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Abstract

Continental arcs are critical geological settings due to their role in recycling the Earth’s crust

through subduction and magma generation. These regions are characterised by intense volcanic

activity and host some of the world’s largest ore deposits. Extensive studies of continental arcs

have produced large geochemical databases and widely accepted conceptual models. Despite

this wealth of data, there is still ongoing debate within the literature on which processes are

the dominant control on the diverse range of geochemical signatures observed in continental

arcs. This ongoing debate is partially due to these systems being incredibly complex and their

spatially and temporally inaccessible nature. This study models the uppermost sections of

volcanic plumbing systems, located just below the volcanic edifices, to explore the dynamics

that govern magma mixing and fractional crystallisation within these shallow magma bod-

ies. The aim is to understand how these processes affect the geochemical signatures within

shallow systems and to determine whether these signatures can be preserved over time. A two-

dimensional (2D) computational numerical model was employed to simulate shallow melt-rich

magma bodies, tracking fluid dynamics, thermochemical evolution, and geochemical changes.

Another objective of this research was to determine if two mixing end-member compositions

can be reconstructed after magma mixing and fractionation. Machine learning techniques were

utilised to reconstruct the initial input compositions. The results of this study show that the

volatile content is the primary control of the system dynamics. Lower volatile contents led

to faster crystallisation and cooling, while higher volatile contents in the recharging magma

triggered vigorous convection, mixing and homogenising of the initial geochemical signatures.

The machine learning analysis revealed that a single overturn event could overwrite the original

geochemistry. However, it was possible to backtrack to the original geochemical signatures in

the simulations without overturn. This study highlights the importance of numerical modelling

for testing hypotheses about active volcanic systems. Numerical modelling combined with ma-

chine learning could help improve field sampling strategies by identifying zones where parental

geochemical signatures are most likely to be preserved within a system.
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over time for the bottom layers of each model. Variations in wall rock cooling
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by changes in crystal vol%. (C, D, E) Water content parameter fields for the

bottom 5 m of each varied wall rock cooling rate simulation and the reference

simulation. These panels represent the last time step within each respective

model. The colour scale shows H2O content in weight percentage (wt%). These
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base, affecting the formation of water-rich plumes or water-depleted zones. . . . 49
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one. (B) Plot of crystal volume percentage (vol%) over time for the bottom

layers of each model. Variations in chamber size affect the crystallisation rates,

particularly after the base layer reaches 50 vol%. (C, D, E) Water content

parameter fields for the bottom 5 m of the varied chamber size simulations and

the reference simulation. These panels represent the last time step within each

model. The colour scale represents H2O content in weight percentage (wt%).

The panels highlight how different chamber sizes lead to varied dynamics at the

system base, affecting the formation of water-rich plumes or water-depleted zones. 53
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4.6 Parameter fields from the reduced H2O simulations (2 wt% water) at 83.5 hr,

which is the final frame reached during the one-month run period. The param-

eter fields show crystallinity, density, and temperature values. (A) Crystallinity
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system’s domain. This field represents the temperature values corresponding

to the colours of the points on the Harker plots, providing insights into the

temperature and location of each cluster on the Harker plots. The Harker plots

outline the evolution of the system though time, with clusters first depleting in
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parameter field for the bottom 5 m of the system’s domain. This field shows the

temperature values corresponding to the colours of the points on the Harker

plots, providing insights into the temperature distribution and the location of

each cluster. (I) Shows the feldspar mineral content for the bottom 5 m of the
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4.9 Trace element spider diagram showing the four model trace elements at the

final frame (28.1 hr) of the closed system reference simulation. Trace elements

are ordered from least to most compatible, based on fixed partition coefficients
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4.11 Major oxide data from the reduced H2O content simulation (2 wt%), taken at

the final time frame (83.5 hr). Each point on the Harker plots represents a data

point within the system, with colours indicating the temperature of that point,

as mapped to the temperature parameter field. (A) TiO2, (B) Al2O3, (C) FeO,

(D) MgO, and (E) CaO, all showing straight line compatible trends. (F) Na2O

shows two deviating straight line trends and (G) K2O Harker plot shows an

incompatible trend. (H) Depicts the temperature parameter field for the bottom

5 m of the system’s domain. (I) Depicts the temperature parameter field for

the top 5 m of the system’s domain. These fields show the temperature values

corresponding to the colours of the points on the Harker plots, providing insights

into the temperature distribution and the location of each cluster. These Harker

plots show that the top and bottom crystal layers form contrasting geochemical

signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Trace element spider diagrams displaying the four trace element values from the

final time frame of each end-member simulation across the different parameter

variations. Trace elements are ordered from least to most compatible, based on

fixed partition coefficients (Ktr = 0.01, 0.10, 3.0, 10.0). The results show that

within the simulations with the fast plume onset, the plume is enriched in the

most compatible trace elements. The incompatible trace elements have little to

no variation across all the simulations. . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Trace element spider diagram displaying the four trace element values from the

last time frame (83.5 hr) of the varied H2O content simulation (2 wt% water).

The whole system composition is plotted in black. The top crystal layer is

shown in blue, and the bottom crystal layer is plotted in green. This highlights

the differing composition between the top and bottom crystal layers. . . . . . . 63

4.14 Parameter field from the open system reference model at multiple time steps.

(A–D) Show temperature values, with the velocity field overlain as a quiver plot

indicating the flow’s direction and magnitude. They show the evolution of the

hybridisation zone regime through time. (E) Depicts the temperature parameter

field of the top convecting layer, with a clipped range of temperatures between

1016◦C and 1010◦C. Highlighting the internal dynamics, plumes, drips and layer

convection. (F) Depicts the temperature field of the bottom convecting layers,

showing temperature values between 1100◦C to 1080◦C, again highlighting the

internal dynamics of the layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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4.15 Parameter fields from the smallest (5 vol% recharge) and the largest (50 vol%

recharge) varied recharge volume simulations compared against the open system

reference simulation (20 vol% recharge). (A–C) Depict temperature parameter

fields with the velocity field overlaid as a quiver plot, indicating the direction

and magnitude of flow. Both varied recharge volume simulations display the

same internal dynamics regime as the reference simulation. All panels show the

dynamics at 1.82 hr for consistency. (D–F) Show the crystal volume percent

(vol%) for the three simulations at the same time frame of 7.66 hr, highlighting

the varied crystal volumes. In the small recharge simulation, the base layer

contains 55 vol% crystals, while in the large recharge simulation, it contains 30

vol% crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 Parameter fields from the equal H2O content simulation taken at various points

in time. (A) The temperature field with the velocity field is overlaid as a quiver

plot, indicating the direction and magnitude of flow and depicting the internal

setup before the run begins. (B) The temperature field at 0.13 hr after ini-

tiation, highlighting the rapid interaction between the two magmas. (C) The

bubble volume percentage (vol%) parameter field at 1.19 hr shows the bubble-

rich layer sandwiched between two depleted layers. (D) Crystallinity (vol%)

parameter field at 1.77 hr, highlighting the high crystal content of the middle

layer. (E) The temperature parameter field at 8.56 hr, showing the development

of four convecting layers. (F) Temperature and velocity field quiver plots at the

end frame of the simulation, showing the system has settled into a three-layer

convective regime, with minimal movement in the lower layers. . . . . . . . . . . 69

4.17 Depicts several parameter fields through time from the high H2O recharge (1

vol% difference) simulation. (A) The temperature and velocity fields within the

first minute of the simulation highlight the system overturn event. (B) The

temperature field a few minutes later illustrates the rapid nature of the overturn

and the extent of mixing within a short period. (C) Bubble volume percentage

(vol %) parameter field, showing the bubbles’ location at the system’s base. (D)

Bubble volume percentage (vol %) field at 4.35 hr, depicting the evolution of

layering and heterogeneity as the bubbles rise. (E) Crystallinity parameter field

(vol %), showing values between 0 vol %) and 2 vol % to highlight the crystal

volume at the system’s base versus the top. This helps to counteract the bubble

buoyancy, preventing a second overturn. (F) Water parameter field (wt%) at 11.4

hr, highlighting the location of the water-rich layer and the dynamic interactions

between layers, including the draining of H2O from this layer to the depleted

layer above via plumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.18 Depicts several parameter fields through time from the High Water Recharge (2

vol% difference) simulation. (A) Temperature parameter field with the velocity

field overlain as a quiver plot, indicating direction and magnitude of flow. This
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the system. (C) The water content (wt %) field highlights plumes and drips

extending into the system from the boundaries. (D) Density field showing the

stable density stratification of the system within 1.29 hr. (E) SiO2 parameter field

(wt%) with the velocity field overlain as a quiver plot, indicating homogenisation

within the top convecting cell. This plot also highlights the chemical diversity

within the lower layer despite its stable density stratification. (F) Temperature

and velocity field of the last frame of the model, indicating the equilibration of

temperature and the convecting cell at the roof of the system. . . . . . . . . . . 72

4.19 Iron Oxide (FeO) Harker plots from the open reference simulation. (A–E) depict

the Harker plots at different time frames through the simulation from 0 hr within

(A) to the end of the simulation at 18.8 hr (F). Each point on the Harker plots

represents a data point within the system. The colour of the points are mapped

to the temperature field of the system. The initial geochemical signature of the

system shows the two magmas plotting as distinct compositions. (B–E) show

the system’s evolution over time with the formation of a hybridisation zone.

(F) depicts the geochemical signature at the end of the simulation, showing

the two end members, the hybridisation zone between them, and the fractional
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4.20 Major oxide data from the open system reference simulation, taken at the final

time frame (18.8 hr). Each point on the Harker plots represents a data point

within the system, with colours indicating the temperature of that point, as

mapped to the temperature parameter field. (A) TiO2, (B) Al2O3, (C) FeO,

(D) MgO, and (E) CaO, (F) Na2O, (G) K2O (H) Depicts the temperature pa-

rameter field of the system’s domain. This field shows the temperature values

corresponding to the colours of the points on the Harker plots, providing insights

into the temperature distribution and the location of each cluster. These Harker
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4.21 (A) Trace element spider diagram for the baseline open system reference simula-

tion at the final time frame (18.8 hr). The x-axis shows trace elements arranged

from incompatible to compatible, with respective partition coefficients of ap-

proximately 0.01, 0.1, 3, and 10. The y-axis shows dimensionless trace element

concentrations. The black line represents the initial bulk system composition,

which was set to contrasting trends between the resident and recharge magmas

to highlight mixing behaviour. The pink, blue, and green lines represent dif-

ferent layers identified by density contrasts, corresponding to the regions shown

in (B). (B) Model domain showing the spatial distribution of the compositional

layers identified in (A). The axes represent depth and width within the model.

Coloured circles and lines mark boundaries determined from density contrasts.

Pink indicates the melt-rich resident magma layer at the top, blue represents

the recharge magma layer that has not fully mixed, and green is the crystalline

cumulate layer at the base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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volume recharge simulations compared to the baseline simulation. Data is taken

from the final time frame of each model run. The reference simulation is plotted

in pink, the small recharge volume simulation data is shown in blue, and the

large recharge volume simulation is depicted in green. The initial input values

of both magmas are plotted in grey circles to highlight the variation from the

initial inputs. (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, (E) CaO, (F) Na2O, and

(G) K2O. Most Harker plots show straight-line trends, except for (A), (C), and

(D), which exhibit arc trends. These oxides also display the greatest variation

between the large and small recharge volume simulations. This indicates that
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volume simulations. The black line represents the initial bulk system composi-

tion, which was set to contrasting trends between the resident and recharge

magmas. The small recharge simulation composition is plotted in blue, and the

large recharge simulation composition is plotted in green. The pink shaded area

represents the range of compositions within the cumulate layers across all varied

recharge simulations. The results indicate that the small recharge simulation ex-
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4.24 Major oxide data from the three varied H2O content simulations compared to

the open system reference simulation, taken at the final time frame of each

model. The reference simulation data is plotted in pink. The equal H2O content

simulation data is shown in blue. The high H2O recharge simulation with a 1

vol% difference is depicted in green, and the simulation with a 2 vol% difference is

plotted in orange. Initial magma values are marked with white circles. (A) TiO2,

(B) Al2O3, (C) FeO, (D) MgO, (E) CaO, (F) Na2O, and (G) K2O. The results

show that the varied H2O content simulations all experienced greater levels of

mixing between the two magma compositions than the other open simulations.

In both the equal H2O content model and the 1 vol% enriched recharge model,

end-member compositions are still somewhat represented. However, in the 2

vol% difference recharge model, the compositions mix more thoroughly, evolving

towards the composition of the larger-volume resident magma. . . . . . . . . . . 80

4.25 (A) Trace element spider diagram for the equal H2O content simulation at the

final time frame (12 hr). The x-axis shows trace elements arranged from in-

compatible to compatible (with partition coefficients of approximately 0.01, 0.1,

3, and 10, respectively), and the y-axis shows the dimensionless trace element

concentrations. The initial input compositions are plotted in black and were

set to contrasting trends between the resident and recharge magmas to highlight

mixing behaviour. The pink, blue, and green lines represent the resident magma,

recharge magma, and cumulate layer, respectively. The trace element plot indi-

cates that increased mixing in this simulation leads to greater homogenisation

of the two magmas. While the two melt-rich layers retain similarities to the

initial resident and recharge magmas, the cumulate layer shows a composition

similar to the recharging magma. (B) Shows the model domain with the spatial

distribution of the different layers. The axes represent depth and width within

the model. The coloured circles and lines mark the boundaries identified from

the density fields, corresponding to the compositional layers plotted in (A). Pink
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4.26 (A) Trace element spider diagram for the higher H2O recharge simulation (1

vol % difference), taken at the final time frame (17.5 hr). The x-axis shows

trace elements arranged from incompatible to compatible, and the y-axis shows

the dimensionless trace element concentrations. The initial input compositions

are plotted in black. Three distinct layers are identified within the system:

the top layer (resident magma) in pink, the bottom layer (recharge magma) in

blue, and the base cumulate layer in green. The trace element plot shows that

increased mixing in this simulation leads to greater homogenisation of the two

magmas. Both melt-rich layers exhibit significant variation across all four trace

element values relative to the initial input compositions. The cumulate layer

composition closely resembles that of the recharging magma. (B) Shows the

locations and depths of these layers within the model domain. The axes represent

depth and width within the model. The coloured circles and lines mark the

boundaries identified from the density field, corresponding to the compositional

layers plotted in (A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.27 (A) Trace element spider diagram for the higher H2O recharge simulation (2

vol% difference), taken at the final time frame (45.9 hr). The x-axis shows

trace elements arranged from incompatible to compatible, and the y-axis shows

the dimensionless trace element concentrations. The initial input compositions

are plotted in black. Four distinct layers are identified within the system: the

top layer containing the convection cell (pink), the interface layer directly be-

low (blue), the large base layer (green), and the bottom crystal cumulate layer

(orange). The trace element plot indicates that the overturn event in this sim-

ulation resulted in extensive mixing between the two magmas. All four layers

exhibit variations across all trace elements, with compositions skewed closer to

the resident magma. This suggests that the recharge magma’s composition was

lost during the overturn event. Unlike previous simulations, the base crystal

layer closely matches the resident magma composition, implying that crystalli-

sation occurred in situ from the resident magma after the overturn event, as it

settled at the base. The most mixed composition is observed in the top layer.

(B) Shows the locations and depths of these layers within the model domain.

The axes represent depth and width within the model. The coloured circles and

lines mark the boundaries identified from the density fields, corresponding to the

compositional layers plotted in (A). . . . . . . . . . . . . . . . . . . . . . . . . . 83
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4.28 Stable Isotope fields of Isotope 1 at various time steps within two open systems

simulations. Plots A-D show the isotope distributions from the reference sim-

ulation, progressing from the initial composition to the final time step at 18.7

hr. These plots highlight the two-layer set up of the system and show minor

isotope variations where the two magmas meet. Plots E-H show evolving dy-

namics within the simulation that experiences high water content recharge into

the system. With 2 wt% water difference between the two magmas. These plots

also span four time steps, from the initial frame to the final time step at 45.9 hr.

In contrast to the reference case these plots highlight the overturn and mixing

of the isotope ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.29 Isotope data from the open system reference simulation. Plots A–F show the

isotope ratios plotted against SiO2 at various time steps throughout the simula-

tion, spanning from the initial to the final timestep. The data points are colour-

mapped to the temperature field, highlighting their spatial distribution within

the system. These plots illustrate the isotope ratio values of the initial magmas

and the development of a hybridisation zone at their interface. G displays the

isotope parameter field at the final time step, emphasising the presence of two

distinct compositional layers. Plot H shows the corresponding temperature field

used for the colour mapping in the isotope-SiO2 plots. . . . . . . . . . . . . . . . 86

4.30 Isotope data from the equal water content simulation. Plots A–F show the iso-

tope ratios plotted against SiO2 at various timesteps throughout the simulation,

spanning from the initial to the final timestep. The data points are colour-

mapped to the temperature field, highlighting their spatial distribution within

the system. The plots show linear mixing trends between the two magmas, with

slight breaks appearing related to transient convective layers forming. Plot G

displays the isotope parameter field at the final time step, which shows three

convective layers. plot H shows the corresponding temperature field used for the

colour mapping in the isotope-SiO2 plots. . . . . . . . . . . . . . . . . . . . . . . 87

4.31 Isotope data from the simulation with 1 wt% water difference between the two

magmas. Plots A–F show the isotope ratios plotted against SiO2 at various

timesteps throughout the simulation, from the initial to the final timestep. The

data points are colour-mapped to the temperature field, highlighting their spatial

distribution within the system. The plots show linear mixing trends between the

two magmas. Additionally the base layers have isotope ratios reflecting different

degrees of mixing. Panel G displays the isotope parameter field at the final time

step, which shows a narrow layer remaining at the base of the system. Panel H

shows the corresponding temperature field used for the colour mapping in the
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4.32 Isotope data from the simulation with 2 wt% water difference between the two

magmas. Plots A–F show the isotope ratios plotted against SiO2 at various

timesteps throughout the simulation, from the initial to the final timestep. The

data points are colour-mapped to the temperature field, highlighting their spatial

distribution within the system. The plots show linear mixing trends between the

two magmas. As the system homogenises the recharge magma composition is

lost, and the linear trends move towards the resident magma. G displays the

isotope parameter field at the final time step, which shows a slight variation

between two layers. Plot H shows the corresponding temperature field used for

the colour mapping in the isotope-SiO2 plots. . . . . . . . . . . . . . . . . . . . 89

4.33 This figure depicts Harker plots of the predicted major oxide endmembers from

the machine learning analysis of the open system reference simulation. The data

was generated when the machine learning script was prompted to identify two

endmember compositions. The analysis incorporated all available data points

from the system. Blue points represent the initial input compositions, while

white points indicate the predicted endmembers identified by the script. Yellow

clusters display the original simulation output, and pink clusters represent the

reduced dataset processed by the machine learning model. The results show

that the script successfully predicted two matching endmember compositions

and effectively filtered out the fractional crystallisation trend. . . . . . . . . . . 92

4.34 This figure depicts Harker plots of the predicted major oxide endmembers from

the machine learning analysis of the open system reference simulation. The data

was generated when the machine learning script was tasked with identifying three

endmember compositions. The analysis used all available data points from the

system. Blue points represent the initial input compositions, while white points

indicate the predicted endmembers identified by the script. Yellow clusters show

the original simulation output, and pink clusters represent the reduced dataset

processed by the machine learning model. The results demonstrate that the

script successfully predicted two matching endmember compositions, although

with higher errors than the two endmember analyses. The third endmember
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4.35 This figure depicts Harker plots of the predicted major oxide endmembers from

the machine learning analysis of the H2O rich recharge simulation (2%) simula-

tion. The data was generated when the machine learning script was tasked with

identifying three endmember compositions. The analysis used all available data

points from the system. Blue points represent the initial input compositions,

while white points indicate the predicted endmembers identified by the script.

Yellow clusters show the original simulation output. The results demonstrate

that the script unsuccessfully predicted two matching endmember compositions.

It can identify two end members close to the resident magma composition within

all of the oxide Harker plots; however, it fails to identify the recharging magma

composition, with the predicted end member (white) being far away from the
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5.1 Plot of the average densities of the initial two magmas against each other. All

open system simulations are plotted on the graph and colour-coded to reflect the

dynamic regimes they exhibit. The graph highlights the importance of density

contrast within the system and its influence on the internal dynamic regime

that develops once the simulation begins. The colours correspond to subplots

on the side, which show a temperature snapshot from each dynamic regime

to illustrate what it looks like. In pink (A), the models exhibit hybridisation

zone dynamics, where the bottom layer is denser than the top layers. The two

layers remain stratified with an interface layer (the hybridisation zone) where

interaction occurs, forming plumes. In blue (B), the multilayered convection

regime occurs when the base layer is still denser than the top, but with less

contrast, allowing bubbles to form in the base layer and rise to the interface,

creating a middle, bubble-rich layer. The system therefore shifts into a multilayer

convection regime with transient fourth layers forming. In green (C), the first

overturn simulation shows lower density in the base layer relative to the top,

triggering overturn. The system then transitions into the multilayer convection

regime. In yellow (D), the second simulation also experiences an overturn event

before settling into a final stable density stratification regime, where movement
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5.2 Regime diagram of the closed system models, plotting dimensionless values of

Ru (Crystals) on the x-axis and Rw (Thermal) on the y-axis. This diagram

highlights the influence of boundary cooling and crystal settling in determining

plume formation. The simulations are colour-coded based on parameter varia-

tions, with labels indicating whether each simulation involved a higher, lower,

faster, or slower variation from the reference simulation. The results show that

simulations with fast cooling across the boundary (high Rw) and slow crystal

settling (low Ru) do not develop plumes. In contrast, simulations with slow cool-

ing (low Rw) exhibit plume formation, with the crystal settling rate controlling

the onset of plumes. Simulations with faster crystal settling (high Ru) expe-

rience earlier plume formation, while those with slower settling rates (low Ru)

have plumes form later. This highlights the interplay between cooling rates and

crystal dynamics in regulating the timing and presence of plumes in the system. 104
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Chapter 1

Introduction

1.1 Background and Scientific Context

Shallow crustal magma bodies within continental arc settings are dynamic reservoirs situated

at the interface between the crustal magmatic system and volcanic plumbing system connecting

to the surface. These reservoirs play a crucial role in the formation of economically valuable ore

deposits and in fueling volcanic eruptions [Sillitoe, 1972, Tilling, 2009, Pettke et al., 2010, Huber

et al., 2019, Chelle-Michou and Rottier, 2021, Park et al., 2021, Popa et al., 2021]. Located in

subduction zones, where oceanic crust is recycled into the mantle, these reservoirs contribute to

the generation and evolution of diverse magmas [Karlstrom et al., 2010, Park et al., 2021]. As

magmas rise through the crust, they may stall and collect in shallow reservoirs, where processes

like fractionation, assimilation, recharge, and magma mixing alter their geochemical signatures

[Annen et al., 2006].

As shallow magma bodies cool upon contact with surrounding rock, they begin to fraction-

ate, with minerals crystallising and altering the composition of the remaining melt. Interaction

with country rock can lead to the assimilation of surrounding geochemical signatures into the

magma [Hildreth and Moorbath, 1988, Annen et al., 2006]. Additionally, recharge events, where

more primitive magmas from deeper in the volcanic system enter shallow reservoirs, can trigger

mixing with existing magmas, causing further geochemical changes [Hildreth and Moorbath,

1988, Annen et al., 2006].

Previous work on continental arcs has considerably increased our understanding of their

structure and internal dynamics. Our present knowledge of these systems is derived from

a combination of approaches, including geophysical, geochemical, geochronological, and geo-

dynamic studies [Turner and Langmuir, 2015a, Magee et al., 2018, Keller and Suckale, 2019,

Contreras-Reyes et al., 2021, Rosenbaum et al., 2021, Zhang and Miller, 2021, Zhao et al., 2021,

Mallea-Lillo et al., 2022, Chen et al., 2024, Liu et al., 2024]. Despite the wealth of data, there

is still open debate in the literature regarding the relative roles of different processes (magma

mixing, assimilation, and fractionation) and reservoirs (subducting slab, mantle wedge, and

crust) that lead to the geochemical diversity observed at the surface [Rawson et al., 2016].

Several challenges make the study of these internal processes difficult. Active plumbing
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systems are not directly observable, and their large spatial scale and long geological timescales

add complexity [Gerya, 2022]. We therefore must rely on indirect evidence from geophysical

surveys, and field and laboratory evidence from exhumed or erupted rocks [Magee et al., 2018,

Zhang and Miller, 2021, Adams, 2022, Cornet et al., 2022, Mallea-Lillo et al., 2022, Oyarzún

et al., 2022]. However, these methods have limitations. Geophysical studies do not capture

detailed geochemical information or active internal dynamics, and field studies provide limited

spatial density due to sampling and time constraints, offering only a snapshot view of a single

moment in time. Some zircon dating approaches can distinguish between different facies in

plutons; however, these approaches operate at best on 100 kyr timescales, which is well beyond

the time frame of volcanic eruption cycles [Michel et al., 2008]

This research addresses this gap by investigating the controlling processes within shallow

systems, including fractionation and magma mixing between two magma compositions, using

a numerical geodynamic model.

1.1.1 Andean Geology and Tectonic Context

This study focuses on the Andean continental arc. The Andean orogenic system is located

along the west coast of South America, where the oceanic Nazca plate is subducted beneath

the South America plate [DeCelles et al., 2014]. The Andean orogenic system is subdivided into

sections based on variations in tectonics, crustal thickness, and magmatic composition along

strike [Hildreth and Moorbath, 1988, DeCelles et al., 2014, Vera et al., 2014]. These subsections

include the central volcanic zone (CVZ), northern volcanic zone (NVZ) and southern volcanic

zones (SVZ) [Bryant et al., 2006, Blum-Oeste and Wörner, 2016, Rawson et al., 2016]. This arc

is the chosen focus of this study as it is well documented in the literature [Bryant et al., 2006,

Tilling, 2009, Blum-Oeste and Wörner, 2016, Rawson et al., 2016, Mart́ınez et al., 2018, Burns

et al., 2020, Sainlot et al., 2020, Contreras-Reyes et al., 2021, Carrapa et al., 2022, Mallea-Lillo

et al., 2022] and displays a wide variation in magmatic compositions and tectonics [Hildreth

and Moorbath, 1988, DeCelles et al., 2014, Vera et al., 2014]. The model within this study is

calibrated with data specifically from the Southern volcanic zone, as it contains several volcanic

centres which contain compositionally diverse magmas that are spatially well resolved [Rawson

et al., 2016, Mallea-Lillo et al., 2022]. These magmas are predominantly composed of basalt

to andesites with 47-58 % SiO2 [McMillan et al., 1989, Vera et al., 2014, Rawson et al., 2016,

Mallea-Lillo et al., 2022].

1.1.2 Geodynamic Modeling

Many geodynamic models have been developed to simulate the evolution of magmatic systems

[Dufek and Bachmann, 2010, Gutiérrez and Parada, 2010, Degruyter and Huber, 2014, Jackson

et al., 2018, Keller and Suckale, 2019], but they often simplify or overlook key aspects of geo-

chemical processes. Some models do not account for internal convection or phase segregation

[Degruyter and Huber, 2014] and therefore cannot accurately simulate compositional evolu-
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tion. While some models do incorporate multi-component thermochemical evolution [Dufek

and Bachmann, 2010, Gutiérrez and Parada, 2010, Jackson et al., 2018], they typically resolve

a simplified geochemical composition, limiting the level of complexity they can capture.

