
𝑁
} by the leader if only the support in (3.12) is used, resulting in no

further communication with the leader. Alternatively, if the support in (3.14) is used, the leader,
in collaboration with its neighbors, sorts the nodes by {𝑟 ′′1 , . . . , 𝑟

′′
𝑁
}. In both cases, the leader

determines a subset of the top-ℓ nodes (ℓ < 𝑁) to be engaged in model learning given a query.
The number ℓ of top-ranked nodes can be decided by selecting those nodes whose support 𝑟′ (or
𝑟
′′) satisfies a specific condition A(𝑟′):

N ′ = {𝑛𝑖 ∈ N : A(𝑟′𝑖) = TRUE}, (3.15)

with ℓ = |N ′|. The condition depends on the DML policy adopted, which will be elaborated
in Section 3.5. A node 𝑛𝑖 ∈ N ′ participates in the distributed learning using its own relevant
samples D ′′

𝑖
⊆ D′

𝑖
⊂ D𝑖, based on the adopted support metric 𝑟 ′′

𝑖
or 𝑟′

𝑖
. Therefore, the relevant

dataset D(q) for training the model 𝑓 refers to the distributed relevant datasets of the selected
nodes in N ′, i.e., D(q) ≡ ∪𝑛𝑖∈N ′D

′′
𝑖
.

The query-driven distributed learning minimization objective seeks the distributed model 𝑓
over only the relevant data 𝐷 (q) across the selected nodes in N ′ that collaboratively minimize

3.5. QUERY-CENTRIC DML MECHANISMS 56

the loss:

J (𝑓 ; q) =
1

|D(q) |
∑︁

(x,𝑦)∈D(q)
L(𝑓 (x; 𝜃 (q)), 𝑦) (3.16)

=
1

|D(q) |
∑︁
𝑛𝑖∈N ′

∑︁
(x,𝑦)∈D′′

𝑖

L(𝑓 (x; 𝜃 (q)), 𝑦).

Note that in our case, minimizing (3.16) specializes the generic distributed machine learning
objective in [113]. Our aim is to minimize (3.16) among only the selected nodes in N ′ as
expressed in Problem 1. Hence, in our case, the distributed model 𝑓 is trained over the predicted
relevant samples in 𝐷 (q) as requested by the DPA q. In turn, the derived model 𝑓 is tailored
to the query q specifications and should not be confused with a derived model which would be
trained over all nodes’ data (relevant and irrelevant) regardless of any DPA query. In our case,
each selected node 𝑛𝑖 ∈ N ′ participating in the minimization of (3.16) contributes to the model
training with only its (potential) relevant data in 𝐷 ′′

𝑖
and not with all its available data 𝐷𝑖. Section

3.6.3 elaborates on the impact of this data selection decision on the generalization capacity of
the tailored model 𝑓 and the corresponding implications.

In the next section, we provide the DML mechanisms to collaboratively train the model 𝑓
tailored to a DPA query q across the selected nodes over their relevant data in a distributed
fashion to minimize (3.16). Such DML mechanisms span across the spectrum of distributed
learning (e.g., federated learning) as elaborated below.

3.5 Query-centric DML Mechanisms

Given the selected nodes N ′ for a query q, we elaborate on the DML mechanisms based on the
interactions among the selected participants. A node is elected as the leader based on specific
criteria. In this work, a node becomes the leader if it receives a query q. Consequently, the
remaining nodes are considered members for this query. Note that any member node for a query
q can be elected as a leader for a different query q′ if it receives that query (see example in
Section 3.1.2). The same holds true for an already leader, which can be appointed as a member
w.r.t. another query received by another node.

Let us focus on a specific query q received to a leader node 𝑛0. The leader node 𝑛0 can
initiate a (minimum) spanning tree to make aware all its members about its appointment for the
received query q.

3.5.1 Best Node Model Learning

According to node ranking, the leader 𝑛0 selects only the top-ranked node 𝑛𝑖 using the Best
Node (BN) learning policy. This selection is made either directly by calculating the supports

3.5. QUERY-CENTRIC DML MECHANISMS 57

{𝑟′
𝑗
} or by collaborating with the member nodes to calculate the supports {𝑟 ′′

𝑗
}, as discussed in

Section 3.4. For simplicity, we refer to both variants of supports, 𝑟 ′′
𝑗

and 𝑟′
𝑗
, unless otherwise

specified. The selection condition A(𝑟 ′′
𝑖
) for the top-ranked node 𝑛𝑖 is satisfied if and only if

𝑟
′′
𝑖
= max{𝑟 ′′

𝑗
: 𝑛 𝑗 ∈ N ′}. In BN (see Figure 3.5(a)), it is assumed that node 𝑛𝑖 has the most

relevant sample among all candidate nodes. Therefore, the leader assigns node 𝑛𝑖 to build a
model 𝑓𝑖 (x; 𝜃𝑖 (q)) locally, using 𝑛𝑖’s relevant data D ′′

𝑖
.

The model 𝑓𝑖 is sent to the leader node 𝑛0 as requested, resulting in 𝑂 (1) communication
with the BN policy. There might be a case where the top-ranked node has nearly all of the
relevant data with respect to the query, i.e., 𝑟 ′′

𝑖
→ 1. In this case, we achieve results similar to

those in centralized training with respect to the query, whereD ′′
𝑖
≃ D(q). This similarity is also

reflected by the loss function of the BN, i.e., we obtain that:

J (𝑓 ; q) = J (𝑓𝑖; q) = 1
|D ′′

𝑖
|

∑︁
(x,𝑦)∈D′′

𝑖

L(𝑓𝑖 (x; 𝜃𝑖 (q)), 𝑦). (3.17)

Further (incremental) training of 𝑓𝑖 with additional candidate nodes (e.g., the 2nd or 3rd
ranked nodes) could lead to overfitting, potentially worsening the model’s performance. To
avoid this problem, particularly when the top-ranked node has a relatively high support 𝑟 ′′

𝑖
, we

should be cautious about including unnecessary additional candidate nodes.
For illustration, Figure 3.4 shows the case of engaging more than just the top-ranked node

with 𝑟 ′′
𝑖
= 0.9 for training a deep neural network given a query. It demonstrates that there is no

significant improvement in performance after incrementally training the model across the top-3
candidate nodes.

0 20 40 60 80 100 120 140
Epoch

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

3-node model
BN model

Figure 3.4: Comparison of BN model (top-1 node) vs. incremental model engaging the top-3
nodes.

3.5. QUERY-CENTRIC DML MECHANISMS 58

(a) BN (b) AM/WAM (c) RFL (d) RIL

Figure 3.5: The spectrum of the query-centric DML mechanisms from (a) Best Bode (BN), to
(b) Aggregation (AM/WAM), (c) Ranking-based Federated Learning (RFL), and (d) Ring-based
Incremental Learning (RIL).

3.5.2 Aggregate/Weighted Aggregate Model Learning

Let us consider a case where more than one node has a relatively high support (ranking) value in
the candidate set. In this case, more than one node can participate in DML by providing access
to its relevant data. Given the supports 𝑟 ′′

𝑖
, the leader node 𝑛0 selects nodes under a cut-off

condition over 𝑟 ′′
𝑖
. This cut-off is a separating statistic between low and high ranking values,

derived from the principle of outliers detection using the Median Absolute Deviation (MAD).
MAD is defined as the median of the absolute deviations from the median 𝑟 = median{𝑟 ′′

𝑖
}, i.e.,

MAD = median{|𝑟 ′′
𝑖
− 𝑟 |}. MAD is the most robust measure of dispersion, separating relatively

high support values under a cut-off, which is normally set to 2.5 times the MAD, as suggested in
[114].

In the Aggregate Model (AM) learning, the selection condition A(𝑟𝑖′′) for a node 𝑛𝑖 to be
selected is:

N ′ ≡ {𝑛𝑖 ∈ N :
|𝑟 ′′
𝑖
− 𝑟 |

MAD
> 2.5}. (3.18)

The model 𝑓 derives from aggregating the locally trained models 𝑓𝑖 from the selected nodes
𝑛𝑖 ∈ N

′′ determined in (3.18). The AM mechanism essentially takes advantage of the local data
variety over the selected nodes (see Figure 3.5(b)). The leader 𝑛0 communicates once with the
selected nodes enabling them to locally build their models { 𝑓𝑖} over their relevant data {D ′′

𝑖
},

individually. Then, the selected nodes returns their local models (parameters) {𝜃𝑖} to the leader.
The latter aggregates the local models with equal importance:

𝑓 (x; 𝜃 (q)) =
1
|N ′|

∑︁
𝑛𝑖∈N ′

𝑓𝑖 (x; 𝜃𝑖 (q)). (3.19)

Note that we obtain 𝑂 (|N ′|) communication with the AM policy. However, selected nodes

3.5. QUERY-CENTRIC DML MECHANISMS 59

could have different data distributions and ranges. Hence, some local models can perform better
or worse than other, thus, it is not well argued to aggregate the local models equally. The model
𝑓 is derived by a weighted aggregation of the local models taking into account the individual
contribution of each models based on the relative ranking (support) given the query. We then
obtain the Weighted Aggregate Model (WAM):

𝑓 (x; 𝜃 (q)) =
∑︁
𝑛𝑖∈N ′

𝑟𝑖 𝑓𝑖 (x; 𝜃𝑖 (q)). (3.20)

where 𝑟𝑖 =
𝑟
′′
𝑖∑

𝑛𝑘 ∈N′ 𝑟
′′
𝑘

∈ [0, 1] and
∑
𝑛𝑖∈N ′ 𝑟

′′
𝑖
= 1. The loss function of WAM is then:

J (𝑓 ; q) =
∑︁
𝑛𝑖∈N ′

𝑟𝑖

|D ′′
𝑖
|

∑︁
(x,𝑦)∈D′′

𝑖

L(𝑓𝑖 (x; 𝜃𝑖 (q)), 𝑦). (3.21)

We obtain the loss of AM by setting 𝑟𝑖 = 1,∀𝑖 in (3.21).

3.5.3 Ranking-based Federated Learning

Under the data relevance notion, each selected node contributes to minimizing the expected loss
of the model 𝑓 by adopting the principles of FL introduced in [115]. We extend the FL paradigm
in our context by incorporating the weight of the relative ranking of the nodes selected in the
AM/WAM mechanism, participating in a holistic (federated) model optimization as follows.

Firstly, the leader node 𝑛0 selects the most suitable nodes based on (3.18). Then, the leader
initiates a FL-based optimization process for T rounds across the selected nodes in N ′. We
modify the sampling of the selected nodes at each round of the FL optimization by leveraging
the relative ranking of the selected nodes. Specifically, at each round 𝜏 = 1, . . . ,T , the leader
selects 𝜅 nodes out of the ℓ selected nodes inN ′ based on the ranking probabilities (𝑟1, . . . , 𝑟ℓ).
Within round 𝜏, each sampled node locally trains its model 𝑓 (𝜏)

𝑖
(x; 𝜃 (𝜏)

𝑖
(q)) over its relevant

samples D ′′
𝑖
.

At the end of the round 𝜏, the model parameters {𝜃 (𝜏)
𝑖
(q)}𝜅

𝑖=1 of the 𝜅 sampled nodes are
sent to the leader node. The leader aggregates the received models using the relative ranking
as weights. This results in giving more attention to models trained with sampled from nodes
with relatively more relevant data than the rest of the nodes (see Figure 3.5(c)). The overall
objective of the Ranking-based FL (RFL) over the relevant data {D ′′

𝑖
}, 𝑛𝑖 ∈ N ′ involving the

ranking-based weighted aggregation by the leader is given by:

min
𝜃 (q)

∑︁
𝑛𝑖∈N ′

∑︁
(x,𝑦)∈D′′

𝑖

𝑟𝑖

|D ′′
𝑖
|
L(𝑓 (x; 𝜃 (q)), 𝑦). (3.22)

The federated model 𝑓 obtained by (3.22) at the end of round T is used by leader node 𝑛0 to

3.5. QUERY-CENTRIC DML MECHANISMS 60

serve the query q.
In RFL, we require 𝑂 (T ℓ) total communication rounds with the selected nodes per query.

This derived from the principles of FL, which gradually optimizes the 𝑓 ’s predictive performance
w.r.t. our objective in (3.22).

WAM & RFL Loss Functions

In AM and WAM learning policies, a selected node 𝑛𝑖 locally optimizes its local model parameter
𝜃𝑖 (q), ∀𝑖, over the query-defined relevant samples such that:

𝜃★𝑖 (q) = arg min
𝜃𝑖 (q)

∑︁
(x,𝑦)∈D′′

𝑖

L(𝑓𝑖 (x; 𝜃𝑖 (q)), 𝑦). (3.23)

Then, each optimized model is aggregated through (3.19) or (3.20) for AM or WAM, respectively,
in the leader node 𝑛0 in order to serve the incoming query q. Hence, no extra communication
among selected nodes is required. On the contrary, in RFL, all selected nodes try to optimize a
FL model 𝑓 , i.e., seek the optimal federated parameter 𝜃 (q) across all the relevant samples as
provided in (3.22). The prediction capacity of each locally optimized model aggregated in the
leader node per round is weighted based on the relative ranking of the participating nodes.

FL & RFL Loss Functions

The weighting model factor in (3.22) depends on the selected node ranking and the associated
number of relevant samples within the node based on the query. This departs from the con-
ventional FL paradigm by [115], where the weighting factor refers to all the samples residing
on a node (including relevant and irrelevant samples). Moreover, the ranking value attempts to
give more importance to the model parameters of those selected nodes with higher relevance to
the query during the FL training process. Our proposed query-centric model averaging scheme
in (3.22) is aligned with the averaging convergence scheme in [116], such that our averaging

weights
{

𝑟𝑖

|D′′
𝑖
|

}
are invariant in training time. Note that the ranking probabilities (𝑟1, . . . , 𝑟ℓ)

relate to random sampling without replacement such that 𝜅 selected nodes are sampled out of the
ℓ suitable nodes in N ′.

3.5.4 Ring-based Incremental Learning

In the Ring-based Incremental Learning (RIL) mechanism, given a query q, the leader node 𝑛0

selects the most suitable nodes as in (3.18) and then logically arranges these nodes to have a kind
of dependency among them to incrementally train the model 𝑓 over their datasets.

First, the nodes form a logical clockwise ring topology (initiated by the leader). The nodes
are linked from the one with the relatively highest support to the node with the relatively least

3.5. QUERY-CENTRIC DML MECHANISMS 61

support following the decreasing order 𝑟 ′′1 → 𝑟
′′

2 → · · · → 𝑟
′′

ℓ
, ℓ = |N ′| (see Figure 3.5(d)). A

node 𝑛𝑖 ∈ N ′ receives the model update from the previous one 𝑛𝑖−1 to further train and passes
this model to the next node 𝑛𝑖+1.

In the incremental learning literature, the benefits of incremental learning are as follows. (i)
By increasing the number of samples in model training, the accuracy and generalization ability
of the model will be greatly improved. In our context, the model 𝑓 is incrementally trained over
the relevant samples from the suitable node in the ring. (ii) Based on the current model 𝑓 (𝑚)

at the stage/node 𝑛𝑚, the performance of the model will be further optimized by new training
samples from the next nodes 𝑛𝜅, 𝜅 > 𝑚. (iii) After a stable model is obtained, the new training
samples will not affect the performance of the model. This means that the predictions of new
samples by two successive latest models 𝑓 (𝑚) and 𝑓 (𝑚−1) are almost the same.

Based on the above-mentioned benefits, the loss of the ring-based incremental learning of
𝑓 (𝑚) at node 𝑛𝑚 ∈ N ′ is:

J (𝑓 (𝑚); q) =
∑︁

(x,𝑦)∈D′′(𝑚)

L(𝑓 (𝑚) (x; 𝜃 (𝑚) (q), 𝑦)) (3.24)

+ 𝜉(𝑚)
∑︁

(x,𝑦)∈D′′(𝑚)

(
𝑓 (𝑚) (x; 𝜃 (𝑚) (q), 𝑦)

− 𝑓 (𝑚−1) (x; 𝜃 (𝑚−1) (q), 𝑦)
)2
.

𝑓 (𝑚−1) denotes the model at stage 𝑚 − 1. 𝜉 is a weighting factor representing the importance
between the two predictions of two consecutive variants of the model during incremental learning.
As the model is incrementally trained by accessing relevant samples from the suitable nodes, the
factor 𝜉(𝑚) increases. This indicates that the derived (final) model should be more generalizable
over the relevant spaces of the models with higher support values.

Passes & Ring Structure in RIL

The model 𝑓 can be (re)trained incrementally over more than one pass 𝜈 ≥ 1 of the ring. That
is, the final model at the end of the first round, i.e., the model 𝑓 (ℓ) reaching the node with the
highest support 𝑟 ′′1 = max{𝑟 ′′

𝑖
}ℓ
𝑖=1, can undergo another pass of the ring.

We provide a process where the leader node 𝑛0 can create the logical ring of the selected nodes
inN ′. Based on the ranking list indexed by the selected nodes, i.e., Λ = {(𝑟 ′′1 , 𝑛1), . . . , (𝑟

′′

ℓ
, 𝑛ℓ)},

the leader sends Λ to the top-ranked node 𝑛1. Node 𝑛1 is appointed as the head of the ring. It
receives the list and is advised to connect with node 𝑛2, sending the sub-list Λ \ {(𝑟 ′′1 , 𝑛1)}. Node
𝑛2 then sends the updated sublist Λ \ {(𝑟 ′′2 , 𝑛2)} to node 𝑛3, and this process continues until node
𝑛ℓ connects back to the head node 𝑛1. When node 𝑛1 receives a connection message from 𝑛ℓ,
the ring is complete and each node knows its next node. The incremental learning process then
begins. At each stage, node 𝑛𝑚 locally trains the model incrementally based on (3.24) and then

3.6. PERFORMANCE EVALUATION 62

sends the updated model to the next node 𝑛𝑚+1.
The suitable node in N ′ requires 𝑂 (ℓ𝜈) communication for incremental training after 𝜈

passes. The leader node 𝑛0 uses the incrementally trained model 𝑓 (ℓ,𝜈) after 𝜈 ≥ 1 passes to
serve the query q.

Table 3.1 summarizes the computational and communication complexities of the node selec-
tion mechanisms and the DML mechanisms engaging the leader node (receiving a DPA query)
and the involved ℓ selected nodes.

Table 3.1: Summary of Complexities

Node Selection
Mechanism Computation Communication

Factor F1 𝑂 (𝑑𝐾) N/A
Factor F2 𝑂 (𝑑𝐾) 𝑂 (ℓ)
Factor F3 𝑂 (𝑑 (𝐾 + |C′ |)) 𝑂 (ℓ)
DML Mechanism Computation Communication

BN 𝑂 (1) (leader) 𝑂 (1)
A/WAM 𝑂 (ℓ) (leader) 𝑂 (ℓ)
RFL 𝑂 (ℓ) (leader) 𝑂 (T ℓ)
RIL 𝑂 (ℓ) (leader) 𝑂 (𝜈ℓ)

3.6 Performance Evaluation

3.6.1 Experimental Setup

Datasets

We assess the performance and efficiency of our mechanisms using two publicly available
datasets to create realistic environments. The dataset DS11 contains multivariate data with data
heterogeneity among nodes. DS1 includes weather observations from 𝑁 = 13 European weather
stations, which correspond to the edge nodes in our context.

The dataset DS22 contains hourly air pollutant data from the Beijing Municipal Environmental
Monitoring Center, covering 𝑁 = 12 air-quality monitoring stations. These stations correspond
to the edge nodes. The meteorological data for each air-quality station are matched with the
nearest weather station from the China Meteorological Administration.

We chose DS1 and DS2 because they meet our study criteria, which include data collected
from different locations. We further applied the data manipulation techniques [117], [118], [119]
elaborated in on each node to achieve non-independently and identically distributed (non-i.i.d.)
data over the nodes via distribution drifts where correlated features shuffled between samples

1https://github.com/florian-huber/weather_prediction_dataset
2https://www.kaggle.com/datasets/sid321axn/beijing-multisite-airquality-data-set

https://github.com/florian-huber/weather_prediction_dataset
https://www.kaggle.com/datasets/sid321axn/beijing-multisite-airquality-data-set

3.6. PERFORMANCE EVALUATION 63

(the features contain both causes and effects of a target variable). Our target is to assess the
impact on non-iid data and query access patterns in selecting nodes with relevant data for each
DPA query. We evaluate this impact via the final DML model prediction accuracy, the node
selection accuracy, and percentage of relevant data accesses as will be elaborated later. For both
datasets, we conduct the same experiments following identical procedures to evaluate the best and
worst-case scenarios for the proposed node selection mechanism and comparison mechanisms.
In addition, in order to assess scalability of the node selection mechanisms in terms of number
of nodes along with a fair comparison with the MAB-based mechanisms [120] and [83] dealing
with a relatively large number of nodes for selection decisions (elaborated later), we adopted data
augmentation techniques (including data blending via interpolation between samples) in [121]
and [122] over DS1 and DS2. As a result, we obtained non-i.i.d. data shared among 𝑁 = 1000
nodes. Note, the developed code and datasets are publicly available here3.

Query workloads

We define |𝑄1 | = 1100 and |𝑄2 | = 400 DPA queries in our query workloads 𝑄1 and 𝑄2 for DS1
and DS2 dataset, respectively. Each query q ∈ Q is randomly generated across the entire data
space, following the query workload method described in [123]. The process of query generation
under query distribution 𝑃(q) is introduced in [124, 123, 125], [126], and [109]. At time 𝑡, a
DPA query q is uniformly distributed across the data space. For dimension 𝑥 𝑗 , the query center
𝑞′
𝑗
= 𝑥min

𝑗
+ (𝑥max

𝑗
− 𝑥min

𝑗
)𝜓 is uniformly sampled in [𝑥min

𝑗
, 𝑥max

𝑗
], with 𝜓 ∼ 𝑈 (0, 1). Thus, the

boundaries for this dimension are 𝑞min
𝑗

= max(𝑥min
𝑗
, 𝑞′

𝑗
− 𝜁 𝑗

2) and 𝑞max
𝑗

= min(𝑥max
𝑗
, 𝑞′

𝑗
+ 𝜁 𝑗

2),
with uniformly sampled query length 𝜁 𝑗 = 𝜓′𝜎𝑗 with 𝜓′ ∼ 𝑈 (0, 1) and 𝜎𝑗 being the standard
deviation of the dimension 𝑥 𝑗 . Hence, the DPA generated queries cover the entire data space and
avoids the exclusion of various sub-regions.

To provide a better understanding of the query representation, a typical DPA range query
in a smart city urban analytics application requesting parking sensors’ data could be: q =
{[10:30am, 11:00am], [30 min., 60 min.],[60%, 80%]}, whose interpretation is elaborated on
our example in Section 3.1.2. Such range queries are widely supported by modern database
management systems as core part of aggregate queries (expressed in declarative languages
like SQL) with range selection predicates [127]. Our DPA queries are queries with conjunctive
selection predicates whose efficient computation has been a major research interest with methods
applying sampling, synopses, and ML models to compute such queries; the interested reader
could refer to [103] and there references therein for more information.

The queries are randomly assigned to nodes, with each node receiving a query with equal
probability 1

𝑁
. This random assignment facilitates the leader election process to identify leader

nodes and their corresponding members for each issued query.
3https://anonymous.4open.science/r/JNCA-752C/README.md

https://anonymous.4open.science/r/JNCA-752C/README.md

3.6. PERFORMANCE EVALUATION 64

ML models for DPA

Each node quantizes its data in advance using a vector quantization method into 𝐾 clusters. In
our experiments, we used the 𝑘-means clustering algorithm, modified with the update rules for
cluster heads under data changes. To avoid bias, all nodes use the same number of clusters 𝐾 .
The data space quantization determines the supportive clusters for node ranking purposes. Other
quantization algorithms that can dynamically update cluster heads in evolving data subspaces,
such as those discussed in [128], may also be incorporated into our framework.

Our overarching goal is to train and examine the prediction accuracy of the models using
only the relevant data predicted by incoming queries, rather than all available data. This helps in
reducing the likelihood of training models on irrelevant data samples. We evaluate the predictive
performance of these models compared to (i) the ideal case, i.e., accessing only the training data
perfectly matched with the query boundaries in a centralized fashion, and (ii) the ground truth,
i.e., accessing the predicted relevant data w.r.t. query boundaries in a distributed fashion.

To gain a deeper understanding of how our mechanism functions, we analyze its impact on
the performance of ML and DL models for DPA queries. The rationale behind this selection of
models is to cover the spectrum of relatively simple but yet powerful predictive models widely
used in exploratory analytics [103], query-driven big data analytics [108], [123], decentralized
data mining analytics [109], and aggregate query-based predictive analytics [124], [125] over
distributed contextual data. Specifically, we conducted experiments with three different predictive
models derived from the above-mentioned applications of analytics families: Multivariate Linear
Regression (LR), Non-linear/Polynomial Regression (PR), and Deep Neural Network (DNN)
models. In addition to the wide adoption of these families of models for predictive analytics,
their choice is justified by several key factors: (i) LR is computationally efficient and ideal for
large datasets, making it a solid choice for initial data exploration and benchmarking [123], [103].
(ii) PR provides the flexibility to capture more complex relationships in data selected by range
and aggregate queries in large-scale databases without a significant increase in computational
cost [124], [103]. (iii) DNN models are well-suited for modeling highly complex and non-linear
query access patterns for mining data regions in large-scale datasets [109], [129] along with
incremental regularization of compressed DNN models in data mining tasks [130]. Finally,
LR and PR are straightforward to interpret in exploratory analytics [103] aiding in the clear
understanding the relevant data learnt by query access patterns along with developing re-usable
ML models for DML training efficiency in edge computing environments, e.g., [131]. The use
of these diverse models, ranging from simple to complex, ensures a comprehensive evaluation
of our mechanism across different applications and domains in the realm of DPA.

Model Configuration, Train & Test datasets

The tuned hyperparameters of these predictive models are provided in Table 3.3 and are assessed
using the Mean Squared Error (MSE). For fairness, the prediction error is evaluated using ground

3.6. PERFORMANCE EVALUATION 65

truth testing data for each query, which are not involved in any training process. Specifically,
given a query q, we ideally aim to access the (distributed) data D(q) defined in (3.1). These
are the actually relevant data on which the model 𝑓 should be trained according to the query
specification. A sample of these data is used as the test dataset for evaluating the MSE of each
DML model. Moreover, we train a DML model using our proposed mechanisms, which involves
access only to the predicted relevant data from the selected nodes, i.e., data samples that have
been identified as relevant by our mechanism to train our models. We then test the final DML
model with the ground truth data for each query in question as explained above.

Consequently, given a query q, we train a DML model 𝑓 over the predicted relevant distributed
data ∪ℓ

𝑖=1{𝐷
′′
𝑖
(q)} across all the ℓ selected nodes based on our DML mechanisms and, we test

the model 𝑓 ’s MSE over the actually relevant data D(q) for that query, i.e.,

MSE =
1

|D(q) |
∑︁
(x,𝑦)
(𝑦 − 𝑓 (x; 𝜃 (q)))2. (3.25)

Furthermore, in order to report on the statistical significance of the performance of the
methods compared with our mechanism we adopt the non-parametric statistical Friedman’s test
[132]. This is a robust test that handles non-normal distributions and outliers. Friedman’s test, as
an extension of the Wilcoxon signed-rank test [132], is widely used in regression analysis (a.k.a.
two-way analysis of variance by ranks). Friedman’s test has been carried out in order to identify
the best and worst-performing methods, and statistically significant differences between pairs of
models based on the predicted response values. By assigning ranks on prediction residuals in
using Friedman’s test, the average prediction performance by all the models is first computed for
each test dataset. The differences between the performances of all the models and the average
are then calculated, and are subsequently ranked. We examine the reported 𝑝-value compared
with the statistical level of 0.05 to assess the significance in the prediction accuracy among the
methods in comparison. In our experiments, we provide the test result value 𝑝 compared against
0.05.

