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Abstract

This thesis investigates macroeconomic volatility through the lens of expectation for-

mation, emphasising the role of belief-driven mechanisms. In particular, I explore the

implications of incorporating Diagnostic Expectations (DE), a recent deviation from the

standard rationality assumption, into macroeconomic models.

The first chapter embeds DE into a Small Open Economy framework à la Justiniano

and Preston (2010), a benchmark model for analysing exchange rate dynamics. Recent

studies show that DE generate excess volatility, short-term extrapolative behaviour and

predictable shifts in investor sentiment, characteristics that align with puzzles in inter-

national macroeconomics, particularly excess exchange rate volatility and exchange rate

disconnect (Obstfeld & Rogoff, 2000). For this reason, DE emerge naturally as a possible

behavioural explanation for these phenomena. In this chapter, I leverage the international

finance nature of the economy to study the interaction between DE and the exchange

rate transmission channel, which is otherwise absent in a closed economy. I parameterise

the model following the open economy literature and show that when the model is popu-

lated with diagnostic agents, the economy exhibits greater volatility vis à vis the rational

model. Moreover, DE introduce an amplification mechanism through shock extrapola-

tion, which helps to qualitatively account for the excess volatility of the real exchange

rate and its disconnection from fundamentals. The degree of departure from Rational

Expectations (RE), captured by the diagnostic parameter, plays a central role in this

extrapolation mechanism, with larger values amplifying the effect. I also use the model

to assess the sensitivity of the results to different parameter values. The main finding

highlights that economic openness and DE do not operate in isolation; rather, they am-

plify each other’s effects. In addition, I show that persistence mechanisms, especially

interest rate smoothing, are essential for translating and intensifying the amplification

effect of DE into short-run macroeconomic dynamics.

The second chapter expands the study of DE within macroeconomic models, now

concentrating on the housing sector. Empirical evidence from the U.S. reveals that the

housing market exhibits an unusually high degree of volatility, with survey-based expecta-

tions displaying biases that challenge the rationality assumption. In addition, traditional
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models often depend on volatile housing preference shocks to account for these fluctua-

tions. In this chapter, I argue that the expectations channel plays a key role in driving

housing market volatility. I incorporate DE into a Two-Agent New Keynesian (TANK)

model featuring a housing and a banking sector to analyse the impact of this departure

from rationality. I calibrate some parameters to the U.S. economy for the post-Volker

- pre-Covid-19 pandemic period and estimate the remaining parameters using Sequen-

tial Monte Carlo methods. I find that DE reduce the volatility of the housing preference

shock by more than one-third relative to RE, while still reproducing the observed housing

market fluctuations. This result holds regardless of whether agents’ imperfect memory

is based on recent or on three-year past experiences. When the expectations channel

is removed, that is, when agents become rational, the model fails to generate the high

volatility in house prices found in the data. These findings emphasise the importance

of the expectations formation process for explaining a substantial part of the “unmod-

eled disturbances that can affect the housing market”, which Iacoviello and Neri (2010)

attribute to a housing preference shock, and in shaping policy responses.

The third chapter extends the previous analyses by further demonstrating the effects

of incorporating DE into macroeconomic models. Survey evidence, first presented by

Coibion and Gorodnichenko (2015), sparked a broader discussion on deviations from

the Full Information Rational Expectations (FIRE) framework (Fuhrer, 2018; Angeletos,

Huo, & Sastry, 2021; Kohlhas &Walther, 2021). Specifically, Coibion and Gorodnichenko

(2015) find that Forecast Errors (FE) and Forecast Revisions (FR) are predictable, sug-

gesting that agents do not fully incorporate available information, a challenge to the FIRE

hypothesis. In this chapter, I explore the impact of DE on the state-space structure of

linear macroeconomic models and the resulting FE and FR across different horizons.

In a three-equation specification, I derive testable expressions in terms of the model-

parameters and also generalise it to the case of larger models. I find that DE intro-

duce predictability in the form of moving average (MA) processes. To assess whether

expectation formation differs across agents, I analyse survey data from the Philadel-

phia Fed’s Survey of Professional Forecasters alongside policymakers’ forecasts from the

Greenbook/Tealbook. The empirical results indicate that one-period-ahead FE gener-

ally follow the MA structures implied by DE, though evidence of overreaction appears

only for GDP growth forecasts and primarily when including the post-pandemic period.

Mixed results are, however, observed in the case of FR. For longer forecast horizons, FE

include autoregressive components deviating from DE, whereas FR align more closely

with DE-driven expectations, suggesting stronger revisions in the direction of the shock

realisation. While these results provide insights into belief formation, they remain far

from conclusive.
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Introduction

Motivation

The long-standing assumption that economic agents form expectations rationally has been

pivotal in macroeconomic models. However, in recent years, the idea that belief-driven

forces shape macroeconomic dynamics has gained increasing attention. An expanding

body of empirical evidence and literature challenges the rational expectations (RE) as-

sumption by revealing systematic deviations from Full-Information Rational Expectations

(FIRE).1 Survey-based analyses of forecast errors from consumers, business, and profes-

sional forecasters indicate consistent predictable patterns, suggesting that agents do not

fully incorporate all available information when forming expectations. This finding con-

tradicts the core premise of FIRE and raises fundamental questions about its validity as

a benchmark, yet consensus on a suitable alternative is still lacking (Reis, 2020).

Understanding belief-driven dynamics is essential for improving macroeconomic mod-

els as it shifts the focus from exogenous disturbances to the internal mechanisms that

shape expectation formation. Traditional models often struggle to replicate observed

macroeconomic volatility without relying on large and unrealistic shocks. Chari, Kehoe,

and McGrattan (2009) highlight that many of these shocks lack solid microeconomic

foundations and exhibit unrealistically high variances. Behavioural deviations offer a po-

tential solution, as they suggest that distortions in expectation formation can amplify

macroeconomic dynamics in a way that aligns more closely with observed data.

Many models now deviate from the traditional FIRE framework in macroeconomics.

Some examples among these include adaptive learning (Evans & Honkapohja, 2001),

sticky information (Mankiw & Reis, 2002), rational inattention (Sims, 2003) and cog-

nitive discounting (Gabaix, 2020). Nevertheless, Diagnostic Expectations (DE) stand

out as a significant recent framework in this area. Formalised by Gennaioli and Shleifer

1A comprehensive list of studies testing the FIRE assumption would be extensive and it is beyond
the scope of this motivation. However, some remarkable examples range from Mishkin (1983), Muth
(1961), Fama (1970) to more recent contributions such as Coibion and Gorodnichenko (2015), Bordalo,
Gennaioli, Ma, and Shleifer (2020), Born, Enders, and Müller (2023), Farmer, Nakamura, and Steinsson
(2024), among others. For a broader literature review, see Coibion, Gorodnichenko, and Kamdar (2018).
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(2010), DE are based on the concept of representativeness heuristic from Kahneman

and Tversky (1972). This heuristic explains a cognitive bias in the human memory re-

call mechanism, whereby an individual overestimates the likelihood of certain outcomes

based on their perception of current conditions. This distortion introduces exaggerated

responses and forward-looking beliefs, which contribute to greater volatility and feed-

back mechanisms that intensify optimism and pessimism. As a result, DE generate more

volatile expectations, amplifying the impact of shocks in macroeconomic models. This

approach successfully captures credit cycle characteristics (Bordalo, Gennaioli, & Shleifer,

2018), as well as observed overreactions in forecast data (Bordalo et al., 2020).

This thesis investigates the qualitative and quantitative role of DE within New Key-

nesian models, moving beyond their initial application in real business cycle frameworks.

The main objective is to leverage DE as an amplification mechanism to explain the ex-

cessive volatility and deviations from fundamentals observed in macroeconomic data. In

particular, this thesis focuses on two core empirical economic patterns: the dynamics

of exchange rates in open economies and the high volatility of the U.S. housing market

relative to fundamentals. These aspects are worth studying not only because exchange

rates shape daily economic interactions and the housing sector reflects broader economic

conditions, but also because both are sensitive to monetary policy decisions.

Belief-driven macroeconomic volatility in exchange rates and housing markets can lead

to policy misjudgments and inefficiencies if traditional models continue to assume RE.

Exchange rate misalignments can distort trade and investment, while housing market

volatility amplifies financial instability, highlighting the need to better understand how

individuals form expectations. By integrating DE into a New Keynesian framework,

this thesis contributes to a growing literature that reassesses economic modelling, policy

design, and market dynamics through the lens of expectations-driven distortions, specif-

ically DE (L’Huillier, Singh, & Yoo, 2021; Bounader & Elekdag, 2024; Bianchi, Ilut, &

Saijo, 2024). Beyond this, I take a step further by examining how DE affect Forecast

Errors (FE) and Forecast Revisions (FR) in a general class of linear models. I derive

testable expressions to assess their alignment with survey data and to offer insights into

the implications of departures from rationality for macroeconomic analysis and forecast-

ing.

Overall, I find that incorporating DE into a Small Open Economy (SOE) offers a

qualitative explanation for the excess volatility of exchange rates and their disconnection

from fundamentals. I also find that a DE-augmented New Keynesian model with a

housing sector demonstrates a stronger empirical fit than a RE model when estimated on

U.S. data. The model successfully captures the housing market fluctuations while relying

on a less volatile housing preference shock, normally used by the rational literature to
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explain these dynamics. Finally, I show that representativeness, as a belief formation

bias, introduces predictable components in the FE and FR from the models, however,

the empirical results are far from conclusive.

The remainder of this Introduction provides a review of the three chapters and outlines

their methodology and results.

Review of Chapters

Chapter 1 explores the role of representativeness, in the form of DE, in shaping macroe-

conomic dynamics within a Small Open Economy (SOE) framework. Traditional models

often struggle to explain why exchange rates exhibit extreme volatility and seem so ap-

parently disconnected from macroeconomic fundamentals, despite their relative stability

(Obstfeld & Rogoff, 2000). Moreover, Devereux and Engel (2002) point out that ex-

change rates may vary dramatically, without being influenced by fluctuations in other

macroeconomic variables. This chapter evaluates whether behavioural deviations pro-

vide a superior explanation compared to traditional RE models.

I embed DE in a version of the Justiniano and Preston (2010) SOE model, where

economic openness activates the exchange rate transmission channel, facilitating an ex-

amination of its interaction with DE. Agents within this economy will assign a higher

probability to states of the world that are more likely tomorrow in light of what they ob-

serve today, relative to what they would have predicted in the previous period. Therefore,

to solve this model (and the model in Chapter 2), I integrate insights from Bordalo et al.

(2018), assuming that agents misperceive the state of the economy, while also adopting

the RE representation of the DE model in terms of its solution structure, as proposed by

L’Huillier et al. (2021) and incorporating the näıveté approach from Bianchi et al. (2024).

The results suggest that the presence of diagnostic agents in a SOE could explain why

exchange rates are excessively volatile and often appear disconnected from fundamentals.

I quantify the impact of DE and its interaction with persistence mechanisms by analysing

second-order moments and impulse responses. A comparison between DE and RE reveals

that a SOE with diagnostic agents is more volatile than one with rational agents, with

the amplification effect varying according to the degree of distortion in agents’ beliefs.

Overall, the chapter qualitatively demonstrates that including representativeness through

DE in a SOE framework provides a robust explanation for the exchange rate puzzle.

Chapter 2 continues the exploration of belief-driven macroeconomic volatility by turn-

ing to the housing sector, where expectations appear to influence market behaviour

(De Stefani, 2021; Adam, Pfäuti, & Reinelt, 2024; Kuchler, Piazzesi, & Stroebel, 2023).
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Similar to exchange rate dynamics, the housing market exhibits characteristics that make

it particularly susceptible to shifts in beliefs and sentiment, thus positioning DE as a suit-

able analytical framework. Building on its effectiveness in explaining credit cycles and

recognising the deep interconnection between credit and housing, this chapter moves be-

yond qualitative discussion by extending and estimating a Two-Agent New Keynesian

(TANK) model with diagnostic agents.

The model integrates elements from Iacoviello and Neri (2010) for the housing sec-

tor and from Gertler and Karadi (2011) for the banking sector. DE influence beliefs as

agents in this model will extrapolate historical patterns resulting in amplified market

responses. Unlike standard models that attribute such fluctuations to large housing pref-

erence shocks, this approach demonstrates that DE provide a more plausible mechanism.

In this chapter, however, I go a step further by considering not only cases where agents

rely on the most recent past, but also those that allow for a slow-moving memory of past

experiences.

I estimate the housing model using Sequential Monte Carlo methods (see Herbst &

Schorfheide, 2014) for the U.S. over the period 1984:Q1 to 2019:Q4. The results confirm

that DE reduce the need for large housing preference shocks by over one-third while still

replicating observed housing market volatility. Without DE, the model either struggles

to generate the pronounced house price fluctuations seen in the data or requires large

and unrealistic shifts in housing preferences. The quantitative analysis also highlights

the importance of recent experiences in shaping expectations, with evidence favouring

the model that includes immediate past events over those that rely on distant memories.

Overall, this chapter reinforces the idea that behavioural distortions, such as DE, are

central to housing market cycles. It provides an empirical evaluation of representativeness

within a model that includes housing and financial frictions, with an estimated diagnostic

parameter value consistent with previous findings. Given the importance of housing in

household decision making, failing to account for expectation-driven distortions could

undermine the effectiveness of monetary policy, as individuals may not respond to policy

changes as intended. Therefore, incorporating DE into policy frameworks would help

Central Banks and policymakers better anticipate and respond to market fluctuations.

Chapter 3 builds on the insights of the previous two chapters by studying how in-

corporating DE affects the state-space representation of a linear macroeconomic model

and its implications for Forecast Errors (FE) and Forecast Revisions (FR) across differ-

ent horizons. The inclusion of DE not only imposes a common structure across model

variables but also adds systematic predictability to the FE and FR, which is consistent

with survey data that challenge the FIRE assumption (Coibion & Gorodnichenko, 2015;
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Kohlhas & Walther, 2021; among others).

The main contribution of this chapter is to develop a general and testable expression

for FE and FR in terms of the state-space solution for linear models with DE. First, by

means of a three-equation model, I show that DE introduce predictability in FE and FR

in the form of a moving average (MA). Second, I extend this result by demonstrating that

in larger models FE and FR follow a vector moving average (VMA) process. Using data

from the Survey of Professional Forecasters and the Greenbook/Tealbook, I examine two

periods: post-Volcker disinflation to pre-pandemic, with an alternative specification that

extends into the post-pandemic period. I am interested in studying several questions, for

instance, whether expectation formation varies across individuals, variables, and forecast

horizons.

Empirical results confirm that FE and FR follow predictable patterns consistent with

the structure generated by DE. However, estimates are mixed. In the univariate case,

some variables exhibit MA structures, while others do not. In contrast, in the multivari-

ate case, a VMA provides the best fit for both FE and FR, reinforcing the idea that belief

distortions play a crucial role in shaping expectations. Nonetheless, capturing extreme

volatility during crises, such as the Great Financial Crisis and the COVID-19 pandemic,

remains a challenge. In general, this chapter is informative rather than conclusive, open-

ing many avenues for further research. The way agents form expectations appears to vary

depending on the individual, the information available, the variables that are forecasted,

and the forecast horizon.
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Chapter 1

The Effects of Diagnostic

Expectations in a Small Open

Economy

1 Introduction

In macro and finance models, deviations from the mainstream hypothesis of ratio-

nal expectations have blossomed in recent years. Among these alternatives, Diagnostic

Expectations (DE) is becoming increasingly popular. Bordalo, Gennaioli, and Shleifer

(2018) developed DE by formalising the concept of representativeness that Kahneman

and Tversky (1972) introduced in their seminal paper. Representativeness describes a

heuristic or shortcut in an individual’s judgemental process, which generates a pattern

of grouping events by similarity around a reference category. By this process, represen-

tativeness produces confusion between representative and likely events, resulting in an

overestimation of its likelihood.

DE therefore offer a source of excess volatility, short-term extrapolative behaviour,

and predictability of investors’ boom-bust sentiment (Bordalo et al., 2018 and Bordalo,

Gennaioli, Shleifer, & Terry, 2021). These are emblematic features in the context of

exchange rates, which have long been recognised as one of the central puzzles in inter-

national macroeconomics. As highlighted by Obstfeld and Rogoff (2000), exchange rates

often exhibit excessive volatility and appear disconnected from macroeconomic fundamen-

tals. The ability of DE to amplify short-term fluctuations and generate excess volatility
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suggests that it may provide a behavioural explanation for these empirical patterns.

Furthermore, evidence from forecast errors supports the idea that market participants

systematically overreact to exchange rate movements. Following Bordalo et al. (2018),

I analyse the predictability of forecast errors using a regression approach in which the

independent variable is the logarithm of the nominal exchange rate for the New Zealand

dollar against the U.S. dollar at time t, whereas the dependent variable is the quarterly

forecast error for the nominal exchange rate, both plotted in Figure 1.1.1 The estimated

coefficient is significant at the 5% level, and its value suggests that a 1% increase in

the nominal exchange rate at time t leads to a 0.0949% overestimation of the exchange

rate at t + 1. This finding provides direct evidence against the full-information rational

expectations assumption in a developed country, reinforcing the role of DE in shaping

exchange rate expectations.2

Figure 1.1: Predictable errors in forecasts of nominal exchange rate.
Note: The data series used to construct the variables in this plot were obtained from the Reserve Bank

of New Zealand (RBNZ). The nominal exchange rate denotes the rate at which one currency is
exchanged for another currency, in this case New Zealand dollar against U.S. dollar. The forecasted
exchange rate is obtained from the RBNZ survey of expectations, which asks for the mid-rate at the

end of next quarter and publishes the mean of the responses.

In this chapter, I explore the implications of incorporating representativeness in the

form of DE into a Small Open Economy (SOE) model à la Justiniano and Preston

(2010b). The motivation to do so is twofold. First, I conduct my analysis using the

1The quarterly forecast error is calculated as the difference between the realised value of the logarithm
of the nominal exchange rate one quarter ahead and the logarithm of the one-quarter-ahead mean forecast.
The time period covers December 2001 until September 2024.

2In developing countries, this also seems to be true, as evidenced in Pozdnyakova (2025).
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Justiniano and Preston (2010b) model because this model has become a common bench-

mark to understand the behaviour of real exchange rates (Dennis, Leitemo, & Söderström,

2006; Alpanda, Kotzé, & Woglom, 2010 and Ca’Zorzi, Kolasa, & Rubaszek, 2017; among

others). Second, I incorporate DE since the previous finding and its inherent features

suggest that the approach could provide a non-rational explanation for key puzzles in

international macroeconomics, particularly those related to exchange rates. Moreover,

by opening up the economy, the exchange rate transmission channel becomes relevant,

and I can study the interaction between DE and openness, as well as the role of DE in

exchange rate volatility and its implications for domestic variables.

This chapter contributes to the literature in three ways. First, in the absence of an

application of DE in a SOE, this is the foremost study to embed and analyse the proper-

ties of DE in an open economy framework. Prior literature focused on how DE affected

closed and medium-scale New Keynesian models (L’Huillier, Singh, & Yoo, 2021; Bianchi,

Ilut, & Saijo, 2021). To solve the model, I employ a log-linearisation strategy in line with

Bordalo, Gennaioli, Shleifer, and Terry (2021). Moreover, I obtain a representation of the

model with diagnostic agents in an alternative way to L’Huillier et al. (2021). Second, this

chapter shows that the presence of diagnostic agents in a SOE offers a behavioural expla-

nation for certain international macroeconomic puzzles, specifically the excess exchange

rate volatility and the exchange rate disconnect puzzle.3 Third, this chapter also studies

aspects of the interaction between DE and the persistence mechanisms that characterise

the model.

Using unconditional variance and impulse responses, I quantify the impact and mag-

nitude of DE in this SOE, as well as their interaction with persistence mechanisms. The

results are meaningful. A SOE populated with diagnostic agents is generally more volatile

than its counterpart with rational expectations (RE). This amplified response suggests

that DE is a helpful mechanism to explain how susceptible an economy is to disturbances.

Moreover, the magnitude of this outcome strongly depends on the degree of distortion in

the agents’ beliefs. As the diagnosticity of agents increases, the economy becomes more

sensitive. However, the amplification effect of DE turns out to be neither homogeneous

nor linear for the SOE’s variables. This emerges as a consequence of persistence mecha-

nisms and the inclusion of endogenous state variables. In addition, I compare the impulse

responses under RE and DE. In most cases there is an initial over-reaction in response

to the shock and a subsequent reversal towards rationality. Such a reversal in behaviour

is not instantaneous due to the presence of persistence mechanisms that propagate DE

3Devereux and Engel (2002) explain these puzzles by stating that “while exchange rate volatility
is ultimately tied to volatility in fundamental shocks to the economy, the exchange rate can display
extremely high volatility without any implications for the volatility of other macroeconomic variables”(p.
4).
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effects in the model.

I also study how changes in the model’s parameterisation amplify or attenuate the

effects of DE. The main result points to the existence of an interaction between the

open economy channel and DE. The most influential parameters on DE’s amplification

mechanism are those related to the openness of the economy, that is, the degree of

openness and the elasticity of substitution between domestic and imported goods. Finally,

I also show how the persistence mechanisms within the model interact with DE, playing a

role in either propagating or muting its effects. Interest rate smoothing interacts with DE

and helps to intensify and prolong its effects after a shock hits the economy. Habits, on

the other hand, neither intensify nor mute DE’s effects in most of the variables. Whereas,

when I add both mechanisms to the diagnostic SOE, I find that interest rate smoothing

governs almost all variables’ reactions, while habits shape the behaviour of consumption,

output, and labour.4

Related Literature

This chapter is linked to very recent articles including DE in macroeconomic models.

The leading works are those of Bordalo et al. (2018), Bordalo, Gennaioli, Shleifer, and

Terry (2021), Maxted (2019) and L’Huillier et al. (2021). These authors incorporate

DE in macro-finance environments. Bordalo et al. (2018) find that including DE in a

macroeconomic model of investment improves its ability to capture and replicate empirical

characteristics with regard to credit cycles. Bordalo, Gennaioli, Shleifer, and Terry (2021)

and Maxted (2019) combine DE in real business cycle models with financial frictions.

Their main results are greater variability in the macroeconomy and the ability to replicate

aspects of financial crises, as well as the countercyclicality of credit spreads.

More closely related to my work are the articles of L’Huillier et al. (2021), Bianchi

et al. (2021) and Na and Yoo (2025). The first authors derive a general framework

to incorporate DE in linear models and demonstrate that DE are a viable behavioural

alternative to generate fluctuations in business cycle models with shocks of more realistic

size. The second authors analyse the inclusion of DE in linear models, with emphasis on

distant memory. In this scenario, they discover that DE create a complex set of dynamics,

marked by significant persistence and sudden changes in the way shocks propagate. The

last authors build on these efforts and extend an open economy real business cycle with

DE. They estimate the model with Argentinean data and find that trend productivity

shocks play a less important role as diagnostic agents perceive transitory shocks to be

more persistent. This helps the DE model outperform the RE one.

4Labour in this model represents hours worked as specified in Justiniano and Preston (2010a). The
original Justiniano and Preston (2010b) model also introduces price indexation. In this chapter, I remove
this after testing whether its inclusion was meaningful for the results.
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This article also relates to an emerging literature that attempts to put together the

pieces of international macroeconomic puzzles. Specifically, those trying to explain ex-

change rate puzzles by introducing behavioural assumptions in macro models. For exam-

ple, Crucini, Shintani, and Tsuruga (2020) include inattentive firms à la Gabaix (2020)

in a two-country sticky price model.5 They show that firm inattentiveness helps account

for complementarity between the purchasing power parity and the law of one price, i.e.

the former being too persistent and the latter insufficiently persistent. Another exam-

ple of a SOE model with bounded rationality is the study of Du, Eusepi, and Preston

(2021). These authors estimate a SOE as in Justiniano and Preston (2010b) with learning.

Their main result is that by including learning, their model is able to generate extrap-

olation bias. This extrapolation, therefore, helps the model to address the persistence

and volatility of the exchange rate, but at the cost of predicting negative international

macroeconomic co-movements between domestic and foreign output growth, that contra-

dict empirical data. Another article is Candian and De Leo (2023), where the authors

develop and include misperceptions and over-extrapolative beliefs in an open economy

model. Their findings suggest that this model reproduces exchange rate dynamics and

also accounts for the observed predictability of forecast errors in interest rates.

In addition, another framework that effectively accounts for exchange rate puzzles by

inducing meaningful volatility is rare (macroeconomic) disasters as in Barro (2006). Guo

(2007) and Farhi and Gabaix (2016) analyse the results of integrating the rare-disasters

framework within a standard SOE. They found that such disaster-based SOE introduces

a higher volatility in stocks and exchange rates as agents are afraid of the possibility of

a disaster happening. The authors conclude that this model is capable of accounting for

various macroeconomic puzzles, both quantitatively and qualitatively.

Structure of the chapter

The chapter is organised as follows. Section 2 explains the main idea behind DE.

Section 3 outlines a SOE. Section 4 introduces DE into this model and explains how to

solve the model. Section 5 discusses the main results. Section 6 presents a sensitivity

analysis. Section 7 concludes.

2 Diagnostic expectations

Bordalo et al. (2018) introduce DE, grounded in psychological evidence, as a way to

model beliefs. They rely on Gennaioli and Shleifer (2010) formalisation of the Kahneman

5In similar lines, Kolasa, Ravgotra, and Zabczyk (2022) also include boundedly rational agents fol-
lowing Gabaix (2020) in an Open Economy New Keynesian model. They use it to analyse monetary
policy implications, and they find that their model solves UIP-related puzzles.
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and Tversky (1972) representativeness heuristic, which describes a systematic departure

on agents’ probabilistic judgements from Bayesian updating. Moreover, Kahneman and

Tversky (1972) define such heuristic by stating that: “an attribute is representative of a

class if it is very diagnostic; that is, the relative frequency of this attribute is much higher

in that class than in the relevant reference class” (p. 296).

Diagnosticity can be thought of as a distortion in an agent’s memory recall mecha-

nism, which provokes a confusion between the concepts of representative and probable.

According to this, an agent would make mistakes by misperceiving an uncommon present

condition, such as the state of the economy, as typical when compared to a certain refer-

ence point. Therefore, she would erroneously assign an inflated probability to the unusual

state, inducing exaggerated responses and also forward-looking beliefs. These ultimately

yield two key features: the kernel of truth property introduced in the psychology literature

and the exemption from the Lucas (1976) critique.

In line with Bordalo et al. (2018), who are the first authors to embed representativeness

in a macrodynamic model as a departure from the rationality assumption, I also apply

this logic to the formation of agents’ beliefs about aggregate economic variables. Likewise,

I define the state of the economy, represented by X, to follow an AR(1) process:

Xt+1 = ρXt + ϵt+1, (1.1)

where ρ ∈ [0,1) is a vector of persistence parameters, and ϵt+1 is normally distributed with

mean zero and standard deviation σϵ. There are two reasons not to change the assumption

of the state’s behaviour as an AR(1) process. First, as Benjamin (2019) suggests, it is

very tractable and displays some convenient formal properties. Second, as L’Huillier et

al. (2021) state, extending such a process in a Dynamic Stochastic General Equilibrium

(DSGE) environment is not crucial given the already complex dynamics introduced by

mechanisms such as habits, indexation, and so on.

At time t, the diagnostic agent will forecast the state of the economy at time t+1. In

doing so, her mind will work searching for and recovering realisations of Xt+1 given Xt,

which are representative relative to some context. This suggests, under the AR(1) process

considered, that the context is limited to information held at t− 1, that is, the agent will

overweight the last realisation of Xt.
6 Bordalo et al. (2018) formalise this overweighting

“as if”the agent uses a distorted density function such:

6Considering past performance of economic variables is important because “it links representativeness
to dynamic inference problems that are important in finance and macroeconomics”(Gennaioli & Shleifer,
2020, p. 145).
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fϕ(Xt+1|Xt) = f(Xt+1|Xt)

[
f(Xt+1|Xt)

f(Xt+1|ρXt−1)

]ϕ
1

Z
, (1.2)

where f(Xt+1|.) stands for the density of Xt+1 conditional on two events: first, the cur-

rent realisation of Xt, and second, the most recent past realisation, ρXt−1, as a reference.

Here, it is worth highlighting how representativeness alters the rational agent’s beliefs,

f(Xt+1|Xt), by the likelihood ratio f(Xt+1|Xt)
f(Xt+1|ρXt−1)

to a degree given by the diagnostic param-

eter ϕ. Moreover, the ratio exhibits that when individuals perceive the state as relatively

more frequent, i.e. diagnostic, it will more easily come to their mind. Consequently, they

will assign a higher probability to a future occurrence of a state based on the realised

Xt in comparison to the past information ρXt−1.
7 Additionally, the constant Z in (1.2)

ensures that the probability distribution fϕ(Xt+1|Xt) integrates to one, and the diagnos-

tic parameter ϕ ∈ [0,+∞) measures the extent of agents’ belief distortions. The closer

ϕ is to zero, the less restricted an agent’s memory is, and thus the more proper use of

information she makes, forming RE in the limit. On the other hand, the greater the value

of ϕ, the more selective the agent’s memory becomes, which increases the likelihood of

easily retrievable representative states being recalled over non-representative ones.

In line with the above, by assuming that Xt+1 is log-normally distributed under the

true target and the comparison one, i.e. ln(Xt+1)|Xt ∼ N(µ0, σ
2
ϵ ) and ln(Xt+1)|ρXt−1 ∼

N(µ−1, σ
2
ϵ ), contributes to generate characteristics about the diagnostic distribution in

(1.2), summarised by Gennaioli and Shleifer (2010). A key aspect is that the distribution

also turns out to be a log-normal distribution, maintaining the same variance, σ2
ϵ , as the

distribution under rationality, but with a distorted mean8:

Eϕt (Xt+1) = Et(Xt+1) + ϕ[Et(Xt+1)− Et−1(Xt+1)]. (1.3)

This equation embodies the so called “kernel of truth”characteristic, which is repre-

sented by the expression ϕ[Et(Xt+1) − Et−1(Xt+1)].
9 This summarises how representa-

tiveness affects agents’ behaviour, who correctly react in the same direction as the new

information, but in an excessive manner. The exaggerated response generates a shift in

the objective distribution of Xt+1. This causes a higher or lower mean compared to the

rational case after a positive or negative new information, respectively.

Figure 1.2, taken from Gennaioli and Shleifer (2020), illustrates the previous mecha-

7Bordalo, Coffman, Gennaioli, and Shleifer (2019) present an illustrative example applying this frame-
work to stereotypes, more precisely, the assessment of the distribution of hair colour among the Irish.

8The formal derivation of this result is presented in Appendix 1.B and follows Bordalo et al. (2018)
and L’Huillier et al. (2021).

9In Macmillan Dictionary (2020), a kernel of truth is defined as “a very small part of something that
is true, wise, etc”.
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nism. The left-most distribution describes the reference scenario, i.e. agent’s beliefs of

future values Xt+1 conditional on current realisations being equal to its expected value.

From the assumed AR(1) process, and after applying the expectation operator, this is

equal to Xt = ρXt−1, represented by µ−1 in the figure.10 The centre distribution also

exhibits agent’s beliefs of future values Xt+1 conditional on the current realisation of Xt.

However, this realisation is influenced by good news ϵt ̸= 0, which explains the shift

of the graph to the right. Lastly, the right-most distribution illustrates the diagnostic

distribution. This is obtained using the two previous distributions and Equation (1.2).

The features introduced by diagnosticity are clearly observed: (i) extrapolation in the

direction of the shock, which generates an inflated mean, as described by equation (3);

(ii) greater weight on states in the direction of the shock, and (iii) a thinner left tail in

line with the base rate neglect.

Figure 1.2: Distribution of ln(X) under Rational and Diagnostic Expectations

(Gennaioli & Shleifer, 2020)

3 A Small Open Economy Model

In this section, I outline a small open economy framework á la Justiniano and Preston

(2010b). This economy is populated by a unit mass of identical households with external

habits, a continuum of monopolistically competitive domestic and retail firms, a Central

Bank, and an exogenous foreign economy. Households supply labour to domestic firms

and consume a basket of domestic and foreign goods. Domestic firms hire labour in a

perfectly competitive market and their pricing decision presents some degree of inertia

through a Calvo-style price rigidity. Retail firms in the SOE are intermediaries that sell

foreign goods in the domestic economy and also set prices in a Calvo-style manner. The

model is closed with a domestic Central Bank following a Taylor-type rule.

10The derivation follows by applying the expectation operator as follows: Et[Xt] = Et[ρXt−1] +Et[ϵt],
and by Et[ϵt] = 0.
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3.1 Households

The economy consists of a unit mass of homogeneous households, as they face the same

budget constraint and they have the same preferences. This allows to focus on a repre-

sentative household who maximises her lifetime utility over consumption and labour, at

each point in time:

U0 = E0

[
∞∑
t=0

βtW (Ct, Lt,Γt)

]
, (1.4)

where the momentary utility function is assumed to be strictly concave, twice continuously

differentiable, satisfy the Inada conditions, and it takes the following form:

W (Ct, Lt,Γt) =
Γt(Ct −Ht)

1−σ

1− σ
− L1+φ

t

1 + φ
, (1.5)

where β ∈ (0,1) represents the household’s rate of time preference; σ, φ > 0 are the

inverse of the inter-temporal elasticity of consumption and labour supply, respectively.

Lt denotes hours of labour supplied and Γt is a consumption preference shock, which

follows Γt+1 = (Γt)
ργe(ϵ

γ
t+1), where ϵγt+1 ∼ i.i.d.[0, σ2

ϵγ ]. Ct denotes agent’s consumption in

time t and Ht ≡ hCt−1 represents the external habit-stock, where h ∈ (0,1) denotes its

degree. Moreover, Ct is a composite index of goods produced domestically and abroad:

Ct ≡

[
(1− α)

1
ηC

η−1
η

H,t + α
1
ηC

η−1
η

F,t

] η
η−1

, (1.6)

where α ∈ [0,1] is a measure of the economy’s degree of openness, also representing the

share of foreign goods in domestic consumption. η > 0 is the elasticity of substitution

between domestic and foreign goods. Following Justiniano and Preston (2010b), CH,t and

CF,t are Dixit-Stiglitz aggregates of domestic and foreign goods, respectively:

CH,t =

[∫ 1

0

CH,t(i)
ϵ−1
ϵ di

] ϵ
ϵ−1

, CF,t =

[∫ 1

0

CF,t(i)
ϵ−1
ϵ di

] ϵ
ϵ−1

,

here ϵ > 1 measures the substitutability between varieties of domestic or foreign goods.11

Finally, each household decides how to optimally assign her expenditure between domestic

11The demand within each category, optimal for any given expenditure, is obtained by solving a
minimisation problem for the good produced domestically, as well as for the good produced overseas,
yielding:

CH,t(i) =
(PH,t(i)

PH,t

)−ϵ

CH,t, CF,t(i) =
(PF,t(i)

PF,t

)−ϵ

CF,t.
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and imported goods. In doing so, she optimises and obtains the following standard

demand functions:

CH,t = (1− α)
(PH,t
Pt

)−η
Ct and CF,t = α

(PF,t
Pt

)−η
Ct, (1.7)

where Pt ≡ [(1− α)P 1−η
H,t + αP 1−η

F,t ]
1

1−η is the domestic consumer price index (CPI).

Households maximise Equation (1.4) while being restricted by an intertemporal budget

constraint given by:

PtCt+Bt+B∗
t st = WtLt+DH,t+DF,t+ Tt+Rt−1Bt−1 + stR

∗
t−1Φt(At−1, Φ̃t)B

∗
t−1. (1.8)

I assume that asset markets are incomplete. Households have access to one-period

domestic bonds (Bt) and one-period foreign bonds (B∗
t ), with their risk-free (gross) re-

turns, Rt−1 and R∗
t−1, respectively. Moreover, I follow Schmitt-Grohé and Uribe (2003)

and add a debt elastic interest rate premium Φt(At−1, Φ̃t). This is implemented to induce

stationarity in an open economy model. It is assumed to take the functional form:

Φt = e−[χAt−1+Φ̃t],

At−1 ≡
st−1B∗

t−1

Ȳ Pt−1
is the real quantity of outstanding foreign debt expressed in domestic cur-

rency as a fraction of steady-state output, as defined in Justiniano and Preston (2010b).

Φ̃t is a risk premium shock, which follows Φ̃t+1 = (Φ̃t)
ρΦ̃e(ϵ

Φ̃
t+1). st is the nominal exchange

rate expressing the price of the foreign currency in terms of the domestic one. Households

earn income in the form of nominal wages Wt and dividends from domestic and retail

firms, DH,t and DF,t, since they are the owners of both firms. Finally, Tt denotes a lump

sum government transfer.

The household chooses {Ct, Lt, Bt, B
∗
t }∞t=0 to solve her optimisation problem, which

can be represented using the Lagrangian method as:

L =E0

∞∑
t=0

{
βt

[(
Γt(Ct −Ht)

1−σ

1− σ
− L1+φ

t

1 + φ

)
+ λt

(
PtCt +Bt +B∗

t st −WtLt

−DH,t −DF,t − Tt −Rt−1Bt−1 − stR
∗
t−1Φt(At−1, Φ̃t)B

∗
t−1

)]}
.

(1.9)

The optimal conditions of this Lagrangian with respect to Ct, Lt, Bt and B
∗
t generate

the following intratemporal and intertemporal conditions:
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∂L

∂Ct
: Γt(Ct −Ht)

−σ − λtPt = 0, (1.10)

∂L

∂Lt
: −Lφt +Wtλt = 0, (1.11)

∂L

∂Bt

: −λt + βRtEt[λt+1] = 0, (1.12)

∂L

∂B∗
t

: −λtst + βR∗
tEt[λt+1st+1Φt+1(At, Φ̃t+1)] = 0. (1.13)

After some work, these conditions boil down to the typical labour supply equation

(1.14) and an Euler equation (1.15):

Γt(Ct − hCt−1)
−σWt

Pt
= Lφt , (1.14)

βRtEt

[
Pt
Pt+1

(
Ct+1 − hCt
Ct − hCt−1

)−σ
Γt+1

Γt

]
= 1. (1.15)

3.2 Firms

3.2.1 Technology

Domestic firms produce domestic goods using the following production technology, where

the level of technology Zt is assumed to be the same among the firms.

Yt(j) = ZtLt(j). (1.16)

These firms hire labour in a perfectly competitive market, taking wages as given. Zt

follows Zt+1 = (Zt)
ρζe(ϵ

ζ
t+1), and ϵζt+1 ∼ i.i.d.[0, σ2

ϵζ
]. A firm’s marginal cost of production

under this technology is defined as MCH,t =
Wt

PH,tZt
. Each firm minimises its cost subject

to the good’s demand by choosing how much labour to hire.

3.2.2 Price Setting of Domestic firms

Domestic firms set prices in a staggered manner, more specifically, they follow a Calvo-

style price setting. They receive a random draw each period from a Bernoulli distribution.

This draw indicates whether each firm is able to re-optimise and set a new price with

probability (1−θH), or whether a firm is not able to adjust its price, with probability θH .

Since all firms able to set their price in period t, after a successful draw, have the same

decision problem, they will choose a common price. Hence, the Dixit-Stiglitz aggregate

domestic price index evolves as:
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PH,t =

[
(1− θH)P

′1−ϵ
H,t + θHP

1−ϵ
H,t−1

] 1
1−ϵ

. (1.17)

When optimising a new price P ′
H,t, a firm seeks to maximise the expected present

discounted value of profits subject to its demand curve:

max
P ′
H,t

V H
t (i) = Et

∞∑
T=t

(θH)
T−t
[
Qt,TYH,T (i)

(
P ′
H,t − PH,TMCT

)]
subject to: YH,t(i) ≤

(
P ′
H,t

PH,T

)−ϵ

(CH,T + C∗
H,T )

Qt,T = βT
(
XT

Xt

)−σ Pt

PT
,

where MCT is the real marginal cost, as previously specified, and XT represents the

marginal utility at time T . The factor (θH)
T−t accounts for a firm’s possibility of not

being able to reset its price in the next (T − t) periods. The first-order condition of this

problem is:

∂V H
t (i)

∂P
′
H,t

: Et
∞∑
T=t

(θH)
T−t

[
Qt,TYH,T (i)

(
P

′

H,t −
ϵ

ϵ− 1
PH,TMCT

)]
= 0, (1.18)

replacing Qt,T and rearranging:

∂V H
t (i)

∂P ′
H,t

: Et
∞∑
T=t

(βθH)
T−t

[
X−σ
T YH,T (i)

(
P ′
H,t −

ϵ

ϵ− 1
PH,TMCT

)]
= 0, (1.19)

solving the previous expression for P ′
H,t gives the following condition:

P ′
H,t =

ϵ

ϵ− 1

Et
∑∞

T=t (βθH)
T−tX−σ

T YH,T (i)PH,TMCT
Et
∑∞

T=t (βθH)
T−tX−σ

T YH,T (i)
, (1.20)

which I express in terms of two auxiliary variables K1,t and K2,t:

P ′
H,t =

ϵ

ϵ− 1

K1,t

K2,t

. (1.21)

3.2.3 Price setting of Retail firms

In addition to domestic firms, there is a continuum of retail firms importing differentiated

goods, the prices of which are assumed to satisfy the law of one price at the docks. These

firms have a certain degree of power when setting their prices in the domestic market,
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given that they are assumed to be monopolistically competitive. This leads to violations

of the law of one price in the form of short-run deviations. Moreover, similar to domestic

firms, retailers are assumed to set prices à la Calvo, i.e. with a probability (1 − θF ) a

firm will optimally set its price, while with a probability θF it will not. Analogously to

the domestic case, the Dixit-Stiglitz aggregate price index for a retailer’s price evolves as

follows:

PF,t =

[
(1− θF )P

′1−ϵ
F,t + θFP

1−ϵ
F,t−1

] 1
1−ϵ

. (1.22)

The optimisation problem of a retailer firm is alike the domestic one. Here, a firm will

choose P ′
F,t to maximise the expected present discounted value of profits, subject to the

domestic demand curve of foreign goods:

max
P ′
F,t

V F
t = Et

∞∑
T=t

(θF )
T−t
[
Qt,TCF,T (i)

(
P ′
F,t −NT sTP

∗
F,T (i)

)]
subject to: CF,T (i) ≤

(
P ′
F,t

PF,T

)−ϵ

CF,T

Qt,T = βT
(
XT

Xt

)−σ Pt

PT
,

where Nt is a shock to the markup of import prices over marginal costs, which follows

Nt+1 = (Nt)
ρνe(ϵ

ν
t+1) and ϵνt+1 ∼ i.i.d.[0, σ2

ϵν ].