The model used in this research builds on the framework established by Keller and Suckale

[2019]. It is a two-dimensional (2D), three-phase finite difference model implemented in MAT-

LAB, which includes solid crystals, liquid melt, and volatile bubbles. Unlike earlier models,

this approach simulates fluid mechanics and thermochemical evolution while tracking geochem-

ical behaviour. It tracks geochemical evolution using four pseudo-components representing key

mineral and major oxide systems, derived from compositions in the GEOROC database [Watt

et al., 2013]. The model can simulate multiple volatile components; however, this study is lim-

ited to a single volatile component water (H2O). In addition to the major oxides and water, the

model tracks four unspecified trace elements that range from incompatible to compatible. These

are not tied to specific real-world elements but are designed to capture generalised geochemical

partitioning during magmatic processes such as fractionation and mixing. Finally, the model

includes two generalised stable isotope ratios, which serve as proxies for mixing dynamics.

1.2 Aim and Objectives

The central aim of this study is to understand the dynamic controls on processes such as magma

mixing and fractional crystallisation and how these processes contribute to the generation or

destruction of geochemical heterogeneity within shallow magma bodies. The main objectives

of this study are to:

(1) Model a single magma composition closed system body, which does not experience any

external inputs into the system, other than cooling imposed from the wall rock contact. Then

systematically vary parameters, including volatile content, chamber size and wall rock cooling

rate, to analyse their impact on the dynamics and geochemistry.

(2) Simulate an open-system magma chamber experiencing recharge by a more primitive

magma underplating the inital resident mamga. Systematically vary temperature, volatile

content, and recharge volume to assess how geochemical signatures evolve during mixing and

post-recharge convection, and whether these interactions generate or obscure geochemical sig-

nals.

(3) Determine if geochemical data within the open systems permits backtracking to the

initial input compositions for magma end member identification.

(4) Explore the feasibility of using real-world rock geochemical data to identify magma

chamber processes and provide recommendations for the spatial requirements of whole rock

sampling.
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Chapter 2

Literature Review

2.1 Continental Arcs and their importance

Continental arcs, also known as Cordilleran or Andean-type arcs [Ducea et al., 2015], form at

the interface between two tectonic plates, where the oceanic lithosphere is subducted beneath

the continental margin [McKenzie and Parker, 1967, White et al., 1970, James, 1971] (See Fig-

ure 2.1). Arc magmas form via the devolatisation of the subducting slab and sediments, which

lowers the melting point of the overlying mantle wedge, facilitating partial melting and gener-

ating primitive melts [Coats, 1962, Green and Ringwood, 1968, Dickinson, 1970, Annen et al.,

2006, Spandler and Pirard, 2013, Ducea et al., 2015]. These primitive melts have undergone

minimal differentiation and retain a composition similar to their source material. They are

typically basaltic in composition with high magnesium concentrations and low silica contents

[Green and Ringwood, 1968, Dickinson, 1970, Annen et al., 2006, Spandler and Pirard, 2013].

As these melts ascend through the overlying continental crust (See Figure 2.1), they undergo

significant evolution, usually becoming more felsic in composition [Hildreth and Moorbath,

1988, Annen et al., 2006]. This evolution involves processes such as fractional crystallisation,

where minerals crystallise and settle out from the melt, thereby changing the composition of

the remaining liquid [Bowen, 1928]. Magma mixing occurs between different magma reservoirs

as they ascend through the continental crust [Eichelberger, 1975, Sparks and Marshall, 1986].

Additionally, crustal assimilation can take place, where the melts incorporate elements of the

surrounding country rock, further altering their composition [DePaolo, 1981, Annen et al., 2006,

Spandler and Pirard, 2013, Ducea et al., 2015, Turner and Langmuir, 2015a]. These magmas

may solidify within the crust to form intrusive rocks or continue their ascent to the Earth’s

surface where they erupt as lavas [Annen et al., 2006].

Continental arcs are critical for understanding Earth’s evolution and crustal formation.

They are sites of significant crustal recycling and the addition of new material through magma

production and processing [Tatsumi and Kogiso, 2003, Hawkesworth et al., 2010, 2020, Cornet

et al., 2022]. Additionally, these systems are centres of extensive volcanic activity, posing

significant threats to human life.

As the global population increases, more people are living in proximity to active volcanoes.
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For example, the northwest United States, Colombia, and Chile are home to several major

continental arcs within densely populated areas [Freire et al., 2019]. By 2015, 14.3 % of the

world’s population lived within 100 km of Holocene volcanoes [Freire et al., 2019]. Over 20

million people in the Andes lived within 100 km of an active volcano as of 2004 [Stern, 2004].

This increasing number highlights the need for improved study and monitoring of volcanoes,

especially in regions where they pose a serious risk to large populations. Volcanic events like

pyroclastic density currents and lahars can affect wide areas and have devastating impacts.

The 1985 eruption of Nevado del Ruiz in Colombia triggered a lahar that travelled 85 km and

resulted in 23,000 deaths [Stern, 2004]. Further study of volcanoes and their associated crustal

magmatic systems is essential for improving hazard prediction and management strategies.

Furthermore, continental arcs are economically significant because they host large porphyry

ore deposits [Sillitoe, 1972, Singer et al., 2008, Sillitoe, 2010]. These deposits form from metal-

rich fluids released during the cooling of shallow crustal magma bodies, contributing substan-

tially to global reserves of copper, molybdenum, and gold [Chelle-Michou and Rottier, 2021].

Porphyry deposits alone account for 50–60 % of the world’s copper supply and 90-95 % of its

molybdenum supply [Lees, 2007, Singer et al., 2008, Sillitoe, 2010]. The complex physical and

chemical processes involved in porphyry ore formation remain poorly understood; therefore,

further research is needed. The formation and significance of continental arcs set the stage for

understanding the broader geological context of these systems. The intricate processes within

arcs dictate the diversity of magmatic and volcanic products we observe at the surface [Rawson
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et al., 2016]. To better understand the formation of ore deposits and the triggers of volcanic

hazards in arc settings, it is important to develop a deeper understanding of the geochemical

processes operating within these systems.

2.1.1 Geochemical Processes in Continental Arcs

Continental arcs display diverse ranges of geochemical signatures at the surface, reflecting the

complex interactions within the crustal magmatic systems [Stern, 2004, Ducea et al., 2015,

Rawson et al., 2016]. This geochemical diversity is present across both temporal and spatial

scales [Stern, 2004, Jacques et al., 2014, Turner and Langmuir, 2015a,b, Rawson et al., 2016].

These geochemical variations can be observed globally between different continental arcs, re-

gionally across a single arc and locally within subsections of an arc [Stern, 2004, Jacques et al.,

2014, Turner and Langmuir, 2015a,b, Rawson et al., 2016]. The geochemical variations include

differences in rock types, from basalts to rhyolites, as well as in major oxides and trace element

compositions, with silica content ranging from 45-75 wt% [Rawson et al., 2016]. Variations are

also seen in volatile contents and isotope values [Stern, 2004].

The Andean orogenic system is a prominent example where this geochemical diversity has

been extensively studied and debated, particularly due to its economic copper deposits [McMil-

lan et al., 1989, Stern, 2004, Samaniego et al., 2005, Bryant et al., 2006, Vera et al., 2014,

Bucchi et al., 2015, Blum-Oeste and Wörner, 2016, Morgado et al., 2017, Mart́ınez et al., 2018,

Burns et al., 2020, Sainlot et al., 2020, Contreras-Reyes et al., 2021, Mallea-Lillo et al., 2022].

In the Andean system, where the Nazca plate subducts beneath the South American plate,

significant variations in subduction style, such as differences in subduction speed, angle, and

crustal thickness, are observed along its length [Bryant et al., 2006, Blum-Oeste and Wörner,

2016, Rawson et al., 2016].

The Andes exhibit diverse geochemical signatures; for instance, within the Southern Vol-

canic Zone (SVZ), the rocks are predominantly basalts to basaltic andesites [Stern, 2004, Bucchi

et al., 2015, Mallea-Lillo et al., 2022]. In contrast, within the Northern Volcanic Zone (NVZ),

andesites to dacites are more common [Stern, 2004, Bryant et al., 2006, Samaniego et al., 2005].

Additionally, the Central Volcanic Zone (CVZ) has higher 87Sr/86Sr and δ18O values compared

to the Southern Volcanic Zone (SVZ) [James, 1982, Sainlot et al., 2020].

Ongoing debates in the literature focus on the relative contributions of different reservoirs,

including the subducting slab, mantle wedge, and crust, as well as processes such as fractional

crystallisation, assimilation, and magma mixing, to the observed geochemical signatures in these

arc environments [Hildreth and Moorbath, 1988, Plank and Langmuir, 1988, Annen et al., 2006,

Miller et al., 2007, Ruscitto et al., 2012, Turner and Langmuir, 2015a,b, Rawson et al., 2016,

Cashman et al., 2017, Ardila et al., 2019, Huber et al., 2019, Burns et al., 2020]. One hypothesis

suggests that the geochemical diversity of arc magmas is primarily controlled by variations

within the mantle source, including changes in temperature, composition, and volatile content,

as well as properties of the subducting slab such as dip angle, age, obliquity to the trench, and

subduction velocity [Plank and Langmuir, 1988, Ruscitto et al., 2012, Turner and Langmuir,
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2015a,b]. A second hypothesis posits that the geochemical diversity arises during the migration

of melts from the subduction zone to the surface as they interact with the continental crust.

During ascent, magmas can stall within the lower continental crust in zones referred to as

Hot Zones or Melting, Assimilation, Storage, and Homogenisation (MASH) zones [Hildreth

and Moorbath, 1988, Huber et al., 2019]. Over millions of years, processes such as fractional

crystallisation, crustal assimilation, and magma mixing can significantly alter the geochemical

signatures of the magmas [Annen et al., 2006, Miller et al., 2007, Cashman et al., 2017, Ardila

et al., 2019, Burns et al., 2020]. The complexity of arc systems, both at the arc scale and

within individual magma reservoirs, poses significant challenges in interpreting geochemical

data [Dufek and Bachmann, 2010, Karlstrom et al., 2010, Rawson et al., 2016]. Understanding

the relative importance of different processes and reservoirs is crucial for deciphering the origins

of geochemical diversity in continental arcs. Shallow crustal magma reservoirs are crucial

because of their proximity to the surface and serve as the final storage stage before volcanic

rocks erupt.

2.1.2 Shallow Crustal Magma Reservoirs in Arc Settings

Throughout the past century, conceptual models of shallow arc magmatism have evolved sig-

nificantly. Initial conceptual models such as Daly [1911] envisaged a single melt-rich magma

chamber supplied from below by a single conduit (See Figure 2.2 A). This ”big tank” concep-

tual model portrayed a long-lived melt-rich reservoir chamber that gradually cooled over time

and helped shape our understanding of volcanic processes and the formation of igneous rocks

[Glazner, 2007, Annen et al., 2015].

Geophysical, geobarometry and zircon recycling studies began to challenge this conceptual

model, leading to a shift in the literature [Coleman et al., 2004, Matzel et al., 2006, Lees,

2007, Schoene et al., 2012, Pritchard et al., 2018]. A study within the Andean subduction zone

showed numerous complex magma ascent pathways, contradicting the idea of a single vertical

conduit [Schurr et al., 2003]. A new conceptual model of a mush-rich system, known as the

trans-crustal magmatic system (See Figure 2.2 B), has begun to emerge [Cashman et al., 2017,

Edmonds et al., 2019, Sparks et al., 2019, Marxer et al., 2022]. This model proposes that melt-

rich systems in the shallow crust may be short-lived, and that the magmatic plumbing system

is made up of multiple reservoirs, envisioned as crystal-rich mush rather than melt-dominated

magma. It suggests that most differentiation occurs deeper, within the mid to lower crust

[Sparks et al., 2019], and highlights the dynamic nature of these systems across phases: molten

melt, mush, volatile gas, and country rock [Sparks et al., 2019]. Previous studies looking at the

shallow portions of trans-crustal plumbing systems have focused on the importance of recharge,

the thermal state of the crust and the volatile content of the system in relation to the formation

and lifespan of melt-rich magma bodies [Annen and Sparks, 2002, Schöpa and Annen, 2013,

Karakas et al., 2017, Huber et al., 2019]. Additionally, the volatile content has been examined

in relation to pressure within the system to assess the storage conditions of magma and the

style of volcanic eruptions that will result from them [Popa et al., 2021].
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Figure 2.2: Conceptual model of the volcanic plumbing system and shallow crustal magma
chamber. (A) This panel shows a shallow, melt-rich magma body and outlines the processes
influencing geochemical signatures, such as fractionation and mixing. The arrow on the left
indicates the thermal gradient, increasing temperature at greater depths. (B) Depicts the
shallow magma reservoirs in the context of the larger trans-crustal magmatic system. The
colour scale reflects increasing silica content, from low silica near the mantle to higher silica
values in the upper crust, showing the evolution of magma composition with depth. Adapted
from [Hildreth, 2004, Cashman et al., 2017, Chelle-Michou and Rottier, 2021].

This study focuses on the internal dynamics of these shallow portions and aims to under-

stand how these dynamics influence the geochemical signatures fed into them from the deeper

plumbing system. To achieve this goal, the project uses a state-of-the-art numerical model to

simulate 2D shallow crustal magma bodies. By integrating fluid mechanics, thermochemical

evolution, and geochemical processes, the model provides insight into how magma mixing, frac-

tional crystallisation, and other dynamic processes shape the geochemical compositions found

in shallow arc settings.

2.1.3 Computational Geodynamic modelling

The field of geodynamic modelling has grown significantly over recent decades with geodynamic

numerical models being used to explore a diverse range of geological settings and processes
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from mid-ocean ridge, plume and subduction dynamics, to surface plate deformation and the

formation of planetesimals [Tackley et al., 1993, Billen, 2008, Katz, 2010, van Hunen and Allen,

2011, Bouilhol et al., 2015, Dannberg and Gassmöller, 2018, Grima et al., 2020, Stein et al.,

2020, Langemeyer et al., 2021, Bollino et al., 2022, Gerya, 2022, Hu et al., 2022, Grima and

Becker, 2024]. One subgroup within geodynamic modelling is the field of magma dynamics

and multiphase flow models. Models offer great insights into inaccessible processes across both

temporal and spatial scales [Gerya, 2022]. Additionally, they serve as great tools for testing

scenarios and hypotheses.

Some of the earliest work within multiphase modelling consisted of analytical approaches

aimed at understanding the generation of magma and its transport [McKenzie, 1984]. Subse-

quent work in the 1970s and 1980s investigated two-phase flow between melt and solid residuals

[Sleep, 1974, McKenzie, 1984, Fowler, 1985, Scott and Stevenson, 1986]. Much of this work

aimed to test the theory surrounding microstructures and melt segregation from a porous ma-

trix [Sleep, 1974]. Other analytical models were constructed to understand the transport of

magma [Fowler, 1985, Scott and Stevenson, 1986]. These early studies advanced our under-

standing of fluid dynamics and established methods of implementing governing equations. The

primary governing equations of these models consist of the conservation of mass, momentum,

and energy [Ismail-Zadeh and Tackley, 2010]. Most of these two-phase flow models were porous

flow models applied to low melt fractions and focused on processes such as mantle convection

and magma dynamics. One limitation of these models is that they do not account for high melt

fraction systems within suspension flow.

As computational resources expanded and numerical techniques evolved, these analytical

models transitioned from conceptual frameworks to fully established computer simulations.

These models have been implemented using various discretisation techniques of the governing

equations. Primary methods include finite difference, finite volume, and finite element [Torrance

and Turcotte, 1971, Stemmer et al., 2006, Alisic et al., 2016]. Other discretisation approaches

include finite difference staggered grids [Gerya, 2022] and control volume finite element methods

[Geiger et al., 2004, Al Kubaisy et al., 2023]. Each numerical method offers distinct advantages

depending on the geophysical problem being modelled. For instance, control volume finite

element methods are useful for simulating complex geometries and variable material properties,

as they enable adaptive mesh refinement for higher resolution in areas of interest [Geiger et al.,

2004, Al Kubaisy et al., 2023]. In contrast, finite difference staggered grid methods, such as

mantle convection models, are preferred for large-scale systems due to their computational

efficiency and simplicity [Gerya, 2022].

2.1.4 The Challenge of Scale Separation

One limitation of geodynamic models is the scale on which they are numerically resolved. The

physics of magmatic systems spans from millimetre-scale phase interfaces to kilometre-wide

magmatic systems [Keller and Suckale, 2019]. Current models cannot resolve entire systems

while also capturing the wide range of spatial scales present within these systems.
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Numerical models presented in the literature are typically categorised based on the specific

scales and assumptions they address. One group studies magma dynamics at the scale of phase

interfaces [Parmigiani et al., 2011, Qin and Suckale, 2017]. Within this approach, the models

investigate the complex interactions between two or three phases (gas bubbles, solid grains,

and liquid films) on scales from millimetres to meters (See Figure 2.3). These models, known

as direct numerical simulations (DNS), have been used to investigate flow dynamics and the

effects of reactant transport [Parmigiani et al., 2011, Qin and Suckale, 2017].

An alternative approach and one that is utilised within this research is called the continuum

mixture model. Continuum mixture models resolved magmatic dynamics at much larger system

scales, ranging from tens of meters to kilometres [Oliveira et al., 2018, Keller and Suckale,

2019]. These models are based on Mixture Theory [Bowen, 1976], which assumes that the

large-scale macroscopic behaviour results from the smaller-scale microscopic phase interactions.

These models use a control volume to capture the local scale phase interactions between solids,

liquids and gases and average these interactions across the volume. This control volume then

represents a point within a set of continuum fields that describe the behaviour of the large-scale
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system. The three phases (solid, liquid, and gas) are individually resolved in their respective

continuum fields. The transfer of mass, momentum and energy between the phases is crucial

to the multiphase flow problem (See Figure 2.3).

The detailed microscopic interactions between phases are therefore simplified and repre-

sented by the fraction of volume each phase occupies within the control volume. As a result,

specific details of phase interactions are not individually tracked but are instead averaged out,

allowing the model to focus on the larger-scale behaviour of the system [Keller and Suckale,

2019]. System scale models are primarily used to understand processes occurring within mag-

matic systems, such as magma transport and magma chamber dynamics.

In addition to spatial scales, these models operate on different temporal scales depending

on the processes being simulated. For instance, DNS models may capture relatively short-

term interactions, whereas continuum mixture models are better suited to simulate long-term

processes such as magma transport that span from hours to years [Parmigiani et al., 2011, Qin

and Suckale, 2017, Oliveira et al., 2018, Keller and Suckale, 2019].

A wide range of phase proportions is exhibited throughout natural igneous systems from

source to surface. These range from low melt fractions during partial melting within the mantle

wedge, to magma mushes and high melt fractions within shallow crustal lenses where suspension

flow occurs [Caricchi and Blundy, 2015, Cashman et al., 2017]. As mentioned previously, most

early two-phase flow models were limited to porous flow within low melt fractions. To fully

describe the wide spectrum of rheological conditions throughout continental arc systems, a

framework was developed by [Keller and Suckale, 2019] to capture all of these phase proportions.

This framework was later developed into a numerical model by [Wong and Keller, 2023].

It is impossible to simulate every possible process seen in nature at once due to the great

complexity of natural systems. Therefore, models are often simplified to reduce complexity

[Gerya, 2022]. Within magma reservoirs, one simplification is to consider the systems either

open or closed.

Closed systems do not experience any inputs or outputs from external sources, while open

systems do. Within the context of this study, closed system models refer to a single magma

body that does not experience any recharge or assimilation. The open system simulations

experience the addition of a second magma composition within the system as recharge.

A final factor models must consider is geometry and dimensionality. Many use simplified

shapes and reduce 3D systems to 2D models to decrease computational complexity. Key ex-

amples of this are box models of magma chambers, which aim to study eruption frequency and

heat loss to the surrounding country rocks [Jellinek and DePaolo, 2003, Karlstrom et al., 2010,

Degruyter and Huber, 2014]. These reductions, however, may neglect significant dynamics and

interactions that occur within three-dimensional space.

2.1.5 Shallow Magma Reservoir Simulation

Direct field observations of active magma reservoirs cannot be made. Therefore, numerical

models provide insights into magma reservoir dynamics and their associated processes, including
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convection, fractional crystallisation, recharge, and assimilation (See Figure2.2) [Daly, 1911,

Bowen, 1928, DePaolo, 1981].

Several numerical models have been constructed to study magma reservoirs. One common

approach is the construction of spherically symmetrical box models [Jellinek and DePaolo, 2003,

Karlstrom et al., 2010, Degruyter and Huber, 2014]. These box models simplify the geochemical

complexity of magma chambers by representing them as one uniform and constant chemical

composition. They often contain a singular pressure and temperature value across the model

domain [Degruyter and Huber, 2014]. This style of model has been useful in studying time

evolution, eruption frequencies and heat loss to the surrounding country rock [Degruyter and

Huber, 2014]. One drawback to spherically symmetrical box models is that they do not capture

the internal spatial resolution of processes or the geochemical evolution of the system they are

simulating.

An alternative approach is utilised by Bohrson et al. [2020], Heinonen et al. [2020], which

uses a thermodynamic model. The main aims of these models are to track the evolution of

temperature, enthalpy, and the compositions within magma chambers over time [Bohrson et al.,

2020, Heinonen et al., 2020]. However, these simulations do not consider the internal physical

dynamics such as convection.

In recent years, researchers have increasingly applied multiphase flow models to the study

of magma chambers to gain a deeper understanding of the internal flow mechanics and the

complex interactions between different phases within these systems. Multiphase flow models

can be resolved in one-dimensional column models [Solano et al., 2012, Jackson et al., 2018] and

two-dimensional models [Dufek and Bachmann, 2010, Gutiérrez and Parada, 2010, Keller and

Suckale, 2019]. These models often contain components of fluid mechanics, thermochemical

evolution, and geochemical evolution [Keller and Suckale, 2019]. Therefore, they can model

internal magma chamber dynamics such as convection cycles, fractional crystallisation, phase

changes and geochemical heterogeneity. Two models with similar approaches to the one dis-

cussed in this research are [Dufek and Bachmann, 2010] and [Gutiérrez and Parada, 2010].

Gutiérrez and Parada [2010] constructed a 2D multiphase suspension flow model using the

finite element method. Gutiérrez and Parada [2010] aimed to understand the processes that

result in zonation and compositional variations within magma chambers. Their primary focus

was on closed systems with varying geometries. They could simulate several chamber processes

such as convection, crystallisation, crystal dispersion and volatile movement [Gutiérrez and

Parada, 2010]. They found that stock-like geometries were the most eruptable and displayed

the widest spectrum of eruptive material compositions [Gutiérrez and Parada, 2010]. Simi-

larly, Dufek and Bachmann [2010] adapted a multiphase fluid dynamics model to explore how

compositional gaps within a volcanic series occur. They concluded that the gaps are inherent

to fractional crystallisation; however, additional processes such as magma mixing and crustal

assimilation may overprint the signatures of fractional crystallisation, adding complexity.

Although these models provided useful insights, their source codes were never shared, and

they are not described clearly enough to be reproduced. Also, there have been no updates or
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follow-up studies using these models in over ten years, limiting their relevance for the current

work.

The model used in this study builds upon the framework established by Keller and Suckale

[2019], integrating the geochemical evolution of major and trace elements along with stable iso-

tope ratios. This enables us to assess how system dynamics evolve and influence geochemistry,

allowing us to ultimately trace the original end-member compositions.

2.1.6 Determining the end member composition of mixed magmas

One of the primary objectives of this study is to utilise machine learning to identify end-

member compositions of two magmas after they have undergone magma mixing and fractional

crystallisation. Distinguishing the end-member compositions of a volcanic system has impor-

tant implications for the genesis of the system, its evolution, and the overall formation of the

continental crust [Burns et al., 2020]. Within active continental arc settings, the compositions

of parental arc magmas are often poorly constrained due to the difficulty of directly sampling

the original end members. This is further complicated by geological processes such as magma

mixing, fractional crystallisation, and assimilation, which may erase or modify the original

chemical signatures [Burns et al., 2020].

Recent developments in machine learning have seen an increase in applications of this tech-

nique in geoscience [Karpatne et al., 2018, He et al., 2022]. A study by Ueki et al. [2018]

demonstrated that it is possible to distinguish between different tectonic settings using char-

acteristic geochemical data identified via machine learning. This ability to classify tectonic

environments using machine learning highlights its potential to enhance our understanding of

volcanic systems. Machine learning approaches have also been applied to the prediction of

end-member compositions.

Several studies have attempted to decipher end-member magma compositions within the

Central Volcanic Zone (CVZ) of the Andes [Blum-Oeste and Wörner, 2016, Burns et al., 2020,

Rout et al., 2021]. Blum-Oeste and Wörner [2016] identified three end-member compositions

for the CVZ complex using polytopic vector analysis (PVA). PVA is a statistical technique that

uses factor analysis to predict end members of mixed magma species [Blum-Oeste and Wörner,

2016]. Their method enabled the estimation of two-parent magma end members: a basalt

enriched in incompatible trace elements and a medium-K calc-alkaline basaltic andesite [Blum-

Oeste and Wörner, 2016]. A third end member was also identified as a high-K calc-alkaline

rhyodacite, interpreted as a partial melt from lower to middle crustal lithology [Blum-Oeste and

Wörner, 2016]. This highlights the usefulness of machine learning as a technique for deciphering

end-member compositions.

In this study, with the original end members known and used as inputs to the model,

there is a unique opportunity to backtrack to the compositions of the two mixing magmas.

This approach allows us to evaluate how processes within shallow crustal magma bodies, such

as fractional crystallisation and magma mixing, affect the accuracy of the machine learning

technique in identifying the end-member compositions.
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Chapter 3

Methods

3.1 Overview

In a similar approach to Keller and Suckale [2019], Keller [2025], this study applies the numerical

model Nakhla to model magma chamber dynamics and chemical mixing. Implemented in the

software MATLAB, the code simulates the dynamics of a three-phase multicomponent magma

system. The model tracks three distinct phases: liquid melt (m), within which solid crystals (x)

and volatile bubbles (f) are suspended. Within the scope of this study, the model is configured

to replicate a shallow crustal system within a continental arc setting.

The petrological model is calibrated to volcanic and plutonic rocks from the Southern Vol-

canic Zone Andes case study area. The Andes is an excellent example of a continental arc that

displays a wide range of geochemical signatures. The GEOROC Andean Arc Part 1 database

[Watt et al., 2013] was used for this calibration. It was filtered to remove samples that had

been altered or had incomplete major element compositions.

In natural systems, magmas contain a diverse range of major elements and volatile compo-

nents, mainly due to the heterogeneity of the subducted slab, mantle wedge and continental

crust. Resolving this level of detail in a numerical model presents significant challenges be-

cause of its inherent complexity and computational demands. Nakhla addresses the chemical

heterogeneity by using four pseudo-components. The multicomponent melting model, designed

to approximate local phase equilibria, is adapted from Keller and Katz [2016], Keller [2025].

These pseudo-components represent the bulk composition and influence the degrees of free-

dom in which the magma composition can evolve. They can be further resolved into mineral

systems, mineral end members, and individual element oxides, specifically SiO2, TiO2, Al2O3,

FeO, MgO, CaO, Na2O, and K2O. A full breakdown of the pseudo-components, mineral sys-

tems, mineral end members, and oxides is provided in Appendix 7.1. The chemical components

can partition between the crystal and melt phases. One limitation of the model is that the

pseudo-phase diagram uses linear solution-type phase relations, which allow all components to

co-occur with one another—such as olivine and quartz—even though such combinations are

not typically stable in natural systems.

