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Abstract

Structured light refers to the controlled tailoring of light fields, encompassing cus-
tomized attributes such as intensity, phase, and polarization. The study of struc-
tured light is motivated by its broad applications, including optical tweezers for
trapping and manipulating microscopic particles, multiplexed optical communica-
tion, advanced imaging techniques like super-resolution microscopy, and quantum
information processing. Additionally, structured light offers unique properties
such as orbital angular momentum (OAM), which allows information encoding
in the twisted phase of light, and spatially varying polarization patterns, which
facilitate precise control over light-matter interactions.

In this thesis, we investigate various topics related to structured light, in-
cluding the Faraday effect in strongly focused fields, optical skyrmions, and a
two-sphere method for analyzing 3D polarization fields generated by strong fo-
cusing. We demonstrate that, for structured light, magneto-optical interactions,
specifically the well-known Faraday effect, exhibit a more intricate pattern, which
we term the secondary Faraday effect. This effect, arising from the same mecha-
nism as the linear Faraday effect, becomes significant in a strong focusing system,
where it reaches a magnitude comparable to the linear effect.

We also introduce skyrmionic beams, a class of structured light that has at-
tracted significant research attention. Building on existing methods for calculat-
ing skyrmion numbers, we propose a novel approach that explicitly links these
numbers to their topological definitions. Furthermore, we identify that skyrmions
and bimerons—configurations involving two distinct regions of opposite topolog-
ical charge—are topologically equivalent by generalizing the definition of their
parameters. Emphasis is placed on the geometrical interpretations, which lead
to an extended definition of singularities.

Throughout the thesis, we are particularly interested in highly focused sys-
tems, where additional spatial dimensions play a crucial role compared to paraxial
optics. To investigate this, we introduce a two-sphere method to comprehen-
sively describe general 3D polarization fields and apply it to a focused, hence
non-paraxial skyrmion beam, as an example.
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2.5.2 The Poincaré Sphere . . . . . . . . . . . . . . . . . . . . . 24

2.6 Strong Focusing System . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Far Field Approximation . . . . . . . . . . . . . . . . . . . 26
2.6.2 Aplanatic System . . . . . . . . . . . . . . . . . . . . . . . 27

3 Faraday Effect for Focused Vector Vortex Beams 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Faraday Effect for Linearly Polarized Beam . . . . . . . . . . . . . 35
3.3 Faraday Effect for Paraxial Vector Vortex Beams . . . . . . . . . 37

3.3.1 Simulation Results for Paraxial RPB . . . . . . . . . . . . 42
3.4 Faraday Effect for Strongly Focused RPB . . . . . . . . . . . . . . 46

ii



Contents iii

3.4.1 Focused Radially Polarized Light . . . . . . . . . . . . . . 46
3.4.2 Gouy phase for strongly focused RPB . . . . . . . . . . . . 50

3.5 Simulation Results for Strong Focusing Field . . . . . . . . . . . . 51
3.6 Preliminary Experimental Results and Outlook . . . . . . . . . . 57

3.6.1 Discussion of the longitudinal component . . . . . . . . . . 58
3.6.2 Calculation of off-axis incidence . . . . . . . . . . . . . . . 58

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 An Introduction to skyrmions 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 From Magnetic to Optical skyrmions . . . . . . . . . . . . . . . . 64
4.3 Paraxial Optical Skyrmion Beams and Skyrmion Fields . . . . . . 65
4.4 Skyrmion Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Calculating skyrmion Numbers: From Definition to a Topological

Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Skyrmion Field Lines . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Basis Change in Constructing and Measuring of Skyrmion Field 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Base Independence of Skyrmion Field in Consistent Basis Mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Skyrmion Fields in Mixed-up Bases Measurements . . . . . . . . . 79
5.4 Skyrmion Potential in Mixed-up Bases Measurements . . . . . . . 84
5.5 General Orthonormal States and Their Pauli Matrices . . . . . . . 86
5.6 One Skyrmion Beam and Its Countless Topological Equivalents . 88

5.6.1 Fixed Skyrmion Beam and Generalized Stokes Parameters 88
5.6.2 Rational Map and Geometrical interpretations . . . . . . . 91
5.6.3 Generalized Singularities . . . . . . . . . . . . . . . . . . . 93
5.6.4 Generalized Skyrmion Textures . . . . . . . . . . . . . . . 94

5.7 Skyrmion Number Calculation for Mixed-up Bases Measurements 98
5.8 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 101
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 A New Method to Describe 3D Polarized Fields 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Hannay-Majorana Sphere . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Constructing the Poincarana Sphere . . . . . . . . . . . . . . . . . 107
6.4 Two-Sphere Method . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 General Algorithm of the Two Sphere Method . . . . . . . 113

iii



Contents iv

6.4.2 A Comparison of the Poincaré Sphere and the Poincarana
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and general Poincaré beam . . . . . . . . . . . . . . . . . . . . . . 94
5.7 Intensity modulated polarization patterns and phase distributions

for different bases for n = 1 skyrmion . . . . . . . . . . . . . . . . 95
5.8 Intensity modulated polarization patterns and phase distributions

for different bases for n = 2 skyrmion . . . . . . . . . . . . . . . . 96
5.9 n=2 skyrmion under a mixed-up bases measurement. . . . . . . . 100
5.10 Experimental set up for generating skyrmions . . . . . . . . . . . 101
5.11 Experimentally generated n=1 to 5 skyrmions. . . . . . . . . . . . 102
5.12 Skyrmion number measurement with increasing background noise. 103

6.1 Majorana representation for spinors . . . . . . . . . . . . . . . . . 107
6.2 a reproduction of Hannay’s original figure . . . . . . . . . . . . . 108
6.3 Polarization ellipse and spin direction . . . . . . . . . . . . . . . . 108
6.4 Geometrical meaning of beta . . . . . . . . . . . . . . . . . . . . . 110
6.5 A schematic diagram of the spin-direction sphere . . . . . . . . . 111
6.6 3D polarization ellipse and spin vector s. . . . . . . . . . . . . . . 112
6.7 Poincarana sphere for n=1 paraxial skyrmion. . . . . . . . . . . . 116
6.8 Colormap & n=2 spin direction sphere. . . . . . . . . . . . . . . . 121
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Chapter 1

Introduction

Optics has a long history: In the 10th century, Ibn al-Haytham (Alhazen) used
a pinhole camera to demonstrate that light travels in straight lines, laying the
groundwork for geometrical optics [1]. In the 17th century, Isaac Newton em-
ployed a prism to disperse white light into its constituent colors, revealing the
spectral composition of light [2]. This was followed by Thomas Young’s ground-
breaking double-slit experiment, which provided critical evidence of the wave
nature of light and laid the foundation for interferometry [3, 4]. Around the
same period, Étienne-Louis Malus discovered the polarization property of light
[5], which was further developed into a comprehensive theory by Augustin-Jean
Fresnel [6]. These foundational studies collectively paved the way for modern
concepts of structured light.

While classical optics focused on fundamental properties like intensity and
wavelength, structured light expands these principles by enabling precise control
over intensity, phase, and polarization [4]. While the term “structured light”
is relatively modern, its conceptual foundation can be traced back to earlier
scientific explorations of light, where it originally referred to intensity patterns
in a particular plane [7]. With major technical advancements in holographic
techniques, including spatial light modulators (SLMs) and digital micromirror
devices (DMDs), high-speed dynamic control of structured light fields has become
possible [8, 9].

In recent years, the theory of structured light has developed rapidly, evolving
from the study of specific transverse modes of light [10] to the creation of tailored
spatial-temporal light fields [11]. Its applications are broad, including but not
limited to optical communications [12], quantum information processing [13], and
super-resolution imaging [14].

In this thesis, we investigate spatially varying polarization patterns, including
vector vortex beams—beams with helical phase structures—and optical skyrmions,
which are topologically protected light structures characterized by intricate, twist-
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Chapter 1. Introduction 2

ing polarization patterns embedded within the polarization fields of vector light
beams. We are particularly interested in the behaviour of such optical fields un-
der phenomena that affect polarization, such as the Faraday effect, which rotates
polarization, and strong focusing, which alters the transverse polarization and
induces a longitudinal component. Strong focusing has numerous applications,
such as particle acceleration [15], second-harmonic generation [16], and fluores-
cent imaging [17].

In 1845, the pioneering experimental physicist Michael Faraday observed the
rotation of the polarization plane when he passed a polarized beam through a
transparent material placed in a magnetic field [18, 19]. This phenomenon was
later named the Faraday effect, a remarkable discovery demonstrating the interac-
tion between light and magnetic field, confirming that light is an electromagnetic
phenomenon.

The Faraday effect has been extensively studied. While it is well-understood
in linearly polarized light, its interaction with structured light, particularly vec-
tor vortex beams, remains unexplored, forming one key focus of this thesis. We
investigate how a vector vortex beam interacts with a Faraday medium (or equiv-
alently, a dielectric medium under a magnetic field). We identify a secondary
effect, distinct from the linear Faraday effect. This secondary effect, arising from
the complex structure of vector vortex beams and exhibiting as inhomogeneous
rotation and changes in polarization ellipticity, is relatively small in the paraxial
regime, where the beam remains nearly collimated. However, when a strongly
focused radially polarized beam is used, this secondary effect is magnified, reach-
ing a level comparable to the linear Faraday effect. This results in a subtle
inhomogeneous rotation of the polarization structure, with the ellipticity of the
polarization ellipses increasing as the beam approaches the focal plane.

Skyrmions were first introduced in the field of particle theory [20], later ex-
tended to magnetic materials [21], and more recently to optics [22, 23]. Tony
Skyrme first proposed the concept of skyrmions in nuclear physics, a pioneering
idea that has since had wide-reaching implications [24, 20]. In 1961, he intro-
duced a topological model to describe baryons, representing them as solitons
(localized, stable waves that do not dissipate) in a field theory. This model of
solitons later became known as skyrmions, in honor of Skyrme’s work. Since
then, these quasi-particles have been predicted and observed in diverse contexts,
including string theory [25], Bose condensates and atoms [26, 27], spintronics
[28], magnetic media [29, 30, 31], and more recently in plasmonics and optics
[32, 23, 33, 22, 34]. While the more familiar magnetic skyrmions are associated
with magnetic spin textures, optical skyrmions are embedded in the polarization
structure of complex vector light fields.

Optical skyrmions are quasiparticles with non-trivial topological structures,
characterized by a topological invariant known as the skyrmion number (Fig-
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Chapter 1. Introduction 3

ure. 1.1). This topology, crucial for describing the quantized model, remains
preserved under deformations unless the skyrmion is destroyed. For instance, the
field lines of a skyrmion cannot be separated without topologically destroying
the structure. The skyrmion model has applications in various fields, includ-
ing condensed matter physics and optics [35, 21, 36]. In magnetic skyrmions,
the configuration of spin textures is topologically stable. Similarly, in optical
skyrmions, the polarization distributions are constructed in a manner analogous
to their magnetic counterparts [22].

Figure 1.1: An illustrative example of an n = 1 bimeron (left) and skyrmion
(right). A bimeron is a configuration involving two distinct regions of opposite
topological charge, while a skyrmion configuration has opposite circular polariza-
tions at the beam centre and periphery, which theoretically extends to infinity.

The skyrmion number, which characterizes the singularities of the field, can
be understood as a measure of the flux of the skyrmion field in a transverse
cross-section. It can be calculated using a vector potential defined in terms of
the skyrmion field [22, 37]. However, this method lacks satisfactory precision,
as measuring the skyrmion field, and consequently the vector potential, becomes
challenging in low-intensity regions, an issue that warrants further exploration.
We propose an alternative topological definition using the Stokes phase, which
measures the skyrmion number by the variation of the Stokes phase along an in-
tegral path. This approach is closely linked to the winding number, which counts
the number of turns made by the Stokes vector on the Poincaré sphere. The
Stokes phase, which can be determined from experimentally accessible Stokes
parameters, provides a reliable measurement of the skyrmion number in what

3



Chapter 1. Introduction 4

we call a consistent basis measurement, meaning that the basis used to con-
struct the skyrmion beam and the basis used to measure it are consistent. This
method offers higher experimental precision. Furthermore, we demonstrate that
a mixed-up bases measurement is possible, where the basis used to construct the
skyrmion beam and the basis used to measure it are chosen independently. This
generalized measurement not only extends the definition of singularities but also
provides even higher measurement precision in the lab. In this generalized mea-
surement framework, we identify the topological equivalence between a skyrmion
and a bimeron, a configuration involving two distinct regions of opposite topolog-
ical charge (Figure. 1.1). These configurations, including countless intermediate
states, are topological transitions of one another, meaning they are topologically
equivalent.

Well-established models exist for describing 2D polarization, such as Stokes
parameters, the polarization ellipse, and the Poincaré sphere [6, 38]. In recent
years, there has been increasing interest in research fields such as nano-optics [39]
and microscopy [40] in examining the polarization of light in scenarios where all
three components of the polarization vector are non-negligible. Earlier theoreti-
cal models primarily explored the propagating and focusing aspects of the field
through the angular spectrum method, as demonstrated in the strong focusing
system model of Richards and Wolf [41, 39]. However, simulations are typically
limited to a 2D polarization description.

In 2D polarization, the polarization vectors lie in a plane perpendicular to
the propagation direction, meaning that a CP1 space (complex projective plane),
which is homeomorphic to S2 (surface of a sphere), is sufficient to capture all their
features. For 3D polarizations, traditional Stokes parameters and Poincaré sphere
representations fail to capture their full complexity. In this thesis, we propose a
two-sphere method to fully describe the features of 3D polarization distributions
by separately characterizing ellipticity and spin orientation, enabling a complete
description of 3D fields.

In summary, this thesis consists primarily of three parts:
The first part includes chapter 2, which introduces the background of struc-

tured light and the strong focusing system originally proposed by Richards and
Wolf [41] and further developed by Novotny and Hecht [39]. It also includes chap-
ter 3, which presents one application of the concepts introduced in chapter 2. In
chapter 3, we examine how the polarization structure of a radially polarized beam
changes after undergoing strong focusing.

The second part of this thesis includes chapter 4 and chapter 5. In chapter 4,
we introduce the concept of optical skyrmions, a recently developed theory de-
scribing a specific type of structured light beam. In chapter 5, we generalize the
concept of paraxial skyrmions and demonstrate that bimerons are one topolog-
ical transition of skyrmions. Furthermore, we extend the theoretical framework

4



Chapter 1. Introduction 5

of skyrmions to include all their topological equivalents. Additionally, we present
experimental results which demonstrate how this generalization improves the
practical measurement of skyrmion numbers.

The third part is presented in chapter 6, where we develop a two-sphere
method to describe 3D polarization fields. As a specific example, we apply the
strong focusing system to focus an n = 2 paraxial skyrmion. This focusing process
results in a 3D polarized field, and we demonstrate how our newly developed
theory can be used to analyze it.

Finally, the conclusion chapter (chapter 7) summarizes the work presented in
this thesis.

5



Chapter 2

Introduction to Structured Light
and Strong Focusing System

2.1 Introduction
In this chapter, we present the background theory relevant to the research themes
discussed in the upcoming chapters. We begin by introducing the basics of struc-
tured light (section 2.2), which is distinct from classical optical models, where
the polarization of the beam is either ignored or treated as homogeneous.

Next, we introduce the paraxial optical model (section 2.3), which is one
class of solutions to the Helmholtz equation, a fundamental wave equation that
describes the spatial variation of monochromatic waves, under the paraxial ap-
proximation. Unless stated otherwise (e.g., in the case of strong focusing), we
primarily work within the paraxial regime throughout this thesis. One approach
to solving the Helmholtz equation employs the angular spectrum representation
(subsection 2.3.1), a mathematical technique derived using Fourier transforma-
tions. Another widely used class of solutions consists of Gaussian beams and
their higher-order forms (subsection 2.3.2). Here, we introduce Hermite-Gaussian
(HG) and Laguerre-Gaussian (LG) beams, two important families of higher-order
Gaussian beams that play an important role in structured light research. These
beams, along with Fourier analysis, will be used in subsequent chapters.

We then introduce the Gouy phase in section 2.4, which describes an addi-
tional phase shift experienced by a beam as it propagates through a focus. This
effect is essentially a result of the transverse momentum of the beam, and is par-
ticularly important when analyzing beam transitions, such as mode conversions
and focusing systems. The concept of polarization is introduced in section 2.5,
along with two important tools for its geometric representation: the polarization
ellipse (subsection 2.5.1) and the Poincaré sphere (subsection 2.5.2). These two

6
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geometric representations are closely related through appropriate mathematical
mappings.

Finally, in section 2.6, we introduce the aplanatic system, a strong focusing
model based on the Richards and Wolf framework. This system has significant
applications in later chapters.

2.2 Structured Light
Optical science has a long history that can be traced back to ancient Egypt,
beginning with the invention of lenses and the subsequent development of theories
in geometrical optics [42]. For a long time, optical science was grounded in
classical and relatively simple models, such as plane waves and spherical waves,
with geometrical optics serving as a useful framework for these models [6]. This
traditional approach was transformed by the advent of structured light, which
was driven by rapid advancements in optical technologies. These developments
in theory, in turn, stimulated further progress in the design and functionality of
optical instruments.

Structured light refers to light beams with strong spatial inhomogeneity in
beam parameters, such as amplitude, phase, and polarization [43, 7]. The study
of structured light emphasizes characterizing vortices and singularities [43]. It in-
troduces seemingly abstract concepts, including phase singularities, polarizations,
chiralities, and helicities. Structured light has numerous applications, including
optical manipulation [44], optical metrology [45], nano-probing [46], and data
processing.

2.3 Paraxial Optical Fields
In this section, we will introduce the paraxial beam model, which is a useful model
for many optical systems where light beams propagate along a fixed direction with
a small spread in the transverse direction [39]. We begin with the mathematical
descriptions of the paraxial system.

A wave equation can be derived from the well-known Maxwell equations,
which we quote here [3]:

∇ · E = 0,

∇ × E = −∂B
∂t
,

∇ · B = 0,

∇ × B = µ0ε0
∂E
∂t
.

(2.1)

7
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These equations assume free space with the absence of free charge or current,
where E refers to the electric field, and B refers to the magnetic field, and µ0
and ε0 represent the permeability and permittivity in the vacuum. If we take the
curl of the second equation and eliminate B by substituting the last equation, we
obtain the wave equation:

∇2E − 1
c2
∂2E
∂2t

= 0. (2.2)

This vector form of the wave equation can be simplified to a scalar form,
where transversality links the components in space [47]

∇2u (r, t) = 1
c2
∂2u (r, t)
∂t2

, (2.3)

where u (r, t) denotes the magnitude of E as a function of space r = (x, y, z) and
time t, and c represents the speed of light. In Cartesian coordinates, ux(r, t) and
uy(r, t) are the transverse components, while uz(r, t) is the longitudinal compo-
nent. In this context, we are particularly interested in a transverse electromag-
netic (TEM) wave, which is a solution to the wave equation.

We limit our discussions to monochromatic beams and apply the usual as-
sumptions: assuming a monochromatic wave that originates at z = 0 and propa-
gates in the +z direction. This form of solution separates the time dependence of
the wave function, allowing us to express the temporal part as e−iωt, where ω is the
frequency of the light. Substituting the solution u (x, y, z, t) = U0 (x, y, z) e−iωt

into Eq. (2.3), we obtain a time-independent wave equation, also known as the
Helmholtz equation, a fundamental wave equation that describes the spatial vari-
ation of monochromatic waves, as

∇2U0(x, y, z) + k2U0(x, y, z) = 0, (2.4)

where k = ω/c is the wave number.
Finally, the paraxial approximation is considered. Such approximation allow

us to write a relation U0 (x, y, z) = E (x, y, z) eikz, where the propagation term
eikz is separated. The conditions for the paraxial approximation require that [48]∣∣∣∣∣∂2E

∂z2

∣∣∣∣∣ ≪
∣∣∣∣∣2k∂E∂z

∣∣∣∣∣ ,
∣∣∣∣∣∂2E

∂z2

∣∣∣∣∣ ≪
∣∣∣∣∣∂2E

∂x2 + ∂2E

∂y2

∣∣∣∣∣ , (2.5)

these inequalities require that the second derivative with respect to z is small
compared to other terms and can therefore be ignored. if we substitute the
relation u (x, y, z, t) = E (x, y, z) eikze−iωt into Eq. (2.3) and drop the second
derivative with respect to z term, we will eventually arrive at the paraxial wave
equation:

∇2
⊥E + 2ik∂E

∂z
= 0, (2.6)

8



Chapter 2. Introduction to Structured Light and Strong Focusing System 9

where ∇2
⊥ represents the transverse Laplacian. The most prevalent solution to

the paraxial wave equation is perhaps the famous Gaussian beam, which we will
discuss in later subsection.

Another way of solving the wave equation is to go back to Eq. (2.4) and make
approximations to its solutions. For a detailed treatment, we refer the reader to
Chapter 16 of Lasers by Siegman [49]. Here, we briefly recap the solution process.

It was Huygens’ original idea that each point on a wavefront can be considered
a source of a secondary spherical wave [50]. The total field distribution is then
obtained by integrating these spherical contributions, accounting for the geometry
of the wavefront. With Fresnel approximation, the field can be written as

U0(x, y, z) = eikz

iλz

∫∫ ∞

−∞
U0 (x′, y′, 0) exp

[
ik

2z
(
(x− x′)2 + (y − y′)2)]

dx′dy′,

(2.7)
where λ is the wavelength, and the source plane is assumed to be at z = 0. Thus,
(x′, y′, 0) refers to a point on the source plane, and (x, y, z) refers to a field point.
Here we used ρ =

√
(x− x′)2 + (y − y′)2 + z2 ≈ z + (x−x′)2+(y−y′)2

2z
, which is the

Fresnel approximation.
Both the Gaussian beam solution and the Huygens-Fresnel integral method

give equivalent results [51]. These solutions bring important concepts that are
widely used in optics, which we will explain in the following subsections. First,
we introduce the angular spectrum method, which provides a general solution to
the scalar wave equation by expressing the field as a superposition of plane waves.
Under the paraxial approximation, this method leads to the Fresnel diffraction
integral, where the quadratic phase approximation of the propagation term is
applied [49, 52]. Then, we introduce the Gaussian beam solution, which is a
direct solution to the paraxial wave equation.

2.3.1 Angular Spectrum Representation of Optical Fields
Optical fields can be described as a superposition of plane waves and evanescent
waves, both of which are physical solutions to the Maxwell equations [39, 52]. In
the paraxial regime, this decomposition naturally leads to the representation of
the angular spectrum, which falls within the framework of Fourier optics.

Assuming a fixed plane z = 0 transverse to the propagation direction, the
field can be written in terms of its two-dimensional Fourier transform and vice
versa [39]:

Ê (kx, ky; 0) = 1
4π2

∫∫ ∞

−∞
E(x, y, 0)e−i[kxx+kyy]dxdy,

E(x, y, 0) =
∫∫ ∞

−∞
Ê (kx, ky; 0) ei[kxx+kyy]dkxdky,

(2.8)

9
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where Ê(kx, ky) is the angular spectrum, i.e., the spatial Fourier transform of the
field at the plane z = 0.

If the field propagates to a distance z, we have

E(x, y, z) =
∫∫ ∞

−∞
Ê (kx, ky; 0) ei[kxx+kyy+kzz]dkxdky, (2.9)

where kz =
√
k2 − k2

x − k2
y. This is the angular spectrum representation, a rigor-

ous solution to the Helmholtz equation.
For a scalar field U0 at z = 0, we have

U0(x, y, 0) =
∫∫ ∞

−∞
A (kx, ky; 0) ei[kxx+kyy]dkxdky,

A (kx, ky; 0) = 1
4π2

∫∫ ∞

−∞
U0(x, y, 0)e−i[kxx+kyy]dxdy,

(2.10)

where A (kx, ky; 0) is the angular spectrum of U0(x, y, 0).
Under the paraxial approximation, where kx, ky ≪ k, we can expand kz as

kz ≈ k −
k2

x + k2
y

2k , (2.11)

substituting into the scalar form of Eq. (2.9), we derive

U0(x, y, z) =
∫∫ ∞

−∞
A (kx, ky; 0) e

i

[
kxx+kyy+

(
k−

k2
x+k2

y
2k

)
z

]
dkxdky

= eikz

4π2

∫∫ ∞

−∞

(∫∫ ∞

−∞
ei(kx(x−x′)+ky(y−y′))ei z

2k (k2
x+k2

y)dkxdky

)
U0(x′, y′, 0)dx′dy′

= eikz

4π2

∫∫ ∞

−∞

2πk
iz

exp
(
ik

2z
(
(x− x′)2 + (y − y′)2))

U0(x′, y′, 0)dx′dy′

= eikz

izλ

∫∫ ∞

−∞
U0(x′, y′, 0) exp

(
ik

2z
(
(x− x′)2 + (y − y′)2))dx′dy′,

(2.12)
where we used λ = 2π/k, and the Gaussian integral

∫∞
−∞ exp (−ax2

i + bxi) dxi =√
π
a

exp
(

b2

4a

)
, with a = i z

2k
, b = i(xi − x′

i) and xi = x, y. This is the Fresnel
diffraction integral (Eq. (2.7)) we obtained before. Therefore, we showed that
the angular spectrum method can lead to the Fresnel diffraction integral under
the paraxial approximation.

