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Abstract

According to the House of Commons Library United Kingdom Parliament, approximately 7.9
million people live alone in the UK. Out of 7.9 million,over 3.1 million adults aged 65 and
above live alone in the UK. The older population in the UK is projected to grow, with people
aged 65 and over making up 24% of the population by 2043 (17.4 million people). Given this
background, the development of a monitoring system that can recognize an emergency or health
condition is desired by healthcare providers and families of individuals living alone. Unusual
changes in a lonely living person’s regular daily mobility routine at home can indicate early
symptoms of developing health problems.
This thesis paves the way to develop a novel system that exploit Energy, LoRa, WiFi, RF and
radar based technologies to monitor human activity, including presence detection, postural tran-
sitions such as walking, sitting, standing, lying, and fall detection. Additionally, it introduces
a robust framework for contactless vital signs monitoring, enabling accurate measurement of
breath rate, pulse, heart rate, and heart sounds. The integration of AI-driven anomaly detection
enhances the system’s ability to identify potential health risks in real-time. The research fur-
ther explores the fusion of human activity recognition with vital signs monitoring to develop
a complete, scalable, and privacy preserving solution for both general well-being and clinical
healthcare applications. By developing advanced signal processing techniques and machine
learning models, the proposed system aims to provide an efficient, non-invasive alternative to
conventional health monitoring methods.
Further contributions include a contactless framework for sleep pattern recognition, utilizing
micro doppler radar signals to classify sleep postures and detect abnormalities associated with
autism spectrum disorder. The study also advances non-invasive health monitoring through radar
systems for vital signs detection, achieving high accuracy in respiration and heart rate variability
assessment. Moreover, heart sound detection and analysis enhance cardiac monitoring, improv-
ing pulse detection, heart rate estimation, and overall reliability of vital signs monitoring.
This work contributes to the future of smart living by ensuring continuous, real time health
monitoring without compromising user’s comfort and privacy. Future research will focus on
improving system adaptability, enhancing multimodal sensing capabilities, and addressing data
security challenges to facilitate widespread deployment in next generation smart homes and
medical facilities.
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Chapter 1

Foundations and Background

1.1 Background and Motivation

The number of single-person households is gradually increasing worldwide [2]. In the United
Kingdom alone, as of Jun 2021, according to the House of Commons Library [3], approximately
7.9 million people live alone, with over 3.1 million of them aged 65 or older [3, 4]. In England
alone, there were an estimated 24.7 million households in self-contained accommodation in
2023-24. These 24.7 million exclude those in institutional settings such as nursing homes or
student accommodations. Notably, 30% of these households (approximately 7.4 million) were
occupied by individuals aged 65 or older, while 3% of households were in the 16-24 age group
and 15-18% in the 25-64 age group, reflecting the growing aging population living alone. This
older population (65 or older) is projected to grow significantly, reaching 24% of the total pop-
ulation (17.4 million people) by 2043.
Older adults are particularly susceptible to health risks such as cardiovascular diseases, respira-
tory disorders, and mobility impairments. Given this trend, there is a growing need for remote
health monitoring systems capable of detecting emergencies, deteriorating health conditions,
and abnormal changes in daily routines. Traditional healthcare systems have primarily relied on
sensor-based technologies to track physical activity and vital signs [5]. Wearable devices can
monitor heart rate, blood pressure, breathing rate, and sleep patterns, but they often suffer from
user compliance issues, discomfort, privacy concerns, and high operational costs [6, 7]. Recent
studies demonstrate the efficacy of contactless sensing methods, such as radar-based heart sound
detection, respiration monitoring, and energy consumption analysis, to provide continuous and
unobtrusive health tracking [8]. As a result, healthcare providers and families are increasingly
interested in non-invasive monitoring systems that can detect health emergencies or early signs
of deteriorating health conditions among individuals living alone.
While detecting deviations in daily activity patterns can indicate emerging health problems, in-
tegrating physiological monitoring can provide deeper insights into an individual’s well-being.
Abnormalities in vital signs such as irregular heartbeats, fluctuating blood pressure, or breath-
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ing difficulties are early indicators of cardiovascular diseases, respiratory disorders, and sleep-
related conditions. Recent advancements in radio frequency (RF) sensing, radar, and AI-driven
signal processing have demonstrated the feasibility of monitoring vital signs without requiring
direct physical contact. For instance, radar-based sensing can track heart sounds, pulse, heart
rate, respiration variability, and snore-induced apnea episodes, key areas explored in recent stud-
ies. Furthermore, WiFi, LoRa, radar, and RFID-based localization technologies offer potential
solutions for non-intrusive, real-time health monitoring in smart homes.
Despite their potential, traditional sensor-based monitoring systems face adoption challenges
due to privacy concerns, device complexity, and maintenance costs. A more practical and widely
accepted approach involves leveraging existing smart home infrastructure, such as:

• Radar based monitoring for contactless tracking of activities and vital signs.

• WiFi and LoRa enabled health detection for seamless, privacy-preserving surveillance.

• Energy consumption data to infer activity and detect anomalies in behaviour.

Moreover, optimizing energy usage patterns can not only support health monitoring but also
contribute to net-zero carbon emission goals, aligning with broader sustainable development
initiatives.

1.2 Problem Description

The problem of finding unusual changes in the daily behavior of an adult who lives indepen-
dently at home has been widely investigated in the literature [9]. Most of the solutions are
sensor-based systems categorized as wearable and nonwearable sensors that track the day-to-
day activities of the lonely living adults and notify when detecting an anomaly behavior [10].

Some past research show that elderly adults do not appreciate camera-based and wearable
sensors due to discomfort in wearing sensors all the time, and sometimes they don’t remember
to wear sensors [11]. Camera-based sensors are computationally complex and lose the user’s
privacy when monitoring at home [12]. Moreover, most of the existing systems require an ex-
plicit explanation or labeling process, which is offline to manually configure the typical behavior
of the monitored persons before using the system [11, 12].

A contactless human activities and vitals monitoring system can help identify unusual hap-
penings leading to serious health issues with lonely living people [13]. Besides, eliminating
unwanted energy and economic load identified from energy usage patterns and unwanted health
issues will help achieve sustainable development goals related to net zero, good health and well
being.
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1.3 Problem Statement

This research focuses on the development of a contactless human activity recognition and vital
signs detection portable system which can help the betterment of health and wellbeing of lonely
living people in the next generation smart houses and healthcare centres.

1.4 Research Aim and Objective

Research Aim

Development of human activity recognition and vital detection system using contactless sensors
that will contribute towards the betterment of humans living in the next generation smart homes
and healthcare centres.

Objective

• Research and development of contactless human activity detection system which identifies
presence, walking, sitting, standing, lying, and fall detection of human targets in confined
and open spaces.

• Research and development of a vital signs detection system that can accurately identify
the breath rate, heart rate, and heart sounds of human targets in confined spaces.

• Development of combined human activity and vitals detection systems for clinical health-
care applications.

1.5 Contributions

This thesis builds upon recent advancements in contactless health monitoring and privacy-aware
surveillance to develop a robust, non-invasive system that integrates:

• Contactless monitoring of sleep, autistic behaviours, apnea, hypopnea and snores moni-
toring system.

• Human activity recognition through behaviour and sleep analysis.

• Contactless vital sign monitoring, including pulse, heart rate, respiration rate, heart sounds,
and blood pressure using RF and radar-based techniques.

• AI-powered anomaly detection to identify potential health risks using radar, RF, LoRa,
and WiFi.
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• Smart home energy analytics to enhance monitoring accuracy while promoting sustain-
ability.

By combining physiological sensing, activity tracking, and AI-driven analysis, this research
aims to provide a scalable and privacy-preserving solution to improve the quality of life for
individuals living alone.

1.6 Thesis Organisation

This thesis is organized into seven chapters. Chapter 1 introduces the study, outlining its motiva-
tion and objectives. Chapter 2 provides a detailed overview of research prevalence, a literature
survey, identified gaps, and potential research opportunities. Chapters 3 and 4 present various
contactless human activity detection techniques, while Chapters 5 focus on novel RF and radar-
based methods for human vital signs detection in smart homes and healthcare centres. Chapter
6 explores contactless heart sounds detection, emphasizing its significance in real time vital sign
monitoring and its contribution towards the development of contactless blood pressure monitor-
ing systems. Chapter 7 focuses on applications derived from the integration of human activity
detection and vital signs monitoring. These applications include the detection of autistic be-
haviours, apnea, hypopnea, and snoring by combining contactless sleep monitoring with vital
sign analysis. Each chapter systematically addresses critical aspects of the research problem,
methodology, findings, and conclusions, ensuring a clear and coherent presentation of the re-
search. Further, apart from the groups of chapters mentioned above, a high-level detail of all
chapters is given in below paragraphs.
Chapter 1 introduces the research problem, objectives, and significance of the study. It provides
an overview of the research background and the motivation behind conducting the research. Ad-
ditionally, this chapter outlines the key research questions and hypotheses that direct the inves-
tigation.
Chapter 2 presents a systematic literature review, validate relevant theoretical frameworks and
previous research in the field. This chapter critically evaluates existing studies, identifies gaps
in research, and establishes the foundation for the research.
Chapter 3 details the research methodologies for human activities recognition from electricity
and LoRa sensing, describing the study design, data collection techniques, and analytical meth-
ods. It explains the foundation behind selecting specific methodologies and discusses ethical
considerations related to the research.
Chapter 4 focuses on the results and analysis for human activity detection by using software
radio defined and Radar systems. This chapter illustrates the findings of the study using tables,
figures, and statistical analyses. The results are interpreted in relation to the research questions
and hypotheses.
Chapter 5 discusses the implications of the findings from human vital signs detection, com-
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paring them with previous studies and theoretical perspectives. This chapter also illustrates
practical applications, limitations of the study, and potential foundation for future heart sounds
based vital signs monitoring.
Chapter 6 focuses on radar based contactless heart sounds detection, limitations and gaps in
conventional radar based vital signs detection, identifies key situations in which contactless con-
ventional pulse and heart rate detection fails but our state-of-the-art heart sounds based pulse
and heart rate detection system shows high accuracy and reliability.
Chapter 7 focuses on applications derived from the integration of human activity detection and
vital signs monitoring. These applications include the detection of autistic behaviours, apnea,
hypopnea, and snoring by combining contactless sleep monitoring with vital sign analysis.
Chapter 8 concludes the thesis by summarizing the key findings, highlighting their significance,
and providing final reflections on the research contributions. It also offers recommendations for
policymakers, practitioners, and researchers in the field.
This thesis organization ensures a systematic and comprehensive presentation of the research,
demonstrates a clear understanding of the research process and its outcomes.



Chapter 2

Eyeing Human Activity and Vitals from
The Contactless Sensing Perspective

2.1 Contactless Sensing: Enabling Technologies and Applica-
tions

Different from traditional sensor-based sensing, wireless sensing does not need any sensors but
relies on the signal itself for sensing. The sensor-free and contact-free nature makes wireless
sensing appealing in many real-life scenarios. Diverse wireless sensors have been employed for
sensing including contactless sensors such as WiFi [14, 15] , LoRa [16], FMCW radars [17],
60GHz radar [18, 19], Ultra-wide-band (UWB) radars [20], ultrasonic [21, 22], RFID [23, 24],
visible light [25, 26], Occupancy sensors, smart energy meters, smart energy plugs, location
sensing and camera-based sensors had been deployed for sensing purpose. The underlying prin-
ciple of wireless sensing is that wireless signals get reflected from the target and the reflection
signals vary with target movements. By carefully analyzing the movement-induced signal vari-
ation, rich context information of the target can be obtained.

In recent years, joint sensing and communication using wireless signals have been widely
studied for different future smart home systems and other sensing applications [27–29]. Using
ambient wireless signals like LoRa and WiFi rather than a camera provides three advantages.
First, it preserves the users’ privacy without requiring to record videos of daily life activities.
Secondly, it resolves the limitations of video-based analysis by allowing sensing through-wall
and dark spaces. Last but not the least, the utilisation of ambient signals like LoRa and WiFi re-
duces the cost. Although it requires computation resources to support the sensing algorithm like
edge computing, the system’s transceiver units are provided by current communication facilities.

The problem of recognising humans from their walking patterns is known as gait recognition.
It has many potential applications in surveillance, healthcare, and human-computer interaction.
In the literature, WiFi-based sensing has provided various solutions for gait recognition [30,31].

6



7

However, the nature of the WiFi signal restricts the sensing range [16, 32]. Therefore, WiFi-
based systems cannot be adopted in long-range spaces, e.g., corridors.

Contactless sensing has been employed in many complex health and wellbeing monitoring
applications [33, 34] such as security and survival in life saving operations [35, 36], intrusion
detection [37], indoor and outdoor human activity recognition [38], localization [39], key stroke
detection [40] and vitals monitoring [33] in the past few years.

2.2 WiFi-based sensing

The research community has gained significant interest in human activity detection in indoor
environments due to its potential uses in independent living, remote healthcare monitoring, and
intrusion detection. In fact, the UK’s national strategy for 2030 includes independent living as
part of its policy of healthy communities [41]. The United Nations estimates that there were 901
million people over 59 years old globally in 2015, and that number will increase to 2.1 billion by
2050 [42]. The growing number of elderly people with chronic diseases, medical emergencies,
and disabilities have an effect on the social and economic situations of all nations and ultimately
raise the cost of healthcare systems substantially [43].

To address these challenges, some countries and nonprofit organizations began to advocate
for ambient computing. Its primary objective is to extend the period of time that older people can
live freely in their homes. During the last decade, human activity detection (HAD), vital sign
monitoring, and location tracking have attracted the most interest in ambient computing [44].
Since it can provide doctors access to clinical information and people to health management,
HAD is an important indicator for evaluating the health of the elderly.

Due to the GPS’s (Global Positioning System) low accuracy and signal attenuation imposed
by various physical infrastructures, localization in this type of environment is not practical [44].
However, as of right now, there isn’t a de facto system like GPS for outside localization. Instead,
there are many different kinds of indoor localization systems.

In the literature, a number of human activity detection systems that make use of wearable,
cameras, and ambient sensors have been presented. However, these methods either cause dis-
comfort or are cumbersome from wearing wearable all the time or privacy concerns. Using a
system for wireless HAD can help with these issues. Numerous wireless sensing alternatives
are suggested in the literature in this area, using doppler fingerprints from radar systems [45] or
CSI from WiFi [46] and 5G wireless networks [47].

Many applications use RF-based Wi-Fi sensing due to the usage of existing WiFi infrastruc-
ture already installed in many homes, eliminating the need to introduce extra sensing equipment.
Different RF-sensing-based systems have different hardware requirements, operating radio fre-
quencies, classification algorithms, quantities of monitored activities, and quantities of subjects.
Available tracking methods for RF signal activity detection can use either the Received Signal
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Strength Indicator (RSSI) [48] or CSI [46]. According to studies such as [49], although RSSI
gives coarse information, CSI is fine-grained and measured each Orthogonal Frequency Division
Multiplexing (OFDM) packet. CSI is thus a better option for activity detection and localization
due to its increased attention to detail.

2.3 LoRa-based sensing

Applications that already have used LoRa networks so far include vehicle tracking [50], facility
management [51], intelligent building control [52], environment monitoring [53, 54], and smart
agriculture [55]. Prior LoRa network research has mostly been focused on empowering the In-
ternet of Things (IoT) applications with LoRa’s long-range capacity. [56,57] has transferred data
from IoT-based sensors using the LoRa network. LoRaMote is attached to a person’s arm with
a band equipped with a set of sensors (e.g., temperature and pressure) to monitor the human
target’s health condition [34]. [52] deployed LoRa sensors on corridors, windows, and roofs to
form a mesh network to send data collected from LoRa sensors for campus monitoring. [51]
collected data from IoT based LoRa sensors from different industrial application. [58] has em-
ployed LoRa sensors for indoor human activity recognition by using received signal strength
indicator (RSSI) measurement and found that high energy and long-range LoRa sensors have
better results than WiFi, Bluetooth and Bluetooth low energy sensors. Despite being useful for
localisation, we observe that the RSSI measurement is still a piece of coarse information that
cannot detect fine-grained human activity. A multi-band backscatter system for localization with
sub-centimetre-sized devices is developed in the most recent work suggested by [59]. For com-
parison, we use standard LoRa devices in this work to explore the passive sensing capability of
the LoRa signal without relying on specialised sensors. Other popular wireless technologies for
sensing include Examining the passive sensing capabilities of the LoRa signal instead of relying
on specialised sensors. More wireless sensing methods such as FMCW radar [33, 60], Doppler
radar [61], millimeter wave radar [62], UWB radar [20], commodity RFID [23], Zigbee [63]
and WiFi [14], are frequently used for sensing. Adib et al. detect users’ breathing rate by using
specialised equipment like FMCW radar and UWB radar, and the sensing accuracy is pretty high
even at a distance of up to 8 metres from the device [33]. Among all the specialized device-based
solutions, such as Zigbee, RFID, WiFi, and WiFi-based human activity recognition is the most
popular one and has found many practical applications such as human respiration detection [64],
gesture recognition [65] and localization [66]. For example, [64, 67] has leveraged commodity-
based WiFi devices to detect respiration rate for different people who are 2-4 meter away from
each other IndoTrack used existing Wi-Fi devices to sense human activity in a short range of 6-8
meters [68]. Short range sensing capabilities of WiFi and radar is good however long range and
high-energy capabilities of LoRa sensing are still unmatched in all other sensing technologies.
However for short range sensing, existing WiFi devices has good results.
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2.4 Energy-based Sensing

IoT devices have been used to monitor individual households in several ways. IoT devices in-
clude cameras, wearable technology, specialized sensors, and smart plugs. The highest levels
of accuracy are now possible with vision-based activity recognition systems such as in [69, 70].
Still, most users are unwilling to install cameras in their homes out of privacy concerns. Since
they need people to wear and charge wearable devices at home, many believe that methods
like those in [71] are intrusive and increase the daily burden. [72, 73] presented a method of
determining household activities by observing how much power each device uses in a home.
However, these devices also have a cost and need maintenance services, including installation,
calibration, power supply, and site monitoring. Despite achieving greater context awareness,
the IoT device usage method has an issue with the cost involved. Smartphone applications are
not just expensive but also inconvenient for households with more than one person. As a result,
utilizing utility data provides benefits over using other IoT-based technologies. The residen-
tial sector’s continuous rise in energy consumption has opened the door for the emergence of
new technologies that promise to transform the way electricity is generated, managed, and con-
sumed. The literature has shown there is great interest in using utility data, such as electricity,
water, and gas, for activity recognition [74, 75]. This non-invasive approach is helpful because
it makes it easy to get the needed information without invading privacy or causing discomfort
to individuals. The anomaly detection approach includes using historical data to predict daily
consumption and then determining if the actual consumption differs noticeably from the ex-
pected amount. It is considered an abnormality if the difference is too high. The prior work’s
activity detection-based approach using energy consumption data used power disaggregation
technology, commonly known as non-intrusive load monitoring (NILM) [76]. Since NILM gen-
erally requires one second of sampling data and is only partially applied to commercialization,
providing a cost-effective elderly people daily activity monitoring service within a room is not
practical. Recently, activity monitoring technologies have been suggested as a valuable way
to assist decision-making and reduce the burden on caretakers to detect emergencies concern-
ing elderly people [77, 78]. Most of these technologies use internet of things (IoT) devices or
smartphone applications to monitor individual health in real-time [2, 79].

Based on prior work, our approach focuses on activity detection utilizing electricity usage
data. The proposed solutions using data on electricity consumption are preferred among all the
utility data. Since utility data and electricity usage are personal information, privacy is crucial
for this study. Artificial intelligence (AI) technology shouldn’t invade people’s privacy, even if
it’s used for good reasons, like keeping an eye on older adults, which is one of the applications
discussed in this work. This study aims to create a monitoring system that can automatically
evaluate daily activities inside the house. The proposed methodology attempts to improve on
non-invasive technologies that target providing assisted living to elderly people. Furthermore,
the long-term goal is to see such a technique utilised in nursing homes for elderly adults, in the
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United Kingdom.

2.5 Radar-based Sensing

Different from traditional sensor-based sensing, contactless sensing does not require any sen-
sors but relies on the signal itself for detection. The sensor-free and contact-free nature make
contactless sensing appealing in many real-life applications including security and survival in
life-saving operations, intrusion detection, indoor and outdoor human activity recognition and
vitals monitoring. Diverse contactless sensors such as WiFi [80], long range radio (LoRa) [81],
RFID [82], radars [83], ultrasonic and visible light have been deployed for sensing purposes.

The underlying principle of contactless sensing is that wireless signals get reflected from the
target and the reflection signals vary with target movements [84]. By carefully analysing the
movement-induced signal variations, rich contextual information regarding the target’s move-
ments can be obtained. As compared to other contactless sensing technologies such as WiFi,
RFID, FMCW radars, and ultrasounds, which have a few meters sensing range, LoRa has a
relatively very high range and high energy signal which can easily pass through obstacles and
brick walls. This makes it highly suitable for applications where low range, low energy, and
high power consumption signals do not work.

In one of our APS paper [85]; we presented a LoRa signal by using a pair of universal
software radio peripherals (USRP), one as a transmitter having one antenna and another as a
receiver have two antennas to detect people from their walking patterns through a thick brick
wall. Human activity include strolling outside the room wall and the resulting information is
person detection from their walking patterns. Below sections include experimental setup, data
collection, pre-processing of the complex I/Q signal data and walking patterns results for the
strolling activities of six different people.

Speaker recognition is the process of identifying or verifying the identity of an individual
based on their voice [86]. It has a wide range of applications including security, authentica-
tion, and access control. Traditional SR systems rely on audio signals captured by microphones,
which can be affected by background noise, distance, and some environmental factors [87, 88].
SR using audio-visual signals, which involves combining information from both audio and vi-
sual cues to identify or verify the speaker’s identity, has gained increasing attention in recent
years [89, 90]. While SR using audio-visual signals has the potential to improve the accuracy
and reliability of SR systems [91–93], it is important to consider the limitations of this tech-
nology [94]. These limitations include lighting conditions, environmental noise, occlusions,
facial expressions, privacy concerns, equipment costs, and algorithmic bias. By understand-
ing these limitations, researchers and practitioners can develop more effective and reliable SR
systems [95–97]. In recent years, ultra-wideband (UWB) radar technology has emerged as a
promising alternative to traditional microphone-based SR systems. UWB radar technology is
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Table 2.1: Summary of contactless sensors used for corpus detection and speaker recognition
other than audio-visual techniques.

Reference Year Sensing
technology

Language Corpus
size

Speakers diver-
sity

Speaker/words
recognition

Accuracy

[98] 2022 FMCW
radar

European
Portuguese
words

13 Four speakers Words 84.50%
(average)

[99] 2022 SFCW
radar

German
words

40 Five male speak-
ers 28 to 36 years
old

Words 76.50%

[100] 2022 SFCW
radar

Forty Ger-
man words
and digits
zero to nine

50 Two individual
speakers

Words 94.02%
(average)

[101] 2016 Impulse
radio ultra-
wideband
radar

English 5 Five Korean
speakers

Words 85%

[102] 2021 RFID N/A 0 Fifty dynamic
and static users

Person 95.05%
(average)

[103] 2018 Microwave German 25 Two male native
German speakers

Words 89% (av-
erage)

capable of detecting and tracking human movements and can provide information about the
individual’s vocal tract and speech characteristics, which can be used to identify or verify the
speaker’s identity. UWB radar technology has several advantages over traditional microphone-
based systems. One of the main advantages is its ability to operate in noisy environments, as
it is not affected by background noise. It can also penetrate through walls and other obstacles,
making it suitable for use in surveillance and security applications. Another advantage of UWB
radar is its ability to detect small movements and vibrations, such as those caused by the human
vocal tract during speech. Overall, non-invasive radar-based SR technology offers a number of
advantages over traditional invasive methods of SR. It is non-invasive, accurate, contactless, ver-
satile, cost-effective, portable, and capable of providing real-time results, making it an attractive
option for a wide range of applications. UWB radar technology uses short pulses of electro-
magnetic waves with a very wide frequency spectrum to detect different changes in objects. The
pulses are typically in the range of a few nanoseconds to a few microseconds and are transmitted
from an antenna [104–106]. The pulses reflect off objects and are received by a receiver antenna.
The time delay between the transmitted and received pulses is used to calculate the distance to
the object, while the amplitude and phase of the received pulse provide information about the
object’s properties, such as lips and vocal tract movements, shape of face and speech character-
istics. While exploring silent speech interfaces based on frequency-modulated continuous-wave
(FMCW) radar in [98], the author recognized 13 words spoken by four different speakers of
Portuguese origin with 84.5% average accuracy. Another step frequency modulated continuous
wave (SFCW) radar used for silent speech recognition, total of forty German words including
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nouns, adjectives, verbs, and digits spoken by five male native German speakers aged between
28 and 36 years old. Results accuracy for word recognition is 76.50% and 68.18% obtained
using the headset and the tape, respectively [99]. While recognizing forty German words and
zero to nine German digits from two persons with the help of SFCW radar, author obtained
recognition accuracies of 99.17% and 88.87% for the speaker-dependent multi-session and inter-
session accuracy respectively (average accuracy 94.02%) [100]. RFID tags have been used for
the identification of people for static and dynamic users [102], author collected walking and
body information for identification purposes. Other studies includes microwave sensors [103]
and Radars [107, 108], details provided in Table 2.1.

The goal of this study is to collect CSI data on a single human subject performing seven dif-
ferent activities (sitting, standing, no-activity, leaning forward, walkingTx-Rx and walkingRx-
Tx) in two separate locations in a single room using two USRP devices, one acting as a Trans-
mitter (Tx) and the other as the Receiver (Rx). The amplitude shifts in the CSI distinguish
between the activities carried out at each location. As the human movement affects radio signals
differently depending on where the activity occurs, this enables CSI to be used to locate a target.

Machine learning (ML) is used to categorize seven separate human activities that are carried
out in two different locations apart one meter from each other. The main contribution of this
work is the use of ML and Deep Learning (DL) algorithms, namely Random Forest (RF), Sup-
port Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), to provide pre-
dictions on CSI, collected from USRP devices, to accurately identify and localize seven different
activities inside a room. Additionally, the system is capable to identify the direction of the walk-
ing in the designated area. Radar, Wi-Fi, and GSM technologies can be used to detect and
identify activities without the need of cameras or wearable sensors. Radar-based approaches
exhibited accurate localization and continual medical monitoring [109] when there are several
targets present by using large antenna arrays and bandwidths. However, such solutions are not
yet available or widely accessible, are costly, and need a lot of energy. Since RF sensing is be-
coming more and more popular in the security and healthcare industries due to the extensive use
of low-power sensors. A deep-learning-based approach was used by [110] to categorise various
user movement states, such as forward, backward, and no movement. Their system was trained
using data from Wi-Fi sensors. According to their research, the model has an accuracy of 89%
at a distance of 1.5 meters, but as the distance increases to 2 meters, the accuracy decreases
to 74%. As a result, the model’s accuracy decreased as the position of motions shifted away
from the passive sensing system. Nipu et al. [111] attempted to distinguish between various
participants using CSI data. Different participants crossed two devices throughout the experi-
ment while data was being transferred, saving the CSI data they picked up in the process. After
that, ML algorithms such as RF and decision tree were applied to the data. Their study demon-
strates how a human’s movements vary from the CSI patterns. In the research [38], USRP N210
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devices were utilized to accurately identify activity with 95%. The authors in [112] evaluated
classifiers using a range of features and classification techniques such RF, SVM, KNN, and Lin-
ear Discriminant Analysis on the HAR dataset. Highest accuracy was achieved by the classifier
RF was 98.16 %. Similar to this, [27] achieved high accuracy of 93.75% on a single subject in
line of sight scenario of a corridor having a distance of 20 metres by using USRPs X300 and
X310 to distinguish between sitting, standing, and walking activities using the RF, Extra Tree,
and Multilayer Perceptrons algorithms.

2.6 Contactless Sensing: Limitations

2.6.1 Installation issues

The sensing range is substantially narrower than the signal communication range in wireless
sensing because the information is gathered through reflected signals. The problem is present in
all wireless communications. In contrast to RFID and mm Wave-based systems, which have to
sense ranges of only 1-3 metres, WiFi, for instance, has a transmission range of 20–50 metres but
a sensing range of only 6–12 metres. Due to its extensive communication range, the deployment
of LoRa gateways outside may be limited.

LoRa indoor gateways can be denser, and many LoRa nodes are anticipated to be connected
to each LoRa gateway. We don’t need the gateway and the node to be close to the destination
for LoRa sensing to function (10-20m). LoRa signal can be used for sensing as long as one of
the nodes is close to the target.

In contrast to an in-door or confined space, LoRa sensing needs to monitor in the outdoor
environment with a sparser deployment. We believe there is still space to increase the sens-
ing range further. We expect to achieve around 80-120m sensing range with advanced signal
processing in an outdoor environment.

2.6.2 Security Concern

Be aware that long-range sensing may cause privacy and insecurity concerns. The privacy con-
cern is diminished when compared to current video-based monitoring, though sensorless tech-
nology, in our opinion, is an intriguing answer to the problem. LoRa devices can use an inter-
ference signal to track the signal reflecting from the receiver. It will be challenging to detect the
target since the interfering and target-reflected signals would be mixed.



Chapter 3

LoRa Signal and Energy Driven Human
Gait Dynamics

3.1 LoRa Based Human Gait Recognition using Dynamic Time
Warping

In recent years, joint sensing and communication (JSAC) using wireless signals have been
widely studied for different future smart home systems and other sensing applications [27–29,
89]. Sensing with such RF signals is not in itself a new concept in research. The phenomena
depend upon the analysis using the radio signal transmission and reception parameters, using
the same principles developed to detect the presence of objects in aircraft radar and sonar sys-
tems. In wireless transmission systems, the transmission signal’s attenuation is inevitable due
to path loss, shadowing, and multi-path fading [113]. On the other hand, these attenuations on
the wireless channel can be used to map the physical environment where the RF signals are
propagating, providing the theoretical underpinning principle for contactless sensing. Using a
communication wireless signal is the most cost-efficient way to perform RF sensing since it is
easily accessible in most indoor spaces.
The growing interest in JSAC-based sensing systems is due to their practical deployments in
indoor settings, as well as their ability to gain responses from monitored persons. Using ambi-
ent wireless signals like LoRa and WiFi rather than a camera provides three advantages. First,
it preserves the users’ privacy—without requiring them to record videos of daily life activities.
Secondly, it resolves the limitations of video-based analysis by allowing sensing through-wall
and dark spaces. Last but not the least, the utilisation of ambient signals like LoRa and WiFi
reduces the cost. Although it requires computation resources to support the sensing algorithm
like edge computing, the system’s transceiver units are provided by current communication fa-
cilities.
This section gives an overview of previous researches in JSAC and gait recognition respectively

14
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with the listed works shown in Table. 3.1. Gait recognition is one of the human recognition
methods as gait provide features that are highly related to specific person [121]. The gait recog-
nition method nowadays is vision based mostly. However, recording video or picture can cause
privacy issues. In addition, vision based gait recognition is limited with the working scenery. To
address these problems, gait recognition based on different sensors is proposed [122].