Tables 3.2, 3.3, and 3.4 list the experimental parameters, the hyper-parameters, and the
perofmance metrics used in this paper.

Table 3.2: Experimental parameters

Parameters DS1 DS2

Nodes 𝑁 (13, 1000) (12,1000)
Dimensionality 𝑑 11 18
Query workload size |𝑄 | 1100 400

Environment Static, Dynamic (concept drift).
Number of clusters 𝐾 (5, 10, 15)
Overlapping threshold 𝜖 (0.45, 0.55, 0.65, 0.75)
Statistical level 𝑝-value 0.05

3.6. PERFORMANCE EVALUATION 66

Table 3.3: Predictive Model & DML Mechanisms Hyper-parameters

Model LR PR DNN

Local RFL rounds T 20 20 20
Validation split 0.2 0.2 0.2
Learning rate 0.03 0.001 0.001
Number of RIL passes 𝜈 5 5 5
RIL weighting factor 𝜉 0.2 0.2 0.2
Activation function ReLU ReLU ReLU
Optimizer Adam SGD Adam
Loss MSE MSE MSE

Table 3.4: Performance Metrics

Metric Range

MSE R+
Node selection accuracy 𝛼 [0,1]
Node selection frequency [1, |𝑄 |]
Percentage of relevant data accessed [0,100]%
Percentage of node’s data accessed [0,100]%

3.6.2 Baselines & Mechanisms under Comparison

We evaluate our query-centric DML mechanisms: Best Node Model (BN), Aggregate Model
(AM), Weighted Aggregate Model (WAM), Ranking-based Federated Learning Model (RFL),
and Ring-based Incremental Learning Model (RIL) in producing accurate models for DPA. These
mechanisms are assessed w.r.t. factors F1 and F2 (F1-2) and all factors (F1-3), as defined in
equations (3.12) and (3.14), respectively, over datasets DS1 and DS2.

We compare the performance of our mechanisms with the following baselines and relevant
methods found in the literature: (i) the Global Model (GM), where all the data are transferred in
a centralized location used for centralized model learning per query (i.e., the Cloud) in a query-
driven fashion [57]. (ii) the Random Model (RM), where ℓ nodes are randomly selected to be
engaged in the DML process per query [55]. (iii) the Game Theory selection (GT) and (iv) the
Fair Selection (FS) mechanisms introduced in [81]. In addition, we assess the scalability of our
paradigm with comparing with the query-driven Reinforcement Learning and contextual Multi-
armed Bandit (MAB) mechanisms for node selection: Max Utility-based MAB (M-MAB)
[133] and non-stochastic MAB with Transformer-based Experts and Feedback (TEF) [83].
M-MAB and TEF refer to online learning paradigms which are capable of selecting the subset
of the most suitable nodes for engagement in DPA based on the trajectory of incoming DPA
queries (contexts) as elaborated later. We chose TEF and M-MAB for comparative assessment
since these mechanisms excel in incremental learning from a relatively high number of queries
comparable to the number of nodes (using 𝑁 = 1000 nodes in our comparison evaluation).

3.6. PERFORMANCE EVALUATION 67

In GT mechanism, each node 𝑛𝑖 builds its own independent local model 𝑓𝑖 in advance
according to its local dataset D𝑖. Moreover, in GT it is assumed that each node could exchange
its model with all the other nodes in the network. When a node 𝑛𝑖 receives the trained model 𝑓0
from the leader node 𝑛0, it tests the 𝑓0 model’s performance locally against its dataD𝑖 and returns
the results to the leader. The leader then targets those nodes that obtained accuracy lower than
a pre-defined threshold. The rationale behind this is that a node could have data with different
patterns than the leader’s data. Therefore, the leader node selects those nodes 𝑛𝑖 that have local
models with relatively low accuracy in order to engage them for obtaining a global model. The
learning process iteratively involves all the selected nodes’ data for training the model.

The FS mechanism is a modification of the GT mechanism. While FS follows a similar
approach, it incorporates additional fairness. Rather than always involving the same set of nodes,
the FS mechanism ensures rotation by selecting the less frequently selected nodes at every round.
This rotation ensures that over time, all nodes, irrespective of their initial performance or data,
have an equal opportunity to participate and influence the global model. In essence, both the
GT and FS algorithms emphasize fairness by ensuring that all nodes, regardless of the statistical
patterns of their data or their models’ initial performances, play an active and equitable role in
the DML process.

The incremental learning mechanisms TEF and M-MAB are based on predicting the currently
best sub-set of nodes to be selected via a trajectory of incoming DPA queries q1, q2, . . . , q𝑡 .
When the leader node is receiving a DPA query q𝑡 (which plays the role of a context in these
mechanisms), then the node recommends a sub-set of the most suitable nodes. The node ranking
values are treated as the rewards to TEF and M-MAB for estimating the probability distribution
of nodes being included in N ′. At every round 𝑡, TEF and M-MAB update such probability
distribution w.r.t. current rankings {𝑟𝑘 }𝑁𝑘=1.

TEF is based on the MAB framework, which models the trade-off between exploration and
exploitation over a sequence of actions (sub-set of suitable nodes in our case). TEF considers
the query q𝑡 as the context up to 𝑡, i.e., the sequence (q1, q2, . . . , q𝑡). Such context is used
for identifying the sub-set N ′ of the most suitable nodes. Given this context, the TEF uses the
top-rank 𝑟 ′′ as the reward as explained in [83]. TEF then estimates the current distribution over
the set of nodes inN ′, which is the basis for recommending the most suitable node by sampling
from this distribution.

M-MAB deals with the countably many arms in the MAB framework, i.e., the cases where
there are relatively many candidate sub-sets of suitable nodes available at every query. M-MAB
introduces a selection strategy based on the maximum utility of the most suitable nodes in light
of reducing the sizes of the sub-sets of suitable nodes to manageable sizes. This is achieved
by selecting nodes with maximum utility with respect to the currently executing query. M-
MAB adopts Zooming LinUCB (linear Upper Confidence Bound) [134] to combine the upper
confidence bound technique with an adaptive refinement step reducing the size of N ′. For each

3.6. PERFORMANCE EVALUATION 68

currently executing query, M-MAB selects suitable nodes using LinUCB [135], where the reward
is a linear function of the query q.

Once the nodes for each query are predicted then, we compare the performance of the ML
models for DPA trained by the DML mechanisms BN, AM, WAM, RFL, and RIL.

3.6.3 Performance Metrics & Evaluation

Node Selection Accuracy

We assess the efficiency of the node selection mechanisms by comparing the set of the most
appropriate nodes N ′, predicted by our approach, with the ground truth (ideal) nodes N★ given
a random query q. In real-life scenarios, the ideal nodes N★ are entirely unknown unless we
access all nodes’ data and train models in advance for each query; hence, they are referred to as
ideal nodes. We introduce the metric node selection accuracy, defined as the ratio:

𝛼 =
|N ′ ∩ N★|
|N★| ∈ [0, 1] . (3.26)

If the predicted selected nodes are included in the ideal nodes set, i.e., we accurately predict the
most suitable ones for a query, then 𝛼→ 1.

Additionally, we compare the node selection accuracy of our mechanism with that of a random
node selection mechanism to highlight the importance of node selection and engagement per
DPA query w.r.t. data relevance. In the random node selection, nodes are chosen entirely at
random, meaning that the predicted set of nodes N ′ is a random subset of the nodes N .

It is worth noting that our mechanism implicitly controls the number of participants through
the overlapping threshold 𝜖 , which determines the supportive clusters. This slightly influences
the node selection accuracy, as shown in Figures 3.6(a) and 3.6(b). Specifically, we present
the metric 𝛼 for our mechanism and the random selection with different overlapping thresholds
𝜖 ∈ {0.45, 0.55, 0.65, 0.75} over datasets DS1 and DS2. By assuming a relatively high 𝜖 (e.g.,
0.75), we aim to select a few of the highest-ranking nodes using their supportive clusters (out of
𝐾 = 5 clusters in the experiments shown in Figures 3.6(a) and 3.6(b)). Conversely, a relatively
low 𝜖 value (e.g., 0.45) results in selecting almost all nodes with acceptable ranks.

Our selection mechanism achieves high selection accuracy (0.7 ≤ 𝛼 ≤ 0.95) across the range
of 𝜖 values. In contrast, random selection yields a selection accuracy between 0.3 and 0.5 across
the same range of overlapping thresholds. This clearly indicates that random selection of nodes
per query is not a viable solution in our context, as outlined in our rationale. Similar results are
observed for 𝐾 ∈ {10, 15} in both datasets.

3.6. PERFORMANCE EVALUATION 69

200 400 600 800 1000
Queries

0%

20%

40%

60%

80%

100%

N
od

e
se

le
ct

io
n

ac
cu

ra
cy

 (
%

) Ours (=0.45)
Ours (=0.55)
Ours (=0.65)
Ours (=0.75)
RM (=0.45)
RM (=0.55)
RM (=0.65)
RM (=0.75)

((a)) Node selection accuracy 𝛼 of our mechanism and the RM
method with different overlapping threshold 𝜖 having 𝐾 = 5
clusters per node; DS1 dataset.

100 150 200 250 300 350 400
Queries

30%

40%

50%

60%

70%

80%

90%

100%

N
od

e
se

le
ct

io
n

ac
cu

ra
cy

 (
%

)

Ours (=0.45)
Ours (=0.55)
Ours (=0.65)
Ours (=0.75)
RM (=0.45)
RM (=0.55)
RM (=0.65)
RM (=0.67)

((b)) Node selection accuracy 𝛼 of our mechanism and the RM
method with different overlapping threshold 𝜖 having 𝐾 = 5
clusters per node; DS2 dataset.

Figure 3.6: Node selection accuracy 𝛼 for DS2 and DS1 datasets.

Static & Dynamic Data Environments

We further demonstrate the effectiveness of our mechanism w.r.t. dynamic data updates. Specif-
ically, we investigate how the node selection accuracy is affected by dynamic environments and
assess the robustness of our proposed mechanism in these scenarios. We conduct experiments
in both fixed and dynamic environments regarding data updates over the nodes.

In a fixed data environment, we assume that updates on the underlying data distribution over
nodes occur slowly. That is, the underlying data distribution does not significantly change over
time, or changes are negligible. In contrast, dynamic data environments, such as those involving
time-series data from surveillance applications as described in [69], exhibit frequent data updates
in the underlying distributions. In these cases, data updates occur rapidly, with potential concept
drifts where mean values may shift and/or new patterns may emerge.

3.6. PERFORMANCE EVALUATION 70

Static Data Environment: Consider the experiment conducted in a static environment with
non-i.i.d. data over the nodes from datasets DS1 and DS2. In this scenario, the nodes’ data
distributions remain unchanged. Figures 3.7(a) and 3.7(b) illustrate the disparity between the
node selection frequency with which a node is predicted to be a participant by our mechanism
and that of the optimal (ideal node) selection. This selection frequency indicates the number of
times a node has been selected for a DML process out of the total number of queries. The results
indicate that the difference between our mechanism and the optimal selection is relatively small
for each node across all the queries considered. This suggests that our mechanism performs
closely to the ideal node selection, demonstrating its effectiveness in static data environments.

Dynamic Data Environment: We consider a dynamic environment, where the underlying
non-i.i.d. nodes’ data distributions. This case influences the node selection mechanism w.r.t.
data clusters. For details on how the cluster heads and the associated cluster boundary vectors
are updated in response to changes in the underlying data refer to Section 3.4. We performed
four sequential changes (concept drifts) of the data distribution changing progressively 25% of
the selected nodes’ data distributions parameters (including mean and skewness values). For
each change, we applied our node selection mechanism to predict the suitable set of nodes per
query. We then compared their node selection frequencies with the frequencies of the nodes in
the optimal case.

As we can observe in Figures 3.8(a) and 3.8(b), in each progressive change (from 25% to
100% total changes), our mechanism remains robust in selecting the most suitable nodes per query
by gradually and incrementally updating the nodes’ cluster-heads, and therefore, updating the
cluster boundary vectors reflecting these data changes. We obtain similar results and behaviour of
our mechanism over the datasets (similar results are obtained for 𝐾 ∈ {10, 15} in both datasets).

Relevant Data Access Rate

It is so far evidenced that our mechanism is capable of engaging the most suitable nodes to be
involved in the DML process under static and dynamic data environments. We therefore examine
the amount of relevant data accessed locally, which drives the efficiency of our mechanism.

After predicting the most suitable nodes, we examine the impact of the number of clusters 𝐾
on the amount of relevant data used by the selected nodes during DML training. Our mechanism
aims to reduce the amount of irrelevant data samples by increasing the number of clusters 𝐾 in
the nodes. An increase in 𝐾 enhances the segregation between relevant and irrelevant samples.
When 𝐾 is relatively small, each cluster may contain a higher percentage of irrelevant samples.
Conversely, increasing the number of clusters helps reduce the access to irrelevant samples within
the supportive clusters.

Figures 3.9(a) and 3.9(b) illustrate how varying the number of clusters helps filter out
irrelevant data samples accessed by the nodes over the DS1 and DS2 datasets, based on the three
factors F1, F2, and F3. The vertical axis represents the percentage of data accessed across issued

3.6. PERFORMANCE EVALUATION 71

N1

N2

N3

N4

N5

N6

N7

N8

N9

N1
0

N1
1

N1
2

N1
3

Op#mal

Our mechanism

Nodes

N
o

d
e

 S
e

le
c
*

o
n

 F
re

q
u

e
n

c
y

((a)) Static data environ-
ment: node selection fre-
quency for our mechanism
and the optimal (ideal
node selection) one with
𝜖 = 0.65 and 𝐾 = 5 clus-
ters per node; DS1 dataset.

N1

N2

N3

N4

N5

N6

N7

N8

N9

N1
0

N1
1

N1
2

Op#mal
Our mechanism

N
o

d
e

 S
e

le
c
)

o
n

 F
re

q
u

e
n

c
y

Nodes

((b)) Static data environ-
ment: node selection fre-
quency for our mechanism
and the optimal (ideal
node selection) one having
𝜖 = 0.65 and 𝐾 = 5 clus-
ters per node; DS2 dataset.

Figure 3.7: Node selection frequency for our mechanism and the optimal one in static data
environments.

queries per node (on average). The bars indicate the percentage of data needed for each query
from all selected nodes, using different 𝐾 values per node. Evidently, for most queries, less
than 20% to 40% of the total data are accessed, demonstrating the selective capability of our
mechanism to involve only the required data per query. Accessing all available data typically
deteriorates model performance, as will be shown later.

Table 3.5 summarizes the percentage of data accessed relative to number of clusters 𝐾 for
our mechanism, compared with benchmark methods across both DS1 and DS2 datasets in static
and dynamic data environments. It is worth noting that when using the three factors F1, F2,
and F3 (F1-3 in Table 3.5) for data selection per query per node, we achieve a high probability
of accessing all relevant data per query from the supportive clusters (but not all the data in
each supportive cluster). This effectiveness is particularly pronounced with higher 𝐾 values.
In contrast, the GT, FS, RM, and central GM mechanisms access all available data. Moreover,
in Table 3.5 we show the percentage of data accessed by nodes selected using TEF, M-MAB
and our method (using all factors F1-3 with 𝐾 = 15 clusters) for 𝑁 = 1000 nodes in both
DS1 and DS2. Both TEF and M-MAB methods attempt to predict the most suitable nodes in
light of increasing the probability of accessing relevant data over a relatively high number of
nodes. However, our paradigm outperforms the MAB methods by being significantly selective
in accessing all the relevant data thus avoiding redundant access of irrelevant data used to train
the DML models. Our mechanism achieves 65% and 29% less redundant data access compared
to TEF and M-MAB, respectively. This is attributed to the filtering mechanisms introduced in
factors F1-F3 focusing explicitly on the characteristics of each incoming DPA query avoiding the
summarization statistics over the queries’ patterns trajectories as achieved by TEF and M-MAB.

3.6. PERFORMANCE EVALUATION 72

N
od

e
Se

le
c)

on
 F

re
qu

en
cy

N

od
e

Se
le

c)
on

 F
re

qu
en

cy

N
od

e
Se

le
c)

on
 F

re
qu

en
cy

N

od
e

Se
le

c)
on

 F
re

qu
en

cy

N

N

N12
 N1

N2 N3 N4

N5 N6 N7

N8

N9

N10

N11

N12

N13

Nodes

N1

N2 N3

N4 N5 N6 N7 N8 N9

N10

N11

N12

N13

Nodes

((a)) Dynamic data environment: node selection frequency for our mech-
anism and the optimal (ideal node selection) one having 𝜖 = 0.65 and
𝐾 = 5 clusters per node over four sequential phases of data updates; DS1
dataset.

N
od

e
Se

le
c)

on
 F

re
qu

en
cy

N

od
e

Se
le

c)
on

 F
re

qu
en

cy

N
od

e
Se

le
c)

on
 F

re
qu

en
cy

N

od
e

Se
le

c)
on

 F
re

qu
en

cy

N

N

N12
 N1

N2 N3 N4

N5 N6 N7 N8

N9

N10

N11

N12

Nodes

N1 N2

N3 N4

N5

N6 N7

N8 N9

N10

N11

N12

Nodes

((b)) Dynamic data environment: node selection frequency for our mech-
anism and the optimal (ideal node selection) one having 𝜖 = 0.65 and
𝐾 = 5 clusters per node over four sequential phases of data updates; DS2
dataset.

Figure 3.8: Node selection frequency for our mechanism and the optimal one in dynamic data
environments.

Comparative Assessment

We compare the prediction error (MSE) over the test datasets in (3.25) of the models LR, PR,
and DNN trained via the selected nodes by our mechanism against the methods GM, RM, GT

3.6. PERFORMANCE EVALUATION 73

0% 20% 35% 51% 67% 83% 100%
Queries

0%

20%

40%

60%

80%

100%

Re
le

va
nt

 d
at

a
ac

ce
ss

ed
 (

%
)

K5
K10
K15

((a)) Percentage of relevant data accessed per pro-
portion (%) of DPA queries in our mechanism
adopting F1-3 factors; DS1 dataset.

Queries

Re
le

va
nt

 d
at

a
ac

ce
ss

ed
 (%

)

100%

83%

67%

50%

35%

20%

((b)) Percentage of relevant data accessed per propor-
tion (%) of DPA queries in our mechanism adopting
F1-3 factors; DS2 dataset.

Figure 3.9: Percentage of relevant data accessed per proportion.

Table 3.5: Percentage of data accessed per query across node selection mechanisms in static and
dynamic environments over DS1 and DS2.

(DS1) (DS2)

Mechanism Static Dynamic Static Dynamic

GM 100% 100% 100% 100%

F1-3

𝐾=5

𝐾=10

𝐾=15

39.88%
32.17%
20.92%

55.20%
52.67%
51.04%

69.13%
67.22%
65.27%

75.55%
64.90%
62.50%

RM 100% 100% 100% 100%

GT 100% 100% 100% 100%

FS 100% 100% 100% 100%

MAB Models 𝑁 = 1000 𝑁 = 1000

Static Dynamic Static Dynamic

TEF 67% 79% 72% 79%

M-MAB 71% 78% 77% 81%

F1-3(𝐾 = 15) 19% 29% 55% 57%

and FS across all the query workloads Q1 and Q2 for the dataset DS1 and DS2, respectively.
Moreover, we compare our mechanism adopting the three factors (F1-3) with the M-MAB and
TEF models under 𝑁 = 1000 nodes to study the scalability performance. Once the most suitable
nodes have been predicted by each method, we apply the DML mechanisms BN, AM, WAM,
RFL, and IRL over these nodes to train the predictive models.

Tables 3.6 and 3.8 show the performance of the predictive models w.r.t. MSE across all DPA

3.6. PERFORMANCE EVALUATION 74

Table 3.6: MSE (loss) of predictive models based on all the node selection mechanisms over
DS1 across all the query-centric DML mechanisms (static data environment).

DS1 Static Environment

Node Selection
Models

Learning BN RFL RIL AM WAM

LR 36.08 32.44 37.67 55.44 35.83
Ours (F1) PR 40.38 32.71 35.12 61.56 36.74

DNN 38.05 31.03 33.56 56.98 34.60

LR 35.6 31.81 35.25 53.57 34.12
Ours 𝐾 = 5 PR 39.23 31.83 34.61 60.27 33.01

DNN 35.71 31.96 31.45 56.71 33.17

LR 34.98 30.74 35.82 51.22 33.98
Ours 𝐾 = 10 PR 38.67 30.15 33.87 58.23 32.33

DNN 33.56 29.79 30.48 54.29 30.11

LR 33.20 30.87 32.05 51.22 34.98
Ours 𝐾 = 15 PR 32.77 31.77 37.52 57.96 33.89

DNN 31.43 28.53 30.68 55.75 31.51

LR (27.91) - - - - -
GM PR(29.39) - - - - -

DNN (27.85) - - - - -

LR 57.45 85.43 88.78 97.59 89.10
GT PR 63.50 72.57 73.33 98.04 91.61

DNN 46.01 72.88 73.67 82.04 76.69

LR 60.49 87.82 89.18 95.22 90.46
FS PR 63.88 78.40 79.67 83.32 80.41

DNN 53.02 72.48 74.25 78.39 74.95

LR 73.94 98.82 97.39 112.87 98.98
RM PR 73.53 85.50 71.20 93.61 87.26

DNN 87.53 77.59 79.48 84.51 81.30

DS1 Static Environment; MAB Mechanisms (𝑁 = 1000)

LR 53.44 48.42 47.49 42.44 48.66
TEF PR 43.43 45.15 41.32 53.51 57.44

DNN 47.55 47.69 49.45 54.61 51.35

LR 63.54 68.62 67.69 52.46 58.76
M-MAB PR 48.40 57.52 50.52 49.15 58.84

DNN 49.95 50.66 55.76 59.99 62.33

LR 28.04 28.28 27.95 28.70 29.98
F1-3(𝐾 = 15) PR 30.23 20.20 29.90 33.71 32.25

DNN 27.94 29.57 27.88 26.51 28.50

queries in static data environments over DS1 and DS2 datasets. Both tables show the comparison
of the performance of the models having built based on nodes selected based on our mechanism
in the cases: adopting F1 factor and F1-3 factors for different 𝐾 values compared with the central
GM, GT, FS, and RM approaches. Moreover, the TEF and M-MAB methods are compared
against our F1-3 mechanism (with 𝐾 = 15 clusters) selecting sub-sets over 𝑁 = 1000 nodes.
The selected nodes trained the different predictive models (LR, PR, and DNN) according to the
query-centric DML mechanisms BN, RFL, RIL, AM, and WAM.

From the results, our mechanism consistently outperforms other node selection mechanisms
even in the case with 𝑁 = 1000 over the same queries (𝑝 < .05). Notably, in terms of the query-
centric DML mechanisms, RFL demonstrates the closest approximation to the GM training
outcome, while BN mostly shows good results for GT, FS and RM, however, with no comparable

3.6. PERFORMANCE EVALUATION 75

Table 3.7: MSE (loss) of predictive models based on all the node selection mechanisms over
DS1 across all the query-centric DML mechanisms (dynamic data environment).

DS1 Static Environment

Node Selection
Models

Learning BN RFL RIL AM WAM

LR 39.29 33.46 35.47 57.53 34.22
Ours (F1) PR 42.00 34.76 35.55 65.81 35.25

DNN 44.72 33.16 34.51 49.35 33.26

LR 38.95 32.78 34.67 51.05 34.56
Ours 𝐾 = 5 PR 41.28 33.23 34.92 46.23 33.02

DNN 43.54 33.40 31.19 47.29 32.36

LR 37.53 32.04 33.05 45.52 33.88
Ours 𝐾 = 10 PR 39.65 33.26 34.30 46.19 32.72

DNN 37.71 32.02 30.67 45.56 30.04

LR 37.03 30.43 32.34 44.67 33.09
Ours 𝐾 = 15 PR 37.33 31.46 32.07 45.77 33.93

DNN 36.02 31.52 29.56 45.68 31.22

LR (27.91) - - - - -
GM PR(29.39) - - - - -

DNN (27.85) - - - - -

LR 85.22 96.15 101.27 111.18 96.94
GT PR 72.25 79.27 83.81 86.92 82.53

DNN 71.18 74.51 78.66 82.45 75.12

LR 88.61 95.03 98.18 102.22 94.21
FS PR 61.05 85.81 88.75 95.39 86.15

DNN 69.63 73.75 76.68 88.81 74.62

LR 65.79 128.21 132.79 130.31 93.27
RM PR 70.81 93.67 96.24 97.43 95.21

DNN 68.63 80.24 86.07 93.04 88.43

DS1 Dynamic Environment; MAB Mechanisms (𝑁 = 1000)

LR 56.64 68.62 57.59 52.54 58.78
TEF PR 47.73 43.35 40.44 40.41 47.54

DNN 43.53 57.59 59.55 64.66 61.85

LR 77.54 70.72 77.98 72.76 78.88
M-MAB PR 78.70 77.56 70.77 79.57 78.47

DNN 69.65 70.76 75.16 69.11 72.66

F1-3(𝐾 = 15) LR 33.34 28.38 30.95 28.09 29.33
PR 29.53 29.52 29.45 30.15 30.11

DNN 28.57 28.33 29.28 30.15 33.22

accuracy results (𝑝 < .05). Specifically, the disparities between GM error and our results are
on average 3.8% across all predictive models. This indicates that our mechanism achieves
comparable accuracy under circumstances of not allowing data transfer to central locations
including violation of data privacy apart from unconditional access to data. Moreover, given
the unanimous agreement across all models regarding RFL’s superiority, it is considered as the
preferred choice for static data environments, especially when prioritizing model performance.

However, one must remain aware of potential communication overhead with RFL compared
to the other query-centric DML schemes, e.g., BN and A/WAM. While RFL requires T training
rounds among selected nodes, this results in more communication compared to BN, which simply
engages a single node. RFL also surpasses the communication rounds in both AM and WAM,
as they only demand one round of interaction between selected nodes. Moreover, RFL entails a
higher communication compared to RIL, which the latter circulates a single model among the

3.6. PERFORMANCE EVALUATION 76

Table 3.8: MSE (loss) of predictive models based on all the node selection mechanisms over
DS2 across all the query-centric DML mechanisms (static data environment).

DS1 Static Environment

Node Selection
Models

Learning BN RFL RIL AM WAM

LR 42.53 35.26 40.84 61.35 52.49
Ours (F1) PR 43.77 36.25 41.41 70.49 53.04

DNN 35.91 32.15 37.45 58.04 49.07

LR 40.15 34.25 39.31 56.88 48.82
Ours 𝐾 = 5 PR 42.00 36.22 43.77 60.04 47.17

DNN 35.01 31.75 36.92 51.79 47.13

LR 39.20 33.26 38.42 55.03 47.43
Ours 𝐾 = 10 PR 42.53 35.97 42.21 62.18 48.00

DNN 34.98 31.09 36.27 50.73 47.11

LR 38.02 32.41 37.42 53.38 46.24
Ours 𝐾 = 15 PR 41.88 34.48 41.12 60.90 47.66

DNN 33.87 30.78 35.98 48.28 46.08

LR (30.57) - - - - -
GM PR (32.34) - - - - -

DNN (30.29) - - - - -

GT LR 65.45 79.99 82.33 92.24 84.05
PR 67.23 88.61 88.38 98.77 92.87

DNN 65.34 76.65 77.23 95.07 82.88

LR 43.77 62.26 68.20 90.12 88.81
FS PR 46.36 67.07 71.91 94.27 86.33

DNN 42.78 60.21 69.22 93.41 85.12

LR 51.17 90.65 95.17 111.12 93.82
RM PR 53.34 99.31 102.07 107.33 98.67

DNN 50.19 87.00 91.44 97.29 94.15

DS2 Static Environment; MAB Mechanisms (𝑁 = 1000)

LR 55.66 67.76 59.59 62.74 57.77
TEF PR 49.91 50.30 50.44 55.41 57.99

DNN 47.77 42.22 52.22 60.01 62.27

LR 75.44 72.11 70.01 70.16 73.77
M-MAB PR 74.50 67.66 67.98 77.87 69.45

DNN 66.02 70.11 64.23 71.11 69.96

LR 31.14 30.81 32.13 34.31 33.28
F1-3(𝐾 = 15) PR 34.44 33.01 34.98 33.35 38.65

DNN 31.44 30.48 31.77 32.55 36.34

selected nodes forming a logical ring. Notably, our mechanism F1-3 achieves better performance
in the case of 𝑁 = 1000 nodes by adopting the RIL method. This indicates the efficiency of our
mechanism in selecting and engaging the most suitable nodes out of a network with a relatively
high number of nodes. Furthermore, TEF and M-MAB methods produce similar predictive
performance across different DML mechanisms (like BN, RIL, and AM) achieving, however,
39.02% more error (on average) compared with our F1-3 mechanism (𝑝 < .05).