In summary, the angular spectrum method provides a rigorous and general
framework for modeling wave propagation by decomposing the field into plane
waves via Fourier transform. Under the paraxial approximation, the accumulated
phase of these components simplifies, and the inverse Fourier transform yields
the Fresnel diffraction integral. This derivation reveals how paraxial diffraction
naturally emerges from the exact wave description in the Fourier space.

10
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2.3.2 Gaussian Beam and Higher Order Beams
To solve the paraxial wave equation ∇2

⊥E + 2ik ∂E
∂z

= 0, we take 2D spatial
Fourier transform in the transverse coordinates. Thus, ∇2

⊥E is transformed to
−(k2

x + k2
y)Ê and ∂E

∂z
is transformed to ∂Ê

∂z
. The relation between E and Ê is

Ê (kx, ky; z) = 1
4π2

∫∫
E (x, y, z) e−i(kxx+kyy)dxdy, (2.13)

and the paraxial wave equation becomes

−
(
k2

x + k2
y

)
Ê + 2ik∂Ê

∂z
= 0. (2.14)

The solution to this ordinary differential equation is not difficult to obtain,
which reads

Ê (kx, ky; z) = Ê (kx, ky; 0) · exp
(
i
k2

x + k2
y

2k z

)
. (2.15)

We assume a Gaussian distribution at the beam waist (z = 0) [6, 39], as

E (x, y, 0) = E0e
− x2+y2

w2
0 , (2.16)

where w0 represents the beam waist radius, and E0 is a constant. The Fourier
transform can be performed to obtain its angular spectrum

Ê (kx, ky; 0) = 1
4π2

∫∫ ∞

−∞
E0e

− x2+y2

w2
0 e−i[kxx+kyy]dxdy

= E0
w2

0
4π e−(k2

x+k2
y)w2

0
4 ,

(2.17)

where the Gaussian integral (see previous subsection for details) is used. Substi-
tuting Eq. (2.17) into Eq. (2.15) and then into Eq. (2.13), perform the inverse
Fourier transform, and apply the Gaussian integral, we obtain

E(x, y, z) = E0eikz

1 + 2iz/ (kw2
0)e

−
(x2+y2)

w2
0

1
1+2iz/(kw2

0) . (2.18)

If we assume cylindrical symmetry around z-axis, and let ρ2 = x2 + y2, we
obtain

E(ρ, z) = E0
w0

w(z)e− ρ2

w2(z) ei[kz−φg+kρ2/(2R(z))], (2.19)

11



Chapter 2. Introduction to Structured Light and Strong Focusing System 12

where some new parameters are defined here for a better physical meaning:
zR = kw2

0
2 is the Rayleigh range, w (z) = w0

√
1 + z2

z2
R

is the beam radius, R(z) =

z
(

1 + z2
R

z2

)
is the wavefront radius and φg = arctan

(
z

zR

)
is the Gouy phase [39].

The relevant parameters are shown in Figure. 2.1.

Figure 2.1: A fundamental Gaussian beam with relevant parameters, where w0
is the beam waist, w(z) is the beam waist as a function of z. zR is the Rayleigh
range, corresponds to the distance from beam waist to

√
2w0. And φg which is

the angle between the asymptotic lines, is the Gouy phase.

There are different ways to derive Gaussian beams, Siegman [49] pointed out
that a Gaussian beam can be constructed from a spherical wave by shifting the
source point to the complex plane. This approach constructs a complex wave
quantity whose real and imaginary parts are related to the radius of curvature
R(z) and the spot size of the beam w(z). This resolves the infinite energy prob-
lem of the spherical wave, which is of course, unphysical. The derivation of
the Gaussian beam is the core result of this subsection, the paraxial form of
the Gaussian beam. We will introduce next how it is linked with higher order
Hermite-Gaussian (HG) beams and Laguerre-Gaussian (LG) beams which are
frequently used in later context.

As higher order Gaussian beams, HG beams and LG beams are also solutions
to the paraxial Helmholtz equation, and each forms a complete basis set of so-
lutions. HG beams are solutions under rectangular coordinate system, while LG
beams are solutions under cylindrical coordinates. The fundamental Gaussian
beam serves as the lowest-order mode of both beams [49, 53].

The generating functions for higher order HG and LG beams were proposed

12
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by Zauderer [39, 54], as follows:

EHG
nm(x, y, z) = wn+m

0
∂n

∂xn

∂m

∂ym
E(x, y, z),

ELG
pl (x, y, z) = kpw2p+l

0 eikz ∂
p

∂zp

(
∂

∂x
+ i

∂

∂y

)l {
E(x, y, z)e−ikz

}

= kpw2p+l
0 eikz ∂

p

∂zp

(
∂

∂ρ̄

)l {
E(ρ, z)e−ikz

}
,

(2.20)

where ρ̄ = x− iy denotes the complex conjugate of ρ. Zauderer showed that HG
and LG modes with complex arguments (in polynomials) are paraxial limits of
multipole solutions of the Helmholtz equation. These are still physical modes in
real space but generated via complex-analytic methods. This framework provides
a compact representation and facilitates mode conversion between HG and LG
beams, and will be utilized in later chapters.

The relations between these modes can be compared with relations between
orthonormal states on the Poincaré sphere, and by analogy we can construct
higher order mode spheres [55]. There are also other forms of the generating func-
tion, people constructed generating function using ladder operators [56]. Higher-
order solutions can also be obtained via suitable trial solutions, as pointed out in
[49].

The commonly used indices for LG beams are l and p, which are related to
the Cartesian indices m and n via the following expressions [57]

p = min(m,n),
l = m− n,

2p+ |l| = m+ n.

(2.21)

For LG beams p = 0, 1, 2, ... represents the radial number, and l = 0,±1,±2, ...
the azimuthal number, which corresponds to the beam’s orbital angular momen-
tum (OAM).

If we write Eq. (2.6) in cylindrical coordinates, we obtain(
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂ϕ2 + 2ik ∂
∂z

)
LGl

p = 0, (2.22)

where ρ =
√
x2 + y2 is the radial coordinate, and ϕ is the azimuthal angle. Solving

this yields the Laguerre–Gaussian (LG) beams. A general expression for the LG
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beams is given in [53]:

LGl
p (ρ, ϕ, z) =

√
2p!

π (p+ |l|!)
1

w (z)

( √
2ρ

w (z)

)|l|

·

L|l|
p

(
2ρ2

w (z)2

)
e− ρ2

w(z)2 ei

(
lϕ+ kρ2

2R(z) −(2p+|l|+1)φg

)
,

(2.23)

where L|l|
p is the associated Laguerre polynomial, and all other parameters are

defined as before. LG beams are therefore determined by three parameters: p, l
and w0. A figure of various LG modes is given in Figure. 2.2 to illustrate the
meaning of these indices. These beams have cylindrical symmetry, where the
intensity is the same on each ring. The index l is also called the topological
charge of the beam [10], a concept that naturally leads to vortex beams, which
are beams with a spiral phase distribution [10, 58]. The wavefront of a vortex
beam spirals along the optical axis and has zero energy in its centre [59]. The
topological charge can be calculated by doing a path integral around the phase
singularity, where the jump of the phase happens [60]. This topological property
of the vortex beams means it is very robust and is linked to our studies discussed
later.
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Figure 2.2: A figure illustrating various LG modes, showing both intensity and
phase, where deeper colors indicate higher intensity [61].
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2.4 Gouy Phase
In the previous section we have introduced the concept of Gouy phase as one
of the beam parameters. We will now give some further introduction about this
important and interesting phenomenon whose importance will become clear in
later chapters.

Gouy performed an experiment back in 1891, where he reflected the beam
from the same light source with both a flat mirror and a curved one. The focused
beam is then interfered with the non-focused one. Gouy observed a phase shift
from the center of the diffraction pattern, which was later named after him as
the Gouy phase [62].

Gouy phase was once considered a phase anomaly [63]. There are many ex-
planations about this phase change, which occurs when the beam passes through
its focus. Boyd [63] provides an intuitive explanation, interpreting the Gouy
phase as a phase difference between a Gaussian beam and an infinite plane wave.
The Gouy phase can thus be understood as the optical path difference between
the geometrical optics model and the optical path resulting from diffraction, as
explained in Figure. 2.3.

Figure 2.3: The optical path lengths of the wavefronts AB and DE are compared.
The geometrical path length is the straight line BE, while the path length caused
by diffraction is BCD. The difference between these two paths results in the
phase anomaly [63].

But a deeper understanding can be gained by examining the quantum behav-
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ior of the light, as pointed out by Feng in [64], which also provides a compatible
explanation for the previous claim that the Gouy phase is a phase difference be-
tween a Gaussian beam and an infinite plane wave. We will now give a brief
recap of Feng’s paper about the derivation and explanation of the Gouy phase.

A beam with finite transverse spread can be written in terms of angular spec-
trum of plane waves through Fourier transform, as pointed out in subsection 2.3.1.
Suppose the beam propagates along z direction, its wave number can be written
as

k2 = k2
x + k2

y + k2
z . (2.24)

It is appropriate to write any averages in terms of this finite beam as

⟨ξ⟩ ≡
∫+∞

−∞ ξ|f(ξ)|2dξ∫+∞
−∞ |f(ξ)|2dξ

, (2.25)

where f(ξ) is the wave distribution, and ξ represents any relevant variables of
the function f . For a typical Gaussian beam, the transverse beam profile can be
written as

E(ρ, z) =
√

2
π

1
w(z)e− ρ2

w2(z) , (2.26)

where
√

2
π

1
w(z) is a normalization factor, and w(z) is the beam radius as defined

in subsection 2.3.2. From Eq. (2.8) we know its Fourier transform can be written
as

Ê (kx, ky; z) = 1
2π

∫∫ ∞

−∞
E(x, y, z)e−i[kxx+kyy]dxdy

= w(z)√
2π

e− w2(z)
4 (k2

x+k2
y).

(2.27)

Both Eq. (2.26) and Eq. (2.27) are normalized Gaussian beams. So we can in-
tegrate out the expectation values of the beam vector components from Eq. (2.25)
as

⟨k2
x ⟩ =

∫∫ ∞

−∞
k2

x

∣∣∣Ê (kx, ky; z)
∣∣∣2 dkxdky

= 1
w2(z) = ⟨k2

y ⟩.
(2.28)

The Gouy phase of a Gaussian beam can then be calculated as

φg = −1
k

∫
z

⟨k2
x ⟩+ ⟨k2

y ⟩ dz = −arctan
(
z

zR

)
. (2.29)

We see from the above calculation that the Gouy phase is due to the transverse
momentum. For an infinite beam, the wave vector is along z, which means the
beam has no transverse momentum. This is compatible with the Heisenberg
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uncertainty principle. When the beam has a finite spread, its has an uncertainty
in the momentum, therefore the transverse component in wavevector k, which
causes the Gouy phase shift.

In summary, the Gouy phase is an additional π phase shift compared to an
ideal plane wave, with most of this shift occuring within one Rayleigh range [49].
We will make use of this fact in later chapters.

2.5 Polarization
Polarization is another important aspect of structured light. It is a property of
transverse waves that describes the geometrical orientation of their oscillations
[65, 66]. Beams with different polarizations can behave differently in optically
active media, thereby influencing the propagation of the beam [67]. By conven-
tion, the polarization direction refers to the direction of the electric field vector
E, which is perpendicular to the direction of propagation.

Polarization can be categorized as linear, circular, or elliptical, depending on
the shape traced by the transverse oscillation of the electric field. Linear and
circular polarizations are special cases of the more general elliptical polarization.
Elliptical polarization arises when two plane waves with different amplitudes,
phases, and polarization directions are superposed. In this context, we assume all
light beams are monochromatic, meaning they have a constant phase difference,
which results in a steady elliptical trajectory. When the phase difference is π/2
and the amplitudes are equal, the polarization becomes circular. If only one plane
wave is present, the resulting polarization is linear [6].

From Maxwell’s equations, we can derive plane wave solutions that describe
different types of polarization. Suppose we have a monochromatic plane wave
with wavelength λ and frequency f , propagating in the z-direction. Without loss
of generality, the electric field of such a wave can be written as [3]:

E (t) = E0 cos (kz − ωt) , (2.30)

where k = 2π/λ is the wave number, and ω = 2πf is the angular frequency.
This can also be written in the exponential form as E(t) = Re

{
E0e

i(kz−ωt)
}
,

where E0 is a real-valued vector specifying the amplitude and direction of the
electric field, and the real part of E(t) represents the physical field. From the
exponential form we recognize the time dependence for the monochromatic wave
and the propagation term we introduced earlier.

We have assumed that the beam propagates along the z-axis, such that the
electric field E and magnetic field B lie in the transverse x-y plane. In this case,
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the electric field can be expressed as [68]:

E (t) =
(
E0x cos (ωt+ φ1)
E0y cos (ωt+ φ2)

)
, (2.31)

where E0x and E0y are the amplitudes of the electric field components along the
x- and y- axes, respectively, and φ1 and φ2 are their respective phase offsets.
These phase differences arise from the relative phase delay between the x- and y-
components of the wave, and they play a crucial role in determining the polariza-
tion state of the beam. Depending on the values of φ1, φ2, and the amplitudes,
the resulting polarization can be linear, circular, or elliptical.

Eliminating t we can get a relation between the x and y components of E(t),
as

E2
yE

2
0x − 2ExEyE0xE0y cosφ+ E2

xE
2
0y = E2

0xE
2
0y sin2 φ, (2.32)

where φ = φ1 − φ2 is the phase difference between Ex and Ey, and E0x and
E0y are the constant amplitudes of the x- and y-components. The geometrical
relations are shown in Figure. 2.4. The details of the calculations can be found
in [69]. It is not difficult to recognize that this function has the form of an
ellipse, which is known as the polarization ellipse whose properties are described
by Stokes parameters [68].

Figure 2.4: A reference rectangle is given, whose side lengths are related to
constant amplitudes E0x and E0y. The polarization is circular when E0x = E0y,
and φ = ±π/2. The polarization is linear when E0x = 0 or E0y = 0, or when
E0x = E0y, and φ = 0 or φ = π.
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2.5.1 Polarization Ellipse and Stokes Parameters
George Gabriel Stokes was a brilliant mathematician and physicist of the 19th
century. In his early career, he conducted research in hydrodynamics and acous-
tics, and later shifted his focus to optics. In the field of optics, he studied the
aether, which was then believed to be the medium through which light waves
propagate—a widely accepted assumption at the time. He also investigated
diffraction phenomena, which refer to the behavior of waves when they encounter
obstacles. Later, he focused on ellipsometry [70].

Stokes parameters were introduced before the electromagnetic nature of light
was fully understood and served as a useful tool for characterizing experimental
measurements [71].

There are four Stokes parameters, typically denoted as [S0, S1, S2, S3], or al-
ternatively as [I,Q, U, V ] by convention. In this thesis, we will adopt the former
notation. Their relationships to the parameters of the E field and the polarization
ellipse are as follows: [72]:

S0 = |E0x|2 + |E0y|2,
S1 = |E0x|2 − |E0y|2 = S0 cos 2χ cos 2ψ,
S2 = 2E0xE0y cosφ = S0 cos 2χ sin 2ψ,
S3 = 2E0xE0y sinφ = S0 sin 2χ,

(2.33)

where we provide two expressions for the Stokes parameters: the expression after
the first equal sign is directly related to the parameters introduced in Eq. (2.32),
namely the field amplitudes and their relevant phase. The second expression,
which follows the second equal sign, introduces new parameters χ and ψ, which
have geometrical meanings that we will discuss in the following.

For the purpose of this thesis, we only consider fully polarized light, which, in
terms of Stokes parameters, is defined by the condition S2

0 = S2
1 + S2

2 + S2
3 [47].

From Eq. (2.33) we know that S0 represents the intensity of the beam. The other
three parameters measure the degree of polarization in their relevant directions,
which will become more obvious in the expression we introduce later (Eq. (2.36)).
The geometrical meaning of χ is clear as tanχ corresponds to the ratio between
the major and minor axes of the polarization ellipse, thus characterizing the
ellipticity, and ψ is the angle between the major axis and x-axis, which describes
the orientation of the ellipse, as shown in Figure 2.5.

The Stokes parameters can be related to the Jones calculus [73]. Jones calculus
represents polarized lights by 2-vectors, as

E =
[
E1e

iφ1

E2e
iφ2

]
, (2.34)
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Figure 2.5: A figure of the polarization ellipse, where χ is the angle of ellipticity,
and ψ is the angle of orientation.

each entry of the 2-vector is a complex-valued, time-independent component of
the electric field E, where physical E field is just the real part of the complex
vector.

We now write explicitly the six commonly used polarization states

ĥ = x̂ =
[

1
0

]
, v̂ = ŷ =

[
0
1

]
,

d̂ = 1√
2

(ĥ + v̂) = 1√
2

[
1
1

]
, â = 1√

2
(ĥ − v̂) = 1√

2

[
1

−1

]
,

l̂ = 1√
2

(ĥ + iv̂) = 1√
2

[
1
i

]
, r̂ = 1√

2
(ĥ − iv̂) = 1√

2

[
1

−i

]
,

(2.35)

We have explained the meanings of the variables χ and ψ, but this is not the
only way to express these parameters, there are other interesting representations
of them. In fact, another explicit way is to express these three parameters as
[72, 69]

S1 = |Ex|2 − |Ey|2 ,
S2 = |Ed|2 − |Ea|2 ,
S3 = |Er|2 − |El|2 ,

(2.36)

In this notation, the subscripts indicate the components of the field in relevant
polarization bases: the horizontal and vertical Cartesian basis, denoted by sub-
scripts x and y; the diagonal and anti-diagonal basis (i.e., x̂ and ŷ rotated by
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45◦), denoted by d and a; and the left- and right-handed circular polarization
basis, denoted by r and l. This representation clarifies the physical meaning of
measuring the degree of polarization along each polarization direction. Since this
representation requires only intensity measurements, the Stokes parameters are
readily accessible through experimental observations.

Sometimes it is useful to write the Stokes parameters in the same basis, which
brings us to another representation that can be obtained through a basis transfor-
mation of Eq. (2.36). We derive the representation in the horizontal and vertical
Cartesian basis as an example.

In Eq. (2.36), S1 is already expressed in horizontal and vertical Cartesian
components. To derive the expression for S2, we use the relations between the
two Cartesian bases as

d̂ = 1√
2

(x̂ + ŷ) ,

â = 1√
2

(x̂ − ŷ) .
(2.37)

where the hat indicates unit vectors. By expressing the E field in different bases,
and substituting in the basis vector relations we can calculate

E = Exx̂ + Eyŷ = Eaâ + Edd̂

=
√

2
2 [Ea (x̂ − ŷ) + Ed (x̂ + ŷ)]

=
√

2
2 [(Ea + Ed) x̂ + (−Ea + Ed) ŷ] .

(2.38)

From the above calculation, we obtain:

Ed =
√

2
2 (Ex + Ey) , Ea =

√
2

2 (Ex − Ey) . (2.39)

From which we can calculate S2 as

S2 = |Ed|2 − |Ea|2

= 1
2 (Ex + Ey) · (Ex + Ey)∗ − 1

2 (Ex − Ey) (Ex − Ey)∗

= 2Re
(
ExE

∗
y

)
.

(2.40)

Similarly, we can derive S3 using the relations between x̂, ŷ and r̂, l̂, which
are

r̂ =
√

2
2 (x̂ − iŷ) ,

l̂ =
√

2
2 (x̂ + iŷ) .

(2.41)
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From which we obtain S3 = −2Im
(
ExE

∗
y

)
. This way, we express the four Stokes

parameters all in the horizontal and vertical Cartesian basis as follows:

S0 = |Ex|2 + |Ey|2 ,
S1 = |Ex|2 − |Ey|2 ,
S2 = 2Re

(
ExE

∗
y

)
,

S3 = −2Im
(
ExE

∗
y

)
.

(2.42)

We can apply the same reasoning to calculate the Stokes parameters for other
bases. Starting from Eq. (2.36), if we express S1 and S3 in d̂, â basis, and leave
S2 unchanged as it is already in d̂, â basis, we obtain

S0 = |Ed|2 + |Ea|2 ,
S1 = −2Re (E∗

dEa) ,
S2 = |Ed|2 − |Ea|2 ,
S3 = 2Im (E∗

dEa) .

(2.43)

If we express S1 and S2 in r̂, l̂ basis, and leave S3 unchanged as it is already
in r̂, l̂ basis, we obtain

S0 = |El|2 + |Er|2 ,
S1 = 2Re (E∗

l Er) ,
S2 = −2Im (E∗

l Er) ,
S3 = |Er|2 − |El|2 .

(2.44)

Each group is a representation of Stokes parameters in a certain basis, as indicated
by their subscripts.

Although it may not be immediately obvious, in the above representations,
an eigenvalue expression is associated with one of the Stokes parameters in each
group. In each basis, the Stokes parameters can be interpreted as expectation val-
ues of the Pauli matrices [74], which form a complete set of observables for the po-
larization state of light. These matrices act on the polarization state represented
by a Jones vector. Specifically, the normalized Stokes vector S = (S1, S2, S3) can
be written as the expectation values of the Pauli matrices:

Si = ⟨ψ|σi|ψ⟩, i = 1, 2, 3 (2.45)

where |ψ⟩ is the normalized Jones vector of the light field, and σi are the Pauli
matrices. This expression resembles an eigenvalue equation, in the sense that if
the polarization state is an eigenvector of a Pauli matrix (e.g., horizontal, diago-
nal, circular), then the corresponding Stokes parameter reaches its maximum or
minimum value of ±1.
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Thus, each basis corresponds to an eigenbasis of one of the Pauli matrices.
The shift in the form of the Stokes parameters across different bases reflects
this underlying eigenvalue structure: the beam is being measured in different
polarization observables depending on the chosen basis.

The connection between the Stokes parameters and the Pauli matrices allows
us to adopt representations from quantum mechanics, such as bra-ket notation
and operators. These applications will be discussed in more detail in chapter 4,
chapter 5, and chapter 6.

2.5.2 The Poincaré Sphere
Aside from polarization ellipse, another model that links closely to the geometry
of Stokes parameters is the Poincaré sphere. Poincaré’s work is a continuation of
Stokes construction. In 1892, he proposed a spherical representation for polarized
light, later became known as the Poincaré sphere [75]. We remark here that it is
again intrinsically the same thing as Bloch sphere, which has been proposed later
to deal with pure states in quantum systems [76]. The repeated déjà vu feeling is
due to the analogies between optical systems and two-dimensional quantum sys-
tems; both are 2-level systems, and one can also link full and partial polarizations
with pure and mixed states.

The expression of Stokes parameters in terms of angles χ and ψ in Eq. (2.33)
already exhibited this geometry, as one can immediately recognize the expression
has the form of spherical coordinates, and think of [S1, S2, S3] as the represen-
tation of a vector on the surface of a sphere with radius S0. If we normalize all
the components to

[
Ŝ1, Ŝ2, Ŝ3

]
, where Ŝ1 = S1/S0, and similarly for Ŝ2 and Ŝ3,

we get a nomalized Stokes vector, which we call S. The Poincaré sphere is a unit
sphere where S lives.

In our context we are always using the normalized Stokes parameters, for
convenience we will drop the hat on components in later context.

The Poincaré sphere represents polarizations in the following way: polariza-
tion ellipses with same shape, or same ellipticity, all dwell in the same latitude,
while along a latitudinal line their orientation changes. On the equator of the
Poincaré sphere, the polarizations are linear, evolving from horizontal linear po-
larization (along positive direction of S1) to anti-diagonal, vertical, and eventually
back to horizontal linear polarization. Along the longitudinal line, the polariza-
tion starts as a right-handed circular polarization on the North pole, evolves to a
linear polarization on the equator line, and with the inverse process back to cir-
cular polarization on the southern hemisphere, but with an opposite handedness,
ended as a left-handed polarization on the South pole. Antipodal points on the
Poincaré sphere represents orthogonal polarizations. These properties are shown
in Figure. 2.6.
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Figure 2.6: Figure of a Poincaré Sphere, with the spherical angles (χ, ψ) describe
ellipticity and orientation, respectively. Orthogonal polarization states are repre-
sented by antipodal points on the Poincaré Sphere. The vector S is a unit vector
whose tip lies on the surface of the Poincaré sphere, representing a fully polarized
beam.
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2.6 Strong Focusing System
In modern optics, many of the most important problems use optical techniques
that involve highly focused higher order laser modes to access the longitudinal
components of the fields [77, 78]. Recall in the paraxial treatment (introduced
in section 2.3), we have omitted the transverse component of the field, which
therefore becomes insufficient in these occasions [79]. By the term strong focusing,
we are referring to systems with high numerical aperture (NA> 1), the definition
of which will be given later in this section.