The first-order condition of a retailer’s problem is:

∂V F
t (i)

∂P ′
F,t

: Et
∞∑
T=t

(θF )
T−t

[
Qt,TCF,T

(
P ′
F,t −

ϵ

ϵ− 1
NT sTP

∗
F,T (i)

)]
= 0, (1.23)

replacing Qt,T from the Euler equation and rearranging:

∂V F
t

∂P ′
F,t

: Et
∞∑
T=t

(βθH)
T−t

[
X−σ
T CF,T (i)

(
P ′
F,t −

ϵ

ϵ− 1
NT sTP

∗
F,T (i)

)]
= 0. (1.24)

Solving the previous expression for P ′
F,t gives the following condition:

P
′

F,t =
ϵ

ϵ− 1

Et
∑∞

T=t (βθF )
T−tX−σ

T CF,T (i)NT sTP
∗
F,T

Et
∑∞

T=t (βθF )
T−tX−σ

T CF,T (i)
, (1.25)

which I express in terms of two auxiliary variables J1,t and J2,t:

P
′

F,t =
ϵ

ϵ− 1

J1,t
J2,t

. (1.26)
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3.3 Consumer Price Index, Real Exchange Rate, Terms of Trade,

Law of One Price gap

In this section, I introduce key definitions of variables common in open economies, such

as Terms of Trade (TOT), CPI, Real Exchange Rate (RER) and Law of One Price gap

(LOP).

First, TOT are defined as the ratio of foreign to domestic prices, i.e., how much of

foreign goods can be bought with one unit of home good. A greater value for TOT is

equivalent to an improvement of the domestic economy’s competitiveness, which could

be due to an increase in foreign prices and/or to a fall in domestic prices.

tott =
PF,t
PH,t

. (1.27)

The CPI was introduced previously as part of the household’s budget constraint, and

it is repeated here:

Pt ≡ [(1− α)(PH,t)
1−η + α(PF,t)

1−η]
1

1−η . (1.28)

In order to define the RER, I first need to introduce the nominal exchange rate st, which

expresses the price of a foreign currency in terms of a domestic currency. A depreciation

of the domestic currency occurs when st increases, which affects the RER in the same

direction:

Qt =
stP

∗
t

Pt
. (1.29)

Next, the LOP gap is defined as a wedge between the world price of foreign goods

(numerator) in domestic currency, with respect to the domestic price of these goods

(denominator):

Ψt =
stP

∗
t

PF,t
. (1.30)

3.4 Uncovered Interest Rate Parity

Under the assumption of incomplete international financial markets, the equilibrium con-

dition among prices in the domestic currency of foreign and domestic bonds yields the

Uncovered Interest rate Parity (UIP) condition. To obtain such a condition, divide Equa-

tion (1.12) by Equation (1.13):

λt/Rt

λtst/R∗
t

= Et

[
βλt+1

βλt+1st+1Φt+1(At, Φ̃t+1)

]
, (1.31)
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which after cancelling and rearranging yields the UIP condition:

Et
[st+1

st
R∗
tΦt+1(At, Φ̃t+1)

]
= Rt. (1.32)

3.5 Flow Budget Constraint, Trade Balance and Net Capital

Account

To obtain the flow budget constraint, first I divide the household’s budget constraint

(1.8) by Pt and multiply and divide its last right-hand side term by st−1 and Pt−1.

Ct+
Bt

Pt
+
B∗
t st
Pt

=
WtLt +DH,t +DF,t + Tt

Pt
+
Bt−1Rt−1

Pt
+
B∗
t−1stR

∗
t−1Φt(At−1, Φ̃t)

Pt

st−1

st−1

Pt−1

Pt−1

.

(1.33)

Next, I assume that domestic bonds, Bt, are in net zero supply and that lump sum

taxes are zero. In addition, using the expressions for profits of the domestic and retailer

firms, ΠH,t = PH,t(CH,t + C∗
H,t) − WtLt and ΠF,t = PF,tCF,t − stP

∗
t CF,t, the definition

of total domestic output, Yt = CH,t + C∗
H,t and the definition of the real quantity of

outstanding foreign debt At, I obtain the following:

Ct + Y At = P̃H,tYt + (P̃F,t −
stP

∗
t

Pt
)CF,t +

st
st−1

R∗
t−1

πt
At−1Φt(At−1, Φ̃t), (1.34)

where I use the following definitions P̃H,t ≡ PH,t/Pt, P̃F,t ≡ PF,t/Pt, as well as the

expressions for the RER (1.29) and the demand for imported goods (1.7), which yield:

Y At −
st
st−1

R∗
t−1

πt
At−1Φt(At−1, Φ̃t) = P̃H,tYt − Ct + α(P̃F,t −Qt)P̃

−η
F,tCt. (1.35)

Notice that expression (1.35) is the international balance of payments of the SOE,

where the left-hand side represents the net capital account, and the right-hand side the

net trade balance.

3.6 Equilibrium-Aggregate demand and output

The equilibrium in the SOE’s goods market requires that total domestic production equals

the sum of domestic and foreign consumption of home-produced goods:

Yt = CH,t + C∗
H,t, (1.36)

which after replacing for CH,t and C
∗
H,t, where the latter, the foreign demand for the good
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produced domestically, is assumed to be C∗
H,t =

(
stP ∗

H,t

P ∗
t

)−η∗
Y ∗
t
12:

Yt = (1− α)

(
PH,t
Pt

)−η

Ct +

(
stP

∗
H,t

P ∗
t

)−η

Y ∗
t . (1.37)

3.7 Central Bank interest rate setting

To close this SOE, I specify the behaviour of a domestic Central Bank which follows a

Taylor-type rule. This Central Bank aims to stabilise inflation and output growth by

reacting to movements in CPI and output growth. Moreover, the interest rate in the

current period is also driven by the interest rate in the previous period.

Rt = RωR
t−1

(
Pt
Pt−1

)ωπ
(

Yt
Yt−1

)ω∆y

Mt, (1.38)

ωR is the degree of interest rate smoothing, ωπ and ω∆y are the feedback coefficients

on CPI inflation and real output growth, respectively. Finally, Mt is a monetary policy

shock, which follows Mt+1 = (Mt)
ρµe(ϵ

µ
t+1), and ϵµt+1 ∼ i.i.d.[0, σ2

ϵµ ].

3.8 The Foreign Economy

In setting the foreign economy, I follow Gali and Monacelli (2005) assuming that it is

exogenous to the SOE. Furthermore, it is characterised by Π∗
t and R

∗
t being constant and

by world output evolving as:

Y ∗
t+1 = (Y ∗

t )
ρy∗e(ϵ

y∗
t+1), (1.39)

where ϵy
∗

t+1 ∼ i.i.d.[0, σ2
ϵy∗

].

3.9 Log-linear Approximation of the Model

This subsection exhibits the log-linear approximation around a non-stochastic zero-inflation

steady state of the optimality conditions previously presented.13 The variables in this

section are defined as log deviations from their respective steady-state values. First,

I consider the domestic economy’s conditions and then those pertaining to the foreign

economy. The result of log-linearly approximating the household’s Euler equation (1.15)

12For simplicity, I assume that the elasticity of substitution between domestic and foreign produced
goods is the same in the SOE and the rest of the world, η = η∗.

13Appendix 1.A shows the full derivation of these and complementary conditions.
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is:

ĉt − hĉt−1 = Et[ĉt+1]− hĉt −
1− h

σ
(it − Et[πt+1]− ρ) +

1− h

σ
(γt − Et[γt+1]), (1.40)

where ρ = β−1 − 1 and denotes the rate of time preference.

Next, to obtain an expression of domestic output, I log-linearise the goods market

clearing condition equation (1.37) yielding:

ŷt = (1− α)ĉt + αη(2− α) ˆtott + αηψ̂t + αŷ∗t , (1.41)

where ψt is obtained after log-linearising the LOP gap equation (1.30):

ψ̂t = q̂t − (1− α) ˆtott. (1.42)

I derive the following expression for TOT after log-linearising Equation (1.27) and

taking first differences. This facilitates the interpretation of changes in the TOT as the

difference between foreign-goods and domestic-goods inflation.

∆ ˆtott = πF,t − πH,t. (1.43)

A similar process of log-linearising and taking first differences is applied to the CPI

definition in Equation (1.28):

πt = (1− α)πH,t + απF,t, (1.44)

which after using the previous expression can be expressed as:

πt = πH,t + α∆ ˆtott. (1.45)

Turning to the domestic firms’ price-setting optimality condition, after log-linearising

Equation (1.21) and some rearrangement, I obtain the following domestic Phillips curve:

πH,t = λHm̂ct + βEt[πH,t+1], (1.46)

where λH = (1−θ)(1−θβ)
θ

and the log-linear real marginal cost is, after some replacements:

m̂ct = φŷt − (1 + φ)ζt + α ˆtott +
σ

1− h
(ĉt − hĉt−1). (1.47)
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Retailers’ Phillips curve is obtained in a similar way, after log-linearising and rearrang-

ing Equation (1.26):

πF,t = λF (ψ̂t + νt) + βEt[πF,t+1], (1.48)

where λF = (1−θF )(1−θF β)
θF

.

Log-linearising the uncovered interest rate parity condition in Equation (1.32) and

using the definition of real exchange rate, I obtain:

(it − Et[πt+1])− (i∗t − Et[π∗
t+1]) = Et[∆qt+1]− χat − Et[ϕ̃t+1], (1.49)

while by log-linearising the expression for the flow budget constraint in Equation (1.35)

yields:

ât − β−1ât−1 = yt − ĉt − α( ˆtott + ψ̂t). (1.50)

at = log(etB
∗
t /PtȲ ) defines the log real net foreign asset position as a fraction of

steady-state output and determines the evolution of debt in the model. The right-hand

side is the trade balance:

n̂xt = ŷt − ĉt − α( ˆtott + ψ̂t). (1.51)

Next, I log-linearise the monetary policy rule in Equation (1.38):

it = ρ+ ωRit−1 + ωππt + ω∆y∆ŷt + µt. (1.52)

Finally, I present the log-linear representation of the evolution of foreign output and

the shock processes.

The rest of the world’s output evolves as:

ŷ∗t+1 = ρy∗ ŷ
∗
t + ϵy

∗

t+1. (1.53)

Productivity shock AR(1) process:

ζt+1 = ρζζt + ϵζt+1. (1.54)

Preference shock AR(1) process:

γt+1 = ργγt + ϵγt+1. (1.55)

25



Monetary shock AR(1) process:

µt+1 = ρµµt + ϵµt+1. (1.56)

Mark-up of import prices over marginal cost shock AR(1) process:

νt+1 = ρννt + ϵνt+1. (1.57)

Finally, risk premium shock AR(1) process:

ϕ̃t+1 = ρϕ̃ϕ̃t + ϵϕ̃t+1. (1.58)

4 Diagnostic Small Open Economy Model and Solu-

tion Methods

The Diagnostic Small Open Economy (DSOE) is formed by a similar set of agents,

households and firms, as well as a Central Bank. Unlike rational agents, these households

and firms are assumed to form expectations about future variables diagnostically. In a

log-linear context as the one specified in the previous section, in which the true data

generating process of the vector of the exogenous state variable follows an AR (1) process

such as Xt+1 = ρXt + ϵt+1, diagnosticity implies that agents perceive this process as an

ARMA(1,1), Xt+1 = ρXt+ρϕϵt+ϵt+1, instead. This result follows the Bordalo, Gennaioli,

Shleifer, and Terry (2021) approach when calculating the diagnostic distribution of each

state variable applying Equation (1.2), which finally delivers the diagnostic distribution14:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

(
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

(
ρx̄t − ρ2x̄t−1

)]
+ (ρx̄t)

2

+ ϕ
[
(ρx̄t)

2 − (ρ2x̄t−1)
2
] })

Z,

(1.59)

where x̄t−1 denotes the realisation of the random variable x in period t − 1, while x̄t is

the realisation in time t and Z is a normalising constant.

The strategy I follow to solve the log-linear model adopts Bordalo, Gennaioli, Shleifer,

and Terry (2021) idea of a diagnostic agent forecasting future state variables “as if”they

follow an ARMA(1,1) process, and also the idea of these agents continuing to believe the

same in the future. That is, I solve the model as if the true process of the exogenous

14The derivation of the expression is presented in Appendix 1.B.
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states is an ARMA (1,1) and then eliminate the MA terms. By doing so, the linear

solution of such model will not just link the decision variables to the exogenous states

and the predetermined variables, it will also link them to the realisations of the shocks.

I represent the model by closely following Dennis (2020) as:[
A11 A12

A21 A22

][
st+1

Etdt+1

]
=

[
B11 B12

B21 B22

][
st

dt

]
+

[
C1

0

] [
ϵt+1

]
. (1.60)

Here, st denotes the vector of state and predetermined variables, while dt is the vector

of decision variables. In this model, the vector st will then include exogenous state

variables, predetermined variable, as well as realisations of the shocks:

s
′

t = [ϵt,γ ϵt,ζ ϵt,µ ϵt,ν ϵt,ϕ ϵt,y∗ γt ζt µt νt ϕt y
∗
t

yt−1 ct−1 πH,t−1 it−1 et−1 st−1 πF,t−1 qt−1 at−1],

which can be re-expressed using sub-vectors sϵt for the lagged innovations to the shocks,

sexot for the exogenous state variables, and sendot for the endogenous state variables as:

s
′

t = [sϵt s
exo
t sendot ].

The vector of the decision variables, dt, will include:

d
′

t = [yt ct πH,t πt it et st qt mct ψt πF,t at lt wt ∆et].

In order to solve the model, first a linear solution of the form dt = Fst is conjectured

linking the decision variables to the shocks’ realisations, exogenous states, and predeter-

mined variables. Second, after some algebra, an expression for matrix F is obtained and

then computed using direct iteration. Third, with this result for matrix F, a solution for

matrix M can also be obtained, and thus the law of motion for the vector st. At this

stage, both the RE and the DE models have been solved. For exposition purposes, I

divide matrix M and F into three submatrices, depending on which sub-vector of st
′ they

multiply. I re-rewrite the solution as:

s
′

t+1 =Mϵs
ϵ
t

′
+Mexos

exo
t

′
+Mendos

endo
t

′
+ Cϵt+1.

d
′

t = Fϵs
ϵ
t

′
+ Fexos

exo
t

′
+ Fendos

endo
t

′
.

The submatrices Fexo, Fendo, which link the exogenous and the predetermined variables

to the decision variables, as well as Mexo and Mendo, which govern the evolution of ex-
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ogenous and predetermined variables, remain identical under both RE and DE. The core

distinction arises in how agents perceive the shocks. Rational agents correctly interpret

the shocks as AR(1), resulting in zero entries in the submatrices Fϵ and Mϵ. In contrast,

diagnostic agents misperceive the shocks as ARMA(1,1), resulting in non-zero values in

Mϵ that capture the moving average components, and in Fϵ to reflect the extrapolation

of the lagged innovations to the shocks throughout the economy. In the last step, I set

the coefficients on the MA terms in Mϵ to zero, ensuring that any further analysis is

performed under the true data-generating process while still assuming that the agents

have DE. This dependency on the realisation of the shocks is also obtained by L’Huillier

et al. (2021).

5 Results and Numerical Analysis

5.1 Parameterisation

Table 1.1 shows the parameterisation of the model. The discount factor, β, is set to

0.99, a value widely used for quarterly models. With the model then parameterised for

a quarterly frequency, this results in an annualised real interest rate of 4%. The value

of the inverse of the intertemporal elasticity of consumption, σ, is taken from Hoffmann,

Søndergaard, and Westelius (2011) and is equal to 3.5. This value is within the range

frequently used in the open economy literature.15 The inverse elasticity of labour supply,

φ, is set to 1/3. The degree of openness, or the share of foreign goods in consumption, α,

is set to 0.2, while the elasticity of substitution between domestic and imported goods,

η, is equal to 0.75. These values fall within the range of those found using data from

small open economies and are further corroborated by the meta-analysis study conducted

by Bajzik, Havranek, Irsova, and Schwarz (2019). The elasticity of the risk premium to

net foreign assets, χ, is equal to 0.01, as normally found in this literature. The habit

parameter is 0.6 following the work of Leith, Moldovan, and Rossi (2012); this value is

supported by the meta-analysis of Havranek, Rusnak, and Sokolova (2017).

The probabilities for domestic and retail firms to reset their prices, θH and θF , re-

spectively, are set in line with the results of Mihailov, Rumler, and Scharler (2011) for

European countries and with the values used by Justiniano and Preston (2010b). An un-

successful re-optimisation probability of 0.75 implies an average duration between price

changes of 4 quarters. Turning to the Taylor rule coefficients, ωi, ωπ and ω∆y, their values

are chosen to be 0.85, 2.5 and 0.5, as in Hoffmann et al. (2011).

15Gali and Monacelli (2005) assign a value of one to this parameter, meaning consumption reacts
directly to changes in the real interest rate, while Steinsson (2008) chooses a value of 5, which implies a
lower intertemporal elasticity.
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Table 1.1: Benchmark calibration

Description Parameter Value

Discount factor β 0.99
Inverse elasticity of inter-temporal substitution σ 3.5
Inverse elasticity of labour supply φ 1/3
Elasticity of risk premium to net foreign assets χ 0.01
Habit parameter h 0.6
Share of foreign goods in consumption α 0.2
Elasticity of substitution between domestic and imported goods η 0.75
Domestic price Calvo parameter θH 0.75
Import price Calvo parameter θF 0.75
Taylor rule smoothing parameter ωR 0.85
Taylor rule inflation feedback parameter ωπ 2.5
Taylor rule output growth feedback parameter ω∆y 0.5
Productivity shock AR(1) parameter ρζ 0.9
Preference shock AR(1) parameter ργ 0.9257
Monetary shock AR(1) parameter ρµ 0.5
Cost-push shock AR(1) parameter ρν 0.9352
Risk premium shock AR(1) parameter ρϕ 0.94
Foreign output AR(1) parameter ρy∗ 0.86
Standard deviation of productivity innovation 100*σϵζ 0.37
Standard deviation of preference innovation 100*σϵγ 0.1610
Standard deviation of monetary innovation 100*σϵµ 0.25
Standard deviation of cost-push innovation 100*σϵν 1.57
Standard deviation of risk premium shock 100*σϵϕ 0.25
Standard deviation of foreign output innovation 100*σϵy∗ 0.78
Diagnostic parameter ϕ 0.8

The autoregressive coefficient for the technology shock, ρa, is equal to 0.90 and is

based on Monacelli (2005). The persistence of the preference and the cost push shock,

0.92 and 0.93 respectively, are taken from Dennis et al. (2006). In addition, the value 0.86

for ρ∗y is the same as in Gali and Monacelli (2005). The value of the persistence of the

risk premium shock is set as in Justiniano and Preston (2010b). Finally, the diagnostic

parameter, ϕ, is equal to 0.8, which is taken from Bordalo, Gennaioli, Kwon, and Shleifer

(2021), who state that this value is in line with quarterly estimates from macro- and

financial data surveys.

5.2 Results

In this section, I present the results from solving the rational and diagnostic models using

the above parameterisation. Upon solving the model, I compute unconditional standard

deviations. Additionally, I simulate impulse responses to analyse the reactions of variables

when subjected to various shocks in the economy under each beliefs formation framework.
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5.2.1 Unconditional volatility

Table 1.2 shows unconditional standard deviations for nominal exchange rate growth,

annualised imported-goods inflation, annualised domestic-goods inflation, marginal costs,

the annualised nominal interest rate, annualised consumer price index inflation, the real

wage, the law of one price gap, the real exchange rate, output, consumption, labour, and

the terms of trade under rationality and diagnosticity.

Table 1.2: Unconditional standard deviations

Variable Rational Expectations Diagnostic Expectations Percentage increase

Nominal Exchange Rate growth 2.283 4.374 91.6%
Imported-goods Inflation 2.508 3.394 35.3%
Domestic-goods Inflation 0.825 1.099 33.2%
Marginal Cost 0.906 1.158 27.8%
Nominal interest rate 0.944 1.114 18.0%
CPI 0.402 0.465 15.6%
Real wage 1.775 2.026 14.1%
Law of one price 4.637 5.287 14.0%
Real Exchange Rate 7.126 7.838 9.9%
Output 1.422 1.525 7.2%
Consumption 0.572 0.606 6.0%
Labour 1.470 1.554 5.7%
Terms of trade 5.709 5.988 4.8%

By comparing the volatility measures of the SOE under RE and DE, I find that adding

DE causes volatility to be generally higher throughout this economy. When ordering the

variables in this table by the percentage increase of their unconditional standard devi-

ation, it turns out that the variables most affected are prices, while the least affected

are the real variables. Among the former, the nominal exchange rate (NER) growth

and imported-good and domestic-good inflation exhibit the greatest effect, with changes

of 91.6%, 35.3% and 33.2%, respectively. Among the latter, consumption, labour, and

the terms of trade show the smallest impact with changes between 4% and 6%. These

increases in volatility are a product of the extrapolation of errors in expectations that

diagnosticity introduces in the model. Concretely, the presence of endogenous variables

and persistence mechanisms helps to further propagate these errors throughout the econ-

omy, generating the final amplification effect, which happens in a heterogeneous manner.

These results are qualitatively in line with L’Huillier et al. (2021), but in a different

context, as they focus on closed economies, while I analyse an open economy model.

5.2.2 Impulse Response Functions

The SOE is affected, as in Justiniano and Preston (2010b), by six different shocks: (i)

a productivity shock, (ii) a monetary policy shock, (iii) an aggregate preference shock,
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(iv) a markup of imported prices shock, (v) a shock to foreign output, and (vi) a risk-

premium shock. The plots of the impulse responses depict variables’ responses in dashed

black lines when agents form expectations rationally, while in red solid lines when agents

form expectations diagnostically.

5.2.2.1 Technology shock: a positive technology innovation of one standard devi-

ation rises labour productivity, generating an increase in the real wage (panel N), which

causes domestic firms to demand less of this input (panel M), thus pushing their marginal

costs down (panel O). This drop in marginal costs is reflected as a fall in domestic-goods

inflation (panel C). This happens since the proportion of domestic firms able to re-

optimise cut prices in response to the marginal costs drop, given their desire to maintain

their markup. In consequence, the competitiveness of the SOE is positively affected, i.e.

the terms of trade increases (panel I). However, the magnitude of this increase does not

outweigh the decrease in domestic-goods inflation and therefore CPI inflation falls (panel

E). The Central Bank, which follows a Taylor rule reacting to the last period nominal

interest rate, CPI inflation, and output growth, responds by lowering the nominal interest

rate (panel F). In response to the shock and the rise in consumption, output (panel A)

positively deviates from its steady state. This increase in consumption (panel B) occurs

modestly at the beginning given the early positive real interest rate (panel G). As soon

as the real interest rate starts falling, households further increase their consumption.

This leads, by the UIP condition, to an augmented expected nominal return from the

domestic risk-free bonds with respect to its foreign counterpart, causing nominal and real

exchange rates to initially depreciate (panel J and panel K). The consequence of this is

a positive deviation from the law of one price gap (panel H) and, therefore, an increase

in imported-goods inflation (panel D). This reaction contributes to the rise in the TOT

and enhances domestic production (substitution effect). By requiring higher production,

firms will demand more labour, moving the marginal costs, and the rest of the variables

back towards the steady state.

When agents are diagnostic, the impulse responses are mainly characterised by initial

overreactions. At the time the productivity shock hits the economy, agents react in

the same direction as in the rational case, although sometimes less-so. This reaction

is so because diagnostic agents believe that the law of motion of this shock follows an

ARMA(1,1) process instead of the true AR(1). Therefore, they assign a higher probability

to a scenario in which workers are more productive in the next period after the shock,

which would imply a higher wage. Thus, firms will demand less labour tomorrow than

today. In addition, as households unrealistically believe that they will be richer, they swap

current leisure for future leisure. Altogether, this generates a higher positive response in
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Figure 1.3: Impulse responses to a one standard deviation productivity shock.
Each panel depicts the response of output, consumption, annualised domestic-goods and

imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,
annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage

and marginal cost. The black dotted lines represent the impulse responses when agents form
expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are

formed diagnostically.

the real wage and a smaller drop in marginal costs, under DE than RE.16 This is reflected

in a higher initial output. Prices fall by more than under rationality, as firms believe that

marginal costs will suffer a further decrease next period, and they will probably not be

able to re-optimise. This effect further translates into the economy in a similar way to

RE. However, as soon as agents realise that their beliefs about the process of the shock

are incorrect, they abruptly reverse their behaviour towards rationality. Such a correction

is influenced by the presence of more realistic rigidities, such as habits and interest rate

smoothing, which propagates DE aspects in the model, mainly in the short term.

16L’Huillier et al. (2021) express that general equilibrium mutes some amplified reactions under diag-
nosticity, in this case the adjustment of wages affects labour and marginal costs reactions.
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5.2.2.2 Monetary policy shock: Figure 1.4 exhibits responses to a monetary policy

shock under RE and DE. In this case, I consider a shock that tightens monetary policy,

i.e. an increase in the nominal interest rate. As a result of this tighter policy, the

economy contracts. This follows from an increase in the real interest rate (panel F) as

prices are sticky, generating a fall in domestic consumption. Due to habit persistence, the

response of consumption behaves in a hump-shaped manner (panel B). Reduced demand

for consumption goods generates a fall in output (panel A), which negatively impacts

firms’ labour demand (panel M) and the real wage (panel N) and thus their marginal costs

(panel O). The set of firms able to re-optimise will react by cutting prices, generating a

decline in domestic-goods inflation (panel C). The open economy channel works through

the exchange rate, both nominal and real. Following the UIP condition, both appreciate

in response to a higher real interest rate. The appreciation in the nominal exchange

rate (panel K) generates a negative impact on the prices of imported goods (panel D),

especially in the case of a high pass-through. The real exchange rate appreciation (panel

J) causes a switch in domestic households’ expenditure from domestic to foreign goods.

The terms of trade decline; therefore, domestic goods become relatively more expensive

than foreign goods (panel I), making them less attractive to the rest of the world. This

explains the larger drop in output compared to consumption.

Under DE, agents will behave assigning a higher probability, in this case, to a scenario

in which monetary policy is further tightened. Households react to this scenario by

intertemporally shifting consumption in order to smooth it, as they expect a higher

interest rate. The contraction in the economy is also initially stronger. This generates a

stronger decrease in the marginal costs of domestic firms, which they transfer to domestic

prices. Henceforth, the rest of the variables follow the course of reactions as in RE, but

with the characterised overreaction under DE. As soon as agents realise that the scenario

to which they have assigned a higher probability has not happened, they strongly adjust

towards the rational case. More precisely, their reversal is sharp enough to surpass the

rational scenario, thus showing some strong reversal. The full convergence seems to occur

around the tenth quarter for most of the variables.

5.2.2.3 Aggregate preference shock: Impulse responses to an aggregate preference

shock under a rational and diagnostic framework are exhibited in Figure 1.5. This shock

positively affects the marginal utility of present consumption compared to future con-

sumption, as well as the marginal utility of consumption relative to marginal (dis)utility

of labour. This stimulates households to substitute consumption intertemporally, devel-

oping an increase in current consumption to the detriment of future consumption (panel

B). On the other hand, the increase in current marginal utility of consumption generates

33



Figure 1.4: Impulse responses to a one standard deviation monetary policy shock.
Each panel depicts the response of output, consumption, annualised domestic-goods and

imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,
annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage

and marginal costs. The black dotted lines represent the impulse responses when agents form
expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are

formed diagnostically.

a relative decline in current utility of labour, which negatively affects labour and the real

wage (panels M and N, respectively). Moreover, as domestic firms are characterised by a

linear production function in labour, the fall in labour translates into a fall of the same

size in output (panel A). In response to less demand pressures, marginal costs move in the

opposite direction, driving up domestic prices (panel C). Together, a contraction in the

total production of domestic goods and an increase in its price imply that the boost in

total consumption of domestic households is driven by an expansion in their demand for

foreign goods. This substitution effect, as well as the drop in foreign demand for domestic

goods, is explained by the decline in the terms of trade (panel I). Accordingly, the trade
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balance deviates negatively from its steady state, leading to a negative response of the

asset position (panel L). The Central Bank responds to the higher CPI (panel E) and

higher output (panel A) by increasing the nominal interest rate. The real exchange rate,

as well as the nominal exchange rate, appreciates in response to this policy tightening.

This appreciation affects the domestic prices of foreign goods, generating a deviation in

the law of one price gap (panel H). Given a positive level of pass-through, the lower real

exchange rate is transmitted to retailers, who will initially decrease their prices, putting

a pressure on imported-goods inflation to fall (panel D).

Figure 1.5: Impulse responses to a one standard deviation preference shock.
Each panel depicts the response of output, consumption, annualised domestic-goods and

imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,
annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage

and marginal costs. The black dotted lines represent the impulse responses when agents form
expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are

formed diagnostically.

In the presence of DE, the response to the aggregate preference shock differs signif-
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icantly because agents perceive it as an ARMA(1,1) process, believing that it is more

persistent than it actually is. This directly alters the dynamics of the Euler equation, as

both the current and the expected future value of the aggregate preference shock influ-

ence it. Consequently, agents who form beliefs in a diagnostic way will assign a higher

probability to a scenario in which the marginal utility of consumption is higher in the

period after the shock hits the economy. Therefore, the intertemporal substitution of

diagnostic agents is inverse in comparison to the rational case, instead of substituting

future consumption for present consumption, households do the opposite. This generates

initial responses characterised by its reaction in a direction contrary to the rational case

(for example, panel B) or by stronger initial reactions and subsequent sharp convergences

to rationality. Total consumption is an exception to the sharp reversal; its behaviour is

smooth due to the presence of habits.

5.2.2.4 Cost-push shock or import price mark-up shock: Figure 1.6 shows the

reactions of variables to a cost-push shock in the form of increased market power of

retail firms. On impact, prices of imported goods increase as retailers have higher desired

mark-ups over marginal costs. This generates higher imported-goods inflation (panel D),

making domestic goods more competitive (panel I). Households in this economy respond

to this increase in prices of foreign goods by importing less, generating a drop in domestic

consumption (panel B). As domestic firms produce less output, they will demand less

labour (panel M), and thus experience a decrease in their marginal costs (panel O). The

reduction in the marginal costs will be translated by re-optimising firms to domestic prices

(panel C). Nevertheless, this decline in domestic-goods inflation does not outweigh the

effect of accelerated imported-goods inflation. Therefore, the CPI increases (panel E).

However, the reaction of the Taylor rule followed by the Central Bank is dominated by

the fall in output, causing a decrease in the nominal interest rate (panel F). The nominal

exchange rate appreciates (panel K) in response to the increase in the real interest rate

(panel G) following the UIP condition. In this economy, the increase in the terms of trade

produces an expenditure switching towards domestic goods, which works to expand the

home economy and bring it back to steady state.

When agents are diagnostic, more specifically retailers, after the cost-push shock they

will believe that a representative state of the economy in the following period will be char-

acterised by their market power expanding more. Consequently, their initial response to

the shock is described by an overreactive behaviour. As retailers set prices in a staggered

manner, there will be some of them optimising today that will not be able to re-optimise

in the second period, thus they charge now higher prices than those under rational expec-

tations. This stronger reaction is further extended to all economic variables in a manner
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Figure 1.6: Impulse responses to a one standard deviation cost-push shock (markup of import
prices).

Each panel depicts the response of output, consumption, annualised domestic-goods and
imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,

annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage
and marginal costs. The black dotted lines represent the impulse responses when agents form

expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are
formed diagnostically.

similar to that in RE. Once agents recognise the true law of motion of the shock, they

revert to rationality. In some cases, the reversion is sharp enough to surpass the rational

response.

5.2.2.5 Foreign output shock: Figure 1.7 exhibits the responses to a foreign output

shock. This shock generates a positive impact on both domestic total consumption (panel

B), as well as in foreign consumption due to higher incomes. This results in an increase in

domestic production (panel A). In order to produce this higher amount of domestic goods,

firms will demand more labour (panel M), therefore increasing marginal costs (panel O),
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which firms translate to prices (panel C). However, the income effect produced by the

higher foreign output causes the real and nominal exchange rates to appreciate (panel

J and panel K), which creates a negative wedge for the law of one price (panel H), as

foreign goods are more expensive in domestic currency than in the rest of the world,

pushing import prices downwards (panel D). Such a reaction dominates the increase in

domestic-goods inflation, weakening the domestic economy’s terms of trade (panel I). All

this decreases the CPI (panel E). However, the monetary authority reacts by increasing

interest rates as the impact on output outweighs that on CPI inflation in the Taylor rule.

Moreover, even though the terms of trade have declined, the stronger increase in output

relative to consumption results in a positive deviation from steady state in the trade

balance and a larger debt position (panel L). This could reflect the wealthier conditions

in the rest of the world in response to the foreign output shock, which positively impacts

the demand for the domestic economy’s exports.

Quite like previous shocks, the impulse responses of the variables when agents are

diagnostic show an initial overreaction and posterior reversal towards rationality. In this

particular situation, domestic agents operate diagnostically, leading them to anticipate

that international agents will accumulate more wealth. This expectation arises because

they attribute a higher likelihood to that outcome. Therefore, domestic producers initially

increase their production, requiring more labour, pushing their marginal costs up. This

results in a boost in domestic prices. In addition, representativeness exacerbates the

income effect of higher foreign output, causing a stronger appreciation of the real and

nominal exchange rates. The subsequent reversion to rationality is strong enough for some

of the variables to surpass the rational impulse response, further delaying convergence to

steady state.

5.2.2.6 Risk Premium shock: Figure 1.8 shows the responses to a negative shock

to the risk premium. Looking at the UIP condition, the RER and NER react negatively,

i.e. they initially appreciate (panels J and K), which generates a huge drop in the LOP

gap (panel H), as well as in the domestic price of foreign goods (panel D). Real debt

becomes negative (panel L) as a response to a negative deviation of the trade balance

from steady state, which results from a deterioration of the TOT (panel I). A worsening

competitiveness generates a shift in domestic households’ demand from domestic to for-

eign goods, seen as a rise in imports, which boosts total consumption (panel B). At the

same time, foreign demand for domestic goods also drops, implying a decrease in exports.

In addition, domestic firms face higher marginal costs (panel O) as a result of higher real

wage (panel N), which is translated into prices (panel C). The rise in the real wage leads

to a reduced demand for labour (panel M), subsequently causing a downturn in pro-
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Figure 1.7: Impulse responses to a one standard deviation foreign output shock.
Each panel depicts the response of output, consumption, annualised domestic-goods and

imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,
annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage

and marginal costs. The black dotted lines represent the impulse responses when agents form
expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are

formed diagnostically.

duction levels (panel A). The sharp decline in output drives the Central Bank to lower

the nominal interest rate (panel F), despite the increase in CPI (panel E). The economy

adjusts back to steady state as the shock fades, the RER and NER start depreciating,

and competitiveness is improved, which drives the recovery of output.

The variables of the DSOE also show exaggerated initial responses to a risk premium

shock. In this case, agents believe that the decrease in the risk premium will intensify

in the next period; therefore, the RER and NER appreciate more strongly. In response,

the nominal interest rate plunges. The bigger drop in competitiveness generates a more

pronounced shift in the consumption decisions of diagnostic agents, boosting total con-
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Figure 1.8: Impulse responses to a one standard deviation risk premium shock.
Each panel depicts the response of output, consumption, annualised domestic-goods and

imported-goods inflation, CPI, annualised nominal and real interest rate, LOP gap, TOT, RER,
annualised change in the nominal exchange rate, log real net foreign asset position, labour, real wage

and marginal costs. The black dotted lines represent the impulse responses when agents form
expectations rationally, whilst the red solid lines exhibit the impulse responses when expectations are

formed diagnostically.

sumption. This increase in consumption translates in a larger decline in real debt in

response to a worsening trade balance with respect to the steady state. At the same

time, rising real wages amplify the contraction in labour demand, generating an almost

double fall in output compared to the rational case. However, as soon as the diagnostic

agent realises the true process of the shock, these initial overreactions revert to the ra-

tional scenario. This occurs more rapidly in most of the variables, with the exception of

consumption, due to the presence of habits.
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6 Sensitivity analysis

In this section, I run a set of sensitivity analysis of the models’ results. First, I focus on

the impact of changing the diagnostic parameter ϕ. Second, I study how modifying other

parameters affects the impact of DE in a SOE. Third, I analyse how each persistence

mechanism added in the model behaves in the diagnostic environment. In order to do so,

I isolate their effects by studying one mechanism at a time.

6.1 The role of the diagnostic parameter ϕ

The degree of diagnosticity is the key parameter in the model as it governs the extent to

which agents’ beliefs are distorted. In this subsection, I study how variation in ϕ affects

the volatility of the SOE’s variables. Table 1.3 shows the unconditional standard devi-

ations of the main model’s variables. The second column of this table exhibits results

for the rational model, which can be thought of as a special case when ϕ = 0. Like-

wise, columns (3), (4) and (5) show the results for the diagnostic model under different

parameterisations for the diagnostic parameter: 0.5, 0.8 and 1.0, respectively.17

Table 1.3: Unconditional standard deviations when ϕ varies

Variable ϕ=0.0 ϕ=0.5 ϕ=0.8 ϕ=1.0

Output 1.422 1.481 1.525 1.557
Consumption 0.572 0.592 0.606 0.617
Domestic-goods Inflation 0.825 0.981 1.099 1.184
CPI Inflation 0.402 0.438 0.465 0.484
Nominal interest rate 0.944 1.026 1.114 1.186
Terms of trade 5.709 5.877 5.988 6.066
Real Exchange Rate 7.126 7.532 7.838 8.065
Marginal Cost 0.906 1.041 1.158 1.247
Law of one price gap 4.637 5.002 5.287 5.500
Imported-goods Inflation 2.508 3.013 3.394 3.671
Labour 1.470 1.518 1.554 1.582
Real wage 1.775 1.916 2.026 2.109
Nominal Exchange Rate growth 2.283 3.539 4.374 4.946

Note: This table illustrates the unconditional standard deviations of the variables within the model as
the level of diagnosticity changes.

The main result that emerges from this table is that any degree of diagnosticity pro-

duces a higher generalised volatility in the economy. Moreover, it seems that the am-

plification in the volatility of the variables is not linear with respect to the diagnostic

parameter. After examining the change in standard deviations for equal-sized changes

in ϕ, it is apparent that the difference is smaller (larger) when transitioning from ϕ = 0

17The case of ϕ = 1.0 could be considered particular, since such value generates agents’ forecast error
to be of equal size as the incoming shock.
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to ϕ = 0.5 compared to when ϕ shifts from 0.5 to 1.0. Thus, I can state that the more

diagnostic agents become, the more volatile is the economy, ultimately leading to ampli-

fied reactions. In addition, another relevant outcome generated by the inclusion of DE

in a SOE is the disconnection of the RER’s volatility from the volatility of the rest of

the variables. This is evident when comparing the outcomes in column (2) with those in

column (5). The volatility of all variables increases as ϕ moves from 0 to 1, but the effect

is strongest for the RER and the nominal exchange rate, while other variables exhibit a

smaller increase. This highlights DE’s potential as a behavioural explanation for specific

international macroeconomic puzzles, a burgeoning area of research within the modern

literature.

6.2 Parameters sensitivity

Table 1.4 presents unconditional standard deviations of the SOE’s variables under differ-

ent parameterisations. This subsection aims to analyse how sensitive the amplification

effect of DE is to changes in specific parameters. For comparison purposes, the first line

of Table 1.4 repeats the results obtained for the benchmark calibration presented in Table

1.2.

6.2.1 Interest rate smoothing parameter ρi

A change in this parameter affects the desire of the Central Bank to smooth the behaviour

of its instrument. The most notable result is that the greater the value of ρi, i.e. a stronger

desire to smooth the nominal interest rate, the weaker the amplification effect of DE. This

result is in line with the expected reactions under RE and the Central Bank’s willingness

to reduce the volatility of its instrument. Additionally, the amplification effect of DE

remains roughly the same for the remaining variables.

6.2.2 Habits parameter h

The degree of habits governs the dependence of agents’ utility on recent past consumption.

When agents are diagnostic, the effects caused by a change in habit persistence are in line

with RE. This means that the presence of diagnostic agents that form habits strengthens

the exaggeration effect of DE throughout the model in the expected direction, although

mildly compared to other mechanisms.

6.2.3 Inverse intertemporal elasticity of substitution parameter σ

This parameter governs the intertemporal sensitivity of household consumption to changes

in the real interest rate. It also relates to the degree of risk aversion of a household. When
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Table 1.4: Unconditional standard deviation: sensitivity to key parameters

Parameter Output Consumption Domestic CPI Interest RER Imported Hours
Inflation rate inflation worked

Benchmark 1.525 0.606 1.099 0.465 1.114 7.838 3.394 1.554
Interest rate smoothing
ωR = 0.75 1.527 0.606 1.087 0.463 1.175 7.846 3.410 1.556
ωR = 0.95 1.523 0.607 1.110 0.469 1.059 7.831 3.381 1.553
Habits
h = 0.5 1.516 0.621 1.097 0.464 1.082 7.844 3.400 1.542
h = 0.7 1.540 0.587 1.104 0.467 1.149 7.831 3.386 1.574
Inverse IES
σ = 2.0 1.284 0.963 1.040 0.450 1.046 7.663 3.387 1.240
σ = 5.0 1.653 0.443 1.127 0.474 1.145 7.930 3.400 1.708
Degree of openness
α = 0.1 0.904 0.406 0.716 0.446 0.686 9.097 4.268 0.997
α = 0.3 2.097 0.812 1.462 0.486 1.485 7.036 2.755 2.101
Elasticity of substitution
η = 0.65 1.746 0.746 1.199 0.463 1.099 10.077 3.844 1.763
η = 0.85 1.494 0.559 1.054 0.469 1.144 6.848 3.142 1.526
Domestic good Calvo
θH = 0.65 1.603 0.566 1.316 0.569 0.911 8.047 3.533 1.619
θH = 0.85 1.381 0.718 0.786 0.388 1.454 7.440 3.088 1.445
Imported good Calvo
θF = 0.65 1.505 0.643 1.217 0.457 1.352 7.524 4.405 1.539
θF = 0.85 1.577 0.553 0.922 0.486 0.968 8.552 2.234 1.597

Note: This table displays the unconditional standard deviations when the original parameterisation
remains unchanged, except for the adjustment of a specific parameter, either increased or decreased.

agents are diagnostic, an increase in this parameter generates a stronger amplification ef-

fect of DE. This amplification is appreciated as larger volatilities for almost all variables,

specifically domestic variables. An exception is consumption, for which the amplification

effect is ameliorated. The lower volatility in consumption happens because the diagnostic

agent overreacts by behaving as more risk averse, making their consumption even less

responsive to changes in the real interest rate.

6.2.4 Degree of openness α

In this case, I study whether and how a more open economy influences the effects of DE.

The results in Table 1.4 show that the more open an economy is, the greater the effects

of DE on domestic variables, while its effect on foreign variables decreases, although

they remain the most volatile variables. This outcome suggests that the RER has a

greater effect on the volatility of domestic variables when α increases. In addition, the

amplification power of DE further magnifies the impact of the RER on domestic volatility.

Therefore, a SOE populated with diagnostic agents is more sensitive to movements in

variables related to the rest of the world.
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6.2.5 Elasticity of substitution between domestic and foreign goods η

This parameter governs the degree of substitutability between domestic and foreign pro-

duced goods. A higher value for η means that the goods become more substitutable,

while a smaller value means that they become more complementary. Therefore, when

η increases, the amplification effect of DE is muted by the expenditure switching effect

that a higher elasticity generates. This is not the case for the CPI and the nominal

interest rate. For the CPI, even though both standard deviations for domestic-goods and

imported-goods inflation decrease, the change in their covariance is not big enough to

generate the same movement in the CPI. For the nominal interest rate, the volatility is

higher as a consequence of the higher standard deviation of the CPI transmitted by the

Taylor rule.

