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Abstract

Cyber security attacks on Industrial Control Systems (ICSs) are increasingly sophisticated, tar-
geting their ability to manage critical processes and posing risks to national infrastructure. Ad-
dressing this threat requires innovative methods to ensure the secure design and operation of
ICS. Digital Twins (DTs) have emerged as a promising tool for enhancing the efficiency and
cyber security of the systems they represent; however, their effectiveness depends on reliable in-
trusion detection methods and secure integration within existing industrial control environments.
Securely deploying a DT to an ICS requires careful consideration of existing architecture and
the potential security risks of incorporating the DT itself. Formal methods, in particular model
checking, are an effective tool for analysing system design and detecting cyber security vulner-
abilities.

We present two complementary applications of model checking techniques to support the
deployment of DTs in ICS environments. We first develop a specification-based intrusion de-
tection approach utilising the SPIN model checker and deploy it into a DT environment for
a hydroelectric dam testbed. We explain the process we followed to develop Promela models
from PLC code to detect inconsistencies between received data and specified system behaviours.
Our evaluation shows that the models achieved performance on a par with machine learning ap-
proaches while maintaining explainability and delivering metrics of 99.99% precision, 99.05%
recall, a 99.52% F1-score, and 99.05% accuracy.

We then address the expanded attack surface that can result from integrating DTs into ICSs.
We explore this issue by developing a series of Alloy models that consider the dataflow be-
tween a DT and its underlying asset. The developed models incorporate novel modelling of an
attacker’s action space to represent how threat actors can move through a network. Using our ap-
proach, we model our hydroelectric testbed DT to identify security vulnerabilities in our design
and develop an improved network design to mitigate them. Our approach successfully identified
security vulnerabilities within the DT-ICS integration and informed network design improve-
ments to reduce the attack surface significantly. Our evaluation confirms that model checking
techniques enhance both intrusion detection and security assessment, offering a structured and
explainable alternative to machine learning methods. We discuss the merits and drawbacks of
each of our approaches and discuss methods of expanding and improving them to support DT
development.
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Chapter 1

Introduction

1.1 Motivation

Industrial Control Systems (ICSs) are a critical part of modern society. They maintain the water
that we drink, provide the power to our homes and ensure the safe operation of transportation
networks, manufacturing processes, and essential services such as healthcare and telecommu-
nications. These systems play a fundamental role in sustaining daily life, economic stability,
and national security. However, as ICSs become more interconnected and digitised, they face
a growing number of cyber threats that can disrupt operations, compromise safety, and lead
to significant financial and reputational damage. Faced with increasingly sophisticated attacks
targeting these critical systems, their safeguarding requires the development of innovative mea-
sures that can detect and mitigate potential intrusions without compromising their performance
and reliability.

ICSs are used in environments that require high availability and reliability in order to man-
age the needs of the processes that they control and to maintain a safe working environment.
ICS technology tends to evolve at a slower rate than in other areas of computing, and the adop-
tion of new concepts is slower so that new technologies are proven to be dependable. The term
Industrial Internet of Things (IIoT) refers to the recent increase in integrating smart sensors and
actuators into traditional ICS processes. This has led to ICSs becoming more heterogeneous
and has been accompanied by increased digitisation and interconnection between systems. This
accessibility of Operational Technology (OT) systems facilitates the mass collection and dis-
semination of system data, enabling operators to monitor performance. Many end control de-
vices were designed to prioritise performance and safety in an era when they operated in an
isolated, “air-gapped” network that was completely disconnected from the outside world. As a
result, these systems and the protocols they utilise to communicate are easily manipulated by
adversaries who can access them. Connecting the OT environment to an enterprise network dra-
matically increases the attack surface that unauthorised users can use to access these vulnerable
systems. Reducing the threat to these systems requires the secure design and monitoring of the
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OT network.
One technique that can be used to detect attacks is anomaly detection. This is the pro-

cess of identifying device behaviours inconsistent with the system’s regular operation. These
behaviours can occur either through a software bug, hardware fault or through the malicious
intervention of an attacker. Once an anomaly is detected, an investigation must be conducted to
determine the source of the anomalous behaviour.

A digital twin (DT) is a virtual representation of a physical system [33, 110, 197]. It is a
highly advanced software tool created through the careful collation, analysis, and understanding
of the data produced by the asset being twinned [83]. DTs enable advanced inspection of their
physical asset’s design and behaviours and predict how it might behave under future conditions
[89].

DTs can model and transform system data into information about the state of the system
being twinned, helping operators understand their systems better. Depending on the needs of the
system operators, this information can take many forms. One area of interest in DT development
is their potential application towards cyber security, assisting system users in detecting attacks
and preventing attacks [98]. Since a DT is developed to understand the design and behaviours of
the underlying system, it is theoretically well-placed to identify when that system is not behaving
as intended.

The challenge with the development and integration of DTs is that they are a new technol-
ogy. It is not yet well understood how DTs should be developed and integrated into such a large
and critically important system as an ICS. If the models within the DT are prone to bugs or can
be manipulated, this can create misinformation for operators, leading them to mismanage the
system. Similarly, if the system connecting the DT to the twinned system can be manipulated
to obscure the actual state of the twinned systems, this can also lead the DT to produce misin-
formation. Although DTs are an emerging technology, they are not yet widely integrated into
critical system operations. However, as their benefits become more evident, their deployment in
increasingly sensitive systems will grow, ultimately leading to their adoption in critical infras-
tructure. Ensuring the reliable and secure development of these systems is a crucial challenge
that must be addressed alongside advancements in their utility.

One approach to address these concerns is through the application of formal methods. For-
mal methods use mathematically rigorous techniques to analyse a system and can be used to
provide assurances about the soundness of its design. These techniques have been applied in re-
lated domains such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) to iden-
tify unsafe conditions and reason about system correctness with respect to security requirements.
When applied to the technologies used in the construction of a digital twin, formal methods can
be applied to verify that collected system data corresponds to expected behaviours and support
the integration of DTs into ICS environments by identifying cybersecurity vulnerabilities.

Despite the increasing interest in and development of DTs in industry, the technologies in-
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volved in their creation are at varying stages of maturity. Each component may be implemented
in many different ways depending on the requirements of the DT. Finding suitable combinations
of technologies that work together in a cohesive system is a key factor in the maturation of this
type of system. Additionally, a wide-reaching sociotechnical digitalisation process is required
to translate the user knowledge and processes of a real-world physical entity into a reliable,
data-driven structure that DTs can integrate with. This is a highly complicated task requiring
organisational restructuring, retraining of workers, and thorough collaboration across work do-
mains throughout the process. For many organisations, this will be a slow evolution that is likely
already underway, with the functionality of DTs being developed and integrated into the work-
flow over time. It is therefore essential to understand how these systems should be designed to
manage expectations and risk during this transformation period and beyond.

We propose that by focusing on the operational requirements of DTS and the threats that may
undermine them, we can develop an appropriate approach to inform the secure design of DTs.
We further propose that formal methods can be used to assess the design of DTs with respect to
these operational requirements and can support overall system resilience by performing intrusion
detection.

1.2 Contributions

Our key contributions are as follows:

1. A case study developing the infrastructure to integrate a DT with a testbed representation
of a hydroelectric dam (Chapter 4).

2. The development of a formal methods-based anomaly detection method (Chapter 5).
The approach utilises Promela representations of PLC ladder logic and the SPIN model
checker to verify the validity of system states with respect to the previously observed
system state.

3. A series of methods to represent DT infrastructure in the Alloy specification language
(Chapter 6). This culminates in the development of a novel approach to specifying an
action-based attacker as they infiltrate a system’s security. The developed system contex-
tualises the impact of this with respect to the DT and its ability to replicate the underlying
twinned system accurately.

1.2.1 Thesis Statement

Thesis title: Applications of Model Checking in the Context of Cyber Security for Digital Twins
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Thesis statement: Model checking can support the secure development and integration of DTs
within ICSs. We demonstrate this through the integration of the SPIN model checker in a hy-
droelectric dam DT to detect behaviour anomalies and the subsequent security evaluation of the
integration using the Alloy model checker.

1.2.2 Funding

I was funded by EPSRC Industrial Case account EP/V519686/1 and was sponsored and co-
supervised by Andy Deacon and Colin Thomas at the Defence Science and Technology Labo-
ratory (Dstl).

1.2.3 Associated Publications

Some of the material in this thesis is to be published in future papers:

• The background material and example introducing SPIN in Chapter 3 is included in [164].

• The framework developed in Chapter 4 and the integration of the SPIN model checker
have been submitted to Formal Methods for Industrial Critical Systems (FMICS) 2025.

• The network modelling approach of Chapter 6 is in preparation for submission to Formal
Methods in System Design, 2025.

1.2.4 Repository

For the interested reader, an archive containing all models and code used in this thesis is avail-
able online at: doi.org/10.5281/zenodo.15482551. Further details on its content are
provided in Appendix A.

1.3 Structure of Thesis

The structure of this thesis is as follows:

• Chapter 2 gives an overview of ICS and the cybersecurity threats and challenges they face.
It also provides some background on DTs and an introduction to formal methods and their
application to DTs.

• A detailed introduction to formal methods and our tools, in particular the two model
checkers that we use (Spin and Alloy), is presented in Chapter 3.
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• In Chapter 4, we detail the construction of a DT of a hydroelectric dam for collecting and
monitoring system data. We develop a historian and measures to synchronise data from
the monitored devices to create a unified system state snapshot.

• Our approach, using the Promela specification language to model behaviours of the hydro-
electric dam and the Spin model checker for anomaly detection, is presented in Chapter
5.

• In Chapter 6, we design an approach using Alloy to evaluate the security of our constructed
hydroelectric DT framework.

• In Chapter 7, we present our conclusions and discuss future work.



Chapter 2

Background

In this chapter, we present an overview of the literature surrounding DTs and their use in the
domains of ICS and cyber security. We consider the domain of ICS, where DTs have been
proposed as a solution for various security challenges. We give an overview of what ICSs are
and the technologies used within them. We then consider the challenges facing these systems and
discuss the ways that DTs can help address them. An explanation of DTs is presented, detailing
their origin along with a description of their key characteristics, components and behaviours.
We then consider how DTs can help with the security of ICS by reviewing some of the current
guidance for securing these environments.

2.1 Industrial Control Systems

Many services and critical systems in modern society are operated by or depend upon ICS.
Industries such as energy production, water treatment, manufacturing and maritime have evolved
a specific set of requirements that require specialised computer hardware. In these environments,
the systems must be able to respond rapidly to changes in environmental conditions to maintain
a stable system through feedback control. The technologies used to perform this function at
scale have a directly line of evolutionary innovation tracing back to The Industrial Revolution.

2.1.1 Evolution of Modern ICS

Modern ICSs have developed as a result of developments to increase productivity, efficiency,
safety and to enable better operational management. Traditionally, historians classify the In-
dustrial Revolution as a single period of industrial innovation. However, analysis from other
disciplines in economics and technology have redefined this into three distinct industrial rev-
olutions, classified by the innovation trends within each [193]. Within this framework, it is
argued that we are now at the outset of a fourth industrial revolution, often termed Industry
4.0 [193, 194], characterised by the integration of Cyber-Physical Systems (CPS), the Internet

6



CHAPTER 2. BACKGROUND 7

of Things (IoT), big data and AI-driven automation [78, 120, 185]. DTs are expected to play a
crucial role in Industry 4.0, harnessing increased data collection to connect the physical world
with AI [78]. To better understand the future of modern ICSs, it is helpful to examine some of
the key innovations that shape the way they are used today.

A feedback control system responds to changes in its environment to maintain a desirable
condition in equilibrium. It does this by executing a stabilizing automatic response that is func-
tionally proportioned to the size of the environmental deviation from the desired state. As an-
imals, many of our natural behaviours can be considered as feedback control mechanisms that
ensure our continued survival: finding warmth when we are cold, water when we are thirsty and
food when we are hungry. As human society has evolved, so have our methods to automate
these mechanisms, enabling us to spend more time on other pursuits.

Historians have found evidence from over 2000 years ago of Greek scholars developing
precursor components for feedback control, such as water clocks for time measurement and wine
dispensers for controlled liquid flow [26]. Their mechanisms would then inspire refinements in
Arabic books from the ninth and thirteenth centuries, demonstrating more recognisable feedback
control applications for water dispensing. However, it was not until the late 18th century that
the float valve level regulator was reinvented, and these concepts saw widespread industrial-
scale adoption. Around the same time, early industrial thermostats emerged, and millwrights
in Scotland and England developed windmill speed regulators to reduce millstone wear [158].
These experiments led to the development of the lift-tenter device, which later inspired Scottish
engineer James Watt to use centrifugal governors in steam engines that would be used as power
sources throughout the rest of the Industrial Revolution.

During the early stages of the Industrial Revolution of the late 18th century, the develop-
ment of steam and water power enabled many processes that had once been conducted by hand
to now be performed by machine. Electrification then enabled the development of the modern
production line where machines could be placed in sequence for the needs of the goods being
manufactured without focusing on the location of steam power sources. The Bessemer process
increased steel production, expanding railway networks with more durable tracks. These rail-
ways facilitated the movement of people, resources, and ideas, accelerating industrial growth. It
is from the increased organisational needs of these railway networks that modern business man-
agement hierarchies and groupings of individuals into clear departments emerged. Finally, the
development of the electric telegraph enabled long-distance communication of text messages,
seeing rapid adoption initially along railways for signalling and keeping track of carriages.

The discovery of telephony brought with it the development of analogue electrical circuitry
that could be used to process feedback signals from early sensors. The invention of the negative
feedback controller enabled feedback control to solve many non-linear problems, leading to its
widespread use during the First and Second World Wars. This period saw the development of
feedback control into the broader field of control theory, which was applied extensively in war



CHAPTER 2. BACKGROUND 8

technologies such as anti-aircraft guns, torpedoes and control relays [26]. Increased knowledge-
sharing after the war led to the development of modern control theory algorithms, including the
Kalman [238] and Bellman [118] filters that can approximate unknown system parameters from
measured data.

The development of computers allowed for calculating previously unknown system param-
eters through simulation modelling. Computers were initially integrated into process control
as supervisory systems that optimised processes controlled by more traditional relay systems.
However, with the introduction of the microprocessor in the 1970s, the computer became the
primary process controller in many domains. The introduction of microprocessors began the
generalisation of the ICS. In modern systems, while different sensors and actuators that are
specific to the needs of the process are used, the devices that gather and provide control instruc-
tions remain consistent. This enables the creation of standardised supervision and management
systems that support the operation of these microprocessors.

Since the development of the generalisable process controller, ICS processes have become
larger and more complex. Our ability to understand and simulate the process continues to grow,
providing safety and efficiency benefits. Many different vendors support the development of ICS
technologies; while these initially operated on proprietary standards and protocols, progress is
being made towards interoperability. This increased interoperability and communication be-
tween devices across a system is a key enabler of Industry 4.0 technologies. These technologies
seek to leverage this increased data sharing towards a better understanding of not only the phys-
ical processes they control but also the broader sociotechnical challenges associated with their
management and operation.

The biggest challenges faced by a modern ICS are no longer deficiencies in the physical
control systems but rather organisational complexities, managing assets throughout their life-
cycle, incorporating sustainability, and collaboration across stakeholders. The lifecycle of ICS
components now extends beyond traditional operational concerns, requiring careful considera-
tion of upgradability and cyber resilience during system design. Additionally, the move towards
greener practices creates pressures for increased energy efficiency, waste reduction, and circu-
lar economy practices. Finally, as industries move towards fully integrated supply chains and
cloud-connected business operations, effective collaboration between organisations is essential
to the continued operation of the ICS. As we will discuss in Section 2.3, these are all challenges
that DTs play a role in addressing.

2.1.2 Structure

The evolution from relay-based controllers to modern microprocessor-based controllers trans-
formed the capabilities of industrial control, but it also facilitated the development of a consistent
architectural structure of components.

The instrumentation and field devices used in each domain may differ; however, the com-
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ponents controlling them are broadly similar. The structure of ICS networks is hierarchical,
separating the Operational Technology (OT) systems that directly control and measure the in-
dustrial process from the Information Technology (IT) systems used by employees to perform
other tasks in the organisation. Previously, this would have been achieved by keeping the OT
devices entirely offline, such that there was no interconnection between IT enterprise networks
and OT devices. However, as the needs of modern ICSs evolve, a means of sharing data more ef-
ficiently between the two types of network is required. To do this securely, the network must be
segmented to avoid deploying vulnerable OT devices alongside internet-connected IT systems.
This type of network segmentation is most often achieved through applying an adapted version
of the Purdue Enterprise Reference Architecture [239] which was originally developed in 1994,
since dubbed the Purdue Model. The Purdue Model, shown in Fig. 2.1, consists of 5 levels
of devices, beginning with the OT components at the lowest level and building up to the wider
enterprise network at levels 4/5. At each level, a set of devices is grouped together according to
their type and function.

Level 0: Field Devices

This level contains the sensors and actuators that gather data from the process and directly
manipulate it. These field devices are the front-line, process-facing elements of the system.
Examples of sensors used in an ICS are volume sensors, pressure gauges, temperature sensors,
wind-speed and directional sensors, proximity sensors, and video feeds. These components are
often directly wired into a local controller, whereby they communicate sensor data or receive
instructions. Traditionally, this is done by digital signalling or through analogue variance of the
voltage, current or resistance on the connection to the local controllers. However, modern ICS
systems increasingly use a variety of standardised and proprietary communication protocols to
exchange data with field devices.

Level 1: Local Controllers

Field devices are directly connected to local control devices located in level 1. Programmable
Logic Controllers (PLCs) are industrial computers designed for monitoring and controlling in-
dustrial processes. They are general purpose, being easily reprogrammable allows them to be ap-
plied in a wide variety of environments where computational outputs must be calculated within
a strict time window after receiving inputs. The PLC addresses this explicitly through its design.
Each PLC executes a “scan cycle” whereby during each execution, it reads all inputs, performs
a predefined set of operations and then writes a set of outputs that can then be affected by ac-
tuators. The time taken for an entire cycle of this varies depending upon the length of the code
written to the PLC; however, it typically ranges between 10-150 milliseconds.

OT communication networks facilitate high-speed, real-time communication to provide con-
trollers with the most up-to-date data about the controlled process. However, many of the pro-
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Figure 2.1: The Purdue Model, structuring the network architecture of an ICS to separate vul-
nerable OT systems from IT networks while still providing connectivity through a firewalled
DMZ.
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tocols still in use today were designed when ICS environments were entirely disconnected from
wider networks. As a result, there was no need to incorporate security measures into their design.
As we explain in this section, ICS networks are no longer separate from their wider corporate
infrastructure, and as we’ll discuss in Section 2.2.1, these vulnerable communication protocols
make it easy for attackers with access to an ICS network to undermine the system. Maintaining
these devices in their own separate network area allows for the specific proprietary protocols
that OT devices use without inadvertent interference from IT protocols. It also allows for easier
identification of malicious network traffic outside the local control level.

Level 2: Local Supervisory

Local controllers are connected to local supervision systems in level 2 through a switch. Super-
visory Control and Data Acquisition (SCADA) systems and Human Machine Interfaces (HMI)
are used for ICS environment supervision. These devices are used for vital data acquisition
tasks that enable operators to monitor the operation of the plant through SCADA [17]. At a
local supervisory level, these devices gather, collate and store data from the controllers within
a logically defined subsection of the ICS, allowing system operators to monitor that area of the
process. If the system’s behaviour needs to be altered, HMIs can be used to provide manual or
automatic control inputs to the local controllers.

The supervisory systems need to communicate with the process control devices to gather
data from them, while still keeping the majority of their traffic separate. Virtual Local Area
Networks (VLANs) are often used to do this by segmenting the network. This allows for traffic
from devices that share the same switch to be logically separated into distinct groups of devices,
enforcing the segmentation of the Purdue model. This allows supervisory data to be shared to
displays and forwarded onto devices at higher levels without introducing additional traffic at the
process control level.

Level 3: Site-Wide Supervisory

SCADA systems often utilise a hierarchical structure. Local supervisory devices are, therefore,
often connected upwards to site-wide supervisory devices at level 3. Historians are databases
used to collect and store process data and may be used to gather data from different sections of
the system. While many of the technologies used at level three may be the same, the difference
between levels 2 and 3 is scope. At level 2 the devices focused on the controllers of a specific as-
pect of the process; at level 3, the supervisory data from across the ICS environment is collected
to provide oversight into all aspects of the site’s operation. If modifications to the operation of
the local controllers are needed, these are made through engineering workstations, which may
be located at either level 2 or 3, depending upon the size of the site. Again this segmentation has
dual benefits; for the systems operating at level 3 it reduces traffic at their site-wide level, and
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for the devices operating at level 2 it prevents systems in other plant areas from interfering with
their operation.

Demilitarised Zone

One of the primary features of the Purdue Model is the implementation of a Demilitarised Zone
(DMZ) that divides the network. The DMZ allows users and devices operating in the enterprise
IT network to gather data from the devices in the OT control network. Traffic from the enter-
prise networks at levels 4 and 5 cannot pass through the firewall from the DMZ into level 3.
Conversely, traffic from the control network cannot level the DMZ to reach the IT enterprise
network. Configuring the firewall in this way effectively constructs an artificial “air gap” be-
tween the two networks while still allowing indirect communication through the overlapping
intermediary services located within the DMZ. This is important since the enterprise network
is connected to the internet and, therefore, is at much greater risk of compromise. Historians
located at lower levels share data with DMZ-hosted mirrored copies, allowing enterprise users
to query historian data without ever interacting with the historian directly. Applications can be
hosted on servers within the DMZ, allowing for services useful to both the OT and the IT net-
work to be shared. If authorised users in the enterprise system require access to a device in the
control network, they can access it through remote access servers hosted in the DMZ since their
actions will originate from within the DMZ, not the enterprise network.

Level 4/5: Enterprise Systems

To complete the overview of the Purdue Model, level 4 consists of site-specific business devices
and services used by the users on site. These may be administrator devices used to manage the
people and systems on-site, or they may be users performing analytics on performance who do
not need access to the low-level devices to carry out their roles. At level 5 are the organisation-
wide services, such as corporate servers hosting web and mail services that may be accessed
by users in sites across the organisation or from outside the sites. While these systems usually
should not directly interact with the ICS. Their ability to impact the operational systems con-
trolling the ICS fundamentally affects how a DT can be deployed within an ICS environment.
As we will discuss in detail in Section 2.3, a DT requires real-time access to data from control
systems. However, as a key digitising technology, many of its users will be located within the
enterprise network. A major challenge in deploying a DT to an ICS is securely extracting data
from vulnerable OT devices, processing it, and providing enterprise users with access without
compromising OT network security.

Deploying the Purdue model provides in-depth defence for ICS operators, hiding the most
vulnerable OT devices at the furthest point from outside attackers. It allows authorised users
within the organisation to access the services, data and devices that they need while impos-
ing logical separations that help to prevent accidental or deliberate interference from within the
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network. In addition to these security benefits, network segmentation provides performance
benefits, reducing traffic at each level and helping to maintain a measure of separation between
IT and OT communication protocols. As OT networks are currently implemented, these benefits
make using the Purdue model indispensable as a tool for structuring ICS networks. However,
even with these defence in depth measures in place there are many examples of ICS environ-
ments being attacked, as we will discuss in the next section.

2.2 ICS Cyber Security

ICSs have evolved to meet specific operational requirements derived from the needs of the in-
dustrial processes that they control and the trusted operators working to manage that process.
They are used in various sectors of modern infrastructure, including energy, manufacturing, de-
fence, transportation, and water and wastewater treatment. Since processes monitored by ICSs
can change rapidly, the system requires high availability to respond quickly. If conditions are
not monitored carefully, the operational environment in which these systems work can become
highly dangerous, causing damage to the system and endangering the operators’ lives. This also
makes these systems resistant to change, often preferring tried-and-tested legacy systems, net-
working devices and protocols over integrating new technologies that may cause unpredictable
consequences. Additionally, the need to prioritise system and user safety means that some secu-
rity processes that are commonplace in an IT or enterprise systems environment are not utilised
within these OT environments. In some circumstances, a difficult judgment on the trade-off
between safety and security must made.

Cyberattacks are an increasingly common occurrence for organisations across the globe. At
the beginning of 2024, 50% of UK businesses and 32% of charities reported some form of cyber
breach in the last 12 months, with notably higher rates for large businesses [67]. The ability for
the perpetrators of cyber attacks to remain anonymous while causing considerable damage to
their targets at a relatively low cost makes them an attractive option for adversaries wishing to
interfere or spy on the operations of modern organisations. Cyber attacks can be carried out by
a wide range of groups with varying resources. Nation-states [206], cyber terrorists and other
malicious parties all engage in covert operations. Industrial and national dependence on ICSs
makes them intrinsically valuable as targets for attacks from these groups, as can be illustrated
by a recent history of increasing attacks against them.

2.2.1 Cyber Attacks

A cyber security threat occurs when a threat agent is able to detect a vulnerability (a flaw or
weakness in design) and exploit it to further their objectives. The connection of ICS networks
to enterprise networks used for business management, while beneficial for system management,
proves to be a significant vulnerability for the cyber security of ICSs that dramatically increases
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the attack surface [191]. Though typically separated by a firewall or DMZ, many examples of
attacks permeating through these protections can be seen. Initially, successful attacks of this
nature appeared to be accidental, collateral damage of a non-specific piece of malware infecting
a device on the enterprise network and spreading to the ICS system. In recent years, however,
these have progressed to deliberate attempts to gain access to the ICS system through the en-
terprise network. In this way, the enterprise network can function as a stepping stone through
which logins can be acquired to access the control network [202]. A timeline of major reported
cyber attacks is presented in Fig. 2.2 alongside prominent cyber defence guidance released in
response.

Early Incidents: Accidental Infections

In the early 2000s ICS attacks were often collateral damage of generic malware infections. In
February 2003, at the David-Besse nuclear power station a contractor’s computer connected
to the internet outside of the firewall, allowing the Sapphire computer worm to compromise
the network. The worm targeted unpatched Windows hosts and couldn’t target OT devices,
but it caused significant disruption by infecting the safety parameter display system and the
process control network. Similarly, in 2005 when an internet worm infected the Windows hosts
at the Daimer-Chrysler car manufacturing plant causing the plant to shut down for an hour.
The incidental nature of these attacks demonstrates that even internet-based malware without a
specific target can access and disrupt air-gapped ICS networks.

Stuxnet: Introduction of ICS Malware

In 2010 the threat to ICS systems increased after Stuxnet became the first intentional cyber attack
against an ICS, resulting in physical damage to the site [11]. Malware was used to damage the
Nantaz uranium enrichment plant in Iran by infecting Microsoft Windows operating systems
used to operate SCADA systems. The attack is believed to have been carried out by both the
United States and Israel in a calculated effort to undermine Iran’s nuclear development. It is
notable for the fact that it spread indiscriminately through infecting removable drives and across
private networks while remaining inert unless the very specific configuration requirements for
the attack were detected [145].

Increase in ICS Attacks

Stuxnet showed the world the extent of the damage that targeted attacks on ICS networks could
cause. It is notable for being the first publicly known, purpose-built ICS Malware designed to
target process controllers by compromising SCADA systems. Since then, a dramatic increase
in reports of ICS cyber attacks has been observed [30], with significant attacks being recorded
in each year between 2014 and 2021 [11]. Among these attacks, only four other pieces of ICS-
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specific malware have been publicly documented; others may exist already and yet more are
likely to be developed in the future.

In 2014, an unidentified German steel mill was reported to have suffered a spearfishing attack
that compromised the mill’s business network before crossing over to the control network and
causing a blast furnace to shut down incorrectly, causing physical damage. In the same year,
the Havex malware was used extensively in spearfishing attacks by a Russian APT group to
target ICS networks across aviation, defence, pharmaceutical, and energy sectors, affecting an
estimated 2,000 sites across North America and Europe. Havex was notable for its ability to map
and identify specific ICS devices by scanning TCP ports commonly associated with industrial
traffic. It demonstrated the devastating cross-domain potential of developing malware for ICS
networks as similar components are used in systems across industries.

Cyber attacks are an increasingly integral part of modern conflict; nation-states worldwide
engage in cyber warfare to disrupt critical infrastructure, steal intelligence, and undermine adver-
saries while avoiding conventional military engagement. Russia’s repeated deployment of cyber
attacks against Ukraine as part of the ongoing Russo-Ukrainian War is an example of this. In
2015, Russian hackers used BlackEnergy [206], the third publicly known ICS-specific malware,
to disrupt Ukrainian power stations, cutting electricity to 225,000 customers for 6 hours [124]. A
year later, the same group deployed Industroyer (CRASHOVERRIDE) [202], the first malware
designed specifically for power grids, leveraging native ICS communication protocols to send
malicious instructions [149]. A new variant appeared in 2022, dubbed Industroyer2, causing
more blackouts in Ukraine [218].

The fifth and final publicly-known ICS malware is Triton [58]. Discovered in a Saudi Ara-
bian petrochemical plant in 2017 it specifically targetted the safety systems, instead of the pro-
cess controllers. The malware attempted to reprogram the safety controllers to disable safety
failsafes, potentially leading to dangerous, uncontrolled industrial conditions. Russia has also
been implicated in this attack.

2.2.2 Threat Intelligence

To help inform the development of defence and response activities, attempts have been made to
understand and track the activities undertaken by attackers.

The Cyber Kill Chain model [104] gives a 7-step description of the behaviours of an attacker,
particularly an APT, when attacking a network. An attack begins with reconnaissance, where
the threat actor gathers accessible data that may be used to gain access to the system and uncover
details about the internal configurations that may be useful once access has been achieved. This
might involve accessing leaked or previously acquired user data and identifying the structure of
the internal network and the components within an ICS plant from publicly available documents.
Once the attacker knows the type of system they are attacking and has determined the method
through which they will gain access, they begin the process of weaponisation. The exploits that
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allow the attacker to target a component within the identified system are integrated into a means
of delivery to create a package capable of gaining entry to the system, once delivered. Delivery
of the weaponised package is then used to send the weaponised exploit to the target. Once at its
intended destination, it exploits a vulnerability to install malware on the target system. From this
point, the attacker begins the process of command and control to cement its hold on the system
and mask its presence while establishing remote access to the system for themselves. At this
point, the attacker has accessed the system and is free to use that access to achieve objectives
to the best of their ability. This may lead the attacker to remain dormant, observing, gathering
reconnaissance for other attacks or potentially waiting for a trigger to attack the system.