In this section, we will introduce Richards and Wolf’s method [41] of dealing
with strong focusing optical system. We will mostly follow chapter 3 of Principle
of Nano Optics [39], with some derived details which are not included in the
book, as well as corrections and some re-construction.

2.6.1 Far Field Approximation
We have introduced the angular spectrum representation in subsection 2.3.1,
which is where we start from. Recall Eq. (2.9), which describes the relation
between a propagating E field and the spectrum in the object plane, as

E(x, y, z) =
∫∫ ∞

−∞
Ê (kx, ky; 0) ei[kxx+kyy+kzz]dkxdky. (2.46)

This is the result of the Fourier transform, where we have written a general
Fourier spectrum in terms of the spectrum at the object plane (z = 0) and a
propagator (e±ikzz). Here we always assume the propagation direction to be +z,
so that the exponential form of the propagator always takes the + sign. So, we
can calculate the spectrum at any arbitrary image plane (z = constant) in terms
of the spectrum at the object plane.

Consider here a far-field approximation, where the field we want to evaluate is
at an infinite distance from the object plane [80]. This way, the evanescent waves,
which are waves that decay exponentially with distances, do not contribute. By
the stationary phase method, which provides an asymptotic approximation to
integrals for large values of an appropriate parameter [81], we understand that the
far-fields are entirely defined by the spectrum field at the object plane Ê (kx, ky; 0).
This indicates that, in the direction s =

(
x
r
, y

r
, z

r

)
, the far field can be expressed

as
E∞ (sx, sy) = −2πikszÊ (ksx, ksy; 0) eikr

r
, (2.47)

or, in terms of (kx, ky, kz),

E∞

(
kx

k
,
ky

k

)
= −2πikzÊ (kx, ky ; 0) eikr

r
, (2.48)
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where r = (x2 + y2 + z2)1/2.
This tells us that the only plane wave that contributes to the far field at

direction s =
(

kx

k
, ky

k
, kz

k

)
is the plane wave with wavevector k = (kx, ky, kz).

Contributions from all other plane waves all cancel out due to destructive inter-
ference.

By inverting the relation in Eq. (2.48), and substitute into Eq. (2.46), we get
a relation between field E and its far field

E(x, y, z) = ire−ikr

2π

∫∫
(k2

x+k2
y≤k2)

1
kz

E∞

(
kx

k
,
ky

k

)
ei[kxx+kyy+kzz]dkxdky, (2.49)

where we have indicated the integration range because the evanescent waves do
not contribute [80, 39]. We now obtain a relation between the two fields, where
we find that at z = 0 and kz ≈ k, we have field E and its far field from essentially
a Fourier pair, which is the limit of Fourier Optics [39, 52].

2.6.2 Aplanatic System
We now introduce the strong focusing system, which plays a key roll in confocal
microscopy systems and data storage [82], also optical tweezers, the single-beam
gradiant trap, which have vital applications in measuring the mechanical property
of cells [83]. Consider an aplantic system which focus the paraxial beams, as
shown in Figure. 2.7. We define the focal length to be f , which is the distance
between the optical lens and the focal plane. θ is the angle between the refracted
beam and the incident beam, and h is the distance between the parallel incident
beam and the optical axis.

We want to characterize a polarized incident beam after passing through the
system. Here, two approximations will be applied, namely, the sine condition and
the intensity law [39]. The sine condition applies geometrical optics theory to the
incident light beam and the refracted light beam, and the intensity condition
states that a ray will always carry the same amount of energy before and after
the refraction.

In an ideal model, where no aberrations occur, rays from a point object trav-
eling through the aplanatic system will traverse the same optical path length and
converge perfectly at the Gaussian image point. The optical path length of a ray
is defined as the refractive index n multiplied by the geometrical path length [84].
Geometrical optics tells us that the refracted rays will bend on a reference sphere
with radius f , intersecting with their conjugate rays. This sphere is known as
the Gaussian (reference) sphere, with its center located at the Gaussian image
point. The geometrical relations are illustrated in Figure 2.7.
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Figure 2.7: Figure of an aplanatic system, with different dielectric media on each
side of the lens. Other relevant parameters are defined in the figure. The lower
part of the figure shows a reference sphere of radius f , which is equal to the focal
length. An incident ray which is parallel to the optical axis will intersect the
refracted ray on the reference sphere.
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A point (x, y, z) on the reference sphere can be represented by the spherical
coordinates as

x = f sin θ cosϕ,
y = f sin θ sinϕ,

(2.50)

where θ and ϕ are the polar and azimuthal angles, respectively, as shown in
Figure. 2.7.

With the above analyses of the two approximations, we have the two mathe-
matical relations

h =f sin θ,

|Eref | = |Einc|
√
n1

n2

√
µ2

µ1
(cos θ)

1
2 ,

(2.51)

where Eref refers to the refracted field and Einc refers to the incident field, the
term (cos θ) 1

2 arises from the geometrical relation of the basis transformation. µ1
and µ2 are magnetic permeabilities of the respective media, which typically take
the value of 1 at optical frequencies, as the magnetization of natural materials
is unable to follow the variation of the magnetic field of light [85]. So, the term
µ2
µ1

will be discarded in the following context. Another thing to notice is that
the above approximations of the aplanatic system are only suitable for paraxial
beams [39, 84, 3], the beam after focusing of course, is no longer paraxial.

Another thing to notice is that any polarized plane wave can be written as
a superposition of two orthogonal polarizations, namely s-polarization and p-
polarization, where s-polarization is parallel to the interface and p-polarization
is perpendicular to E and k, as shown in Figure 2.8. Their reflections and trans-
missions are governed by Fresnel coefficients, which we denote by rs, rp, ts, tp
[3, 39]. This means that, by separating Einc to s- and p- polarized parts and treat
them separately according to their own refractive law, we have the relation in
cylindrical coordinates as

Einc = Es
inc + Ep

inc

= [Einc · nϕ] nϕ + [Einc · nρ] nρ.
(2.52)

The geometrical structure of the aplanatic system indicates that we transit
from a cylindrical coordinate system to a spherical one before and after focusing.
We see that the vector in polar direction (nϕ) in the two systems remains un-
changed, while the vector in the radial direction nρ is mapped to the azimuthal
direction nθ, as shown in Figure. 2.9.
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Figure 2.8: Figure showing the s- and p-polarizations, where p represents the
polarization direction, red plane is the plane of incidence, and blue plane is the
interface where the refractive happens.

Therefore, the total refracted field can be written as

Eref = Es
ref + Ep

ref

= tsEs
inc

√
n1

n2
(cos θ)

1
2 + tpEp

inc

√
n1

n2
(cos θ)1/2

= [ts (Einc · nϕ) nϕ + tp (Einc · nρ) nθ]
√
n1

n2
(cos θ)1/2,

(2.53)

in the second line, we have substituted the relation between the incident beam
and the refracted beam (Eq. (2.51)), and in the third line, we refract the s- and
p- polarized components differently (Eq. (2.52)).

The refracted field is the field on the reference sphere, and can be treated as
a far field and denoted as E∞. This is because to use the assumption of a far
field, we must satisfy two conditions: 1. kr → ∞ and 2. evanescent waves must
be dicarded. This means in order to use the far field formula Eq. (2.49) we do
not need an actual far field, but any field that satisfies the above conditions. So,
as long as we have large k, we do not need r to reach out to infinity. By large k,
we mean that the finiteness of the optical wavelength can be neglected, or that
the wavelength is small compared to the focal length, which is usually the case
for visible light.

We can express all the unit vectors in the refracted field as column vectors,
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Figure 2.9: The relations between coordinates of ρ in cylindrical and spherical
systems.
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and express the far field of the refracted field as

E∞(θ, ϕ) =

Einc(θ, ϕ) ·

 − sinϕ
cosϕ

0



 − sinϕ

cosϕ
0

√n1

n2
(cos θ)1/2+

Einc(θ, ϕ) ·

 cosϕ
sinϕ

0



 cosϕ cos θ

sinϕ cos θ
− sin θ

√n1

n2
(cos θ)1/2.

(2.54)

where we have assumed a good antireflection coating, such that ts and tp can be
taken to be 1.

Therefore, Eq. (2.54) calculates the refracted field for any incident beam that
passes through the aplanatic system.
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Chapter 3

Faraday Effect for Focused
Vector Vortex Beams

3.1 Introduction
Magneto-optical effects describe how magnetic fields influence the interaction
between light and matter, modifying either the properties of the medium or the
light [86, 87, 88]. There are many such effects, such as the Faraday effect, the
Kerr effect, and the Voigt effect [89].

In 1845, Michael Faraday discovered that the polarization plane of light ro-
tates as it propagates through a material in the presence of a magnetic field
aligned with the direction of propagation (Figure. 3.1). It was the first exper-
imental evidence revealing the relationship between light and electromagnetism
[18, 90, 91]. Later, in 1876, John Kerr discovered another effect that involves the
interaction of the electric field of light with the magnetization of the material,
known as the Kerr effect [92]. This effect typically occurs upon reflection from
a magnetized surface, unlike the Faraday effect, which occurs during transmis-
sion. In 1898, Woldemar Voigt introduced the Voigt effect, a quadratic, reciprocal
counterpart to the Faraday effect [89]. The Voigt effect manifests as magneti-
cally induced birefringence due to a transverse magnetic field and is even under
field reversal [93]. Among the earliest and most widely studied of these is the
Faraday effect, which not only revealed a fundamental link between light and
electromagnetism but also laid the foundation for modern magneto-optics.

The Faraday effect remains a cornerstone of magneto-optical research due to
its ubiquity across various media and wide-ranging applications in optical isola-
tors, magneto-optical imaging, and quantum optics [94, 95, 96]. It also exhibits
unique characteristics, such as non-reciprocity and the ability to interact with the
spin angular momentum of light [97, 98]. These features make it especially ap-
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Figure 3.1: A schematic of the linear Faraday effect illustrates the influence of
a magnetic field applied along the propagation direction of a dielectric medium.
The magnetic field is aligned with the optical axis, and as a linearly polarized
light beam passes through the medium, its polarization direction rotates.

pealing for studies involving structured light, such as vector vortex beams, which
carry spatially varying polarization and orbital angular momentum.

Recently, the importance of strong focusing has grown significantly, partic-
ularly in the context of nanophotonics and structured materials. With the rise
of metasurfaces, plasmonic nanostructures, and other sub-wavelength objects,
many optical experiments require the use of tightly focused beams to interact
with features at the nanoscale [99]. However, tight focusing introduces non-
paraxial effects that fundamentally alter the beam’s polarization distribution,
including the emergence of longitudinal field components and spatially varying
polarization [39, 100, 101]. These polarization changes are particularly relevant in
magneto-optical studies: if not considered, they can lead to misinterpretation of
the Faraday rotation or magneto-optical signals. For example, structured beams
can acquire spin-orbit coupling effects under strong focusing, modifying how light
interacts with magnetization in a sample [102].

Thus, a refined understanding of the Faraday effect under strong focusing
is not only of fundamental interest but also crucial for correctly interpreting
and designing experiments involving nanoscale magneto-optical systems. When
vector vortex beams are tightly focused, their complex internal structure interacts
non-trivially with material anisotropies and external fields. For such structured
beams, the depiction and analysis of the Faraday effect on a linearly polarized
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light becomes insufficient. For later convenience, we refer to the Faraday effect
which rotates linearly polarized light as the linear Faraday effect, and the more
subtle rotation arising from the unique properties of vector vortex beams will be
termed the secondary Faraday effect.

This chapter investigates the magnetic Faraday effect and how focused vector
vortex beams reveal new aspects of this classic phenomenon. We start with a
paraxial vector vortex beam, where the effect is relatively simple and dominated
by the linear Faraday rotation (section 3.2). We then analytically demonstrate
in section 3.3 how a secondary Faraday effect arises in a radially polarized beam
(RPB). In subsection 3.3.1, simulation results show that while a paraxial RPB
experiences inhomogeneous polarization rotation in a Faraday medium, the effect
is typically weak and overshadowed by the linear rotation. In section 3.4, we show
that strongly focusing the RPB magnifies the inhomogeneous rotation, making
it comparable to the linear Faraday effect. This also induces a radially varying
polarization pattern, as demonstrated in section 3.5. We further discuss the
oblique incidence case in section 3.6, where both the Voigt and Faraday effects
contribute simultaneously. This scenario introduces new complexity and is a
direction for future research. An eigenmode solution for the combined effect is
provided, and the chapter concludes in section 3.7.

In this chapter, I am responsible for the whole thoery part, and the experiment
was carried out by Sphinx. Svensson under the guidance of Prof. Sonja Franke-
Arnold.

3.2 Faraday Effect for Linearly Polarized Beam
We begin with a brief analysis of the linear Faraday effect for linearly polarized
light. As stated in the introduction, a linearly polarized beam would experience
a rotation of its polarization direction due to the applied magnetic field. The
reason behind this is clear: linearly polarized light can be decomposed into two
circularly polarized components, with equal amplitude profiles but orthogonal
polarization directions, as

p = cos θex + sin θey

= 1√
2

cos θ (eR + eL) − i√
2

sin θ (eL − eR)

= 1√
2

(cos θ + i sin θ) eR + 1√
2

(cos θ − i sin θ) eL

= 1√
2

(exp (iθ)eR + exp ( − iθ)eL)

(3.1)
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where p represents a linear polarization at an arbitrary angle θ to the x-axis, and
ex, ey, eR and eL stand for different polarizations as indicated by their subscripts.
It is not difficult to see that when the two circularly polarized components expe-
rience different refractive indices, a beam E would evolve along its propagation
direction as

E = 1√
2
(
eiθeik0nRzeR + e−iθeik0nLzeL

)
= 1√

2
eik0(nR+nL)z/2

(
eiθeik0(nR−nL)z/2eR + e−iθe−ik0(nR−nL)z/2eL

)
= 1√

2
eik0

(nR+nL)
2 z

(
ei(θ+∆θ)eR + e−i(θ+∆θ)eL

)
=eik0(nR+nL)z/2 (cos (θ +∆θ)ex + sin (θ +∆θ)ey) ,

(3.2)

where ∆θ = k0(nR − nL)z/2 is the angle rotated as the beam propagates along
z, nR and nL represents different refractive indices for left and right circu-
larly polarized beam. In general, the refractive index can be complex, i.e.,
nR,L = n′

R,L + in′′
R,L, where the real parts n′

R,L are responsible for phase differ-
ences between circular polarization components, while the imaginary parts n′′

R,L

describe absorption, or circular dichroism (see chapter 5 of [88]). In what fol-
lows, we focus on the Faraday effect arising from birefringence, and for simplicity
denote the refractive indices by nR and nL.

When the beam propagates in the dielectric medium in the presence of a
magnetic field, its two circularly polarized components propagate with different
speeds due to slightly different refractive indices, thus a (constant) phase differ-
ence will be introduced to the propagation term, which accumulates to cause the
rotation. This is just like the birefringence nature of certain materials. With the
presence of the magnetic field, the dielectric medium exhibits this birefringence
property, and becomes a Faraday medium which causes the rotation.

We now calculate the rotation of a linearly polarized beam within a Rayleigh
range, zR, as an example, due to its physical significance as the effective path
length over which the beam maintains its focus. As calculated above, the rotation
angle is given by

∆θ = k0(nR − nL)z/2 = π(nR − nL)z/λ, (3.3)

where λ is the wavelength. So the rotation angle of the length of Rayleigh range
can be represented as

∆θR = π (nL − nR)
λ

· zR = π2w2
0 (nL − nR)
λ2 . (3.4)
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3.3 Faraday Effect for Paraxial Vector Vortex
Beams

We want to investigate the Faraday effect for more intricate structured light
beams, and we start with a paraxial vector vortex beam. A radially polarized
beam has been chosen for this purpose, which can be created using the super-
position of two Hermite Gaussian (HG) modes encoded with orthogonal linear
polarization components or two Laguerre Gaussian (LG) modes encoded with
orthogonal circular polarizations. Specifically, we have

|ψ ⟩ = 1√
2
(
LG1

0|r̂⟩ + LG−1
0 |l̂⟩

)
= 1√

2
(
HG10|ĥ⟩ + HG01|v̂⟩

)
(3.5)

where |ψ⟩ represents a radially polarized beam, as shown in Figure 3.2.

Figure 3.2: Radially polarized beam composed from LG beams and HG beams,
respectively.

As the Faraday effect is associated with circular birefringence, it can most eas-
ily be analyzed for circularly polarized components, thus we choose to decompose
the radially polarized beam into LG modes, corresponding to the first expression
in Eq. (3.5).

We have introduced LG beams in subsection 2.3.2, where a general form of
LG beams has been given in Eq. (2.23). It is well known that LG beams are a
class of solutions to the paraxial wave equation. In section 2.3 we have explained
how the approximations are made, which allows us to reduce the more general
wave equation Eq. (2.3) to the paraxial wave equation Eq. (2.6). The solutions
to the time-independent wave equation, i.e. the Helmholtz equation, are further
written in the form of U0 (r, z, t) = E (r, z) eikz in this process. This means that
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the solutions to the paraxial wave equation do not contain the propagating term
eikz (or equivalently eik0nz, where n is the refractive index). For our purpose of
exploring the Faraday effect, however, we must take this propagation term into
account. This means we should add the propagation term to Eq. (2.23), and
obtain the general form of propagating LG beams as

LGl
p (r, ϕ, z) =

√
2p!

π (p+ |l|!)
1

w (z)

( √
2r

w (z)

)|l|

L|l|
p

(
2r2

w (z)2

)
·

e
− r2

w(z)2 e
i

(
lϕ+ kr2

2R(z) −(2p+|l|+1)φg

)
eik0nz,

(3.6)

where l is the winding number which characterizes the phase singularities, p
is the radial angular momentum number, and L|l|

p are the associated Laguerre
polynomials.

We will now analyze the secondary Faraday effect for a radially polarized
beam (RPB). Using its decomposition in terms of right and left circular polari-
sation from Eq. (3.5) we substitute the relevant indices |l| = 1, p = 0, n = nR

or n = nL into Eq. (3.6) to obtain the desired beam profiles. We know from
the linear Faraday effect that the refractive indices would be slightly different for
left- and right-handed polarizations, meaning that the beam radius w(z), wave-
front radius R(z), Gouy phase φg and Rayleigh range zR which depend on the
refractive indices will all be affected. Therefore, we assign subscripts R and L to
these variables to distinguish their values for right and left circular polarization,
respectively. We can write the RPB as

RPB =
√

2
π

1
wR (z)

( √
2r

wR (z)

)
· e− r2

wR(z)2 e
i

[
ϕ+ kr2

2RR(z) −2φgR

]
eik0nRzeR+√

2
π

1
wL (z)

( √
2r

wL (z)

)
· e− r2

wL(z)2 e
i

[
−ϕ+ kr2

2RL(z) −2φgL

]
eik0nLzeL,

(3.7)

where we have used the property of associated Laguerre polynomial that L1
0 = 1.

It is the phase difference between the LHP and RHP that accumulates to
cause the rotation we are interested in. Therefore, we can ignore the intensity
profiles for our purpose. For the phase terms, we can apply the same method
used in Eq. (3.2). We first write the phase-related terms of the E field of the
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radially polarized beam, represented by ΦRPB, as

ΦRPB =ei

[
ϕ+ kr2

2RR(z) −2φgR

]
eik0nRzeR + e

i

[
−ϕ+ kr2

2RL(z) −2φgL

]
eik0nLzeL

=eiϕeiϕReik0nRzeR + e−iϕeiϕLeik0nLzeL

=ei[(ϕR+k0nRz)+(ϕL+k0nLz)]/2·[
eiϕ · ei[(ϕR+k0nRz)−(ϕL+k0nLz)]/2eR + e−iϕ · ei[−(ϕR+k0nRz)+(ϕL+k0nLz)]/2eL

]
=ei[(ϕR+k0nRz)+(ϕL+k0nLz)]/2 ·

[
ei(ϕ+∆ϕ)eR + e−i(ϕ+∆ϕ)eL

]
=

√
2ei[(ϕR+k0nRz)+(ϕL+k0nLz)]/2 [cos (ϕ+∆ϕ) ex + sin (ϕ+∆ϕ) ey] ,

(3.8)
where we have set ϕL = kr2

2RL(z) − 2φgL and ϕR = kr2

2RR(z) − 2φgR. We see that the
linear polarization of the initial RPB is rotated by an angle

∆ϕ = (ϕR + k0nRz) − (ϕL + k0nLz)
2 . (3.9)

This angle has the form similar to the rotation angle ∆θ we obtained in sec-
tion 3.2 for linear polarized light, with a slightly more complicated structure that
contributes to a secondary rotation, which we write out explicitly as

∆ϕ = (ϕR + k0nRz) − (ϕL + k0nLz)
2

= k0 (nR − nL) z
2 + 1

2

[(
kr2

2RR (z) − 2φgR

)
−
(

kr2

2RL (z) − 2φgL

)]
.

(3.10)

If we compare the ∆ϕ we rearranged here with the ∆θ we obtained in Eq. (3.2),
we recognize that the first term is the rotation due to the linear Faraday effect
which exists in linearly polarized beam, as we discussed before. The second
term is a rotation due to what we call a secondary Faraday effect, and it is the
consequence of the structure of the LG beams.

With further rearrangements, we can write out the rotation term due to the
secondary Faraday effect which we represent as ∆ϕ2nd, as

∆ϕ2nd = kr2

4

 1

z +
z2

RR

z

− 1

z +
z2

RL

z

+
(

−arctan z

zRR

+ arctan z

zRL

)
, (3.11)

where we have used RR,L(z) = z

(
1 +

z2
RR,L

z2

)
. The first term of the rotational

angle arises from the Rayleigh range difference between the RHP and LHP com-
ponents, while the second term is due to their Gouy phase difference.
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From Eq. (3.11), we observe that the secondary Faraday effect depends on two
variables, r and z, where r is the radial distance from the optical axis and z is the
propagation distance. This implies that the rotation angle will vary as the beam
propagates, and for any fixed propagation distance will change as a function of
r. One may assume the natural way of analyzing this variation is to take partial
derivatives with respect to each variables. However, the partial derivatives do
not yield sensible results as the dependence on the variables cannot be separated
neatly.

At this stage, we are unable to proceed analytically without further assump-
tions, and will instead tackle the problem numerically. We assign specific values
to the refractive indices for the two beam components. We set nR = 1.45 and
nL = 1.55, these values are realistic and can be achieved in experiments. Addi-
tionally, we assign plausible values to the wavelength and other relevant beam
parameters. We set λ = 520 nm, therefore k ≈ 1.209 ∗ 10−7 m−1, and the beam
waist to be 1 mm. From these values we can calculate the Rayleigh ranges for
left-handed and right-handed polarization to be zRL

= 9.36 m and zRR
= 8.76 m.

We now simulate ∆ϕ2nd as a function of z, considering specific values of r:
r = w0 and r =

√
2w0. These values are chosen because they correspond to the

typical beam radius at the focus and the Rayleigh range, respectively. Addition-
ally, z is evaluated from the focus to approximately the Rayleigh range which is
generally regarded as the region where the paraxial approximation remains valid
[49]. The resulting rotation angles and their individual contributions are shown
in Figure 3.3, where solid lines correspond to beam radius r = w0 and dashed
lines to r =

√
2w0.

As derived in Eq. (3.11), the rotational angle of the secondary Faraday effect
consists of two terms, one arising from the Rayleigh range difference, and the other
from the Gouy phase difference. They are plotted separately in blue and red,
respectively, in Figure. 3.3. The total secondary effect is plotted in green. Note
that the Gouy phase term is independent of the beam radius, so the corresponding
red curve is identical for both cases in Figure 3.3. It is evident that the two
terms contribute oppositely to the rotation direction, with the Gouy phase term
gradually becoming dominant as it accumulates during propagation.

For the parameters of our setup, we estimate that the magnitude of the linear
Faraday effect is approximately 108 times greater than that of the secondary Fara-
day effect. Consequently, the rotation due to the difference in refractive indices in
the propagation term remains the dominant contribution. It is evident that the
secondary effect cannot be observed in the presence of this overwhelmingly large
term. To isolate the secondary effect in our calculations, we set the refractive
indices to be equal in the propagation term for both left- and right-handed polar-
izations while maintaining their differences in the other terms. This adjustment
is implemented using Mathematica simulations to effectively eliminate the linear
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Figure 3.3: Plot of the two terms in Eq. (3.11) describing the secondary rotation,
showing their behaviour for two different values of r: r1 = w0 (solid lines) and
r2 =

√
2w0 (dashed lines). The blue lines represent the first term, which arises

from the Rayleigh range difference; the red lines represent the second term, due
to the Gouy phase difference; and the green lines show the total secondary effect.
Note that the solid and dashed red lines overlap because the Gouy phase term is
independent of r.
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Faraday effect. The details and results of these simulations are presented in the
next subsection.