JSAC is a concept that involves combining sensing and communication functions in a single
device or system. This approach can lead to increased efficiency of communication and cost
savings, as well as improved performance of sensing. This concept is becoming increasingly
important as the Internet of Things (IoT) and other connected devices continue to grow in pop-
ularity. Typically, WiFi is one of popular topic in this field due to the high cost-effectiveness
compared to other sensors. In [114, 115], two WiFi based human activity recognition system
are proposed. Both systems achieved over 95% accuracy in recognizing human activities. WiFi
is also used in gait recognition [116, 117], the WiDIGR proposed in [116] achieved 78.28% ac-
curacy in 6 subjects gait recognition. FMCW radar and UWB radar are also commonly used
in different situation, including gesture recognition [118], gait recognition [119] and human ac-

Table 3.1: Review of RF sensing works

Reference Protocol Carrier
Fre-
quency

Bandwidth Application Experimental Setup
Range and Subjects

Performance

CARM
[114]

WiFi 5 GHz 20 MHz* & 30
subcarriers

human activity
recognition

7.7*6.5 m and 25 sub-
jects

8 activities recognition with over
96.5% accuracy in average

HARNN
[115]

WiFi 5 GHz 20 MHz* and 30
subcarriers

human activity
recognition

indoor 5*6m, 8*6m
and 10 subjects

6 activities recognition with over
95% accuracy in average.

WiDIGR
[116]

WiFi 5.825
GHz

20MHz* and 30
subcarriers

gait recognition 5*5m and 60 subjects 78.28% accuracy for 6 subjects
recognition

CAUTION
[117]

WiFi 5 GHz
40MHz*
114 subcarriers gait recognition

5.8*6.3 m, 7.2*5.2 m/
20 subjects 88% accuracy in 15 subjects identi-

fication

latern
[118]

FMCW
radar

24 GHz 4 GHz gesture recogni-
tion

1.5m, 2m, 3m /
5 subjects 8 gestures recognition with 96% ac-

curacy

[119]
FMCW
and UWB
radar

25 GHz
FMCW
7.5 GHz/
UWB

2GHz FMCW/
1.5GHz UWB gait recognition

2.7*1.8m /
14 subjects

Gait recognition in 14 subjects with
84% accuracy in average

citeUWB UWB 5.2 GHz 8.7 GHz
human activity
recognition

2.5m /
13 subjects

12 non-in-situ motions recognition
with an average of 88.9% accuracy,
in-situ motions 89.7% average
accuracy.

[120] UHF
RFID

865
MHz

3 MHz gestures recogni-
tion

2.5m /
15 subjects 87% accuracy for recognition of

drinking episodes for young volun-
teers and 79% for older volunteers

[16] LoRa 915
MHz

125 kHz
respiration sensing/
human tracking

25m(respiration)/
35m(tracking) Achieve long-range through-wall

respiration sensing with 0.25bpm
mean absolute error, human track-
ing with 4.27cm average absolute
error.

(Ours) LoRa 868.1
MHz

125 kHz gait recognition
5m, 20m (LOS) &
6m(NLOS)
/10 subjects

Adopt LoRa signals to extend the
gait recognition in various environ-
ment including 20m corridor, with
82.8% accuracy.
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Figure 3.1: Overview of the proposed LoGait system that consists of three components. (1)
LoRa Data Collection. (2) Preprocessing. (3) Classification using DTW and kNN.

tivity recognition [123]. In [120], RFID is also used in recognizing the fluid taking gesture.
However, all systems mentioned above are limited with the sensing distance. As shown in Ta-
ble. 3.1, the sensing range of WiFi, radar and RFID system is limited in 8m, 3m and 2.5m
respectively. In comparison, LoRa system proposed in [16] extend the sensing range to 35m for
human tracking and 25m for respiration monitor.

Contributions

The problem of recognising humans from their walking patterns is known as gait recognition. It
has many potential applications in surveillance, healthcare, and human-computer interaction. In
the literature, WiFi-based sensing has provided various solutions for gait recognition [30, 31].
However, the nature of the WiFi signal restricts the sensing range [16, 32]. Therefore, WiFi-
based systems cannot be adopted in long-range spaces, e.g., corridors. Inspired by the previous
LoRa-based sensing work [124–127], we attempt to analyse the feasibility of adopting LoRa
sensing in long and narrow environments. We propose LoRa system to push the range of gait
recognition to multiple indoor scenarios including a corridor of 20m length. The proposed LoRa
system is shown in Fig. 3.1. In summary, the following are the major contributions of this work.

1. To the best of our knowledge, this study is the first attempt toward using LoRa signals for
gait recognition in a 20 meters range.

2. We propose a pipeline for performing preprocessing of LoRa signals for gait feature ex-
traction and classification.
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3. We collect LoRa signals containing the gait patterns of different subjects in various sce-
narios. Our experimental results in different settings validate the effectiveness of our
proposed LoRa system in performing gait recognition. Our work fills an absence in this
field.

3.1.1 Methodology

Preliminaries

Unlike WiFi which applies OFDM to divide channel bandwidth into different subcarriers, LoRa
adopts full bandwidth for Chirp Spread Spectrum technology, which encodes information on
radio waves using chirp pulses. The technology operates in a fixed-bandwidth channel of 125
kHz for up-link. The frequency of linear chirps increases from fc − B

2 to fc +
B
2 over the the

sampling period of −Ts
2 < t ≤ Ts

2 , where the fc and Ts represent carrier frequency and sampling
time, respectively. The exponential representation of LoRa transmitting signal is composed of
two elements, chirp signal and carrier frequency modulation:

T x(t) = e jπ fs(t)+ j2π fc(t), with fs(t) =± B
Ts

t (3.1)

where, fs(t) represents the chirp signal with sweep rate. Existing literature on LoRa-based sens-
ing suggests that the channel response at the receiver end can be represented without considering
the chirp signal [16]:

H(t) =
Rx(t)
T x(t)

= e− j2π∆t(Hs +Ha(t))+N(t) (3.2)

where, e− j2π∆ f t is due to the sampling frequency offset (SFO) and carrier frequency offset
(CFO); Hsand Ha(t) represents the LoRa signals from the time-invariant static paths (including
the signals in line of sight (LOS) path and those reflected off the stationary objects) and time-
variant dynamic paths (including signals reflected from the dynamic objects). N(t) represents
the free space transmission noise. LoRa signals in active paths can be expressed as:

Ha(t) =
Nd

∑
i=1

ai(t)e− j2π
di(t)

λ (3.3)

where, Nd is the index of path that signal passes through, ai(t) represents the complex attenuation

factor of the ith path; e− j2π
di(t)

λ represents the phase change of ith path, with the changing distance
of di(t) in ith path. λ represents the wavelength of the LoRa signal.

However, the channel response cannot be calculated directly with reference data. In this
case, we replicate the setup from previous work with two receiver antennas to get the conjugate
multiplication (CM) signal [16, 128]. There are various parameters that correlate with signal
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ratio. However, to find the dominant dynamic path for estimation, we select two directional
antennas which perform better in the reduction of the multipath effect (Nd = 1). So we assume
in the ideal situation, that there is a single path with relatively less noise (di(t) = d(t)).

RCM(t) = Rx1(t)Rx2(t) = T x(t)T x(t)H1(t)H2(t)

= T x(t)T x(t)(e− j2π∆t(Hs1 +Ha1(t)))

(e j2π∆t(Hs2 +Ha2(t)))

= ∥T x∥2 (Hs1 +Ha1(t))(Hs2 +Ha2(t))

=

(1)︷ ︸︸ ︷
∥T x∥2(

(2)︷ ︸︸ ︷
Hs1Hs2+

(3)︷ ︸︸ ︷
Hs1Ha2(t)+

(4)︷ ︸︸ ︷
Hs2Ha1(t)

+

(5)︷ ︸︸ ︷
Ha1(t)Ha2(t))

(3.4)

From the representation, the components of chirp signal, CFO and SFO are removed. On the
other hand, the equation are divided into five parts for analysis: the transmission part of (1) and
product of static components of (2) can be regarded as constant value, and the product of active
components of (5) is small that can be ignored. Meanwhile, we consider the extended changing
path, ∆S, which is caused from the different physical locations of two receiver antennas. This
value is assumed as the constant value due to the setup receiver antennas are close to each other.
Next we can rewrite the superposition of rest components.

(2)+(3) = Hs1Ha2(t)+Hs2Ha1(t)

= Hs1(a2(t)e j2π
d(t)+∆S

λ )+Hs2(a1(t)e− j2π
d(t)
λ )

= (Hs1a2(t)e j2π
∆S
λ )e j2π

d(t)
λ +(Hs2a1(t))e− j2π

d(t)
λ

(3.5)

In this case, we can adopt the analysis methods proposed in [128] to prove that the phase varia-
tion of CM result is mainly influenced by components from the dynamic path of d(t), which is
available to be adopted for gait feature extraction.

Preprocessing stages

The inference provided in Section 3.1.1 shows that human motion can be indicated by the phase
variance of CM results. However, to extract any relevant data related to the motion, it is nec-
essary to go through a series of preprocessing steps before using the Dynamic Time Warping
(DTW) recognition. This section outlines all of the steps that we proposed which need to be
taken prior to the DTW recognition.

Conjugated multiplication of two antennas signal The Fig. 3.2 shows the different ampli-
tude of raw LoRa signals with/without dynamic physical interference. Although the envelope
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(a) Amplitude of static person (b) Amplitude of a single person
walking within line-of-sight (LOS)

(c) Raw phase signal of LoRa signal

Figure 3.2: Amplitude and phase plots of raw LoRa signals.

shape of LoRa amplitude is explicit, it is required to transform these perturbations into mea-
surable values. Compared to visible variation from amplitude information, phase information
shown in Fig. 3.2c provides random information that cannot be intuitively observed. In the next
step, we observed a considerable number of blank interpolations inside the recieved envelope,
which represents the receiver end collected noise during packet duration. Removal of this blank
information is important to extract accurate gait features. Firstly, we calculated the CM result
from raw LoRa signals of dual antennas, which is shown in Equation. 3.4. Demonstrated by
the Equation, the gain of ∥T x∥2 can determinately increase the amplitude of the received signal,
which differentiates the meaningful LoRa signal from noise. From this point of view, the noise
duration can be removed by setting the low amplitude threshold of CM result. In Fig. 3.3a, the
red dashed line represents signal components from noise and the green one from the LoRa chirp
signal. Meanwhile, we assume the transmitted power of LoRa signals and free space attenuation
is stable. In this case, the threshold was set to the mean value of the first second’s receiving
signals.

(a) Amplitude plot (b) Phase plot (c) Phase plot after threshold filter

Figure 3.3: Plot of CM results under static environment with the red dashed line labelled for
noise components and green one for LoRa chirp signals in (a) and (b).

Threshold filter for phase information and down-sampling Meanwhile, there are two down-
sample operations executed before and after threshold filtering. For amplitude threshold, it is a
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Figure 3.4: Comparison plots with/without Hampel filter and phase unwrapping, with circled
outliers in red boxes. The first graph shows original gait signals and the second shows Hampel
filtered and phase-unwrapped gait signals.

waste of computational resources for searching and comparing all 800k samples per second. On
the other hand, the Doppler shift frequency range that human activity can generate is limited to
60Hz [129], 800kHz sampling rate is highly redundant. Therefore, we set the first downsample
of 1k sample rate ahead of threshold operation. After performing thresholds filtering, we discov-
ered that the length of the LoRa chirp signal is not constant. Then, we resample the filtered data
to 1kHz for unifying constant sampling frequency among different profiles. Fig. 3.2c shows the
LoRa signal after threshold filtering with twice downsampling.

Phase unwrapping and outlier removal In this stage, we acquire meaningful phase informa-
tion that can reflect the channel environment. However, the outliers and mismatched phase data
appear. We adopt the Hampel filter and unwrap operation to denoise the signals, with the shown
comparison figures shown in Fig. 3.4. The signal components that are framed out by a red box
represent the recovered parts by the methods.
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Figure 3.5: Comparison of LoRa signals under different scenarios of no-person, a person stand-
ing still, a person stepping shown in the first figure; and gait profiles of three users in the second
figure.

DTW-based Gait Recognition

After preprocessing of LoRa signals, we compared the signals collected from different activities
and gait signals, shown in Fig. 3.5. The gait experiment setup is the same as LOS experiment
that mentions in Section. 3.1.2.

From the intuitive view, we observed the collected activity signals under three different sce-
narios that match our normal experiences: the human presence scene only contains chest motion
of respiration, and stepping signals contains multiple signal peaks from human skeleton motion.
From the gait profiles of three users, we found that the human behaviour patterns of different
identities are highly overlapping compared to human activity recognition. Besides, there are two
main challenges that were observed in the comparison:

1. Variation of motion speed can result in various lengths of gait signals from a single subject.

2. Temporal gait signal can not be completely aligned while the data collection, which causes
the distortion of information.

The general method of measuring the similarity of two-time series signals is to calculate
the Euclidean distance. However, lock-step Euclidean distance measurement refers to those
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distances that compare the ith point of one series to the ith point of another, which is significantly
influenced by incomplete alignment [130]. To solve the alignment problem and improve the
recognition performance, DTW based method was adopted.

DTW is a similarity measurement method, which exhausts all the correspondences with
restrictions and finds the one with the smallest distance. Then the cumulative distance of the
selected path is used for their similarity judgement. The Equation. 3.6 describes the algorithm
of DTW distance.

Dmin(i, j) = M(i, j)+min


D(i−1, j−1)

D(i−1, j)

D(i, j−1)

i, j ≥ 1 (3.6)

To align the two sequences, a matrix with two dimensions of sequences’ length is required. The
matrix element M(i, j) denote the Euclidean distance d(xi,y j) between the two points xi and y j.
The shortest distance of the current element Dmin(i, j) is necessarily the length of the shortest
path of the previous element plus the value of the current element. There are three possible
directions for the previous element, so we take the minimum value of three possibilities into
DTW distance.

For initial validation of DTW, we calculated the DTW distance of gait profiles of different
identities and the same identity respectively to verify the algorithm’s availability. The com-
parison graph is shown in Fig. 3.6 which illustrated the distance between the same user and
different users. The larger DTW distance verified our assumption that the gait profiles of dif-
ferent identities have mismatched information and the data from a single identity has similar
features. Therefore, we adopted a K-nearest neighbour (KNN) cluster-based algorithm to clas-
sify different identities of gait signals.

3.1.2 Evaluation

Experimental Setup

Devices

Our implementation considers one pair of devices to imitate the general LoRa link. We select
one USRP b205mini and one USRP x310 as transmitter and receiver, respectively. They are
equipped with one Aaronia Ag vertical polarized antenna for the transmitter and two SlimLine
A5010 Circular Polarized Antenna with 8.5 dBi gain for the receiver. The LoRa signal is gen-
erated by an open-source project of LoRa communication in the physical layer [131]. On the
receiver side, we configured Labview based system to collect LoRa signal. The experimental
setup can be viewed in Fig. 3.9. The sampling rate and packet duration are set to 800kHz and
20ms, respectively.
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Figure 3.6: Comparison of DTW distance matrix of (a) gait profiles from the first user and
second user; (b) gait profiles from the first user.

(a) Line of Sight (LOS) (b) Non Line of Sight (NLOS) (c) Long-Distance (LD)

Figure 3.7: Experimental setup of 3 scenarios.

Application scenarios

The experiments were conducted in 3 different scenarios: line of sight (LOS), non-line of sight
(NLOS) and long distance (LD) range, with the top-view structure graph shown in Fig. 3.7.
In the LOS scenario, the room area occupied for the activity experiment is 6m in length and
5m in width. One line has marked a 5m distance on which people walk to and from the front
of the transmitter and receiver. In NLOS scenario, all apparatus containing the transmitter and
receiver are in one room, and activity is being monitored outside of the room, shown as walking
trajectories. The space between devices and humans is separated by a brick wall. In the LD
scenario, the implementation is setup in a corridor of 20m length. Volunteers were arranged to
walk along the trajectory at the end of the corridor, shown in Fig. 3.9.
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(a) LOS (b) NLOS (c) LD

Figure 3.8: Confusion matrix of gait recognition in 3 scenarios

20m

Transmitter antenna Receiver antennas

Figure 3.9: Experimental setup in Long distance scenario

Gait profiles

The basic human gait in our experiment contains three phases: rotating, walking and standing.
During one data collection, one person was asked to turn back, walk along the trajectory and
stand still for 8 seconds. Then, it took another 8 seconds for subjects to walk back to the starting
point. The gait signal in each profile lasts for 16 seconds in total. Besides, we downsample the
signals to 200Hz for speeding up the machine learning algorithm.

We recruited 13 volunteers for data collection of human gait including 4 females and 9 males.
In each scenario, we ask 6 subjects to conduct the experiments and data was collected for 20
rounds for each person that provides 16s gait data. In total, we have collected 5744 seconds of
gait signals for experimental validation.
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Figure 3.10: Recognition accuracy via sample rate in 3 scenarios

3.1.3 Overall performance and Discussion

The recognition performance of 3 scenarios with confusion matrices is shown in Fig. 3.8. We
perform a 5-fold cross-validation on collected data with an overall accuracy of 85.13% in LOS
range, 79.13% in NLOS and 84.14% in LD respectively. The average accuracy of 82.8% vali-
dates the effectiveness of our system. To study the performance of the LoRa system affected by
different factors, we design the comparison tests and analyse the influence of Sample rate, Clas-
sification distance algorithm. Meanwhile, we explain the difference in Data collection methods
of gait signal between LOS/NLOS and LD scenarios.

Sample Rate

The sample rate of gait profiles is the significant parameter that balance of recognition perfor-
mance and processing speed. We resample the gait profiles from 10Hz sample rate to 500Hz

to test the performance of the LoRa system. The recognition performance is illustrated in Fig.
3.10, which validates that a higher sample rate preserves more gait information.

Vector distance algorithm

To approve the assumption in Section. 3.1.1, we compared the classification results using the
other three distance algorithms with DTW distance, shown in Fig. 3.11. It illustrated that the
DTW-based classification method acquires the best performance among the traditional distance
estimation algorithms.
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Figure 3.11: Recognition accuracy of distance algorithms in 3 scenarios

Walking directions

In our experiment, we divided the data collection of one profile into two phases, moving for-
ward and back, as shown in Fig. 9 (depicted by blue and red dashes). To effectively evaluate
the performance of our system, we separated the profile into three parts: forward, back, and
integration.

Data collection methods

In both LOS and NLOS scenarios, we asked volunteers to do free walking in a restricted space.
In this case, the users are easy to control their speed without following usual habits. To study the
robustness of the gait recognising system, in the LD scenario, the volunteers were asked to walk
freely in a given time slot instead of limiting the moving area. From the results, the accuracy
under the LD environment approves the popularization potential of the LoRa system.

3.1.4 Summary

This work proposes a LoRa system for human gait recognition under different indoor scenar-
ios including living room, through-wall and corridor. In our system, we firstly analyzed the
availability of LoRa sensing, and then propose multiple preprocessing methods to acquire LoRa
gait profiles. Then, we adopted a DTW-based machine learning algorithm to recognize user
identity and evaluate our system in 3 scenarios, with the identification accuracy of 85.13% in
room, 79.13% in through-wall and 84.14% in 20m corridor. Our LoRa system contributes to
a gait recognition prototype that can be established in complex indoor environments including
through-wall and long-distance corridors.
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3.2 LoRa enabled non-invasive robust security in next-generation
smart houses

There are many security and surveillance applications in which camera-based or invasive hu-
man activity recognition is not permissible due to privacy, insecurity, and discomfort issues.
Moreover, vision-based surveillance systems have a few key technical challenges that limit their
practicality such as bad illumination, obstacles, and occlusion. In such cases, we require a
more reliable system which can work in challenging situations such as in darkness, long-range,
through walls or obstacles, a rainy and smoky environment where vision-based systems do not
deliver good results. Only high-energy and long-range wireless sensors which can identify tar-
gets through obstacles, walls, worst climate or surrounding conditions can serve the purpose. In
this work, we propose to use the LoRa transceiver to identify different persons from their walk-
ing patterns through bricks and a concrete wall where people other than the target person are
moving freely. Moreover, we employed three different deep-learning models to evaluate the ef-
ficacy of the proposed system. Our highly accurate 99% results encourage the use of contactless
LoRa sensors in many privacy-critical applications such as healthcare, security, and surveillance,
where short-range and low-energy signals have limited utilisation.
Different from traditional sensor-based sensing, contactless sensing does not require any sen-
sors but relies on the signal itself for detection. The sensor-free and contact-free nature make
contactless sensing appealing in many real-life applications including security and survival in
life-saving operations, intrusion detection, indoor and outdoor human activity recognition and
vitals monitoring. Diverse contactless sensors such as WiFi [80], long range radio (LoRa) [81],
RFID [82], radars [83], ultrasonic and visible light had been deployed for sensing purpose.

The underlying principle of contactless sensing is that wireless signals get reflected from the
target and the reflection signals vary with target movements [84]. By carefully analysing the
movement-induced signal variations, rich contextual information regarding the target’s move-
ments can be obtained. As compared to other contactless sensing technologies such as WiFi,
RFID, FMCW radars, and ultrasounds, which have a few meters sensing range, LoRa has a
relatively very high range and high energy signal which can easily pass through obstacles and
brick walls. This makes it highly suitable for applications where low range, low energy, and
high power consumption signals do not work.

In this work, we present a LoRa signal by using a pair of universal software radio peripherals
(USRP), one as a transmitter having one antenna and another as a receiver have two antennas
to detect people from their walking patterns through a thick brick wall. Human activity include
strolling outside the room wall and the resulting information is person detection from their walk-
ing patterns. Below sections include experimental setup, data collection, pre-processing of the
complex I/Q signal data and walking patterns results for the strolling activities of six different
people.
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(a) Hardware and Software Setup (b) Experimental Setup

Figure 3.12: Illustration of hardware and software setup (Fig. 3.12a) and experimental setup
(Fig. 3.12b) used for data collection.

3.2.1 Methodology

Experimental Setup and Data Collection

Our data collection setup includes two 310 USRPs, where one is used as a transmitter and
another as a receiver. Transmitter has one Aaronia Ag vertical polarized antenna and the receiver
has two Slimline A5010 circular polarized antennas with 8.5 dB gain as shown in Figure 3.12a.
LoRa signal is generated on the transmitter end through USRP simulated using LabVIEW and
USRP on receiving end is operated using two receivers’ physical layer setup. The transceiver as
a module for GNU Radio 3.10 has been used for software defined radio (SDR) implementation
of the LoRa transceiver. This module operates correctly even at exceptionally low signal to noise
ratio (SNR), which is available as an open source in [131].

All the apparatus USRPs, antennas, laptops and power wires are setup on a wheeled move-
able trolly near the outer wall of the room at a two-meter distance away from the separation
wall, while activities have performed inside the room away from the separation wall all over
in the four meters long and six-meter-wide area floor. Rom has a door near the one end of the
separation wall in between the transceiver and the activities performed area.

Data collection setup has been established in a room available in Communication, sensing
and imaging (CSI) lab at the James Watt School of Engineering in the University of Glasgow,
United Kingdom. Setup is divided into two zones; zone one is outside the room where US-
RPs, antennas, laptops, and other apparatus are placed, and zone two is inside the room where
activities have been performed for data collection, where zone one and zone two are separated
by a twelve-inch thick double brick wall. Area details inside and outside the room and activity
details are illustrated in Figure 3.12b. The activities include persons strolling other side of the
brick wall and resultant information includes the person identification from their walking pat-
terns. Total six people; four males and two females aged in-between 22-30 years old took part



29

Figure 3.13: Depiction of data variations in the received LoRa signals reflected from individuals’
walking patterns in time and frequency domains.

in the data collection activities.

Data Pre-Processing and Machine Learning

The transceiver consists of one separate USRP and antenna to generate LoRa signal as a trans-
mitter and another separate USRP and two antennas as a receiver. Baseband signal is I/Q com-
plex data which provides amplitude and phase information (having same magnitude but different
phases) on both individual antennas on the receiver end. Walking information comes from the
phase difference of receiving antennas. To get phase differences, as a first step we need con-
jugated multiplication of two received LoRa signals, and separate the phase and magnitude the
second step is to further downsample the data to apply a threshold filter to get precise phase
information and the third step is resampling the conjugated LoRa signal. Finally, we compute
spectrograms of the preprocessed signals for the training of three different deep learning (DL)
architectures. These images were cropped to eliminate colour bars and titles prior to using them
for model training and testing. All images have the same dimensions of 224×224×3.

3.2.2 Results and Discussions

We demonstrate the data variations that are reflected by the individuals’ walking movements that
were used to identify persons in Figure 3.13. The figures suggest that the collected data contains
distinct characteristics in terms of measuring LoRa signal that makes it suitable for training DL
models to identify persons in a privacy-aware fashion. Specifically, we have trained and tested
three widely used DL models namely VGG16, VGG19, and MobileNet. These models were
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Figure 3.14: Classification performance of three different models in recognising six different
persons using proposed LoRa-based contactless sensing.

trained and tested using 80% and 20% of the collected data for training and testing, respectively.
Furthermore, to ensure efficient training, we employed 4× data augmentation to increase the
size of the training set. The experimental results in terms of confusion matrix are summarized in
Figure 3.14. We can see that the VGG19 outperformed VGG16 and MobileNet, while effectively
recognising each individual. Moreover, the figure reveals that the performance of the MobileNet
is the worst, which can be due to the fact that the architecture of the MobileNet is much smaller
than the other two models.

3.2.3 Summary

In this work, we propose to use the LoRa transceiver to identify individuals from their walking
patterns. Highly accurate 99% results advocate long-range, low power, low SNR and high en-
ergy LoRa capability to be used as a reliable system in many contactless sensing applications
in next-generation smart houses, hospitals and public places. In our future work, we plan to
optimize our proposed framework and to incorporate more critical activities.

3.3 Room-Level Activity Classification Using Electricity Us-
age Data

Human activity recognition is challenging without compromising users’ privacy and burdening
them with wearable devices, cameras, mobile applications, etc. As the smart energy meter usage
trend is increasing worldwide, it can be used as a non-invasive activity monitoring methodology
without violating users’ privacy and requiring an additional installation cost where smart energy
meters are already in use. In addition, household energy consumption patterns, including the
consumed power, current intensity, and energy usage, are mainly determined by the individ-
ual’s needs, lifestyle, and time context, which can offer important information about the house-
hold’s daily activities. Using energy data, users can get information about ongoing activities
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in each room of the house under observation. This work uses different machine-learning (ML)
algorithms such as Random Forest, Decision Tree, K-Nearest Neighbour, and Support Vector
Machines for activity recognition from load classification. The ML model classifies different
real-time activities in the same room based on the consumed power estimates. By utilizing an
open smart energy sub-meter dataset, activity patterns of household occupants are identified.
The load classification analyses, employing the aforementioned ML algorithms, demonstrate an
activity recognition accuracy of up to 99%.
Recently, activity monitoring technology has emerged as an efficient method to assist decision-
making and reduce the burden on caretakers to detect emergencies concerning elderly peo-
ple [2,78]. The current state-of-the-art for activity monitoring typically depends on smartphone
applications and internet-of-things (IoT) devices, including cameras, specialized sensors, smart
plugs, etc to monitor individual health in real-time [71,79]. In [70], vision-based activity recog-
nition systems are used to increase detection accuracy. Although the existing works offer accu-
rate detections, they may violate users’ privacy. Further, there is a significant cost and burden
incurred by installing and distributing these IoT devices. For example, homeowners are reluc-
tant to install cameras in their homes for privacy reasons; other occupants are uncomfortable
wearing and charging wearable devices.
In this challenging scenario, the energy consumption-based activity monitoring method has been
introduced as a privacy-preserving method. This method avoids the aggravation of purchasing,
wearing, and installing various sensors and devices. The only information required for activity
detection is energy consumption data from an existent smart energy meter and a smart device
that can compute a baseload, compare continuously incoming data with the baseload, and pre-
dict activities. Electricity usage data can accurately identify operational devices and their lo-
cations in rooms accurately when compared to baseload and device load descriptors. Previous
work on activity detection approach based on power disaggregation data, commonly known as
non-intrusive load monitoring (NILM), is presented in [76]. Contrary to the existing work, our
approach focuses on activity detection utilizing electricity usage data. The proposed work em-
ploys energy consumption data as a privacy-preserving methodology compared to vision-based
approaches. The following summarizes the contribution of this work.

• Using machine-learning algorithms, we propose an efficient activity-level classification
throughout the year based on fine-grained electricity usage data from a sub-metering sys-
tem.

• We highlight the concept behind using high-resolution electricity usage data to recognize
different activities in a day.

With the advancement in IoT, smart homes are introduced to facilitate users by providing several
home services such as health care monitoring, privacy, etc. In smart homes, many actuators and
sensors are used to control daily life equipment and they are linked together with communica-
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Figure 3.15: Activity recognition methodologies.

tion protocols. Now, human activity recognition techniques are being developed by researchers
to monitor and analyze behavior of people using sensors and actuators.
Generally, human activity recognition can be categorized into vision-based and sensor-based
methods [132], as shown in Fig. 3.15. The former systems use cameras and computer-based
vision techniques; however, younger adults (till age 35) are more concerned with privacy and
are not happy with sharing and tracking their activities [133]. Sensor-based systems are further
divided into three categories: wearables, sensors on objects, and ambient sensors. The use of
sensor-based smart homes is a feasible solution [134]. However, human activity recognition is
challenging because everyone has their own way of living a life. Several algorithms are proposed
and implemented for human activity recognition in smart homes, including pattern recognition,
feature extraction algorithms, etc.
Pattern recognition techniques are further divided into two categories including data-driven and
knowledge-driven techniques. In-depth knowledge about the domain is required in a knowledge-
driven approach; however, domain experts are needed to make new rules which may replace
previous rules. This limitation is subsequently addressed through the implementation of a data-
driven approach that incorporates both supervised and unsupervised methods for the purpose of
human activity recognition utilizing energy data. These approaches do not require prior knowl-
edge; further, they can handle uncertainties in data such as noise, incomplete data, etc. However,
much clear, correctly labeled data and more computational time is required for a data-driven
approach [135]. To summarize, the use of deep learning and machine-learning models in a data-
driven approach for human activity recognition using energy data is a viable solution to train
more complex models and they do not invade people’s privacy. In this regard, this work uses
the Random Forest, Decision Tree, K-Nearest Neighbor, and Support Vector Machines-based
machine-learning algorithms for activity recognition and load classification by considering the
privacy of individuals.

3.3.1 The proposed approach

In this section, the approach employed for energy consumption-based activity categorization
utilizing machine learning techniques is presented.



33

 

 

 

 

 

` 

Smart 

Meter (1) 

Smart 

Meter (2) 
Smart 

Meter (3) 

Machine-

learning 

Model (3) 

Machine-

learning 

Model (2) 

Machine-

learning 

Model (1) 

Activity classification for each room 

Room (1) Room (2) Room (3) 

Figure 3.16: System model for the proposed approach.