Analysis using the Cyber Kill Chain model can be further enhanced using The MITRE
ATT&CK framework [48]. This is a continuously updated knowledge base derived from the Cy-
ber Kill Chain model. It consists of categorisation and documentation of the attack techniques
used at each stage of known attacks on an enterprise, mobile, or ICS system. Each technique is
linked to specific examples of malware and APT groups that have used the specific technique.
By combining these two, it is possible to construct a lens through which to view a system when
attempting to analyse it for vulnerabilities. Remaining aware of new threats and applying the
knowledge gained from previously executed attacks is key to developing better cyber security
practices and enhancing the security of critical systems.

2.2.3 Cyber Defence

The increasing frequency and potential impact of these attacks have prompted responses at mul-
tiple levels. Cyber security has developed rapidly as a field of research backed by considerable
investment. Political investment from nation-states in cyber security expenditure and person-
nel has accelerated in a manner characterizing a “cyber arms race” [51, 116]. The perceived
offensive advantage of cyber warfare intensifies the escalation similar to that of the nuclear
arms race of the 20th century, where mutually assured destruction was similarly perceived as
the most effective method of deterrence. However, cyber warfare’s secretive, amorphous na-
ture makes it considerably more challenging to develop arms control for these intangible cyber
weapons [73, 79].

Given the persistent threat of cyberattacks and the rise of cyber warfare, ICS stakeholders
must take proactive measures to defend their systems. While IT security measures are well-
established, OT security is still evolving. Achieving total security for internet-connected ICS de-
vices is often unrealistic, especially against well-resourced adversaries, including nation-states.
Additionally, security measures must balance protection with operational safety, as some criti-
cal infrastructure may need to prioritise availability even during an attack. This has driven the
development of intrusion-tolerant response strategies [102]. As a result, operators face the chal-
lenge of adapting ICS environments to counter modern cyber threats they were never originally
designed to withstand.
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There have been several key pieces of published guidance to support the cyber security
response to this increased threat. On February 12th 2013, President Barack Obama signed Ex-
ecutive Order 13636, citing the need for improved cyber security following “repeated cyber
intrusions into critical infrastructure”. The order outlines a set of measures to deliver a cyber se-
curity framework to enable owners and operators of critical infrastructure to identify, assess and
manage cyber risk [214]. A year later, the first version of the NIST Cybersecurity Framework
(CSF) was published [174], presenting a categorisation of the measures organisations should
take to manage cyber security risks.

ISA/IEC 62443 [173] is a series of international standards specifying requirements for key
stakeholders at all levels of ICS deployment and operation. The series requires the establishment
of a control systems security program [106] that assesses risks based on the criticality of system
components. It also sets technical requirements of the system [107] components [108].

NIST Special Publication 800

The NIST Special Publication 800 series [208] is a guide for how to secure OT systems. It ad-
vises how to establish a cyber security program within an organisation, how to use that program
to assess and manage risks to ICS systems and how to integrate security into the design of an OT
network, particularly through the application of network segmentation techniques such as those
described in the Purdue model. The most recent version is the NIST Cyber Security Framework
(CSF) 2.0 [175]. We will use this framework to contextualise the different cyber defence activ-
ities that ICS shareholders use to secure their systems. In doing so we will address the other
guidance documents where relevant, and reference relevant cyber defence publications.

The first step in ICS security is understanding organizational risks by identifying assets, as-
sessing vulnerabilities, and determining areas for improvement. Threat intelligence tools like
MITRE ATTCK help minimise adversaries’ advantages by increasing awareness of modern at-
tack techniques. Analysts should ensure components follow security standards like ISA/IEC
62443.

The NIST SP 800 series outlines a four-step risk assessment process—framing, assessing,
responding, and monitoring—aligning with the CSF identification phase, which considers reg-
ulatory requirements and risk tolerance. While eliminating all security risks may be unrealistic
due to cost and safety trade-offs, ICS security must balance accessibility for safety mechanisms
with protection from cyber threats. Ultimately, organizations must decide whether to accept,
transfer, share, or mitigate risks based on their assessments.

Once risks have been identified appropriate measures are taken to defend the identified vul-
nerable assets from attack. These encompass a variety of activities across the socio-technical
spectrum of an organisation. This includes improving device resilience, upskilling staff with
cyber awareness training and continuing to develop the organisation’s cyber security program.
The NIST Special Publication 800 series details some best practices for implementing technical
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protection measures, building upon each as a layered system. The first two layers are develop-
ing the cyber security program and physically securing the site and its devices. Cyber security
practices to improve the devices’ resilience begin with establishing a network segmentation ar-
chitecture. Further activities increase network security by instigating monitoring and logging
and the development of a zero-trust architecture. A zero trust architecture uses authentication
and authorisation techniques throughout a system, regardless of how hard-to-reach a network
segment may be or how trusted the device that the user is using is [205]. The final layers fo-
cus on improving hardware security – through tools such as access control, monitoring, and
device identification – and software security by ensuring software is kept up to date with regular
patching and application hardening.

With protection measures in place, the next step of the defence process is to instigate de-
tection activities that identify attacks. These comprise continuous monitoring for anomalous
cyber security events to trigger response actions from operators if an attack is detected. De-
tection extends to many facets of the built environment, but it is enabled by monitoring the
systems instilled within the ICS in terms of network activity and device behaviours. Monitoring
approaches vary in the intensity with which they are integrated into the monitored system to
acquire network traffic data, either using passive network taps or directly integrating into the
network to communicate directly with the systems they monitor. These monitoring systems of-
ten need to have a light footprint on the network that they monitor due to how easily disturbed
legacy ICS networks can be; if a particularly intensive monitoring system is added to one of
these networks, it can disrupt less robust local controllers.

Intrusion Detection Systems (IDSs) utilise various techniques to identify intrusions in mon-
itored systems. Signature-based detection methods attempt to identify known attack patterns in
network traffic. Anomaly detection techniques establish a network activity baseline and then
flag behaviours and exchanges that are outliners from this baseline. Finally, host-based methods
focus on a device within the environment to identify unusual behaviour patterns for that specific
host.

Network-based IDS approaches are effective in ICS environments due to the more consis-
tent nature of OT network traffic. Patterns in communication can more easily be established,
allowing IDS systems to determine an operational baseline from which deviations can be iden-
tified [244]. IDSs of this type have become a significant area of interest for machine learning
(ML) algorithms, particularly supervised learning approaches [222]. ML approaches are well
suited to identifying deviations in datasets, particularly when provided with labels that identify
normal behaviour and abnormal behaviour. Using previously observed system behaviour to es-
tablish a baseline works well in simple environments; however, there are challenges associated
with the use of ML. The vastly higher quantities of normal behaviour compared to adversarial
behaviour result in a skewed balance of accuracy when labelling observations, making it harder
to determine the true efficacy of a ML IDS algorithm. It has also been demonstrated that when
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an attacker knows the system being attacked, they may be able to design adversarial ML algo-
rithms that can evade detection of ML algorithms [249]. Therefore, while ML algorithms are
well suited to network layer intrusions, they are less suited to detecting behaviour deviations in
a physical process.

An alternative approach that is better suited to deviations at a process level is specification-
based intrusion detection [127]. This uses a formal specification of the underlying system to
define normal and abnormal behaviour [196]. In [4], an invariant-based approach is used to
derive the value of sensor data from alternative sensor values, enabling the detection of attacks.
However, due to the approach integrating the detection equations into the PLC, if the attacker
can reset the PLC, it can interrupt the detection, causing attacks to evade detection. It has been
suggested that IDSs could run alongside or be integrated into DTs, leveraging their knowledge
of the system’s design to identify abnormal behaviours [191].

Regardless of the intrusion detection method employed, once an incident has been identi-
fied, the remaining two themes, respond and recover, trigger response activities to identify and
combat the threat while taking actions to regain control of the system. The first step is to iden-
tify whether the detected incident is a legitimate attack or a false positive caused by legitimate
user behaviour or a bug in the system. In a large system, there can be large quantities of these
false-positive cyber incidents, making identifying legitimate attacks challenging [37]. If a legit-
imate attack has been identified, response procedures compromise establishing the extent of the
attack and containing it. Once an incident has been contained, the recovery stage promotes the
eradication of the compromise and the initiation of forensic processes.

2.3 Digital Twins

Taken at its most basic concept, a DT is a digital representation of a real-world entity or sys-
tem [110]. The value proposition of a DT is primarily that simulation and inspection tasks can be
performed far more quickly and efficiently on a DT than they can on the physical asset that the
DT represents. Additionally, while a physical asset can have high construction and maintenance
costs and may be damaged during testing, a DT of that same asset incurs minimal maintenance
costs, can be infinitely instantiated and can be simulated in hazardous scenarios without any
risks of damage or loss. Therefore, while the construction of a DT currently presents challenges
in the short term, the long-term benefits of the concepts have attracted considerable attention
from parties across many industries. In an increasingly data-driven era, organisations across
diverse sectors are eager to leverage large volumes of data towards better decision-making and
operational management of assets and processes. In a digital environment, data can be more
readily processed and disseminated within the organisation without requiring access to the phys-
ical system. As a result, there is a tendency to view DTs as a magic bullet, providing a readily
examinable medium for human operators across departments to collaborate while also being in
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a digital format that can be processed by ML algorithms and integrated with AI tools. DTs are
widely considered a key enabling tool to streamline decision-making in the operation and man-
agement of physical systems, particularly with the potential to integrate them with increasingly
powerful AI workflows. However, perhaps due to this widespread interest across sectors, DTs
have become an industrial buzzword, confusing what exactly a DT is and how they should be
designed.

In this section, we define what a DT is by reviewing definitions found in the literature and
considering the evolution of the concept. In doing so, we will explain some related ideas often
used alongside or within DTs and delineate how they differ. We review how DTs are used in the
domain of ICS and explain how their unique characteristics lead to interesting considerations for
how to integrate DTs with ICS. This leads us to review some of the current discussions about
the implications that connecting a DT to an ICS environment could have to either bolster or
undermine the cyber security of the original system.

2.3.1 Origin

Although the term DT is relatively new and can be readily attributed to an influential 2010
NASA Roadmap [182, 198], the idea’s origin is less clearly understood. DT is a concept that
has emerged from a desire for innovative Product Lifecycle Management (PLM) approaches.
It’s also a concept that became conceivable through the maturation and combination of several
enabling technologies in simulation, data management, communications and IoT. Sources do
not agree on whether the concept was published first and then began inspiring the application
of the technologies towards its implementation or if these technologies were already being used
towards this objective without a specific name being attributed to it. As a result, within the
literature two commonly cited DT origins can be found.

The first formal publication of the concept, albeit without the use of the term DT, has been
attributed to a 2002 University of Michigan presentation by Michael Grieves [88] (shown in
Fig. 2.3). Of particular note is the proposition of using multiple virtual spaces, built using data
from a “real space”, for better PLM. However, some have argued that the DT paradigm had
been practically applied decades before during the Apollo missions of the early 1970s [190],
most notably Apollo 13. Fifteen high-fidelity simulations of the spacecraft were interlinked
for use during the planning and execution of the mission, ultimately playing a key role when
critical system failures to the spacecraft required urgent changes to the trajectory of the flight
during the mission [70]. Grieves has argued that the simulations were closer to a network of
physical models and that the use of “primitive computing components” is merely an evolution
of the long-applied technique of physical twinning [89]. This disconnect between conceptual
ideal and pragmatic implementation of DTs is common in DT discourse and can lead to both
scepticism and unrealistic expectations about the potential of DTs.
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Figure 2.3: "Conceptual model for PLM" slide showing virtualisation of a physical asset, from
[88]

2.3.2 Definitions

Many definitions of DT are used throughout industry and academia. Literature reviews of DTs
and their definitions demonstrate that the term “digital twin” has been continually refined as the
concept continues to evolve within several application areas [150,197]. As the technologies used
in implementing a DT mature, so does the understanding of what can be achieved when they are
combined. While the physical subject of the DT varies across domains, having a notable effect
on implementation details, a common definition of what a DT is has been settled upon. Notably,
in the emergence of this definition a number of other concepts have also been identified, in some
cases as a means of defining the DT by what it is not. Prominent definitions for DT and related
concepts that are differentiated by the characteristics of the system are presented in Table 2.1

The ongoing redefining of the term and the creation of similar yet distinct definitions reflect
a desire to more clearly characterise an ideological concept in terms that can be practically
understood and implemented. Each of the terms presented in Table 2.1 reflects a subtly different
interpretation of what it means to replicate a physical object. Some argue that the digital model,
digital shadow, and DT itself can all be classified as subcategories of DT [130], implying that
there exists some overarching concept of the DT system that varies by purpose. It has been
argued that this categorisation is overly reductive, as these terms are primarily differentiated by
their connectivity to the physical system rather than the accuracy of their representation [87].

However, these terms describe ideas that certainly combine within the DT paradigm, a DT
encapsulates a digital model and a digital thread. A major challenge in creating a DT-type system
is in identifying which of these ideas is most appropriate for the given use case. The boundary
between digital shadow and DT is often cited as a difference in how the data is transferred from
the digital representation back to the physical twin. A digital shadow is automatically updated
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Term Description Ref
Digital Model A virtual representation of a physical object that

does not feature any automated data exchange
with the physical object it represents.

[130]

Digital Thread The unbroken data link through the system’s
lifecycle, connecting conceptual design, re-
quirements, analysis, detail design, manufactur-
ing, inspection, operations, refit and retirement.

[154]

Digital Shadow (DS) An elevation of the digital model, enabled by an
automatic one-way flow of data from the physi-
cal object to its virtual representation, enabling
the digital shadow to reflect changes in the state
of the physical object.

[130]

Digital Twin A live digital coupling of the state of a physical
asset or process to a virtual representation with
a functional output.

[33]

Table 2.1: Definitions for concepts related to DTs that are differentiated by implementation.

to reflect the physical system’s state but does not automatically produce output or insights. This
manner of producing output is sometimes referred to as a “manual” data flow [130]. A digital
shadow may not have a functional output directly connected to the physical asset, but it should
have a clearly defined purpose that it fulfils [20].

In the same way that a digital shadow requires a purpose, a DT should also be designed to
fulfil a particular purpose. In [33], this is described as a functional output. As an example of
the lack of clarity on the subject, they define the functional output as deliverable to a system or
human observer, with no requirement that it automatically be passed back to the physical asset.
The functionality of the DT will depend heavily on the architecture and components of the
physical system or systems that are being twinned. This is true for the highest-level components
of the physical asset and its digital counterpart(s) and extends into the lower-level components
related to the system’s implementation. Each component’s suitability needs to be considered
in terms of those components that it directly interacts with and how it will enable the overall
system to perform as a digital alternative to a physical entity.

To link the concepts together and delineate where the differences lie let’s explore a simple
example using car manufacturing. If we plan to construct a car, let’s assume that we begin
by creating designs for it. To better understand the properties of the car we plan to build, we
can construct digital models of its components that show how the components within the car
respond to the stimulus of their environment. These models are not classified as a DT or any
other definition since they are not directly connected to or representative of any specific instance
of our car design.

If we then begin manufacturing the designed car, we can collect data about the factory that
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made it and the materials used to make the components (such as who supplied them), and we
might take measurements of the individual components as they are produced. When the compo-
nents are assembled into a car that leaves our production factory, we have an instance of our car.
To complement that car, we also have its designs and specifications for its components as they
were built. With these data sets, we have begun a digital thread for each car we’re producing.
Using this, we should have the data required to reproduce any car we make. As we test the car
and inspect it before putting it out to market, we can add these findings to the thread. Since all
of these aspects of the production are linked together, data can be shared across lifecycle stages.
If defects are discovered in the car several years after manufacture, efforts to understand where
they originated from and their impacts can benefit from this timeline of data. If a defect requires
the car to be recalled or undergo maintenance, details of what was done should be added. If
a digital thread has been well adhered to, when the car is retired at the end of its lifecycle, it
should be possible to take the car apart and trace the origin of every component.

Let’s suppose that during the manufacturing of our car, we embedded sensors to collect data
during its operational life: engine temperatures, tyre pressures, speed, braking, etc. At any given
moment, we can collect data about the car’s current state, changing as the car does, like a shadow
following an object. We’ve now constructed a digital shadow of the car. The data collected
through the digital shadow is stored within the digital thread. In doing so, we’ve substantially
enhanced the quality of the digital thread for our cars. At this point, we could use the design
and manufacturing data to produce an identical car and, using a hypothetical perfect physical
simulator, recreate its environment from data collected by the digital shadow to reproduce the
state of that car at any given moment in its operational life. Even without this hypothetical
simulation environment, we can now use this data to better understand if defects occur because
of a fault in the production or through some event in the car’s operation. If the car has been
involved in a crash or if a fault occurs within the car, that data is collected by our digital thread.
It can also help us if we use it in aggregate. If we’ve designed our car to operate in cold climates
and find that it struggles in warmer temperatures, we can examine the data collected from the
cars that are struggling by their digital shadows to help us analyse why. Since our digital shadow
only collects state data and does not utilise a representation of the system to provide a functional
output, this is also not a DT.

As we use our digital shadow system, we notice a consistent pattern in the process of col-
lecting and analysing car data. Our teams repeatedly use a digital model that shows the internal
components of the car’s engine. When one of our cars is reported to have an engine failure,
we can tune the model parameters using the properties of the materials used and the specific
measurements taken during the manufacturing of that engine. This makes the digital model of
the engine better reflect the state of that specific failed engine. We can then use the operational
data collected through that engine’s lifetime to simulate its life and identify the cause of the
fault. At this point, some may consider what we have constructed to be a DT of that car’s en-
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Term Description Ref
Digital Twin Prototype
(DTP)

A digital representation of a physical system to
be built, containing all the required information
to produce the system. (see also: “born digital”
[54])

[88]

Digital Twin Instance (DTI) A specific corresponding physical product that
an individual DT remains linked to throughout
the life of that physical product

[88]

Digital Twin Aggregate
(DTA)

The aggregation of all the products that have
been made. We can collect and aggregate the
data from the population of products to provide
value.

[89]

Digital Twin Environment
(DTE)

An integrated, multi-domain physics applica-
tion space for operating on DTs for various pur-
poses.

[88]

Table 2.2: Definitions of DTs and related concepts.

gine. However, as our tuned model isn’t directly connected to the car’s engine, i.e. we have to
“manually” transfer the data from the digital thread into the model when we need it, it is not yet
a DT [130]. There is no ”twinning“ aspect since a change in the engine is not reflected in the
model representation without an operator completing the loop.

To take the final step to constructing the DT, we need to combine the data and the models
we have. Through our simulations, we discover that our model can identify a failing engine
before a total failure occurs. We create an instance of our digital engine model for each car
and parameterise that model with data taken from that each car’s digital thread. As new data is
collected through the digital shadow, our model can access it. In real-time, or at an appropriate
interval [33], the model collects the most recent usage data and combines it with its current state
to analyse the engine for signs of failure. Afterwards, it updates its internal state, stores any
results to the car’s digital thread and reports any faults to the owner. If we have designed this
system well, then at any given moment, the state of our engine DT should reflect that of the
engine in our car on the road. Through this combination of digital model, digital thread, and
digital shadow, we have constructed a DT of the car’s engine to detect engine failure. If we
wanted to extend the functionality of our DT, we would need to enhance or integrate additional
models into the system accordingly to use it for this new purpose.

Table 2.2 shows a list of types of DTs that have been proposed, each with a different purpose.
Two types of DT were proposed in [88]; Digital Twin Prototype (DTP) and Digital Twin Instance
(DTI). A third type, the Digital Twin Aggregate (DTA), was proposed later [89]. As seen in Table
2.2 a DTI is equivalent to the previously discussed concept of a DT, a one-to-one representation
between a real-world system and a virtual representation. The DTP is a DT that predates the
construction of the system being twinned. This DTP contains all the data required to construct
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Figure 2.4: High-level components of a DT, as presented in [33]

and accurately simulate a system to be built so that physical prototyping can be drastically
reduced or eliminated. To put this in the context of the car manufacturing example in this
section, a DTP might be a multi-physics model of the full car design, incorporating the engine
model and embedding that simulated car within a realistic simulated environment. The final
type of DT proposed is the DTA. An abstraction of the DT paradigm that doesn’t represent a
single physical system but instead represents many combined instances to identify trends across
a fleet of DTs.

As has been presented in this section, there are many definitions of DT, and they are not
consistent in their attempts to specify precisely what a DT is. It is, therefore, important to
summarise the understanding of a DT that we will be using in the remainder of this thesis. The
purpose of a DT is to facilitate better operational management of a physical entity. In order
to do this, the DT utilises an adequate representation of some aspect of the physical system or
process; from this point, we shall refer to this subset of system behaviours that are of interest
as the physical asset. The data required to inform decision-making is collected through sensors
embedded within the physical system or its environment and is then sent at a suitably real-time
rate to the DT. Within the DT, one or more models may be used individually or in parallel to
compute useful outputs that can be used to better inform decision-making. These metrics are
then output to a user, the physical system or another third party to assist with decisions related
to the physical asset.

2.3.3 Components

The structure of a DT consists of a physical asset, a virtual representation of that asset, a real-
time data connection between those two systems, and an output (as shown in Fig. 2.4). We
will describe the key aspects of each of these components in this section. For a comprehensive
taxonomy of the characteristics of DTs, see [224].

With the exception of in a DTA, a unique one-to-one mapping from a DT to a physical
asset is required to enable the accurate modelling and replication of behaviours of the specific
asset [33, 83, 224]. Sensors are used to capture the physical state of the system, comprising the
asset and its environment, and enabling the recreation of this state in a virtual space [112].
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The physical twin’s behaviours are modelled by one or more virtual models that simulate
the state of the physical twin using sensor data [112]. This state includes all of the parameters
that are being measured to inform decision-making. How accurately the model represents the
physical twin is dependent on the application. It has been argued that mirroring to an atomic
level is required [88]. However, more realistic definitions argue that a limited “context” of the
physical state needs to be measured and reproduced in the virtual space [226]. The state of a
perfect DT will exactly match that of the physical system throughout its operation. In prac-
tice, all virtualisations will be somewhat inaccurate due to transmission delays and modelling
uncertainties.

There are several ways that the behaviours of a physical asset can be modelled, the main
ones being engineering physics models and machine learning models. A physics model per-
forms finite-element analysis using design artefacts that specify the structure of the components
in the physical system, such as Computer-Aided Design (CAD) models. By solving equations
that predict the behaviours and interactions of these simpler sub-components, a representation
of the full system can be constructed. The advantages of this approach are that the model design
can be examined for diagnostic and evaluation purposes, and they extend well to applications
outwith their original use case. For example, if the material properties of a component change,
then its attributes can be adjusted to reflect this, and the updated model can resume operation im-
mediately. However, even small models can be computationally expensive to run and increasing
accuracy dramatically increases the resource requirements needed. Alternatively, ML methods
can be used to train a model that learns the behaviour of the real asset from previously gathered
training data. In general, ML approaches are more accurate and cheaper to operate. However,
they are expensive to train, cannot be internally examined for biases and do not extrapolate well
to problems not represented within their training data sets [126]. Some applications attempt a
hybrid, or grey-box, approach using a physics model as a base with ML techniques to improve
accuracy by accounting for discrepancies between the designed physics and those observed by
the asset in the field [226].

A data link is required to connect the physical and DTs. The largest limiting factors here
are connection bandwidth, speed and security. Different connections can be used depending
on the use case. In ICS environments where most critical components use a wired connection,
the connection to a DT will almost always be wired, except in large-scale environments that
require remote facilities. Some exceptions to this could occur in instances where remote sensors
are connected through wireless connections. This provides the additional security advantage of
creating a closed network, reducing access points that can be targeted by third parties.

The connection between the DT and the physical twin should be live [112], to ensure that no
appreciable state difference between the two occurs. Violating this requirement can potentially
undermine the utility of the DT as a decision-making tool [33]. How much connection lag is
acceptable will depend upon the specific scenario. In one example, previous tests on surgeons
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determined that lag times between 30 ms and 150 ms would be undetectable to surgeons during
the operation of a remote surgical arm [143]. However, when exposed to a Denial of Service
(DoS) attack, the increased lag would cause the arm to become unfit for operation.

The key elements of the data link within the context of the Industrial Internet of Things
(IIoT), IoT using industrial equipment and protocols, are shown in the Hourglass Model in Fig.
2.5. The physical and link layers respectively deal with the encoding, framing and physical
transmission of data. The network layer directs data between routers across the network using
Internet Protocol (IP) to get messages to the recipient’s IP address. The transport layer handles
the exchange of messages between processes hosted on the sending and receiving devices. Many
different protocols are used at the transport layer depending upon the connection needs; the most
popular two are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP
provides reliability, ordering of packets, and error checking that provides retransmission of lost
data. Conversely, UDP provides lower-latency connections with no error checking, meaning
that any unreliability in the underlying network is not handled. The application layer is where
the network connection directly integrates with the software application. At this level, various
communication protocols are employed. IoT-specific protocols are primarily designed to facili-
tate efficient machine-to-machine (M2M) communication. However, in an ICS environment, a
wide range of proprietary OT protocols are also commonly used. For a DT to effectively interact
within this environment, it may need to communicate through these diverse protocols, ensuring
compatibility across both IoT and OT networks. An overview of the technologies, protocols
and applications can be found in [8]. A summary of the properties of the most common IoT
protocols can be found in [119]. While this wide variety of protocols are useful for enabling
solutions with differing requirements, they add complexity to the challenge of understanding
how to secure a DT.

Finally, a DT must produce a functional output that can be used to inform decisions. The
presentation of this output could be numerical or graphical, but it should aid the user in under-
standing the system’s behaviour [112]. The human operator then completes the control loop by
making decisions about the management of the asset using the data from the DT; this is referred
to as a human-in-the-loop control system. It has been proposed that future iterations of DTs
may use this functional output to make autonomous decisions which directly affect the physical
system, whereby completing the control loop [33, 54, 226].

2.3.4 Usage

The DT paradigm has many useful applications across many different industrial sectors, in-
cluding healthcare [68, 209], maritime and shipping [156], energy production and distribu-
tion [62, 245], smart manufacturing [210, 211, 248], city management, aerospace, automotive,
ICS, sustainability [195] and agriculture [184]. In this section, we consider some of the DT ap-
plications that are most relevant to ICS, particularly in the sectors of energy generation, energy
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Figure 2.5: The Hourglass IIoT Stack, from [200]

distribution and smart cities. Within these domains, the main usages of DTs are in design, asset
management and security.

Asset Management

Digital Twins (DTs) are increasingly used in energy sector digitization [82]. Between 2000
and 2019, global energy consumption increased by 42% (124.7 EJ), including an 80% rise in
electricity usage [2]. To meet climate goals, reliance on fossil fuels must decrease, requiring a
rapid expansion of renewable and nuclear energy. However, in 2019, coal and oil still accounted
for nearly half of the global energy supply [2], and amid a renewable shortfall in 2022, coal
production reached a record high, supplying one-third of global energy [105].

Fossil fuels offer a reliable backup when renewable sources fluctuate. While renewables are
cheaper and cleaner, their dependability remains a challenge. Addressing this requires better
supply forecasting and demand management across the power grid. DTs can help by integrat-
ing data from digitised energy production processes, enhancing predictive modelling, resource
management, and operational efficiency.

DTs have seen applications in many energy generation sectors. In hydroelectric power, they
can be used to optimise operations and enable predictive maintenance that allows for component
replacements to be identified in advance and performed during scheduled downtime to maximise
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efficiency [170]. While DT technology is still relatively new in nuclear energy, it is proposed
to help with real-time synchronisation, state prediction and fault diagnosis, decision-making
support and multi-terminal collaboration [159]. In [109], three applications of DTs to the Joint
European Torus (JET) divertor were outlined. The developed DTs enable operators to prepare
for, monitor and perform post-processing of data for each pulse that is performed, improving
operational range, reliability and predictability when conducting experiments [109].

In wind energy, DTs been used in design, testing and monitoring. They have particular
appeal in offshore environments where accessing the physical wind farm can be hazardous or
expensive. Digital models of wind turbines, such as that of [148], have many uses, but there
is limited evidence of deploying them on production systems using real-time data. Engineer-
ing modelling of this type helps with the design of wind farms and, if deployed in a real-time
environment, can help operators to better predict the turbine’s output under different weather
conditions. The use of neural networks for fault detection on a simplified wind turbine model
is shown in [241]. Additionally, DTs have been used for prognostic maintenance scheduling.
In [201], SCADA records were combined with aerodynamic and finite element models to create
virtual sensors that infer strain in areas where there are no physical sensors in order to predict
the expected remaining life of components.

The utility of DTs in the field of energy distribution has also been demonstrated, often in
combination with smart grids that integrate advanced monitoring processes to adapt the flow of
electricity to reflect changes in supply and demand. DT implementations have been shown to
help with this by using a combined approach of mathematical modelling and machine learning
to detect disturbances in the flow of electricity in near real-time [220]. A different approach
using In energy management, the approach presented in [84] presents a method where multiple
DTs work together in a simulated environment to negotiate either providing or utilising energy
within a mini-smart grid. Additionally, the authors present two types of supervisory DTs: one
that attempts to learn the production and consumption demands of each node in the network and
another that regulates and manages issues that occur during the operation of the smart grid.

Security

While asset design and management has been the primary focus of most DT usage, it has been
observed that the DT presents opportunities to improve cyber security [55,60,66,98]. DT usage
to improve cyber security is a newer concept than those proposed for asset design and manage-
ment. We will examine how the DT has been proposed as a means of solving cyber security
challenges across the different activities routinely performed in ICS cyber defence. Of the cate-
gories within the NIST Cybersecurity Framework, DT applications are concentrated particularly
towards detection, protection and identification, though they could potentially see wider usage
in recovery in the future. Different features and implementations of DTs lend themselves to
different security activities [60]; in this section, we’ll discuss how DTs are currently being used
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in cyber security.
Many current implementations of Cyber Security Digital Twins (CDTs) primarily focus on

anomaly detection. By modelling a physical process, CDTs can identify deviations from ex-
pected behaviour, similar to fault detection approaches in [159, 241]. In [69], a hydroelectric
power plant DT applies PLC-based invariant IDS techniques [4], using modified PLC code to
collect sensor data and compare DT-predicted outputs with real values to differentiate sensor
faults from measurement errors. The study also demonstrates using DT outputs as fallback sen-
sor data in case of failures. However, anomaly detection alone is insufficient for distinguishing
faults from attacks. In order to support response activities effective CDTs should develop to
integrate process behaviour with control system and network activity analysis.