Magmatic petrogenesis relies on the interplay of temperature (T ), pressure (P ), and bulk
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composition (C), which collectively influence the stability and composition of phases within a

magmatic system. Nakhla employs a multicomponent phase diagram approach, adapted from

Keller and Katz [2016] and further detailed by Keller [2025]. This approach simplifies the

complex thermodynamic behaviour of the system into a multi-dimensional phase loop. The

phase loop is used to calculate the proportions and compositions of solid and liquid phases at

each point in time, providing an approximation of the local phase equilibria [Keller, 2025]. This

simplified phase diagram approach allows the model to effectively track how the composition

of the magma changes over time, predicting the crystallisation sequence and the evolution of

mineral phases as the system cools and fractionates. In addition to the major oxides, the

model also tracks volatile components. In this study, a single volatile component water (H2O)

is considered, which can partition between the bubble and melt phases.

The following sections will detail the model’s key components, discuss the numerical imple-

mentation, and describe the analytical techniques utilised in this research.

Thermochemical Evolution

This section of the model tracks the evolution of temperature and composition, encompassing

major elements and the water volatile [Keller and Suckale, 2019, Keller, 2025]. This section

updates phase equilibrium and phase components, following the laws of mass and energy con-

servation.

The governing equations within this section are as follows:

∂F i

∂t
+∇ · (F ivi) = −∇ · qi + Γi, (3.1)

∂Cj

∂t
+∇ ·

(∑
i

F icijv
i

)
= −

∑
i

∇ · qi
j, (3.2)

∂S

∂t
+∇ ·

(∑
i

F isivi

)
= −∇ · qs +Υs, (3.3)

The first equation (Equation 3.1) solves for phase densities (F i), where i, = phases (melt

m, crystals x, fluid f). Equation 3.2 solve for component density (Cj), where (j = 1, ..., n) ,n

= the number of pseudo component). The final equation (Equation 3.3) solves for entropy (S).

Where:

∂/∂t is the partial time derivative, ∇· is the divergence operator, vi is the phase velocity field;

qi is the diffusive flux of phase i; and Γi is the phase change rate. Within Equation 3.2, qi
j is

the diffusive flux of the various pseudo-components,
∑

i is the sum of the phases and cij is the

values for the pseudo-components j of the different phases i. Finally within Equation 3.3, Υs

is the entropy production or heat dissipation rate and qs is the entropy flux.

The energy within the system is formulated in terms of specific phase entropies si and can be

used to formulate sensible and latent heat content. This approach is not standard in geodynamic

models; however, it accounts for sensible and latent heat content, and therefore captures the
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effects of latent heat during phase transitions like crystallisation. Standard thermodynamic

theory is applied to express the system’s heat in terms of temperature. The model excludes

consideration of heat production from external sources such as radioactive decay.

On the left-hand side of the equations, the first term represents the rate of change of the

phases, composition, and entropy densities (F i, Cj and S). The second term is the advection

term, which calculates the balance of advection fluxes carried by the phase velocity fields vi.

On the right-hand side of the equations is the diffusion balance term qi, the phase change rate

Γi and the entropy production or heat dissipation rate Υs.

Fluid Mechanics

The fluid mechanics model simulates the flow of magma and its internal phases within the

system. It tracks convection and flow within the chamber domain and determines the segrega-

tion of different phases. The model addresses compressible flow and utilises the compressible

Navier-Stokes equations to govern the dynamics. Specifically, it incorporates the conservation

of momentum Equation 3.4 and the conservation of mass Equation 3.5. This model is specif-

ically designed for Reynolds numbers below 100; therefore, it only accounts for laminar flow

and cannot simulate turbulent flow.

∂ρ̄v

∂t
= ∇ · η̄D(v)−∇P +∆ρ̄g , (3.4)

∂ρ̄

∂t
= −∇ · (ρv) , (3.5)

The momentum equation (Equation 3.4) describes the change in fluid momentum over

time. On the left-hand side, ∂ρ̄v/∂t represents the rate of change of momentum, where ρ̄ is the

mixture density, v is the mixture velocity vector and ∂/∂t is the partial time derivative. On the

right hand side, the first term, ∇ · η̄D(v), accounts for the viscous stress contributions, where

η̄ is the effective viscosity and D(v) is the deviatoric strain rate tensor and ∇· denotes the

divergence operator. The second term, −∇P , represents the pressure gradient, which drives

the fluid from high to low pressure regions. The final term, ∆ρ̄g, is the buoyancy force, where

∆ρ̄ is the density difference from a reference density, and g is the gravitational acceleration

vector.

The conservation of mass equation (Equation 3.5) governs the fluid’s mass balance. On the

left-hand side, ∂ρ̄/∂t represents the rate of change of density over time. On the right-hand side,

the term −∇ · (ρv) describes the divergence of the mass flux, where ρv is the mass flux vector.

The divergence operator ∇· measures how mass is transported within the domain, ensuring

conservation.

Geochemical Evolution

The geochemical evolution section tracks four trace elements and two stable isotope systems.

Unlike the major oxides, trace elements and isotopes do not influence melting behaviours or
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thermochemical evolution. The four trace elements within this study are defined using Equa-

tion 3.6. The trace elements undergo partitioning between the melt and solid phases, controlled

by their partitioning coefficients Ktr. The partition coefficients are calculated as the solid con-

centration divided by the melt concentration. A Ktr value << 1 designates an incompatible

trace element, while a Ktr value >> 1 represents a compatible trace element. In this study, four

general trace elements were implemented and are categorised as incompatible, slightly incom-

patible, slightly compatible, and compatible and have corresponding partitioning coefficients

of (Ktr = 0.01, 0.10, 3.0, 10.0). For this study, they are dimensionless relative concentrations

normalised to a background concentration and not defined as exact real-world trace elements.

The model used within this work includes two isotope systems (si) as part of its framework;

for this study, only one isotope ratio is necessary to act as a passive tracer of mixing. The

two stable isotope systems are not defined as exact real-world systems but instead as dimen-

sionless values. They follow the structure of delta notation (δ) commonly used in geochemistry

[McKinney et al., 1950, Sharp, 2017]. In delta notation, the isotope ratio is compared to some

reference standard and is expressed as a relative difference. From this, we see positive and neg-

ative values [McKinney et al., 1950, Sharp, 2017]. The stable isotopes within this study are not

calculated using actual isotope ratios. They are instead assigned values of -1 (for isotope one)

and +1 for (isotope two) to emulate the behaviours of delta notation. As the second isotope

system is the inverse of the first, it exhibits identical patterns as isotope one but in reverse and

does not provide additional insights. Therefore, only the results of the first isotope system are

discussed in this study.

The isotopes do not partition between any of the phases (melt, crystals, or bubbles) and

therefore function solely as passive tracers of mixing between the two magma compositions of

the open simulations. They are also utilised within the machine learning analysis. The isotopes

are defined using Equation 3.7.

∂Θtr

∂t
+∇ · ρ̄(θmtr mvm + θxtr xv

x) = ∇ · ρ̄mkc∇θ̄tr , (3.6)

∂Θsi

∂t
+∇ · ρ̄(θ̄si mvm + θ̄si xv

x) = ∇ · ρ̄mkc∇θ̄si , (3.7)

The first geochemical Equation 3.6 tracks the evolution of the trace elements (tr). Where

Θtr = ρ̄θ̄tr is the conserved bulk density of a trace elements (tr). Within the equation ρ̄ is the

mixture density and θ̄tr is the bulk (phase-averaged) concentration. The term ∂/∂t denotes the

partial derivative with respect to time, representing the rate of change of this bulk concentration.

The divergence operator ∇· appears throughout to describe the net flux of material entering

or leaving a volume. θmtr and θxtr are the concentrations of the trace element in the melt m and

crystal x phases, respectively. These phase concentrations are advected by the corresponding

phase velocities vm melt and vx crystal, and weighted by the volume fractions m and x. The

right-hand side of the equation represents diffusive transport of the trace element within the

melt phase m, where kc is an effective chemical diffusivity and ∇θ̄tr is the gradient of the bulk
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concentration.

Equation (3.7) describes the evolution of stable isotopes (si). This equation is almost

identical to the trace element equation (Equation 3.6) however, the stable isotopes do not

fractionate between phases. This implies that θmsi = θxsi = θ̄si, such that a single, phase-

independent bulk concentration appears in both advection terms. As in the trace element case,

stable isotopes are transported by melt and crystal advection and diffuse through the melt.

3.2 Numerical Implementation
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Figure 3.1: Diagram illustrating both a closed system (one magma composition) and an open
system (two magma compositions) model setup. The figure outlines the initial temperature
[T], density [ρ], and viscosity [η] values of the magmas. It also specifies the domain size and
dimensions. The schematic indicates the wall rock contacts at the top and bottom boundaries of
the model domain, along with the internal boundary layer where thermal boundary conditions,
including wall rock cooling, are applied. Finally, it highlights the periodic side boundaries of
the domain.

The governing equations set out above (Equations 3.1 to 3.7) are discretised using the finite

difference staggered grid method [Gerya, 2022]. The coupled system of equations is solved with
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a non-linear iteration loop where thermo-chemical and fluid-mechanical variables are solved,

and material coefficients are updated, until the norm of the non-linear residual drops below a

prescribed tolerance.

3.3 Boundary Conditions

The model domain is a 2D rectangular Cartesian box representing a crustal magma body,

approximating a sill (see Figure 3.1). The model domain spans 25 m horizontally and 50 m

vertically, discretised into 100 grid cells in the horizontal direction and 200 grid cells in the

vertical direction, resulting in a grid resolution of 0.25 m × 0.25 m. The top and bottom

boundaries are closed, simulating wall rock contacts with zero-flux conditions for thermochem-

ical variables and no-slip conditions for velocity and pressure variables. Rather than applying

thermal boundary conditions directly at the external boundaries, an internal boundary layer

within the domain allows for a more complex simulation of cooling effects. The side boundaries

are periodic to avoid artificial forcing and to maintain natural flow dynamics within the model

[Schmeling et al., 2008]. Additionally, the model allows for the placement of an internal bound-

ary between two magmas, which can be set at varying depths to simulate different recharge

volumes. This setup can simulate composition, density, and viscosity contrasts between the

different magmas.

3.3.1 Dimensional Analysis

Dimensional analysis was performed on the governing equations to derive characteristic physical

scales to understand the model outputs better. The characteristic velocity ratios can be used to

define non-dimensional numbers and understand the controlling parameters within the system.

These non-dimensional numbers help determine the relative significance of different physical

processes. Several characteristic velocities can be identified within the governing equations,

including the speed of advection, the crystal segregation speed, the diffusion velocity and the

characteristic speed of cooling of the boundary layer, outlined below.

ua =
∆ρ0g0D

2
0

η0
(3.8)

usχ =
∆ρ0g0d

2
0

η0
(3.9)

ud =
kT
D0

(3.10)
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uwT =
h0

τT
(3.11)

Where g0 is the gravitational acceleration, crystal size d0, characteristic magma viscosity η0,

thermal diffusivity kT , boundary layer width h0, wall rock cooling time τT characteristic length

of the system D0. The characteristic density contrast ∆ρ0 is proportional to factors such as

crystallinity, bubble-derived density contrasts, thermal density contrast, and chemical density

contrast. The non-dimensional numbers can then determine system behaviours and the relative

importance of different physical processes. Within this work, three dimensionless values are

defined. The Rayleigh number (Ra) is defined as the relationship between the characteristic

advective velocity or convective speed (ua) and the velocity of diffusion (ud).

Ra =
ua

ud

=
∆ρ0g0D

3
0

kTη0
(3.12)

The Rayleigh number (Ra) compares the relative importance of advective transport, driven

by density differences and gravitational forces, to diffusive transport, indicating whether con-

vective or diffusive processes dominate the system. High values of Ra suggest that advective

transport is the dominant process. In this context, D0 was chosen as 10% of the depth of the

convecting layer. This characteristic length scale D in Stokes’ law represents a sphere with

a density contrast falling through a liquid. By taking 10% of this sphere’s size, we approxi-

mate the size of a plume head, which provides an appropriate magnitude for the characteristic

advective velocity. Thus, D0 is set to D0 =
D
10

to represent this scale accurately.

The second non-dimensional value defined is Ru, which is the ratio between the settling

speed of the crystals (usχ) and the convective speed of the magma (ua), which simplifies down

to the crystal size versus the model size.

Ru =
usχ

ua

=
d20
D2

0

(3.13)

Ru compares the relative importance of the magma buoyancy and crystals settling within

the system. High Ru values indicate that crystal settling is the dominant process, while low

values suggest convection is dominant.

The final non-dimensional value is defined as Rw which is the ratio between the convective

speed of the magma (ua) and the characteristic speed of cooling over the boundary layer (uwT ).

Rw =
uwT

ua

=
η0h0

τT∆ρ0g0D2
0

(3.14)

Where h0 is the depth of the boundary layer and D0 is 10% of the convecting layer depth.
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For high values of Rw, cooling at the boundary will dominate, and when Rw is low, conductive

transport will dominate over boundary cooling. Rw compares the rate of boundary cooling to

the convective transport of heat.

3.3.2 Machine Learning

The final analytical technique used in this research is a machine learning-based approach using

the MATLAB script UNMIX (developed by Dr. Tobias Keller). This tool performed principal

component analysis (PCA) and factor analysis to extract end-member compositions from the

geochemical data. The primary goal of this analysis was to evaluate whether it is possible to

reconstruct the original magma compositions after two magmas have mixed within a system.

First, PCA was used to identify the directions in the dataset with the most variance. This

helped reduce the complexity of the data by showing how many components are needed to

explain the main patterns in the system, while still keeping the important information.

Once the required dimensions are established, the script proceeds with factor analysis or

end-member extraction. This section determines whether pure mixing end-members can explain

the data. Internal end members are found by taking the most extreme data points internal to

the dataset and finding the maximum volume between the data points. Additional external

end members are found by finding the vertical minimum volume that all the data points fit

inside with no negative end member compositions. The routine for finding the end-member

values is similar to the one used in Blum-Oeste and Wörner [2016]. This machine learning

approach provided a quantitative framework for determining whether geochemical data from

open systems can be used to backtrack to the initial input compositions for magma end-member

identification.
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Chapter 4

Results

4.1 Simulation Framework

Twenty-five simulations are conducted in this research, each running for one month of real-

world time. The resulting in-model progression times vary between 7.66 hr and 83.50 hr due

to the differing complexities of the simulations.

As discussed previously, several processes are thought to influence the dynamics within

shallow magma bodies, including fractional crystallisation, assimilation, magma recharge, and

convective mixing. In this study, the effects of assimilation are excluded, as the models do not

accommodate this process.

Magma SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O Water Units

Resident 55.35 1.02 14.73 8.97 4.88 5.99 3.86 1.20 4.00 wt%
Recharge 51.03 1.13 17.98 9.46 5.66 9.13 2.98 0.63 2.00 wt%

Table 4.1: Initial major oxide and H2O compositions of the Resident and Recharge magmas
used as input data for the model scenarios. These compositions were calibrated using the
GEOROC Andean Arc Part 1 database [Watt et al., 2013] filtered to exclude altered samples
and those with incomplete major oxide or H2O data.

The simulations are organised into two distinct groups. The first batch consists of ten

models focusing on simplified closed system scenarios. These models were set up to simulate a

magma body in the shallow crust that has already undergone some fractional crystallisation,

and therefore has a more evolved composition. The initial magma composition is classified as

an andesite, containing 55.35 wt% SiO2 and 4.00 wt% H2O. Table 4.1 outlines the full major

oxide composition. This starting composition was derived from the GEOROC Andean Arc

Part 1 database [Watt et al., 2013], filtered to exclude altered and incomplete samples. The

water content was set at 4.00 wt%, consistent with water contents measured in melt inclusions

from mafic arc volcanoes, which typically range between 2–6 wt% H2O [Moore and Carmichael,

1998, Plank et al., 2013, Zellmer et al., 2016, Ruscitto et al., 2010]. The initial temperature

was set to 985◦C to represent a magma that has cooled slightly but remains above its solidus

[Annen et al., 2006]. The initial crystallinity is 1 vol%, with no initial bubble phase. These
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simulations investigate the interplay between fractional crystallisation and convective mixing

within the system.

The second group includes fifteen simulations incorporating instantaneous recharge of a

second magma composition into the system (open systems). These models are designed to

explore the added complexity of magma recharge and mixing between two magma compositions.

They simulate the same resident magma composition and temperature as the closed system

simulations, with the addition of a second, recharging magma beneath it. The recharge magma

is hotter, with an initial temperature of 1235◦C, and more primitive in composition. It is a

basalt with 51.03 wt% SiO2 (outlined in Table 4.1).

This less evolved composition is selected to simulate magma that has not experienced as

much fractional crystallisation and is recharging the system from deeper within the crust. The

baseline recharge magma contains 2.00 wt% H2O to investigate the effects of a recharging

magma that may have already undergone degassing as it rises. One of the following parameter

tests explores the effects of higher water contents in the recharge magma, which is suggested to

occur within natural systems [Moore and Carmichael, 1998, Ruscitto et al., 2010, Plank et al.,

2013, Zellmer et al., 2016].

Three parameter tests are conducted across the fifteen open system models, varying the

temperature and H2O content of both magmas and the recharging magma volume. These tests

examine how these variations affect internal dynamics such as magma mixing.

Within both groups, a reference run is established to serve as a control, allowing for the

effects of parameter variations to be assessed. Each simulation varies a single parameter,

enabling straightforward comparisons to the reference simulations and providing clear insights

into how these changes influence internal dynamics and geochemistry.

4.2 Closed System Dynamics

The ten closed system simulations consist of a closed reference simulation and nine additional

runs that vary across four key parameter tests, each designed to explore how internal dynamics

respond to different conditions. The first test investigates varying wall rock cooling rates,

ranging from 3 hr (fast) to 48 hr (slow), to simulate different thermal preconditioning states

within the crust. The second test varies chamber sizes, with models spanning from 12.5 m ×
25.0 m to 37.5 m × 75.0 m. The third test examines the impact of crystal size, comparing one

simulation with larger crystals (3 × 10−3 m) and another with smaller crystals (3 × 10−4 m),

to observe how crystal size affects system dynamics, such as crystal settling speeds. The final

test reduces the H2O content to 2.00 wt%, half that of the reference simulation. Despite these

variations, all simulations display similar internal dynamics, including fractional crystallisation,

convective mixing, crystal-driven downwellings, and cumulate layering at the system’s base.

Most of the parameter tests reflect variations in timescales and rates of dynamic behaviours.

A summary of all ten simulations and their parameter variations is provided in Table 4.2.
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Model ID Wall rock cooling Crystal size Chamber size Water content (H2O)
[hr] [m] [m] [wt %]

Closed Reference 12 1× 10−3 25 × 50 4.00
Slow Wall rock cooling 48 1× 10−3 25 × 50 4.00
Fast Wall rock cooling 03 1× 10−3 25 × 50 4.00
Larger Crystals 12 3 × 10−3 25 × 50 4.00
Smaller Crystals 12 3 × 10−4 25 × 50 4.00
Smallest Chamber 25 12 1× 10−3 12.5 × 25 4.00
Small Chamber 40 12 1× 10−3 20 × 40 4.00
Large Chamber 60 12 1× 10−3 30 × 60 4.00
Largest Chamber 75 12 1× 10−3 37.5 × 75 4.00
Lower Water 12 1× 10−3 25 × 50 2.00

Table 4.2: Closed system model IDs and parameter variation values. The varied parameters in
each model are outlined in bold

4.2.1 Closed System Reference Simulation

The model outputs are depicted by parameter fields of dynamic and geochemical values, in-

cluding temperature, density, viscosity, crystallinity, and major oxide values, all calculated at

each point within the model domain, illustrated in Figure 4.1.

Throughout the reference simulation, four dynamic behaviours are observed: crystal drips,

whole-system convection, crystal accumulation, and layering at the model’s base. These be-

haviours are illustrated in Figure 4.1, highlighting the interconnected relationships between

temperature, crystal volume, H2O content, and velocity. All four parameter fields show the

same dynamics, highlighting their coupled relationships.

At the onset of the simulation, cooler layers form at the top and base boundaries due

to the imposed wall rock cooling, which results in crystal nucleation. These cooler layers,

approximately 4°C below the ambient system temperature, lead to the formation of crystal

downwellings that sink from the top boundary into the chamber. These crystal drips drive

downwelling flow and can be seen within the crystallinity field (Figure 4.1 A)

The crystal drips persist throughout the simulation, continuously removing crystals from the

top boundary and exposing the hotter melt below it to the wall rock contact. This exposure of

hotter melt at the boundary, coupled with the latent heat produced from crystallisation, slows

the cooling rate at the top boundary relative to the bottom of the system. The top boundary

cools at a rate of 0.4 ◦C/hr while the bottom boundary cools by 16◦C/hr. These persistent

downwellings can be observed in model run videos within the Supplemental Material.

At the bottom of the system, crystals form due to contact with the cooler wall rock and

accumulate due to the settling of crystals from the top of the system. These layers can be seen

within Figuer 4.1 A–C. The base layering reaches 50 vol% crystallinity by 5.15 hr, and as the

simulation progresses, it thickens as crystals accumulate. By the end of the simulation, the

crystal layer is around 0.5 m thick and ranges from over 90 vol% crystals at the base to around

40 vol% at the top (See Figure 4.1 B).
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Figure 4.1: Parameter field from the closed system reference model at 28 hr of model time,
showing crystallinity temperature and H2O content. (A) Crystallinity parameter field, where
the colour scale represents the system’s crystal volume percentage (vol%). The scale range is
clipped to display values between 2 vol% and 3 vol%. Darker colours indicate areas of higher
crystal vol% highlighting the sinking crystal drips from the top of the systems and crystal
accumulation at the base. (B) Crystallinity field without the clipped range of values, focusing
on the bottom 5 m of the system. This highlights the high crystal vol% within the cumulate
layering. (C) Temperature parameter field, where the colour scale represents temperature
values between 975◦C and 980◦C. A velocity field is overlain as a quiver plot, indicating the
direction and magnitude of flow. The flow aligns with the crystal drips, illustrating that these
drips control the convective currents. (D) Water content parameter field, where the colour
scale shows H2O content values between 3.96 wt% and 4.02 wt%. This highlights the H2O rich
plumes, and the H2O varied layer beneath them. (E) The water content field of the bottom 5
m shows the full range of H2O content values, further highlighting the distribution of H2O in
the base layers and the formation of plumes.

The downwelling from the top of the model domain drives whole-system convection, as

evidenced by the quiver plot in Figure 4.1 C. The quiver plot illustrates the direction and

strength of the velocity field within the simulation, highlighting the convection currents. The

convection persists throughout the whole model simulation with an average convective speed

of 46 m/hr. There is no convection within the crystal-dense base layer.

As crystals form at the base of the domain, they exclude H2O as the water cannot partition

into the crystal phase. This exclusion of H2O causes an increase in the H2O concentration in the

surrounding melt layer and a decrease within the crystal-rich layering. As a result of this crystal

accumulation and loss of H2O, the viscosity at the bottom cumulate layer increases (Figures 4.1

D and E). Once the saturation point is reached, bubbles begin to exsolve and become trapped
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by the high viscosity. By the end of the simulation, there is approximately 10 vol% trapped

bubbles within the cumulate layer. Throughout the simulation, a thin layer of water-rich melt

forms above the cumulate at the system’s base (Figure 4.1 D). As the simulation progresses,

the H2O content of this layer increases, reaching an average of 4.1 wt% at 11 hr (See Figure

4.1 E).

This increase in H2O content reduces the melt density and eventually creates a density

contrast sufficient to cause small, water-rich plumes to rise into the chamber. These plumes

migrate in response to the convection cells driven by the crystal downwellings from the top of

the system; their ability to induce substantial convection is limited by the magnitude of the

density contrast they create (Figures 4.1 D and E).

This model serves as a robust baseline from which the other models are varied, demon-

strating crystal-driven downwellings, base layer accumulation, whole system convection, and

water-rich melt plumes rising from the base.

4.2.2 Wall Rock Cooling Variations

The first parameter test of the closed system models investigates how variations in wall rock

cooling times affect the internal dynamics of the magma reservoir. These cooling times at

the system boundary simulate different thermal conditions of the surrounding country rocks.

One simulation features a faster cooling time of 3 hr, representing cooler wall rocks with a

smaller thermal aureole. In contrast, a second simulation uses a slower cooling time of 48

hr, simulating magma emplacement into warmer crust. Both simulations are compared to the

reference simulation, which has a 12 hr cooling time, to assess how different wall rock cooling

rates influence the system’s internal behaviour and cooling dynamics. Table 4.2 provides details

of these parameter variations.

The wall rock cooling time controls the internal cooling rate of boundary layers (see Figure

4.2). At the end of the fast wall rock cooling simulation, the cumulate layer is less than

400 ◦C, which is 400 ◦C cooler than in the slow cooling simulation (see Figure 4.2 A). The

simulations reach different model times within the same real-world run times due to variations

in internal complexities, such as convective speeds. The varied cooling rates at the system’s

base lead to different crystallisation rates across the simulations (see Figure 4.2). The faster

cooling rate simulation results in more rapid crystallisation at the wall-rock contacts, leading to

quicker formation of crystal drips. This process initiates convection more rapidly. The density

contrast between the cooling magma at the boundary and the hotter inner system is greater in

the faster cooling system, promoting more rapid convective currents. The average convective

speeds observed are 99 m/hr for the fast-cooling system and 22 m/hr for the slow-cooling

system.

In the slower cooling simulation (48 hr), slower crystallisation results in the cumulate layer

reaching 50 vol% crystallinity by 25 hr of model time see Figure 4.2 B. This slower crystallisa-

tion allows water-rich melt to form above the cumulate layer, creating a density contrast that

promotes plume formation. Consequently, the cumulate layer depletes in water (see Figure 4.2

48



Varied wall rock cooling rate 

Slow Wall rock Cooling  Closed Reference Fast Wall Rock Cooling

Water Content [wt%]of base 5 m Water Content [wt%]of base 5 m Water Content [wt%]of base 5 m 

Width [m]

D
ep

th
 [

m
] C D E

B

62.6

11.8 28.1

Base Layer Crystallisation Over Time

62.6

11.8

28.1

Cooling at the Base of the System

A

Time [hr]

C
ry

st
al

 V
ol

um
e 

[v
ol

%
]

Te
m

pe
ra

tu
re

 [
°C

]

Time [hr]

Figure 4.2: Varied wall rock cooling rate simulations compared to the reference simulation. (A)
Plot showing the temperature values at the bottom of the system over time for each simulation.
This illustrates the varied cooling rates across the parameter test and reference simulations.
(B) Plot of crystal volume percentage (vol%) over time for the bottom layers of each model.
Variations in wall rock cooling rate significantly alter the crystallisation rate within the system,
as indicated by changes in crystal vol%. (C, D, E) Water content parameter fields for the bottom
5 m of each varied wall rock cooling rate simulation and the reference simulation. These panels
represent the last time step within each respective model. The colour scale shows H2O content
in weight percentage (wt%). These panels highlight how different cooling rates lead to varied
dynamics at the system base, affecting the formation of water-rich plumes or water-depleted
zones.

C). By the end of this simulation, the base layer consists of 70 vol % crystals, 7 vol% bubbles,

and is depleted in water compared to the reference simulation (see Figure 4.2 C and D). In

the faster cooling simulation (3 hr), rapid crystallisation occurs, reaching 50 vol% crystallinity

by 1.23 hr of model time, see Figure 4.2 B. This rapid crystallisation traps water and bubbles

within the cumulate layer, preventing plume formation. By the end of this simulation, the

cumulate layer contains 90 vol% crystals, 11 vol% bubbles, and variable H2O concentrations,

with one layer reaching 4.3 wt% H2O (see Figure 4.2). In the reference simulation, water-rich

plumes form at 14.9 hr of model time (see Figure 4.3). In the slower cooling simulation (48 hr),

plumes form earlier, around 9.7 hr, are more frequent, and exhibit rounded morphologies (see

Figure 4.3). These plumes contain approximately 4 wt% H2O and 1–2 wt% crystals, similar to

the reference simulation (see Figure 4.3). Conversely, the faster cooling simulation (3 hr) does

not show plume formation throughout its run (see Figure 4.3).
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Figure 4.3: Water content (wt%) parameter fields from the two varied wall rock cooling rate
models and the reference simulation, showing the bottom 5 m of the systems. The colour scale
represents H2O content values ranging between 3.9 wt% and 4.03 wt%. These values are clipped
to this range to highlight the presence or absence of water-rich plumes. The x-axis indicates
variations in time, showing the different onset times of plume formation across the simulations.
The y-axis outlines the wall rock cooling rate variations, demonstrating that faster cooling rate
simulation does not experience plume formation.