Activity recognition

In energy consumption-based activity recognition, the amount of energy consumed during a
certain period of time during the day is correlated with the activity of the home occupants. By
learning the daily consumed energy of a house, known by the baseload, one can predict the type
of activity and investigate any anomalies. The type of activity in the house can be discerned
by comparing electricity usage data with the baseload, operated load, and location in the house.
In this work, we evoked the household electric power consumption data in [136]. This dataset
is generated from a sub-metering system that monitors three different rooms in the house and
reports the energy consumption in Watt-hour (Wh), as shown in Fig. 3.16. The data has been
presented for each day of the year in the form of [dd/mm/yyyy] at a specific time [hh:mm:ss].
The estimated consumed energy from each room is recorded every minute (sampling rate) for
the whole year. Each room has a list of electric devices, each of which has a unique power rate
(PR) represented as follows:

• Room (1): The kitchen contents are a dishwasher (PR: ∼ 1200 : 2400 W ), and an oven
(PR: ∼ 2000 : 5000 W ).

• Room (2): The laundry room contents are a washing machine (PR: ∼ 2000 : 2500 W ), a
tumble dryer (PR: ∼ 2000 : 2500 W ), a refrigerator (PR: ∼ 300 : 800 W ), and a light (PR:
∼ 6 : 60 W ).

• Room (3): The contents are an electric water heater (PR: ∼ 1375 : 4245 W ), and an air-
conditioner (PR: 3500 W ).

As a proof of concept, we aggregated the energy consumed by each room every minute
within a time interval of half an hour for the whole day. Fig. 4.1 presents the aggregated
consumed energy for a randomly selected day from each season. It can be seen from Fig. 4.1
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that the activities of the house occupants in all rooms are low at the night hours from [23 : 00 : 00]
to [06 : 00 : 00]. Contrary to the morning hours, activities are observed in Room (1) “Kitchen” at
breakfast and lunch times. Meanwhile, we can observe other activities in Room (2) due to high
energy consumption from the tumble dryer and washing machine (e.g., see Fig. 4.1(a) between
[14 : 00 : 00] and [16 : 00 : 00]) which can indicate that the residents are doing their laundry.

Furthermore, as can be observed in Fig. 3.17, the behavior of Room (3)’s sub-meter, in
all sub-figures (a) to (d), indicates that the air-conditioning unit and/or the water heater were
actively used during the afternoon hours and occasionally at night, despite the season.

Machine-learning-based load classification approach

In a two-phase process, we train and test the machine-learning kernel using the energy consump-
tion data related to different activities in each room at different time slots (t). The training and
testing phases are further elaborated on in this subsection.

As a first step, we split the energy consumed every half hour of a specific activity (x) into
different classes. The adjustable parameters pertaining to the classification scheme are the num-
ber of classes and the range of each class. These parameters can be tailored according to the
characteristics of the room under consideration, specifically the number of devices (N) and their
corresponding energy consumption levels (Ei, where i represents the index of each device within
the range 1 to N). For instance, in the context of a room denoted as “room (2),” where a total of
N = 4 devices are present, the resulting number of classes can be calculated as 2N=4, yielding a
value of 16 distinct classes. The range of each class will be determined by the combination of
energy consumption levels exhibited by the different devices within the room. Given the open
dataset only provide energy consumption information on a room level and not a device level, we
use the following classes, as a proof of concept.

• Class (1): 200 Wh > x ≥ 100 Wh.

• Class (2): 300 Wh > x ≥ 200 Wh.

• Class (3): 400 Wh > x ≥ 300 Wh.

• Class (4): 500 Wh > x ≥ 400 Wh.

• Class (5): 600 Wh > x ≥ 500 Wh.

Note that, we did not consider very low consumption data (x < 100 Whr) for the entire year,
as it indicates no holding activity. For the training purposes of different machine-learning algo-
rithms, 80% of the data in the same form presented in Fig. 3.17 is used for training, while the
rest of the data, 20%, is used for testing purposes. The classifier output categorizes each room’s
daily activities into five classes. In this study, we investigated this approach with different types
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(a) 22nd of January. 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  
  
  

  
 

    

 

   

   

   

   

   

   

   

   

   

    

          
                     

        

        

        

(b) 18th of April. 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  
  
  

  
 

    

 

   

   

   

   

   

   

   

   

   

          
                     

        

        

        

(c) 5th of July. 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  
  
  

  
 

    

 

   

   

   

   

   

   

   

   

   

    

          
                     

        

        

        

(d) 17th of October. 

Figure 3.17: The energy consumption (Wh) over randomly selected days.

of machine-learning algorithms, including Decision Tree, K-Nearest Neighbour, Random For-
est, and Support Vector Machine. The specific configurations used for each algorithm were as
follows:

1. Decision Tree (DT): We employed a distribution smoothing factor of 1 and a feature frac-
tion of 1.

2. K-Nearest Neighbour (KNN): For this algorithm, we set the number of neighbors to 20, the
distribution smoothing factor to 0.5, and used the KDtree method for determining nearest
neighbors.

3. Random Forest (RF): In the Random Forest algorithm, we utilized a feature fraction of 1,
a leaf size of 5, and a total of 50 trees. Additionally, we applied a distribution smoothing
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(a) Room (1).

 

 

  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

  

 

   

 

   

  

  

  

  

  

  

          
                                        

         

         

         

         

         

(b) Room (2).

 

 

  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  

   

 

  

  

  

   

   

   

   

   

          
                                        

         

         

         

         

         

(c) Room (3).

Figure 3.18: Instantaneous occurrences for each class/year.

factor of 0.5.

4. Support Vector Machine (SVM): The SVM algorithm was configured with a radial basis
function as the kernel type. We set the Gamma scaling parameter to 0.473, the soft margin
parameter to 3, the polynomial degree to 3, the bias parameter to 1, and employed the one
versus one strategy for handling multiclass classification.
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Table 3.2: The classification report of
SVM-based machine-learning methods

Class Room (1)
No. Precision Recall F1-Score Support

Class (1) 1 0.965 0.982 28
Class (2) 0.975 1 0.987 39
Class (3) 1 1 1 32
Class (4) 1 1 1 54
Class (5) 1 1 1 97

Class Room (2)
No. Precision Recall F1-Score Support

Class (1) 1 1 1 16
Class (2) 0.923 1 0.96 2
Class (3) 1 0.833 0.909 10
Class (4) 0.937 1 0.967 15
Class (5) 1 1 1 74

Class Room (3)
No. Precision Recall F1-Score Support

Class (1) 1 0.981 0.990 106
Class (2) 0.955 1 0.977 86
Class (3) 1 0.941 0.97 97
Class (4) 0.962 0.971 0.967 104
Class (5) 0.997 1 0.998 1030

3.3.2 Results and Discussion

Four machine-learning classification algorithms are applied to the electricity data to recognize
daily activities in three rooms. The classification results are presented in Fig. 3.18. In this study,
the number of instantaneous occurrences of a specific activity x in the whole year is denoted by
|x|. As can be seen from Fig. 3.18, |x|Room(1) ∼ 17 times/year for class (5) at t = [12 : 00 : 00],
while this value at t = [19 : 30 : 00] is about ∼ 33 times/year. In other words, we observe high
energy consumption activities in Room (1) at this time of the day. Similarly for Room (2) and
(3), |x|Room(2) for class (5) is higher than that for other classes at [22 : 00 : 00] > t > [12 : 00 :
00]. In Room (3), |x|Room(3) ∼ 225 times/year at t = [09 : 00 : 00], which means high energy
consumption activity in the range of class (5) occurred around 225 times/year with probability
of daily occurrence equals

(220
365 ×100

)
= 60%. Any holding activities out of the range of the

probability of occurrence at a certain time slot can be considered anomalies. In Table 3.2, you
can see an example of the classification report produced by the SVM-based algorithm. As can
be seen, the precision, recall, and F1-score are about 0.99, indicating precise classification. In
Table 3.3, the accuracies of classification for the four types of machine-learning algorithms
are given. The four types of classifiers give high detection accuracy of about ∼ 0.99, proving
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Table 3.3: The accuracy of detection of different machine-learning methods for Room 1

Room No.
machine-learning Method

DT KNN RF SVM
Room (1) 0.999431 0.999715 0.999431 0.999146
Room (2) 0.998862 0.998862 0.999431 0.998293
Room (3) 0.99687 0.99687 0.998008 0.997439

the practicality of the proposed approach to support efficient activity recognition. As a future
work, we can build an additional layer of a machine-learning model that can take different
classifications from the rooms’ models and classifies the activities in the whole house. However,
this is outside the scope of this study, but we are eager to explore this area in the future.

3.3.3 Summary

This work proposes an efficient way to classify activities based on energy consumption data
generated from a residential building’s sub-metering system. Four types of machine-learning
algorithms are used to classify the daily activities of house occupants for each room at different
times. Through the machine-learning classification algorithms, which had an accuracy of ∼
99%, associated with information on the appliances monitored by each sub-meter, we were
able to identify the number of occurrences of using each room throughout the day and across
the whole year. With more fine-grained data, this method can be further exploited to develop
systems that can give indications of abnormal activities that can be identified from deviations in
the usual consumption patterns, which can potentially be used to predict critical events. In the
future, we intend to investigate methods for constructing an additional layer within the proposed
machine learning-based method. This layer will enable the classification of various activities
for detecting anomalies and the prediction of human activity patterns throughout an entire house
by leveraging distinct classifications obtained from individual room models. Moreover, we are
committed to addressing data protection and security concerns throughout the implementation
of this methodology, prioritizing the preservation of security measures and privacy pertaining to
sensitive information.
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3.4 Human Activity Recognition from Energy Usage Data

Human activity recognition is challenging without losing a user’s privacy and loading a user
with invasive devices such as wearables, cameras, and mobile applications. As the smart energy
meter usage trend is increasing worldwide, there are no privacy losses and new installation cost
issues where smart energy meters already exist. Furthermore, out of several factors, household
energy consumption patterns mainly depend on the user’s day-to-day needs, lifestyle, and time
context, which can provide essential activity information within a house. In this work, we have
used an open smart energy meter dataset to recognize the activity patterns of inhabitants living in
the house. Active and reactive power, current intensity, and energy usage took towards activity
recognition analysis. Energy is used to get information related to ongoing activities, and reactive
power is used to obtain information about the types of loads used. The Random Forest, Decision
Tree, K-Nearest Neighbour, and Support Vector Machines machine learning algorithms are used
for activity recognition and load classification. The activity recognition from load classification
has given us highly accurate results from Random Forest and Decision Tree with more than 97%
accuracy. The human activity recognition approach from smart energy meter data has usage in
many real-world applications, like non-invasive activity monitoring of lonely living adults.

Inspired by the previous LoRa-based sensing work [124–127], we attempt to analyse the
feasibility of adopting LoRa sensing in long and narrow environments. Purpose of LoRa system
is to push the range of gait recognition to multiple indoor scenarios including a corridor of 20m

length; LoRa system is shown in Fig. 3.1.
Vision-based gait analysis and human identification systems have been widely proposed in

the literature. However, these systems cannot be readily applied in many real-time applications
due to involved challenges such as video quality, obstructuion, and serious privacy concerns.

To overcome such issues, the LoRa system that leverages LoRa signals recognise gait in
different indoor environments is useful. LoRa sensing work is based on the intuition that the
walking pattern of different users can be distinguished by distinct stride size and frequency. The
wireless LoRa signal which is interfered by human walking will capture the gait information of
subjects. In combination with the long-distance transmission ability of LoRa signal, the system
enables a larger sensing range of gait recognition compared to the WiFi-based gait recognition
system. The proposed LoRa system has been validated in three different scenarios for gait recog-
nition namely line of sight (LOS), non-line of sight (NLOS), and long-distance, with accuracy
of 85.13%, 79.14%, and 84.14%, respectively.

3.4.1 Methodology

Electricity usage data recognize human activities and behavior towards energy utilization while
avoiding the hassle of buying, wearing, and installing different sensors and devices. Activity
recognition from smart energy meter data needs electricity usage data from a smart energy meter
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Figure 3.19: Activities and anomalies: Anomalies are not only on the higher side of the load but
also on the lower side, e.g. if no load is detected or the load is less than the baseload for a long
time.

and an intelligent device that can receive data from the energy meter, calculate a base load,
compare newly coming data with the baseload and predict activities, as shown in Figure 3.19.
Electricity usage data, when compared with the baseload; operated load, and their location in
the house, can be recognized precisely. A separate smart energy meter has been installed in each
room to identify specific activities in different rooms. Activities coming from individual room
meters can be cross-compared later with activities coming from the main meter.

Activity classification

It is difficult to explicitly model anomalies in Figure 3.19, so it is better to define and monitor
normal activities and let the model learn abnormal behavior when anomalies occur over time.
One smart energy meter is installed to monitor overall household voltage, current, power, and
energy. Each room has its own sub energy meter that monitors all electricity parameters. The
household baseload is calculated from the minimum hourly load for one month. If the load at
any interval of time goes beyond the baseload, some activity will start, which will remain alive
until the load changes. There can be more than one overlapping activities at one interval of time.
If the load on the main smart energy meter remains equal to or less than the baseload, then there
will be nobody at the house, or if someone is in the house, however, there is no ongoing activity.
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Figure 3.20: Household annual energy consumption in three rooms

Figure 3.21: Activity detection from current, power and energy consumption.

Apart from regular activities, if either there is no activity happening for the last twenty-four
hours or there is not any change in current activity over the previous twenty-four hours, there
will be anomaly detection.

Time and load context

Time context has divided into weekdays and weekends. Weekdays are further divided into work-
ing days and holidays. Activities and anomalies behavior can vary according to time context.
Time context also includes the daytime and nighttime. For example, frequent visits to the bath-
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Table 3.4: Data Classes and their Description

S.No Class Class Descriptions No. of
Classes

Count

1 Empty No human subject in the activity area. 1×1 100
1 Sitting "Sitting" activity at a designated location. 1×2 200
2 Standing The action of "Standing" activity at the desig-

nated location
1×2 200

3 Leaning
Forward

The action of "Leaning" activity at the desig-
nated location

1×2 200

4 No Activity The action of "No" activity at the designated lo-
cation

1×2 200

5 Walking
Rx-Tx and
Tx-Rx

From USRP X310 Rx to USRP X300 Tx 1×2 200

Figure 3.22: Activities during OFF working hours

room during the day can detect may be a user has some stomach, bladder, or glucose level
disorder. Similarly, lights on during the night or frequent visits to the bathroom can detect if a
user might have some sleeping disorder that can lead to serious health problems.

Electricity components used for activity recognition are active power, reactive power, energy,
and current, as shown in Figure 3.21. The main smart energy meter uses power and current to
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Figure 3.23: Load classification from different energy levels: Some outliers are due to AC load
fluctuations, and others are transitions between previous and subsequent classes.

recognize activities. In contrast, energy from submeters is used to determine further which room
or house location activity has happened. Both power and current have been used simultaneously
from the main energy meter to monitor activities. In contrast, only energy data is used for
submeters to check activity recognition and location confirmation. Reactive power provides
only information related to the load on which activity is being performed, while energy locates
the exact place of activity. Data is collected from one house for two years of duration.

Load classification

There is one main smart energy meter for complete load and three submeters for individual
rooms. Data is divided into sub electricity parameters voltage, current, active and reactive power,
and energy units. The highest resolution of data is in minutes, and lower resolutions are available
in hours, days, months, and years. Energy data (kWh), as shown in Figure 3.20 has been divided
into seven classes. The first chunk has zero to 10 kWh, the second 10 to 20 kWh, the third
has 20 to 40 kWh, the fourth has 40 to 60 kWh, then 60 to 80 kWh, and finally above 80
kWh as shown in Figure 3.23. Energy usage against baseload in each room has been calculated
according to the minimum hourly load for thirty days. Minimum energy usage for three rooms
from baseload for thirty days is zero, and max energy usage is 80 kWh as shown in Figure
3.23 Each energy level, e.g., between 20 to 40 kWh, represents an approximate load rating. In
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Figure 3.24: Activities patterns during the whole week.

Figure 3.23 energy levels 0-10 kWh represent activity type one, 10-20 kWh represent activity
type two, 20-40 kWh represent activity type three, 40-60 kWh represent activity type four, 60-80
kWh represent activity type five, and above 80 kWh represent activity type 6. Whenever a load
achieves a certain energy level or one energy level switches to another energy level, an activity
will be logged.

Activity Recognition

According to time context, during working weekdays, if the resident is away from home, there
should be either no activity or very few activities as most of the load will be OFF. In Figure
3.22 from 9 PM to 11 PM, the resident is inside his home, so there are many different activities.
During the daytime, when a resident is out of the house, the activity graph mostly remains either
zero or constant between zero and 10 kWh on activity type one. In weekly activity patterns
during the nights between Saturday and Monday, activity levels change rapidly while energy
consumption is highest during the weekdays, as shown in Figure 3.24. While activity patterns
and energy consumption during other weekdays are almost similar during the days and nights,
activities and energy consumption are relatively on the higher side during the nights, as shown
in Figure 3.22.
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Table 3.5: Classification report for Random Forest classifier

Class Precision Recall F1-score Support

0.0 1.0000 1.0000 1.0000 31964
1.0 0.9998 1.0000 0.9999 37183
2.0 0.9991 0.9994 0.9993 28860
3.0 0.9888 0.9923 0.9906 4175
4.0 0.9910 0.9821 0.9865 2682
5.0 0.9391 0.9391 0.9391 279
6.0 1.0000 0.9622 0.9807 238
Accuracy - - 0.9998 105381
Macro avg 0.9882 0.9822 0.9851 105381
Weighted avg 0.9988 0.9988 0.9988 105381

Table 3.6: Classifiers hyperparameter and accuracy for all activity levels.

Classifier Hyper Parameters Accuracy
Random Forest n-estimators=10 0.9990
Decision Tree max-depth=10, ran state=42 0.9990
K Neighbors n-neighbors=10 0.9990
Support Vector Classifier Default 0.9760
Linear Kernel SVC dim= 6, density= 1.0000 0.9999

3.4.2 Results and Discussion

Four machine learning classification algorithms, such as Random Forest, Decision Tree, K-
Nearest Neighbours, and Support Vector Machines, have been applied to the electricity data to
recognize daily activities in three rooms. Random Forest Classifier used as the first classifier
for 10-estimator. A classification report containing all classes and accuracy is given in Table
3.5. Minimum accuracy is for activity level five, which is 93.91 % due to an unbalanced alter-
nating current load containing high oscillations beyond the estimated activity levels. Accuracy
is excellent, around 99% for all other classes containing activity levels besides level five. The
confusion matrix in Figure 3.25 contains all data points used to monitor energy and estimated
activity levels. Again, for activity level 5, accuracy is minimum while excellent for all other
activity levels. A complete comparison of classifiers’ details and accuracy is given in Table 3.6.
Activity recognition from electricity usage data is efficient in all aspects related to user privacy,
system cost, installation complexity, installation time, and non-intrusive and non-invasive so-
lution. Overall accuracy in estimating activity patterns is very high; around 99% accept some
activity levels containing high oscillations for AC types of loads. The method is also best to
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Figure 3.25: Confusion matrix for Random Forest Classifier

predict early symptoms of some of the health-related issues; for example, if activity patterns
find frequent visits to the toilet during the night may indicate early signs of diabetes, bladder,
or kidney problems. Bedroom lights detected during the night or walking over the rooms late at
night can predict early symptoms of depression or some mental health disorder.



Chapter 4

Radar and SDR Signal Driven Human
Activity Detection

4.1 Human Activity Recognition from WiFi Signal

Human activity detection in indoor environments is an attractive research field that can assist
the elderly and disabled live independently. To detect human activity, various technologies have
been proposed, including the use of sensors, cameras, wearables, and contactless radio frequency
(RF). With applications in localization, smart homes, retail, gesture recognition, intrusion de-
tection, etc., RF sensing has the potential to become a universal sensing mechanism due to the
omnipresent of electromagnetic signals. Recently, there has been a lot of interest in RF sensing’s
ability to solve the discomfort of wearables and the privacy concerns with cameras using Chan-
nel State Information (CSI). This study reports the findings of an experiment to locate activity in
an indoor environment utilising Universal Software-Defined Radio Peripherals (USRP) devices.
A single subject is observed while performing seven distinct activities. Additional CSI is also
collected while the monitored area is empty for further comparison. Machine learning and deep
learning techniques are used to classify data more accurately, and convolutional neural network
(CNN) has a 97.43% accuracy when it to locating seven distinct activities.

4.1.1 Experimental Setup

The experiment was conducted with ethical approval in a 3.8×5.2 m2 room on 5th floor of the
James Watt South Building, University of Glasgow. The room is divided into three parts that are
spaced one metre apart. The USRP devices were kept at a 45° angle for the transmitter (Tx) and
receiver (Rx). Figure 1 depicts seven different activities, including sitting, standing, walking in
both the direction of Tx - Rx and Rx - Tx, in two different locations. All seven activities are shown
in Figure 4.1 along with CSI amplitude fluctuations. Each colour represents a subcarrier during
an activity, with the number of packets on the x-axis and the amplitude of the subcarrier on the y-
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axis. Each data sample represents an OFDM transmission of three seconds. As a consequence, a
sample of 1200 packets is created. A total of 100 data samples were collected for every activity,
i.e., sitting, standing, and walking in both directions. Hence, resulting in a dataset with a total
of 700 samples (see Table 3.4).

Preprocessing

It is common for the data to have some missing values after it has been collected and saved in
CSV files owing to loss of received packets, hence requiring data cleansing. For data prepro-
cessing and the implementation of ML and DL techniques, we utilize Scikit, a widely used data

Figure 4.1: CSI wireless data samples of four activities. From Left to Right
(a) Sitting (b) Standing (c) Leaning (d) No Activity (e) Walking from Rx to Tx (f)
Walking from Tx to Rx.
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analysis toolbox in Python [137]. Additionally, CSV files are interpreted using Pandas, a python
library. SciKit [138] is used to analyse Python data frames created by the conversion of .txt files
to CSV files. Labels are added into the first column of the dataframes. Not a number (NaN)
values are included in the dataset obtained by merging the dataframes from each sample due to
inconsistency in data length. These NaN values are changed to the average of each row using
SciKit’s SimpleImputer built-in function. Remember that the overall pattern of the data is unaf-
fected by this kind of data cleansing. The three ML algorithms (RF, SVM, and KNN) and DL
algorithms (ANN, CNN and RNN) are used to process this data once it had been normalized.

Machine Learning and Deep Learning Algorithms

The proposed wireless sensing-enabled indoor human activity monitoring system is evaluated
using three ML and DL algorithms.The assessment criterion used in this experiment is the pre-
cision of accurately recognising different human activities. The accuracy was evaluated using
RepeatedStratifiedKFold cross validation. Repeated k-fold cross-validation provides a way to
improve the estimated performance of a ML model. This involves simply repeating the cross-
validation procedure multiple times and reporting the mean result across all folds from all runs.
For example, 10-fold cross-validation was repeated five times, 50 different held-out sets would
be used to estimate model efficacy.

Deep learning neural networks used to supports this multi-label classification problems that
can be easily defined and evaluated using the Keras deep learning library. We have used the
make-multilabel-classification() function in the scikit-learn library with the popular ReLU, Soft-

max activation function in the hidden layer. The hidden layer has 200 nodes that were chosen
after some trial and error. We have fit the model using the Adam version of stochastic gradient
descent and the hyper parameters are shown in Table 4.1.

4.1.2 Result and Discussion

The results of the ML and DL are shown in Table 4.1. These results show the relationship be-
tween locating and identifying activity at two separate locations in the monitoring area. The
CNN algorithm has the highest accuracy score of all the algorithms when compared to the re-
sults in the combined data experiments i.e. Location 1 and Location 2. The DL (CNN and ANN)
algorithms are able to attain accuracy score of 97.43% and 92.30% respectively. Similarly ML
(SVM and RF) algorithms have accuracy scores 91.11% and 90.72% respectively on combined
(Location-1 and Location-2) dataset. On the other side, KNN and ANN achieved lowest accu-
racy which are 88.56% and 90% respectively. The comparison graph on combined (Location-1
and Location-2) dataset is shown in Figure 4.2. These results indicated that algorithms are bet-
ter at discriminating between locations when they are separated from one another by a greater
distance. The fact that CSI fluctuations increase with distance from the transmitter most proba-
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Table 4.1: Hyper-parameters of Machine Learning and Deep Learning algorithms

S.No Algorithms Hyper Parameters
1 Random Forest RepeatedStratifiedKFold (n-splits : 10, n-repeats :3,

random-state : 1), max-features: log2, n-estimators: 1000
2 Support Vector

Machine
RepeatedStratifiedKFold (n-splits : 10, n-repeats :3,
random-state : 1), C: 50, gamma: scale, kernel: rbf

4 K-Nearest Neigh-
bor

RepeatedStratifiedKFold (n-splits : 10, n-repeats :3,
random-state : 1), metric : euclidean, n-neighbors : 1,
weights : uniform

5 Artificial Neural
Networks

units=4, hidden-layer-activation=’relu’, kernel-
inetiaizer:’uniform’, optimizer=’adam’, batch-size=32,
epochs = 200, connected-layer-activation:’softmax’

6 Convolutional
Neural Networks

units=4, hidden-layer-activation=’relu’, kernel-
inetiaizer:’uniform’, optimizer=’adam’,layer:4, kernel-
size:6, batch-size=28, epochs = 250, connected-layer-
activation:’softmax’, filter:(128,64,32,4)

7 Recurrent Neural
Networks

Layer:5, Dense: horizon, dropout:0.2, activation-function:
’tanh’, optimizer:(lr:0.01, momentum:0.9)

bly explains this. As locations are closely connected to one another, the difference between CSI
fluctuations becomes less. Despite this, the algorithms, particularly the CNN algorithm followed
by RNN have proved to be very accurate.

Figure 4.2: Comparison of ML and DL Algorithms on combined dataset from Location-1 and
Location-2
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4.2 Contactless Sleep Quality Monitoring Exploiting Radar
Signal

Sleep quality monitoring is vital for managing health risks associated with sleep disorders. Tra-
ditional methods, such as polysomnography, are invasive and can disrupt natural sleep patterns.
This section presents a novel, contactless approach to sleep monitoring using ultra-wideband
(UWB) radar, providing a non-intrusive solution that detects key indicators of abnormal sleep,
including periodic limb movements, frequent body position changes, and prolonged static po-
sition. Exploiting deep neural networks, specifically the VGG16 model, our method achieves
98% accuracy in classifying sleep quality features, shows its robustness for reliable analysis.
The radar’s high sensitivity to body movement enables monitoring without the need for wear-
able sensors, making it a practical alternative for clinical and home applications to a scalable,
accurate and comfortable sleep monitoring.
Recent studies show that between 10 and 40% of the global population experience sleep dis-
turbances linked to an increased risk of conditions such as cognitive problems, depression, and
cardiovascular disease [136, 139, 140]. In clinical settings, sleep quality monitoring methods,
such as polysomnography (PSG), portable devices, and cameras, face significant limitations de-
spite their widespread use [141]. PSG, the gold standard in clinical sleep analysis, requires that
numerous sensors be attached to the patient, leading to discomfort and possible disruption of nat-
ural sleep patterns [141]. Similarly, wearable devices, while less invasive, can cause discomfort
and produce inaccurate results due to inconsistent wear habits [142]. These challenges high-
light the need for a convenient, contactless solution that can provide accurate, real-time sleep
data without disturbing the user’s natural sleep environment [142]. Radar-based sleep quality
monitoring has potential as a promising alternative that overcomes the limitations of traditional
contact-based methods [143–145]. Radar offers a contactless approach that detects even subtle
body movements with high sensitivity while preserving patient comfort [146]. This non-invasive
approach is beneficial for capturing detailed sleep data including normal and abnormal sleeping
patterns without the need for sensors directly applied on the body [146]. Further, radar-based
solutions allow for continuous monitoring over extended periods, which is essential for long-
term sleep assessment and for detecting irregular patterns that may indicate underlying health
conditions [147].
Feature extraction from radar-based sleep data is critical for interpreting sleep quality and au-
tomating data analysis analysis [148]. Important features, such as periodic movement of the
limbs, frequent changes in the lying position of the body, and prolonged periods of static sleep,
provide insight into sleeping behaviour and potential sleep disturbances. Integrating these fea-
tures with deep neural networks, such as convolutional models, enhances the classification and
analysis of sleep-related disorders. The combination of feature extraction and the deep learning
model allows more accurate and efficient analysis, allowing healthcare providers to assess sleep
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Figure 4.3: Figure 1(a) illustrates the experimental setup, while Figure 1(b) presents the study
used the following hardware. Figure 1(c) displays the raw data captured by the radar, and Figure
1(d) includes the power spectral density. Finally, Figure 1(e) shows the various sleep features
extracted from the processed radar data.

quality without manual intervention and with higher precision [85].
In this section, we used an ultrawideband (UWB) radar to non-invasively extract abnormal sleep
related features such as periodic limb movements, frequent body position changes, and pro-
longed static sleep periods. To automate the feature classification analysis, we applied a deep
learning classification model to predict abnormal sleeping patterns among normal sleep orders
with high accuracy. We made the following contributions for the first time to the best of our
knowledge:
1. Contactless sleep monitoring using UWB radar and feature extraction, focusing on periodic
limb movements, body position changes, and static sleep periods.
2. Achieving 98% classification accuracy in sleep quality analysis with the VGG16 deep learn-
ing algorithm, demonstrating the robustness and precision of the model.
3. Provide a scalable framework for nonintrusive sleep monitoring that simplifies long-term data
collection and analysis for potential healthcare applications.



53

4.2.1 Methodology

Experimental Setup and Data Collection

The experimental setup, as illustrated in Figs. 4.3(a) and 4.3(b), comprises an adjustable hospital
bed, an UWB radar system, and a Dell Latitude 5421 laptop, forming an integrated system for
contactless sleep monitoring. The core sensor employed is the XeThru X4 radar system-on-chip
(SoC) developed by NOVELDA, a high-resolution UWB radar capable of operating within a
frequency range from 7.29 to 8.75 GHz, placing it within the C and X bands, provided in TA-
BLE 4.2. The radar is configured to operate at a fixed frequency of 7.29 GHz, with a maximum
detection range of up to 9.6 meters, ensuring sufficient coverage for monitoring patients in vari-
ous bed positions. The transmitter emits a power output of 6.3 dBm, facilitating effective signal
transmission for detecting movements within its operational range. With a maximum bandwidth
of up to 1.5 GHz, the radar provides high resolution data capture, which is essential for accu-
rately detecting sleep-related movements and subtle positional shifts. This wide bandwidth and
precise centre frequency make the XeThru X4 particularly effective for capturing abrupt motion
without the need for direct contact with the patient.
This combination of non-invasive approach, radar range, frequency, and power enable the UWB
radar to serve as a robust tool for monitoring sleep dynamics and movement with high preci-
sion in clinical or home environments, making it an ideal component in continuous, real-time
sleep analysis application. The data collection system included a Dell Latitude 5421 laptop,
which controlled and powered the hardware throughout the experimental sessions. The laptop,
equipped with an 11th Gen Intel® Core™ i7-11850H processor (featuring a 24 MB cache, 8
cores, 16 threads, and a peak frequency of 4.80 GHz), as well as 16.0 GB of RAM, provided
sufficient processing capacity for managing and recording the radar data. Powered by a 37.5
W laptop power supply ensured stable operation of the system, even during extended periods
of data acquisition. For optimal sensing arrangement, the radar was positioned on a side table
1.5 meters from the subject lying on the bed. This setup placed the radar at an unobstructed
position facing the subject, allowing for precise capture of movements and positional changes.
The careful alignment and distance ensured that the radar could operate effectively within its

Table 4.2: Parameters configuration of radar software and hardware.