3.3.1 Simulation Results for Paraxial RPB
Previously we introduced the secondary Faraday effect, which for paraxial light
presents a minute modification to the linear Faraday effect arising purely from
propagation with a circularly dichroic medium. Here, we aim to investigate the
spatial dependence of this effect in more detail. The refractive indices, wavelength
and beam waist are set to be the same as the previous section, and we propagate
the beam from z = −8 m to z = 8 m to ensure that it is within the Rayleigh
range. The beam waist is set to be at z = 0 m.

In the paraxial regime, we eliminate the linear Faraday effect by setting the
refractive indices to be equal in the propagation term for both left- and right-
handed polarizations while maintaining their differences in the other terms. Con-
sequently, the observed effects on both r and z are exclusively due to the sec-
ondary Faraday effect.

The secondary Faraday effect is too weak to produce visually distinguishable
differences in the polarization distribution when simulated directly. The resulting
patterns appear identical to those of a uniformly rotated linearly polarized beam.
Therefore, to highlight the subtle inhomogeneity in the polarization rotation,
we instead present the distribution of orientation angle differences relative to
the central, un-rotated polarization direction. This enables us to observe the
radial and transverse inhomogeneity in polarization rotation. To achieve this, we
extract the orientation information of the polarization at every field point using
the properties of the polarization ellipse. Specifically, we determine the local
orientation of the polarization ellipse from the corresponding local field values,
as [69, 68]:

tan (2ψ) = 2ExEy cosφ
|Ex|2 − |Ey|2

, (3.12)

where ψ is the orientation angle of the polarization ellipse, as given in figure. 2.5,
while φ = φ1 − φ2 is the phases difference between Ex, Ey field components
(Eq. (2.31)). This relation can be derived from the expression of Stokes parame-
ters, by taking the ratio of S2 and S1 in Eq. (2.33).

In our simulation, we set the beam waist (z = 0 m) as the starting plane.
This means that the polarization ellipses in this plane are not rotated. As the
beam propagates along the B field, it begins to rotate as it moves further from
the beam waist in either the ± directions. For each plane at a step distance
zi = i ∗ 2 m, we calculate the orientation angle at each field point, ψ(xj, yk, zi),
and compare it with the orientation angle at the same location in the beam waist
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plane ψ(xj, yk, 0). We then plot the orientation angle difference ψ(xj, yk, zi) −
ψ(xj, yk, 0), at each z = zi plane.

In each sub-figure of Figure. 3.4 and Figure. 3.5 we present the spatially
resolved orientation angle difference with respect to the non-rotated case as the
beam is propagating through the Rayleigh range. In Figure. 3.4, we use different
scales for each location in order to emphasize the phase difference distribution of
the rotation angles. The scales used for each sub-figure are shown in the attached
legends. In Figure. 3.5, as a comparison, we plot the first four figures using the
same scale, so that each colour corresponds to a specific rotation angle, with red
representing clockwise and blue anticlockwise rotations. The common scale is
indicated in the plot legend. We show rotation angles as a density plot rather
than a polarization plot as the local rotation inhomogeneity is miniscule, and
impossible to observe for paraxial light beams.

The Rayleigh range measures how collimated a beam is, and a beam is typi-
cally considered paraxial within the Rayleigh range distance. The mathematical
expression for the Gouy phase, φg = −arctan

(
z

zR

)
, implies a faster change when

the beam is closer to focus. Both of these factors justify our choice to propagate
the beam at the Rayleigh range level. Transversely, we looked at the range within
x = y = w0, meaning the the radial distance from the optical axis ranges from 0
to 1/

√
2w0. With the analysis given in section 3.3, we can safely conclude that for

the chosen transverse and longitudinal ranges, the rotation results from a com-
bination of the Gouy phase difference and the Rayleigh range difference between
the two beam components. We can therefore conclude that, in the paraxial case,
there exists a secondary Faraday effect that rotates the polarization distribution
inhomogeneously.

Recall the Gouy phase we introduced in section 2.4, which is a phase asso-
ciated with the properties of Gaussian beams. In short, the Gouy phase arises
due to the (finite) curvature of the wavefront radius. A finite beam implies a
finite spatial distribution, and, according to the uncertainty principle, this in
turn means a finite distribution of momentum. That is, a finite beam will have
a spread in transverse momentum. Consequently, the secondary Faraday effect
will be more pronounced if we increase the transverse momentum, for example,
through strong focusing. This is what we will explore in the next section, where
we will examine the secondary Faraday effect in the focused case.
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Figure 3.4: Spatial variation of the secondary Faraday effect for a paraxial beam
in different propagation planes. Each sub-figure in this figure shows the orien-
tation angle difference relative to the orientation distribution at the focal plane
(in units of radians). Note that each sub-figure is plotted with different scales, as
shown in their legends. The beam has been propagated approximately a Rayleigh
range length. Plus-valued angle corresponds to counter-clockwise rotation and
minus-valued angle corresponds to clockwise rotation.
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Figure 3.5: Spatial variation of the secondary Faraday effect in a paraxial beam,
as in Figure. 3.4 but with all secondary Faraday rotations plotted on the same
scale between 0.01 and 0.03 radians. We have plotted the first 4 slices of Fig. 3.4,
propagating from −8 m to −2 m.
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3.4 Faraday Effect for Strongly Focused RPB
We now know that for paraxial vector vortex beams, the Faraday effect exhibits
subtleties compared to simple linearly polarized beams. In the paraxial regime,
this secondary effect is many orders of magnitude smaller than the linear Faraday
effect, meaning that even in simulations, it can only be observed in the absence
of the linear effect. A natural extension of this work is to tightly focus the beam
and explore the effect in the non-paraxial regime.

We typically think of paraxial beams as transverse electromagnetic beams;
however, this is not entirely accurate, as demonstrated in the previous section,
where the secondary Faraday effect arises as a consequence of the Gouy phase
and beam radius differences. The longitudinal components are comparably small
in the paraxial regime, which is a result of the paraxial approximation [39]. How-
ever, under strong focusing, the longitudinal components of the electromagnetic
fields become comparable to the transverse components [103]. This leads us
to hypothesize that strong focusing could amplify the secondary Faraday effect,
making it comparable to the linear Faraday effect.

3.4.1 Focused Radially Polarized Light
In section 2.6, we introduced the theory of Richards and Wolf regarding the
propagation and focusing of polarized light using angular spectrum techniques.
In scenarios of non-paraxial fields, polarization can exhibit significant variations
over length scales approximately equivalent to the wavelength [38]. Here, we
present our first application of this theory. To compare with the paraxial case,
we specially analyze how the strong focusing system acts on a radially polarized
beam and how the strongly focused RPB is affected by the Faraday effect. We
still decompose the radially polarized beam into two LG beams, as indicated in
Eq. (3.5), but with a slight detour: we first calculate the focused field for HG
beams. The advantage of doing so is that the integrations of HG beams are much
easier to perform compared to those for LG beams. We then use the relations
between HG and LG beams to obtain the focused LG beams.

Strong focusing can be achieved by the aplanatic system introduced in sub-
section 2.6.2, where the far field of an incident beam, whatever the form, can be
calculated on the reference sphere (Figure. 2.7) using Eq. (2.53). By plugging the
far field into Eq. (2.49), and with some suitable conversion of variables, we get

kx = k sin θ cosϕ,
ky = k sin θ sinϕ,
kz = k cos θ,

(3.13)
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and
x = ρ cosφ,
y = ρ sinφ,

(3.14)

where θ and ϕ are spherical angles, while ρ and φ are not geometrically meaningful
variables, but rather, a mathematical treatment which allows the integration to
be evaluated in a closed form [81]. With these new integration variables, we are
able to write Eq. (2.49) as

E(ρ, φ, z) = − ikfe−ikf

2π

∫ θmax

0

∫ 2π

0
E∞(θ, ϕ)eikz cos θeikρ sin θ cos (ϕ−φ) sin θdϕdθ.

(3.15)
This equation integrates to give the focal field of arbitrary input paraxial beams
by passing them through an aplanatic system with focal length f and numeri-
cal aperture NA = n sin θmax. This system was introduced in detail in subsec-
tion 2.6.2. We will now calculate the far field (the field on the reference sphere),
which links the paraxial field to the focused field.

For calculation convenience, and to make use of some results from [39], we
first calculate the focal fields for HG beams and then use the relation between
HG and LG beams to obtain the focal fields of LG beams. When decom-
posed into HG beams, the relation between RPB and HG beams is RPB =

1√
2 (HG10ex + HG01ey). We now need to calculate the far field E∞(θ, ϕ) relevant

to the HG10ex and HG01ey beams in order to get the focused field, with the gen-
eral expression for the far field given in Eq. (2.54). We assume that the incident
beam hits the lens at its beam waist, where the wavefront curvature of the beam
is infinite. Additionally, we assume the lens has a good anti-reflection coating,
so that the transmission coefficients can be assumed to be 1 [39]. With these
assumptions we can calculate the far field for the x-polarized component as

Ex
∞(θ, ϕ) = HG10 (ρ, θ, ϕ) 1

2

 (1 + cos θ) − (1 − cos θ) cos (2ϕ)
−(1 − cos θ) sin (2ϕ)

−2 cosϕ sin θ

√n1

n2
(cos θ)1/2,

(3.16)
the far field for the y-polarized component can be calculated similarly, as

Ey
∞(θ, ϕ) = HG01 (ρ, θ, ϕ) 1

2

 (cos θ − 1) sin 2ϕ
(1 + cos θ) + (1 − cos θ) cos (2ϕ)

−2 sinϕ sin θ

√n1

n2
(cos θ)1/2,

(3.17)
where the beam profiles of higher-order HG beams can be calculated from Eq. (2.20),
with a basis transformation from Cartesian coordinates to spherical coordinates
in order to perform the integration.
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Using mathematical relations, we can integrate Eq. (3.15) in terms of Bessel
functions. These can be expressed as integral abbreviations to reduce the length
of the matrices. In this thesis, we define a convention using three indices for the
integral abbreviations. The first index stands for (1±cos θ), with 1 for plus and 0
for minus, and 3 if there is no such term. The second index represents the order
of sin θ, and the third index corresponds to the order of the Bessel functions.
With these conventions, we can have∫ θmax

0
fw(θ)(cos θ)1/2 sin θ(1 + cos θ)J0(kρ sin θ)eiknz cos θdθ = I110,∫ θmax

0
fw(θ)(cos θ)1/2 sin2 θJ1(kρ sin θ)eiknz cos θdθ = I321,∫ θmax

0
fw(θ)(cos θ)1/2 sin θ(1 − cos θ)J2(kρ sin θ)eiknz cos θdθ = I012,∫ θmax

0
fw(θ)(cos θ)1/2 sin3 θJ2(kρ sin θ)eikz cos θdθ = I332,

(3.18)

where n in the propagation term is the refractive index which would be different
for left- and right-handed polarizations. The expression fw(θ) = e−(x2+y2)/w2

0

gives the apodization function.
We can calculate the focused field by substituting Eq. (3.16) and Eq. (3.17)

into Eq. (3.15) and perform the integration. The results can then be expressed
in terms of the integral abbreviations defined above. However, we can take it a
step further by defining a coefficient matrix for each HG beam. These matrices
act on the incident polarization vector (in Jones vector form) and yield the cor-
responding focused electric field vector. Each matrix element is a coefficient that
represents how the different polarization components contribute to the focused
field at a given spatial mode. The advantage of doing so is that these matrices
can be used to calculate the focused field for arbitrary polarizations. Using our
definition of the integral abbreviations, the coefficient matrices for HG beams can
be constructed as

HG10 = c ·

 iI121 cosφ+ iI023 cos (3φ) −iI021 sinφ+ iI023 sin (3φ)
−iI021 sinφ+ iI023 sin (3φ) (I121 + 2I021) cosφ− iI023 cos (3φ)

−2I330 + 2I332 cos (2φ) 2I332 sin (2φ)

 ,

HG01 = c ·

i (I121 + 2I021) sinφ+ iI023 sin (3φ) −iI021 cosφ− iI023 cos (3φ)
−iI021 cosφ− iI023 cos (3φ) iI121 sinφ− iI023 sin (3φ)

2I332 sin (2φ) −2I330 − 2I332 cos (2φ)

 ,
(3.19)

where c is the coefficient defined as c = − ikf
2

√
n1
n2
E0e

ikf , with E0 being the scalar
field strength, f the focal length, k the wave number, and n1, n2 are the refractive
indices before and after focusing, as given in Figure. 2.7. (Note that the equivalent
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Eq. (3.62) in [39] is wrong.) When applying this equation later, n2 will be
replaced by nR or nL, depending on the relevant context.

Using the relationship between HG and LG modes, we can also construct the
coefficient matrices for the LG beams as follows:

LG1
0 = ikf 2

2w0

√
n1

nR

E0e
iknRf ·

M11 M12
M21 M22
M31 M32

 ,

LG−1
0 = ikf 2

2w0

√
n1

nL

E0e
iknLf ·

N11 N12
N21 N22
N31 N32

 ,
(3.20)

where Mij, Nij are the matrices elements defined as follows:

M11 = iI121 cosφ+ iI023 cos (3φ) − (I121 + 2I021) sinφ− I023 sin (3φ),
M12 = −iI021 sinφ+ iI023 sin (3φ) + I021 cosφ+ I023 cos (3φ),
M21 = −iI021 sinφ+ iI023 sin (3φ) + I021 cosφ+ I023 cos (3φ),
M22 = i (I121 + 2I021) cosφ− iI023 cos (3φ) − I121 sinφ+ I023 sin (3φ),
M31 = −2I330 + 2I13 cos (2φ) + 2iI13 sin (2φ),
M32 = 2I13 sin (2φ) − 2iI330 − 2iI13 cos (2φ),

(3.21)

and

N11 = iI121 cosφ+ iI023 cos (3φ) + (I121 + 2I021) sinφ+ I023 sin (3φ),
N12 = −iI021 sinφ+ iI023 sin (3φ) − I021 cosφ− I023 cos (3φ),
N21 = −iI021 sinφ+ iI023 sin (3φ) − I021 cosφ− I023 cos (3φ),
N22 = i (I121 + 2I021) cosφ− iI023 cos (3φ) + I121 sinφ− I023 sin (3φ),
N31 = −2I330 + 2I332 cos (2φ) − 2iI332 sin (2φ),
N32 = 2I332 sin (2φ) + 2iI330 + 2iI332 cos (2φ).

(3.22)

respectively.
From Eq. (3.5), we multiply these coefficient matrices with corresponding

polarizations. After simplification, we can express the strongly focused radially
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polarized beam as follows:

RPBfocused = 1√
2
(
LG1

0eR + LG−1
0 eL

)

= 1√
2
ikf 2

2w0

√
n1

nR

E0e
iknRf

 i (I121 − I021) cosφ− (I121 + 3I021) sinφ
i (I121 − I021) sinφ+ (I121 + 3I021) cosφ

−4I330

+

1√
2
ikf 2

2w0

√
n1

nL

E0e
iknLf

 i (I121 − I021) cosφ+ (I121 + 3I021) sinφ
i (I121 − I021) sinφ− (I121 + 3I021) cosφ

−4I330

 .
(3.23)

This is the RPB after focusing. In the next simulation section, we will verify
how the secondary effect affects the focused beam. We have chosen a high NA
to observe the effect, which results in strong focusing [79].

3.4.2 Gouy phase for strongly focused RPB
One may pose the question how the Gouy phase shift, which is also a rota-

tional effect upon focusing, would affect the polarization structure as the beam
propagates. For the case of a paraxial beam, the Gouy phase takes the form of
arctan((1 +N)z/zR), where N = n+m = |l| + 2p is the mode number [49]. For
typical radially polarized beams, the mode numbers of both orthogonal polariza-
tion components are equal. While each component experiences a phase shift as
it propagates through the focus, this phase shift is equal for both components,
so that no dephasing occurs, and the common Gouy phase cannot be observed.
A simulation of the propagation of a paraxial RPB is given in Figure. 3.6, where
we have set the refractive indices to be the same for both left- and right- handed
polarization. No polarization rotation is observed. We conclude that the inho-
mogeneous rotation is solely due to the Faraday effect, or more explicitly, the
difference in refractive indices between the two circular polarization components,
which we will examine in the following section, and specifically in Figure 3.7 and
Figure 3.8.

In the case of strong focusing, however, the Gouy phase no longer takes the
form arctan((N + 1)z/zR). Instead, one should use directly the physical meaning
that the Gouy phase is the difference between the phase of the actual field and
that of a non-diffracted spherical wave. In [104], the Gouy phase of a strongly
focused RPB has been investigated, where again, the aplanatic strong focusing
system has been used. The calculation result of a strongly focused RPB field,
expressed in terms of its radial and longitudinal components and adapted to our
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Figure 3.6: The paraxial RPB under the influence of only the Gouy phase during
propagation, where the beams remains the same during propagation as in the
figure.

mathematical framework, can be written as

Ez(ρ, z) = −ikf 2E0

∫ θmax

0
fw(θ) sin3 θ(cos θ)1/2eikz cos θJ0(kρ sin θ)dθ,

Eρ(ρ, z) = −4kf 2E0e
ikf
∫ θmax

0
fw(θ)(cos θ)3/2 sin2 θeikz cos θJ1(kρ sin θ)eikz cos θdθ.

(3.24)

By comparing the phase of the above expressions and that of a spherical wave,
one would obtain [104]

δz(u, v) = arg [ez(u, v)] − sign(u)kR,
δρ(u, v) = arg [eρ(u, v)] − sign(u)kR,

(3.25)

where u, v are Lommel variables defined as u = kz sin2 θmax and v = kρ sin θmax
[41]. The Gouy phase for the radial component stabilizes at 2π even for large
angles. The Gouy phase for the longitudinal component, however, approaches π
as the angle increases. These results and relevant figures can be found in [104]
and [105].

3.5 Simulation Results for Strong Focusing Field
In the simulation, we have set the parameters for strong focusing as follows: the
numerical aperture is NA = 0.98, the focal length is 0.5 m, and the maximum
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angle θmax is determined by the aplanatic lens in the strong focusing system,
defined as arctan(NA/n) = 0.58 radians. The filling factor can be calculated as
f0 = w0

f sin θmax
. And the propagation distance is approximately one wavelength,

which is much shorter than the Rayleigh range due to strong focusing. Other
parameters, such as the beam waist, field strength, refractive indices, and wave-
length, are kept the same as in subsection 3.3.1. For strong focusing, we propagate
approximately one wavelength with a suitable cross-sectional area, and we start
from the focal point as before.

In Figure. 3.7 we present the total Faraday effect for the strongly focused
RPB. Unlike the paraxial case, we do not exclude the linear Faraday effect in the
simulation here, as the secondary effect is now comparable to the linear effect.

For comparison, we present the linear Faraday effect for the radially polarized
beam in Figure. 3.8, ignoring all secondary effects. The inhomogeneous rotation
of the polarization ellipse orientation induced by the secondary effect can be
clearly observed when comparing each sub-figure in Figure. 3.7 and Figure. 3.8,
as concluded in section 3.3. In addition to the change of the local orientation
with the polarization pattern, we observe a change in ellipticities under strong
focusing conditions. This becomes even more apparent when again exclude the
linear Faraday effect and present only the changes in rotation and ellipticity due
to secondary Faraday effect in Figure. 3.9. Finally, in Figure. 3.10, we explicitly
present the orientation angle difference between each sub-plot in Figure. 3.7 and
Figure. 3.8, providing a clearer presentation of the secondary effect in terms of
rotating the rotation of polarization ellipse orientations.

We would like to remark that the Richards and Wolf model is a pure geomet-
rical model. Both the far-field method and the aplanatic system treat the beam
as rays. The phase information of the beam is accounted for by the angular spec-
trum/Fourier optics approach. This means that the phase properties of the beam
play a role in its propagation. We can thus conclude that, of the phase term eikr,
the factor eikzz causes the linear Faraday effect, while ei(kxx+kyy) accounts for the
secondary Faraday effect.
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Figure 3.7: The total Faraday effect for a strongly focused radially polarized
beam (RPB) is examined. The beam waist is set to 1 mm at focus, consistent
with the paraxial case investigated earlier, and the NA is 0.98. The beam at
focus is set to be un-rotated, but is also not pure radially polarized due to strong
focusing. It is propagated over a distance of approximately one wavelength. The
polarization distributions at various propagation distances are presented. The
inhomogeneity of the rotation, particularly with respect to the central figure, is
also observed.
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Figure 3.8: Linear Faraday effect for the focused RPB, with beam parameters
consistent with Figure 3.7.
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Figure 3.9: In this figure, the linear Faraday effect is excluded, and only the
secondary Faraday effect is presented. The beam at the focus is once again
set to be unrotated. Polarization distributions at various distances are shown,
emphasizing the inhomogeneity of the rotation relative to the central figure. The
beam parameters are consistent with Figure 3.7.
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Figure 3.10: The rotational angle difference between the total Faraday effect
and the linear Faraday effect for the focused RPB is presented to illustrate the
rotational angle direction in transverse planes at each step. At z = 0, the plot
shows a uniform gray area indicating no rotation across the transverse plane.
This serves as a comparison with Figure 3.4 and Figure 3.5. The colour bars
(note the different scalings) are in units of radians.
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3.6 Preliminary Experimental Results and Out-
look

An preliminary experimental result was obtained by Sphinx Svensson from the
Optics Group. The Faraday effect measurements were performed using a tightly
focused radially polarized beam with NA=0.7 under a near-uniform magnetic
field generated by anti-Helmholtz coils (radius r = 12.5 cm, an applied voltage of
U = 1.59 V, and an electric current of I = 0.5 A). These coils create a quadrupole
magnetic field gradient (∼ 10G/m) central to magneto-optical trapping (MOT)
of Rb-87 atoms.

The observed inhomogeneous polarization rotation in Figure 3.11 aligns with
predictions for strongly focused beams, where tilted wavevectors induce a mix of
Faraday and Voigt effects. The ellipticity χ and orientation ψ changes correlate
with the beam’s longitudinal polarization component, a feature unique to non-
paraxial regimes. Longitudinal polarization components (absent in collimated
beams) drive π-tramsitions in Rb-87, marking the first direct observation of such
absorption in atomic spectra.

Figure 3.11: Experimental Faraday effect for a tightly focused RPB (NA=0.7)
under a magnetic field B from anti-Helmholtz coils with r = 12.5 cm, at I = 0.5
A and U = 1.59 V. The colour scheme we used is defined in terms of orientation
ψ and ellipticity χ, revealing radially inhomogeneous rotation and secondary
Faraday effects. Ellipse lengths correlate with local field strength, consistent
with nonparaxial longitudinal polarization components

For more details of the experiment we refer the reader to Sphinx’s thesis and
the upcoming publication.
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3.6.1 Discussion of the longitudinal component
Some special-designed, tightly focused structured light modes have been pre-

sented in the literature. For example, in [106], a paraxial skyrmion with topo-
logical number n = 2 is focused, and a Bloch C-skyrmion can be obtained upon
focusing with suitable parameters. In [107], a q-plate generates a Poincaré beam
from a circularly polarized Gaussian input beam. When tightly focused, the non-
paraxial conditions introduce a longitudinal electric field component, twisting
the polarization ellipses into a Möbius strip in the focal plane. This topology
is experimentally confirmed via 3D nanotomography. In our exploration of the
Faraday effect, we also have a non-negligible longitudinal component upon fo-
cusing. However, since our beam does not have a special topological structure,
it would have a topologically trivial longitudinal component, the behaviour of
which is expected to be similar to the transverse component we explored.
3.6.2 Calculation of off-axis incidence
The limitations of the conventional Faraday effect model arise from two idealized
assumptions: (1) that the medium is characterized by a simple, linear constitutive
relation, and (2) that the beam propagates strictly along the optical axis. While
these assumptions may hold in the paraxial regime, they become inaccurate under
strong focusing conditions. In particular, strong focusing causes the propagation
direction to deviate from the optical axis, introducing longitudinal and oblique
field components. Under these circumstances, the Faraday and Voigt effects are
no longer separable and must be treated simultaneously. To accurately account
for these effects, we consider an optically active medium described by a full
susceptibility tensor, following the formalism of [67],

χ =

 χ11 iχ12 0
−iχ12 χ11 0

0 0 χ33

 . (3.26)

We can construct the wave equation for a plane wave by substituting the
above matrix into Maxwell’s equations, and using the relation between D and E.
This gives us:

k × (k × E) + ω2

c2 E = χE, (3.27)

the component form of which are not difficult to calculate and can be written in
matrix form as
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−k2

y − k2
z + ω2

c2 (1 + χ11) kxky + iω2

c2 χ12 kxkz

kxky − iω2

c2 χ12 −k2
x − k2

z + ω2

c2 (1 + χ11) kykz

kxkz kykz −k2
x − k2

y + ω2

c2 (1 + χ33)

·E = 0,

(3.28)
For nontrivial solutions to exist, the determinant of the above matrix must

vanish, which leads to a relation between k, ω, and χ. Such relations can also
be represented by 3D surface in k-space [108]. In this thesis, we focus on the
eigenmode solutions to Eq. (3.28). For a given propagation direction, there exist
two eigenwaves associated with each solution to the null space of k matrix [108,
109].