6.2.6 Domestic and foreign good Calvo parameters θH, θF

A change in these parameters affects the probability that a firm will reset its price.

Higher values of θH or θF imply greater price stickiness and thus more price dispersion

for domestic or foreign goods, respectively. When agents are diagnostic, increasing or

decreasing price sluggishness influences volatility in the same way as under RE. Specif-

ically, the more flexible the prices, the greater the effect of DE on domestic-goods and

foreign-goods inflation. This amplified effect is strongly translated into the rest of the

economy when θH changes than when θF changes, as domestic goods make up a larger

share of the consumption basket than imported goods. In addition, the opposite effect in

the volatility measure of output is the result of open economy channels that work through

the RER.

6.3 Persistence mechanism and diagnostic expectations

This section explores whether and how the model’s incorporated persistence mechanisms,

namely interest rate smoothing and habits, help in transmitting diagnosticity character-

istics to the economic variables.

6.3.1 Interest rate smoothing

The model incorporates interest rate smoothing via the Taylor rule followed by the Central

Bank in Equation (1.38). It indicates that, besides responding to changes in the CPI and

output growth, the Central Bank aims to gradually adjust its instrument over a period

of time.
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I plot the impulse responses of five different models.18 When comparing the reactions

of the models under RE or DE but without persistence mechanisms, I find evidence

that reinforces the central conclusion that DE generates higher volatility, stronger initial

reactions, and sharp reversals. However, when interest rate smoothing is included in

the model with diagnostic agents, this persistence mechanism generally intensifies the

effects of diagnosticity and helps to propagate it throughout the economy. There are,

though, two variables for which the effects of DE are rather moderated, consumption

and nominal interest rate as a result of the mechanism. Finally, when contrasting the

responses of the model including both persistence mechanisms and DE with the model

including just interest rate smoothing and DE, I study to what extent the persistence

mechanism in the latter model dominates the variables’ reaction in the former model. I

conclude that interest rate smoothing indeed governs such behaviour for all the variables

in the full model, after almost all shocks, with the exception of consumption, output, and

labour.

6.3.2 Habits

The introduction of habits in the model is done in the households’ utility function by

linking current and past consumption, generating persistence in the model. Likewise

the previous mechanism, its effects are shown in impulse responses from five different

models.19

In contrast to the previous case, when the models with diagnostic agents but with

and without habits are compared, the inclusion of this persistence mechanism shows that

the diagnostic features of the model do not intensify or mute. This can be seen because

the responses for almost all variables are very close to each other. Nevertheless, the

inclusion of habits influences the behaviour of three variables: output, consumption, and

labour. The effect of this persistence mechanism is a smoother reaction, which mutes the

effect of a strong initial overreaction. Moreover, it explains the fact that the volatility of

consumption, output and labour are among the ones increasing the least when agents are

18For exposition purposes, the figures 1.9 to 1.14 that plot the impulse responses of five different
models to each of the six shocks are presented in Appendix 1.C. Model 1 (solid green line) represents
the full model, which includes DE and both persistence mechanisms. Model 2 (solid black line) and
Model 3 (solid red line) plot the responses of the baseline model where agents are rational or diagnostic,
respectively. Model 4 (dashed black line) exhibits impulse responses when the economy is populated
with rational agents and the interest rate smoothing mechanism is included. The same illustrates Model
5 (dashed red line), though with diagnostic agents.

19Similarly, for exposition purposes, figures 1.15-1.20 are presented in Appendix 1.C. Model 1 (solid
green line) represents the full model that includes DE and both persistence mechanisms. Model 2 (solid
black line) and Model 3 (solid red line) plot the responses of the baseline model where agents are either
rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses when the
economy is populated with rational agents and habits are included. The same illustrates Model 5 (dashed
red line), though with diagnostic agents.
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diagnostic. Additionally, when contrasting the impulse responses of the model including

both persistence mechanisms and DE with the model including just habits and DE, I find

evidence that habits mainly interfere in shaping the behaviour of output, consumption,

and labour’s responses after each shock.

7 Concluding remarks

This chapter studies the effects of DE in a small open economy framework. In partic-

ular, it examines the ability of DE to help explain international macroeconomic puzzles,

especially those related to exchange rates. These puzzles share similarities with those in

finance, which DE have been used to successfully explain. I incorporate DE into a SOE

model à la Justiniano and Preston (2010b). The features of this model, specifically its

openness and persistence mechanisms, enable me to examine the effects of DE within a

broader framework that incorporates a wider range of shocks and frictions.

According to the results, the DSOE offers a qualitative explanation for the excess

volatility of the real exchange rate and its disconnection from fundamentals. The presence

of diagnostic agents generates an amplification mechanism that produces endogenous

volatility and amplification of short-term behaviour. Moreover, these effects exhibit some

degree of sensitiveness to changes in the parameterisation of the model, especially to the

degree of openness and the elasticity of substitution between domestic and imported

goods. The results also reveal that persistence mechanisms are important for amplifying

and transmitting the effects of DE throughout the model, albeit in a heterogeneous

manner.

Future research could progress by empirically testing the validity of DE in exchange

rate behaviour, for example, by estimating the model. In addition, another direction

could be to study the effects of higher macroeconomic instability generated by DE under

different monetary policy rules.
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Appendices

1.A Small Open Economy model log-linearisation

This appendix presents the derivation of the small open economy’s log-linear optimality

conditions.

1.A.1 Households optimal conditions

I start by log-linearising the intra-temporal condition (1.14). Defining Xt = Ct −Ht and

wt = Wt/Pt:

Lφt
Xσ

t

Γt
= wt,

(eln(Lt))φ(eln(Xt))σ(eln(Γt))−1 = eln(wt).

The first-order Taylor expansion gives:

L̄φX̄σΓ̄−1 + L̄φX̄σΓ̄−1φl̂t + L̄φX̄σΓ̄−1σx̂t − L̄φX̄σΓ̄−1γt = w̄ + w̄ŵt.

Simplifying and replacing x̂t:

φl̂t +
σ

1−h(ĉt − hĉt−1)− γt = ŵt. (1.61)

Similarly for the Euler condition (1.15), I get:

X−σ
t Γt = βEt[X−σ

t+1(1 + πt+1)
−1Γt+1Rt],

(eln(Xt))−σeln(Γt) = βEt[(eln(Xt+1))−σ(eln(1+πt+1))−1(eln(Rt))eln(Γt+1))].

The first-order Taylor expansion gives:

X̄−σΓ̄− σX̄−σΓ̄x̂t + X̄−σΓ̄γt =

βR̄X̄−σΓ̄ + Et[−βR̄σX̄−σΓ̄x̂t+1 − βX̄−σR̄Γ̄R̂t − βX̄−σR̄Γ̄πt+1 + βX̄−σR̄Γ̄γt+1],

where 1 = βR̄ and Rt = (1 + it). Substituting and simplifying I obtain:

ĉt − hĉt−1 = Et[ĉt+1 − hĉt]− 1−h
σ
(it − Et[πt+1]− ρ) + 1−h

σ
(γt − Et[γt+1]). (1.62)
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1.A.2 Domestic firms’ optimisation condition

First, I log-linearise the domestic price index, Equation (1.17) around the zero steady

state (P = PH = P ′
H), obtaining:

p′H,t − pH,t−1 =
1

1− θH
πH,t. (1.63)

Second, I present the log-linear expression of Equation (1.21):

p′H,t = k1,t − k2,t. (1.64)

To obtain the right-hand side elements of this expression, I proceed to log-linearise the

auxiliary variables K1,t and K2,t. The former can be expressed recursively as:

K1,t = X−σ
t YtPH,tMCt + θHβEt[K1,t+1],

eln(K1,t) = (eln(Xt))−σeln(Yt)eln(PH,t)eln(MCt) + θHβEt[eln(K1,t+1)].

The first-order Taylor expansion gives:

K̄1k̂1,t = X̄Ȳ P̄HM̄C(−σx̂t + ŷt + p̂H,t + m̂ct) + θHβK̄1Et[k̂1,t+1].

Dividing both sides of the previous equation by K̄1, and from the fact that K̄1 =

(1−θHβ)−1X̄−σȲ P̄HM̄C, I obtain the log-linearised expression of this auxiliary variable:

k̂1,t = (1− θHβ)(−σx̂t + ŷt + p̂H,t + m̂ct) + θHβEt[k̂1,t+1]. (1.65)

A similar procedure is applied to obtain the log-linearisation of K2,t:

K2,t = X−σ
t Yt + θHβEt[K2,t+1],

eln(K2,t) = (eln(Xt))−σeln(Yt) + θHβEt[eln(K2,t+1)].

The first-order Taylor expansion gives:

K̄2k̂2,t = X̄Ȳ (−σx̂t + ŷt) + θHβK̄2Et[k̂2,t+1].

Dividing both sides of the previous equation by K̄2 and from the fact that K̄2 =

(1− θHβ)
−1X̄−σȲ , I obtain the log-linearised expression of the denominator in Equation

(1.21):

k̂2,t = (1− θHβ)(−σx̂t + ŷt) + θHβEt[k̂2,t+1]. (1.66)

Substituting the results from Equation (1.65) and Equation (1.66) into Equation (1.64),

I obtain:

p′H,t = (1− θHβ)(−σx̂t + ŷt + p̂H,t + m̂ct + σx̂t − ŷt) + θHβEt[k̂1,t+1 − k̂2,t+1],

which after rearranging and replacing (k̂1,t+1 − k̂2,t+1) = p′H,t+1:
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p′H,t = (1− θHβ)(p̂H,t + m̂ct) + θHβEt[p′H,t+1].

Subtracting p̂H,t−1 from both sides:

p′H,t − p̂H,t−1 = (1− θHβ)(p̂H,t + m̂ct) + θHβEt[p′H,t+1]− p̂H,t−1.

Expanding the first terms on the right-hand side:

p′H,t − p̂H,t−1 = p̂H,t − θHβp̂H,t + (1− θHβ)m̂ct + θHβEt[p′H,t+1]− p̂H,t−1.

Re-arranging and cancelling terms out:

p′H,t − p̂H,t−1 = (1− θHβ)m̂ct + πH,t + θHβEt[p′H,t+1 − pH,t].

Next, using the results of Equation (1.63):

1
1−θH

πH,t = (1− θHβ)m̂ct + πH,t + θHβEt[ 1
1−θH

πH,t+1].

which after some re-arrangements gives the Phillips curve:

πH,t = λHm̂ct + βEt[πH,t+1], (1.67)

where λH = (1−θHβ)(1−θH)
θH

.

1.A.3 Retail firms’ optimisation condition

First, I log-linearise the retailer’s price index in Equation (1.22) around the zero steady

state (P = PF = P ′
F ), obtaining:

p′F,t − p̂F,t−1 =
1

1− θF
πF,t. (1.68)

Second, I present the log-linear expression of Equation (1.26):

p′F,t = ĵ1,t − ĵ2,t. (1.69)

To obtain the right-hand side elements of this expression, I proceed to log-linearise the

auxiliary variables J1,t and J2,t. The former can be expressed recursively as:

J1,t = X−σ
t CF,tNtstP

∗
F,t + θFβEt[J1,t+1],

eln(J1,t) = (eln(Xt))−σeln(CF,t)eln(Nt)eln(st)eln(P
∗
F,t) + θFβEt[eln(J1,t+1)].

The first-order Taylor expansion gives:

J̄1ĵ1,t = X̄Ȳ N̄ s̄P̄ ∗
F (−σx̂t + ĉF,t + νt + ŝt + p̂∗F,t) + θFβJ̄1Et[ĵ1,t+1].

Dividing both sides of the previous equation by J̄1 and from the fact that J̄1 = (1 −
θFβ)

−1X̄Ȳ N̄ s̄P̄F , I obtain the log-linearised expression of this auxiliary variable:

ĵ1,t = (1− θFβ)(−σx̂t + ĉF,t + νt + ŝt + p̂∗F,t) + θFβEt[ĵ1,t+1]. (1.70)
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A similar procedure is applied to obtain the log-linearisation of J2,t:

J2,t = X−σ
t CF,t + θFβEt[J2,t+1],

eln(J2,t) = (eln(Xt))−σeln(Yt) + θFβ = Et[eln(J2,t+1)].

The first-order Taylor expansion gives:

J̄2ĵ2,t = X̄Ȳ (−σx̂t + ĉF,t) + θFβJ̄2Et[ĵ2,t+1].

Dividing both sides of the previous equation by J̄2 and from the fact that J̄2 =

(1 − θFβ)
−1X̄−σȲ , I obtain the log-linearised expression of the denominator in Equa-

tion (1.26):

ĵ2,t = (1− θFβ)(−σx̂t + ĉF,t) + θFβEt[ĵ2,t+1]. (1.71)

Substituting the results from Equation (1.70) and Equation (1.71) into Equation (1.69),

I obtain:

p′F,t = (1− θFβ)(−σx̂t + ĉF,t + νt + ŝt + p̂∗F,t + σx̂t − ĉF,t) + θFβEt[ĵ1,t+1 − ĵ2,t+1],

which after rearranging and replacing (ĵ1,t+1 − ĵ2,t+1) = p′F,t+1:

p′F,t = (1− θFβ)(νt + ŝt + p̂∗F,t) + θFβEt[p′F,t+1].

Subtracting p̂F,t−1 from both sides:

p′F,t − p̂F,t−1 = (1− θFβ)(νt + ŝt + p̂∗F,t) + θFβEt[p′F,t+1 − p̂F,t−1].

Expanding the first terms on the right-hand side:

p′F,t − p̂F,t−1 = p̂F,t − θFβp̂F,t + (1− θFβ)(ŝt + νt) + θFβEt[p′F,t+1 − p̂F,t−1].

Re-arranging:

p′F,t − p̂F,t−1 = (1− θFβ)(ŝt + νt) + π̂F,t + θFβEt[p′F,t+1 − p̂F,t].

Next, using the results of Equation (1.68):

1
1−θF

πF,t = (1− θFβ)(ŝt + νt) + πF,t + θFβEt[ 1
1−θF

πF,t+1],

which after some re-arrangements gives the Phillips curve:

πF,t = λF (ψ̂t + νt) + βEt[πF,t+1], (1.72)

where λF = (1−θF β)(1−θF )
θF

, and as in equilibrium P = P ∗
F = P ′

F , the law of one price ψ̂t is

equal to ŝt.

1.A.4 Consumer Price Index, Real Exchange Rate, Terms of

Trade and Law of One Price gap

The expression (1.27) shows the terms of trade:

tott =
PF,t

PH,t
,
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eln(tott) = eln(PF,t)eln(PH,t).

The first-order Taylor expansion gives:

tot ˆtott = P̄F P̄H(p̂F,t − p̂H,t).

Resulting, after simplifying and subtracting ˆtott−1 from the left-hand side and (p̂F,t−1−
p̂H,t−1) from the right-hand side:

∆ ˆtott = πF,t − πH,t . (1.73)

Next, I proceed to log-linearise the CPI from Equation (1.28):

Pt ≡ [(1− α)(PH,t)
1−η + α(PF,t)

1−η]
1

1−η ,

(eln(Pt))1−η = (1− α)(eln(PH,t))1−η + α(eln(PF,t))1−η.

The first-order Taylor expansion gives:

P̄ p̂t = (1− α)P̄H p̂H,t + αP̄F p̂F,t.

As in equilibrium P = PH = PF , cancelling and subtracting p̂t−1 from the left-hand

side and (1− α)p̂H,t−1 and αp̂F,t−1 from the right-hand side, I obtain the following:

πt = (1− α)πH,t − απF,t, (1.74)

which can also be expressed, using Equation (1.73) as:

πt = πH,t + α∆ ˆtott.

Now, I log-linearise Expression (1.29), the real exchange rate:

Qt =
stP ∗

t

Pt
,

eln(Qt) = eln(st)eln(P
∗
t )(eln(Pt))−1.

The first-order Taylor expansion gives:

Q̄q̂t = s̄P̄ ∗P̄ (ŝt + p̂∗t − p̂t).

After simplifying, this expression becomes:

q̂t = ŝt + p̂∗t − p̂t. (1.75)

The log-linear expression for the real exchange rate will be used to solve for the law of

one price gap, which I log-linearise from Equation (1.30):

Ψt =
P ∗
t st
PF,t

,

eln(Ψt) = eln(P
∗
t )eln(st)(eln(PF,t))−1.

The first-order Taylor expansion gives:
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Ψ̄ψ̂t = P̄ ∗s̄P̄F (p̂
∗
t + ŝt − p̂F,t).

After cancelling terms, given that in steady state P ∗ = PF :

ψt = p̂∗t + ŝt − p̂F,t,

where using Equation (1.73), Equation (1.74) and equation (1.75) gives:

ψ̂t = q̂t − (1− α) ˆtott . (1.76)

1.A.5 Uncovered Interest Parity

This condition is a result of the assumption of the incomplete international markets,

which log-linearisation follows:

Et

[
st+1

st
R∗
tΦt+1(At+1)

]
= Rt,

eln(Rt) = Et[eln(st+1)(eln(st))−1eln(R
∗
t )eln(Φt+1(At+1))].

The first-order Taylor expansion gives:

R̄it = R̄∗s̄s̄−1Āϕ̄Et[i∗t + ŝt+1 − ŝt − χat − ϕt+1].

Which after simplifying:

it − i∗t = Et[∆st+1]− χat − Et[ϕt+1]. (1.77)

1.A.6 Flow Budget Constraint

This expression is obtained from the household’s budget constraint, assuming that do-

mestic bonds are in net zero supply and using the expressions for profits of the domestic

and retailers firms.

Y At − st
st−1

R∗
t−1

πt
At−1Φt(At−1, Φ̃t) = P̃H,tYt − Ct + α(P̃F,t −Qt)P̃

−η
F,tCt ,

Y eln(At) − eln(st)(eln(st−1))−1eln(R
∗
t−1)(eln(πt))−1eln(At−1)eln(Φt(At−1,Φ̃t)) =

eln(P̃H,t)eln(Yt) − eln(Ct) + α(eln(P̃F,t))1−ηeln(Ct) − αeln(Qt)(eln(P̃F,t))−ηeln(Ct).

The first-order Taylor expansion gives:

Ȳ Ātât − s̄(s̄)−1R̄∗π̄ĀΦ(Ā, 0)(ŝt − ŝt−1 + î∗t−1 − πt + ât−1 + ϕt(ât, ϕ̃t)) =

P̄H Ȳ (p̂H,t + ŷt)− C̄ĉt + αC̄(P̄F )
1−η((1− η)p̂F,t + ĉt)− αQ̄(P̄F )

−ηC̄(q̂t − ηp̂F,t + ĉt)

Using the results that at the steady state Ȳ= C̄, R̄ = 1/β and P̄F=P̄F=Q̄=1, as well

as the definition of terms of trade previously derived, we obtain, after simplifying and

rearranging terms:

ât − β−1ât−1 = yt − ĉt − α( ˆtott + ψ̂t) (1.78)
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1.A.7 Equilibrium-Aggregate demand and output

The log-linear approximation of Equation (1.37) around the zero inflation steady state

is:

Yt = (1− α)

(
PH,t

Pt

)−η

Ct +

(
stP ∗

H,t

P ∗
t

)−η

C∗
t ,

eln(Yt) = (1− α)(e
ln(

PH,t
Pt

)
)−ηeln(Ct) + (e

ln(
stP

∗
H,t

P∗
t

)
)−ηeln(C

∗
t ).

The first-order Taylor expansion gives:

Ȳ ŷt = C̄H(−η(p̂H,t − p̂t) + ĉt) + C̄∗
H(−η(ŝt + p̂∗H,t − p̂∗t ) + ŷ∗t ),

which after replacing using the expressions for ˆtott and for ψ̂t:

Ȳ ŷt = C̄H(−η(p̂H,t − p̂t) + ĉt) + C̄∗
H(−η(ψ̂t + ˆtott) + ŷ∗t ).

As in steady state CH = (1 − α)C and CF = αC, and assuming a balanced trade,

i.e. export of domestic economy equal to import (C∗
H = CF ), which implies Y = C, the

log-linearised equilibrium condition yields:

ŷt = (1− α)ĉt + αη(2− α) ˆtott + αηψ̂t + αŷ∗t . (1.79)

1.A.8 Central bank interest rate setting

The model exhibits a Central Bank that follows a Taylor rule. In this case, such rule

responds to the previous period interest rate, CPI and output growth. To log-linearise

it:

Rt = RγR
t−1

(
Pt

Pt−1

)γπ(
Yt
Yt−1

)γ∆y

Mt,

eln(Rt) = (eln(Rt−1))γR(eln(Πt))γπ(e
ln(

Yt
Yt−1

)
)γ∆yeln(Mt).

The first-order Taylor expansion gives:

R̄it = R̄[γRit−1 + γππt + γ∆y∆ŷt + µt],

which simplifies to:

it = ρ+ γRit−1 + γππt + γ∆y∆ŷt + µt. (1.80)

1.A.9 The Foreign Economy and shocks

The log-linearised versions of the law of motion of world’s output and the shocks are

straightforward to obtain:

World’s output:

ŷ∗t+1 = ρy∗ ŷ
∗
t + ϵy

∗

t+1. (1.81)
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Productivity shock AR(1) process:

ζt+1 = ρζζt + ϵζt+1. (1.82)

Preference shock AR(1) process:

γt+1 = ργγt + ϵγt+1. (1.83)

Monetary shock AR(1) process:

µt+1 = ρµµt + ϵµt+1. (1.84)

Mark-up of import prices over marginal costs shock AR(1) process:

νt+1 = ρννt + ϵνt+1. (1.85)

Risk-premium shock AR(1) process:

ϕ̃t+1 = ρϕ̃ϕ̃t + ϵϕ̃t+1. (1.86)

1.B Diagnostic probability density function

To obtain the result given by Expression (1.3), I consider the standard probability

density function of a normally distributed variable xt+1:

f(xt+1|xt) = 1
σ
√
2π
e−

(xt+1−ρxt)
2

2σ2 .

Recalling the definition of the diagnostic probability density function fϕ(xt+1|xt) =

f(xt+1|xt = x̄t)
[

f(xt+1|x̄t)
f(xt+1|ρx̄t−1)

]ϕ
:

fϕ(xt+1|xt) =
1

σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2

 1
σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2

1
σ
√
2π
e−

(xt+1−ρ2x̄t−1)
2

2σ2


ϕ

Z, (1.87)

Simplifying and rewriting, I obtain:

fϕ(xt+1|xt) =
1

σ
√
2π
e

{
− (xt+1−ρx̄t)

2

2σ2 − 1
2σ2 ϕ[(xt+1−ρx̄t)2−(xt+1−ρ2x̄t−1)2]

}
Z. (1.88)

Expanding the argument of the exponential function, the expression can be rewritten
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as:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

(
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

(
ρx̄t − ρ2x̄t−1

)]
+ (ρx̄t)

2

+ ϕ
[
(ρx̄t)

2 − (ρ2x̄t−1)
2
] })

Z.

(1.89)

The constant Z is given by:

Z = exp

(
− 1

2σ2

{
− ϕ

[
(ρx̄t)

2 − (ρ2x̄t−1)
2
]
+ 2ρx̄tϕ

[
ρx̄t − ρ2x̄t−1

]
+ ϕ2

[(
ρx̄t − ρ2x̄t−1

)]2 })
.

(1.90)

Therefore, after some algebra, the diagnostic pdf is equal to:

fϕ(xt+1|xt) =
1

σ
√
2π
e
− 1

2σ2

{
[xt+1−(ρx̄t+ϕ(ρx̄t−ρ2x̄t−1))]

2

}
. (1.91)

This, as Gennaioli and Shleifer (2020) states, contains the kernel of a normal distri-

bution with a distorted mean and the same variance, as specified in the main text of the

article.
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1.C Extra figures

Figure 1.9: Interest rate smoothing and Technology shock.
Each panel depicts the response of the variables to a technology shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and the interest rate smoothing mechanism is

included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.10: Interest rate smoothing and Monetary policy shock.
Each panel depicts the response of the variables to a monetary policy shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and the interest rate smoothing
mechanism is included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.11: Interest rate smoothing and Preference shock.
Each panel depicts the response of the variables to a preference shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and the interest rate smoothing mechanism is

included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.12: Interest rate smoothing and Cost push shock.
Each panel depicts the response of the variables to a cost push shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and the interest rate smoothing mechanism is

included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.13: Interest rate smoothing and Foreign output shock.
Each panel depicts the response of the variables to a foreign output shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and the interest rate smoothing
mechanism is included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.14: Interest rate smoothing and Risk-premium shock.
Each panel depicts the response of the variables to a foreign output shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and the interest rate smoothing
mechanism is included. The same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.15: Habits and Technology shock.
Each panel depicts the response of the variables to a technology shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and habits are included. The same illustrates

Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.16: Habits and Monetary policy shock.
Each panel depicts the response of the variables to a monetary policy shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and habits are included. The

same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.17: Habits and Preference shock.
Each panel depicts the response of the variables to a preference shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and habits are included. The same illustrates

Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.18: Habits and Cost push shock.
Each panel depicts the response of the variables to a cost push shock under different models. Model 1
(solid green line) represent the full model which includes DE and both persistence mechanisms. Model
2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline model where agents
are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits impulse responses
when the economy is populated with rational agents and habits are included. The same illustrates

Model 5 (dashed red line), though with diagnostic agents.

68



Figure 1.19: Habits and Foreign output shock.
Each panel depicts the response of the variables to a foreign output shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and habits are included. The

same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Figure 1.20: Habits and Risk-premium shock.
Each panel depicts the response of the variables to a foreign output shock under different models.

Model 1 (solid green line) represent the full model which includes DE and both persistence
mechanisms. Model 2 (solid black line) and Model 3 (solid red line) plot the responses of the baseline
model where agents are either rational or diagnostic, respectively. Model 4 (dashed black line) exhibits
impulse responses when the economy is populated with rational agents and habits are included. The

same illustrates Model 5 (dashed red line), though with diagnostic agents.
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Chapter 2

A Diagnostic TANK Model for the

Housing Market

1 Introduction

During the period spanning from the mid-eighties to the aftermath of the Great Fi-

nancial Crisis, the U.S. housing market has been defined by its high volatility (Piazzesi &

Schneider, 2016). The standard deviations of the real residential investment and the real

house price growth rates are 3.452% and 1.723%, respectively, while the real GDP growth

rate has a standard deviation of 0.576%. This indicates that residential investment and

house price growth rates are six and three times more volatile than GDP, as shown in

Figure 2.1. Understanding what drives these volatilities is relevant, given the valuable

information that the housing market provides about ongoing changes in economic activity

(Chahrour & Gaballo, 2021) and the importance of housing in households’ decisions and

wealth (Davis & Heathcote, 2005).

Traditional models of the housing sector typically attribute pronounced house price

movements to housing preference shocks, but this approach limits the insights offered for

policy analysis by overlooking expectation-driven dynamics. For instance, Gelain, Lans-

ing, and Mendicino (2012) suggests that agents’ expectations can significantly influence

monetary policy responses. Moreover, empirical studies challenge the rationality assump-

tion in the housing market, indicating that expectations are the source of the pronounced

fluctuations in the sector. The evidence reveals that housing market expectations strongly

track recent observed house price changes (Kuchler, Piazzesi, & Stroebel, 2023; Adam,
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Figure 2.1: Real GDP, real house price and real residential investment in percentage change.

Pfäuti, & Reinelt, 2024), with price expectations showing short-run momentum (Gohl,

Haan, Michelsen, & Weinhardt, 2024). Additionally, De Stefani (2021) finds that the

risk of a downturn after a long period of growth in house prices is underestimated by

consumers, generating predictable errors. Together, these findings position non-rational

expectations as a promising explanation for the higher volatility in housing markets, while

suggesting potentially different monetary and macro-prudential policy responses.

In this context, I develop a two-agent New Keynesian (TANK) model that incorporates

a housing market inspired by Iacoviello and Neri (2010), a banking sector following the

framework in Gertler and Karadi (2011), and Diagnostic Expectations (DE), as proposed

by Bordalo, Gennaioli, and Shleifer (2018).1 Diagnostic agents form beliefs influenced by

recent (or not so recent) trends. For example, a history of rising (falling) house prices

tends to make future prices following the same trend more prominent in diagnostic-agents’

minds, but when these projections do not materialise, DE creates feedback loops that am-

plify optimism or pessimism. By introducing DE into this model, I aim to address the

observed volatility in the housing market without relying on large housing preference

shocks. The main contribution of this chapter, therefore, is to show that DE can account

for approximately thirty to fifty percent of this volatility while achieving a better empiri-

cal fit with a smaller housing preference shock. This offers a more compelling alternative

to traditional explanations that attribute unexplained demand changes to large shifts in

housing preferences. This result has significant implications for policy, as understanding

the dynamics of expectations-driven volatility in the housing market enables policymak-

1The authors build DE on Kahneman and Tversky (1972) concept of representativeness. This de-
scribes a judgemental process where the most distinguished characteristic of an event plays the main role
in a human’s mind when assigning probabilities.
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ers to better anticipate risks of speculative bubbles and refine interventions to address

potential financial instability and resource misallocation.

Building on this, I also explore an alternative structure for the memory used by agents

forming DE. Instead of relying solely on the immediate past, I extend the framework to

examine how more distant memories might affect and shape agents’ background context.

Following Bordalo et al. (2018), I introduce a slow-moving reference by defining repre-

sentativeness to be a mixture of current and past likelihood ratios. This approach differs

from Bianchi, Ilut, and Saijo (2024), since they consider a weighted average of lagged

expectations as a memory-driven benchmark. To the best of my knowledge, this is the

first attempt to incorporate and study DE with a slow-moving structure as a reference in

a model that features heterogeneous agents, a housing sector and a banking sector. Under

this set up, I derive that diagnostic agents using a slow-moving memory misperceive the

shock as an ARMA(1,S) process, where S represents the number of periods used to form

the memory.

I calibrate and estimate three models for the U.S. economy, using recent advancements

in macroeconomic model estimation by Herbst and Schorfheide (2014): one with rational

agents, one with diagnostic agents featuring short memory, and one with diagnostic agents

and distant memory. The results support the role of DE in driving the U.S. housing

market dynamics. Compared to traditional Rational Expectations (RE) models, DE

reduce the standard deviation of the housing preference shock by at least one-third,

suggesting that DE could be a viable alternative to the “catchall of all the unmodeled

disturbances that can affect housing demand” (Iacoviello & Neri, 2010, p. 150). Though

the evidence favours the DE model with a one-quarter lag reference, two key takeaways

emerge from extending the memory horizon from short to long-term: first, the prominence

of recent events in shaping agents’ expectations, and second, that most attention beyond

this period centres between quarters three and ten.

In addition, a historical shock decomposition analysis indicates that the shock trans-

mission mechanism in the economy remains stable regardless of the agents’ expectations

formation process. The difference lies in the more volatile expectations intrinsic to DE,

which amplify the impact of shocks without altering their transmission through the econ-

omy. I also examine the influence of DE on the economy using impulse responses. In

general, DE with short and distant memory share similar characteristics: initial over-

reactions, greater persistence, and pronounced fluctuations. The extrapolation of shocks

explains the initial overreactions and subsequent reversals observed in both DE models,

but other features are specific to each framework. In the DE model with a one-quarter

reference, the economy’s rigidities propagate the initial overreaction. However, in the DE

model with twelve-quarters slow-moving reference, more pronounced fluctuations emerge
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as agents may remain overly optimistic (pessimistic) due to the longer span memory in

their expectation formation process.

A counterfactual analysis further disentangles the propagation and amplification mech-

anism of DE. When diagnostic agents, who typically base their beliefs on either recent

or distant information, suddenly become rational, the model struggles to replicate house

price volatility. This challenge provides further evidence that it is the expectations mecha-

nism, particularly DE, that drives the cycles in the housing market. This chapter thereby

contributes to a growing body of research advocating for models that integrate expecta-

tion formation more closely aligned with observed economic behaviour, moving beyond

preference shocks to examine the dynamics of households and market expectations.

Related literature

This chapter is linked to recent articles that incorporate DE in macroeconomic models.

One group of authors incorporates DE in macro-finance environments. Bordalo et al.

(2018) find that such an extended macroeconomic model captures the empirical findings

regarding credit cycles. Bordalo, Gennaioli, Shleifer, and Terry (2021) and Maxted (2024)

combine DE in real business cycle models with financial frictions. Their main results are

a greater variability in the macroeconomy and the ability to replicate financial boom-bust

credit cycles aspects, as well as the countercyclicality of credit spreads. More recently,

L’Huillier, Singh, and Yoo (2024) derive a general framework to incorporate DE in linear

models and show that DE are a viable behavioural alternative to generate fluctuations

in business cycle models with shocks of more realistic size.

While previous studies explored DE within a one-period reference framework, Bianchi

et al. (2024) focus on distant memory and find that DE generate rich dynamics, charac-

terised by significant persistence and sudden changes in the way shocks propagate. Along

this line, and closely related to the work here, Qi (2021) and Bounader and Elekdag (2024)

introduce DE and distant memory in New Keynesian models with heterogeneity in agents,

a housing market and financial frictions. The first author finds higher persistence and

significant responses from house prices to a total factor productivity shock in a TANK

model. The second authors contribute showing that DE and financial frictions reinforce

shock amplification, especially after demand shocks. My work builds on these efforts and

contributes to this literature by empirically estimating the diagnostic parameter and the

weights assigned to past references. I also incorporate a banking sector, which introduces

additional frictions and channels through which expectations can lead to a more volatile

economy.

This chapter also contributes to the literature on housing market dynamics in macroe-

conomic models, particularly focusing on two main approaches: (i) housing preference
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shocks and (ii) excess volatility driven by expectations arising from rationality depar-

tures. The first group of authors concentrates on understanding the nature of shocks

and movements in the housing market, as well as the effects that such variations have

on the economy. The work of Iacoviello and Neri (2010) represents the cornerstone of

this literature. They find that a housing demand shock can explain at least a quarter of

housing market fluctuations, estimating the standard deviation of the housing preference

shock to be about 4%. In their words, this shock is “spontaneous, primitive and their

interpretable characteristics are questionable” (p. 158).

Other authors have estimated similar models for different countries. For example,

Gerali, Neri, Sessa, and Signoretti (2010) use European data and estimate a standard

deviation of housing preference shock of around 7%, while Funke and Paetz (2013) find

that a comparable shock in the Hong Kong housing market has a standard deviation of

roughly 10%. Similarly, Mendicino and Punzi (2014) analyse the relative importance of

the housing preference shock in a theoretical model, concluding that it accounts for 70%

of the volatility in house prices. More recently, Ge, Li, Li, and Liu (2022) examine the

Chinese housing market and find that a housing preference shock standard deviation of

approximately 7% explains over 80% of the sector’s volatility. Lambertini, Mendicino, and

Punzi (2017) augment the model of Iacoviello and Neri (2010) with news shocks and shows

that this extended model can account for boom-bust patterns in the housing sector. In

contrast to these studies, my main contribution here is to provide a more comprehensive

alternative to the “catchall of all the unmodeled disturbances that can affect housing

demand” (Iacoviello & Neri, 2010, p. 150), captured by the housing preference shock.

In this chapter, I introduce a deviation from rational expectations, aligning with the

second group of literature that explores behavioural alternatives such as adaptive expec-

tations and learning. Some researchers, including Gelain et al. (2012), and Granziera and

Kozicki (2015), argue that adaptive expectations can increase the volatility of the hous-

ing market due to overoptimism and overreaction to fundamentals. Moreover, adaptive

expectations have been successful in generating momentum and volatility in models of

the stock market, characteristics also present in the housing sector. However, adaptive

expectations are an ad hoc, not micro-founded approach, making DE a better choice. In

addition, DE has already shown its ability to capture the run-ups and sharp decline be-

haviour present in the financial markets (Bordalo et al., 2018; Bordalo, Gennaioli, Kwon,

& Shleifer, 2021).

Alternatively, including learning suggests that individuals form mechanical backward-

looking rules for belief updating. Chahrour and Gaballo (2021), Caines (2020) and

Gandré (2022) provide evidence supporting the inclusion of learning about house prices

as an amplification and propagation mechanism that helps to account for the dynam-
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ics of macro variables, as well as credit and housing. However, this approach assumes

that agents do not understand the true data-generating process. In contrast, DE have

three advantages over mechanical models of non-rational beliefs: it is forward-looking

(immunity to the Lucas (1976) critique), it better accounts for measured expectations of

financial analysts and macro forecasters, and its diagnostic parameters have been esti-

mated in some data sets (Bordalo, Gennaioli, Shleifer, & Terry, 2021; L’Huillier et al.,

2024; Bianchi et al., 2024). Additionally, DE have been successfully applied not only in

macro and finance settings but also in, for example, modelling social stereotypes (Bordalo,

Coffman, Gennaioli, & Shleifer, 2016). Therefore, these factors provide a basis for in-

corporating DE into a macroeconomic model to analyse the housing market behaviour,

which represents another contribution of this chapter.

Structure of the chapter

The rest of the chapter is structured as follows. In Section 2, I present the model.

Section 3 explains how I include DE and solve the resulting model. The calibration and

estimation of the parameters are outlined in Section 4. Section 5 discusses the quantitative

results. A counterfactual analysis is done in Section 6, and Section 7 concludes.

2 Model

The basic structure of the model is similar to Iacoviello (2005), Iacoviello and Neri

(2010) and Gelain et al. (2012), although I extend it in several ways. First, I include

capital producers that sell part of the total capital stock to wholesale firms and rent the

rest to housing firms. This allows me to derive an explicit expression for the real price

of capital, as well as for the rental rate of capital in the housing sector (Gambacorta &

Signoretti, 2014). Second, to model the housing market price and quantity dynamics,

I introduce a housing production sector that produces houses using capital and labour

services (Iacoviello & Neri, 2010). Finally, I incorporate financial frictions using a banking

sector as in Gertler and Karadi (2011). In this section, I present the derivations under

RE, whereas in a later section I show how to modify the model to introduce DE.

The model summarised in Figure 2.2 consists of two types of households: patient and

impatient, each of mass 1− n and n, respectively. The patient households are the savers

in the economy. They provide liquidity to impatient households, borrowers, in the form

of loans. There are five types of firms: (i) wholesale firms producing wholesale goods, (ii)

retailer firms repackaging wholesale goods and introducing a price rigidity à la Calvo, (iii)

a final good firm producing its output using goods from retailers as inputs, (iv) housing

firms producing houses with labour and capital as inputs, and (v) capital good firms
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Figure 2.2: Economy model
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combining undepreciated capital and the final good to update and produce new capital.

The model also features a banking sector as in Gertler and Karadi (2011). These banks

act as financial intermediaries between patient households’ deposits and wholesale firms’

loans.2 Finally, there is a Central Bank that sets the nominal interest rate following a

simple Taylor-type rule. The model includes habit formation in consumption, investment

adjustment costs, and nominal price rigidities. Time is discrete and one period in the

model represents one-quarter.

2.1 Households

The economy is populated by two types of households, patient and impatient, denoted

with subscripts “p” and “i”, respectively. They consume final goods, buy housing and

supply labour. The patient households save in the form of deposits in banks and lend

money to impatient households, who borrow using their housing as collateral.

2This version of the model does not allow for arbitrage between loan and deposit interest rates, this
means the banks do not intermediate between households. The main reason behind this choice is to
keep the banking problem easy to track. However, in a future version, banks will not only serve as
intermediaries between patient households and firms, they will also mediate transactions with impatient
households.
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2.1.1 Patient households

A representative patient household derives utility from consumption, cp,t, and housing,

hp,t, and disutility from labour np,t. She discounts future utility flows by βp and her

expected discounted lifetime utility is:

Up = E0

∞∑
t=0

βtp

[
log(cp,t − γcp,t−1) + Γtν

h
p log(hp,t)− νnp

n1+φ
p,t

1 + φ

]
, (2.1)

where Γt is a housing preference shock that follows the AR(1) process log(Γt+1) =

ρΓlog(Γt) + σϵΓϵ
Γ
t+1, with ρΓ ∈ (0, 1) and ϵΓt+1 ∼ i.i.d.[0, σ2

ϵΓ ]. The habit formation param-

eter is γ ∈ (0,1) and νhp and νnp govern the patient household’s utility from housing and

labour, respectively. The parameter φ is the inverse elasticity of the labour supply.

The patient household maximises her utility subject to the following budget constraint:

cp,t+ qt[hp,t− (1− δh)hp,t−1]+d
B
t +d

l
t =

dBt−1R
d
t−1

πt
+
dlt−1R

l
t−1

πt
+wtnp,t+Πf,t+ΠB,t. (2.2)

qt is real house prices, δh is the rate at which housing depreciates, and wt is the real

wage from supplying labour. The term dBt−1 represents the deposits held by the patient

household in the bank at the end of time t−1, which yield a riskless gross nominal return

of Rd
t−1 between periods t−1 and t. dlt−1 represents loans that patient households extend

to impatient households, yielding a gross nominal return of Rl
t−1. πt is the gross inflation

rate and Πf,t and ΠB,t are transfers of profits that households receive from firms and

banks.

The resulting first order conditions of the patient household’s maximisation problem

with respect to cp,t, np,t, hp,t, d
B
t and dlt are:

λp,t =
1

(cp,t − γcp,t−1)
− βpγ

(cp,t+1 − γcp,t)
, (2.3)

νnp n
φ
p,t = wtλp,t, (2.4)

λp,tqt =
Γtν

h
p

hp,t
+ βpEt

[
(1− δh)qt+1λp,t+1

]
, (2.5)

λp,t = βpEt

[
λp,t+1

Rd
t

πt+1

]
, (2.6)

λp,t = βpEt

[
λp,t+1

Rl
t

πt+1

]
, (2.7)

where λp,t denotes the marginal utility of consumption.
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2.1.2 Impatient households

A representative impatient household also receives utility from consumption, ci,t, and

housing, hi,t, and disutility from labour, ni,t. She discounts future utility flows by βi,

which is smaller than the patient household’s discount factor, βp, and her expected dis-

counted lifetime utility is:

Ui = E0

∞∑
t=0

βti

[
log(ci,t − γci,t−1) + Γtν

h
i log(hi,t)− νni

n1+φ
i,t

1 + φ

]
, (2.8)

where γ ∈ (0,1) and φ are the same habit formation and inverse elasticity of labour

supply parameters as for the patient household. νhi and νni govern the utility of housing

and labour for the impatient household. She faces the same housing preference shock Γt,

and maximises her utility subject to the following budget constraint:

ci,t + qt(hi,t − (1− δh)hi,t−1) +
lt−1R

l
t−1

πt
= wtni,t + lt. (2.9)

She also faces a limit on her liabilities during period t as a fraction χ of her expected

housing value in period t+ 1:

lt ≤
χ

Rl
t

Et[qt+1πt+1hi,t]. (2.10)

Loans obtained by the impatient households from the patient households between

periods t − 1 and t are denoted lt−1. The condition (1 − n)dlt = nlt must be satisfied

for the loan market to clear, as it implies that in aggregate loans extended by patient

households correspond to loans obtained by impatient households. The parameter χ

denotes the loan-to-value ratio and measures the liquidity degree of housing.