In DS1, static data environment (Table 3.6), we obtain a trade-off between accuracy and
communication overhead by adopting RFL (and RIL for 𝑁 = 1000) against other less communi-
cation intensive query-centric DML mechanisms. We can slightly sacrifice some of the obtained
accuracy, e.g., around 1% less, by adopting RIL or WAM instead (𝑝 < .05). Similar trade-off
is obtained in DS2, static data environment, (Table 3.8). For 𝐾 = 15, our selection mechanism

3.6. PERFORMANCE EVALUATION 77

Table 3.9: MSE (loss) of predictive models based on all the node selection mechanisms over
DS1 across all the query-centric DML mechanisms (dynamic data environment).

DS1 Static Environment

Node Selection
Models

Learning BN RFL RIL AM WAM

Ours (F1) LR 47.40 38.35 42.11 68.28 39.49
PR 48.47 39.33 39.45 70.49 40.59

DNN 49.16 37.77 37.13 59.30 39.32

LR 46.60 37.37 41.59 63.78 38.46
Ours 𝐾 = 5 PR 47.27 38.81 33.19 65.29 39.62

DNN 47.25 36.99 37.17 57.31 38.40

LR 46.25 36.08 37.22 62.10 37.37
Ours 𝐾 = 10 PR 46.06 37.25 35.90 63.57 38.29

DNN 45.02 35.05 36.88 56.37 38.67

LR 46.55 33.98 35.18 62.77 37.03
Ours 𝐾 = 15 PR 45.20 36.82 33.71 62.32 36.14

DNN 44.17 32.39 34.48 55.18 35.26

LR (30.57) - - - - -
GM PR (32.34) - - - - -

DNN (30.29) - - - - -

LR 64.18 79.99 82.32 114.00 84.75
GT PR 65.24 88.61 92.24 116.00 85.15

DNN 61.52 74.78 76.23 113.37 81.09

LR 73.12 76.44 82.69 107.38 84.63
FS PR 75.15 77.83 77.19 109.32 86.91

DNN 73.13 74.46 75.63 111.50 83.41

LR 71.00 90.65 95.17 111.12 93.82
RM PR 53.34 99.31 102.07 107.33 98.67

DNN 50.19 87.00 91.44 97.29 94.15
DS2 Dynamic Environment; MAB Mechanisms (𝑁 = 1000)

LR 65.55 51.11 60.11 61.43 67.89
TEF PR 44.43 41.22 49.33 45.33 59.01

DNN 57.88 38.33 42.44 51.21 52.88

LR 65.64 62.61 60.44 73.36 74.01
M-MAB PR 64.60 57.56 57.08 57.89 59.94

DNN 56.22 61.12 67.07 66.20 58.76

LR 33.21 31.11 32.23 33.91 32.55
F1-3(𝐾 = 15) PR 33.97 33.16 34.29 34.39 35.25

DNN 31.11 30.44 32.66 32.12 34.77

adopting RFL and RIL achieves almost similar accuracy prediction levels with the GM. This
indicates the capability of our mechanism to offer distributed learning over DPA queries without
accessing the data in advance nor transferring the data in a central location.

In dynamic environments, similar to the static ones, our mechanism surpasses other tech-
niques, with RFL, RIL, and WAM emerging as best performers for most of the predictive models.
Tables 3.7 and 3.9 present the performance of the node selection mechanisms in dynamic data
environments, where data have undergone changes described in Section 3.6.3. It is worth noting
that in this context, RIL is considered as an efficient query-centric scheme to improve the model
performance and reduce the communication rounds. However, this requires the communication
dependency among nodes during the ring-based model training. Furthermore, our mechanism
does not only select the most suitable nodes, it also reduces redundant access to irrelevant data as

3.6. PERFORMANCE EVALUATION 78

discussed in Section 3.4.1. Each query, on average, requires access only to 10% ∼ 15% of data
on a selected node. In DS2, WAM seems also another efficient candidate in some cases compared
to RFL and RIL, e.g., for PR and DNN models when 𝐾 ∈ {10, 15} trading off accuracy with
communication overhead. Furthermore, in the case of 𝑁 = 1000 nodes, RFL is proved efficient
for TEF and our mechanism, while RIL is a promising candidate for M-MAB mechanism. Even
in this case, our mechanism outperforms TEF and M-MAB in terms of prediction accuracy
(𝑝 < .05) while RFL scheme achieves 26.55% and 41.01% less error (on average) compared to
TEF and M-MAB, respectively.

Discussion on Generalization Capacity of ML Models for DPA

Our preemptive mechanism ensures that the subsequent training phase leverages the most relevant
data out of all selected nodes’ data. This yields each DML-trained model tailored to each DPA
query. Such training process over relevant samples might affect the generalization capacity of
the derived ML model for DPA, i.e., its ability to adapt to new, previously unseen data, yet drawn
from the same distribution as the one used to train the model (the distribution of the relevant
data). Our mechanism attempts to balance this potential lack of generalization by introducing the
factors F1, F2, and F3 in Section 3.4. Recall that each factor controls the ‘degree of relevance’
of the data used for training with F2 and F3 attempting to predict the highest portion of relevant
data given a query. As evidenced in our experimental results in Tables 3.6, 3.7, 3.8, and 3.9 (refer
to performance of F1 and F1-3 variants), the derived models obtain almost similar MSE with
the ideal GM method, which uses only the most relevant data for training given a query (ground
truth). Evidently, by adopting our mechanism with all factors involved (i.e., F1-3 variant), the
derived model’s generalization capacity is decreased (due to overfitting).

On the other hand, our mechanism’s variants with factor F1 result in not aggressively filtering
our irrelevant training data given a query. In these variants, the derived model is trained over a
mixture of (predicted) relevant samples (as strictly requested by a DPA query specifications) and
irrelevant samples, which could not be excluded due to the F1 factor. In this case, we obtain the
following trade-offs: a highly tailored model (based on the F1-3 variant satisfying the DPA query)
with low model generalization capacity, and a less tailored model (based on the F1 factor) with
higher generalization capacity. Depending on the DPA application and analytics domain, once
could balance between a generalized model and a model that fits the requirements of the DPA
query. For instance, models for exploratory analytics applications, e.g., [103] can be obtained
using our mechanism with F1 and/or F2 variants to allow for generalization, while models for
aggregate predictive analytics in large-scale databases, e.g., [125], [108] can be obtained using
our F1-3 variant, where model fitting over large-scale datasets is significantly required (closely
match with the relevant data allowing for accurate predictions and pattern mining).

3.6. PERFORMANCE EVALUATION 79

Discussion on Comparative Methods Performance

Considering now the approaches under comparison, i.e., GT, FS, RM, TEF and M-MAB, it is
required to access all the data in advance to establish the most suitable nodes. As stated by [82],
selection of nodes is based on a value function, which reflects the usefulness of the data during
each training round. Moreover, the MAB methods in [133] and [83] require online training to
achieve convergence in determining the most suitable sub-set of nodes per DPA query. During
this training period (exploration-exploitation rounds), these methods require full access to the
data to quantify the reward value per round.

Our mechanism is based a pre-training model principle, i.e., the nodes are predicted to be
suitable for a DPA query before attempting any DML process. Whereas, GT, FS, and TEF and
M-MAB methods are based on a post-training model principle, i.e., the nodes are predicted to
be suitable for a DPA query after training a predictive model (for TEF and M-MAB this holds
up to the conference stage). A commonality among these approaches is their dependency on
building the predictive models first; then, based on these models, they determine the suitable
set of nodes. Notably, even after the node selection process, they do not focus explicitly on the
relevant data requested by the queries. In contrast, in our mechanism, we prioritize both the
selection of suitable nodes and the identification of relevant data before initiating the training
stage.

In terms of data access, as shown in Figure 3.9(b), the number of irrelevant samples has
significantly reduced when considering the clustering approach compared to the comparison
methods. In addition, we improved the model performance by surgically identifying the relevant
data to be accessed only, for instance, in Table 3.6 the performance of RFL over DNN is increased
by ∼ 10% by adopting all the factors (F1-3) compared with only considering the F1 factor. This
trend holds for the rest of the query-centric DML mechanisms.

In terms of communication rounds among nodes during the DML process, our mechanism
can reduce the communication by avoiding engaging unsuitable subsets of nodes in one round.
This is because only one round is dedicated to determining the node rankings based on supportive
clusters using F1-3 factors, followed by determining the amount of data in each relevant cluster.
Using the F1 and F2 factors, no communication round between the leader and the nodes is
required. If the conditions in factors F1 and F2 are satisfied then the DML process commences.
Subsequently, we assess the number of relevant samples in each separate cluster. Otherwise, a
node will not participate in the training stage.

Given the fact that RFL are mostly superior than the other DML mechanisms schemes across
static and dynamic environments, datasets, and predictive models, we further provide a detailed
comparative assessment of our mechanism (both, adopring F1 and F1-3 factors) against the
approaches under comparison by showing the distribution of the MSE per query in Figures 3.10
and 3.11. Note that similar results are obtained for the rest of the DML mechanisms. We obtain
insights about the percentage of the DPA queries served w.r.t. prediction error across each

3.6. PERFORMANCE EVALUATION 80

M
SE

Queries(%) Queries(%) Queries(%)

M
SE

M
SE

((a)) Distribution of MSE vs. proportion (%) of queries using RFL across different
models in static data environment (DS1 dataset).

M
SE

Queries(%) Queries(%) Queries(%)

M
SE

M
SE

((b)) Distribution of MSE vs. proportion (%) of queries using RFL across different
models in dynamic data environment (DS1 dataset).

Figure 3.10: Distribution of MSE against proportion (%) of DPA queries (from the query
workloads) using RFL in static and dynamic data environments (DS1).

query workload, and how all the mechanisms achieve low MSE across all incoming queries.
Specifically, Figures 3.10 and 3.11 show that given a MSE value, which proportion of the issued
queries (out of all queries in the workload) assumes error up to that MSE value. It is evidenced
that our mechanism is efficient in terms of selecting the most appropriate nodes to train a DML
model per query. As evidenced by the performance of FS, GT, and RM in both datasets for
both environments, the performance of each query individually is negatively impacted when
considering 100% data access during the DML process. That is, for more than 50% of the
queries, the obtained MSE by FS, GT and RM is significantly higher than our mechanism.

Moreover, one can observe the robustness of our mechanism where for up to 90% of the
queries (see Figure 3.11; both static and dynamic data environments), the obtained MSE re-
mains almost constantly in low levels while being comparable with that of GM. This yields our
mechanism applicable in the real of DPA.

3.6. PERFORMANCE EVALUATION 81

M
SE

Queries(%) Queries(%) Queries(%)

((a)) Distribution of MSE vs. proportion (%) of queries using RFL across different
models in static data environment (DS2 dataset).

M
SE

Queries(%) Queries(%) Queries(%)

M
SE

M
SE

((b)) Distribution of MSE vs. proportion (%) of queries using RFL across different
models in dynamic data environment (DS2 dataset).

Figure 3.11: Distribution of MSE against proportion (%) of DPA queries (from the query
workloads) using RFL in static and dynamic data environments (DS2).

3.6.4 Limitations & Directions of Enhancement

Node selection in DML environments has several perspectives related to DPA. Our paradigm
predicts the most suitable nodes holding the most relevant data that will be used for training ML
models in a distributed manner. Our mechanisms excel where there is significant heterogeneity
and diversity between the query access patterns and the available data in each node. Hence,
by selecting a sub-set of nodes for each incoming DPA query into the system is of paramount
importance in terms of our objectives: model performance and data access load. Nonetheless, our
node selection process needs to be expanded to accommodate different perspectives. Specifically,
node selection can take into consideration the accessibility of nodes due to the network status and
connectivity. One limitation is that DPA tasks are based on the assumption that selected nodes are
also accessible and available during model training. This implies that these nodes should devote
their resources and computational load when requested to be engaged in ML models distributed
learning. However, ‘stragglers’ (nodes with limited computational capacity) and heavy loaded

3.7. CONCLUSIONS 82

nodes might hinder the entire process. Proactive mechanisms for refining the outcome of node
selection e.g., [69] or providing guarantee about the capacity of the selected nodes e.g., [136] is
a limitation in our paradigm.

In addition, our paradigm does not focus on the system resilience in DML environments. Even
if the selected nodes have been proved to accommodate the learning process for a specific DPA
query, failure rates, nodes attacks, and unexpected events yielding some of the selected nodes
incapable to support the learning process would jeopardise the DPA tasks [137]. Factors including
device heterogeneity, heterogeneity in network connectivity (e.g., mobile and stationary nodes),
and incentives for nodes devoting their resources for training define perspectives and directions
where our current paradigm does not include in the node selection process in this work.

Finally, in terms of the nature of data, our mechanism may be less effective with other forms
of selection queries like object recognition over moving images, and multi-modal learning of
ML models over simultaneously different types of data like text, audio, or images. Moreover,
when the amount of data is similar across many nodes, then this would require our mechanism to
be enhanced with methods to eliminate potential nodes hosting data with similar distributions to
avoid redundancy in the learning process. The above-mentioned perspectives for enhancement
of our paradigm are included in our future agenda for developing a holistic paradigm in the
emerging area of distributed analytics.

3.7 Conclusions

We introduce an innovative node and relevant data selection paradigm to support DPA in DML
environments. Our objective is to predict the most suitable nodes with the most relevant data
to be engaged in DML process of ML models in light of achieving high predictive performance
while avoiding redundant access over irrelevant data. Our principle is based on filtering out nodes
whose data do not match the query access patterns. We provide comprehensive experimental
evaluation and comparative assessment with other methods found in the literature over query
workloads and datasets to assess the robustness, scalability and performance of our mechanisms.
Our paradigm showcased to outperform baselines and relevant mechanisms, thus, demonstrating
its ability to predict the most suitable sets of nodes tailored to DPA queries. Moreover, our DML
mechanisms are proved efficient in reducing the training communication rounds and redundant
access over irrelevant data ensuring streamlined interactions among selected nodes. We finally
elaborated on the directions of enhancement of our paradigm towards a holistic eco-system in
the realm of DPA.

3.7. CONCLUSIONS 83

Table 3.10: Table of Symbols for Chapter 3.

Symbol Definition
N = {𝑛1, 𝑛2, . . . , 𝑛𝑁 },
N ′ ⊂ N , N★ ⊂ N Set of nodes, selected nodes,

ideal selected nodes.
ℓ = |N ′ | ≤ 𝑁 Number of selected nodes.
x = [𝑥1, . . . , 𝑥𝑑]⊤ ∈ X, 𝑦 ∈ Y Input and output.
𝑑 Data dimensionality.
q DPA query.
B Hyper-rectangle in X
D𝑖 = {(x, 𝑦)𝑘}𝐿𝑖𝑘=1 Node 𝑛𝑖’s local dataset

with 𝐿𝑖 samples.
𝑓 (x; 𝜃 (q)) DML model; 𝜃 (q) parameters.
D(q) = ∪𝑁

𝑖=1D𝑖 (q), D
′′
𝑖
⊂ D′

𝑖
⊂ D Whole distributed data and

relevant data per query/node.
L Loss function.
𝑞min
𝑘

, 𝑞max
𝑘

Boundaries per query.
𝑒 𝑗 ,𝑒𝐺 Error of central and local nodes.
{C1, . . . , C𝐾 } Set of 𝐾 clusters.
c𝑘 , c′

𝑘
𝑘-th cluster-head & boundary.

𝑟𝑖 (q), 𝑟 ′𝑖 (q), 𝑟
′′
𝑖
(q) Ranking support for 𝑛𝑖 .

ℎ𝑘 (q) ∈ [0, 1] Query-cluster overlapping.
𝐾 ′ ≤ 𝐾 Number of supportive clusters.
𝜖 > 0 Overlapping threshold.
𝑡, 𝜏 ∈ T,T Discrete time, training epochs.
𝛼 Node selection accuracy.
𝜈 Ring passes (RIL).

Chapter 4

Cluster-based & Label-aware Federated
Meta-Learning for On-Demand
Classification Tasks

4.1 Introduction

Distributed clients like road-side units and edge micro-servers collect and store diverse forms of
data like images and voice [138]. They are valuable sources of data, improving accuracy and
generalization of ML and DL models for classification tasks. Model training over clients’ data
yields robust predictive results compared with single sources [139]. However, centralizing data
on servers presents challenges, including data privacy and the sheer volume of data [140]. FL
emerges as a distributed learning paradigm to address these issues. FL collaboratively trains a
global model across clients facilitating access to distributed data [140].

The primary challenge in FL is data and class labels heterogeneity. This issue arises due to
various types of distribution shifts among clients including feature, label, and concept distribution
shifts as evidenced in [141, 9]. Such challenge revolves around uneven distributions of data across
classes: majority of samples belong to majority classes while minority classes comprise only
a small amount of data [8]. Limited labelled data caused by disparities in labels across clients
impede the convergence of classifiers degrading their performance. This has a detrimental impact
when classification involves minority classes [9] or any arbitrary set of labels.

Meta-learning has proved to accelerate model adaptation to arbitrary labels by allowing fine-
tuning over small datasets when faced with previously unseen tasks [142]. The adoption of
meta-learning in FL concentrates on what is termed as ‘perfect setups’, which are challenging
to implement in real-world applications. These setups hinge on several key assumptions. A1:
Classification tasks share exactly the same set of labels L and label distribution as those used
in training meta-models. It is thus not possible to deal with any arbitrary out-of-distribution
classification requests. A2: The labels are evenly distributed among all the clients [143]. A3:

84

4.1. INTRODUCTION 85

Most approaches rely on limited number of labels, often |L| ≈ 10 [144, 145, 146, 147, 148,
149]. Inadequate attention is given to cases with larger number of labels (e.g., more than 20
or 100) where not all labels L are available in each client. In real settings, A1-A3 might not
hold, thus, cannot satisfy on-demand tasks requesting training classifiers for any arbitrary label
subset of the available L. In such settings, relying on a single, global Federated Meta-Learning
(FML) model proves to be inefficient and impractical [150] to accommodate (i) any arbitrary
classification tasks and (ii) out-of-distribution labels across clients.

An on-demand classification task, or simply task, requests the training of a classifier over
distributed clients’ data, where the data are labelled with labels from a set T ⊂ L. A task is
associated with its set of labelsT . Note: in traditional FML and FL, we obtain the trivial caseT ≡
L where all tasks are the same; implying that all clients host data corresponding to all labels inL
(unevenly or not). Consider, for instance, urban planning in the intelligent transportation systems
domain. Here the construction department focuses on the task of training image classifiers for
road surface defect detection correlated with road material over data with labels L′ = {‘gravel
road’, ‘asphalt road’, ‘concrete road’}. Meanwhile, the carriageway maintenance department
utilizes some of the same data with defect labels L′′ = {‘transverse crack’, ‘block crack’,
‘pothole’} for maintenance tasks [151]. Consequently, data from both departments are neither
locally accessible in the same clients nor data are labelled with all labels in each client individually.
A real challenge is when a task requires the training of a classifier over data labelled with a subset
of labels T out of all available labels L across clients. Clients may possess data with labels in
T exhibiting varying levels of class imbalances or may have data with fewer (evenly balanced)
classes than those in T , which is not unusual in real-world problems.

A straightforward solution would be to develop separate classifiers for each individual task,
ensuring optimal performance for each task within the context of FL/FML. This requires𝑂 (2|L|)
classifiers to be trained and maintained to accommodate any possible on-demand request for
classifiers associated with any label subset of L. This is undeniably impractical and does not
scale even for moderate values of |L|. Moreover, creating models from scratch every time a
new task arrives is impractical especially when dealing with imbalanced classes. Therefore, this
chapter introduces a Cluster-based & Label-aware FML framework (CL-FML) that addresses
such challenges, diverging from standard FL and FML paradigms. CL-FML initially groups
clients together sharing almost overlapping subsets of labels w.r.t. holistic label set L derived
from all available labels across clients. The label-aware clustering logically gathers clients
together based on label shifting, thus, mitigating label imbalance per task.

CL-FML harnesses the capability of decentralized FML to perform effectively by fine-tuning
any on-demand task. This chapter study the cases of training more than one (reusable) meta-
model tailored to available labels L𝑘 ⊂ L of a cluster of clients C𝑘 , hereinafter referred to as
cluster-based meta-model. The sizes of such meta-models are compact to be stored on clients
temporarily, enabling them to be reused for future tasks. Each of these meta-models serves a

4.2. RELATED WORK 86

specific range of label distributions (L𝑘) being responsible for a task involving at least some
of the labels L𝑘 . In our example, the task requires data within specific labels’ ranges, i.e.,
classification requires labels L′ from construction department and labels L′′ from maintenance
department with L′ ∩ L′′ ≡ ∅. Note: it might also be possible a task requires one or more
labels that do not belong to a cluster of clients. Hence, our objective is not only limited to
adapting meta-model solely to tasks with exactly the same distribution; it copes with sharing
meta-models among clusters to further fine-tune in light of satisfying all requested labels from
T . We leverage lightweight data augmentation to generate data for labels that do not appear in
that cluster (T \ L𝑘). Such generative data augmentation models, like [152], will be trained in
advance for each cluster C𝑘 . Selected clients per cluster train such models w.r.t. their capacity
and label availability. These models are then selectively shared among clusters to augment data
within a cluster with labels from T \ L𝑘 .

To the best of our knowledge, CL-FML is the first approach that tackles on-demand clas-
sification tasks introducing distributed label-aware client clustering and multiple cluster-based
meta-models. Our technical contributions are:

• The CL-FML framework leverages label distribution based clustering of clients to identify
the most suitable clients to be engaged per task.

• Multiple cluster-based meta-models are introduced, one per cluster. A task-tailored FML
model is trained to handle on-demand classification tasks with overlapping labels in the
cluster, enabling fast model adaptation and reusability for new tasks through selective
fine-tuning.

• A novel generative model training process is introduced among selected clusters to address
data unavailability for tasks.

• A comprehensive comparative assessment of CL-FML is conducted against baselines
DFedAvg [153], cluster-based DFedAvg (C-DFedAvg) [154], and group-based FML (G-
FML) [155] over benchmark datasets under various tasks and label distributions. The
experiments showcase the effectiveness and efficiency of CL-FML in tackling on-demand
tasks in distributed learning environments.

4.2 Related Work

In FL, clients are randomly selected per round, while global model aggregation is centrally
performed. This is effective over independent and identically distributed (i.i.d.) data, however,
unsuitable for non-i.i.d. data, where each client owns statistically heterogeneous local data.
The latter rises concept, label, and feature distribution shifts that hinder the whole performance
due to local model drifts [147]. Prior efforts [156, 148] addressed concept and feature shifts.

4.3. TARGET DATA TYPES AND APPLICATION SCOPE 87

Conversely, label shifts arise when marginal label distributions P(ℓ), ℓ ∈ L, differ across clients
even if conditioned distributions P(ℓ |𝑥) remain the same. Several approaches tackle label skews
where clients’ data have fixed number of labels L, e.g., [149]. A few studies have recently
investigated label shifting due to variations in label distribution range [157]. As discussed in
Section 5.1, some clients own data with labels only from a subset of L and with significant
label imbalance, which is part of our study along with the size |L|. To deal with label shifting,
[157] introduced multiple global models that improved performance compared with a single
global FL model. This motivated the cluster-based FL: each global model per cluster. [158] and
[155] focus on clustering clients based on models’ similarity and data distribution, respectively.
However, such clustering demands significant communication overhead due to data sharing.
CL-FML, instead, introduces light-weight clustering based only on sharing label distributions.
[159] clusters clients based on similarities among labels to tackle label range differentiation.
However, such approach assumes that after clustering, labelled balanced clients are obtained
ideally for training a global model. Therefore, inherent label imbalances still exist in clustered
clients’ data, which signifies fundamental statistical heterogeneity in FL. CL-FML’s strategy is
deemed crucial to develop multiple models and label-aware clustering, which addresses label
shifting over such heterogeneity.

Meta-learning and multi-task learning expedite the training of tasks leveraging other related
tasks. In FML, meta-learning trains a global meta-model for only specific, pre-determined, tasks
[142], [160], while multi-task learning trains a generalized model across clients, facilitating
knowledge transfer from different tasks [161]. However, as the number of clients increases, thus,
data heterogeneity grows, employing single meta-learning and/or multi-task learning models
becomes infeasible and unscalable. Even if approaches, e.g., [162, 163] introduce client group-
ing to address scalability, they merely focus on transferring knowledge in non label-shifting
cases, i.e., all clients share the same labels to equally utilize meta-knowledge across all tasks
[143]. Nevertheless, we may still encounter label imbalances within clusters. CL-FML, instead,
leverages transfer learning to initially build multiple models capturing intra-cluster heterogeneity
capable of accommodating on-demand tasks involving arbitrary label subsets from L.

4.3 Target Data Types and Application Scope

The proposed CL-FML framework is designed to operate in environments where data is highly
privacy-sensitive and cannot be shared across entities. This includes domains such as health-
care, finance, and organizations dealing with proprietary or confidential data. Although our
experimental evaluation uses standard image benchmarks—MNIST, Fashion-MNIST, EMNIST,
and CIFAR-100—these datasets were selected to demonstrate the method’s performance across
grayscale and colored images, varying dataset sizes, and a broad spectrum of class counts,
ranging from a few to hundreds of labels.

4.4. PRELIMINARIES 88

Beyond these benchmarks, CL-FML is broadly applicable to a wide range of tasks and
application scenarios. It can be used to support critical sectors by enabling the construction of
supervised classification models, regression models, or even unsupervised clustering models,
depending on the nature of the task. In this chapter, we specifically focus on classification
tasks under the challenging conditions of label distribution shift and data heterogeneity, which
are common in real-world decentralized federated learning settings where clients hold non-IID
and unbalanced labeled data. For example, CL-FML can be effectively applied in healthcare
diagnostics, where different institutions may record distinct sets of diseases or medical conditions.
Similarly, in autonomous driving, each vehicle may locally observe a unique subset of road scenes
or traffic signs. The label-aware clustering mechanism in CL-FML ensures that clients with
similar label distributions are grouped to collaboratively build cluster-specific meta-models.
These models are then fine-tuned using only a small fraction of labeled or augmented data,
enabling efficient and accurate adaptation to on-demand tasks. This design allows CL-FML to
minimize communication rounds while maintaining high classification performance, making it a
practical and scalable solution for federated learning environments with strict privacy constraints.