Parameter Value

Platform Xetru radar X4MO3
Instrumental range 9.6 metres
Target’s distance from radar 1.5 m
Operating frequency 7.29GHz
Transmitter power 6.3dBm
Activity duration 10 seconds
Collected samples in each class 15
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Figure 4.4: Figure 2(a) presents spectrograms corresponding to different sleeping patterns, in-
cluding static positions, limb movements, and position changes. Figure 2(b) illustrates the train-
ing loss, training accuracy, validation loss, and validation accuracy from k-fold cross-validation
test for 5 folds over 20 epochs.

range and resolution specifications, thereby maximising data accuracy and reliability during
sleep monitoring.

Features Extraction

The radar system generated a DAT data file containing raw radar readings, captured with a sam-
pling frequency of 500 Hz, providing one frame per second. To optimize data management and
processing, these data files were segmented into five-minute, one-minute, and 30-second chunks.
This segmentation approach helped mitigate the challenges associated with storing, managing,
and analysing large volume of continuous data, as extended unbroken data streams can com-
plicate efficient event extraction. In total, six adult male and female participants were involved
in the data collection, each repeating a consistent set of sleep activities 30 times. This protocol
resulted in the collection of 180 data files, which were subsequently processed for feature extrac-
tion. The raw radar data consisted of in-phase (I) and quadrature (Q) components, represented
in complex form, as shown in Fig. 4.3(c). The data was carefully examined for missing values
and extreme outliers that fell outside the optimal sensing range, as these could negatively impact
the analysis. To focus on relevant signal content, frequency bands were applied to the data, as
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Table 4.3: Parameter settings for VGG16 Model.

Parameters VGG16

Initial learning rate 0.0001
Mini-batch size 16
Learning algorithm Adam
Loss function Cross entropy
Maximum epochs 20
Iteration per epoch 25

shown in Fig. 4.3(d), all sleep-related activities were found to be contained within an upper fre-
quency band of 100 Hz. From this refined data, key features of sleep activities were identified,
including static positions, limb movements, and position changes, illustrated in Fig. 4.3(e). To
further analyse the radar signal, a short-time Fourier transform (STFT) was applied, producing
spectrograms that captured radar doppler shifts corresponding to participant movements dur-
ing sleep. This frequency-time analysis facilitated the observation of movement dynamics over
time, enhancing the ability to extract meaningful sleep activity features from the radar data.

4.2.2 Results and Discussion

The spectrograms generated from the radar data shows distinct patterns related to different types
of sleep-related movements, such as static positions, limb movements, and position changes, as
illustrated in Fig. 4.4(a). For classifying these movements, a pre-trained VGG16 model was
selected due to its effectiveness in handling spectrograms. The model’s parameters are provided
in TABLE 4.3. To prepare the data for training, the spectrogram dataset was split into training
and testing sets, with 80% of the data allocated for training and 20% for testing. During the
training phase, 80% of the spectrogram data was fed into the VGG16 model, and a 5-fold cross-
validation test was conducted, as shown in Fig. 4.4(b). This approach utilized a value of k equal
to 5 and was executed over 20 epochs, with each epoch containing 25 iterations. The 5-fold
cross-validation yielded high training and validation accuracies, ranging from 92% to 99%, and
exhibited minimal loss values between 0.4 and 0.05. Detailed metrics such as precision, recall,
F1-score, and overall accuracy are presented in TABLE 4.3. Additionally, Fig. 4.5 contains a
confusion matrix displaying actual versus predicted labels, providing accuracy details for each
classified feature. The VGG16 model achieved excellent overall classification accuracy of 98%,
meeting the accuracy criteria of clinical healthcare standards for sleep monitoring applications.
Further, the accuracy demonstrates the model’s suitability for reliably distinguishing between
different sleep movements based on radar driven data patterns.
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Table 4.4: Classification report for three classes and accuracy metrics.

Class Precision Recall F1-Score Support

Class 1: Static position 1.00 1.00 1.00 48
Class 2: Limbs movement 0.95 1.00 0.97 48
Class 3: Position change 1.00 0.94 0.97 48

Accuracy 0.98 72
Macro Avg 0.98 0.98 0.98 72
Weighted Avg 0.98 0.98 0.98 72
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Figure 4.5: Confusion matrix illustrates true and predicted labels for three classes.

4.2.3 Summary

In conclusion, this section introduces a non-invasive approach for sleep quality monitoring using
ultra-wideband (UWB) radar technology to detect key sleep-related features, such as periodic
limb movements, frequent body position changes, and extended static sleep periods. By inte-
grating UWB radar with a deep learning classification model, we achieved a high accuracy of
98% in distinguishing between normal and abnormal sleep patterns, restructuring the analysis
process and eliminating the need for physical contact with the subject. This framework offers
a scalable and reliable solution for accurate, comfortable sleep monitoring, underscoring the
potential of UWB radar paired with deep learning model to advance non-intrusive sleep quality
assessment. This simple approach makes it suitable for both clinical and at-home applications,
where continuous, precise, and user-friendly sleep monitoring is essential.

4.3 Contactless Privacy-Preserving Speaker Recognition Ex-
ploiting Radar Signal

Speaker recognition (SR) from speech can help determine the environmental context in multi-
talker conversational scenarios to enable the design of context-aware multi-modal hearing as-
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sistive technology. In this work, we argue that the use of wireless sensors such as radars can
offer many benefits over conventional audio and visual sensors, such as not being afflicted by
privacy and environmental issues, e.g., improper lighting, environmental noise, and potential
security concerns of audio and video channels. Radar is relatively less explored and has many
advantages over other contactless approaches, such as being more compact compared to RFID
and having a better range and resolution than ultrasound and microwave sensors. To this end,
we propose the use of ultrawideband radar coupled with a deep learning model for SR from
silent speech to enable the design of future context-aware multimodal hearing assistive technol-
ogy. We collected a dataset from five individuals with origins in Europe, Asia, and the United
Kingdom. We obtained an average performance of approximately 82% in recognising an un-
known person from a set of known people. This demonstrates that the radar has good potential
to be used for privacy-preserving SR in multi-talker environments where audio-visual and other
contactless techniques have limited capabilities.

4.3.1 Introduction

Speaker recognition is the process of identifying or verifying the identity of an individual based
on their voice [86]. It has a wide range of applications including security, authentication, and ac-
cess control. Traditional SR systems rely on audio signals captured by microphones, which can
be affected by background noise, distance, and some environmental factors [87, 88]. SR using
audio-visual signals, which involves combining information from both audio and visual cues to
identify or verify the speaker’s identity, has gained increasing attention in recent years [89, 90].
While SR using audio-visual signals has the potential to improve the accuracy and reliability of
SR systems [91–93], it is important to consider the limitations of this technology [94]. These
limitations include lighting conditions, environmental noise, occlusions, facial expressions, pri-
vacy concerns, equipment costs, and algorithmic bias. By understanding these limitations, re-
searchers and practitioners can develop more effective and reliable SR systems [95–97]. In
recent years, ultra-wideband (UWB) radar technology has emerged as a promising alternative
to traditional microphone-based SR systems. UWB radar technology is capable of detecting
and tracking human movements and can provide information about the individual’s vocal tract
and speech characteristics, which can be used to identify or verify the speaker’s identity. UWB
radar technology has several advantages over traditional microphone-based systems. One of the
main advantages is its ability to operate in noisy environments, as it is not affected by back-
ground noise. It can also penetrate through walls and other obstacles, making it suitable for
use in surveillance and security applications. Another advantage of UWB radar is its ability
to detect small movements and vibrations, such as those caused by the human vocal tract dur-
ing speech. Overall, non-invasive radar-based SR technology offers a number of advantages
over traditional invasive methods of SR. It is non-invasive, accurate, contactless, versatile, cost-
effective, portable, and capable of providing real-time results, making it an attractive option
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Table 4.5: Summery of contactless sensors used for corpus detection and speaker recognition
other than audio-visual techniques.

Reference Year Sensing technology Language Corpus
size

Speakers diversity Speaker/words
recognition

Accuracy

[98] 2022 FMCW radar European Por-
tuguese words

13 Four speakers words 84.50% (av-
erage)

[99] 2022 SFCW radar German words 40 Five male speakers 28 to 36
years old

words 76.50%

[100] 2022 SFCW radar Forty German
words and digits
zero to nine

50 Two individual speakers Words 94.02% (av-
erage)

[101] 2016 Impulse radio ultra-
wideband radar

English 5 Five Korean speakers Words 85%

[102] 2021 RFID N/A 0 Fifty dynamic and static users Person 95.05% (av-
erage)

[103] 2018 Microwave German 25 Two male native German
speakers

Words 89% (aver-
age)

for a wide range of applications. In this work, we proposed a modality to adopt UWB radar
for human identification. Total of five speakers from Europe, China, Pakistan, and the United
Kingdom volunteered to take a data set consisting of fourteen different words commonly used
in emergency conditions and five English vowels as given in Table 4.5. To the best of our
knowledge, this is the first contribution of this kind to recognise a speaker among other known
speakers or recognise an unknown person from other known speakers from their speaking styles
and facial features detected by radar. In the summary, there are two main contributions of our
work:

1. We adopt a contactless method of human identification using UWB signal. The work
frequency band of UWB is allowed from 3 GHz to 10 GHz, less distorted by the 2.4 GHz
broad Wi-Fi system and other wireless signals.

2. We collected a multimodal human speech dataset including vowels and words by using
RF, audio and video signals, from radar and kinect v2 sensor.

UWB radar technology uses short pulses of electromagnetic waves with a very wide frequency
spectrum to detect different changes in objects. The pulses are typically in the range of a few
nanoseconds to a few microseconds and are transmitted from an antenna [104–106]. The pulses
reflect off objects and are received by a receiver antenna. The time delay between the transmitted
and received pulses is used to calculate the distance to the object, while the amplitude and
phase of the received pulse provide information about the object’s properties, such as lips and
vocal tract movements, shape of face and speech characteristics. While exploring silent speech
interfaces based on frequency-modulated continuous-wave (FMCW) radar in [98], the author
recognized 13 words spoken by four different speakers of Portuguese origin with 84.5% average
accuracy. Another step frequency modulated continuous wave (SFCW) radar used for silent
speech recognition, total of forty German words including nouns, adjectives, verbs, and digits
spoken by five male native German speakers aged between 28 and 36 years old. Results accuracy
for word recognition is 76.50% and 68.18% obtained using the headset and the tape, respectively
[99]. While recognizing forty German words and zero to nine German digits from two persons
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Figure 4.6: Multimodal experimental setup used for data collection.

with the help of SFCW radar, author obtained recognition accuracies of 99.17% and 88.87% for
the speaker-dependent multi-session and inter-session accuracy respectively (average accuracy
94.02%) [100]. RFID tags have been used for the identification of people for static and dynamic
users [102], author collected walking and body information for identification purposes. Other
studies includes microwave sensors [103] and Radars [107, 108], details provided in Table 4.5.

4.3.2 Methodology

Data Collection

In this section, we discuss our data collection strategy and the setup in which data was collected.
We start by first describing our experimental setup.

Experimental Setup

This study involves five volunteers from various countries, including Europe, China, Pakistan,
and the United Kingdom. Due to the volunteers’ distinct accents and body sizes, an adjustable
table was implemented to ensure a consistent distance between the speaker’s head and the sen-
sors. The dataset collected from the volunteers includes Xethru UWB radar signal for lip motion
and audio signal, with the setup shown in Figure 4.6. In this work we are using only RF signal
from radar, audio-visual details from Kinect 2 sensor is for ground truth and future data usage
for further results.

Data Collection Strategy

To make the data collection process simple, we design a system that can generate the sound
of "speaking" and "stop" with timestamps. At the same time, all the other sensors including
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Kinect and Xethru radar will be activated for recording. While the sensors were running, the
volunteer can read the vowels and words shown on the screen. We manually selected five vowels
and fourteen words for reading on a computer screen. All volunteers were informed of the
potential risks of the experiment and signed a consent form. The details of data collection are
referred to in [149]. No privacy-related information was collected in our dataset and appropriate
anonymization was applied to ensure the confidentiality of the participant’s data.

Data Preprocessing

The UWB radar we used is based on impulse modulation. The response of radar signal is
completely dependent on impulse delay from transmitting to receiving back, which can be rep-
resented as the Eq. 4.1

s(τ, t) =
N

∑
i=1

ai(τ, t)e− j2π
d(t)+di(τ)

λ (4.1)

where the τ and t represent impulse indication in fast-time range and time in frame range, N

is the index of the impulse; ai(τ, t) represents the complex attenuation factor of the related t

slot and ith impulse; λ represents the wavelength of the UWB signal with centre frequency in C
or X-Band. The transmitters bandwidth is up to 1.5 GHz, while frames frequency is seventeen
frames per second. After the data collection, we first extract the IQ radar signal from binary file
and reshape it to the frame which contains fast-time and slow-time dimensions. The frames are
identical to the range-time response image because the fast-time domain represents the indicator
of time of flight (ToF), which can be calculated to distances. Then, we adopted the moving target
indication of frames in sequence to filter the static object out. Then, we calculated the STFT
results in the fast-time dimension which is close to the sensing range, and add them together.
The spectrograms can be viewed in Figure 4.7.

Machine Learning-based Data Analytics

We formulated the problem of SR as a classical image classification problem. The objective is to
learn a latent function f : x → y to map x to y, where x and y represent the input spectrogram and
its corresponding label, respectively. We leveraged a widely used convolutional neural network
architecture known as VGG16 for learning f . Since this model is proposed for 1000 classes, we
removed its output layer and stacked a convolutional layer on top of it, having a depth of 32 and
a kernel size of 3×3. We then added a max pooling layer that applies a pooling operation with

Table 4.6: List of Corpus used by five different participants.

Type Corpus Participants
Word Order, Assist, Help, Ambulance, Bleed, Fall, Shock, Medi-

cal, Sanitize, Doctor, Rescue, Emergency, Heart, Break.
User 1-5

Vowel A,E,I,O,U User 1-5
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Figure 4.7: The spectrograms generated from UWB radar datasets for corpus from five different
users.

Figure 4.8: Depiction of model training in terms of accuracy and loss over increasing epochs.

a kernel size of 2×2. After that, we added three fully connected layers having 128, 64, and 32
units, respectively. Finally, we used softmax to get the probability vector of size 1×5. We used
pre-training with ImageNet weights that allow the model to extract relevant features from the
input spectrograms.

4.3.3 Results and Discussions

Data Description

We have data collected from five different persons having native languages from Europe, China,
Pakistan, and the United Kingdom. We asked the speakers to speak five English vowels and
fourteen different words (a summary is presented in Table 4.5). To ensure a fair comparison and
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Figure 4.9: Confusion matrix for speaker recognition using our proposed method.

to avoid data bias, we have collected an equal number of samples for each participant. However,
note that the resulting signals for each of the speakers vary in terms of time duration (due to
demographic variations).

4.3.4 Model Training Setup

We partitioned the collected data into training and testing sets using a split of 80% and 20%,
respectively. Furthermore, to ensure an efficient training, we applied 3x data augmentation by
using widely used techniques such as shear, horizontal flip, and zooming. We then trained the
DL models using training data and evaluated their performance using test data. All images were
resized to the same size (i.e., 224×224) prior to training and testing. Since our data size is small,
we used pre-training (with ImageNet weights) and fine-tuned the models using our training data.
All models were trained using a batch size of 64 and a learning rate of 1e−3.

Results for Speaker Recognition

The performance curves depicting the model training in terms of accuracy and loss for both
training and validation (test) data is shown in Figure 4.8. It is evident from the figure that the
underlying model was able to learn latent features from silent speech signal to recognise the
speaker. Also, we can see from the figure that the model tends to show an overfitting behaviour
(that highlights that the training samples need to be increased for more robust training). We
note that the focus of this work is to demonstrate the feasibility of using non-speech signals
to perform SR. The confusion matrix that illustrates the SR performance of the trained model
is shown in Figure 4.9. The figure reveals that the model provided superior performance for
“speaker 4” while it provided the worst performance for “speaker 5”. The performance of the
model for “speaker 1” and speaker 2” is almost similar and for “speaker 3”, the model provided
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Table 4.7: Comparison of speaker-wise recognition performance in terms of precision, recall,
and f1-score. Legend: S: Speaker; P: Precision; R: Recall; and F1: F1-Score.

S P R F1
S1 0.80 0.88 0.83
S2 0.86 0.89 0.88
S3 0.72 0.72 0.73
S4 0.91 0.91 0.91
S5 0.74 0.65 0.69

comparatively lower performance than speaker “1”, “2”, and “4” but is considerably higher than
“speaker 5”. A summary and comparison of speaker-wise recognition performance in terms of
different performance metrics, including precision, recall, and F1-score is presented in Table
4.7. The table also supports the analysis from Figure 4.9.

4.3.5 Summary

In this work, we present the feasibility of using data collected through radar to perform speaker
recognition. Specifically, we collected a dataset from five different persons speaking different
native languages and asked them to speak five English vowels and fourteen different words. We
then analyzed the collected dataset using a convolutional neural network (CNN) that provided an
overall average performance of more than 82%. While we got a maximum performance of more
than 91% for a single speaker (“speaker 4”). Our results demonstrate that the radar possesses
great potential to be used for the speaker recognition task that offers a number of advantages
over conventional audio-visual signals, including preserving the privacy of users. In our future
work, we plan to improve the performance of the developed system along with increasing the
size of the dataset. Also, we plan to visualize internal embeddings of underlying deep neural
networks to see if the learned features are distinguishable in the embedding space. In addition,
we plan to use explainability techniques like class activation maps to see if the model is learning
distinct features for each class or not.



Chapter 5

Contactless Horizon of Human Breathing
and Pulse Variability

5.1 Contactless Respiration Variability Detection and Accu-
racy Test Using UWB Radar

This work investigates the potential of radar technology for precise and non-intrusive detection
of respiration rate variability. UWB radar, with its ultra-short pulses and extensive bandwidth,
offers significant advantages in capturing subtle chest wall movements associated with respi-
ration. It possesses the unique ability to penetrate clothing and physical barriers, making it
an excellent candidate for remote physiological monitoring. This ultra-wideband radar system
ensures the extraction of accurate respiration waveforms, and deep learning models, includ-
ing VGG16, Inception V3, and ResNet50, are employed to evaluate respiration rate variability.
Remarkably, VGG16 attains outstanding accuracy in results. This study advances the field of
radar-based respiration monitoring, emphasizing the importance of robust signal processing and
deep learning techniques. It showcases the potential of UWB radar for non-contact respira-
tion monitoring, with applications spanning healthcare and in-home environments, promising to
revolutionize the assessment of well-being and health.

5.1.1 Introduction

Contactless respiration rate detection is a critical aspect of healthcare and well-being assessment,
offering valuable insights into an individual’s physiological state. Traditionally, respiration rate
measurements have relied on contact-based methods, such as chest straps and piezoelectric sen-
sors [150]. While these methods have demonstrated accuracy, they are often intrusive, uncom-
fortable, and may disrupt the natural breathing pattern. In response to these limitations, there is a
growing interest in non-contact methods for respiration rate monitoring, utilizing advanced tech-
nologies like radar and machine learning [151]. In this context, radar technology has emerged as

64
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Figure 5.1: Respiration rate variability test for one minute at every ten seconds interval.

a promising candidate, offering the ability to remotely and accurately measure respiration rates
without the need for physical contact.
This work presents an investigation into the utilization of Ultra-Wideband (UWB) radar tech-
nology for the detection of respiration rate variability (Fig. 5.1), focusing on its potential to
provide reliable and unobtrusive monitoring. UWB radar, characterized by its ultra-short pulses
and broad bandwidth, offers several advantages for respiration rate monitoring. It provides high
resolution in both time and frequency domains, making it capable of capturing subtle chest wall
movements associated with respiration. Moreover, UWB radar is well-suited for non-contact
applications, as it can penetrate clothing and even through-wall structures, making it a versatile
tool for remote physiological monitoring [152].
While UWB radar technology holds significant promise, its effective utilization for respiration
rate variability detection relies not only on its hardware capabilities but also on the development
of robust signal processing and machine learning techniques. These techniques must accurately
extract and analyze the respiration-induced signal from radar data, mitigate environmental inter-
ference, and provide real-time and precise respiration rate estimations. Moreover, understand-
ing the limitations and challenges associated with UWB radar-based respiration monitoring is
essential for its successful application in healthcare, patient monitoring, and even in-home set-
tings [85]. To the best of our knowledge, we made following significant contributions to this
work:
1. We make use of UWB radar system for adults’ respiration rate variability detection for the
first time.
2. We applied three deep learning models for respiration rate variabilities detection and got
maximum accuracy so far with 100% results for VGG16, 93.3% for ResNet50 and 86.6% for
Inception V3.
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Table 5.1: Summary of papers that used radar technology for respiration rate detection in recent
years.

Reference Year Sensing
technology

Radar Fre-
quency

Human Vitals Accuracy
(%)

Respiration
variability

Hernandez et
al. [153]

2022 Doppler
radar

70 MHz to
6 GHz

Respiration rate de-
tection

NA No.

Widiyasari et
al. [154]

2022 FMCW
radar

60 GHz Respiration rate de-
tection

NA No.

Siddiqui et al.
[155]

2022 UWB radar 8.748 GHz Respiration rate de-
tection

93 No.

Song et
al. [156]

2023 FMCW
radar

77 GHz Respiration rate de-
tection

NA No.

Han et al. [157] 2022 UWB radar 6.3–8 GHz Respiration rate de-
tection

95.02 No.

Ebrahim et al.
[158]

2023 CW radar 875 MHz Respiration rate de-
tection

NA No.

This work 2023 UWB radar 7.29 or
8.748 GHz

Respiration rate de-
tection

100 Yes.

5.1.2 Related Work

The exploitation of radar technology for respiration rate detection has gained significant interest
in recent years, with various radar types and methodologies were explored. We review several
relevant papers that focus on radar-based respiration rate monitoring while conferring radar type
used for respiration rate detection, radar frequency, respiration rate accuracy, if paper discussed
respiration rate variability, error in respiration rate, number of subjects used for respiration rate
detection and highlighted some limitations from following papers given in Table 5.1. Hernandez
et al. [153] developed a method for respiration rate detection by using Doppler radar and Em-
pirical Modal Decomposition. While their work primarily employed Doppler radar, the radar
frequency varies from 70 MHz to 6 GHz while respiration rate accuracy was not explicitly men-
tioned in the paper. The authors discussed the incorporation of radar data into their respiration
rate estimation process. A potential limitation of their methodology is the lack of specificity
regarding radar parameters and the absence of a detailed discussion on error in respiration rate
estimation. Widiyasari et al. [154] introduced contactless respiratory rate monitoring using 60
GHz Frequency-Modulated Continuous Wave (FMCW) radar.
Siddiqui et al. [155] focused on respiration-based chronic obstructive pulmonary disease (COPD)
detection by using 8.748 GHz UWB radar combined with machine learning techniques. The pa-
per lack of discussion on the generalizability of their model to different subjects in different
environments, which could affect the accuracy of COPD detection. Song et al. [156] introduced
non-contact human respiratory rate measurement based on the fusion of video and 77 GHz
FMCW radar information. A limitation of their work is the complexity of the fusion process,
which might introduce additional sources of error, and the sensitivity of video-based techniques
to lighting conditions. Han et al. [157] proposed real-time contactless respiration monitoring
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from 6.3 to 8 GHz UWB radar along image processing method. This method needs for clear
line-of-sight between the radar sensor and the subject, which could limit its applicability in cer-
tain scenarios. Ebrahim et al. [158] developed a low-frequency portable continuous wave radar
system for vital signs monitoring. Radar frequency is 875 MHz, it highlighted the use of contin-
uous wave radar for vital signs monitoring, including respiration rate. A limitation of their work
might be the lower resolution and penetration capabilities associated with low-frequency radar,
which could affect its accuracy in certain situations.
Most of the work demonstrate the growing interest in radar-based respiration rate monitoring,
employing various radar types and methodologies [159]. However, the specific radar type, fre-
quency and respiration rate accuracy vary across these studies. Limitations include the lack of
detail in radar specifications and potential challenges related to environmental factors and data
fusion techniques [136, 145, 160, 161].

5.1.3 Methodology

Experimental Setup and Data Collection

Our data collection setup, as seen in Fig. 5.2, includes XeThru X4, a low-power 7.29 to 8.748
GHz NOVELDA ultra wideband radar system on chip (SoC) with center frequency in C or X-
Band. The transmitters bandwidth is up to 1.5 GHz. This UWB radar can detects human vitals
by detecting all major and minor movements inside human body.
Radar is attached on a tripod stand for ease of different positions. A micro USB cable connect
radar with laptop for radar parameters adjustment and data transfer from radar board to laptop

Figure 5.2: Experimental setup and data collection environment.
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Figure 5.3: Magnitude and phase extracted from raw data in Fig. 5.3a, and filtered phase data
for respiration rate in Fig. 5.3b.

as given in Fig. 5.2. There are two frequency ranges 7.29 GHz and 8.748 GHZ while maximum
bandwidth is 1.5 GHz for data collection parameters adjustment. We used high frequency band
8.748 GHz and Radar data type baseband signal (BB) while detection zone has set to 1.5 meter
along the radar line of sight. We located data collection setup in communication sensing and
imaging (CSI) lab on level six, James Watt School of Engineering in University of Glasgow.
Experiment environment setup selected considering other people flow in the room kept normal
so experimental setup comparable to healthcare canters where healthcare staff kept around the
subject and radar reading does not change with others nearby influence outside the detection
zone.

Data Pre-Processing and Deep Learning

In this section we present a comprehensive data collection and preprocessing details for the eval-
uation of respiration rate variability using UWB radar data. The radar data is acquired through
a USB micro cable and initially received in the form of .DAT files, representing complex In-
phase/Quadrature (I/Q) data as given in Fig. 5.3a. The data processing workflow encompasses
several key steps to ensure the extraction of accurate and meaningful respiration waveforms as
shown in Fig. 5.3b.
First, the raw radar data is organized into discrete frames, with a frame rate of 17 frames per
second. This step is essential for segmenting the continuous data stream into manageable units
for further analysis. Subsequently, the complex I/Q data is separated into its phase and mag-
nitude components. This separation enables the isolation of amplitude and phase information,
facilitating more in-depth analysis, can be seen in Fig. 5.3a. To conduct respiration rate vari-
ability testing, a total of 90 samples were collected, categorized into three distinct respiration
rate categories: slow, normal, and fast. Each sample has a fixed duration of 30 seconds, ensuring
consistency in the dataset. These categories represent different respiration patterns, allowing for
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(a) Fast Breathing (b) Normal Breathing (c) Slow Breathing

Figure 5.4: Spectrogram for: (a) Fast breathing; (b) Normal breathing; (c) Slow breathing.

(a) vgg16 (b) Inception V3 (c) ResNet50

Figure 5.5: Confusion matrix for VGG16 in Fig. 5.5a, for Inception V3 in Fig. 5.5b and for
ResNet50 is shown in Fig. 5.5c.

comprehensive analysis of variability.
The preprocessing also incorporates a low-pass filter to eliminate high-frequency noise from the
data. This step is critical for improving data quality by retaining the essential low-frequency
respiration components while removing unwanted noise. A thorough data quality check was
conducted to ensure the reliability of the dataset. The examination revealed that there were
no missing values or data repetitions in any of the 90 data files, underscoring the reliability of
the collected data. To get frequency characteristics of the radar dataset, both first and second-
order Fast Fourier Transforms (FFTs) were applied. FFT is a powerful tool for transforming
time-domain data into the frequency domain, enabling the identification of relevant frequency
components associated with respiration. Following data preprocessing (Fig. 5.3) and the gen-
eration of spectrograms (Fig. 5.4), the dataset was split into 80% for training and 20% for
testing to ensure robust model assessment. The spectrograms were then taken as an input for the
deep learning pre-trained models such as VGG16, Inception V3, and ResNet50. The detailed
parameters configurations for each model were meticulously given in Table 5.2.

5.1.4 Results and Discussions

Experiments were conducted using a test and train-split methodology, where 80% of the data
served as training data, and the remaining 20% served as testing data. Pretrained models, namely
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Table 5.2: Parameter settings used for deep learning models.

DL Model Parameters Settings

VGG16

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
Layers

0.0001
32
Adam
Cross-entropy
50
30
16

Inception V3

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
Layers

0.0001
32
Adam
Cross-entropy
50
30
48

ResNet50

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
Layers

0.0001
32
Adam
Cross-entropy
50
60
50

VGG16, Inception V3, and ResNet50, were trained for 50 epochs. The optimizer used was
Adamax, with a learning rate set to 0.001. The outcomes of the experiments are given in Fig.
5.5a, 5.5b, and 5.5c.

For VGG16, as depicted in Fig. 5.5a, all classes achieve perfect 100% accuracy.
In the case of Inception V3, represented in Fig. 5.5b, the Fast class attains 100% classifi-

cation accuracy, while Normal and Slow exhibit 80% classification accuracy due to their 20%
similarity with each other.

With ResNet50, illustrated in Fig. 5.5c, all classes are accurately classified, with the excep-
tion of Fast due to its 17% similarity with Normal.

Table 5.3 displays the overall accuracy, precision, recall, and F1-score for the considered
DL models. The table clearly indicates that VGG16 outperforms Inception V3 and ResNet50,
achieving a remarkable overall test accuracy of 100%.

5.1.5 Summary

Our work has demonstrated the efficacy of Ultra-Wideband radar, operating within the C/X-
Band frequency range with a substantial 1.5 GHz bandwidth. This radar system, equipped to
detect human respiration variability through intricate chest micro movements. Our experimental
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Table 5.3: Evaluation of resulting metrics, encompassing accuracy, recall, precision, and F1-
score, conducted for various Deep Learning models for respiration rate variability testing.