The impatient household’s optimisation problem leads to the following first-order con-

ditions with respect to ci,t, ni,t hi,t and lt:

λi,t =
1

(ci,t − γci,t−1)
− βbγ

(ci,t+1 − γci,t)
, (2.11)

νni n
φ
i,t = wtλi,t, (2.12)

λi,tqt =
Γtν

h
i

hi,t
+ βiEt

[
(1− δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1], (2.13)

λi,t − µi,t = βiEt

[
λi,t+1

Rl
t

πt+1

]
, (2.14)

where λi,t is the marginal utility of consumption and µi,t is the Lagrange multiplier on
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the collateral constraint (2.10).

2.2 Firms

Firms in this economy are owned by the patient households. There are five types of

firms: wholesale firms, retail firms, final good producers, capital producers, and housing

producers.

2.2.1 Wholesale firms

Wholesale firms buy capital KW
t−1, at the end of time t− 1, from capital producers, and

hire labour, NW
t , from patient and impatient households. During period t, they produce

wholesale goods, Y W
t , which they sell to retail firms, using a Cobb-Douglas production

function:

Y W
t = AtN

W
t

1−α
KW
t−1

α
, (2.15)

where At is total factor productivity shock in the wholesale goods sector. This shock

obeys an AR(1) process log(At+1) = ρAlog(At) + σϵAϵ
A
t+1, where ρA ∈ (0, 1) and ϵAt+1 ∼

i.i.d.[0, σ2
ϵA ].

At the end of period t, wholesale firms obtain funds from the banking sector to finance

the acquisition of capital KW
t . In order to do so, they take loans, St, equal to the quantity

of capital acquired, KW
t , and price each at the unit price of capital qKt as detailed in

Gertler and Karadi (2011).

qKt K
W
t = qKt St. (2.16)

After finishing production in period t − 1, wholesale firms sell their undepreciated

capital in the open market. These firms’ profits are the value of their production plus

the value of their capital stock left over, net of their total costs which include labour and

capital expenses.3 The profit maximisation problem is:

max
NW

t ,KW
t−1

[
Pm,tY

W
t + (1− δk)q

K
t K

W
t−1 −RK

t q
K
t−1K

W
t−1 − wtN

W
t

]
,

subject to the production function. Pm,t is the relative intermediate output price, RK
t

is the state-contingent required gross return on capital during time t. The first-order

3Gertler and Karadi (2011) specify that wholesale firms do not face any frictions in the process of
obtaining funding from banks. The authors also state that “wholesale firms are able to offer the banks
a perfectly state-contingent security, which is best thought of as equity (or perfectly state-contingent
debt)”(p. 23).
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conditions for this firm, i.e. the demands for labour and capital, are:

wt = Pm,t(1− α)At

(
KW
t−1

NW
t

)α

, (2.17)

qKt−1R
K
t = rKt + (1− δk)q

K
t , (2.18)

where rKt = Pm,tαAt

(
NW

t

KW
t−1

)1−α
is the capital rental rate. Solving for the labour-to-capital

ratio, replacing it in equation (2.17) and equating the results, I obtain an expression for

marginal costs:

mct =
1

At

(
wt

1− α

)1−α(
rKt
α

)α

. (2.19)

2.2.2 Final good firms

Final-good firms aggregate the output of retail firms yt(j) according to a Dixit-Stiglitz

production technology:

Yt =

[∫ 1

0

yt(j)
ϵ−1
ϵ dj

] ϵ
ϵ−1

.

These firms sell the final product in a perfectly competitive market. Yt represents the

final good, yt(j) denotes the j′th retail-firm input used in the production of the final

good, and ϵ denotes the elasticity of substitution between any two inputs, assumed to be

greater than 1. This firm’s profit maximisation is a static problem, and from its first-order

condition I obtain the demand equation for each input as:

yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt.

Since this final good producing firm is competitive, it makes zero profit, and its price

is a function of the inputs’ prices, i.e. an aggregate price index:

Pt =

[∫ 1

0

Pt(j)
1−ϵdj

] 1
1−ϵ

.

2.2.3 Retail firms

Retailers simply repackage intermediate output, that is, wholesale production. It takes

one intermediate output unit to make a unit of retail output. The marginal cost is thus

the relative wholesale output price Pm,t. The retailer seeks to maximise its profit solving:
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max
Pt(j)

Pt(j)

(
Pt(j)

Pt

)−ϵ

Yt −mct

(
Pt(j)

Pt

)−ϵ

Yt.

After optimising with respect to the choice variable Pt(j), I obtain:

Pt(j) =
ϵ

ϵ− 1
mct.

This condition shows the market power that these firms have since they set their

price, when there is no price rigidity, as a mark-up of the marginal cost. However, in the

presence of some price rigidity, this result changes. Here I assume a price setting style à

la Calvo. In each period, the firms receive a random draw from a Bernoulli distribution.

This indicates that, with a probability 1 − θ, θ ∈ [0, 1], the firm will be able to change

its price. Conversely, with a probability θ, the firm will not be able to set a new price,

keeping it unchanged.

Pt(j) = Pt−1(j),∀j ∈ [0, θ),

Pt(j) = P ∗
t (j),∀j ∈ [θ, 1],

where P ∗
t (j) is determined by solving the maximisation problem:

max
P ∗
t (j)

Vt(j) = Et
∞∑
i=0

(βpθ)
i

{
λp,t+i
λp,t

[(
P ∗
t (j)

Pt+i
−mct+i

)(
P ∗
t (j)

Pt+i

)ϵ
Yt+i

]}
.

The result determines that retailers who have obtained a successful draw will set

their prices as a constant mark-up on an expression related to their expected discounted

nominal total costs, relative to an expression related to their expected discounted real

output.

P ∗
t (j) =

ϵ

ϵ− 1

[
Et
∑∞

i=0(βpθ)
iλp,t+imct+iP

ϵ
t+iYt+i

Et
∑∞

i=0(βpθ)
iλp,t+iP

ϵ−1
t+i Yt+i

]
. (2.20)

The above equation does not depend on j, so every retail firm that can set its price in

period t will choose the same price. Moreover, in the limiting case of no price rigidity, the

familiar expression of a firm’s optimal price as a constant mark-up on real marginal costs

is obtained. Given the previous result and the price rigidity mechanism, the Dixit-Stiglitz

aggregate domestic price index evolves as follows:

P 1−ϵ
t = (1− θ)(P ∗

t (j))
1−ϵ + θP 1−ϵ

t−1 .

From the last equation and defining the gross inflation as
(

Pt

Pt−1

)
= πt, I obtain:
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π1−ϵ
t = (1− θ)

(
P ∗
t

Pt−1

)1−ϵ

+ θ

(
Pt−1

Pt−1

)1−ϵ

.

Solving for gross inflation reveals the relationship between inflation and the aggregate

price level. Inflation turns out to be a function of the relative price, π∗
t , between the price

optimally set by the firms, P ∗
t , and the price of the final good.

π1−ϵ
t = θ + (1− θ) (π∗

t )
1−ϵ . (2.21)

2.2.4 Capital good firms

Patient households own capital good firms. During period t, they transform the output

in the form of investment, It, and undepreciated capital, (1 − δk)Kt−1, to produce new

capital, Kt. Part of this new capital, KW
t , is sold to wholesale firms, at the price qKt .

The rest, Kh
t , is rented to housing firms at the rental rate rht . The undepreciated capital,

thus, is equal to the undepreciated capital rented to housing firms and the undepreciated

capital bought from wholesale firms.

The representative capital producer maximises its expected discounted profits. At the

end of period t, this firm receives income from selling capital to wholesale firms and renting

capital to housing firms, while paying the costs of gross investment and undepreciated

capital purchases from wholesale firms.

E0

∞∑
i=0

βip
λp,t+i
λp,t

[
qKt K

W
t − qKt (1− δk)K

W
t−1 + rK,ht Kh

t − It

]
. (2.22)

The maximisation problem is subject to the total capital law of motion and the defi-

nition of aggregate capital stock.

Kt = (1− δk)Kt−1 + [1− ψ

2
(It/It−1 − 1)2]It, (2.23)

Kt = KW
t +Kh

t , (2.24)

where δk is the capital depreciation rate and ψ is a parameter measuring the cost paid

for adjusting investment. The law of motion implies that old capital can be converted

one-to-one into new capital, while the transformation of general output is subject to a

quadratic adjustment cost.

The optimality conditions with respect to KW
t , Kh

t and It are:

qKt − βp
λp,t+1

λp,t
(1− δk)q

K
t+1 = λK,t − βp

λp,t+1

λp,t
(1− δk)λK,t+1, (2.25)

83



rK,ht = λK,t − βp
λp,t+1

λp,t
(1− δk)λK,t+1, (2.26)

1 = λK,t

[
1−ψ

2

( It
It−1

−1
)2

−ψ
( It
It−1

−1
)( It

It−1

)]
+βpψEt

[λp,t+1

λp,t
λK,t+1

(It+1

It

)2(It+1

It
−1
)]
,

(2.27)

where λK,t denotes the Lagrange multiplier on the capital law of motion.

2.2.5 Housing firms

At time t, housing firms produce new houses, Iht , using a Cobb-Douglas production

technology. This process requires capital, Kh
t−1, rented from the capital producer, and

labour, Nh
t , hired from patient and impatient households at the real wage wt.

Iht = ZtN
h
t

1−µhKh
t−1

µh , (2.28)

where µh is the income share of the capital used to produce new housing. Zt is total factor

productivity in the housing sector. It obeys an AR(1) process log(Zt+1) = ρZ log(Zt) +

σϵZϵ
Z
t+1, where ρZ ∈ (0, 1) and ϵZt+1 ∼ i.i.d.[0, σ2

ϵZ ].

Housing firms maximise the difference between their earnings from selling new houses

and their costs in wages and rent. Denoting the price of new houses by qt, the represen-

tative housing producer maximisation problem is:

max
Nh

t ,K
h
t−1

[
qtI

h
t − rK,ht Kh

t−1 − wtN
h
t

]
,

subject to the production technology Iht .

The first-order conditions, with respect to Nh
t and Kh

t−1, yield the following demands

for labour and capital:

wt = (1− µh)qt
Iht
Nh
t

, (2.29)

rK,ht = µhqt
Iht
Kh
t−1

. (2.30)

2.3 Banks

This sector closely follows the setting proposed by Gertler and Kiyotaki (2010) and Gertler

and Karadi (2011). In every period, each bank obtains funds in the form of deposits Dτ,t

from patient households, which pay a nominal gross interest rate Rd
t in the next period.

The banks transform these funds into loans for wholesale firms. They take the form of
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equities Sτ,t, which yield an ex-post return RK
t+1.

Each bank τ has wealth -or net worth- NWτ,t at the end of period t, and its balance

sheet is given by:

qKt Sτ,t = NWτ,t +Di,t. (2.31)

Equation 2.31 states that a bank finances loans with newly issued deposits and net

worth. Moreover, Dτ,t represents a bank’s debt, while Sτ,t a bank’s asset. Thus, NWτ,t

will be its equity capital, which evolves over time as the difference between expected

earnings on loans to wholesale firms and interest payments on borrowing from patient

households4:

NWτ,t+1 = RK
t+1q

K
t Sτ,t −Rd

tDτ,t,

=
(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t. (2.32)

From expression (2.32), one can appreciate that net worth’s growth, above the riskless

return Rd
t , depends on the risk premium (RK

t+1 − Rd
t ) and total loans. Defining βiB

λp,t+i

λp,t

as the stochastic discount factor a banker τ at time t applies to earnings at time t + i,

where βB = βp ≥ βi because patient households own the banks, the bank will refuse to

fund any loans with a discounted return smaller than the discounted cost of deposits.

Therefore, the following inequality must apply for the bank to operate:

βiBEt
[λp,t+i
λp,t

(
RK
t+1 −Rd

t

)]
≥ 0, i ≥ 0.

Gertler and Karadi (2011) summarise this stating: “as long as the bank earns a risk

adjusted return greater than or equal to the return the household can earn on its deposits,

it pays for the banker to keep building assets until exiting the industry”(p. 20).

Each bank has a probability σ to continue functioning until the next period and a

probability to exit 1−σ. This prevents the bank from overcoming its financial constraint

by saving indefinitely. In addition, it is assumed that the number of banks entering and

exiting the sector is equal, keeping the total constant.

In each period, a banker’s objective is to maximise her expected final wealth:

V B
τ,t = maxEt

∞∑
i=0

(1− σ)σiβi+1
B

λp,t+i
λp,t

NWτ,t+i, (2.33)

subject to its balance sheet (2.31), equity capital law of motion (2.32) and an incentive

constraint. This incentive constraint arises from introducing a moral hazard problem to

4Gertler and Karadi (2011) assume that banks can only accumulate net worth by retained earnings
and do not issue new assets.
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limit the bank’s ability to issue deposits. Following Gertler and Kiyotaki (2010), at the

beginning of a period and after the bank has accepted deposits, it has two options: (i)

divert a fraction ζ of its assets to the patient households or (ii) hold its assets until the

next period when payoffs are realised, and then pay its deposit obligations.5 If the bank

chooses the first option, it closes, following the default on its debt. The bank will need

to afford the costs coming from creditors reclaiming their remaining fraction (1 − ζ) of

funds. Therefore, due to the risk that a bank may default on its debts, creditors will be

reluctant to lend large amounts to the bank at the beginning of each period. This creates

friction and acts as an incentive constraint for the bank when trying to obtain funds.

V B
τ,t ≥ ζ(qKt St,τ ). (2.34)

The condition (2.34) suggests that the bank will refrain from diverting funds as long

as its franchise value is greater than or equal to the portion it can divert. Thus, I re-write

the bank’s problem equation (2.33) in a Bellman equation form as:

V B
τ,t = βBEt

λp,t+1

λp,t
{(1− σ)NWτ,t + σmaxV B

τ,t+1(NWτ,t+1)}, (2.35)

which is subject to:

qKt Sτ,t = NWτ,t +Dτ,t,

NWτ,t+1 =
(
RK
t+1 −Rd

t

)
Sτ,t +Rd

tNWτ,t,

V B
τ,t ≥ ζ(qkt,fSτ,t).

Assuming that the value function V B
τ,t is linear in NWτ,t, that is, V

B
τ,t = νBt NWτ,t, where

νBt depends only on aggregate quantities; and defining ξt as the Lagrange multiplier on

the incentive constraint, the first-order conditions for Sτ,t and NWτ,t are:

ξtζ

1 + ξt
= Et

[
(1− σ + σνbt+1)

(
RK
t+1 −Rd

t

)]
, (2.36)

1

1 + ξt
= Et

[
(1− σ + σνbt+1)R

d
t

]
, (2.37)

where equation (2.36) makes the marginal benefit from increasing assets and the marginal

cost of tightening the incentive constraint equal. Defining the bank’s net worth adjusted

marginal value as Ωτ,t+1 = (1− σ + σνbt+1), I re-express the value function:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t

]}
.

5By assumption, patient households do not deposit funds in the banks they own.
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Multiplying and dividing this expression by NWτ,t, I obtain:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
NWτ,t, (2.38)

where ϕt =
qKt Sτ,t

NWτ,t
and the term between curly brackets is νbt . Therefore, if the incentive

constraint is binding, νbt = ζϕt:

qKt Sτ,t = ϕtNWτ,t. (2.39)

Using the result from the previous two equations and after some rearranging, I obtain

an expression for the leverage:

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1

λp,t
Ωτ,t+1

(
RK
t+1 −Rd

t

) . (2.40)

This expression does not depend on any firm-specific factor, making it possible to sum

across wholesale firms, obtaining:

qKt St = ϕtNWt. (2.41)

Finally, I derive a law of motion for NWt as the sum of the old (existing) and young

(new) banks net worth:

NWt = NWo,t +NWn,t. (2.42)

Given that a fraction σ of bankers at time t− 1 survive until time t, NWo,t is:

NWo,t = σ
(
RK
t q

K
t−1St−1 −Rd

t−1Dt−1

)
. (2.43)

As I described earlier, new banks receive funds from patient households, following

Gertler and Karadi (2011), I assume this transfer equals to a small fraction of the assets

intermediated by exiting banks in their final operating period. That is, banks exiting

with an i.i.d. probability have assets worth (1 − σ)(RK
t q

K
t−1St−1), from which a fraction

ω/(1− σ) is transferred to the entering banks.

NWn,t = ω(RK
t q

K
t−1St−1). (2.44)
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Combining these two conditions, I obtain the following expression for NWt:

NWt = (σ + ω)(RK
t q

K
t−1St−1)− σRd

t−1Dt−1. (2.45)

2.4 Central Bank

To close the model, the Central Bank sets the nominal interest rate, Rd
t , following a

Taylor-type rule, which targets inflation and GDP growth stabilisation.

Rd
t

R̄d
=

(
πt
π̄

)ωπ
(

GDPt
GDPt−1

)ωy

Mt, (2.46)

where the steady state of the policy rate is R̄d = (1/βp). I follow Iacoviello and Neri (2010)

and define GDP as the sum of consumption and investment, both non-residential and

residential. That is, GDPt = Ct+ It+ q̄I
h
t , where q̄ denotes the steady state value of real

housing prices, so that short-run changes in real house prices do not affect GDP growth

(Iacoviello & Neri, 2010, p. 132). Mt is a monetary policy shock, which follows an AR(1)

process log(Mt+1) = ρM log(Mt) + σϵM ϵ
M
t+1, where ρM ∈ (0, 1) and ϵMt+1 ∼ i.i.d.[0, σ2

ϵM ].

2.5 Market clearing and aggregation

In equilibrium, each household’s weighted contribution to consumption, labour and hous-

ing will determine the aggregates Ct, Nt and Ht, respectively.

Ct = (1− n)cp,t + (n)ci,t, (2.47)

Nt = (1− n)np,t + (n)ni,t, (2.48)

Ht = (1− n)hp,t + (n)hi,t. (2.49)

In addition, the amount of total labour demanded by wholesale firms and housing

firms should be equal to the total amount of labour supplied by households.

Nt = NW
t +Nh

t . (2.50)

Total loans obtained by the impatient households must equal total loans provided by

the patient household. Similarly, total deposits in the banking sector needs to equal

aggregate deposits from the patient households.

(1− n)dlt = nlt, (2.51)
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Dt = (1− n)dBt . (2.52)

As specified previously, the total loans issued by the wholesale firms to acquire funding

for their capital acquisition must be equal to their demand of capital.

St = KW
t . (2.53)

From capital producers, the total capital stock should equal the sum of capital supplied

to wholesale firms and capital rented to housing firms.

Kt = KW
t +Kh

t . (2.54)

And its law of motion is:

Kt = (1− δk)Kt−1 + [1− ψ

2
(It/It−1 − 1)2]It. (2.55)

New housing or housing investment must also satisfy a law of motion. It establishes

that the new housing is equal to the difference between the housing stock at time t net

of the undepreciated housing stock from time t− 1.

Iht = Ht − (1− δh)Ht−1. (2.56)

The markets for final goods must clear.

Yt = Ct + It. (2.57)

In addition, the link between the final good and the wholesale goods is given by6:

Yt =
Y W
t

νjt
, (2.58)

where νjt is a measure of price dispersion. Finally, I introduce the sum of durable and

non-durable goods as GDP:

GDPt = Ct + It + q̄Iht . (2.59)

6For the derivation of this condition, see Appendix 2.A.
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3 Model solution

In this section, I present the solution method that I use to solve linear models with

diagnostic agents. Using this strategy, I aim to obtain a RE representation of the DE

model, along similar lines to L’Huillier et al. (2024).

3.1 Including diagnostic expectations

The main difference in this model is that agents are not rational; they are diagnostic.

Consequently, when forming expectations, these agents are influenced by a cognitive

mechanism that relies on past experiences, either from the near or distant past. This

reliance directly impacts the way diagnostic agents assign probabilities to future sce-

narios, leading to mistakes, corrections, and exaggerated responses. Following Bordalo,

Gennaioli, Shleifer, and Terry (2021), I model this departure from RE by assuming that

agents misperceive the way the state of the economy evolves over time. Following the

shock processes included in the model, I assume that the state of the economy evolves as

an AR(1) process, xt+1 = ρxxt + ϵt+1, where ϵt+1 ∼ N (µ, σ2) and xt+1 has a probability

density function (pdf):

f(xt+1|xt) =
1

σ
√
2π
e−

(xt+1−ρxt)
2

2σ2 . (2.60)

At time t, diagnostic agents form beliefs about the future state in t + 1 by recalling

past realisations of economic conditions that are at the forefront of their mind. That is,

they compare information about the current economic conditions with what they already

know or remember about past behaviour. During such a process, they use a distorted

density function instead of the rational pdf, as defined by Bordalo et al. (2018):

fϕ(xt+1|xt) = f(xt+1|xt = x̄t)

[
f(xt+1|x̄t)

f(xt+1|ρx̄t−1)

]ϕ
Z. (2.61)

I denote the realisation of the variable by x̄t, thus the diagnostic distribution depends

on realisations of xt at the current time, x̄t, as well as in the past through the reference

event, x̄t−1. Here, I assume that the agent only considers the most recent past when

forming expectations. Z is a normalising constant and ϕ ≥ 0 is the diagnostic parameter,

which embeds the rational case when it is equal to 0. Replacing (2.60) in (2.61), I obtain:

fϕ(xt+1|xt) =
1

σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2

 1
σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2

1
σ
√
2π
e−

(xt+1−ρ2x̄t−1)
2

2σ2


ϕ

Z. (2.62)
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After simplifying and grouping terms, I obtain:

fϕ(xt+1|xt) =
1

σ
√
2π
e

{
− (xt+1−ρx̄t)

2

2σ2 − 1
2σ2 ϕ[(xt+1−ρx̄t)2−(xt+1−ρ2x̄t−1)2]

}
Z. (2.63)

Expanding and re-writing the argument in the exponential:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

(
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

(
ρx̄t − ρ2x̄t−1

)]
+ (ρx̄t)

2

+ ϕ
[
(ρx̄t)

2 − (ρ2x̄t−1)
2
] })

Z.

(2.64)

The constant Z is given by:

Z = exp

(
− 1

2σ2

{
− ϕ

[
(ρx̄t)

2 − (ρ2x̄t−1)
2
]
+ 2ρx̄tϕ

[
ρx̄t − ρ2x̄t−1

]
+ ϕ2

[(
ρx̄t − ρ2x̄t−1

)]2 })
.

(2.65)

Therefore, after some algebra, the diagnostic pdf when the reference is the recent past

is equal to:

fϕ(xt+1|xt) =
1

σ
√
2π
e
− 1

2σ2

{
[xt+1−(ρx̄t+ϕ(ρx̄t−ρ2x̄t−1))]

2

}
. (2.66)

Following Gennaioli and Shleifer (2018), Equation (2.66) shows that the diagnostic

distribution contains the kernel of a normal distribution with an unchanged variance,

σ2, but a distorted mean. This distortion arises because, instead of relying purely on

RE, diagnostic agents overweight recent changes in the economic state, as they rely on

the most recent past when forming expectations, leading to a mean shift. Diagnostic

expectations can then be expressed as:

Eθt (xt+1) = Et(xt+1) + ϕ [Et(xt+1)− Et−1(xt+1)] , (2.67)

The results in Equation (2.66) can be rewritten in terms of the shock realisation. Using

the assumption of xt+1 following an AR(1) process, the shock realisation can be obtained

as ϵt = xt − ρxt−1. Substituting this into expression (2.66) yields:

fϕ(xt+1|xt) =
1

σ
√
2π
e
− 1

2σ2

{
[xt+1−(ρx̄t+ϕρϵt)]

2

}
. (2.68)

Again, as in Gennaioli and Shleifer (2018) and making use of expression (2.67), this
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implies the following:

Eϕt (xt+1) = ρxt + ϕρϵt. (2.69)

This is the key finding. It indicates that when the agents are diagnostic (ϕ > 0), there

is extrapolation in the direction of the shock. This occurs because agents misperceive the

shock to exhibit greater persistence than the true data generating process, mistakenly

interpreting it as ARMA(1,1) process.

These results can be generalised to the case where remote memories influence the

diagnostic agent’s reference through a mixture of current and past likelihood ratios.7

The diagnostic pdf in this case is:

fϕ(xt+1|xt) =
1

σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2


 S∏
s=1

1
σ
√
2π
e−

(xt+1−ρsx̄t+1−s)
2

2σ2

1
σ
√
2π
e−

(xt+1−ρs+1x̄t−s)
2

2σ2


αs

ϕ

Z, (2.70)

where S represents the time span used by the diagnostic agent as memory, while αs

denotes the weights that the agent attaches to present and past representativeness.

Lemma 1: Using the results for the case in which memory is governed by the most

recent past, but now assuming that the agent has a slow-moving reference, the diagnostic

pdf in (2.70) is characterised by:

Eϕt (xt+1) = Et(xt+1) + ϕ
S∑
s=1

αs [Et+1−s(xt+1)− Et−s(xt+1)] , (2.71)

This can also be rewritten in terms of the realisations of the shock as:

Eϕt (xt+1) = ρxt + ϕ
S∑
s=1

ρsαsϵt+s−1. (2.72)

Thus, when the agent is diagnostic and relies on a slow-moving reference, they mis-

perceive the shock as an ARMA(1,S) process, where S denotes the memory length.

3.2 Solution procedure

I solve the model to first-order accuracy using Klein (2000). First, I assume that diagnos-

tic agents form beliefs based on a more distant past by using a moving average over the

last twelve quarters as memory.8 Consequently, making use of expression (2.72), agents’

7The full derivation for the slow-moving reference is presented in Appendix 2.B.
8In the main body of the article, I also present results in which the reference group is the most recent

past. In this case all attention is on the previous quarter, that is, α1 is equal to 1, whereas the remaining

92



concept of the state of the economy is as if it follows an ARMA(1,12) process instead of

the true AR(1):

Eϕt (xt+1) = ρxt + ϕ[(ρα1ϵt + ρ2α2ϵt−1 + ρ3α3ϵt−2 + ρ4α4ϵt−3 + ρ5α5ϵt−4 + ρ6α6ϵt−5

+ ρ7α7ϵt−6 + ρ8α8ϵt−7 + ρ9α9ϵt−8 + ρ10α10ϵt−9 + ρ11α11ϵt−10 + ρ12α12ϵt−11)].

(2.73)

Second, I incorporate the MA components into the model as auxiliary variables and

rewrite the exogenous shock processes as ARMA(1,12). Third, I compute the non-

stochastic steady-state, point at which the model will be perturbed, by finding the

fix-point of the system using Newton’s method. Forth, I log-linearise the model vari-

ables around their steady state and solve the resulting system, which solution takes the

following form:

xt+1 = hxt + kϵt+1

yt = gxt,

where yt denotes an (m x 1) vector of endogenous variables and xt denotes an (n x 1)

vector of state variables. The latter is comprised of three sub-vectors. The first, of size

(n1 x 1), contains the auxiliary variables for the MA terms in the shock processes. The

second, of size (n2 x 1), includes the exogenous variables; and the third, of size (n3 x 1),

is composed of the predetermined variables. Therefore, the matrix g linking the decision

variables with the states can also be divided into three submatrices:

g =

 g1 g2 g3

 .
The submatrices g2 and g3, of size (m x n2) and (m x n3), connect the decision variables

to the exogenous states and the predetermined variables, respectively. A comparison

between the solutions of these submatrices under RE and DE reveals that they remain

unchanged since they are independent of the diagnostic parameter. The distinction arises

in the submatrix g1, sized (m x n1), which links the decision variables to the realised

shocks in the MA processes. While the elements of this matrix are zero in the rational

solution, in the diagnostic solution, they take on nonzero values. This reflects the source

of the additional volatility that DE generate, and it aligns with the findings of L’Huillier

weights are equal to zero. The choice of twelve quarters follows from empirical evidence in the housing
market found by Adam et al. (2024) and the estimation results of Bianchi et al. (2024).
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et al. (2024).

Since the DE solution is based on agents misperceving the process for the state of

the economy as an ARMA(1,12) rather than an AR(1) process, the first-order coefficient

matrix in the state-transition equation, h, still includes the parameters associated with

the MA terms. The last step, therefore, is to turn off these MA terms, ensuring that

any further analysis is performed under the true data-generating process. However, the

elements in g1 that capture the dependence of the decision variables on the MA terms

remain operative. These elements reflect the result that diagnostic agents extrapolate

past shocks when forming expectations about the state of the economy.

4 Model Estimation

I estimate the rational model, the diagnostic model with short-term memory, as well

as the diagnostic model with distant memory using U.S. quarterly data for the period

1984:Q1 to 2019:Q4, which I describe in Subsection 4.1. The estimation approach adopted

is Sequential Monte Carlo, as outlined in Subsection 4.2. Subsection 4.3 describes the

calibration of the structural parameters, while Subsection 4.4 shows the prior distributions

of the parameters that are estimated. Subsection 4.5 exhibits the estimation results.

4.1 Data

I use eight macroeconomic time series to estimate and calibrate the model. All variables

are log-transformed using the natural logarithm, detrended using first-differences and

demeaned, with the exception of the nominal interest rate which is transformed into

a quarterly rate and demeaned. Housing wealth is expressed in real per capita terms

as it is adjusted by the population level and the implicit price deflator, while the total

amount of loans to households is equal to the sum of residential mortgages and consumer

credit of households and non-profit organisations.9 I obtained the data from the Board

of Governors of the Federal Reserve System and the Bureau of Economic Analysis, using

the National Accounts and Flow of Funds. I also use the Census Bureau House Price

Index. The full set of variables is:

• Real Gross Domestic Product growth: ∆GDPt = ln(GDPt/GDPt−1)

• GDP implicit price deflator: π̂t = ln(Pt/Pt−1)

• Real Residential Investment growth: ∆Iht = ln(Iht /I
h
t−1)

• Real House price growth: ∆qt = ln(qt/qt−1)

9A detailed explanation of the data series can be found in Appendix 2.D.
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• Nominal interest rate: R̂d
t = ln(Rt/Rt−1)

• Real Loans growth: ∆lt = ln(lt/lt−1)

• Real Non-residential investment growth: ∆It = ln(It/It−1)

• Real Housing wealth growth: ∆(qHt) = ln(qHt/qHt−1)

Figure 2.3: U.S. Macroeconomic variables.
Note: Real gross domestic product, real residential investment, real house price, real loans, real

non-residential investment and real housing wealth growths are in percentages. Inflation and nominal
interest rate are quarterly.

4.2 Methodology

I estimate the log-linearised rational model, diagnostic model with short-term memory

and diagnostic model with distant memory using a Bayesian strategy method, drawing

on recent advancements in macroeconomic model estimation by Herbst and Schorfheide

(2014). Herbst and Schorfheide (2014) introduce an alternative class of algorithms to the

traditional Random Walk Metropolis-Hastings (RWMH) method, known as Sequential

Monte Carlo (SMC). This estimation method for DSGE models combines features of

classic importance sampling and MCMC techniques.

The aim is to infer the parameters’ posterior distribution by combining the likelihood
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function, p(θ|Y ), of a DSGE model with a prior distribution, p(θ), on its parameters:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

,

where θ indicates a vector of parameters and Y represents the data set. The marginal

data density is p(Y ) =
∫
p(Y |θ)p(θ)dθ.

In order to do so, the SMC relies on a candidate density, g(θ), from which it generates

sample draws or particles, as it is an importance sampler at its core. Each of these

particles has an associated importance weight, w(θ). This follows from the identity:

Et[h(θ)] =
∫
h(θ)

p(Y |θ)p(θ)
p(Y )

dθ =
1

p(Y )

∫
h(θ)

p(Y |θ)p(θ)
g(θ)

g(θ)dθ,

where the weights on the draws are w(θ) = p(Y |θ)p(θ)
g(θ)

. This means that at each stage of

the algorithm, a set of pairs {(θi, w(θi))}Ni=1 will be an approximation of p(θ|Y ).

The algorithm initiates by drawing initial particles from the prior distribution, as it

represents a distribution that is easy to sample from. The algorithm ends with a sequence

of pairs of particles and weights that embody the final importance sample approximation

of the posterior. In between, the process recursively generates intermediate or “bridge”

distributions. These bridge distributions serve as transitional steps in the iterative process

that gradually shifts the initial prior distribution towards the final posterior distribution.

Each iteration refines the approximation of the posterior by updating the particle weights

and resampling. It can be thought of as an iterative moulding process that refines and

transitions the distributions from their initial prior form to their posterior.10

I use SMC because it offers advantages over RWMH. For instance, it is suitable for par-

allel computing during the model’s estimation step for many particles, thereby enhancing

computational efficiency. Additionally, when new data become available, SMC facilitates

the re-estimation of the model by picking up from where it was left off, saving computa-

tional resources and time. It also eliminates the need for additional computations since

it approximates the marginal likelihood as a by product.

The estimation was performed using Julia 1.7.3 in Atom. I adapted the code for the

SMC algorithm from Salazar-Perez and Seoane (2024). The current choice of hyperpa-

rameters for the SMC is constrained by available computational resource. The number of

particles and stages are set to 500 and 200, respectively. The bending coefficient is within

the range used in the literature and it is taken from Salazar-Perez and Seoane (2024).11

10For a more detailed explanation of the algorithm see Herbst and Schorfheide (2014) and Cai et al.
(2021).

11The bending coefficient controls the likelihood tempering in the algorithm. In this chapter, I use the

96



I adjust the scaling factor to target an acceptance rate around 25%, as it is done in Cai

et al. (2021).

4.3 Calibration

In this section, I present the calibration of the model. Table 2.1 lists the structural

parameters with their respective values and the corresponding source or target. Each

period in the model represents one quarter. The discount factor for patient households,

βp, is set to 0.9915. This implies a 3.42% annualised interest rate in steady state, which

is close to the average 3.52% over the sample period.

Some parameters are calibrated to match first-order moments in the data. The housing

depreciation rate, δh, is set to 0.0060 in order to generate an average total housing wealth

to GDP ratio of 145.53% as in the period analysed. This parameter value is slightly

lower than the one from Iacoviello and Neri (2010) and Mendicino and Punzi (2014),

and implies an annual housing depreciation of around 2.5%. The loan-to-value ratio,

χ, is calibrated at a value of 0.8016. This choice aims to achieve a household credit to

total housing wealth ratio of 35.24%, and it is consistent with the range found in the

literature (Iacoviello & Neri, 2010; Gelain et al., 2012; Mendicino & Punzi, 2014, among

others). The patient households’ housing preference weight is set to 0.2361 so that the

share of total housing wealth owned by patient households is 60%.12 Moreover, the model

generates a residential investment to GDP ratio equal to the sample period average of

3.44%, by setting the housing preference weight of the impatient households to 0.0906.

Finally, I calibrate the elasticity of wholesale goods with respect to capital, α, to 0.3752,

and I set the capital share in housing production, µh, at 0.3 to obtain a non-residential

investment to GDP ratio of 27%. The elasticity of the wholesale goods with respect to

capital has a value that falls within the range commonly used in macroeconomic models,

while the capital share in housing production results from the sum of the exponents for

all inputs that are not labour in Iacoviello and Neri (2010).

The remaining structural parameters are taken from the literature. For instance, the

proportion of impatient households, n, follows Gelain et al. (2012) and targets the top

decile of households in the economy. The discount factor for the impatient households,

βi, is 0.9715. This value ensures that while linearising around the steady-state, these

households’ borrowing constraint is binding. The chosen value for the inverse labour

supply elasticity, φ, is 0.1, which, as in Gelain et al. (2012), implies a very flexible labour

supply. This article is also the source of the labour disutility parameters for the patient

fixed tempering schedule from Herbst and Schorfheide (2014).
12The total housing wealth share hold by the patient household is targeted following Wolff (2016).
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Table 2.1: Calibration: Structural parameters

Description Parameter Value Target/Source

Households

Proportion of impatient households n 0.9 Gelain et al. (2012)
Inverse elasticity of labour supply φ 0.1 Gelain et al. (2012)

Patient Households

Discount factor βp 0.9915 Annualised interest rate of 3.52%
Housing preference weight νhp 0.2361 Patient households share of housing wealth = 60%
Labour disutility νnp 1.19 Gelain et al. (2012)

Impatient Households

Discount factor βi 0.9715 Borrowing constraint’s binding
Housing preference weight νhi 0.0906 Residential investment/GDP = 3.44%
Labour disutility νni 4.54 Gelain et al. (2012)
Loan-to-value ratio χ 0.8016 Household credit to total housing wealth = 35.24%

Wholesale firms

Elasticity of final good with respect to capital α 0.3752 Investment/GDP = 27%

Final firms and Retailers firms

Elasticity of substitution ϵ 11 10 % markup

Capital good firms

Capital depreciation rate δk 0.025 Typical in macroeconomic model literature

Housing firms

Housing depreciation rate δh 0.0060 Housing wealth/GDP = 143.23%
Elasticity of housing with respect to capital µh 0.3 Iacoviello and Neri (2010)

Banks

Banks’ surviving probability σ 0.9725 Gertler and Karadi (2011)
Absconding rate of the bankers ζ 0.383 Gertler and Karadi (2011)
Start up fund for the new bankers ω 0.003 Gertler and Karadi (2011)

and impatient household, νnp and νni .

The rate at which capital depreciates, δk, equals 0.025. This value is in line with

standard values in the literature. Retail firms target a 10% steady state mark-up, thus

I set the elasticity of substitution, ϵ, to 11. Finally, the banking sector is characterised

exactly as in Gertler and Karadi (2011). The parameters are consistent with Gertler

and Karadi (2011)’s goal to achieve an interest rate spread of around one hundred basis

points, maintain a steady state leverage ratio at 4, and ensure an average banker lifespan

of 10 years. Therefore, the survival probability of the banker, σ, is 0.9725, the fraction

of capital that the banker can steal, ζ, is equal to 0.383, and the start-up fund for new

bankers is 0.003. This implies a spread close to 1% and a leverage ratio slightly below 4.

4.4 Prior distributions

Table 2.2 summarises the prior distributions for the parameters to estimate. I set the

shapes for each prior based on the feasible parameter support and in consistency with

previous studies. Accordingly, for the standard errors of the shocks, I use an inverse
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gamma distribution as in L’Huillier et al. (2024) and Justiniano, Primiceri, and Tam-

balotti (2010).13 For the persistence, since these parameters are bounded between 0 and

1, I choose a loose beta prior with mean 0.5 and standard deviation 0.2. The values for

the monetary policy rule feedback parameters were set equal to Taylor’s original specifi-

cations. I choose a normal distribution with prior mean 1.5 for the response to inflation

and a 0.125 mean for the response to output growth; their standard deviations are 0.25

and 0.05, respectively. The prior on the investment adjustment costs follows Smets and

Wouters (2007), it is normal with mean 4.0 and standard deviation 1.5. Whereas for the

habit formation and Calvo parameter, I chose the same beta priors as in Iacoviello and

Neri (2010). The priors’ means are 0.5 and 0.667, respectively, with standard deviations

equal to 0.05 and 0.075.

Table 2.2: Prior distribution of the parameters

Description Parameter Distribution Mean Std. dev
Structural Parameters
Inv. adjustment cost ψ Normal 4.0 1.5
Habit formation γ Beta 0.667 0.05
Calvo parameter θ Beta 0.5 0.075
Taylor rule inflation ωπ Normal 1.50 0.25
Taylor rule output growth ω∆y Normal 0.125 0.05
Diagnostic parameters
Diagnostic parameter ϕ Normal 1.0 0.3
1st quarter reference α1 Uniform 0.5 0.29
2nd quarter reference α2 Uniform 0.5 0.29
3rd quarter reference α3 Uniform 0.5 0.29
4th quarter reference α4 Uniform 0.5 0.29
5th quarter reference α5 Uniform 0.5 0.29
6th quarter reference α6 Uniform 0.5 0.29
7th quarter reference α7 Uniform 0.5 0.29
8th quarter reference α8 Uniform 0.5 0.29
9th quarter reference α9 Uniform 0.5 0.29
10th quarter reference α10 Uniform 0.5 0.29
11th quarter reference α11 Uniform 0.5 0.29
12th quarter reference α12 Uniform 0.5 0.29
Autoregressive coefficients
Goods TFP ρA Beta 0.5 0.2
Housing TFP ρZ Beta 0.5 0.2
Monetary policy ρM Beta 0.5 0.2
Housing demand ρΓ Beta 0.5 0.2
Standard deviation of shocks
Good TFP 100*σϵA Inverse Gamma 0.5 2.0
Housing TFP 100*σϵZ Inverse Gamma 0.5 2.0
Monetary policy 100*σϵM Inverse Gamma 0.5 2.0
Housing demand 100*σϵΓ Inverse Gamma 0.5 2.0

Note: The Inverse Gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e−
s

2σ2 . I borrow the function
InverseGamma1.jl and inverse gamma 1 specification from the Dynare package for Julia, developed

by Adjemian et al. (2024), to obtain the parameters ν and s of and Inverse Gamma distribution
characterised as in the table above.

For the diagnostic parameter, I employ a normal distribution with mean 1.0 and stan-

dard deviation 0.3, as in L’Huillier et al. (2024). Prior information on this parameter

13The Inverse Gamma distribution is typically used as a prior for the variance estimation. However, as
noted in Adjemian (2016), priors in practice are often defined over the standard deviation of a structural
shock. Following this convention in the literature, I adopt the Type I Inverse Gamma distribution as
defined by the Adjemian (2016).
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is limited given the scarcity of studies estimating it. A similar situation applies to the

weights on the backward references, with Bianchi et al. (2024) providing the only esti-

mation example in the literature.14 In their study, the approach involves modelling these

weights using a beta distribution. They start by estimating the mean and standard de-

viation of this distribution, then they proceed with rescaling and discretising it. Here,

however, I estimate each weight employing a diffuse prior over the range (0,1), allowing

the data to inform the analysis. The purpose behind estimating diagnostic and memory

parameters is twofold: to support the presence of DE in the housing market, and to

demonstrate that DSGE models incorporating DE can fit business cycle data better than

those with RE.

4.5 Estimation results

I jointly estimate the remaining parameters to match second-order moments of four U.S.

time series: real GDP growth, inflation, real residential investment growth, and real

house price growth, for the period 1984-2019. Table 2.3 gathers the results for the three

estimated models: the diagnostic model with a twelve-quarter moving reference, the

diagnostic model with a one-quarter reference, and the rational expectations model.15 I

report the mean posterior and the 90% high probability density credible interval (HPDI)

for each parameter.16 The last line reports the log of the marginal likelihood for each

model.

The parameter values differ among the estimated models. Adjusting investment be-

comes more costly in the diagnostic model, more than twice as much when the reference

period is the immediate past.17 This tempers the diagnostic firms’ overreaction such that

the fluctuations in investment are not as pronounced as they could be with a lower adjust-

ment cost. The Calvo parameter estimates are very similar between the models. They

indicate that firms’ prices are sticky, as they can be reset once every seven quarters. These

results are comparable with the values obtained by Iacoviello and Neri (2010). House-

14It is worth noting that in this article, I follow Bordalo et al. (2018) when assuming that remote
memories affect the way the diagnostic agent forms expectations. Therefore, I define representativeness
in terms of current and past likelihood ratios. On the other hand, Bianchi et al. (2024) stipulate that the
comparison group the diagnostic agent uses as reference is an average of lagged RE conditional on t− J
information, where J is the time span of the lag. In Appendix 2.B I show how these two approaches are
related.