4.2.3 Crystal Size Variations

The second parameter test involves varying the crystal size from the Reference model by a factor

of 3. The large crystal size simulation has an increased crystal size of 3×10−3 m, while the small

crystal size simulation has a decreased size of 3 × 10−4 m (See Table 4.2). Both simulations

exhibit similar dynamic behaviours to the reference simulation, including convective mixing,

crystal downwelling, cumulate formation, and plumes forming at the bottom of the model.

However, they display varied timescales for these dynamics.

The crystal settling speeds depend on the crystal size within the system and can be calcu-

lated using Stokes law (Equation 3.9). The length scale within Stokes’ law can be set to the

crystal size (d). This length scale is squared therefore varying the crystal size by a factor of 3

which varies the crystal settling speed by a factor of 9 (See Equation 3.9).
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Figure 4.4: Varied crystal size simulations compared to the reference simulation. (A) Plot
showing the crystal volume percentage (vol%) values at the bottom of the system over time
for each simulation, highlighting the slight variation across the three simulations. (B) The
zoomed-in section of plot (A) focuses on crystal volume percentage values between 35 vol% and
55 vol%. This highlights that the simulations reach 50 vol% crystallinity at slightly different
times. (C, D, E) Water content parameter fields for the bottom 5 m of each varied crystal
size simulation and the reference simulation. These panels represent the last time step within
each respective model. The colour scale shows H2O content in weight percentage (wt%). These
panels illustrate how different crystal sizes affect the onset time of plume formation. In the
large crystal size simulation, plumes form quickly, and by the end of the simulation, the base
layer is depleted of water. In contrast, in the small crystal size simulation, plumes form later,
and by the end of the allocated model run time, the base layer still has high H2O content and
plumes remain visible.

The larger crystals have a crystal settling speed of 4.40 × 10−5 m/hr, which is roughly 9

times faster than the settling speed in the reference model (4.93× 10−6 m/hr). Conversely, the

smaller crystals experience a slower crystal settling speed of 4.43× 10−7 m/hr, roughly 9 times

slower than the reference simulation.

The larger crystals’ faster settling speed results in a slightly faster accumulation of crystals

at the base of the chamber, which reaches 50 vol% crystallinity within 4.9 hr. In the smaller

crystal size simulation, the cumulate layer reaches 50 vol% crystals within 5.24 hr, see Figure

4.2 A-B. The Ru values, which are derived from the input parameters (Equation 3.13), increase

from 1.58 × 10−7 for smaller crystals to 1.08 × 10−5 for larger crystals. This indicates that

while crystal settling speed does increase with crystal size, it remains much smaller than the

convective speed in these simulations, even at the higher Ru value. The convective speeds do
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not vary significantly between these two simulations, relative to the reference simulation.

Both varied crystal size simulations experience the formation of plumes that rise from the

base cumulate layer; however, they had varied initiation times and morphologies. Within the

large crystal simulation, the H2O rich plumes form within 1.7 hr. They have narrow stems with

rounded heads. The plumes within the small crystal simulation appear much later, at around

24 hr, and are much less frequent. They have wide bases, short stems, and diffuse quickly back

into the system after rising around 1-2 m.

By the end of the simulations, the large crystal run shows greater variation of H2O content

within the cumulate layer than the other two runs. This can be seen within the bottom

five meters of the three simulations, Figure 4.2 C, D and E. The persistent plume behaviour

throughout the large crystal size simulation depletes the bottom of the system of H2O (Figure

4.2 C). The later plumes that form in the reference simulation and the smaller crystal size

simulation are still visible within the H2O parameter fields at the end of the simulations. They

are fed from layers still rich in H2O, which can be seen within Figure 4.2 D and E.

4.2.4 Chamber Size Variations

The third parameter test involves varying the chamber dimensions. This is achieved by changing

the depth of the chamber, with the width being set to half the depth. The chamber size was

varied from the reference parameter run, which has a chamber size of [50.0 m × 25.0 m]. The

largest chamber variation is set to [75.0 m × 37.5 m], and the smallest chamber is [25.0 m ×
12.5 m]. These simulations act as end members for this specific parameter variation group. The

parameter variations within this group are outlined in Table 4.2. All four simulations exhibit

the same dynamic behaviour as the reference simulation, with varied speeds and timescales.

The convective speed increases as the chamber size increases. This is due to the squared

relationship between length scale and convective speed, as described by Stokes’ law (Equation

3.8). Like the settling speed calculation, the chamber size can be set as the length scale within

Stokes’ law, which is squared. Therefore, increasing the domain size will increase the speed of

convection. As mentioned previously, the length scale is divided by 10 to approximate the size

of a plume head within the system. This allows for the calculation of the advective velocity

within the system or convective speed. The largest domain convects four times faster (75 m/hr)

than the smallest system (17 m/hr).

The larger system also cools faster at the bottom boundary compared to the smaller cham-

ber. This can be attributed to the speed of cooling across the boundary layer uwT (see Equation

3.11). The large chamber’s boundary layer cools by 19◦C/hr, while the smaller chamber’s base

cools by 11◦C/hr (Figure 4.5 A). Both systems crystallise at the same rate at the base until

reaching 60 vol% crystals (Figure 4.5 B).

Variability in plume dynamics is again observed across this parameter test. The smallest

system experiences H2O accumulation above the layering and plume formation at 5 hr, similar

to the reference simulation (Figure 4.5 C and D). Conversely, the large domain simulation does

not experience plume formation, instead showing high H2O and bubble vol% trapped within
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Figure 4.5: Varied chamber size simulations compared to the reference simulation. The figure
compares the largest and smallest chamber size simulations among several variations. (A) Plot
showing the temperature values at the bottom of the system over time for each simulation.
This illustrates the varied cooling rates across the parameter test, with the smaller chamber
cooling more slowly than the larger one. (B) Plot of crystal volume percentage (vol%) over time
for the bottom layers of each model. Variations in chamber size affect the crystallisation rates,
particularly after the base layer reaches 50 vol%. (C, D, E) Water content parameter fields for
the bottom 5 m of the varied chamber size simulations and the reference simulation. These
panels represent the last time step within each model. The colour scale represents H2O content
in weight percentage (wt%). The panels highlight how different chamber sizes lead to varied
dynamics at the system base, affecting the formation of water-rich plumes or water-depleted
zones.

the crystal layering (Figure 4.5 E). As the chamber increases in size, plume formation occurs

progressively later: at 10 hr in the simulation with chamber dimensions [40.0 m × 20.0 m] and

20 hr in the simulation with dimensions [60.0 m × 30.0 m].

4.2.5 Water Content Variation

The final parameter test within the closed system group involves one simulation with half the

H2O content of the reference simulation (2 wt% water). This reduction in H2O content leads

to an initial increase in crystal vol% from 1 vol% to 3 vol%, and a rise in initial density values

by approximately 154 kg/m3 from the reference model. Moreover, the decrease in H2O content

results in an increase in initial viscosity value, from 2.3 Pa s in the reference model to 3.5 Pa s

in the varied H2O content simulation.

Similar to the reference simulation, the varied H2O simulation exhibits drip formation at
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Figure 4.6: Parameter fields from the reduced H2O simulations (2 wt% water) at 83.5 hr,
which is the final frame reached during the one-month run period. The parameter fields show
crystallinity, density, and temperature values. (A) Crystallinity parameter field, where the
colour scale represents crystal volume percentage, ranging between 29 vol% and 30 vol%. This
highlights the crystal drips and layering at the top and bottom of the system. (B) Crystallinity
field without the clipped range of values, focusing on the top 5 m of the system. (C) Crystallinity
field without the clipped range of values, focusing on the bottom 5 m of the system, highlighting
the crystal-dense layering. (D) Density parameter field, where the colour scale represents
density values between 2550 kg/m3 and 2700 kg/m3 . This highlights the contrasting density
between the top and bottom crystal layers. (E) Temperature parameter field, where the colour
scale represents temperature values between 975◦C and 981◦C. A velocity field is overlaid as a
quiver plot, indicating the direction and magnitude of flow. The flow aligns with the crystal
drips, illustrating that these drips control the convective currents. (F) The temperature field
without the clipped range of values focuses on the top 5 m of the system. (G) Temperature
field without the clipped range of values, focusing on the bottom 5 m of the system.

the top of the system, which sinks into the system (see Figure 4.6 A), However, unlike the

reference simulation, crystal layering also forms at the top boundary in addition to the layering

at the bottom, as shown in Figures 4.6 B and C.

The bottom of the chamber receives little contributions of crystals from the top boundary

resulting in the formation of a homogeneous layer which had a similar SiO2 and H2O content

to the bulk composition outlined in Table 4.1. This layer is roughly 1 m thick by the end of the
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simulation and has a bubble content of 5 vol% and a density of 2800 kg/m3 (Figure 4.6 C and

D). The crystal layering at the top reaches approximately 1/2 m width and had a higher bubble

content of 12 vol%, this layer had a lower density of 2725 kg/m3 which can be attributed to

its higher SiO2 and H2O fraction 67 wt% and 5 wt% respectively, as well as the higher bubble

content.

The higher viscosity and density of the system result in significantly slower whole system

convective speeds, which were on average 11 m/hr compared to 52 m/hr in the baseline Figure

4.6 E. The slower convective and crystal settling speed (5.06× 10−6 m/hr) facilitates the accu-

mulation of crystals and bubbles at the top boundary. Both layers at the top and bottom cool

down considerably due to their contact with the cooler wall rock (See Figure 4.6 F and G).

4.3 Closed System Geochemistry

One of the primary aims of this research is to understand how the internal dynamics of shallow

systems influence geochemical trends. To achieve this, a suite of geochemical data was in-

cluded in the simulations to analyse the resulting signatures. This suite includes major oxides

(SiO2, TiO2, Al2O3, FeO, MgO, CaO, Na2O, and K2O) and four trace elements ranging from

incompatible to compatible. Post-processing of the geochemical data produced Harker plots

and trace element spider diagrams, providing further insights into the geochemical behaviours.

Harker plots were constructed by plotting the major oxide concentrations against SiO2 for

each grid cell within the system, including the solid crystal and liquid melt phases. All Harker

plots are normalised to the anhydrous sum. Since water cannot partition into the solid phase, no

hydrous minerals form within the model; therefore, normalising by the anhydrous sum excludes

any consideration of water in the whole rock analysis. The initial input magma anhydrous

compositions are outlined in Table 4.3. These plots were colour-mapped to the temperature

field, allowing for an interpretation of the data’s spatial location within the system. The Harker

plots are displayed in figures with accompanying temperature fields and are presented as videos

within the Supplemental Material.

Mineral proportions including feldspar, pyroxene, olivine, and quartz—are derived from the

model’s pseudo-components and are reported consistently as weight percentages (see Appendix

7.1 for the complete list of mineral systems and end members considered within the model).

Magma SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O Units

Resident 57.66 1.06 15.35 9.34 5.08 6.24 4.02 1.25 wt%
Recharge 52.07 1.16 18.35 9.66 5.78 9.31 3.04 0.63 wt%

Table 4.3: The initial compositions of the two input magmas: resident and recharge, normalised
to the anhydrous sum.

The four trace elements are not real-world but serve as tracers for fractional crystallisation

processes in the closed system. Their partition coefficients were chosen to represent strongly

incompatible, slightly incompatible, compatible, and strongly compatible behaviours, capturing
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the range of partitioning dynamics during crystallisation. The trace elements were assigned

Initial concentrations of dimensionless values between 0.3 and 3 to show clear contrasts between

compatible and incompatible behaviour.

As mentioned previously, the closed system simulations contain a single magma composition

like that of an andesite, as outlined in Table 4.3. Throughout the simulation, the geochemical

composition evolves without external inputs from recharge or crustal assimilation. The model

time elapsed within the one-month real-world simulation period ranges from 11 to 83 hr across

the 10 closed system simulations, reflecting diverse internal dynamic complexities. None of

the simulations achieves more than a tenth crystallisation of the system, resulting in limited

compositional variation. Nonetheless, they provide insights into the early stages of fractional

crystallisation trends.

4.3.1 Geochemical Behaviour: Closed Reference Simulation

A B C

D E F

Time = 0 [hr] Time = 3.1 [hr] Time = 7.09 [hr] 

Time = 14 [hr] Time = 28.1 [hr] Time = 28.1 [hr] 
Temperature field of bottom 5 m

[°C] [°C] [°C]

[°C][°C][°C]

Figure 4.7: Iron Oxide (FeO) Harker plots from the closed reference simulation (Normalised
to the anhydrous sum). (A–E) depict the Harker plots at different time frames through the
simulation from 0 hr within (A) to the end of the simulation at 28.1 hr (E). Each point on the
Harker plots represents a data point within the system. The colour of the points are mapped
to the temperature field of the system. (F) Depicts the temperature parameter field for the
bottom 5 m of the system’s domain. This field represents the temperature values corresponding
to the colours of the points on the Harker plots, providing insights into the temperature and
location of each cluster on the Harker plots. The Harker plots outline the evolution of the
system though time, with clusters first depleting in SiO2 before evolving again and moving over
to the right.

In the reference simulation, the initial chemical perturbations set during the model setup

are fully mixed within the first hour. As the simulation progresses, the geochemical signature
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Figure 4.8: Major oxide data from the closed system reference simulation (Normalised to the
anhydrous sum), taken at the final time frame (28.1 hr). Each point on the Harker plots
represents a data point within the system, with colours indicating the temperature of that
point, as mapped to the temperature parameter field. The Harker plots all show straight line
trends with: (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, and (E) CaO, all showing compatible
trends and (F) Na2O and (G) K2O Harker plots showing incompatible trends. (H) Depicts the
temperature parameter field for the bottom 5 m of the system’s domain. This field shows the
temperature values corresponding to the colours of the points on the Harker plots, providing
insights into the temperature distribution and the location of each cluster. (I) Shows the
feldspar mineral content for the bottom 5 m of the system. The colour scale represents feldspar
content in weight percentage (wt%) within the cumulate layer and above the melt.

gradually evolves through fractional crystallisation. At the bottom of the system, the crystal

cumulate layer contains a slightly higher SiO2 value of 57.8 wt% compared to the bulk com-

position. The evolution of the cumulate layer is visible in the iron oxide Harker plots (Figure

4.7).

The Harker plots are colour-mapped to the temperature fields to better indicate the geo-

graphical locations of the different clusters within the system. From the start of the simulation,

the base layer forms a distinct cluster that initially shifts slightly to the left, showing a decrease
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Figure 4.9: Trace element spider diagram showing the four model trace elements at the final
frame (28.1 hr) of the closed system reference simulation. Trace elements are ordered from least
to most compatible, based on fixed partition coefficients (Ktr = 0.01, 0.10, 3.0, 10.0). These
elements are dimensionless tracers and do not affect the bulk composition. The average trace
element composition of the entire system is plotted in black, the melt-rich layer above the
cumulate is shown in blue, and the cumulate layer is shown in green. The cumulate is slightly
depleted in the most compatible trace elements relative to the system average, while the melt-
rich layer is slightly enriched.

in SiO2 (Figure 4.7 B). Subsequently, it slows and begins to evolve to the right. This is illus-

trated in Harker plot videos within the Supplemental Material. The layer also shows a decrease

in iron oxide content (see Figure 4.7 C). The crystal layers that accumulate above the base layer

follow a similar trend: they first move to lower SiO2 values, then increase in SiO2 and decrease

in iron oxide (Figure 4.6 C-E). The cumulate layer continues to evolve, slowly increasing in

SiO2 content from 57 wt% to 58.4 wt% by the end of the simulation.

Figure 4.8 presents the Harker plots for other major oxides at the end point of the model

simulation, illustrating the evolutionary trajectory of the system. Throughout the simulation,

the Harker plots display straight-line trends as the system differentiates. Titanium dioxide

(Ti2O), aluminium oxide (Al2O3), iron oxide (FeO), magnesium oxide (MgO), and calcium ox-

ide (CaO) all show decreasing oxide values with increasing SiO2, indicating a relatively small

proportion of these oxides being incorporated into the crystals Figuer 4.8 A-E). Conversely,
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sodium oxide (Na2O) and potassium oxide (K2O) show positive trends, suggesting higher in-

corporation of sodium and potassium into the crystals compared to the surrounding magma

Figure 4.8 F-G. This aligns with the mineral composition of the base layer, which is composed

of approximately 56.88 wt% feldspar (Figure 4.8 I), 9.35 wt% quartz, 9.97 wt% orthopyroxene,

10.49 wt% clinopyroxene, 3.68 wt% spinel, and 5.87 wt% olivine. The subsequent layers display

slightly lower values of Ti2O, FeO, MgO, CaO, and K2O, and higher values of Al2O3 and Na2O,

indicating a shift towards more pyroxene and spinel and less quartz. By the end of the simula-

tion, the SiO2 values vary by only 4 wt%, indicating that the system has only slightly evolved

within its run time. The trace elements also exhibit minimal variation across the simulation,

with the base layer containing bulk concentrations of incompatible, slightly incompatible, and

slightly compatible trace elements, as illustrated in Figure 4.9. There is a slight variation in

the behaviour of the most compatible trace elements, with the base crystal-dense layer show-

ing a slight depletion of the compatible trace elements relative to the bulk composition. The

water/melt-rich layer above the crystal layer shows a slight enrichment of the compatible trace

elements relative to the bulk composition, see Figure 4.9.

4.3.2 Geochemistry of the Closed System Parameter Variations

The remaining nine models within the closed system group follow the same geochemical trends

as the reference simulation, with only slight variations in major oxide values and the most

compatible trace elements. The cumulate layers slowly increase in SiO2, Na2O, and K2O as

predominantly feldspar crystallises. Three models that experience plumes within the first ten

hours of their runs are outlined and compared to the baseline in Figure 4.10. The simulation

with slow wall rock cooling evolves more slowly than the reference simulation; however, due to

its longer run time, greater geochemical variation is displayed at the end of the simulation (see

Figure 4.10). In this slow wall rock cooling simulation, as time progresses, the layer at the base

becomes increasingly enriched in silica, Na2O, and K2O. Unlike the other models, the cumulate

layer has considerably less quartz. The two simulations with different wall rock cooling rates

show variations in the timescales of geochemical evolution, matching the varied crystallisation

rates. However, they ultimately display the same geochemical trends.

Figure 4.10 also highlights the major oxide values for the simulation with increased crystal

size. Although this simulation follows the same geochemical trend as the reference model,

the initial depletion of the base crystal layers before evolving to higher SiO2 levels is more

pronounced, with later crystal layers reducing to 55 wt% SiO2. Plumes begin to rise from the

base of the cumulate layers, which become enriched with H2O and bubbles. This simulation

exhibits the fastest plume onset among all ten models.

The largest variation in geochemical signature is exhibited in the simulation with varied

H2O content, which has half the H2O content of the base model. This simulation experiences

faster cooling, crystal accumulation, and layering at the system’s top and bottom. The faster

cooling and long in model time of 83.5 hr result in the most evolved geochemical signature of

all ten closed system models Figure 4.10.
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Figure 4.10: Harker plots of major oxide data from four simulations, taken from the final time
frame of each model run. The reference simulation is plotted in pink. The larger crystal size
simulation (3 × 10−3) is shown in blue. The slow wall rock cooling rate simulation (48 hr )
is plotted in yellow. These simulations exhibit the greatest variation in geochemical trends
relative to the reference model within the closed system simulations, with the reduced H2O
content simulation showing the most significant geochemical variations. (A) TiO2, (B) Al2O3,
(C) FeO, (D) MgO, (E) CaO, (F) Na2O, and (G) K2O.

Figure 4.11 shows that within the varied H2O content simulation, the crystal layer at the

top of the chamber evolves along the same trend as the bottom cumulate layer in the previous

simulations. The first crystal layers to form at the top of the chamber become depleted in most

of the major oxides (Figure 4.11 A-E) and increase in SiO2 content, Na2O, and K2O (Figure

4.11 F).

As subsequent layers form at the top of the model, each new layer becomes progressively

enriched in both Na2O and SiO2 (Figure 4.11 F). By the end of the simulation, the uppermost

layer contains the most evolved composition within the system, ranging from 67-63 wt% SiO2

and 5 wt% H2O. This upper layer is 90 vol% crystalline and is predominantly composed of 57.87

wt% feldspar, 14.63 wt% quartz, 8.12 wt% orthopyroxene, 8.58 wt% clinopyroxene, 2.97 wt%
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Figure 4.11: Major oxide data from the reduced H2O content simulation (2 wt%), taken at the
final time frame (83.5 hr). Each point on the Harker plots represents a data point within the
system, with colours indicating the temperature of that point, as mapped to the temperature
parameter field. (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, and (E) CaO, all showing straight
line compatible trends. (F) Na2O shows two deviating straight line trends and (G) K2O Harker
plot shows an incompatible trend. (H) Depicts the temperature parameter field for the bottom
5 m of the system’s domain. (I) Depicts the temperature parameter field for the top 5 m of
the system’s domain. These fields show the temperature values corresponding to the colours
of the points on the Harker plots, providing insights into the temperature distribution and the
location of each cluster. These Harker plots show that the top and bottom crystal layers form
contrasting geochemical signatures.

spinel, and 4.6 wt% olivine. Some olivine and pyroxene crystals become trapped within the

rapidly cooling and crystallising layer, while the majority sink into deeper regions of the system.

The co-existence of olivine and quartz within the cumulate is an artefact of the simplified

pseudo-phase diagram used in the model; in natural systems, these phases typically do not

crystallise together. However, across the simulations, one of the two phases usually occurs only

in minor proportions—for example, the 4.6 wt% olivine within the top layer.

Conversely, at the bottom of the model, the crystal layering composition closely resembles
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that of the bulk composition, with approximately 57 wt% SiO2 and 2 wt% H2O. This is evident

in the Harker plots (Figure 4.11 A-G), where the base layer forms within the bulk chamber

cluster, exhibiting minimal variation throughout the simulation. By the end of the run, the

base layer consists of 57.87 wt% feldspar, 9.31 wt% quartz, 10.23 wt% orthopyroxene, 10.75

wt% clinopyroxene, 3.78 wt% spinel, and 6.02 wt% olivine. This is similar to the cumulate

compositions across the other closed system simulation see Appendix 7.3. The cumulate at

the base contains 6 vol% trapped bubbles. The base of the cumulate is more than 90 vol%

crystalline, and the upper portions of the cumulate are approximately 70 vol% crystals, where

crystals are still forming and accumulating from the top.
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Large Chamber Size Simulation
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Figure 4.12: Trace element spider diagrams displaying the four trace element values from the
final time frame of each end-member simulation across the different parameter variations. Trace
elements are ordered from least to most compatible, based on fixed partition coefficients (Ktr

= 0.01, 0.10, 3.0, 10.0). The results show that within the simulations with the fast plume onset,
the plume is enriched in the most compatible trace elements. The incompatible trace elements
have little to no variation across all the simulations.

The trace elements show minor variations across the ten closed system simulations (Figure

4.12). The three models that experience plume formation within the first 10 hr of simulation

(slow wall rock cooling, large crystal size, and smallest chamber size simulations) show slight

enrichment in the most compatible trace elements, illustrated in Figure 4.12. The simulations

that experience later or no plume formation show a slight depletion of compatible trace elements
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within the base crystal layer relative to the bulk composition, as illustrated in Figure 4.12. One

outlier is the large crystal size simulation, which exhibits considerably higher concentrations of

compatible trace elements in its base layer (Figure 4.12).

Finally, the trace element signatures for the varied H2O simulation reveal interesting trends

between the top and bottom layers. At the bottom layer, there is a slight depletion of com-

patible trace elements, contrary to the expected trend. This discrepancy suggests there may

be an inconsistency in the model version used. Later models show a more typical increase in

compatible elements within the cumulate stack. The top layer, however, displays a slightly

enriched compatible trace element signature (Figure 4.12). There is little to no variation in the

incompatible trace element concentrations across all ten closed system runs.
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Figure 4.13: Trace element spider diagram displaying the four trace element values from the
last time frame (83.5 hr) of the varied H2O content simulation (2 wt% water). The whole
system composition is plotted in black. The top crystal layer is shown in blue, and the bottom
crystal layer is plotted in green. This highlights the differing composition between the top and
bottom crystal layers.
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4.4 Open System Dynamics

The second group of simulations introduces a second basaltic magma composition outlined

in Table 4.3; this magma is hotter and more primitive than the resident magma to simulate

recharge from the deeper, hotter crustal magmatic system. The primary aim of the open system

models is to assess the effects of introducing a second magma on the internal dynamics and

geochemistry. Additionally, they assess the post-recharge convective influences on the extent

of mixing and preservation of the geochemical signatures of the primitive magma. The first

model within this group serves as the open system reference simulation from which all other

models vary. Table 4.4 outlines all the models within this group and their parameter values.

Three parameter tests are conducted: varying the volume of recharging magma, the initial

temperature of both magmas and the H2O content of both the resident and recharge magma.

Model ID Recharge Resident Recharge Resident Recharge
Volume water water temperature temperature
[%] [wt%] [wt%] [°C] [°C]

Open Reference 20 4 2 985 1235
Smallest Rech volume 5 5 4 2 985 1235
Small Rech volume 10 10 4 2 985 1235
Small Rech volume 15 15 4 2 985 1235
Large Rech volume 30 30 4 2 985 1235
Large Rech volume 40 40 4 2 985 1235
Largest Rech volume 50 50 4 2 985 1235
Equal Water 20 4 4 985 1235
High Water Rech 1 20 4 5 985 1235
Higher Water Rech 2 20 2 4 985 1235
Lower Res temp 973 20 4 2 973 1235
Lower Res temp 968 20 4 2 968 1235
Lower Res temp 959 20 4 2 959 1235
Lower Rech temp 1200 20 4 2 985 1200
Higher Rech temp 1270 20 4 2 985 1270

Table 4.4: Table of open system models with their ID values, and parameter values for the
recharge volume, H2O content, and temperature of both magma compositions. Varied values
are in bold. (Where ”Rech” = Recharge magma and ”Res” = Resident magma)

4.4.1 Open System Reference Simulation

When the reference model is initiated, a layer forms at the interface between the two magma

compositions. This layer persists throughout the model run, acting as a hybridisation zone

where the two compositions interact and mix, creating a hybrid composition (see Figure 4.14

A-B ). The hybridisation zone dynamics regime is a system where two stratified magma bodies

interact only at their interface. Plumes and drips form at this boundary, driving convection

cells in both layers and allowing localised mixing and production of a third, hybrid magma

composition.
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These plumes and drips continue through the simulation, generating two distinct convection

cells and forming a layered convection system, see Figure 4.14 B–F see also Supplemental

Material for videos of the reference simulation.