4.4 Preliminaries

Centralized & Decentralized Federated Learning: Consider a distributed learning system
with 𝑁 clients N = {𝑛1, . . . , 𝑛𝑁 }. Let 𝐷𝑖 be the local dataset of a client 𝑛𝑖 ∈ N . In Centralized
FL (CFL) [10], given a subset of 𝑁′ < 𝑁 clients N ′ ⊂ N , the local loss is:

R𝑖 (𝜃) =
1
|𝐷𝑖 |

∑︁
(𝑥,𝑦)∈𝐷𝑖

J (𝑓 (𝜃; 𝑥), 𝑦) (4.1)

where 𝜃 is the model parameter, 𝑓 is the discriminant function/model mapping input 𝑥 to class
𝑦, J measures cross-entropy loss. The global loss for all selected clients 𝑛𝑖 ∈ N ′ is:

R(𝜃) =
∑︁
𝑛𝑖∈N ′

𝜌𝑖R𝑖 (𝜃), where 𝜌𝑖 =
|𝐷𝑖 |∑

𝑛 𝑗∈N ′ |𝐷 𝑗 |
. (4.2)

The model training process spans periodically over 𝑇 global rounds with 𝐸 local rounds. Let
𝑡 ∈ {1, . . . , 𝑇} be a discrete training round and 𝜏 = ⌊ 𝑡

𝐸
⌋𝐸 be the start time of the current global

epoch. At 𝜏, the clients receive updated aggregated weights 𝜃𝜏 from a centralized server, which
aggregates the clients’ model parameters. The local training at 𝑛𝑖 at epoch 𝑒 = 1, . . . , 𝐸 is:

𝜃
(𝜏+𝑒)+1
𝑖

= 𝜃𝜏+𝑒𝑖 − 𝜂𝜏+𝑒∇R𝑖 (𝜃𝜏+𝑒𝑖), (4.3)

where 𝜂 ∈ (0, 1) is the learning rate. The weight averaging policy on server is: 𝜃𝜏 =
∑
𝑛𝑖∈N 𝜌𝑖𝜃

𝜏
𝑖
.

Decentralized FL (DFL) [153] allows each client 𝑛𝑖 to only communicate with its neighbors

4.5. THE CL-FML FRAMEWORK 89

defined as a collection N𝑖 ⊂ N of clients with connections between them. Hence, there is no
need for a centralized server to aggregate the locally updated models as in CFL. Instead, at
round 𝑡, each client 𝑛𝑖 first aggregates the models received from its neighbors 𝑛 𝑗 ∈ N𝑖, i.e.,
𝜃𝑡
𝑖
=

∑
𝑛 𝑗∈N𝑖∪{𝑛𝑖} 𝜃

𝑡
𝑗

and trains using local data 𝐷𝑖:

𝜃𝑡+1𝑖 = 𝜃𝑡𝑖 − 𝜂𝑡∇R𝑖 (𝜃𝑡𝑖). (4.4)

In both CFL and DFL, the aggregated model on server and models in each client, respectively,
will become the global model in the next round and continue to participate and communicate
in training until this global model converges. Data Augmentation: Given non-i.i.d. and
heterogeneous data, it is common for the class distribution to be highly imbalanced. To address
this issue, CL-FML adopts the lightweight data augmentation method, MixUp [138], to locally
augment data 𝑥 with labels from L. MixUp is a commonly used computationally efficient
technique applied to classification tasks. Note: any data augmentation mechanism, such as
CGAN[164] or simple techniques like cropping, flipping, rotation, and color transformations
[165], could also be adopted, conditioned to a client’s capacity, without compromising the efficacy
of our method. Mixup uses linear interpolation between two input-label pairs, 𝑥𝑘 and 𝑥ℓ with
labels 𝑦𝑘 and 𝑦ℓ, to synthesize the sample (𝑥′, 𝑦′): 𝑥′ = 𝜆𝑥𝑘 + (1−𝜆)𝑥ℓ and 𝑦′ = 𝜆𝑦𝑘 + (1−𝜆)𝑦ℓ,
with 𝜆 ∈ (0, 1) controlling interpolation between samples.

4.5 The CL-FML Framework

4.5.1 Overview

The CL-FML framework extends the principles of decentralized FL (DFL) involving multiple
meta-models and local generative models per cluster. The fundamental processes are illustrated in
Figure 4.1. We consider a distributed environment with 𝑁 clients N . The clients are connected
given a network topology represented by a directed graph G(N , E). The adjacency matrix
E = [𝑒𝑖, 𝑗] ∈ R𝑁×𝑁 defines the neighborhood N𝑖 = {𝑛 𝑗 ∈ N : 𝑒𝑖, 𝑗 > 0} of client 𝑛𝑖 ∈ N as
the subset of clients 𝑛 𝑗 that directly communicate with 𝑛𝑖. 𝑒𝑖, 𝑗 = 0 indicates no communication
between clients, i.e., 𝑛 𝑗 ∉ N𝑖. Also, 𝑒𝑖, 𝑗 = 𝑒 𝑗 ,𝑖 may not always be valid for 𝑛𝑖 ≠ 𝑛 𝑗 . E is fixed.
Each client 𝑛𝑖 collects local labelled data 𝐷𝑖 = {X𝑖 × Y𝑖 ∼ P𝑖 : X𝑖 ∈ R𝑑; Y𝑖 ∈ L} from an
unknown joint probability distribution P𝑖. For any pair of clients (𝑛𝑖, 𝑛 𝑗) with 𝑛 𝑗 ≠ 𝑛𝑖, the joint
probability distributions can be either similar (P 𝑗 ≈ P𝑖) or dissimilar (P 𝑗 ≠ P𝑖). Clients do
not rely on a third party to manage shared models, which precludes centralized model averaging
schemes, like centralized FL. Any ML/DL model 𝑓 (𝑥; 𝜃) ∈ F , e.g., image classifier, coming
from a hypothesis class F , contains all the model parameters 𝜃 ∈ Θ trained locally from a
𝑑-dimensional parameter space Θ. We focus on classification, which can be easily extended to
regression.

4.5. THE CL-FML FRAMEWORK 90

We consider unequal data distributions across the classes (labels) 𝑦 ∈ L. Each label in client
𝑛𝑖 may have different distribution compared to other labels in L. Label imbalance refers to a
situation where the ratio between the number of samples belonging to a class to the total number
of samples in 𝑛𝑖 differs significantly for different classes. We use 𝑦 and ℓ interchangeably to
represent class and labels.

(i)

{a,b}

{a,b,f} {c,a,f}

{a,b} {c,f}

T = {a,b,f}
L = {a,b,c,d,f}

{d,f}

C 1 C 2

{a,b}

{a,b,f}

{a,b}

{c,a,f}

{c,f} {d,f}

(ii)

C 1 C 2
(iv)

gl

gl

C 1 C 2(iii)

{c,a,f,b}

{c,a,b,f}

{a,b,f}

{a,b,f}

{a,b,f}

gl

Figure 4.1: CL-FML instance (clockwise). (i) All clients’ labels L = {𝑎, 𝑏, 𝑐, 𝑑, 𝑓 } and task’s
labels T = {𝑎, 𝑏, 𝑓 }. (ii) Label-aware clustering into C1, C2 groups and decentralized cluster-
based meta-learning. (iii) Decentralized training of 𝑔ℓ for data augmentation. (iv) Decentralized
fine-tuning for task-tailored meta-model among suitable clients (shaded).

4.5.2 Label-aware Client Clustering

We rely on the configurations introduced in [166, 167, 168, 169] for sharing only label distribution
among clients. It is the minimum sufficient statistic to approximate a prior label distribution
per cluster [168, 169]. Let L = {ℓ1, . . . , ℓ𝑀} be all the available labels across all clients in the
network (see Figure 4.1(i)). Evidently, all labels are not known to all clients in advance. Clients
have data with some labels from L and, in real cases, not all of them. To make the clients aware
of the available labels, we introduce a label-aware distributed mechanism.

Ring-based Label Dissemination

Each client 𝑛𝑖 disseminates only its local labels L𝑖 ⊂ L to neighbors. Eventually all clients are
aware of L. Let us assume a ring topology (any other topology could be adopted), where client
𝑛𝑖 sends a message to its neighbour 𝑛 𝑗 and receives a message from another neighbour 𝑛𝑙 . The
label-aware mechanism passes messages of clients in the ring at rounds. At round 𝑡, client 𝑛𝑖
expands its local label set L𝑖 with the labels received from 𝑛𝑙 , i.e., L𝑖 ← L𝑖 ∪ L𝑙 and sends L𝑖
to 𝑛 𝑗 . Note: Within up to 𝑂 (𝑁) rounds, all the clients have received all the available labels of
the network, i.e., L𝑖 ≡ L. 𝑂 (𝑁) is the worst case, where all initial label sets L𝑖 are different
from each other and singletons, i.e., L𝑖 ∩ L 𝑗 ≡ ∅,∀𝑖, 𝑗 and |L𝑖 | = 1,∀𝑖.

4.5. THE CL-FML FRAMEWORK 91

Label-aware Clustering

Based on the initial label set L𝑖 and global label set L, each client 𝑛𝑖 represents its available
labels with a probability distribution p𝑖 = [𝑝1, . . . , 𝑝𝑀] ∈ [0, 1]𝑀 using multi-hot encoding
assigning to its available label a probability. Given L𝑖 and L, the multi-hot encoding vector
z = [𝑧1, . . . , 𝑧𝑀] ∈ {0, 1}𝑀 has 𝑧𝑘 = 1 if the label ℓ𝑘 ∈ L𝑖; 𝑧𝑘 = 0, otherwise, 𝑘 = 1, . . . , 𝑀 and
ℓ𝑘 ∈ L:

𝑝𝑘 =
𝑧𝑘∑
𝜅 𝑧𝜅

, 𝑘 = 1, . . . , 𝑀 with
𝑀∑︁
𝑘=1

𝑝𝑘 = 1. (4.5)

The entry 𝑝𝑘 expresses the probability client 𝑛𝑖 has data classified with label ℓ𝑘 . In parallel
to label-awareness mechanism, the nodes in the ring topology can efficiently elect a leader
client 𝑛𝑙 , e.g., using efficient and scalable ring-based leader election [170]. Leader 𝑛𝑙 initiates
a Minimum Spanning Tree (MST) to incrementally gather all probability label vectors {p𝑖}𝑁𝑖=1,
which will be used for clustering the clients into 𝐾 < 𝑁 clusters based on these probability
mass functions. The leader groups together the nodes’ label distributions into 𝐾 clusters. Each
cluster is represented by the cluster label distribution w𝑘 = [𝑤𝑘1, . . . , 𝑤𝑘𝑀] associated with the
labels ℓ1, . . . , ℓ𝑀 , respectively. The cluster label distributions w𝑘 are incrementally updated upon
receiving a client’s label distribution p𝑖. The clustering objective is to minimize the expected
quantization error E:

E({w𝑘 }) = Ep∈[0,1]𝑀 [H (w∗, p) |w∗ = arg min
𝑘
H(w𝑘 , p)], (4.6)

where cluster label distribution w∗ is the closest to a client label distribution p. We adopt
the symmetric and bounded Hellinger distance [171], H ∈ [0, 1], between probability label
distributions. Hellinger distance is widely used for class imbalance problems [156, 148]. The
Hellinger distance H(p, q) between two discrete probability distributions p = {𝑝𝑚}𝑚∈[𝑀] , q =

{𝑞𝑚}𝑚∈[𝑀] is:

H(p, q) = 1
√

2

(∑︁
𝑚∈[𝑀]

(√𝑝𝑚 −
√
𝑞𝑚)2

) 1
2
. (4.7)

When H is 0, the two distributions are identical, while the maximum distance 1 is achieved
when the two distributions are furthest apart. The cluster distributions w𝑡

𝑘
are updated when

the label distributions is received from clients at step 𝑡. The update is carried by incrementally
minimizing (4.6) using stochastic gradient descent to obtain the optimal cluster distributions:

w(𝑡)
𝑘
← w(𝑡−1)

𝑘
− 𝜂∇E({w(𝑡−1)

𝑘
}) (4.8)

4.5. THE CL-FML FRAMEWORK 92

given an incoming label distribution p(𝑡) , with learning rate 𝜂 ∈ (0, 1). The update rule for the
𝑗-th component of the cluster distribution w(𝑡)

𝑘
is then:

𝑤
(𝑡)
𝑘 𝑗

=


𝑤
(𝑡−1)
𝑘 𝑗
− 𝜂

4

(
1 −

√︄
𝑝
(𝑡)
𝑗

𝑤
(𝑡−1)
𝑘 𝑗

)
1

H(w(𝑡−1)
𝑘

,p(𝑡))

if 𝑘 = arg min𝜅∈[𝑀]H(w(𝑡−1)
𝜅 , p(𝑡)),

𝑤
(𝑡−1)
𝑘 𝑗

otherwise.

(4.9)

Once the cluster distributions {w𝑘 }𝑘∈[𝐾] have been concluded, the leader client assigns a client
to a group of clients:

C𝑘 = {𝑖 ∈ N : 𝑘 = arg min
𝜅∈[𝑀]

H(w𝜅, p𝑖)}, 𝑘 ∈ [𝐾] . (4.10)

Based on the probability of labels in the cluster distribution vector w𝑘 , the associated group
C𝑘 is considered to have the list of the most probable labels L𝑘 = {ℓ𝜅 ∈ L : 𝑤𝑘,𝜅 ≥ 𝜙},
given a probability threshold 𝜙 ∈ (0, 1). That is, clients belonging to a group C𝑘 have labels
from L𝑘 , each one with at least probability 𝜙. Note, these clients might also have additional
labels, however, with potential probability less than 𝜙. Therefore, the leader client uses MST to
disseminate to each neighbour 𝑖 (and the latter to their neighbors in turn) the group assignment
and label message ⟨𝑘,L𝑘 ,w𝑘⟩, i.e., client 𝑖 belongs to group C𝑘 where all the members have at
least the labels from L𝑘 associated with probability distribution w𝑘 . The 𝑁 clients then split into
𝐾 disjoint groups based on their most eminent label distributions (Figure 4.1(ii)).

To clarify, to construct the 𝐾 disjoint client groups, CL-FML adopts a label-aware clustering
approach based on the similarity of clients’ local label distributions. During initialization, each
client 𝑛𝑖 ∈ N shares its observed label set 𝐿𝑖 with its ring neighbor. These label sets are collected
by the cluster leader, which computes similarity scores between each client’s label set and a set
of cluster prototypes {𝑤𝑘 }𝐾𝑘=1 that represent dominant label distributions across the network.
The similarity is measured using the Jaccard index, as formalized in Equation (4.13), which
quantifies the overlap between two label sets 𝐴 and 𝐵 as:

sim(𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | .

Based on these similarities, each client 𝑛𝑖 is assigned to the most compatible cluster 𝐶𝑘
whose prototype 𝑤𝑘 is most similar to its label set 𝐿𝑖. This process results in a partitioning of
the network into 𝐾 disjoint clusters {𝐶𝑘 }𝐾𝑘=1, each consisting of clients with closely related label
distributions. These label-coherent clusters form the basis for training specialized meta-models
that are more aligned with the underlying data characteristics within each group.

4.5. THE CL-FML FRAMEWORK 93

4.5.3 Cluster-based Multiple Meta-model Learning

The primary objective is to train a tailored decentralized meta-model 𝑓𝑘 for each cluster C𝑘 , 𝑘 ∈
[𝐾], capable of fast and flexible adaptation to on-demand tasks with varying label sets A =

{T1,T2, . . .}. This is achieved via fine-tuning using selected samples from clients belonging
to each cluster C𝑘 . Consider a client 𝑛𝑖 ∈ C𝑘 dividing its dataset 𝐷𝑖 into two disjoint sets:
meta-training set and query set. The meta-training set 𝐷𝑀

𝑖
⊂ 𝐷𝑖, is used to train the cluster’s

meta-model 𝑓𝑘 . 𝑓𝑘 serves as the starting point to learn a generic representation of clients’
data in C𝑘 capable of adapting to future tasks’ labels T𝑗 ∈ A assigned to C𝑘 . The query set
𝐷
𝑄

𝑖
⊂ 𝐷𝑖, with 𝐷𝑀

𝑖
∩ 𝐷𝑄

𝑖
≡ ∅, is selected to ensure equal representation of samples across

all class labels L𝑘 of cluster C𝑘 . Therefore, 𝐷𝑄
𝑖

refers to labeled-balanced samples eliminating
class imbalances in the fine-tune stage of 𝑓𝑘 . Within cluster C𝑘 , each client 𝑛𝑖 ∈ C𝑘 randomly
initializes its local meta-model 𝑓𝑘 ’s parameters 𝜃𝑘,𝑖 and shares with its neighbors clients in the
clusters. Each client 𝑛𝑖 locally updates 𝜃𝑘,𝑖 along with neighbors 𝜃𝑘, 𝑗 , 𝑛 𝑗 ∈ N𝑖 deriving a new
local meta-model from its meta-training set 𝐷𝑀

𝑖
over local epochs 𝐸𝑀 using mini-batch SGD.

During round 𝑡 ∈ {1, . . . , 𝑇}, 𝑛𝑖 aggregates its neighbors local meta-models as:

𝜃𝑡𝑘,𝑖 =
∑︁
𝑛 𝑗∈N𝑖

𝜔 𝑗𝜃
𝑡
𝑘, 𝑗 (4.11)

with 𝜔𝑖 =
|𝐷𝑀
𝑖
|∑

𝑛 𝑗 ∈N𝑖 |𝐷
𝑀
𝑗
| and then computes the gradient of the loss ∇R(𝜃𝑡

𝑘,𝑖
) updating the local

meta-model as:
𝜃𝑡+1𝑘,𝑖 ← 𝜃𝑡𝑘,𝑖 − 𝜂∇R(𝜃

𝑡
𝑘,𝑖), (4.12)

with learning rate 𝜂 ∈ (0, 1). The cluster-based meta-model 𝜃𝑇
𝑘
= 𝜃𝑇

𝑘,𝑖
,∀𝑛𝑖 is then passed to all

clients in the cluster (Figure. 4.1(ii)). This meta-model locally maintained on each client serves
as an initial model for fine-tuning the requested classifier associated with any future task from
A. Note, the meta-models {𝜃𝑇

𝑘
}𝐾
𝑘=1 may exhibit biases due to their training on imbalanced data

across clients. Nevertheless, the objective obtaining these meta-models is to provide valuable
starting points that will significantly accelerate the training process of the classifiers requested
by tasks A.

4.5.4 Task-tailored Distributed Meta-model Learning

Each client 𝑛𝑖 is allocated to a cluster and is equipped with a meta-model 𝜃𝑇
𝑘
. Consider a new

incoming task with label set T requesting the training of a classifier over distributed clients’ data
with labels T = {ℓ𝜏} ⊆ L. The task should be assigned initially to a group C𝑘 of clients that
have the majority of the labels requested in set T based on the closest group cluster distribution,
i.e., 𝑘 = arg min𝜅∈[𝐾]H(w𝜅, q). q = {𝑞𝑚}𝑚∈[𝑀] is the probability label distribution of the task’s
requested labels T , which can be trivially derived using multi-hot encoding discussed above.

4.5. THE CL-FML FRAMEWORK 94

We distinguish two cases:
Case I. If T ⊆ L𝑘 , then, group C𝑘 is the most suitable to directly handle this task involving its
clients in the training.
Case II. If T ⊃ L𝑘 , then the group C𝑘 initiates a process for handling the labels in T ∩ L𝑘 ,
while we involve clients from other clusters {C𝑚}𝐾𝑚=1 \ {C𝑘 } capable of handling the rest of the

labels in
∼
T = T \ L𝑘 . We keep engaging clusters until all their labels are included in T . We

then rank these clusters based on their label contribution to task T and engage the minimum
number 𝑚 ≤ 𝐾 of those cluster whose ∪𝑚

𝜅=1{L𝜅} ⊆ T .
We adopt the well-known Tversky index [172] for set similarity to quantify the ranking, or

similarity, 𝑠𝑖𝑚(T ,L𝑘) between the labels requested by task T and 𝑘-th cluster L𝑘 . This index
takes consideration not only the common labels T ∩ L𝑘 but also the labels that cannot satisfy
the task T \ L𝑘 , hereinafter referred to as missing labels, and the extra labels from cluster that
are not actually needed by the task L𝑘 \ T , referred to as verbose labels. The similarity is then
defined:

𝑠𝑖𝑚(T ,L𝑘) =
|T ∩ L𝑘 |

|T ∩ L𝑘 | + 𝑎1 |T \ L𝑘 | + 𝑎2 |L𝑘 \ T |
. (4.13)

By setting equal importance on missing and verbose labels 𝑎1 = 𝑎2 = 0.5, we obtain the
Sørensen–Dice coefficient [173] as the label sets similarity with 𝑠𝑖𝑚(T ,L𝑘) ∈ [0, 1]. Hence,
we engage the top-𝑚 clusters ranked by 𝑠𝑖𝑚(T ,L𝜅), 𝜅 ∈ [𝑚].

After selecting the most suitable cluster C∗ (Case I) or most suitable clusters C∗+ ≡ ∪𝑚𝜅=1{C𝜅}
(Case II), the associated clients are engaged in the distributed training of the classifier w.r.t. label
set T (see Figure 4.1). These clients have at least data labelled with the labels in T . Initially
these clients use their cluster-based meta-models 𝑓𝜅 from cluster C𝜅 ∈ C∗+ to start off the training
process. However, even though a substantial amount of relevant labeled-data may be available
for C∗ (or C∗+), there might still be a need for augmentation of data in group C𝜅 ∈ C∗+ with labels
T \ L𝜅, which are not present in 𝜅-th cluster’s client data (missing labels). This is required to
facilitate the fine-tuning of the requested task-tailored meta model. This is less problematic than
the case where clients are randomly selected from arbitrary clusters with an expected low or
almost zero similarity w.r.t. relevant labels in T .

For each suitable cluster C𝜅 ∈ C∗+ , the corresponding clients locally identify their missing
labels required per task. Hence, these clients generate augmented data labelled by the missing
labels using a MixUp meta-model 𝑔ℓ from clients in cluster Cℓ ∈ C∗+ , ℓ ≠ 𝜅, for which these labels
are not missing (see Fig.4.1(iii)), i.e., MixUp 𝑔ℓ generates labelled samples (𝑥, 𝑦) conditioned on
the labels 𝑦 locally on a client 𝑛𝑖 ∈ C𝜅 such that {(𝑥, 𝑦) : 𝑦 ∈ T \ L𝜅}. Clients within the cluster
individually use MixUp models with a low number of overlapping labels to avoid redundant
computation.

Based on selective MixUp models for data augmentation, a client 𝑛𝑖 ∈ C𝜅 can now construct

4.6. EXPERIMENTAL EVALUATION 95

its query set 𝐷𝑄
𝑖
= {(𝑥, 𝑦) : 𝑦 ∈ L𝜅∪(T \L𝜅)}, i.e., including (i) the actual data labelled with the

requested task labels and (ii) the augmented data labelled with the associated missing labels from
the locally augmented data by MixUp 𝑔ℓ. Subsequently, the task-tailored meta-model, notated
as 𝜃𝑇′ is fine-tuned based on the query sets of the clients in the suitable clusters C∗+ after 𝑇 ′

fine-tuning rounds. Note: the augmentation remains available within clients for future use. The
local update of the distributed task-tailored meta-model 𝜃𝑡

𝜅,𝑖
at fine-tuning round 𝑡 = 1, . . . , 𝑇 ′,

at client 𝑛𝑖 from suitable cluster C𝜅 ∈ C∗+ uses batch SGD over the query set 𝐷𝑄
𝑖

is given by:

𝜃𝑡+1𝜅,𝑖 ← 𝜃𝑡𝜅,𝑖 − 𝜂∇R(𝜃𝑡𝜅,𝑖), with 𝜃𝑡𝜅,𝑖 =
∑︁
𝑛 𝑗∈N ′𝑖

�̃� 𝑗𝜃
𝑡
𝜅, 𝑗 , (4.14)

where the weight:

�̃�𝑖 =
𝜔𝑖𝑠𝑖𝑚(T ,L𝜅)∑

𝑛 𝑗∈N ′𝑖 𝜔𝑖𝑠𝑖𝑚(T ,L 𝑗)
(4.15)

incorporates the similarity ranking of the 𝜅-th cluster in C∗+ . The neighborhoodN ′
𝑖

of the node 𝑛𝑖
refers to the neighboring clients belonging to the suitable clusters (see Figure.4.1(iv)). Finally,
clients 𝑛𝑖 ∈ C∗ obtain the fine-tuned 𝜃𝑇′

𝜅,𝑖
for task’s label set T in (4.14) at the end of fine-tuning

epoch 𝑇 ′ as requested. We provide the whole CL-FML process in Algorithm 1. From line 1 to
15, clients are grouped into 𝐾 clusters training the cluster-based meta-models. These processes
are executed only once. When a new task arrives with label set T , CL-FML proceeds as shown
from line 17 to 28.

4.6 Experimental Evaluation

4.6.1 Experiment Setup

We compare CL-FML against baselines across different ad-hoc tasks with label distribution shifts
and imbalances over benchmark datasets. Note: source code is available in our repository1.

Data Sets

We conducted experiments on MNIST, sampling and distributing data over 𝑁 = 50 clients
ensuring that each client possesses samples from one of two label groups. Each label group
comprises two distinct digits (classes). We also experiment using Fashion-MNIST with 𝑁 = 100
clients. 20% of clients host samples from one of two distinct groups with different sample portions
per label, where each label group consists of more than five classes (each group randomly chosen
from

(10
5
)
= 252 label subsets). The remaining 80% clients host data such that at least 90% of

the samples are labeled with up to five labels and the rest 10% with any other random classes.
1https://anonymous.4open.science/r/DSAA-07DE

4.6. EXPERIMENTAL EVALUATION 96

Algorithm 2 The CL-FML Process
Input: 𝑁 clients; 𝐾 groups; task’s label set T ; labels L
Output: Cluster-based meta-models {𝜃𝑘 }𝐾𝑘=1; task-tailored meta-model 𝜃

1: /*Label-aware clustering*/
2: for round 𝑡 = 1, . . . , 𝑁 do
3: Client 𝑛𝑖 sends its labels L𝑖 to ring neighbor;
4: end for
5: for client 𝑛𝑖 ∈ N do
6: Leader receives p𝑖 and updates {w𝑘 }𝐾𝑘=1 using (4.8)
7: end for
8: Leader assigns clients to clusters {C𝑘 }𝐾𝑘=1 using (4.10)
9: /*Cluster-based meta-models*/

10: Each client 𝑛𝑖 ∈ C𝑘 ,∀𝑘 initializes 𝜃𝑡=0
𝑘,𝑖

.
11: for training round 𝑡 = 1, . . . , 𝑇 at client 𝑛𝑖 do
12: Share 𝜃𝑡

𝑘,𝑖
among N𝑖 neighbors;

13: Aggregate and update 𝜃𝑡
𝑘,𝑖

using (4.11) and (4.12)
14: end for
15: Each client 𝑛𝑖 ∈ C𝑘 returns 𝜃𝑇

𝑘,𝑖
,∀𝑘 .

16: /*A task arrives with label set T*/
17: One client per C𝑘 calculates 𝑠𝑖𝑚(T ,L𝑘),∀𝑘 using (4.13)
18: Obtain suitable clusters C∗+ w.r.t. task’s labels T ;
19: /*Augmentation for missing labels*/
20: for suitable client 𝑛𝑖 from C𝜅 ∈ C∗+ do
21: Share MixUp 𝑔ℓ among N𝑖 neighbors;
22: Augment labelled samples with 𝑦 ∈ T \ L𝜅
23: end for
24: for fine-tuning round 𝑡 = 1, . . . , 𝑇 ′ at suitable 𝑛𝑖 do
25: Share 𝜃𝑡

𝑘,𝑖
among N ′

𝑖
neighbors;

26: Aggregate and update 𝜃𝑡
𝑘,𝑖

using (4.14)
27: end for
28: Return: Task-tailored meta-model 𝜃𝑇′ for task’s labels T . =0

4.6. EXPERIMENTAL EVALUATION 97

For a more realistic scenario, we used EMNIST with 𝑁 = 200 clients andL = 62 unbalanced
classes. 25% of clients possess samples from one of four distinct groups, where each group
comprises 30 labels or more (randomly chosen). The remaining clients have from 2 to 30
of these classes and extra samples from any other classes. Finally, we used CIFAR-100 with
𝑁 = 100 clients and L = 100 classes grouped into 20 super-classes. 25% of clients possess
samples from one of 20 groups, where each group comprises 10 labels or more (randomly
chosen). The remaining clients have from 2 to 20 of these classes with extra samples from
any other classes. We experimented with {600, 600, 500, 500} on-demand tasks with randomly
chosen label subsets T ⊂ L per task and similarities ranging from 0.25 to 0.8 for {MNIST,
Fashion-MNIST, EMNIST, CIFAR-100}, respectively.