15Note that the diagnostic framework with a twelve-quarter slow-moving memory encompasses both
the diagnostic model using the last quarter as reference and the rational case. In the first, all attention is
on the last quarter, meaning that α1 = 1 and the remaining αs are equal to zero. While, in the second,
all weights and the diagnostic parameter are equal to zero.

16Figures 2.9, 2.10 and 2.11 in Appendix 2.C show the posterior distributions for the variables of each
model.

17Gabriel and Ghilardi (2012) estimate values within a similar range. They claim that this result arises
from an interaction between investment costs and financial frictions.
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holds seem to have a somewhat high degree of habit formation with estimated values for

this parameter slightly above 0.7. Nevertheless, it is a value close to the 0.6 proposed

by Leith, Moldovan, and Rossi (2012) and supported by the meta-analysis in Havranek,

Rusnak, and Sokolova (2017). Similarly, there is some variation in the Central Bank’s

Taylor rule parameters. In comparison to RE, the inflation feedback increases if agents

form DE considering the most recent past, whereas it decreases when they use a more dis-

tant memory. In contrast, the feedback on output growth shows the opposite behaviour.

The Central Bank is less sensitive to output growth volatility when the diagnostic agent

memory only includes the immediate past. However, when it includes remoter memories,

the Central Bank reacts as strongly as in the rational case. These estimates suggest that

agents’ behaviour directly influences the Central Bank’s trade-off between stabilising in-

flation and output growth volatility. This is in line with the conclusions of Bounader and

Elekdag (2024).

Table 2.3: Estimation

Description Parameter DE Ref: Q12 DE Ref: Q1 RE
Mean [0.05, 0.95] Mean [0.05, 0.95] Mean [0.05, 0.95]

Structural Parameters
Inv. adjustment cost ψ 0.8696 [0.5039,1.2422] 2.0600 [1.1548,3.3689] 0.8163 [0.4974,1.2026]
Habit formation γ 0.7224 [0.6383,0.7896] 0.7415 [0.6558,0.7956] 0.7143 [0.6199,0.7763]
Calvo parameter ϕ 0.8485 [0.8288,0.8637] 0.8732 [0.8604,0.8827] 0.8593 [0.8424,0.8718]
Taylor rule inflation ωπ 1.6680 [1.4599,1.8769] 1.7381 [1.4643,2.0024] 1.7183 [1.4661,1.9764]
Taylor rule output growth ω∆y 0.1972 [0.1249,0.2646] 0.1795 [0.0996,0.2455] 0.2029 [0.1102,0.2764]
Diagnostic parameters
Diagnostic parameter ϕ 0.1303 [0.0050,0.3265] 0.4555 [0.2819,0.6629]
1st quarter reference α1 0.6714 [0.2689,0.9517] 1.0
2nd quarter reference α2 0.2209 [0.0147,0.5706]
3rd quarter reference α3 0.2054 [0.0055,0.6358]
4th quarter reference α4 0.5226 [0.1065,0.9487]
5th quarter reference α5 0.0990 [0.0057,0.3096]
6th quarter reference α6 0.3797 [0.0380,0.8109]
7th quarter reference α7 0.5930 [0.1513,0.9603]
8th quarter reference α8 0.4963 [0.0910,0.8893]
9th quarter reference α9 0.4775 [0.0829,0.9068]
10th quarter reference α10 0.5157 [0.1629,0.8209]
11th quarter reference α11 0.5219 [0.1789,0.8178]
12th quarter reference α12 0.1340 [0.0087,0.4000]
Autoregressive coefficients
Goods TFP ρA 0.8307 [0.7791,0.8906] 0.8691 [0.8153,0.9217] 0.8169 [0.7559,0.8750]
Housing TFP ρZ 0.9413 [0.9212,0.9595] 0.9514 [0.9331,0.9660] 0.9546 [0.9379,0.9679]
Monetary policy ρM 0.6561 [0.5444,0.7373] 0.7625 [0.6807,0.8115] 0.6896 [0.5965,0.7573]
Housing demand ρΓ 0.9614 [0.9400,0.9800] 0.9445 [0.9080,0.9715] 0.9293 [0.8876,0.9633]
Standard deviation of shocks
Good TFP 100*σϵA 1.4435 [1.2829,1.6180] 1.3084 [1.1121,1.4724] 1.6550 [1.4820,1.8551]
Housing TFP 100*σϵZ 3.9204 [3.3804,3.9830] 3.7382 [3.3965,4.1451] 3.7089 [3.3996,4.1035]
Monetary policy 100*σϵM 0.3107 [0.2416,0.3896] 0.2222 [0.1719,0.2794] 0.2959 [0.2286,0.3771]
Housing demand 100*σϵΓ 5.3588 [4.0070,6.6326] 7.2345 [4.6284,10.9440] 11.2891 [7.2150,16.4806]
Log marginal likelihood 568.67 598.91 591.63

Note: The structural parameters include the investment adjustment cost (ψ), the habit formation (γ),
the Calvo parameter (θ), the Central Bank Taylor rule inflation feedback (ωπ), and output growth
feedback (ω∆y). The diagnostic parameters include the diagnosticity (ϕ) and the weights on past
quarters as reference (α12

n=1). The autocorrelation coefficients measure the persistence of the goods
TFP shock (ρA), housing TFP shock (ρZ), monetary shock (ρM ), and housing demand (preference)

shock (ρΓ), while σϵA , σϵZ , σϵM , σϵΓ measure the standard deviations.
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The key parameter in this analysis is the diagnostic parameter ϕ, which quantifies the

size of the departure from rationality. For the DE model with one-quarter lag reference,

the estimation places a substantial mass around a value of 0.4555, with a 90% HPDI

away from zero, providing strong evidence in favour of DE. This value is consistent with

the range found in the literature (L’Huillier et al., 2024; Bordalo, Gennaioli, Shleifer,

& Terry, 2021). However, in the case with twelve-quarters lags reference, the posterior

mean drops to 0.1303. This finding contrasts with Bianchi et al. (2024), who reported

a diagnostic degree magnitude of around 2 when agents rely on distant memories. It

is important to note that their estimate is relatively high compared to others in the

literature. Bianchi et al. (2024) obtained this under the assumption that the weights

assigned to lagged expectations sum up to one, which then requires a higher degree of

diagnosticity to match initial overreactions. This is not the case in the current study as

I do not impose any constraints on the weights. Instead, I am interested in capturing

whether there is a particular specification regarding their rate of decay.

Analysing the weights assigned to lagged representativeness as a reference, the es-

timates indicate two key findings. First, the reliance of diagnostic agents on past in-

formation (as indicated by non-zeros α′s values) is inversely related to their degree of

diagnosticity. This suggests that the slow-moving memory mechanism plays a crucial

role in distributing the DE effects over time. Second, the most immediate quarter has

the highest value, emphasising the importance of recent events in shaping agents’ ex-

pectations. However, quarters three to ten account for approximately 70% of the total

weight. This observation is consistent with Bianchi et al. (2024), who found a similar

concentration of attention within these quarters in their model.

Turning to the estimates of the shocks, I note that the differences between most of

the autoregressive coefficients do not exhibit a clear pattern. ρA is shown to be more

persistent after the introduction of DE with the immediate past as reference, but when

the length of the memory for the diagnostic agent is expanded including distant lags,

the value decreases towards the rational benchmark. ρM shows a similar outcome. In

contrast, the autoregressive coefficients for the housing market behave differently. ρZ

remains relatively stable, while ρΓ turns out higher under both DE models. A different

story holds for the standard deviations of the shocks. Overall, the estimated values are

smaller in the DE models versus the rational expectations model, except for the housing

TFP shock. This is consistent with evidence from previous articles pointing that DE is

the channel through which shocks explain fluctuations (L’Huillier et al., 2024).

Here, I focus on the magnitude of the housing preference shock. This shock has been

the major driver in rational expectations models that attempt to explain the dynamics

of the housing market, with estimates of its standard deviation between 3% and 10%
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(Iacoviello & Neri, 2010; Iacoviello, 2015; Ge et al., 2022). Iacoviello and Neri (2010)

describe this housing preference shock as either “genuine shifts in tastes for housing,

or a catchall for all the unmodeled disturbances that can affect housing demand”(p.

150). The estimated standard deviation of the housing preference shock under RE is

11.2891%. Instead, when agents are diagnostic, the values plummeted to 7.2345% and

5.3588%, contingent on whether their imperfect memory is driven by the immediate past

or the last three years. This finding suggests that a significant part of that “catchall”

seems to be related to the way agents form their expectations.18 Specifically, DE help

explain housing market volatility while relying on a smaller housing preference shock.

Gandré (2022), using the learning framework, reaches a similar conclusion highlighting

the necessity for stronger shock variances under rationality compared to a model with

behavioural agents.

5 Quantitative Results

This section evaluates the performance of the models in matching second-order mo-

ments for selected variables. The bottom line in Table 2.3 summarises these findings,

showing a log data density of 598.91 for the diagnostic model with one-quarter lag ref-

erence, compared to 591.63 for the rational expectations model. The difference between

these measures, called the Bayes factor, is 7.28 in favour of the model with diagnostic

agents, implying that its fit is better against the RE model.19 This section proceeds

showing how well the models do in fitting targeted moments of the data series. It also

includes an analysis on the drivers of the business cycle.

5.1 Second-order moments

I use the data in section 4.1 to calculate empirical moments. The time series variables

are demeaned to make them comparable with their model counterparts, where there is no

growth. I simulate series with the same length as the data, i.e. hundred and forty-four

observations, ten thousand times.

Table 2.4 compares the standard deviation (in %) of targeted variables in the data

with that of the diagnostic models (DE Ref: Q12 and DE Ref: Q1), as well as in the

rational expectations model (RE). The three models perform reasonably well. Although

real GDP growth appears more volatile in the models than in the data, the DE model

18By introducing DE with agents relying on the most recent past, the standard deviation estimate
decreases by 35.91%, whereas if they use a longer time-span memory, it drops by 52.53%.

19Kass and Raftery (1995) classifies a statistic 2log(Bayes Factor) = 14.56, as in this chapter, to be a
very strong evidence towards the diagnostic model over the rational model.
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with one-quarter lag memory generates a value closer to the observed target. While the

models tend to produce a more stable inflation, the results overall suggest that they

successfully capture the excess volatility in the housing market.

Table 2.4: Second-order moments in data and model

Data DE DE RE
Ref:Q12 Ref:Q1

Targeted moments

Standard deviation
∆ Real GDP 0.5764 0.8625 0.7271 0.8758
Relative standard deviation to GDP growth
Inflation 0.4262 0.3025 0.3397 0.3057
∆ Real House prices 2.9896 2.4381 3.1882 2.3282
∆ Real Residential Investment 5.9893 5.0424 5.3184 4.7029

Note: Growth rates for real GDP, real house price, real residential investment. Model moments were
obtained from averaging over ten thousand simulations of hundred and forty four observations each.

Despite this, the RE model consistently underestimates the magnitude of the relative

volatility observed in the housing sector, whereas the evidence from the DE models is

more accurate. Specifically, the DE Ref: Q1 model offers the closest fit. It achieves this

by relying less on an ad hoc housing preference shock and more on the amplification

mechanism inherent to the expectation formation process. This highlights that DE seem

to better capture the dynamics of housing market fluctuations.

5.2 Historical shock decomposition

Figure 2.4 displays the historical shock decomposition for the model that better fits

the data, the diagnostic model in which agents overweight recent past experiences when

forming expectations.20 This figure illustrates the nearly one-to-one relation between

the four variables used in the estimation and the shocks. At each point in time, the

bars indicate the proportion of the variable’s deviation from its steady state that can

be attributed to a particular shock, providing insight into the dynamic effects of these

shocks on the variable over time. The orange bar represents the effect from the wholesale

TFP shock, the green bar shows the impact of the housing TFP shock, the purple bar

reflects the monetary policy shock, and the yellow bar represents the housing preference

shock. The initial values, depicted in blue, show the impact of how far the variable is

from its steady state at that moment. Since the data series do not begin at this point,

the bars start from a value different from zero, but gradually diminish over time.

Real GDP growth is largely explained by the technology shock in the wholesale sector,

20Figures 2.12 and 2.13 in Appendix 2.C show the same figure for the other two estimated models.
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as well as by monetary policy shocks. Inflation, in contrast, is mainly influenced by

monetary policy shocks. The latter is expected since most of the analysis covers the

“Great Moderation” period. Housing shocks, both supply and demand, play a relevant

part describing the swings in the housing market. Real residential investment growth

is mainly driven by the technology shock in the housing sector. Whereas, the housing

preference shock explains real house price growth by directly affecting the marginal utility

of housing for both agents. Darracq Paries and Notarpietro (2008) report similar results

in both the US and the euro area.

The results found here do not show significant differences to the rational expectations

case, nor to the diagnostic model with a twelve-quarters reference as shown in the Ap-

pendix 2.C. This suggests that shocks impact the economy in similar ways in DE and

in RE; however, the amplification of these effects is driven by more volatile expectations

inherent to the DE framework.

5.3 Impulse response function analysis

The following sections analyse the impact of the four shocks under the three estimated

models using impulse responses. The responses are in log deviations from the steady

state. I assume a 1% standard deviation shock in both the housing and wholesale goods

sectors, as well as for the housing preference shock. The monetary policy shock, on the

other hand, has a size of 25 basis points.

5.3.1 Effects of a wholesale goods productivity shock

Figure 2.5 displays the impulse responses to a positive productivity shock in the wholesale

goods sector. The direction is as expected under RE. The shock increases labour and

capital productivity, resulting in higher production (panel A) and consumption (panel B).

Inflation decreases (panel C) as re-optimising firms adjust their prices in response to the

fall in marginal cost. The Central Bank lowers the nominal interest rate (panel D), but

the real interest rate increases (panel E). The lower nominal interest rate has a positive

effect on house prices (panel F), as they initially jump and gradually converge back to

the steady state. Loans (panel H) exhibit a U-shaped response due to the behaviour

of the interest rate, which influences two forces: patient households willing to lend and

impatient households willing to borrow. Housing investment (panel G) reacts positively,

driven by the increase in house prices.

In contrast, the responses under both DE models are characterised by initial overreac-

tions, longer persistence, and more pronounced fluctuations. The initial overreactions are

generated through the extrapolation of the shock and are common to both approaches.
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Figure 2.4: Historical shock decomposition under DE model with one-quarter reference.
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Figure 2.5: Impulse responses to a wholesale goods productivity shock.
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

However, the persistence and pronounced fluctuations are more specific to each frame-

work. In the DE model with a one-quarter reference, the model’s rigidities propagate

the initial overreaction throughout the economy. Conversely, the DE model, which in-

corporates a twelve-quarter slow-moving reference, displays more significant fluctuations

because of the extended memory involved in their expectation formation process.

Agents who misperceive the shock as an ARMA (1,1) or an ARMA (1,12) generate

optimism about their productivity in the future. As a result, households will assign a

higher probability to a scenario in which they are richer, leading to demand pressure

(panel A and panel B). Firms experiencing higher labour costs will hire less workers

and thus decrease their marginal costs. This lower marginal costs are reflected in the

drop in domestic prices (panel C); firms cut prices more since they might not be able

to re-optimise in the future. The Central Bank lowers the interest rate (panel D) by a

larger amount when the diagnostic agent reference is the most recent past as its Taylor

rule reacts more strongly to deviations in inflation. These two forces are the core of the

noticeable difference in the real interest rate response (panel E). Households extrapolate

current surprise disinflation into the future, i.e. they expect inflation to further decrease.

However, since the opposite happens, agents realise about their mistake and so does the

Central Bank, which hikes nominal interest rates, creating a boom-bust pattern in the

real interest rate as L’Huillier et al. (2024). This behaviour of the real interest rate alters

the shape of the impulse response of loans (panel H), since now impatient households

107



will be more willing to borrow against their house value. This additional liquidity puts

pressure on house prices (panel F). House prices exhibit a boom-bust pattern that aligns

with historical interpretations of bubbles, as suggested by Gelain et al. (2012), but this

chapter goes one step further by incorporating a micro- and psychologically founded belief

formation model.21 Finally, higher house prices stimulate higher housing investment

(panel G).

5.3.2 Effects of a housing sector productivity shock

Impulse responses to a positive productivity shock in the housing sector are shown in

Figure 2.6. The impact primarily affects variables related to the housing market. Hous-

ing investment exhibits a positive response (panel G) due to the increased productivity

of capital and labour in this sector. The increased productivity, in turn, leads to a higher

housing supply, resulting in a fairly persistent decline in house prices (panel F). The de-

cline in house prices affects consumption of final goods (panel B) as there is a reallocation

of resources, and a fall in annualised inflation (panel C) and nominal interest rate. GDP

(panel A), nevertheless, is positively driven by the housing sector.

Figure 2.6: Impulse responses to a housing sector productivity shock .
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

21Greenspan (2002) defines: “Bubbles are often precipitated by perceptions of real improvements in
the productivity and underlying profitability of the corporate economy. But, as history attests, investors
then too often exaggerate the extent of the improvement in economic fundamentals. Human psychology
being what it is, bubbles tend to feed on themselves, and booms in their later stages are often supported
by implausible projections of potential demand.”
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In comparison to the RE case, the DE models have a similar response, in magnitude,

of housing investment (panel G). Because the diagnostic agent believes that this TFP

shock is more persistent than it actually is, they overestimate the future productivity

of the housing sector and anticipate a higher housing supply. Consequently, diagnostic-

households initially overreact, leading to a more pronounced decline in house prices com-

pared to the rational case (panel F). This overreaction in house prices is stronger for

the DE model that has short-term memory agents. However, if agents realise that their

beliefs are inconsistent with the shock process, house prices correct and converge faster to

steady state. In fact, this faster correction occurs because households experience disap-

pointment when their expectations prove overly optimistic, leading to a lower residential

investment under DE compared to RE.

5.3.3 Effects of a tightening monetary policy

Figure 2.7 illustrates the impulse responses of a tightening monetary policy shock. The

responses observed under the RE behave as anticipated in standard models. The shock

depresses the economy, resulting in a negative deviation of GDP (panel A) and consump-

tion (panel B) from their steady state. Inflation decreases (panel C), and the Central

Bank reacts to these movements in output and inflation by lowering the nominal interest

rate (panel D). However, the decrease in inflation exceeds the adjustment in the nomi-

nal interest rate, resulting in an increased real interest rate (panel E). This higher real

interest rate has a negative effect on house prices (panel F), since mortgages for impa-

tient households become more expensive (panel H). Higher cost of borrowing, in turn,

depresses housing demand and housing investment (panel G), as the increased cost of

capital impacts investment decisions.

When agents are diagnostic, impulse responses exhibit some distinct features. The fall

in GDP is relatively larger and more persistent than for RE (panel A), when the reference

is the most recent past. This is because agents believe that the Central Bank will further

tighten monetary policy in the future. Those beliefs explain the stronger initial fall in

prices (panel C), which leads to stronger reactions in the nominal interest rate (panel D)

and, therefore, slightly smaller real interest rate (panel E). Agents mistakenly expect the

variables to follow this path, but as events unfold and there are no further surprises in

monetary policy, they adjust their expectations. This revision in expectations explains

the sudden increase in the nominal interest rate and the jump in inflation, which are

more pronounced in the diagnostic model where agents rely on short memory. Moreover,

the behaviour of consumption (panel B) follows the Euler equation, and the U-shaped

reaction is more persistent. A similar story holds for loans. The change in the real

interest rate, as well as the decline in house prices (panel F), impacts the borrowing
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Figure 2.7: Impulse responses to a monetary policy shock.
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

constraint of the impatient household. It decreases her collateral, and so does her ability

to obtain funds (panel H). This drags on housing demand and amplifies the fall in house

prices. The subsequent recovery follows from the relaxation of the impatient household’s

collateral constraint. De Stefani (2021) reports empirical results that are consistent with

this behaviour. In contrast, the impact of the shock on the economy populated with

diagnostic agents with distant memory is ameliorated. This amelioration may stem from

the reduced persistence of the shock compared to the other two scenarios, in conjunction

with the diagnostic parameter estimate and the agent’s attention framework.

5.3.4 Effects of a housing preference shock

Figure 2.8 provides details on the impact of the housing preference shock. Under RE, this

shock shifts households’ taste towards the housing sector as it directly hits the marginal

utility of housing for both agents. As a result, an increase in housing demand places

upward pressure on house prices (panel F). Although higher prices would make hous-

ing less desirable overall, impatient households experience a loosening in their collateral

constraint (panel H), reflecting their willingness to leverage their financial position, as

they need to finance higher housing costs. However, this effect is insufficient to offset the

decline in the demand for housing from patient agents. Additionally, the rise in interest

rates (panel D and panel E) diverts funds away from the housing sector, causing a delayed

increase in residential investment (panel G), which, once realised, stimulates GDP (panel
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A).

Figure 2.8: Impulse responses to a housing preference shock.
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

The responses under both DE scenarios are in the same direction as in RE, although

clearly amplified. When agents are diagnostic, after the shock hits, they expect further

pressure in the housing market, anticipating house prices to rise even higher. This pres-

sure leads to an initial overreaction in house prices (panel F), under both short-term

and long-term memory. Such significant shift impacts other variables in the economy

in the same way as in rational expectations. Impatient households experience a greater

loosening of their collateral constraint, but the stronger decline in patient households’

housing demand, combined with the hike in interest rates, diverts more funds away from

the housing sector (panel G).22 However, the main difference occurs if the agents realise

that the true shock process is AR(1) rather than ARMA(1,1) or ARMA(1,12). In the first

case, the rebound occurs faster as agents rapidly revise their expectations, while in the

second case, it takes longer. This difference is evident in the impulse responses for house

prices, where the drop in period 2 is more pronounced when the reference is the most

recent past. This shock also generates stronger cycles in GDP (panel A) and consumption

(panel B), with the drop in residential investment driving a recession for the first year and

a half. Another key difference lies in the persistence and fluctuations of responses. The

22Iacoviello and Neri (2010) argue that, due to the absence of wage rigidities, the housing investment
sector could become isolated from monetary and inflation disturbances, therefore leading the model to
underestimate the correlation between housing prices and both consumption and housing investment.
This may explain the findings observed here.
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initial overreaction, particularly when the memory spans twelve-quarters, takes longer

to die out. Gandré (2022) suggests that these movements originate in taste-swings in

households, directly affecting intra-temporal and intertemporal trade-offs.

6 Counterfactual analysis

In this section, I conclude the analysis by presenting a counterfactual study to explore

what happens if agents in the estimated diagnostic models suddenly behave rationally.

Specifically, I evaluate a scenario where the expectation channel in the DE models is

turned off, and agents adopt rational expectations instead. In this alternative setup, I set

the diagnostic parameter and the weights on past quarters to zero, effectively eliminating

the diagnostic component of expectation formation, while keeping all other parameters

fixed. This analysis allows for a direct comparison between the original DE models and

a model where agents rely solely on rational expectations. The comparison helps to

assess how the expectation channel in the DE models influences the volatility dynamics

in contrast to a purely rational expectations framework.

Table 2.5: Real house price growth second-order moment: data vs counterfactual model

Data DE DE RE Ref:Q12 RE Ref:Q1
Ref:Q12 Ref:Q1 Counterfactual Counterfactual

Volatility relative to GDP
Real House price growth 2.9896 2.4381 3.1882 1.8877 2.4992

Note: House price growth rate is obtained from averaging over ten thousand simulations of hundred
and forty four observations each.

The results in Table 2.5 suggest that rational counterfactual models struggle to amplify

house price volatility. Both counterfactual RE models produce a measure that is around

22% lower than their diagnostic counterpart. Notably, the RE Ref: Q1 counterfactual

generates a higher measure since the estimated size of the preference shock standard

deviation is higher than in the case of the twelve-quarter reference (7.23% vs 5.35%).

This finding underscores the significant role that DE play in driving the dynamics of the

housing market. In other words, around a third of the volatility in the housing market

originates in the expectations channel, through DE.

7 Concluding remarks

This chapter examines expectations as a central driver of housing market volatility by

integrating diagnostic expectations with both short-term and long-term memory into a
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TANK model featuring housing and banking sectors. The results, based on the diagnostic

parameter and reference period weight estimates, empirically support the DE model.

Evidence favours the model in which diagnostic agents only consider the immediate past

quarter when forming beliefs. This model successfully accounts for economic fluctuations,

particularly in the housing market, when conditioned on less volatile shocks. Specifically,

the DE model explains housing price and quantity dynamics with a housing preference

shock innovation that is two-thirds the size of that under RE, which suggests DE as a

more comprehensive alternative to the “catchall of all the unmodeled disturbances that

can affect housing demand” (Iacoviello & Neri, 2010, p. 150).

Another noteworthy result is that, when the expectations channel in the DE models is

shut down, the models fail to generate the higher volatility in house prices relative to real

GDP growth observed in the data. Together with the previous result, this suggests that

DE drive cyclical dynamics in the housing market and, given the sector’s significance in

household decision making, underline the need to consider DE in policy recommendations.

Future work would enhance the analysis. One direction I plan to explore is to allow

the banking sector to intermediate between households, which would provide insights

about the role of expectations in the housing credit market. Another possible extension

would be to allow for heterogeneity in the degree of diagnosticity to capture diverse belief

formation across households.
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Appendices

2.A Model Derivations

2.A.1 Households

2.A.1.1 Patient

Lp = E0

∞∑
t=0

βtp

{[
log(cp,t − γcp,t−1) + Γtν

h
p log(hp,t)− νnp

n1+φ
p,t

1 + φ

]
−

λp,t

[
cp,t + qt[hp,t − (1− δh)hp,t−1] + dBt + dlt −

dBt−1R
d
t−1

πt
−
dlt−1R

l
t−1

πt
−

wtnp,t − Πf,t − ΠB,t

]}
(2.74)

The optimal conditions of this Lagrangian with respect to cp,t, np,t, hp,t, d
B
t and dlt are:

∂Lp
∂cp,t

: λp,t =
1

(cp,t − γcp,t−1)
− βpγ

(cp,t+1 − γcp,t)
. (2.75)

∂Lp
∂np,t

: νnp n
φ
p,t = wtλp,t. (2.76)

∂Lp
∂hp,t

: λp,tqt =
Γtν

h
p

hp,t
+ βpEt

[
(1− δh)qt+1λp,t+1

]
. (2.77)

∂Lp
∂dBt

: λp,t = βpEt

[
λp,t+1

Rd
t

πt+1

]
. (2.78)

∂Lp
∂dlt

: λp,t = βpEt

[
λp,t+1

Rl
t

πt+1

]
. (2.79)
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2.A.1.2 Impatient

Li =E0

∞∑
t=0

βti

{[
log(ci,t − γci,t−1) + Γtν

h
i log(hi,t)− νni

n1+φ
i,t

1 + φ

]
−

λi,t

[
ci,t + qt(hi,t − (1− δh)hi,t−1) +

lt−1R
l
t−1

πt
− lt − wtni,t

]
−

µi,t

[
lt −

χ

Rl
t

(qt+1πt+1)hi,t

]}
(2.80)

The optimal conditions of this Lagrangian with respect to ci,t, ni,t hi,t and lt are:

∂Li
∂ci,t

: λi,t =
1

(ci,t − γci,t−1)
− βiγ

(ci,t+1 − γci,t)
. (2.81)

∂Li
∂ni,t

: νni n
φ
i,t = wtλi,t. (2.82)

∂Li
∂hi,t

: λi,tqt =
Γtν

h
i

hi,t
+ βiEt

[
(1− δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1], (2.83)

∂Li
∂lt

: λi,t − µi,t = βiEt

[
λi,t+1

Rl
t

πt+1

]
(2.84)

2.A.2 Firms

2.A.2.1 Wholesale firms

max
NW

t ,KW
t−1

Πw,f
t = [Pm,tY

W
t + (1− δk)q

K
t K

W
t−1 −RK

t q
K
t−1K

W
t−1 − wtN

W
t

]
(2.85)

subject to:

Y W
t = AtN

W
t

1−α
KW
t−1

α
, (2.86)

The first-order conditions with respect to NW
t and KW

t−1 are:

wt = Pm,t(1− α)At

(
KW
t−1

NW
t

)α

, (2.87)

qKt−1R
K
t = rKt + (1− δk)q

K
t , (2.88)

where rKt = Pm,tαAt

(
NW

t

KW
t−1

)1−α
is the rental rate of capital. Obtaining the ratio

NW
t

KW
t−1

from the wage and rental rate expressions and equating them, I obtain an equation for

the marginal cost:

mct =
1

At

(
wt

1− α

)1−α(
rKt
α

)α

. (2.89)
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2.A.2.2 Final good firm

The final good producer purchases goods repackaged by the retailers and aggregates them

according to a Dixit-Stiglitz production technology. After that, they sell the final product

in a perfect competitive market at a price Pt.

Yt =

[∫ 1

0

yt(j)
ϵ−1
ϵ dj

] ϵ
ϵ−1

. (2.90)

Yt represents the final good, yt(j) denotes the j′th retailer input. This firm’s profit

maximisation is a static problem and can be stated as:

max
yt(j)

Pt

[∫ 1

0

yt(j)
ϵ−1
ϵ dj

] ϵ
ϵ−1

−
∫ 1

0

pt(j)yt(j)dj, (2.91)

where Yt was replaced using its definition. The first-order condition of this decision

problem by choosing {yt(j)}1j=0 is given by:

Pt
ϵ

ϵ− 1

[∫ 1

0

yt(j)
ϵ−1
ϵ dj

] ϵ
ϵ−1

−1
ϵ− 1

ϵ
yt(j)

ϵ−1
ϵ

−1 = Pt(j),∀j

⇒ Pt

[∫ 1

0

yt(j)
ϵ−1
ϵ dj

] 1
ϵ−1

yt(j)
− 1

ϵ = Pt(j)

⇒ yt(j)
− 1

ϵ =

(
Pt(j)

Pt

)[∫ 1

0

yt(j)
ϵ−1
ϵ dj

]− 1
ϵ−1

⇒ yt(j) =

(
Pt(j)

Pt

)−ϵ [∫ 1

0

yt(j)
ϵ−1
ϵ dj

]− ϵ
ϵ−1

. (2.92)

Which after using the definition of Yt, the demand equation for each input turns out

to be:

yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt. (2.93)

Since this final good-producing firm acts in a competitive market, it makes zero profit.

Replacing the demand equation in the maximisation problem, I obtain:

PtYt =

∫ 1

0

Pt(j)Yt(j)dj

⇒ PtYt =

∫ 1

0

Pt(j)

(
Pt(j)

Pt

)−ϵ

Ytdj
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⇒ PtYt = P ϵ
t Yt

∫ 1

0

Pt(j)
1−ϵdj

P 1−ϵ
t =

∫ 1

0

Pt(j)
1−ϵdj. (2.94)

Rearranging this equation yields an expression of the price of the final good as a

function of the intermediate inputs’ prices, i.e. an aggregate price index:

Pt =

[∫ 1

0

Pt(j)
1−ϵdj

] 1
1−ϵ

(2.95)

2.A.2.3 Retail firms

In the presence of price rigidity à la Calvo, retailers will be able to change their price

with a probability (1−θ), while with a probability θ they will not. To determine the new

price P ∗
t (j), the retail firms maximise:

Vt(j) = Et
∞∑
i=0

(βpθ)
i

{
λp,t+i
λp,t

[(
P ∗
t (j)

Pt+i
−mct+i

)(
P ∗
t (j)

Pt+i

)ϵ
Yt+i

]}
.

The first-order condition of this problem is:

∂Vt(j)

∂P ∗
t (j)

: Et
∞∑
i=0

(βθ)i

{
λp,t+i
λp,t

[(
P ∗
t (j)

Pt+i

)−ϵ

− ϵ

(
P ∗
t (j)

Pt+i
−mct+i

)(
P ∗
t (j)

Pt+i

)−(ϵ+1)
]
Yt+i
Pt+i

}
= 0

(2.96)

Et
∞∑
i=0

(βθ)i
λp,t+i
λp,t

[
(1− ϵ)(P ∗

t (j))
−ϵP ϵ−1

t+i + ϵmct+i(P
∗
t (j))

−(ϵ−1)P ϵ
t+i

]
Yt+i = 0

Et
∞∑
i=0

(βθ)t
λp,t+i
λp,t

[
(1− ϵ)(P ∗

t (j))
−ϵP ϵ−1

t+i Yt+1 + ϵmct+iP
ϵ
t+iYt+i

]
= 0

After rearranging, the result of this maximisation problem determines that retail firms,

which have obtained a successful draw, will set their price as a constant mark-up on

an expression related to their expected discounted nominal total costs relative to an

expression related to their expected discounted real output.

P ∗
t (j) =

ϵ

ϵ− 1

[
Et
∑∞

i=0(βpθ)
iλp,t+imct+iP

ϵ
t+iYt+i

Et
∑∞

i=0(βpθ)
iλp,t+iP

ϵ−1
t+i Yt+i

]
. (2.97)

The above equation does not depend on j, this implies that every retailer firm that is

able to set its price in period t will choose the same price. Moreover, in the limiting case,
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with no price rigidity, the firm’s optimal price is a constant markup on real marginal

costs. This expression can be written in terms of two auxiliary variables, x1,t and x2,t:

π∗
t =

ϵ

ϵ− 1

x1,t
x2,t

, (2.98)

where the auxiliary variables take the following recursive forms:

x1,t = λp,tmctYt + θβpEt(πt+1)
ϵx1,t+1. (2.99)

x2,t = λp,tYt + θβpEt(πt+1)
ϵ−1x2,t+1. (2.100)

Next, I define an auxiliary variable νjt for the measure of price dispersion:

νjt =

∫ 1

0

(
Pt(j)

Pt

)−ϵ

dj. (2.101)

Making use of the fact that a proportion of firms are able to reset their price, while

others are not, the price dispersion can be re-written as:

νjt =

∫ 1−θ

0

(
P ∗
t (j)

Pt

)−ϵ

dj +

∫ 1

1−θ

(
Pt−1(j)

Pt

)−ϵ

dj (2.102)

To obtain an expression of the price dispersion in terms of the inflation rate, multiply

and divide by powers of Pt−1 where necessary, given:

νjt =

∫ 1−θ

0

(
P ∗
t (j)

Pt

)−ϵ

dj +

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ϵ(
Pt−1

Pt

)−ϵ

dj.

Using the definition of π∗
t and of gross inflation πt, the previous expression becomes:

νjt = (1− θ)(π∗
t )

−ϵ + (πt)
ϵ

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ϵ

dj

where the last term, using the definition of the auxiliary variable, is equal to θνjt−1.

Replacement yields the following:

νjt = (1− θ)(π∗
t )

−ϵ + (πt)
ϵθνjt−1. (2.103)

Using the definition for the price dispersion, the demand equation for each input, the

final good equation, and the fact that it takes one intermediate output unit to make one

unit of retail output, I obtain the expression linking aggregate wholesale production with
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final good production:

Yt =
Y W
t

νjt

2.A.2.4 Capital good firms

The capital good producers maximise:

E0

∞∑
i=0

βtp
λp,t+i
λp,t

[
qKt K

W
t − qKt (1− δk)K

W
t−1 + rK,ht Kh

t − It

]
, (2.104)

subject to the law of motion of total capital and the definition of aggregate capital.

Kt = (1− δk)Kt−1 + [1− ψ

2
(It/It−1 − 1)2]It, (2.105)

Kt = KW
t +Kh

t . (2.106)

I write the problem in Lagrangian form as:

LK = E0

∞∑
i=0

βip
λp,t+i
λp,t

{[
qKt K

W
t − qKt (1− δk)K

W
t−1 + rK,ht Kh

t − It

]
−

λK,t

[
KW
t +Kh

t − (1− δk)(K
W
t−1 +Kh

t−1)−
(
1− ψ

2

( It
It−1

− 1
)2)

It

]} (2.107)

The optimality conditions with respect to KW
t , Kh

t and It are:

∂LK
∂KW

t

: qKt − βp
λp,t+1

λp,t
(1− δk)q

K
t+1 = λK,t − βp

λp,t+1

λp,t
(1− δk)λK,t+1. (2.108)

∂LK
∂Kh

t

: rK,ht = λK,t − βp
λp,t+1

λp,t
(1− δk)λK,t+1. (2.109)

∂LK
∂It

: 1 = λK,t

[
1− ψ

2

( It
It−1

− 1
)2

− ψ
( It
It−1

− 1
)( It

It−1

)]
+

βpψEt

[
λp,t+1

λp,t
λK,t+1

(It+1

It

)2(It+1

It
− 1
)]
,

(2.110)

2.A.2.5 Housing firms

This firm’s profit maximisation is a static problem and can be stated as:

max
Nh

t ,K
h
t−1

Πh
t = [qtI

h
t − rK,ht Kh

t−1 − wtN
h
t

]
, (2.111)
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subject to:

Iht = ZtN
h
t

1−µhKh
t−1

µh , (2.112)

After replacing the production function in the profit expression, I re-write the problem

as following:

max
Nh

t ,K
h
t−1

Πh
t = [qt(ZtN

h
t

1−µhKh
t−1

µh)− rK,ht Kh
t−1 − wtN

h
t

]
, (2.113)

The first-order conditions of this maximisation problem with respect to Nh
t and Kh

t

are:

wt = (1− µh)qt
Iht
Nh
t

. (2.114)

rK,ht = µhqt
Iht
Kh
t

. (2.115)

2.A.3 Banks

To solve the optimisation problem of bank τ , I write it in a Bellman equation form as:

V B
τ,t(NWi,t) = βBEt

λp,t+1

λp,t
{(1− σ)NWτ,t + σmaxV B

τ,t+1(NWτ,t+1)}, (2.116)

is subject to:

qKt Sτ,t = NWτ,t +Dτ,t,

NWτ,t+1 =
(
RK
t+1 −Rd

t

)
Sτ,t +Rd

tNWτ,t,

V B
τ,t ≥ ζ(qkt,fSτ,t).

I start guessing that the value function V B
τ,t is linear in NWτ,t, V

B
τ,t = νBt NWτ,t, where

νBt depends only on aggregate quantities. Then, I replace the balance sheet in the evolu-

tion of the net worth equation, which then I plug into the Bellman equation. The problem

now is to maximise the new Bellman equation subject to the incentive constraint. I re-

express the bank’s i problem using the Lagrangian as:

LB =
[
(1−σ+σνBt+1)

((
RK
t+1−Rd

t

)
qKt Sτ,t+Rd

tNWτ,t

)]
(1+ ξt)− ξt(ζ(q

K
t Sτ,t)), (2.117)

where ξt is the Lagrange multiplier with respect to the incentive constraint, and the first

order condition with respect to Sτ,t and NWτ,t are:

∂LB
∂Sτ,t

:
ξtζ

(1 + ξt)
= Et

[
(1− σ + σνbt+1)

(
RK
t+1 −Rd

t

)]
. (2.118)
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∂LB
∂NWτ,t

:
1

(1 + ξt)
= Et

[
(1− σ + σνbt+1)

( Rd
t

πt+1

)]
. (2.119)

Defining the adjusted marginal value of the net worth as Ωτ,t+1 = (1− σ+ σνbt+1), the

value function can be re-expressed as:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t

]}
Multiplying and dividing this expression by NWτ,t I obtain:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
NWτ,t, (2.120)

where ϕt =
qKt Sτ,t

NWτ,t
and the term between the curly brackets is νbt . Therefore, if the incentive

constraint is binding, i.e. νbt = ζϕt, replacing the previous result:

βBEt
λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
= ζϕt.

This, after rearranging, implies that the leverage is equal to:

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1

λp,t
Ωτ,t+1

(
RK
t+1 −Rd

t

) . (2.121)

2.A.4 Equilibrium conditions

The model is characterised by 47 equations, with 43 endogenous variables {λp,t, cp,t, np,t,
hp,t, d

B
p,t, d

l
p,t, λi,t, ci,t, ni,t, hi,t, li,t, µi,t, It, Kt, K

W
t , K

h
t , λK,t, q

K
t , I

h
t , Ht, qt, r

K
t , r

K,h
t , wt, R

d
t , R

l
t,

RK
t ,mct, Nt, N

W
t , Nh

t , Ct, Yt, x1,t, x2,t, πt, π
∗
t , ν

j
t , ϕt,Ωt, NWt, Dt, St} and 4 exogenous shocks

{At, Zt,Mt,Γt}.

2.A.4.1 Patient Households

λp,t =
1

(cp,t − γcp,t−1)
− βpγ

(cp,t+1 − γcp,t)
. (2.122)

νnp n
φ
p,t = wtλp,t. (2.123)

λp,tqt =
Γtν

h
p

hp,t
+ βpEt

[
(1− δh)qt+1λp,t+1

]
. (2.124)

λp,t = βpEt

[
λp,t+1

Rd
t

πt+1

]
. (2.125)
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λp,t = βpEt

[
λp,t+1

Rl
t

πt+1

]
. (2.126)

cp,t+qt[hp,t−(1−δh)hp,t−1]+d
B
t +d

l
t =

dBt−1R
d
t−1

πt
+
dlt−1R

l
t−1

πt
+wtnp,t+Πf,t+ΠB,t. (2.127)

2.A.4.2 Impatient Households

λi,t =
1

(ci,t − γci,t−1)
− βiγ

(ci,t+1 − γci,t)
. (2.128)

νni n
φ
i,t = wtλi,t. (2.129)

λi,tqt =
Γtν

h
i

hi,t
+ βiEt

[
(1− δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1]. (2.130)

λi,t − µi,t = βiEt

[
λi,t+1

Rl
t

πt+1

]
, (2.131)

ci,t + qt(hi,t − (1− δh)hi,t−1) +
lt−1R

l
t−1

πt
= wtni,t + lt. (2.132)

lt ≤
χ

Rl
t

Et[qt+1πt+1]hi,t. (2.133)

2.A.4.3 Goods firms

Y W
t = AtN

W
t

1−α
KW
t−1

α
. (2.134)

νjt = (1− θ)(π∗
t )

−ϵ + (πt)
ϵθνjt−1. (2.135)

mct =
1

At

(
wt

1− α

)1−α(
rKt
α

)α

. (2.136)

rKt
wt

=
αNW

t

(1− α)KW
t−1

(2.137)

qKt−1R
K
t = rKt + (1− δk)q

K
t . (2.138)

I define two auxiliary variables to reexpress pricing as:

π∗
t =

ϵ

ϵ− 1

x1,t
x2,t

. (2.139)

These variables have a recursive representation given by:

x1,t = λp,tmctYt + θβpEt(πt+1)
ϵx1,t+1. (2.140)

x2,t = λp,tYt + θβpEt(πt+1)
ϵ−1x2,t+1. (2.141)
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π1−ϵ
t = θ + (1− θ) (π∗

t )
1−ϵ . (2.142)

2.A.4.4 Housing firms

Iht = ZtN
h
t

1−µhKh
t−1

µh , (2.143)

rK,ht

wt
=

µhN
h
t

(1− µh)Kh
t−1

(2.144)

2.A.4.5 Capital firms

qKt − βp
λp,t+1

λp,t
(1− δk)q

K
t+1 = λK,t − βp

λp,t+1

λp,t
(1− δk)λK,t+1. (2.145)

rK,ht = λK,t − βp
λp,t+1

λp,t
(1− δk)λK,t+1. (2.146)

1

λK,t
= 1− ψ

2

( It
It−1

−1
)2

−ψ
( It
It−1

−1
)( It

It−1

)
+βpψEt

[
λp,t+1

λp,t
λK,t+1

(It+1

It

)2(It+1

It
−1
)]
.