The eigenmode of the above wave equation can be calculated to be

E =


(
k2 − ω2

c2 (1 + χ11)
) (
k2 − ω2

c2 (1 + χ33)
)
kxky +

(
k2 − ω2

c2 (1 + χ33)
)
iω2

c2 χ12k
2
y(

k2 − ω2

c2 (1 + χ11)
) (
k2 − ω2

c2 (1 + χ33)
)
k2

y − iω2

c2 χ12
(
k2 − ω2

c2 (1 + χ33)
)
kxky

−ω4

c4 χ
2
12kykz +

(
−k2 + ω2

c2 (1 + χ11)
)2
kykz

 .
(3.29)

As stated above, for each k value, there is an associated eigen polarization.
These are the eigenmode solutions for the given propagation direction.

It is possible to use Richards and Wolf focusing system to calculate the beam
profile with the above calculated eigenmode, and to capture a full picture involv-
ing Faraday effect and Voigt effect.
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3.7 Conclusions
In this chapter, we first introduce the Faraday effect for linearly polarized beams,
which we referred to as the linear Faraday effect. We then investigate how this
birefringence-like property manifests when a beam with a more complex structure
is propagated. Specifically, we identified a more subtle, secondary effect that
arises for paraxial radially polarized beams. We analyzed the factors contributing
to this secondary effect and conclude that the Rayleigh range and the Gouy phase
difference between the left and right-handed polarizations are the factors. The
secondary Faraday effect leads to an inhomogeneous rotation of the polarization
in both radial and longitudinal directions. The simulation results were presented
in the absence of the linear Faraday effect, which is strong enough to overshadow
the secondary effect.

Strong focusing magnifies the longitudinal component of the beam, which sig-
nificantly enhances the Gouy phase effect which is related to the longitudinal
beam component. This motivates us to investigate the secondary Faraday effect
for the strongly focused radially polarized beam. In the case of strong focusing,
the secondary Faraday effect becomes comparable to the linear effect, in the sense
that it is observable in the presence of the linear effect. Simulation results, along
with preliminary experimental results, are presented, showing an inhomogeneous
rotation of polarization as one moves radially outward from the optical axis and
propagates away from the beam waist (which we set as the starting point). Ad-
ditionally, changes in the ellipticity of the polarization are observed, but their
detailed investigation must be postponed to future research.

We discussed the rotations that a strongly focused radially polarized beam can
undergo due to the Gouy phase effect, and briefly related this to the presence of
longitudinal polarization components of the beam. These are implicitly included
in the Richards & Wolf simulation. We also briefly presented an alternative
approach based on identifying the eigenmodes of propagation in a given magnetic
field. This method allows us to interpret what we termed the secondary Faraday
effect as a combination of Voigt and Faraday effects for off-axis light propagation
of the strongly focused beam. It will be interesting to compare the two approaches
to obtain a more complete picture of the problem.
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Chapter 4

An Introduction to skyrmions

4.1 Introduction
Skyrmions are topological solitons that were first proposed by Tony Skyrme in
1961 [20]. This concept has since had wide-reaching impacts and research in-
terests in various fields of physics. In recent years, this key concept has been
developing in optics, enriching light field modulation. In 2020, the Quantum
Theory Group of the University of Glasgow proposed the theory of paraxial op-
tical skyrmion beams, where LG beams are used to construct them [22]. As one
of my PhD projects, I worked on further developing the theory, including the
topological definition of skyrmions, the skyrmion lines, and the change of basis
in measuring skyrmion numbers. These contributions are presented in chapter 4
and chapter 5. For the completeness, we include section 4.2, section 4.3, and
section 4.4 which summarize Dr. Sijia Gao’s work. For a complete and detailed
description, we refer the reader to Dr. Gao’s published paper and thesis [22, 34].

Polarization states are commonly described by normalized Stokes parameters,
which can be represented as the expectation values of Pauli matrices with respect
to a beam state. Therefore, we frame this entire theory in the language of quan-
tum mechanics, allowing us to apply the representations and techniques learned
from quantum mechanics. Given that skyrmionic structures have also been ob-
served in photon spins [33], this approach will also enhance the description within
the quantum mechanical context.

In this chapter, we first provide a brief introduction to the history of skyrmions,
with particular emphasis on section 4.2 on how the theory transitions from mag-
netic skyrmions to optical skyrmions, highlighting both the similarities and dif-
ferences in their respective research backgrounds. In section 4.3, we introduce
how a simple optical skyrmion beam can be constructed by superimposing two
Laguerre-Gaussian beams with orthogonal polarizations, and represent their pa-
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rameters using the language of quantum mechanics. The spatially varying po-
larization is characterized by normalized Stokes parameters, from which we can
define a skyrmion number that describes the topological properties of the beam.
A vector field can also be identified from the definition of the skyrmion number,
providing the skyrmion number physical meaning as the flux of the skyrmion
field.

Because the skyrmion field is divergenceless, as we will show later in sec-
tion 4.3, it is natural for us to define a vector potential associated with the field,
as in section 4.4. We then continue in section 4.5 with the calculation of skyrmion
numbers. In addition to the initial definition of the field flux, we can use Stokes’
theorem to calculate the skyrmion number through the vector potential, whose
form is determined using the Mermin-Ho relation. We explain in detail how the
Mermin-Ho relation has been applied in such calculation. We then emphasize a
new calculation method which only depends on the phase of relevant Stokes pa-
rameters. This new definition emphasizes the topological properties of the field,
and is of great significance in practice. In section 4.6 we introduce a new concept
of skyrmion field lines, which is a line of constant polarization.

To provide a more intuitive understanding of these abstract topological struc-
tures, we conclude this introduction with a visualization of the polarization pro-
file of a skyrmion beam, presented as a stereographic projection of the Poincaré
sphere. This mapping helps relate the polarization distribution in real space to a
geometric interpretation, allowing one to grasp the meaning of skyrmion numbers
more visually.

Skyrmionic beams possess a robust topological structure and specific polar-
ization distributions. By examining the polarization distribution of a skyrmionic
beam, one can observe that the polarization pattern can be related to the Poincaré
sphere through a stereographic projection, as shown in Figure 4.1, where the
colour scheme is defined by spherical angles χ and ψ, which are defined in
Figure 2.5 and Figure. 2.6. By counting how many times a skyrmion pattern
wraps around the Poincaré sphere, we can determine the skyrmion number. The
skyrmion number is typically an integer, although fractional skyrmions—whose
skyrmion numbers are not integers—also exist, though they are not discussed in
this thesis.
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Figure 4.1: Figure illustrating the geometrical interpretation of a skyrmion field.
On the left is the stereographic projection of the Poincaré sphere, with the pro-
jection point being the North pole of the sphere. On the right is the projected
pattern of an n=1 skyrmion texture. This beam is constructed from the LG
beams, as shown in the figure. The states |R⟩ and |L⟩ represent right- and left-
handed polarizations, respectively. The colour scheme we used is defined in terms
of orientation ψ, and ellipticity χ.
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4.2 From Magnetic to Optical skyrmions
The concept of skyrmions was first introduced by Tony Skyrme in the 1960s [20],
where he proposed a topological soliton model within the framework of nonlinear
field theory in particle physics [24]. Although this model did not gain widespread
acceptance in mainstream particle theory, it was embraced by the condensed
matter community and used to describe spin structures in magnetic materials
[110, 111]. These quasiparticles became known as the magnetic skyrmion, a
topologically protected structure. The experimental creation and annihilation
of magnetic skyrmions have been successfully demonstrated [112]. As a result,
magnetic skyrmions have been proposed for various applications, including the
development of next-generation information storage devices [113]. Similar fea-
tures to skyrmions also appear in the theory of superfluids, where the idea of
expressing the skyrmion field in terms of the curl of a vector potential v has been
proposed [114, 115], which we will explain in section 4.4.

Magnetic skyrmions can be formed on the surface of a suitable material [116],
and can be visualized as a covering of Bloch sphere, on which local magnetization
is wrapped around. Magnetic skyrmions are mapped from the stereographic
projection of the 3D sphere onto the 2D plane of the magnetic surface [117]. The
direction of magnetization at the centre of magnetic skyrmion is opposite to that
at a faraway distance from the centre, and it changes gradually from one point
to its adjacent. The skyrmion number has been defined counting the number
of rotations of the magnetization around the Bloch sphere as we traverse one
closed circuit around the centre of the skyrmion pattern, mathematically defined
as [116]

n = 1
4π

∫
M ·

(
∂M
∂x

× ∂M
∂y

)
dxdy, (4.1)

where M is the local direction of magnetization, such that M is a unit vector,
hence corresponds directly to the Bloch vector on the Bloch sphere.

To transit to the paraxial optics, we replace the local magnetization direc-
tion by the normalized Stokes vector S, whose components are normalized Stokes
parameters [6, 118]. One important difference between the two is that the nor-
malized Stokes vector, with its components being the normalized Stokes param-
eters, lives in the Poincaré sphere, which is in parameter space, so a point on the
Poincaré sphere does not correspond to a physical direction, while a point on the
Bloch sphere corresponds to a specific orientation of the spin. This is a topic we
will discuss further in later chapters.
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4.3 Paraxial Optical Skyrmion Beams and Skyrmion
Fields

We limit our discussion to a paraxial skyrmion beam, which can be constructed
using two Laguerre-Gaussian beams with orthogonal polarizations [22]. Borrow-
ing from bra-ket notation, a normalized polarization state representing such a
beam can be constructed as:

|ψ(r)⟩ = u0(r)|0⟩ + eiφu1(r)|1⟩√
|u0(r)|2 + |u1(r)|2

, (4.2)

where u0(r) and u1(r) are LG beam profiles, |0⟩ and |1⟩ are two orthonormal
polarization states, and φ is a global phase difference between the two states. We
could further reduce this form by assign µ = eiφu1(r)/u0(r) as the ratio of the
beam profiles of these two LG beams, therefore

|ψ(r)⟩ = |0⟩ + µ(r)|1⟩√
1 + |µ(r)|2

. (4.3)

The general expression of LG beams, introduced in Eq. (2.23), tells us that
µ(r) takes the form

µ(r) = f(ρ, z)eiΦ(ρ,ϕ,z) = f(ρ, z)eiℓdϕeiΘ(ρ,z), (4.4)

where f(ρ, z) is the modulus of µ(r), ℓd = ℓu1 − ℓu0 is the winding number differ-
ence, and eiΘ(ρ,z) includes the global phase and the Gouy phase which accounts
for the phase change during propagation.

With Eq. (4.4) we write Eq. (4.3) as

|ψ(r)⟩ = |0⟩ + |µ(r)| eiΦ|1⟩√
1 + |µ(r)|2

. (4.5)

We have introduced the concepts of polarizations and how they are defined
on the Poincaré sphere in section 2.5. The (normalized) local polarization can
be expressed as the expectation value of the Pauli operator, or equivalently the
Pauli vector, σ, with respect to the polarization state, as [119]

S = ⟨ψ(r)|σ|ψ(r)⟩. (4.6)

We write out the component form of the Pauli vector, whose components are
the Pauli matrices, as follows:
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σx = |0⟩⟨1| + |1⟩⟨0|,
σy = i(|1⟩⟨0| − |0⟩⟨1|),
σz = |0⟩⟨0| − |1⟩⟨1|.

(4.7)

At this stage we do not specify what orthonormal pair |0⟩ and |1⟩ in Eq. (4.5) are
referring to, but notice that they are the same orthonormal pair that construct
the Pauli matrices. This implies that we are always working in a basis in which |0⟩
and |1⟩ are eigenvectors of σz. We call this a consistent basis measurement, which
means we construct and measure the polarization states in the same orthonormal
basis. Physically, this means we have a rotated Poincaré sphere, and the Stokes
vector rotates consistently with the sphere. We will discuss the bases more in
chapter 5.

With all the above equations, we can calculate the explicit form of the com-
ponents of S as [34, 120, 37]

Sx = S1 = ⟨ψ|σx|ψ⟩

= 1
1 + |µ|2

(
⟨0| + |µ| e−iΦ⟨1|

)
(|0⟩⟨1| + |1⟩⟨0|)

(
|0⟩ + |µ| eiΦ|1⟩

)
= 1

1 + |µ|2
(
|µ| eiΦ + |µ| e−iΦ

)
= 2ℜ(µ)

1 + |µ|2

= 2f cos [Θ + (ℓ1 − ℓ0)ϕ]
1 + f 2 ,

(4.8)

Sy = S2 = ⟨ψ|σy|ψ⟩

= 1
1 + |µ|2

(
⟨0| + |µ| e−iΦ⟨1|

)
i(|1⟩⟨0| − |0⟩⟨1|)

(
|0⟩ + |µ| eiΦ|1⟩

)
= i

1 + |µ|2
(
|µ| e−iΦ − |µ| eiΦ

)
= 2ℑ(µ)

1 + |µ|2

= 2f sin [Θ + (ℓ1 − ℓ0)ϕ]
1 + f 2 ,

(4.9)
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Sz = S3 = ⟨ψ|σz|ψ⟩

= 1
1 + |µ|2

(
⟨0| + |µ| e−iΦ⟨1|

)
(|0⟩⟨0| − |1⟩⟨1|)

(
|0⟩ + |µ| eiΦ|1⟩

)
= 1 − |µ|2

1 + |µ|2

= 1 − f 2

1 + f 2 .

(4.10)

Note that, for later convenience, we have used the labels 1, 2, and 3 here for
consistent basis measurements. The above are components of the Stokes vector,
which can be used to construct the skyrmion field as follows:

Σi = 1
2εijkS ·

(
∂S
∂xj

× ∂S
∂xk

)
. (4.11)

We can prove that the skyrmion field is divergenceless, using the property
that S is a unit vector. To do this we Taylor expand a unit vector at an arbitrary
spatial point r, in a vicinity point we call r0, as

S|r = S|r0
+ [(r − r0) · ∇] S|r0

. (4.12)

If we take the modulus square on both sides, we get

|S|r|2 = |S|r0|2 + 2S|r0 · ((r − r0) · ∇) S|r0 +O (r − r0)2 , (4.13)

but S is a unit vector everywhere, which means that |S|r|2 = |S|r0|2 = 1. This
means that the second term is 0, therefore Σ is divergenceless. This proof has
been presented in [34, 37]w.

For beams propagating along the z-axis, we are interested in the transverse
polarization distribution in the xy-plane. Therefore, we evaluate the skyrmion
number by integrating the z-component of Σ over this transverse plane:

n = 1
4π

∫
A

S ·
(
∂S
∂x

× ∂S
∂y

)
dxdy = 1

4π

∫
A

Σzdxdy. (4.14)

The skyrmion number is a topological invariant that counts how many times
the polarization state wraps around the Poincaré sphere.

4.4 Skyrmion Potential
Due to the transversality of the field, we are able to define a vector potential.
This vector potential is not of physical significance, but it is of mathematical
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convenience. To find this vector potential, a theorem of Mermin-Ho relation from
superfluid theory has been applied [121], where two vectors m and n are defined
to form an orthonormal triad with S such that S = m × n. The Mermin-Ho
relation allows us to find the relevant vector potential from these vectors as

vi = m · ∂

∂xi

n, (4.15)

where vi is the vector potential in its component form. Using Stokes’ theorem,
the skyrmion number can therefore be calculated from this vector potential by
line integration

n = 1
4π

∮
C

v · dℓ, (4.16)

where C is the suitable contour around the area of integration A.
To calculate a skyrmion number in practice however, is not as simple as

choosing a large circle around the area. It involves subtleties of excluding the
singularities, this has been discussed in detail in [37]. Here we will use a figure
to illustrate how the contour is chosen. The way in which this is achieved is
analogous to that employed in contour integration for dealing with poles in the
complex plane. An example of this is depicted in Fig. (4.2): the required con-
tour omits any singular points in v by passing from the large radius contour, in
towards any singular points, circling them and then returning to the large radius
component of the closed contour. In this way the singularities of v are left out-
side the integration contour. The line integrals along the straight lines in from
the outer circular path cancel with those in the opposite direction. Hence we are
left only with contributions from the large circular contour and those around and
close to the singular points. Consequently, the skyrmion number is

n = 1
4π

∮
L∞

v · dℓ −
∑

j

∮
Lj

v · dℓ

 , (4.17)

where L∞ is the outside circle, and Lj are the circles around singularity points.
We will explain in detail in the next section how different methods of calcu-

lating skyrmion number works. We will focus on the topological method, which
is most convenient for experimental measurements.
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Figure 4.2: Figure indicating the suitable contour for calculating skyrmion num-
bers, where all singularities are excluded.

4.5 Calculating skyrmion Numbers: From Def-
inition to a Topological Way

From Eq. (4.14) and Eq. (4.16) we already know there are two ways to calculate
the skyrmion number, based on the skyrmion field and its relevant vector poten-
tial. As stated before, the vector potential can be found through the Mermin-Ho
relation, which we now demonstrate in detail. A suitable choice of m and n are
as follows

m = 1√
S2

x + S2
y

(Syx̂ − Sxŷ) ,

n = 1√
S2

x + S2
y

[
−SzSxx̂ − SzSyŷ +

(
S2

x + S2
y

)
ẑ
]
,

(4.18)

where m can be found simply by observation, and n is just S × m. We can find
the vector potential by plugging Eq. (4.18) into Eq. (4.15) and get

vi = Sz

S2
x + S2

y

(
Sy

∂

∂xi

Sx − Sx
∂

∂xi

Sy

)
. (4.19)

This is the quantity we integrate over the suitably chosen integration path.
We see that there are derivative terms we need to calculate. This form of integral,
by the means of an integration over vector potential (as in Eq. (4.17)) is already
better than the integration over the second derivative, which would be required
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if we used the skyrmion field to calculate the skyrmion number (Eq. (4.14)). We
want to avoid derivative terms in practice for the reason that the area of singular-
ities would be low intensity area in experiment, where noise become comparable
with the data, and any derivative would only worsen the situation. We could
even do better with one step further, by defining a new set of variables. Resem-
bling the raising and lowering operators in quantum theory, we get what we call
complex Stokes parameter, as

S± = Sx ± iSy, (4.20)

where Sx and Sy are Stokes parameters in any of the consistent basis measure-
ments. A Stokes phase can be defined for the complex Stokes parameters, as

Φ = arctanSy

Sx

. (4.21)

Substituting the expressions of Sx and Sy calculated in Eq. (4.8) and Eq. (4.9),
we obtain

S± = 1
1 + |µ|2

(
|µ| eiΦ + |µ| e−iΦ

)
∓ 1

1 + |µ|2
(
|µ| e−iΦ − |µ| eiΦ

)
= 2 |µ|

1 + |µ|2
e±iΦ

= |S±| e±iΦ,

(4.22)

where S± are complex conjugate to each other, and we can calculate |S+| =
|S−| = 2|µ|

1+|µ|2 .
Clearly, Sx and Sy can be expressed in terms of S±, which allows the vector

potential to be written as

vi = Sz

2S+S−
i

(
S−

∂

∂xi

S+ − S+
∂

∂xi

S−

)
. (4.23)

Substituting Eq. (4.22) to Eq. (4.23), we can calculate the derivatives

S−∂iS+ − S+∂iS−

= |S+| e−iΦ
(
eiΦ∂i |S+| + |S+| ∂ie

iΦ
)

− |S+| eiΦ
(
e−iΦ∂i |S+| + |S+| ∂ie

−iΦ
)

= |S+|2
(
e−iΦ∂ie

iΦ − eiΦ∂ie
−iΦ

)
= 2i |S+|2 ∂iΦ,

(4.24)
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from which we simplify Eq. (4.23) as

vi = −Sz∂iΦ. (4.25)

Now, from Eq. (4.17), we see clearly that the skyrmion number of a field can
be calculated in the following way:

n =
∑

j

1
4π

∮
βj

Sz∂Φ · dℓ − 1
4π

∮
α
Sz∂Φ · dℓ, (4.26)

where α, β are contours over the periphery of the field and around the singular-
ity(s), respectively. As Stokes parameter Sz approaches a single value both at
singularity(s) and infinity, we can take it out of the integral and now what’s been
evaluated is the winding number

N = (2π)−1
∮
∂Φ · dℓ. (4.27)

From this we identify a topological definition of the skyrmion number

n = 1
2

∑
j

S(j)
z Nj − S̄(∞)

z N∞

 , (4.28)

where S̄(∞)
z is the value of Sz at infinity, Nj counts the number of rotations

around singularities, and N∞ is the winding number at infinity. It is not difficult
to identify that ∑j Nj = N∞ by a continuous deformation of the integration
lines, as shown in Figure. 4.3: in (a) we have inner integration lines around each
of the singularities. These integration lines can be connected without changing
the result as the straight lines would cancel each other out, as shown in (b). (b)
and (c) are topologically equivalent, and from (c) to (d) the straight lines again
cancel out. We see from these figures how ∑

j Nj = N∞.
This allows us to write Eq. (4.28) as

n = 1
2
∑

j

(
S(j)

z − S̄(∞)
z

)
Nj. (4.29)

The polarization direction at the center of a skyrmion pattern is always op-
posite to that at infinity, due to the way it is constructed. This ensures that the
two Stokes parameters at the center and at infinity have the same parity, which
implies that, despite the presence of the 1

2 coefficient, n remains an integer.
This is what we call the topological method of calculating the skyrmion num-

bers.
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Figure 4.3: Inner and outer integration contours can be deformed and stretched
(from a to d) without changing the value of the skyrmion number.

72



Chapter 4. An Introduction to skyrmions 73

4.6 Skyrmion Field Lines
The mathematical properties of the skyrmion field lines are derived directly from
their definition. Firstly, the skyrmion field is transverse, ∇ ·Σ = 0, and it follows
that the skyrmion field lines are unbounded; they can exist only as closed loops or
extend to infinity. It follows, also, that they cannot merge or split. Secondly, the
skyrmion field lines are basis independent in that they are unchanged by a global
rotation of the Stokes vector on the Poincaré sphere. This means that knowledge
of the skyrmion field does not determine the polarization pattern. It remains,
however, to determine the physical significance of the skyrmion field lines and we
address this here.

Inspection of numerous polarization patterns leads to the conjecture that
skyrmion field lines are lines of constant polarization. That this is indeed the
case was proven in [122] but, for completeness, we give a summary of the main
points here. We start with the observation that our general polarization pattern
can be written in the form of a spatially varying ket as given in Eq. (4.3). It
follows that the polarization at any given point is determined solely by, and in
one-to-one correspondence with, the complex field µ(r). Hence lines of constant
polarization are contours of constant µ.

The transverse nature of the skyrmion field means that at any given point,
r0, only a single skyrmion field line is present and, moreover, that this line is
continuous at this point. It follows that at r0 there is a direction u(r0) along
which the Stokes parameters, S, do not change:

u(r0) · ∇Si(r0) = 0 . (4.30)

As the Stokes parameters do not change in this direction it follows, necessarily,
that the polarization also does not change. Hence u(r0) determines the direction
of a line of constant polarization, which includes but is not restricted to C lines
and L lines (lines of circular and specific linear polarization) [60, 123, 124].

To prove that lines of constant polarization are also skyrmion field lines, we
return to the definition of the skyrmion field, given in Eq. (4.11), and evaluate
this expression by introducing, at each point, two unit vectors v(r0) and w(r0),
where u, v and w are orthonormal vectors satisfying the right-hand rule so that,
for example, u = v × w, as depicted in Fig. 4.4 a. Hence the components of the
skyrmion field in this coordinate system are

Σu = 1
2εpqr Sp

(
∂Sq

∂v

∂Sr

∂w
− ∂Sq

∂w

∂Sr

∂v

)
, (4.31)

Σv = 1
2εpqr Sp

(
∂Sq

∂w

∂Sr

∂u
− ∂Sq

∂u

∂Sr

∂w

)
, (4.32)
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a.

b.

Figure 4.4: a. A line of constant elliptical polarization and the local coordinate
system u,v,w at r0. b. A twisted mesh of lines of constant polarization for a
paraxial skyrmion beam (n = 1) freely propagating over eight Rayleigh ranges
[37].

74



Chapter 4. An Introduction to skyrmions 75

Σw = 1
2εpqr Sp

(
∂Sq

∂u

∂Sr

∂v
− ∂Sq

∂v

∂Sr

∂u

)
. (4.33)

The derivatives of the Stokes parameters are zero along the direction u and it
follows, therefore, that Σv = 0 = Σw. The one remaining non-zero component of
the skyrmion field at r0 is Σu and it follows, therefore, that the skyrmion field
line at any point, r0, points along the direction of constant polarization. Further
details and consequences of this may be found in [122]. In a typical skyrmionic
optical beam with n = 1 the lines of constant polarization form a twisted mesh
of straight lines shown in Fig. 4.4 b.