DL Models & Baselines

For meta-models, fine-tuning models for classification tasks, and MixUp models, we use Con-
volutional Neural Networks (CNN) each with a varying number of training and fine-tuning
rounds. We conducted a comprehensive fair comparison with the most relevant baselines in a
decentralized FL and FML setting over the same random network topology: the decentralized
FL (DFedAvg) [153] (extending the centralized FL [10]), Cluster-based DFedAvg (C-DFedAvg)
[174] and Group-based FML (G-FML) [155]. The FML methods, CL-FML and G-FML, re-
quire fine-tuning for their meta-models over relatively small amount of data. To ensure fairness,
CL-FML and G-FML are compared over the same portion 1 − 𝛼 for fine-tuning obtaining their
variants CL-FML(𝛼) and G-FML(𝛼); 𝛼 ∈ {0.5, 0.6, 0.7} as in [155].

4.6.2 Main Results

Labelled-Data Augmentation Performance

We assess CL-FML’s distributed data augmentation performance handling missing labels across
all tasks. MixUp generated augmented data conditioned on missing labels from L. Our
experiments, following the setup in [164], remained consistent across all datasets with variations
tailored to each dataset’s characteristics (e.g., output layer). Since CL-FML introduces fine-
tuning stages over MixUp-augmented samples, Table 4.1 shows the impact of these samples on
classification accuracy vs. percentages of missing labels, i.e., the percentage loss on the overall
accuracy due to augmentation. CL-FML sacrifices on average (2.3%, 2.9%, 2.6%, 2.7%) of
the achieved performance with MixUps dealing with distribution shift challenge for MNIST,
Fashion-MNIST, EMNIST, CIFAR-100, indicating the applicability of data augmentation in
label shifting.

4.6. EXPERIMENTAL EVALUATION 98

Table 4.1: Impact of Labelled-data Augmentation on Model Performance

(%)pct. Missing Labels Accuracy Loss
33% 96.81% -1.7%
50% 97.11% -1.6%

MNIST 60% 95.09% -3.0%
67% 94.42% -3.2%
25% 92.11% -0.8%

Fashion-MNIST 50% 86.92% -3.1%
60% 87.36% -3.5%
67% 80.58% -3.3%
33% 95.27% -1.3%
50% 90.41% -3.2%

EMNIST 60% 90.23% -2.8%
67% 87.65% -3.1%
33% 72.00% -2.73%
50% 70.01% -2.85%

CIFAR-100 60% 73.78% -2.45%
70% 68.97% -2.57%

Decentralized Federated Meta-Learning Performance

We study the convergence speed and accuracy of CL-FML and G-FML over all datasets with
the same fine-tuning data access percentages 𝛼 ∈ {0.7, 0.6, 0.5} having number of clusters
𝐾 = (3, 10, 16, 20) and probability threshold 𝜙 = 0.75 for MNIST, EMNIST2, MEDMNIST3,
Fashion-MNIST (F-MNIST)4, CIFAR-100, respectively (𝐾 and 𝜙 are optimized per dataset).
The results, depicted in Figure 4.2 and 4.3 (sampled two clusters; we obtain similar results for
other clusters), showcase CL-FML’s meta-model performance (top-1 accuracy) due to label-
aware clustering along with notable reductions in the required number of training rounds. It
is evidenced that CL-FML achieves accuracy significantly greater than G-FML’s global meta-
model. As shown in Figure 4.2(a)-(b) (MNIST; clusters C1 and C2), having 𝛼 = 0.5 (50% of data
for meta-model training and 50% for fine-tuning besides augmented data), CL-FML requires
around 3 rounds, whereas G-FML’s global meta-model requires more than 15 rounds to plateau
the accuracy. This indicates that by grouping clients together based on label distributions and
building cluster-driven meta-models, we reduce the number of training rounds due to reusing
these models for fine-tuning based on the most suitable data accessed per tasks. Moreover, the
obtained accuracy of CL-FML’s meta-models is significantly higher than that of G-FML’s global
meta-model across all datasets. CL-FML’s accuracy is on average 13.7% higher than G-FML
(MNIST) for 𝛼 = 0.6, where this gap increases to 60.67% for 𝛼 = 0.7. In CIFAR-100, as shown
in Figure 4.3, CL-FML achieves on average 35% more accuracy compared to G-FML across all 𝛼
ratios. G-FML’s accuracy drops with more class imbalanced data as overfits over the associated
labels yielding reduced generalization capacity. Whilst, CL-FML is sufficient and robust with 𝛼.

Overall, a meta-model trained on fewer labels (e.g., cluster-driven labels) has the ability to
generalize better over those classes. On the other hand, a meta-model trained on a larger number

2https://www.kaggle.com/datasets/crawford/emnist/
3https://www.kaggle.com/datasets/andrewmvd/medical-mnist
4https://www.kaggle.com/datasets/zalando-research/fashionmnist

https://www.kaggle.com/datasets/crawford/emnist/
 https://www.kaggle.com/datasets/andrewmvd/medical-mnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist

4.6. EXPERIMENTAL EVALUATION 99

of labels (e.g., global meta-model) may have a broader generalization but potentially shallower
understanding of any subset (or even super-set) of those classes. This results in less accuracy.
This is what occurred in our results. We obtain similar patterns with the other two datasets
and clusters. These improvements are attributed to building meta-models with specific range
of labels. The label-aware clustering, which brings together clients with less label variability,
improves the meta-learning model performances. However, addressing non-i.i.d. data and label
imbalances becomes more challenging with increased label variety. These factors slowdown in
the learning speed and performance of G-FML’s global meta-models.

Figure 4.2: Multiple meta-models’ top-1 accuracy (%) of CL-FML against global meta-model
(G-FML) vs. convergence (samples of two groups).

Figure 4.3: CL-FML against G-FML vs. convergence (samples of two groups).

Meta-model Fine-tuning Performance across Tasks

We further investigate the accuracy, required data access overhead, required amount of augmented
data generated, and communication rounds during training and fine-tuning of all the methods over
tasks with arbitrary label subsets. We experiment with a variety of tasks having similarities with
labels L over different distributions of tasks per similarity. We notate P(T |𝑠𝑖𝑚) the probability
a task’s label set T having similarity 𝑠𝑖𝑚(T ,L) with available labels L. Table 4.2 shows the
training rounds for C-DFedAvg and DFedAvg, fine-tuning rounds for G-FML and CL-FML,
along with required percentage of actual clients’ data accessed, percentage of augmented data

4.6. EXPERIMENTAL EVALUATION 100

Table 4.2: Comparison of Methods

MNIST

Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 10 16 9 10 10 3 4 3
Actual Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 48.83 61.14 30.588 20.19 18.35 24.4 19.53 14.65
Accuracy (%) / 𝐹1 score 96.80/0.96 94.39/0.93 95.19/0.94 93.12/0.93 94.84/0.94 96.63/0.96 96.45/0.96 96.36/0.97

Fashion-MNIST

Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

Training Rounds 15 20 10 10 9 6 5 6
Actual Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 38.46 47.82 14.34 19.12 23.91 11.53 15.38 19.23
Accuracy (%) / 𝐹1 score 86.75/0.88 84.03/0.83 81.98/0.81 82.26/0.82 85.07/0.84 86.03/0.86 86.385/0.86 85.15/0.85

EMNIST

Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 15 25 20 18 20 7 6 6
Real Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 33.185 64 14.34 19.12 23.91 11.53 15.38 19.23
Accuracy (%) / 𝐹1 score 90.85/0.89 89.16/0.88 88.15/0.87 88.22/0.881 88.71/0.88 89.53/0.89 91.29/0.91 89.72/0.89

CIFAR-100

Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 40 85 25 24 27 12 10 14
Real Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 36.78 68.2 24.33 27.73 29.83 18.67 22.34 24.57
Accuracy (%) / 𝐹1 score 71.40/0.71 67.59/0.67 67.53/0.67 68.28/0.67 68.67/0.68 70.89/0.74 71.18/0.74 71.15/0.73

generated, classification accuracy and 𝐹1 score [120] over all tasks. C-DFedAvg and DFedAvg
require to train models from scratch for new tasks, since no meta-model is (re)used, while G-FML
and CL-FML fine-tune their re-usable meta-models per task. CL-FML significantly reduces fine-
tuning rounds and percentage of required actual data accessed for fine-tuning compared to all
baselines, while achieving competitive performance.

In MNIST, CL-FML (𝛼 = 0.5) requires 56% fewer rounds compared to C-DFedAvg; such
reduction is attributed to well-initialized meta-models yielding to 60% less augmented data to
be generated. Notably, CL-FML utilizes augmented data exclusively for fine-tuning, resulting
in nearly identical accuracy to C-DFedAvg with almost negligible sacrifice (0.34%) of accuracy.
Similarly to DFedAvg, CL-FML demonstrates a substantial reduction (77%) in number of rounds.
This reduction is attributed to the inherent challenges of random client selection in DFedAvg,
which potentially results in choosing clients less suitable per task. Such mismatch leads to in-
creased augmented data generation affecting convergence rate. Conversely, CL-FML selectively
engages the most suitable clients per task due to label-aware clustering. Furthermore, CL-FLM
achieves a remarkable decrease in communication rounds by (60%, 65%, 60%) compared to
G-FML(𝛼 =0.5/0.6/0.7), respectively. This is reflected by the fast convergence rate obtained by
CL-FML, which fine-tunes meta-models tailored to clients’ clusters more similar to tasks’ labels
as opposed to G-FML. The latter does not explicitly focus on tasks’ label distribution for building
its meta-model. Regarding the amount of augmented data required, CL-FML achieves a sig-
nificant reduction compared to C-DFedAvg (68.07% reduction), DFedAvg (68.07% reduction)
and G-FML (15.28% reduction) for the reasons we mentioned above. One can observe similar
average behavior of the methods in the other datasets. Notably, in Fashion-MNIST, CL-FML
reduced the required rounds by 3 times compared to C-DFedAvg and DFedAvg, and 2 times

4.6. EXPERIMENTAL EVALUATION 101

less compared to all variants of G-FML. Such improvements were achieved without sacrificing
model accuracy as shown in Table 4.3. In terms of accuracy compared to C-DFedAvg, CL-FML
incurred a minimal sacrifice of 0.63%, however, achieving communication efficiency due to less
rounds.

In CIFAR-100 (see Table 4.2), CL-FML requires 4 to 7 times less rounds compared to
C-DFedAvg and half rounds compared to G-FML on average, sacrificing only 0.44% (0.3%)
of accuracy (Table 4.3) w.r.t. C-DFedAvg with 𝛼 = 0.5(0.7), while being more accurate for
DFedAvg and G-FML. Table 4.3 shows the break-down performance of each method based on
tasks’ similarity distribution and the associated probabilities P(T |𝑠𝑖𝑚). CL-FML (mostly for
𝛼 = 0.6) outperforms the other methods across tasks similarities showcasing robust and efficient
behaviour in tackling label shifting. C-DFedAvg and DFedAvg achieve 0.5% and 1.16% more
accuracy for 67% similarity (MNIST) and 30% similarity (EMNIST), respectively, however, at
the expense of almost 3 times most training rounds and 50% more augmented data.

Table 4.3: Impact of Overlapping/Similarity between Tasks & Clusters on Fine-tuned Models
Performance.

MNIST
P(T |𝑠𝑖𝑚) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

20% 80% 98.96% 98.65% 99.29% 99.10 99.34% 98.96% 99.55% 99.24%
30% 67% 97.11% 96.074 95.48% 95.88% 96.07% 96.01% 96.61% 96.81%
30% 50% 96.91% 96.56 97.13% 96.73% 96.91% 97.86% 97.51% 97.11%
20% 30% 97.01% 96.01 95.56% 96.55% 96.48% 97.01% 97.34% 97.23%

Fashion-MNIST
P(T |𝑠𝑖𝑚) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

20% 80% 91.96% 91.14% 87.80% 88.89% 90.03% 89.40% 92.11% 90.79%
30% 70% 90.04% 85.15% 86.13% 87.96% 88.77% 87.52% 89.36% 90.94%
30% 50% 86.48% 77.71% 71.18% 72.22% 83.52% 86.80% 86.92% 86.17%
20% 25% 79.78% 75.56% 75.77% 79.65% 79.55% 80.58% 79.55% 78.94%

EMNIST
P(T |𝑠𝑖𝑚) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

20% 80% 93.27% 89.38% 92.21% 93.25% 92.83% 93.81% 92.15% 93.35%
30% 70% 90.18% 90.41% 91.35% 88.80% 88.50% 88.59% 91.71% 89.61%
30% 50% 89.25% 89.20% 85.70 % 86.75% 87.33% 86.34% 86.47% 89.56%
20% 30% 79.64% 87.65% 83.34% 83.84% 85.19% 86.38% 84.84% 83.84%

CIFAR-100
P(T |𝑠𝑖𝑚) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

20% 80% 72.84% 65.60% 66.40% 67.60% 67.77% 71.20% 72.00% 72.82%
30% 70% 69.92% 67.60% 68.20% 67.86% 68.50% 69.54% 70.01% 70.07%
30% 50% 74.84% 71.13% 68.91 % 70.38% 70.67% 74.56% 73.78% 73.09%
20% 30% 68.43% 66.05% 66.63% 67.31% 67.77% 68.28% 68.95% 68.54%

Impact Label Imbalance on Meta-model Performance

Beyond evaluating the effectiveness of multiple meta-learning models of CL-FML in terms of
accuracy and convergence speed for both the meta-models and (task-tailored) fine-tuned models,
it is crucial to explore their potential in mitigating the significant impact of overall label imbal-
ance. In cluster-based FL, where clients are clustered to address scalability and label shifting,
variations in the number of labels per client pose a challenge. Traditional techniques like over-

4.7. CONCLUSIONS 102

sampling or under-sampling are not readily applicable in our context due to non-exchangeable and
non-communicable data. To address such challenge, CL-FML employs multiple meta-models,
leveraging the synergies of client clustering and re-balancing of classes within each cluster. The
aim is to improve the overall meta-model performance compared to scenarios with a single global
meta-model suffering from high or low label imbalance. CL-FML involves filtering out classes
beyond the cluster distribution range for each client and incorporating augmented data generated
by local MixUp models. The latter have been collaboratively fine-tuned among the most suitable
clusters of clients per tasks.

Our findings presented in Table 4.4 reveal a substantial improvement in meta-model perfor-
mance. When comparing Multiple Meta-models (CL-FML/MM) with One Global Meta-model
with High Imbalance (OG-MM-HI) and One Global Meta-model with Low Imbalance (OG-
MM-LI), we observe a performance boost of 54% and 4% respectively in MNIST. Similar trends
are observed with the three other datasets with the highest improvement obtained in CIFAR-100.
CL-FML employing multiple meta-models, which are fine-tuned over the most suitable clus-
ters per tasks, effectively addresses the challenges posed by significant label imbalances across
clients. By strategically combining label-aware clustering, re-balancing, and augmented data,
CL-FML achieves notable enhancements in meta-models’ performance across various datasets,
which yields such meta-models reusable for future ad-hoc tasks. Overall, CL-FML evidenced

Table 4.4: Impact the Label Imbalance on Meta-model Accuracy

Dataset OG-MM-HI OG-MM-LI CL-FML/MM

MNIST 63.21% 94.55% 98.45%
Fashion-MNIST 59.67% 95.77 % 98.02%
EMNIST 47.32% 75.37% 93.22 %
CIFAR-100 36.29% 70.41% 83.79%

efficiency and effectiveness in tackling on-demand tasks with arbitrary label distribution, mainly
attributable to label-aware clustering that helps identifying the most suitable clients per task,
and pre-trained distributed cluster-based meta-models that facilitate the fine-tuning of the final
classifier over augmented data.

4.7 Conclusions

This chapter introduced the CL-FML framework, designed to address the challenges of classifi-
cation tasks with label shifting and data heterogeneity in federated learning systems. CL-FML
employs a decentralized federated meta-learning approach through a label-driven client cluster-
ing mechanism, grouping clients based on their label distributions. A key advantage of CL-FML
is its ability to handle arbitrary classification tasks by utilizing multiple cluster-based meta-
learning models. These models are specifically tailored to each client cluster, ensuring that the

4.8. LIMITATIONS & DIRECTIONS OF ENHANCEMENT 103

models align with the distribution of labels within their respective clusters. This design allows
the framework to generalize effectively across varying data distributions, enhancing classifica-
tion accuracy and robustness, especially in scenarios involving label shifting and imbalanced
data. Furthermore, CL-FML integrates advanced data augmentation techniques to overcome
the limitations posed by scarce labeled data. By augmenting the available labeled data, the
framework significantly improves classifier performance, even when only a small portion of the
data is labeled. Extensive experimental evaluations against strong baselines have demonstrated
the superiority of the CL-FML framework. The results highlight its effectiveness in achieving
high classification accuracy, particularly in settings characterized by label distribution shifts and
client data heterogeneity. CL-FML consistently outperforms traditional federated learning meth-
ods, showcasing the importance of its label-aware clustering and data augmentation strategies in
handling the complexities of distributed machine learning.

4.8 Limitations & Directions of Enhancement

The CL-FML framework demonstrates significant improvements in model performance and
convergence speed. However, it assumes that all client data is labeled, which is often challenging
in practice. For instance, clients may lack motivation to label their data due to costs, time
constraints, or insufficient expertise. These factors collectively contribute to the scarcity of
labeled data. Additionally, the mechanism becomes more practical when clients can share their
label distributions. Nevertheless, this is not a critical issue, as label distributions can be predicted
using various methods, such as evaluating local model performance.

In our future work, we aim to address more dynamic scenarios where the majority of client
data is unlabeled, and the server has no data. This is the direction we plan to explore in the next
chapter.

Chapter 5

The Price of Labelling: A Two-Phase
Federated Self-Learning Approach

5.1 Introduction

As discussed in previous chapters, FL is a privacy-preserving collaborative learning paradigm
that eliminates the need to transfer client data. While most existing studies on FL primarily focus
on supervised learning, assuming that all clients possess sufficient training data with ground-
truth labels, this assumption may not always hold in practical scenarios. In many cases, a key
challenge in FL is ensuring the quality of labels and effectively handling unlabelled data. These
challenges arise due to various factors such as limited resources, labeling costs, human errors,
or issues with data collection mechanisms [175]. The labeling challenges inherent in FL impede
the development of robust models, especially in the presence of unlabelled data, which is not
rare in realistic scenarios. This predicament often leads to models with reduced generalization
capabilities [9].

Self-learning in FL environments (SFL) has been introduced to tackle some of these chal-
lenges [176]. SFL utilizes labelled data to train a global model, which self-learns using pseudo-
labels of the unlabelled data or refines the noisy labelled data [177, 178]. However, SFL operates
under the assumption that data are IID. In FL, data are often non-IID indicating a distribution shift
between clients [165]. Moreover, even within labelled data, label imbalance can be encountered,
where several clients have significant disparities between majority and minority classes. Such
imbalances impede the convergence and degrade performance of the model [120, 9]. Model
performance heavily relies on the quality and distribution of the training data. The high degree of
heterogeneity among client data significantly decreases model performance, while achieving data
homogeneity tends to improve it. This observation underscores the importance of addressing
issues related to data distribution, such as skewness and non-IID characteristics.

Various SFL approaches in the literature can be classified into configuration-centric and
data-centric. The former approaches rely on model importance weighting to address data

104

5.1. INTRODUCTION 105

imbalance, e.g., FedNOVA [167], FedProx [138]. However, such approaches heavily depend on
numerous communication rounds and may require sharing private information to enhance the
overall performance of the global model. Data-centric approaches focus on improving the global
model primarily by incorporating augmented data to increase the volume of labelled data [138,
152]. Our work falls under the data-centric approach significantly differing from previous data-
centric approaches. Previous work has focused on ‘perfect setups’, which proves challenging to
implement in real-world settings. Such setups hinge on several key unrealistic assumptions [152,
179]. A1: A subset of clients or the server itself has adequate labelled samples to effectively train
supervised models, ensuring their generalization across unlabelled clients [152]. A2: The model
can generate high-quality pseudo-labels by considering only labelled data during the FL process,
as evidenced in e.g., teacher-student methods [178]. This means that clients with unlabelled data
cannot be engaged in the FL process. These disparities between ideal and realistic scenarios
prompt us to contemplate the following question: What is the price of learning a global model
using scarce and skewly distributed labelled data, while capitalizing on partially labelled and
fully unlabelled data across clients? Addressing the above problem becomes challenging in FL
as data cannot be exchanged between clients due to privacy concerns.

This chapter introduces the two-Phase Federated self-Learning framework, coined 2PFL,
that addresses both extreme data scarcity and skewness in training classifiers over distributed
labelled and unlabelled data. 2PFL demonstrates the ability to achieve high-performance models
when trained with only 10% to 20% labelled data compared to the unlabelled data. 2PFL
consists of two key components: data augmentation and progressive self-learning. We address
data skewness through data augmentation, as an efficient mechanism for rectifying distribution
skewness and enhancing data diversity [165, 138]. Moreover, 2PFL undergoes training using a
two-phase self-learning. In the initial phase, 2PFL trains a model using clients’ labelled data to
pseudo-label unlabelled data. This is followed by training in the subsequent phase, incorporating
both labelled and pseudo-labelled data.

The primary contributions of this chapter are outlined as follows: :

• The 2PFL framework is proposed as an all-inclusive approach that engages clients with
labeled, partially labeled, and unlabeled heterogeneous data in distributed learning.

• Mechanisms are introduced to address data scarcity, enhance data augmentation, and
implement two-phase pseudo-labeling of unlabeled data, guided by a confidence threshold
schedule.

• Comprehensive experiments and a comparative assessment of 2PFL against baselines [180,
181, 10] and the ideal method are provided, demonstrating the effectiveness and efficiency
of 2PFL in an all-inclusive FL ecosystem.

5.2. RELATED WORK 106

5.2 Related Work

SFL is a mechanism for training high-performing models with a limited amount of labeled
data along with skewed and biased label distribution [182]. SFL in FL environments is proved
powerful for collaboratively training models over distributed data with label deficiency. In
supervised learning with fully labeled data, non-IID data result in biased models [183, 184].
Several studies [185, 186, 187] focused on re-balancing data distribution and reducing the
underlying data heterogeneity. Eventually, this becomes more problematic in federated semi-
supervised and self-supervised learning, as labelled data are limited and skewed [188]. This
apparently leads to biased predictions of pseudo-labels for the unlabeled data during training
[189]. Notably, the model is fed with wrong pseudo-labelled data yielding to decreasing model
accuracy, slowing down convergence speed and reducing generalization capacity. The SFL
approach in [190] focuses only on unlabelled data, which leads to a discrepancy between the
objective functions for labelled and unlabelled data, resulting in gradient inconsistencies. To
address this challenge and accelerate the training process while reducing the number of training
rounds, a few SFL studies are based on pre-trained models. In [191, 192, 193], pre-trained
models are utilized as initialization for FL rounds avoiding random initialization of model
parameters. The principle objective of these approaches is to first train a teacher model using
available labelled data and then use this model to make predictions for unlabelled samples.
Subsequently, the student model is trained on both labelled and predicted (pseudo-labelled)
samples. However, such approaches assume that the pre-trained model is well-fitted to the
available IID data with no class imbalance issues. In addition, [191] utilized data augmentation
(e.g., random flipping and cropping) to perform weak augmentation, thereby enhancing the size
and quality of server’s centralized data. In centralized learning, it is relatively straightforward
to address data distribution issues adopting simple data augmentation techniques. In distributed
learning, like in our case, we encounter non-IID data which is not rare in realistic scenarios. This
poses challenges to global model fitting. 2PFL showcases that the global model struggles to fit
well with scattered and skewed data.

To address these challenges, there are two research directions. The first direction deals
with training a global model over centralized labelled data and using this model for distributed
unlabelled data pseudo-labeling. This direction assumes that all the classes are available on
the FL central server with potential class imbalances. To improve data distribution, [194, 175]
approaches adopted data augmentation. Moreover, in cases where there are only limited labelled
data and/or there are non-IID data on the central server, approaches like server [175, 195,
196] adopt strategies like oversampling, under-sampling, rotation, or cropping to mitigate these
issues. The method in [197] used prototypes of labelled server’s data for each class, where these
prototypes are sent to clients for assigning pseudo-labels to unlabelled data. The second direction
deals with the fact that both labelled and unlabelled data are distributed across clients. Several
approaches in this direction assume possibility of exchanging data and/or statistical information

5.3. OVERVIEW & FUNDAMENTALS 107

among clients, e.g., [198], while other studies are based on sharing locally augmented data across
clients, e.g., in[184, 138]. Moreover, several studies in this direction like [199, 181] consider
the case that some clients possess fully labelled data while the remaining clients have entirely
unlabelled data. In this context, such approaches assume that the labelled and unlabelled data do
not exhibit distribution shifts, which significantly simplifies the learning process. The approaches
[180, 196, 200] falling into this direction assume that each client has partially labelled data such
that labelled parts of the data have the same distribution as that of the unlabeled parts of the data.
This assumption does not entirely reflect realistic cases either.

The fundamental differences of 2PFL with the relevant approaches are: 2PFL copes with
the cases where there is no centralized server with available labelled data. Moreover, in 2PFL,
clients can possess labelled non-IID data, partially labelled data with missing classes of unknown
distribution and potential class imbalances, and clients with fully unlabeled data. In all these
cases, 2PFL considers any arbitrary distributions from labelled to unlabelled data, thus, avoiding
any assumptions of having same distributions and class imbalance ratios across the clients. 2PFL
aims to reflect real-word scenarios in FL ecosystems w.r.t. clients’ labeling nature of data. We
introduce mechanisms to achieve data balancing during model training through data augmentation
and a two-phase pseudo-labelling. Therefore, 2PFL improves the performance of the global
model over non-IID data by incrementally pseudo-labelling and controlably augmenting data,
which is significantly comparable with the ideal case, i.e., where there are only fully labelled IID
data without label shifts across all the clients [181].

5.3 Overview & Fundamentals

Consider a set N = {𝑛1, . . . , 𝑛𝑁 } of distributed clients participating in a FL process by commu-
nicating with a central (parameter) server. Each client 𝑛𝑖 ∈ N possesses a dataset D𝑖 containing
C = {0, . . . , 𝐶 − 1} classes (labels) of data, which can be labelled and/or unlabelled in any
proportion. We classify the clients into three types based on their data:

• Type I clients (labelled clients) 𝑛𝑖 ∈ N 𝐿 ⊂ N are characterized by having fully labelled
data denoted as D𝐿

𝑖
= {(𝑥𝑘 , 𝑦𝑘)}

|D𝐿
𝑖
|

𝑘=1 , where 𝑥𝑘 is input and 𝑦𝑘 is the corresponding label
from C.

• Type II clients (partially labelled clients) 𝑛𝑖 ∈ N𝑃 ⊂ N have dataset split into labelled
and unlabelled samples, i.e., D𝑃

𝑖
= {(𝑥𝑘 , 𝑦𝑘 ∨ ⊥)}

|D𝑃
𝑖
|

𝑘=1 , with 𝑦𝑘 ∈ C and ⊥ representing
unlabelled data.

• Type III clients (unlabelled clients) 𝑛𝑖 ∈ N𝑈 ⊂ N have all samples unlabelled, i.e.,
D𝑈
𝑖
= {(𝑥𝑘 ,⊥)}

|D𝑈
𝑖
|

𝑘=1 . We focus on cases where the labelled samples are much fewer than
unlabelled ones, i.e., |D𝐿 | ≪ |D𝑈 |, as stated in [196].