Both layers undergo convection for the duration of the model run. Initially, the top layer

convects more slowly at 15 m/hr, while the base layer convects more vigorously at 57.6 m/hr

due to its higher temperature.
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Figure 4.14: Parameter field from the open system reference model at multiple time steps.
(A–D) Show temperature values, with the velocity field overlain as a quiver plot indicating
the flow’s direction and magnitude. They show the evolution of the hybridisation zone regime
through time. (E) Depicts the temperature parameter field of the top convecting layer, with a
clipped range of temperatures between 1016◦C and 1010◦C. Highlighting the internal dynamics,
plumes, drips and layer convection. (F) Depicts the temperature field of the bottom convecting
layers, showing temperature values between 1100◦C to 1080◦C, again highlighting the internal
dynamics of the layer.
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The convection speeds fluctuate throughout the first three hours as the two layers gradually

equilibrate in temperature (see Figure 4.14 D). As the base layer cools, its convection slows,

while the upper layer becomes more vigorous, driven by the heat from rising plumes originating

in the hybridisation zone. After three hours, both layers begin to settle, and their convective

speeds decrease as the simulation progresses. By 17 hr, the top layer is convecting at 63 m/hr,

while the base layer has slowed to just 13 m/hr. This difference in convection rates is reflected in

their mean Rayleigh numbers, with the top layer at 2,700 and the base layer at 827.2. During

the first hour of the simulation, drips form at the domain’s roof and sink into the system,

similar to the behaviour observed in the closed system simulations, illustrated in Figure 4.14

E. As the model progresses, a crystal-rich layer begins forming at the bottom of the simulated

chamber, gradually accumulating over time. By the end of the simulation, this base cumulate

layer reaches approximately 90 vol% crystals. Very little bubble phase is present throughout the

simulation, with bubbles only beginning to exsolve around 9.33 hr into the run. The bubbles

exsolve within the cumulate layering as it reaches 50 vol% crystals and become trapped.

4.4.2 Recharge Volume Variation

The first open system parameter test varies the recharge volume added to the system, ranging

from 5-50 % of the total system volume, across six simulations (outlined in Table 4.4). The

variation in recharge volume is depicted in Figure 4.15 A-C.

Across all six simulations, a consistent dynamic behaviour emerges, characterised by the

formation of a thin hybridisation zone where the two magmas mix. This behaviour is similar

to the dynamics observed in the reference simulations. In each case, two distinct convection

cells develop within the magma layers. However, the convective speeds vary between them.

In the simulation with the smaller recharge volume (5 % of the system), the thin recharging

layer convects significantly slower than in the reference simulation, at approximately 20 m/hr

Figure 4.15 A and B). As observed in the closed system parameter tests with different chamber

sizes, the convection speed is related to the layer’s size (See Equation 3.8). As the simulation

progresses, both convection cells slow down, and by the end, the top resident magma layer is

convecting at 32 m/hr, while convection in the base layer almost ceases, slowing to 0.17 m/hr.

In contrast, in the simulation with a large recharge volume (50 % of the system), the bottom

convection cell convects much faster, at around 200 m/hr. This simulation follows a similar

trend with both convection cells slowing over time. By the end of the simulation, the top layer

is convecting at 120 m/hr, and the base layer at 106 m/hr (Figure 4.15 C).

The variation in recharge volume not only affects convective speeds but also influences the

system’s temperature profile. As the two magmas interact, the cooler resident magma warms

while the recharging magma cools as they equilibrate. As recharge volume increases, the resident

magma heats more quickly. In the small recharge volume simulation (5% recharge), the resident

magma’s temperature increases by 0.92◦C/hr. In contrast, in the large recharge simulation (50%

recharge), the resident magma heats much faster at 9.61◦C/hr. The cooling rate of the recharge

magma also depends on the recharge volume. In the small recharge simulation, the recharge
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Figure 4.15: Parameter fields from the smallest (5 vol% recharge) and the largest (50 vol%
recharge) varied recharge volume simulations compared against the open system reference sim-
ulation (20 vol% recharge). (A–C) Depict temperature parameter fields with the velocity field
overlaid as a quiver plot, indicating the direction and magnitude of flow. Both varied recharge
volume simulations display the same internal dynamics regime as the reference simulation. All
panels show the dynamics at 1.82 hr for consistency. (D–F) Show the crystal volume percent
(vol%) for the three simulations at the same time frame of 7.66 hr, highlighting the varied
crystal volumes. In the small recharge simulation, the base layer contains 55 vol% crystals,
while in the large recharge simulation, it contains 30 vol% crystals.

magma cools rapidly at 22◦C/hr, while in the large system, it cools more slowly at 8.29◦C/hr.

Another notable difference among the models is the presence of bubbles. Bubbles are

observed in models with smaller recharge volumes, where they exsolve and accumulate in the

base crystal layers. Bubbles are absent within the large recharge volume simulations. A smaller,

cooler, and less convective layer within the low recharge simulation leads to increased crystal
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formation, faster accumulation, and crystallisation. By 7.66 hr, the base layering within the

small recharge system reaches 55 vol% crystals, comparatively the 20 vol% recharge system

reaches 35 vol% crystals, and the 50 vol% recharge system reaches 30 vol% crystals by 7.66 hr

(Figure 4.15 D-F).

The second parameter test varies the initial temperature values of both magmas across five

simulations. In each case, the same hybridisation dynamic regime is observed, featuring the

formation of two convection cells. Cooling and crystallisation occur, with crystals settling at

the base. This dynamic regime is similar to that seen in the varied recharge simulations. Each

simulation also displays consistent patterns in cooling, crystallisation, and bubble behaviour.

For further details, see Appendix 7.2.

4.4.3 Water Content Variation

The final parameter test within the open system simulations includes three simulations, each

exploring different H2O contents in the recharge and resident magmas. Unlike the reference

and previously discussed simulations, which feature a recharge magma composition depleted

in water relative to the resident magma, this test examines scenarios with equal H2O contents

and a volatile-enriched recharge. These scenarios reflect the volatile-rich magmas from deeper

subduction zones and the volatile-depleted resident magmas in the continental crust. Table

4.4 details the three simulations in this test. These variations significantly impact the internal

dynamics, with each simulation exhibiting a distinct dynamic regime, outlined below.

Equal Water Contents

Initially, the dynamics of this model closely resemble those of the reference simulation, with

upwellings and downwelling’s forming at the contact between the two magma compositions.

This interaction creates a hybridisation zone and two convecting cells (Figure 4.16 A–B). From

this hybridisation zone, hot plumes rise into the resident magma, while cooler drips sink into the

recharge magma. Both magmas contain 4 wt% H2O, but their saturation points are different due

to temperature dependence. At the start of the model run, the resident magma is just below

H2O saturation, while the hotter recharge magma exceeds it, leading to bubble exsolution.

These bubbles rise towards the hybridisation zone (the boundary between the two magmas)

and accumulate there. This process depletes the lower part of the system (recharge magma) of

H2O and bubbles and forms a three-layered convective system (Figure 4.16 C). The top layer

convects at approximately 101 m/hr, the central bubble-rich layer at 89 m/hr, and the bottom

layer at 32 m/hr.

In the central layer, crystals remain entrained due to their lower density compared to the

base magma. This increases the crystallinity of the layer from 0 vol% to around 5 vol% by

1.77 hr (see Figure 4.16 D). At 1.5 hr, the crystals begin to settle across the boundary and

accumulate at the bottom of the system, see Figure 4.16 E. At around 8.56 hr, bubbles within

the bottom recharge layer rise towards the central bubble-rich layer; however, they do not cross

the boundary due to density contrasts, which creates a transient fourth convecting layer. This

68



[°C]t = 8.56 [hr]
E

Width [m]

D
ep

th
 [

m
]

[°C]t = 0 [hr]
A

Width [m]

D
ep

th
 [

m
]

[°C]t = 1.77 [hr]
D

Width [m]

D
ep

th
 [

m
]

[°C]t = 0.133 [hr]
B

Width [m]

D
ep

th
 [

m
]

t = 1.19 [hr]
C

Width [m]

D
ep

th
 [

m
]

t = 12 [hr]
F

Width [m]

D
ep

th
 [

m
]

Temperature / Velocity field Bubble volume [vol%]

Crystallinity [vol%] Temperature / Velocity fieldTemperature

Temperature / Velocity field

Figure 4.16: Parameter fields from the equal H2O content simulation taken at various points in
time. (A) The temperature field with the velocity field is overlaid as a quiver plot, indicating
the direction and magnitude of flow and depicting the internal setup before the run begins. (B)
The temperature field at 0.13 hr after initiation, highlighting the rapid interaction between the
two magmas. (C) The bubble volume percentage (vol%) parameter field at 1.19 hr shows the
bubble-rich layer sandwiched between two depleted layers. (D) Crystallinity (vol%) parameter
field at 1.77 hr, highlighting the high crystal content of the middle layer. (E) The temperature
parameter field at 8.56 hr, showing the development of four convecting layers. (F) Temperature
and velocity field quiver plots at the end frame of the simulation, showing the system has settled
into a three-layer convective regime, with minimal movement in the lower layers.

fourth layer does not last long as it equilibrates with the bubble-rich layer above and they

merge (4.16 E). As the simulation progresses, the middle bubble-rich layer shrinks from 15 m

to less than a metre as the bubbles slowly migrate upwards across the boundary into the upper

resident magma layer, where they redissolve back into the melt Figure 4.16 F.
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High Water Recharge (1 vol% difference)
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Figure 4.17: Depicts several parameter fields through time from the high H2O recharge (1 vol%
difference) simulation. (A) The temperature and velocity fields within the first minute of the
simulation highlight the system overturn event. (B) The temperature field a few minutes later
illustrates the rapid nature of the overturn and the extent of mixing within a short period. (C)
Bubble volume percentage (vol %) parameter field, showing the bubbles’ location at the system’s
base. (D) Bubble volume percentage (vol %) field at 4.35 hr, depicting the evolution of layering
and heterogeneity as the bubbles rise. (E) Crystallinity parameter field (vol %), showing values
between 0 vol %) and 2 vol % to highlight the crystal volume at the system’s base versus
the top. This helps to counteract the bubble buoyancy, preventing a second overturn. (F)
Water parameter field (wt%) at 11.4 hr, highlighting the location of the water-rich layer and
the dynamic interactions between layers, including the draining of H2O from this layer to the
depleted layer above via plumes.
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Within this simulation, the resident magma contains 4 wt% water, while the recharging

magma contains 5 wt%. This setup creates a density contrast between the layers, with the

bottom layer having a density of 2422 kg/m3 and the top layer having a density of 2424 kg/m3.

At the start of the simulation, the density contrast causes the system to overturn, with the

recharging magma rising to the top of the chamber and mixing with the resident magma, as

shown in Figure 4.17 A. The recharge magma then sinks back down to the base of the system

(see Figure 4.17 B). Following the initial overturn event, the system experiences significant

homogenisation, and the sharp density contrast that initially triggered the overturn almost

completely disappears.

As the system settles, it stratifies into layers with a diffuse boundary between them. These

layers show differences in temperature, viscosity, chemical compositions, and bubble content;

however, these contrasts are less extreme than the initial model setup (Figure 4.17 C). The

system further stratifies, forming two layers. At the top of the system is a cooler, bubble-poor

layer, and at the bottom, there is a hotter, bubble-rich layer (Figure 4.17 D). Despite conditions

appearing to favour another overturn, it does not occur. The base layer, while still hotter and

more bubble-rich, becomes slightly denser than the top layer due to cooling, bubble loss, and

increased crystallinity. This increased density in the bottom layer stabilises the system.

Several factors contribute to this stability. The increased crystallinity in the base layer

enhances its density and viscosity ( Figure 4.17 E), counteracting the bubble buoyancy. Initially,

the base layer is less viscous ( 0.6 Pa s) than the top layer ( 2.2 Pa s), but as the bubbles exsolve

and the base cools, its viscosity increases to 1.4 Pa s. While a viscosity difference persists, it

diminishes over time. The compositional contrast between the felsic, buoyant top layer and the

more mafic, dense base layer also contributes to stability, particularly as the loss of bubbles

and heat in the lower layer reduces its buoyancy.

Crystal-rich drips form at the top of the chamber and sink, while a thin crystal cumulate

layer accumulates at the bottom of the system. Water and bubble-rich plumes begin to rise

from the bottom layer and migrate into the upper layer (Figure 4.17 D-E).

Between 4-11 hr, transient interstitial layers of varied H2O volumes form between the bubble-

rich and bubble-poor sections of the system (Figure 4.17 D-F). The system continues to stratify,

forming a three-layered convective regime with a water-enriched layer between the two more

depleted layers see Figure 4.17 F.

As the model progresses, bubbles continue to rise and redissolve within the top layer. The

central water-rich layer reduces in width from 15 m to less than 1 m by the end of the simulation,

as water escapes via plumes. Simultaneously, the depleted layer beneath steadily grows in

thickness, as illustrated in Figure 4.17 F. The model output reflects the dynamics seen in the

previous simulation, with less stable boundary stratification. By the end of the 17 hr run,

the system is stably stratified into two homogeneous melt layers, with a thin layer of crystal

accumulation at the base.
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Figure 4.18: Depicts several parameter fields through time from the High Water Recharge (2

vol% difference) simulation. (A) Temperature parameter field with the velocity field overlain as

a quiver plot, indicating direction and magnitude of flow. This highlights the initial overturn

of the system, showing plumes of recharge magma rising from the base into the system. (B)

Temperature and quiver plot a few moments later, showing the recharge magma settling as

a layer at the top of the system. (C) The water content (wt %) field highlights plumes and

drips extending into the system from the boundaries. (D) Density field showing the stable

density stratification of the system within 1.29 hr. (E) SiO2 parameter field (wt%) with the

velocity field overlain as a quiver plot, indicating homogenisation within the top convecting cell.

This plot also highlights the chemical diversity within the lower layer despite its stable density

stratification. (F) Temperature and velocity field of the last frame of the model, indicating the

equilibration of temperature and the convecting cell at the roof of the system.
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The final simulation in this parameter test examines a scenario where the resident magma

contains 2 wt% H2O, half the H2O content of the reference case. While the recharging magma

contains double that amount at 4 wt%, outlined in Table 4.4. This simulation is designed to

simulate H2O rich magma recharge that originated deep within the subduction zone.

Upon initiation of the simulation, the system undergoes rapid overturn within the first few

minutes, similar to the previous model. The less dense recharging magma rises to the top of

the system, see Figure 4.18 A. However, unlike the previous simulation, the recharge magma

does not sink again. Instead, it accumulates at the top, resulting in a two-layer stratified

system. This can be seen in Figure 4.18 B. The top layer is composed of H2O rich, less dense

magma, while the denser, cooler and more viscous magma remains at the bottom. The initial

bubbles from the recharge magma that lowered the density, triggering the overturn event,

quickly redissolve into the melt, and the bubble content drops to zero.

A diffuse boundary layer forms between the two magma compositions, creating a thin in-

terface. Plumes begin to form at the bottom wall rock boundary and rise into the system.

Simultaneously, crystal drips descend from the top wall rock contact as depicted in Figure 4.18

C.

As the simulation progresses, convection diminishes, and by 1.5 hr, two-thirds of the chamber

have stabilised into a stratified density. With no driving force, all movement slows to almost

zero (Figure 4.18 D). The plumes at the bottom appear to become static. Crystallisation

persists at the top and bottom wall rock contacts, with a crystal cumulate layer forming at the

base and crystal drips forming at the top.

Over time, the crystal drips from the top form a small, localised convection cell, which

expands slowly as it erodes the stable layers below (see Figure 4.18 E). Small plumes rise from

the eroded boundary as this convection cell grows. By the end of the simulation, the convection

cell grows to roughly 25 m in width.

Throughout the 45.9 hr simulation, physical properties such as temperature, density, vis-

cosity and crystal content become evenly distributed throughout the system. Meanwhile, the

geochemical properties including SiO2 H2O and major oxide values, maintained distinct layers.

This contrast can be seen across Figure 4.18 D-F.
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4.5 Open System Geochemistry

The open system simulations see the introduction of a second recharge magma composition

similar to that of a basalt emplaced at the base of the chamber. Both compositions are outlined

in Table 4.3.

4.5.1 Geochemical Behaviour: Open Reference Simulation
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Figure 4.19: Iron Oxide (FeO) Harker plots from the open reference simulation. (A–E) depict
the Harker plots at different time frames through the simulation from 0 hr within (A) to
the end of the simulation at 18.8 hr (F). Each point on the Harker plots represents a data
point within the system. The colour of the points are mapped to the temperature field of the
system. The initial geochemical signature of the system shows the two magmas plotting as
distinct compositions. (B–E) show the system’s evolution over time with the formation of a
hybridisation zone. (F) depicts the geochemical signature at the end of the simulation, showing
the two end members, the hybridisation zone between them, and the fractional crystallisation
trends within the base crystal layers.

The open system reference simulation’s major oxide evolution is outlined in Figure 4.19,

depicted as Harker plots. Initially, the two magmas plot as distinct clusters with the resident

magma containing 57.66 wt% SiO2 and the recharge magma containing 52.07 wt% SiO2 (Fig-

ure 4.19 A). As mixing occurs across the hybridisation zone, the geochemical signatures of the

magmas converge, forming a third composition at the interface (Figure 4.19 B-C). Although

the two magmas mix in the hybridisation zone to create a third composition, large parts of the

system remain unmixed (Figure 4.19 D). The crystals that form and accumulate at the bottom

of the system initially deplete in FeO and SiO2. They then increase again as crystallisation pro-

gresses, Figure 4.19 D-F. This behaviour mirrors the SiO2 patterns observed within the closed
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system simulations. As the simulation continues, crystallisation continues creating a fraction-

ation trend Figure 4.19 F. The Harker plots provide insights into the competing influences of

the recharge/mixing and fractionation.

Resident 
Magma Resident Magma

Hybridisation 
Zone 

[°C] [°C] [°C]

[°C] [°C] [°C]

[°C][°C]

Hybridisation 
Zone 

Hybridisation 
Zone 

Hybridisation 
Zone 

Crystal 
fractionation

Crystal 
fractionation

Crystal 
fractionation 

Crystal fractionation

Crystal 
fractionation

Crystal 
fractionation

Crystal 
fractionation

Resident 
Magma Resident Magma

Resident 
Magma

Hybridisation 
Zone 

Hybridisation 
Zone 

Hybridisation 
Zone 

A B

FED

G H

C

Resident 
Magma

Resident Magma

Recharge Magma Recharge Magma

Recharge 
Magma

Recharge 
Magma

Recharge Magma

Recharge 
Magma

Time = 18.8 [hr] 

Figure 4.20: Major oxide data from the open system reference simulation, taken at the final
time frame (18.8 hr). Each point on the Harker plots represents a data point within the
system, with colours indicating the temperature of that point, as mapped to the temperature
parameter field. (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, and (E) CaO, (F) Na2O, (G) K2O
(H) Depicts the temperature parameter field of the system’s domain. This field shows the
temperature values corresponding to the colours of the points on the Harker plots, providing
insights into the temperature distribution and the location of each cluster. These Harker plots
display mixing trends between the two magma compositions as well as a crystal fractionation
trend, where crystals accumulate at the bottom of the system.

By the end of the simulation, the initial magma compositions remain distinct, though both

have slightly shifted towards each other, see Figure 4.20. Fractionation, driven by crystal

accumulation in the cumulate layer, changes major oxide trends.

The fractionation trend is evident in all major oxide plots. TiO2, FeO, and MgO exhibit

arced trends, with early fractionation depleting in these oxides relative to the recharge magma,

followed by later crystal layers showing higher concentrations (Figure 4.20 A, C, D). In contrast,
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the remaining oxides (Al2O3, CaO, Na2O, and K2O) display linear trends. Figure 4.20 B, E,

F and G. Al2O3 and CaO are enriched, while Na2O and K2O become depleted relative to the

recharge magma Figure 4.20 B, E, F and G.

The mineral composition of the cumulate layer consists of 66.77 wt% feldspar, 11.13 wt%

clinopyroxene, 10.35 wt% orthopyroxene, 3.78 wt% quartz, 6.42 wt% olivine, and 3.91 wt%

spinel (see Appendix 7.3). Compared to the closed-system simulations, the cumulate layer in

the open system contains higher concentrations of feldspar and lower quantities of quartz and

SiO2.
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Figure 4.21: (A) Trace element spider diagram for the baseline open system reference simulation
at the final time frame (18.8 hr). The x-axis shows trace elements arranged from incompatible
to compatible, with respective partition coefficients of approximately 0.01, 0.1, 3, and 10. The
y-axis shows dimensionless trace element concentrations. The black line represents the initial
bulk system composition, which was set to contrasting trends between the resident and recharge
magmas to highlight mixing behaviour. The pink, blue, and green lines represent different layers
identified by density contrasts, corresponding to the regions shown in (B). (B) Model domain
showing the spatial distribution of the compositional layers identified in (A). The axes represent
depth and width within the model. Coloured circles and lines mark boundaries determined from
density contrasts. Pink indicates the melt-rich resident magma layer at the top, blue represents
the recharge magma layer that has not fully mixed, and green is the crystalline cumulate layer
at the base.

The trace element signatures were initially designed with contrasting trends. The resident

magma is enriched in compatible trace elements and depleted in incompatible trace elements

(see Figure 4.21 A). In contrast, the recharge magma shows the opposite pattern, being enriched

in incompatible elements and depleted in compatible ones. These contrasting compositions were

assigned to the magmas to identify mixing trends between the two.

Throughout the simulation, the recharge signature experiences a slight depletion in the

incompatible trace elements and a corresponding increase in the compatible trace elements.
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The resident magma experiences the opposite trend. By the end of the simulation, both trace

element signatures remain largely unaltered (see Figure 4.21).

The crystal layering at the system’s base (Figure 4.21 B) displays a trace element compo-

sition closely resembling the initial recharge magma with some depletion in incompatible trace

elements. There is also a slight increase in the compatible trace elements.

4.5.2 Geochemistry of the Open System Parameter Variations

Across the parameter tests, the models exhibit varying levels of deviation from the open refer-

ence simulation in terms of both internal dynamics and geochemistry. In the varied temperature

parameter test, all models demonstrated consistent internal dynamic behaviour, including the

formation of a hybridisation zone, crystal drips, multi-layered convection and cumulate layer

formation. The geochemical signatures within this simulation mirror the trends outlined in the

reference simulation.

There is minimal variation in geochemical trends across the varied recharge volume sim-

ulations. Figure 4.22 illustrates the major oxide values for the smallest (5 vol%) and largest

(50 vol%) recharge volume simulations compared to the reference simulation. As seen from the

Figure 4.22, both simulations exhibit the same major oxide trends as the reference simulation.

The main variability is within the Ti2O FeO and MgO concentrations, see Figure 4.22 A, C

and D. The small recharge volume simulation (5 vol%) shows slightly higher concentrations

of Ti2O, FeO and MgO. Conversely, the larger recharge volume simulation (50 vol%) shows

slightly lower Ti2O, FeO and MgO concentrations. These differences correlate with slightly

higher spinel and pyroxene values within the bottom layering. Overall, there is only minimal

variation from the reference model, indicating that the recharge volume does not significantly

influence the major oxide geochemical signatures within the first stages of chamber evolution.

The trace element data of the varied recharge simulations show similar outputs to the

reference run. Figure 4.23 outlines the trace element signatures of the base melt layers within

the smallest and highest recharge volume runs. These base layer signatures are similar to the

input recharge compositions, indicating no extensive mixing between the two magmas. There

are, however, slight variations of the most and least compatible trace elements which can be

seen within Figure 4.23. In the 5 vol% recharge simulation, the least compatible trace element

in the recharging magma decreases by 13.3% from its original concentration. In contrast, in

the 50 vol% recharge simulation, it depletes by only 3.3%. (Figure 4.23 outlines the range of

variations seen within the base crystal layering across the six simulations. This indicates that

the recharge volume only slightly varies the initial chemical composition of the base layering.

The final parameter test, varying the H2O contents, led to the biggest variations in the

internal dynamics and the resulting geochemical signatures. The simulation with equal H2O

contents within both magmas sees the system enter a multi-layered convective regime; there

is more vigorous mixing between the two end-member geochemical signatures. This mixing is

reflected within the Harker diagrams depicted in Figure 4.24, which show straight line trends

between the two initial compositions with minimal gaps between the two magmas.
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Figure 4.22: Harker plots of major oxide data from the largest (50 vol%) and smallest (5 vol%)
volume recharge simulations compared to the baseline simulation. Data is taken from the final
time frame of each model run. The reference simulation is plotted in pink, the small recharge
volume simulation data is shown in blue, and the large recharge volume simulation is depicted
in green. The initial input values of both magmas are plotted in grey circles to highlight the
variation from the initial inputs. (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, (E) CaO, (F) Na2O,
and (G) K2O. Most Harker plots show straight-line trends, except for (A), (C), and (D), which
exhibit arc trends. These oxides also display the greatest variation between the large and small
recharge volume simulations. This indicates that changes in recharge volume lead to slight
variations in TiO2, FeO, and MgO.

The equal H2O content simulation exhibits a fractionation trend similar to the reference

simulation. The composition of the base cumulate layer at the end of the simulation contains

lower Ti2O, FeO, MgO, Na2O and K2O relative to the reference (Figure 4.24 A, C, D, F, G)

and higher values of Al2O3 and CaO (Figure 4.24 B and E). This translates to more felspar

formation and accumulation at the bottom of the model. This simulation displays a larger

range of SiO2 and major oxide values (See Figure 4.24).

The trace element composition of the equal H2O simulation exhibits large variations from

the reference model, illustrated in Figure 4.25 A). The cumulate layer displays a trace element
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Figure 4.23: Plot of trace element compositions of the recharging magma for all varied recharge
volume simulations. The black line represents the initial bulk system composition, which was set
to contrasting trends between the resident and recharge magmas. The small recharge simulation
composition is plotted in blue, and the large recharge simulation composition is plotted in
green. The pink shaded area represents the range of compositions within the cumulate layers
across all varied recharge simulations. The results indicate that the small recharge simulation
exhibited slightly greater composition changes than the large recharge simulation. However,
all simulations produced similar cumulate layer compositions, suggesting that recharge volume
had little effect on composition during the early stages of mixing and fractional crystallisation.

composition that is more depleted in incompatible trace elements and enriched in the compatible

trace elements compared to the reference simulation. Indicating greater interaction between

the two end-member magma compositions, which is outlined in Figure 4.25 A.

The next simulation experiences H2O rich recharge with 1 vol% more H2O than the resident

magma. This simulation experiences an overturn event within the first few minutes, which is

captured within the major geochemical data as a straight-line mixing trend on the Harker plots.

As the simulation progresses and crystals begin to form, a fractional crystallisation trend also

forms, representing the base cumulate layer. The cumulate layer has similar SiO2 values as

the recharge magma, 52 wt%. It is more enriched in Al2O3, and CaO and depleted in Ti2O,

FeO, MgO, Na2O and K2O, as outlined in Figure 4.24. By the end of the simulation, the Ti2O,

FeO and MgO plots all show arced trends like the reference simulation, however, on a much
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Figure 4.24: Major oxide data from the three varied H2O content simulations compared to the
open system reference simulation, taken at the final time frame of each model. The reference
simulation data is plotted in pink. The equal H2O content simulation data is shown in blue. The
high H2O recharge simulation with a 1 vol% difference is depicted in green, and the simulation
with a 2 vol% difference is plotted in orange. Initial magma values are marked with white
circles. (A) TiO2, (B) Al2O3, (C) FeO, (D) MgO, (E) CaO, (F) Na2O, and (G) K2O. The
results show that the varied H2O content simulations all experienced greater levels of mixing
between the two magma compositions than the other open simulations. In both the equal H2O
content model and the 1 vol% enriched recharge model, end-member compositions are still
somewhat represented. However, in the 2 vol% difference recharge model, the compositions
mix more thoroughly, evolving towards the composition of the larger-volume resident magma.

narrower SiO2 range (see Figure 4.24 A, C and D).