The identification of skyrmion field lines with lines of constant polarization
is general and holds whether or not the structured light has a non-zero skyrmion
number. As such, skyrmion field lines provide a natural way to extend studies
of L and C lines to arbitrary polarizations. A fully general comparison, however,
requires an extension of the ideas presented here to non-paraxial fields. We intend
to explore this in the future work.

4.7 Conclusions
In this chapter, we have introduced the concepts of skyrmions, which was origi-
nally formed in particle physics, and later applied in magnetic materials. Optical
skyrmions were formed in analog with the magnetic skyrmions, but have their
own features as light beams with spatially varying polarization pattern. We have
introduced the formation of such beams using LG beams, and the important
topological feature captured by the skyrmion number. From the skyrmion num-
ber we identify a vector field as the skyrmion field, from which a vector potential
can be defined. This definition allows us to calculate the skyrmion number as
line integral of the vector potential with suitable integration contours. On the
ground of this, we proposed a new topological way of calculating skyrmion num-
bers using the complex Stokes phase and winding numbers. We also proposed the
concept of skyrmion field lines, which are lines of constant polarization, which
is a concept that can be used to track the propagation of skyrmion beams, a
generalization of the current singular lines, and can potentially be generalized to
higher dimensions.
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Chapter 5

Basis Change in Constructing
and Measuring of Skyrmion Field

5.1 Introduction
In chapter 4, we introduced skyrmionic structures in magnets and extended the
theory to paraxial optical science. In this chapter, we further develop the theory
in the context of a generalization of parameters, which allow us to understand how
optical skyrmions, recently discovered optical bimeronic structures, and countless
intermediate structures can be unified.

The structure of this chapter is as follows: in section 5.2, we discuss the basis-
independent property of skyrmion fields within the framework of consistent basis
measurements, a term we briefly mentioned in section 4.3, using the language
of matrix representations. This approach provides a new way of proving the
divergenceless, or transversality, property of a skyrmion field, which we previously
demonstrated using a Taylor expansion in section 4.3. Writing the skyrmion field
which has the form of a triple product in the matrix language is not something new
[34], but we offer a more reasonable way of constructing it, with a new geometrical
interpretation which provides intuitive understanding of the invariance of such
quantity under a rotation.

In section 5.3, we explore the consequences of using different bases for con-
structing a skyrmion beam and measuring the Stokes parameters, thereby deviat-
ing from the consistent basis measurements. We demonstrate that the skyrmion
field is unaffected by a mixed-up bases measurement. In section 5.4, we calculate
the skyrmion potential for such generalized measurements, proving that, despite
changes in the vector potentials in mixed-up bases measurements, the curl relation
between the vector potential and skyrmion fields remains valid. In section 5.5,
we introduce our construction of general orthonormal states and the generalized
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Pauli matrices that can be derived from these generalized states. In section 5.5,
we present skyrmion textures and their generalized equivalents, also extending
the concept of singularities in this context. Such generalization is beneficial not
only in the theoretical aspect, but also in the accuracy of the experimental re-
sults. We present experimental setups and measurement results in section 5.8.
Finally, in section 5.9, we summarize the chapter.

In this chapter, I am responsible for the whole theory part, and the experiment
is carried out by the Optics Group, with Prof. Sonja Franke-Arnold took the lead,
and Dr. Claire Cisowski and Dr. Amy McWilliam doing the measurements and
data analysis. I was involved in discussing the experimental design and data
analysis.

5.2 Base Independence of Skyrmion Field in Con-
sistent Basis Measurements

Previous studies have shown that the skyrmion field is independent of the choice
of coordinate system [37, 34]. There are several ways to prove this claim, the
most straightforward way is by brute force calculation from Eq. (4.11), which
we will not reproduce here. Instead, we introduce a determinant representation
which will relate to later constructions, as we show in the following.

Since the skyrmion field is defined as a triple product, it is naturally suited
to be written as a determinant. To analyze its behaviour under basis changes
(which correspond to spatial rotations), we construct a skyrmion matrix whose
determinant yields the skyrmion field. Matrices respond predictably to rotations,
while the determinant remains invariant as a scalar.

Due to the properties of determinants, there are many alternative ways to
construct a skyrmion matrix whose determinant relate to the same skyrmion field,
and we have to be careful which one we choose. To rotate the matrix “correctly”,
i.e., we require that its determinant always corresponds to the skyrmion field
constructed from the Stokes vector in the same frame: before rotation for the
original matrix, and after rotation for the rotated one. we write it as

Ms =

Sp ∂jSp ∂kSp

Sq ∂jSq ∂kSq

Sr ∂jSr ∂kSr

 , (5.1)

and we claim its rotated form is

M′
s =

S
′
p ∂jS

′
p ∂kS

′
p

S ′
q ∂jS

′
q ∂kS

′
q

S ′
r ∂jS

′
r ∂kS

′
r

 . (5.2)
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where the determinant of Ms is the skyrmion field, the subscript “s” indicates
“skyrmion” and not a component. And un-primed elements correspond to a
un-rotated frame, while primed elements corresponds to a rotated frame.

In the matrix for the rotated skyrmion field, the first column is just [Sp, Sq, Sr]T
after rotation. We want the matrix to rotate “correctly”, just like column vec-
tors. For this we must examine the derivative terms also rotate “correctly”. To
do this we prove that the derivative operator and the rotational operator com-
mute (taking a two-component vector for simplicity, the same rule applies to a
3-vector):

R
[
∂jSp

∂jSq

]
=
[

cos θ∂jSp − sin θ∂jSq

sin θ∂jSp + cos θ∂jSq

]
,

∂j

(
R
[
Sp

Sq

])
= ∂j

[
cos θSp − sin θSq

sin θSp + cos θSq

]
=
[

cos θ∂jSp − sin θ∂jSq

sin θ∂jSp + cos θ∂jSq

]
.

(5.3)

Note that cos θ and sin θ are constants so they can be taken out of the deriva-
tive. This means the derivative terms rotate just the same way as the normal
terms, which allows us to relate the skyrmion matrix constructed from the S′ and
S by a rotational matrix as

M′
s = RMs =

R11 R12 R13
R21 R22 R23
R31 R32 R33


Sp ∂jSp ∂kSp

Sq ∂jSq ∂kSq

Sr ∂jSr ∂kSr



=

S
′
p ∂jS

′
p ∂kS

′
p

S ′
q ∂jS

′
q ∂kS

′
q

S ′
r ∂jS

′
y ∂kS

′
r

 .
(5.4)

The rotated skyrmion field can therefore be obtained just by taking the de-
terminant of the rotated skyrmion matrix M′

s:

Σ′
i = det

S
′
p ∂jS

′
p ∂kS

′
p

S ′
q ∂jS

′
q ∂kS

′
q

S ′
r ∂jS

′
r ∂kS

′
r



= det


R11 R12 R13
R21 R22 R23
R31 R32 R33


Sp ∂jSp ∂kSp

Sq ∂jSq ∂kSq

Sr ∂jSr ∂kSr




= det


Sp ∂jSp ∂kSp

Sq ∂jSq ∂kSq

Sr ∂jSr ∂kSr


 = Σi.

(5.5)

Going from the second to third row we have used the fact that determinants
are multiplicative, and that detR = 1, thus we proved that Σ′

i has the same value
as Σi.
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An argument that one may have here is that a matrix can be viewed as a rank
2 tensor, and a rank 2 tensor would be rotated as RMRT . To understand this
we can think about the skyrmion field, being a triple product, as a volume of a
parallelepiped, as in Figure. 5.1. To rotate a volume, one would want to rotate
all three vectors which determines the volume together, which means that for the
rotated volume, we write

V = det

R
 Sp

Sq

Sr

 R

 ∂jSp

∂jSq

∂jSr

 R

 ∂kSp

∂kSq

∂kSr




= det [RMs] .

(5.6)

Figure 5.1: Volume of a parallelepiped representing the skyrmion field. It is easy
to understand that a volume is unchanged under a rigid rotation, and so as the
skyrmion field.

This volume also helps understanding the invariance of a skyrmion field under
basis change, as this basis change corresponds to a rigid rotation of the paral-
lelepiped which keeps its volume.

There is an implicit condition in the above statement: all quantities are cal-
culated in a consistent Schmidt basis. More explicitly, the claim assumes that
the Stokes parameters are evaluated in the same orthonormal basis in which the
skyrmion field was constructed. This is intuitive, as a change of basis is equivalent
to a rotation of the Poincaré sphere, which does not alter the skyrmion pattern
or the nature of the projection.

5.3 Skyrmion Fields in Mixed-up Bases Mea-
surements

Paraxial light with spatially varying polarizations underpins many recent devel-
opments in the field of structured light. Such structured light can be decomposed
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into fundamental beam modes, whether as a physical quantity in the lab, or as
a mathematical object, and they can be expressed by any suitable basis. In
previously developed theory, we have used a consistent basis throughout the cal-
culation of skyrmion numbers, characterizing its geometrical properties, and its
propagating dynamics. This, however, is not a necessary requirement, and may
not provide the best accuracy in experimental evaluations, as we shall see in
the following. In this section, we demonstrate how a skyrmion field can be con-
structed and measured in different bases and prove that the skyrmion number is
unchanged under such manipulations.

We begin by introducing a skyrmion field, as

|ψ(r)⟩ = |H⟩ + µ|V ⟩√
1 + |µ|2

, (5.7)

where we have substituted the general orthonormal basis |0⟩ and |1⟩ in Eq. (4.3)
with a specific basis. In this case, we designate |H⟩ and |V ⟩ as the basis used
to construct the skyrmion field. Now, we use |R⟩ and |L⟩ to construct the Pauli
matrices as follows

σx = |R⟩⟨L| + |L⟩⟨R|,
σy = i(|L⟩⟨R| − |R⟩⟨L|),
σz = |R⟩⟨R| − |L⟩⟨L|.

(5.8)

Before we continue, we would like to clarify the meaning of the different types
of indices used in this thesis. We will use indices 1, 2, 3 for fixed-value Pauli
matrices, which are defined as follows

σ1 =
(

0 1
1 0

)
,

σ2 =
(

0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
.

(5.9)

These are the conventional Pauli matrices which people are most familiar
with. The Pauli matrices we defined in Eq. (5.8) can be linked with the conven-
tional Pauli matrices by some rotational matrix as [σx, σy, σz]T = R [σ1, σ2, σ3],
where the alphabetic indices x, y, z refer to rotated Pauli matrices. The relations
between the Pauli matrices constructed from three commonly used orthonormal
pairs and the conventional Pauli matrices are shown in Table. 5.1. The general-
ized Pauli matrices regarding arbitrary basis will be discussed in later sections,
but the Pauli matrices presented in the table are most relevant to the exper-
iments. Note that, in this table, we have used a modified |D⟩, |A⟩ basis, the
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relation between this modified basis and the conventional one is by a unitary
transformation, as

U = 1√
2

(
1 1
i −i

)
. (5.10)

The modified |D⟩, |A⟩ basis under this unitary transformation can be calculated
as

|D⟩ = 1 + i

2

(
1
1

)
,

|A⟩ = 1 − i

2

(
1

−1

)
.

(5.11)

This modified basis guarantees a straightforward permutation relation. It is
equivalently valid if we use the conventional |D⟩, |A⟩ basis, which would give
the relation as [σx, σy, σz] = [σ3,−σ2, σ1], while the modified |D⟩, |A⟩ basis would
give us [σx, σy, σz] = [σ2, σ3, σ1] . Note that the two bases differ by a global phase
factor, which does not alter the polarization and has no effect on the experiment.
We introduce it here solely for notational convenience.

Table 5.1: Pauli matrices for the three commonly used orthonormal bases.
HV RL DA (modified)

σx σ1 σ3 σ2
σy σ2 σ1 σ3
σz σ3 σ2 σ1

Now we get back to our main theme of this section of exploring the properties
of a skyrmion field under a mixed-up bases measurement. Using the notation we
defined above, we can write a generalized skyrmion field as

Σi = Sx

(
∂Sy

∂xj

∂Sz

∂xk

− ∂Sz

∂xj

∂Sy

∂xk

)
+ Sy

(
∂Sz

∂xj

∂Sx

∂xk

− ∂Sx

∂xj

∂Sz

∂xk

)

+Sz

(
∂Sx

∂xj

∂Sy

∂xk

− ∂Sy

∂xj

∂Sx

∂xk

)
, (5.12)

where the alphabetic indices x, y, z are for the Stokes parameters calculated under
mixed-up bases measurements. To prove that the properties of a skyrmion field is
unchanged in such measurements, we calculate the relation between the general-
ized Stokes parameters, and the conventional Stokes parameters. Without loss of
generality, we have our specifications of states as in Eq. (5.7) and Eq. (5.8), this
specification of mixed-up bases measurements pins up components of our rotated
Pauli matrices. From Table. 5.1 we know the relation is [σx, σy, σz] = [σ3, σ1, σ2].
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Accordingly, we can calculate the components of Stokes vector for this specifica-
tion from Eq. (4.6) as

S′ = (Sx, Sy, Sz) = (S3, S1, S2). (5.13)

For such specification, the skyrmion field under this mixed-up bases measure-
ment can be found by substituting Eq. (5.13) into Eq. (5.12) as

Σi =S3

(
∂S1

∂xj

∂S2

∂xk

− ∂S2

∂xj

∂S1

∂xk

)
+ S1

(
∂S2

∂xj

∂S3

∂xk

− ∂S3

∂xj

∂S2

∂xk

)
+

S2

(
∂S3

∂xj

∂S1

∂xk

− ∂S1

∂xj

∂S3

∂xk

)
.

(5.14)

We also write out Eq. (4.11) for consistent basis measurement explicitly, where
S in its component form is S=(S1, S2, S3), as

Σi =1
2εijkS ·

(
∂S
∂xj

× ∂S
∂xk

)

=S1

(
∂S2

∂xj

∂S3

∂xk

− ∂S3

∂xj

∂S2

∂xk

)
+ S2

(
∂S3

∂xj

∂S1

∂xk

− ∂S1

∂xj

∂S3

∂xk

)
+

S3

(
∂S1

∂xj

∂S2

∂xk

− ∂S2

∂xj

∂S1

∂xk

)
.

(5.15)

We notice immediately that the result of Eq. (5.14) is nothing but a cyclic per-
mutation of Eq. (5.15). Therefore, we proved that the expression of the skyrmion
field is unchanged for a mixed-up bases measurement, which is not obvious from
first sight as S is altered under basis change.

For convenience, we present the relations between the generalized Stokes vec-
tor under the three common mixed-up bases measurements and the consistent
bases measurements, as in Table. 5.2.

Table 5.2: Stokes parameters for each possible mix-up with RL bases, where the
Pauli matrices are constructed using the RL basis, and the skyrmion beam is
constructed in HV, RL and DA bases, respectively.

HV&RL RL&RL DA(modified)&RL
Sx S3 S1 S2
Sy S1 S2 S3
Sz S2 S3 S1

From a geometrical point of view, when using consistent basis measurements,
the coordinate system of the parameter space and the Stokes vector always rotate
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in the same way, therefore the components of the Stokes vector always stay the
same, as (Sx, Sy, Sz) = (S1, S2, S3), as shown in Figure. 5.2. We will talk more
about the geometrical interpretation in subsection 5.6.2.

Figure 5.2: On the left is the fixed-value case, which corresponds to unrotated
Poincaré sphere, and is one special case of consistent Schmidt bases (right). On
the right is a representation of the consistent Schmidt bases, which corresponds
to a consistent rotation of both the Poincaré sphere and the Stokes’ vector S.

The result that the properties of the skyrmion field is unchanged under mixed-
up bases measurement is not as trivial as it might seem. Shen pointed out
in his paper that a new type of field with topological significance, the optical
bimeron, which is a topological transition of skyrmion, can be constructed with
suitable states different from that of a skyrmion [125]. Our mixed-up bases
measurements, however, has the power to generate bimeronic structures without
changing the original construction of the field: while the underlying skyrmion
field remains unchanged, the observable topological structure that emerges can
depend on the basis used for measurement. This is why we refer to them as
different measurements rather than different constructions. The field is the same,
but the observed topology shifts due to measurement basis, a concept that will
be clarified with specific examples and visualizations in the following sections.
In later sections we will propose a more intuitive projection which extends the
concepts of singularities in terms of Stokes phase which benefit measurements in
our experiment. This result also has no conflict with our intuition as we do not
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need to know in which basis the skyrmion field is prepared in order to measure
the skyrmion number.

5.4 Skyrmion Potential in Mixed-up Bases Mea-
surements

As we mentioned in section 5.3, a second method of calculating the skyrmion
number is by the means of a line integration over the vector potential of the
skyrmion field, which can eventually lead to the most sophisticated third method
of calculating skyrmion number by the topological winding numbers and a phase
defined with respect to complex Stokes parameters. We now calculate the form
of the vector potential for mixed-up bases measurements, as specified in Eq. (5.7)
and Eq. (5.8), again without loss of generality. This specification yields the Stokes
vector of its component form, S′ = (S3, S1, S2), as shown in Eq. (5.13). From
this, we can find m′ and n′ relative to S′ as

m′ = 1√
S2

x + S2
y

(Syx̂ − Sxŷ)

= 1√
S2

3 + S2
1

(S1x̂ − S3ŷ) ,

n′ = 1√
S2

x + S2
y

[
−SzSxx̂ − SzSyŷ +

(
S2

x + S2
y

)
ẑ
]

= 1√
S2

3 + S2
1

[
−S2S3x̂ − S2S1ŷ +

(
S2

3 + S2
1

)
ẑ
]
.

(5.16)

We can construct the vector potential from m′ and n′ for this the mixed-up
bases measurement using the Mermin-Ho relation [121]

v′
i = S2

S2
3 + S2

1

(
S1

∂

∂xi

S3 − S3
∂

∂xi

S1

)
. (5.17)

We have the skyrmion potential in consistent basis measurements calculated
in Eq. (4.19). If we plug in the relation (Sx, Sy, Sz) = (S1, S2, S3) for consistent
basis measurements, we can write Eq. (4.19) as

vi = Sz

S2
x + S2

y

(
Sy

∂

∂xi

Sx − Sx
∂

∂xi

Sy

)

= S3

S2
1 + S2

2

(
S2

∂

∂xi

S1 − S1
∂

∂xi

S2

)
.

(5.18)

84



Chapter 5. Basis Change in Constructing and Measuring of Skyrmion Field 85

If we recall the values of S1,2,3 obtained in Eq. (4.8), we can easily calculate
that the vector potential in this mixed-up bases measurement differs from that
in a consistent basis measurement. That is to say, unlike the skyrmion field,
the skyrmion vector potential does change under mixed-up bases measurements.
However, this change would not affect the calculation of the skyrmion number,
as the curl relation between the vector potential and the skyrmion field remains
valid. Furthermore, this change in the vector potential can be understood as a
gauge difference. We will prove in the following that this is true.

The curl relation we want to prove can be written in its component form, as

Σi = (∇ × v)i . (5.19)

The general expression of the vector potential in its component form is

vk = Sz

S2
x + S2

y

(
Sy

∂

∂xi

Sx − Sx
∂

∂xi

Sy

)
, (5.20)

which is the same as Eq. (5.18) because i and k are both dummy indices. In the
expression, x, y, z can be any cyclic permutation of 1, 2, 3.

We expand the right hand side of Eq. (5.19), substitute Eq. (5.20) into it, and
we get

(∇ × v)i =εijk∂jvk

=∂jvk − ∂kvj

=∂jSx · (Sy∂kSz − Sz∂kSy)
S2

y + S2
z

− ∂kSx · (Sy∂jSz − Sz∂jSy)
S2

y + S2
z

=
(
Sy
∂Sy

∂xj

∂Sz

∂xk

− Sy
∂Sx

∂xj

∂Sz

∂xk

)
+
(
Sz
∂Sx

∂xj

∂Sy

∂xk

− Sz
∂Sy

∂xj

∂Sx

∂xk

)
+(

Sx
∂Sy

∂xj

∂Sz

∂xk

− Sx
∂Sz

∂xj

∂Sy

∂xk

)
.

(5.21)

It is not difficult to identify that Eq. (5.21) will be one permuted form of
Eq. (5.14). Therefore, the curl relation between the vector potential and the
skyrmion field in a generalized measurement still holds. Which means potentially,
there could be many different vector potentials, obtained from different basis
measurements, associated with one skyrmion field.
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5.5 General Orthonormal States and Their Pauli
Matrices

Before we step any further into the mixed-up bases measurements, it is a good
point to take a pause and talk about general orthonormal states and how their
relevant Pauli matrices are constructed, as an extension to the comments we had
about the relations between the Stokes parameters calculated from rotated Pauli
matrices and the conventional Pauli matrices. We will use |φ1⟩ and |φ2⟩ for a
general pair of orthonormal states.

To begin, we construct general orthonormal polarization states |φ1⟩, |φ2⟩ in
terms of spherical polar coordinates (γ, θ), which represent angles on the Poincaré
sphere, and the left- and right-handed circular polarizations, as

|φ1⟩ = cos
(
γ

2

)
|R⟩ + e−iθ sin

(
γ

2

)
|L⟩,

|φ2⟩ = − sin
(
γ

2

)
|R⟩ + e−iθ cos

(
γ

2

)
|L⟩.

(5.22)

where the geometrical meaning of γ and θ are the azimuthal and polar angles of
the sphere respectively, as defined in Figure. 5.3.

The reason we have used γ
2 instead of γ is because this definition would match

the geometry of the Poincaré sphere. This definition is analogous to the general
orthonormal states on the Bloch sphere. However, one should notice that the
Poincaré sphere and the Bloch sphere typically follow different handedness con-
ventions, as one can find in standard textbooks, e.g., [76, 6]. The Poincaré sphere,
defined with inverse handedness, can also be found, for example, in [126], where
linearly polarized light transitions from horizontal to anti-diagonal instead of di-
agonal polarization. Nevertheless, we define the above general orthonormal states
according to the convention used in [6], therefore we have defined the exponential
terms as −iθ instead of iθ.

From this definition, we know that the three commonly used orthonormal
bases mentioned earlier are simply special cases of this general orthonormal basis,
such that the general form would reduce to the special cases with appropriate
choice of angles. Namely, if we take (γ, θ) = (0, 0), we would get |φ1⟩, |φ2⟩ →
|R⟩, |L⟩. Likewise, for (γ, θ) = (π/2, 0), we would get |φ1⟩, |φ2⟩ → |H⟩, |V ⟩, and
for (γ, θ) = (π/2, π/2), we would get |φ1⟩, |φ2⟩ → |D⟩, |A⟩.

Note that in the above context, we have used the conventional diagonal and
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Figure 5.3: Parameters of the Poincaré sphere.

anti-diagonal polarizations, as

|D⟩ = 1√
2

(
1
1

)
,

|A⟩ = 1√
2

(
1

−1

)
.

(5.23)

We can thus construct generalized Pauli matrices similar to those in Eq. (4.7),
by replacing |0⟩, |1⟩ with |φ1⟩, |φ2⟩, as

σx = |φ1⟩⟨φ2| + |φ2⟩⟨φ1|

=
(

0 −i sin γ
i sin γ 0

)
+ cos γ

(
cos θ sin θ
sin θ − cos θ

)
,

σy = i(|φ2⟩⟨φ1| − |φ1⟩⟨φ2|)

=
(

sin θ − cos θ
− cos θ − sin θ

)
,

σz = |φ1⟩⟨φ1| − |φ2⟩⟨φ2|

=
(

0 i cos γ
−i cos γ 0

)
+ sin γ

(
cos θ sin θ
sin θ − cos θ

)
.

(5.24)

Eq. (5.24) is a generalization of Table. 5.1, from which a continuous rotation of
the measurement at arbitrary angles is possible. The results from section 5.3 tell
us that skyrmion fields can have quite robust properties. While these fields are
solely determined by Stokes parameters, and the three Stokes parameters should
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be of equivalent importance, this inspired us that this is the way to generalize
the measurements. In the next section, we will discuss how this framework would
allow us to calculate generalized Stokes parameters, which are direct results of
generalized measurements.

5.6 One Skyrmion Beam and Its Countless Topo-
logical Equivalents

In this section, we explore how different textures can be generated from a
single skyrmion field using generalized measurements. The skyrmion field itself
is constructed in a fixed basis |L⟩ and |R⟩, which remains unchanged throughout.
We then introduce generalized polarization states to construct a new set of Pauli
matrices, enabling the evaluation of Stokes parameters in an generalized mea-
surement. This naturally leads to the geometrical equivalence of these patterns
and a generalization of the concept of singularities, extending beyond C-points to
include any possible polarization. We first establish the mathematical framework
in subsection 5.6.1, where we calculate generalized Stokes parameters for a fixed
skyrmion field. In subsection 5.6.2, we introduce the concept of rational maps,
which gives us geometrical interpretations of the change of measurement basis,
leading to the generalization of singularities in subsection 5.6.3. Finally, in sub-
section 5.6.4, we plot a series of examples of patterns generated from generalized
measurements on bases rotated at different angles.