DL Models Precision Recall F1-Score Accuracy (%)
VGG16 1.00 1.00 1.00 100
Inception V3 0.87 0.87 0.87 86.6
ResNet50 0.94 0.93 0.93 93.3

environment accurately mirrors healthcare scenarios, ensuring data reliability by mitigating ex-
ternal influences. The preprocessing technique, encompassing frame division, filtering, and fre-
quency analysis, have successfully extracted refined respiration waveforms from radar datasets.
Deep learning models, including VGG16, Inception V3, and ResNet50, has significantly in-
creased the scope of our analysis, offering insights into respiration rate variability. This research
is poised to contribute to the advancement of non-invasive healthcare monitoring, providing a
reliable methodology for assessing respiration rate variability tests in clinical settings.

5.2 Impact of Breathing Rate Variability on Heart Rate Esti-
mation via Radar

This work explores the influence of breathing rate variability on heart rate estimation through
UWB radar sensing. The study leverages a low-power ultra-wideband radar system operating in
the 7.29 to 8.748 GHz range with a 1.5 GHz bandwidth. Through meticulous data pre-processing
and various deep learning models, the study classifies respiration rates into slow, normal, and
fast categories. The results showcase the effectiveness of models such as MobileNet, ResNet50,
and VGG19, achieving an impressive overall test accuracy of 93.3%. This research contributes
to advancing the application of radar technology in the precise detection of vital signs, offering
potential implications for non-invasive health monitoring.

5.2.1 Introduction and Related Work

The exploitation of radar technology for respiration rate detection has gained significant inter-
est in recent years, with various radar types and methodologies were explored [85, 145, 150].
We review several relevant papers that focus on radar-based respiration rate monitoring while
conferring radar type used for respiration rate detection, radar frequency, respiration rate ac-
curacy, if the paper discussed respiration rate variability, error in respiration rate, number of
subjects used for respiration rate detection, and highlighted some limitations from the follow-
ing papers [136, 147, 158, 160, 162, 163] given in Table 5.4. This work explores the intricate
relationship between breathing rate variability and heart rate estimation using Ultra-Wideband
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References Year Sensing Technology Radar Frequency Human Vitals Long Term Monitoring Accuracy(%)
Li et al. [162] 2009 Doppler Radar 10GHz Heart rate and Respiration rate No NA
farooq et al. [147] 2010 UWB Radar 3.1 GHz to 10.6 GHz Heart rate and Respiration rate No NA
Alizadeh et al. [160] 2019 FMCW Radar 77 GHz Heart rate and Respiration rate No 80-94
Wang et al. [163] 2015 FMCW Radar 80 GHz Heart rate and Respiration rate Yes 87.2-91.08
Ebrahim et al. [158] 2023 CW sub GHz to 12 GHz Heart rate and Respiration rate No NA
This work 2023 UWB Radar 7.29 GHz Heart rate and Respiration rate Yes 94

Table 5.4: Summary of recent and past papers utilizing radar technology for vital signs detection.

radar sensing. Through meticulous data pre-processing and deployment of diverse deep learning
models, the research aims to classify respiration rates into slow, normal, and fast categories and
observe its impact on non-invasive heart rate detection. This research significantly advances the
application of radar technology for precise human vital signs detection, facilitating contactless
sensing in non-invasive healthcare monitoring.

5.2.2 Methodology

Experimental Setup and Data Collection

The data collection setup includes a low-power NOVELDA ultra-wideband radar system oper-
ating in the 7.29 to 8.748 GHz range. With a 1.5 GHz bandwidth, it detects human vitals by
sensing both major and minor movements within the body. The radar, mounted on a tripod, con-
nects to a laptop for parameter adjustment and data transfer via a micro-USB cable. Distance
between radar and target is set 1.5 meter along the radar line of sight. While doing the exper-
iment considering healthcare setup in view, the setup considers normal room traffic, ensuring
radar readings remain unaffected by other people outside the detection zone.

Data Pre-Processing and Deep Learning

This section describes in details data pre-processing steps for evaluating respiration rate variabil-
ity using UWB radar dataset Fig. 5.6. Raw data comes from radar in .DAT files, then organized
into 17 frames per second. The complex I/Q data undergoes separation into phase and magni-
tude components, allowing for detailed amplitude and phase analysis. For heart rate monitoring
during breathing tests, datasets categorized into slow, normal, and fast respiration rates Fig. 5.4,
each lasting 500 seconds, ensure dataset consistency.

A low-pass filter is applied to eliminate high-frequency noise, enhancing data quality. A
thorough quality check confirms data reliability, with no missing values or data repetitions in all
data files. Frequency characteristics are obtained using Fast Fourier Transforms, and the dataset
is split into 80% for training and 20% for testing. Spectrograms (Fig. 5.4) serve as input for a
deep learning pre-trained model, with detailed parameter configurations provided in a table for
each model.



73

0      0.4    0.8     1.2    1.6    2.0     2.4    2.8     3.2    3.6    4.0     4.4     4.8    5.2    5.6     6.0    6.4    6.8    7.2    7.6     8.0   8.2        

Time (minutes)

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

Raw data Heart rate Breathing rate

(a) Raw data, heart rate, and breathing rate wave forms.

1.05

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

Raw data Heart rate Breathing rate

0.00 1.05 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Time (minutes)

(b) Heart rate on normal breathing.

Figure 5.6: Filtered raw data, heart rate and breathing rate waveforms. Relevant spectrograms
for heart rate on slow breathing in Fig. 5.4c, normal breathing in Fig. 5.4b and for fast breathing
is shown in Fig. 5.4a.

(a) Slow Breathing (b) Normal Breathing (c) Fast Breathing

Figure 5.7: Spectrogram for slow breathing is in Fig. 5.4c, for normal breathing is in Fig. 5.4b
and for fast breathing is shown in Fig. 5.4a.

Performance Matrix

The performance evaluation of deep learning models in classifying three sub-groups (Fast, Nor-
mal, and Slow), as well as the combined dataset, is based on several common classification
metrics, including weighted average accuracy, precision, recall, and F1-score.

5.2.3 Results and Discussions

The experiments followed a train-test split approach, where 80% of the data was designated for
training purposes, while the remaining 20% was reserved for testing. Multiple deep learning
models, such as InceptionV3, VGG16, MobileNet, ResNet50, VGG19, and EfficientNet, were
applied to the UWB radar datasets. The outcomes of these experiments are detailed in Table 5.5.
Using InceptionV3, Slow is correctly classified as 100% different forms of respiration, except
for Fast and Normal. Fast exhibits a 25% similarity with Normal and a 13% similarity with Slow.
Likewise, Normal bears a 25% resemblance to Slow. For VGG16, Slow is classified at 100%,
except for Fast and Normal. Fast exhibits a 29% similarity with Normal, while Normal shares a
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Table 5.5: Results from different deep learning models for classification of respiration rate in-
cluding true positive rate, false positive rate, average-precision (p), average-recall (r), averaage-
f1-score (f) and percentage accuracy (a).

DL Models Classes P R F AFast Normal Slow

InceptionV3 TPR 62.0 75.0 100
0.79 0.73 0.73 73.3FPR 38.0 25.0 0.0

VGG16 TPR 71.0 75.0 100
0.82 0.80 0.80 80.0FPR 29.0 25.0 0.0

MobileNet TPR 83.0 100 100
0.94 0.93 0.93 93.3FPR 17.0 0.0 0.0

ResNet50 TPR 83.0 100 100
0.94 0.93 0.93 93.3FPR 17.0 0.0 0.0

VGG19 TPR 100 83.0 100
0.94 0.93 0.93 93.3FPR 0.0 17.0 0.0

EfficientNet TPR 71.0 100 100
0.90 0.87 0.86 86.6FPR 29.0 0.0 0.0

25% similarity with Slow. In the case of MobileNet and ResNet50, all the classes are correctly
classified except for Fast, which has a 17% similarity with Normal. Using VGG19 Fast and
Slow are accurately classified around 100% except Normal has 17% resemblance with Slow. In
the case of EfficientNet, Normal and Slow are accurately classified with 100% accuracy, except
for Fast, which has a 29% resemblance to Normal. Table 5.5 displays the overall accuracy,
precision, recall, and F1-score of the DL models being evaluated. The table reveals that, in the
combined data set, MobileNet, ResNet50 and VGG19 outperform other algorithms, achieving
an impressive overall test precision of 93. 3% in terms of average precision, average recall,
average F1 score and accuracy.

5.2.4 Summary

This work investigates the impact of breathing rate variability on heart rate estimation using
UWB radar sensing. Employing a low-power ultra-wideband radar system with a 1.5 GHz band-
width, the study classifies respiration rates into slow, normal and fast categories, exploring their
influence on heart rate. Results highlight the effectiveness of models like MobileNet, ResNet50,
and VGG19, achieving an impressive overall test accuracy of 93.3%. This research advances the
application of radar technology in the precise detection of vital signs, with potential implications
for non-invasive health monitoring.



Chapter 6

NextGen Heart Sounds Listening Without
Touch: Contactless Stethoscope

6.1 Contactless Heart Sound detection using Advanced Sig-
nal Processing Exploiting Radar Signals

Contactless vital signs detection has the potential to advance healthcare by offering precise and
convenient patient monitoring. This groundbreaking approach not only streamlines the moni-
toring process, but also allows continuous, real-time assessment of vital signs, allowing early
detection of anomalies and prompt intervention. This work presents a novel framework for con-
tactless vital signs detection using continuous-wave (CW) radar and advanced signal processing
techniques. We achieved unprecedented precision in capturing 1,261 samples for radar based
heart sound waveforms compared to the ground truth ECG signal. Further, our heart sounds
method yields highly accurate human heart pulse readings, surpassing previous benchmarks
with a mean absolute percentage error (MAPE) of 0.0129 and mean absolute error (MAE) be-
low one (0.8712). In addition, we derived heart rates from the heart sound waveforms and com-
pare them with conventional radar-derived heart rates and ground truth ECG signal. Through
analysis, we identified regions where conventional radar based methods exhibit limitations. Our
approach demonstrates minimal errors and superior accuracy across all heart rate states, which
can potentially set new standards for noninvasive vital sign monitoring.

6.2 Introduction

Contactless vital signs detection has potential to advance healthcare by offering precise and con-
venient patient monitoring. This groundbreaking approach transforms the monitoring process by
enabling seamless, contactless tracking of vital signs. It facilitates continuous, real-time assess-
ment, enhancing the ability to detect abnormalities early and intervene promptly. It has immense
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potential in remote patient monitoring, empowering individuals to proactively manage their
health from the comfort of their homes. As this technology continues to evolve [147, 164, 165],
it promises to improve healthcare delivery, improve patient diagnostics, and ultimately redefine
the standard of care in modern practice.

Conventionally, pulse rate (PR) typically has been measured at the pulse points in the body,
such as the wrist or neck, reflects the number of times the heart beats per minute, providing
essential information about cardiac function and blood circulation [166–168]. Heart rate (HR),
often assessed by auscultation with a stethoscope or by using specialised equipment such as elec-
trocardiography (ECG), offers a more comprehensive understanding of cardiac rhythm and elec-
trical activity [167–170]. The breathing rate, observed by counting the number of breaths taken
per minute, indicates respiratory efficiency and can help identify respiratory distress or abnor-
malities [85, 171]. Although these techniques are effective, they typically require physical con-
tact with the patient, which can be uncomfortable or impractical in certain scenarios [158, 172].
Therefore, the development of contactless monitoring methods for pulse, heart, and respiratory
rates presents an exciting opportunity to improve patient comfort and streamline healthcare de-
livery.

Contactless monitoring approaches represent a transformative shift in healthcare technol-
ogy, offering innovative solutions that provide physiological data efficiently and conveniently.
These approaches use various technologies such as infrared sensors, radar systems, and camera-
based devices to capture and analyse physiological parameters remotely [145]. Infrared sensor
enables temperature measurement by detecting infrared radiation emitted by the body’s sur-
face [173]. Camera-based techniques can analyse video footage to estimate vital signs based
on subtle changes in skin colour, chest movements, or pulse wave patterns [174]. Radar-based
systems can track tiny movements of the body, allowing an accurate assessment of pulse rate
and respiratory rate without any physical sensors attached to the patient [175]. By eliminat-
ing the need for physical contact, contactless monitoring approaches not only enhance patient
comfort but also offer potential advantages in infection control, remote patient monitoring, and
healthcare accessibility.

As compared to the other contactless sensing techniques, radar stands out as a dominant tech-
nique, characterized by its better performance and robust results [136]. Using electromagnetic
waves, the radar system excels at capturing complicated physiological movements, penetrates
through clothing and environmental obstructions, and ensures reliable monitoring in various
clinical settings [176, 177]. Through advanced signal processing, radar can accurately extract
vital signs information such as pulse rate, respiratory rate, and heart sounds. Its ability to cap-
ture even the smallest movements of the chest or fluctuations in heartbeat frequency sets radar
as a pivotal tool in healthcare applications [178], allowing clinicians to access comprehensive
physiological data remotely and in real time, thus improving diagnostic precision, clinical deci-
sion making, and patient care outcomes. In radars, lower end microwave frequency ranges can
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penetrate clothing and non-metallic materials while being reflected by the human body. This al-
lows radar systems to capture data through barriers, providing non-intrusive monitoring without
requiring direct contact with the skin [179]. This range interacts safely with biological tissues
in ways that are conducive to monitoring vital signs [180]. They are less absorbed by tissues
compared to higher frequencies like millimetre waves, reducing potential heating effects and
ensuring safety during prolonged monitoring periods in clinical settings. The radar frequency
in the range is often regulated and allocated for medical and scientific applications, ensuring
compliance with international safety standards [181], and minimising interference with other
wireless devices.

Gold standard vital signs monitoring methods, particularly ECG, remain the cornerstone of
accurate measurement of cardiac activity and serve as a reliable reference for evaluating the
performance of contactless monitoring systems. Comparisons with ECG provide information
on the precision and sensitivity of contactless system, facilitating their integration into clinical
practice. However, the widespread adoption of contactless radar systems in clinical settings
requires rigorous validation against gold standard methods to ensure precision and reliability
[182].

While [183] and [184] proposed radar-based systems for contactless vital signs monitor-
ing, utilizing Doppler and MIMO radar respectively, they lacked detailed accuracy assessment
and comparison with ground truth measurements. Similarly, reviews by [156] and [185] dis-
cussed radar technologies for vital sign monitoring but lacked specific experimental data. In
contrast, [186] explored radar-based cardiac motion analysis, yet lacked detailed accuracy as-
sessments. Meanwhile, [187] provided insights into radar-based vital sign detection methods but
lacked experimental data. Reviews by [188], [189], and [190] addressed radar applications, but
not traditional vital sign monitoring. These gaps highlight the need for more focused research
in radar-based vital sign monitoring [191–195]. Overall, while these papers provide insights
from various radar technologies and their potential for vital sign monitoring, many lack specific
experimental data, accuracy metrics, and proper comparisons including all heart rate states with
some gold standard ground truth, as tabulated in TABLE 6.1. There’s a need for more practi-
cal studies with detailed methodologies and evaluations to assess the accuracy and reliability of
radar-based vital signs monitoring systems in real-world applications.

In this work, we used a 24 GHz continuous-wave (CW) radar to derive contactless heart
sounds, pulse, and heart rate. We used the subscripts "CON" and "HS" to denote the radar-
derived heart rate (HR) and pulse rate (PR) from conventional (CON) methods and heart sounds
(HS), respectively. Additionally, we employed the subscript "ECG" to indicate the gold standard
ECG signal-derived pulse rate and heart rate as the ground truth. In the first step, we measure
and monitor pulse rate (PRCON) of multiple male and female adult participants by using radar
signal and convert them to heart rate (HRCON), compare them with a three-lead ECG ground
truth (PRECG,HRECG), and measure the accuracy of the system through performance metrics
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as illustrated in flowchart (Fig. 6.3). Second step, we find heart sounds from the same radar
data and convert it into pulse (PRHS) and find heart rate (HRHS). We again compared the HRHS

with the HRECG and measured the precision through performance metrics. In the third step, we
compared the accuracy of the whole system with the accuracy of the two subsystems measured
in the first and second step, the whole process is illustrated in Fig. 6.1 and flowchart in Fig.
6.3. Finally, we collected data from male and female adult participants and applied machine
learning classification techniques to see overall accuracy of the whole system. Through rigorous
validation of measured heart rate from different techniques against ECG, we aim to demonstrate
the reliability and accuracy of the contactless vital signs monitoring system, paving the way for
their integration into clinical practice and healthcare. We made the following contributions for
the first of time to the best of our knowledge:

1. We pioneered the development of a cutting-edge contactless framework using continuous-
wave radar and advanced signal processing techniques to meticulously capture heart sounds
waveforms, achieving unprecedented precision compared to the gold standard ECG ground
truth.

2. Our approach yielded highly precise human heart pulse readings derived from the heart
sounds waveform, surpassing all previous accuracy benchmarks with an exceptional mean
absolute percentage error (MAPE) of 0.0129 and mean absolute error (MAE) of less than
one (0.8712) as listed in TABLE 6.1.

3. Furthermore, we were the first to compare heart rates derived from our state-of-the-art
radar-based heart sound waveforms with those generated from conventional radar-based
method and to further compare both contactless heart rate methods against the gold stan-
dard ECG ground truth.

4. We categorized pulse and heart rate data from both the state-of-the-art heart sounds and
conventional radar methods into resting, anxiety, and transition states, dissecting them into
six distinct error categories. Through rigorous analysis, we pinpoint areas within heart rate
states where conventional contactless radar methods faltered in precise measurement.

5. Our results demonstrated the superior performance of our state-of-the-art heart sounds
method across all heart rate states, boasting minimal errors and unparalleled accuracy
compared to existing state-of-the-art methods. Additionally, we identified specific regions
where pulse and heart rate measurements from conventional radar methods exhibited in-
accuracies.

The overall structure of the work is shown in Fig. 6.1 and 6.3. We already have covered an
overview of conventional and contactless vital signs monitoring approaches in the Introduc-
tion section 7.1.1. We reviewed some of the most relevant recent work related to the use of
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Figure 6.1: Overview of the schematic illustrating the workflow from raw data obtained from
continuous-wave radar and electrocardiogram (ECG) signals, leading to the extraction of heart
sounds, pulse signals from radar, and R waves from ECG. Subsequently, all three signals are
processed to derive heart rates (HR1, HR2 and HR3), leading to subsequent stages of large data
collection for analysis, machine learning, and performance metric analysis of results.

radar in contactless vital signs monitoring, tabulated in TABLE 6.1. The experimental and data
collection setup has been described in section 6.3 and 6.4, respectively. Raw ECG data, data
preprocessing, and extraction of vital signs from ECG data have been given in detail in section
6.3 and illustrated in Figs. 6.1, 6.5 and 6.4. Raw radar data, data preprocessing, heart sounds
detection, pulse extraction, and heart rate calculation are detailed in Section 6.4 and illustrated
in Figs. 6.6, 6.7 and 6.8, respectively.

Table 6.1: Accuracy comparison of heart rate vs heart sound estimation under noisy conditions

References Human Vitals Sensing Technology Heart sounds Ground truth Accuracy(%)

Wu et al. [183] ECG and respiration mmWave Radar No ECG Not given
Song et al. [156] Respiratory rate measurement FMCW Radar No No Not mentioned explicitly
Liu et al. [185] Heart rate, respiratory rate FMCW mm-Wave Radar No No Not mentioned explicitly
Brulc et al. [186] Cardiac signature detection FMCW Radar No ECG Not given
Pan et al. [187] Vital sign detection UWB Radar No ECG 93
Pervez et al. [188] Infant apnea detection K-Band Biomedical Radar No No 96
Wang et al. [189] Vital sign monitoring mmWave Radar No No Not given
Hur et al. [190] Heart rate variability MIMO FMCW Radar No ECG 97
Islam et al. [196] Heartbeat CW Radar No ECG 95.27
Sardanah et al. [197] Cardiorespiratory monitoring mmWave Radar No ECG 96
This work Heart sounds, pulse, and heart rate CW Radar Yes ECG 98.7601 (MAE: 0.8712)

6.3 Vital Signs Extraction from ECG Data

6.3.1 Experimental Setup

In traditional healthcare environments, where vital tests are conducted involving healthcare staff
and patients, it is crucial to consider potential interference when setting up experiments. This
includes recognising that time-of-flight signals can reflect off moving objects such as healthcare
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staff, relatives, caregivers, and chaperones, in addition to the intended target, the patient. More-
over, modern vitals data collection machines are portable and facilitate recordings in a wide
variety of environments, including hospitals, surgeries, ambulances, sports facilities, and pa-
tients’ homes. The challenge is to ensure that high-quality and consistent recording techniques
are maintained regardless of the clinical scenario. Data collection not performed to appropriate
standards can result in incorrect diagnoses and inappropriate treatments. Considering the actual
healthcare environment, the experimental setup was arranged in a room where people other than
the target person could move around freely. Although we can record radar signals for vitals
detection from an individual in various poses such as sitting, walking, or lying down, however,
combining ECG with other monitoring methods, such as echocardiography or radar-based heart
rate monitoring, requires the patient to be in a lying position to ensure that all measurements
are taken under similar conditions, thereby improving data correlation. The experimental setup
illustrated in Fig. 6.2 consisted of an adjustable bed, a radar system, a set of ECG electrodes,
and a Latitude 5421 laptop. The laptop, equipped with an 11th Gen Intel® Core™ i7-11850H
processor (24 MB Cache, 8 cores, 16 threads, 2.50 GHz to 4.80 GHz), 16.0 GB RAM, and a
37.5 W power supply, was used to power up and control the hardware during the experiments.
We used Sykno 24 GHz continuous-wave radar and ECG set as illustrated in Fig. 6.2. The radar
was positioned one meter away from the target person in a normal room environment. This setup
allowed for the precise collection and analysis of radar and ECG data. Data collection involved
six participants, comprising both males and females. For each participant, data was recorded in
three different time segments: 20 seconds, 1 minute, and 5 minutes. In total, 50 data files were
collected and subsequently used for classification and error analysis. The experiments for the
study were approved ethically by the Research Ethics Committee (approval nos.: 300200232,
300190109) of the University of Glasgow.

6.3.2 ECG Raw Data

In three electrode ECG setup, one electrode serves as a common electrode for both ADC chan-
nels and the RA, LA and LL electrodes indicate the right arm, left arm, and left leg, respectively,
as given in Fig. 6.1. For reducing noise due to unexpected movements in electrodes connecting
wires, and for best signal quality, RA, the yellow electrode placed within the frame of rib cage,
right under the clavicle near shoulder. LA, the red electrode is placed below the left clavicle,
which is at the same level as the red electrode, and LL, the green electrode is located on the left
side, under the pectoral muscles, lower edge of the left rib cage, as shown in Fig. 6.1. Data
from the ADC channels stored in a csv file keeping same sampling rate and same time stamp
as in the radar raw data case, sampling frequency ( f ) is 1 kHz. However, in later sections, we
will see that the ECG and radar data have synchronised time stamp, since the radar data is the
result of mechanical activities happening inside the body, but the ECG data are the result of
electrical activities in the heart, so the radar data lag in a few milliseconds as compared to the
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Figure 6.2: A set of figures illustrating the experimental setup for data collection, including an
adjustable medical standard bed, radar, USB connecting cable for radar, a set of ECG electrodes,
and a laptop. (a) The overall experimental setup. (b) A subject lying under the radar with ECG
electrodes connected via hanging wires (electrode setup on the body shown in Fig. 1). (c) Back
and side views of the radar, the radar’s USB connecting cable, and the ECG electrodes.

ECG electrode data. This is quite obvious, as there is a small difference in both the ECG and the
transmission time of the radar signal. The raw ECG data power spectrum is shown in Fig. 6.4.

6.3.3 Pulse Extraction

ECG data power spectrum, as shown in Fig. 6.4, contains 50 Hz supply noise [198], then its
second and third harmonics at 100 Hz and 150 Hz respectively. We designed an infinite impulse
response (IIR) notch filter to remove these frequency components and then designed a second-
order Butterworth bandpass filter with a cutoff high-frequency pass band greater than 3 Hz and
a low-frequency pass band less than the 40 Hz range [199] for the refined ECG waveform, as
shown in Fig. 6.5.
R wave peak detection: The R wave represents the depolarisation of the ventricles of the heart
and is the most prominent feature of the ECG signal for pulse detection [199], which further
leads to heart rate calculations. Peak detection involves finding local maxima in the signal that
exceeds a certain minimum threshold. Peaks corresponding to R waves are typically the highest
peaks in the ECG signal, as shown in Fig. 6.5.
R wave intervals: After identifying the R wave peaks, the R wave intervals (RR intervals) are
calculated. The RR interval represents the time between successive R wave peaks and is a
fundamental measure in heart rate calculations. Mathematically, the RR interval are the time
difference between consecutive R wave peaks. If R peaks are detected at the sample points
R1,R2,R3, . . . ,Rn, then the RR interval is calculated RRi = Ri+1 −Ri, where RRi represents the
ith RR interval.
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6.4 Vital Signs Extraction from Radar Data

6.4.1 Radar Raw Data

I vs Q Data

We utilized a 24 GHz continuous-wave radar with an ADC data rate of one thousand samples per
second. Consequently, the sampling frequency (f) is 1 kHz, and the wavelength (λ ) is calculated
as 3×108 ÷24×109. Initially, the baseband signal was extracted from the radar and converted
to millivolts (mV). This conversion process involves applying a scaling factor to relate the digital
values to voltage units. The in-phase (I) and quadrature (Q) components of "V," as seen in the
blue waveform in Fig. 6.6b, initially do not align with the origin (0,0). To rectify this, we

start

Radar raw data ECG raw data

data processing Heart sounds

Pulse from radar
(PRCON)

Pulse from heart
sounds (PRHS)

Heartrate 1
(HRCON)

Heartrate 2
(HRHS)

Heartrate 3
(HRECG)

Pulse from ECG 
(PRECG)
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Heart rate classification 
(resting, transition, anxiety)

Results and discussion

Error computation in each class of HRCON 
and HRHS with respect to ground truth HRECG

Error classes in HRCON and HRHS  
(exceptional, excellent, good, poor, worst, fail)

Figure 6.3: Flowchart illustrating the complete process employed for analyzing radar and ECG
signals. The radar data is divided into human pulse and heart sounds, leading to heart rates,
while the heart rate extracted from ECG data is used as the ground truth. Errors are computed
and further classified in all heart rate classes, and a performance matrix is presented in the results
section.
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computed the offsets in both the I and Q components. Using a scaling factor of ten points for
offset estimation, we subtracted these offsets from the raw data, resulting in centred data around
the origin. The balanced data are coloured orange on the graph of I vs. Q in Fig. 6.6b.

IQ vs Time

The length of the signal is determined by the number of data points and the sampling rate in
the raw data, which is then converted into a time series. The variation of the raw voltage in
millivolts (mV) in the I and Q components with respect to time (seconds) is depicted in Fig.
6.7a. Additionally, the raw displacement in millimeters (mm) from the baseband signal over
time is shown in Fig. 6.7b. These figures illustrate the radar’s sensitivity in capturing minute
movements occurring within the stationary human body, such as chest vibrations and mechanical
motions resulting from the opening and closing of the heart atrium.

Raw Displacement vs Time

The chest displacement resulting from respiration typically follows a rhythmic pattern that cor-
responds to the breathing cycle. In addition, the beating heart generates minor vibrations. When
the heart valves open and close, they emit sound waves that propagate through the chest cavity.
These vibrations can also be transmitted through the chest wall and detected by the radar, as
depicted in Fig. 6.7b. Vibrations attributed to heart sounds are typically more periodic and syn-
chronous with the cardiac cycle. Although both respiration and heart sounds can induce chest
vibrations, they exhibit distinct characteristics. The displacement (d) illustrated in Fig. 6.7b has
been formulated and plotted by using the following equations 6.1 and 6.2:

d = arctan2(
Qc

Ic
) · λ

4π f
(6.1)
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Figure 6.4: The raw data encompasses random noise, noise stemming from leads, and 50 Hz
power supply noise, including its 2nd and 3rd harmonics. The resultant filtered power spectrum
is depicted in blue here, with the processed ECG waveform illustrated in Fig. 6.5.
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Figure 6.5: ECG waveform after filtration and preprocessing presenting the enhanced clarity
and accuracy of the signal. The raw data and the power spectrum corresponding to this refined
waveform are depicted in Fig. 6.4, providing complementary information on the preprocessing
and spectral analysis procedures.

where,

λ =
3×108

24×109 m (6.2)
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Figure 6.7: In-phase and quadrature data, presented in millivolt units over time, are depicted
in Fig. 6.7a, while slow-time displacement versus time is shown in Fig. 6.7b. The basic heart
sound waveform is illustrated in blue, with its absolute envelope highlighting prominent peaks
depicted in orange in Fig. 6.7c.

QC represents the quadrature component of the centered data in V, while IC corresponds to the
in-phase component of the centered data in V. The frequency f is equal to 1 kHz.

6.4.2 Data Pre-processing

Filter radar data

Both the in-phase and quadrature components of radar data contain vital signs and heart sounds
information in their entirety. In our initial step, we meticulously process the data for pulse
detection, followed by their conversion to heart rate values. This conversion enables a direct
comparison with the ground truth ECG signal, facilitating an efficient evaluation of the relia-
bility and accuracy of the system. Since adult pulse signals typically fall within the frequency
range 0.5 to 10 Hz, a cutoff frequency of 10 Hz is selected to effectively encompass the pulse
signal bandwidth. The filter order is then determined using formula 6.3, taking into account the
desired cut-off frequency and the necessary stopband attenuation, ensuring optimal performance
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in capturing pulse signals [200].

n =
log
(√

100.1Amax−1√
100.1Amin−1

)
2 · log(ωc)

(6.3)

where n is filter order, Amax is maximum allowable passband ripples in dB, Amin is minimum
stopband attenuation in dB, and ωc is normalized cutoff frequency. The implementation of the
Butterworth filter is carried out using digital signal processing techniques. Subsequently, in the
second phase, radar data is processed to plot heart sounds and filter out the pulse signal from
heart sounds for heart rate calculation. This approach facilitates accurate heart rate computation
for subsequent comparison with the ECG ground truth. Similar to pulse detection, designing a
Butterworth filter for heart sounds detection involves careful consideration of design parameters.
Given the frequency range of heart sounds 20 to 200 Hz [201], a cutoff frequency of 200 Hz is
selected to effectively capture the relevant signal components. The filter order is determined us-
ing the formula 6.3, ensuring sufficient stopband attenuation. Implementation of the Butterworth
filter for heart sounds detection follows same signal processing as outlined for pulse detection,
ensuring accurate detection of heart sounds. After applying the filter to the radar data to isolate
heart sounds and eliminate pulse signals, the process of obtaining the pulse waveform involves
following process. First, the filtered data is analysed to identify characteristic features associ-
ated with each heart sound, such as peak amplitudes and intervals between peaks, Fig. 6.8(b).
Subsequently, these features are used to determine the time intervals between successive heart
beats, from which the pulse waveform is plotted. This calculation typically involves taking the
reciprocal of the average time interval between heart beats, which gives the heart rate in beats
per minute (BPM).
Peaks and Time Duration Between Peaks: We detect peaks in the signal x(t) corresponding to
each heartbeat. Data points P = {p1, p2, . . . , pn} denote the set of time instances in which peaks
are detected. The pulse is calculated as the reciprocal of the average time interval 1

∆̄t between
successive peaks, where ∆t is the average time interval between successive peaks, calculated as:

∆t =
1

n−1

n−1

∑
i=1

(pi+1 − pi) (6.4)

6.4.3 Heart Rate Formulation

Heart Rate From Heart Sounds

Initially, we generate a plot of heart sounds from the filtered radar data and envelope the heart
sound curve to facilitate the identification of peaks in the magnitude of heart sounds, along
with determining the time duration between consecutive peaks. The heart sound curve and its
envelope are depicted in Fig. 6.7c. The peaks and durations between consecutive peaks are
illustrated in Fig. 6.8(b) and Fig. 6.8(c), respectively. A noticeable observation is the slight
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Figure 6.8: This figure illustrates heart sounds waveform and resulting pulse rate waveforms
from radar processed data in comparison with gold standard ECG data. The dotted lines have
been generated from ECG R-wave peaks to compare pulse wave form generated from radar heart
sounds and direct direct radar data. Upper yellow part in figure (b) under the peaks is in the result
of heart sounds wave envelope which has been taken for upper half part of the magnitude.
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Table 6.2: Summary statistics of the whole dataset used for heart rate framework performance
evaluation.