The trace element values also show significant variations outlined in Figure 4.26. At the end

of the simulation, the top layer of the system, which contains most of the melt-rich sections,

has a trace element composition similar to the resident magma (see Figure 4.26 B). It shows a

slight depletion of the compatible trace elements and a slight enrichment of the incompatible

trace elements (Figure 4.26 A). The bottom layer of melt, which is less than 4 m thick, contains

a composition almost completely between the two end members, indicating extensive mixing
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Figure 4.25: (A) Trace element spider diagram for the equal H2O content simulation at the final
time frame (12 hr). The x-axis shows trace elements arranged from incompatible to compatible
(with partition coefficients of approximately 0.01, 0.1, 3, and 10, respectively), and the y-
axis shows the dimensionless trace element concentrations. The initial input compositions
are plotted in black and were set to contrasting trends between the resident and recharge
magmas to highlight mixing behaviour. The pink, blue, and green lines represent the resident
magma, recharge magma, and cumulate layer, respectively. The trace element plot indicates
that increased mixing in this simulation leads to greater homogenisation of the two magmas.
While the two melt-rich layers retain similarities to the initial resident and recharge magmas,
the cumulate layer shows a composition similar to the recharging magma. (B) Shows the
model domain with the spatial distribution of the different layers. The axes represent depth
and width within the model. The coloured circles and lines mark the boundaries identified from
the density fields, corresponding to the compositional layers plotted in (A). Pink indicates the
resident, melt-rich top layer; blue represents the recharge magma layer; and green denotes the
crystalline cumulate layer at the base.

between them. Finally the crystal-rich layer at the base which is less than a meter thick

(Figure 4.26 B) contains a composition similar to that of the recharge magma, slightly depleted

in incompatible trace elements and enriched in the compatible ones Figure 4.26 A.

The final simulation also sees a system recharged with H2O rich magma, which has 2 wt%

more H2O than the resident magma. This simulation undergoes an overturn event, followed by

density stratification, which results in little mixing or flow. The initial overturn event is visible

within the major oxide data, see Figure 4.24. As the overturn event progresses, the overall

system composition shifts towards the bulk resident magma composition, increasing in SiO2.

As it evolves it decreases in Ti2O, FeO, MgO, Al2O3, and CaO and increases in Na2O and K2O

(Figure 4.24). At 4.16 hr, the composition appears to pause and become static. From this

point to the end of the simulation (45 hr), the composition does not change significantly. The

cumulate at the base of the chamber contains a composition that matches the resident magma.
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Figure 4.26: (A) Trace element spider diagram for the higher H2O recharge simulation (1
vol % difference), taken at the final time frame (17.5 hr). The x-axis shows trace elements
arranged from incompatible to compatible, and the y-axis shows the dimensionless trace element
concentrations. The initial input compositions are plotted in black. Three distinct layers
are identified within the system: the top layer (resident magma) in pink, the bottom layer
(recharge magma) in blue, and the base cumulate layer in green. The trace element plot shows
that increased mixing in this simulation leads to greater homogenisation of the two magmas.
Both melt-rich layers exhibit significant variation across all four trace element values relative
to the initial input compositions. The cumulate layer composition closely resembles that of
the recharging magma. (B) Shows the locations and depths of these layers within the model
domain. The axes represent depth and width within the model. The coloured circles and lines
mark the boundaries identified from the density field, corresponding to the compositional layers
plotted in (A).

At the top of the model is a convection cell containing the most well-mixed composition

between the two end members. This can be seen within the trace element signatures in Figure

4.27 A-B. The interface layer that separates the convecting cell and the stably stratified base

layer shows a trace element composition closer to the resident end member composition (Figure

4.27 A-B). Below the interface layer the bottom 25–28 m of the chamber are composed of

the stably stratified layer which has a composition close to that of the resident magma (see

Figure 4.27 A-B). Finaly at the base of this layer there is a crystal-rich layer that again has

a composition that closely matches the initial resident magma composition, with only slight

variations in concentration Figure 4.27 A.
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Figure 4.27: (A) Trace element spider diagram for the higher H2O recharge simulation (2
vol% difference), taken at the final time frame (45.9 hr). The x-axis shows trace elements
arranged from incompatible to compatible, and the y-axis shows the dimensionless trace element
concentrations. The initial input compositions are plotted in black. Four distinct layers are
identified within the system: the top layer containing the convection cell (pink), the interface
layer directly below (blue), the large base layer (green), and the bottom crystal cumulate
layer (orange). The trace element plot indicates that the overturn event in this simulation
resulted in extensive mixing between the two magmas. All four layers exhibit variations across
all trace elements, with compositions skewed closer to the resident magma. This suggests
that the recharge magma’s composition was lost during the overturn event. Unlike previous
simulations, the base crystal layer closely matches the resident magma composition, implying
that crystallisation occurred in situ from the resident magma after the overturn event, as it
settled at the base. The most mixed composition is observed in the top layer. (B) Shows the
locations and depths of these layers within the model domain. The axes represent depth and
width within the model. The coloured circles and lines mark the boundaries identified from
the density fields, corresponding to the compositional layers plotted in (A).

4.5.3 Isotope Ratios Within the Open System Simulations

To investigate mixing interactions between the resident and recharge magma, an isotope ratio

was defined. The isotope ratio is designed to emulate delta (δ) notation and does not partition

between phases making it a passive tracer of mixing. The two magmas were defined to have a

contrasting isotope ratio. The resident magma had an isotope ratio of (-1), and the recharge

magma was assigned a ratio of (+1).

The isotope ratio acts as a variable that allows for the tracking of hybridisation between

the two magmas independent of crystal fractionation, it therefore allows for useful comparisons

between different dynamic regimes. Figure 4.28 depicts the isotope field within the reference

simulation, which experiences a hybridisation zone dynamic (Figure 4.28 A-D) and the high-

water content recharge simulation, which experiences overturn (Figure 4.28 E-H). The Figure
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highlights that within the overturn simulation, there is greater homogenisation within the

isotope field than in the reference simulation (Figure 4.28). The plots also indicate that within

the hybridisation zone dynamic regime, there is only little mixing between the magmas (4.28

A-D). The lack of extensive mixing dynamics within the isotope fields suggests that the layering

at the base of the system is a result of fractional crystallisation, rather than mixing. Within the

high-water content recharge simulation (2 wt%) the overturn of the system is captured within

the isotope fields see Figure 4.28 E-F, followed by mixing and hybridisation between the two

magma compositions (Figure 4.28 G-H).

Time = 0.0565 [hr] Time = 0.454 [hr] Time = 45.9 [hr] Time = 0.0121 [hr] Time = 18 [hr] 

Time = 0.706 [hr] Time = 4.27 [hr] Time = 18.7 [hr] Time = 0 [hr] 

A B C D

E F G H

Figure 4.28: Stable Isotope fields of Isotope 1 at various time steps within two open systems
simulations. Plots A-D show the isotope distributions from the reference simulation, progressing
from the initial composition to the final time step at 18.7 hr. These plots highlight the two-
layer set up of the system and show minor isotope variations where the two magmas meet.
Plots E-H show evolving dynamics within the simulation that experiences high water content
recharge into the system. With 2 wt% water difference between the two magmas. These plots
also span four time steps, from the initial frame to the final time step at 45.9 hr. In contrast
to the reference case these plots highlight the overturn and mixing of the isotope ratios.

Figure 4.29, shows the isotope values from the open system reference simulation plotted

against SiO2 to show how the isotope ratios evolve throughout the simulation (Figure 4.29

A-F). The plots show broken linear mixing trends with three identifiable clusters representing
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the resident magma, recharge magma, and the hybridization zone (Figure 4.29 C-F). The plots

highlight that there is limited chemical interaction between the two magma compositions. Over

time, the isotope values in the hybridisation zone evolve from values similar to the recharge

magma toward those of the resident magma, which dominates the system volume this can be

seen within Figure 4.29 C-F. The layering at the base of the system shows slight evolution in

silica values however they retain an isotope ratio of -1 similar to the recharge magma composi-

tion. This indicates this portion of the initial geochemical signature is being preserved (Figure

4.29 A-F). A video of the isotope parameter field evolving throughout the run can also be seen

within the supplemental data.

Throughout the varied recharge volume and temperature parameter tests, the simulations

experience the same hybridisation zone dynamic regime and show the same isotope ratio be-

haviours to the open system reference case. However, within the varied water content parameter

tests, slight changes in the recharge water content lead to varied internal dynamics, which in

turn affect the extent of homogenisation between the two magmas. The isotope evolution

throughout the varied water content simulations are presented as videos in the supplemental

data.

The isotope ratio in the equal water content simulation shows a linear mixing trend that is

less fragmented than the reference simulation (Figure 4.30 A-F). This less fragmented signature

indicates greater mixing between the two magmas within this dynamic regime than in the

previous homogenisation regime (Figure 4.29). Over time, slight gaps appear in the isotope

compositions. These breaks are due to different convective layers forming throughout the

simulation; the gaps are visible within Figure 4.30 D-F and can be seen clearly within the video

in the supplemental data. Similar to the reference simulation, the crystal layering that forms

at the system’s base retains an isotope ratio of -1, like the initial recharge magma (Figure 4.30

A-F), again highlighting that this portion of the system is preserved and not involved in the

mixing. By the end of the simulation there are three seperate convecting layers within the

system outlined in Figure 4.30 G-H.

Within the simulation with a slightly higher water content in the recharge magma (1 wt%),

the magmas mix more vigorously, and the system overturns within the first few minutes of the

simulation run (Figure 4.17). This increased mixing is reflected in the isotope ratios, where

consistent linear mixing trends form (Figure 4.31 A-F). The majority of the melt-rich section

of the system reflects an isotope value similar to the resident magma, which has a higher

volume of the system than the recharge magma Figure 4.31 G-H). However, the early forming

crystal layers at the base have isotope values that reflect the recharge magma, as these layers

formed quickly before the two magmas had extensively mixed (Figure 4.31 A-D). As the model

progresses, the layers at the base form separate clusters within the isotope plots, and over time,

these clusters become more isolated as the rest of the system continues to homogenise towards

the resident magma composition (Figure 4.31 D-F). As subsequent layers form, they become

progressively similar to the resident magma isotope ratio, highlighting different mixing stages

(Figure 4.31 D-F). By the end of the simulation there is a narrow melt layer at the base of the
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Figure 4.29: Isotope data from the open system reference simulation. Plots A–F show the
isotope ratios plotted against SiO2 at various time steps throughout the simulation, spanning
from the initial to the final timestep. The data points are colour-mapped to the temperature
field, highlighting their spatial distribution within the system. These plots illustrate the isotope
ratio values of the initial magmas and the development of a hybridisation zone at their interface.
G displays the isotope parameter field at the final time step, emphasising the presence of two
distinct compositional layers. Plot H shows the corresponding temperature field used for the
colour mapping in the isotope-SiO2 plots.

system which can be seen in the isotope and temperature field Figure 4.31 G-H.

The final simulation that shows variations in the isotope ratio behaviour is the simulation

with high water content in the recharge magma (2 wt%). Within this simulation, the system

overturns due to density contrasts, and the two magmas almost completely homogenise (Figure

4.18). The extensive mixing of the magmas is visible in the isotope values (Figure 4.32 A-F).

The isotope ratios show clear linear mixing trends that slowly move towards the initial resident
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Figure 4.30: Isotope data from the equal water content simulation. Plots A–F show the isotope
ratios plotted against SiO2 at various timesteps throughout the simulation, spanning from the
initial to the final timestep. The data points are colour-mapped to the temperature field,
highlighting their spatial distribution within the system. The plots show linear mixing trends
between the two magmas, with slight breaks appearing related to transient convective layers
forming. Plot G displays the isotope parameter field at the final time step, which shows three
convective layers. plot H shows the corresponding temperature field used for the colour mapping
in the isotope-SiO2 plots.

magma value as the magmas mix, as seen in Figure 4.32 B-F. The system overturn results

in the layering at the base reflecting isotope ratios close to the initial resident magma value

(Figure 4.32 A-F). The isotope ratio fields show that the recharge magma is thoroughly mixed

and lost within the system (Figure 4.32 A-F). By the end of the simulation there is only slight

variation within the isotope ratio field, (Figure 4.32 G).
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Figure 4.31: Isotope data from the simulation with 1 wt% water difference between the two
magmas. Plots A–F show the isotope ratios plotted against SiO2 at various timesteps through-
out the simulation, from the initial to the final timestep. The data points are colour-mapped
to the temperature field, highlighting their spatial distribution within the system. The plots
show linear mixing trends between the two magmas. Additionally the base layers have isotope
ratios reflecting different degrees of mixing. Panel G displays the isotope parameter field at the
final time step, which shows a narrow layer remaining at the base of the system. Panel H shows
the corresponding temperature field used for the colour mapping in the isotope-SiO2 plots.
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Figure 4.32: Isotope data from the simulation with 2 wt% water difference between the two
magmas. Plots A–F show the isotope ratios plotted against SiO2 at various timesteps through-
out the simulation, from the initial to the final timestep. The data points are colour-mapped
to the temperature field, highlighting their spatial distribution within the system. The plots
show linear mixing trends between the two magmas. As the system homogenises the recharge
magma composition is lost, and the linear trends move towards the resident magma. G displays
the isotope parameter field at the final time step, which shows a slight variation between two
layers. Plot H shows the corresponding temperature field used for the colour mapping in the
isotope-SiO2 plots.
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4.6 Machine Learning

One of the primary objectives of this research is to explore the feasibility of reconstructing

the original compositions of magma end members from the end model geochemical data. To

test this, a machine learning script employing principal component analysis (PCA) and factor

analysis was utilised on ten of the open system simulations. The five varied temperature

simulations were excluded because they showed no significantly different dynamics. All the

varied recharge models and varied H2O models were included to capture the varied dynamic

regimes identified.

The machine learning analysis was performed multiple times, varying both the types of data

included (major oxides, trace elements, and stable isotopes) and the number of data points

sampled. Within the framework of the model two isotope systems were defined. To track

mixing, only one isotope ratio was required; therefore, the two isotopes were defined as having

opposite values to each other, and both show identical patterns but in reverse. Both isotope

systems were included within the machine learning analysis; however, as they are correlated,

the principle component analysis, which reduces the data dimensions, simplified them down to

one data direction. Therefore, the second isotope ratio does not affect the results. The isotope

ratios were included in the machine learning dataset in an effort to improve model performance

and better backtrack to the original endmember compositions. Sampling strategies ranged

from using all data points within the system to selecting 25 random samples across the domain.

Random sampling was intended to mimic the process of collecting real-world samples from a

rock exposure, where the number of samples typically depends on the exposure’s size, time and

cost constraints.

4.6.1 All Data Points

The initial run of the machine learning includes major oxides, trace elements, and stable isotope

data from each point within the 2D model domain. After running the simulations for one

month, the final output frame from each run is used to analyse the results. However, the

time represented by this final output frame varies across simulations due to differences in the

complexity of the dynamics each simulation experiences. These model times range from 7.6 hr

to 45.9 hr.

Once the machine learning script produces the end member predictions, error norms are

calculated to evaluate how well the predictions match the initial end member compositions.

This assessment is crucial for determining the accuracy of the machine learning model. The

error norms measure the difference between the predicted compositions and the actual initial

end member inputs.

Figure 4.33 presents the predicted end member values for the open system reference simu-

lation. The data is displayed on Harker plots, and is compared against the initial end member

compositions and the end frame geochemistry. The predicted end members are compared to the

final geochemistry spread of the model to examine how well the reduced data captures the full
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Model ID Recharge Resident Overall # No of End
End Member End Member Error Member

Error Error predictions
Open Reference 0.0054 0.0014 0.0038 2
Smallest Rech volume 5 0.0036 0.0012 0.0026 2
Small Rech volume 15 0.006 0.0009 0.0042 2
Small Rech volume 10 0.006 0.0009 0.0042 2
Large Rech volume 30 0.0046 0.0022 0.0035 2
Large Rech volume 40 0.0036 0.0026 0.0031 2
Largest Rech volume 50 0.0029 0.0029 0.0029 2
Equal Water 0.0361 0.0030 0.0248 3
High Water Rech 1 0.0326 0.0221 0.0275 3
Higher Water Rech 2 0.0881 0.014 0.0611 3

Table 4.5: Whole system analysis error norm values predicted end members and overall model
output.

range of geochemical trends, such as mixing and fractionation trends. The initial geochemical

signatures are plotted to evaluate the accuracy of the machine learning predictions by assessing

how well they match the initial compositions.

The predicted end members are a good match for the initial values; however, the reduced

data points do not capture the full geochemical trends of the simulation end signature. This

is particularly prominent within the Ti2O, FeO and MgO Harker plots (See Figure 4.33). This

indicates that the reduced data isolates the mixing trend by losing the additional variability

introduced by fractional crystallisation.

When prompted for three end member predictions, the reduced data is able to capture

the end geochemical data and provides two end members which match the input values. The

predicted end members have significantly higher errors than when asked for two end member

compositions, 0.0209 for the resident end member, and 0.0205 for the recharge end member.

The trend that the third end member captures is the fractional crystallisation trend (Figure

4.34)

The six varied recharge volume simulations were run through the machine learning model.

The machine learning successfully predicts two matching end members for all six simulations, all

of which experience hybridisation zone dynamics. All six display error norms less than 0.004,

indicating that they match the initial inputs well (see Table 4.5). As the recharge volume

increases, the error norm for the resident magma end member increases from 0.0012 to 0.0029.

The remaining three varied H2O content models all experience significant degrees of mixing

between the two initial magmas, which proves more difficult to predict the initial end members.

Two end member predictions are insufficient to identify the initial inputs and three end members

produce high errors.

Within the equal H2O content simulation, the resident magma composition remains trace-

able with a low error of 0.003, but the machine learning script is less successful in identifying

the recharge magma composition.
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Initial End Member Compositions 
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Figure 4.33: This figure depicts Harker plots of the predicted major oxide endmembers from
the machine learning analysis of the open system reference simulation. The data was generated
when the machine learning script was prompted to identify two endmember compositions. The
analysis incorporated all available data points from the system. Blue points represent the
initial input compositions, while white points indicate the predicted endmembers identified by
the script. Yellow clusters display the original simulation output, and pink clusters represent
the reduced dataset processed by the machine learning model. The results show that the script
successfully predicted two matching endmember compositions and effectively filtered out the
fractional crystallisation trend.

In the first H2O rich recharge simulation (1 vol% difference), end member prediction is

again impossible. The overall composition of the system evolves away from the initial values.

Similar to the previous simulation, the machine learning produces one matching end member

composition close to the initial resident magma. When prompted for three end members, the

remaining two are closer to the recharge magma composition; however, neither fits the initial

value well.

In the final simulation, which undergoes whole-system convection and stable stratification,

the resident magma can still be identified, but the recharge magma’s geochemical signature

is not detected. This is shown in the figure of the three-endmember reconstruction, where

increased mixing creates a bias towards the resident magma (See Figure 4.35). The endmem-
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Figure 4.34: This figure depicts Harker plots of the predicted major oxide endmembers from
the machine learning analysis of the open system reference simulation. The data was generated
when the machine learning script was tasked with identifying three endmember compositions.
The analysis used all available data points from the system. Blue points represent the ini-
tial input compositions, while white points indicate the predicted endmembers identified by
the script. Yellow clusters show the original simulation output, and pink clusters represent
the reduced dataset processed by the machine learning model. The results demonstrate that
the script successfully predicted two matching endmember compositions, although with higher
errors than the two endmember analyses. The third endmember captures the fractional crys-
tallisation trend.

ber reconstruction struggles to identify the recharge magma composition because it makes up

a smaller portion of the system. As mixing intensifies, the recharge signature becomes less

distinct, making it increasingly difficult to resolve in the geochemical analysis.

4.6.2 Varied Geochemical Data

This analysis considers which data types (major and trace elements and stable isotopes) should

be included to best predict end members. In the field, a full scope of data collection is not

always possible due to time and funding constraints. All ten models are run through the machine

learning script, first excluding both trace elements and stable isotopes and then excluding only
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Initial End Member Compositions 


Predicted End Member Compositions 
Actual End Frame Data 

Figure 4.35: This figure depicts Harker plots of the predicted major oxide endmembers from
the machine learning analysis of the H2O rich recharge simulation (2%) simulation. The data
was generated when the machine learning script was tasked with identifying three endmember
compositions. The analysis used all available data points from the system. Blue points represent
the initial input compositions, while white points indicate the predicted endmembers identified
by the script. Yellow clusters show the original simulation output. The results demonstrate
that the script unsuccessfully predicted two matching endmember compositions. It can identify
two end members close to the resident magma composition within all of the oxide Harker plots;
however, it fails to identify the recharging magma composition, with the predicted end member
(white) being far away from the initial values (blue)

the stable isotopes. The calculated error norms for these variations are outlined in Appendix

7.4. The results show trends similar to those in the previous example, which includes all the

data. Two predicted end members are sufficient to identify the initial geochemical signatures

for all seven hybridisation zone simulations. The lowest error values are produced when only

the major oxide data is analysed, followed by the inclusion of the trace elements and finally the

analysis of all three.

Additionally, there is greater success in predicting the end members of the equal H2O

simulation when the stable isotopes are excluded. Finding end members for the overturn
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simulations still proves difficult, and although the errors are reduced relative to the whole

data analysis, they remain relatively high (Appendix 7.4). Stable isotopes often show smaller

variations than major and trace elements. Therefore, the lower variability may not provide

enough discriminative power to distinguish between the different end members.

4.6.3 Varied Data Points

The final analysis involves varying the number of data points included in the machine learning

model to simulate the constrains often encountered in fieldwork. Due to the extensive size

of geological bodies, geologists cannot sample every point in a natural system. In real-world

scenarios, the number of samples collected is often constrained by factors such as the availability

of exposed rock, time limitations, and processing costs. For example, a small geological body

might only be analysed a few times if there is significant petrological variation, whereas a larger

pluton, covering an area of 100 km² or more, might be sampled more extensively. To reflect these

field limitations, the machine learning analysis was conducted with 25 and 50 random samples

taken from across the domain area (See Figure 4.36). Although this represents a relatively

large sample size compared to typical field studies, it aims to simulate the practical challenges

of sampling density, variability, and the trade-offs between data quantity and precision.

Over the past seven decades, many studies have utilised whole rock data to identify trends

associated with geological processes such as fractional crystallisation, mixing, and assimilation

[Thomas and Sinha, 1999, Vogel et al., 2008]. While detailed mineral-scale studies provide

more precise constraints on these processes [Davidson et al., 2008, Oeser et al., 2015], they

are both expensive and time-consuming. Conversely, techniques like portable XRF and remote

sensing can increase the number of whole rock data points but come with a trade-off in precision

[Balaram, 2017, Vonopartis et al., 2022].

By analysing these reduced datasets, we can evaluate how well the model performs under

conditions similar to those encountered in actual geological studies. The reduced data sets lead

to greater errors for the reference simulation and the varied recharge simulations. Despite the

higher errors, matching end member compositions can still be identified from both 50 and 25

random samples. The end member predictions for the 25 random samples produce lower errors

than those predicted for 50 samples. The error norm values are outlined in Appendix 7.4.

The reduced data point analysis is unsuccessful in predicting end members for the three

varied H2O content simulations. It produces error norm values similar to those of the whole

system analysis.

Finally, the machine learning analysis is carried out one more time, taking samples from the

top and base layers of the system. In the field, it is sometimes possible to identify cumulate

layering and the roofs of the systems. The top and base sections of the model domain are

identified, taking 20 rows of each, and 25 samples are randomly taken from these rows (See

Figure 4.36). Two end members are successfully predicted for the hybridisation zone simulations

with considerably low errors. All three varied H2O simulations produce high errors, and only

one end member can be predicted with any accuracy (See Appendix 7.4).
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Figure 4.36: A) Depicts the locations of the random samples taken within the 50 random
sample machine learning analysis. B) represents the locations of the samples taken for the 25
random sample analysis. C) represents the locations within the top and bottom margins of the
systems where 25 random samples were taken from the system peripheries.

Overall, machine learning is somewhat successful at predicting end members if the system

has not undergone significant mixing. However, even a short 1-2 hr overturn event is sufficient

at overwriting the geochemical signatures within the system, making backtracking to both end

members difficult. The major oxide data proves to be the best for predicting end member

compositions. However, trace elements also prove to be good tracers when looking at the more

complex overturn simulations. Finally, reduced data points result in increased errors; however,

the data suggests that samples collected from the margins of systems may retain traces of the

initial endmember signatures.
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Chapter 5

Discussion

Across the ten closed system simulations, they all exhibit classic examples of expected dynam-

ics for a melt-rich magma body, including whole system convection, fractional crystallisation,

cumulate layer formation, and plumes and drips. The results align with established concep-

tual models of the dynamics within simple magma chambers [Bowen, 1928, Sparks et al., 1985,

Campbell, 1996, Marsh, 2013]. They also align with the interpretation of field data and previous

numerical modelling studies [Sparks and Marshall, 1986, Marsh, 1996, Gutiérrez and Parada,

2010, Dufek and Bachmann, 2010]. The observed whole-system convection across all ten sim-

ulations underscores the critical role of density contrast in driving flow dynamics [Sparks and

Huppert, 1984]. Specifically, the results from the varied cooling rate simulations reveal how dif-

ferent cooling rates influence convective behaviour. The faster wall-rock cooling rate results in

more rapid crystallisation at the wall-rock contacts (see Figure 4.2), leading to a larger density

contrast between the dense crystal drips and the hotter inner magma. The denser crystal drips

in the fast cooling systems drives faster convection, with average speeds of 99 m/hr compared

to 22 m/hr in the slower cooling system. The variations in crystal size, however, do not sig-

nificantly affect convective speeds, suggesting that a density contrast rather than crystal size

is a greater driver of convection. Additionally, the convective speeds increase with chamber

size, following a squared relationship between length scales and convective speeds as described

by Stokes’ law (See Equation 3.8). Specifically, the largest chamber size exhibits an average

convective speed of 75 m/hr, approximately four times faster than the smallest chamber size,

which averages 17 m/hr. This finding highlights the significant impact of chamber size on con-

vection rates. Throughout all ten closed-system simulations, whole-system convection persists

for the entire duration of the simulation, this convective regime can be see within Figure 4.1,

matching the dynamics observed in similar studies such as those by [Gutiérrez and Parada,

2010].
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5.1 Significance of Water Content Within Closed Sys-

tems

This study found that the water content exerted the most significant control on shallow magma

body dynamics and geochemical signatures among the parameters explored (Figure 4.6).

Previous studies found that volatiles, particularly water, play an important role in control-

ling the crystallisation temperature of magma [Phemister, 1934, Wallace et al., 2015, Edmonds

and Woods, 2018]. Lower water contents raise the crystallisation temperature, meaning that

crystals form at higher temperatures [Huppert and Woods, 2002, Wallace et al., 2015, Edmonds

and Woods, 2018].

In agreement with previous work outlined above, reducing the system’s water content from

4 wt% in the reference simulation to 2 wt% results in crystals beginning to form at much

higher temperatures. This results in the overall system having a higher viscosity. The reference

simulation has an initial viscosity of 2.36 Pa s, while the reduced water content simulation (2

wt% ) has an initial viscosity of 3.55 Pa s. Higher viscosity hinders both crystal settling speeds

and convective speeds, which are both calculated using Stokes’ law and are therefore inherently

connected to the viscosity of the system (see Equations 3.8 and 3.9).

A crystal-dense layer forms at the bottom of the system due to crystallisation from the

wall rock contact and crystal accumulation from the drips outlined in Figure 4.6. The layer

forms rapidly as the system crystallises and has a composition that reflects the overall bulk

composition of the system, outlined in Figure 4.11. This layer could be considered similar to

that of a chilled margin [Huppert and Sparks, 1989]. However, it is important to note that the

fine-grained textures, often observed in nature, which are typically associated with a chilled

margin [Huppert and Sparks, 1989, Latypov et al., 2007] cannot be confirmed from the model

outputs, as the model cannot resolve textural details.