5.6.1 Fixed Skyrmion Beam and Generalized Stokes Pa-
rameters

We begin by constructing a skyrmion beam with a fixed basis and examining the
form of its parameters under generalized measurements. Consider a skyrmion
beam of the form

|ψ(r)⟩ = 1√
2
(
LGℓ0

0 |0⟩ + eiΘLGℓ1
0 |1⟩

)
= |0⟩ + µ(r)|1⟩√

1 + |µ(r)|2
,

(5.25)

as we introduced in Eq. (4.2). Setting ℓ0 = 0, ℓ1 = +1, |0⟩ = |L⟩, |1⟩ = |R⟩,Θ = 0
produces a Néel-type skyrmion of skyrmion number n = 1 [127, 128]. In other
words, the construction of the skyrmion field is fixed by choosing the orthonor-
mal basis of construction to be |L⟩ and |R⟩. We now calculate the generalized
Stokes parameters using the generalized Pauli matrices we derived in Eq. (5.24).
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Substituting Eq. (5.24) into S = ⟨ψ(r)|σ|ψ(r)⟩, we obtain

Sx = ⟨ψ|σx|ψ⟩

= 1
2

1
1 + |µ|2

×

(
1 + µ∗ i (1 − µ∗)

)( cos γ cos θ −i sin γ + sin θ cos γ
i sin γ + sin θ cos γ − cos θ cos γ

)(
1 + µ

−i (1 − µ)

)

= 1
1 + |µ|2

[
2ℜ(µ) · cos γ cos θ −

(
1 − |µ|2

)
sin γ − 2ℑ(µ) · sin θ cos γ

]
.

(5.26)
With similar reasoning, we can calculate Sy and Sz as

Sy = 1
1 + |µ|2

[2ℜ(µ) sin θ + 2ℑ(µ) cos θ] , (5.27)

Sz = 1
1 + |µ|2

[
2ℜ(µ) sin γ cos θ +

(
1 − |µ|2

)
cos γ − 2ℑ(µ) · sin γ sin θ

]
. (5.28)

We identify here that these generalized parameters are related to the conven-
tional Stokes parameters, which were given in Eq. (4.8), Eq. (4.9) and Eq. (4.10)

S1 = 2ℜ(µ)
1 + |µ|2

, S2 = 2ℑ(µ)
1 + |µ|2

, S3 = 1 − |µ|2

1 + |µ|2
. (5.29)

These conventional parameters correspond to the choices γ = 0 and θ = 0 in
Eq. (5.26), Eq. (5.27) and Eq. (5.28). Consequently, the generalized parameters
can be expressed in terms of the conventional Stokes parameters as

Sx = cos γ cos θS1 − sin γS3 − sin θ cos γS2, (5.30)

Sy = sin θS1 + cos θS2, (5.31)

Sz = sin γ cos θS1 + cos γS3 − sin γ sin θS2. (5.32)

This way, we measured the skyrmion beam, constructed in |L⟩, |R⟩ basis, in
a completely arbitrary basis, and the measurement results are these generalized
Stokes parameters. One can verify these generalized components still keeps the
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unity of S, such that |S| = 1, as

S2
x + S2

y + S2
z

= (cos γ cos θS1 − sin γS3 − sin θ cos γS2)2 + (sin θS1 + cos θS2)2 +
(sin γ cos θS1 + cos γS3 − sin γ sin θS2)2

= cos2 θS2
1 − 2 cos θ sin θS1S2 + S2

3 + sin2 θS2
2 + sin2 θS2

1 + 2 sin θ cos θS1S2 + cos2 θS2
2

=
(
cos2 θS2

1 + sin2 θS2
1

)
+
(
sin2 θS2

2 + cos2 θS2
2

)
+ S2

3

= S2
1 + S2

2 + S2
3

(5.33)

This enables us to produce equivalent skyrmion potentials for a single skyrmion
field simply by choosing different bases |φ⟩, |φ2⟩ in σi, as given in Figure 5.4. This
means that, the Stokes phase Φ (see Eq. (4.21)) are not necessarily arctanS2

S1
. Dif-

ferent forms of Stokes phases can be obtained in different measurements, therefore
identify different singularities. We will discuss more about the generalized singu-
larities in the following sections.

Figure 5.4: Equivalent Φ plots for a n = 1 Néel type skyrmion (Eq. (5.25)). With
phase plots generated by identifying different singularities in different measure-
ments, the measurement bases are indicated in the labels under the phase plots.
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5.6.2 Rational Map and Geometrical interpretations
We now introduce the idea of rational maps and investigate how this idea can be
applied to optical skyrmions.

Rational maps were first proposed by Houghton et al. in [129] for the pur-
pose of finding approximate solutions for Skyrme’s field equation, which is not
integrable. This method is accurate especially for skyrmion fields with low topo-
logical numbers [130]. Using rational maps for constructing optical skyrmions
offers several advantages: they help us to distinguish intrinsic topological features
from beam characteristics influenced by experimental implementation, provide a
framework for designing new optical skyrmion fields, and establish a foundation
for exploring the distinctions between optical skyrmion fields and their magnetic
counterparts [127].

As a mathematical object, the paraxial skyrmion field is a mapping from the
plane to the sphere. The idea of rational maps requires that the plane of the
beam profile be mapped to a unit sphere Σ and then mapped onto the Poincaré
sphere. Different types of skyrmions can therefore be constructed from different
mapping functions, which are referred to as rational maps. This construction
is conceptually motivated by the baby skyrmion model [127], a simplified two-
dimensional topological field theory originally developed to study skyrmions in
reduced dimensions, which is widely used in the condensed matter community
[131] and particle theory [132]. In the optical context, it provides an intuitive
picture of how spatially varying polarization fields can inherit the topological
structure.

To be brief, paraxial skyrmions are therefore constructed according to a two-
step process: the set of unitary Stokes vectors S = (S1, S2, S3) uniquely identify-
ing fully polarized states of light is first anchored into a three-dimensional physical
space [127] (step 1 in figure 5.5). This process associates one polarization state
with each point r = (x, y, z) on S2. It is possible, however not essential, to picture
these polarization states as unitary vectors S′(r) = (Sx(r), Sy(r), Sz(r)) in R3 to
enable comparisons with condensed matter skyrmions. Each r, along with its
polarization state, is then mapped into the plane transverse to the propagation
direction of light, R2, using a stereographic projection (step 2 in figure 5.5). This
produces a spatially varying polarization distribution, which can be visualized
either as a distribution of S′(r) or as a distribution of polarization ellipses.

For our construction, we have a fixed S2 sphere and a rotating Poincaré sphere.
The stereographic projection axis is always aligned with the z-axis of the S2

sphere, which is fixed. Different measurements correspond to different alignments
between the Poincaré sphere and the S2 sphere. In a generalized measurement,
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as constructed in Eq. (5.24), we align |φ⟩ with the z-axis of the S2 sphere. This
alignment determines the resulting pattern and the corresponding singularities.
Specific examples of axis alignments will be given in subsection 5.6.3.

Figure 5.5: Baby skyrmion model applied to optical paraxial skyrmions. In step
1, unitary stokes vectors S = (S1, S2, S3) embedded in the abstract space of
the Poincaré sphere, are anchored into R3 yielding S′(r) = (Sx(r), Sy(r), Sz(r))
according to topological considerations outlined in [127]. In step 2, S2 is mapped
into R2 using a stereographic projection. Here, the north pole is the projection
point by which points r on S2 are imaged onto R2. The imaging process is
illustrated for a selection of points on the equator. The south pole is imaged as
the origin of R2 whereas the north pole is imaged at spatial infinity.
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5.6.3 Generalized Singularities
As we mentioned in subsection 5.6.1, different measurements yield different vector
potentials, and consequently different Stokes phases which generalize the concept
of singularities. Conventionally, polarization singularities always refer to circular
polarizations, where the ellipticity is undefined. This is because the complex
Stokes parameter is defined as S± = Sx ± iSy, as given in Eq. (4.20), which
is in the context of consistent basis measurements. Thus, S± = S1 ± iS2, and
the phase takes the form Φ = arctan(S2/S1), which is directly related to the
ellipticity. In a generalized measurement, however, Sx and Sy take the form of
Eq. (5.30) and Eq. (5.31), therefore the singularities are not limited to circular
polarizations. In the generalized context, singularities arise when Sy and Sx

are both 0. If (γ, θ) = (0, 0), we can calculate Sx = S1, Sy = S2, Sz = S3,
and Φ is singular when S2 = S1 = 0, which corresponds to C-points, that is,
right-handed and left-handed circularly polarized light (R, L plots in Figure 5.6).
Similarly, if (γ, θ) = (−π/2, π/2), we have Sx = S3, Sy = S1, Sz = S2, the phase
singularities are diagonal and anti-diagonal linearly polarized light (D,A plots in
Figure 5.6) whereas choosing (γ, θ) = (π/2, 0) gives Sx = −S3, Sy = S2, Sz = S1
corresponding to horizontal and vertical linear polarization states (H,V plots in
Figure 5.6). Of course, there are countless formalisms not limited to what we
listed above, where we can appoint any arbitrary polarizations as singularities,
as will be given in Figure. 5.7 in subsection 5.6.4.

The choice of triad S(r) for S′(r) therefore singles out a pair of orthogonal
polarization states to act as phase singularities for Φ. These singularities will
occupy different positions within the beam profile but cannot be eliminated in
analogy to Dirac strings in the theory of magnetic monopoles [133]. Targeting
singularities located in regions of low noise is a strategic choice advantageous for
experimental measurements of the skyrmion number, as demonstrated in [120].
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Figure 5.6: Intensity-modulated polarization distributions for (a) a n = 1 and
(b) a n = 2 Néel-type skyrmion and (c) a general Poincaré beam (n = 0). Three
equivalent Φ plots are provided for each polarization distribution, targeting right
and left handed circularly polarized light (R,L), diagonal and antidiagonal linearly
polarized light (D,A) and horizontally and vertically polarized light (H,V) as
phase singularities. Integration contours regarding equation 4.17 are indicated in
red.

5.6.4 Generalized Skyrmion Textures
While Néel-type skyrmions can be regarded as the most fundamental optical
skyrmionic structures, one can build an entire atlas of optical skyrmions, encom-
passing bimerons and Bloch-type skyrmions, by making use of rotations [127,
134]. These do not affect the coverage of the Poincaré sphere, hence the skyrmion
number, but change the polarization distribution of the beam. Indeed, countless
skyrmion structures, all having the same skyrmion number, can be obtained by
rotating either the local polarization vectors S(r) or by rotating S2 [127]. In
equation 5.25, this freedom is reflected in the choice of polarization states for the
orthonormal basis and in the choice of Θ. We show in Figure 5.7 and Figure 5.8
examples of topologically equivalent optical skyrmions, of skyrmion number n = 1
and n = 2, respectively, obtained by rotating S(r) by an angle α about the S2 axis
of the Poincaré sphere. Rotating S(r) produces a smooth transformation from a
Néel-type skyrmion (α = 0◦ in Figure 5.7) into a bimeron (α = 90◦ in Figure 5.7).
Rotations of S2 are of different nature, and will transform Néel-type skyrmions
into Bloch-type skyrmions while preserving the skyrmion number. Note that
these two types of rotations can equally be applied to anti-skyrmions, of nega-
tive skyrmion numbers, in which case one could effectively create “anti-bimeron”
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structures. Naturally, Figure 5.7 and 5.8 only provide eight topologically equiva-
lent textures, but many more can be obtained by considering arbitrary rotations
of S(r) and for each of these, additional ones can be created by rotating S2. This
menagerie of paraxial skyrmions is manifestly vast and it would seem that these
patterns are completely interchangeable. Based on these considerations, one can
produce a set of topologically equivalent skyrmionic structures experimentally
by either using SU(2) polarization elements including quarter waveplates and
half-waveplates [135] or by rotating the entire polarization profile [136].

Figure 5.7: Intensity modulated polarization patterns and phase distributions for
different bases for n = 1 skyrmion. Polarization patterns and phase distributions
are shown with respect to right- and left-handed circularly polarized light (R,L),
diagonal and anti-diagonal linearly polarized light (D,A) and horizontally and
vertically polarized light (H,V) as phase singularities for rotation of S by an
angle α about the S2 axis, starting from an n = 1 Néel-type skyrmion when
α = 0. All skyrmion beams have a skyrmion number n = 1.

The dynamic evolution of the constellations of polarization singularities ob-
served in the Stokes phase distribution Φ can be studied in figure 5.7 and 5.8
as α is varied to create topologically equivalent skyrmion textures. As expected,
the choice of basis for Φ affects the trajectory of the individual polarization sin-
gularities, with static polarization singularities (here anti-diagonal and diagonal
linearly polarized states) being obtained when S(r) is aligned with the rotation
axis (here S2) used to transform the polarization profile. This has implications
for the calculation of the skyrmion number using N = (2π)−1 ∮ ∂Φ · dℓ, as in-
dicated in Eq. (4.27), as the polarization singularity can migrate to regions of
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Figure 5.8: Intensity-modulated polarization patterns and phase distributions for
different measurement bases for an n = 2 skyrmion. Polarization patterns and
phase distributions are shown with respect to right- and left-handed circularly
polarized light (R, L), diagonal and anti-diagonal linear polarizations (D, A),
and horizontal and vertical linear polarizations (H, V). Each configuration cor-
responds to a rotation of the Stokes vector S by an angle α about the S2 axis,
starting from an n = 2 Néel-type skyrmion when α = 0.
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low intensity and deteriorate the measured skyrmion number depending on the
choice of the vector potential. Indeed, in our example, it would appear that when
α = 0◦, relying on an H,V basis or a D,A basis to measure the skyrmion number
is equally advantageous compared to a measurement using the R,L basis where
the singularity of left-handed circularly polarized light is located at the beam pe-
riphery. However, the two bases no longer provide the same advantage when the
skyrmion beam propagates in a medium that realizes the SU(2) transformation
corresponding to a rotation about the S2 axis as the constellation of H and V
singularities move to regions of lower intensity whereas D and A singularities re-
main in regions of low noise and high-intensity. This is therefore a new aspect to
consider in the experimental characterization of skyrmion beams. We also note
degeneracies in the Φ patterns across different bases (see for example R,L,α = 0◦

and H,V,α = 270◦ in figure. 5.7 and 5.8). This is expected as the same type of ro-
tation is used to generate different vector potentials and to induce local rotations
of the S vector.
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5.7 Skyrmion Number Calculation for Mixed-
up Bases Measurements

We have pointed out in section 5.3 and section 5.4 that while the skyrmion field
remains the same under mixed-up bases measurements, the skyrmion potential
does not. However, this changing of potential would still give us an unchanged
skyrmion number, which is due to the gauge freedom in the vector potential. We
have explored in previous sections how this is valid in terms of geometry, and
proved it mathematically. There are at least two ways of proving this, and we
have chosen the one that is more relevant to the organization and logic of this
chapter.

Recall that Eq. (5.21) is a permuted form of Eq. (5.14). Taking our example
of mixed-up bases measurements in Eq. (5.13) and substituting it into Eq. (5.21),
we obtain the skyrmion field in the form of Eq. (5.15), which we have proven to
be equivalent to the skyrmion field in consistent basis measurements.

Therefore, we have proven that despite changes in the form of the vector
potential, the curl relation remains valid. We can thus conclude that vector
potentials in different bases differ only by a gauge transformation and do not
affect the calculation of skyrmion numbers. Moreover, based on this result, it
is straightforward to show that the topological method remains valid for this
generalization.

We will explain the calculation of skyrmion numbers by some specific exam-
ples. In the topological method we introduced in section 4.5, we have Eq. (4.26)
which calculates the skyrmion number in terms of Stokes parameters and winding
numbers, and Eq. (4.27) which defines the winding numbers. We now generalize
Eq. (4.26) to mixed-up bases measurements, as [37]

n =
∑

j

1
4π

∮
βj

Sz∂Φ · dl − 1
4π

∮
α
Sz∂Φ · dl, (5.34)

which means that Sz here can be any one of the Stokes parameters. Here, α and
βj represents our integration lines, as shown in Figure. 5.9. We point out here
that the generalized Stokes parameter Sz, regardless of its specific form, is always
a constant. As such, it can be factored out of the integration and summation,
thereby separating the Stokes parameters from the winding numbers. This results
in a topological formulation for calculating the skyrmion number, as we discussed
in [120].

n = 1
2

∑
j

S(j)
z Nj − S̄(∞)

z N∞

 . (5.35)

This is because around the singularities, the integration contour is always in-
finitely small, causing the Stokes parameter to take the local value at the singular
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point. For points at infinity, the stereographic projection ensures that Sz takes
the value of the Stokes parameter of the projection point. Now, we proceed to
explain the calculation of the skyrmion number for skyrmions (in consistent ba-
sis measurements) and bimerons (one case of the mixed-up bases measurements).
Note that, the topology has ensured that N∞ = ΣjNj. In a skyrmion texture,
where we recognize circular polarization points as the singularities, there is al-
ways only one singularity at the beam centre, and Sz always takes opposite values
at beam centre and at the periphery. Therefore, we will always have

n = 1
2

∑
j

SzNj − (−Sz)N∞


= SzΣjNj.

(5.36)

For the case of a bimeron, singularities always come in pairs, and these singu-
larities are always opposite points on the Poincaré sphere. Because the integra-
tion contour is a loop, this guarantees that the contour around them always takes
the same handedness, which on opposite points of thePoincaré sphere means op-
posite winding numbers. The Stokes parameters take opposite values on these
pairs, while the beam periphery will always have zero contribution due to N = 0
guaranteed by N∞ = ΣjNj.

Therefore the skyrmion number for a bimeron is

n = 1
2

∑
j

SzNj − 0


= 1
2ΣjSzNj.

(5.37)

In our example of a n=2 bimeron, the horizontal and vertical polarizations are
defined as singularities, with Sz = S1. Specifically, we have S1 = 1 for horizontal
polarization and S1 = −1 for vertical polarization. The corresponding winding
numbers are N = 1 and N = −1, respectively. By substituting these values
into Eq. (5.37), we can calculate the skyrmion number, which yields n = 2. The
corresponding figures are shown in Figure. 5.9.
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Figure 5.9: n=2 skyrmion (bimeron) under a mixed-up bases measurement. (a)
is the original n=2 skyrmion field, (b) is the identification of the singularities
and integration contour for the chosen mixed-up bases measurement (Sz = S1).
(c) is the corresponding Stokes phase, and (d) is the integration contour on the
Poincaré sphere, where α is the integration line that goes counter-clockwise, and
βj are our integration lines which wind clockwise. The phase change on the
contour around linear polarizations is directly related to the winding number.
The colour scheme we used is defined in terms of orientation ψ, and ellipticity χ.
(The figures is adapted from [120]).
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5.8 Experimental Evaluations
An experiment has been designed and carried out by the Optics Group. The
experimental setup used to generate skyrmion beams is shown in Figure 5.10 (re-
produced from the supplementary material of [120]). The process begins with a
diagonally polarized beam, which is separated into its horizontal and vertical po-
larization components using a Wollaston prism. These two beams are then imaged
onto a digital micromirror device (DMD), where a binary multiplex hologram is
applied to independently shape each component. The beams are subsequently
recombined to produce a beam with spatially varying polarization. Stokes po-
larimetry is used to measure the Stokes parameters, which are then mapped onto
the Poincaré sphere.

Figure 5.10: Experimental set up for generating skyrmions [120].

In Figure 5.11, experimentally generated skyrmions and bimerons are pre-
sented, produced using the setup described above. The bimerons can be inter-
preted as skyrmions that are prepared in the |H⟩ and |V ⟩ basis but measured
in the |R⟩ and |L⟩ basis. The use of mixed-up bases measurements offers the
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advantage of avoiding regions of low intensity. Moreover, such flexibility allows
the Stokes parameters to be evaluated at a finite radius. This approach is par-
ticularly beneficial when measuring higher skyrmion numbers, as demonstrated
in Figure 5.12.

In Figure 5.12, three different skyrmion number measurement methods are
compared under increasing levels of background noise. The background noise
is applied to simulated Néel-type skyrmion beams with n = 1 to 5, and the
evaluation is carried out over a disk where the intensity exceeds 5% of the peak
value. Solid lines represent values calculated using the standard flux definition:
n = 1

4π

∫
A S ·

(
∂S
∂x

× ∂S
∂y

)
dxdy. Dotted lines are using Eq. (5.36) in the consistent

basis measurement of the beam (Sz = S3) and dashed lines show values when
evaluating in a mixed-up bases measurement using Eq. (5.37) (Sz = S1).

Figure 5.11: Experimentally generated n = 1 to 5 skyrmions in consistent basis
measurement (top row) and mixed-up bases measurement (bottom row) [120].
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Figure 5.12: Comparison of the performance of skyrmion measurement meth-
ods for increasing noise levels. Increasing levels of background noise applied to
simulated skyrmions with n = 1 to 5 equivalent to the beams shown in the top
row of Figure. 5.11. The solid lines indicate values calculated using Eq. (4.14).
Dotted lines correspond to values calculated using Eq. (5.35) in the consistent
basis measurement (Sz = S3) and dashed lines when evaluating Eq. (5.35) using
an mixed-up bases measurement (Sz = S1). (Figure adapted from [120] to fit the
thesis).
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5.9 Conclusions
In this chapter, we extended the theory of paraxial skyrmions by recognizing
topologically equivalent skyrmion fields. An entire library of such equivalent
fields can be obtained through rotations. We first proved that a skyrmion field
remains unchanged under a consistent change of basis in its construction and
measurement. We refer to this scenario as consistent basis measurements, in
contrast to the mixed-up basis measurements we proposed. We also showed
that, geometrically, a consistent basis measurement corresponds to a consistent
rotation of both the Poincaré sphere and the plane of projection.

Next, we demonstrated that, even under a mixed-up basis measurement, the
skyrmion field remains unchanged. However, the skyrmion potential undergoes a
change, which can be understood as a gauge freedom that does not affect the curl
relation. This result ensures that our topological method of calculating skyrmion
numbers remains valid, even with a suitable generalization of parameters.

We then introduced a generalization of orthonormal states, which allowed us
to construct generalized Pauli matrices and, consequently, generalize the Stokes
parameters. Not surprisingly, the generalized Stokes parameters still preserve
the unity of the Stokes vector. The concept of singularities is also generalized,
extending beyond circular polarizations. We then built an atlas of skyrmion
textures based on this generalization.

The practical application of this generalization is in the calculation of skyrmion
numbers. We derived theoretical expressions for skyrmion numbers in two spe-
cial cases: skyrmions and bimerons, and presented experimental results for these
measurements. It is clear that this generalization allows us to calculate skyrmion
numbers for different equivalences of skyrmion textures, where singularities are
identified differently, effectively avoiding low-intensity areas.

Perspectively, topologically equivalent skyrmion beams could prove useful in
general bipartite free-space quantum key distribution, where information is en-
coded in the polarization degree of freedom. Such beams could remove the need
to establish a shared reference frame, enhancing the efficiency and security of
quantum communication.
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Chapter 6

A New Method to Describe 3D
Polarized Fields

6.1 Introduction
Previously, we have worked on paraxial skyrmions, or baby skyrmions, where a
topologically protected polarization structure was investigated and linked per-
fectly with the Poincaré sphere. We would, however, want to see how a skyrmion
field behaves outside the paraxial regime. For example, how a skyrmion field
would behave under strong focusing.

We propose a two-sphere method to characterize 3D polarization, based on
the existing Majorana (Poincarana) sphere method [137, 138]. A strongly focused
skyrmion beam, which enters the regime of 3D polarization, is one example where
this new method can be applied.

The structure of this chapter is as follows: In section 6.2, we briefly review the
history of the Majorana sphere and how it became a useful tool for the description
of light beam. In section 6.3, we introduce the mathematical construction of the
Poincarana sphere, an optimized re-normalization of the Majorana sphere. In
section 6.4, we present our two-sphere method as a novel tool for analyzing 3D
polarization. And finally in section 6.5, we provide an example of a focused
paraxial skyrmion to demonstrate how this new method can be applied.

6.2 Hannay-Majorana Sphere
In his original work, Majorana defined a polynomial, now named after him, the
roots of which lie in the complex plane and can be stereographically projected
onto a S2 sphere, in the following paragraph, we will briefly illustrate how his
idea works.
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The idea of Majorana representation is an elegant treatment of higher-order
spinors [139, 140]. To briefly summarize the story, we start with the Jones calcu-
lus, where Jones represents the electric field vectors as complex 2-vectors. This
construction allows the Stokes parameters, which is an ingenious invention that
fully characterizes the transverse rapid oscillations of a light beam, nowadays
known as its polarization properties, to be represented by the Pauli matrices.
A more precise term for Jones vectors might be Jones spinors instead. Majo-
rana’s representation builds on this idea of spinor representation and generalizes
it to higher dimensions. A spin-l object, for example, corresponds to a spinor of
dimension N = 2l + 1.