5.3. OVERVIEW & FUNDAMENTALS 108

2PFL consists of the following phases (see Figure 5.1). Phase 1 engages only clients of Types
I and II in FL. The global model of Phase 1, 𝜃 (1)

𝐺
, is trained on labelled and augmented data from

these clients for 𝑇1 rounds. In turn, 𝜃 (1)
𝐺

is used to pseudo-label clients’ partially labelled data
(Type II clients). Phase 2 updates 𝜃 (1)

𝐺
using high confidence pseudo-labelled samples engaging

Type III clients in FL. The Phase 2 global model 𝜃 (2)
𝐺

is then derived (after 𝑇2 rounds) and used to
re-label clients’ data, while entering the Phase 2+. In this final phase, we progressively train and
refine 𝜃 (2)

𝐺
until all the high-confidence unlabelled samples across all clients are pseudo-labelled

(after 𝑇2+ rounds). We then obtain the refined final model 𝜃 (2+)
𝐺

.
Remark 1: The amount of pseudo-labelled samples can be different based on the amount

of mismatching between labelled and unlabelled samples. For example, if the mismatching rate
is low, 𝜃 (1)

𝐺
can pseudo-label most of the samples in the first phase. While, if the mismatching

rate is high, it is expected 𝜃 (2)
𝐺

and/or 𝜃 (2+)
𝐺

to label many samples in Phases 2 and/or 2+, after
been trained on pseudo-labelled samples (which are better generalized compared to unlabelled
ones). In real-world settings, the local data distribution varies across clients [196]. Based on
the non-IID data nature and types of clients, our mechanism determines the phase in which each
client participates and selects augmentation techniques to generate a specific amount of data.

Figure 5.1: The Phases 1, 2 and 2+ of the 2PF framework progressively engaging labelled,
partially-labelled and unlabelled clients in distributed self-learning.

In partially and fully labelled clients, the set of classes of labelled data D𝐿 may not be the
same as that in the unlabelled data D𝑈 . This indicates that the set of classes observed in each
fully or partially labelled client may not be identical to the set of classes in the unlabelled data
over clients. However, there might be an overlap between classes in labelled or partially labelled
clients and classes in unlabelled clients. Moreover, there might be unseen classes within each
labelled client’s data (outside of C). Consequently, we neither train a model on unseen classes
nor use it to pseudo-label samples from D𝑃 or D𝑈 .

During each training round in Phases 2 and 2+, the global model generates pseudo-labels for

5.4. THE 2-PHASE FEDERATED SELF-LEARNING FRAMEWORK 109

unlabelled samples over unlabelled clients. It is expected that several of these pseudo-labels may
have low confidence (falsely inferred pseudo-labels), thus, leading to potential degradation of
the model performance while being trained also with such samples. To mitigate this issue, our
mechanism considers the pseudo-labels for training only when the global model assigns a very
high probability to the inferred class w.r.t. a dynamic confidence threshold. Moreover, regarding
data augmentation, mechanisms may require data sharing between clients. However, due to
privacy concerns and limitations on communication resources, data sharing is not feasible, thus,
clients are restricted to share only synthesized samples conditioned on specific labels [138].

5.4 The 2-Phase Federated Self-Learning Framework

5.4.1 Local Data Augmentation

Given the non-IID and heterogeneous data nature, it is common for the class distribution to be
highly imbalanced. To address this issue, 2PFL adopts MixUp [152] to locally augment data
over labelled and unlabelled clients. Note, any other data augmentation mechanism could also
be adopted [201]. In labelled/partially labelled client 𝑛𝑖 ∈ N 𝐿 ∪ N𝑃, for any two inputs 𝑥𝑘 and
𝑥ℓ with labels 𝑦𝑘 and 𝑦ℓ, MixUp synthesizes the sample (𝑥′, 𝑦′):

𝑥′ = 𝜆𝑥𝑘 + (1 − 𝜆)𝑥ℓ and 𝑦′ = 𝜆𝑦𝑘 + (1 − 𝜆)𝑦ℓ (5.1)

with 𝜆 ∈ (0, 1), a blending parameter controlling interpolation between samples. In unlabelled
client 𝑛𝑖 ∈ N𝑈 , two randomly selected pseudo-labelled inputs 𝑥𝑘 and 𝑥ℓ with high-confidence
pseudo-labels �̂�𝑘 and �̂�ℓ, respectively, generate the sample (𝑥′, 𝑦′):

𝑥′ = 𝜆𝑥𝑘 + (1 − 𝜆)𝑥ℓ and 𝑦′ = 𝜆�̂�𝑘 + (1 − 𝜆) �̂�ℓ . (5.2)

5.4.2 2PFL Training Phases

2PFL exploits labelled, partially labelled and unlabelled data across all types of clients (D𝐿
𝑖
∪

D𝑃
𝑖
∪ D𝑈

𝑖
)𝑛𝑖∈N to minimize the loss function 𝑓 (𝜃𝐺) = 𝑓 𝐿 (𝜃𝐺) + 𝑓 𝑃 (𝜃𝐺) + 𝑓𝑈 (𝜃𝐺), where

𝑓 𝐿 (𝜃𝐺), 𝑓 𝑃 (𝜃𝐺), and 𝑓𝑈 (𝜃𝐺) is the loss over labelled, partially labelled and unlabelled clients,
respectively:

min
𝜃𝐺

𝑓 (𝜃𝐺) =
1
𝑁𝐿

𝑁𝐿∑︁
ℓ=1
L𝐿 (𝑥𝐿ℓ , 𝑦

𝐿
ℓ ; 𝜃𝐺)+

1
𝑁𝑃

𝑁𝑃∑︁
𝑝=1
L𝑃 (𝑥𝑃𝑝 , �̂�𝑃𝑝 ; 𝜃𝐺)

+ 1
𝑁𝑈

𝑁𝑈∑︁
𝑢=1
L𝑈 (𝑥𝑈𝑢 , �̂�𝑈𝑢 ; 𝜃𝐺)

(5.3)

5.4. THE 2-PHASE FEDERATED SELF-LEARNING FRAMEWORK 110

and L is task-specific loss function on clients with labelled, partial labelled and unlabelled data.
Therefore, we present the following phases of 2PFL.

Phase 1: Engagement of Labelled & Partially Labelled Clients: Phase 1 trains a global
pseudo-labeling model 𝜃 (1)

𝐺
from decentralized labelled and partially labelled clients 𝑛𝑖 ∈ N 𝐿 ∪

N𝑃. 2PFL firstly trains the model on labelled clientsN 𝐿 using the ground-truth labels optimizing
the loss [180]:

𝑓 (𝜃 (1)
𝐺
) = min


1
𝑁𝐿

𝑁𝐿∑︁
ℓ=1
L𝐶𝐸 (𝑔(𝑥ℓ; 𝜃 (1)𝐺), 𝑦ℓ)

 , (5.4)

where L𝐶𝐸 is cross-entropy loss and 𝑔(·; ·) represents the classifier, e.g., convolutional neural
network (CNN). In Phase 1, at the beginning of each round 𝑡 ≤ 𝑇1, the global parameters 𝜃 (1)

𝐺

are disseminated to each labelled client 𝑛𝑖 locally updating over 𝐸 local epochs:

𝜃
𝑡,𝑒+1
𝑖

= 𝜃
𝑡,𝑒
𝑖
− 𝜂𝑡∇ 𝑓𝑡 (𝜃𝑡,𝑒𝑖), 𝑒 = 1, . . . , 𝐸, (5.5)

minimizing the cross-entropy loss. Upon completion of 𝐸 local epochs, each labelled client
𝑛𝑖 ∈ N 𝐿 sends its local model 𝜃𝑡,𝐸

𝑖
to the server for aggregation for round 𝑡 = 1, . . . , 𝑇1:

𝜃
(1)
𝐺,𝑡

=
1
|N 𝐿 |

∑︁
𝑛𝑖∈N𝐿

𝜃
𝑡,𝐸
𝑖
. (5.6)

At round 𝑡 > 1, 𝜃 (1)
𝐺,𝑡

is distributed to each partially labelled client 𝑛𝑖 ∈ N𝑃 to be used for
pseudo-labeling of partially labelled samples in the subsequent training rounds.

Each unlabelled client 𝑛𝑖 uses 𝜃𝐺,𝑡 to predict the label �̂�𝑢 for the unlabelled input 𝑥𝑢 based
on previous knowledge captured from previous rounds 𝜏 < 𝑡. The labeling mechanism selects
the class 𝑐 ∈ C with maximum predicted confidence from 𝜃𝐺,𝑡 , since the prediction will be
used to pseudo-label 𝑥𝑢 [196]. However, the classification accuracy of pseudo-labels can be
low for some classes, especially, in cases of where existing unlabelled samples have not been
trained sufficiently during the supervised phases over labelled clients N 𝐿 . After several rounds
𝜏 = 1, . . . , 𝑡 of ‘warm-up’ model training, 2PFL from round 𝑡 > 𝜏 and onwards produces
pseudo labels for unlabelled samples, which will be as inputs to following rounds 𝑡′ > 𝑡 (as
fully labelled samples). That is 𝜃𝐺,𝑡′ uses predictions from previous rounds 𝑡 < 𝑡′ as target
classes for past unlabelled samples as if they were true labels. The process goes through until all
unlabelled samples are labelled. However, the predicted pseudo-labels can be noisy or may be
possibly wrong [202]. By progressively training the global model involving pseudo-labels leads
to ‘forgetting’ the knowledge acquired from labelled clients, a.k.a. the catastrophic forgetting
problem in CNNs [200]. Therefore, to mitigate the potentially destabilizing effect of noisy
labelled samples being used during progressive training, 2PFL considers only pseudo-labelled
samples with high certainty (high confidence), while filtering out samples with low confidence.
In this context, the pseudo-label for 𝑥𝑢 is �̂�𝑢 = 𝑐, with 𝑐 = arg max𝑐′∈C 𝑝𝜃𝐺,𝑡 (𝑐′|𝑥𝑢) i.e., the label

5.4. THE 2-PHASE FEDERATED SELF-LEARNING FRAMEWORK 111

with maximum predicted confidence.
In parallel to Phase 1, labelled clients can tackle the class imbalance problem by producing

the required augmented samples discussed in Section 5.4.1 over their ground truth labels. Once
the partially labelled clients have used 𝜃 (𝑡)

𝐺
to pseudo-label their unlabelled samples, they can

augment their pseudo-labelled data as well to deal with potential class imbalance issues.
Phases 2 & 2+: Engagement of Unlabelled Clients & Fine-tuning: After Phase 1, the

unlabelled clients along with the rest of clients are engaged in Phase 2 to enhance the robustness
of the global 𝜃 (2)

𝐺
. This is achieved by progressively incorporating pseudo-labelled samples with

high confidence obtained from previous rounds into the subsequent rounds with 𝑡 = 𝑇1, . . . , 𝑇2.
This allows the global model to generate increasingly high quality pseudo-labels for unlabelled
samples in unlabelled clients. Since the amount of labelled samples on the labelled and partially
labelled clients is limited and less diverse, incorporating pseudo-labelled samples helps bridging
this gap.

In Phase 2, 2PFL incrementally involves all the previously pseudo-labelled samples 𝑥𝑢 with a
high-confidence pseudo-labeling accuracy given a dynamic probability threshold 𝜙 ∈ (0.5, 0.9)
such that �̂�𝑢 = 𝑐 with 𝑐 = arg max𝑐′∈C 𝑝𝜃 (2)

𝐺,𝑡

(𝑐′|𝑥𝑢) and 𝑝
𝜃
(2)
𝐺,𝑡

(𝑐′|𝑥𝑢) ≥ 𝜙 in high hopes of being
as close to ground truth as possible [175].

The objective of teacher-student FSL is to train a teacher model, which supervises the learning
process of a student model that learns from labelled and unlabelled data jointly. First, a teacher
model is built with the available labelled data and afterwards this is exploited to make predictions
for unlabelled samples. Subsequently, the student model is trained on both labelled and predicted
samples. In Phase 2, 2PFL relies on the confidence threshold 𝜙 to learn from unlabelled data
residing on several clients, thus, boosting the performance of models trained in FL with varying
percentages of labelled samples. To learn from unlabelled data, 2PFL generates a pseudo-label
�̂�𝑢 for each available unlabeled data 𝑥𝑢 on a client 𝑛𝑖:

�̂�𝑢 = arg max
𝑐∈C

𝑒𝑧𝑐/𝐿∑
𝑚∈C 𝑒𝑧𝑚/𝐿

, (5.7)

where 𝑧𝑐’s are the logits produced for unlabelled input 𝑥𝑢 by the client 𝑛𝑖’s model 𝑔(2)
𝑖

of Phase
2 with parameter 𝜃 (2)

𝑖
before the softmax layer. 2PFL produces labels for the given ‘soften’

softmax values (𝐿 is a constant scalar). As the maximum of the softmax function remains
unaltered, the predicted pseudo-label �̂�𝑢 is identical as if the original prediction (without scaling)
for an unlabelled sample 𝑥𝑢 was used; however, the prediction confidence is weakened. The
dynamic threshold 𝜙 of confidence is proposed to follow a cosine learning schedule to discard
low-confidence predictions when generating pseudo-labels. For the obtained pseudo-labels,
2PFL performs standard cross-entropy minimization while using �̂�𝑢 as targets as follows:

− 1
𝑁𝑈

𝑁𝑈∑︁
𝑢=1

∑︁
𝑐∈C

�̂�𝑢 log(𝑔𝑖 (𝑥𝑢; 𝜃 (2)𝑖), �̂�𝑢) = L𝐶𝐸 (�̂�𝑢; 𝑝𝜃 (2)
𝑖

(𝑥𝑢)). (5.8)

5.5. EXPERIMENTAL EVALUATION 112

The local model’s loss function on client 𝑛𝑖 on the 𝑡-th round in Phase 2 is:

L𝐶𝐸 (𝑦ℓ; 𝑝𝜃 (2)
𝑖

(𝑦ℓ |𝑥ℓ)) + 𝛽L𝐶𝐸 (�̂�𝑢; 𝑝𝜃 (2)
𝑖

(�̂�𝑢 |𝑥𝑢)). (5.9)

where 𝛽 ∈ (0, 1) weighs the effect of unlabeled samples on the training.
Remark 2: The involvement of highly-confident pseudo-labelled samples in 2PFL results

in potential revising the classification probability of previously pseudo-labelled samples across
training rounds. The less the global model training loss with training rounds becomes, the higher
the possibility the classification probability of the best class of a pseudo-labelled sample turns,
thus, more highly confident samples are incorporated in the training. Hence, 2PFL obtains a
fine-tuned global model 𝜃 (2+)

𝐺,𝑡
at ‘extra’ rounds 𝑡 = 𝑇2, . . . , 𝑇2+. This is the Phase 2+ in our

mechanism. It is important the global model to be trained with the pseudo-labelled samples as
well, which enable the model to be fine-tuned. In this way, the server can provide a comparable
or even better model (in terms of classification accuracy) than that of previous rounds, which is
used by active clients in future rounds to pseudo-label.

5.5 Experimental Evaluation

5.5.1 Experimental Set-up

Datasets, Data Distribution & System Setting:

We evaluate 2PFL using image classification datasets MNIST, EMNIST1, MEDMNIST2, and
Fashion-MNIST (F-MNIST)3 with number of classes |C| = (10, 47, 6, 10) respectively. We
follow the approach in [181] to determine the distribution of data across clients by adopting the
Dirichlet(𝛾) distribution to generate non-IID data across clients with 𝛾 = 0.8. In this context,
the number of samples per class differs from one client to another. We use different number of
clients |N | ∈ {10, 20, 50} over datasets and split the clients into Types I, II and III based on the
ratio 2:3:5, respectively, i.e., 20% of clients have fully labelled samples, while 30% and 50%
of clients have partially labelled and unlabelled samples, respectively. For Type II clients, we
define the probability of missing class per sample 𝑞 = 0.3, per class 𝑐 ∈ C (for Type III clients,
𝑞 = 1 for each class). We set 𝛽 = 0.5 as in [193] to control the effect of the unlabelled data in
Phase 2/2+. The confidence threshold 𝜙 is initially set to 0.5 and gradually increases 0.9 during
training w.r.t. a cosine schedule. We set 𝜆 = 0.2 for data augmentation as in [152]. For assessing
the classification test accuracy, for each dataset, we use a separate subset of labelled samples
(30%), which is not involved in any training phase.

1https://www.kaggle.com/datasets/crawford/emnist/
2https://www.kaggle.com/datasets/andrewmvd/medical-mnist
3https://www.kaggle.com/datasets/zalando-research/fashionmnist

https://www.kaggle.com/datasets/crawford/emnist/
 https://www.kaggle.com/datasets/andrewmvd/medical-mnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist

5.5. EXPERIMENTAL EVALUATION 113

Baselines:

To fairly validate 2PFL, we compare against state-of-the-art FL methods and the ideal (ground-
truth) theoretical benchmark in FL to understand the upper bound of performance. The Ideal
FL benchmark considers the case where all clients have fully labelled samples without class
imbalance and label shifted distributions. We simulated the ‘Ideal’ benchmark using FedAvg
[10]. Our aim is to investigate how 2PFL compares with Ideal’s performance in terms of
accuracy and total training rounds under the context of having not only fully labelled clients,
but also clients with partially labelled and unlabelled data with class imbalances. This chapter
showcases the effectiveness of progressing pseudo-labelling and data augmentation including
any type of clients under realistic scenarios compared to the ideal ones. We also compare against
the baseline FedAvg [10], which is applicable only over clients with labelled data (Type I).
FedAvg cannot engage Types II and III clients for training since it requires only labelled data
to train the global model. In this context, we study the impact of lack of knowledge due to not
involving Type II/III clients on the classifier predictive capacity. We showcase the advantage of
progressive pseudo-labeling in an all-inclusive FL environment achieved by 2PFL. We further
compare against PL-FL [180], which engages only Type II clients. We study the case where all
clients have partially labelled samples with class imbalances over data. PF-FL will unveil the
impact of the data augmentation on our self-learning context where several classes are missing
across clients. Finally, we compare against L&PL-FL [181], which involves Type I and II
clients with class imbalances as a more elaborate realistic scenario investigating pseudo-labeling
influence. Classifier model: We use a CNN consisting of three convolutional layers followed
by max-pooling, flattening, and two fully connected layers. The convolutional layers use ReLU
consisting of 32, 64, and 128 filters. The final layer consists of classes neurons along with
softmax activation.

5.5.2 Experimental Results

Impact of pseudo-labeling confidence on training phases.

We prioritize a high confidence threshold due to the challenges posed by non-IID and skewed
data distributions. After training the model on labelled data (Phase1), we observe a decreased
performance, especially in classes with significant skewness and distribution shifts across clients.
Without addressing these issues, the model struggles to confidently pseudo-label unlabeled
samples. Indicatively, using PL-FL on MNIST with maximum confidence threshold 𝜙 = 0.9,
only 4.5% of samples meet this criterion. Incorporating these pseudo-labeled samples into
Phase2 yields a moderate performance improvement of 0.87%. In this case, we face two options:
either conduct a significant high number of communication rounds, which is resource-intensive
as it involves labelling a small percentage of data per round, or decrease the maximum confidence
threshold 𝜙 to potentially include less confident samples for pseudo-labeling in earlier rounds.

5.5. EXPERIMENTAL EVALUATION 114

Due to resource and communication constraints, we opt for the latter approach. We adjust the
schedule of 𝜙 ∈ (0.5, 0.9) for all baselines to ensure that at least 10% of pseudo-labelled samples
are included in subsequent rounds.

As shown in Table 5.1, by lowering 𝜙 leads to improved performance across all baselines in
Phase2. However, when attempting to utilize the pseudo-labelled samples in Phase2+ engaging
Type III clients in the process as well, we observe a decline in baselines’ model performance apart
from 2PFL. Even with the same confidence thresholds, baselines’ models struggle to pseudo-
label additional samples from Types II and III clients, often resulting in only 1 to 10 samples
being pseudo-labelled, or none at all in most cases. Consequently, progressing with further
training embracing all clients’ types becomes less feasible.

On the other hand, 2PFL showcases its effectiveness and capacity to include all client
types in all phases resulting in progressively labelling all unlabelled samples across the FL
ecosystem with relatively high classification performance. This underscores the importance of
employing dynamic threshold schedule to ensure the model learns from high-quality pseudo-
labelled samples. To obtain such high-quality pseudo-labelled samples meeting the threshold
criteria from the initial phase, 2PFL employs data augmentation to re-balance the data distribution
across clients in the early stages of Phase1.

Table 5.1: Impact of high-confidence pseudo-labels on test accuracy across phases.

Dataset Method Phase1 Phase2 Phase2+

MNIST

2PFL 96.93% 95.02% 97.31%
FedAvg 88.07% 88.67% 86.29%
PL-FL 79.65% 85.10% 85.10%
L&PL-FL 88.59% 90.01% 90.01%

F-MNIST

2PFL 86.24% 88.05% 89.01%
FedAvg 81.15% 83.18% 82.16%
PL-FL 76.70% 75.81% 75.77%
L&PL-FL 71.43% 75.60% 72.43%

EMNIST

2PFL 94.4% 94.8% 96.00%
FedAvg 72.47% 86.10% 84.35%
PL-FL 53.30% 77.72% 83.45%
L&PL-FL 84.38% 79.37% 78.20%

MEDMNIST

2PFL 95.38% 98.53% 98.92%
FedAvg 54.69% 74.39% 71.41%
PL-FL 49.76% 67.79% 59.54%
L&PL-FL 86.45% 78.90% 74.88%

Comparison assessment with baselines.

Table 5.2 shows the effectiveness and efficiency of 2PFL compared against state-of-the-art
baselines in terms of test accuracy, Labelled Data Ratio (LDR) per phase w.r.t. confidence
threshold 𝜙 (i.e., percentage of samples that are labelled in each phase satisfying the 𝜙 confidence
threshold), and number of training rounds. We show the total rounds 𝑇 for Ideal, FedAvg, PL-
FL, L&PL-FL and the rounds per phase (𝑇1, 𝑇2, 𝑇2+) for 2PFL with total rounds: 𝑇1 + 𝑇2 + 𝑇2+.
First, in terms of accuracy, 2PFL demonstrates the highest compared to FedAvg, PL-FL, and
L&PL-FL across all datasets. Notably, 2PFL achieves comparable and even slightly higher

5.5. EXPERIMENTAL EVALUATION 115

accuracy than Ideal model on F-MNIST and MedMNIST, especially due to augmentation and
progressive highly-confident pseudo-labelling. For the other two datasets, we observe only a
minimal difference of 0.62% and 0.41% accuracy. On average, we obtain less than 1% accuracy
with less than 20% of the real data compared to Ideal. In a more detailed comparison against
Ideal using MNIST, 2PFL achieves almost the same accuracy as Ideal (difference 0.622%), while,
by the end of Phase2+, 2PFL obtains an additional 8.04% pseudo-labeled samples according
to confidence threshold compared to Ideal. On average, 2PFL completed a total of 26 training
rounds, six more rounds compared to Ideal. Similar patterns appeared in the rest of the datasets.
Overall, this reflects our initial question about the ‘price of labelling’ indicating a significant
improvement of labelling samples and achieving comparable performance with Ideal despite the
skewed distribution of data. 2PFL is evidenced to achieve similar performance as Ideal in more
realistic scenarios comparing with less realistic ones (assumed in baselines).

Comparing 2PFL against FedAvg over MNIST, 2PFL achieves a higher accuracy by 8.96% by
pseudo-labelling 62% additional samples with high confidence. All of these improvements were
attained with six extra rounds. Comparing with PL-FL, 2PFL achieves 18.14% higher accuracy
by pseudo-labelling 61.75% more samples, with six fewer rounds. Whereas, comparing with
L&PL-FL, 2PFL achieves 8.87% higher accuracy by pseudo-labeling 47.93% more samples,
albeit requiring six additional rounds. 2PFL outperforms the baselines in terms of accuracy and
rate of including pseudo-labelled samples in the training indicating its capacity to finally exploit
all the available samples and knowledge across all client types. It is worth noting that 2PFL
requires on average 8% more rounds compared to baselines across all datasets. This is expected
because in each phase, 2PFL pseudo-labels a high percentage of unlabelled data, necessitating
additional rounds for training in subsequent phases. Nonetheless, even with investing on a few
more rounds, the price of pseudo-labelling becomes negligible compared to labelling samples
from Type II & III clients. 2PFL attempts to include all clients avoiding leaving ‘odd ones’ out
in federated training.

Table 5.2: Model test accuracy, LDR, and no. of training rounds across all methods.

Baselines 2PFL
Dataset Performance Ideal FedAvg PL-FL L&PL-FL Phase1 Phase2 Phase2+

MNIST

Accuracy 97.92% 88.59% 79.65% 88.67% 96.93% 95.02% 97.31%
LDR,𝜙 ∈ (0.5, 0.9) 87.08% 35.25% 36.22% 49.31% 80.51% 82.78% 94.70%

Rounds 20 20 32 20 10 11 5

F-MNIST

Accuracy 88.76% 79.89% 76.70% 71.43% 86.24% 88.05% 89.01%
LDR,𝜙 ∈ (0.5, 0.7) 73.26% 20.11% 20.39% 49.31% 63.98% 70.77% 88.80%

Rounds 20 20 20 20 10 7 5

EMNIST

Accuracy 96.40% 72.47% 53.30% 84.38% 94.4% 94.80% 96.00%
LDR,𝜙 ∈ (0.5, 0.9) 66.3% 34.3% 39.37% 24.1% 63.525 67.07% 76.55%

Rounds 20 18 15 20 10 10 8

MedMNIST

Accuracy 98.09% 54.69% 49.76% 86.45% 95.38% 98.53% 98.92%
LDR,𝜙 ∈ (0.5, 0.9) 84.1% 26.53% 31.7% 20.22% 51.02% 60.57% 82.91%

Rounds 30 20 20 20 10 5 7

5.5. EXPERIMENTAL EVALUATION 116

2 4 6 8 10 12 14 16 18 20
Rounds

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

MNIST

FedAVG
PL-FL
L&PL-FL
Ideal
2PFL(1,2,2+)

2 4 6 8 10 12 14 16 18 20
Rounds

40

50

60

70

80

90

100

Fashion-MNIST

FedAVG
PL-FL
L&PL-FL
Ideal
2PFL(1,2,2+)

3 5 7 9 11 13 15 17 19
Rounds

40

50

60

70

80

90

100

EMNIST

FedAVG
PL-FL
L&PL-FL
Ideal
2PFL(1,2,2+)

2 4 6 8 10 12 14 16
Rounds

40

50

60

70

80

90

100

MEDMNIST

FedAVG
PL-FL
L&PL-FL
Ideal
2PFL(1,2,2+)

Figure 5.2: Accuracy vs. training rounds for all methods and datasets (the two vertical dotted
lines correspond to 𝑇1 and 𝑇1 + 𝑇2 round milestones of 2PFL’s phases).

Id
ea

l

FE
D

AV
G

PL
-F

L

L&
PL

-F
L

2P
FL

0

20

40

60

80

100

LD
R

MNIST

Phase 1
Phase 2
Phase 2+
Unlabeled

Id
ea

l

FE
D

AV
G

PL
-F

L

L&
PL

-F
L

2P
FL

0

20

40

60

80

100
Fashion-MNIST

Phase 1
Phase 2
Phase 2+
Unlabeled

Id
ea

l

FE
D

AV
G

PL
-F

L

L&
PL

-F
L

2P
FL

0

20

40

60

80

100
EMNIST

Phase 1
Phase 2
Phase 2+
Unlabeled

Id
ea

l

FE
D

AV
G

PL
-F

L

L&
PL

-F
L

2P
FL

0

20

40

60

80

100
MEDMNIST

Phase 1
Phase 2
Phase 2+
Unlabeled

Figure 5.3: pseudo-labelling ratio of unlabelled samples across datasets and phases.

Impact of phases on model convergence & pseudo-labeling efficiency.