CDTs have also been proposed to help identify vulnerabilities in the systems that they repli-
cate [27, 66]. This is a far less developed application of DTs and is strongly intertwined with
several related concepts within the ICS cyber security space, particularly ICS testbeds, honey-
pots and cyber-ranges.

ICS testbeds are commonly constructed to analyse a system’s security, develop new tech-
nologies and identify vulnerabilities in a safe environment with simplified representations of the
full system [80, 97]. While traditionally, these would have been physical replicas of the system,
the use of virtual components within testbeds has become more prevalent, such that wholly vir-
tual testbeds exist alongside a hybrid approach which uses physical and virtual components [46].
A CDT performing vulnerability analysis would contain an entirely virtual system representa-
tion. Within the definitions of DT, if a virtual ICS testbed were constructed to represent a
prototype ICS system to be built, then that testbed could be considered a DTP.

Honeypot [74] components represent components that may or may not be present within the
operational system. They function as decoys of attractive targets to aid detection of attackers that
attempt to interact with them [152]. While honeypots may use similar simulation or emulation
approaches to represent the behaviour of an ICS component, they replicate an actual physical
component in operation.

A cyber range is a simulated environment used to assess a system’s susceptibility to cyber-
attacks [243]. It enables red-teaming exercises [151, 240] to evaluate potential vulnerabilities.
While cyber ranges and DTs share similarities, their purposes differ: a cyber range models the
adversary’s action space, allowing unrestricted cyber-related activities, whereas a DT mirrors
system behaviour, ensuring identical outcomes between the DT and the physical system [88].

DTs share characteristics with each of those related concepts. However, their unique linkage
with the physical system can make them better suited to certain tasks than these alternative,
disconnected concepts, which target specific cyber security challenges.

It is proposed that a connected CDT could replicate the security characteristics of the physi-
cal system and show an awareness of cyber threats while performing other DT functions. To do
this, an awareness of cyber threats and features including network architecture, hardware speci-
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fication, firmware, operating system, software versions, and configuration therein is represented
to some extent within the virtualisation [66]. An early proposal of this approach based upon em-
ulated ICS components comes from [65]. They proposed that emulation of the control system,
which they demonstrate using AutomationML in MiniNet, would enable security experts to test
the security of the physical system without needing access to or causing risk to it. However, it
could be argued that this capability can already be sufficiently satisfied through a disconnected
virtual testbed, indeed the approach demonstrated in the paper results in a disconnected repre-
sentation of the physical system being modelled. An example of this type of system is presented
in [167] where another MiniNet-based (MiniCPS) approach is used, this time enhanced with an
EPANET simulation to integrate physics simulations alongside the control system and network
simulators to construct a disconnected representation of a water distribution system.

2.3.5 Threats

While DTs offer significant benefits to the systems that they twin, they also introduce security
challenges in their integration [10, 98, 135, 233]. The central issue with DT implementation is
the considerable increase in attack surface that could present increased vulnerabilities to the un-
derlying system being twinned. The DT contains details about the configuration and behaviours
of the twinned system, making it a high-value target for cyber security attacks. Its utility is so
inherently intertwined with its ability to see into and understand the operations of the physical
system that this makes it a centralised point of weakness that can be exploited to gain observa-
tion and potentially even control of the physical asset [233]. This presents challenges connecting
high-performance computing solutions with the traditional legacy networks that contain vulner-
able OT devices [10]. This convergence poses a significant challenge for DTs and necessitates
careful consideration of the network architecture used for their deployment. These issues have
led to justified concerns about the wisdom of integrating DTs into critical systems until their
associated security risks have been better understood [10].

To assess the vulnerabilities of a DT, the different layers of the system must be considered.
Dividing the structure of the DT into its different components allows for the threats to each part
of the system to be considered. In [10], a DT system is divided into four layers and the security
threats at each layer are listed. A representation of this architecture is shown in Fig. 2.6.

Several authors have attempted to classify the types of vulnerabilities that are common in
digitally twinned systems [10, 55]. Thirty-four types of threats to the system were identified
in [10], with half of these relating to the networking infrastructure covered by the digital thread.
The data being sent to or stored within the DT provides valuable insight into the physical envi-
ronment’s behaviours and architecture [135]. If the system’s design allows data to be intercepted,
this enables attackers to identify vulnerabilities and gather reconnaissance information for fu-
ture attacks. Over time, this can be used to interrupt or degrade the transmission of data to the
DT, undermining the synchronisation between the physical and digital spaces. The tight opera-
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Figure 2.6: Diagram showing a four-layer-based DT as presented in [10] with examples of some
of the operations performed at each layer.

tional coupling between physical and DTs leaves it particularly susceptible to attacks that target
that connection bandwidth sniffing, data injection, data delay, and model corruption, which are
described in a semi-formal syntax in [135].

The technologies of the digital thread encompass the first and second layers of the DT sys-
tem, as shown in Fig. 2.6. In an ICS the first layer contains PLCs, RTUs and field devices.
The threats at this layer largely pertain to weaknesses in the security of the networking pro-
tocols and the limited security measures deployed to the end devices. The MITRE ATT&CK
ICS Matrix [49] lists 31 different techniques in this domain, each with the ability to directly or
indirectly disrupt the operation of control devices that the DT relies upon to see the state of the
physical process. These techniques can be used to extract private information, perform digital
thread tampering, or cause physical damage [10]. Key mitigation steps are to follow the guid-
ance discussed in Section 2.2.3, ensuring a secure segmented network design and developing
secure means of providing data to DT data collection systems such as historians.

Layer two systems handle most of the data management and synchronisation of the system.
This is where the data is organised to present a clear picture of the built environment to the DT
and its operators. Meanwhile, tasks such as storage and normalisation are performed on the
collected data to prepare it for use in modelling and simulation. Attacks at layer two attempt
to retrieve data from storage in the DT via software bugs, privilege escalation, deployment of
rogue DT servers or man-in-the-middle attacks [50]. They may also attempt to use exploits
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or supply chain attacks to modify the function of the DT server [10]. These technologies are
largely complex, layered IT-based solutions. Servers may contain multiple hosted processes that
interact with devices across the network, enabling an attacker to spread through a system across
components from different subsystems [50].

2.4 Formal Methods For Cyber Security

With the increasing prevalence of cyber security threats, a secure design has become an almost
ubiquitous requirement for most systems. However, providing assurances that this requirement
has been satisfied is a challenging task. Formal methods are a set of mathematically rigorous
tools and techniques that allow us to formally specify systems and verify their design with
respect to their requirements. By developing structured approaches to represent cybersecurity
components and requirements, formal methods can provide increased assurance that a system’s
design meets its security goals.

Formal methods build upon a long history of applying mathematical analysis to assess the
soundness of a design. However, their application in the far more recent concept of cyber se-
curity started in 1990 when Burrows et al. published a formal logic that used a refinement
model checker to detect a new triangular attack in the Needham-Schroeder protocol [31]. Since
then, formal methods have seen widespread use in protocol analysis [139, 169], system certifi-
cation [47, 207], hardware verification and application design.

Since security vulnerabilities must be specified before they can be identified through formal
verification techniques, the user must know what they are looking for before a vulnerability can
be found [134]. Formal verification approaches are therefore best applied to identify known vul-
nerabilities. In this respect, applying formal methods to new technology, such as DTs, presents
challenges as the formal specification of the system depends upon the system architecture, which
has yet to reach a state of maturity. Evidence for this fact can be found in the relatively small
number of publications modelling DTs with formal methods in any context. However, if the sys-
tem can be broken down into components which are well understood, such as the architecture of
an ICS, and threats that are well documented, then formal method approaches can be applied to-
wards identifying known threats on these component systems and how they might interact with
and impact other aspects of the system.

2.4.1 System Specification

Model checking is the most common formal method to be used in the context of security analysis
of industrial systems [134], spanning the domains of vulnerability analysis, protocol analysis,
and network security.

Formal methods have been applied to the domain of verifying the code of ICS systems.
Verification of PLC code has been performed using a number of model checking approaches.
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Graphical PLC languages do not lend themselves to direct formal analysis, so an intermediate
step is often used. In [250] an approach is proposed to check for malicious code injections
in PLCs. This is done by translating Instruction List (IL) code into an intermediate language
based on Vine IL [203]. The resulting representation can then be used to generate temporal
execution graphs that can be used to check if the code reaches a list of safety-violating states.
PLCVerif [52,215] is a tool for analysing PLC code written in Statement List (STL) or Structured
Control Language (SCL) or translated through Instruction List (IL) [53], with model checkers;
currently NuSMV, nuXmv [32], Theta [221] and CBMC [131] are supported. The use of the
tool is described in [71] where it is applied to detect bugs in PLC control systems at CERN.
NuSMV [38] has been used separately to model the design of a temperature control system in
[199], and to model a system based on a robotic arm controller in [128]. The models developed
in both cases could be used to identify design flaws that would cause the underlying system to
malfunction if exploited. Several approaches use timed automata to represent the time-changing
state of the PLC. The timed-automata analysis tool UPPAAL [147] was used in [229] to verify
PLC code, and the Process Analysis Toolkit (PAT) was used in [230] to test the resilience of a
system with an automatic recovery mechanism.

Modelling physical processes that contain continuous behaviours using formal methods is
a challenging task as it there are too many possible states. Modelling these processes, there-
fore, requires a discretisation step to ensure that the representations of the system can remain
searchable in a reasonable timeframe. Discretisation involves the grouping of continuous mea-
surements or intervals of time into steps that can be more easily differentiated within the model.
An example can be seen in the representation of a water treatment process in [189]. The
ASLan++ [225] tool is used to search for attacks that change the state of the testbed. The
state of different system components is grouped into intervals such that the water level in a tank
may be represented by the value “high” rather than a numerical value. When combined with
discrete time steps, this can represent the effect of a pump being turned off incorrectly and caus-
ing the system to enter a dangerous state, such as an overflow. In [117], a similar discretisation
approach in which PLC code is represented in Alloy [114] is used to analyse the performance
of the same testbed as [189]. In [160], the authors construct a model of a SCADA network in a
water distribution system as a network of timed automata in UPPAAL. The model is derived by
discretising a dataset of system logs, and is then evaluated against a suite of 10 attacks.

A security threat occurs when a malicious actor can exploit a vulnerability to cause an ef-
fect. The approaches listed so far secure CPSs by identifying these vulnerabilities. They feed
into a broader movement towards developing secure coding practices in industrial control en-
vironments to increase the robustness of these systems 1. However, in an industrial control
environment, some code may need to adopt less robust code practices to ensure a safe operating
environment or to support operators in the operation and maintenance of the system. While

1https://plc-security.com/
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vulnerability analysis can help increase the robustness of system code, some vulnerabilities may
be intrinsic to the system’s needs or may stem from hardware vulnerabilities in the systems on
which the code is run [13,161,234]. To address this issue, several other formal approaches have
attempted to assess the network security of the system to assess how these vulnerabilities may
be exploited.

There have been several different approaches for modelling the cyber security of IoT and
CPS networks. A recent survey reviewed over eighty specification languages and verification
tools used for the analysis of cyber security methods [134]. The approaches surveyed were
categorised into those using model checking [19, 90, 168, 189], theorem proving [231] and
lightweight formal methods [113], each of which can be applied at different levels of security
analysis.

An initial framework for cyber security verification of IoT systems using the Alloy Analyzer
is presented in [138]. An IoT architecture is modelled as a collection of segregated subsystems
consisting of sensors and actuators communicating data over network channels. Attack patterns
are presented for identity-faking and eavesdropping attacks, which are then modelled in Alloy
using a concept of malicious data and compromised systems. Mitigation strategies are presented,
specified and verified as part of the approach. This is then extended in [136] to demonstrate
how the set of devices modelled can be expanded. This enables the analysis of data packet
tampering and brute force attacks along with their mitigations, as specified in the ISA/IEC-
62443-3-3 standard [107].

In [155], a middleware framework for facilitating security requirements discussion between
development engineers and security experts within the automotive domain is proposed. The
framework uses a UML specification of the system that is then translated into a representation
in the Alloy specification language [114] to identify threats from a defined list of known attack
patterns. The approach uses a combination of components, channels, messages and interfaces
to represent an autonomous emergency braking system. Instances consist of a single state with
message transfer occurring instantaneously between components. The analysis results can then
be used to identify vulnerabilities and promote discussions about the risks being accepted in the
design of a system, proving the value of utilising formal methods in a context where security
guarantees cannot be given.

Specifying cyber security vulnerabilities in formal methods approaches often requires con-
structing a representation of a threat actor, known as an attacker model [188]. In formal analysis
of a system, it is often best to consider the most extreme case so as to fully examine the prop-
erties of a design, so an attacker model should fully characterise the possible interactions of
the attacker and the system under attack [188]. The Dolev-Yao model [63] is a threat model
originally used in a security analysis of protocols. It models an attacker as an adversary that has
full control over the communication layer of the network, enabling them to overhear, intercept
and synthesise any message. This is commonly described as “the attacker carries the message”.
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This approach is well suited to protocol analysis as it strips away all other security sources,
focusing the analysis on only the basic cryptographic elements of the protocol being analysed.
This attacker model has also been widely used in information security, with increasing adoption
in the domain of CPS [56, 189]. However, attacker models can be integrated into the model in
different ways, depending upon the nature of the system being modelled, and may have different
characteristics (termed as “dimensions” in [188]) to focus on different aspects of system secu-
rity. Since a Dolev-Yao model represents an attacker that has full knowledge of and access to
the system network, it will always represent an insider attack, where an authorised user interacts
with the system maliciously. However, other models focus on other types of outsider threats that
are distinguished by their different resources, determination and how they prioritise the need for
stealthiness to present varying dimensions of the attacker profile.

TLA+ [144] is an exhaustively testable pseudocode and was used in [137] to model a cloud-
connected engineering terminal within an ICS environment. The system is represented by the set
of actions that each of the systems can perform. Attack scenarios for malicious firmware attacks
and a brute force authorisation attack are then examined, and a proposed mitigation strategy for
each is checked. A similar system is considered in [216], where it was demonstrated that VDM-
SL [28, 29] can be used to analyse firmware signature checks and user authorisation processes
that were then searched for the presence of malicious firmware attacks and expired and leaked
token attacks.

2.4.2 Intrusion Detection

To assess the effectiveness of an IDS, its classifications are evaluated against a known ground
truth. The primary evaluation metrics include false positives (incorrectly flagging benign activity
as an intrusion) and false negatives (failing to detect an actual intrusion). Alongside true posi-
tives (correctly detected intrusions) and true negatives (correctly classified benign activity), these
values are used to compute key performance indicators such as accuracy and F-score [34, 212].

The use of model checking for intrusion detection is less common than other approaches.
There are three main categories of intrusion detection methods: anomaly detection, misuse de-
tection, and specification detection [172]. Specification-based approaches are considered to be
the most reliable of the three categories [223]. This is because they provide fewer false negatives
than anomaly detection techniques, while still being able to detect novel attacks, unlike misuse
detection methods. Model checking, by its nature, is a specification-based approach using a
specification of the system to generate a model of the system. This allows for a comprehen-
sive representation of all the possible system behaviours from which deviations can be detected.
However, this approach still requires some level of abstraction in order for the model checker to
be able to analyse the model within an acceptable period of time.

A state machine representation of system design specification has been proposed as a means
of identifying intrusions in a safety-critical medical environment using a peer-to-peer monitoring
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approach [165]. The approach uses specification data to define behaviour rules for devices and
uses threat models to differentiate between attacks and software bugs, thereby reducing the rate
of false positives. They demonstrated the viability of their methodology on a probabilistic state-
machine representation of a medical case study using behaviour rules derived from specification
data.

In [90], a method of applying software validation through model checking is used to detect
modifications to PLC code. The approach leveraged previous techniques to translate PLC code
into UPPAAL representations [5,52]. The UPPAAL models were then used to detect changes by
comparing these representations to a trusted ground truth PLC program. This type of approach
creates a more specific version of a program hash of the code, and can be useful since PLCs
broadly do not have the computational resources to execute program hashes [235]. However, if
the attack targets the network outside the PLC, these methods will not be able to detect it.

Specification-based approaches have also been developed for monitoring network traffic
[196, 204, 217]. They’ve been applied to low-level TCP/IP networks [196], ad-hoc mobile net-
works [204,219], voice-over-IP protocols [217], smart grids [23] and ICS [101]. In [101], safety
and security standards are used as the basis for deriving LTL properties that are used to detect
system anomalies. These approaches perform well in environments with a small number of
protocols. However, they can face scalability issues in environments with a larger number of
interoperating protocols [23] which are in part related to the need for expert knowledge during
the specification-extraction process [101].

2.5 Summary

In this chapter, we have presented a summary of the background related to the research presented
in this thesis.

We began with a review of ICS, contextualising their current cyber security challenges
through the lens of their historical evolution. We outlined the heirachical structure that these
systems ahere too and described the devices, networks and protocols that are used at each level
of their operation and supervision. We gave examples of prominent attacks that have demon-
strated the vulnerability of these systems and that hint at the potential impact of future attacks.
We then outlined the cyber defence initiatives and guidance that are working to meet this rising
cyber threat.

We then introduced the concept of a DT as a virtual representation of a physical asset or
system. We described the origins of this concept as a PLM tool that is now seeing application
towards other system management challenges. We presented the recent published definitions
of DTs and examine their characteristics through explanations of DT components. We outlined
some usages of DTs for asset management and security, particularly in ICS environments used
in energy generation and transmission. Finally, we examined the structure of the DT for cyber
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security vulnerabilities and identified the digital thread that connects the DT’s virtual represen-
tation to the underlying physical asset as a target for cyber attacks. We described how these
attacks can undermine the the ability of the DT to perform its function and therefore negatively
impact the operation and management of the system that the DT represents.

We concluded this chapter with a review of how formal methods can be used to verify the
safety and security of system design. In particular, we reviewed how model checking and related
formal approaches can be used to evaluate ICS security. We explained how the mathematically
rigorous nature of these approaches enables them to provide strong evidence of the security of
the systems they analyse than traditional testing methods, provided that the underlying speci-
fication used in the analysis is well-constructed. We provide examples of their use in protocol
analysis, validation of PLC code, and network modelling in IoT and CPS environments. Finally,
we identified several methods through which formal methods have been used in specification-
based intrusion detection approaches to reliably detect system anomalies while demonstrating
low false positive rates.



Chapter 3

Preliminaries: Formal Methods

In this chapter, we introduce the formal modelling concepts and techniques used in the appli-
cation of formal methods. In particular we will identify model checking approaches and how
they have been previously applied to create formal representations of computer networks in the
past. We also consider approaches using formal modelling techniques for anomaly detection in
ICS. Having identified SPIN and Alloy as the two techniques that best meet our requirements we
will give an introduction to their specification languages and the methods of performing model
checking with these tools. By the end of this chapter, we will have discussed the formal mod-
elling background required for this thesis and introduced the concepts, formalisms, tools and
techniques required to understand the formal methods used in this thesis.

3.1 Formal Methods

When the design of a system or process becomes complex enough, it can be hard to fully un-
derstand the breadth of behaviours that can occur in the designed system. As systems have
become more complex and reliant on hardware and software, the consequences of failures have
also intensified; in the most severe cases, failures can result in significant financial losses for
owners [64, 91, 125] and the loss of life for users [45, 242]. This problem is exacerbated in
the current cybersecurity landscape, with threat actors intentionally seeking out and exploiting
vulnerabilities in software design. This rise has led to an increased interest in the application of
formal methods in the safety-critical contexts [177].

Formal methods techniques use mathematical modelling to encode and analyse systems,
giving insights into their design. The strength of this approach is two-fold. Modelling a system’s
design is an intensive process, providing a deeper understanding of the system at hand and often
uncovering design flaws during the modelling process. The output of the modelling process
is a mathematical representation of the system, an artefact that can be rigorously analysed for
consistency and the presence of undesirable behaviour [43]. The assurances provided by this
analysis are given with respect to a property that uses a logical expression to represent the

40
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behaviour that is being searched for. Using this property, the formal method can identify whether
or not the specified behaviour occurs within the representation of the system [132]. This process
can be applied to verify that the modelled system meets its requirements or to provide tangible
evidence that it does not.

There are many different methods of providing formal verification for a system, each with
its strengths and weaknesses [12]. No single approach is best suited to all verification tasks.
Performing mathematically rigorous verification of a system is a computationally intensive task
requiring that the formalisms used to model the systems strike a strict balance between ex-
pressive power and computational efficiency. Therefore, the design of each formalism is often
targeted towards specific types of systems or problems. While this thesis focuses on model-
based approaches, there are other methods of performing formal verification. Theorem proving
is an approach that uses deductive reasoning instead of algorithmic search to prove or disprove
the correctness of a system [24, 103]. Program derivation is the process of deriving executable
code from a formal specification through mathematical rules [59, 181]. Static analysis verifica-
tion doesn’t require a specification language and instead directly analyses the executable code
either in source form or after compilation to determine its correctness without requiring execu-
tion [1, 95, 166].

3.2 Model Checking

Model checking is a technique in which a model is verified by algorithmically searching its state
space. Model checking is commonly applied in software verification [22, 25, 100], including
industrial domains [18,178] and operating systems. In critical systems, it has been used to verify
safety [92, 153], reliability [180, 215, 227] and security [134]. Model checking is particularly
suited to identifying edge cases which may not be found through alternative testing [35, 44].

A model is defined using a specification language that is then used to construct a mathemati-
cal structure upon which analysis is performed. Specification languages are defined formalisms
that describe the components of a system and how they interact. The strength of the analysis
depends upon the specification model and how well it represents the system being inspected.
Therefore, care must be taken to ensure that it adequately represents the system’s behaviours
with respect to the properties being searched for. While ideally, the model of a system would
represent every component and every system behaviour, even in relatively simple systems in-
volving a small number of interacting components, the number of distinct, reachable states that a
system could reach can be vast. In such instances, while the model may be valid and theoretically
searchable, in practice the time taken to search this “state space” can become infeasible given
the computational resources and time available. This tendency for the size of seemingly simple
models to exponentially increase in complexity to the point where they cannot be practically
analysed is referred to as the “state space explosion” problem [40]. The application of model
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checking, therefore, becomes an exercise in identifying and representing only those aspects that
are critical to the analysis of the behaviour under scrutiny while abstracting less relevant design
aspects. Some techniques, such as symmetry reduction [42, 163] and induction [41, 162], can
also help to mitigate state-space explosion.

3.2.1 Model Checking Tools

The highly focused nature of model checking analysis incentivises the creation of tools that
analyse specific types of problems. These different approaches are then supported by formalisms
and structures that are suited to modelling system behaviours relevant to those specific problems.
Model-checking tools may support qualitative or quantitative analysis. Quantitative analysis
evaluates the model with respect to the value of variables within the model. This promotes
reachability analysis [76] or the calculation of the probability of a sequence of events occurring
[141]. Our approach uses qualitative analysis, which instead expresses undesirable behaviour
through the model’s semantic elements. The result is a returned counter-example showing a
system state [114], or sequence of actions that broke the analysed property [99].

As with all programming languages, within these broad categories of language and tools,
different specification languages focus on addressing different problems. Model checking tools
typically consist of a specification language and an analysis tool for analysing models written
in the language. In this section, we introduce several widely used model checkers and highlight
their key differences. We then discuss the motivation for choosing the specific tools used in our
methods, before we provide a more detailed introduction to them in the next section.

SPIN

The Simple Promela Interpreter (SPIN) [99] model checker is a widely used open-source soft-
ware verification tool designed for the formal verification of concurrent systems such as multi-
threaded software applications. It leverages a high-level, state-based description language called
Promela [81] (PROcess MEta LAnguage), which is loosely based on Dijkstra’s guarded com-
mand language [61]. Promela is commonly used for modeling concurrent processes and their
interactions. SPIN can then verify these models by checking whether the modelled system sat-
isfies specific properties expressed using LTL, which captures the ordering of events and their
correctness over time. SPIN works by verifying that no execution path exists that violates the
specified property. If such a path exists, it is referred to as a counter-example, and the property
is deemed violated. Depending on the type of property being verified, SPIN searches for differ-
ent kinds of counter-examples. For safety properties, where it is being checked that something
bad will never happen, a counter-example is a path containing at least one state where the bad
condition occurs. In the case of liveness properties (i.e. a good thing will eventually happen), a
counter-example is instead a repeating cycle in which the expected good event never occurs. If
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no counter-example can be found, the property is considered verified.
SPIN has been used extensively to verify industrial software systems and in the analysis of

protocol design. In industrial and critical systems, it has been used to detect deadlock states in
robotic software in a car welding station [237], and has identified errors in the design of flight
control systems [236], including the NASA DS1 demonstrator [85]. It has also seen applications
verifying system security, particularly network protocol security. Since an early demonstration
where SPIN modelling identified cryptographic weaknesses in the Needham Schroeder Pub-
lic Key Protocol [157], other case studies have analysed internet payment systems [213, 247],
and network authentication protocols [93], including the IKEv2 key exchange protocol used in
IPSec [247]. It has also been applied to IoT networking, such as in [246], where it was used to
model the components of a publisher-subscriber middleware architecture. Similarly, the publish-
subscribe model of the IoT protocol MQTT was modelled in [15] to validate the behaviour of
different quality of service levels. SPIN was later used to verify the absence of deadlock in an
MQTT variant for communicating vehicles, MQTT-CV, that results in less network traffic for
subscribers [36].

UPPAAL

UPPAAL [21, 147] is a tool for modelling real-time systems. It uses a subset of systems as a
network of timed automata. A timed automaton is a finite state machine that has been extended
with clock variables to support the modelling of time-bounded behaviours. The clocks in the
automata advance at the same rate, and actions can be synchronised, enabling multiple automata
to wait to perform actions at the same time. UPPAAL can be used to check properties across a
network of timed automata using a subset of Timed Computation Tree Logic (TCTL) [14, 94],
an extension of CTL logic that adds clocks. UPPAAL has been widely used to test real-time
systems [96], validation of PLC controller code [229] and has been used in the generation and
verification of robotic operating systems [228]. In cyber security it has been shown to support
intrusion detection through software validation [90] and has been used to analyse the robustness
of fallback control systems in ICS [192].

PRISM

PRISM [141] is a probabilistic model checker that can be used to analyse systems that exhibit
non-deterministic or probabilistic behaviour. It supports modelling of probabilities by repre-
senting systems as Discrete-Time Markov Chains (DTMCs), Continuous-Time Markov Chains
(CTMCs) or Markov Decision Processes. In these modelling environments, each transition can
be accompanied by a probability of that transition being taken, enabling the model checker to
analyse the probability of an overall specified outcome occurring. This is a unique characteristic
of PRISM and enables it to provide quantitative evidence for the fairness and performance of
randomised distributed algorithms [72,140,142], probabilistic security protocols [146,171] and
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game design [121,122]. It has also been demonstrated as a tool for the generation of mathemat-
ically optimal UAV controllers in a simulated search scenario [75].

NuSMV

NuSMV [39] is a symbolic model checker based upon Binary Decision Diagrams (BDDs) [7].
Systems are specified as Kripke structures to represent finite state machines. Each process can
be specified as a module consisting of variables using basic datatypes that can be modified
during transitions. NuSMV supports checking properties using CTL and indirectly supports
LTL properties by reduction to CTL. It has been used for verification and validation in industrial
applications, including in self-driving cars [77] and ICS [123], where it has been used to verify
the safety of PLC programs [129, 199].

Alloy

Alloy [115] is a modelling tool consisting of a lightweight declarative programming language
and an “analyzer” that analyses the generated instances. The Alloy specification language con-
tains signatures declaring the types of elements that exist in a model, then uses first-order logic to
describe the relationships between these elements. The tool was originally intended as a method
of validating software design by specifying the modules and data structures used in the software.
Once specified, the Alloy Analyzer returns instances with these components in different config-
urations. These instances can then be checked using predicates that specify invalid arrangements
or sequences of behaviours. Due to its first-order logic foundation, the Alloy specification lan-
guage is highly expressive and extensible, enabling it to be applied to many different domains.
As a result, Alloy has seen usage verifying OS security models [57], cross-domain access con-
trol policies [187], healthcare workflows [232] and the OAuth 2.0 authorisation protocol [179].
In network security, it has also been used to model cloud-connected CPS [216], develop mod-
elling frameworks for IoT security [138] and model man-in-the-middle attacks in multi-channel
wireless networks [9].

Motivation for Using SPIN and Alloy

The identified model checkers have differing strengths and weaknesses that enable them to be
applied towards developing a formal methods-based intrusion detection approach. We initially
considered the available property specification logics. Since we are primarily identifying reach-
able states and do not require the ability to specify statements across all paths, it was determined
that either LTL or CTL could be used, with LTL providing a less restrictive option for property
specification. UPPAAL is well-suited to the domains of real-time systems and has demonstrated
application in ICS environments. However, it is less suited to the domain of concurrent systems,
and for our purposes, we are primarily interested in the sequences of data exchanges instead of
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the time taken to perform them. The desire to examine the outcomes of the concurrent operation
of ICS and DT components motivated the decision to pursue the use of Promela and SPIN in-
stead. While PRISM is useful in the analysis of random and probabilistic environments, the ICS
environments that we are modelling do not use probabilities in its design. As a result, we would
either not be utilising PRISM to its strengths or be required to include arbitrary probabilities
within our models where none exist. NuSMV also provides a viable method of specifying a
network of finite state machines that can be applied to represent ICS environments and presents
the option to use CTL properties. However, the decision to use Promela/SPIN instead was made
based upon the more expansive data type system of Promela/SPIN, combined with the ability to
incorporate synchronous and asynchronous channels for interprocess communication.

In summary, SPIN allows us to represent the different interacting components of the ICS and
its supervisory environment as concurrently operating processes. These processes can exchange
data, including custom C structs if needed, either synchronously or asynchronously through
natively supported channels. When performing verification, we can construct LTL properties
that capture the required behaviours about the existence of a path that satisfies the given atomic
propositions. Should one exist, this is returned as a counterexample that demonstrates the vio-
lating behaviour.