Statistics PRCON PRHS PRECG PRHS error PRCON error

Count 1,261 1,261 1,261 1,261 1,261
Mean 65.47 72.05 72.04 0.94 14.93
Std 12.69 18.50 18.43 0.96 17.96
Min 32 57 58 0 0
25% 57 62 62 0 3
50% 63 64 64 1 8
75% 71 68 68 1 17
Max 119 120 120 3 83

time shift between the peaks of the ECG ground truth and the radar heart sound peaks. This
discrepancy is typical because the ECG signal is derived from the electrical activity of the heart,
which precedes the mechanical activity responsible for the generation of heart sounds. Despite
this time shift, the number of peaks remains consistent between the contactless radar data and
the ECG ground truth signal, ensuring the accuracy of the heart rate calculation. The heart rate
is calculated as the reciprocal of the average time interval between successive peaks, multiplied
by 60 to convert to beats per minute:

HR =
60
∆̄t

BPM (6.5)

Heart Rate From Radar Data

In addition to measuring heart rate from the heart sounds from radar data, we also directly
measure heart rate from the filtered radar data. This direct measurement entails calculating
peaks from the filtered radar data and determining the time duration between consecutive peaks
within the filtered radar data, as shown in Fig. 6.8(a).

6.5 Results and Discussions

The ECG serves as the gold standard reference for pulse and heart rate measurements due to its
inclusion of R-peaks, which correspond to pulse spikes. In Fig. 6.8(c), R-peaks are marked with
dotted lines, which also repeated in each sub figure of Fig. 6.8, providing a reference for ground
truth pulse occurrences. In Fig. 6.8(b), the largest peaks marked with red crosses represent the
first heart sound (S1). Similar to R-peaks in the ECG waveform, pulses occur at every S1 peak
indicated by the red cross. It is observed that pulse occurrence points in heart sounds lag
behind when compared with pulse occurrence points in ECG R-waves. However, the number
of peaks and the lag time interval remain the same, ensuring consistency in the pulse rate and
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Table 6.3: Accuracy classes and corresponding absolute error.

Accuracy Classes Absolute Error(AE) HRHS HRCON

Exceptional AE = 0 ✓ ✓
(97-100)% Excellent [1 - 2] ✓ ✓

Good (2 - 3] ✓ ✓

Poor (3 - 10] × ✓
(80-97)% Worst (10 - 20] × ✓

Fail AE > 20 × ✓
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Figure 6.9: In Fig. 6.9a, the majority of the data points correspond to the resting state, with
a smaller portion indicating the anxiety state, and the least amount representing the transition
state. Pulse rate cut-off points for each state under heart sound (HS) data are displayed in Fig.
6.9b, while direct radar pulse rate data along with its classes and cut-off points are presented in
Fig. 6.9c. Error state for each class and its two bonds has also been illustrated in all figures.

heart rate calculations. Fig. 6.8(a) displays a pulse waveform generated directly from the fil-
tered radar data, where pulse points occur at each peak in the pulse waveform. As a statistical
observation, the number of spikes in Fig. 6.8(a) matches the number of S1 heart sound peaks
and R-peaks in the ground truth ECG given in Fig. 6.8(b) and 6.8(c), respectively. Heart rate
was calculated from each waveform given in Fig. 6.8(a), 6.8(b), and 6.8(c) using the formula
provided in equation 6.5 and plotted in Fig. 6.8(d). It is evident that the heart rate displayed
on the Y-axis in Fig. 6.8(d) closely aligns with the ECG ground truth compared to the heart
rate calculated from the pulse plotted directly from the filtered radar data in the blue waveform.
For our conclusive performance evaluation, we gathered 50 datasets in three distinct time inter-
vals: 30, 60, and 300 seconds. To conduct a thorough analysis, we systematically assessed three
subsets of data independently to discern trends in short-term and long-term monitoring. Sub-
sequently, we pooled all datasets, totalling 1,261 samples, to gauge the comprehensive efficacy
of the prescribed framework. The collective dataset is presented in Fig. 6.9a, with correspond-
ing statistics provided in TABLE 6.2. The summary statistics of the dataset in the TABLE 6.2
include the total data count, mean, standard deviation, minimum, maximum, and the lower and
upper percentiles (25th and 75th percentiles, respectively). Furthermore, the 50th percentile is
equivalent to the median. Heart rate variation is primarily divided into two states: resting (60-80
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Figure 6.10: Fig. 6.10a illustrates the box plot for heart rate classes derived from heart sounds
data, while Fig. 6.10b displays the error class distribution under heart sounds data. In Fig. 6.10c,
the heart rate data obtained directly from radar pulses is depicted, along with its corresponding
error classes illustrated in Fig. 6.10d.
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Figure 6.11: The correlation between heart rate derived from heart sounds data and the gold
standard heart rate obtained from ECG, categorized by each heart rate class, is depicted in Fig.
6.11a. Similarly, the correlation with reference to each error state is illustrated in Fig. 6.11b.
Fig. 6.11c shows the correlation between the heart rate obtained directly from radar pulses
and the gold standard heart rate calculated from the ECG, classified by each heart rate class.
Consequently, Fig. 6.11d displays the correlation with reference to each class in the error state.
We see a strong correlation in heart rate derrived from heart sounds data.

bpm) and anxiety (100-130 bpm) [202, 203]. To account for changes from resting to anxiety,
we introduced a transition state (80-100 bpm) [203]. These states naturally occurred during data
collection and were identified during data analysis for error computation. Heart rate was finally
categorized into three groups: resting, transition, and anxiety. The range and quantity of data
within each class are depicted in Figs. 6.9b and 6.9c. TABLE 6.3 shows how we divided the
accuracy ranges into two groups: 80-97% and 97-100%. Each group is further divided into three
classes. For the 97-100% group, we named the classes "exceptional," "excellent," and "good."
For the 80-97% group, the classes are named "poor," "worst," and "fail." Furthermore, we as-
signed an absolute error range to each accuracy class and analysed which error class range lies in
contactless HRHS and HRCON. Data within each heart rate and error range class are illustrated
in Figs. 6.9b and 6.9c. The absolute error ranges for resting, transition, and anxiety states in
radar heart rate derived from heart sounds, and radar pulse rate concerning ECG ground truth,
are presented via box and whisker plots in Figs. 6.10a and 6.10b. The open circles outside the
whiskers, representing data points below the minimum and above the maximum, appear when
data density is very high near the mean, and a few points exhibit high variance. These outliers
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Figure 6.12: In Figs. 6.12a and 6.12b, the total error count and error range cutoffs, both lower
and upper bounds, are provided for each error class derived from direct radar pulse and heart
sounds data, respectively. In contrast, in Figs. 6.12c and 6.12d, the total error count for the heart
rate derived from the heart sounds data, classified by each class, is presented. Furthermore, Figs.
6.12a and 6.12d depict separate errors observed within each class, while the correlation between
errors across both heart rate classes is illustrated in Figs. 6.12b and 6.12c. Again, we see that
most of the data in Fig. 6.12d have zero error, while Fig. 6.12a has many fail cases. On the
other side, Fig. 6.12b has some exceptional cases where error is zero but in Fig. 6.12c there are
no worst or fail cases at all.

are displayed as open circles beyond the whiskers For radar heart rate derived from heart sounds,
the interquartile range is notably short, and data density is concentrated near the mean, resulting
in negligible variance across all heart rate states. The density of data around the mean, particu-
larly within a very short range, is visualised in Figs. 6.11a and 6.11b. On the other hand, heart
rate derived directly from the radar pulse exhibits significantly larger variance, with a consider-
able amount of data lying outside the whiskers of the box plots. The whiskers themselves are
notably elongated compared to the previous scenario, as depicted in Figs. 6.10c and 6.10d.

Additionally, in Figs. 6.11c and 6.11d, the density of data appears to be widely dispersed
from the central line, and the lines themselves exhibit a piecewise nature. This observation
suggests that there is a weak correlation between the ground truth ECG and the heart rate derived
from the radar pulse. In contrast, the data presented in Figs. 6.11a and 6.11b demonstrate
a strong correlation with the ECG ground truth, characterized by very small covariance. The
correlation between all accuracy classes in both radar-based HRHS and HRCON is illustrated in
Fig. 6.12. In Figs. 6.12c and 6.12d, it is noticeable that more than 50% of the data exhibits
zero absolute error, with the majority of the remaining data falling within the 1-2 absolute error
range. However, only a small fraction of the data is within the absolute error range of 2-3. In
contrast, for HRCON shown in Figs. 6.12a and 6.12b, the absolute error is notably higher, with a
significant portion of the data having absolute errors exceeding 20%, indicating instances where
the model fails to provide accurate heart rate predictions. The final performance metrics for
each class and overall data are provided in TABLE 6.4. The mean absolute error for HRHS is
0.8712, with a mean absolute percentage error of only 0.0129. In contrast, for HRCON, the mean
absolute error is 16.6991, with a mean absolute percentage error of 0.2027.
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Table 6.4: Overall performance for each use case and all classes. Abbreviations used in the
table header contain the following details. MAE: mean absolute error, MAPE: mean absolute
percentage error, RMSE: root mean square error, MSE: mean square error, HS: heart sounds,
PR: direct pulse rate from radar.

Heart rate MAE-HS MAPE-HS RMSE-HS MSE-HS MAE-PR MAPE-PR RMSE-PR MSE-PR

Resting 0.8250 0.0129 1.2242 1.4986 8.4976 0.1322 11.7275 137.5345
Transition 1.3125 0.0152 0.0152 2.5625 21.3125 0.2417 25.7354 662.3125
Anxiety 1.5798 0.0138 1.8836 3.5479 50.5851 0.4401 53.1840 2828.5426
30 sec overall 0.7688 0.0110 1.1330 1.2814 15.7143 0.1941 20.5704 423.1264
60 sec overall 1.1707 0.0174 1.5338 2.3525 19.7067 0.2297 26.5682 705.9110
300 sec overall 1.2208 0.0141 1.5820 2.5092 17.6135 0.2045 23.3052 543.2215
Whole data 0.8712 0.0129 1.2399 1.5356 16.6991 0.2027 22.0287 485.2636

6.6 Summary

Accuracy of the heart rate (HRHS) derived from the heart sounds is markedly improved, demon-
strating a much higher correlation with the heart rate (HRECG) derived from the ground truth
ECG signal. This improved accuracy is attributed to the the substantial improvement in the sig-
nal processing that we have introduced in our approach, and distinctiveness and reliability of the
first heart sound peaks (S1) that represent cardiac activity. The S1 heart sound, associated with
the closure of the mitral and tricuspid valves during ventricular contraction, serves as a robust in-
dicator of each cardiac cycle. It is clear and evident pattern, which enables precise identification
of pulse occurrences, thereby minimizing discrepancies in heart rate calculations. Consequently,
leveraging the S1 heart sound peaks for heart rate estimation yields results that closely mirror
the ground truth provided by the ECG waveform. This emphasise the significance of utilizing
comprehensive cardiac signals, such as heart sounds, in enhancing the accuracy and reliability of
cardiovascular monitoring systems. As such, incorporating S1 heart sound peaks into heart rate
determination approach holds promise for advancing noninvasive cardiac assessment techniques
and improving patient care outcomes.



Chapter 7

Pushing The Limits of Contactless
Biomarkers Sensing Exploiting Joint
Human-Activity and Vital-Signs
Monitoring

7.1 Contactless Sleep Quality Monitoring for Autistic Behaviour
Detection

Sleep posture recognition is crucial in various scenarios, including sleep healthcare, bedridden
patient care, chronic disease diagnosis, and early autism detection. The existing methods for
sleep recognition have drawbacks, including privacy concerns, problems with poor lighting,
line of sight blockage, difficulties in training with longer video sequences, computational com-
plexities, and disruptions to daily routines. To address concerns about user privacy, contactless
sensing methods are preferred over computer vision methods for sleep posture recognition. This
study introduces a novel contactless and privacy-preserving sleep pattern recognition system that
utilise ultra wideband (UWB) radar combined with Deep Learning (DL) techniques to classify
normal and abnormal sleep patterns and help to identify sleep Autism. Specifically, the study
focuses on nine common sleep patterns: Body Left, Body Right, Feet Move, Hand Move, Head
Left, Head Right, Static Head Left, Static Head Right, and Static Head Up. The recorded data is
obtained in the form of micro-doppler radar signals, and DL models such as VGG16, VGG19,
MobileNet, and SqueezeNet are employed to extract relevant features. High classification accu-
racy is achieved by combining the entire dataset. On the combined radar dataset, the VGG16
model achieves a classification accuracy of 84.6%.

93
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7.1.1 Introduction

Austism Spectrum Disorder (ASD) encompasses a diverse range of conditions affecting at least
1% of the global population [204]. It is characterized by challenges in social interaction, repet-
itive behaviors, and difficulties in verbal and nonverbal communication. Individuals with ASD
exhibit varying cognitive and intellectual abilities, necessitating different levels of support in
their daily lives [205]. Additionally, ASD often co-occurs with other disorders, with sleep dis-
ruption being a prominent concern among both children [206–208] and youth [209–211] with
ASD. This issue affects approximately 40-80% of individuals with ASD, compared to 10-40%
of those without ASD [212, 213]. Research indicates that poor sleep quality can adversely af-
fect brain maturation [214], biological energy transfer [215], memory consolidation [216], and
neurobehavioral functioning [217]. Individuals with ASD face further complexities related to
sleep disturbances [218, 219]. Studies have shown that individuals with severe forms of autism
often experience more frequent and persistent disruptions in their sleep-wake cycles compared
to those with milder forms of ASD [219]. Further, research suggests that children who sleep
fewer hours per night tend to exhibit lower verbal skills, adaptive functioning, socialization, and
communication skills [220].
Sleeping disorders of ASD are mostly detected with a camera-based system. Cameras are the
technology that holds a significant potential for recognition of activities. However, the real event
camera datasets limit the number of approaches in many applications. To overcome this chal-
lenge, researchers have investigated the use of near-infrared and depth cameras [221]. With a
near-infrared camera, motion analysis and computing statistics at the source to evaluate sleep
quality among individuals severely affected by autism spectrum disorder have been conducted.
The experimental dataset comprises movement patterns that facilitate the exploration of corre-
lations between sleep quality and associated behaviors in ASD like self-injury, aggression, and
disruptive conduct [222]. This [223] presents the idea of wearable sensors to monitor sleep
tracking at home. The sleep aid system monitors multiple physiological signals and delivers
customized auditory stimulation to promote faster sleep onset. Overall, it offers an effective so-
lution for improving sleep onset, tracking, and social acceptance [224]. Existing camera-based
and wearable-based technologies face significant challenges such as privacy concerns [136,177],
inadequate lighting, obstructed line of sight, training difficulties with extended video sequence
data, computational complexities, and disruption to daily routines caused by wearable devices.
On the contrary, radio frequency (RF) head movement sensors offer promise as next-generation
technologies. By utilizing RF sensing in conjunction with machine learning (ML) and deep
learning (DL) techniques to recognize sleep pattern motions, provide highly accurate cues and
benefiting various applications. However, UWB radar-based systems [145, 225] offer a more
privacy-friendly solution as they operate without capturing visual images [226], offer more flex-
ibility in placement and may be easier to maintain over time due to their reduced sensitivity
to environmental factors, can operate effectively in various conditions, including darkness and
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through obstacles [227]. UWB radar-based systems [147] typically offer wider coverage and can
detect movement through walls [85] and other obstacles, making them suitable for monitoring
larger areas [136,228]. TagSleep3D utilizes an RFID tag array under the bedsheet to create body
imprints, which are analyzed by a deep learning model for precise posture recognition. Evalua-
tion with 43 users demonstrates TagSleep3D’s effectiveness in recognizing skeleton joints with
low errors [229]. PosMonitor monitor angle purification and respiratory feature extraction. Ex-
perimental results demonstrate PosMonitor’s high accuracy (98%) in identifying six common
sleep postures, highlighting its reliability across diverse conditions [230].
Limited literature is available on RF sensing-based sleep movement detection, emphasizing the
necessity to create a comprehensive dataset encompassing diverse subjects across various age
and gender groups. This study aims to differentiate between different sleep patterns using spec-
trogram data obtained through a UWB radar. This research also examines nine types of spectro-
gram data, including Body Left, Body Right, Feet Move, Hand Move, Head Left, Head Right,
Static Head Left, Static Head Right, and Static Head Up. The collected data is represented in
spectrogram values, and various deep learning models, such as VGG16, VGG19, MobileNet,
and SqueezeNet, are utilized for classification. The main contributions of the work are summa-
rized as follows:

• We have proposed a unique RF sensing-based sleep pattern recognition monitoring sys-
tem that integrates deep learning algorithms for accurate sleep recognition, applicable for
various applications such as healthcare and mental health.

• We introduced a contactless sleep pattern recognition system design to automatically iden-
tify autism based on sleep patterns.

• We have collected a data set comprising 1620 samples representing nine different types
of sleep patterns captured at a distance of 1 metre from the target. The data samples were
collected using radar sensors. To ensure diversity, data were gathered from six participants
(two males and four females) aged between 20 and 40 years.

• For the radar dataset, VGG16, VGG19, GoogleNet, and SqueezeNet algorithms were
applied to a combined dataset of six subjects. VGG16 outperformed other algorithms,
achieving an accuracy of 84.6%.

The remaining sections of the work are structured as follows: section Methodolgy presents
details on the experimental setup, data processing, fine-tuned deep learning, and performance
metrics. The ection Results and Discussion provides an analysis of the classification results
obtained from various deep learning models. Finally, the section Conclusion summarizes the
work and suggests potential avenues for future research.
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Table 7.1: Parameters configuration of radar software and hardware.

Parameter Value

Platform Xetru radar X4MO3
Instrumental range 9.6 metres
Target’s distance from radar 1.5 m
Operating frequency 7.29GHz
Transmitter power 6.3dBm
Activity duration 10 seconds
Collected samples in each class 15

Figure 7.1: The Overall flow diagram of proposed Sleep Pattern Recognition system.

7.1.2 Methodology

Experimental Setup and Data Collection

The hardware setup for radar-based sleep monitoring is given in Tabel 7.1. Utilizing the Xethru
X4M03, an ultra-wideband radar sensor was placed on the top of a stand. This sensor has built-
in transmitter antennas (Tx) and receiver antennas (Rx), offering a maximum detection range of
9.6 metres. The settings of the radar key parameters are outlined in Table 7.1. During the sleep
pattern experiments, the subject was placed one metre away from the radar in a normal lying
position, with minimal movements during sleep. Each activity interval was set to 10 seconds,
during which data for a single sleep pattern from a single subject was collected. All methods
followed the guidelines and regulations of the Research Ethics Committee and all subjects gave
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Figure 7.2: Illustration of sleeping pattern recognition for specific body movements. Subfigures
(a1, b1, c1) show visual images, (a2, b2, c2) show corresponding spectrograms, and (a3, b3, c3)
present Region of Interest (ROI) plots. Each column (a, b, c) represents the same activity across
modalities: (a) body turning left, (b) body turning right, and (c) feet movement.

Table 7.2: An overview of the data collected, number of subjects and the activities performed.

Classes Experimental Dataset
Subject (S1) Subject (S2) Subject (S3) Subject (S4) Subject (S5) Subject (S6) Total

Body Left 30 30 30 30 30 30 180
Body Right 30 30 30 30 30 30 180
Feet Move 30 30 30 30 30 30 180

Hand Move 30 30 30 30 30 30 180
Head Left 30 30 30 30 30 30 180

Head Right 30 30 30 30 30 30 180
Static Head Left 30 30 30 30 30 30 180

Static Head Right 30 30 30 30 30 30 180
Static Head Up 30 30 30 30 30 30 180

Total 270 270 270 270 270 270 1620

their written informed consent before data collection. Each subject provided informed consent,
authorised by the University of Glasgow institutional review board. The RF signal was trans-
mitted and received from the radar within this duration. The experiments carried out involved
the collection of nine sleep patterns: Body Left, Body Right, Feet Move, Hand Move, Head
Left, Head Right, Static Head Left, Static Head Right, and Static Head Up. These patterns
were collected with subjects in normal sleeping positions. An illustration of the movements of
the sleep patterns of all classes, their corresponding spectrogram, and visualisation is provided
in the form of an ROI plot shown in Figure 7.2, 7.3, and 7.4 (each subject shown in Figure
7.2 provided their informed consent to publish their images, Figure 7.3 provided their informed
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Figure 7.3: Visualization of sleeping pattern recognition involving upper body and head move-
ments. Subfigures (d1, e1, f1) display visual images, (d2, e2, f2) provide corresponding spectro-
grams, and (d3, e3, f3) illustrate ROI plots. Each set of plots corresponds to a specific activity:
(d) hand movement, (e) head turning left, and (f) head turning right.

consent to publish their images and Figure 7.4 provided their informed consent to publish their
images, authorised by the institutional review board of the University of Glasgow). In Fig-
ure 7.2, we presented body left position in Figure 7.2(a1,a2,a3), body right position in Figure
7.2(b1,b2,b3), and movement of feet in Figure 7.2(c1,c2,c3). All Figures 7.2(a), 7.2(b), and
7.2(c) contains three sub figures in each column, actual subject picture, spectrogram, and ROI
graph respectively. Similarly, in Figure 7.3, we presented hand movement in Figure 7.3(a), head
left movement in Figure 7.3(b), and head right movement in Figure 7.3(c). All Figures 7.3(a),
7.3(b), and 7.3(c) contains three sub figures in each column, actual subject picture, spectrogram,
and ROI graph respectively. Further, in Figure 7.4, we presented body static position with head
on left side in Figure 7.4(a), body static position with head on right side in Figure 7.4(b), and
body static position with head upward in Figure 7.4(c). All Figures 7.4(a), 7.4(b), and 7.4(c)
contains three sub figures in each column, actual subject picture, spectrogram, and ROI graph
respectively. A total of six participants, comprising two males and four females were involved in
the data collection process for the experiment. This addition aims to enhance the practicality and
diversity of the dataset. In total, 1620 data samples were collected in all experiments for nine
classes shown in Table 7.2. Each participant repeated each sleep activity 30 times with the radar.
Ethical approval for these experiments was obtained from the University of Glasgow Research
Ethics Committee (approval no.: 300200232, 300190109). The UWB radar-based system setup
for sleep pattern data collection and processing is illustrated in Figure 7.1. The details of all
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Figure 7.4: Representation of sleeping pattern recognition for static head positions. Subfigures
(g1, h1, i1) show visual images, (g2, h2, i2) present corresponding spectrograms, and (g3, h3,
i3) contain ROI plots. Each group represents a different static head posture: (g) head facing left,
(h) head facing right, and (i) head facing upward.

components presented in Figure 7.1 are discussed later in this section. The features utilised for
radar analysis were obtained from the short-time Fourier transform (STFT) of the radar signal,
providing spectrograms of radar doppler shifts due to sleep movements. Analysis of the spec-
trograms revealed different patterns that correspond to different movements in sleep. To classify
sleep movements, pre-trained VGG models were utilized due to their better performance on
abstract images like spectrograms.

Data Pre-Processing and Deep Learning

In the initial phase, the radar chip underwent configuration via the XEP interface with x4 soft-
ware. Data were recorded from the radar at 500 samples per frame per second. A loop was used
to read the data file and store the data into an array, which was then mapped into a complex
range-time matrix. Subsequently, a moving target indication (MTI) filter was applied to obtain
the doppler range map. Following that, MTI mode of operation was used along Butterworth
4th order filter to generate the spectrograms using the parameters window length, overlap per-
centage, and fast Fourier transform (FFT) padding factor. Specifically, a window length of 128
samples and a padding factor of 16 were used. Additionally, a range profile was established by
initially converting each chirp to an FFT. Subsequently, a second order FFT was conducted on
a defined number of consecutive chirps for a given range bin. Furthermore, STFT was used to
refine the features used for spectrograms, unlike Fourier transform, STFT offers both temporal
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and frequency information [231]. This was accomplished by segmenting the data and using
Fourier transform on each segment. Altering the window length inversely affected both the
temporal and frequency resolutions. The level of doppler detail in radar data is determined by
the hardware sampling capability. The greatest unambiguous doppler frequency in RADAR is
Fd,max = 1

2tr, where tr represents the chirp time. In this paper, we explore sleep pattern recog-
nition at a distance D(t) from a specified location such as the body. V (t) represents the point of
target movement in front of the RADAR, and Ts represents the transmitted signal:

Ts(t) = Acos(2π f t). (7.1)

The received signal is denoted by Rs(t):

Rs(t) = Ácos(2π f (t − 2D(t)
c

)), (7.2)

where A is the reflection coefficient, and c is the speed of light. The reflected signal can be
expressed as Rs(t), where the signal reflected off the target points at an angle θ to the direction
of RADAR:

Rs(t) = Ácos(2π f (1+
2v(t)

c
)(t − 4πD(θ)

c
)). (7.3)

The Doppler shift corresponding to it can be written as:

fd = f
2v(t)

c
. (7.4)

The returned signal becomes a composite of several moving elements such as the head, hand,
legs, and body. Each component moves at its own speed and acceleration. If we consider i to be
the various moving components of the body, we can write the received signal as:

Rs(t) =
N

∑
i

Ai cos(2π f (1+
2vi(t)

c
)(t − 4πDi(0)

c
)). (7.5)

The Doppler shift is the result of a complex interaction of numerous Doppler shifts induced
by different body parts. Detection of sleep patterns in a reliable fashion clearly depends upon
the characteristics of the Doppler signatures. After obtaining the spectrograms of various sleep
pattern files from the participants, a dataset was constructed. As indicated in the high-level signal
flow diagram in Figure 7.1, the dataset consisted of two key modules: (i) System Training and
(ii) System Testing. The proposed pre-trained DL classification algorithms were implemented
on a spectrogram to recognize the sleep pattern dataset.
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Classification via Deep Models

The spectrograms generated in the previous step are fed into DL models for classification pur-
poses. For this purpose, four different pre-trained models, namely VGG16, VGG19, GoogLeNet,
and SqueezeNet, are considered. Our classification framework to differentiate in sleep patterns
is mainly based on fine-tuning pre-trained models where multiple state-of-the-art CNN architec-
tures pre-trained on ImageNet [232] are fine-tuned on the spectrogram images generated from
the radar data. In fine-tuning the pre-trained models, we modify the top layers of the models
to classify the collected data into nine considered classes, namely Body Left, Body Right, Feet
Move, Hand Move, Head Left, Head Right, Static Head Left, Static Head Right, and Static Head
Up. In the following subsections, we provide a detailed description of the CNN architectures
used in this work.

GoogLeNet Model

GoogLeNet [233] is one of the state-of-the-art and commonly used CNN architecture for differ-
ent image classification tasks [234].The architecture is composed of 22 layers including convo-
lutional, pooling layers, inception modules, and a fully connected layer. The inception module
is made up of 6 convolutional layers and a pooling layer. The module consists of patches or
filters of sizes 1 × 1, 3 × 3 and 5 × 5. These filters of different sizes help to obtain different
patterns of the input image. The feature maps obtained from various filters are concatenated at
the output of each module. Furthermore, 1 × 1 convolutions are performed prior to convolutions
by large filters. The use of 1 × 1 convolution filter decreases the number of parameters required
by GoogLeNet [1, 235].The hyper-parameter settings of GoogleNet are shown in Table 7.3.

SqueezeNet Model

Our second pre-trained model is based on SqueezeNet architecture [236], which is composed
of 18 layers. This architecture has shown comparable results with fifty times fewer parameters,
which makes it a preferable choice for applications with fewer data and low computational
resources. Squeezenet adapts to three major strategies. The first strategy reduces the 3×3 filters
to 1×1 filters given in the squeeze layer. The second strategy uses expand layer in which 1×1 and
3×3 filters are fed with less input parameters from the squeeze layer. The third strategy down-
samples late (having smaller stride values), so that the last layer has larger activation maps which
results in better accuracy [1,235].The parameter settings of SqueezeNet are shown in Table 7.3.

VGG16 Model

Another pre-trained model is based on VGG16 architecture [237], which is composed of 16
layers. This architecture contains a total of 138 million parameters, which used a 3x3 filter size
with a stride 1 and always use the same padding and max-pooling layer of a 2x2 filter with stride
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Table 7.3: Parameter settings for the selected Models [1].

Parameters VGG16 VGG19 GoogleNet SqueezeNet

Initial learning rate 0.0001 0.0001 0.0001 0.0001
Mini-batch size 16 16 128 128
Learning algorithm Adam Adam Adam Adam
Loss function Cross entropy Cross entropy Cross entropy Cross entropy
Maximum epochs 100 100 100 100
Iteration per epoch 46 46 500 500

2. The arrangement of the layers in this architecture is as follows convolutional layers, ReLU
layers, and max pool layers. ReLU is more computationally efficient because it results in faster
learning and it also decreases the likelihood of vanishing gradient problems. The end of the
model has 3 fully connected layers followed by a softmax for output [1, 235]. The parameter
settings of VGG16 are shown in Table 7.3.

VGG19 Model

The data was passed through a different layer which consists of 3×3 filters with five stages of
convolutional layers, five pooling layers, and three fully connected layers to get image informa-
tion. The convolution kernel depth has been increased from 64 to 512 of the VGG16 network
for better image feature vector extraction. Every stage of convolutional layers was followed by
pooling layers which have the size and step size of 2×2 [1, 235]. The parameter settings of
VGG19 are shown in Table 7.3.

Performance Matrix

The performance of deep learning (DL) models in classifying nine sub-sleep patterns on the
combined dataset is assessed using weighted average accuracy, precision, recall, and F1-score.
The F1-score, a widely used classification metric, is computed using equation (7.8). Precision
and recall, calculated through equations (7.6) and (7.7), respectively, are combined in the F1-
score calculation. Equation (7.9) is employed to determine the average accuracy, a measure used
to evaluate the performance of DL models.