In terms of model convergence during training, the presence of non-IID data and label distribution
shift can significantly hinder model convergence and compromise its ability to effectively adapt to
various clients’ types. Our baselines’ comparisons reveal that, apart from Ideal, models exhibited
slow convergence and lower accuracy compared to Ideal and 2PFL. Figure 5.2 shows that all
baselines initially start with low accuracy and eventually plateau below or close to Ideal and 2PLF
starting points in MNIST and Fashion-MNIST, and in EMNIST and MEDMNIST, respectively.
This demonstrates that when the model is provided with low confidence pseudo-labelled samples,
it results in reduced accuracy and slower convergence speed. Meanwhile, with 2PFL, the model
converges relatively faster, with each phase positively impacting its speed. Notably, in Phase2+,
2PFL’s model achieves higher accuracy than Ideal in MNIST, Fashion-MNIST, and EMNIST
while matches the Ideal in MEDMNIST. This highlights the importance of pseudo-labeling and
distribution re-balance via data augmentation influencing model performance.

Regarding pseudo-labeling efficiency measured by LDR, Figure 5.3 shows that in all base-
lines, models have pseudo-labelled the highest number of unlabelled samples from the first phase,
as discussed in Section 5.5.2. On the contrary, 2PFL pseudo-labels the highest number of sam-

5.6. CONCLUSIONS 117

ples in Phase 1 while all the high-confidence (pseudo) labelled samples from Phase 1 are used to
further improve the model performance in Phases 2 and 2+. 2PFL progressively pseudo-labels
samples (some are also used for data augmentation tacking pseudo-class imbalance) achieving
a final DLR close to Ideal. The indicates the impact of the dynamic confidence threshold on
incrementally increasing the number of samples been labelled. Eventually, the increase rate DLR
decreases from one phase to another as there a no more high-confidence samples considered
for pseudo-labelling. As shown in Figure 5.3, after Phase 2+, the model does not proceed with
pseudo-labeling as many samples as in Phases 1 and 2, thus, not bringing a further significant
improvement.

5.6 Conclusions

Our 2PFL framework addresses the challenge of training FL models across different types of
clients with limited and skewed labeled and unlabelled data. By leveraging data augmentation,
2PFL leads to improved model performance and accelerates convergence by progressive pseudo-
labelling.s. Our comprehensive experiments and comparison with state-of-the-art methods
highlight that 2PFL consistently outperforms baselines across various performance metrics and
datasets. 2PFL exhibits superior convergence speed, accuracy, and data pseudo-labelling rate
acquired in each phase. Therefore, ‘the price for learning a global model with skewed and
unlabelled data is minimal with 2PFL’.

5.7 Limitations & Directions of Enhancement

The 2PFL framework has been proposed to train a global model (classifier) under conditions
of extreme data scarcity and skewness across distributed labeled and unlabeled data. This
framework relies on augmented data exchange to improve model performance. However, a
limitation arises when augmented data cannot be exchanged due to resource constraints or
communication overhead. In such cases, local models are trained only on local and augmented
local data, which reduces model generalization and prediction confidence for unlabeled samples
in other clients. Additionally, this limitation reduces the number of pseudo-labeled samples in
each training step.

Another challenge with this framework is that it assumes at least 5% of the data is labeled.
When labeled samples are below this threshold, achieving high-confidence predictions becomes
difficult. Finally, during training, we assume predicted labels fall within the class range C, where
C has values belong to C = {0, . . . , 𝐶 − 1}.

In our future work, we plan to address more advanced scenarios, such as when there are only
one or two labeled samples per class and when unlabeled clients might have label distributions
beyond the range of C classes .

Chapter 6

Discussion and Conclusion

This thesis addresses the challenges of distributed data by studing the shift from the less privacy-
restrictive environment of EC to the privacy-centric framework of FL. As data becomes increas-
ingly decentralized and heterogeneous, and privacy regulations grow more stringent, this research
introduces effective methods to enhance data representation, improve model performance and
efficiency in distributed environments. The developed methodologies offer practical solutions
to pressing concerns about data privacy and accessibility, enabling the field to effectively tackle
the complexities of modern distributed machine learning systems.

6.1 Key Contributions

This thesis set out to answer several pivotal questions related to distributed learning, data
offloading, and model training in environments where raw data cannot be shared across nodes.
The contributions span multiple dimensions of federated and edge learning systems:

6.1.1 Data and Task Offloading in Edge Computing

In the first phase of this work, we tackled the challenge of optimizing task execution and
data offloading in resource-constrained edge environments. The primary goal was to minimize
data transmission while maximizing resource utilization on edge servers. By implementing
task caching and fuzzy logic-based decision-making mechanisms, we developed strategies that
effectively reduced latency and communication overhead while improving system efficiency.
This approach was particularly impactful for time-sensitive tasks, such as real-time analytics,
where data privacy and speed are critical.

6.1.2 Node and Data Selection in Distributed Learning

The next challenge addressed in the thesis was the intelligent selection of nodes and data in
distributed predictive analytics. In traditional FL, irrelevant data is often fed to the model

118

6.2. ADDRESSING FUTURE CHALLENGES: INCREASING COMPLEXITY IN DATA 119

during training due to the random selection of nodes, which can degrade model performance
and consume the nodes’ resources. The query-centric approach introduced in this thesis solves
this issue by ranking nodes based on data relevance, ensuring that only the most suitable nodes
participate in training. This not only enhances model accuracy but also reduces redundant
communication in distributed systems, offering a significant step forward for FL systems that
deal with non-IID data distributions.

6.1.3 Cluster-based & Label-aware Federated Meta-Learning

As the research progressed, addressing label imbalance and non-iid data distributions among
clients emerged as a main challenge. Standard FL methods that rely on a single global model often
falter when confronted with diverse data distributions, particularly in on-demand classification
tasks. In response, we introduced the Cluster-based & Label-aware Federated Meta-Learning
(CL-FML) framework, a method that clusters clients with similar label distributions and trains
separate meta-models for each cluster. This approach dramatically improved performance by
enabling focused learning in distributed environments, particularly for tasks where clients had
diverse or missing label sets. Through CL-FML, we demonstrated that multi-model architectures
are far more effective than traditional single-model methods, especially when handling arbitrary,
unseen labels and tasks.

6.1.4 Self-Learning in Federated Learning with Minimal Labeled Data

One of the most pressing challenges in distributed learning environments is the scarcity of labeled
data, as labeling is often expensive or infeasible in real-world applications. In the final technical
chapter, we proposed the Two-Phase Federated Self-Learning (2PFL) framework to address
this issue. 2PFL leverages both labeled and unlabeled data, using self-learning techniques
to generate pseudo-labels from high-confidence predictions. This allowed to improve model
performance even when working with limited labeled data—showing that models can achieve
high accuracy with only 10-20% of labeled data. This framework is especially promising for
future FL systems, where data labeling costs are likely to continue rising.

6.2 Addressing Future Challenges: Increasing Complexity in
Data

As we look ahead, it is clear that data challenges will become even more pronounced. The
growing emphasis on data privacy and regulatory compliance, alongside the need to ensure
robust and efficient machine learning models, means that access to data will become increas-
ingly complicated. As data collection becomes more restricted due to privacy concerns, the

6.3. FUTURE DIRECTIONS: ADAPTING TO DATA SCARCITY AND COMPLEXITY 120

heterogeneity of available data will also increase. This creates a situation where distributed
systems must handle datasets that are not only sparse but also highly varied in structure, format,
and labeling.

6.2.1 Data Privacy and Access Restrictions

With the rise of data protection regulations, such as General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA), the rules around data sharing have
become much stricter. In many fields, particularly healthcare and finance, direct access to
raw data will continue to be tightly controlled. This will necessitate further innovation in
Federated Learning approaches that allow for model training without accessing sensitive data.
The frameworks proposed in this thesis, particularly CL-FML and 2PFL, serve as a foundation
for handling such environments, as they are designed to operate with minimal data sharing
while ensuring high model accuracy.

6.2.2 Increasing Data Heterogeneity

As data sources become more diverse, machine learning models will need to handle increasing
levels of data heterogeneity. Whether it be differences in data formats, feature spaces, or label
distributions, future models will need to adapt to a wide variety of data types. Our work on label-
aware clustering and meta-model learning directly addresses this challenge by tailoring models
to specific subsets of data, thus ensuring better performance in heterogeneous environments.

However, we recognize that future systems will need to go beyond just addressing hetero-
geneity at the label level. It will be critical to develop models that can handle structural
heterogeneity, where data may come in different forms (e.g., text, images, time series) and vary-
ing levels of completeness. Self-learning techniques, such as the ones explored in 2PFL, are
key to this future, as they allow models to learn from unlabeled data and adapt dynamically
to new data distributions without the need for extensive human intervention.

6.3 Future Directions: Adapting to Data Scarcity and Com-
plexity

In an era of data scarcity and increasing complexity, the future of distributed machine
learning will hinge on our ability to make the most of what we have. As this thesis has shown,
there is significant potential in leveraging self-supervised learning, meta-learning, and multi-
model architectures to tackle the problems of few labeled data and non-iid distributions.

The key insight from this work is that future solutions must be adaptive, capable of making
the best use of limited data while being prepared to handle increasing heterogeneity. Models

6.4. FINAL REMARKS 121

must be designed to learn not just from labeled data but also from unlabeled and semi-labeled
data, as this will be a common scenario in many fields where labeling is time-consuming and
expensive.

6.4 Final Remarks

In conclusion, this thesis has proposed a range of effective solutions to address key challenges
that are commonly encountered in various federated learning scenarios, including intelligent
task management, node selection, cluster-based meta-learning, and self-learning. As data
challenges continue to evolve, it is imperative that we remain forward-thinking and ready to
invest in innovative solutions that can build high-performance models with minimal data. By
embracing the complexity of distributed systems and leveraging advances in self-supervised
learning, we can ensure that future models are robust, efficient, and scalable in the face of
growing data challenges.

The future of distributed learning will undoubtedly be filled with challenges, but with the
right approaches—such as those explored in this thesis—we can build systems that are prepared
to handle any level of heterogeneity, minimal labeled data, and privacy constraints. These
advancements will be critical in fields such as healthcare, finance, autonomous systems, and
beyond, where data privacy and diversity are paramount.

6.4. FINAL REMARKS 122

Table 6.1: Acronyms & Abbreviations.

Acronym Abbreviation
EC Edge Computing
CC Cloud Computing
QoS Quality of Services
FLI Fuzzy Logic Inference System
DPA Distributed Predictive Analytics
DML Distributed Machine Learning
MSAP Minimum Subset Average Problem
BNM Best Node Model
MAD Median Absolute Deviation
AM Aggregate Model
WAM Weighted Aggregate Model
FL Federated Learning
RFL Ranking-based Federated Learning
DS Dataset
ML Machine Learning
DL Deep Learning
LR Linear Regression
PR Polynomial Regression
DNN Deep Neural Network
MSE Mean Squared Error
RIL Ring-based Incremental Learning
GM Global Model
RM Random Model
GT Game Theory
FS Fair Selection
RL Reinforcement Learning
MAB Multi-armed Bandits
M-MAB Max Utility-based MAB
TEF Transformer Experts/Feedback MAB
SFL Self-learning in FL environments

Bibliography

[1] Subrato Bharati et al. “Federated learning: Applications, challenges and future direc-
tions”. In: International Journal of Hybrid Intelligent Systems 18.1-2 (2022), pp. 19–
35.

[2] Jiasi Chen and Xukan Ran. “Deep learning with edge computing: A review”. In: Pro-
ceedings of the IEEE 107.8 (2019), pp. 1655–1674.

[3] Praveen Joshi et al. “Enabling all in-edge deep learning: a literature review”. In: IEEE
Access 11 (2023), pp. 3431–3460.

[4] Haochen Hua et al. “Edge computing with artificial intelligence: A machine learning
perspective”. In: ACM Computing Surveys 55.9 (2023), pp. 1–35.

[5] Firdose Saeik et al. “Task offloading in Edge and Cloud Computing: A survey on mathe-
matical, artificial intelligence and control theory solutions”. In: Computer Networks 195
(2021), p. 108177.

[6] Yanpei Liu et al. “Caching Placement Optimization Strategy Based on Comprehensive
Utility in Edge Computing”. In: Applied Sciences 13.16 (2023), p. 9229.

[7] Siyuan Zhang, Guiquan Liu, et al. “Personalized Federated Learning with Attention
Mechanisms”. In: Academic Journal of Computing & Information Science 6.11 (2023).

[8] You-Ru Lu, Xiaoqian Wang, and Dengfeng Sun. “Tackling Imbalanced Class in Federated
Learning via Class Distribution Estimation”. In: (2022).

[9] Jing Zhang et al. “A Survey on Class Imbalance in Federated Learning”. In: arXiv
preprint arXiv:2303.11673 (2023).

[10] Brendan McMahan et al. “Communication-efficient learning of deep networks from
decentralized data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–
1282.

[11] Pavlos Athanasios Apostolopoulos, Eirini Eleni Tsiropoulou, and Symeon Papavassiliou.
“Risk-aware data offloading in multi-server multi-access edge computing environment”.
In: IEEE/ACM Transactions on Networking 28.3 (2020), pp. 1405–1418.

123

BIBLIOGRAPHY 124

[12] Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. “Data quality-
aware task offloading in mobile edge computing: An optimal stopping theory approach”.
In: Future Generation Computer Systems 117 (2021), pp. 462–479.

[13] Dewang Ren et al. “GHCC: Grouping-based and hierarchical collaborative caching for
mobile edge computing”. In: 2018 16th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE. 2018, pp. 1–6.

[14] Jaber Almutairi and Mohammad Aldossary. “A novel approach for IoT tasks offloading
in edge-cloud environments”. In: Journal of Cloud Computing 10.1 (2021), p. 28.

[15] Mohit Taneja and Alan Davy. “Resource aware placement of IoT application modules
in Fog-Cloud Computing Paradigm”. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE. 2017, pp. 1222–1228.

[16] Yixue Hao et al. “Energy efficient task caching and offloading for mobile edge comput-
ing”. In: Ieee access 6 (2018), pp. 11365–11373.

[17] Ihsan Ullah et al. “Optimizing task offloading and resource allocation in edge-cloud
networks: a DRL approach”. In: Journal of Cloud Computing 12.1 (2023), p. 112.

[18] Shuchen Zhou, Waqas Jadoon, and Iftikhar Ahmed Khan. “Computing offloading strategy
in mobile edge computing environment: a comparison between adopted frameworks,
challenges, and future directions”. In: Electronics 12.11 (2023), p. 2452.

[19] Kostas Kolomvatsos and Christos Anagnostopoulos. “Proactive, uncertainty-driven queries
management at the edge”. In: Future Generation Computer Systems 118 (2021), pp. 75–
93. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2020.
12.028. url: https://www.sciencedirect.com/science/article/
pii/S0167739X21000029.

[20] Mingye Li et al. “Efficient data offloading using markovian decision on state reward
action in edge computing”. In: Journal of Grid Computing 21.2 (2023), p. 25.

[21] VanDung Nguyen et al. “Joint offloading and IEEE 802.11 p-based contention control
in vehicular edge computing”. In: IEEE Wireless Communications Letters 9.7 (2020),
pp. 1014–1018.

[22] Xiaohuan Rao et al. “Edge caching and computation offloading for fog-enabled radio
access network”. In: Wireless Personal Communications 109 (2019), pp. 297–313.

[23] Zubair Sharif et al. “Priority-Based Resource Allocation Scheme for Resources Usage in
Mobile Edge Computing Platform”. In: Journal of Hunan University Natural Sciences
50.1 (2023).

[24] Shuyang Li, Xiaohui Hu, and Yongwen Du. “Deep Reinforcement Learning for Compu-
tation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge
Computing”. In: Sensors 21.19 (2021), p. 6499.

https://doi.org/https://doi.org/10.1016/j.future.2020.12.028
https://doi.org/https://doi.org/10.1016/j.future.2020.12.028
https://www.sciencedirect.com/science/article/pii/S0167739X21000029
https://www.sciencedirect.com/science/article/pii/S0167739X21000029

BIBLIOGRAPHY 125

[25] Jinlai Xu et al. “Zenith: Utility-aware resource allocation for edge computing”. In: 2017
IEEE international conference on edge computing (EDGE). IEEE. 2017, pp. 47–54.

[26] Utsav Drolia et al. “Cachier: Edge-caching for recognition applications”. In: 2017 IEEE
37th international conference on distributed computing systems (ICDCS). IEEE. 2017,
pp. 276–286.

[27] Jie Luo et al. “QoE-driven computation offloading for edge computing”. In: Journal of
Systems Architecture 97 (2019), pp. 34–39.

[28] Zhaolong Ning et al. “Deep reinforcement learning for vehicular edge computing: An in-
telligent offloading system”. In: ACM Transactions on Intelligent Systems and Technology
(TIST) 10.6 (2019), pp. 1–24.

[29] Yuben Qu et al. “CoTask: Correlation-aware task offloading in edge computing”. In:
World Wide Web 25.5 (2022), pp. 2185–2213.

[30] Ke Zhang et al. “Mobile-edge computing for vehicular networks: A promising network
paradigm with predictive off-loading”. In: IEEE Vehicular Technology Magazine 12.2
(2017), pp. 36–44.

[31] Ying Liu et al. “Data caching optimization in the edge computing environment”. In:
IEEE transactions on services computing 15.4 (2020), pp. 2074–2085.

[32] Jiaxin Zhang, Xing Zhang, and Wenbo Wang. “Cache-enabled software defined het-
erogeneous networks for green and flexible 5G networks”. In: IEEE Access 4 (2016),
pp. 3591–3604.

[33] Shuo Wang et al. “Distributed edge caching scheme considering the tradeoff between
the diversity and redundancy of cached content”. In: 2015 IEEE/CIC International
Conference on Communications in China (ICCC). IEEE. 2015, pp. 1–5.

[34] Tuyen X Tran and Dario Pompili. “Adaptive bitrate video caching and processing in
mobile-edge computing networks”. In: IEEE Transactions on Mobile Computing 18.9
(2018), pp. 1965–1978.

[35] Zhong Yang et al. “Cache-aided NOMA mobile edge computing: A reinforcement
learning approach”. In: IEEE Transactions on Wireless Communications 19.10 (2020),
pp. 6899–6915.

[36] Changsheng You et al. “Energy-efficient resource allocation for mobile-edge computation
offloading”. In: IEEE Transactions on Wireless Communications 16.3 (2016), pp. 1397–
1411.

[37] Pengfei Wang et al. “Task-driven data offloading for fog-enabled urban IoT services”. In:
IEEE Internet of Things Journal 8.9 (2020), pp. 7562–7574.

BIBLIOGRAPHY 126

[38] Haibo Ge et al. “Multi-server intelligent task caching strategy for edge computing”. In:
2022 4th International Conference on Natural Language Processing (ICNLP). IEEE.
2022, pp. 563–569.

[39] Lujie Tang et al. “A novel task caching and migration strategy in multi-access edge
computing based on the genetic algorithm”. In: Future Internet 11.8 (2019), p. 181.

[40] Ibrahim A Elgendy et al. “Joint computation offloading and task caching for multi-user
and multi-task MEC systems: reinforcement learning-based algorithms”. In: Wireless
Networks 27.3 (2021), pp. 2023–2038.

[41] Lixing Chen et al. “Spatio–temporal edge service placement: A bandit learning ap-
proach”. In: IEEE Transactions on Wireless Communications 17.12 (2018), pp. 8388–
8401.

[42] Lixing Chen and Jie Xu. “Budget-constrained edge service provisioning with demand
estimation via bandit learning”. In: IEEE Journal on Selected Areas in Communications
37.10 (2019), pp. 2364–2376.

[43] Yiming Miao et al. “Intelligent task caching in edge cloud via bandit learning”. In: IEEE
transactions on network science and engineering 8.1 (2020), pp. 625–637.

[44] Stephen T Welstead. Neural network and fuzzy logic applications in C/C++. John Wiley
& Sons, Inc., 1994.

[45] Mohammad G Khoshkholgh et al. “Randomized caching in cooperative UAV-enabled
fog-RAN”. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC).
IEEE. 2019, pp. 1–6.

[46] VanDung Nguyen et al. “Flexible computation offloading in a fuzzy-based mobile edge
orchestrator for IoT applications”. In: Journal of Cloud Computing 9.1 (2020), pp. 1–18.

[47] Zhenjiang Zhang et al. “A new task offloading algorithm in edge computing”. In:
EURASIP Journal on Wireless Communications and Networking 2021.1 (2021), p. 17.

[48] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. “Fuzzy workload orchestration for edge
computing”. In: IEEE Transactions on Network and Service Management 16.2 (2019),
pp. 769–782.

[49] U Mohan Rao, YR Sood, and RK Jarial. “Subtractive clustering fuzzy expert system for
engineering applications”. In: Procedia Computer Science 48 (2015), pp. 77–83.

[50] Navuday Sharma et al. “On-demand ultra-dense cloud drone networks: Opportunities,
challenges and benefits”. In: IEEE Communications Magazine 56.8 (2018), pp. 85–91.

[51] Zhixiong Chen, Nan Xiao, and Dongsheng Han. “Multilevel task offloading and resource
optimization of edge computing networks considering UAV relay and green energy”. In:
Applied sciences 10.7 (2020), p. 2592.

BIBLIOGRAPHY 127

[52] Paul Voigt and Axel Von dem Bussche. The EU General Data Protection Regulation
(GDPR): A Practical Guide. Springer International Publishing, 2017.

[53] California Legislative Information. California Consumer Privacy Act (CCPA). https:
//leginfo.legislature.ca.gov/faces/billNavClient.xhtml?

bill_id=201720180AB375. 2018.

[54] U.S. Department of Health & Human Services. Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA). https://www.hhs.gov/hipaa/for-
professionals/privacy/index.html. 1996.

[55] Dongdong Ye et al. “Federated learning in vehicular edge computing: A selective model
aggregation approach”. In: IEEE Access 8 (2020), pp. 23920–23935.

[56] Dean Abbott. Applied Predictive Analytics: Principles and Techniques for the Profes-
sional Data Analyst. 1st ed. Wiley Publishing, 2014. isbn: 1118727967.

[57] Christos Anagnostopoulos. “Edge-centric inferential modeling analytics”. In: Journal
of Network and Computer Applications 164 (2020), p. 102696. issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2020.102696. url: https://www.
sciencedirect.com/science/article/pii/S1084804520301703.

[58] Siwei Feng and Han Yu. “Multi-participant multi-class vertical federated learning”. In:
arXiv preprint arXiv:2001.11154 (2020).

[59] Zirui Zhu and Lifeng Sun. “Federated Trace: A Node Selection Method for More Efficient
Federated Learning”. In: 2021 IEEE International Conference on Image Processing
(ICIP). IEEE. 2021, pp. 1234–1238.

[60] Chien-Sheng Yang, Ramtin Pedarsani, and A Salman Avestimehr. “Edge computing in the
dark: Leveraging contextual-combinatorial bandit and coded computing”. In: IEEE/ACM
Transactions on Networking 29.3 (2021), pp. 1022–1031.

[61] Yongheng Deng et al. “Auction: Automated and quality-aware client selection framework
for efficient federated learning”. In: IEEE Transactions on Parallel and Distributed
Systems 33.8 (2021), pp. 1996–2009.

[62] Fernando E Casado et al. “Concept drift detection and adaptation for federated and
continual learning”. In: Multimedia Tools and Applications (2022), pp. 1–23.

[63] Mannsoo Hong, Seok-Kyu Kang, and Jee-Hyong Lee. “Weighted Averaging Federated
Learning Based on Example Forgetting Events in Label Imbalanced Non-IID”. In: Ap-
plied Sciences 12.12 (2022), p. 5806.

[64] Kostas Kolomvatsos and Christos Anagnostopoulos. “A Proactive Statistical Model Sup-
porting Services and Tasks Management in Pervasive Applications”. In: IEEE Transac-
tions on Network and Service Management 19.3 (2022), pp. 3020–3031.

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB375
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://doi.org/https://doi.org/10.1016/j.jnca.2020.102696
https://www.sciencedirect.com/science/article/pii/S1084804520301703
https://www.sciencedirect.com/science/article/pii/S1084804520301703

BIBLIOGRAPHY 128

[65] Sumit Rai, Arti Kumari, and Dilip K Prasad. “Client Selection in Federated Learning
under Imperfections in Environment”. In: AI 3.1 (2022), pp. 124–145.

[66] Christopher Tran and Elena Zheleva. “Improving Data-driven Heterogeneous Treat-
ment Effect Estimation Under Structure Uncertainty”. In: Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2022, pp. 1787–1797.

[67] Paolo Bellavista et al. “Differentiated Service/Data Migration for Edge Services Lever-
aging Container Characteristics”. In: IEEE Access 7 (2019), pp. 139746–139758.

[68] Georgios Boulougaris and Kostas Kolomvatsos. “A QoS-aware, Proactive Tasks Offload-
ing Model for Pervasive Applications”. In: 2022 9th International Conference on Future
Internet of Things and Cloud (FiCloud). 2022, pp. 24–31.

[69] Kostas Kolomvatsos et al. “Proactive Time-Optimized Data Synopsis Management at
the Edge”. In: IEEE Transactions on Knowledge and Data Engineering 34.7 (2022),
pp. 3478–3490. doi: 10.1109/TKDE.2020.3021377.

[70] Anna Karanika et al. “A Demand-driven, Proactive Tasks Management Model at the
Edge”. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2020,
pp. 1–8.

[71] Madalena Soula et al. “Intelligent tasks allocation at the edge based on machine learning
and bio-inspired algorithms”. In: Evolving Systems 13.2 (Apr. 2022), pp. 221–242.

[72] Shengchao Chen et al. “Prompt federated learning for weather forecasting: Toward foun-
dation models on meteorological data”. In: arXiv preprint arXiv:2301.09152 (2023).

[73] Reza Shokri and Vitaly Shmatikov. “Privacy-preserving deep learning”. In: Proceedings
of the 22nd ACM SIGSAC conference on computer and communications security. 2015,
pp. 1310–1321.

[74] Parimala Boobalan et al. “Fusion of federated learning and industrial Internet of Things:
A survey”. In: Computer Networks 212 (2022), p. 109048.

[75] Jianyu Wang, Ming Zhao, and Li Yang. “Federated Learning for Industrial IoT: A Case
Study on Predictive Maintenance”. In: IEEE Transactions on Industrial Informatics 16.5
(2020), pp. 3230–3240.

[76] Yanna Jiang et al. “Blockchained federated learning for internet of things: A comprehen-
sive survey”. In: ACM Computing Surveys 56.10 (2024), pp. 1–37.

[77] Xu Cheng, Chendan Li, and Xiufeng Liu. “A review of federated learning in energy
systems”. In: 2022 IEEE/IAS industrial and commercial power system Asia (I&CPS
Asia) (2022), pp. 2089–2095.

[78] Thanh Toan Nguyen et al. “Manipulating recommender systems: A survey of poisoning
attacks and countermeasures”. In: ACM Computing Surveys (2024).

https://doi.org/10.1109/TKDE.2020.3021377

BIBLIOGRAPHY 129

[79] Woonghee Lee. “Reward-based participant selection for improving federated reinforce-
ment learning”. In: ICT Express (2022).

[80] Rituparna Saha et al. “Data-Centric Client Selection for Federated Learning Over Dis-
tributed Edge Networks”. In: IEEE Transactions on Parallel and Distributed Systems
34.2 (2022), pp. 675–686.

[81] Ahmad Hammoud et al. “Data-driven federated autonomous driving”. In: International
Conference on Mobile Web and Intelligent Information Systems. Springer. 2022, pp. 79–
90.

[82] Jack Goetz et al. “Active federated learning”. In: arXiv preprint arXiv:1909.12641 (2019).

[83] Shameem A. Puthiya Parambath, Christos Anagnostopoulos, and Roderick Murray-
Smith. “Sequential query prediction based on multi-armed bandits with ensemble of
transformer experts and immediate feedback”. In: Data Mining and Knowledge Discovery
(Aug. 2024). url: https://doi.org/10.1007/s10618-024-01057-4.

[84] Jaewook Lee et al. “Data distribution-aware online client selection algorithm for federated
learning in heterogeneous networks”. In: IEEE Transactions on Vehicular Technology
72.1 (2022), pp. 1127–1136.

[85] Zhongchang Zhou et al. “A Decentralized Federated Learning Based on Node Selection
and Knowledge Distillation”. In: Mathematics 11.14 (2023), p. 3162.