When modelling network security, the expressiveness and extensibility of the Alloy spec-
ification language provide a strong ability to specify a large number of components within a
hierarchy of inheritable properties. Alloy’s declarative language and focus on constraint satis-
faction separate it from the list of other candidate model checkers, enabling us to examine a
wide variety of network configurations and attack sequences. The recent addition of temporal
connectives in Alloy 6 increases the expressive power of properties that can be specified. Fi-
nally, the identified attacks can be visualised within the analysis environment in a manner that
makes it easy to recognise how vulnerabilities are being exploited.

3.3 The SPIN Model Checker

In this section, we provide a more in-depth introduction to SPIN and its specification language,
Promela. We begin with an overview of the Promela language and then introduce and example
to illustrate the use of the SPIN model checker.

The core aspects of Promela modelling are:

• Promela specifications consist of process templates called proctypes, global message chan-
nels and other global variables.

• Each component type is declared within a proctype structure which contains local vari-
ables and statements.

• Each proctype instantiation represents the behaviour of an individual component.
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• Guards (statements which may block, like boolean statements or channel operations) and
choice statements control execution flow.

• Inter-component communication takes place via shared variables and channels.

• Two choice constructs (if...fi and do...od statements) allow us to express non-
determinism in our model.

• Directly supported variable types include bit, byte, short, int, array and an enu-
merated type mtype. Further data types can be indirectly supported through the C com-
piler.

• Initialisation information - i.e. how many and which instantiations of each proctype to
create when the program is run. Processes are either initiated via a defined init process
or, via the active keyword.

Note that statements can be placed within an atomic block. This ensures that the statements
are executed without interruption from another process. The atomicity can be broken, though,
if an atomic block contains blocking statements (boolean statements (conditions) or channel
operations).

To provide a concrete description of the usage of these elements, we present a grammar
containing the subset of Promela constructs used in our models, in Fig. 3.1. A full grammar is
available online 1.

Consider the simple Promela example shown in Fig. 3.2. There are two processes, defined
as instances of proctypes A and B via the init process. The atomic clause here ensures that
they both start executing at the same time. We shall refer to the processes themselves as A and
B for simplicity. There is a single (global) variable, variable_1, which is incremented by
process A and decremented by process B. Even this very simple example has several associated
behaviours. Both processes are enabled in the initial state as the value of variable_1 is
1. If process A executes two steps in succession (evaluating the guard and then incrementing
variable_1), process B is then blocked as its guard no longer holds. Similarly, process B
can execute both of its steps and cause A to be blocked. Finally, A and B can each execute their
initial steps (in either order), and then they can each execute their remaining steps (in either
order). There are said to be six paths resulting from this specification.

SPIN supports the specification of properties in LTL [183]. LTL properties consist of a finite
set of atomic propositions, boolean connectives, and temporal operators, e.g. <> (“eventually")
and [] (“always"). We do not provide details here, except to describe any property that we use
in this thesis.

For the simple example in Fig. 3.2, we might (incorrectly) assume that for all paths, when-
ever variable_1 is equal to 2 then it will eventually become equal to 1 again. In our example,

1https://spinroot.com/spin/Man/grammar.html
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spec : : = module *
module : : = p r o c t y p e | i n i t | d e c l L s t | l t l D e c l
p r o c t y p e : : = a c t i v e PROCTYPE name ( ) { s e q u e n c e }
i n i t : : = INIT [ p r i o r i t y ] { s e q u e n c e }
d e c l L s t : : = oneDecl [ ; oneDecl ]*
oneDecl : : = typename name [= c o n s t ] [ , name [= c o n s t ] ] *
typename : : = BIT | BOOL | BYTE | SHORT | INT | MTYPE | CHAN
a c t i v e : : = ACTIVE
s e q u e n c e : : = s t e p [ ; s t e p ]*
s t e p : : = s t m n t

| l a b e l : s t m n t
l a b e l : : = name
s t m n t : : = IF o p t i o n s FI

| GOTO name
| D_STEP { s e q u e n c e }
| ATOMIC { s e q u e n c e }
| a s s i g n
| exp r
| SKIP

a s s i g n : : = name = expr
| name = name binarOp c o n s t
| name = name binarOp name

o p t i o n s : : = : : exp r ' − > ' s t m n t [ : : exp r ' − > ' s t m n t ]*
exp r : : = name binarOp c o n s t

| name binarOp name
| c o n s t
| name
| exp r andOr exp r
| ( exp r )
| ' ! ' exp r

b ina rOp : : = ' = = ' | ' ! = ' | ' < ' | ' > ' | ' <= ' | ' >= ' | ' + ' | ' − '
andOr : : = '&& ' | ' | | '
c o n s t : : = number | TRUE | FALSE
l t l D e c l : : = LTL name { l t l }
l t l : : = opd

| ( l t l )
| l t l b inop l t l
| unop l t l

opd : : = name | c o n s t | exp r
b inop : : = '&& ' | ' | | ' | ' − > ' | ' < − > ' | 'U ' | 'R '
unop : : = ' ! ' | [ ] | <>

Figure 3.1: Reference grammar defining the Promela language components used in our models.
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1 byte variable_1 = 1;
2 proctype A(){
3 (variable_1 == 1) -> variable_1 = variable_1 + 1
4 }
5 proctype B(){
6 (variable_1 == 1) -> variable_1 = variable_1 - 1
7 }
8 init{
9 atomic{run A(); run B()}

10 }

Figure 3.2: Promela code showing a simple example with two processes and one global variable.

this property is stated as [] r −> <> t where r and t are defined as variable_1==2 and
variable_1==1 respectively (note that “for all paths" is implicit for all LTL properties).

When a Promela specification is compiled and run with SPIN, a global automaton consisting
of all of the initiated components is constructed and combined with an automaton capturing any
included LTL property. This merged automaton is referred to as the underlying state-space of
the model. By searching the state-space, SPIN can capture any executions of the model that
violate the property. For the example in Fig. 3.2 and the property [] r −> <> t described above,
SPIN would indicate an error and return the first path for which the property was violated. The
path where A executes its two steps and B is blocked would be such a path.

3.4 Alloy

We now provide an introduction to Alloy modelling. Table 3.1 shows common terms used in
the specification of Alloy models and their analysis with the Alloy Analyzer. To illustrate these
constructs, we provide an introductory example, taken from the Alloy tutorial pages2.

To further enhance the understanding of the Alloy language, we present a subset of the
specification language’s grammar in Fig. 3.3. A full grammar is available online 3.

We examine the design of a file system. The system consists of a group of “file system
objects” representing all of the files and directories in the system. Each object is associated with
a parent object. If an object is a directory, it knows what its contents are. Finally, the system has
a “root directory” at the top of the file system.

Converting these requirements into an alloy model representing the system gives the listing
shown in Fig. 3.4. The model contains many of the basic constructs of a typical alloy model.
Line 2 defines the basic FSObject as an element with an optional parent relation to a single
directory. We define it as an abstract signature since we are using it as a supertype within

2https://alloytools.org/tutorials/online/frame-FS-0.html
3https://alloytools.org/spec.html
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Term Definition
Signature A language construct used to describe a type of element that exists within the

model.
Relation A feature of a signature that describes how signatures are related
Instance The output of the Alloy Analyzer when given an Alloy model written in the

Alloy Specification Language. Shows a single example of the model.
Atom An instance of a signature.
Scope An input provided to the Alloy Analyzer detailing the maximum number of

atoms that can be assigned to each signature when searching for specification
instances.

Fact A restriction on how atoms can be assigned within an instance.
Signature Fact A restriction on how atoms of a specific signature can be assigned within an

instance.
Predicate A true statement that must be satisfied by any generated specification in-

stance.

Table 3.1: A list of terms that are used when describing Alloy models.

which to specify relations that all objects will have, without allowing any instances of that sig-
nature to exist in the model. Directories are then specified on line 5 as a subtype of the FSObject
signature, with each directory containing “contents” relations to a set of FSObjects. The set
operator declares that a relation applies to 0 or more elements – so a directory may be empty.
Files are declared similarly on line 8, without containing any relations. One important consid-
eration is that all signature subtypes are disjoint subsets within the set of their supertype. The
relations and facts affecting FSObject apply to all the subtypes of that signature. Finally, we
specify a Root signature as a subtype of the Dir signature. This is a special case of the Dir signa-
ture that has no parent, and therefore, we require that exactly one such directory exists. This is
specified by marking the signature with a one multiplicity constraint. We take this opportunity
to explain the existence of two other multiplicity constraints that are used in further models but
are not demonstrated in this model. The some constraint is an existence restriction, specifying
one or more instances of a signature or relation existing. The lone constraint is similar to the
one constraint but allows for non-existence, it specifies that either one instance or zero instances
of a signature or relation exist.

Returning to our model, if we ask the Alloy Analyzer to generate instances of our model, it
will show us examples that satisfy the constraints we’ve specified so far. One example is shown
in Fig. 3.5. However, something is wrong, we have a directory that is parenting itself. We have
a file that is the parent of the root directory, and we have no content relations. So, along with
the requirements specified so far, a few more are required. These could be considered implicit
requirements, such as specifying that all file system objects are connected and that a directory
is the parent of its contents. These must be explicitly stated to represent the system correctly,
which can often be what leads to the uncovering of incorrect assumptions. We, therefore, use
statements specified within a fact to constrain how the relations between atoms can be formed
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i m p o r t : : = OPEN qualName [ [ qualName , + ] ] [ a s name ]
p a r a g r a p h : : = s i g D e c l | f a c t D e c l | p r e d D e c l

| a s s e r t D e c l | cmdDecl
s i g D e c l : : = [ v a r ] [ a b s t r a c t ] [ mul t ] SIG name , + [ s i g E x t ]

{ f i e l d D e c l , * } [ b l o c k ]
s i g E x t : : = EXTENDS qualName | i n qualName [+ qualName ]*
mul t : : = LONE | SOME | ONE
f i e l d D e c l : : = [ v a r ] d e c l
d e c l : : = [ d i s j ] name , + : [ d i s j ] exp r
f a c t D e c l : : = FACT [ name ] b l o c k
p r e d D e c l : : = p red [ qualName . ] name [ p a r a D e c l s ] b l o c k
p a r a D e c l s : : = ( dec l , * ) | [ dec l , * ]
cmdDecl : : = [ name : ] ( RUN | CHECK )

( qualName | b l o c k ) [ scope ]
scope : : = f o r number [ b u t t y p e s c o p e , + ] | FOR t y p e s c o p e , +
t y p e s c o p e : : = [ e x a c t l y ] number qualName
exp r : : = c o n s t | qualName | @name | THIS

| unOp expr | exp r binOp exp r | exp r arrowOp expr
| exp r [ expr , * ] | exp r [ ! | n o t ] compareOp exp r
| exp r ( => | IMPLIES ) exp r ELSE expr
| q u a n t dec l , + b lockOrBar
| { dec l , + b lockOrBar } | exp r '
| ( exp r ) | b l o c k

c o n s t : : = [ −] number | NONE | UNIV | IDEN
unOp : : = ! | NOT | NO | mul t | s e t | # | ~ | * | ^

| ALWAYS | EVENTUALLY | AFTER | BEFORE | HISTORICALLY | ONCE
binOp : : = OR | AND | IFF | IMPLIES | & | + | − | .

| UNTIL | RELEASES | SINCE | TRIGGERED | ;
arrowOp : : = [ mul t | s e t ] −> [ mul t | s e t ]
compareOp : : = IN | = | < | > | =< | >=
b l o c k : : = { exp r * }
b lockOrBar : : = b l o c k | b a r exp r
b a r : : = |
q u a n t : : = ALL | NO | sum | mul t
qualName : : = [ t h i s / ] ( name / )* name

Figure 3.3: Reference grammar defining the Alloy language components used in our models.

in our model. We make the required additions in Fig. 3.6. All statements made using facts are
always true in the instances generated by the Analyzer. On line 2, we explicitly constrain all
directories and their contents, such that there is always a parent directory to a directory from
its contents. Line 5 constrains that all FSObjects are directly or indirectly connected to the
Root directory through the reflexive, transitive closure, *, of the contents relation. The reflexive
transitive closure of a relation refers to zero or more applications of that relation connected
together.
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1 // A file system object in the file system
2 abstract sig FSObject { parent: lone Dir }
3
4 // A directory in the file system
5 sig Dir extends FSObject { contents: set FSObject }
6
7 // A file in the file system
8 sig File extends FSObject { }
9

10 // There exists a root
11 one sig Root extends Dir { } { no parent }

Figure 3.4: Initial alloy code specifying a basic file system.

Dir parent File

Root

parent

Figure 3.5: An example of a file system that shows a flaw in our initial design.

1 / / A d i r e c t o r y i s t h e p a r e n t o f i t s c o n t e n t s
2 f a c t { a l l d: Dir , o: d . c o n t e n t s | o . p a r e n t = d }
3
4 / / F i l e s y s t e m i s c o n n e c t e d
5 f a c t { FSObjec t in Root . * c o n t e n t s }

Figure 3.6: Alloy facts extending the original code to constrain what types of file system can be
generated.
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1 / / P r o p e r t y a s s e r t i n g t h a t t h e c o n t e n t s pa th i s a c y c l i c
2 pred a c y c l i c { no d: Di r | d in d . ^ c o n t e n t s }
3
4 / / Now check i t f o r a scope o f 5
5 check { a c y c l i c [ ] } f o r 5

Figure 3.7: Code showing how properties are defined and checked in Alloy.

Now that we have a model that seems to generate instances as expected, we can use it to
check the properties of the design as shown in Fig. 3.7. Using the pred keyword we define a
predicate on line 2 that specifies that we do not believe that a directory can be nested within its
own contents path. In this example, we are using a non-reflective transitive closure operator, ^
↪→ , to only check paths with one or more applications of the contents relation. The check
command is used on line 4 to ask Alloy to only return instances that violate the listed predicates.

When a check is performed, or any command that prompts the Analyzer to search for in-
stances, a scope is required. Alloy operates on first-order logic, which is undecidable. This
undecidability implies that, for an unbounded scope, there is no general algorithm that can de-
termine whether a given property holds across all possible models. Without a bound on the
scope, the search space grows indefinitely, leading to infinitely many possible combinations of
elements that Alloy would need to check. Setting a finite scope ensures that the analysis remains
computationally feasible by manually defining the bounds of the search space.

There are two outcomes to executing a check. If Alloy returns an example, it demonstrates
that the behaviour specified in our predicate has occurred within our defined model. If Alloy
returns no example, we can use this as evidence that our property holds for the defined scope.
Since Alloy’s analysis is bounded by this scope, it could always be true that the property does
not hold at a larger scope size. While there is no generally decidable means of proving the
presence or absence of this, it is observed through the “small scope hypothesis” that, in practice,
counter-examples to properties are often found at relatively small scope sizes [115]. In cases
where proof is required for all scope sizes, alternative approaches such as theorem proving can
be used to complement modelling in Alloy [115].

3.5 Summary

In this chapter, we have given an overview of the concepts and techniques used in the application
of formal methods within this thesis. We discussed the background of formal methods and the
motivation for their application. We gave an overview of their strengths and provided insight
into the challenges in applying them, which has led to the creation of many different approaches
targeted at different domains.

We reviewed model checking and its usage in creating mathematical models of systems to
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evaluate their safety, reliability and security. We describe how these models are checked using
properties, often written in a temporal logic, that describe conditions that the model checker
should identify. We then reviewed some common model checking tools and their applications,
including UPPAAL, PRISM, NuSMV, SPIN and Alloy. Having considered their key character-
istics, we identified SPIN and Alloy as the two approaches to use in our work modelling an ICS
system and its DT network.

We concluded by giving an overview of the application of our two chosen modelling tech-
niques. We demonstrated how concurrent processes can be specified in Promela, which can then
be verified using LTL properties in SPIN. An introduction to the Alloy specification language
is also given, along with an example that shows how instances of models can be generated and
analysed using the Alloy Analyzer.



Chapter 4

Case Study: Hydroelectric Dam

4.1 Hydroelectric Testbed

In order for us to be able to develop formal method approaches to a realistic ICS, we constructed
a DT framework for a hydroelectric dam testbed. The dam forms part of the University of
Glasgow GREENs Testbed.

The dam realistically represents a pumped-storage hydroelectric dam [186]. Industrial pumped-
storage hydroelectric dams operate as large-scale electric batteries using water to store electric-
ity. Like all batteries, they are not 100% energy efficient, so some stored energy is lost. However,
they are economically viable due to the fluctuating nature of electric prices. Energy is stored as
potential energy from the water contained in an upper reservoir or tank. When electricity de-
mand is high, water is released from this upper reservoir by the penstock that transports the
water to the turbines that generate electricity before being collected in a lower reservoir. The
electricity is sold back to the grid, and the water remains in the lower reservoir until electricity
demand drops; low-cost electricity can then power the return feed that brings the water back up
to the upper tank. The dam in the GREENs hydroelectric testbed is shown in Fig. 4.1. It is
a scaled-down representative test environment containing the OT devices and networks used in
industrial pumped-storage hydroelectric dams.

The testbed dam’s design before the integration of the DT framework is shown in Fig. 4.2.
Two PLCs control the operation of the dam. The generator PLC controls the normal water
movement from the upper tank to the lower tank. Within the penstock, the generator PLC
controls the upper tank release valve and receives data from the flow rate sensor within the
penstock. In the turbine enclosure, the generator PLC controls the pump that pushes the water
through the turbine (a requirement due to the small scale of the testbed) while receiving the
turbine’s voltage output and monitoring the temperature within the turbine enclosure. If the
temperature in the enclosure increases too much, the PLC activates the cooling fan to reduce
it. The Control PLC controls the movement of water from the lower tank back up to the upper
tank. When water is to be returned the value on the lower tank is released and the two sump

54
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Figure 4.1: Photo of the University of Glasgow GREENs hydroelectric dam testbed.

pumps are activated to push the water up to the upper tank. Additionally, should the water level
in the upper tank become too high, the Control PLC can release an additional outflow valve in
the upper tank to allow water to be returned to the lower tank through the flood pipe.

4.2 Historian

Communicating with the PLCs in the dam requires the construction of a historian that pulls the
data from the memory of the PLCs. Historians are a common supervisory component within
ICSs. They gather and collate data from the systems in operation so that operators can monitor
device performance and IT devices, usually engineering terminals or corporate enterprise sys-
tems, can access it. In our case, a data historian was constructed to contain data that the DT
could query; however, in a production environment, the historian may be a pre-existing part of
the normal operation of the ICS that is used in several different workflows.

The design of the historian uses three components: a Node-RED [176] flow, an InfluxDB
[111] time-series database, and a Grafana [86] dashboard to visualise data. Together they pull
the data from the PLCs, collect it and present it to the user. The database the historian is used as
the basis for the implementation of the DT elements discussed in this chapter.

4.2.1 Node-RED

Node-RED is a programming tool centered around the construction of data flows. Different
APIs and libraries can be combined through a browser-based user interface to allow data to be
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Generator PLC Control PLC

Upper
Tank

(reservoir)

Lower
Tank

(outflow)
Penstock Flow rate

sensor

Pump Valve Turbine Pump

Valve

Flood pipe

Volume
sensor

Pump

Cooling fan Themometer

Turbine Enclosure

Valve

Figure 4.2: System design of University of Glasgow hydroelectric dam.

Figure 4.3: The architecture and data flow within the historian constructed for the dam.



CHAPTER 4. CASE STUDY: HYDROELECTRIC DAM 57

Figure 4.4: Flow of data through NodeRED. Blocks on the left use S7Comms GET requests to
pull data from PLCs. The data from each device is transformed into a JavaScript object that is
pushed to InfluxDB.

gathered from and moved between locations. The flow used for the historian is shown in Fig.
4.4; it follows many of the steps described in [133] as a foundation with design modifications
to gather and store data from multiple sources and adapt it to operate on PLCs from a different
hardware provider.

The blue nodes on the left each connect to a PLC in the hydroelectric testbed, querying for
a list of tags defined by their name and memory location within each PLC’s memory. This is
done through the use of the S7 Communication [6] protocol. This data is originally collected
as a JSON object so the “Influx Transform” function nodes rearrange this data into a JavaScript
object as shown in Fig. 4.5. The constructed objects are then passed to the “Influx Database”
node, which sends them to the InfluxDB server. The whole flow is executed for each PLC
approximately once every 100ms.

4.2.2 InfluxDB

InfluxDB is a time series database where the values of variables over time can be stored. Data
organisation in InfluxDB is performed using buckets. All of the data from the dam’s PLCs are
stored in a bucket. Within a bucket, measurements can be used to create logical groupings within
it. Once data is collected from the controllers, as part of the transform, NodeRED turns the data
into a measurement titled with the name of the device that it was collected from. When this data
is added to the bucket it is stored together with all the other measurements from that device in
the order in which they were collected. Fields within this measurement then contain the values
contained within the PLC memory.

4.2.3 Grafana

In the historian, the data in InfluxDB is visualised through a Grafana Dashboard. The dashboard
consists of a number of different display modules. All of them query the database for entries
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1 // Defining the object that will be sent to InfluxDB
2 let dbEntry = {};
3 dbEntry.measurement = deviceName;
4 dbEntry.fields = {}
5
6 // Parse the original message
7 var plcTags = Object.keys(originalMsg);
8 // Add tags to database entry
9 plcTags.forEach((tag) => {

10 // Convert booleans to integer representation.
11 if (originalMsg[tag] == true) {
12 dbEntry.fields[tag] = 1;
13 } else if (originalMsg[tag] == false) {
14 dbEntry.fields[tag] = 0;
15 } else dbEntry.fields[tag] = originalMsg[tag];
16 });
17 msg.payload = [];
18 msg.payload.push(dbEntry);
19 msg.topic = deviceName + " DB Write";
20 return msg;

Figure 4.5: JavaScript code snippet from Influx Transform function node in Node-RED

that occured during a preset query window, and then display the returned results. The dashboard
used during the project is shown in Fig. 4.6. This is an open-source implementation representing
the type of dashboard that would be found in an industrial control room. Dashboards are the
operator’s primary means of gaining an overview of the system’s performance. Even from a
scaled down representation, it can be seen how the amount of data presented to operators can be
overwhelming. For this reason additional monitoring tools are often used to help track the data.

4.3 Digital Twin Framework

In this section we discuss the structure of the DT code and how it gathers data from the historian
to present a picture of the dam’s state to the operators, and the models that will be discussed
later. The system is written in Python 3. After completion of the initial setup and establishing
a connection to the database, the system follows a main operation loop. During each loop the
system pulls new data from the PLCs, synchronises them into one comprehensive state-space
and then queues them to be analyzed by the models.
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Figure 4.6: The Grafana dashboard displaying generator temperatures and output voltages
alongside the binary state variables. Temperatures are scaled by a factor of ten.

4.3.1 Synchronising State Data

The historian provides a means of accessing time-series data about the dam’s constantly chang-
ing state through the tags associated with different sensors and actuators. These tag-value pairs
are updated with new values between 5 and 10 times a second, presenting an interesting chal-
lenge when assembling a complete picture of the dam’s state. To address this, a python environ-
ment was created that could recursively pull this data from the historian, process it and use it to
trigger digital models. We will refer to this as the synchronisation module.

With the dam active, the digital twin is triggered by starting this synchronisation module.
While in operation, the module queries the InfluxDB database, pulling all the data that was
received during the last second. Since the data in the Influx database is separated according to
device, this results in two sets of state data; a Control PLC set and a generator PLC set. The task
is then to combine these two sets so that a complete state of the dam can be made. This is done
through a two-step process.

Firstly we merge rows from the two sets which have the closest timestamps. This creates a
single combined dataset encompassing all of the tag-value pairs within the dam. The combined
dataset also contains the timestamps of the original data. Secondly, the original timestamps are
used to sort the data by preference. In this use case, due to the intention to construct formal
models of the dam, a preference was given to sort by how closely aligned the timestamps of the
datasets were, modified by how recent the data was. The intention was to ensure that the devices
would most agree upon the global state of the dam while still operating on recently gathered
data, as even the oldest entries in either dataset would be at most a second old. The scoring
method used is shown in Fig. 4.7.
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1 def score(record):
2 sync_score = abs(
3 record['_time_control'] - record['_time_generator']
4 ).total_seconds()
5
6 freshness_score = abs(
7 datetime.now(tz=pytz.timezone('Europe/London')) -
8 min( record['_time_control'],
9 record['_time_generator']

10 )
11 ).total_seconds()
12
13 return (2 * sync_score) + freshness_score

Figure 4.7: Python code taken from the synchronisation function that determines which data
readings to combine to provide as model input. The result with the lowest score is used as
model input.

Figure 4.8: A graph showing how the scoring method sorts combinations of results from the
PLCs prioritising readings that were written to the database close together, while still including
how recently the readings were taken. Low scores are better.



CHAPTER 4. CASE STUDY: HYDROELECTRIC DAM 61

4.4 Developing Anomaly Detection Capability

Our initial goal was to develop an understanding of the normal operational behaviour of the
hydroelectric dam through analysis of recorded data from its operation. The DT framework was
configured to collect state readings from the PLCs and store them with an index label calculated
from the binary representation of the state variables. Each time the system gathered new data
from the PLCs the current state of the system was compared to the previous state of the system
and a transition between the two states was recorded. Through this approach, state transition
diagrams representing the dam’s behaviour can be created.

Fig. 4.9 shows an example of a state transition diagram for a subset of the system’s be-
haviours where only Generator A is in operation. From observing the data collected by the dam,
it can be observed that despite using a synchronisation system, creating a unified picture of the
system can still result in anomalies. In Fig. 4.9, four examples of this can be seen, shown in red.
These states contain conflicting information about whether the generator is in operation or not,
where Gen_A_Active and Gen_A_Status are not equal.

Collating data from multiple sources, even while making efforts towards synchronisation,
presents a challenge in this instance as one set of tags in the Control PLC tracks the value of
tags in the generator PLC. Gen_A_Status and Gen_B_Status are Control PLC tags that track the
values of Gen_A_Active and Gen_B_Active within the generator PLC’s memory. During each
cycle, the generator PLC inserts the value of Gen_A_Active and Gen_B_Active into the Control
PLC’s memory locations for Gen_A_Status and Gen_B_Status. However, the Historian and,
subsequently, the DT can receive conflicting information about the state of the Generator. When
a change occurs in the state of one of the generators, this update process between the PLCs can
be interwoven by NodeRed’s GET request to pull the variables. The result is that the updated
value of, for example, Gen_A_Active, is received alongside the old value of Gen_A_Status. A
message sequence chart demonstrating this behaviour is shown in Fig. 4.10. A model based
entirely on the PLC code, as written, would not recognise that this behaviour can occur, and
it would, therefore, be flagged as an anomaly. However, since this is known to be a symptom
of the normal operation of the historian infrastructure, any anomaly detection system needs to
represent both the logic of the PLC code and the infrastructure used to connect it to the PLCs. In
doing so, the system will be able to accept these desynchronised states, allowing it to be a more
useful indicator of legitimately anomalous behaviour.

The infrastructure already developed can be used as the basis of an anomaly detection sys-
tem. The observed states and transitions from our testing can be used to establish a system
baseline, i.e., a set of states that reflect normal behaviour. In a simple example, as observed
states are identified, they can be compared to this baseline of previously observed behaviour.
If the state has been observed before, it can be ruled out as an anomaly. The drawback of this
method is that it depends upon being able to gather a complete set of system baseline data from
the system without any risks of the system being tampered with during that process. Since
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System: On

Index: -1
Comment: Initialisation
Variables: No data. Return Feed: On

Return Feed: Off

Generator A: Remains Off

Index: 29184
Comment: 
Generator A inactive, but
HydroControl not aware of it
yet.
Sump Pumps active
Variables: 
Gen_A_Status = 1
Gen_A_Active = 0
Gen_A_Pump = 0
Gen_A_Valve = 0
Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Generator A:
Remains On;

Return Feed: Off

Generator A: Off

Generator A: On

Index: 28848
Comment: 
Generator A active, but
HydroControl not aware of it
yet.
Sump Pumps active
Variables: 
Gen_A_Status = 0
Gen_A_Active = 1
Gen_A_Pump = 1
Gen_A_Valve = 1
Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Generator A: Off

Generator A: Off

Index: 29360
Comment: 
Generator A active
Sump Pumps active
Variables: 
Gen_A_Status = 1
Gen_A_Active = 1
Gen_A_Pump = 1
Gen_A_Valve = 1
Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Generator A: On

Return Feed: On

Generator A: On;
Return Feed: Off

Index: 28672
Comment: 
Sump Pumps active.
Everything else off.
Variables: 
Gen_A_Status = 0
Gen_A_Active = 0
Gen_A_Pump = 0
Gen_A_Valve = 0
Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Generator A: Off

Generator A: On

Generator A: Remains On; Return Feed: On

Index: 176
Comment: 
Sump pumps inactive.
Generator A active but
HydroControl not aware of it
yet.
Variables: 
Gen_A_Status = 0
Gen_A_Active = 1
Gen_A_Pump = 1
Gen_A_Valve = 1
Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Generator A: On

Generator A: Remains Off

Index: 512
Comment: 
Generator A off but
HydroControl not aware of
it yet.
Everything off.
Variables: 
Gen_A_Status = 1
Gen_A_Active = 0
Gen_A_Pump = 0
Gen_A_Valve = 0
Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Generator A: On
Generator A: Off

Return Feed: Off

Generator A: Off

Index: 688
Comment: 
Generator A active
Sump Pumps Off
Variables: 
Gen_A_Status = 1
Gen_A_Active = 1
Gen_A_Pump = 1
Gen_A_Valve = 1
Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Index: 0
Comment: Idle
Variables: 
Gen_A_Status = 0
Gen_A_Active = 0
Gen_A_Pump = 0
Gen_A_Valve = 0
Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Generator A: On

Figure 4.9: A state transition diagram representing the behaviours of the Dam when only Gener-
ator A is active. Blue states show consistency between Gen_A_Active and Gen_A_Status, Red
states do not.
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HydroControl HydroGenerator

Gen A: OFF

Gen A: ON

NodeRED InfluxDB

JSON Object

Digital Twin

Influx Query

GET All Variables

Gen_A_Status = 1
Gen_A_Active = 0

Gen_A_Active = 0
Gen_A_Status = 1

Gen_A_Active: 0
Gen_A_Status: 1

PUT Gen_A_Active = 1

PUT Gen_A_Active = 0

Figure 4.10: A message sequence chart showing how the PUT requests from the generator PLC
that synchronise Gen_A_Active with Gen_A_Status can result in the DT receiving conflicting
data about the state of the dam.

the approach relies on observational data, rather than inspectable artefacts, it is susceptible to
supply chain attacks that modify the behaviour of the system before the point of deployment.
Additionally, the collection of a comprehensive baseline of every reachable system state could
rapidly become infeasible in a large-scale industrial system. Even for us, testing the approach
on a testbed environment with a reduced scale and collecting a complete baseline of the sys-
tem in every possible configuration proved challenging. We, therefore, conclude that a more
sophisticated method of determining the validity of observed system states is required. Since
similar observation-based methods, such as training a machine learning model, would also de-
pend primarily upon this system baseline, we propose an approach based on the executable code
programmed within the controllers.