(2.147)

2.A.4.6 Banks

Ωτ,t+1 = (1− σ + σζϕt). (2.148)

qKt St = ϕtNWt. (2.149)

NWt = (σ + ω)(RK
t q

K
t−1St−1)− σRd

t−1Dt−1. (2.150)

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1

λp,t
Ωτ,t+1

(
RK
t+1 −Rd

t

) . (2.151)

qKt St = NWt +Dt. (2.152)

2.A.4.7 Central Bank

Rd
t = (1/βp)

(
πt
π̄

)ωπ
(

GDPt
GDPt−1

)ωy

Mt, (2.153)

2.A.4.8 Aggregation

Ct = (1− n)cp,t + (n)ci,t (2.154)

Nt = (1− n)np,t + (n)ni,t. (2.155)

Ht = (1− n)hp,t + (n)hi,t (2.156)

Nt = NW
t +Nh

t . (2.157)
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Yt =
Y W
t

νjt
(2.158)

GDPt = Ct + It + q̄Iht . (2.159)

Dt = (1− n)dBt (2.160)

(1− n)dlt = nlt (2.161)

St = KW
t (2.162)

Kt = (1− δk)Kt−1 +
[
1− ψ

2
(It/It−1 − 1)2

]
It (2.163)

Kt = KW
t +Kh

t (2.164)

Iht = Ht − (1− δh)Ht−1 (2.165)

2.A.4.9 Shocks

log(At+1) = ρAlog(At) + σϵAϵ
A
t+1. (2.166)

log(Zt+1) = ρZ log(Zt) + σϵZϵ
Z
t+1. (2.167)

log(Mt+1) = ρM log(Mt) + σϵM ϵ
M
t+1. (2.168)

log(Γt+1) = ρΓlog(Γt) + σϵΓϵ
Γ
t+1. (2.169)

2.A.5 Steady State

2.A.5.1 Patient

Rd =
1

βp
. (2.170)

λp =
(1− βpγ)

(1− γ)cp
. (2.171)

νnp n
φ
p = wλp. (2.172)

1

hpλpq
=

1− βp(1− δh)

νhp
. (2.173)

2.A.5.2 Impatient

λi =
(1− βiγ)

(1− γ)ci
. (2.174)

νni n
φ
i = wλi. (2.175)

µi = (1− βiR
l)λi. (2.176)
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1

hiλiq
=

1− βi(1− δh)− (1− βiR
l) χ
Rl

νhi
. (2.177)

ci = wni + (1−Rl)l − qhiδh. (2.178)

lRl

χ
= qhi. (2.179)

2.A.5.3 Goods firms

rK

w
=

αNW

(1− α)KW
. (2.180)

RK = rK + (1− δk). (2.181)

mc =

(
w

1− α

)1−α(
rK

α

)α

. (2.182)

Y

KW
=

(
NW

KW

)1−α

. (2.183)

x1 =
λpmcY

1− θβ
. (2.184)

x2 =
λpY

1− θβ
. (2.185)

π∗ =
ϵ

ϵ− 1

x1
x2
. (2.186)

π1−ϵ = θ + (1− θ) (π∗)1−ϵ . (2.187)

νj =
(1− θ)(π∗)−ϵ

1− θπϵ
. (2.188)

2.A.5.4 Housing firms

Ih = Nh1−µhKhµh . (2.189)

rK,h

w
=

µhN
h

(1− µh)Kh
. (2.190)

2.A.5.5 Capital firms

qK = 1. (2.191)

rK,h = 1− βp(1− δk). (2.192)

1

λK
= 1. (2.193)
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2.A.5.6 Banks

Ω = (1− σ + σζϕ). (2.194)

NW

KW
=

1

ϕ
. (2.195)

NW

KW
= 1− D

KW
. (2.196)

NW

KW
=

(σ + ω)RK − σ
βp

1− σ
βp

=
1

ϕ
. (2.197)

ϕ =
βpΩR

d

ζ − βpΩ(RK −Rd)
. (2.198)

2.A.5.7 Central Bank

Rd =
1

βp
. (2.199)

2.A.5.8 Aggregation

C = (1− n)cp + (n)ci. (2.200)

N = (1− n)np + (n)ni. (2.201)

H = (1− n)hp + (n)hi. (2.202)

N = N f +Nh. (2.203)

Y = Y W . (2.204)

GDP = C + I + qIh. (2.205)

D = (1− n)dB. (2.206)

(1− n)dl = nl. (2.207)

S = KW . (2.208)

δk =
I

K
. (2.209)

K = KW +Kh. (2.210)

δh =
Ih

H
. (2.211)
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2.B Diagnostic probability density function

To obtain the diagnostic probability density function of the economy’s state, I use

the assumption that it follows an AR(1) process and that a standard probability density

function of a normally distributed variable xt+1 is:

f(xt+1|xt) = 1
σ
√
2π
e−

(xt+1−ρxt)
2

2σ2 .

Recalling the definition of the diagnostic probability density function under a slow-

moving reference group fϕ(xt+1) =

f(xt+1|xt = ρx̄t)

{[∏S
s=1

f(xt+1|ρsx̄t+1−s)
f(xt+1|ρs+1x̄t−s)

]αs

}ϕ

Z, and using the previous expression:

fϕ(xt+1|xt) =
1

σ
√
2π
e−

(xt+1−ρx̄t)
2

2σ2


 S∏
s=1

1
σ
√
2π
e−

(xt+1−ρsx̄t+1−s)
2

2σ2

1
σ
√
2π
e−

(xt+1−ρs+1x̄t−s)
2

2σ2


αs

ϕ

Z, (2.212)

Simplifying and rewriting, I obtain:

fϕ(xt+1|xt) =
1

σ
√
2π
e

{
− (xt+1−ρx̄t)

2

2σ2 − 1
2σ2 ϕ[

∑S
s=1 αs((xt+1−ρsx̄t+1−s)2−(xt+1−ρs+1x̄t−s)2)]

}
Z.

(2.213)

I expand and re-write the argument of the exponential as:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

(
− 1

2σ2

{
(x2t+1 − 2xt+1ρx̄t + (ρx̄t)

2)+

ϕ
[ S∑
s=1

αs
(
(x2t+1 − 2xt+1ρ

sx̄t+1−s + (ρsx̄t+1−s)
2)−

(x2t+1 − 2xt+1ρ
s+1x̄t−s + (ρs+1x̄t−s)

2)
)]})

Z.

(2.214)

This can be further expanded and rearranged, after taking 2x as common factor:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

(
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]]
+

(ρx̄t)
2 + ϕ

[
S∑
s=1

αs
(
(ρsx̄t+1−s)

2 − (ρs+1x̄t−s)
2
)]})

Z,

(2.215)
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where the constant Z is given by:

Z = exp

(
− 1

2σ2

{
− ϕ

[
S∑
s=1

αs
(
(ρsx̄t+1−s)

2 − (ρs+1x̄t−s)
2
)]

+ 2ρx̄tϕ

[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]

+ ϕ2

[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]2})
.

(2.216)

After some algebra, the diagnostic pdf is equal to:

fϕ(xt+1|xt) =
1

σ
√
2π
e
− 1

2σ2

{
[xt+1−(ρx̄t+ϕ

∑S
s=1 αs(ρsx̄t+1−s−ρs+1x̄t−s))]

2

}
. (2.217)

This, as Gennaioli and Shleifer (2018) states, contains the kernel of a normal distribu-

tion with a distorted mean and the same variance. Therefore:

Eϕt (xt+1) = Et(xt+1) + ϕ
S∑
s=1

αs [Et+1−s(xt+1)− Et−s(xt+1)] . (2.218)

Expression (2.217) can be extended in order to re-write it in terms of the realisations

of the shocks:

fϕ(xt+1|xt) =
1

σ
√
2π
exp

{
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

∑S
s=1 αs (ρ

sx̄t+1−s − ρs+1x̄t−s)
]
+ (ρx̄t)

2+

2ρx̄tϕ
[∑S

s=1 αs (ρ
sx̄t+1−s − ρs+1x̄t−s)

]
+ ϕ2

[∑S
s=1 αs (ρ

sx̄t+1−s − ρs+1x̄t−s)
]2 }}

,

which can be rewritten using the AR(1) process definition as:

fϕ(xt+1|xt) = 1
σ
√
2π
exp

{
− 1

2σ2

{
x2t+1 − 2xt+1

[
ρx̄t + ϕ

∑S
s=1 ρ

sαsϵt+s−1

]
+ (ρx̄t)

2+

2ρx̄tϕ
[∑S

s=1 ρ
sαsϵt+s−1

]
+ ϕ2

[∑S
s=1 ρ

sαsϵt+s−1

]2}
,

This can be rearranged as:

fϕ(xt+1|xt) =
1

σ
√
2π
e
− 1

2σ2

{
[xt+1−(ρx̄t+ϕ

∑S
s=1 ρ

sαsϵt+s−1)]
2

}
. (2.219)

Again, this function contains the kernel of a normal distribution with a distorted mean:

Eϕt (xt+1) = ρxt + ϕ

S∑
s=1

ρsαsϵt+s−1. (2.220)
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This way of modelling DE with slow-moving reference embeds the one from Bianchi

et al. (2024) as a special case. This occurs when α1 = 1 and the rest are such that∑S
s=1 α

′
s = 1, where α

′
s = (αs − αs+1). In that case, the diagnostic expectation will be

defined as:

Eϕt (Xt+1) = Et(Xt+1) + ϕ [Et(Xt+1)− Ert (Xt+1)] , (2.221)

where Ert (Xt+1) =
∑S

s=1 α
′
sEt−s(Xt+1)

2.B.1 Diagnostic distribution using last twelve-quarters as ref-

erence

Using the previous result, if the Diagnostic agent form expectations taking into account

the last twelve-quarters, I obtain the following probability density function:

fϕ(xt+1|xt) = 1
σ
√
2π
exp

{
− 1

2σ2

{
x2t+1− 2x[ρx̄t+ϕ[ρα1 (x̄t − ρx̄t−1)+ ρ

2α2 (x̄t−1 − ρx̄t−2)+

ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4) + ρ5α5 (x̄t−4 − ρx̄t−5) + ρ6α6 (x̄t−5 − ρx̄t−6)+

ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8) + ρ9α9 (x̄t−8 − ρx̄t−9) + ρ10α10 (x̄t−9 − ρx̄t−10)+

ρ11α11 (x̄t−10 − ρx̄t−11) + ρ12α12 (x̄t−11 − ρx̄t−12)] + (ρx̄t)
2 + 2ρxtϕ[ρα1 (x̄t − ρx̄t−1)+

ρ2α2 (x̄t−1 − ρx̄t−2) + ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4) + ρ5α5 (x̄t−4 − ρx̄t−5)+

ρ6α6 (x̄t−5 − ρx̄t−6) + ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8) + ρ9α9 (x̄t−8 − ρx̄t−9)+

ρ10α10 (x̄t−9 − ρx̄t−10) + ρ11α11 (x̄t−10 − ρx̄t−11) + ρ12α12 (x̄t−11 − ρx̄t−12)]+

ϕ2[ρα1 (x̄t − ρx̄t−1) + ρ2α2 (x̄t−1 − ρx̄t−2) + ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4)+

ρ5α5 (x̄t−4 − ρx̄t−5) + ρ6α6 (x̄t−5 − ρx̄t−6) + ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8)+

ρ9α9 (x̄t−8 − ρx̄t−9) + ρ10α10 (x̄t−9 − ρx̄t−10) + ρ11α11 (x̄t−10 − ρx̄t−11) +

ρ12α12 (x̄t−11 − ρx̄t−12)]
2
}}

,

which implies:

Eϕt (x̄t+1) = ρx̄t + ϕ[ρα1(x̄t − ρx̄t−1) + ρ2α2(x̄t−1 − ρx̄t−2) + ρ3α3(x̄t−2 − ρx̄t−3) + ρ4α4(x̄t−3 − ρx̄t−4)

+ ρ5α5(x̄t−4 − ρx̄t−5) + ρ6α6(x̄t−5 − ρx̄t−6) + ρ7α7(x̄t−6 − ρx̄t−7) + ρ8α8(x̄t−7 − ρx̄t−8)

+ ρ9α9(x̄t−8 − ρx̄t−9) + ρ10α10(x̄t−9 − ρx̄t−10) + ρ11α11(x̄t−10 − ρx̄t−11)

+ ρ12α12(x̄t−11 − ρx̄t−12)].

(2.222)
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After using the definition of the AR(1) process:

Eϕt (xt+1) = ρxt + ϕ[(ρα1ϵt + ρ2α2ϵt−1 + ρ3α3ϵt−2 + ρ4α4ϵt−3 + ρ5α5ϵt−4 + ρ6α6ϵt−5

+ ρ7α7ϵt−6 + ρ8α8ϵt−7 + ρ9α9ϵt−8 + ρ10α10ϵt−9 + ρ11α11ϵt−10 + ρ12α12ϵt−11)]

(2.223)

Thus, agents mistakenly perceive the AR(1) shock as an ARMA(1,12).

2.C Additional results

2.C.1 Posterior distributions and historical decomposition

This subsection presents figures showing the posterior distributions from the SMC of the

DE model with twelve-quarters reference, DE model with one-quarter reference, and the

RE model. It also exhibits the historical decomposition for the RE model and the DE

model with twelve-quarters reference.

2.D Definition of data variables

I calibrate the model using quarterly data for the United States. I obtained the data

from the Board of Governors of the Federal Reserve System and the Bureau of Economic

Analysis, using the National Accounts and Flow of Funds. I also use the Census Bureau

House Price Index. The sample period begins in 1984:Q1 and ends in 2019:Q4, i.e. pre-

pandemic. The variables that I use are:

Output

Data: Real Gross Domestic Product (Billions of chained 2012 Dollars, seasonally ad-

justed annual rate). The series is adjusted by the civilian non-institutional population.

The result is log-transformed, detrended using the first difference, and demeaned. Source:

Board of Governors of the Federal Reserve System.

Inflation

Data: Implicit Price Deflator (Index 2012 = 100, seasonally adjusted annual rate).

The series is in quarter-on-quarter log differences and is demeaned. Source: Board of

Governors of the Federal Reserve System.

Nominal short-term interest rate

Data: Federal funds rate. Quarterly average of the monthly series. During the zero

lower bound period, the Wu-Xia shadow federal funds rate is used. Source: Board of

Governors of the Federal Reserve System and Wu and Xia (2016).
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Figure 2.9: Posterior distributions parameters DE model with twelve-quarters reference.
Note: The red dashed line represents the mean of each posterior distribution.
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Figure 2.10: Posterior distributions parameters DE model with one-quarter reference.
Note: The red dashed line represents the mean of each posterior distribution.
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Figure 2.11: Posterior distributions parameters RE model.
Note: The red dashed line represents the mean of each posterior distribution.
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Figure 2.12: Historical shock decomposition under RE model.
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Figure 2.13: Historical shock decomposition under DE model with twelve-quarters reference.
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House prices

Data: Census Bureau House Price Index (Index 2012 = 100, quarterly new one-family

houses sold including value of lot). This series is deflated using the Implicit Price Deflator.

The result is log-transformed, detrended using the first difference, and also demeaned.

Source: Census Bureau.

Loans to households

Data: Households and Non-profit Organisations, one-to-four-family residential mort-

gages (Billions of dollars, seasonally adjusted) and Households and Non-profit Organi-

sations, Consumer credit (Billions of dollars, seasonally adjusted). The total amount of

loans to households equals the sum of the two series, which is adjusted by the population

level and converted in real terms using the Implicit Price Deflator. The result is log-

transformed, detrended using the first difference, and also demeaned. Source: Bureau of

Economic Analysis.

Nonresidential investment

Data: Private Nonresidential Fixed Investment (Billions of dollars, seasonally adjusted

annual rate). The series is adjusted by the population level and converted in real terms

using the Implicit Price Deflator. The result is log-transformed, detrended using the

first difference, and also demeaned. Source: Board of Governors of the Federal Reserve

System.

Residential investment

Data: Private Residential Fixed Investment (Billions of dollars, seasonally adjusted

annual rate). The series is adjusted by the population level and converted in real terms

using the Implicit Price Deflator. The result is log-transformed, detrended using the

first difference, and also demeaned. Source: Board of Governors of the Federal Reserve

System.

Housing wealth

Data: Households and Non-profit Organisations, Real Estate at Market Value (Billions

of Dollars, not seasonally adjusted). The series is adjusted by the population level and

converted in real terms using the Implicit Price Deflator. The result is log-transformed,

detrended using the first difference, and also demeaned. Source: Bureau of Economic

Analysis.

Population level

Thousands of Persons. Quarterly average of the monthly series. Not seasonally ad-

justed. I transformed this series into an index as in Smets and Wouters (2007) but with

base year 2012:3.
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Chapter 3

Forecasting Under Distorted Beliefs:

The Impact of Diagnostic

Expectations

1 Introduction

Recent years have witnessed a burgeoning literature questioning the widely used bench-

mark assumption that agents form expectations rationally. The predictability of survey

forecast errors, as noted in data patterns, gives rise to this scepticism.1 Such predictability

suggests that agents do not fully incorporate all available information when forming ex-

pectations, contradicting the core premise of the Full Information Rational Expectations

(FIRE) theory. Consequently, researchers have developed alternative theories to account

for deviations from FIRE. A prominent and recent framework is Diagnostic Expectations

(DE).2 When integrated in macroeconomic models, DE have been shown to generate

greater macroeconomic fluctuations, improving the ability to explain certain character-

istics associated with credit cycles (Bordalo, Gennaioli, & Shleifer, 2018), as well as to

improve understanding of the dynamics of the housing market (Montenegro Calvimonte,

1The starting point is the evidence presented in the influential study of Coibion and Gorodnichenko
(2015). This work encouraged further analysis. For example: Fuhrer (2018), Angeletos, Huo, and Sastry
(2021), Kohlhas and Walther (2021), Eva and Winkler (2023), Born, Enders, and Müller (2023), among
others.

2Another deviations from the FIRE assumption are adaptive learning (Evans & Honkapohja, 2009,
Marcet & Sargent, 1989), inattention (Gabaix, 2020), sticky information (Mankiw & Reis, 2002), het-
erogeneous expectations (De Grauwe & Ji, 2019), among others.
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2024). Additionally, DE are also consistent with overreactions in forecast data (Bordalo,

Gennaioli, Ma, & Shleifer, 2020).

In this chapter, I study how the integration of DE affects the spatial and intertemporal

dimensions of a macroeconomic model. In particular, I explore the impact of this belief

formation process on the model’s state-space structure and the resulting Forecast Errors

(FE) and Forecast Revisions (FR) across varying horizons. The objective is to determine

whether incorporating DE leads to a common structure across model variables, as well

as among their FE and FR. I first examine the effects of DE in a simple three-equation

macroeconomic model. The derivations reveal that DE introduce a moving average (MA)

structure for the equations governing the dynamics of inflation and output gap in this

model. Moreover, consistent with Bordalo et al. (2018), FE and FR are predictable in

light of the information available in period t, often showing systematic reversals.3

Building on this effort, I extend the framework to larger-scale models, deriving general

expressions for the forecast errors and forecast revisions that allow for a multivariate

analysis of DE as they turn out to follow a vector moving average (VMA) process.4 This

extension demonstrates that the predictability of forecast errors and the overreaction

to new information in forecast revisions under DE remain, while offering an empirical

tool to also study any cross-correlation effects within FE and FR across variables in the

model. To examine how forecast errors and forecast revisions evolve over time and interact

across different variables, I assess the presence of DE among professional forecasters and

policymakers using data from the Federal Reserve Bank (FED) of Philadelphia Survey of

Professional Forecasters (SPF) and Greenbook/Tealbook forecasts. The objective is to

determine whether DE influence the forecasts of professional forecasters and policymakers,

considering their potential effects on macroeconomic dynamics and the crucial role of the

expectation channel in the transmission of monetary policy.5

The empirical analysis examines the predictability of forecast errors and forecast re-

vision through the application of MA and VMA models. In the univariate context, the

findings suggest that DE introduce predictability by shaping MA structures. However,

evidence of overreaction from DE emerges only in the real GDP growth forecast errors

of professional forecasters for the period that includes the COVID pandemic.6 The lag

3Analogously, Bordalo, Gennaioli, Shleifer, and Terry (2021) demonstrate that under DE, FE for total
factor productivity (TFP) are negatively correlated with the current TFP, suggesting predictability of
these errors.

4The approach follows Hajdini and Kurmann (2024), in the sense that they show that ex-post FE
from any regime-shift FIRE model with a minimum state variable solution are predictable.

5Tien, Sinclair, and Gamber (2021) analyse the economic consequences, if any, of mistakes in the
FED’s forecasts. Their results indicate that, on average, FED’s forecast errors have little impact on
economic outcomes, whereas during recessions, these errors significantly influence the economy.

6Dataset characteristics definitely influence the outcomes since I use average survey responses, which
tend to underreact, as shown in Coibion and Gorodnichenko (2015), unlike individual responses that
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structure of the MA process is notably sensitive to the particular variables and periods

analysed. Different insights emerge for forecast revisions; professional forecasters overcor-

rect expectations, akin to DE, only for the 3-month Treasury bill. Including the COVID

and post-COVID periods significantly affects the results’ sensitivity.

In the multivariate context, the findings are consistent with the presence of DE among

professional forecasters, since the best-fitting model of both forecast errors and forecast

revisions consists of a VMA structure. Forecast errors do not exhibit any cross-variable

interactions, as previous shock realisations influence only the specific variable they impact.

Real GDP growth forecast errors display overreaction, consistent with DE, while those

for inflation and the T-bill rate show underreaction. For forecast revisions, professional

forecasters overreact to shocks in the T-bill rate, excessively adjusting their expectations

for both interest rates and inflation. A similar, but weaker, response emerges for inflation,

whereas GDP growth forecast revisions lack statistical significance. In both forecast errors

and forecast revisions, the VMA models struggle to capture extreme volatility during

crises, such as the Great Financial Crisis and the COVID-19 pandemic.7

Through out-of-sample evaluation, I show that the VMA models generally perform

well in predicting one-period-ahead values and align with the predictability structure in-

troduced by DE. While some parameters reflect overreaction in FE and FR, others do

not, yet the models still offer valuable insights. In addition, I also explore multiple fore-

cast horizons in both forecast errors and forecast revisions from professional forecasters.

The results reveal that forecast errors three periods ahead exhibit greater persistence,

potentially due to expectations rigidities or gradual learning dynamics. In contrast, the

forecast revisions for the same forecast horizon show a stronger overreaction through

larger revisions captured by higher values in the estimates. Although the findings in this

chapter are inconclusive; they are informative and offer central banks some guidance on

market reactions to signals, leading to possible refinements of monetary policy decisions

and communication.

Related literature

This chapter is mainly related to the strand of the literature that studies deviations

from the FIRE assumption. Within this broader domain, my research is closely related to

articles that integrate DE into macroeconomic models, examining their compatibility with

survey data through model forecast errors and forecast revisions, or matching moments

from empirical survey evidence.

The first relevant contribution to this field is Bordalo et al. (2018), who identified

predictable forecast errors and systematic reversals in credit spread forecasts and showed

often overreact (Bordalo et al., 2020).
7These results are also robust to considering the median response from the SPF.
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that embedding DE helps reconcile this evidence. In a similar line, Bordalo et al. (2021)

investigate a real business cycle model with heterogeneous firms and dispersed informa-

tion. Their analysis revealed that DE bridge individual-level overreaction with aggregate

forecast inertia, mirroring patterns observed in firm-level surveys. Bianchi, Ilut, and Saijo

(2024a) expand on this by showing that distant memory within the DE framework effec-

tively replicates untargeted empirical responses from SPF data regarding inflation and

GDP growth. In addition, Bianchi, Ilut, and Saijo (2024b) connect DE with uncertainty,

illustrating that this framework accounts for the survey pattern in which overreaction

increases with extended forecast horizons. This chapter contributes to this literature in

a few notable ways. First, it studies the incorporation of DE in macroeconomic mod-

els, with a focus on how DE influence spatial and intertemporal dynamics. Second, it

explores the impact of DE on the state-space structure of these models. Moreover, my

work extends the contribution of Bordalo et al. (2018) by offering a generalised frame-

work that yields expressions for the forecast errors and the forecast revisions across all

variables within a model and for different forecast horizons, allowing for a further test of

their predictability.

Beyond DE, there is another strand of the literature exploring other deviations from the

FIRE assumption in macroeconomic modelling. For example, Rychalovska, Slobodyan,

and Wouters (2023) use information from surveys during the estimation of a DSGE model

with adaptive learning. Their model-based expectations are consistent with those from

the SPF and they achieve superior long-term predictions. Another contribution is Hajdini

(2023), who assumes a combination of autoregressive misspecified forecasts and myopia

for the expectation formation process. Her findings underscore that the model’s inflation

predictions align well with three observed empirical patterns in consensus forecasts.8 In

addition, and resonating with my results, she points out that one must rely on both

deviations from full information and rational expectations to better fit the expectation

formation process of households and firms. Further evidence comes from Hajdini and

Kurmann (2024), as they develop a regime-robust test for the FIRE assumption and find

that their regime-dependent models’ expectations mismatch those from survey forecasts.

My contribution to this area is two-fold. First, I study a micro-founded model of expec-

tation formation which is immune to the Lucas (1976) critique and that has shown to

be consistent with forecast data (Bordalo et al., 2020). Second, I derive testable general

expressions or law of motions for forecast errors and forecast revisions for all variables

included in a macroeconomic model populated with diagnostic agents.

Finally, my work relates to the empirical literature that analyses the consistency of

8Hajdini (2023) shows that these are (i) delayed overshooting; (ii) under-reaction to ex-ante forecast
revisions; and (iii) overreaction to recent events.
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different assumptions on the expectation formation process with forecasting data, partic-

ularly those considering DE. Ortiz (2020) compares different behavioural deviations that

generate overreaction and finds that the SPF data broadly align with DE, although not

for all variables.9 Bürgi and Ortiz (2022) identified offsetting patterns in forecast revi-

sions across horizons, which they reconcile with a model of long-run smoothing relative

to DE, although they do not incorporate distant memory in their comparison. Addi-

tional evidence supporting the presence of DE comes from the work of Tozzo and Auer

(2023). The authors find, using the Bank Lending Survey, that bankers’ forecast errors

are predictable and aligned with an amplification distortion such as the one generated

by DE. Most recently, Wang (2024) uses a forecasting model for inflation and derives

the law of motion for forecast errors under DE and DE with noisy information. He

finds that, in recent years, households and firms have diverged in terms of under- and

overreaction patterns. My contribution to this empirical literature lies in evaluating not

only the predictability of forecast errors and the overreaction in forecast revisions across

different variables and horizons, but also whether they fully or partially align with DE.

Furthermore, I analyse whether the expectation formation process differs between profes-

sional forecasters and policymakers, adding an additional layer of depth to understanding

heterogeneity in belief formation and its implications for macroeconomic modelling.

Structure of the chapter

The rest of the chapter proceeds as follows. Section 2 briefly describes the concept

of DE and, by means of a simple model, analytically illustrates how it affects forecast

errors and forecast revisions in that setting. In Section 3, I show the generalisation of the

result to larger-scale models in state-space form, where DE similarly generate forecast

errors containing predictable components and forecast revisions overly adjusting to new

information. The data series used to test the results of the previous two sections are

outlined in Section 4. Section 5 presents the findings of the empirical analysis. Section

6 follows with a robustness analysis and Section 7 examines multiple forecast horizons.

Finally, Section 8 offers some concluding remarks.

2 Diagnostic expectations, forecast errors and fore-

casts revisions: A simple example

Diagnostic expectations describe a cognitive bias based on the “representative heuris-

tic”concept introduced by Kahneman and Tversky (1972). It describes a mental shortcut

9In another paper, however, Ortiz (2024) provides evidence suggesting that a noisy information ratio-
nal expectations model, where agents misperceive the true data generating process law of motion, does
a better job in matching some of the survey data.
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in which the agent overweights future states of the economy that seem more likely in

light of current observations relative to what they would have predicted in the previous

period. The purpose of this section is to demonstrate the impact of incorporating DE

on the spatial and intertemporal dimensions of a macroeconomic model. Specifically, I

aim to explore how DE affects the model’s state-space structure and the resulting errors

and revisions across different forecasting horizons. In addition, I examine whether the

inclusion of DE leads to a common state space among the model variables.

I assume that the economy is described by a simple three-equation system:

πt = βEϕ
t πt+1 + κỹt + zt, (3.1)

ỹt = −δπt, (3.2)

zt+1 = ρzt + ϵt+1 + ρϕϵt, (3.3)

where Eϕ
t is the diagnostic expectations operator, πt denotes the inflation rate, ỹt the out-

put gap, and zt a cost-push shock. All parameters in the model are positive. Equation

(3.3) shows that the true data generating process for the state variable zt is autoregressive

(AR) of order 1. However, under DE the shock process is misperceived as an autoregres-

sive moving average (ARMA) process of order (1,1) by the agents, as they extrapolate in

the direction of the shock (blue part).

First, assuming that agents are diagnostic, I solve the model using the method of

undetermined coefficients. This solution embeds the rational case when ϕ = 0. Since

under DE the system has two state variables: the cost-push shock zt and the realisation

of the shock ϵt, I conjecture a solution taking the following form:

πt = Azt +Bϵt (3.4)

ỹt = Czt +Dϵt (3.5)

I begin by replacing equation (3.2) in (3.1):

πt = βEϕ
t πt+1 −

κ

δ
πt + zt.

I rearrange the terms and obtain:(
1 +

κ

δ

)
πt = βEϕ

t πt+1 + zt.

Using the conjectured solution in (3.4) and replacing it in the previous expression:
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Azt +Bϵt =
βEϕ

t [Azt+1 +Bϵt+1] + zt
1 + κ

δ

.

Applying the DE operator and using expression (3.3):

Azt +Bϵt =
βA(ρzt + ρϕϵt) + zt

1 + κ
δ

.

Note that here I use the fact that Eϕ
t [ϵt+1] = 0. Next, I collect the terms common to

zt:

A
(
1 +

κ

δ

)
zt = βAρzt + zt,

which after equating coefficients implies:

A
(
1 +

κ

δ

)
= βAρ+ 1.

Now, I solve for A and obtain an expression that depends only on the parameters from

the model:

A =
1

(1 + κ
δ
− βρ)

. (3.6)

Using this solution, I obtain B:

B =
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

. (3.7)

Finally, replacing these two expressions in the conjectured solution and in the relation

from equation (3.2), I obtain an expression for inflation and output gap that depends on

the two states:

πt =
1

(1 + κ
δ
− βρ)

zt +
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

ϵt. (3.8)

ỹt = − 1

δ(1 + κ
δ
− βρ)

zt −
βρϕ

δ(1 + κ
δ
)(1 + κ

δ
− βρ)

ϵt. (3.9)

In equations (3.8) and (3.9), it is easy to appreciate that when agents are rational, i.e.

ϕ = 0, the solutions depend only on one state variable. On the other hand, when agents

are diagnostic, both variables exhibit dependency on the current shock ϵt, captured by

the second term in the expressions.

Inflation and output gap equilibrium dynamics can be re-expressed as ARMA(1,1)
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processes. This occurs because diagnostic agents extrapolate their beliefs about the state

of the economy to the variables. The MA(1) term reflects this behaviour, showing a

dependency on the realisation of the shock. This leads to overreactions and reversals, as

well as higher volatility in the economy. In contrast, if agents are rational, the processes

simplify to AR(1). I rewrite expressions (3.8) and (3.9) as:

πt = azt + bϵt. (3.10)

ỹt = czt + dϵt. (3.11)

where a = 1
(1+κ

δ
−βρ) , b =

βρϕ
(1+κ

δ
)(1+κ

δ
−βρ) , c = − 1

δ(1+κ
δ
−βρ) and d = − βρϕ

δ(1+κ
δ
)(1+κ

δ
−βρ)

For a clearer presentation, during the remainder of the explanation, I will make use of

the lag operator L. Replacing the AR(1) true data generating process for zt:

πt = a(ρLzt + ϵt) + bϵt.

ỹt = c(ρLzt + ϵt) + dϵt.

Lagging equations (3.10) and (3.11), and conveniently rearranging:

aLzt = Lπt − bLϵt.

cLzt = Lỹt − dLϵt.

Replacing in the previous expressions:

πt = ρLπt − ρbLϵt + (a+ b)ϵt. (3.12)

ỹt = ρLỹt − ρdLϵt + (c+ d)ϵt. (3.13)

After replacing a, b, c, and d, and reorganising the expressions:

(1− ρL)πt =

[(
1

(1 + κ
δ
− βρ)

)
+

(
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

)
(1− ρL)

]
ϵt. (3.14)

(1− ρL)ỹt =

[(
− 1

δ(1 + κ
δ
− βρ)

− βρϕ

δ(1 + κ
δ
)(1 + κ

δ
− βρ)

)
(1− ρL)

]
ϵt. (3.15)

This result is key. It demonstrates that both variables exhibit an ARMA(1,1) structure,

as stated before. More importantly, the variables share the same MA(1) structure, with

the only difference being the scaling factor −1/δ on the output gap compared to inflation.

Additionally, the expression also reveals that when ϕ = 0, the second term in the brackets
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on the right-hand side of the expressions vanishes, leading to no additional volatility as

the solution simplifies to an AR(1) process.

2.1 Forecast Errors

In this subsection, I am interested in obtaining an expression for the one-period-ahead

Forecast Error (FE) made by the diagnostic agent in the three-equation model. First,

following Coibion and Gorodnichenko (2015) and Bordalo et al. (2020), I define the ex-

post one-period-ahead FE as the difference between the t + 1 realisation of a variable

relative to the forecast at the end of period t and the beginning of period t + 1. For

clarity, here I only derive the results for the inflation forecast case, noting that the results

for the output gap can be obtained in a similar manner.

FEπ
t = πt+1 − Eϕ

t πt+1. (3.16)

FE ỹ
t = ỹt+1 − Eϕ

t ỹt+1. (3.17)

Next, I want to derive the expected inflation in period t + 1, for that case I recall

the solution form of πt from expression (3.10), I advance it one time and apply the DE

operator:

Eϕ
t πt+1 = Eϕ

t [azt+1 + bϵt+1]. (3.18)

Here, I use the result that the diagnostic agent misconceives the shock process as an

ARMA(1,1) instead of the true data-generating process AR(1), obtaining:

Eϕ
t πt+1 = Eϕ

t [a(ρLzt+1 + ρϕLϵt+1 + ϵt+1)] + bEϕ
t [ϵt+1], (3.19)

which after using Eϕ
t equals:

Eϕ
t πt+1 = aρLzt+1 + aρϕLϵt+1. (3.20)

This equation for inflation expectations can also be written in an AR(1) form following

a similar course of action as I did before:

Eϕ
t πt+1 = ρLπt+1 − ρbLϵt+1 + aρϕLϵt+1. (3.21)

After some rearrangement and replacement of parameters, this becomes:

Eϕ
t πt+1 − ρLπt+1 =

(
− βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

+
ϕ

(1 + κ
δ
− βρ)

)
ρLϵt+1. (3.22)
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For convenience, I present again expression (3.14), but for period t+ 1:

(1− ρL)πt+1 =

[(
1

(1 + κ
δ
− βρ)

)
+

(
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

)
(1− ρL)

]
ϵt+1. (3.23)

Subtracting (3.22) from (3.23):

(1− ρL)πt+1 − (Eϕ
t πt+1 − ρLπt+1) =

[(
1

(1 + κ
δ
− βρ)

)
+

(
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

)
(1− ρL)

]
ϵt+1−(

− βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

+
ϕ

(1 + κ
δ
− βρ)

)
ρLϵt+1.

(3.24)

The left-hand side of this expression is the forecast error, FEπ
t , while the right-hand

side simplifies due to the common factor with opposite signs:

FEπ
t =

[(
1

(1 + κ
δ
− βρ)

)
+

(
βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

)]
ϵt+1 −

(
ϕ

(1 + κ
δ
− βρ)

)
ρϵt.

(3.25)

Equation (3.25) shows that the FEπ
t is independent and identically distributed (i.i.d.)

when the agent is rational. This corresponds to the case where FEπ
t depends only on ϵt+1

as ϕ = 0. However, when ϕ > 0, households systematically make errors, which means

that FEπ
t no longer is i.i.d. and now contains a predictable component. The sign of

such effect is the opposite to the innovation realisation, since all parameters are positive.

For example, a positive innovation would lead the agent to overreact and predict higher

inflation in the next period. But, since the true data generating process is AR(1), this

higher inflation will not materialise as expected, resulting in an over-prediction which has

a negative impact on the FE.

Following the same steps and due to the previous result that the output gap solution

structure is a scaled version of the inflation solution, I can write the FE for the output

gap as:

FE ỹ
t =

[
− 1

δ(1 + κ
δ
− βρ)

− βρϕ

δ(1 + κ
δ
)(1 + κ

δ
− βρ)

]
ϵt+1 +

(
ϕ

δ(1 + κ
δ
− βρ)

)
ρϵt. (3.26)
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2.2 Forecast Revisions

In this subsection, I am interested in obtaining an expression for the one-period-ahead

Forecast Revisions (FR) made by the diagnostic agent from the same simple model consid-

ered before. Also following Coibion and Gorodnichenko (2015) and Bordalo et al. (2020),

I define the ex-ante one-period-ahead FR as reflecting the impact that news known to

agents at the time of the forecast have. They are defined as follow:

FRπ
t = Eϕ

t πt+1 − Eϕ
t−1πt+1 (3.27)

FRỹ
t = Eϕ

t ỹt+1 − Eϕ
t−1ỹt+1 (3.28)

The first term on the right-hand side of Equation (3.27) was already derived in the

previous subsection, shown in Equation (3.22):

Eϕ
t πt+1 − ρLπt+1 =

(
− βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

+
ϕ

(1 + κ
δ
− βρ)

)
ρLϵt+1, (3.29)

Now using this definition, but under the DE operator with information known until

period t− 1, I obtain:

Eϕ
t−1πt+1 − ρ2L2πt+1 =

(
− βρϕ

(1 + κ
δ
)(1 + κ

δ
− βρ)

+
ϕ

(1 + κ
δ
− βρ)

)
ρ2L2ϵt+1, (3.30)

Therefore, implementing the FR definition and making use of Expression (3.14), it

follows that:

FRπ
t =

(
1

(1 + κ
δ
− βρ)

)
ρϵt +

(
1

(1 + κ
δ
− βρ)

)
ρϕ(ϵt − ρϵt−1), (3.31)

This implies that diagnostic agents incorporate the news they receive between periods

t−1 and t, as they review their forecasts in the same direction of the shock. For example,

if agents face positive news (ϵt > ϵt−1) between periods t − 1 and t, they will revise

their forecast upwards. The magnitude of this revision is determined by the diagnostic

parameter ϕ. If this parameter is equal to zero, the last term of equation 3.31 disappears,

indicating that agents follow rational expectations, which means they do not adjust their

beliefs based on past information or deviations, unlike diagnostic agents. For the output

gap, the expression is:

FRỹ
t = −

(
1

δ(1 + κ
δ
− βρ)

)
ρϵt −

(
1

δ(1 + κ
δ
− βρ)

)
ρϕ(ϵt − ρϵt−1), (3.32)
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Note that the FR here mirrors the result that scaling the inflation solution by the

factor (−1/δ) yields the solution for the output gap.

3 Generalised framework

In this part, I demonstrate that the previous findings can be extended to larger-scale

models structured in state-space form. In these models, DE continue to generate FE

containing a predictable component and FR that reflect over adjustments in the direction

of new information.

3.1 Environment

I consider the first-order perturbation solution of discrete-time models following the stan-

dard form:

Et[f(zt,xt,yt, ϵt, zt+1,xt+1,yt+1, ϵt+1)] = 0. (3.33)

zt denotes a (nz x 1) vector of exogenous state variables, xt denotes a (nx x 1) vector of

endogenous state variables, and ϵt is a (nϵ x 1) vector of shock realisations. The total

number of state variables is given by n, which is the result of the sum of nz+nx+nϵ.

Furthermore, yt denotes an (m x 1) vector of decision variables, where m represents their

total number. I include the shocks’ realisations as auxiliary variables representing the MA

terms from the exogenous state processes. These terms are used when solving the model

under DE as agents believe that the exogenous shock processes follow an ARMA(1,S),

instead of an AR(1).

The system has a solution form:


zt+1

xt+1

ϵt+1


︸ ︷︷ ︸

Γt+1

=


Hz︷︸︸︷
hz,z

Hx︷︸︸︷
hz,x

Hϵ︷︸︸︷
hz,ϵ

hx,z hx,x hz,ϵ

hϵ,z hϵ,x hϵ,ϵ


︸ ︷︷ ︸

H


zt

xt

ϵt

+


kz

kx

kϵ

[ϵt+1

]
.

yt =



Gz︷︸︸︷
g1,z

Gx︷︸︸︷
g1,x

Gϵ︷︸︸︷
g1,ϵ

g2,z g2,x g2,ϵ

. . .

. . .

gm,z gm,x gm,ϵ


︸ ︷︷ ︸

G


zt

xt

ϵt


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where Γt+1 represents the full vector of state variables which has a size (n x 1). Matrix

H presents the first-order coefficients in the state transition equation and k presents the

loading matrix on the shocks. The matrixG links the decision variables with the vector of

states. To better understand the impact of DE, I present both transition matrices divided

into submatrices. The submatrix Hz, of size (n x nz), contains the coefficients governing

the dependence of the whole vector of state variables with respect to the exogenous

states zt. Similarly, Hx represents the transition for the state vector with respect to

endogenous state variables xt, and it has a size (n x nx). In addition, the (n x nϵ) matrix

Hϵ, shows how the vector of state variables evolves regarding the shocks’ realisations ϵt.

I also slice the matrix G in three submatrices.10 Gz and Gx, with size (m x nz) and (m

x nx), connect the decision variables to exogenous states and predetermined variables,

respectively. Submatrix Gϵ, sized (m x nϵ), links the decision variables to the realised

shocks.

These matrices will differ between the RE and DE solutions. For instance, in matrix

G, the difference lies in submatrix Gϵ, which will have non-zero values under DE, while it

will have all zero values under RE. In the case of matrix H, this difference will be reflected

in the elements of Hx,ϵ. Additionally, the entries in Hz,ϵ that link the vector of exogenous

states to the shocks’ realisations will be different from zero. These values in matrix H

will be turned off after solving the model under diagnosticity, so future realisations are

driven by the true data generating process, but with diagnostic agents.