[86] Christos Anagnostopoulos and Kostas Kolomvatsos. “An intelligent, time-optimized
monitoring scheme for edge nodes”. In: Journal of Network and Computer Applications
148 (2019), p. 102458. issn: 1084-8045. doi: https://doi.org/10.1016/j.
jnca.2019.102458. url: https://www.sciencedirect.com/science/
article/pii/S1084804519303182.

[87] Weiwei Lin et al. “Contribution-based Federated Learning client selection”. In: Interna-
tional Journal of Intelligent Systems (2022).

[88] Tiansheng Huang et al. “Stochastic client selection for federated learning with volatile
clients”. In: IEEE Internet of Things Journal (2022).

[89] Xiong Wang, Jiancheng Ye, and John CS Lui. “Decentralized task offloading in edge
computing: A multi-user multi-armed bandit approach”. In: IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE. 2022, pp. 1199–1208.

[90] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”.
In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[91] Saeed Ghoorchian and Setareh Maghsudi. “Multi-armed bandit for energy-efficient and
delay-sensitive edge computing in dynamic networks with uncertainty”. In: IEEE Trans-
actions on Cognitive Communications and Networking 7.1 (2020), pp. 279–293.

https://doi.org/10.1007/s10618-024-01057-4
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102458
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102458
https://www.sciencedirect.com/science/article/pii/S1084804519303182
https://www.sciencedirect.com/science/article/pii/S1084804519303182

BIBLIOGRAPHY 130

[92] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multi-
armed bandit problem”. In: Machine learning 47 (2002), pp. 235–256.

[93] Bochun Wu, Tianyi Chen, and Xin Wang. “A combinatorial bandit approach to UAV-
aided edge computing”. In: 2020 54th Asilomar Conference on Signals, Systems, and
Computers. IEEE. 2020, pp. 304–308.

[94] Wen He et al. “Bandit learning-based service placement and resource allocation for mo-
bile edge computing”. In: 2020 IEEE 31st Annual International Symposium on Personal,
Indoor and Mobile Radio Communications. IEEE. 2020, pp. 1–6.

[95] Jianji Ren et al. “Collaborative edge computing and caching with deep reinforcement
learning decision agents”. In: IEEE Access 8 (2020), pp. 120604–120612.

[96] Shuai Yu et al. “When deep reinforcement learning meets federated learning: Intelligent
multitimescale resource management for multiaccess edge computing in 5G ultradense
network”. In: IEEE Internet of Things Journal 8.4 (2020), pp. 2238–2251.

[97] Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P. Pezaros. “Data quality-
aware task offloading in Mobile Edge Computing: An Optimal Stopping Theory ap-
proach”. In: Future Gener. Comput. Syst. 117 (2021), pp. 462–479.

[98] Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P. Pezaros. “Optimized
Contextual Data Offloading in Mobile Edge Computing”. In: 2021 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM). 2021, pp. 473–479.

[99] Kyriaki Panagidi et al. “To Transmit or Not to Transmit: Controlling Communications in
the Mobile IoT Domain”. In: ACM Trans. Internet Techn. 20.3 (2020), 22:1–22:23.

[100] Tiffany Tuor et al. “Data Selection for Federated Learning with Relevant and Irrelevant
Data at Clients”. In: ArXiv abs/2001.08300 (2020).

[101] Lokesh Nagalapatti, Ruhi Sharma Mittal, and Ramasuri Narayanam. “Is your data rele-
vant?: Dynamic selection of relevant data for federated learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 36. 7. 2022, pp. 7859–7867.

[102] Tahani Aladwani et al. “Query-driven Edge Node Selection in Distributed Learning
Environments”. In: 39th IEEE International Conference on Data Engineering, ICDE
2023 - Workshops, Anaheim, CA, USA, April 3-7, 2023. IEEE, 2023, pp. 146–153. doi:
10.1109/ICDEW58674.2023.00029.

[103] Fotis Savva et al. “Large-Scale Data Exploration Using Explanatory Regression Func-
tions”. In: ACM Trans. Knowl. Discov. Data 14.6 (Sept. 2020). issn: 1556-4681. doi:
10.1145/3410448. url: https://doi.org/10.1145/3410448.

[104] Sepanta Zeighami et al. “A neural database for differentially private spatial range
queries”. In: Proc. VLDB Endow. 15.5 (Jan. 2022), pp. 1066–1078. issn: 2150-8097.

https://doi.org/10.1109/ICDEW58674.2023.00029
https://doi.org/10.1145/3410448
https://doi.org/10.1145/3410448

BIBLIOGRAPHY 131

[105] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient algorithms for min-
ing outliers from large data sets”. In: Proceedings of the 2000 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’00. Dallas, Texas, USA:
Association for Computing Machinery, 2000, pp. 427–438. isbn: 1581132174.

[106] Fabrizio Angiulli, Salvatore Basta, and Claudio Pizzuti. “Distance-based Detection and
Prediction of Outliers”. In: IEEE Transactions on Knowledge and Data Engineering 18.2
(2006), pp. 145–160. doi: 10.1109/TKDE.2006.29.

[107] Rassoul Hajizadeh, Ali Aghagolzadeh, and Mehdi Ezoji. “Mutual neighborhood and
modified majority voting based KNN classifier for multi-categories classification”. In:
Pattern Anal. Appl. 25.4 (Nov. 2022), pp. 773–793. issn: 1433-7541.

[108] Christos Anagnostopoulos and Peter Triantafillou. “Query-Driven Learning for Predic-
tive Analytics of Data Subspace Cardinality”. In: ACM Trans. Knowl. Discov. Data 11.4
(June 2017). issn: 1556-4681.

[109] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. “SuRF: Identification
of Interesting Data Regions with Surrogate Models”. In: 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 2020, pp. 1321–1332.

[110] Dinh Phamtoan and Tai Vovan. “Automatic fuzzy genetic algorithm in clustering for
images based on the extracted intervals”. In: Multimedia Tools Appl. 80.28–29 (Nov.
2021), pp. 35193–35215. issn: 1380-7501.

[111] Sony Peng et al. “Centralized machine learning versus federated averaging: A comparison
using mnist dataset”. In: KSII Transactions on Internet and Information Systems (TIIS)
16.2 (2022), pp. 742–756.

[112] Yue Wu et al. “Personalized Federated Learning under Mixture of Distributions”. In:
arXiv preprint arXiv:2305.01068 (2023).

[113] Fotis Savva et al. “Large-scale data exploration using explanatory regression functions”.
In: ACM Transactions on Knowledge Discovery from Data (TKDD) 14.6 (2020), pp. 1–
33.

[114] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. “Outlier Detection: How to Threshold
Outlier Scores?” In: Proceedings of the International Conference on Artificial Intel-
ligence, Information Processing and Cloud Computing. AIIPCC ’19. Sanya, China:
Association for Computing Machinery, 2019. isbn: 9781450376334. doi: 10.1145/
3371425.3371427. url:https://doi.org/10.1145/3371425.3371427.

[115] H. Brendan McMahan et al. “Federated Learning of Deep Networks using Model Aver-
aging”. In: CoRR abs/1602.05629 (2016).

https://doi.org/10.1109/TKDE.2006.29
https://doi.org/10.1145/3371425.3371427
https://doi.org/10.1145/3371425.3371427
https://doi.org/10.1145/3371425.3371427

BIBLIOGRAPHY 132

[116] Tan Li and Linqi Song. “Privacy-Preserving Communication-Efficient Federated Multi-
Armed Bandits”. In: IEEE Journal on Selected Areas in Communications 40.3 (2022),
pp. 773–787. doi: 10.1109/JSAC.2022.3142374.

[117] Vicenç Torra. “A systematic construction of non-i.i.d. data sets from a single data set:
non-identically distributed data”. In: Knowledge and Information Systems 65.3 (Mar.
2023), pp. 991–1003.

[118] Martin Arjovsky et al. Invariant Risk Minimization. 2020. arXiv:1907.02893[stat.ML].
url: https://arxiv.org/abs/1907.02893.

[119] Benjamin Aubin et al. Linear unit-tests for invariance discovery. 2021. arXiv: 2102.
10867 [cs.LG]. url: https://arxiv.org/abs/2102.10867.

[120] Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. “Optimizing F-
Measures by Cost-Sensitive Classification.” In: NIPS. 2014, pp. 2123–2131.

[121] Yunlu Yan and Lei Zhu. A Simple Data Augmentation for Feature Distribution Skewed
Federated Learning. 2023. arXiv: 2306.09363 [cs.LG]. url: https://arxiv.
org/abs/2306.09363.

[122] Tahani Aladwani et al. “The Price of Labelling: A Two-Phase Federated Self-learning
Approach”. In: Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer. 2024, pp. 126–142.

[123] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. “Aggregate Query Pre-
diction under Dynamic Workloads”. In: 2019 IEEE International Conference on Big
Data (Big Data). 2019, pp. 671–676.

[124] Christos Anagnostopoulos and Peter Triantafillou. “Efficient Scalable Accurate Regres-
sion Queries in In-DBMS Analytics”. In: 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). 2017, pp. 559–570.

[125] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. “Adaptive learning of
aggregate analytics under dynamic workloads”. In: Future Generation Computer Systems
109 (2020), pp. 317–330. issn: 0167-739X.

[126] Kostas Kolomvatsos and Christos Anagnostopoulos. “A probabilistic model for assigning
queries at the edge”. In: Computing 102.4 (Apr. 2020), pp. 865–892. issn: 1436-5057.

[127] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. “Overview of Data Ex-
ploration Techniques”. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’15. Melbourne, Victoria, Australia: As-
sociation for Computing Machinery, 2015, pp. 277–281. isbn: 9781450327589. doi:
10.1145/2723372.2731084.

https://doi.org/10.1109/JSAC.2022.3142374
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/2102.10867
https://arxiv.org/abs/2102.10867
https://arxiv.org/abs/2102.10867
https://arxiv.org/abs/2306.09363
https://arxiv.org/abs/2306.09363
https://arxiv.org/abs/2306.09363
https://doi.org/10.1145/2723372.2731084

BIBLIOGRAPHY 133

[128] Binbin Gu, Saeed Kargar, and Faisal Nawab. “Efficient Dynamic Clustering: Capturing
Patterns from Historical Cluster Evolution”. In: International Conference on Extending
Database Technology. 2022. url: https://api.semanticscholar.org/
CorpusID:247218619.

[129] Qianyu Long, Kostas Kolomvatsos, and Christos Anagnostopoulos. “Knowledge reuse
in edge computing environments”. In: Journal of Network and Computer Applications
206 (2022), p. 103466. issn: 1084-8045. doi: https://doi.org/10.1016/j.
jnca.2022.103466. url: https://www.sciencedirect.com/science/
article/pii/S108480452200114X.

[130] Qianyu Long et al. “FedDIP: Federated Learning with Extreme Dynamic Pruning and
Incremental Regularization”. In: 2023 IEEE International Conference on Data Mining
(ICDM). 2023, pp. 1187–1192. doi: 10.1109/ICDM58522.2023.00146.

[131] Qianyu Long, Christos Anagnostopoulos, and Kostas Kolomvatsos. “Enhancing Knowl-
edge Reusability: A Distributed Multitask Machine Learning Approach”. In: IEEE Trans-
actions on Emerging Topics in Computing (2024), pp. 1–14. doi: 10.1109/TETC.
2024.3390811.

[132] Nastasiya F. Grinberg, Oghenejokpeme I. Orhobor, and Ross D. King. “An evaluation
of machine-learning for predicting phenotype: studies in yeast, rice, and wheat”. In:
Machine Learning 109.2 (Feb. 2020), pp. 251–277.

[133] Shameem Puthiya Parambath et al. “Max-Utility based arm selection strategy for se-
quential query recommendations”. In: Asian Conference on Machine Learning. PMLR.
2021, pp. 564–579.

[134] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. “Bandits and Experts in Metric
Spaces”. In: J. ACM 66.4 (May 2019). issn: 0004-5411. url: https://doi.org/
10.1145/3299873.

[135] Lihong Li et al. “A contextual-bandit approach to personalized news article recommen-
dation”. In: Proceedings of the 19th International Conference on World Wide Web.
WWW ’10. Raleigh, North Carolina, USA: Association for Computing Machinery,
2010, pp. 661–670. isbn: 9781605587998. url: https://doi.org/10.1145/
1772690.1772758.

[136] Saleh ALFahad et al. “Task offloading in mobile edge computing using cost-based
discounted optimal stopping”. In: Open Computer Science 14.1 (2024), p. 20230115.

[137] Qiyuan Wang et al. “Maintenance of model resilience in distributed edge learning en-
vironments”. In: 2023 19th International Conference on Intelligent Environments (IE).
IEEE. 2023, pp. 1–8.

https://api.semanticscholar.org/CorpusID:247218619
https://api.semanticscholar.org/CorpusID:247218619
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103466
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103466
https://www.sciencedirect.com/science/article/pii/S108480452200114X
https://www.sciencedirect.com/science/article/pii/S108480452200114X
https://doi.org/10.1109/ICDM58522.2023.00146
https://doi.org/10.1109/TETC.2024.3390811
https://doi.org/10.1109/TETC.2024.3390811
https://doi.org/10.1145/3299873
https://doi.org/10.1145/3299873
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758

BIBLIOGRAPHY 134

[138] Tehrim Yoon et al. “Fedmix: Approximation of mixup under mean augmented federated
learning”. In: arXiv preprint arXiv:2107.00233 (2021).

[139] TV Nguyen et a. “A novel decentralized federated learning approach to train on globally
distributed, poor quality, and protected private medical data”. In: Scientific Reports 12.1
(2022), p. 8888.

[140] Hongda Wu and Ping Wang. “Probabilistic Node Selection for Federated Learning with
Heterogeneous Data in Mobile Edge”. In: 2022 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE. 2022, pp. 2453–2458.

[141] Yongxin Guo, Xiaoying Tang, and Tao Lin. “FedRC: Tackling Diverse Distribution Shifts
Challenge in Federated Learning by Robust Clustering”. In: arXiv preprint arXiv:2301.12379
(Jan. 2023).

[142] Haoyu Ren, Darko Anicic, and Thomas A Runkler. “TinyReptile: TinyML with Federated
Meta-Learning”. In: arXiv preprint arXiv:2304.05201 (2023).

[143] Hae Beom Lee et al. “Learning to balance: Bayesian meta-learning for imbalanced and
out-of-distribution tasks”. In: arXiv preprint arXiv:1905.12917 (2019).

[144] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach”. In: Adv Neural
Inf Process Syst 33 (2020), pp. 3557–3568.

[145] Sen Lin, Guang Yang, and Junshan Zhang. “A collaborative learning framework via
federated meta-learning”. In: 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS). IEEE. 2020, pp. 289–299.

[146] Jie Yan et al. “Federated clustering with GAN-based data synthesis”. In: arXiv preprint
arXiv:2210.16524 (2022).

[147] Mei Cao et al. “C2s: Class-aware client selection for effective aggregation in federated
learning”. In: High-Confidence Computing 2.3 (2022), p. 100068.

[148] Amirhossein Reisizadeh et al. “Robust federated learning: The case of affine distribution
shifts”. In: Adv Neural Inf Process Syst 33 (2020), pp. 21554–21565.

[149] Jian Xu and Shao-Lun Huang. “A Joint Training-Calibration Framework for Test-Time
Personalization with Label Shift in Federated Learning”. In: 32nd ACM CIKM. 2023,
pp. 4370–4374.

[150] Lei Yang et al. “Personalized federated learning on non-IID data via group-based meta-
learning”. In: TKDD 17.4 (2023), pp. 1–20.

[151] Hong Lang et al. “Augmented Concrete Crack Segmentation: Learning Complete Rep-
resentation to Defend Background Interference in Concrete Pavements”. In: IEEE TIM
73 (2024), pp. 1–13.

BIBLIOGRAPHY 135

[152] Chenyou Fan, Junjie Hu, and Jianwei Huang. “Private semi-supervised federated learn-
ing”. In: International Joint Conference on Artificial Intelligence. 2022.

[153] Sulaiman A. Alghunaim and Kun Yuan. “A Unified and Refined Convergence Analysis
for Non-Convex Decentralized Learning”. In: IEEE Transactions on Signal Processing
70 (2022), pp. 3264–3279.

[154] Xiaomin Ouyang et al. “Clusterfl: a similarity-aware federated learning system for human
activity recognition”. In: Proceedings of the 19th Annual International Conference on
Mobile Systems, Applications, and Services. 2021, pp. 54–66.

[155] Lei Yang et al. “Personalized Federated Learning on Non-IID Data via Group-Based
Meta-Learning”. In: ACM Trans. Knowl. Discov. Data 17.4 (Mar. 2023). issn: 1556-
4681.

[156] Yuwei Sun, Ng Chong, and Hideya Ochiai. “Feature distribution matching for feder-
ated domain generalization”. In: Asian Conference on Machine Learning. PMLR. 2023,
pp. 942–957.

[157] Christopher Briggs, Zhong Fan, and Peter Andras. “Federated learning with hierarchical
clustering of local updates to improve training on non-IID data”. In: 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2020, pp. 1–9.

[158] Avishek Ghosh et al. “An efficient framework for clustered federated learning”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 19586–19597.

[159] Jianfei Zhang and Shuaishuai Lv. “Fedlabcluster: A clustered federated learning algo-
rithm based on data sample label”. In: 2021 International Conference on Electronic
Information Engineering and Computer Science (EIECS). IEEE. 2021, pp. 423–428.

[160] Sen Lin, Guang Yang, and Junshan Zhang. “Real-time edge intelligence in the making:
A collaborative learning framework via federated meta-learning”. In: arXiv preprint
arXiv:2001.03229 (2020).

[161] Weiming Zhuang et al. “MAS: Towards Resource-Efficient Federated Multiple-Task
Learning”. In: IEEE/CVF CVPR. 2023, pp. 23414–23424.

[162] Jiangang Shu et al. “Clustered federated multitask learning on non-IID data with enhanced
privacy”. In: IEEE Internet of Things 10.4 (2022), pp. 3453–3467.

[163] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy constraints”. In: IEEE
transactions on neural networks and learning systems 32.8 (2020), pp. 3710–3722.

[164] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In: arXiv
preprint arXiv:1411.1784 (2014).

BIBLIOGRAPHY 136

[165] Yunlu Yan and Lei Zhu. “A Simple Data Augmentation for Feature Distribution Skewed
Federated Learning”. In: arXiv preprint arXiv:2306.09363 (2023).

[166] Jun Luo and Shandong Wu. “Fedsld: Federated learning with shared label distribution
for medical image classification”. In: 19th IEEE ISBI. 2022, pp. 1–5.

[167] Afroditi Papadaki et al. “Minimax demographic group fairness in federated learning”.
In: 2022 ACM FAccT. 2022, pp. 142–159.

[168] Ahmad Khalil et al. “Label-Aware Aggregation for Improved Federated Learning”. In:
8th FMEC. IEEE. 2023, pp. 216–223.

[169] Yu-Tong Cao et al. “Knowledge-aware federated active learning with non-iid data”. In:
IEEE/CVF. 2023, pp. 22279–22289.

[170] Murali Krishna Ramanathan et al. “Randomized Leader Election”. In: Distrib. Comput.
19.5–6 (Apr. 2007), pp. 403–418.

[171] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. “A Systematic Review
on Imbalanced Data Challenges in Machine Learning: Applications and Solutions”. In:
ACM Comput. Surv. 52.4 (Aug. 2019). issn: 0360-0300.

[172] Amos Tversky. “Features of similarity”. In: Psychological Review 84.4 (1977), pp. 327–
352. issn: 19391471.

[173] Aaron Carass et al. “Evaluating White Matter Lesion Segmentations with Refined
Sørensen-Dice Analysis”. In: Scientific Reports 10, 8242 (May 2020), p. 8242.

[174] Xiaomin Ouyang et al. “ClusterFL: A Clustering-Based Federated Learning System
for Human Activity Recognition”. In: ACM Trans. Sen. Netw. 19.1 (Dec. 2022). issn:
1550-4859.

[175] Enmao Diao, Jie Ding, and Vahid Tarokh. “SemiFL: Semi-supervised federated learning
for unlabeled clients with alternate training”. In: NeurIPS 35 (2022), pp. 17871–17884.

[176] Bowen Zhang et al. “Flexmatch: Boosting semi-supervised learning with curriculum
pseudo labeling”. In: NeurIPS 34 (2021), pp. 18408–18419.

[177] Liang Qiu et al. “Federated Semi-Supervised Learning for Medical Image Segmentation
via Pseudo-Label Denoising”. In: IEEE Journal of Biomedical and Health Informatics
(2023).

[178] Zhengyi Zhong et al. “Semi-HFL: semi-supervised federated learning for heterogeneous
devices”. In: Complex & Intelligent Systems 9.2 (2023), pp. 1995–2017.

[179] Hongyi Zhang et al. “mixup: Beyond empirical risk minimization”. In: arXiv preprint
arXiv:1710.09412 (2017).

[180] Liwei Che et al. “Fedtrinet: A pseudo labeling method with three players for federated
semi-supervised learning”. In: IEEE Intl Conf Big Data. 2021, pp. 715–724.

BIBLIOGRAPHY 137

[181] Xiaoxiao Liang et al. “Rscfed: Random sampling consensus federated semi-supervised
learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 10154–10163.

[182] Sunder Ali Khowaja et al. “Selffed: Self-supervised federated learning for data hetero-
geneity and label scarcity in iomt”. In: arXiv preprint arXiv:2307.01514 (2023).

[183] Aisha Mohamed et al. “Popularity agnostic evaluation of knowledge graph embeddings”.
In: UAI. PMLR. 2020, pp. 1059–1068.

[184] Moming Duan et al. “Astraea: Self-balancing federated learning for improving classifi-
cation accuracy of mobile deep learning applications”. In: ICCD. IEEE. 2019, pp. 246–
254.

[185] Yutong Dai et al. “Tackling data heterogeneity in federated learning with class proto-
types”. In: AAAI. Vol. 37. 6. 2023, pp. 7314–7322.

[186] Aldin Vehabovic et al. “Ransomware Detection Using Federated Learning with Imbal-
anced Datasets”. In: IEEE 20th HONET. IEEE. 2023, pp. 255–260.

[187] Han Wang et al. “Non-IID data re-balancing at IoT edge with peer-to-peer federated
learning for anomaly detection”. In: 14th ACM WiSec. 2021, pp. 153–163.

[188] Hyuck Lee, Seungjae Shin, and Heeyoung Kim. “Abc: Auxiliary balanced classifier for
class-imbalanced semi-supervised learning”. In: NeurIPS 34 (2021), pp. 7082–7094.

[189] Suraj Kothawade et al. “Basil: Balanced active semi-supervised learning for class imbal-
anced datasets”. In: arXiv preprint arXiv:2203.05651 (2022).

[190] Chaoyang He et al. “Ssfl: Tackling label deficiency in federated learning via personalized
self-supervision”. In: preprint arXiv:2110.02470 (2021).

[191] Jieming Bian, Zhu Fu, and Jie Xu. “FedSEAL: semi-supervised federated learning with
self-ensemble learning and negative learning”. In: preprint arXiv:2110.07829 (2021).

[192] Milind Rao et al. “Federated self-learning with weak supervision for speech recognition”.
In: ICASSP. IEEE. 2023, pp. 1–5.

[193] Vasileios Tsouvalas, Aaqib Saeed, and Tanir Ozcelebi. “Federated self-training for semi-
supervised audio recognition”. In: ACM TECS 21.6 (2022), pp. 1–26.

[194] Zhe Zhang et al. “Semi-supervised federated learning with non-iid data: Algorithm and
system design”. In: HPCC. 2021, pp. 157–164.

[195] Taehyeon Kim et al. “Navigating Data Heterogeneity in Federated Learning: A Semi-
Supervised Approach for Object Detection”. In: NeurIPS 36 (2024).

[196] Haowen Lin et al. “Semifed: Semi-supervised federated learning with consistency and
pseudo-labeling”. In: arXiv preprint arXiv:2108.09412 (2021).

BIBLIOGRAPHY 138

[197] Mingzhao Yang et al. “Exploring One-shot Semi-supervised Federated Learning with A
Pre-trained Diffusion Model”. In: arXiv preprint arXiv:2305.04063 (2023).

[198] Te-Chuan Chiu et al. “Semisupervised distributed learning with non-IID data for AIoT
service platform”. In: IEEE Internet of Things Journal 7.10 (2020), pp. 9266–9277.

[199] Ming Li, Qingli Li, and Yan Wang. “Class Balanced Adaptive Pseudo Labeling for
Federated Semi-Supervised Learning”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 16292–16301.

[200] Chao Zhang et al. “Non-IID always Bad? Semi-Supervised Heterogeneous Federated
Learning with Local Knowledge Enhancement”. In: 32nd ACM International Conference
on Information and Knowledge Management. 2023, pp. 3257–3267.

[201] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output Represen-
tation using Deep Conditional Generative Models”. In: NeurIPS. Vol. 28. 2015.

[202] Zonglin Di et al. “Federated Learning with Openset Noisy Labels”. In: (2022).

	Thesis cover sheet
	2024aladwaniphd
	Introduction
	Overview & Contributions
	Research Questions & Solution Overview

	Background

	Edge Computing, Data & Tasks Offloading and Caching
	Introduction
	Related Work
	Data Caching
	Task Caching
	Fuzzy Logic Inference System

	Preliminaries
	Target Data Types and Application Scope
	Service Architecture
	Problem Statement

	Methodology
	Task Management Factors

	Task Management Reasoning
	Fuzzy Logic Inference Modeling
	Two-stage Fuzzy Logic-based Reasoning

	Performance Evaluation
	Experimental Setup for Tasks' Popularities and Data Overlapping
	Experimental Setup
	Comparative Assessment

	Conclusions
	Limitations & Directions of Enhancement

	Node and Relevant Data Selection in Distributed Predictive Analytics: A Query-centric Approach
	Introduction
	Regulatory Constraints and Privacy in Distributed Data Systems
	Background
	Motivation & Challenges
	Contributions

	Related Work
	Node Selection in DPA
	Data Relevance in DPA

	Problem Fundamentals
	Preliminaries & Definitions
	Problem Formulation

	Node & Relevant Data Selection
	Data Relevance Factors: Overview
	Data Relevance based on Factor F1
	Data Relevance based on Factor F2
	Data Relevance based on Factor F3
	Ranking of Suitable Nodes

	Query-centric DML Mechanisms
	Best Node Model Learning
	Aggregate/Weighted Aggregate Model Learning
	Ranking-based Federated Learning
	Ring-based Incremental Learning

	Performance Evaluation
	Experimental Setup
	Baselines & Mechanisms under Comparison
	Performance Metrics & Evaluation
	Limitations & Directions of Enhancement

	Conclusions

	Cluster-based & Label-aware Federated Meta-Learning for On-Demand Classification Tasks
	Introduction
	Related Work
	Target Data Types and Application Scope
	Preliminaries
	The CL-FML Framework
	Overview
	Label-aware Client Clustering
	Cluster-based Multiple Meta-model Learning
	Task-tailored Distributed Meta-model Learning

	Experimental Evaluation
	Experiment Setup
	Main Results

	Conclusions
	Limitations & Directions of Enhancement

	The Price of Labelling: A Two-Phase Federated Self-Learning Approach
	Introduction
	Related Work
	Overview & Fundamentals
	The 2-Phase Federated Self-Learning Framework
	Local Data Augmentation
	2PFL Training Phases

	Experimental Evaluation
	Experimental Set-up
	Experimental Results

	Conclusions
	Limitations & Directions of Enhancement

	Discussion and Conclusion
	Key Contributions
	Data and Task Offloading in Edge Computing
	Node and Data Selection in Distributed Learning
	Cluster-based & Label-aware Federated Meta-Learning
	Self-Learning in Federated Learning with Minimal Labeled Data

	Addressing Future Challenges: Increasing Complexity in Data
	Data Privacy and Access Restrictions
	Increasing Data Heterogeneity

	Future Directions: Adapting to Data Scarcity and Complexity
	Final Remarks