4.5 Summary

In this chapter, we constructed a DT framework capable of connecting digital models to a hy-
droelectric dam testbed. We present an introduction to the GREENs Testbed hydroelectric dam,
describing its purpose, components and architecture.

We explain the process of constructing a historian, which consists of three components:
NodeRED, InfluxDB, and Grafana. NodeRED was used to interface with the PLCs, pulling the
data through S7Comms requests before transforming it into JSON objects to be inserted into the
database. The time-series database InfluxDB receives data from NodeRED and stores it to be
accessed by Grafana, which then visualises the state of the dam.

An additional DT module was integrated into the ICS environment to retrieve data from the
InfluxDB database and synchronise state data collected from two PLCs. We explain how a scor-
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ing metric determined the optimal combination of PLC states based on their generation time and
timestamp alignments. This module constructs a unified representation of the dam’s operational
state, making it available to models within the framework. We established a baseline of known
dam behaviours by recording this state data. Tracking this combined state data then guided the
search for a practical approach to representing and identifying normal system behaviour.



Chapter 5

Specification-Based Anomaly Detection In
SPIN

In this chapter, we use Promela to create a state transition system for the dam. Promela was
chosen because it is designed to model concurrent processes and analyze their interactions. Our
system consists of multiple co-executing devices, including two PLCs that operate concurrently
to maintain the system state and an HMI through which the operator provides commands to the
system.

Unlike that presented in chapter 4.1 (Fig. 4.9) our Promela model represents a full spec-
ification of all of the system components, directly based on the logic of the executable code
written to the PLCs. Using SPIN, the actions of all the components can be combined to define
the complete space of reachable system states. This allows the model to extrapolate to unseen
behaviours, reducing the requirement for comprehensive system baselining before deployment
since the only need for system data is to test the system. Additionally, this approach is not
limited to detecting only known anomalies. Using SPIN, we only need to specify the types of
behaviour the system is programmed to perform, and any deviations from that will be detected
by the system.

5.1 Approach

Our method of connecting the historian data to the SPIN model checker is shown in Fig. 5.1.
We represent the system’s behaviours in a Promela template containing placeholder values for
each tag value in the state data. Each time the DT framework collects and assembles the most
recent snapshot of the dam’s state, it embeds it in the template to drive the analysis. The property
we use specifies that the currently observed state of the dam is not reachable. SPIN will then
analyse the file to determine if a counter-example allows the dam to enter that state. If one is
found, the state is recognised by the model, providing evidence that the system is exhibiting
normal operational behaviour.

65
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Figure 5.1: The proposed approach for detecting anomalous behaviour in the Hydroelectric dam
using SPIN. Two templates are created, one each for the trunk and branch models, containing
placeholder values for system state data. The SPIN controller module embeds the state values
into these files before executing a search for counter-examples in each. If all of the models return
counter-examples the observed system states and transition between them is considered valid. If
any model cannot find a counter-example it indicates an anomaly.
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Our method uses two models to reduce the state-space and decrease the time taken to iden-
tify anomalies, thereby enabling the detection of anomalies in real-time data. The two models
target different aspects of anomaly detection and are used to present a complete analysis of the
system’s behaviours. To explain our method, consider the dam as a state transition system where
each state represents a valuation of the state variables. The system moves through the different
states by executing transitions. When the system starts, it begins in the same state each time, but
as it runs, the number of possible states and traces to reach those states grows larger, branch-
ing out like a tree to create an exponentially increasing number of execution traces. To detect
anomalies, we must consider whether the state we have observed is a valid system configuration
and whether it is consistent with the previously observed system behaviour. Identifying if a state
is valid in isolation can be achieved with a relatively simple property, stating that the observed
state never occurs and prompting SPIN to show a trace where it does. However, the second
part, evaluating the reachability of a second state after a first state has been reached, is more
challenging, requiring the traversal of each path that can lead to that initial state and then each
branch from that state. By dividing these two aspects of anomaly detection, we can reduce the
size of the problem being analysed and focus the models on the specific element of the system
behaviour being checked. Our first model determines whether the observed state is reachable
by any valid execution trace. We refer to it as the “trunk” model since it forms the basis for our
analysis. Our second model is designed to identify anomalous transitions between states. Taking
the state checked by the trunk model as a starting point, we use a second model to determine if
any branches originating from it can reach the next observed state. Finally, we also check if the
trunk model recognises this next observed state. If a SPIN search of any of these models cannot
find a counter-example, then the system is behaving anomalously because one of the states is
irregular, or the transition between the two states should not be able to happen.

5.2 Modelling PLC Code in Promela

In this section we discuss the development process of creating a Promela representation of the
ladder logic programs in the PLCs. The complete PLC code and its Promela representations are
too large to be wholly included in this thesis. To demonstrate how the system was modelled,
we instead show how the structure of our Promela model captures the PLC programs’ logic and
examine a couple of key excerpts from the PLC programs to use as examples of our transcription
process.

5.2.1 Ladder Logic

The PLC code is written in ladder logic, a graphical programming language derived from the
diagrams used to represent the combinational logic of relay racks. A program is anchored to a
vertical “Rail” that runs down the side of the program onto which “rungs” can be attached. To
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Figure 5.2: An example of a ladder logic rung. When Gen_B_Active is ON, each of the three
outputs is set to ON. When Gen_B_Active is OFF, each output is set to OFF.

understand this code, a rung can be considered as a line of code; it defines a control sequence
of operations. While the code aims to replicate the electrical schemas of relay racks, the rungs
do not behave like electrical circuits. Instead, the PLC rapidly executes these rungs during each
scan cycle, replicating the effect of simultaneous execution.

Fig. 5.2 shows a simple rung from the generator PLC code that controls the actuators
within the generator turbine enclosure. The program responds to changes in Gen_A_Active
and Gen_B_Active as the operator changes them through the HMI (not shown). When either
variable is set to true, the rung in Fig. 5.2 opens the corresponding valve to release water from
the upper tank, turns on the pump to push the water through the generator turbine, and turns on
the green LED to signal that the generator is on.

5.2.2 Simultaneous Execution

Translating PLC code to Promela comes with the inherent challenge of capturing the simul-
taneous execution of the PLC instructions within the bounds of a sequential Promela program.
SPIN will execute the code in sequential order when searching for matching states, meaning that
all updates to variables within each rung must be simultaneously affected. This simultaneous
assignment to these variables can be done using a d_step operation. This instructs SPIN to
execute all of the commands within the model in a single instruction. Therefore, when the state-
space is searched, no state will exist for the intermediate assignments within the state-space. Our
design approach, therefore, is to perform the logical computations of the rung and then write the
outcome as a single d_step operation. As an illustration of this approach, we refer to Fig. 5.3,
a simplified excerpt from our hydro_control process in Promela that represents the ladder logic
shown in Fig. 5.2. The model identifies which of the rungs are active and inactive in the PLC
through the use of a conditional if statement. The output of this is a deterministic selection of
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1 if
2 /* Identify the combination of rungs to be executed */
3 :: Gen_B_Active == true -> goto Generator_B_Control
4 fi;
5 ...
6 /* Execute outcome */
7 Generator_B_Control: skip
8 d_step {
9 Gen_B_Valve = true;

10 Gen_B_Pump = true;
11 Gen_B_GreenLED = true;
12 Gen_B_RedLED = false;
13 }

Figure 5.3: Excerpt from the control PLC model in Promela, simplified to highlight how the rung
in Fig. 5.2 is represented. The initial if statement identifies the state the system is currently
in and then jumps to the d_step code section, where the relevant assignments of variables are
performed.

the appropriate goto statement that transfers the control to the relevant section of the process
where the outcomes can be executed. In this case, the label Generator_B_Control is used. SPIN
doesn’t allow control to jump into a d_step sequence, so using a skip statement is required.
Inside the d_step statement, an assignment to each of the required variables is performed. This
includes operations that are affected by Gen_B_Active being false, such as turning the red LED
off. If the d_step instruction was not used, valid states could be found in the intermediate states.
For example, if the generator had previously been off and was just turned on, SPIN would in-
correctly recognise states where Gen_B_Active and Gen_B_Valve were true, but Gen_B_Pump
and Gen_B_GreenLED were false (since they are updated after Gen_B_Valve). The effect of
this only increases in line with the number of variables to be updated in the system.

5.2.3 State-space Reduction

While the method requires the accurate representation of the PLC code, steps must be taken to
reduce the size of the state-space. In Fig. 5.4, a ladder logic snippet from the control PLC that
controls when the water return feed activates to bring water from the lower tanks back up to
the upper tank is shown. The return feed consists of two sump pumps (labelled Sump_Pump_1
and Sump_Pump_2) and a normally-closed valve (Sump_Valve) that seals the water return pipes
from the upper tank while the return feed is inactive. The single return feed is used differently
depending on whether one or both generators are active. To balance the water usage of a single
continually running generator, the return feed remains off for 10 seconds before activating for
30 seconds and then repeating. If both generators are in use, the system only waits 5 seconds
before executing. The wait and active intervals are measured, respectively, using a counter that
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(a) Rung that counts five seconds before triggering Return_Water_Supply_Control.

(b) Once Return_Water_Supply_Control is triggered, a 30-second timer is started, and the actuators of
the water return feed are activated. Once the timer elapses, the return feed is stopped.

Figure 5.4: Control PLC Ladder Logic rungs that work together, alternately waiting 5 seconds
before triggering the return feed for 30 seconds. Tag_2 is a testbed feature used to trigger
anomalous behaviour, and it is normally OFF.

counts the number of times a 500 ms clock activates and a timer that counts 30 seconds from
when the feed is activated.

A key objective when constructing our representation of the PLC is to reduce the number
of operations required to execute the same piece of control logic. While a PLC can execute the
rungs of its ladder logic code multiple times a second, our SPIN representation cannot afford to
perform the same number of actions. It is, therefore, essential to focus on the key behavioural
changes that the code is performing. A big step towards this is using a restricted representation
of timers to reduce the state-space. Instead of executing code to increase timers by 1 step each
loop incrementally, our representation increased them by 10 each time, dramatically reducing
the size of the search space required to determine if the behaviour is valid while still including
the control logic used in the operation of the timers.
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Figure 5.5: Excerpt from the generator PLC showing the PUT functions used to update the
control PLC on the status of the generators.

5.2.4 Device Communication

Promela supports interprocess message passing through the use of channels. These are defined
with a specified capacity, denoting the number of messages that a channel can contain. Data is
retrieved from channels on a first-in-first-out basis. Processes that try to retrieve data from an
empty channel will block until a message is added to it. Conversely, processes attempting to add
messages to a full channel will block until a message is removed. While this was considered as a
means of modelling the communication between devices this blocking behaviour is inconsistent
with the behaviour of the PLCs. The PLCs exchange data through the use of PUT and GET
instructions within the S7 Communication protocol; these instructions insert the value of the
data into the memory of the receiver at the specified location without the receiver needing to
execute any logic to receive or process it. Therefore, identifying a suitable means of integrating,
removing, and processing status messages between the PLCs became challenging and involved
considerable deviation from the written PLC code. Instead, we used global variables that allow
the processes to modify each other’s variables directly. This method means that messages are
exchanged instantaneously. As SPIN executes Promela commands non-deterministically, the
sending of the data may be delayed, which partially represents the transmission delay of message
exchanges.

Two different Promela models were created to model the dam, a full state-space representa-
tion, and a restricted transition-focussed model.

5.3 Development of Branch Model

To verify the reachability of the changes of state between the system state snapshots that are
collected by the DT we derived a new model from the original Promela model. This new model
is referred to as the “branch” model in reference to its start state being attached to the same state
that was analysed for reachability with the trunk model. This model starts from the same state
analyzed for reachability in the trunk model, but it is designed to capture the set of states that
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1 /* Generator A on, run water control */
2 Water_Return_Single_Gen_A: skip
3 Return_Water_Supply_Control = false;
4
5 /* Turn off all valves and pumps while waiting to activate */
6 d_step {
7 Sump_Valve = false;
8 Sump_Pump_1 = false;
9 Sump_Pump_2 = false;

10 };
11
12 /* Check for exit triggers */
13 if
14 :: Control_PLC_MODE == false -> goto id_ctrl_state
15 :: Gen_A_Status == false -> goto id_ctrl_state
16 :: Gen_B_Status == true -> goto id_ctrl_state
17 :: HMI_Return_Feed == true -> goto id_ctrl_state
18 :: else -> skip
19 fi;
20
21 /* Wait 20 seconds before turning on return feed. */
22 /* Counter does not increase if Tag_2 is true */
23 if
24 /* Counter increase by 10 instead of 1 reduces state-space */
25 :: IEC_Counter_0_DB < 20 & Tag_2 == false ->
26 IEC_Counter_0_DB = IEC_Counter_0_DB + 10
27 :: IEC_Counter_0_DB == 20 & Tag_2 == false ->
28 IEC_Counter_0_DB = IEC_Counter_0_DB + 10 ;
29 Return_Water_Supply_Control = true
30 :: Tag_2 == true -> skip
31 fi;
32
33 /* Loop or activate water return */
34 if
35 :: Return_Water_Supply_Control == false ->
36 goto Water_Return_Single_Gen_A
37 :: else -> skip
38 fi;

Figure 5.6: Excerpt from the representation of the control PLC in the trunk model showing how
timers are modelled. Time is discretised into intervals of 10 seconds to reduce the state space.
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hydro_control
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Control_PLC_MODE==1
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Control_PLC_MODE==0

S34

HMI_Return_Feed==0
& Gen_A_Status==0
& Gen_B_Status==0

S41

HMI_Return_Feed==0
& Gen_A_Status==1
& Gen_B_Status==1
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HMI_Return_Feed==1

S24

D_STEP223

S38
Tag_2==1

S33

else

S45

Return_Water_Supply_Control = 0
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Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Control_PLC_MODE==0
| Gen_A_Status==1
| Gen_B_Status==1
| Gen_B_Status==1

| HMI_Return_Feed==1

Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

S50

Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Control_PLC_MODE==0
| Gen_A_Status==0
| Gen_B_Status==0

| HMI_Return_Feed==1

S59

else

S53

IEC_Counter_0_DB<10
& Tag_2==0

S55

IEC_Counter_0_DB==10
& Tag_2==0

S65

Tag_2==1

IEC_Counter_0_DB+=10 S56

IEC_Counter_0_DB+=10

Return_Water_Supply_Control==0

S74

else

Tag_2==1

S73

else

S78

Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

S83

Return_Water_Supply_Control = 0

Control_PLC_MODE==0
| Gen_A_Status==0
| Gen_B_Status==0

| HMI_Return_Feed==1

S91

else

S86

IEC_Timer_0_DB<30

S89

IEC_Timer_0_DB==30
IEC_Timer_0_DB+=10

S96

IEC_Timer_0_DB = 0

Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Return_Water_Supply_Control = 1

HMI_Return_Feed==0

Control_PLC_MODE==1

Figure 5.8: A state transition diagram of the generator PLC modelled within the full state-space
model.
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can be reached from that start state. This approach aims to restrict the state-space to those states
that can be reached within a 0.8 s time interval (the time taken to gather new data). We use this
approach to verify the model’s behaviour in the context of its previously observed state.

This approach’s development required considering how to construct a time-restricted varia-
tion of the original model. Promela has no provision for modelling time, yet seemingly valid
system states may be invalid if they are inconsistent with recently observed system behaviour.
An operator might turn a generator off or activate a return. However, they cannot turn both gen-
erators off while enabling a manual return of all water within the time it takes for the system to
pull new state data. So, while a state with both generators being off and the manual return feed
active might be a valid and reachable state for the system, it is anomalous in this context, given
how rapidly the system has shifted into that mode.

In the context of a state transition system, this involves reducing the set of states considered
to a subset of reachable states. Fig. 5.10 shows an outline of the state transition diagram of the
Promela model that represents the generator PLC. Contrasting this with the model shown in Fig.
5.7 shows how the state-space is reduced to focus primarily on the shifts between operational
modes. This was done by focusing on key state variables that indictate that a state change is
occurring in either of the generators. In the case of the generator PLC these changes are driven
by instructions from the HMI, modelled as a separate process.

As discussed previously, the program code in this system involves the use of timers to trigger
the transitions, as well as HMI inputs from operators. In the branch mode model, we use fully
non-deterministic transitions between these states to represent timers since the historian does
not gather timer data. When a time interval is present in the code, we insert an unguarded if
statement to allow the program to represent both the outcome of a timer completing its time
interval and a timer continuing to count. s

5.4 Evaluation

To evaluate our approach, we tested its reliability in identifying anomalous system states from
baseline states. This was done by repeatedly running the SPIN models in an isolated test envi-
ronment on test states and transitions. A full evaluation of our system would determine how our
models classify every state that the system could reach and state change that the system could
exhibit. A state consists of 23 binary variables yielding 223 (8,388,574) possible state variations
and 246 (7.03×1013) possible transitions between those states. Since testing all of these states
is infeasible, a more selective approach is required to evaluate how well the model identifies
anomalous states.

Our evaluation methodology and its results are presented in Figs. 5.12, 5.13 and 5.16. We
constructed a bank of test states that are closest to the baseline states observed during testing
since, theoretically, these would be the most subtle anomalies that would be the most challenging
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1 proctype hmi()
2 {
3 /* Allow PLCs to compute non-operator transitions first */
4 run hydro_generator()
5 run hydro_control()
6
7 /* Perform any operator interaction */
8 send_instruction:
9 atomic {

10 if
11 /* Turn either generator on, if off */
12 :: Gen_A_Active == false -> Gen_A_Active = true
13 :: Gen_B_Active == false -> Gen_B_Active = true
14
15 /* Change the generator PLC into RUN mode */
16 :: Generator_PLC_MODE == false ->
17 Generator_PLC_MODE = true
18
19 /* Activate manual return on control PLC */
20 :: HMI_Return_Feed == false -> HMI_Return_Feed = true
21
22 /* Operator takes no action */
23 :: skip
24 fi;
25 };
26
27 /* Loops operator to perform at most two actions */
28 if
29 :: OperatorAction == false -> OperatorAction = true;
30 goto send_instruction
31 :: OperatorAction == true -> skip
32 fi;
33 }

Figure 5.9: Excerpt from the HMI process representing user interaction. The main “send in-
struction” loop represents an extensible list of possible ways that the user can interact with the
system. It has been reduced to save space; what is shown is a cross-section of the full list used
in testing.
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hydro_generator

S3

S8

Gen_A_Status = Gen_A_Active;
Gen_B_Status = Gen_B_Active;

S33

Generator_PLC_MODE == 0

S18

else

S119

All Generator Variables = 0

S48

Gen_A_Active == 1
Gen_B_Active == 0

S90

Gen_A_Active == 1
Gen_B_Active == 1

S0

-end-

S53

Activate Gen A
Deactivate Gen B

S95

Activate Gen A
Activate Gen B

S50

Gen_A_Status = 1

S52

Gen_B_Status = 0

Gen_B_Status = 0 Gen_A_Status = 1

S92

Gen_A_Status = 1

S94

Gen_B_Status = 1

Gen_B_Status = 1 Gen_A_Status = 1

Figure 5.10: A state transition diagram of the generator PLC modelled within the transition
model. The model specifies behaviour changes, not the entire state-space. Some extra branches
(originating from S18 and connected back at S119) have been omitted for readability.
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hydro_control

S5

S26

Control_PLC_MODE == 0

S11

else

S66

All Control Variables = 0

S64

HMI_Return_Feed == 1

S33

else

S0

-end-

Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

S40

Return_Water_Supply_Control = 0

S52

Return_Water_Supply_Control = 1

Tag_2 == 1

S45

else

Tag_2 == 1

S57

else

S46

Sump_Valve = 0
Sump_Pump_1 = 0
Sump_Pump_2 = 0

Return_Water_Supply_Control = 1

S58

Sump_Valve = 1
Sump_Pump_1 = 1
Sump_Pump_2 = 1

Return_Water_Supply_Control = 0

Figure 5.11: A state transition diagram of the control PLC modelled within the transition model.
The model specifies behaviour changes, not the entire state-space.
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to distinguish from normal behaviours. Our evaluation assumption is that these subtle variations
of normal behaviours are where errors in our approach are most likely to be found. If the models
can identify deviations in these small changes, it is more likely that bigger changes would also
be identified.

5.4.1 Trunk Model

We used the baseline set of states as an initial sample to generate our first set of anomaly states,
containing each state that could be made by modifying a single-bit value in a baseline state. For
example, the state 0 has every tag value set to 0; if it was present in the set of baseline states,
our first set of fabricated states would include every state where a single tag value is set to 1.
Duplicate states were removed, and the process was repeated to generate a set of states where
two bits were modified, then two more sets for three and four modified bits, respectively. At this
point, the exponential increase in size becomes too great to viably evaluate sets with a larger
number of deviations (the set of 5-bit deviations has size 359,205 and would take a month to
analyse by itself). Combining these four anomalous sets of states with the baseline states gives a
set of 122,216 test states consisting of the most subtle state changes an attacker could attempt to
put the system into. The results of analysing these test states with the trunk model are shown in a
Sankey diagram in Fig. 5.12. The inputs to the model are shown on the left side with the output
of the model being broken down into their respective groups as they progress to the right, where
the results are shown. A flagged state is one where the model did not produce a counterexample
demonstrating the reachability of that state, thereby flagging it as an anomaly. We evaluate
how well our model performs by how often it is correct. Each output can be categorised into
one of four categories. We are using our model to test for anomalies. Therefore, a positive is
an input that is identified as an anomaly, and a negative is an input that is considered normal
and not flagged as an anomaly. The true and false prefixes denote the true ascribed nature of
the input. Therefore, a true positive is a correctly identified anomaly, and a false positive is a
normal baseline behaviour incorrectly flagged as an anomaly. Conversely, a true negative is a
correctly recognised normal baseline behaviour, and a false negative is an anomalous behaviour
that wasn’t identified.

While examining the results of the trunk model evaluation, an unused PLC tag was discov-
ered in the set of the test states. This tag, Activated_Flood_Control, is declared within
the PLC code but never used and does not control anything. It is also not used within the Promela
model. However, as it is a variable within the definition of a state, it leads to duplicate states that
are effectively equivalent since whether this value is 1 or 0 has no impact on the actual start state
of the system. Additionally, these had no impact on the results of the SPIN analysis since the
value of this tag was not included in the property being searched for so a state would be recog-
nised or flagged regardless of the value of Activated_Flood_Control. For transparency,
these states have been identified and removed as “Duplicates”.
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Figure 5.12: A Sankey diagram of the inputs and results of the evaluation of the trunk model.
The diagram is read from left to right. The left side shows the make-up of test states. Moving
right shows the number of states that were flagged as anomalies and recognised as normal be-
haviours. These groups are then categorised into true positives, true negatives, false positives
and false negatives based on whether the model’s output matches their true classification.
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While a high detection rate for anomalies is a promising result for the trunk model, the
recognition of a small number of fabricated states is a concern. These are not states that have
been observed as occurring within the dam and, as a result, could represent potential attack
states that the model would fail to warn users about. There are two possibilities: either these are
attack states that our model is failing to recognise, or they are legitimately reachable states that
our testing hasn’t uncovered. To address this issue we first identified these states and then tested
them in our evaluation to determine whether they would be recognised as being valid by each
model.

5.4.2 Branch Model

The input for the branch model was considerably larger due to the number of possible combi-
nations of input states. While it was infeasible to check all of the states evaluated in the trunk
model, we were able to test all of the transitions that started or ended in the 1-bit modified and
2-bit modified sets and involved a baseline state. As previously mentioned, we also incorpo-
rated the false negative states. Finally the test states included the set of baseline transitions that
were observed during testing of the dam. The test transitions were generated by taking each of
these pairings of sets of states and computing the Cartesian product. To reduce the number of
test transitions, we did not include transitions where both states were in either the 1-bit or 2-bit
modified states. Using our previous trunk model analysis, we know that these modified states
will be flagged using the trunk model. The resulting number of possible combinations is very
large, the different parings of sets were generated as separate files to facilitate checking the test
transitions in smaller batches. The findings from the trunk analysis model can also be used to in-
form how the transitions are generated so as to focus our analysis on how well the branch model
complements the inability of the trunk model to contextualise states. Therefore, we prioritise
transitions to and from the false negative states of the trunk analysis and the baseline states. In
this way, we can target the analysis of how well the branch detects transitions from states that
the trunk model recognises into potentially dangerous modified states. We also tested transitions
between all of the false negative states to examine if an attacker can cause the system to enter a
sequence of invalid states while avoiding detection by our models. Similarly, we created transi-
tions between all of the baseline states to evaluate if our model could detect transitions occurring
between valid baseline states that we have not observed transitions between during our testing
of the dam. This was created by creating transitions between each of the 34 baseline states and
then subtracting the baseline transitions to give 1054 fabricated baseline transitions (342 −102
baseline transitions).

The breakdown of the pairings in the test transition dataset is shown in Table 5.1. The key
omissions from the test set are transitions between the 1 and 2-bit modified states. These were
not included as they would make the test data set too large to feasibly evaluate, and most of
these states have already been flagged by our trunk model. However, those that have not, the
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false negatives of the trunk, are included in our evaluation consisting of the recognised states
from the 1, 2, 3 and 4-bit modified sets.

Start Set End Set Number of Transitions
Baseline Baseline 1054
Baseline Trunk false negatives 1768
Trunk false negatives Baseline 1768
Trunk false negatives Trunk false negatives 2704
Baseline 1-bit modified 9214
1-bit modified Baseline 9214
Baseline 2-bits modified 99654
2-bits modified Baseline 99654
Trunk false negatives 1-bit modified 14092
1-bit Modified Trunk false negatives 14092
Trunk false negatives 2-bits modified 152412
2-bits modified Trunk false negatives 152412

Table 5.1: Table showing the composition of the test transitions set, summing to 561,752. Trunk
false negatives consists to the states that were not flagged during the evaluation of the trunk
model.

The set of test transitions was then used as input into the branch model in a similar way to
the manner used to test the trunk model. The results of this evaluation are shown in Fig. 5.13.
As can be seen, this model does not perform as strongly as the trunk model. It recognises a
significant portion of the transitions that were tested causing a high number of false negatives.

The branch model struggles to correctly identify transitions originating in an invalid state.
This is in part due to the branch model not being intended for use in isolation since it assumes
that the start state is a value and searches for the end state from there. This untethering of the
start state dramatically increases the number of false negatives, as it is easier for the state to
find a valid path when it begins at an invalid start state. Evidence for this can be seen in the
breakdown of state results by the type of state that the transition began in, as shown in Table 5.2.
When viewed this way it is clear that our approach works far better when the start state of the
system is valid, as is the case in the trunk model.

When the start state is invalid, a dramatic drop in performance can be observed when the
end state is considered valid. We can confirm this by grouping the results according to the
type of their end state. This gives the results in Table 5.3, which shows that when the end
state was invalid (was not recognised by the trunk model), the branch model performed with
99.55% accuracy. When the end state is valid, however, the branch model performs less reliably,
identifying transitions ending in baseline states as valid 51% of the time and those transitions
ending in trunk false negative as valid 55.42% of the time.

By calculating the difference between the start and end state IDs, we can identify trends in
the tag changes that are not being flagged and which values change the most often. A graph of
these frequencies is shown in Fig. 5.14. Fig. It indicates that the most frequently incorrectly
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Figure 5.13: A Sankey diagram of the inputs and results of the evaluation of the trunk model.
The diagram is read from left to right. The left side shows the bank of all transitions. Moving
right shows the number of transitions that were flagged as anomalies or not flagged by the
model and therefore recognised as normal behaviours. These groups are then categorised into
true positives, true negatives, false positives and false negatives based on whether the model’s
output matches their true classification.
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Figure 5.14: Visualisation of how often different tag value changes occured in the transitions that
were not flagged during the branch model evaluation. The most frequent tags are generator PLC
tags, with the exception of Return_Water_Supply_Control and HMI_Return_Feed
which are, respectively, a control PLC and HMI tags
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Type of Start State Transition Result Result Count Percentage
Baseline Valid 2586 2.31%
Baseline Invalid 109206 97.69%
Trunk false negative Valid 4688 97.54%
Trunk false negative Invalid 1590 2.46%
Other Modified Valid 145938 53.00%
Other Modified Invalid 129434 47.00%

Table 5.2: Aggregated totals for transition results grouped by the type of the start state. Tran-
sitions originating from baseline states perform significantly better than those originating from
modified states. A perfect score for the baseline group would be 102 valid results to 112,302
invalid, or less than 0.001% valid. All of the transitions originating from a state outside of the
baseline group are anomalies so a perfect score for those rows would be 100% invalid results.

Type of End State Status Count Percentage
Baseline Valid 57330 51.00%
Baseline Invalid 55074 49.00%
Trunk false negative Valid 95748 55.42%
Trunk false negative Invalid 77034 44.58%
Other Modified Valid 491 0.45%
Other Modified Invalid 108377 99.55%

Table 5.3: Aggregated totals for transition results grouped by the type of the end state. Transi-
tions ending in baseline states perform significantly worse than those ending in modified states.
A perfect score for the baseline group would be 102 valid results to 112,302 invalid, or less
than 0.001% valid. All of the transitions finishing in a state outside of the baseline group are
anomalies, so a perfect score for those rows would be 100% invalid results.

identified states contain generator state transitions. This is likely because an invalid configura-
tion of the system is homogenised by the design of our code. To illustrate this, we refer to the
simplified excerpt from the branch model shown in Fig. 5.15. Our generator process is designed
to perform valid assignments to tag values reflecting changes in the system state. When a gen-
erator’s “Active” tag changes state, all of the associated tags are changed to reflect this, as is
the case in the PLC code. However, when invalid start states occur, this design is undermined
as the design does not check for if the start state was invalid before making the new variable
assignments. To correct this, a change to the model would be required to check that the previous
state of the system is valid before changing state. Such a check could be performed on line 2 of
Fig. 5.15, checking that the values of the generator’s associated values are correct for an inactive
state before allowing it to become active. No such check is performed in the PLC code, however
the representation of the process’s logic is still consistent.