Using these results and in a similar way as in Subsections 2.1 and 2.2, I can obtain an

expression for the FE and FR in a more general setting. On this occasion, when agents

form DE, the expression will also exhibit dependence on the realisation of the shocks.

This implies, as before, that the forecast errors contain a predictable component and that

forecast revisions over-adjust in the direction of the new information.

I start forwarding one period ahead the diagnostic solution for the endogenous vari-

ables:

yt+1 = GΓt+1 (3.34)

Next, I replace the law of motion for the vector of state variables including exogenous

variables, endogenous variables, and the shocks’ realisations. It is important to emphasise

that the solution applied here for the exogenous state variables follows RE. Consequently,

exogenous shocks will follow the true data-generating process, which in this case is an

AR(1). As a result, the entries in the submatrix hz,ϵ, linking the vector of exogenous

states with the shocks’ realisations, and hz,x, linking the vector of exogenous states with

10Throughout the analysis in this chapter, since I am focused on the behaviour of FE and FR under
DE, I will assume that the solution for matrix G is always derived under DE unless explicitly stated
otherwise.
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the endogenous variables, will be zeros. In addition, since the realisations of the shocks

do not depend on either exogenous or endogenous variables and the loading matrix for

the shocks is captured by the submatrix kz, the elements of hϵ,z, hϵ,x and hϵ,ϵ are also

zeros.

yt+1 = G




hz,z 0 0

hx,z hx,x hx,ϵ

0 0 0



zt

xt

ϵt

+


kz

kx

kϵ

[ϵt+1

] . (3.35)

Thus, the solution for yt+1 is:

yt+1 = G


hz,z

hx,z

0

 zt +G


0

hx,x

0

xt +G


0

hx,ϵ

0

 ϵt +G


kz

kx

kϵ

 ϵt+1 (3.36)

Now, I intend to obtain an expression for the diagnostic expected values of the en-

dogenous variables. I apply the diagnostic operator to expression (3.34):

Eϕ
t yt+1 = Eϕ

t [GΓt+1] (3.37)

Replacing the diagnostic solution for the law of motion of the state vector, in which

the only difference with respect to the expression (3.35) is that now hz,ϵ presents values

different from zeros:

Eϕ
t yt+1 = GEϕ

t




hz,z 0 hDEz,ϵ

hx,z hx,x hx,ϵ

0 0 0



zt

xt

ϵt

+


kz

kx

kϵ

[ϵt+1

] , (3.38)

which after applying the DE operator becomes:

Eϕ
t yt+1 = G


hz,z

hx,z

0

 zt +G


0

hx,x

0

xt +G


hDEz,ϵ

hx,ϵ

0

 ϵt. (3.39)

Finally, subtracting (3.39) from (3.36) as specified by the FE definition in the previous

section, and using the partitioned G matrix, I obtain:

yt+1 − Eϕ
t yt+1 = −Gzh

DE
z,ϵ ϵt +G


kz

kx

kϵ

 ϵt+1 (3.40)
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Expression (3.40) is the general representation of the results in Equations (3.25) and

(3.26). The dependency on the realisation of the shocks is captured by the first term,

where Gz has size (m x nz) and hDEz,ϵ (nz x nϵ).

This result can be generalised for the FE h periods ahead as11:

yt+h − Eϕ
t yt+h =

[
−GzH

h−1
1,1 hDEz,ϵ −GxH

h−1
2,1 hDEz,ϵ

]
ϵt +G

h∑
τ=1

Hh−τ


kz

kx

kϵ

 ϵt+τ . (3.41)

Here, Hh−1
i,j is used to denote a specific sub-matrix corresponding to each power of

matrix H, as longer horizons lead to more complex terms. The dependency of the FE

on the realisations of the shocks remains valid for an h-periods ahead horizon; however,

the magnitude of the response will differ since the matrix multiplying the vector ϵt is

different. Now, this is not only a function of Gz but also of Gx. As the forecast period

extends, the FE must account for the effect that DE have on the endogenous states and

how this effect is distributed over time.

Similarly, I can obtain the general expression for the FR for one period and h periods

ahead. Recalling expression (3.39) and replacing zt using the law of motion for the state

variables in the system solution:

Eϕ
t yt+1 = G


hz,z

hx,z

0

(hz,zzt−1 + hz,xxt−1 + hDEz,ϵ ϵt−1 + kzϵt
)
+G


0

hx,x

0

xt+G


hDEz,ϵ

hx,ϵ

0

 ϵt,

(3.42)

Using this expression, but applying the DE operator with information until period

t− 1:

Eϕ
t−1yt+1 = G


hz,z

hx,z

0

(hz,zzt−1 + hz,xxt−1 + hDEz,ϵ ϵt−1

)
+G


0

hx,x

0

xt. (3.43)

Following the definition of FR, I subtract Equation (3.43) from Equation (3.42) and

obtain the following:

Eϕ
t yt+1 − Eϕ

t−1yt+1 = G


hz,z

hx,z

0

kzϵt +G


hDEz,ϵ

hx,ϵ

0

 ϵt, (3.44)

11For a detailed derivation of this result, see Appendix 3.A.

155



Expression (3.44) shows that the FR of the diagnostic agent will exhibit an overreac-

tion in the direction of the shock, governed by the second term on the right side since

the submatrix hDEz,ϵ will depend on the diagnostic parameter ϕ. In the case of rational

expectations, that is ϕ = 0, the expression boils down to the first term on the right-hand

side of (3.44).

This result can also be generalised for h periods ahead12:

Eϕ
t yt+h − Eϕ

t−1yt+h = G


Hh

1,1

Hh
2,1

0

kzϵt +G


Hh

1,3

Hh
2,3

0

 ϵt, (3.45)

Analogously to the FE, Hh
i,j here refers to a particular submatrix related to each power

of the matrix H, as extended horizons introduce more intricate terms. The outcome ob-

tained in the previous section that agents’ forecast adjustments will overreact in alignment

with the shock continues to hold in expression (3.44).

4 Data

This section describes the data series that I use to test the empirical alignment of

Forecast Errors (FE) and Forecast Revisions (FR) with the structures specified by the

diagnostic models. I have two main objectives. First, I want to analyse whether these

structures are consistent across different variables. Second, I want to assess if this consis-

tency holds across agents. To do this, I calculate the FE and FR time series for real gross

domestic product (GDP) growth, headline consumer price index (CPI) inflation, and the

3-month Treasury bill rate (T-bill). I gather expectations data from the Philadelphia

FED Survey of Professional Forecasters (SPF) and policymakers from the Greenbook or

Tealbook, together with real-time data.13

The SPF is a quarterly survey, initially conducted by the American Statistical As-

sociation and the National Bureau of Economic Research, and now managed by the

Philadelphia Fed. The professional forecasters provide their projections for the next five

quarters, as well as for the current and following year. The Greenbook, on the other

hand, is produced by the research staff at the Board of Governors before each meeting

of the Federal Open Market Committee. It contains projections about future quarters

12Appendix 3.B presents a detailed derivation of this result.
13The reason I do not include any survey on consumers is because the way the questions elicit expec-

tations, for example for 12-months inflation on a monthly basis, creates an overlapping data problem.
This is absent in both the SPF and the Greenbook, given that their forecasts are made quarterly for up
to the coming five quarters.
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of the U.S. economy. Last, I use the Real-Time Series for Macroeconomists from the

Philadelphia FED as real-time observed realisations.14 The data set includes information

as it existed at specific points in time in the past, before any revisions were made. This

approach avoids the use of revised data, which may reflect reclassification or additional

information that was not available during the time the forecasts were performed (see

Croushore, 2010).15

4.1 Real GDP Growth

I use the SPF series for the one- and two-quarters ahead growth rate, expressed in an-

nualised percentage points, of the mean forecast for the level of real GDP. The first

observation is 1968:Q4, however, due to the unavailability of data for other variables

starting that early, I use the series starting in 1981:Q3, which gives the expected annu-

alised growth rate of real GDP from 1981:Q3 to 1981:Q4. The last observation I use is

2023:Q4. From the Greenbook projections, I employ the quarterly growth in real GDP

in annualised percentage points. In this case, the series has the same starting point, but

it ends in 2018:Q4, as a result of a lag in publishing the books. The real-time data for

quarterly growth real GDP are from 1981:Q3 until 2024:Q1. There is a missing value for

1995:Q4, therefore the second available release for that quarter was used instead.
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Figure 3.1: Survey expectations and empirical data on annualised real GDP growth rate.
Note: The black line illustrates the empirical data on quarter annualised growth in real GDP. The red
line represents the mean forecasts for the annualised quarter percent changes of GDP growth rate from

SPF. The projections from the Greenbook are shown with a blue line.

14Croushore and Stark (2001) provides a detailed explanation about the construction of the data set,
as well as the properties of several of the variables in the data set across vintages.

15Revisions from initial release to each of the actuals vary substantially, affecting tests of forecasts
depending on chosen actuals. (Croushore, 2010).
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4.2 Inflation

Regarding the inflation rate, I use the forecast series for the headline CPI inflation rate

of the SPF from 1981:Q3 to 2023:Q4. I rely on the annualised quarterly forecast of the

percent changes in the consumer price index. When it comes to the Greenbook, I use

headline CPI inflation projections made for one quarter into the future. In some quarters,

there are multiple observations; this depends on the publication dates of the Greenbook.

In these cases, I decided to use the first observation available. The series also spans for

a shorter period compared to the SPF due to the lag in publishing the books. I use the

available data from 1981:Q3 to 2018:Q4.
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Figure 3.2: Survey expectations and empirical data on annualised quarterly inflation.
Note: The black line denotes the real-time quarterly annualised headline CPI inflation rate. The red

line represents the expected change in annualised quarter inflation from the SPF. The projections from
the Greenbook are illustrated with a blue line.

The real-time CPI data is provided on a monthly and seasonally adjusted basis. From

each vintage quarter, the last entry is used because it represents the publicly available

data at that particular time, without any modifications. I calculate the quarterly CPI as

the average over a 3-month window. Then, I compute the quarterly annualised inflation

rate for the period 1981:Q4 until 2024:Q1.

4.3 3-month Treasury bill rate

The last variable I consider is the 3-month Treasury bill rate. In the SPF, professionals

forecast the quarterly average of the underlying daily levels in percentage points. The first

observation available is in 1981:Q3, and the last one that I use is 2023:Q4. For real-time

data, I rely on the 3-month Treasury bill secondary market rate from the Federal Reserve
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Bank of St. Louis, which is at monthly frequency. To obtain the quarterly measure, I

calculate the average over a 3-month window. The first available observation is 1934:Q1,

however, to match the data coverage from the SPF, I use the period 1981:Q4 to 2024:Q1.

This variable is not forecasted in the Greenbook.
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Figure 3.3: Survey expectations and empirical data on 3-month Treasury bill rate.
Note: The black line is the empirical data on quarterly 3-month Treasury bill rate. The red line

represents the forecast rate obtained from the SPF.

5 Results

In this section, I present the results of the estimated models to test whether the

Forecast Errors (FE) and Forecast Revisions (FR) of real GDP growth, inflation, and

the 3-month Treasury bill rate follow the structure predicted by the DE model. First, I

calculate the FE for each variable k in each period as:

FEk
j:Qi = kj:Qi+1 − Ej:Qi[kj:Qi+1],

and the FR as:

FRk
j:Qi = Ej:Qi[kj:Qi+1]− Ej:Qi−1[kj:Qi+1].

where, j represents the year of the surveys or observations and i the quarter. Thus, for

example, to determine the professionals’ FE in the third quarter of 2020, I subtract the

forecast made in 2020:Q3 for next-quarter inflation from the actual inflation rate realised

in the fourth quarter of year 2020. In a similar way, to determine the FR for the third

quarter of 2020, I subtract the two-quarters-ahead inflation predictions derived from the
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forecast made in 2020:Q2 from the next-quarter inflation projections from the forecast

made in 2020:Q3.

In the next step, I employ the Box-Jenkins approach to identify and estimate the

models that best fit these FE and FR for each variable individually. This approach

requires estimating multiple ARMA(p,q) models and selecting the model with the lowest

value of the information criterion. A similar exercise is performed for the multivariate

case. I follow Tsay (2013) in using the extended cross-correlation matrices to specify the

order (p, q) of a VARMA model. Thereafter, I estimate the suggested model or models

and use an information criterion to choose among them.

5.1 Forecast errors

5.1.1 Univariate

For the univariate analysis, I fit multiple models for the FE of each variable in the data

set. Then, I select the model that exhibits the lowest value of the Akaike Information

Criterion (AIC).16 Given that the coverage periods for the SPF and the Greenbook vary,

I repeat this process while aligning the time frames of both surveys. This approach serves

two purposes: first, to determine if the choice of model structure and estimation method

is affected by the period of analysis, and second, to evaluate the robustness of the results

in light of post-COVID data included in the SPF forecasts but not in the Greenbook

forecasts.

5.1.1.1 Real GDP forecast errors: Figure 3.4 displays the calculated FE for the

real GDP growth rate using data from the SPF (panel A) and Greenbook (panel B)

projections. The difference in magnitude is driven by the coverage periods. While panel

A includes the COVID-19 crisis, panel B does not, as data are not available yet.

The results, shown in Table 3.1, indicate that an MA(1) process is the best-fitting

model for both cases. It should be noted that, while the intercepts are negative and not

significantly different from zero, the MA(1) coefficients are significant. This result offers

evidence on the predictability of forecast errors and quantifies the dominant role that

recent shocks play on the current value of FE in both surveys. However, the estimated

values differ in sign between the SPF-based analysis in column (1) and the Greenbook-

based analysis in column (2). With the entire sample of SPF data (1981:Q3 to 2023:Q4),

the coefficient on the MA(1) term is negative, indicating that past shocks affect the

FE negatively, implying some degree of overreaction in the expectations of professional

16The procedure involves iterating over various ARMA models, evaluating their information criterion
values, and ultimately selecting the one with the lowest value.
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Figure 3.4: Forecast errors - Real GDP growth rate.
Note: The black line is the calculated FE for real GDP growth using the its values from the Real-time

Series for Macroeconomists, the SPF (A) and Greenbook (B) forecasts.

forecasters. On the other hand, with the Greenbook data (1981:Q3 to 2018:Q4), the

coefficient on the MA(1) term is positive, implying that the previous shock helps predict

the FE; however, since the estimate is positive, it suggests that central bank forecasters

gradually adjust their expectations, that is, they underreact.

Table 3.1: Best fitting model for real GDP growth forecast errors

(1) (2) (3)
SPF Greenbook SPF - GB period

Estimate Estimate Estimate

MA(1) -0.1991 ** 0.3047 *** 0.2953 ***
(0.0780) (0.0771) (0.0773)

intercept -0.2325 -0.1280 -0.1611
(0.2300) (0.1954) (0.1931)

Box-Ljung test 5.350 14.586 16.269
(0.9995) (0.7996) (0.6998)

Note: This table shows the estimates of three MA(1) processes for real GDP growth FE. The results
under column (1) are based on the SPF, Philadelphia Fed. The results in column (2), on the other

hand, are obtained using the Greenbook, Philadelphia Fed. Finally, column (3) shows the results using
SPF for the same period as in the Greenbook. The last row exhibits the Ljung-Box test statistic value,

with its p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.
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Column (3) examines whether the study period affects the outcomes. Using SPF

data for the sub-period 1981:Q3 to 2018:Q4, I fit a MA(1) model and find that the

coefficient’s estimate not only shares the same sign but is also of similar size to that

derived from Greenbook data. This indicates a consistency in the FE for this variable

among professional forecasters and policymakers in the US economy, before the COVID

pandemic. The last row of the table shows the Ljung-Box test, used to check that there

are no significant autocorrelations in the residuals for any of the models. In all cases, the

null is not rejected, suggesting that the MA(1) models are well-specified and adequately

explain the FE for all three datasets.

The empirical findings for the real GDP growth rate FE generally align with the moving

average structure introduced by the DE framework, as specified in previous sections.

However, a tendency to overreact emerges solely when considering the forecast period

following the COVID pandemic, marked by considerable volatility. A future task would

be to assess, once the data become accessible, whether policymakers exhibited similar

reactions when this period is considered.

5.1.1.2 Inflation forecast errors: Figure 3.5 shows the calculated Forecast Errors

(FE) for the inflation rate of the headline CPI using data from the SPF (panel A) and

the Greenbook (panel B) projections. The main difference is again the length of the

series. Panel A includes the COVID-19 pandemic and the recent increase in inflation,

while panel B does not, as the data are not available yet.

In Table 3.2, I present the estimates of the models with the lowest AIC for the inflation

FE. The results in column (1) indicate that a MA(3) structure provides the best fit for

the FE calculated using the SPF survey data. In contrast, column (2) reveals that a

MA(1) process is more suitable for the FE obtained using Greenbook projections. These

results confirm the findings that, in an economy with diagnostic agents, FE will have a

predictable component and that this component will be a MA structure. In addition, in

both cases, the intercepts are not significantly different from zero, although their signs

are the opposite.

The coefficients for the residuals of one and three lags are significant in column (1) (at

1% and 5% , respectively). The larger coefficient for the MA(1) term indicates that the

FE is more dependent on the most recent realisation of the residual than on those from

a more distant past. The positive values suggest that these shocks lead to positive FE,

indicating some degree of under-reaction to past information by professional forecasters.

Column (2) shows that the magnitude for the MA(1) term using the Greenbook data

is relatively close to that in column (1), thus also capturing some kind of underreaction

from policy makers.
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Figure 3.5: Forecast errors - headline CPI inflation.
Note: The black line is the calculated FE for annualised quarter headline CPI inflation using real time

CPI from the Real-time Series for Macroeconomists, the SPF (A) and Greebook (B) forecasts.

Table 3.2: Best fitting model for headline consumer price inflation forecast errors

(1) (2) (3)
SPF Greenbook SPF - GB period

Estimate Estimate Estimate

MA(1) 0.3208 *** 0.2889 *** 0.1958 **
(0.0762) (0.0803) (0.0804)

MA(2) -0.0262 -0.2112 **
(0.0848) (0.0845)

MA(3) 0.1609 **
(0.0720)

intercept 0.0346 -0.0932 -0.1344
(0.2223) (0.1963) (0.1481)

Box-Ljung test 8.6154 11.328 8.7799
(0.9869) (0.9373) (0.9853)

Note: This table shows the estimates of three MA processes for headline CPI inflation FE. The results
under column (1) are based on the SPF, Philadelphia Fed. The results in column (2), on the other

hand, are obtained using the Greenbook, Philadelphia Fed. Finally, column (3) shows the results using
SPF for the same period as in the Greenbook. The last row exhibits the Ljung-Box test statistic value,

with its p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.
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As for the case of real GDP, another set of models is estimated using the SPF data,

but for the same time period as available from the Greenbook (i.e. 1981:Q4 to 2018:Q4).

Column (3) displays the results pointing to a MA(2) process for professional forecasters for

the period before COVID. Moreover, while the signs are the same as those in column (1),

the magnitudes are different. The estimated coefficients suggest a tendency to underreact

to the most recent shock, given its positive coefficient, while overreacting to a shock from

two periods ago, as denoted by its negative coefficient. This discrepancy may be due to

the recent inflation resurgence, as during this period consumer expectations were more

accurate than those of professional forecasters. Overall, these findings show that with

respect to inflation, the FE of professional forecasters and policy makers in the U.S.

exhibit a predictable component; however, the patterns are different between the two

groups of forecasters and across sample periods. The results indicate that policy makers

overreact and professional forecasters underreact to some extent.17

5.1.1.3 3-month Treasury bill rate forecast errors: Figure 3.6 shows the calcu-

lated FE for the 3-month Treasury bill rate using only SPF data, as Greenbook projections

are not available for this variable.
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Figure 3.6: Forecast errors - 3-month Treasury bill rate.
Note: The black line is the calculated FE for the 3-month Treasury bill rate using its value from the

Federal Reserve Bank of St. Louis and the SPF forecasts.

I followed the same procedure as in the previous two cases and selected the model

17Han, Ma, and Mao (2023) analyse AR, MA, and ARMA models for inflation FE using SPF data over
a longer period (1969:Q1 - 2019:Q4). They find positive and significant coefficients for the MA(2) model,
with magnitudes larger than my estimates, suggesting that the data span influences the final results.
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with the lowest AIC. Table 3.3 summarises the results, indicating that a MA(4) is the

model that best fits the 3-month Treasury bill FE. In contrast to the models for inflation

and real GDP growth, the estimated intercept is negative and significantly different from

zero at a 5% level. This implies a systematic overprediction of the interest rate, which

can be visually seen in Figure 3.3. The coefficients on the error terms are significant

for lags 1, 3 and 4. Aligning with earlier results, the most recent past error exhibits a

greater coefficient, indicating that recent experiences significantly influence the FE. With

all significant coefficients being positive, this reflects, as in the case of inflation, that

professional forecasters exhibit some degree of underreaction to shocks. Nonetheless,

when the period studied excludes the post-pandemic, a certain level of overreaction is

observed concerning the shocks from two periods before.

Table 3.3: Best fitting model for 3-month Treasury bill rate forecast errors

(1) (2)
SPF SPF - GB period

Estimate Estimate

MA(1) 0.5156 *** 0.5180 ***
(0.0753) (0.0792)

MA(2) -0.1271 -0.1711 **
(0.0817) (0.0859)

MA(3) 0.1629 * 0.1578
(0.0720) (0.0982)

MA(4) 0.3450 *** 0.3679 ***
(0.0790) (0.0846)

intercept - 0.1679 ** -0.1894 **
(0.0790) (0.0759)

Box-Ljung test 20.554 23.83
(0.4238) (0.2499)

Note: This table shows the estimate of an MA(4) process for the 3-month Treasury bill rate FE. The
results are based on the SPF, Philadelphia Fed. The last row exhibits the Ljung-Box test statistic

value, with its p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.

The empirical findings for the 3-month Treasury bill rate FE also align with the moving

average structure introduced by the DE framework. However, there is no evidence of a

consistent overreaction from professional forecasters, since the only evidence is when

considering the pre-COVID data and solely to the two-lagged shock realisation. The

Ljung-Box test here checks that there are no significant autocorrelations in the residuals

for any of the models.

In general, the findings presented in this section for the univariate scenarios suggest

that DE effectively introduces predictability in FE through the modelling of MA struc-

tures. However, it appears that the lags that should be included in the MA processes are
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sensitive to the specific variables and the periods considered. The dataset characteristics

may also influence the results since I use the average of survey responses, which tend to

underreact, as shown in Coibion and Gorodnichenko (2015). This underreaction contrasts

with each individual forecaster responses, which often overreact (Bordalo et al., 2020).

5.1.2 Multivariate

In this subsection, I use the three variables considered in the univariate case to perform

a multivariate analysis.18 The main objective is to test the result presented in expression

(3.41). This specifies that if agents exhibit DE, their FE would contain a predictable

component in the form of a moving average process. In a multivariate context, this

relationship is represented as a vector moving average (VMA) process:

zt = µ+ ϵt −
q∑

i=1

θiϵt−1,

where µ is a constant vector denoting the mean of zt, θi are (k x k) matrices, and {ϵt}
is a vector of white noise disturbances.

Table 3.4 presents the two-way p-value table of extended cross-correlation matrices for

the data set. Following Tsay (2013), the values in Table 3.4 inform statistical significance

tests for the cross-correlations between multiple time series at different lags. By compar-

ing the elements of this table with the type I error α, I can identify the appropriate order

of the VARMA(p,q) model to estimate. Based on this, the first matrix entry is significant

at the 5% level, suggesting that a VAR (1) or a VMA (1) model should be fitted.

Table 3.4: P-values of extended cross-correlation matrices - mean forecast errors

AR/MA 0 1 2 3
0 0.0260 0.9202 0.8735 0.9430
1 0.9387 0.9981 0.9890 0.9920
2 0.9911 0.9597 1.0000 0.9995
3 0.9993 0.9965 1.0000 0.9999

A VMA(1) model is preferred over a VAR(1) model based on its lower AIC value,

indicating a better fit.19 The estimation results are presented in Table 3.5. The constant

terms for real GDP growth and inflation FE are found to be not significantly different

from zero, indicating that there is no systematic over- or under-prediction. In contrast,

the constant term for the 3-month T-bill rate is significantly different from zero at the 5%

18I only do the multivariate analysis using the SPF data set as policymakers do not forecast future
T-bill rates in the Greenbook.

19The AIC value for the VMA(1) is 2.723 while for the VAR(1) it is 2.730
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level of confidence. This indicates that professional forecasters consistently overpredict

the 3-month Treasury bill rate when forming expectations. These observations align with

the conclusions drawn from the previous univariate analysis.

Table 3.5: Forecast errors VMA(1) coefficient estimates

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FE RGDP constant -0.2121 0.2267 -0.935 0.3495
FE π constant 0.0504 0.2011 0.251 0.8019
FE TBILL constant -0.1431 0.0529 -2.705 0.0068 **

ϵRGDP,RGDPt−1 -0.1842 0.0871 -2.115 0.0344 *

ϵRGDP,πt−1 -0.0418 0.0428 -0.976 0.3288

ϵRGDP,TBillt−1 -0.0037 0.0101 -0.365 0.7149

ϵπ,RGDPt−1 -0.1644 0.1452 -1.132 0.2574
ϵπ,πt−1 0.3070 0.0873 3.514 0.0004 ***

ϵπ,TBillt−1 -0.0109 0.0181 -0.604 0.5461

ϵTBill,RGDPt−1 0.0186 0.6012 0.031 0.9752

ϵTBill,πt−1 0.0240 0.3017 0.080 0.9363

ϵTBill,TBillt−1 0.3992 0.0692 5.765 8.18e-09 ***

Note: This table shows the estimates of a VMA(1) process. The results are based on the mean values
from the SPF, Philadelphia Fed. Significance levels: “***”0.01, “**”0.05, “*”0.1.

Examining the matrix that illustrates how each of the three variables is affected by the

one-period lagged realisations of the shocks, the significant coefficients are those linking

each shock to its respective variable. These coefficients are represented by the values

located on the diagonal. This pattern suggests that previous shocks have an impact solely

on the forecast error related to the specific variable they affect, rather than influencing

others. In other words, there are no cross-variable effects as the other coefficients are not

significantly different from zero.
FERGDP

t

FEπ
t

FETBill
t

 =


−0.2121

0.0504

−0.1431∗∗∗

+


ϵRGDPt

ϵπt

ϵTBillt

−


0.1842∗ 0.0418 0.0037

0.1645 −0.3071∗∗∗ 0.0109

−0.0186 −0.0241 −0.3992∗∗∗



ϵRGDPt−1

ϵπt−1

ϵTBillt−1


The signs of the estimates remain consistent with those found in MA(1) terms in the

univariate analyses. These show an overreaction for the FE related to real GDP growth

rate, whereas both inflation and the T-bill rate show an underreaction. However, the

main differences are in the magnitudes of the coefficients. While for the FE in real GDP

growth and inflation, the values are relatively close to those found for the most recent

shock realisation in the univariate analysis, for the T-bill rate the value is noticeably

smaller (0.3992 in the multivariate analysis vs. 0.5180 in the univariate case). This

outcome may be influenced by the requirement that VMA lags must be the same for all
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variables included in the model, which means that each variable is affected by shocks

with the same lag structure.
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Figure 3.7: Forecast errors - VMA(1) model.
Note: The black line is the real data of the FE. The red line represents the model fit.

Figure 3.7 provides an overview of the performance of the VMA model in fitting the

FE to the three variables. It can be observed that the model encounters difficulties in

accurately capturing the highly volatile fluctuations that occur during periods of crisis,

such as the Great Financial Crisis and the recent COVID-19 pandemic. However, the

model appears to perform effectively in aligning the FE associated with the 3-month

treasury rate throughout the period. It is important to note that the model does not

accurately capture the large variations in real GDP growth and inflation during and post

the COVID-19 crisis.

5.2 Forecast revisions

5.2.1 Univariate

In this subsection, I perform the same analysis as in Subsection 5.1 but for the Forecast

Revisions (FR). I fit multiple models for each variable in the data set and then select

the model exhibiting the lowest AIC value. I also run the analysis for the SPF and

Greenbook, as well as for the SPF without including the COVID-pandemic.
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5.2.1.1 Real GDP growth forecast revisions: The FR for the real GDP growth

rate of professional forecasters (A) and policy makers (B) is shown in Figure 3.8. Here,

too, the difference in magnitude is due to the coverage periods, while the SPF include

the Covid-19 period, characterised by large revisions in expectations, the Greenbook data

only extend until 2018:Q4.
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Figure 3.8: Forecast revisions - Real GDP growth rate.
Note: The black line is the calculated FR for real GDP growth using the SPF (A) and Greenbook (B)

forecasts.

The findings in this case, as illustrated in Table 3.6, reveal a discrepancy between the

predictions of professional forecasters and those of policymakers. These differences are

also apparent when I consider different time periods. In the three cases examined, the

models present AR components. These do not align with the prediction that, when DE

are incorporated into a macroeconomic model, the FR should be predictable based on

past shock realisations and, therefore, consist solely of MA terms. The presence of AR

terms implies additional sources of predictability beyond what DE suggest.

The best-fitting model for the FR using SPF data for 1981:Q3 to 2023:Q4 is an

ARMA(3,3). This infers that the FR at time t can be explained by its three last values

and the last three shock realisations, although only the AR and MA terms of order 1 and

3 are statistically significant. Column (2) shows the model that best fits the data from the

Greenbook, which is an AR(1), while if I use the SPF data for the same period, column

(3), it is and ARMA(1,1). In both cases, the intercept is statistically different from zero

169



Table 3.6: Best fitting model for real GDP growth forecast revisions

(1) (2) (3)
SPF Greenbook SPF - GB period

Estimate Estimate Estimate

AR(1) 0.8886 *** 0.2207 *** 0.7327 ***
(0.1925) (0.0815) (0.1556)

AR(2) 0.0485
(0.2953)

AR(3) -0.4840 ***
(0.1775)

MA(1) -0.8213 *** -0.5118 ***
(0.1612) (0.1829)

MA(2) -0.1792
(0.2514)

MA(3) 0.7503 ***
(0.1610)

intercept -0.0913 -0.1806 ** -0.1667 *
(0.0876) (0.0789) (0.0937)

Box-Ljung test 5.2814 12.703 20.668
(0.9996) (0.8897) (0.4169)

Note: This table shows the estimates of three processes for real GDP growth FR. The results under
column (1) are based on the SPF, Philadelphia Fed. The results in column (2), on the other hand, are
obtained using the Greenbook, Philadelphia Fed. Finally, column (3) shows the results using SPF for
the same period as in the Greenbook. The last row exhibits the Ljung-Box test statistic value, with its

p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.

and negative, indicating that on average both agents revise their forecasts downward. In

the latter case, the estimate of the autoregressive parameter suggests a high degree of

persistence, whereas the coefficient associated with the error term implies that a positive

shock leads to a downward adjustment in expectations for the subsequent period.

In general, the forecast revisions for the real GDP growth rate lack the systematic

pattern implied by the DE model. In contrast, the results highlight a certain underreac-

tion or slow learning in the expectation formation process of professional forecasters and

policy makers.

5.2.1.2 Inflation forecast revisions: The FR data series for inflation are shown in

Figure 3.9. In Table 3.7, I present the estimates of the best-fitting model for each scenario.

When examining the time series calculated using the SPF between 1981:Q3 and 2023:Q4,

an ARMA (1,1) is the best model. This notably contrasts with the DE model’s forecast,

which points toward merely including MA terms. The coefficients outlined in column

(1) reveal a substantial level of persistence, quantified at 0.8077, alongside a negative
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response to the previous period’s shock. The latter implies that a positive shock leads

forecasters to revise their expectations downward, while a negative shock results in an

upward revision. These results contrast with the DE model, which predicts revisions in

the same direction as the shock due to extrapolation.
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Figure 3.9: Forecast revisions - headline CPI inflation.
Note: The black line is the calculated FR for annualised quarter headline CPI inflation using SPF (A)

and Greenbook (B) forecasts.

Concerning the updates in forecasts made by policy makers, a MA(1) process has

been selected as the most suitable model. The sign of the estimated coefficient is positive

(column (2)), which may indicate an overreaction in the expectations that these agents

hold, as predicted by DE. Nonetheless, it is important to note that the estimated coef-

ficient is not statistically significant. When analysing the time series corresponding to

the SPF for the identical period covered by the Greenbook, the results show a negative

and statistically significant intercept of -0.1247. This finding implies a consistent down-

ward adjustment in inflation expectations as time progresses. Additionally, the estimates

for the AR(1) and MA(1) terms both exhibit values close to one, indicating potential

concerns related to near-unit root behaviour. In addition, the value estimated for the

MA(1) component suggests that, when considering pre-COVID data, there is a tendency

for professional forecasters to overreact in the direction of the shock, as predicted by DE.

In general, the evidence on FR for the headline CPI inflation shows variations between

different agents and over varying time periods. As DE suggest, the FR has some degree of
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Table 3.7: Best fitting model for headline consumer price inflation forecast revisions

(1) (2) (3)
SPF Greenbook SPF - GB period

Estimate Estimate Estimate

AR(1) 0.8077*** -0.9980 ***
(0.1704) (0.0106)

MA(1) -0.6334 *** 0.1287 0.9932 ***
(0.2218) (0.0860) (0.0208)

intercept -0.0858 -0.0301 -0.1247 ***
(0.0579) (0.0573) (0.0314)

Box-Ljung test 18.36 15.073 23.728
(0.5637) (0.7722) (0.2545)

Note: This table shows the estimates of three processes for CPI inflation FR. The results under column
(1) are based on the Survey of Professional Forecasters, Philadelphia Fed. The results in column (2),
on the other hand, are obtained using the Greenbook, Philadelphia Fed. Finally, column (3) shows the
results using SPF for the same period as in the Greenbook. The last row exhibits the Ljung-Box test

statistic value, with its p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.

predictability through MA terms. Moreover, some evidence points towards autoregressive

behaviour.

5.2.1.3 3-month Treasury bill rate forecast revisions: Similarly to the forecast

errors, the Forecast Revisions (FR) for the 3-month T-bill rate is only available from the

SPF and it is depicted in Figure 3.10.
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Figure 3.10: Forecast revisions - 3-month Treasury bill rate.
Note: The black line is the calculated FR for the 3-month Treasury bill rate using SPF forecasts.

172



Table 3.8 details the models that best fit the forecast revisions for the 3-month Trea-

sury bill rate, as derived from the SPF. In the full sample, the process follows a MA(4)

structure. The coefficients for the first, third and fourth lags are statistically significant

at the 1% level, and their positive signs suggest that the forecasts tend to be revised in

the same direction of the shock realisation, as predicted by DE. In contrast, as shown in

column (2), during the Great Moderation period, the FR demonstrate marked autore-

gressive behaviour, with a dominant AR(1) coefficient of 1.3728, followed by significant

AR(2) and weaker AR(3) and AR(4) terms. The MA(1) coefficient in this period is very

close to -1, indicating a high degree of persistence and potential overcorrection in revi-

sions after a shock. The intercept is negative and statistically significant in both cases,

suggesting a systematic downward adjustment in expectations that remained unchanged

even after the pandemic. The Box-Ljung test statistics do not indicate strong evidence

of serial correlation in the residuals for either model.

Table 3.8: Best fitting model for 3-month Treasury bill forecast revisions

(1) (2)
SPF SPF - GB period

Estimate Estimate

AR(1) 1.3728 ***
(0.0926)

AR(2) -0.6322 ***
(0.1652)

AR(3) 0.4971
(0.1557)

AR(4) -0.3258
(0.0953)

MA(1) 0.3957 *** -0.9999 ***
(0.0781) (0.0212)

MA(2) -0.0022
(0.0819)

MA(3) 0.2048 **
(0.0816)

MA(4) 0.2666 ***
(0.0805)

intercept -0.1475 ** -0.1594 ***
(0.0876) (0.0937)

Box-Ljung test 9.8365 15.988
(0.971) (0.7174)

Note: This table shows the estimates of two processes for the 3-month T-bill rate FR. The results are
based on the SPF, Philadelphia Fed. The last row exhibits the Ljung-Box test statistic value, with its

p-value in parenthesis. Significance levels: “***”0.01, “**”0.05, “*”0.1.
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5.2.2 Multivariate

In this subsection, I use the three variables previously analysed individually to perform a

multivariate analysis. In a similar vein to subsection 5.1.2, Table 3.9 exhibits the two-way

table of p values of extended cross-correlation matrices. When comparing the elements of

this table with the type I error, the significant entries at the 5% level are on row one until

column (3), which suggests estimating six different models: VAR(1), VMA(1), VMA(2),

VMA(3), VARMA(1,1) and VARMA(1,2). After comparing the AIC values, I chose the

VMA(1) model.20

Table 3.9: P-values of extended cross-correlation matrices - mean forecast revisions

AR/MA 0 1 2 3
0 0.0000 0.0008 0.0028 0.1029
1 0.3597 0.2059 0.7383 0.9904
2 0.6375 0.7784 0.8908 0.9927
3 0.9693 0.9388 0.9211 0.8623

Table 3.10 presents the results. The estimated coefficients for the intercepts are sta-

tistically significant at the 5% level for both inflation and T-bill rate, which provides

evidence that professional forecasters have a consistent downward bias in adjusting their

expectations for these variables. Upon examining the matrix governing how past shocks

influence current Forecast Revisions (FR), the lower right corner 2 by 2 submatrix re-

veals statistically significant values. The impact of previous shocks on the T-bill rate is

particularly notable. It appears to incite an excessive adjustment in the forecasts by pro-

fessionals for inflation and T-bill rate, indicative of overreactive behaviour. Consequently,

any perturbation in the interest rate results in excessive revisions by professional forecast-

ers concerning both variables. A parallel scenario is observed for inflation; however, the

magnitude of the influence is comparatively reduced. In contrast, estimates for revisions

of forecasts related to real GDP growth rate do not exhibit statistically significant values.

The direction indicated by the signs suggests a tendency towards overreacting to news,

thereby motivating a revision of their current expectations in the same direction of the

shocks.

In conclusion, the findings suggest the presence of DE as FR align with the outcome

depicted in Equation (3.44). This expression indicates that, accounting for DE, the revi-

sions in forecasts should follow a VMA process with positive coefficients, thus reflecting

over-reactive behaviour, manifested as excessive adjustments to forecasts in response to

emerging shocks or news.

20The AIC values for the models are: AICV AR(1)=-3.530, AICVMA(1)=-3.540, AICVMA(2)=-3.401,
AICVMA(3)=-3.462, AICV ARMA(1,1)=Inf and AICV ARMA(1,2)=NaN.
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Table 3.10: Forecast revisions VMA(1) coefficient estimates

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FR RGDP constant -0.0575 0.0714 -0.806 0.4202
FR π constant -0.0789 0.0377 -2.091 0.0365 **
FR TBILL constant -0.1215 0.0504 -2.411 0.0158 **

ϵRGDP,RGDPt−1 0.0813 0.0843 0.964 0.3349

ϵRGDP,πt−1 0.0279 0.0340 0.819 0.4125

ϵRGDP,TBillt−1 0.0120 0.0402 0.300 0.7640

ϵπ,RGDPt−1 0.0847 0.1742 0.487 0.6265
ϵπ,πt−1 0.1582 0.0766 2.066 0.0388 **

ϵπ,TBillt−1 0.2083 0.0925 2.252 0.0243 **

ϵTBill,RGDPt−1 0.1357 0.1363 0.995 0.3195

ϵTBill,πt−1 0.1862 0.0610 3.051 0.0022 ***

ϵTBill,TBillt−1 0.3037 0.0704 4.312 1.62e-05 ***

Note: This table shows the estimates of a VMA(1) process. The results are based on the mean values
from the SPF, Philadelphia Fed. Significance levels: “***”0.01, “**”0.05, “*”0.1.
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t
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−0.1431∗∗

+


ϵRGDPt

ϵπt

ϵTBillt

−


−0.0813 −0.0279 −0.0121

−0.0848 −0.1583∗∗ −0.2084∗∗

−0.1358 −0.1863∗∗∗ −0.3037∗∗∗



ϵRGDPt−1

ϵπt−1

ϵTBillt−1


The performance of the VMA (1) model can be visually assessed in Figure 3.11. Simi-

lar to the forecast errors multivariate model, the VMA(1) model analysed here encounters

difficulties in accurately representing the dynamics of FR during crisis periods. In the con-

text of real GDP growth, the COVID-19 pandemic introduced significant over-revisions.

This challenge was further compounded in the post-pandemic period with increased in-

flation and interest rates, which the model also failed to accurately predict. Despite this,

the model supports the VMA structure predicted by DE.

6 Robustness

Within the analytical framework detailed in Section 5, the evaluations were initially

conducted using mean values of forecasts derived from the SPF. In this section, I consider

median forecasts to perform a robustness analysis and test the reliability of the results. I

also evaluate the models’ out-of-sample performance for both Forecast Errors (FE) and

Forecast Revisions (FR).21

21The SPF includes forecasts from multiple forecasters, providing both the mean and median of their
responses, making it suitable for these evaluations. In contrast, the Greenbook provides a single forecast
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Figure 3.11: Forecast revisions - VMA(1) model.
Note: The black line depicts the real data series of the FR, while the red one is the model fit.

6.1 Use of median responses

6.1.1 Forecast errors

For single-variable analyses, Table 3.11 summarises the results of the univariate models

that best fit the FE for real GDP growth, inflation, and the T-bill rate, employing the

median forecasts from the SPF survey data from 1981:Q3 to 2023:Q4. Columns (1) and

(2) reveal moving average orders, magnitudes, signs, and statistical significance that are

very similar to those in column (1) of Tables 3.1 and 3.2. This indicates that the findings

related to the FE for the real GDP growth rate and inflation are robust regardless of

whether the mean or median forecast is used. When examining the T-bill rate forecasts,

the notable difference is that the coefficient for the third lag shock realisation based on the

median forecasts becomes significant at the 10% level, a deviation from its insignificance

noted in Table 3.3, while the remaining coefficients are in line with those obtained earlier,

and so is the MA(4) order. Overall, the results suggest that the findings of the univariate

analysis in Section 5 are robust.

that represents the view of the policy makers in the Philadelphia FED. Therefore, the use of the SPF is
emphasised here, as it offers a range of forecasts from various professional forecasters.
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Table 3.11: Forecast errors robustness analysis using median responses from SPF

(1) (2) (3)
RGDP Inflation TBill

MA(1) -0.1855 ** 0.3333 *** 0.4938 ***
(0.0769) (0.0763) (0.0748)

MA(2) -0.0189 -0.1777 **
(0.0850) (0.0806)

MA(3) 0.1529 ** 0.1619 *
(0.0715) (0.0880)

MA(4) 0.3402 ***
(0.0785)

intercept -0.2319 0.0089 -0.1508 **
(0.2329) (0.2250) (0.0695)

Note: This table shows the estimate of an MA(1) process for the real GDP growth rate FE, an MA(3)
process for headline CPI inflation FE, and an MA(4) process for the 3-month T-bill rate FE. The
results are based on the SPF, Philadelphia Fed. Significance codes: “***”0.01, “**”0.05, “*”0.1.