Precision =
∑(T P)

∑(T P+FP)
(7.6)

Recall =
∑(T P)

∑(T P+FN)
(7.7)

F1-Score = 2
(Precision.Recall)
(Precision+Recall)

(7.8)
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Table 7.4: The evaluation of the DL models on the sleep patterns dataset involved measuring
weighted average recall, weighted average precision, weighted average F1-score, accuracy, and
determining a 95% confidence interval.

DL Models Precision Recall F1-Score Accurcay (%) 95% CI

VGG16 0.84 0.86 0.85 84.6 0.82-0.85
VGG19 0.77 0.82 0.78 77.2 0.75-0.79
GoogleNet 0.82 0.83 0.81 82.1 0.80-0.84
SqueezeNet 0.79 0.81 0.81 79.0 0.77-0.81

Accuracy =
∑(T P+T N)

∑(T P+FP+T N +FN)
(7.9)

7.1.3 Results and Discussions
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Figure 7.5: The Confusion Matrices of all the models of Normal and Abnormal sleep monitoring
patterns. (a) VGG16. (b) VGG19. (c) GoogleNet. (d) SqueezeNet.
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This research describes the experiment involving the analysis of sleep patterns using radar-
based technology and deep learning models such as VGG16, VGG19, MobileNet, and SqueezeNet.
The experiment involves collecting and analyzing data on normal and abnormal sleep patterns
from various datasets related to body movements during sleep, such as "Body Left, Body Right,
Feet Move, Hand Move, Head Left, Head Right, Static Head Left, Static Head Right, and Static
Head Up," across different genders. The parameter settings for the deep learning models are
provided in Table 7.3. The models were fine-tuned on the dataset, and the training and testing
sets remained fixed throughout the studies, with 80% of the data used for training and 20% for
testing. The outcomes of the experiment are presented in terms of precision, recall, F1-score,
accuracy, and interval, which aid in the decision-making and comparisons. Moreover, the perfor-
mance of all proposed models on the collected datasets is illustrated through a confusion matrix
in Figure 7.5, showcasing the models’ effectiveness. In summary, the results suggest improved
outcomes for both combined and individual datasets across all models.

In the VGG16 algorithm, the combined dataset includes males and females. We achieved
a high classification accuracy of 84.6%, along with precision, recall, and F1-score, as well as
an accurate interval, as depicted in Figure 7.5(a) and Table 7.4. All classes are correctly clas-
sified except for "Head Right Move" and "Static Head Left." The "Head Right Move" exhibits
similarities of 0.6%, 1.2%, and 1.9% with "Feet Move", "Static Head Left," and "Static Head
Up" respectively. Similarly, "Static Head Left" shows similarities of 1.2%, 0.6%, and 1.9% with
"Static Head Right", "Head Right Move", and "Static Head Up" respectively.

Similarly, VGG19 performs well on the combined dataset with 77.2% accuracy, precision,
recall, F1-score, and valid interval, as shown in Figure 7.5(b) and Table 7.4. All classes are
correctly classified except for "Static Head Right" and "Static Head Up." "Static Head Right" has
been misclassified with "Head Right Move," "Static Head Left," and "Static Head Up" at ratios
of 1.9%, 3.7%, and 1.9% respectively. "Static Head Up" exhibits similarities with "Feet Move,"
"Head Right Move," and "Static Head Left" at rates of 0.6%, 1.2%, and 3.1% respectively.

Using GoogleNet, the combined dataset includes males and females. We achieved a high
classification accuracy of 82.1%, along with precision, recall, F1-score, and accurate interval, as
shown in Figure 7.5(c) and Table 7.4. All classes are correctly classified except for "Static Head
Right" and "Static Head Up." "Static Head Right" exhibits similarities with "Head Left Move,
Head Right Move, Static Head Left, and Static Head Up" at ratios of 1.2%, 0.6%, 2.5%, and
1.2% respectively. Similarly, "Static Head Up" has similarities with "Head Right Move, Static
Head Left, and Static Head Right" at ratios of 0.6%, 3.1%, and 3.1% respectively.

In the case of the SqueezeNet algorithm, we achieved a high classification accuracy of
79.0%, along with precision, recall, F1-score, and interval, as depicted in Figure 7.5(d) and
Table 7.4. Except for "Static Head Up" all classes are correctly classified because it has simi-
larity with "Head Right Move" and "Static Head Left." "Head Right Move" exhibits similarities
with "Head Left Move, Static Head Left, Static Head Right" at rates of 1.2%, 1.2%, and 1.9% re-
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spectively. Similarly, "Static Head Up" shows similarities with "Head Right Move, Static Head
Left" at rates of 1.2% and 6.2% respectively.

7.1.4 Summary

This work introduces a contactless and privacy-preserving framework for sleep pattern recog-
nition, specifically focusing on normal and abnormal sleep patterns to identify early autism
spectrum disorder. The diverse dataset comprises micro-doppler signals collected from various
users and is input into deep learning models. The dataset includes nine classes: Body Left, Body
Right, Feet Move, Hand Move, Head Left, Head Right, Static Head Left, Static Head Right, and
Static Head Up. The experiment involved six participants, two male and four female, aged from
20 to 40 years. Micro-doppler radar datasets are processed using various deep learning mod-
els, including VGG16, VGG19, MobileNet, and SqueezeNet. Sleep movements were predom-
inantly classified correctly, achieving around 100% accuracy rate. Among the tested models,
the VGG16 algorithm performed the best, achieving an overall accuracy of 84.6% for all nine
classes. Moving forward, the long-term objective is to improve accuracy, enlarge dataset with
more sleeping patterns and more diverse range of age groups, such as children and the elderly.

7.2 Contactless Sleep Quality and Vital Signs Monitoring for
Autism Spectrum Disorder Detection

Recent studies reveal that over 70 million people worldwide are estimated to live with autism
spectrum disorder (ASD) and sleep disturbances that affect up to 80% of individuals with
ASD [238]. ASD and sleep disturbances are intricately linked to cardiovascular health, a critical
factor in ensuring healthier lives for individuals with autism [136, 239]. Sleep monitoring poses
significant challenges due to the reliance on conventional methods, such as polysomnography
(PSG) and wearable devices, which often disrupt natural sleep patterns and require intrusive se-
tups in specialised sleep labs [240]. PSG is considered the gold standard, but involves complex
connection, electrode placement, and overnight monitoring in clinical environments, leading to
discomfort for patients and potentially compromising the results [147, 241]. Wearable devices,
while more portable, can cause discomfort due to direct skin contact, and may compromise ac-
curate data due to improper placement and body movements due to discomfort [242]. These
issues were identified when monitoring individuals with ASD, who may experience significant
sensitivity to touch or environmental changes, further complicating the use of conventional tools
for sleep analysis.
ASD monitoring also faces significant issues due to its reliance on subjective observations, ques-
tionnaires, and behavioural assessments, which can lead to variability and bias in diagnosis
and tracking [144]. The heterogeneity of ASD symptoms, particularly in communication and



106

Table 7.5: Comparison of existing monitoring methods; highlighting the limitations of previous
work and contributions of this work.

Study Technology Used Monitoring Parameters Contactless Focus on ASD Limitations

[239] Polysomnography (PSG) Sleep quality, respiration, movements No No Intrusive, clinical setup required
[243] Wearable sensors Heart rate, respiration, movement No Partial User compliance required, discomfort
[244] Infrared camera Sleep postures, body movements Yes No Limited accuracy in low-light conditions
[245] Doppler radar Respiration, sleep postures Yes NO Limited focus on ASD-related metrics
[240] ML on EEG data Sleep patterns, ASD-related abnormalities No Yes Requires electrode placement, intrusive setup

Our Work UWB Radar Sleep postures, movements, respiration disorders Yes Yes non-invasive monitoring

behaviour, often requires highly skilled professionals and multiple sessions to ensure accurate
evaluation. Additionally, many adults with ASD struggle to stand prolonged assessments, reduc-
ing the effectiveness of conventional monitoring techniques. Similarly, vital signs monitoring
presents its own set of challenges, as traditional methods, such as electrocardiograms, respira-
tion belts, or pulse oximeters, often involve direct physical contact and repetitive measurements.
This can be uncomfortable or difficult for individuals with ASD, making consistent and reliable
monitoring difficult, particularly in long-term scenarios.
Radar offers transformative advantages for monitoring sleep quality, vital signs, and ASD-
related behaviour, overcoming the limitations of traditional methods. Radar-based sensing is
completely contactless, allowing it to monitor physiological parameters such as respiration dis-
order and sleep patterns without the need for physical contact and wearable devices [85, 145].
This non-invasive approach is particularly beneficial for individuals with ASD, as it eliminates
the discomfort and sensory challenges associated with conventional methods. Moreover, con-
tinuous wave ultrawide band (UWB) radar can operate seamlessly in real-world environments,
such as homes and clinical setups, providing continuous and accurate data without disrupting pa-
tients comfort and daily routines. In addition to comfort, radar-based sensing provides objective
and reliable data, reducing the variability associated with subjective assessments. By integrating
advanced signal processing and machine learning, radar systems can analyse physiological and
behavioural patterns linked to ASD, enabling earlier detection and better intervention strategies.
Furthermore, the ability of radar to monitor multiple parameters simultaneously, such as sleep
quality, cardiovascular health, and respiratory functions, provides a detailed view of an indi-
vidual’s wellbeing, improving the understanding of the interconnections between ASD, sleep
disorders, and vital signs. Ultimately, radar-based contactless sensing has the potential to trans-
form ASD monitoring, offering a scalable, accurate, and user-friendly solution to improve the
quality of life for individuals with autism and their families.
In this paper, we used an UWB radar to simultaneously monitor critical parameters related to
sleep and respiration, including sleeping postures, body movements during sleep, and respi-
ratory disorders during periods of movement. By capturing and analysing these metrics, we
identified the significant role that irregular sleep quality and respiration disorders play in early
detection of ASD. This groundbreaking contactless sensing approach provides an understanding
of the interconnected physiological and behavioural patterns associated with ASD, highlighting
the potential of radar as a noninvasive tool for early diagnosis and continuous monitoring in
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Figure 7.6: Figure (a) illustrates the raw radar data, including samples and amplitude. Figure (b)
is divided into three subfigures: the first describes limb movement signals during sleep, the sec-
ond shows the respiration signal, and the third represents the respiration rate. Similarly, Figures
(c) and (d) display body positioning and static sleep positions, respectively, in the first subfigure,
followed by the respiration signal and respiration rate in the second and third subfigures.

real-world environments. We made following novel contributions for the first time as per best of
our knowledge:
1. Developed a contactless UWB radar-based system to simultaneously monitor sleep postures,
body movements, and respiratory disorders during sleep.
2. Identified irregular sleep quality and respiration disorders as potential biomarkers for early
detection of ASD.
3. Demonstrated the feasibility of integrating sleep and vital sign analysis using radar for non-
invasive real-time ASD monitoring.
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The structure of this paper is organized as follows: Section 3.2 provides an overview of the chal-
lenges in sleep and vital signs monitoring, tabulated in TABLE 7.5, particularly in the context
of ASD, and highlights the motivation and significance of UWB radar for contactless sensing.
Section 7.2.1 details the experimental design and data acquisition process in Subsection 7.2.1,
including the setup of the UWB radar system and the protocols followed for data collection,
while Subsection 7.2.1 focuses on the techniques used for feature extraction from the radar sig-
nals to derive meaningful physiological and behavioural benchmarks. Section 7.2.2 presents
the key findings of the study, including the analysis of sleeping postures, body movements, and
respiratory patterns, and discusses their implications for early ASD detection. Section 7.2.3
summarizes the contributions and insights gained from the study, emphasizing the potential of
UWB radar for ASD monitoring and outlining directions for future.

7.2.1 Methodology

Experimental Setup and Data Collection

The experimental setup, shown in Fig. 2, consists of an adjustable hospital bed, a UWB radar
system, and a Dell Latitude 5421 laptop, collectively forming a contactless sleep monitoring
system. The core sensor used is the XeThru X4 radar system-on-chip (SoC) developed by NOV-
ELDA. This high-resolution UWB radar operates within the 7.29 to 8.75 GHz frequency range,
covering the C and X bands. Configured to a fixed frequency of 7.29 GHz, the radar offers
a maximum detection range of 9.6 meters, enabling comprehensive monitoring of patients in
various bed positions. With a transmitter power output of 6.3 dBm, the system ensures reliable
signal transmission for detecting body movements within its range. The radar has a maximum
bandwidth of 1.5 GHz, enabling high-resolution data acquisition that is vital for accurately iden-
tifying sleep-related movements, positional changes and respiration signal.

Features Extraction

Data collection involved six adult male and female participants, each performing a consistent
set of sleep-related activities 30 times. This process resulted in a total of 180 data files, which
were then prepared for feature extraction. The radar system generates DAT files containing raw
radar data with sampling frequency 0.5 kHz, and 500 samples per frame per second. To sim-
plify data handling and analysis, data files were segmented into smaller chunks of five minutes,
one minute, and 30 seconds. This segmentation reduced the complexity of managing and pro-
cessing continuous large-scale data, as uninterrupted data streams can complicate efficient event
extraction. The raw radar data included in-phase (I) and quadrature (Q) components in complex
form, as shown in Fig. 7.6a. The dataset checked for missing values and outliers beyond the
radar’s optimal sensing range to ensure the reliability of the analysis. Frequency filtering was
applied to isolate relevant signal content, with all sleep-related activities identified within an
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upper frequency limit of 100 Hz. From the refined dataset, key sleep activity features, such as
static positions, position changes, and limbs movement were extracted, as illustrated in Figs.
7.6b, 7.6c, and 7.6d. To further analyse the radar signals for body posture and movement de-
tection, a short-time Fourier transform (STFT) was applied, generating spectrograms, illustrated
in Fig. 7.7, that revealed Doppler shifts caused by participant movements during sleep. This
frequency-time analysis provided perceptions into the dynamics of movement over time, en-
abling the extraction of features related to sleep activities from the radar data.
To extract the respiration signal and respiration rate from the radar data, the raw radar readings,
consisting of in-phase and quadrature components, were first processed to isolate quadrature sig-
nal corresponding to chest movements caused by breathing. A bandpass filter was applied then
to the radar data to filter out the frequency range of human respiration, which lies between 0.1
Hz and 0.5 Hz for adults. The filtered data was then analysed to identify periodic variations cor-
responding to the inhalation and exhalation cycle. By applying Fourier transform techniques,
the dominant frequency components within the respiration band were extracted, representing
the respiration rate. Additionally, phase analysis of the I/Q radar signals was used to enhance
the accuracy of the respiration rate estimation by capturing complex chest movements. This
approach allowed for reliable and non-contact monitoring of respiratory patterns, even during
body movements or shifts in sleeping posture.

7.2.2 Results and Discussions

Variations in the respiration signal and sleep-related features are closely associated with ASD,
as individuals with ASD often exhibit complex physiological and behavioural patterns during
sleep. Irregularities in respiration, such as abnormal breathing rates, disrupted respiratory cycles,
or apnea-like events, are commonly reported among individuals with ASD and may contribute
to poor sleep quality. These disruptions in respiration are indicative of autonomic dysfunction,
which is often linked to ASD. Variations in the respiration signal reflect stress-related arousals,
fragmented sleep, or irregular sleep phases, all of which are frequently observed in individuals
with ASD. In addition to respiration, sleep-related features such as sleep posture, frequency of
body movements, and transitions between regular and irregular sleep states also provide critical
insights into ASD-associated sleep disturbances. For example, frequent positional changes or
restless movements during sleep may signal underlying discomfort or extreme sensory sensi-
tivities, both of which are prevalent in individuals with ASD. Similarly, prolonged periods of
static posture or irregular transitions between sleep stages could indicate an inability to main-
tain restful sleep, which is an indicator of sleep issues in ASD. By analysing these features
alongside variations in the respiration signal, a more complete understanding of the corelation
between sleep disturbances and ASD can be achieved, potentially enabling earlier detection and
intervention strategies. The spectrograms generated from the processed radar data were used as
input to a pretrained VGG16 model to classify breathing and sleep pattern features for identify-
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Figure 7.7: This figure is divided into three subfigures: the first subfigure shows the range-
time intensity (RTI) plot over the UWB radar range, the second subfigure presents RTI data
processed using a moving target indication (MTI), which enhances the visual representation
of signal strength across range and time by filtering out stationary clutter to highlight moving
targets. The third subfigure illustrates motion captured through micro-Doppler signatures over
time.

Table 7.6: Classification report summarizing the results for VGG16.

Class Precision Recall F1-Score

Class 1: Static position 1.00 1.00 1.00
Class 2: Limbs movement 0.95 1.00 0.97
Class 3: Position change 1.00 0.94 0.97

Overall accuracy 98.0%

ing Autism Spectrum Disorder. The VGG16 model was trained with an initial learning rate of
0.0001 using the Adam optimization algorithm. A mini-batch size of 16 was used, with cross-
entropy as the loss function to evaluate classification performance. Training was conducted for
a maximum of 20 epochs, with 25 iterations per epoch. The classification results, including the
accuracy of individual classes and an overall classification accuracy of 98%, are summarized in
TABLE 7.6.

7.2.3 Summary

This work demonstrated the potential of an ultra-wideband radar-based system for contactless
monitoring of sleep-related features and respiration patterns, with a specific focus on autism
spectrum disorder (ASD). By analysing variations in respiration signals, sleep postures, and
body movements, we identified key physiological and behavioural markers associated with
ASD. The proposed system offers a non-invasive, efficient, and scalable approach to identify
sleep disturbances and autonomic dysfunctions commonly observed in individuals with ASD.
This work lays the foundation for future research making use of radar technology for early detec-
tion and management of ASD-related sleep and health challenges for scalable implementation
in next generation homes and healthcare centres setup.
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7.3 Contactless Snores Apnea Detection During Sleep by Ex-
ploiting Radar Signal

Obstructive sleep apnea (OSA) is a widespread sleep disorder affecting a minimum 4% and up
to 30% of adults globally with significant health risks, such as cardiovascular diseases and cog-
nitive impairment. Current diagnostic methods, such as polysomnography, load patients with
multiple sensors, require special laboratories, and are uncomfortable for long-term monitor-
ing. In this paper, we present a radar-based contactless system to monitor respiratory disorder
patterns to detect fatal sleep problems. Using a 24 GHz continuous-wave radar, we extracted
respiratory displacement waveforms and respiration rates, validated them against a ground-truth
and achieved high accuracy. Following this, we applied signal processing techniques to extract
key respiratory events such as apnea, hypopnea, and snores. These features were used to train
a multiclass k-nearest neighbours (KNN) classification model. The model demonstrated excel-
lent performance for the detection of apnea, hypopnea, and snores. We achieved a validation
accuracy of 99.79% for respiratory displacement waveforms and 99.99% for respiration rates
against the ground truth. Multiclass classification model achieved over 99% accuracy in de-
tecting apnea, hypopnea, and snore events. The results indicate that radar-based system can be
used effectively in clinical and home settings to monitor respiratory health and detect abnormal
events in real time.
The earliest known description of a person suffering from obstructive sleep apnea (OSA) occurs
in The Posthumous Papers of the Pickwick Club by the novelist Charles Dickens, published in
1836 [246]. Dickens describes "Joe," an excessively sleepy, obese boy who snored loudly and
possibly had right-sided heart failure [246–248]. Guilleminault, who was a French physician,
formally described OSA in 1976 to emphasise the occurrence of this condition in non-obese
patients [249]. OSA is a condition in which a person stops breathing or experiences severely
reduced airflow during sleep, leading to episodes of breathlessness [250]. Although not all snor-
ers have apnea, the two conditions are often correlated. As snoring increases, the possibility
of sleep apnea increases [251]. A person with apnea observes pauses in breathing between
snores, these are episodes of apnea, which can occur hundreds of times each night [252]. Dur-
ing sleep, individuals with OSA experience partial, complete, or multiple obstructions of the
airway [253], known as hypopneas, apnea, and mixed apnea (when both apnea and hypopnea
occur together) [253–255]. Additional symptoms may include loud snoring, gasping, or chok-
ing [256]. The American Academy of Sleep Medicine (AASM) estimates that OSA is a common
sleep disorder affecting at least 2% to 4% of all adults [257].
According to AASM, apnea is a period during which a person stops breathing or almost stops
for at least 10 seconds and airflow is reduced by at least 90% [258, 259]. Although there is
no airflow, the person’s muscles continue to attempt to breathe. Apnea can be classified as ob-
structive, central, or mixed [260]. In obstructive apnea, the muscles continue to try to breathe,
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whereas in central apnea, no effort is made [261]. In mixed apnea, the muscles initially do not
exert any effort to breathe, but try again toward the end of the episode [260–262]. AASM also
explains that hypopnea is a period of time when airflow is partially blocked, leading to shallow
breathing. During hypopnea, airflow decreases by at least 30% and can last for at least 10 sec-
onds or more [263]. Hypopnea can cause a decrease in oxygen saturation less than 3% or may
cause the person to wake up from sleep [262, 263].
Hypopnea is typically categorized as obstructive, central, or mixed. During an obstructive hy-
popnea, breathing is partially obstructed and reduced due to a narrowed airway [264]. These hy-
popneas are often accompanied by snoring, caused by the vibration of tissue [265]. The sleeper
continues to make an effort to breathe, which may result in abnormal abdominal movements,
such as moving the abdomen inward while inhaling [263]. In contrast, during a central hypop-
nea, the brain fails to send the signal to breathe, leading to reduced effort by the sleeper [266].
Since the differences in brain signalling and breathing effort can be difficult to detect, a hypop-
nea is generally considered a central event when there are no signs of airway narrowing, such as
snoring [267]. Apnea and hypopnea are often related, and individuals with hypopnea are likely
to develop apnea. Doctors can diagnose sleep apnea-hypopnea disorder by measuring the apnea-
hypopnea index (AHI) [268] during a sleep study. The AHI represents the number of apnea and
hypopnea episodes that occur per hour of sleep, with a higher AHI indicating more severe sleep
apnea. A normal AHI is less than 5 events per hour [268], while a severe AHI is more than 30
events per hour [268–270].
PSG is the gold standard test for diagnosing OSA. It is an overnight sleep test conducted in a
specialized sleep laboratory where physiological parameters including brain activity, eye move-
ments, muscle activity, heart rate, oxygen levels, airflow, and respiratory effort are monitored
by using electroencephalogram, electrooculogram, electromyogram, electrocardiogram, pulse
oximetry, airflow monitor, and respiratory effort belt, respectively. Despite the diagnostic ac-
curacy of PSG, patients face several challenges that limit the widespread use of PSG. The cost
of PSG testing is high due to specialized equipment and trained operators, making it difficult to
access in resource-limited environment. Sleep tests are often available in specific laboratories,
leading to long waiting times and delay in diagnoses. Patient comfort is another issue, as the lab
environment and the need to sleep with many sensors can disturb sleep and result in possibly
inaccurate results. While PSG remains the gold standard test for diagnosing OSA, its limitations
in multiple sensors complexity, test cost, lab accessibility, and patient comfort require the need
for alternative approaches, such as contactless sensing.
Radar-based systems offer a promising solution for mitigating the challenges associated with in-
vasive monitoring techniques in OSA [85]. These systems can track tiny movements of the body,
allowing for an accurate assessment of respiration rates without requiring any physical sensors
to be attached to the patient [145]. By eliminating the need for physical contact, radar-based
monitoring not only enhances patient comfort but also provides potential benefits in infection
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control, remote patient monitoring, and overall healthcare accessibility [136]. Exploiting elec-
tromagnetic waves, radar systems detect complex physiological movements, penetrating through
clothing and environmental obstructions, and ensure reliable monitoring in various clinical set-
tings. Their ability to detect even the smallest chest movements or sensitive fluctuations in
heartbeat frequency, positions radar technology as an essential tool in healthcare applications,
particularly in the context of OSA. Radar systems enable healthcare staff to remotely access
physiological data in real time, hence improving diagnostic accuracy, clinical decision making,
and patient care convenience.
In radar-based systems, lower-end microwave frequencies, up to 30 GHz, can penetrate clothing
and non-metallic materials while being reflected by the human body [147]. This potential allows
radar systems to collect data through obstructions, providing monitoring without the need for
direct physical contact. These frequencies interact safely and absorb a smaller amount in body
tissues compared to the higher millimetre wave frequencies, thus reduce potential heating effects
and ensure safety during continuous monitoring in clinical settings [242]. The continuous-wave
(CW) radar frequency in the lower microwave range is particularly allocated for healthcare ap-
plications, ensuring compliance with international safety standards and minimising interference
with other communication devices. This makes radar-based monitoring a safe, noninvasive ap-
proach for managing and diagnosing OSA. It offers significant advantages compared to the PSG
such as avoid skin mounting, no privacy concerns, portable device, cost effective, remote moni-
toring, convenient clinical settings, and patient comfort [144, 177].
Table 7.7 summarizes recent and past studies that utilized radar technology to monitor obstruc-
tive sleep apnea. We examined the type of radar used, the specific parameters monitored (e.g.,
apnea, hypopnea, snores, and respiration rate), the number of subjects involved, the type of
ground truth data applied, and the reported overall accuracy. Our review reveals that many stud-
ies either did not use a ground truth signal or relied on pre-existing patient data, such as the PSG
or AHI index, instead of employing real-time ground truth data for direct comparison with radar
signals. Additionally, most papers lacked complete validation procedures before deploying the
radar system to monitor patient conditions. In this paper, we used a 24 GHz continuous-wave
radar to derive contactless respiration displacement signal, respiration rate, apnea, hypopnea,
normal breathing, and snores. In the first step, we measure and monitor respiration displace-
ment (RDradar) waveform and respiration rate (RRradar) by using radar signal and compared it
with ground truth respiration displacement (RDsensor) waveform and respiration rate (RRsensor).
We use machine learning (ML) regression algorithms to derive performance matrices to assess
noninvasive radar system accuracy in comparison with gold standard ground truth signal. The
performance test we performed in this step is to make sure that our data collection setup and
radar system algorithms should be highly accurate in order to collect next phase volunteers
sleep monitoring dataset. In a second step, we collect data from volunteers in a sleeping state
and apply algorithms we developed in the first step. In the third step, we identify regions in
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Table 7.7: Detailed summary of recent and past research papers making use of radar technology
for apnea-hypopnea detection, offering insights into methodologies, key findings and gaps in
research for further evaluation, and advancements in the field.

References Radar Used Monitored Parameters Number of Patients Ground truth Accuracy

[271] 24 GHz and 2.4 GHz radars Sleep apnea and RR 10 PSG 92%
[272] Radar technology Sleep apnea 14 None N/A
[273] 60 GHz FMCW radar Apnea hypopnea events 44 None 0.784 and 0.857
[274] UWB radar Abnormal breathing events 92 AHI index 0.93
[275] Two Doppler radars Apnea hypopnea events. 31 None 90%
[276] 24 GHz radar Apnea 141 PSG Multiple
[277] UWB radar Apnea hypopnea index 67 None N/A
[278] Two doppler radars Apnea hypopnea 31 SAHS 90%

This work 24 GHz CW Radar Apnea, hypopnea, and snores 10 Gold standard 99% (MAE: 0.2865 and 0.1486)

the respiration displacement waveforms where apnea, hypopnea, snores, and normal respiration
occur. We used machine learning regression algorithms to identify these regions. Finally, we
derive performance matrices again to assess the accuracy of the whole system towards OSA
monitoring. Through rigorous validation of measured respiration displacement, respiration rate,
apnea, hypopnea, and snores from radar against ground truth signal, our aim is to demonstrate
the reliability and accuracy of the contactless vital signs monitoring system, paving the way for
their integration into clinical practice and healthcare systems. We made the following contribu-
tions for the first time to the best of our knowledge. 1. This paper introduces an advanced signal
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Figure 7.8: Figure 1 outlines the step-by-step process of the study, describing the derivation of
respiratory chest displacement and respiration data from both radar and ground truth sources.
Initially, rigorous hardware validation was conducted to ensure system accuracy before measur-
ing the desired parameters. Following validation, advanced signal processing techniques were
used to identify apnea, hypopnea, and snore events. Finally, classification methods were applied
to evaluate the system’s automated detection and response capabilities for apnea, hypopnea, and
snore events.

processing pipeline to accurately extract key features from the respiratory displacement wave-
form, enabling precise differentiation between apnea, hypopnea, snoring, and normal breathing
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events.
2. The radar-based system detects and classifies apnea and hypopnea events with 99% accuracy,
offering a reliable, non-invasive solution for diagnosing respiratory sleep disorders.
3. The system accurately detects snoring events and triggers an alarm if snoring persists for 10
or more seconds, prompting users to change positions and preventing prolonged disturbances in
sleep.
4. The proposed radar and signal processing approach is rigorously validated against the gold
standard, achieving 99.7% accuracy in measuring respiratory displacement and 99.9% accuracy
in breathing rate, demonstrating clinical-grade precision.
5. The research introduced a simple, yet effective classifier to achieve high accuracy in classify-
ing respiratory events with minimal computational resources, supporting real-time remote health
monitoring applications. We used the subscripts "radar" and "sensor" to denote the respiration
displacement (RDradar) and the respiration rate (RRradar) derived from the radar from contact-
less methods and ground-truth-derived respiration displacement (RDsensor) and respiration rate
(RRsensor), respectively.
The general structure of the paper is shown in Figure 7.8. We have covered an overview of con-
ventional and contactless OSA monitoring approaches in the Introduction section. We reviewed
some of the most relevant recent work related to the use of radar in contactless OSA monitor-
ing, described in the Introduction section, and tabulated in TABLE 7.7. The experimental and
data collection setup has been described in Methods sections 7.3.1 and 7.3.1. Raw ground truth
respiration data, data preprocessing, and extraction of respiration displacement and respiration
rate from respiration belt have been given in detail in Methods sections 7.3.1 and 7.3.1, and
illustrated in Figure 7.10. Raw radar data, data preprocessing and extraction of respiration dis-
placement, respiration rate, apnea, hypopnea, and snores data are detailed in Method sections
7.3.1, 7.3.1, 7.3.1,7.3.1 and 7.3.1, and illustrated in Figures 7.11 and 7.12.