Our branch model failed to recognise one transition from our set of baseline states. We can
examine the states involved in this transition and compare them with our model to understand
why this normal behaviour has been flagged. The relevant tags and their values are presented
in Table 5.4. As can be seen the transition is not recognised because it violates our underlying
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1 if
2 :: Gen_A_Active == true -> goto Gen_A_On
3 fi;
4 /* Turn on Generator A */
5 Gen_A_On: skip
6
7 /* Assign generator values appropriately */
8 d_step {
9 Gen_A_Valve = true;

10 Gen_A_RedLED = false;
11 Gen_A_GreenLED = true;
12 ...
13 Gen_B_RedLED = true;
14 }

Figure 5.15: Excerpt from the branch model that allows invalid generator configurations to be
recognised. Since the model doesn’t check the start state configuration, an invalid start state
consisting of both LEDs being on can transition into a valid configuration through these d_step
sequences, which are executed for any configuration of Generator A and B activations.

assumption that the operator can only perform two actions in the time between the system gath-
ering new data. In the start state, Generator A is active, but the control PLC has yet to receive
this from the generator PLC. In the end state this is also the case. Since the control PLC will
certainly have received and updated its state within the transition time window, the only expla-
nation for this state occurring is that the Generator has been de-activated and then reactivated
during the transition window. Through these two actions, the control PLC would receive the
update that the generator was active, then another that it was inactive, resetting Gen_A_Status
to 0. Completing this sequence of operations takes two actions from the operator. This occurs
alongside the deactivation of Generator B, which requires an additional action from the operator.
There are, therefore, not enough actions to complete this sequence of events, so the transition
is flagged as anomalous. Since this is in the set of baseline behaviours, the model could be
modified to allow three operator actions to occur, allowing the model to recognise this type of
activity as normal. However, our assumption that an operator should only perform two actions
per transition seems reasonable. This is an extreme example of system activity since it requires
the operator to turn generators on and off again rapidly within the short timespan between sys-
tem state observations. It may be better for the system to flag this type of behaviour to ensure
that system operators are aware of its occurrence.

The intention when developing this model was to identify invalid transitions between valid
states. Such a transition would indicate a rapid change behaviour that is inconsistent with the
regular operation of the system, even if it begins and ends with the system in a normal operating
state. Examining the groupings of Tables 5.2 and 5.3 suggests that these states are among the
least likely to be identified since they begin and end in baseline states. As shown in Fig. 5.13, the
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branch model was able to identify some of these states are anomalous. Of the 1054 fabricated
baseline states, 250 were identified as anomalous, with 804 false negatives. While all of these
250 transitions are transitions that would otherwise not have been identified, allowing 804 false
negatives demonstrates that the model is not performing well in this regard. Similar to the
explanation for false negatives in the trunk model, this could be because these transitions are
possible in the dam and have not been observed in testing. There are relatively few inputs that
the operator can provide to modify the system state, and the length of the system’s operational
loop is relatively short in terms of the number of distinct states involved. Therefore, it is certainly
likely that a significant number of these transitions can indeed occur with only two actions on the
operator’s part. This type of branch model may, therefore, perform better in an environment with
a longer loop of system behaviours where the process proceeds through a sequence of stages.

Gen_A_Active Gen_A_Status Gen_B_Active Gen_B_Status
Start state 1 0 1 1
End state 1 0 0 1

Table 5.4: A table showing the baseline transition that wasn’t recognised by our branch model.
The transition shows that the Generator A is active in both states but that in both states the control
PLC doesn’t have this data. This implies that Generator A has been turned off and then turned
back on during the transition. Additionally, Generator B has been turned off. The transition
therefore requires three operator actions which is not permitted within our model.

5.5 Discussion

The overall performance of our approach is shown in Fig. 5.16. The trunk model detects anoma-
lies in many of the anomalous states involved in the anomalous transitions that the branch model
doesn’t detect. This means that despite the transition being recognised by the branch model, the
trunk model will ensure that the behaviour is flagged as anomalous. In this way, the trunk model
mitigates the relative weakness of the branch model for this type of transition. Conversely, the
branch model can improve the performance of using the trunk model alone by identifying 1,968
transitions between states that the trunk model incorrectly recognises as normal operational
states.

5.5.1 Model Classification Performance Metrics

A summary table of the results of the two models and their combined performance is provided
in Fig. 5.5. We use these values to calculate the precision, recall, accuracy and F1-score of each
model and the two models combined. These are metrics commonly used in the evaluation of
classification systems, particularly in the field of machine learning. The calculated metrics are
presented in Table 5.6.
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Figure 5.16: A Sankey diagram showing the improved performance gained by using the trunk
and branch models together. The trunk model mitigates the weakness of the branch model
by identifying and flagging invalid start states. The branch model is able to improve on the
performance of the trunk model alone by identifying 1,968 anomalous transitions consisting of
states that the trunk model did not identify.
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Model True Positives False Positives True Negatives False Negatives
Trunk 121,530 0 34 52
Branch 495,416 1 101 152,622

Combined 552,712 1 101 5,326

Table 5.5: Summary of the total number of true positives (correctly identified anomalies, true
negatives (correctly identified normal behaviours), false positives (normal behaviours incor-
rectly identified as anomalous) and false negatives (anomalies incorrectly identified as normal
behaviours) for the trunk and branch models, along with totals for when the models are used
together.

Category Precision Recall F1-Score Accuracy
Trunk 100% 99.96% 99.98% 99.96%
Branch 99.9998% 72.65% 84.16% 72.66%

Combined 99.9998% 99.05% 99.52% 99.05%

Table 5.6: Individual precision, recall, F-score and accuracy scores for trunk and branch models
when used individually and when used together.

Precision =
True Positives (TP)

True Positives (TP)+False Positives (FP)

Precision is a metric that measures the ratio of true positives to all positives. It is a signifier
of how reliable a positive result is of an anomaly. Our approach scores very highly in precision,
close to 100%, since almost every positive result was indeed an anomaly.

Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)

Recall measures how many of the total anomalies were correctly flagged as anomalies.
The trunk model performs extremely well in this regard, again almost 100%, since almost all
anomalies were correctly flagged. By comparison, the branch model scores considerably worse,
72.65%, because even though it correctly identified a large number of anomalies, it also allowed
a large number of anomaly transitions to pass without being identified.

F1-score and accuracy are both metrics used to evaluate the overall performance of the clas-
sifier, considering each of the four outputs.

Accuracy =
True Positives (TP)+True Negatives (TN)

Total Number of Samples
=

TP+TN
TP+TN+FP+FN

Accuracy measures how often the classifier is correct. It is the measure of true positives
and true negatives out of the set of all inputs. This is useful in a balanced dataset where there
are an equal number of positive and negative cases or in the case where false positives and
false negatives are considered equally as costly. However, in an imbalanced dataset, it can be
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easily skewed. Our dataset is imbalanced since 99% of the states in it are anomalous, therefore
a system that predicts an anomaly 100% of the time will score 99% accuracy since it weights
all errors equally. In these cases, an alternative metric is better suited to weigh the classifier’s
performance more evenly. The trunk model and the combined approach score well in accuracy,
with scores of 99.96% and 99.05%, respectively. The branch model scores considerably lower
with a score of 72.66%, indicative of the number of false negatives present.

F1 = 2× Precision×Recall
Precision+Recall

= 2×
TP

TP+FP ×
TP

TP+FN
TP

TP+FP +
TP

TP+FN

The F1-score is a specific variation of the general F-score metric. F-scores are calculated
using precision and recall to better quantify a system’s performance, particularly in cases where
balancing false positives (FP) and false negatives (FN) is critical. The parameter β in the general
Fβ -score represents the relative weighting of precision to recall. F1-score uses a β = 1, assigning
equal weight to precision and recall to compute the harmonic mean of the two metrics.

In our test data, we have very few true negative cases and instances of correctly identified
normal behaviour. However, it is critical to the functionality of our system that a viable approach
correctly distinguishes these true negatives from the large set of anomalies. With the F1-score,
if our system failed to recognise any of these true negatives, it would result in an F1-score of
0%. Conversely, if it failed to identify any anomalies, it would also score %, making it a better
metric for evaluating our approach. The trunk and combined approaches once again score highly
in this metric with 99.98% and 99.52%. The branch model scored lower in F1-score with a score
of 84.16%, a higher score than its accuracy metric due to the F1-score weighing its ability to
classify almost all of the the true negatives correctly.

5.5.2 Model Integration

In our testing, we found that the analysis performed by SPIN could not initially keep pace with
the rate at which data was being retrieved from the system. Two modifications to our design were
used to mitigate this to an acceptable level. Firstly, a multithreaded approach was implemented
where the retrieved states were pushed to a thread-safe queue to be processed by worker threads.
Each worker thread can access a model template in its own working directory, embedding the
state values before compiling the model and executing SPIN. Using this approach, we achieved
an average search time of 7.9 seconds for the trunk model and 2.4 seconds for the branch model.
The difference in these times is due to the increased complexity and scope of the trunk model.
In our testing, for each transition, we had to search the trunk model for each state and the branch
model for the transition between them; it took an average of 18.2 seconds for a thread to process
a transition this way. This is still much greater than the rate at which new data is received
(approximately once per second), so further efficiency improvements are required.

The key enabler of our approach is the use of memoisation optimisation techniques. Memo-
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isation refers to the storage and retrieval of values that are computed through expensive function
calls. In this case, when a new state or transition is identified, SPIN is executed as previously
described. Upon completion, the value calculated, True for a recognised normal behaviour or
False for an anomaly, is stored in a table alongside the identifier for the state or states in the
transition. When that state or transition is next encountered, the system can retrieve the pre-
computed value instead of performing another SPIN search. Using this approach significantly
reduces the computational load of our approach during operation. When the system is started,
the memoisation tables are empty and the rate at which new states are observed outpaces the
speed at which SPIN can process them. Values are stored in a queue for processing and may
not be processed until previous system data is checked. This leads to a delay in response but
not the absence of a response. As the worker thread processes the observed states and appends
their computed values to the memoisation table, the system stabilises, and searches are only
executed for previously unobserved data. Until this happens the system is more vulnerable. In
a more complex system, the time taken to achieve stabilisation may be increased; however, this
approach is practical in all systems with repeated behaviours or cycles. Once this stabilisation
has occurred, the time taken to identify an anomaly can be as low as 10.3 seconds in the likely
scenario that the previously observed state has been previously computed.

While the results of our evaluation are promising, the model can be further refined through
an iterative design process. The misclassified states can be used to identify flaws in the repre-
sentation of the system. However, these changes should only be made if it can be confirmed
that they are indeed anomalous. It may be that they have not been observed in testing but are
theoretically possible in practice, prompting a discussion about whether or not this behaviour is
intended. Therefore, refinements to the model should ideally be made jointly with the design-
ers of the underlying system being modelled, who can determine whether identified anomalous
behaviours are valid examples of normal behaviour or not.

5.6 Summary

In this chapter, we developed a specification-based approach for validating the behaviour of
the PLCs within the hydroelectric dam. Model checking is used to provide a comprehensive
understanding of the possible states that the dam can reach, using that as a baseline with which
to compare observed behaviours.

We show how we constructed a logical representation of the PLC behaviours by inspecting
their code. We provided excerpts of the Promela model and explain our process of replicating
the original behaviour, written in PLC Ladder Logic. We used this transcription process to create
two models of the dam, a “trunk” and a “branch” model, to assess state snapshots in different
contexts. Each model also includes a representation of the operators of the dam through the
integration of an HMI process that provides user inputs to the dam that can change the state.
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The trunk model captures the set of all possible reachable states that the dam can reach and is
used to assess whether a given set of state values is valid. The branch model has a variable start
state and can be used to check if the dam has a valid execution path between given start and end
states.

We discussed how we integrated the two developed models into the DT framework developed
in Chapter 4. Each snapshot of state data is embedded into the trunk model through the use of
placeholder values that are overwritten. The instantiated model, containing the state data, is then
checked with SPIN to determine if that set of state data is valid. If the state is valid, SPIN will
return a counterexample containing a sequence of system states that would allow the system
to reach that state. We used the presence of this counterexample to determine that the state is
valid. If no counterexample is found, the state is unreachable through normal operation of the
dam and we conclude that it has occurred due to an anomaly that should be investigated. Each
system snapshot is also checked for validity against the previously collected system snapshot
by instantiating an instance of the branch model with the previous and current snapshots. SPIN
then checks this branch model instance to determine if the system could transition between these
two observed states during the time interval between them being gathered.

We evaluated our approach by generating a large set of anomalous variations of observed
system states. By modifying the baseline states, we created a set of the most subtle anomalous
states that an attacker might try to put the system into.

The trunk model was evaluated against a dataset of 34 baseline states and 122,182 variations
of those baseline states with up to 4 modified tag values. Of the resulting 122,216 state variations
checked, SPIN recognised all the baseline states as normal state configurations, with only 52
anomaly states that were incorrectly recognised as normal.

A subset of the anomaly test states was used with the baseline states to create a set of test
transitions between pairs of these states. This created a test dataset of 558,038 anomalous tran-
sitions and 102 baseline transitions that had been observed in the dam previously. Checking this
dataset revealed that the branch model recognised all but one of the baseline transitions, it per-
formed weaker than the trunk model recognising 152,622 anomalous transitions. We analysed
these anomalous transitions and determined that the model performed poorly specifically on the
set of transitions that began in an anomalous state. However, since the trunk model performs
strongly at identifying these anomalous start states, this weakness is almost eliminated when we
combine the two models. When we analysed the performance of the branch model with the re-
sults of the trunk model to identify the number of transitions that contained states and transitions
that neither approach identified. This resulted in only 5,326 anomalous system transitions that
were not flagged correctly and a single incorrectly identified baseline transition.

Metrics for evaluating the performance of classification systems were used to assess the
effectiveness of our approach. Each of our models was very effective at identifying base-
line behaviours, with each scoring almost 100% precision. Our trunk model also performed
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very strongly in recall, a measure of how well the system identified anomalies, where it scored
99.96%. Though our branch model was the weaker of the two models, it still achieved a recall
score of 72.65%. We calculated F1-score and accuracy for the two models to evaluate overall
performance. Our trunk model achieved an accuracy score of 99.96%, while our branch model
achieved an accuracy score of 72.66% due to the high number of falsely recognised transitions.
Overall our approach scored 99.05% accuracy. Since our dataset contains predominately anoma-
lous behaviour, F1-score is a better metric for evaluating overall performance than accuracy as it
corrects the class imbalance better. Our trunk model scored 99.98% F1-score, the branch model
scored 84.16% and overall, the F1-score of our approach is 99.52%. While our evaluation can-
not practically evaluate the entire set of observable behaviours, the results of our evaluation on
a subset of them suggest that this technique can deliver highly reliable identification of system
anomalies.



Chapter 6

Modelling Digital Twin Networks using
Alloy

In this chapter, we propose using formal methods to construct representations of computer net-
works. We model the networks that comprise the digital thread connecting the DT with its
physical counterpart, which can then be used to search for patterns of behaviour consistent with
threats that affect DTs. Identifying these threats can expose design vulnerabilities early in the
development process when preventative measures can most easily be introduced.

6.1 Alloy

We use Alloy to model the structure and design of the digital thread within a DT using the tech-
niques outlined in Section 3.4. Alloy consists of two parts. The first is the Alloy specification
language that is used to describe structures and how they interact. The Alloy Analyzer is used
to assemble the structures that have been described, combining them using the rules and con-
straints contained within the model to generate instances. The generated instances satisfy the
given constraints and show an example of an arrangement that can occur in the modelled system.
The search for examples can be focussed through the use of predicates that narrow the search
for counterexamples that violate the statements made in the predicates. We utilise the native
support for traces that were added in Alloy 6 to allow for our model to consist of a sequence of
states and for us to check properties over the length of this sequence. This provides a powerfully
expressive language for describing structural designs that change over time.

As Alloy uses first-order logic to create its models, checking the validity of assertions for
all cases is undecidable [115]. However, Alloy is not designed to provide proof of a property,
rather to provide refutation. Given a bounded scope within which to search, the alloy analyzer
will provide sound analysis that is guaranteed to find a counterexample if one exists within the
given scope.

The process used to perform this type of analysis follows a standard iterative model-checking
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Figure 6.1: The alloy modelling process described as a flowchart. An alloy specification of a
DT design is iteratively checked for properties representing threats identified in its operational
environment.

process. Fig. 6.1 illustrates how this technique can be used during the design of a DT. The
approach begins with an initial design for a DT. During the design process, the types of threats
that exist in the environment to which the DT will be deployed are considered. In order to
assess if sufficient mitigations exist within the given model, a specification of the design is
created in Alloy that contains the key components of the system and their interactions. Using
this specification, threat properties are constructed to represent the patterns of behaviour that
need to be checked within the design. The alloy analyzer then checks the specification for the
presence of the given threat properties. If a counterexample is found, it is either due to a flaw in
the design or an error in the design specification. If it is a modelling error, the specification is
corrected, and the analysis is performed again. Similarly, if the counterexample exposes a flaw
in the system’s design, then additional mitigations are added to the design, a new specification
representing the changes is created, and the analysis is performed again. This process continues
until no counterexamples are found. At this point, if the specification represents the behaviours
of the design, then the process will have provided additional assurance that the model is robust
to the threats modelled within the threat properties, and development can proceed.

6.1.1 Modelling Network Security in Alloy

Alloy has previously been applied to modeling Cyber-Physical Systems (CPS) and Internet of
Things (IoT) networks [136, 138]. In [138], an Alloy model is presented that represents IoT
subsystems communicating over a network of channels. This approach was later extended to
verify cyber-security standards in [136].
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The method of representing a network of devices in these works is intuitive and broadly ap-
plicable to various challenges. We adopt a similar approach in the early models of this chapter.
However, while [136, 138] focus on the interactions between IoT subsystems in an unstruc-
tured network—demonstrating eavesdropping and identity-faking attacks—our approach shifts
the focus towards the network architecture and its role in security.

Our objective is to better understand how the network architecture should be designed to
securely connect two specific systems: the DT and the ICS. As we will show in this chapter we
achieve this by developing and refining our model to explicitly represent the network’s structure
and the exchange of datasets within it. Additionally, our approach makes the presence of a
threat actor explicit, defining them as an entity within the network. This entity possesses a
known dataset and a set of possible actions to expand its knowledge and influence within the
system.

6.2 Introduction to the Alloy Specification Language

In Section 6.7 we construct alloy models of the connective digital thread within a DT network.
In this section we will examine several models of increasing complexity that were created in the
process of developing these more advanced models.

Since the technologies within the DT thread vary depending upon the twinned system, our
goal is to construct a modelling approach that abstracts many of these specifics by considering
them from the perspective of the attacks that can be carried out on them. This will allow us to
focus specifically on the key characteristics most relevant to security during the transfer of data
between the physical and virtual spaces.

The models in this chapter reflect some behaviours of a computer network – implementing
them in Alloy is a process of iterative refinement to make them better reflect the behaviours of the
network while staying within the bounds of computability. Since this process affects how these
models have been designed, we will present them in sequences that demonstrate this refinement
process. In Section 6.3 we refine an initial modelling approach through a series of improvements
to the representation of data and devices in the model. In Section 6.4, these refinements are used
as a foundation to expand the concept of message passing which is then used to illustrate IP and
ARP spoofing attacks in a DT network. Finally, we implement significant advancements to the
previous models that allow it to be applied to check for vulnerabilities in our DT framework
developed in Chapter 4 and 5.

6.3 Initial Model Development

We start with the specification shown in Fig. 6.2, which contains a simple Device signature
specified in Alloy 5 that represents a device within a network. Below the signature name is a
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1 s i g Device {
2 / / A d e v i c e has l e a s t one c o n n e c t i o n
3 c h a n n e l : some Device
4 } {
5 / / D e v i c e s ca nn o t be d i r e c t l y c o n n e c t e d t o t h e m s e l v e s
6 t h i s not in c h a n n e l
7 }
8
9 run show {} f o r 3 Device

Figure 6.2: Initial alloy model of devices linked with channel relations.

Device0 Device2
channel

Device1channel
channel

Figure 6.3: The minimum alloy instance that can be generated by executing the model in Fig.
6.2

single relation channel that specifies that each atom of the Device signature is related to at least
one other device. This is followed by a single signature fact that states that device atoms cannot
be related to themselves through the channel relation. This simple model allows us to generate
simple representations of a network of devices. By executing the run command shown in the
listing and providing a scope of 3 Devices, we can generate the instance shown in Fig. 6.3. The
figure shows that Alloy has identified an instance with the three devices connected in a loop of
directional channels and is just one example of a satisfying instance for our given constraints.
Multiple examples of 2 and 3 devices, as well as an empty network containing no devices, satisfy
the constraints.

This simple model contains a method of representing how devices within a network are
connected. In our representation, we need to be able to associate devices with the data that they
know. To examine how these devices communicate across these channels, we introduce a new
Data signature representing data that is being shared between devices.

Data must be able to move through the network, as devices send or receive it. Consequently,
the relations used to represent data must also be able to move. There are a few different ways
to represent this in Alloy, we will consider some of these in this chapter. The original method
of representing a sequence of events in Alloy is to use the ordering 1 module. The module
puts the elements of a signature into an ordered list and provides some functions to enable
facts that restrict the order in which these elements can be arranged. Using this module we

1https://alloy.readthedocs.io/en/latest/modules/ordering.html
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1 open u t i l / o r d e r i n g [ S t a t e ]
2
3 s i g Data {}
4 s i g Device {}
5 s i g S t a t e {
6 / / The s e t o f da ta known by each d e v i c e i n each s t a t e
7 d a t a : s e t Device → s e t Data ,
8 / / A d e v i c e has l e a s t one c o n n e c t i o n
9 c h a n n e l : s e t Device → s e t Device

10 }{
11 / / D e v i c e s do n o t have c h a n n e l s d i r e c t l y t o t h e m s e l v e s
12 a l l d: Device | d not in d . c h a n n e l
13 / / Each d e v i c e has an i n d i r e c t c h a n n e l t o e v e r y o t h e r d e v i c e
14 a l l d , d ' : Device | d ' in d . ^ c h a n n e l
15 }
16
17 f a c t {
18 / / Network c h a n n e l s remain c o n s i s t e n t be tween s t a t e s
19 a l l s : S t a t e , s ' : s . n e x t |
20 s . c h a n n e l = s ' . c h a n n e l
21
22 / / P r e v i o u s l y known da ta i s r e t a i n e d i n f u t u r e s t a t e s
23 a l l s : S t a t e , s ' : s . nex t , d e v i c e : Device |
24 s . d a t a [ d e v i c e ] in s ' . d a t a [ d e v i c e ]
25
26 / / D e v i c e s s h a r e a l l da ta on a l l c o n n e c t i o n s be tween s t a t e s
27 a l l s : S t a t e , s ' : s . nex t ,
28 s e n d e r : Device , r e c e i v e r : s . c h a n n e l [ s e n d e r ] |
29 s ' . d a t a [ r e c e i v e r ] = s . d a t a [ r e c e i v e r ] + s . d a t a [ s e n d e r ]
30 }

Figure 6.4: Devices model enhanced with data sharing.

create an updated version of our model, shown in Fig. 6.4. The new State signature contains
all of the relations, now specified as mappings between atoms. State.data is a mapping
from each Device atom to all of the Data atoms that the device knows in that state. State

.channel plays a similar role to the previous channel relation, although it is a relation
within the State signature mapping each device to the devices that it can communicate with.
In line 1, we use the ordering module on the State signature to force Alloy to arrange the state
atoms into an order. Using facts within the State signature, we restrict channels. In line 14 we
use the transitive closure operator ^ to access the set of devices accessible by applying the
channel relation recursively. This gives us all the devices connected to a device, both directly
and indirectly. This allows us to enforce that for every device, d , every other device, d ' , must
be present within that set.

The other facts after line 17 specify how relations can change between states, this is how we
specific temporal behaviours in the model. The facts starting on line 23 and line 27 show how the
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Device0

Device2

channel

Device1

channel Data

data

channel
Legend

Device

Data

(a) Device 0 knows some data.

Device2

Device0

channel Device1

channel

Data

data

data

channel

(b) The Data has been shared with Device2.

Figure 6.5: A two-state trace showing an instance generated by the Alloy Analyzer when running
the model shown in Fig. 6.4.

mappings within State can be used. For example, s.data[device] refers to the set of
data that the device knows in State s. In those two facts, we specify that devices retain knowledge
of data that they’ve previously learned and that devices share that data with all devices that they
are connected to. Instances can be generated as before by using the run command. However,
this time, the instances consist of multiple States. By projecting the relations in State over the
atoms in the instance, we see the sequence of states as shown in Fig. 6.5. Viewing the states
and the ordering in which they’re presented allows us to observe the data being shared between
devices. In the initial state of the trace shown in Fig 6.5 (a) we can observe that Device0 has a
piece of Data that it knows and a channel to Device2. After the transition, that Data has been
shared with Device2 since both devices now have data relations to it.

With this foundation we can now introduce our first mechanism for modelling intrusions into
the network, compromised devices. When a device in a network becomes compromised it can be
used to attack or undermine the operation of other devices. Compromised devices might attempt
to take control of another device by sharing an exploit with them, or they might share modified or
incorrect data to try and get them to spread that data with (and thus compromise) other systems.
We can take the first step to model this by expanding the State signature to label devices that
are compromised and data that are malicious as shown in Fig. 6.6. Constraining the behaviour
in this way requires two components. On line 18, we keep track of all compromised devices
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1 s i g S t a t e {
2 . . .
3 compromised : s e t Device ,
4 m a l i c i o u s : s e t Data
5 }{
6 / / D e v i c e s t h a t i n t e r a c t w i t h m a l i c i o u s da ta are compromised
7 a l l datum : m a l i c i o u s , d: Device |
8 datum in d a t a [ d ] i m p l i e s d in compromised
9 / / A l l compromised d e v i c e s have a c c e s s e d some m a l i c i o u s da ta

10 a l l d e v i c e : compromised | some datum : d a t a [ d e v i c e ] |
11 datum in m a l i c i o u s
12 }
13 f a c t {
14 . . .
15 / / Compromised d e v i c e s are r e t a i n e d i n f u t u r e s t a t e s .
16 a l l s : S t a t e , s ' : s . n e x t |
17 s . compromised in s ' . compromised ∧
18 s . m a l i c i o u s = s ' . m a l i c i o u s
19 }
20 pred i n i t ( s : S t a t e ) {
21 / / Must i n c l u d e some m a l i c i o u s da ta
22 # s . m a l i c i o u s = 1
23 / / Not a l l d e v i c e s can be compromised
24 not s . compromised = Device
25 }

Figure 6.6: A listing from an alloy model showing the modifications to State that enable com-
promised devices to share malicious data and compromise other devices.

and malicious data, ensuring that previously compromised devices remain compromised in the
future. This is enforced through the use of the in operator to ensure that the set of devices
that were compromised in a previous state is at least a subset of the devices in the next state. On
line 20 we constrain the set of malicious data to remain the same, so in this model compromised
devices do not create more malicious data.

The signature facts on lines 7 and 10 of State define how malicious data compromises
devices that interact with it. The first fact enforces that any device that knows malicious Data is
in State.compromised . This alone may seem sufficient to constrain the model. However,
because we use implication in the previous fact, we must cover instances where the conditional
in the expression datum in data[d] is false, in this case devices that have not interacted
with malicious data can also be compromised. Therefore, we prevent Alloy from compromising
devices that have not interacted with malicious data.

The created model represents a basic system where a malicious intruder can compromise
other systems directly by sharing malicious data with other devices. An example of what an
instance of this model looks like is shown in Fig. 6.7. It shows how the movement of data from
a compromised device to an uncompromised device. In the initial state, shown in Fig. 6.7 (a)
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Device0

Device2
(compromised)

channel

Data1
(malicious)

data

Device1

channel

channel Data0

data

Legend

Device

Data

(a) Device 2 sends malicious Data to Device 1.

Device0

Device2
(compromised)

channel

Data0

data

Data1
(malicious)

data

Device1
(compromised)

channel

channeldata

data

(b) Device 1 receives the malicious Data and be-
comes compromised. Device 0 remains unaf-
fected.

Figure 6.7: A two-state trace of the model from Fig 6.6 showing malicious data compromising
Device 2.

Device2 is compromised, and has created a piece of malicious data. It has an outgoing network
channel to Device1 and we can observe, in Fig. 6.7 (b), that after the transition this data has
been shared with Device1 potentially undermining its operation and compromising it.

DTs rely on a network of devices sharing data to form a connected thread; if one device
in that thread becomes compromised, the data all the way up the thread is undermined. To
examine the propagating impact of this, our model should enable compromised devices in the
network to turn clean data into malicious data. The changes shown in Fig. 6.8 modify the code
in Fig. 6.6 to address this. The signature fact on line 10 of Fig. 6.6 is modified to reflect an
aggressive attacker that compromises all data that it interacts with. The fact on line 13 in Fig.
6.6 removes the restriction that maintains the amount of malicious data in the system, enabling
more malicious data to be created.

When testing our Alloy model, the behaviour shown in Fig. 6.8 can be seen. When an
uncompromised device becomes compromised in the same transition that it sends clean data, it
causes that clean data to become malicious. The clean data that has incorrectly been labelled as
malicious then makes the receiver of that data compromised, despite not having interacted with
malicious data. While those devices would eventually become compromised, the model skips
the intermediate steps and propagates the effect too quickly. Additionally, it also backwards
propagates in such a way that all devices that had interacted with that data before it became
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1 s i g S t a t e { . . . }{
2 . . .
3 / / R e p l a c e s p r e v i o u s c o n s t r a i n t ( some > a l l )
4 / / A l l da ta t h a t i n t e r a c t s w i t h compromised d e v i c e s i s m a l i c i o u s
5 a l l d e v i c e : compromised | a l l datum : d a t a [ d e v i c e ] |
6 datum in m a l i c i o u s
7 }
8 f a c t {
9 . . .

10 a l l s : S t a t e , s ' : s . n e x t |
11 s . compromised in s ' . compromised ∧
12 / / The amount o f m a l i c i o u s da ta can i n c r e a s e be tween s t a t e s
13 s . m a l i c i o u s in s ' . m a l i c i o u s
14 }

Figure 6.8: An updated State signature that enables compromised devices to turn data they
interact with malicious.