Using a multivariate analysis, the following expression summarises the results from the

VMA(1) process.22 Here too, the findings of Section 5 are confirmed when using median

forecasts, i.e. past shock realisations exclusively impact the FE of the specific variable

they affect with the only statistically significant values being those on the diagonal.

However, the FE for the real GDP growth rate demonstrate a reduced overreaction,

with the parameter decreasing from -0.1842 when using mean forecasts to -0.1690 when

using median forecasts. The results for T-bill rate also show a milder underreaction,

with its value decreasing to 0.3720 from 0.3992. In contrast, inflation shows a greater

underreaction.
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
In summary, with median forecasts, FE maintain the predictable MA structure implied

by the presence of diagnostic expectations, similar to the case of using the mean SPF.

However, in both contexts, an overreaction is found solely in the FE of the real GDP

growth rate.

22Appendix 3.C.1, Table 3.17 shows the complete results.
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6.1.2 Forecast revisions

When considering Forecast Revisions (FR), the results appear to be less robust in some

cases. As shown in Table 3.12, the best fit univariate models for FR of real GDP growth

and inflation have ARMA structures and different coefficient values when using median

forecasts, compared to those based on mean forecasts (in Tables 3.6 and 3.7). In partic-

ular, while the optimal models are AR(4) and AR(1) under the SPF median forecasts,

when using the SPF mean forecasts, ARMA(3) and MA(1) are identified as the best-

fitting models for these two variables. In contrast, the results for the T-bill rate are

robust, with the same MA specification as obtained earlier and coefficients of similar

magnitudes.

Table 3.12: Forecast revisions robustness analysis using median responses from SPF

(1) (2) (3)
RGDP Inflation TBill

AR(1) 0.1895 ** 0.3749 ***
(0.0803) (0.0707)

AR(2) -0.0904
(0.0806)

AR(3) 0.1782 **
(0.0808)

AR(4) 0.1267
(0.1171)

MA(1) 0.3989 ***
(0.0774)

MA(2) -0.0430
(0.0803)

MA(3) 0.2351 ***
(0.0829)

MA(4) 0.2659 ***
(0.0797)

intercept -0.0890 -0.0645 -0.1455 **
(0.1241) (0.0473) (0.0738)

Note: This table shows the estimate of an AR(4) process for the real GDP growth rate FR, an AR(1)
for headline CPI inflation FR, and an MA(4) for the 3-month T-bill rate FR. The results are based on

the SPF, Philadelphia Fed. Significance codes: “***”0.01, “**”0.05, “*”0.1.

The robustness analysis continues by estimating a VMA(1) model for the FR data

set using the median SPF. The results are expressed in matrix form in the following
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Unlike in the case of forecast errors, the findings here display a certain degree of

robustness. The values in the 2 by 2 submatrix located in the lower right corner remain

statistically significant. However, the impact of an inflationary shock on the FR in

inflation is two thirds greater than when the mean SPF is used (-0.2557 vs -0.1583).

Similarly, the effect of a real GDP shock on the FR of real GDP growth has almost

doubled in size (increasing from an absolute value of 0.0813 to an absolute value of

0.1586), and has also become significant at 10% confidence level, which was not the case

in the analysis of Section 5. In general, the findings suggesting the presence of DE in the

FR are robust to the use of the median SPF data.

6.2 Out-of-sample forecast evaluation

One way to evaluate the out-of-sample performance of the VMA models is to study how

well they fit future values that are not considered in the estimation process. In this

case, since the estimated model is a VMA(1), I study how well the model predicts the

value observed in 2024:Q1. I use this method because, after one step, the predictions

in a VMA(1) depend solely on the mean vector since future residuals are unknown and

assumed to be zero, which means that the model predictions converge to the mean of the

process.24

In Figure 3.12, I plot the model’s one-period-ahead prediction for the three Forecast

Errors (FE) with a 95% confidence interval. The new observations, denoted by the black

dots in the figure, lie within this interval across all cases. The model effectively captures

the next period’s inflation FE and the upward trend of the T-bill rate FE. However, for

the FE of the real GDP growth, the actual data in 2024:Q1 shows a change of trend

relative to the previous quarters, which the model finds hard to predict.

An analogous analysis is conducted for the VMA(1) model with respect to FR, as

depicted in Figure 3.13. The confidence interval contains the new data points; however,

the model performs less well in point estimation. The prediction for the real GDP growth

rate FR is the closest to the actual observation, yet it inaccurately suggests a downward

23Appendix 3.C.1, Table 3.19 shows the complete results.
24This is a limitation of the VMA model’s structure. VMA models are not designed to project beyond

the immediate horizon because they lack autoregressive or trend components.
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Figure 3.12: Forecast errors prediction - VMA(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FE for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

revision contrary to the actual trend. A similar pattern is observed for the T-bill rate.

In contrast, the prediction for the inflation FR accurately identifies the direction but not

the extent of the change in FR.25

Figure 3.13: Forecast revisions prediction - VMA(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FR for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

To gain a deeper understanding of the VMA models’ performance for both FE and FR,

I summarise a few accuracy metrics in Table 3.13, namely the Mean Squared Prediction

Error (MSPE), the Root Mean Squared Prediction Error (RMSPE) and the Mean Ab-

25In Appendix 3.C.2 I present the graphs for the case in which the models are estimated using the
median responses of the SPF.
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solute Percentage Error (MAPE).26 In general, the VMA(1) model performs well when

forecasting out-of-sample inflation FE one period ahead, as evidenced by its low error

measures. Specifically, the model exhibits the smallest prediction errors for inflation FE

compared to real GDP growth rate and T-bill rate FE. The VMA(1) model struggles to

predict the real GDP growth rate FE, as the metrics for this variable (MSPE = 3.2041,

RMSPE = 1.7900) are significantly higher than those for the inflation FE and the T-bill

rate FE. For forecast revisions, the VMA(1) model shows relatively consistent perfor-

mance across the three variables, with similar values for MSPE, RMSPE, and MAPE.27

Table 3.13: Forecast errors and revisions metrics

Real GDP Inflation TBill
growth rate

FE
MSPE 3.2041 0.0128 0.0299
RMSPE 1.7900 0.1132 0.1731
MAPE 1.7900 0.1132 0.1731

FR
MSPE 0.1284 0.1985 0.1467
RMSPE 0.3584 0.4455 0.3830
MAPE 0.3584 0.4455 0.3830

Note: MSPE is Mean Squared Prediction Error, RMSPE is Root Mean Squared Prediction Error, and
MAPE is Mean Absolute Percentage Error.

7 Multiple forecast horizons: three-quarters ahead

This section exploits the fact that the SPF contains multiple forecasting horizons to

check the general result for the Forecast Errors (FE) and Forecast Revisions (FR) h pe-

riods ahead, as obtained in Section 3. In this case, following Coibion and Gorodnichenko

(2015), I opt for h = 3 since the SPF includes up to four-quarters ahead forecasts and to

obtain the FR, the expression calls for an additional forecasting horizon.

7.1 t+3 Forecast errors

Table 3.14 presents the outcome of the multivariate model that most accurately captures

professional forecasters’ predictions three periods ahead.28 In this case, the model has

26The MSPE gives a sense of the overall error magnitude in the forecast, while the RMSPE is the
squared root of the MSPE and provides the error magnitude in the same unit as the data. The MAPE
measures the average absolute error as a percentage of the actual values.

27In Appendix 3.C.2, Table 3.20 presents these measures for the estimated models using the SPF
median. The biggest difference in the results is that, when using the median, the model prediction error
of the one-period-ahead real GDP growth rate FE is worst.

28Appendix 3.C.2, Table 3.22 shows the p-values of the extended cross-correlation matrix that informs
which models might be the best at capturing the behaviour of the variables.
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a VAR(1) structure, different from the VMA(1) for the forecasts for one period ahead.

This suggests that long-term FE may exhibit greater persistence and serial correlation,

potentially due to expectation rigidities or gradual learning dynamics. If forecasters

systematically misupdate expectations across multiple periods, errors can become auto-

correlated, favouring a VAR representation.

Table 3.14: Forecast errors t+3 VAR(1) coefficient estimates

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FE RGDP constant -0.3332 0.3452 -0.965 0.3344
FE π constant -0.0277 0.1693 -0.164 0.8698
FE TBILL constant -0.0691 0.0498 -1.387 0.1653

FE RGDPRGDP,RGDP
t−1 -0.1467 0.0792 -1.852 0.0641 *

FE RGDPRGDP,π
t−1 -0.0441 0.0388 -1.135 0.2566

FE RGDPRGDP,TBill
t−1 0.0120 0.0114 1.049 0.2942

FE ππ,RGDPt−1 -0.1369 0.1529 -0.895 0.3707
FE ππ,πt−1 0.4141 0.0750 5.521 3.38e-08 ***

FE ππ,TBillt−1 0.0305 0.0220 1.384 0.1664

FE TBILLTBill,RGDPt−1 0.0294 0.3003 0.098 0.9218

FE TBILLTBill,πt−1 0.0685 0.1467 0.467 0.6401

FE TBILLTBill,TBillt−1 0.8056 0.0430 18.731 2e-16 ***

Note: This table shows the estimates of a VAR(1) process. The results are based on the mean values
from the SPF, Philadelphia Fed. Significance levels: “***”0.01, “**”0.05, “*”0.1.

Moreover, according to the table, the only statistically significant results are those

associating each FE with its own lag, indicating the absence of cross-correlation between

the variables’ FE. The out-of-sample performance of this VAR(1) is shown in Figure

3.14.29 The model does a good job overall, considering that the out-of-sample observations

lie within the confidence interval and are relatively close to the point estimates. Similarly

to the analysis in Subsection 6.2, the models fails to account the trend in the FE of the

real GDP growth rate.

7.2 t+3 Forecast revisions

The three-periods ahead FR also presents a VMA(1) structure, similar to the one esti-

mated for the one-period FR in Subsection 5.2. However, the main difference is that FR

in multiple period horizons exhibit a more pronounced response to shocks, especially in

the real GDP growth rate and the T-bill rate, which is reflected in the higher estimated

parameters in Table 3.15.30 The opposite result holds for inflation. Moreover, recent

29The in-sample performance is presented in Appendix 3.C.2, Figure 3.18
30This result is in line with Bianchi et al. (2024b) who find higher overreaction for extended forecast

horizons.
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Figure 3.14: t+3 Forecast errors prediction - VAR(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FE for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

shocks seem to significantly influence the FR three periods ahead for real GDP growth,

unlike the case of one-period ahead. Professional forecasters, in this context, also have a

tendency to overreact to shocks to the T-bill rate, with the impact being about two-thirds

greater than when considering one-period ahead.

Table 3.15: Forecast revisions t+3 VMA(1) coefficient estimates

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FR RGDP constant -0.0020 0.0440 -0.046 0.9629
FR π constant -0.0771 0.0253 -3.037 0.0023 ***
FR TBILL constant -0.1459 0.0519 -2.811 0.0049 ***

ϵRGDP,RGDPt−1 0.2095 0.0824 2.540 0.0110 **

ϵRGDP,πt−1 -0.1287 0.0478 -2.693 0.0070 ***

ϵRGDP,TBillt−1 0.0644 0.0658 0.979 0.3276

ϵπ,RGDPt−1 0.0303 0.1403 0.216 0.8288
ϵπ,πt−1 -0.0287 0.0795 -0.362 0.7176

ϵπ,TBillt−1 0.0816 0.1187 0.687 0.4918

ϵTBill,RGDPt−1 0.0139 0.0851 0.164 0.8696

ϵTBill,πt−1 0.1941 0.0516 3.763 0.0001 ***

ϵTBill,TBillt−1 0.4839 0.0691 7.003 2.5e-12 ***

Note: This table shows the estimates of a VMA(1) process. The results are based on the mean values
from the SPF, Philadelphia Fed. Significance codes: “***”0.01, “**”0.05, “*”0.1.

Overall, the results suggest a stronger revision in the direction of the shock realisation

the longer the forecast horizon. Figure 3.15 illustrates the performance of the out-of-

sample VMA(1) model. The results are similar to the one-period ahead case, although

here the point prediction for the FR of the real GDP growth rate is more accurate in
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terms of point estimation and direction. The model still struggles to capture the revision

for inflation and the T-bill.

Figure 3.15: t+3 Forecast revisions prediction - VMA(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FE for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

8 Concluding remarks

In this chapter, I explore the impact of DE on the state-space structure of macroe-

conomic models and the resulting Forecast Errors (FE) and Forecast Revisions (FR).

By analytically deriving the expressions for FE and FR in both a simple three-equation

model and a generalised framework, I show that representativeness, as a belief formation

process, introduces predictability components to the FE and FR, in line with previous

empirical findings. Using data from the Philadelphia FED SPF and Greenbook/Tealbook

forecasts, I assess whether forecasts by professional forecasters and policy makers are in-

fluenced by diagnosticity.

The short-term quantitative results indicate that univariate FE generally follow the

expected MA structures as suggested by the analytical results, albeit with different lags

across variables. In addition, significant overreaction only appears in the real GDP growth

rate FE of professional forecasters when the COVID-19 pandemic is included; otherwise,

the evidence largely points to underreactions. In the multivariate case, the MA(1) struc-

ture is consistent across all variables, but overreaction remains specific to real GDP

growth. On the other hand, the univariate results for FR are inconclusive with respect

to DE, whereas the multivariate results provide stronger evidence, particularly showing

substantial revisions in inflation and T-bill forecasts.
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Considering longer forecast horizons, the estimates suggest that FE three periods ahead

may exhibit greater persistence and serial correlation, since the estimated model is a

VAR(1). This could potentially be due to rigidities in the expectation formation process

or some gradual learning dynamics. The estimates for the FR reveal that professional

forecasters, in this context, have a tendency to overreact to shocks to the T-bill rate and

real GDP, but present no significant response to shocks to inflation. The results imply

that the longer the forecast horizon is, the stronger the revision in the direction of the

shock realisation.

In summary, the findings in this chapter are informative but far from conclusive, as

the empirical evidence does not seem to suggest a definitive pattern. Therefore, as noted

in Reis (2020), there is still little agreement on a suitable non-full information rational

expectations benchmark. Further research on expectation formation is needed, as it

appears that the process is heterogeneous across households and variables, as well as

state-dependent. This is crucial given the importance of the expectations channel for, for

example, monetary policy transmission.
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Appendices

3.A Generalised Forecast Errors t+1 and t+h Peri-

ods Ahead

The system has a solution form:


zt+1

xt+1

ϵt+1


︸ ︷︷ ︸

Γt+1

=


Hz︷︸︸︷
hz,z

Hx︷︸︸︷
hz,x

Hϵ︷︸︸︷
hz,ϵ

hx,z hx,x hx,ϵ

hϵ,z hϵ,x hϵ,ϵ


︸ ︷︷ ︸

H


zt

xt

ϵt

+


kz

kx

kϵ

 ϵt+1.

yt =



Gz︷︸︸︷
g1,z

Gx︷︸︸︷
g1,x

Gϵ︷︸︸︷
g1,ϵ

g2,z g2,x g2,ϵ

. . .

. . .

gm,z gm,x gm,ϵ


︸ ︷︷ ︸

G


zt

xt

ϵt



In order to obtain the FE, first I forward the diagnostic solution for the endogenous

variables one period ahead:

yt+1 = GΓt+1 (3.46)

Replacing the law of motion for the vector of the state variables, including exogenous

variables, endogenous variables, and the shocks’ realisations:

yt+1 = G




hz,z hz,x hz,ϵ

hx,z hx,x hx,ϵ

hϵ,z hϵ,x hϵ,ϵ



zt

xt

ϵt

+


kz

kx

kϵ

 ϵt+1.

 . (3.47)
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Thus, the solution for yt+1 is:

yt+1 = G


hz,z

hx,z

hϵ,z

 zt +G


hz,x

hx,x

hϵ,x

xt +G


hz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt +G


kz

kx

kϵ

 ϵt+1. (3.48)

Next, I obtain an expression for the diagnostic expected values of the endogenous

variables. I apply the diagnostic operator to the previous expression, obtaining:

Eϕ
t yt+1 = Eϕ

t [GΓt+1], (3.49)

which after replacing the diagnostic solution for the law of motion of the state vector:

Eϕ
t yt+1 = GEϕ

t




hz,z hz,x hDEz,ϵ

hx,z hx,x hx,ϵ

hϵ,z hϵ,x hϵ,ϵ



zt

xt

ϵt

+


kz

kx

kϵ

 ϵt+1

 . (3.50)

After applying the diagnostic expectations operator, this becomes:

Eϕ
t yt+1 = G


hz,z

hx,z

hϵ,z

 zt +G


hz,x

hx,x

hϵ,x

xt +G


hDEz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt, (3.51)

Using the FE definition:

yt+1 − Eϕ
t yt+1 =G


hz,z

hx,z

hϵ,z

 zt +G


hz,x

hx,x

hϵ,x

xt +G


hz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt +G


kz

kx

kϵ

 ϵt+1−

G


hz,z

hx,z

hϵ,z

 zt +G


hz,x

hx,x

hϵ,x

xt +G


hDEz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt

 .

(3.52)

After cancelling terms, this equals:

yt+1 − Eϕ
t yt+1 = G




hz,ϵ

hx,ϵ

hϵ,ϵ

−


hDEz,ϵ

hx,ϵ

hϵ,ϵ


 ϵt +G


kz

kx

kϵ

 ϵt+1. (3.53)
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Given that, once the model is solved, future realizations are driven by the shocks true

data generating process, the entries of hz,ϵ are zero. In addition, using the partitioned

matrix G in three-submatrices, and the fact that sub-matrix hϵ,ϵ has zero elements, the

first terms can be written as:



Gz︷︸︸︷
g1,z

Gx︷︸︸︷
g1,x

Gϵ︷︸︸︷
g1,ϵ

g2,z g2,x g2,ϵ

. . .

. . .

gm,z gm,x gm,ϵ






0

hx,ϵ

0

−


hDEz,ϵ

hx,ϵ

0


 ϵt.

Here, since the elements in hx,ϵ are the same in both brackets, the final expression for

the one period ahead FE boils to:

yt+1 − Eϕ
t yt+1 = −Gzh

DE
z,ϵ ϵt +G


kz

kx

kϵ

 ϵt+1. (3.54)

In order to obtain the general expression for the FE t + h periods ahead, I calculate

the FE for t+ 2 periods ahead:

yt+2 = GΓt+2. (3.55)

Along the sames lines as in the case t+ 1, I replace the law of motion for Γt+2
1:

yt+2 = G




hz,z hz,x hz,ϵ

hx,z hx,x hx,ϵ

hϵ,z hϵ,x hϵ,ϵ



zt+1

xt+1

ϵt+1

+


kz

kx

kϵ

 ϵt+2.

 , (3.56)

where I further replace the law of motion for Γt+1:

yt+2 = GH




hz,z hz,x hz,ϵ

hx,z hx,x hx,ϵ

hϵ,z hϵ,x hϵ,ϵ



zt

xt

ϵt

+


kz

kx

kϵ

 ϵt+1

+G


kz

kx

kϵ

 ϵt+2. (3.57)

1Initially, I present the derivations considering the whole matrices, later on I elaborate on this, and
consider their specific elements.
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which after opening the parentheses equals:

yt+2 = GH2


zt

xt

ϵt

+GH


kz

kx

kϵ

 ϵt+1 +G


kz

kx

kϵ

 ϵt+2. (3.58)

The expected diagnostic values for endogenous variables in period t+ 2 are equal to:

Eϕ
t yt+2 = GH2,DE


zt

xt

ϵt

 . (3.59)

Thus, again following its definition, the FE t+ 2 periods ahead is:

yt+2 − Eϕ
t yt+2 = G

(
H2 −H2,DE

)
zt

xt

ϵt

+GH


kz

kx

kϵ

 ϵt+1 +G


kz

kx

kϵ

 ϵt+2. (3.60)

For the case of t+ 3 periods ahead, the FE results:

yt+3−Eϕ
t yt+3 = G

(
H3 −H3,DE

)
zt

xt

ϵt

+GH2


kz

kx

kϵ

 ϵt+1+GH


kz

kx

kϵ

 ϵt+2+G


kz

kx

kϵ

 ϵt+3.

(3.61)

Therefore, the generalized expression for the FE t + h periods ahead can be written

as:

yt+h − Eϕ
t yt+h = G

(
Hh −Hh,DE

)
zt

xt

ϵt

+G
h∑
τ=1

Hh−τ


kz

kx

kϵ

 ϵt+τ . (3.62)

In what follows, I will show that final expression (3.62) exhibits a predictable compo-

nent, as it simplifies and depends on the vector of shocks realizations ϵt. Nevertheless,

the matrix multiplying this vector turns out to be a dense product of sub-matrices as h

increases. Here I derive matrix Hh,DE since matrix Hh results from setting sub-matrix

hDEz,ϵ to zero. First, considering t + 2 periods ahead and the fact that some of these

sub-matrices are 0 as presented in section 3.1, matrix H2,DE results in:

H2 =


hz,z 0 hDEz,ϵ

hx,z hx,x hx,ϵ

0 0 hϵ,ϵ

 ∗


hz,z 0 hDEz,ϵ

hx,z hx,x hx,ϵ

0 0 0


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H2 =


h2
z,z 0 hz,zh

DE
z,ϵ

hx,zhz,z + hx,xhx,z h2
x,x hx,zh

DE
z,ϵ + hx,xhx,ϵ

0 0 0

 (3.63)

To obtain matrix H3,DE, I multiply (3.63) by H:

H3 =


h2
z,z 0 hz,zh

DE
z,ϵ

hx,zhz,z + hx,xhx,z h2
x,x hx,zh

DE
z,ϵ + hx,xhx,ϵ

0 0 0

 ∗


hz,z 0 hDEz,ϵ

hx,z hx,x hx,ϵ

0 0 0

 ,
which results in

H3 =


h3
z,z 0 h2

z,zh
DE
z,ϵ

(hx,zhz,z + hx,xhx,z)hz,z + h2
x,xhx,z h3

x,x (hx,zhz,z + hx,xhx,z)h
DE
z,ϵ + h2

x,xhx,ϵ

0 0 0


(3.64)

First, I replace (3.63) in (3.60), cancel terms, and use the fact that for realised values,

sub-matrix hDEz,ϵ equals 0, obtaining:

yt+2 − Eϕ
t yt+2 = G




0

hx,xhx,ϵ

0

−


hz,zh

DE
z,ϵ

hx,zh
DE
z,ϵ + hx,xhx,ϵ

0


 ϵt

+GH


kz

kx

kϵ

 ϵt+1 +G


kz

kx

kϵ

 ϵt+2.

(3.65)

After solving the parenthesis and using the partitions of matrix G, I obtain that the

expression for the FE two periods ahead is:

yt+2 − Eϕ
t yt+2 =

−Gz

H1
1,1︷︸︸︷

hz,z h
DE
z,ϵ −Gx

H1
2,1︷︸︸︷

hx,z h
DE
z,ϵ

 ϵt +GH


kz

kx

kϵ

 ϵt+1 +G


kz

kx

kϵ

 ϵt+2.

(3.66)

Here, I use over-braces above certain elements in the expression, following the notation

H1
1,1. This highlights the specific sub-matrices from matrix H1 that are used, with the

193



goal of deriving a generalised expression. Now, substituting (3.64) in (3.61):

yt+3 − Eϕ
t yt+3 = G




0

h2
x,xhx,ϵ

0

−


h2
z,zh

DE
z,ϵ

(hx,zhz,z + hx,xhx,z)h
DE
z,ϵ + h2

x,xhx,ϵ

0


 ϵt

+G

H2


kz

kx

kϵ

 ϵt+1 +H


kz

kx

kϵ

 ϵt+2 +


kz

kx

kϵ

 ϵt+3

 .

(3.67)

After solving the parenthesis and using the partitions of matrix G, I obtain that the

expression for the FE three periods ahead is:

yt+3 − Eϕ
t yt+3 =

−Gz

H2
1,1︷︸︸︷

h2
z,z h

DE
z,ϵ −Gx

H2
2,1︷ ︸︸ ︷

(hx,zhz,z + hx,xhx,z)h
DE
z,ϵ

 ϵt

+G

H2


kz

kx

kϵ

 ϵt+1 +H


kz

kx

kϵ

 ϵt+2 +


kz

kx

kϵ

 ϵt+3

 .

(3.68)

Similarly, the notation above the over-braces specifies which element of matrix H2 is

being used in this expression. Using this notation, I can then generalise the result to the

case of h periods ahead:

yt+h − Eϕ
t yt+h =

[
−GzH

h−1
1,1 hDEz,ϵ −GxH

h−1
2,1 hDEz,ϵ

]
ϵt +G

h∑
τ=1

Hh−τ


kz

kx

kϵ

 ϵt+τ . (3.69)

3.B Generalised Forecast Revisions t+1 and t+h Pe-

riods Ahead

I start the derivation for FR 1 and h periods ahead from the solution of yt+1:

yt+1 = G


hz,z

hx,z

hϵ,z

 zt +G


hz,x

hx,x

hϵ,x

xt +G


hz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt +G


kz

kx

kϵ

 ϵt+1. (3.70)

I replace zt using the law of motion for the exogenous state variables in the system
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solution:

yt+1 = G


hz,z

hx,z

hϵ,z

 (hz,zzt−1 + hz,xxt−1 + hz,ϵϵt−1 + kzϵt)+G


hz,x

hx,x

hϵ,x

xt+G


hz,ϵ

hx,ϵ

hϵ,ϵ

 ϵt+G


kz

kx

kϵ

 ϵt+1,

(3.71)

where the products are conformable since G is size (m x n), Hz has size (n x nz) and the

submatrices hz,z, hz,x and hz,ϵ have sizes (nz x nz), (nz x nx) and (nz x nϵ), respectively.

Finally, the submatrix kz has size (nz x nϵ).

Now, using the fact that some elements of this matrix are zeros, and taking the diag-

nostic expectations operator with information until period t and then until period t− 1,

I obtain:

Eϕ
t yt+1 = G


hz,z

hx,z

0

(hz,zzt−1 + hz,xxt−1 + hDEz,ϵ ϵt−1 + kzϵt
)
+G


0

hx,x

0

xt+G


hDEz,ϵ

hx,ϵ

0

 ϵt,

(3.72)

and

Eϕ
t−1yt+1 = G


hz,z

hx,z

0

(hz,zzt−1 + hz,xxt−1 + hDEz,ϵ ϵt−1

)
+G


0

hx,x

0

xt. (3.73)

Using the definition of the FR and subtracting equation (3.73) from equation (3.72):

Eϕ
t yt+1 − Eϕ

t−1yt+1 = G


hz,z

hx,z

0

kzϵt +G


hDEz,ϵ

hx,ϵ

0

 ϵt, (3.74)

This expression shows that the FR of the diagnostic agent has a predictable component.

In addition, the FR will exhibit an overreaction in the direction of the shock, govern

by the second term on the right-hand side, since the submatrix hDEz,ϵ will depend on the

diagnostic parameter ϕ. In the case of rational expectations, that is, ϕ = 0, the expression

boils down to just the first term on the right-hand side.

In order to obtain the general expression for the FR t+h periods ahead, I use Equation

(3.58):
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yt+2 = GH2


zt

xt

ϵt

+GH


kz

kx

kϵ

 ϵt+1 +G


kz

kx

kϵ

 ϵt+2. (3.75)

Replacing H2 obtained in Equation (3.63):

yt+2 = G


h2
z,z 0 hz,zhz,ϵ

hx,zhz,z + hx,xhx,z h2
x,x hx,zhz,ϵ + hx,xhx,ϵ

0 0 0



zt

xt

ϵt

+GH


kz

kx

kϵ

 ϵt+1+G


kz

kx

kϵ

 ϵt+2.

(3.76)

After multiplying the elements of H2 by the vector of state variables:

yt+2 = G


h2
z,zzt + hz,zhz,ϵϵt

(hx,zhz,z + hx,xhx,z)zt + h2
x,xxt + (hx,zhz,ϵ + hx,xhx,ϵ)ϵt

0

+GH


kz

kx

kϵ

 ϵt+1+G


kz

kx

kϵ

 ϵt+2.

(3.77)

Using the law of motion for zt and applying the diagnostic expectations operator at t:

Eϕ
t yt+2 = G


h2
z,z

(
hz,zzt−1 + hz,xxt−1 + hDE

z,ϵ ϵt−1 + kzϵt
)
+ hz,zh

DE
z,ϵ ϵt

(hx,zhz,z + hx,xhx,z)
(
hz,zzt−1 + hz,xxt−1 + hDE

z,ϵ ϵt−1 + kzϵt
)
+ h2

x,xxt + (hx,zh
DE
z,ϵ + hx,xhx,ϵ)ϵt

0

 .
(3.78)

Following the same step, but now taking the diagnostic expectations operator at t−1:

Eϕ
t−1yt+2 = G


h2
z,z

(
hz,zzt−1 + hz,xxt−1 + hDE

z,ϵ ϵt−1

)
(hx,zhz,z + hx,xhx,z)

(
hz,zzt−1 + hz,xxt−1 + hDE

z,ϵ ϵt−1 + kzϵt
)
+ h2

x,xxt

0

 . (3.79)

Now, using the definition of FR and subtracting (3.79) from (3.78), I obtain the FR

for t+ 2 periods ahead:

Eϕ
t yt+2 − Eϕ

t−1yt+2 = G


h2
z,z

(hx,zhz,z + hx,xhx,z)

0

kzϵt +G


hz,zh

DE
z,ϵ

(hx,zh
DE
z,ϵ + hx,xhx,ϵ)

0

 ϵt.

(3.80)

This result can be expressed in terms of the submatrices from (3.63) as:

Eϕ
t yt+2 − Eϕ

t−1yt+2 = G


H2

1,1

H2
2,1

0

kzϵt +G


H2

1,3

H2
2,3

0

 ϵt. (3.81)
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In the case of the FR t+ 3 periods ahead, the expression is:

Eϕ
t yt+3−Eϕ

t−1yt+3 = G


h3
z,z

(hx,zhz,z + hx,xhx,z)hz,z + h2
x,xhx,z

0

kzϵt+G


h2
z,zh

DE
z,ϵ

(hx,zhz,z + hx,xhx,z)h
DE
z,ϵ + h2

x,xhx,ϵ

0

 ϵt,

(3.82)

which generalises to:

Eϕ
t yt+3 − Eϕ

t−1yt+3 = G


H3

1,1

H3
2,1

0

kzϵt +G


H3

1,3

H3
2,3

0

 ϵt. (3.83)

Therefore, the FR for h periods ahead can be written as:

Eϕ
t yt+h − Eϕ

t−1yt+h = G


Hh

1,1

Hh
2,1

0

kzϵt +G


Hh

1,3

Hh
2,3

0

 ϵt. (3.84)

Hh
i,j here refers to a particular submatrix related to each power of the matrix H, as

extended horizons introduce more complex terms.

3.C Additional Results

3.C.1 Robustness analysis - Median SPF

Table 3.16: P-values of extended cross-correlation matrices - median forecast errors

AR/MA 0 1 2 3
0 0.0503 0.9325 0.8889 0.9259
1 0.9343 0.9963 0.9765 0.9846
2 0.9902 0.9771 1.0000 0.9999
3 0.9988 0.9934 1.0000 0.9997

3.C.2 Out-of-sample forecast evaluation - Median SPF
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Table 3.17: Forecast errors VMA(1) coefficient estimates - median SPF

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FE RGDP constant -0.2095 0.2305 -0.909 0.3633
FE π constant 0.0259 0.2045 0.127 0.8990
FE TBILL constant -0.1255 0.0525 -2.389 0.0168 **

ϵRGDP,RGDPt−1 -0.1690 0.0853 -1.981 0.0476 **

ϵRGDP,πt−1 -0.0489 0.0426 -1.147 0.2514

ϵRGDP,TBillt−1 -0.0045 0.0105 -0.434 0.6642

ϵπ,RGDPt−1 -0.1529 0.1449 -1.056 0.2911
ϵπ,πt−1 0.3297 0.0865 3.811 0.0001 ***

ϵπ,TBillt−1 -0.0106 0.0188 -0.567 0.5709

ϵTBill,RGDPt−1 0.0182 0.5891 0.031 0.9752

ϵTBill,πt−1 0.0260 0.2998 0.087 0.9307

ϵTBill,TBillt−1 0.3720 0.0765 4.862 1.16e-06 ***

Note: This table shows the estimates of a VMA(1) process. The results are based on the median values
from the SPF, Philadelphia Fed. Significance levels: “***”0.01, “**”0.05, “*”0.1.

Table 3.18: P-values of extended cross-correlation matrices - median forecast revisions

AR/MA 0 1 2 3
0 0.0000 0.0004 0.0022 0.0278
1 0.5370 0.1943 0.8686 0.7852
2 0.7805 0.3452 0.9776 0.9804
3 0.9448 0.9906 0.9612 0.9317

Table 3.19: Forecast revisions VMA(1) coefficient estimates - median SPF

Coefficient(s) Estimate Std. Error t value Pr(> |t|)
FE RGDP constant -0.0383 0.0840 -0.457 0.6479
FE π constant -0.0614 0.0394 -1.557 0.1194
FE TBILL constant -0.1170 0.0518 -2.255 0.0241 **

ϵRGDP,RGDPt−1 0.1585 0.0835 1.899 0.0576 *

ϵRGDP,πt−1 0.0194 0.0292 0.665 0.5060

ϵRGDP,TBillt−1 0.0029 0.0376 0.079 0.9368

ϵπ,RGDPt−1 -0.0235 0.1974 -0.119 0.9050
ϵπ,πt−1 0.2556 0.0724 3.530 0.0004 ***

ϵπ,TBillt−1 0.1725 0.0999 1.726 0.0843 *

ϵTBill,RGDPt−1 0.1454 0.1458 0.997 0.3185

ϵTBill,πt−1 0.1539 0.0566 2.720 0.0065 ***

ϵTBill,TBillt−1 0.2973 0.0744 3.992 6.55e-05 ***

Note: This table shows the estimates of a VMA(1) process. The results are based on the median values
from the SPF, Philadelphia Fed. Significance levels: “***”0.01, “**”0.05, “*”0.1.
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Figure 3.16: Forecast errors prediction - VMA(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FE for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

Figure 3.17: Forecast revisions prediction - VMA(1) model.
Note: The black line depicts the real data series from 2021:Q2 to 2023:Q4. The blue line is the

prediction of the FE for 2024:Q1. The black dot represents the observation 2024:Q1 used to compare
out-of-sample performance of the VMA(1) model.

Table 3.20: Forecast errors metrics - median SPF

Real GDP Inflation TBill
growth rate

FE
MSPE 3.5690 0.0086 0.0121
RMSPE 1.8891 0.0928 0.1100
MAPE 1.8891 0.0928 0.1100

FR
MSPE 0.2280 0.2313 0.1140
RMSPE 0.4775 0.4810 0.3376
MAPE 0.4775 0.4810 0.3376
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Table 3.21: P-values of extended cross-correlation matrices - mean forecast errors t+3 periods
ahead

AR/MA 0 1 2 3
0 0.0000 0.0000 0.0631 0.6089
1 0.0077 0.9909 0.9694 0.7310
2 0.6452 0.5861 0.9947 0.9999
3 0.9713 0.8901 0.9993 0.9991
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Figure 3.18: Forecast errors t+3 periods ahead - VMA(1) model.
Note: The black line depicts the real data series of the FR, while the red one is the model fit.

Table 3.22: P-values of extended cross-correlation matrices - mean forecast revisions t+3
periods ahead

AR/MA 0 1 2 3
0 0.0000 0.0015 0.0514 0.3335
1 0.1849 0.0853 0.8194 0.3695
2 0.5619 0.8616 0.7068 0.2582
3 0.9417 0.7841 0.9969 0.8648
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Figure 3.19: Forecast revisions t+3 periods ahead - VMA(1) model.
Note: The black line depicts the real data series of the FR, while the red one is the model fit.
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Summary and Future Research

This thesis has studied the dynamics of belief-induced macroeconomic volatility, focus-

ing on the effects of including Diagnostic Expectations (DE) in New Keynesian models.

I found that when agents form biased expectations governed by representativeness, ex-

change rate and housing market fluctuations can be explained with smaller shock inno-

vations, as DE work as an amplification mechanism that generates highly volatile ex-

pectations. Moreover, I found that memory plays a crucial role: in the housing market,

individuals appear to place greater weight on recent information compared to more dis-

tant past events. Finally, I derive general expressions for both Forecast Errors (FE) and

Forecast Revisions (FR) in terms of state-space model solutions, making them suitable

for empirical testing. In addition, I show that DE introduce predictability in the FE

and over-adjustments in the direction of the news in FR, which contradicts the FIRE

assumption.

The chapters unfold to build a comprehensive framework for understanding the effects

of DE across macroeconomic settings. The first chapter conducts a qualitative analysis

about the implications of DE in a Small Open Economy (SOE) model. It highlights

how DE interact with persistence mechanisms to create excess volatility, offering a be-

havioural explanation for exchange rate puzzles. The second chapter takes a quantitative

approach, building on the qualitative insights of the first chapter, to show the role of DE in

explaining housing market fluctuations. Using a TANK model with housing and banking

sectors, it incorporates DE with short- and long-term memory and empirically supports

the framework based on estimates of the diagnostic parameters. Finally, the third chap-

ter formalises the predictability introduced by DE, offering a tool to test its presence in

real-world forecasting data. Together, these studies provide a structured analysis of how

belief distortions shape macroeconomic outcomes, contributing both, theoretically and

empirically, to the literature on expectation formation.
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Chapter 1

In chapter 1, I employ a DSGE model to examine the impact of DE on international

macroeconomic dynamics, particularly in addressing key exchange rate puzzles. Moti-

vated by the parallels between these puzzles and those in finance, where DE has proven

effective, I incorporate DE into a SOE framework inspired by Justiniano and Preston

(2010). The openness of the model and the built-in persistence mechanisms provide a

structured environment to assess how DE influence exchange rate behaviour and con-

tribute to a more realistic representation of belief-driven macroeconomic fluctuations.

The findings suggest that the DE-augmented SOE model (DSOE) provides a qualita-

tive explanation for the excess volatility of exchange rates and their apparent disconnect

from fundamentals. The presence of diagnostic agents introduces an amplification mecha-

nism that fuels endogenous volatility and short-term fluctuations. In addition, the results

show that the effects of DE depend on key structural parameters, such as openness and

the elasticity of substitution, while persistence mechanisms influence how DE propagates

and amplifies.

Chapter 2

In chapter 2, I present a TANK model that includes a housing sector and a banking sector,

along with diagnostic agents, to examine the role of expectations in driving the volatility

of the housing market. In this case, agents rely on both short- and long-term memory

when forming expectations, allowing me to study to which information individuals at-

tribute greater significance when forecasting. The solution method follows L’Huillier,

Singh, and Yoo (2021) and Bianchi, Ilut, and Saijo (2024). In terms of estimation meth-

ods, here I use Sequential Monte Carlo given its advantages with respect to RandomWalk

Metropolis Hastings and I estimate the model using data from the U.S. for the period

1984:Q1 until 2019:Q4.

The main finding is that the models with DE better capture the high relative volatility

in the housing sector, particularly house prices, even when conditioned on less volatile

housing preference shocks. As Iacoviello and Neri (2010) note, these shocks serve as a

catchall of all unmodeled disturbances that can affect housing demand. In the estimation,

I obtain values for the diagnostic parameter and importance weights on past events in

support of DE. In particular, the Diagnostic TANK model using a one-quarter reference

outperforms both the model including a three-year reference and the rational benchmark.

Further analysis of the expectations channel shows that shutting down DE prevents the

model from generating the pronounced house price fluctuations observed in the data. Al-
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together, these findings indicate that expectation formation is a key source of unmodeled

disturbances in the housing sector, shaping market cycles, and stress the need to account

for it in policy analysis.

Chapter 3

In chapter 3, I extend the analysis of DE by examining their impact on the state-

space representation of linear macroeconomic models and the resulting forecast errors

and forecast revisions. Building on the previous chapters, I follow Hajdini and Kurmann

(2024) and analytically derive expressions for FE and FR in both a three-equation model

and a general framework. The purpose is to explore how representativeness, as a cognitive

bias, introduces predictability components into FE and over-adjustments in FR, and

whether these deviations are observable in survey data. To test this, I examine data from

the Philadelphia FED’s Survey of Professional Forecasters and the Greenbook/Tealbook

forecasts.

The findings show that DE lead to a moving average (MA) structure in the univariate

case, and a vector moving average (VMA) structure in the multivariate case. These

systematic FE and FR contrast with the predictions of rational expectations. Empirical

tests using data from professional forecasters and policymakers confirm that, with some

exceptions, a MA or VMA structure best describes FE and FR, particularly for real

GDP growth and when the post-Covid-19 period is included. However, estimates do

not consistently point in the direction of overreaction. In summary, this chapter offers

a framework for assessing the quantitative impact of DE, and, whilst not definitive, the

results provide meaningful empirical insight.

Future Research

Here I present some potential extensions based on the chapters of this thesis, as well as

new research directions.

One possible extension is to estimate the SOE model from Chapter 1 for Australia,

Canada, and New Zealand, following Justiniano and Preston (2010), and compare the

results with those in their paper. If the results mirror those in Chapter 2, I would

expect a reduction in the size of the shock innovations driving exchange rate fluctuations.

Furthermore, estimating this model using data from developing countries could further

reveal whether agents with diverse historical economic experiences form expectations that

align more or less with rationality.
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Another potential extension involves the model in Chapter 2. An important, yet unex-

plored, channel in that model is financial intermediation between patient and impatient

households, particularly in the context of mortgage markets and their role in credit cycles.

Since the housing and credit markets are closely intertwined, incorporating this channel

could allow DE to explain their co-movement and volatility more effectively, further im-

proving the model’s fit. Moreover, since the model already exhibits improved empirical

performance over its rational counterpart, it could be a valuable tool for scenario analysis

and macroprudential policy evaluation, offering potential benefit for policymakers.

The third chapter opens up numerous avenues for further research, as the expectation

formation process appears to vary based on the individual, the forecasted variable, and the

time horizon. Incorporating state-dependency or regime-shifts, in line with Hajdini and

Kurmann (2024), into a model with diagnostic agents could help reconcile the observed

disconnection between individual overreactions and aggregate underreactions, which DE

by itself does not fully capture. Once this extension is implemented, it would be interest-

ing to evaluate how adding survey data to the estimation process improves, or not, the

ability of the model to reflect observed expectations dynamics.

A promising new research direction is to explore the high volatility in emerging mar-

kets, particularly during sudden stops, sovereign debt crises, and default risks, through

the lens of DE. This framework could provide new insights into the persistent cycles of

volatility and stagnation in emerging markets. DE may explain the “sudden” nature

of these stops by capturing how investors’ overreactions to short-term negative signals

intensify capital outflow and exacerbate crises. Another important research direction is

to examine how DE impact the effectiveness of unconventional monetary policy, partic-

ularly in explaining the forward guidance exchange rate puzzle identified by Gaĺı (2020).

Incorporating DE could help reconcile this discrepancy by generating short-term over-

reactions and long-term underreactions in response to policy rate announcements in an

open economy model.

I leave these and all other possible suggestions for future research.
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