In agreement with previous work, this study found that variations in volatile content directly

influence the convective patterns, crystallisation processes, and the geochemical differentiation

within the systems [Phemister, 1934, Huppert and Woods, 2002, Wallace et al., 2015, Edmonds

and Wallace, 2017, Edmonds and Woods, 2018, Popa et al., 2021]. Without sufficient volatile-

enriched recharge into the system, magma bodies may solidify beyond the critical crystallinity

required for eruption and form intrusive igneous rocks Popa et al. [2021].

Popa et al. [2021] found that crystallinity and dissolved volatile content control eruptive

styles. For example, explosive eruptions typically occur in magmas with less than 30 vol %

crystals and water content below 3.5 wt%. In contrast, magmas with over 55 vol% crystals

become rheologically locked, preventing eruption [Popa et al., 2021]. Other factors, such as

chamber size and wall rock cooling rate, are also known to play a role in determining the

lifespan of melt-rich systems in the upper crust [Spera, 1980, Karakas et al., 2017, Annen, 2009].

Results from this study are consistent with previous findings, showing that larger simulated

magma reservoirs cooled more slowly (see Figure 4.5), extending their longevity [Karakas et al.,

2017, Spera, 1980, Annen, 2009]. Similarly, slow wall rock cooling rates, which can be linked

98



to the thermal preconditioning of the surrounding crust, can contribute to the slow cooling

and longevity of melt-rich systems [Karakas et al., 2017]. Karakas et al. [2017] studied this in

greater detail, and they found that younger igneous provinces are less likely to sustain large

upper crustal magma bodies due to the insufficient thermal development of the surrounding

rock.

5.2 Significance of Water Content Within Open Systems
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Figure 5.1: Plot of the average densities of the initial two magmas against each other. All
open system simulations are plotted on the graph and colour-coded to reflect the dynamic
regimes they exhibit. The graph highlights the importance of density contrast within the
system and its influence on the internal dynamic regime that develops once the simulation
begins. The colours correspond to subplots on the side, which show a temperature snapshot
from each dynamic regime to illustrate what it looks like. In pink (A), the models exhibit
hybridisation zone dynamics, where the bottom layer is denser than the top layers. The two
layers remain stratified with an interface layer (the hybridisation zone) where interaction occurs,
forming plumes. In blue (B), the multilayered convection regime occurs when the base layer
is still denser than the top, but with less contrast, allowing bubbles to form in the base layer
and rise to the interface, creating a middle, bubble-rich layer. The system therefore shifts
into a multilayer convection regime with transient fourth layers forming. In green (C), the
first overturn simulation shows lower density in the base layer relative to the top, triggering
overturn. The system then transitions into the multilayer convection regime. In yellow (D), the
second simulation also experiences an overturn event before settling into a final stable density
stratification regime, where movement halts with only a small convecting layer remaining at
the top.

In the open system simulations, variations in water exsolution significantly affected both

the system dynamics and the resulting geochemical signatures highlighted in Figure 4.24. Each
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variation leads to a distinct dynamic regime, ranging from multilayered convection to complete

system overturn outlines in Figure 5.1. The dynamic behaviours are primarily driven by the

exsolution of volatiles forming bubbles. The presence of these bubbles alters the density of the

magma and its interactions, leading to substantial changes in the system’s overall behaviour

(see Figure 5.1). The specifics of how each variation in water content produces unique dynamic

regimes, including hybridisation zone dynamics, multilayer convection, and system overturn,

are discussed in detail in the following sections.

5.2.1 Hybridisation Zone Dynamics Regime

The hybridisation zone dynamic regime is the most commonly occurring regime within this

study (Figure 5.1 A). It occurs when the recharge magma is depleted in volatiles relative to

the resident magma. The recharge magma settles as a denser layer at the system’s base and

interacts with the upper resident magma across the contact boundary, forming a hybridisation

zone. The hybridisation zone dynamic regime aligns with previous theoretical and laboratory

experiments investigating magma recharge beneath more evolved silica rich magma [Huppert

and Turner, 1981, Huppert and Sparks, 1981, Campbell and Turner, 1989, Bergantz and Brei-

denthal, 2001, Perugini et al., 2015, Longo et al., 2023]. Huppert and Sparks [1981] proposed a

theoretical model of hot dense magma recharging beneath a lighter fractionated basaltic magma

similar to the model set up within this study. They hypothesised that the two layers would

remain compositionally distinct; however, the temperatures would equilibrate as temperature

diffusion is faster than chemical diffusion [Huppert and Sparks, 1981]. Later laboratory ex-

periments demonstrated this double thermal and chemical diffusive behaviour, and it is also

exhibited within the models of this study [Huppert and Turner, 1981, Campbell and Turner,

1989, Bergantz and Breidenthal, 2001, Perugini et al., 2015, Longo et al., 2023]. Within this

study, the hybridisation zone is not an effective dynamic regime for mixing. The chemical flux

across the zone is relatively slow compared to thermal diffusion this is highlighted within the

stable isotope fields see Figure 4.28 A-D and Figure 4.29 A-F .

Within this study, the density of both layers increases over time, maintaining a strong

contrast at the interface between the two compositions. This interface is visible in Figure 4.14.

The strong contrast observed in the model simulations differs from tank experiments, where

bubble exsolution and crystallisation reduce the density of the base recharge layer, promoting

chemical mixing between the two magmas and sometimes leading to system overturn [Huppert

and Turner, 1981, Huppert et al., 1984, Campbell, 1996, Bergantz and Breidenthal, 2001]. In

the current model, any bubbles that exsolve within the lower layer become trapped in the

cumulate layer at the base due to rapid cooling, preventing a significant reduction in density

(Figure 4.14). In later simulations, bubble formation occurs more widely throughout the base

layer as it approaches water saturation.

Campbell [1996] conducted a similar tank experiment in which a denser layer was introduced

beneath a less dense one. However, the denser material was injected as a pulse at the base. This

pulse carried excess momentum, and their results showed that under such conditions, a dense
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plume or fountain formed, penetrating the upper layer before falling back again [Campbell,

1996]. This fountain dynamic suggests that different recharge mechanisms could influence the

dynamic regimes within magmatic systems [Campbell, 1996].

One exception within the hybridisation zone dynamic regime is exhibited within a simulation

with a lower initial resident magma temperature. It is decreased from the reference simulation

985 ◦C to 959 ◦C. This simulation set up results in an initial bubble content of 1.6 vol% within

the upper resident magma layer.

Due to the reduced temperature in this layer, the water saturation point is lowered, allowing

bubbles to exsolve. Over time, as the resident magma is heated by plumes from the hybridisation

zone, bubbles gradually redissolve, reducing the bubble volume to 0.7 vol% by the end of the

simulation. This suggests that high bubble content in the upper layer stabilises the layers,

whereas bubble content in the base layer can lead to instability, overturn, and increased mixing.

Across all hybridisation zone simulations, the bottom recharge layer remains denser than the

resident magma throughout the runs, as the recharge magmas are not enriched in volatiles. See

Figure 5.1.

This hybridisation zone regime matches conceptual models of magma mingling and mixing

of injected mafic magma into partially crystallised higher-silica magma [Clynne, 1999, Tepley

et al., 1999, Browne et al., 2006, Jarvis et al., 2021]. Additionally, it also matches textural

patterns observed in the field, where mingled magmas have crystallised rapidly, preserving

evidence of mixing textures [Clynne, 1999, Tepley et al., 1999, Perugini et al., 2003, Jarvis

et al., 2021].

5.2.2 Multilayer Convection Dynamic Regime

The second dynamic regime occurs when the water content of both magmas is equal, resulting in

stable density stratification (see Figure 5.1). Bubbles that exsolve within the recharge magma

rise and stall at the contact between the recharge magma and the resident magma. The rise

of bubbles results in the formation of a third layer with a bubble saturated layer sandwiched

between two water depleted layers, outlined in Figure 4.16. The bubbles stall and collect at

the interface between the two initial magmas due to density and viscosity contrasts between

the two compositions, creating stepped density layering [Huppert and Turner, 1981].

The multilayer convective regime mirrors the dynamics observed within laboratory exper-

iments on saline water layering and double diffusive convection [Huppert and Turner, 1981,

Sparks et al., 1985, Turner and Campbell, 1986]. In these experiments, heat diffusion across

the boundaries drives convection within layers while the remaining salt creates density steps

within the system [Huppert and Turner, 1981, Sparks et al., 1985, Turner and Campbell, 1986].

Similarly, in this study, heat diffusion across the boundary equilibrates through the system

faster than the composition (Figure 5.1B). Unlike previous tank experiments, the density and

viscosity contrasts of the layers here are controlled by phase changes, specifically the exsolution

of bubbles from the melt and the formation of crystals outlined in Figure 4.16 C and D. Any

bubbles that crossed the boundary layer redissolve into the resident magma as this upper layer
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is below its saturation point. Over time, as the base recharge layer cools and crystallises, it

reaches its saturation point, leading to further bubble formation and a transition to a four-layer

convective regime. Eventually, this bubble rich layer amalgamates with the initial bubble rich

layer, as their temperature and density homogenise. The amalgamation of the two layers mir-

rors laboratory experiments, where density equilibrium between layers results in the boundary

dissolving and intense mixing of the two compositions [Huppert and Turner, 1981, Bergantz

and Breidenthal, 2001]. This more complex dynamic behaviour results in greater mixing of the

magma compositions as each convecting layer homogenises.

As the layers that form within this regime are transient, it is not possible to trace the

detailed nuances of the regime, such as the number of convecting layers, within the end layer

structures. However, this regime does lead to a better-mixed end geochemical signature than

the previous hybridisation zone dynamic (see Figure 4.24 and Figure 4.30 A-F), indicating that

the increased volatiles play an important role in controlling not only the dynamics but also

the geochemistry of the system. The diffuse boundaries between the layers at the end of the

simulation (see Figure 4.16 E-F), progressing towards equilibrium, suggest that if the simulation

continued longer, the potential continued mixing could homogenise the system further.

5.2.3 System Overturn Dynamic Regime

System overturn occurs when the recharging magma contains a higher water content than the

resident magma and exceeds the water saturation point, allowing bubbles to form. The bubbles

reduce the density of the recharging magma, creating a buoyancy contrast and causing the

recharging magma to rise, see Figure 5.1. This regime is observed in two simulations involving

recharge magmas enriched in water relative to the resident magma.

Within the simulation where the recharge magma is enriched by 2 wt% H2O, there is an

initial large density contrast between the two magmas. The top layer has a density of 2578

kg/m3, while the base layer has a density of 2458 kg/m3, giving a density contrast of 120 kg/m3

(see Figure 5.1). In contrast, the initial density contrast is much lower in the simulation with

a smaller recharge enrichment (1 wt% H2O difference). Here, the top layer has a density of

2424 kg/m3, and the base layer has a density of 2422 kg/m3, resulting in a density contrast of

only 2 kg/m3 outlined in Figure 5.1.These results suggest overturn dynamics are susceptible

to small-density contrasts. Both simulations experience overturn events but display slightly

different dynamics during and after the overturn (Figure 5.1 C and D).

In shallow continental arcs, it is well-documented that magma systems are often replenished

with hotter, more primitive, volatile-rich magma beneath cooler, more evolved, volatile-depleted

magma [Moore and Carmichael, 1998, Annen and Sparks, 2002, Ruscitto et al., 2010, Longo

et al., 2012, Plank et al., 2013, Zellmer et al., 2016]. Within this scenario, the resident magma

has evolved due to processes such as fractional crystallisation, as outlined in the closed system

models (Section 4). Additionally, they become depleted in volatiles, which separate into a

gas phase through two main processes: first, boiling during decompression as the magma rises

[Wallace et al., 2015, Edmonds and Woods, 2018], and second, boiling as the system cools and
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crystallises [Wallace et al., 2015, Edmonds and Woods, 2018]. Eventually, the volatile phase

decouples from the remaining melt and escapes into the surrounding rock, leaving a volatile,

depleted magma [Longo et al., 2012]. Within continental arcs, primitive magmas typically

contain 3-5 wt% water [Phemister, 1934, Plank et al., 2013, Edmonds and Woods, 2018] and

have not undergone significant first or second boiling upon recharging the shallow system.

Therefore, recharge by a more water-enriched magma is a plausible scenario.

Within the water-enriched recharge simulations, the systems overturn within the first few

minutes after initiation. The recharge magma rises quickly, destabilising the interface between

the two magmas and reaching the top of the chamber, interacting with the resident magma as it

does so (Figure 5.1 C and D). This behaviour is well established within laboratory experiments

[Turner and Campbell, 1986, Woods and Cowan, 2009] and numerical models [Ruprecht et al.,

2008, Garg et al., 2019]. Evidence of overturn dynamics has also been identified within field

studies [Longo et al., 2006, Bain et al., 2013, Myers et al., 2014, Garg and Papale, 2022, Longo

et al., 2023].

Within the simulation with only slightly higher water contents in the recharging magma (1

wt%) the system begins to stratify after the initial short overturn event (See Figure 5.1 C).

It enters a multilayered convective regime similar to the dynamics outlined above; however, it

exhibits an unstable boundary layer that appears to ripple (See Figure 4.17 D-F. Over time,

the bottom recharge layer ”drains,” shrinking in size as the whole system homogenises with

more extensive chemical mixing across the layers. This increased mixing can be seen within the

stable isotope data see Figure 4.31. This indicates that a composition change of only 1 wt%

water can result in significant internal dynamic changes and that these dynamic regimes are

sensitive to small variations in bubble and water content.

Within the final simulation (2 wt%) difference between magmas, the system becomes stably

stratified in terms of density after the initial overturn event illustrated in Figure 4.18. The

density gradient between layers reaches a stable state, preventing further large-scale mixing

or overturning. However, there are still variations in composition and temperature within the

layers, reflecting ongoing processes such as crystallisation and water exsolution, see Figure 5.1

D). Over time, a convection cell at the top of the system begins to erode the stable diffuse

layer, homogenising the system as it grows in depth. This can be seen within the stable isotope

parameter fields outlined in Figure 4.28 E-H. The results of this study align with those of Garg

et al. [2019] and Ruprecht et al. [2008], which also observe the interface destabilisation, plume

rise and mixing of magma, followed by the gradual development of well-defined, stratified layers.

Huppert and Sparks [1980] found that within tank experiments, if the density of the recharge

magma became equal to or greater than the resident magma, the recharge magma would rise

and mix with the upper system.

The distinction between this regime and the previous one has important implications for

the geochemical signatures. Where there is only slight water enrichment of the recharging

magma, some of the magma may remain at the bottom of the system during overturn. This

results in trace element compositions and isotope ratios closer to those of the recharge magma
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within the cumulate layer outlined in Figure 4.26 and Figure 4.31. However, within the case

of greater variation in H2O content, the overturn is more successful in flipping the system, and

the cumulate layers have trace element signatures that resemble the resident magma see Figure

4.27.

The overturn dynamic regimes lead to extensive mixing between the two magma compo-

sitions on relatively fast time scales (from minutes to hours), much faster than differentiation

trends observed within the closed system and hybridization zone models (See Figure 4.28 A-H).

The rapid mixing emphasises the critical role of water-rich recharge in controlling the geochem-

istry. The overturn dynamics and multilayer convection regimes are much faster at evolving

the geochemistry of the system than evolution via crystal settling and differentiation.

5.3 Plume Dynamics in Closed-System Simulations
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Figure 5.2: Regime diagram of the closed system models, plotting dimensionless values of Ru
(Crystals) on the x-axis and Rw (Thermal) on the y-axis. This diagram highlights the influence
of boundary cooling and crystal settling in determining plume formation. The simulations are
colour-coded based on parameter variations, with labels indicating whether each simulation
involved a higher, lower, faster, or slower variation from the reference simulation. The results
show that simulations with fast cooling across the boundary (high Rw) and slow crystal settling
(low Ru) do not develop plumes. In contrast, simulations with slow cooling (low Rw) exhibit
plume formation, with the crystal settling rate controlling the onset of plumes. Simulations with
faster crystal settling (high Ru) experience earlier plume formation, while those with slower
settling rates (low Ru) have plumes form later. This highlights the interplay between cooling
rates and crystal dynamics in regulating the timing and presence of plumes in the system.

Across the ten closed-system simulations, one key variation in internal dynamics is the pres-
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ence or absence of plumes at the bottom of the chamber. Plume formation was not restricted to

any specific set of parameter variations. Small changes in parameter values influence the tim-

ing, morphology, and frequency of plume formation. Figure 5.2 illustrates the plume dynamics

and their relation to two non-dimensional parameters: Ru and Rw.

Ru (Relative Importance of Buoyancy vs Crystal Settling) measures the balance between

buoyant forces driving magma convection and the settling of crystals. A higher Ru indicates

that buoyancy is more dominant, while a lower Ru suggests that crystal settling plays a greater

role (See Figure 5.2).

Rw (Ratio of Convective Speed to Cooling Speed) compares the convection speed within

the magma to the characteristic cooling speed across the boundary layer. A higher Rw value

signifies that convection dominates over cooling processes, affecting plume development. Con-

versely, a lower Rw means that cooling processes have a stronger influence. The interplay

between Ru and Rw leads to different plume shapes, timings, and frequencies, as observed in

the simulations (See Figure 5.2).

Understanding these parameters shows how variations in crystal size, chamber size, and

wall rock cooling rates affect plume formation and behaviour. As mentioned in the Results

(section 4), parameter tests influenced the convective speed of the systems. Plumes are most

prominent in systems with slower convection, such as those with reduced wall rock cooling rates

and smaller chamber sizes. They are also present in both simulations with varied crystal sizes.

The plumes form from thin, water-rich layers at the interface between the base cumulate

layers and the rest of the melt-rich system above. The model setup does not allow water to

partition into the solid crystal phase; it is only present in the liquid melt and volatile bubble

phases. Therefore, crystallisation leads to enrichment of water within the melt phase. The melt

above the cumulates becomes enriched in water. Crystal settling at the base increases crystal

volume within the crystal layering and a displacement of melt upwards, further aiding in the

accumulation of water-rich melt above the crystal layering. Once the water content of the melt

layer reaches approximately 4.1 wt% water, thin plumes begin to rise from the boundary. At the

very base of these plumes, bubbles may exsolve, adding to the buoyancy instability driving the

flow; however, they quickly redissolve. This behaviour is similar to de-watering events observed

in nature where melt is expelled from cumulate layering due to compaction of crystals, [Shirley,

1986, Meurer and Boudreau, 1998].

The large system simulations (75 m × 25 m) and (60 m × 30 m) experience faster cooling

across the boundary layers, see Equation 3.14, this leads to faster crystallisation at the wall

rock contacts. Additionally, when wall rock cooling rates are decreased from 48 hr to 3 hr at

the top and bottom boundary’s the model exhibits fast crystallisation rates this is highlighted

in Figure 4.2 C. If a system is crystalising faster at the base, it becomes harder for the water

rich melt and bubbles to escape and migrate upwards through the mushy cumulate layer, and

they become trapped. The cumulate layer, therefore, becomes enriched in water, inhibiting

the water from migrating through the layer and forming a water rich melt layer above the

cumulate pile. As a result plumes do not form or may take longer to form (See Figure 5.2).
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The crystal size affects the crystal settling speed (Equation 3.13), which in turn influences the

melt segregation speed. Therefore, larger crystals equal faster crystal and melt segregation.

The melt can escape quickly from the crystal layering and form plumes (See Figure 5.2).

The plumes have little impact on the overall flow. Instead, they migrate in response to

stronger convection currents caused by crystal downwelling’s at the top of the chamber (see

Figure 4.3). The plumes are not visible within the major oxide values, trace elements or

stable isotopes. Indicating that this dynamic behaviour is not traceable within the resulting

geochemistry.

Across the simulations, many of the cumulate layers contain > 10 vol% bubbles; however,

this is not typically observed in natural systems, as bubbles that do form are generally expected

to rise and escape from the system [Toramaru et al., 1996, Charlier et al., 2015]. In a study

by Toramaru et al. [1996], the Ogi picrite sill on Sado Island, Japan, was investigated, where

bubble-rich layering was observed forming at the top and base of the sill in regions of rapid crys-

tallisation within volatile-rich melts [Toramaru et al., 1996]. Toramaru noted that such bubble

layering is uncommon in most sills, occurring only in relatively small systems at shallow depths

and without hydrous mineral formation [Toramaru et al., 1996]. The model used in this study

does not currently allow for the formation of hydrous minerals such as amphibole and biotite,

as the volatile water phase is not permitted to partition into the solid phase. Consequently, the

elevated bubble volume in the cumulate layers is an artefact of model simplification. Therefore,

the high bubble fraction in the cumulate layers should be interpreted cautiously and considered

a product of model limitations rather than a representation of natural magmatic processes.

5.4 Backtracking to Initial End Member Compositions

Predicting magma end member compositions is challenging due to poorly constrained data sets

[Blum-Oeste and Wörner, 2016]. Using model-simulated data where the original end member

compositions are known allows for the assessment of Machine learning techniques as a method

to backtrack to initial end member values. The results from this study demonstrate that when

all data points from a 2D domain are present, end members can be successfully predicted for

simulations that have not undergone significant mixing or interaction between the two magmas.

The errors for the different models are outlined in Figure 5.3. The machine learning approach

successfully identified and discounted fractionation trends within the simulations. However, the

simulations were not run for an extended period, meaning the fractional crystallisation trends

remain relatively minor compared to the initial geochemical variations. If the models were to

run longer, allowing for the fractionation trends to become more prominent, predicting the end

members could become more challenging.

Within more dynamically complex scenarios, the prediction of end members was unsuc-

cessful (See Figure 5.3). Even slight changes in system dynamics can overwrite and destroy

original geochemical signatures in systems that have not significantly evolved. The introduction

of assimilation trends and real-world complexities could further complicate backtracking efforts.
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Hybridisation Zone Simulations


Inital End Member Compositions 
High Volatile Recharge (2 wt%) 

Equal Volatiles
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Figure 5.3: Harker plot of major oxides displaying data from the open system machine learning
analysis. This data is from the run that included all data points for every point within the
system. The points are colour coded to the individual simulations. With all the simulations
that experience hybridisation zone dynamics grouped together. This highlights that across all
the simulations, there is variable success when predicting the end member compositions.

Despite these challenges, the success within the simple examples and work from the literature

suggests that continued refinement of machine learning techniques may improve their predic-

tive accuracy [Blum-Oeste and Wörner, 2016, Ueki et al., 2018, Petrelli et al., 2020, Boschetty

et al., 2022, Weber and Blundy, 2024]. For instance, previous work suggests that analysing

17 elements and stable isotopes is necessary to make confident predictions about geological

settings [Ueki et al., 2018]. However, the approach to identifying different geological settings is

quite different from understanding geological processes. Identifying geological settings involves

excluding various magmatic processes to determine the composition of the primary magma,

which can be inherently complex.

Results from this study suggest that major oxides and trace elements are good tracers for

the end member compositions. The simulations with 50 and 25 random samples show that end

member compositions can be identified even with reduced data for simple hybridisation zone

systems. Improved results from the targeted samples at the top and base of the systems suggest

that the margins of the systems may be less involved within the system dynamics, potentially

preserving end-member compositions. Preservation may result from reduced mixing in these
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regions or from early crystallisation driven by contact with cooler wall rock, which locks in the

original magma composition before significant mixing occurs [Huppert and Sparks, 1988, Marsh,

1989] Overall, further work and refinement in machine learning approaches could enhance their

effectiveness as predictive tools in geochemical studies.
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Chapter 6

Limitations, Future Work and

Conclusions

6.1 Limitations

The model utilised within this study integrates fluid mechanics and thermochemical evolution

and is one of the first to track the geochemical evolution of a magmatic system. It simulates

four pseudo-components that resolve mineral systems and major oxides. It also calculates one

volatile phase (water) and four hypothetical trace elements with varying partition coefficients,

simulating incompatible to incompatible behaviour. Finally, it tracks two hypothetical stable

isotope systems that act as passive tracers of mixing and are used to backtrack to the initial

end-member compositions. Despite the advances in incorporating geochemistry, this modelling

approach has several limitations. One important limitation is that it excludes the formation of

hydrous mineral phases.

Due to computational complexity, the Nakhla model does not allow water to partition into

the crystal phase, preventing the formation of hydrous minerals such as amphibole and biotite.

This study uses the model to simulate sill-like magmatic systems (50 m thick) with an initial

water content of 4 wt%, see table 4.1. The magma is above the water saturation point at

shallow depths and pressures, leading to degassing that reduces the water content [Zimmer

et al., 2010]. However, hydrous mineral phases such as amphibole and biotite are commonly

observed in shallow arc systems, [James, 1982, McMillan et al., 1989, Samaniego et al., 2005,

Annen et al., 2006, Bryant et al., 2006, Sainlot et al., 2020]. Therefore, the model’s inability

to simulate these hydrous minerals introduces inaccuracies in predicting the real-world mineral

assemblages for these systems.

A second limitation of the model is that, for computational simplicity, the pseudo-phase

diagram approximates everything by linear solution-type phase relations; therefore, all compo-

nents in the model can co-exist at the same time. This allows olivine and quartz to exist within

the cumulate layer, which is unlike a natural system where they would normally not occur

together, as they are on either side of the eutectic [Bowen, 1928, Philpotts and Ague, 2009].

Another limitation of the geochemical data is that the model partition coefficients are set at a
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constant value to simplify computational complexity and to provide a simple understanding of

basic scenarios. Future work could dynamically alter the partition coefficients as a function of

T, P and water content to mimic real-world partitioning behaviour [Blundy and Wood, 1994,

Philpotts and Ague, 2009]. Addressing the variability in partitioning behaviour based on the

stable mineral phase assemblage could significantly improve the model.

Other than limitations associated with the calculation of geochemical parameters within the

model, there are also several limitations associated with the data of this study. Due to time

constraints, the simulations were only run for one month of real-world time. The computational

complexity of these simulations meant that the internal evolution of these models was limited

to approximately 83 hr for the longest run. This restriction meant only the initial dynamics

were captured, including the initial stages of fractional crystallisation trends.

Additionally, there are unresolved questions about the trace element signatures in closed

systems. The melt-rich layer shows unexpected compatibility trends at the top of the cumulate

stack. It has a slight enrichment of compatible trace elements, while the crystal-rich layers

below are slightly depleted in these elements. One hypothesis for this behaviour is that melts

within the mushy, crystal-rich layers become enriched in compatible elements. This enrichment

occurs because the higher volume of crystals in these layers concentrates compatible elements

in the melt. As more crystals form and accumulate, these enriched melts are fluxed upwards.

The observed signatures are subtle and might be related to transient behaviours that could

become more apparent if the simulations were run for a longer period. Additionally, this

behaviour is occurring within a very narrow layer above the crystals, confined to a single grid

square. This indicates that the dynamics are happening at a scale smaller than the model’s

resolution, highlighting resolution as another limitation of the model. As a result, accurately

predicting fine-scale behaviours is challenging.

Further tests and investigations are required to address these limitations. Improving the

model’s resolution and extending the simulation duration will help resolve these issues and

provide a clearer understanding of the dynamics. This is outlined in the next section on future

work.

6.2 Future Work

Future work could expand on both the numerical modelling itself to address the model’s lim-

itations and the geological questions and context. Adding additional processes, such as wall

rock assimilation and a third geochemical composition, may reveal more about the survival of

geochemical signatures and the internal complexities of these shallow systems. Additionally,

greater investigation on the role of water content within different chamber dynamics and ge-

ometries may help fill knowledge gaps. Varied recharge dynamics could be tested to include

continuous recharge from a single point, with different recharge rates and compositions. As

mentioned previously Campbell [1996] showed that within tank experiments recharge injected

into the base of a system rose as a fountain due to excess momentum, which may change the
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dynamic regime.