Device1

Device0

channel Device2
(compromised)

channel

Data0

data

channel

Data1
(malicious)

data
Legend

Device

Data

(a) Clean data, Data 0, being sent to compromised
Device 2.

Device0
(compromised)

Device1
(compromised)

channel

Data1
(malicious)

data

Data0
(malicious)

data

Device2
(compromised)

channel

channeldata

data

(b) Device 2 receives Data 0, Device 1 is now
compromised.

Figure 6.9: A two-state trace demonstrating the need for changes to the modelling of data in Fig.
6.8. Device 1 receives no data but becomes compromised via the sent Data 0.

malicious will be compromised. This issue highlights the need for a more advanced means of
modelling the data within a system so that the location of a piece of data moving through the
network is tracked independently from the list of devices that know and have interacted with
that data.
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6.4 State Transition Model

With the basic concepts of alloy and our modelling approach demonstrated, we now introduce
an updated second model that builds upon it. In this version, we use the features provided in
Alloy 6 to expand the potential of the model with mutable signatures and fields and the increased
functionality of temporal operators in the specification of the model’s behaviours and properties
2. The addition of the var keyword allows for the specification of a mutable signature or field
that can change between states. A generated instance with these mutable elements consists of a
trace that can be traversed in a similar, but natively supported, manner that allows for the State
signatures in our previous model to be observed in sequence. By adding these mutable signa-
tures we can remove the need to store time-variable relations in a separate State signature and
instead move those relations into the signatures. As we will show in this section, this substan-
tially improves the expressiveness of the model, while also enhancing readability of complex
relations as the functionality of the State relations is handled within each variable signature.
Additionally, there are now more powerful temporal operators that can be used to enhance facts.
The model is no longer restricted to only utilise functions provided by the ordering module that
consists of operations providing access to the order dictated by the ordered signature. Instead
we can modify conditional facts directly with operators such as eventually , always, until , and
historically to give a more nuanced specification of how the networked devices interact.

Using the new variable signatures of Alloy 6, along with the updated temporal operators,
the model can be restructured as shown in Fig. 6.10. The updated version retains all of the
capabilities of its predecessor while being smaller and more readable since all of the facts are
now signature facts. It also includes the addition of the Data. location field that tracks data
as it moves across the network. Attaching the labelling of malicious data and compromised
devices to this allows for a more useful representation of network vulnerability in our model, as
devices can receive a piece of data and inadvertently pass it on to a compromised device without
becoming compromised themselves.

This model does not yet help answer questions about how the system is vulnerable. We can
introduce further elements to model how data moves through the network and so investigate
ways in which this process may be interfered with. We first focus on IP messaging and, to do
this, introduce the Message signature as shown in Fig. 6.11. To reduce the size of the model,
a stream of IP packets is condensed into a single IP message. To focus on the movement of
data, we primarily include the source and destination header fields. Other flags can readily be
integrated here but would increase the size of the model, limiting the depth of the analysis. When
focussing on ARP and IP spoofing attacks these other flags are less important for our analysis
so they are omitted.

We add an identity to the Device signature (equivalent to a network address) so that the

2https://alloytools.org/alloy6.html
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1 enum S t a t u s { Clean , Compromised , M a l i c i o u s }
2
3 some var s i g Device {
4 var s t a t u s : S t a t u s ,
5 c h a n n e l : some Device ,
6 var d a t a : s e t Data ,
7 }{
8 / / No s e l f c h a n n e l s
9 t h i s not in c h a n n e l

10 / / D e v i c e s remember what da ta t h e y know
11 d a t a in da ta '
12
13 / / D e v i c e s are compromised i f :
14 s t a t u s = Compromised i f f {
15 / / t h e d e v i c e has a lways been compromised ,
16 h i s t o r i c a l l y s t a t u s = Compromised
17 / / or t h e d e v i c e became compromised i n a p r e v i o u s s t a t e ,
18 or b e f o re s t a t u s = Compromised
19 / / or some compromised da ta was r e c e i v e d
20 or some datum : d a t a |
21 once ( datum . s t a t u s = M a l i c i o u s and datum . l o c a t i o n = t h i s )
22 }
23 }
24
25 some var s i g Data {
26 var s t a t u s : S t a t u s ,
27 var l o c a t i o n : one Device
28 }{
29 / / Nex t l o c a t i o n i s a t most one c h a n n e l move from t h e c u r r e n t one
30 l o c a t i o n ' in l o c a t i o n + l o c a t i o n . c h a n n e l
31 / / D e v i c e s know da ta t h a t i s l o c a t e d a t them
32 t h i s in l o c a t i o n . d a t a
33
34 / / Data i s m a l i c i o u s i f
35 s t a t u s = M a l i c i o u s i f f {
36 / / i t was p r e v i o u s l y m a l i c i o u s
37 b e f or e s t a t u s = M a l i c i o u s
38 / / or i f i t has e v e r been a t a compromised d e v i c e
39 or some d e v i c e : Device |
40 once ( l o c a t i o n = d e v i c e and d e v i c e . s t a t u s = Compromised )
41 }
42 }

Figure 6.10: An Alloy listing showing mutable signatures for Device and Data. A ’ refers to that
field in the next state of the trace.
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1 / / Messages c a r r y da ta a c r o s s t h e ne twork
2 some var s i g Message {
3 s o u r c e : one Device ,
4 d e s t i n a t i o n : one Device ,
5 p a y l o a d : one Data ,
6 var l o c a t i o n : one Device ,
7 }{
8 l o c a t i o n ' in l o c a t i o n + l o c a t i o n . c h a n n e l
9

10 / / Messages a c t u a l l y have t o go somewhere .
11 not s o u r c e = d e s t i n a t i o n
12
13 / / Payload da ta i s o n l y compromised i f
14 p a y l o a d . s t a t u s = M a l i c i o u s i f f {
15 / / i f i t was compromised i n t h e p r e v i o u s s t a t e .
16 b e f or e p a y l o a d . s t a t u s = Compromised
17 / / or t h e message i s a t a compromised l o c a t i o n
18 or once l o c a t i o n . s t a t u s = Compromised
19 }
20 / / Messages d e l i v e r pay load and s t o p a t t h e i r d e s t i n a t i o n
21 l o c a t i o n = d e s t i n a t i o n i m p l i e s {
22 p a y l o a d in l o c a t i o n . d a t a
23 l o c a t i o n ' = l o c a t i o n
24 } e l s e {
25 / / O t h e r w i s e t h e y must move a long a c h a n n e l
26 a l l t o p o l o g y : Topology | l o c a t i o n ' in l o c a t i o n . c h a n n e l
27 / / They are a lways r o u t e d t o t h e i r d e s t i n a t i o n
28 e v e n t u a l l y l o c a t i o n = d e s t i n a t i o n
29 }
30 }

Figure 6.11: An Alloy listing showing the addition of the mutable signature for an IP Message
that carries data through the network. Data.location becomes Message.location and the rules for
compromising data are modified accordingly.

devices are distinguishable and identifiable by each other.
To illustrate our process further and demonstrate its utility, we model a simple architecture

of a DT in an ICS. We define instances to represent the components of the physical system, the
DT and the infrastructure used to connect them using the abstract device signature shown in
Fig. 6.12. Our model now represents the other components with signatures for Data, messages,
channels and network topology. It uses extensions of the Device signature for different types
of devices, such as the DT, PLCs, network switches and attackers. Messages transport data
across the network; during each state transition, the location of each message will change to
model the process of transporting data across the digital thread. Using this basic model, we
can then represent the techniques that may be employed by threat actors to interfere with these
mechanisms.
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1 some a b s t r a c t s i g Device {
2 var s t a t u s : S t a t u s , / / Type : enum { Clean , Compromised }
3 i d e n t i t y : Device , / / P u b l i c i d e n t i t y ( IP a d d r e s s )
4 c r e a t e d : s e t Data , / / Data c r e a t e d by d e v i c e
5 var a c c e p t e d : s e t Data , / / Data consumed by t h i s d e v i c e
6 var messages : s e t Message / / Messages c u r r e n t l y a t t h i s d e v i c e
7 }{
8 / / A l l d e v i c e s are c o n n e c t e d t o a t l e a s t one c h a n n e l
9 some chan : Channel | t h i s in chan . c o n n e c t e d

10
11 a c c e p t e d in a c c e p t e d ' / / A c c e p t e d r e t a i n e d be tween s t a t e s
12
13 / / R e c i p r o c a t e s d e v i c e . messages and message . l o c a t i o n
14 a l l message : messages | message . l o c a t i o n = t h i s
15
16 / / Only s w i t c h e s can be p a r t o f m u l t i p l e c h a n n e l s
17 a l l d i s j chan1 , chan2 : Channel {
18 t h i s in chan1 . c o n n e c t e d & chan2 . c o n n e c t e d i m p l i e s
19 t h i s in Swi tch
20 }
21
22 / / Dev ice compromise c o n d i t i o n s
23 s t a t u s = Compromised i f f {
24 t h i s in A t t a c k e r
25 or b e f o re s t a t u s = Compromised
26 or some d a t a : a c c e p t e d | b e f or e d a t a . s t a t u s = Compromised
27 }
28
29 / / I f d e v i c e i s c l e a n i t has n e v e r been compromised .
30 s t a t u s = Clean i m p l i e s h i s t o r i c a l l y s t a t u s = Clean
31
32 / / Non− a t t a c k e r d e v i c e s have t h e i r own i d e n t i t y
33 t h i s not in A t t a c k e r i m p l i e s i d e n t i t y = t h i s
34
35 / / A l l a c c e p t e d da ta i s from a message s e n t t o t h i s d e v i c e
36 a l l d a t a : a c c e p t e d | some message : Message {
37 message . p a y l o a d = d a t a
38 and once message . l o c a t i o n = t h i s
39 and d a t a not in c r e a t e d
40 }
41 }

Figure 6.12: An Alloy listing showing the abstract signature that the Attacker, PLC, Switch and
DigitalTwin signatures inherit from.
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Each Device has a status to indicate whether they have interacted with malicious data or
devices. They have a set of data they have created, which can be transported to another device
in a Message. At each step of a satisfying instance or counterexample, each device has a set of
messages which are currently being sent or received by the device. Finally, each device has a set
of messages that it has received over the network and has accepted. Accepted data is data that
the device trusts and which may then be used within the device’s operation. If a device accepts
compromised data, its status will become compromised.

1 some s i g Message {
2 s o u r c e : one Device , / / Sender i d e n t i t y
3 d e s t i n a t i o n : one Device , / / Where t h e message i s go ing
4 s i g n a t u r e : one Device , / / True s e n d e r
5 p a y l o a d : one Data , / / Data c o n t a i n e d i n message
6 var l o c a t i o n : one Device / / C u r r e n t l o c a t i o n o f da ta
7 }{
8 not s o u r c e = d e s t i n a t i o n / / Messages go somewhere
9 s o u r c e not in Swi tch / / S w i t c h e s don ' t send da ta

10 d e s t i n a t i o n not in Swi tch / / S w i t c h e s aren ' t s e n t da ta
11
12 / / No messages are i n t e n t i o n a l l y s e n t t o t h e a t t a c k e r
13 d e s t i n a t i o n not in A t t a c k e r
14
15 / / Pay loads are o n l y compromised a t a compromised l o c a t i o n
16 / / or i f t h e y were compromised i n t h e p r e v i o u s s t a t e .
17 p a y l o a d . s t a t u s = Compromised i f f {
18 l o c a t i o n . s t a t u s = Compromised
19 or b e f o re p a y l o a d . s t a t u s = Compromised
20 }
21
22 / / Messages move u n t i l t h e y reach a v a l i d d e s t i n a t i o n
23 / / Where t h e y remain and t h e i r pay load i s a c c e p t e d
24 l o c a t i o n . i d e n t i t y = d e s t i n a t i o n i m p l i e s {
25 p a y l o a d in l o c a t i o n . a c c e p t e d
26 l o c a t i o n ' = l o c a t i o n
27 } e l s e not l o c a t i o n ' = l o c a t i o n
28
29 / / R o u t i n g : a l l Messages e v e n t u a l l y reach a v a l i d d e s t i n a t i o n
30 e v e n t u a l l y l o c a t i o n . i d e n t i t y = d e s t i n a t i o n
31
32 / / Messages move a long c h a n n e l s u n l e s s a t a v a l i d d e s t i n a t i o n
33 a l l ne twork : Topology |
34 l o c a t i o n → l o c a t i o n ' in ne twork . c o n n e c t i o n s
35 or l o c a t i o n . i d e n t i t y = d e s t i n a t i o n
36 }

Figure 6.13: An Alloy listing showing the Message signature used to transport data between
devices across the channels of the network.



CHAPTER 6. MODELLING DIGITAL TWIN NETWORKS USING ALLOY 108

In this model, we represent attackers as an extension of the device signature to enable them
to behave differently from non-attacker devices. While the identity of a non-attacker device is
fixed, we make additions to the Device to provide them with an identity . A device’s identity is
equivalent to their network address and denotes and is how it identifies itself to the other devices
on the network. We use the extension to the device signature to allow the identity relation of the
attacker to point to any device to which it is connected via a channel. We use other extensions to
the device signature to represent DTs and PLCs. In our scenario, the PLCs are the components
of the physical device that send data to the DT about the process they are controlling and their
own internal state. A final extension to the device signature represents network switches. These
are the only devices which can be connected to more than one channel. The Message signature,
shown in Fig. 6.13, moves data across the network. A message has a source, current location,
destination and data payload but no status, as this is represented by the status of its payload,
an instance of the data signature. A message moves through the network along channels until
it reaches its intended destination. Once it reaches its destination, its data is accepted by the
destination device.

6.5 Threat Analysis and Identification

Using predicates, we specify threats as sequences of behaviours that should not occur within the
system. In the example shown, we demonstrate this by using a predicate for a spoofing attack.
The system modelled doesn’t contain a mechanism for authenticating the source or destination
of the data messages, leaving it vulnerable to spoofing attacks.

In the context of DTs, we consider how a rogue IoT node could carry out a spoofing attack
within the physical system. In this attack, an attacker with elevated privileges, often an insider,
has either compromised an element within the physical system or deployed a new network node
to the system. This node is able to intercept messages from the channels using spoofing tech-
niques such as Address Resolution Protocol (ARP) spoofing. Once the attacker has acquired the
data, they can inspect it for private information and then send a message containing modified
data to the DT. Alternatively, the attacker can create entirely fabricated messages of their own to
send to the DT using Internet Protocol (IP) spoofing to impersonate a legitimate end node. We
show how Alloy can be used to model both types of attack.

In Alloy, the check command asks the compiler to find counterexamples that negate the
given properties. We use this facility to find instances where vulnerabilities are exploited in our
modelled network.

Our first property allows us to check if an attacker can acquire a message by faking its
identity. This property (in comments) and its Alloy representation are shown in Fig. 6.14.
In this property, we assert that all messages eventually reach their intended destination. The
analyzer finds a counterexample trace which starts at the state shown in Fig. 6.15. Here a PLC
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1 / / For a l l messages :
2 / / t h e message r e a c h e s a c l e a n d e s t i n a t i o n .
3 a l l message : Message |
4 e v e n t u a l l y message . l o c a t i o n = message . d e s t i n a t i o n

Figure 6.14: Property 1: Used to identify ARP spoofing attacks
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Figure 6.15: Initial state in the ARP spoofing attack trace. The PLC begins sending created data
to the DT.

has created some data that it has put into a message with the DT as the intended destination.
The second state of the trace is shown in Fig. 6.16. The message has traversed the first

channel and is now located at the switch connecting the channels the PLC and the DT use to
communicate. However, the attacker can insert a malicious node into the channel with the DT.
Using its presence on the channel, it can deceive the switch and present itself as the DT. Since
both the DT and the attacker have the same identity as the destination address, they compete to
receive the message, and the message can be received by either device.

The final state of the trace is shown in Fig. 6.17. The attacker has successfully spoofed the
identity of the DT to the switch, causing the switch to send the attacker messages intended for
the DT. The impacts of this upon the system are twofold: firstly, enabling an attacker to gain
access to private system data, and secondly, preventing the DT from receiving important state
from the physical system. This suggests that additional measures should be implemented within
the system design to mitigate this type of spoofing attack.

By modifying the property, we can identify a different variation of the spoofing attack. In
this example, we check that the DT only accepts trustworthy data. The property used to check
for this and its Alloy representation are shown in Listing below.
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Figure 6.16: Second state in the ARP spoofing attack trace.
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Figure 6.17: Final state in ARP spoofing attack trace. An attacker has used a rogue IoT node to
spoof the DT’s identity and intercept the message before it reaches the DT.
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Figure 6.18: Initial state in an IP spoofing attack trace. An attacker has modified the source
address of a message to send compromised data to the DT.

1 // All data that the DT accepts is clean.
2 always all dt: DigitalTwin, data: dt.accepted |
3 data.status = Clean

Figure 6.19: Property 2: Used to identify IP spoofing attacks.
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Figure 6.20: Second state in an IP spoofing attack trace.
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Figure 6.21: End state in an IP spoofing attack trace. The modified message is accepted by the
DT, compromising the system.

In this instance, we find an attack can be carried out in the first state. As shown in Fig. 6.18,
the attacker creates a message with the source identity of the PLC. This can be done in practice
through the use of readily accessible IP spoofing tools that allow a user to change the source IP
address on sent messages.

Through the subsequent states of the trace, we see the message pass through the switch and
reach the DT, where it is accepted. Since the message originated from a device in the set of
attacker devices, it compromises the DT. The existence of this trace suggests that the design of
the system requires additional mitigation steps to prevent attacks of this nature. In the case of
the DT, this may lead to it incorporating falsified sensor readings into its calculations.

6.6 Experimental Results

Table 6.1 shows the execution times taken to find a counterexample for the IP spoofing attack
scenario. Table 6.2 shows the execution times taken when a search was executed for a complex
scenario that isn’t possible in the model. This approximates the maximum expected execution
time to validate the specification in the model. While we do not include the number of variables
or clauses or the resulting memory usage in either of the tables, these increase in line with search
time. The times were recorded for a variety of scopes when running the scenario on an Apple
M3 Chip with 16GB of RAM using the Glucose SAT solver [16].

Execution time increases with scope size across all search configurations. Generally, in-
creasing the number of messages has the largest impact on execution time when an attack is
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Devices Chans Messages Time (ms)
5 3 1 211

10 3 1 355
15 3 1 606
5 3 2 222

10 3 2 407
15 3 2 711
5 3 3 243

10 3 3 474
15 3 3 869

Devices Chans Messages Time (ms)
10 4 1 377
15 4 1 632
20 4 1 1027
10 4 3 501
15 4 3 937
20 4 3 1518
10 4 5 637
15 4 5 1196
20 4 5 2188

Table 6.1: Execution runtimes for the IP spoofing attack under different configuration settings.
In each case #Data = #Messages and scope is 10 steps, though a counterexample is found before
reaching that limit. In each case, time is the median of five executions.

present, particularly in combination with a large number of devices. While the search times do
increase with the size of the network, even for a moderately large number of devices, an attack
is found within a few seconds running as shown in Fig. 6.22. The search is fast because the
Analyzer doesn’t need to finish searching the whole scope since an attack scenario can typically
be identified within a few message exhanges, an example of the small scale hypothesis [115].

In scenarios where no attack is found, the search takes longer as the Analyzer searches the
whole scope; in these instances, the number of steps in the search scope is the biggest factor
that causes execution time to increase. A search for a simulated attack in a network of 20
devices connected by 4 channels, with 5 messages and data being shared, takes approximately
25 seconds to search all possible 10-step traces. When that same network is searched for all
possible 20-step traces, the analysis takes 5.6 times as long, finishing after 2.5 minutes. Similar
increases can be found at smaller network sizes, as shown in Fig. 6.23. An extreme example that
pushes the limits of the analysis with a scope of 10 channels, 15 messages and 15 data illustrates
impacts of the state-space explosion problem on the model with a median execution time of 40
minutes.

These results show that the approach can scale to a number of devices sufficient to model
systems of a larger scale. While ICS networks and DTs can consist of hundreds of devices, for
the purposes of analyzing a digital twin network not all of these devices need to be included in
the scenario. A vertical representation of the systems spanning the digital thread would only
require one or two of the devices at each layer of the digital thread in order to analyze the
network’s security between layers while also representing an attacker’s ability to move laterally
within a layer. Additionally, if a larger scope is required of one element within the model, for
example, a longer search trace or a larger number of devices, the scope of other elements can be
reduced to compensate, enabling faster search times. If a larger scope is still required after that
the use of high-performance computing systems provides a viable method of further expanding
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1.3

Figure 6.22: Graph of results shown in Table 6.1 showing the time taken to find counterexample
in various scope configurations.

Devices Chans Data Messages Steps Time (ms)
20 4 1 1 10 9677
20 4 1 1 13 16775
20 4 1 1 15 20631
20 4 1 1 17 31216
20 4 1 1 20 46908
20 4 3 3 10 15470
20 4 3 3 13 28701
20 4 3 3 15 40519
20 4 3 3 17 54127
20 4 3 3 20 82716
20 4 5 5 10 25872
20 4 5 5 13 49817
20 4 5 5 15 68614
20 4 5 5 17 93575
20 4 5 5 20 145102
10 10 10 10 20 85438
15 10 10 10 20 154978
20 10 10 10 20 282333
20 10 15 15 20 2383727

Table 6.2: Execution runtimes for the IP and ARP spoofing model under different scopes when
no counterexample is found. In each case, time is the median of five executions.
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Figure 6.23: Graph of results shown in Table 6.2 where #Device = 20, #Chans = 4, and #Data =
#Message. Shows the time taken to search the entire scope for a counterexample.

the size of the system that can be modelled. The increased memory would be able to contain the
larger boolean matrixes that need to be generated by the Alloy Analyzer to analyse the problem
at larger scopes. Additionally, the increased computation power, paired with hybrid or parallel
decomposition strategies, would allow for a faster search of the given scope. Therefore while
DT systems can grow to be large complex networks, the approach we present provides sufficient
scalability to model the key aspects of these systems and identify design flaws therein.

6.7 Application to Hydroelectric Framework

To explore the utility of this modelling approach towards enabling the evaluation of DT design,
we used it to model the hydroelectric dam developed in Chapters 4 and 5. The new model
uses the concepts developed in the previous sections as a foundation; it still centres around the
notions of Devices, Channels, and Messages. However, several enhancements to the model were
developed to represent network configuration details and create a deeper representation of the
threat model. In this section we will present the changes that were made before progressing to a
demonstration of the capabilities of the new model.

6.7.1 Device Signature

We extend the Device signature to enable a more individual representation of the devices in our
model and modelling attacks. The details of the device class are shown in Fig. 6.25. Devices
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Figure 6.24: The abstract Device signature and its key relations as featured in the hydroelectric
dam representation, shown in a UML diagram.

have fields for network configuration details, including IP address and port number. They also
have authorisation fields, a User and a Password that can be used to access and control the
device.

IP addresses and port numbers are also represented as signatures. Devices must then have a
relation to at least one IP address and Port atom. Within these signatures, each has a relation to a
string atom representing the device’s ipv4 address in the case of the IP signature or port number
in the case of the Port signature. It is through these relations that we associate an IP address and
port to each device. We can constrain exactly what String is associated with each device using
facts in each device’s signature. Since strings are represented in Alloy as an atom with a string
value enclosed, the exact value of each string does not impact the model. What matters is which
string atom is involved in a relation. Our analysis of IP and Port numbers is, therefore, driven
by an association to string atoms, not string values. However, the correct values are used during
the analysis to ground the model in the scenario and make it more understandable.

Users and passwords are represented as signatures in the model. They are both empty sig-
natures used to refer to what user and password combination grants access to the system. Addi-
tionally, a device has a stored_logins field that denotes a set of known Username and Password
connections
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6.7.2 Device Types

The representation of specific devices is significantly increased in this model through Alloy’s
signature system. This allows for the declaration of subsignatures of the Device signature.
Subsignatures are made for different types of devices, as shown in Fig. 6.25. We define abstract
signatures for devices with an abstract subsignature of device for PLCs.

Within the Device signature, we define signatures for the devices hosting the different com-
ponents within the DT framework, specifically NodeRED, InfluxDB, Grafana, an engineering
workstation, and the SPIN Model developed in Chapter 5 . We can restrict the number of in-
stances of these signatures according to the design of the network; in the case that we’re mod-
elling, there is exactly one instance of each of these. We, therefore, constrain them with a
multiplicity of one, allowing us to handle the assignment of IP addresses and port numbers
within the signature facts for readability; this means they apply to all instances of that signature.
If there were multiple device instances in the model, this could still be specified through facts.

PLCs are implemented as an extension of the Device signature. We create an abstract sig-
nature PLC to contain PLC-specific behaviours. This signature can then be extended, like the
Device signature, to represent the Generator and Control PLCs. In our scenario model, PLCs are
the only devices that can provide concrete information about the state of the dam. In the context
of the previous model, they are the only devices that legitimately create Data about the state of
the dam. This will be discussed further when we explain our data model in Section 6.7.5.

6.7.3 Network Connections

Fig. 6.25 also shows how devices are connected. Every device in the network is connected
to a channel. As before, channels consist of sets of devices that are connected and can freely
communicate; this represents a zone within the Purdue model. We use separate channels for the
PLCs (together), the historian devices, the DT model and an individual workstation. Routers
connect these channels, allowing for messages to flow between them. These routers also allow
us to model network segmentation. While technically the whole network is connected, our
routers only allow connection between each channel and those directly connected to it, creating a
layered network configuration. We also use a Topology signature to track all the communication
paths between devices and enable us to specify properties about the network as a whole, such
as the existence of indirect communication paths between devices and that the network is fully
connected.

We define a Firewall subsignature of Router, which functions as a router that can block com-
munication between specific IP addresses. This block relation replicates a firewall’s blocklist,
mapping devices in the channels it is connected to so that it will prevent direct communication
between them. Although blocklists in operational firewalls can selectively block messages based
on the message type, in our model, a block applies directionally to all messages exchanged. Us-
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Figure 6.26: UML diagram showing the message signatures and their associated Payloads, in-
cluding the Data signature.

ing firewalls in this way, we can selectively block certain components from communicating.

6.7.4 Messages

Our representation of the different types of messages in our model is shown in Fig. 6.26. We
define an abstract Message signature that is similar to the previous messaging representation
discussed in Section 6.4. This signature contains the key information about a message, which
device sent and received it and the payload that the message contained.

The Message signature is extended with subsignatures to specify different types of messages.
We specify another abstract subsignature of Message for Internet Protocol messages, then a
subsignature of that IPMessage signature for Transmission Control Protocol messages. In our
model, each message represents a stream of packets between the sender and receiver containing
the specified payload. These subsignature messages contain the network configuration details
that specify how messages move across a network. The message super-signature then reflects
this in a manner that is easier to utilise in other classes that interact with exchanged messages.
The message signature is also useful for checking that a sender and receiver have a valid network
connection to each other.

IP messages are exchanged between a source and a destination address. For a message to be
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received by a device the IP address of the receiver must be in the list of IP addresses that the
receiver device has access to. For most devices, this will be the single IP address assigned to it;
however, compromised devices can spoof their IP address, as shown previously. The difference
in this model is that we include a representation of the mechanism by which an attacker can
acquire the IP addresses that it impersonates and how it gains access to the channels in which
the messages are being exchanged.

Our final message signature is the TCP message. These messages have all the fields and re-
lations of the previous message signatures. However, since TCP packets are exchanged between
applications, they also have a port number through which the host application is communicating.
As with the IP addresses, most devices in our scenario will only utilise a single active port for
communication. However, attacker devices can learn which ports their targets use to communi-
cate and exploit that informaton to intercept messages or interact with the device maliciously.

6.7.5 Data

Fig. 6.26 also shows how Data is incorporated into our model as an extension of the abstract
MessagePayload signature. We use this abstract signature to demonstrate how our method can
be extended to allow for other types of message payloads. Our representation of Data has been
expanded to express it as a dataset being exchanged through the system. To represent the content
of that data set, we use a Tag-Value association to represent how variables are stored in the
PLCs. We implement this by enumerating a set of Tags and a set of Values as shown in Fig.
6.27. Relations can then be constructed to map a Tag to a Value denoting the state data that each
device received in the exchange of that dataset. For example, a device that owns the piece of
data Upper_Tank → OF has received sensor data indicating that the Upper Tank is overflowing.

1 enum Tag {
2 Upper_Tank,
3 Lower_Tank,
4 Generator,
5 Sump_Pump,
6 Sump_Valve
7
8
9 }

1 enum Value {
2 ON,
3 OFF,
4 OF,
5 H,
6 M,
7 L,
8 UF
9 }

Figure 6.27: Alloy enums representing the PLC tags and the values that are used to express state
data in the alloy model.

To better analyse the exchange of data with respect to a digital twin, we modified the way
that it is represented in our model. A code listing showing these changes is shown in Fig. 6.28.
Previously, a piece of data had a location and a status, each of which could change through
transitions. Data is now modelled as a chain of tag value associations that flow through the
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system as a single strand in each state. This reduces the size of the state-space and allows larger
networks to be modelled. Since all data movement is represented in a single transition rather
than one move per transition, the number of steps required to represent a network is not related
to the size of the network. Encapsulating all of the data movement in a single transition also
makes it easy for us to specify properties about the state of the digital thread. Since the thread
is represented directly through this Data signature we can specify properties about the mapping
of variables across devices, checking for instances where they are inconsistent. We will discuss
this in more detail in Section 6.8.

We demonstrate how this new data signature behaves by generating the instance shown in
Fig. 6.29. The transmissions relation controls the order in which devices interact with the
data. Each device along this sequence of transmissions can modify the value of the data if they
have been compromised. This allows us to directly represent how an attacker can interrupt the
communication between the PLCs and the Model or the Grafana monitoring dashboard.

6.7.6 Threat Model

When attackers infiltrate the network, they can exploit knowledge acquired from multiple sources
to move through it. To represent this, we created a signature that contains all of the information
that an attacker has about the network and the devices it can influence. The signature for our
Threat model is shown in Fig. 6.30.

The threat actor begins with a single controlled device. From this device the attacker is
able to interact with other devices and begin to explore the network within the constraints of its
topology. The attacker gains information about the network and the devices within it through
actions and by gathering information stored on devices to which it has access. Its objective is to
prevent the normal function of the DT system, which we define as interrupting the reception of
data by the Model.