7.3.1 Methods

Experimental Setup

The electromagnetic waves emitting from radar antennas can absorb or reflect from any obsta-
cle coming in radar line of sight. Traditional healthcare and ambulatory settings involve both
healthcare staff and patients. The waves from radar, for example, can reflect not only from the
intended patient but also from other moving bodies like healthcare staff and caregivers. Modern
portable vital sign monitoring systems can further complicate when it is used in diverse envi-
ronments, including hospitals, clinics, ambulances, sports facilities, and even patients’ homes.
It’s important to consider potential interference during data collection from patients. The most
important is to ensure consistent data collection technique that maintain data quality regardless
of the clinical scenario. Data collection not performed to appropriate standards can result in
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RadarRespiratory belt

(a)

(b)

(c)

Figure 7.9: Figure 5 illustrates the experimental setup and data collection setup: (a) the room en-
vironment containing a medical-grade bed, radar frame, and attendant chairs; (b) the respiratory
sensing belt used as the ground truth for respiratory displacement signals and respiration rate,
alongside the radar device and its power cable; and (c) an actual participant under observation
besides a laptop used for data collection and data storing.

incorrect diagnoses and unnecessary treatments.
Considering the diversity of the healthcare scenarios, the experimental setup was arranged in a
room where people other than the target person could move around freely. Although we can
record radar data for respiratory signal from an individual in various poses such as sitting, walk-
ing, or lying down, however, combining respiration belt for ground truth dataset, and patient
comfort require the person in a lying position. Lying position also ensure that measurements are
taken under similar conditions, thereby improving data correlation between radar and ground
truth.
The experimental setup illustrated in Figure 7.9 consist of an adjustable hospital bed, a radar
system, a set of respiration belt, and a Latitude 5421 laptop. The laptop, equipped with an 11th
Gen Intel® Core™ i7-11850H processor (24 MB Cache, 8 cores, 16 threads, 4.80 GHz, 16.0
GB RAM), and a 37.5 W power supply was used to power up and control the hardware during
the data collection. We used Skyno 24 GHz continuous-wave radar and a Vernier Go Direct®

respiration belt as illustrated in Figure 7.9. The radar was positioned one meter away from the
target person in a normal room condition. This setup allowed us for the precise collection and
analysis of radar and respiration belt dataset.
The experiments for the study were approved ethically by the Research Ethics Committee (ap-
proval nos.: 300200232, 300190109) of the University of Glasgow.

Data Collection

Data collection involved ten adult volunteers, comprising both males and females. For each
participant, data was recorded in three different time segments: 20 seconds, 1 minute, and 5
minutes. In total, 1,200 samples in 60 data files were collected and subsequently used for clas-
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Figure 7.10: Figure 6(a) presents the in-phase and quadrature raw data alongside the centered
raw data on origin. Figure 6(b) displays the in-phase and quadrature data in millivolt units over
time. Figure 6(c) compares the interpolated respiration signal with the respiration signal without
interpolation.

sification and error analysis. The overall structure and flow of the data from radar and ground
truth respiration belt is shown in flowchart Figure 7.8. It includes radar and respiration belt raw
dataset collection simultaneously on the same time axis. Further, raw data illustration, data pro-
cessing, respiration signal extraction and comparison with the ground truth signal is given in the
following Sections.
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Respiration Extraction from Radar Data

We used a 24 GHz CW radar for contactless respiration signal detection, operating with an
ADC data rate of 1,000 samples per second, sampling frequency (fs) 1 kHz, and wavelength (λ )
calculated as 3×108÷24×109. The radar raw data is initially captured in the form of in-phase
and quadrature components. As shown in Figure 7.10a, this raw data is not centred at the origin.
To correct for this, we calculated the minimum, maximum, and mean values of the raw data
and then offset it to align with the origin (0,0). Both the original and adjusted data points are
shown in Figure 7.10a, with the (0,0) position marked by a red cross symbol. Since the radar
raw data is in complex IQ components form, we reshaped these into a voltage signal by using
a scaling factor depending on data. The length of the recorded signal depends on the number
of data points and the sampling rate, which we then converted into a time series. Figure 7.10c
shows the radar IQ data components in millivolts (mV) and the signal length in time (sec).
We converted the raw IQ data in terms of V; however, chest displacement due to respiration
typically follows a rhythmic pattern that corresponds to the breathing cycle, while the heart
generates smaller and more periodic vibrations. These heart-induced vibrations are synchronous
with the cardiac cycle and can be detected by the radar as they travel through the chest cavities
and the wall. Although both respiration and heart produce chest vibrations, they have different
characteristics, which is crucial to accurately identify respiratory patterns. Additionally, the
radar’s ability to capture subtle movements, such as chest vibrations and minor mechanical
motions from the heart’s atrium during the opening and closing of valves, shows potential for
OSA detection. We also converted the IQ voltage signal into a respiration displacement signal
(dradar) to represent vibrations in terms of distance parameters.

dradar = tan−1 (
Qc

Ic
· 3×108

24×109 ×4πfs
)m (7.10)

In equation 7.10, Qc represents the quadrature component of the centerd data in V, while Ic

corresponds to the inphase component of the centred data in V. The frequency fs is equal to 1
kHz and 3×108 ÷ 24×109 represent the radar wave length λ measured in metres (m).

Respiration Extraction from Ground Truth

The Go Direct® respiration belt measures respiration signals by detecting chest and abdominal
expansions and contractions when a person breathes. The belt has built-in force sensors that
monitor these movements and convert them into electrical signals that represent the breathing
pattern. Belt transfer data through a universal serial bus which can be captured either by using
a USB cable or by connecting through low-energy bluetooth (BLE) connection with laptop. To
synchronise the belt data with the radar, we prefer to collect data by cable to avoid latency and
synchronisation issues. We capture electrical signals, analyse the frequency and amplitude and
convert them into respiration displacement signal (RDsensor) similar to the radar dataset. This
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Figure 7.11: Figure 7 illustrates different respiratory events: normal respiration, apnea, hypop-
nea, and snores. Figure 7(a) shows the pattern of normal respiration. Figure 7(b) demonstrates
an apnea event characterized by the absence of respiration activity for at least 10 seconds. Fig-
ure 7(c) shows a hypopnea event, featuring a combination of shallow breathing or absence of
breathing for a minimum of 10 seconds. Figure 7(d) represents snoring events, identified by
variations in frequency and amplitude. These respiratory events keep up repeating according to
participant sleeping health.
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data provides a continuous, real-time measurement of respiration activity, which makes it useful
for monitoring breathing patterns in various clinical settings in a healthcare environment.

Comparison Between Radar and Ground Truth

As the respiration activity is more prominent than the tiny vibrations due to the heart, the peaks
shown in radar respiration signal in Figure 7.10c represent the tidal force, while the power
spectral density of the radar and the respiration belt signal is illustrated in Figure 7.10b.

fNyq =
fs

2
=

1,000
2

= 500Hz

Lower cutoff frequency bond: fL = 0.1Hz

Upper cutoff frequency bond: fH = 0.5Hz

(7.11)

We derived a 2nd order Butterworth low pass filter to remove unnecessary components in dradar

and to obtain a refined respiration displacement waveform RDradar. The radar sampling fre-
quency fs, the Nyquist frequency fNyq, the lower and upper cutoff frequency bonds fL, and fH

respectively given in Equation 7.11. The lower cutoff angular frequency (ωL), upper cutoff an-
gular frequency (ωH), and central angular frequency for the bandpass filter (ωC) are calculated in
Equation 7.12. The total number of peaks in one minute and time interval between consecutive
peaks are use to extract respiration rate (RRradar) per minute.

ωL = 2πfL = 2π ×0.1 ≈ 0.628rad/sec

ωH = 2πfH = 2π ×0.5 ≈ 3.14rad/sec

ωc =
√

ωL ·ωH =
√

0.628×3.14 ≈ 1.4rad/s

(7.12)

n =

log
(√

100.1Amax−1√
100.1Amin−1

)
2 · log(ωc)

(7.13)

Amin = 20log10(ωc)≈ 3dB

Amax =−10log10

(
1+
(

ωs

ωc

)2n
)

=−10log10

(
1+
(

4
1.4

)2×2
)

=−10log10

(
1+(2.857)4

)
=−10log10 (1+665.6)

=−10log10 (666.6)

≈−28.24dB

(7.14)
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where n is filter order, Amax is maximum allowable passband ripples in dB, Amin is minimum
stopband attenuation in dB, and ωc is normalized cutoff frequency given in Equations 7.13 and
7.14. Let’s the stopband frequency ωs = 4 rad/sec, the cutoff frequency ωc = 1.4 rad/sec, and
the filter order is 2, then Amin and Amax is derived in Equation 7.14.

y(t) = Butterworth filter(x(t)) (7.15)

We identified the peaks (P) at any time (t) of the filtered waveform y(t) using a height threshold
h, to find the breathing cycles. The time between two consecutive peaks is represented by ∆t

and the subsequent respiration rate is given in Equations 7.16, 7.17 and 7.18.

P(ti) ={ ti |y(ti)> h &

y(ti) > y(ti−1) &

y(ti) < y(ti+1)}

(7.16)

In Equation 7.16, the parameter h refers to the minimum height required for a peak to be de-
tected. In this context, the height h sets a threshold value, which means that only the peaks in the
signal that have a value greater than or equal to h will be considered valid peaks. For example,
in Equation 7.16, the numerical value of h = 0.5 indicates that the algorithm will only detect
peaks with an amplitude greater than or equal to 0.5 mm.

∆ti = ti+1 − ti (7.17)

Ri =
60
∆ti

(7.18)

Interpolation is required to estimate unknown values that fall between known data points (ti,Ri)

and (ti+1,Ri+1). In the case of linear interpolation, we use two known points (ti,Ri) and (ti+1,Ri+1)

to linearly estimate a value R(t) for some t where ti ≤ t ≤ ti+1. We start with the general inter-
polation formula for the respiration rate R(t) given in Equation 7.19 based on known data points
(ti,Ri) and (ti+1,Ri+1). To estimate the value of R(t) for some time t between ti and ti+1, we use
linear interpolation.

R(t) = interp(t,{ti},{Ri}) (7.19)

We have two known points, (ti,Ri) and (ti+1,Ri+1). These points correspond to the time and
respiration rate at two consecutive peaks in the respiration signal. The normalised difference in
time between t and ti is given in Equation 7.20.

(t − ti)
(ti+1 − ti)

(7.20)
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This fraction indicates how far t is between ti and ti+1, and it ranges from 0 (when t = ti) to 1
(when t = ti+1). The difference in the respiration rate between the two points is (Ri+1−Ri). This
is the change in the respiration rate between ti and ti+1. Using the normalised time difference
and the change in respiration rate, we estimate R(t) as given in Equation 7.21.

R(t) = Ri +
(t − ti)

(ti+1 − ti)
× (Ri+1 −Ri) (7.21)

This formula gives the respiration rate at any time t between ti and ti+1 by linearly interpolating
between the known values Ri and Ri+1. This interpolation is valid for ti ≤ t ≤ ti+1. Outside this
range, we would need to use different pairs of consecutive points for interpolation. Thus, the
complete formula for the interpolated respiration rate is given in Equation 7.22.

R(t) =Ri +
(t − ti)

(ti+1 − ti)
× (Ri+1 −Ri),

for ti ≤ t ≤ ti+1

(7.22)

In this process we extract the breathing rate from the respiration displacement waveform. We
first applied a Butterworth second order filter to remove noise and unnecessary components,
refining the respiration waveform for further analysis. Next, we identified the peaks in the
filtered waveform using the function given in Equation 7.16, which detected the breath cycles by
finding local maxima where the displacement exceeded a set threshold, given in Figs. 7.12(a),
7.12(b), and 7.12(c). We then calculated the time intervals between consecutive peaks using
Equation 7.17 to determine the time differences between breaths. In addition, the respiration
rate was calculated applying the formula given in Equation 7.18, converting the time differences
into breaths per minute. Finally, we interpolated the respiration rate over the entire time series
using Equation 7.22, providing a continuous estimation of the respiration rate throughout the
recording period. The difference between the interpolated and without interpolated waveform is
given in Figure 7.10d and the comparison between the respiration rate of the belt and the radar
is given in Figure 7.12(d).

Normal respiration

In Figure 7.11a, normal breathing shows a consistent magnitude for respiration displacement
waveform that indicate a normal airflow during the breathing cycle. The time period difference
between successive breathing peaks has relatively small variations, reflecting a stable breathing
cycle. Inhalation is represented by positive peaks in the waveform, while exhalation is repre-
sented by negative peaks. This results in a regular pattern without significant variations. The
regularity of the sleeping respiration pattern closely resembles the relaxed respiration during
awaking state, and the respiration rate remains nearly constant, with only minimal variations.
These consistent features are necessary to distinguish normal respiration from abnormal events
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such as apnea or hypopnea, where significant deviations from these patterns are observed, shown
in the following sub-figures in Figure 7.11.

Apnea and Hypopnea Events

According to the AASM, apnea is defined as a period during which breathing nearly stops for
at least 10 seconds, with airflow reduced by at least 90%. Although minimal airflow persists,
the individual’s muscles continue making efforts to breathe. Compared to the normal breath-
ing patterns shown in Figure 7.11a, Figure 7.11b illustrates a respiration drop that begins with
a shallow breathing, followed by almost no inhalation for more than 10 seconds. Despite on-
going muscular efforts to breathe, the force is insufficient to complete the breathing cycle. A
small breathing attempt follows the first apnea event, which is then followed by a second apnea
episode. This repetitive pattern continues until a hypopnea event or snoring occurs, changing
the breathing cycle.
The AASM also explains that hypopnea is a period during which air flow is partially blocked,
leading to shallow breathing. During a hypopnea event, airflow decreases by at least 30% and
can last a minimum of 10 seconds. Hypopnea can cause a decrease in blood oxygen levels less
than 3% or can disturb sleep by awakening the person. In Figure 7.11c, a normal breathing
pattern is observed initially, followed by a period of shallow breathing lasting more than 10
seconds. After an attempt to breathe with an increase in breathing force, the breathing pattern
gradually returns to normal. The Figure 7.11c also shows a brief pause in inhalation, which lasts
less than 10 seconds, followed by shallow breathing, marking this event as hypopnea. Hypopnea
events occur repeatedly, often mixed with episodes of apnea-hypopnea and snoring.

Mix Apnea-Hypopnea and Snores

Compared to the normal, apnea, and hypopnea events shown in Figures. 7.11a, 7.11b, and 7.11c
respectively, Figure 7.11d shows a longer inhalation lasting over 10 seconds, followed by an
exhalation of around 10 seconds, with higher repeating inhalation and exhalation amplitudes
afterwards during snoring. In this case, although respiration does not drop to zero for more
than 10 seconds, shallow breathing is observed in the first 25 seconds as shown in Figure 7.11d,
indicating a hypopnea event. Following this, there is a strong breathing snore for the next 25 sec-
onds, followed by another shallow breathing episode, marking another hypopnea event. For this
individual, snoring and hypopnea events are observed to occur repeatedly over a considerable
time period.

Features Extraction for Events Identification

In the context of events identification algorithm for machine learning, identifiable respiratory
patterns are important for accurate classification. First, the absence of breathing for at least 10
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seconds is classified as an apnea event. Second, shallow breathing that persists for 10 seconds is
identified as hypopnea. A combination of shallow breathing and no breathing is classified as an
apnea-hypopnea event. Lastly, shallow breathing accompanied by a higher amplitude breathing
force during snoring is noted as a snoring event. These distinct patterns help machine learning
differentiate between normal breathing and abnormal respiratory events such as episodes of
apnea, hypopnea, mix (apnea-hypopnea), and snoring. Besides, following alerts will generate in
the events of apnea, hypopnea, and snores:
1. If three consecutive events of apnea or hypopnea occur, an alarm will be activated.
2. If the snore continues for up to 10 seconds, the alarm will trigger.

7.3.2 Results

System Validation (Radar Vs Ground Truth)

We compared radar-based respiratory displacement with respiration belt-based displacement,
as shown in Figures. 7.12(a), 7.12(b), and 7.12(c). Additionally, we compared the respiration
rates derived from the radar to those obtained from the respiration belt, presented in Figure
7.12(d). To further assess the accuracy and reliability of our system against the gold standard, we
computed mean absolute error (MAE), mean absolute percentage error (MAPE), mean square
error (MSE), and root mean square error (RMSE). The maximum MAE recorded was 0.2865
for respiratory displacement and 0.1486 for respiration rate. We also observed a MAPE of
0.2071% for respiratory displacement and 0.0063% for respiration rate, resulting in an accuracy
of 99.79% and 99.99% for respiration displacement and respiration rate, respectively. Rest of
the results for MSE and RMSE are provided in Table 7.8.

Overall Accuracy

To identify apnea, hypopnea, and snore events, we categorized the respiration displacement
peaks, inter-peak displacement differences, and inter-peak time intervals, as shown in Figure
7.13a. Additionally, we marked the peak displacements to calculate average displacements from
the zero position, which allowed us to classify average peak intervals between apnea, hypop-

Table 7.8: We used mean absolute error (MAE), mean absolute percentage error (MAPE), mean
square error (MSE), and rote mean square error (RMSE) to validate accuracy and reliability of
our system against gold standard respiration belt.

Error Displacement Respiration rate

MAE 0.2865 0.1486
MAPE 0.2071 0.0063
RMSE 0.3439 0.2111
MSE 0.1183 0.0446
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Figure 7.12: Figure 2 presents a comparison between the contactless radar signal and the ground
truth from the respiration belt. Figure 2(a) shows the ground truth respiration signal from the
belt, with detected peaks indicated by grey dotted lines for reference, which are carried over
to Figures 2(b), 2(c), and 2(d). Figure 2(b) illustrates the respiratory signal obtained from the
radar, while Figure 2(c) compares the radar respiratory signal with the belt-derived ground truth
signal for direct comparison. Finally, Figure 2(d) illustrates the refined radar respiratory signal
alongside the ground truth.
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Figure 7.13: Figure 3 illustrates the process for identifying apnea, hypopnea, and snore events.
Figure 3(a) categorizes respiration displacement peaks, inter-peak displacement differences, and
inter-peak time intervals. Figures 3(b), 3(c), and 3(d) show peak displacements and classify
average intervals and peaks to events apnea, hypopnea and snores, respectively. Figure 3(e) plots
inter-peak displacement differences and inter time interval differences to differentiate hypopnea,
apnea, and snore events, with further illustrations of apnea and hypopnea events in 3(f) and 3(g),
respectively. An alert is triggered for events apnea, hypopnea and snores exceeding ten seconds,
marked above the first peaks in Figures 3(h), 3(i), and 3(j).

nea, and snore events, as demonstrated in Figs. 7.13b, 7.13c, and 7.13d. In Figure 7.13e, we
plotted inter-peak displacement differences to further distinguish hypopnea and apnea events,
including snores, as shown in Figs. 7.13f and 7.13g. Furthermore, we triggered an alert when
any hypopnea, apnea, or snore event exceeded ten seconds, which is indicated by markers above
the first peaks in Figs. 7.13h, 7.13i, and 7.13j. The primary purpose of the trigger is twofold:
first, to detect if an event has lasted over 10 seconds for counting the total number of events;
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Figure 7.14: Figure 4 presents the evaluation of the k-nearest neighbours classification model.
Figure 4(a) illustrates the selection of the optimal k value from 1 to 30, showing the accuracy
corresponding to each value. Figure 4(b) displays the confusion matrix for the three classes:
apnea, hypopnea, and snores. Figure 4(c) demonstrates the results of the k-fold cross-validation
for the first five folds, presenting training and validation performance.

second, in real-time scenarios, it can activate an alarm to awaken the individual or encourage a
change in sleeping position to restore normal breathing. From the 718 recorded events across ten
subjects, we identified 59 apnea events (8%), 44 hypopnea events (6%), and the remaining 86%
were normal respiration events. Apnea, hypopnea, and snore events often overlapped with nor-
mal respiration. After successfully identifying and distinguishing different respiratory events

Table 7.9: We used mean absolute error (MAE), mean absolute percentage error (MAPE), mean
square error (MSE), and rote mean square error (RMSE) to validate accuracy and reliability of
our system against gold standard respiration belt.

Class Precision Recall F1-Score Support

Class 0: Apnea 1.00 1.00 1.00 48
Class 1: Hypopnea 1.00 1.00 1.00 18
Class 2: Snores 1.00 1.00 1.00 6

Accuracy 1.00 72
Macro Avg 1.00 1.00 1.00 72
Weighted Avg 1.00 1.00 1.00 72
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using signal processing approach shown in Figure 7.13, we developed a multiclass k-nearest
neighbours (KNN) classification model to evaluate overall classification accuracy. Initially, we
determined the optimal value of k for the KNN algorithm, which ranged between 1 and 3 for
our dataset, shown in Figure 7.14a. For our model, we selected k=3. We divided the data into
80% for training and 20% for testing and applied five-fold cross validation on the training data
to ensure model validation. The training accuracy, training loss, validation accuracy, and val-
idation loss for each fold are presented in Figure 7.14c. After training, we tested the model
with the remaining 20% of unseen data, and the test accuracy and error metrics are provided in
Table 7.8. The signal processing we conducted to clearly identify signal components related to
apnea, hypopnea, and snores, enable the KNN model that achieved over 99% accuracy with min-
imal computational time and resources outlined in the experimental setup. The final accuracy
metrics, including precision, recall, F1-score, and overall accuracy for each class (hypopnea,
apnea, and snores), are listed in Table 7.9. The resultant confusion matrix is shown in Figure
7.14b. The purpose of implementing a simple KNN machine learning algorithm was to show
that multiclass classification could be achieved with ease and deliver excellent results across
all classes. In our analysis, we focused on extracting key features such as apnea, hypopnea,
and snores from respiratory peak intervals and inter-time intervals of respiratory displacement
peaks. For model selection, we chose k-nearest neighbours due to its simplicity and minimal
computational requirements, making it ideal for real-time applications with limited resources.
To compare the performance, we initially experimented with logistic regression, which yielded
an overall accuracy of 76%. However, given its relatively lower performance, logistic regression
was not considered further. To optimize the KNN model, we performed a grid search with k
ranging from 1 to 30 and utilized the standard scaler from the Scikit-learn library for feature
scaling. This process led to the selection of k=3 as the optimal value for our classification model
ensuring best accuracy.

7.3.3 Summary

Radar-based sleep apnea detection offers a non-contact and potentially more comfortable alter-
native to traditional methods. In this study, we addressed the growing need for non-invasive, con-
tactless monitoring of respiratory patterns, particularly for respiration related obstructive sleep
apnea (OSA). Given the high prevalence of OSA and its fatal impact on health, radar-based con-
tactless monitoring offers significant advantages over traditional methods such as polysomnog-
raphy, which can be uncomfortable and disruptive to sleep. Radar systems enable continuous,
long-term monitoring without physical contact, making them ideal for early detection and man-
agement of sleep-related breathing disorders.
Our approach followed a systematic process, starting with the validation of our radar based con-
tactless model against the gold standard respiratory belts. We successfully demonstrated the
model’s ability to accurately measure both respiratory displacement waveforms and respiration
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rates. The results of this comparison were highly accurate, with 99.7% accuracy for respiratory
displacement and 99.9% accuracy for respiration rate, as shown in Table 7.8 and Figure 7.11.
This validation not only proved the reliability of our radar-based system but also highlight its
potential for clinical applications in monitoring sleep-related disorders.
Following this validation, we used signal processing techniques to extract key respiratory fea-
tures such as apnea, hypopnea, and snores from the respiratory displacement waveforms. These
features were key in identifying abnormal breathing patterns, and the extracted events are pro-
vided in Figure 7.13. Finally, we implemented a multiclass classification model using the k-
nearest neighbours (KNN) algorithm to classify these events. By tuning the model to the op-
timal k value, we achieved excellent classification results, with accuracy exceeding 99%. This
high level of accuracy, combined with the minimal computational resources required by KNN,
demonstrates the effectiveness of our approach for real-time, contactless detection of OSA.
The clinical impact of this contactless monitoring system is significant, offering a non-invasive
alternative to traditional polysomnography (PSG) which load the patients with sensors and not
accurate due to intrusive nature in several cases. This contactless technology enhances patient
comfort, highly precise, and ensures reliability comparable to invasive clinical methods. This
approach supports early detection and long-term monitoring of OSA in both home and clinical
settings, potentially reduce undiagnosed cases and improving both patient and clinical outcomes.
Additionally, the ability to trigger alerts for prolonged apnea or snoring events allows for timely
intervention, reducing health risks associated with untreated sleep disorders. The system’s min-
imal computational requirements and ease of deployment further support its integration into
telemedicine and remote healthcare frameworks, making advanced sleep monitoring more ac-
cessible and scalable.
In conclusion, our radar-based system offers a highly accurate, non-invasive method for respi-
ratory health monitoring, which could be transformative in the management of OSA and related
disorders. The successful validation of the system against the ground truth and the implementa-
tion of an efficient classification algorithm shows the robustness of our approach and its potential
for broader use in clinical and home settings.



Chapter 8

Epilogue

8.1 Conclusions

This thesis presents an in-depth investigation of contactless sensing technologies for human ac-
tivity detection, vital signs monitoring, heart sounds detection, and sleep pattern recognition
using advanced RF and radar-based systems. Through multiple novel approaches, the research
demonstrates the feasibility and effectiveness of these technologies in diverse real-world applica-
tions, including smart homes, healthcare environments, and public spaces. The proposed LoRa
based systems for walking patterns recognition and through wall sensing highlight the potential
of LoRa technology in identifying individuals based on their walking patterns, achieving high
accuracy across different indoor and outdoor settings. Similarly, the use of energy consumption
data for human activity classification offers an efficient, machine-learning-driven approach to
behavioural monitoring in residential spaces, with implications for anomaly detection and pre-
dictive analytics. The thesis further explores the feasibility of radar-based speaker recognition,
demonstrating promising results in distinguishing individuals while preserving privacy. Addi-
tionally, sleep pattern recognition through micro doppler radar signals presents a non-invasive
method for detecting sleep abnormalities, particularly in early autism spectrum disorder diag-
nosis. This work establishes the foundation for future improvements in dataset expansion and
model optimization. Vital signs monitoring is another key focus of this research, with the ap-
plication of ultra-wideband and continuous wave radar systems to detect respiration variability
and heart rate. The results illustrate the effectiveness of deep learning models in extracting
meaningful physiological markers, advancing non-invasive health monitoring capabilities. The
study also emphasises the significance of heart sound analysis for accurate heart rate estima-
tion, reinforcing the reliability of cardiac signal processing techniques in medical applications.
Overall, this research underscores the transformative potential of RF and radar-based sensing
technologies in modern healthcare and smart living environments. While the findings contribute
significantly to the field. Future research should address challenges related to environmental
constraints, data security, and system scalability. By refining algorithms, incorporating advanced
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machine learning techniques, and expanding datasets, these innovations can further enhance the
accuracy, efficiency, and applicability of contactless monitoring solutions. This thesis paves the
way for the next generation of non-invasive sensing technologies, offering practical solutions
for improved health and well-being.

8.2 Future Directions in Contactless Human Activity Recog-
nition

Despite significant advancements in contactless human activity recognition, several areas re-
main open for exploration and improvement. Future research should focus on developing more
robust and adaptable models that can perform accurately in different environments, including
outdoor and dynamic settings. Enhancing system resilience to environmental factors such as oc-
clusions, multi-user scenarios, and varying human factors will further increase the practicality
of these systems. The integration of multimodal sensing approaches, which combine RF, radar,
infrared, and vision-based techniques, holds promise for improving recognition accuracy and
reliability. In addition, leveraging advanced deep learning models, particularly self-supervised
and federated learning techniques, can enable personalised and efficient activity recognition
without compromising user privacy. Another critical direction involves the miniaturisation and
optimisation of hardware to facilitate real-time processing with minimal energy consumption.
Developing energy-efficient, low-cost sensing devices will make contactless activity recognition
more accessible for widespread adoption in smart homes, healthcare monitoring, and security
applications. Furthermore, ensuring data security and privacy remains a pressing challenge. Fu-
ture research should explore privacy-preserving techniques, such as differential privacy and ho-
momorphic encryption, to enable secure data processing while maintaining user confidentiality.
Finally, expanding data sets with diverse demographics, activity types, and real-world scenar-
ios will improve the generalisability and robustness of the model. Incorporating explainability
and interpretability techniques will also enhance trust in AI-driven recognition systems, making
them more transparent and understandable to end users. By addressing these challenges and
opportunities, future advancements in contactless human activity recognition will significantly
impact the healthcare, smart living, and security domains, paving the way for more intelligent
and user-friendly environments.

8.3 Future Directions in Contactless Human Vitals Detection

Contactless human vital signs has made significant progress, but several areas require further
research to improve its reliability, robustness, and applicability. Future efforts should focus on
advancing signal processing techniques and developing advanced machine learning models to
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improve the accuracy of vital sign monitoring in diverse healthcare environment. One promis-
ing direction is the integration of multi-modal sensing techniques, combining radar, RF, thermal
imaging, and optical sensors to enhance detection accuracy and resilience against environmental
interferences. The fusion of data from multiple modalities can help mitigate issues such as sig-
nal noise, occlusions, and motion artifacts, resulting in more reliable health monitoring systems.
Another critical aspect is improving real time processing and power efficiency. Future research
should explore lightweight and energy efficient algorithms that can run on edge devices with
minimal computational overhead. This will enable seamless deployment in wearable devices,
smart home systems, and clinical settings without compromising performance. Personalized
healthcare solutions represent an important frontier for contactless vital signs monitoring. De-
veloping adaptive algorithms that account for individual physiological variations will enhance
the accuracy of health assessments. Additionally, incorporating AI-driven predictive analytics
can enable early detection of health anomalies, facilitating timely medical interventions. Ensur-
ing data security and patient privacy is also important. Future studies should investigate privacy
preserving techniques such as secure data encryption, federated learning, and anonymization
methods to protect sensitive health information while enabling efficient remote monitoring. Fur-
thermore, expanding the dataset diversity to include a broader range of demographics, health
conditions, and environmental scenarios will enhance the generalisability of developed models.
Panel studies involving real-world clinical trials will be instrumental in validating the reliability
and practicality of these technologies for widespread adoption. By addressing these future re-
search directions, contactless vital signs detection can evolve into a more accurate, scalable, and
privacy-preserving solution for healthcare applications, ultimately improving patient outcomes
and quality of life.

8.4 Future Directions in Contactless Heart Sounds Detection

Contactless heart sound detection is an emerging area with immense potential for advancing
non-invasive cardiac monitoring. Future research should focus on improving the accuracy and
robustness of heart sound acquisition and processing techniques to enhance diagnostic capabil-
ities. One key area is the development of advanced signal processing and machine learning al-
gorithms that can effectively filter noise, distinguish between different heart sound components,
and accurately extract critical cardiovascular features. Additionally, integrating multi-modal
sensing approaches, such as combining radar with thermal or optical sensors, could improve
heart sound detection and analysis. Another crucial direction involves real-time monitoring and
edge computing solutions. Future research should explore lightweight and efficient models that
can be deployed on wearable or portable devices for continuous, real time heart sound mon-
itoring in home and clinical settings. Privacy and data security considerations must also be
addressed. Future studies should investigate methods to ensure secure and encrypted transmis-
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sion of sensitive cardiac data, while also exploring privacy-preserving AI techniques to process
heart sounds without compromising user confidentiality. Expanding datasets to include diverse
populations, various health conditions, and real-world environmental settings will be essential
for improving model generalisation and clinical applicability. Panel studies involving extensive
clinical validation will further establish the credibility of contactless heart sound detection sys-
tems for widespread adoption in healthcare. By advancing these research directions, contactless
heart sound detection has the potential to revolutionize cardiac health monitoring, providing
a non-invasive, efficient, and accessible solution for early disease detection and personalised
healthcare.
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