Further expansion of the model to include pressure variations (including depressurisation)

and interactions between the magma system and the surrounding country rock would enable

testing more complex hypotheses related to system overpressure and volcanic eruptions. This

could involve simulating effects such as wall rock fracturing and the dynamics of how the

magma interacts with and influences the surrounding rock. Work within this area has already

begun with [Li et al., 2023], incorporating this model within more mechanically complex crustal

magma systems.

The current model does not allow for the formation of hydrous minerals such as amphibole

and biotite, as the volatile water phase is not permitted to partition into the solid phase.

As a result, the high bubble volume observed in the cumulate layers is an artefact of this

simplification. Therefore, these bubble-rich cumulate zones should be interpreted cautiously,

as they likely do not represent natural magmatic processes. Future work could incorporate

hydrous mineral formation to represent a more realistic composition and reduce the artificially

elevated volatile content and bubble fraction in the cumulate layers.

The current study employs hypothetical trace elements to investigate mixing and fraction-

ation trends. While useful for exploring model behaviours, the lack of specifically defined trace

elements limits direct comparison with natural systems. Future work could improve this by cal-

ibrating the model to include real-world trace elements. This would allow for ground truthing

of the model by comparing it to real-world case studies, which is an essential step to enhance

the models validity and applicability.

As outlined in the methods section the model framework contains two isotope ratios however,

for the purposes of this study only one was required to track the extent of homogenisation

between two magmas. The isotopes were therefore defined to have correlated values that show

the same trends. Future work could utilise the second isotope ratio to understand additional

processes such as assimilation. Additional isotope ratios could be added and defined using

real world systems to aid in ground truthing the model as well as understanding more specific

dynamics.

Furthermore, extending the model to include multiple magma chambers would enable the

investigation of far-reaching signatures and interactions between these systems. This could po-

tentially reveal new insights into the dynamics of magmatic systems. Additionaly incorporating

realistic recharge rates and coupling the model with a dynamically self-consistent representa-

tion of a subducted slab model could further enhance its realism [Grima et al., 2020, Grima

and Becker, 2024]. Integrating processes occurring in the lower crust would provide a more

comprehensive view of the magmatic system, offering a deeper understanding of its evolution

and behaviour. By expanding the scope of this model for future work, a more robust and

accurate model can be developed, enhancing the simulation of natural geological systems and

the processes that occur within them.

This work also underscores the necessity of high-resolution field sampling to capture the

dynamic nature of these systems. While traditional geological sampling and whole-rock geo-
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chemistry may be limited by lower spatial sampling density, portable X-ray fluorescence (XRF)

can significantly increase the number of data points collected in a short time, albeit with poten-

tially lower geochemical quantification accuracy compared to laboratory-based methods [Hou

et al., 2004]. Integrating these advanced techniques more regularly into geological studies could

provide valuable insights and improve the calibration and validation of geodynamic models.

6.3 Conclusions

The main aim of this study was to utilise a numerical model to understand the magma dynamics

within shallow crustal magma bodies and how these processes contribute to the generation or

destruction of geochemical heterogeneity. The study’s findings show that the water content of

recharging magma is a major control on the internal dynamics of these systems. Even slight

variations (1 wt% H2O) can result in dramatic changes in dynamic regimes, with the caveat

that the magma also crosses the water saturation point/threshold. If the magma does not

reach this saturation point, the dynamics remain more stable, exhibiting hybridisation zone

behaviour where there is only slight interaction between the two magmas across their contact.

The hybridisation zone dynamics lead to less convective interaction between the two magmas

and less geochemical homogenisation.

While other parameters, such as wall rock cooling rates, temperatures, length scales, and

recharge volumes, have a lesser impact on the dynamics and geochemistry, they still affect the

timescales on which these dynamics occur. These parameters may influence the subsequent

geochemistry if the simulations were extended over longer periods. Ultimately, this study

highlights how variations in water content of recharging magma into a shallow continental arc

system can dramatically alter the internal dynamics. High water content recharge magmas

can trigger convective overturn and mixing between the two magmas, altering the geochemical

signatures, beyond a point where it is possible to backtrack to the initial compositions using

machine learning. This study has implications for field data in that the shallowest systems

could obscure or erase signatures from the deeper system if they have experienced extensive

mixing and overturn. In less convective systems, the original geochemical signatures can be

preserved at the top and base margins of the system.
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Chapter 7

Appendix

The tables below outline the petrological model composition parameters. The composition is

specified as oxides, mineral endmembers, mineral systems and pseudo components (melting

model components).

7.1 Appendix 1

Mineral SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O H2O

Forsterite (for) 42.7 0.0 0.0 0.0 57.3 0.0 0.0 0.0 0.0

Fayalite (fay) 29.5 0.0 0.0 70.5 0.0 0.0 0.0 0.0 0.0

Ulvospinel (ulv) 0.0 32.0 2.6 46.2 19.2 0.0 0.0 0.0 0.0

Magnetite (mgt) 0.0 22.3 1.3 71.0 5.4 0.0 0.0 0.0 0.0

Ilmenite (ilm) 0.0 44.2 0.6 54.9 0.3 0.0 0.0 0.0 0.0

Enstatite (ens) 51.5 0.0 3.3 20.4 22.2 2.6 0.0 0.0 0.0

Hypersthene (hyp) 49.4 0.0 1.0 36.4 12.0 1.2 0.0 0.0 0.0

Al-augite (cp1) 52.6 0.0 2.15 9.3 15.58 19.87 0.44 0.06 0.0

Augite (aug) 52.78 0.0 0.85 15.41 11.78 18.07 1.06 0.05 0.0

Pigeonite (pig) 51.4 0.0 1.31 23.25 5.03 15.72 2.95 0.34 0.0

Anorthite (ant) 44.4 0.0 35.8 0.0 0.0 19.3 0.5 0.0 0.0

Albite (alb) 67.3 0.0 20.2 0.0 0.0 0.5 11.5 0.5 0.0

Sanidine (san) 64.8 0.0 18.3 0.0 0.0 0.0 0.5 16.4 0.0

Quartz (qtz) 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Water (wat) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 7.1: Table from the model calibration script showing the oxide compositions of each

mineral end member (in wt%).
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System for fay ulv mgt ilm ens hyp cp1 aug pig ant alb san qtz

Olivine 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Oxide 0 0 1 1 1 0 0 0 0 0 0 0 0 0

Orthopyroxene 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Clinopyroxene 0 0 0 0 0 0 0 1 1 1 0 0 0 0

Feldspar 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Quartz 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 7.2: Table from the model calibration script showing the mineral systems represented

by combinations of mineral end members. A value of 1 indicates membership in the system.

Mineral end members are indicated using there abbreviations from the previous table.

Mineral (shorthand) Anorthosite Basalt Andesite Rhyolite Fluid

Forsterite (for) 0.0000 5.0543 0.1965 0.0000 0.0000

Fayalite (fay) 0.0000 6.9548 3.4037 0.0000 0.0000

Ulvospinel (ulv) 0.0000 3.6012 0.5051 0.0000 0.0000

Magnetite (mgt) 0.0000 3.0760 2.1748 0.0244 0.0000

Ilmenite (ilm) 0.0000 0.2390 0.1436 0.1004 0.0000

Enstatite (ens) 0.0000 15.9769 0.3661 0.0000 0.0000

Hypersthene (hyp) 0.0000 1.3431 8.8642 0.0000 0.0000

Al-augite (cp1) 0.0000 18.2853 0.0563 0.0000 0.0000

Augite (aug) 0.0000 1.5396 5.6639 0.0000 0.0000

Pigeonite (pig) 0.0000 0.4692 0.8425 1.9774 0.0000

Anorthite (ant) 100.0000 35.4479 10.8493 0.0000 0.0000

Albite (alb) 0.0000 8.0127 64.1367 24.1666 0.0000

Sanidine (san) 0.0000 0.0000 1.9340 29.0199 0.0000

Quartz (qtz) 0.0000 0.0000 0.8632 44.7114 0.0000

Water (wat) 0.0000 0.0000 0.0000 0.0000 100.0000

Table 7.3: Table from the model calibration script. Mineral end-member compositions (in wt%)

of melting model pseudo-components: anorthosite, basalt, andesite, rhyolite, and hydrous fluid.

7.2 Appendix 2

Varied Temperature Values description:

The second parameter test saw the variation on the initial temperatures of the two magma’s.

the first three models saw variation of the resident magma temperature decreasing across the

three, outlined in Table 4.4. This reduction was correlated with the initial crystal vol % of the

magma. The three models therefore represent 5 vol%, 10 vol% and 20 vol% crystal volume

respectively. This variation was carried out to ascertain if the state of the magma system that

is recharged has a role on the internal dynamics. The last two models within this group have

varied recharge magma temperatures varied by ±35°C (Table 4.4. Across all five models they

all display the same dynamic behaviour as seen in the previous parameter test consisting of a

hybridisation zone between two convecting magma compositions.
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Within the first three models, as the temperature of the resident magma decreases, the

convective speed of the top layer slightly increases and becomes more variable, with the cooler

magma of the 959°C exhibiting a slower convection speed of 154 m/hr at the top and 98 m/hr

at the base. This is faster than the warmer base model where the top layer convect at 91 m/hr

and the base at 50 m/hr. There is a greater temperature difference between the two magmas

in the 959°C simulation therefore a greater thermal density difference. In all 3 models, the

crystal volume of the top convecting layer decreases as it is heated by plumes from below and

as crystals settle into the base layer. The remaining two models within the parameter test have

varied recharging magma temperatures. The model with 1200°C recharge mamga has a recharge

magma reduced by 35°C from the base and the second model has an increased temperature of

recharge magma by 35°C to 1270°C. Like the three other models varying the temperature of

the interacting magmas influences the respective convective speeds. In the model with 1200°C
recharging mamga the top layer is unaffected by the decrease in temperature and convects at 91

m/hr which matches the baseline simulation. However, the base layer has a slower convection

rate of 40.3 m/hr. Within the model with 1270°C recharge both convective speeds increase with

the top layer convecting at 99 m/hr and the base convecting at 57 m/hr. There is no change

in the dynamic behaviour of these models, only variations in dynamic speeds and timescales.

7.3 Appendix 3

The following tables summarise the bulk mineralogical compositions of the cumulate layers

formed in each simulation. These layers represent the final crystallised assemblages at the end of

each model run. While all simulations produced a cumulate, the total volume of crystallisation

varied depending on the imposed parameters (chamber size, cooling rate, recharge conditions).

The tables are divided into closed and open system simulation groups.

Model ID Olivine Spinel Opx Cpx Feldspar Quartz
wt% wt% wt% wt% wt% wt%

Closed Reference 5.87 3.68 9.97 10.49 56.88 9.35
Slow Wall rock cooling 5.65 3.52 9.57 9.81 46.53 2.43
Fast Wall rock cooling 5.86 3.68 9.97 10.48 56.83 9.31
Larger Crystals 6.03 3.77 10.17 10.76 57.43 9.31
Smaller Crystals 5.82 3.66 9.91 10.41 56.81 9.41
Smallest Chamber 25 5.99 3.75 10.14 10.68 57.05 9.11
Small Chamber 40 5.91 3.71 10.03 10.03 56.95 9.27
Large Chamber 60 5.83 3.66 9.92 10.43 56.85 9.44
Largest Chamber 75 5.81 3.65 9.89 10.40 56.80 9.48
Lower Water (Base) 6.02 3.78 10.23 10.75 57.87 9.31
Lower Water (Top) 4.60 2.97 8.12 8.58 57.76 14.63

Table 7.4: Closed system model and there cumulate layer mineral composition in weight per-
centages.
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Model ID Olivine Spinel Opx Cpx Feldspar Quartz
wt% wt% wt% wt% wt% wt%

Open Reference 6.42 3.91 10.35 11.13 60.77 3.78
Smallest Rech volume 5 6.62 4.03 10.66 11.50 60.69 4.40
Small Rech volume 10 6.54 3.98 10.54 11.36 61.06 4.42
Small Rech volume 15 6.47 3.94 10.44 11.25 61.35 4.44
Large Rech volume 30 4.56 2.70 6.98 7.76 39.65 0.09
Large Rech volume 40 3.13 1.84 4.72 5.31 32.07 0.05
Largest Rech volume 50 1.63 0.96 2.45 2.77 25.13 0.02
Equal Water 5.69 3.43 9.02 9.71 56.47 0.20
High Water Rech 1 6.21 3.78 10.02 10.80 61.76 4.34
Higher Water Rech 2 6.12 3.83 10.34 10.89 57.89 8.83
Lower Res temp 973 5.47 3.26 8.49 9.32 44.37 0.13
Lower Res temp 968 4.34 2.56 6.60 7.37 36.06 0.08
Lower Res temp 959 3.32 1.95 5.00 5.63 29.65 0.05
Lower Rech temp 1200 6.47 3.95 10.44 11.26 61.31 4.45
Higher Rech temp 1270 6.37 3.87 10.27 10.95 57.51 1.45

Table 7.5: Open system model and there cumulate layer mineral composition in weight per-
centages

7.4 Appendix 4

Machine Learning Error value tables: Errors for the recharge end member, resident end member,

total error and the number of end members asked for.

Model ID Recharge Resident Overall No of
End Member End Member Error End Members

Error Error
Open Reference 0.0034 0.0007 0.0024 2
Smallest Rech volume 5 0.0022 0.0002 0.0015 2
Small Rech volume 10 0.0041 0.0002 0.0028 2
Small Rech volume 15 0.0045 0.0008 0.0031 2
Large Rech volume 30 0.0038 0.0018 0.0029 2
Large Rech volume 40 0.0029 0.0019 0.0024 2
Largest Rech volume 50 0.0025 0.0028 0.0027 2
Equal Water 0.0370 0.0051 0.0256 3
High Water Rech 1 0.0148 0.0069 0.0113 3
Higher Water Rech 2 0.0694 0.0079 0.0478 3

Table 7.6: Error norm values for the predicted end members of Major Oxides.
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Model ID Recharge Resident Overall No of
End Member End Member Error End Members

Error Error
Open Reference 0.0054 0.0013 0.0038 2
Smallest Rech volume 5 0.003 0.0009 0.0022 2
Small Rech volume 10 0.006 0.0005 0.0041 2
Small Rech volume 15 0.0058 0.0009 0.004 2
Large Rech volume 30 0.0043 0.0021 0.0033 2
Large Rech volume 40 0.0026 0.0026 0.0029 2
Largest Rech volume 50 0.0027 0.0028 0.0028 2
Equal Water 0.0036 0.0083 0.0065 2
High Water Rech 1 0.0225 0.0233 0.0229 2
Higher Water Rech 2 0.0836 0.0097 0.0576 3

Table 7.7: Error norm values for the predicted end members of Major Oxides and Trace Ele-
ments.

Model ID Recharge Resident Overall No of
End Member End Member Error End Members

Error Error
Open Reference 0.0086 0.0021 0.0061 2
Smallest Rech volume 5 0.0065 0.0005 0.0045 2
Small Rech volume 10 0.0029 0.0011 0.0021 2
Small Rech volume 15 0.0075 0.0016 0.0052 2
Large Rech volume 30 0.0052 0.0027 0.0041 2
Large Rech volume 40 0.0039 0.0034 0.0037 2
Largest Rech volume 50 0.0028 0.0039 0.0035 2
Equal Water 0.0162 0.0091 0.0129 3
High Water Rech 1 0.0232 0.0250 0.0242 3
Higher Water Rech 2 0.0906 0.0091 0.0623 3

Table 7.8: 50 random sample analysis, error norm values for the predicted end members and
overall error.
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Model ID Recharge Resident Overall No of
End Member End Member Error End Members

Error Error
Open Reference 0.0069 0.0021 0.005 2
Smallest Rech volume 5 0.0065 0.0004 0.0045 2
Small Rech volume 10 0.0029 0.0011 0.0021 2
Small Rech volume 15 0.0062 0.0017 0.0044 2
Large Rech volume 30 0.0036 0.0027 0.0032 2
Large Rech volume 40 0.0027 0.0034 0.0031 2
Largest Rech volume 50 0.0018 0.0040 0.0032 2
Equal Water 0.0162 0.0091 0.0129 3
High Water Rech 1 0.0232 0.0251 0.0242 3
Higher Water Rech 2 0.0907 0.0094 0.0624 3

Table 7.9: 25 random sample analysis, error norm values for the predicted end members and
overall error.

Model ID Recharge Resident Overall No of
End Member End Member Error End Members

Error Error
Open Reference 0.0029 0.0023 0.0026 2
Smallest Rech volume 5 0.0044 0.0004 0.003 2
Small Rech volume 10 0.0039 0.0012 0.0028 2
Small Rech volume 15 0.0024 0.0018 0.0021 2
Large Rech volume 30 0.002 0.0029 0.0025 2
Large Rech volume 40 0.0024 0.0035 0.0031 2
Largest Rech volume 50 0.0024 0.0040 0.0034 2
Equal Water 0.0077 0.0091 0.0085 3
High Water Rech 1 0.0264 0.0251 0.0257 3
Higher Water Rech 2 0.0897 0.0002 0.0613 3

Table 7.10: Error norm values for the predicted end members of the intentional sampling
analysis.
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Chapter 8

Supplementary Data

Supplemental material can be accessed at:

Swan, S. (2024, September 30). Master’s Thesis: 2D Numerical Simulations of Shallow

Crustal Magma Bodies. Zenodo. https://doi.org/10.5281/zenodo.15540075
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J. Dannberg and R. Gassmöller. Chemical trends in ocean islands explained by plume–slab

interaction. Proceedings of the National Academy of Sciences, 115(17):4351–4356, 2018.

J. P. Davidson, L. Font, B. L. Charlier, and F. J. Tepley. Mineral-scale sr isotope variation in

plutonic rocks—a tool for unravelling the evolution of magma systems. Earth and Environ-

mental Science Transactions of the Royal Society of Edinburgh, 97(4):357–367, 2008.

P. DeCelles, G. Zandt, S. Beck, C. Currie, M. Ducea, P. Kapp, G. Gehrels, B. Carrapa, J. Quade,

and L. Schoenbohm. Cyclical orogenic processes in the cenozoic central andes. Geological

Society of America Memoirs, 212:MWR212–22, 2014.

W. Degruyter and C. Huber. A model for eruption frequency of upper crustal silicic magma

chambers. Earth and Planetary Science Letters, 403:117–130, 2014.

D. J. DePaolo. Trace element and isotopic effects of combined wallrock assimilation and frac-

tional crystallization. Earth and planetary science letters, 53(2):189–202, 1981.

W. R. Dickinson. Relations of andesites, granites, and derivative sandstones to arc-trench

tectonics. Reviews of Geophysics, 8(4):813–860, 1970.

M. N. Ducea, J. B. Saleeby, and G. Bergantz. The architecture, chemistry, and evolution of

continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43:299–331,

2015.

J. Dufek and O. Bachmann. Quantum magmatism: Magmatic compositional gaps generated

by melt-crystal dynamics. Geology, 38(8):687–690, 2010.

M. Edmonds and P. J. Wallace. Volatiles and exsolved vapor in volcanic systems. Elements,

13(1):29–34, 2017.

M. Edmonds and A. W. Woods. Exsolved volatiles in magma reservoirs. Journal of Volcanology

and Geothermal Research, 368:13–30, 2018.

M. Edmonds, K. V. Cashman, M. Holness, and M. Jackson. Architecture and dynamics of

magma reservoirs, 2019.

J. C. Eichelberger. Origin of andesite and dacite: evidence of mixing at glass mountain in

california and at other circum-pacific volcanoes. Geological Society of America Bulletin, 86

(10):1381–1391, 1975.

A. Fowler. A mathematical model of magma transport in the asthenosphere. Geophysical &

Astrophysical Fluid Dynamics, 33(1-4):63–96, 1985.

S. Freire, A. J. Florczyk, M. Pesaresi, and R. Sliuzas. An improved global analysis of population

distribution in proximity to active volcanoes, 1975–2015. ISPRS international journal of geo-

information, 8(8):341, 2019.

123



D. Garg and P. Papale. High-performance computing of 3d magma dynamics, and comparison

with 2d simulation results. Frontiers in Earth Science, 9:760773, 2022.

D. Garg, P. Papale, S. Colucci, and A. Longo. Long-lived compositional heterogeneities in

magma chambers, and implications for volcanic hazard. Scientific reports, 9(1):3321, 2019.
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A. Schöpa and C. Annen. The effects of magma flux variations on the formation and lifetime of

large silicic magma chambers. Journal of Geophysical Research: Solid Earth, 118(3):926–942,

2013.

B. Schurr, G. Asch, A. Rietbrock, R. Trumbull, and C. Haberland. Complex patterns of

fluid and melt transport in the central andean subduction zone revealed by attenuation

tomography. Earth and Planetary Science Letters, 215(1-2):105–119, 2003.

D. R. Scott and D. J. Stevenson. Magma ascent by porous flow. Journal of Geophysical

Research: Solid Earth, 91(B9):9283–9296, 1986.

Z. Sharp. Principles of stable isotope geochemistry. 2017.

D. N. Shirley. Compaction of igneous cumulates. The Journal of Geology, 94(6):795–809, 1986.

R. H. Sillitoe. A plate tectonic model for the origin of porphyry copper deposits. Economic

geology, 67(2):184–197, 1972.

R. H. Sillitoe. Porphyry copper systems. Economic geology, 105(1):3–41, 2010.

D. A. Singer, V. I. Berger, and B. C. Moring. Porphyry copper deposits of the world: Database

and grade and tonnage models, 2008. Technical report, US Geological Survey, 2008.

N. H. Sleep. Segregation of magma from a mostly crystalline mush. Geological Society of

America Bulletin, 85(8):1225–1232, 1974.

J. Solano, M. Jackson, R. Sparks, J. D. Blundy, and C. Annen. Melt segregation in deep crustal

hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation

of evolved magmas. Journal of Petrology, 53(10):1999–2026, 2012.

C. Spandler and C. Pirard. Element recycling from subducting slabs to arc crust: A review.

Lithos, 170:208–223, 2013.

R. Sparks and L. Marshall. Thermal and mechanical constraints on mixing between mafic and

silicic magmas. Journal of volcanology and Geothermal Research, 29(1-4):99–124, 1986.

R. Sparks, C. Annen, J. Blundy, K. Cashman, A. Rust, and M. Jackson. Formation and

dynamics of magma reservoirs. Philosophical Transactions of the Royal society A, 377(2139):

20180019, 2019.

131



R. S. J. Sparks and H. E. Huppert. Density changes during the fractional crystallization of

basaltic magmas: fluid dynamic implications. Contributions to Mineralogy and Petrology,

85:300–309, 1984.

R. S. J. Sparks, H. E. Huppert, R. Kerr, D. McKenzie, and S. R. Tait. Postcumulus processes

in layered intrusions. Geological Magazine, 122(5):555–568, 1985.

F. Spera. Thermal evolution of plutons: a parameterized approach. Science, 207(4428):299–301,

1980.

C. Stein, M. Mertens, and U. Hansen. A numerical study of thermal and chemical structures

at the core-mantle boundary. Earth and Planetary Science Letters, 548:116498, 2020.

K. Stemmer, H. Harder, and U. Hansen. A new method to simulate convection with strongly

temperature-and pressure-dependent viscosity in a spherical shell: Applications to the earth’s

mantle. Physics of the Earth and Planetary Interiors, 157(3-4):223–249, 2006.

C. R. Stern. Active andean volcanism: its geologic and tectonic setting. Revista geológica de

Chile, 31(2):161–206, 2004.

P. J. Tackley, D. J. Stevenson, G. A. Glatzmaier, and G. Schubert. Effects of an endothermic

phase transition at 670 km depth in a spherical model of convection in the earth’s mantle.

Nature, 361(6414):699–704, 1993.

Y. Tatsumi and T. Kogiso. The subduction factory: its role in the evolution of the earth’s crust

and mantle. Geological Society, London, Special Publications, 219(1):55–80, 2003.

F. Tepley, J. Davidson, and M. Clynne. Magmatic interactions as recorded in plagioclase

phenocrysts of chaos crags, lassen volcanic center, california. Journal of Petrology, 40(5):

787–806, 1999.

J. Thomas and A. Sinha. Field, geochemical, and isotopic evidence for magma mixing and

assimilation and fractional crystallization processes in the quottoon igneous complex, north-

western british columbia and southeastern alaska. Canadian Journal of Earth Sciences, 36

(5):819–831, 1999.

R. Tilling. Volcanism and associated hazards: the andean perspective. Advances in Geosciences,

22:125–137, 2009.

A. Toramaru, A. Ishiwatari, M. Matsuzawa, M. Nakamura, and S. Arai. Vesicle layering in

solidified intrusive magma bodies: a newly recognized type of igneous structure. Bulletin of

volcanology, 58:393–400, 1996.

K. Torrance and D. Turcotte. Thermal convection with large viscosity variations. Journal of

Fluid Mechanics, 47(1):113–125, 1971.

J. Turner and I. Campbell. Convection and mixing in magma chambersearth sci, 1986.

132



S. J. Turner and C. H. Langmuir. The global chemical systematics of arc front stratovolcanoes:

Evaluating the role of crustal processes. Earth and Planetary Science Letters, 422:182–193,

2015a.

S. J. Turner and C. H. Langmuir. What processes control the chemical compositions of arc

front stratovolcanoes? Geochemistry, Geophysics, Geosystems, 16(6):1865–1893, 2015b.

K. Ueki, H. Hino, and T. Kuwatani. Geochemical discrimination and characteristics of mag-

matic tectonic settings: A machine-learning-based approach. Geochemistry, Geophysics,

Geosystems, 19(4):1327–1347, 2018.

J. van Hunen and M. B. Allen. Continental collision and slab break-off: A comparison of 3-d

numerical models with observations. Earth and Planetary Science Letters, 302(1-2):27–37,

2011.

E. A. R. Vera, A. Folguera, G. Z. Valcarce, G. Bottesi, and V. A. Ramos. Structure and

development of the andean system between 36 and 39 s. Journal of Geodynamics, 73:34–52,

2014.

T. A. Vogel, P. J. Hidalgo, L. Patino, K. S. Tefend, and R. Ehrlich. Evaluation of magma

mixing and fractional crystallization using whole-rock chemical analyses: Polytopic vector

analyses. Geochemistry, Geophysics, Geosystems, 9(4), 2008.

L. Vonopartis, R. Booysen, P. Nex, J. Kinnaird, and L. Robb. Combined satellite and portable

xrf exploration mapping of the zaaiplaats tin field, south africa. South African Journal of

Geology 2022, 125(1):45–60, 2022.

P. J. Wallace, T. Plank, M. Edmonds, and E. H. Hauri. Volatiles in magmas. In The encyclo-

pedia of volcanoes, pages 163–183. Elsevier, 2015.

S. F. Watt, D. M. Pyle, T. A. Mather, and J. A. Naranjo. Arc magma compositions controlled

by linked thermal and chemical gradients above the subducting slab. Geophysical Research

Letters, 40(11):2550–2556, 2013.

G. Weber and J. Blundy. A machine learning-based thermobarometer for magmatic liquids.

Journal of Petrology, 65(4):egae020, 2024.

D. A. White, D. H. Roeder, T. H. Nelson, and J. C. Crowell. Subduction. Geological Society

of America Bulletin, 81(11):3431–3432, 1970.

Y.-Q. Wong and T. Keller. A unified numerical model for two-phase porous, mush and suspen-

sion flow dynamics in magmatic systems. Geophysical Journal International, 233(2):769–795,

2023.

A. W. Woods and A. Cowan. Magma mixing triggered during volcanic eruptions. Earth and

Planetary Science Letters, 288(1-2):132–137, 2009.

133



G. F. Zellmer, M. Pistone, Y. Iizuka, B. J. Andrews, A. Gómez-Tuena, S. M. Straub, and
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