Our threat model uses an extensible action framework to represent the techniques that at-
tackers can utilise to move through the network. The abstract class Action is used to represent
all actions taken by the attacker. An action has an origin device from which the action is ex-
ecuted, and a target device that it affects. At the beginning of an instance, alloy has already
generated all of the actions that will be executed within the attack. When their requirements
have been satisfied, their sequential execution is represented in our model by assigning them to
the current_actions relation where their impacts are implemented.

We categorise the actions that an attacker can use to infiltrate the network into Recon and
LateralMovement. Recon actions gather data about the network. We represent the execution
of a network scan that identifies active IP addresses within a network. This is done by pinging
every IP address and waiting to see which devices respond. Legitimate devices will respond
confirming their address and their status in order to facilitate connections and normal operation
of the network. An attacker abuses this to map the layout of the network and identify targets.
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1 sig Data { . . .
2 creator: one Device, // Source of data
3 // Tag values for each device
4 content: Device → Tag → Value,
5 // Movement between devices
6 transmissions: Device → Device,
7 }{
8 // Clean devices must know data in order to send it
9 (always creator.status = Clean) implies {

10 creator.content in creator.knows
11 }
12 // For every tag value pair that any device knows about
13 all device: Device {
14 all tag: Tag, value: Value {
15 tag → value in device.content implies {
16 // It either knows it because it's the creator
17 (device = creator or
18 // Or it was sent it by a device that knows it
19 some sender: Device {
20 sender → device in transmissions
21 tag → value in sender.content
22 } } } })
23
24 // Tying transmissions to messages for dissemination
25 all send, receive: Device {
26 send → receive in transmissions iff {
27 some message: Message {
28 this = message.payload and
29 send = message.sender and
30 receive = message.receiver
31 } }
32 // Restrictions on how data moves
33 send → receive in transmissions implies {
34 // Must originate with creator
35 send in creator.*transmissions
36 // Both sender and receiver must exchange data
37 #content[send] > 0
38 #content[receive] > 0
39 // Data is sent faithfully if the device is Clean
40 (always send.status = Clean) implies {
41 content[receive] = content[send]
42 }
43 receive.content in receive.learns
44 } } }

Figure 6.28: The updated Data signature used to represent the data exchange across the digital
thread. The content relation associates a Tag-Value pair with each device that interacts with
data. The transmissions relation tracks the message exchanges that include this data.
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Figure 6.29: Demonstration of the new data modelling approach. Each device along the chain of
transmissions has associated Tag-Value pairs, stored in the content relation. Multiple tags can be
shared in the same dataset. While all devices here are Clean, a compromised device can modify
the data that is shared. Each transmission has an associated Message exchange, for clarity, these
have been omitted.
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1 lone var sig Threat{
2 var controls: set Device, // Devices controlled
3 var recon: Device → (Port+IP), // Known device data
4 var users: set User, // Known usernames
5 var pwds: set Password, // Known passwords
6 var current_actions: some Action, // Actions being taken
7 var actions: set Action, // Previous actions
8 }{
9 // Stores all executed actions

10 all action: actions | once action in current_actions
11
12 // Store data gathered through recon actions
13 recon' = recon + actions.learn
14
15 // Store users and passwords found on controlled machines
16 users' → pwds' = controls.stored_logins
17
18 // Only compromised devices can be controlled
19 controls.status = Compromised
20
21 // Compromised devices can use any known address or port
22 all controlled: controls {
23 controlled.address in (
24 controlled.assigned_ip + recon[Device])
25 controlled.port in recon[Device]
26 }
27
28 controls in controls'
29
30 all device: controls {
31 // Controlled devices were controlled originally
32 (historically device in controls) or {
33 // Or some action has brought them under control
34 some action: LateralMovement & actions {
35 device = action.target
36 } } } }

Figure 6.30: The updated Data signature used to represent the data exchange across the digital
thread. The mapping relation associates a Tag-Value pair with each device that interacts with
data. The transmissions relation tracks the message exchanges that include this data.
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Figure 6.31: UML diagram of the action-based threat model used in our approach. A threat has
a set of devices that it controls, and recon data that it has learned about the IP addresses and
ports of the network’s devices along with a set of known usernames and password. This data is
then exploited through the execution of Actions. Recon actions gather data, LateralMovement
actions exploit that data to gain control of additional devices.

Within our network scan we also represent an additional attack technique called port scanning.
During a port scan, the attacker pings the ports of an identified IP address to identify any open
ports that can be targeted for further actions. An attacker requires an IP address to know where
in the network a device is located, but it also needs an open port through which it can interact
with and attack the identified device. While these are two separate actions, in practice, they are
executed together, so we have combined them to reduce the size of our model.

Once an attacker has gathered information about the network, they can begin to exploit it
through LateralMovement actions. Lateral movement actions have requirements before
they can be executed. In our case, they require the IP address of the device to be known and an
open port identified. Using this information, the attacker can directly interact with the targetted
system; in our system, this would allow them to bring up the login screen for a number of
the components. If an attacker knows the correct username and password combination, they
can exploit them to log into the identified system and alter its configuration and behaviour.
The ExploitUserAccount action has the additional constraint that the appropriate user and
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password combination must be known before the action can be executed. This data is gathered
from other controlled devices.

6.8 Vulnerability Analysis

Using predicates, we can specify the type of behaviours that we want to search for. We can
begin by confirming that our current specification displays normal operating behaviour without
interference from an attacker. To do this we rely on a specification of normal operational be-
haviours, stating that uncompromised devices always share the information that they learn about
the Process signature that is being monitored. This sharing of known data is how we represent
the normal programming of the different devices. As such each type of device is configured to
share that data with the appropriate device, e.g. PLCs share data with NodeRED, NodeRED
shares data with InfluxDB. An instance showing the model’s behaviour in this configuration is
shown in Fig. 6.32. To check that the system is specified correctly, we remove the attacker
from the modelled scenario and ask for any example where the instance of the model signa-
ture receives state data that does not match the state of the process signature in the scenario.
Our search returns no counterexamples, allowing us to proceed with our analysis knowing that
our designed system functions as intended. With this confirmation, we can introduce our threat
model and search for any deviations in this behaviour to identify the impacts of our attacker.

We now introduce the attacker into the model. We allow the attacker access to a single de-
vice and the information contained within it to begin their attack. In our scenario, the attacker
starts with control of an employee Workstation connected to the network but plays no role in
the regular operation of the DT. We do not, at this stage, specify any structure to our network,
allowing the topology to be a flat fully connected architecture. Asking alloy to search for exam-
ples of attacks reveals many weaknesses in this design. The first attack identified by our system
is shown in Fig. 6.33. The flat network design allows for easy access to the vulnerable PLC
devices of the system. No authentication is required for the attacker to communicate with them.
All the attacker requires to interact with them is their IP address, which it gains through a net-
work scan due to the flat structure of the network. The scenario shown here exemplifies the type
of attacks tested for in Chapter 5 where an attacker modifies the state of the PLCs to undermine
the system. In this case, the attacker has modified a Generator tag in the control PLC, such as
Gen_A_Status or Gen_B_Status to be false, when the associated generator is active.

This attack demonstrates the need for network segmentation to protect the security of our
system. In our next example, we isolate the PLCs, creating a separate channel for them, isolating
them from most of the historian devices, except NodeRED and the workstation.

We introduce an instance of the Firewall subsignature of Router. We configure this and the
layout of the network channels within it using the predicate shown in Fig. 6.34. We define the
channels connected to it and their configuration, defining that one of them contains all of the
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Figure 6.32: Demonstration of the specified system functioning without interference from an
attacker. The state is projected to only show the tag values associated with the Sump_Pump
at the process through the different devices in the Model. Since the values in the Process and
Model are consistent for this Tag, and all the others, the system is performing as normal.
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Figure 6.33: The first attack identified by our method. The attacker performs a network scan
and detects the PLCs. Due to the weakness of the S7Comms protocols, the Control PLC accepts
input from the attacker device, modifying its stored Generator variable. This false information
is then passed through the historian devices to the DT model, which received an incorrect state.
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1 pred Segmentation {
2 #Router = 1
3 one fw: Firewall {
4 some disj chan1, chan2: Channel {
5 fw.channels = chan1 + chan2
6 PLC = chan1.connected
7 fw.block =
8 Workstation.assigned_ip → PLC.assigned_ip
9 } } }

Figure 6.34: An alloy predicate showing how a firewall can be configured in our model. The
firewall connects a channel of PLCs to the rest of the network. It blocks all incoming PLC
connections from the Workstation’s assigned IP addresses.

PLCs. We then specify that the Firewall has a block relation between the assigned IP address of
the workstation and those of the PLCs. Assuming that the workstation is not part of the typical
workflow of the operators, there is no need for these devices to communicate, so they can be
safely prevented from doing so.

Testing this new configuration reveals that this new network configuration is still insufficient
to ensure the secure connection of the PLCs to the DT model. While the PLCs are now separated
from the attacker, the remaining systems are still vulnerable, as Fig. 6.35 demonstrates. In this
example, the attacker can gain sufficient information from a network scan to be able to interfere
with the model collecting data from the Influx database. Since the threat actor gathers the IP
addresses and ports of the two devices, it can observe their data exchange and attempt to inject
false data into this process represented via a TCP message with the spoofed IP address of the
Influx database. TCP messaging involves a three-way handshake that establishes a connection
between two devices. While this exchange allows for the creation of a secure connection, it
can be undermined through the deployment of MITM attacks, where an attacker intercepts the
exchange and inserts themselves as an intermediary messenger. This grants the attacker the
ability to intercept and modify all communication within the connection. An MITM can be
performed by broadcasting fake Address Resolution Protocol (ARP) packets to devices in the
network, causing them to send IP packets intended for another device to the attacking device
instead. The generated example suggests that since the attacker can access the channel on which
the devices are communicating and has gathered the required IP addresses of these two devices,
it has sufficient resources to carry out this type of MITM attack.

To mitigate this type of attack, we must enhance the degree of segmentation within the
network. While continuing to separate the PLCs from the historian devices, we should also
separate the historian devices. Due to their integration with the DT model, they are even more
critical to the operation of the dam than before and should be separated from other devices to
protect them. We, therefore, enhance the Segmentation predicate shown previously to specify an
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additional channel. This new channel contains the NodeRED, InfluxDB and Grafana systems.
It is connected to the PLC channel through a firewall as before to allow those systems to acquire
the necessary operational data. These systems also need to be connected to the Model, which
might suggest that the model should be positioned within this network, too. However, while in
every example shown, the workstation has been used to undermine the system’s operation, under
normal circumstances, the workstation will be used by an employee who may require legitimate
access to the insights and data of the DT model. Finding secure ways of enabling the model to
be connected to the dam (via the historians) while also being accessible to employees outside
the OT network is a key challenge of combining OT systems with IT infrastructure. Being able
to visualise methods of addressing this challenge is one of the benefits of our approach.

We consider the deployment of a DMZ as a potential solution. We specify in our predicate
that the model exists in a separate DMZ channel containing only the model. The devices within
the DMZ can connect to the historian components via a firewall. The DMZ is also accessible to
network devices outside the Workstation through an outwardly facing firewall. In this new con-
figuration, both the PLCs and historian devices are insulated from the enterprise network with
the employee workstations. This separation between the different types of devices implements
the Purdue model, creating obstacles for attackers who attempt to penetrate the network from
outside the firewalls.

Using this new DMZ specification, we can check the model for instances where the state
of the Process and the state DT model do not align, as before. Our changes prevent the threat
actor from observing data transmission to the model since the Workstation is outside of the
channels where the exchange is occurring. To gain access to the network, the attacker will need
to infiltrate the DMZ.

Checking the model gives the instance shown in Fig 6.36 showing how the attacker can gain
access to the model. The threat actor begins by executing a network scan of the DMZ to gather
the IP address and port number of the model located within it. With this recon knowledge, the
attacker can execute a LateralMovement action, allowing the attacker to move through the net-
work, expanding its influence. To perform a LateralMovement action the threat actor must have
the IP address and port number of the target device. In our model we include the ExploitUser-
Account signature implementing the LateralMovement abstract signature. This signature has
the additional requirement that before it can be executed, the attacker must have access to the
username and password for the target device. In the generated attack, the user credentials for
the DT model have been stored on the Workstation, allowing the attacker to acquire them. Once
the attacker has access to the DT model, it is able to modify its state as it wishes, either by
modifying the data within it or by changing the model’s behaviour.

The attack against our DMZ configuration shows the importance of password management
in securing an ICS and ensuring an effective segmentation of OT and IT networks when a DMZ
is deployed. We can test the effectiveness of employing good password management practices,
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Device Channel Action Steps Time (ms)
7 3 5 5 85837

10 5 5 5 94540
15 7 5 5 403614
10 5 5 5 179257
10 5 10 5 188646
10 5 15 5 213234
10 5 10 1 9075
10 5 10 5 193973
10 5 10 10 938017
15 10 10 10 4539060

Table 6.3: Execution runtimes for Alloy to search for attacks under different scope size. In each
case, the scope for unspecified signatures is 10. All runtimes are the median of 5 executions.

constraining that no usernames and passwords are stored on any device. The specification of
this can readily be added to the predicate where we specified the creation of the DMZ. Running
the model with this new constraint returns no counterexamples. There is no method by which
the Threat can interfere with the normal transmission of data between the process and its DT
model. Therefore, the DT model and its process have the same state in every variation.

6.9 Experimental Results

We use a similar approach as that used in Section 6.6 to evaluate the performance of this ex-
panded model. We removed the DMZ from the model described at the end of Section 6.8 to
increase the attack surface. To evaluate the system on an increased network size, we removed
the abstract stipulation on the Device signature to allow additional devices to be added to the
model. We then search for examples where the attacker can take control of the entire network.
This should be impossible with the password management requirement still in effect however it
forces the Glucose SAT solver to search the whole scope for satisfying instances. The results of
this evaluation are presented in Table 6.3.

As can be seen from the results, Alloy can analyse the model for small network sizes within a
relatively short period. The scopes shown in the table demonstrate the expected execution times
for normal to extreme scope sizes for our model. Larger network sizes increase the time taken
to search the scope, as expected. However, the effect is less pronounced than that of increasing
the number of steps analysed. This indicates that the approach can scale to a larger network
size of approximately double that which we demonstrated. At large step counts of 10, the long
traces slow the analysis considerably. However, since multiple actions can be executed during
each step, these long traces are rarely necessary to identify the presence of an attack, meaning
the analysis terminates early. None of the attacks shown in Section 6.8 required more than three
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steps to analyse. Most promisingly, the impact of increasing the number of actions within the
model was relatively minimal by comparison. This suggests that the complexity of the attacker
model can be increased without dramatically increasing the time taken to analyse the model.

6.10 Discussion

The elements in our model have been used to demonstrate the utility of Alloy and our modelling
framework as a means of constructing cyber security-oriented representations of a system’s de-
sign. However, Alloy’s declarative language means that all of the signatures in the developed
models can be extended further to suit specific use cases. We have demonstrated this capability
in three ways.

The components within our model serve as an example of how the device signature can be
expanded during its application to a real system. Abstract signatures can be created to facilitate
this process; for example, our PLC signature can be extended to represent other PLCs in similar
systems, requiring only an additional signature with assignments to the appropriate fields.

The threat model can be expanded to represent different types of attack techniques depend-
ing on the network and its components. We’ve provided the Recon and LateralMovement action
signatures to show how different types of action can be grouped together. Further Recon and
LateralMovement actions can be created to target specific types of device, or non-device sig-
natures such as messages or routers. Additional mitigation strategies can be integrated into the
model accordingly and Alloy can help identify how best to integrate them by identifying means
by which they can be undermined.

Finally, how messages and data are exchanged can be expanded. Our model represents TCP
and IP messages and uses a single Data signature as a payload. However, alternative implemen-
tations of the Message signatures can be created to represent other messaging protocols carrying
different types of data. Of particular note, the creation of an encrypted message type could be
used, in combination with additional attack actions, to check for attacks involving message inter-
ceptions and tampering. Alloy can also specify sequences of events, allowing message exchange
processes to be represented.

6.11 Summary

We have demonstrated how Alloy models can be developed to construct representations of ICS
networks containing DTs. We have shown different approaches to represent devices communi-
cating within a network, the channels they communicate across and the movement of data within
those channels. We demonstrate how to apply this approach through an initial example of a non-
specific DT within an ICS environment showing how the Alloy Analyzer can simulate threats to
the network through its ability to generate counterexamples with attacker nodes. We constructed
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properties for two variations of spoofing attacks: ARP spoofing and IP spoofing. The model and
properties were used to check for the presence of these attacks, resulting in traces that revealed
vulnerabilities that undermined the performance of a DT.

We then refined these models to construct a representation specifically to analyse the ability
of security threats to undermine the performance of a DT. We created a unique representation
of data moving through the network between the DT and the process that it is twinned to. Our
representation of Data utilised a ternary relational mapping of devices to tag value pairs. This
mapping was used to model the movement of key datasets across the network to the DT. We
then use our specification of messages to move this data between devices, creating relational
mappings for each device that interacts with it. We demonstrated how, with some constraints
about how devices move this data across the network, this data signature represents the digital
thread in a DT.

To demonstrate the application of this method, we applied it to our own DT framework,
developed in Chapters 4 and 5 and analysed it under different configurations. We constructed
representations of each of the DT components of our hydroelectric dam and specified their ar-
rangement, configuration and interactions to demonstrate how our Alloy model represents nor-
mal operation of a DT in an ICS.

A key feature of our model is the development of a novel approach to representing an attacker
and their interactions with the network. We represent an attacker as a threat entity within the
network that is able to combine the knowledge that they gain from their interactions within the
system. They are able to use actions to learn data about the network and gain control of devices
by exploiting gathered data. These actions are executed in sequence to create an attack trace of
an attacker traversing a network and exploiting vulnerabilities.

We integrated our threat model into our representation of the hydroelectric DT framework
and used it to identify vulnerabilities and attack patterns. Through an iterative refinement pro-
cess, our model was used to deploy cyber defence mitigations to identify a more secure network
architecture implementing the Purdue model. We also showed how even this more secure net-
work architecture can be undermined by users using poor password management techniques.

We conclude by presenting performance data for the developed approach when analysed by
the Alloy Analyzer. We found that the analysis concluded within an acceptable duration, even
for scopes larger than the ones used to perform our own analysis, indicating the potential for the
approach to handle networks containing more devices. Finally, we discussed the extensibility of
our model to model these larger networks and expand the threat model. Our approach can be ex-
tended by enhancing data representation within the model to include dependencies, allowing for
the downstream effects of compromised data reaching the DT to be represented. This supports
the expansion of the components to model the interactions between the different layers which
contextualised the impacts of attacker interactions upon DT infrastructure.



Chapter 7

Conclusions

The aim of this thesis has been to develop methods for securing DTs and the systems they mirror.
This has been approached from two angles: (1) improving anomaly detection in DT data and
(2) developing a formal modelling framework to analyse cybersecurity vulnerabilities in DT
architectures. Our contributions are:

• The creation of a DT framework for a pumped-storage hydroelectric dam testbed. The
framework implements a historian to pull data from two PLCs that control the dam’s gen-
erators and water feeds. The data within the historian is then used by the DT environment
to assemble the data from the two PLCs into a single unified state that can be presented to
DT models.

• An ICS anomaly detection method using a specification-based representation of PLC
logic, modelled in Promela. We designed models to identify state data that indicated a
deviation from normal operation. We integrated the SPIN model checker into the ICS
environment to verify live operational data. The method achieved an F1-score of 99.52%
and an accuracy of 99.05% when evaluated against a dataset of 558,140 test transitions.

• A series of Alloy models that enable security analysis and the identification of vulnerabil-
ities in DT networks. The models uniquely represent data movement and cyber attacker
actions, supporting analysis of the security of a DT design. The benefit of this approach
has been demonstrated through its application to the hydroelectric dam framework devel-
oped in this thesis, leading to a refined network architecture that mitigates security risks.

7.1 Overview

Taken together, the contributions within this thesis present methods of developing more secure
DTs that ensure the resilience of the systems that they monitor. DTs can be used to provide
many benefits to the system to which they are connected. However, if they are not developed
with security as a primary concern, they may undermine the reliability of the whole ICS.
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In Chapter 4, we created a DT framework upon which to base our formal methods ap-
proaches. The developed infrastructure connects OT components to digital models through
the use of NodeRED flows, storing data in a time-series InfluxDB database. The data can be
visualised for operators using Grafana or presented to digital models through a developed DT
module that collects and synchronises PLC-generated state data. The approach was able to track
system states, however, establishing a system baseline of normal behaviours was challenging.
This inspired the search for a means to identify anomalous system data received by the DT.

In Chapter 5, we develop Promela models from the PLC Ladder Logic to specify normal
system behaviour without requiring comprehensive system test data upon which to construct a
baseline. We document the transcription process, showing how combining goto and d_step
statements can replicate the control flow of ladder logic rungs and the simultaneous writing of
system outputs. The Promela models can predict concurrent execution of the PLCs, defining the
set of all reachable states by interleaving individual PLC behaviours.

We developed two Promela models to examine the received PLC states; a trunk model and
a branch model. The trunk model was shown to correctly identify all of the normal baseline be-
haviours in our test set while only incorrectly recognising a small number of anomalous states.
This model achieved very high accuracy and F1-scores of 99.96% and 99.98%, respectively.
We developed a second model (the branch model) to identify if the observed transitions be-
tween consecutive sets of gathered state data were valid. Though the branch model performed
worse when tested on anomalous transitions originating from invalid states, it performed well
on transitions that originated from valid states, demonstrating a strong ability to determine if the
transition resulted in a valid state. The branch model achieved a lower accuracy and F1-score of
72.66% and 84.16%. An overall F1-score of 99.52 calculated on the results of an evaluation on
558,140 state transitions determined that the two models complement each other well and, when
used together, demonstrate a strong ability to detect invalid system data and transitions. We
explain methods for integrating SPIN into the ICS environment to perform analysis on real-time
data as it is collected from the PLCs. The inclusion of this approach enhances the reliability of
DT models by enabling the identification of system behaviour anomalies before they are pro-
cessed. This allows operators to detect potential threats early and swiftly initiate appropriate
cyber response actions.

In Chapter 6, we used Alloy to support the secure integration of DT into an ICS system.
We introduce methods of representing DT and ICS networks and show how these can be used
to identify IP and ARP spoofing attacks. We then proceed to refine an approach, presenting
a method that directly targets the challenge of developing secure ICS network architectures
that incorporate DTs. By using a refined Data signature, the developed models could represent
normal data flow within a DT network. We showed how our refined approach contextualises
the impacts of vulnerabilities in the digital thread in real terms by representing the hydroelectric
dam testbed DT developed in Chapters 4 and 5.
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We developed a novel threat model that uses an extensible framework of actions comprised
of real attack techniques to infiltrate our network. The developed actions allow the attacker to
gather data and utilise it to expand their influence by exploiting devices. Through the specifica-
tion of properties, we are able to identify specific sequences of actions that the threat actor can
take to undermine the critical operation of the DT. We use the attack traces generated by Alloy
to identify vulnerabilities in our system and refine defensive mitigation strategies. Through this
analysis, we were able to develop an improved architecture using network segmentation to im-
plement a DMZ. Analysis of the improved architecture demonstrates that it promotes the robust
operation of the DT when combined with secure password management from users.

Our Alloy modelling approach enables system designers to develop secure network config-
urations for DT deployment. The flexibility of the Alloy specification language enables our
models to be extended and applied to systems with different devices and configurations. Our
threat model can grow and evolve to analyse new attack techniques as they emerge. Even af-
ter deployment, our network models help communicate threats to operators, providing a clearer
understanding of the evolving threat landscape and enhancing cybersecurity awareness among
users.

7.2 Limitations

The approaches developed in this thesis show promising results but also have certain limitations.
The effectiveness of model checking approaches is derived from the ability of the model checker
to search the model’s state space comprehensively. However, in both of the used methods, as
model size and scope increase, analysis times grow exponentially. Our results demonstrate that
this does not hinder the practical utility of our methods for the tested applications. In this section,
we discuss the potential impact of this limitation on the scalability of our approaches.

7.2.1 SPIN

Firstly, since our approach depends upon model checking, the state-space explosion problem
limits the size of the Promela model that can be analysed. This means that the approach cannot
be directly applied to large-scale systems without some level of abstraction. In our example,
we required minimal abstraction of system behaviours except in the case of analogue system
variables, such as timers, which had to be discretised. This limitation of our approach means
that it is best suited to a small number of PLC programs utilising discrete variables that work in
close coordination.

Another challenge of applying our SPIN modelling approach relates to the integration of the
model checker into our framework to operate on real-time historian data. SPIN processes data
slower than it is received, taking on average 18.2 seconds to execute the models on data that is
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collected every 0.8 seconds. Multi-threading and eliminating the rechecking of the previously
observed system state can reduce this, however the best mitigation is the integration of a mem-
oisation approach. By storing and retrieving previously computed results, the system stabilised
after an initial delay caused by the validation of baseline behaviours. Once stabilised, anomaly
detection became more efficient and was able to prioritise newly observed data rapidly, with
anomalies being identified within a few seconds.

Finally, our approach requires transcription of the PLC code to Promela, which currently re-
quires details knowledge of model checking and the Promela language. To assist this process, we
describe how we performed the transcription process. We believe that the use of d_step com-
mands in combination with jump statements can be readily applied to model many of the PLC
Ladder Logic components. However, this still presents an obstacle towards the implementation
of our approach that would be best addressed through a partial or fully automatic transcription
method.

7.2.2 Alloy

The state-space explosion problem is also a challenge for our Alloy modelling approach. We’ve
demonstrated how pushing the analysis to search for large attack traces on networks of 15 or
more devices can cause the analysis to take up to an hour. While this can be reduced by decreas-
ing the scope of other components within the model and utilising higher-powered computing
solutions, a hard limit of feasible analysis exists. Since ICS can consist of a large number
of connected devices, abstraction of system components or a focus on specific subsystems is
required to apply our models to large-scale industrial systems. We believe our approach is still
beneficial with this abstraction since it is not necessary to represent every possible end controller
in the system to address key system vulnerabilities. If the security of each type of device can
be established, that analysis can be extended to other devices that are isometrically equivalent.
Our analysis, therefore, only needs to include those devices that present unique characteristics
or which are configured in unique ways.

A further consideration of our approach is derived from the bounded analysis of Alloy. Due
to the undecidability of first-order logic that Alloy uses, a bounded scope is provided to enforce
that its analysis will terminate. The analysis is therefore only correct within the specified scope
of analysis. The implication of this for our analysis is that the approach cannot guarantee that an
attack trace will not be found at a larger scope, i.e. if an attacker had unlimited actions, they may
eventually be able to infiltrate the system. However, the small scope hypothesis [115] suggests
that, for most problems, if a counterexample demonstrating a viable attack sequence exists, it
can be found at a relatively small scope. In our testing, this was observed to be the case with all
the identified attacks occurring well within the bounds of analysis and being identified quickly.
Furthermore, our evaluation of the execution times at varying numbers of actions suggests that
increasing the number of actions has a relatively small impact on analysis times. Therefore,
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even at the upper limits of network size, simulating attacks with a large enough number of
attack actions should not be an obstacle to analysis.

7.3 Future Work

We conclude by considering some avenues for further work to expand and improve the applica-
bility of our methods.

The validation of PLC programs through model checking is an area of research that is related
to our specification-based anomaly detection approach. Tools such as PLCverif [52, 215] allow
for the automatic construction of representations of PLC programs into formats that can be
analysed using model checkers for safety and reliability, such as in [3]. However, PLCverif could
not be used to represent Ladder Logic in Promela as it currently only supports the conversion of
Statement List (STL) PLC programs into specifications for NuSMV, nuXmv, Theta, and CBMC
[215]. Nonetheless, we have demonstrated that SPIN can be effectively used to monitor normal
ICS operation by identifying valid system-wide states arising from the combined execution of
individual components. While the application of our approach currently requires the manual
transcription process of converting PLC programs to Promela for analysis, we have explained
the method use to achieve this for the PLC logic contained within the hydroelectric dam. Future
work could examine the extensibility of this to other PLC programming constructs and examine
methods of automating some or all of this process.

Analysing a more extensive ICS system with SPIN could cause issues with scalability as the
number of possible states increases. Further work could consider layering the implementations
of our IDS approach to perform anomaly detection at different levels of supervisory systems.
Subsystems could utilise detailed models of all the subsystem tag values, checking for anomalies
at a PLC level. A site-wide supervisory model could then use abstraction to check the subprocess
behaviours within the context of the overall system, ensuring that the subsystems are correctly
coordinated.

As discussed in Section 6.10, our Alloy model can be expanded to model different types of
ICS components, their configuration and the threats that they face. In addition to the possibility
of expanding the Device, Message, Action and Router signatures, to aid this expansion, we
identify some other areas of potential development in this type of Alloy modelling.

Our user model is a flat hierarchy of users who are all equally authorised for all hosts that
they access. User privileges could be integrated into the model such that different usernames
and passwords could have different levels of access to the system. A ternary relation would be
well-suited to this process, mapping user and password combinations to an enumerated set of
access rights within each device. The access rights can then be incorporated as a requirement
for certain actions to be executed.

We have demonstrated how additional messages with different properties can be added. The
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devices that can send and receive these different messages can be constrained accordingly. For
example, the PLCs communicate with NodeRed via the unencrypted TCP-based S7 communica-
tion protocol. Message properties can be implemented to represent properties such as encryption
or access tokens. This enables additional actions for the attacker since they can intercept or sniff
the packets being exchanged on the network without requiring access to the PLCs or NodeRED.
Access tokens can be modelled similarly to usernames and passwords.

The extensibility of our method means that it can be used to model threats and identify
vulnerabilities beyond those we have demonstrated. Future work could expand the model to ac-
commodate different system requirements, additional properties, and the continuously evolving
cyber threat landscape. The features discussed in this section represent just a few potential di-
rections for exploring the limits of this extensibility within the bounds of feasible computational
analysis.
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Appendix A

Supporting Code and Models

An archive of code and models used in the creation of the thesis can be accessed at: doi.org/
10.5281/zenodo.15482551

This repository includes:

• The trunk and branch Promela model templates used in Chapter 5

• DT module used to connect to InfluxDB database and interface data to worker threads
executing the SPIN model checker.

• Test scripts used to execute evaluation of SPIN models.

• A series of Alloy models documented in Chapter 6.

• Documentation for running the models.
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