A special class of spinors can be defined that transform under a subgroup of
SU(N). and whose components are related to binomial coefficients. More pre-
cisely, the structure of these spinors resembles binomial distributions in the sense
that each component is weighted by the square root of a binomial coefficient
[139]. These specially structured spinors can be used to define a polynomial of
degree n−1, constructed by taking an inner product between a conjugated spinor
ξ∗ and a monomial spinor basis involving powers of the complex variable z. For
example, in the case of a 3-spinor, this polynomial takes the form:

p(z; ξ) = ξ∗
0z

3 +
√

3ξ∗
1z

2 +
√

3ξ∗
2z + ξ∗

3 . (6.1)

The n−1 roots of this polynomial correspond to points in the complex plane,
which can be mapped onto a sphere via an inverse stereographic projection. This
defines the so-called Majorana sphere representation of the spinor.

Degenerate cases may arise where the leading coefficients vanish (e.g. ξ0 = 0),
effectively reducing the degree of the polynomial. While this might seem to
reduce the number of solutions, such ”missing” roots are interpreted as points at
infinity. Following Riemann’s prescription, these correspond to the North Pole of
the sphere under stereographic projection [141]. Hence, the full set of n−1 roots,
including repeated and degenerate ones, are mapped to points on the Majorana
sphere, with indistinguishable roots occupying the same location, and “infinite”
roots mapping to the pole. An example of the Majorana representation is given
in Figure. 6.1.

The idea of Majorana sphere was first applied to light by Hannay in 1998 [137].
In his paper, Hannay applied the idea of representing a spin-N system uniquely
by 2N dots on a unit sphere in real space. He then stressed that light, being
a spin-1 object, should correspond to two points on the Majorana sphere. But
light has the massless property, which imposes certain restrictions to the points
on the sphere. Specifically, the two points representing light on the sphere should
determine its propagation direction. Hannay then proposed a projection method
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Figure 6.1: An example of the Majorana representation of a 4-spinor, where black
dots represent points on the complex plane and red dots represent points on the
sphere.

that utilized this property, where he placed a polarization ellipse in the plane of
the large circle of the sphere and projecting its foci onto the sphere (Figure. 6.2).

6.3 Constructing the Poincarana Sphere
In this section, we will follow works by Bliokh et al. [138] and Alonso [38] to
introduce how the Hannay-Majorana sphere can be applied to structured light
and how it is optimized to Poincarana sphere. Consider a monochromatic and
fully polarized, non-paraxial 3D electric field with a complex vector form. We
are familiar with the 2D form of the E field, which is expressed in terms of
trigonometric functions, and in its propagation direction traces out ellipses that
represent the (2D) polarization ellipses. Here, we will write the 3D field in a
similar manner, as

E = A exp (iΦ)(a + ib), (6.2)

where A = |E|, Φ is a global phase, and a and b are mutually orthogonal vectors
that add up to the unit vector, which traces out the direction of our E field.
Without loss of generality, we can define |a| ≥ |b|. It is not difficult to see that
Eq. (6.2) is a 3D ellipse, with a and b corresponding to its major and minor axes,
respectively. We can also express the phase in terms of our electric field, as

Φ = 1
2Arg(E · E). (6.3)

Note that there are degenerate cases for this definition, namely when the
ellipse becomes circular or linear. In the case of circular polarization, the phase
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Figure 6.2: A reproduction of Hannay’s original figure. The blue ellipse is the
polarization ellipse lying in the Majorana unit sphere, its two foci are projection
of the two unit vectors which represent the polarization state. Their bisector (or
its reverse) is the propagation direction [137].

in Eq. (6.3) would become undefined, which is usually known as the C-points
[142].

The next important quantity to define is the spin density S, which is defined
as S = Im (E∗ × E) for a fully polarized beam. Eq. (6.2) expresses S in terms of
a and b, with some calculations, we can find a relation between the spin density
S, and a, b, as S = 2A2a × b, which tells us that geometrically, this quantity is
perpendicular to the plane of the polarization ellipse, as shown in Figure. 6.3.

Figure 6.3: Polarization ellipse and spin direction.

For later convenience, we will instead use the normalized spin density, which
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is defined as
s = Im (E∗ × E)

|E|2
= 2a × b. (6.4)

where s is the normalized spin density, which takes the maximum value of unity,
when the polarization is circular, and vanishes when the polarization is linear
[38].

One may realize the connection between the spin density and the Stokes vec-
tor. In 2D cases, the Stokes parameters are directly linked to the 2D polarization
ellipse, and the direction normal to the 2D ellipse being the z direction. However,
it is important to notice that the normalized Stokes vector resides in an abstract
parameter space (the Poincaré sphere), while the spin density vector lives in real
space. Therefore, the components of the Stokes vector do not correspond to the
spin density in 2D, due to their incorrect commutation relations and normal-
izations, as pointed out by Berry [143]. In fact, the z-component of the Stokes
vector corresponds to the spin density of the 2D polarization.

We now turn to Hannay’s construction. As stated before, light corresponds
to two points on the Majorana sphere, with the restriction that their bisector is
the propagation direction. Here, we represent these two points on the unit sphere
by two positional vectors, u1,2. These unit vectors has four degrees of freedom,
thus fully characterizing the 3D ellipse. The tips of the two unit vectors project
to the foci of the polarization ellipse by construction.

To better incorporate the normalization of the polarization ellipse, Bliokh et
al. [138] proposed the Poincarana sphere, which, in principle, is a re-normalization
of the Hannay-Majorana construction. The relation between u1,2 and the spin
direction is as follows:

u1,2 = ±
√

1 − β2ā + βs̄, (6.5)
where the bar above indicates unit vectors, β is the eccentricity of the polarization
ellipse. Hannay-Majorana construction defines β = arctan |b̄|/|ā|. Geometrically,
it corresponds to the angle between z-axis and p1,2, where p1,2 are points of
Hannay-Majorana representation, as shown in Figure. 6.4. For a unit sphere,
ā, b̄ are along the major and minor axes of the polarization ellipse, while s̄ is
along the spin direction.

Furthermore, β = |S| = 2|A||B|, where A and B are real vectors representing
semi-major and semi-minor axes of the normalized polarization ellipse. This is
directly related to the geometrical phase through the solid angle enclosed on the
sphere, as demonstrated in [138]. In the 2D case, we see this definition gives

u1,2z = S3 = Sz, (6.6)
where u1,2z refers to the z-component of u1,2, and S3 is the third Stokes parame-
ter, corresponding to the z component of the Stokes vector. This normalization
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Figure 6.4: Geometrical meaning of β. p1, p2 are vectors for the Hannay-
Majorana representation.

guarantees the height (or z-component) of the representation points on the two
spheres are the same. This is where the name “Poincarana” comes from. It is
not difficult to see that representation points of the Poincarana and the Majo-
rana sphere will merge for circular and linear polarizations. A summary of the
properties of these representations will be given in Figure. 6.6 in the next section.

6.4 Two-Sphere Method
When considering paraxial beams, four parameters are used for the complex x
and y values. These are well described by the Stokes parameters, which are com-
ponents of the Stokes vector that resides on the Poincaré sphere. The Poincarana
sphere, on the other hand, is a sphere in real space and is capable of describing
a 3D polarization. One may take a reasonable guess and seek the possibility of
using the Poincarana sphere as the proper sphere for describing a 3D field vector.
This, however, would not be sufficient.

If we consider representing a single 3D polarization ellipse with two points on
the Poincarana sphere, the information of it would be clear, as the two points on
the Poincarana sphere give information about ellipticity and orientation through
their separation and bisector, respectively. However, for a structured light beam,
each point on the beam’s cross-section has its own polarization ellipse, all oriented
in different directions. Recording such information on a single Poincarana sphere
would be messy, as the information of ellipticities and orientations are all mixed
up.

The intrinsic reason for this is that an S2 sphere has only 2 dimensions, which
allows it to record the information of only two complex vectors. To overcome this
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limitation, we hereby introduce a second sphere, which we call a spin direction
sphere. With this additional sphere we have enough dimensions to record a
distribution of polarizations for non-paraxial structured light beams.

This approach is inspired by the fact that a 3D polarization can degenerate
in two ways: if we fix the orientation of the spin, 3D polarizations become the
familiar 2D polarizations, which can be described by the Poincaré sphere. Con-
versely, if we consider a field composed of polarization ellipses that all have same
ellipticity but differ in orientation, we can use one sphere to record all the spin
directions and one number (or the seperation of foci on the sphere for any of the
ellipses) for the ellipticity. Thus, the information of a general 3D polarization
distribution can be represented by two S2 spheres. We already presented the
Poincaré sphere, here, we present the schematic plot of the spin-direction sphere
in Figure. 6.5.

Figure 6.5: A schematic diagram of the spin-direction sphere, where each point
of the sphere is associated with a circular polarization and its spin direction is
represented by an red arrow locally perpendicular to the surface of the sphere.

We now possess a comprehensive understanding of the construction of the
Poincaré sphere, the Poincarana sphere, and the spin direction sphere. Their
relationships are summarized in Figure. 6.6, where we have represented their
connections with the relevant quantities.
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Figure 6.6: A plot of the 3D polarization ellipse and the spin vector s (a), the
Poincaré sphere (b), the spin direction sphere (c), and the Poincarana sphere
(d). The Poincaré sphere has the components of the Stokes vector as its axes.
The spin direction sphere is a sphere represents the space where the spin vector
s resides. Finaaly, the Poincarana sphere is a sphere in real space, where a 3D
Polarization ellipse lies in a plane passing through its centre.
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6.4.1 General Algorithm of the Two Sphere Method
Based on the mathematical construction from the previous section, we now intro-
duce our algorithm for separating the information of spin direction and ellipticity.
First, we establish a standard reference direction; let us choose z-axis without loss
of generality. For an E field in the form of Eq. (6.2), we can determine the global
phase using Eq. (6.3), which we write again here as

Φ = 1
2Arg(E · E). (6.7)

Next, we calculate the field amplitude |E|. Using the phase and amplitude,
we obtain the normalized field vector, expressed as e = E/|E| = a + ib. We then
apply Eq. (6.4) to determine the normalized spin density vector s.

The spin density vector gives us the information of spin direction for each
field point, with which we can plot our spin-direction sphere.

Now we turn to the Poincarana sphere for representing polarization informa-
tion. To isolate polarization information, we locally erase the spin direction for
each field point by rotating s to ±z. The choice of plus or minus z is determined
by the handedness of the polarization ellipse, i.e., the hemisphere on which s re-
sides. Spin vectors corresponding to right-handed polarization ellipses lie on the
northern hemisphere and are therefore rotated to +z, while those for left-handed
polarization ellipses lie on the southern hemisphere and are rotated to −z.

We now take the plus case as an example to demonstrate how this rotation
works, noting that the minus case follows a similar process.

To rotate the spin vector of right-handed polarizations, we first define a third
unit vector, n, which is perpendicular to both s and z. Next, we determine the
angle θ between s and z. Using this information, we can construct a 3D rotational
matrix, that allows us to rotate s to align with z by applying a rotation of angle
θ about the axis defined by n. The detailed calculations are presented in the
following.

The expression of s can be easily determined once the electric field is ex-
pressed, as shown in Eq. (6.4). Thus, we express every related quantity in terms
of the components of s. First, we calculate n, which is the rotational axis, as

n+ = s × z = (sy,−sx, 0)T . (6.8)

The general 3D rotational matrix has the form

R =

 cos θ + n2
x(1 − cos θ) nxny(1 − cos θ) − nz sin θ nxnz(1 − cos θ) + ny sin θ

nynx(1 − cos θ) + nz sin θ cos θ + n2
y(1 − cos θ) nynz(1 − cos θ) − nx sin θ

nznx(1 − cos θ) − ny sin θ nzny(1 − cos θ) + nx sin θ cos θ + n2
z(1 − cos θ)

 .

(6.9)

113



Chapter 6. A New Method to Describe 3D Polarized Fields 114

From it we construct our 3D rotational matrix with respect to n+ which we
rotate around

R+ =

cos θ + s2
y(1 − cos θ) −sysx(1 − cos θ) −sx sin θ

−sxsy(1 − cos θ) cos θ + s2
x(1 − cos θ) −sy sin θ

sx sin θ sy sin θ cos θ

 . (6.10)

Similarly, the rotational axis for the minus case would be

n− = s × (−z) = (−sy, sx, 0)T , (6.11)

and the relevant rotational matrix

R− =

cos θ + s2
y(1 − cos θ) −sysx(1 − cos θ) sx sin θ

−sxsy(1 − cos θ) cos θ + s2
x(1 − cos θ) sy sin θ

−sx sin θ −sy sin θ cos θ

 . (6.12)

Eq. (6.10) and Eq. (6.12) define the rotational matrices constructed to ro-
tate s to ±z. Since the representation points of u1,2 and s must undergo rigid
rotation, we apply the same 3D rotational matrix to u1,2. By performing the
appropriate rotational operation at each field point, we obtain a distribution of
points corresponding to a series of re-oriented ellipses.

An equivalent statement of this is that we ”flatten” the polarization surface
onto a plane. In doing so, we are able to represent the polarization information by
a second sphere, analogous to how we represent 2D polarization on the Poincaré
sphere.

One important point to note is that when describing the polarization distri-
bution information, we are not necessarily limited to the Poincaré sphere. The
Poincarana sphere may even offer some advantages over the Poincaré sphere, as
we will discuss in the next subsection.

6.4.2 A Comparison of the Poincaré Sphere and the Poincar-
ana Sphere

As discussed in previous chapters, the mathematical relations between 2D polar-
izations and the Poincaré sphere have already been established, so we will not
repeat them here. While the Poincarana sphere is not sufficient for representing
a 3D polarization distribution, it can still serve as a powerful tool for describing
2D polarization distributions. In this subsection, I will use the familiar paraxial
skyrmion as an example to explain the similarities it shares with the Poincaré
sphere, as well as the unique features it provides that are lacking in Poincaré
sphere representations.
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The mapping between 2D polarization ellipses and the Poincarana sphere is
straightforward, with their foci mapped onto the sphere along z-direction (Fig-
ure. 6.6 (d)). We observe that the separation between the foci increases as the
ellipticity decreases, eventually leading to linear polarizations, where the two foci
coincide with the two endpoints, located on the equator of the sphere. Con-
versely, as the ellipticity increases, we reach a circle with a single focus at the
center, corresponding to a point at the North Pole.

The normalization of the Poincarana sphere guarantees Eq. (6.6), meaning
that for a 2D polarization, its representation points on both the Poincaré sphere
and the Poincarana sphere have the same latitude (or height), as illustrated by
the examples of linear and circular polarizations discussed earlier.

Now, if we consider an n = 1 skyrmion pattern, one might naively assume that
an n = 1 skyrmion will cover the Poincarana sphere twice, since each polarization
is represented by 2 points, and thus the total number of points would be twice that
of the Poincaré sphere. However, this is not the case. f we examine a latitudinal
circle on the Poincaré sphere, we see that half of the circle corresponds to a
phase change of π/2, as the antipodal points represent orthogonal polarization
states. On the Poincarana sphere, however, a π/2 phase change corresponds to
only one-quarter of a latitudinal circle. This difference comes from the fact that
the orientation angles of polarization ellipses are doubled in Poincaré sphere.
Therefore, a n = 1 skyrmion should also cover the Poincarana sphere only once.

A simulation illustrating how an n = 1 skyrmion covers the Poincaré sphere
is shown in Figure 6.7. The south pole is not covered because the points in the
simulation cannot reach infinity. This figure tells us that in the paraxial case, the
Poincarana representation contains the same information as the Poincaré sphere.

One advantage of the Poincarana sphere over the Poincaré Sphere is its ability
to generalize the definition of 2D skyrmions. As described by Nagaosa and Tokura
in [35], there are different types of magnetic skyrmions, which are distinguished
based on their magnetization vector (or, in our optical context, the Stokes vector)
in spherical coordinates.The polar angle of this vector determines the helicity. In
our construction, this is equivalent to stating that the phase difference between
the LGn

0 and LG0
0 terms can be written as Φ(ρ, z) = ℓdϕ + θ(ρ, z), where ℓd

corresponds to the winding number, or skyrmion number, and θ(ρ, z) determines
the skyrmion type.

For magnetic skyrmions, a phase change of π/2 would switch a Bloch skyrmion
to a Néel skyrmion. However, in the case of a paraxial 2D skyrmion field, such a
phase change results only in rotations within the skyrmion pattern. This can be
easily verified through simulation, and it has been discussed in the literature, such
as in [127].Therefore, for 2D optical skyrmions, we do not distinguish between
Néel and Bloch types.

That said, creating an optical Bloch skyrmion is still possible. An example has
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Figure 6.7: Poincarana sphere for n=1 paraxial skyrmion, where red and blue
points represent u1 and u2 for all points in the polarization distribution.

been given in [106], where a Bloch C-skyrmion was created by strong focusing
of an n = 2 skyrmion using an aplanatic system, which we had explained in
subsection 2.6.2. We will discuss this construction further in the following section
and use it as an application of the two-sphere method. For now, we focus on the
Bloch C-skyrmion created in this process.

The Bloch C-skyrmion can actually be linked to the other degenerate case
of general 3D polarization, as it matches the description of a field composed of
polarization ellipses that orient differently but share the same ellipticity. This
construction lies beyond the paraxial regime and cannot be described by the
Poincaré sphere. However, the Poincarana sphere still allows us to represent and
define the skyrmion number as the coverage of the Poincarana sphere.

6.5 Focused n=2 Paraxial skyrmion Field
Now, we turn to the focusing of a paraxial skyrmion as an example of the ap-
plication of the two-sphere method. First, we construct an n = 2 skyrmion by
superposing LG beams:

|ψ⟩ = 1√
2
(
LG0

0 |0⟩ + LG2
0 |1⟩

)
, (6.13)

where we take |0⟩ = |L⟩ and |1⟩ = |R⟩. Here, we follow the Richards & Wolf
model [41, 39] to derive the field after strong focusing.
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We first calculate the far-field which enters the focusing system, for y- and x-
polarization, respectively

Ey
∞(θ, ϕ) =

Einc(θ, ϕ) ·

 − sinϕ
cosϕ

0



 − sinϕ

cosϕ
0

√n1

n2
(cos θ)1/2+

Einc(θ, ϕ) ·

 cosϕ
sinϕ

0



 cosϕ cos θ

sinϕ cos θ
− sin θ

√n1

n2
(cos θ)1/2

=

Einc(θ, ϕ) · ny ·

 − sinϕ
cosϕ

0



 − sinϕ

cosϕ
0

√n1

n2
(cos θ)1/2+

Einc(θ, ϕ) · ny ·

 cosϕ
sinϕ

0



 cosϕ cos θ

sinϕ cos θ
− sin θ

√n1

n2
(cos θ)1/2

=Einc(θ, ϕ)


 − sinϕ cosϕ

cos2 ϕ
0

+

 sinϕ cosϕ cos θ
sin2 ϕ cos θ
− sinϕ sin θ


√n1

n2
(cos θ)1/2

=Einc(θ, ϕ)1
2

 (cos θ − 1) sin 2ϕ
(1 + cos θ) + (1 − cos θ) cos (2ϕ)

−2 sinϕ sin θ

√n1

n2
(cos θ)1/2,

(6.14)
similarly we have

Ex
∞(θ, ϕ) = Einc(θ, ϕ)1

2

 (1 + cos θ) − (1 − cos θ) cos (2ϕ)
−(1 − cos θ) sin (2ϕ)

−2 cosϕ sin θ

√n1

n2
(cos θ)1/2.

(6.15)
The reason we use x- and y-polarization here is the same as in chapter 3, we

want to make use of the previous result we get for the Hermite-Gaussian beams,
so as to save some calculation work. One can of course start directly with l- and
r-polarization. Now, we decompose the LG beams into HG beams, using their
generating function from the Gaussian beam, we have

LG2
0 = HG20 + 2iHG11 − HG02. (6.16)

We then derive the incident beam expression for higher order HG beams from
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the lowest-order mode, using Eq. (2.20) we find

Einc(θ, ϕ) = 2E0

(
2y2 − w2

0
w2

0

)
e−(x2+y2)/w2

0

= 2E0

(
2f 2 sin2 θ sin2 ϕ− w2

0
w2

0

)
e−f2 sin2 θ/w2

0 (HG02) ,
(6.17)

Einc(θ, ϕ) = 4E0
xy

w2
0
e−(x2+y2)/w2

0

= 4E0
f 2 sin2 θ sinϕ cosϕ

w2
0

e−f2 sin2 θ/w2
0 (HG11) ,

(6.18)

Einc(θ, ϕ) = 2E0

(
2x2 − w2

0
w2

0

)
e−(x2+y2)/w2

0

= 2E0

(
2f 2 sin2 θ cos2 ϕ− w2

0
w2

0

)
e−f2 sin2 θ/w2

0 (HG20) ,
(6.19)

where the relevant mode is indicated in the bracket, and we have used the relation
of the far field as x = f sin θ cosϕ and y = f sin θ sinϕ, as given in Eq. (2.50).
We then combine the decomposed HG modes to obtain the desired LG2

0 mode,
and substitute the incident beam into Eq. (6.14) to calculate the focused beam,
as we show in the following.

We follow chapter 3 for all definitions of parameters. We define x = f sin θ cosϕ
and y = f sin θ sinϕ, where (x, y, z) represents a point on the reference sphere of
the aplanatic system, f is the focal length, and (θ, ϕ) are spherical angles (see
subsection 2.6.2, Figure. 2.7). We then define fw(θ) = e−(x2+y2)/w2

0 as an apodiza-
tion function, previously mentioned in 3.4.1. From Eq. (6.16) to Eq. (6.19) we
can calculate

LG2
0 = HG20 + 2iHG11 − HG02

= 2E0

w2
0

[(
2x2 − w2

0

)
+ 4ixy −

(
2y2 − w2

0

)]
fw(θ)

= 4E0

w2
0
fw(θ)

[
x2 − y2 + 2ixy

]
= 4E0

w2
0
fw(θ) [cos 2ϕ+ i sin 2ϕ]

= 4E0

w2
0
fw(θ)ei2ϕ.

(6.20)

From this we modify the trigonometrical integration relations to get∫ 2π

0
einϕeix cos (ϕ−φ)dϕ = 2π (in) Jn(x)einφ. (6.21)
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We now calculate the coefficient matrix for LG2
0. To do this, we send the

incident paraxial beam, given by Eq. (6.20), through the aplanatic system. This
is to say we plug Eq. (6.20) as Einc into Eq. (6.15) and Eq. (6.14) to get the far
field for x- and y-polarized beam, respectively. As

LG2
0ex = −ikf3e−ikf 4E0

w2
0

√
n1

n2

1
2

∫ θmax

0
fw(θ) sin3 θ cos1/2 θdθ× −(1 + cos θ)J2(kρ sin θ)e2iφ − (1 − cos θ)1

2J4(kρ sin θ)e4iφ − (1 − cos θ)1
2J0(kρ sin θ)

(1 − cos θ)1
2 iJ4(kρ sin θ)e4iφ − (1 − cos θ)1

2 iJ0(kρ sin θ)
−i sin θ

[
J1(kρ sin θ)eiφ − J3(kρ sin θ)e3iφ

]
 ,

(6.22)

LG2
0ey = −ikf3e−ikf 4E0

w2
0

√
n1

n2

1
2

∫ θmax

0
fw(θ) sin3 θ cos1/2 θdθ× (1 − cos θ)1

2 iJ4(kρ sin θ)e4iφ − (1 − cos θ)1
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c− (1 + cos θ)J2(kρ sin θ)e2iφ + (1 − cos θ)1
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[
J1(kρ sin θ)eiφ + J3(kρ sin θ)e3iφ

]
 .

(6.23)
Before we write out the coefficient matrix, we can perform the dϕ integral

to simplify the expression. We define a few integral abbreviations in the similar
fashion as in chapter 3, to which we define 3 indices: the first index indicates
whether the term inside the integral is (1 + cos θ), (1 − cos θ), or just 1, and it
takes the value of 1, 0, 3, respectively. The second index is the order number of
sin θ. The third index is the order of the (first kind) Bessel functions. We write
out the integral abbreviations we are going to use explicitly:

I132 =
∫ θmax

0
fw(θ)(cos θ)1/2 sin3 θ(1 + cos θ)J2(kρ sin θ)eikz cos θdθ,

I030 =
∫ θmax

0
fw(θ)(cos θ)1/2 sin3 θ(1 − cos θ)J0(kρ sin θ)eikz cos θdθ,

I341 =
∫ θmax

0
fw(θ)(cos θ)1/2 sin4 θJ1(kρ sin θ)eikz cos θdθ.

(6.24)

Some other integral abbreviations appear in the following calculation were
given in chapter 3 in Eq. (3.18). We will not write them out explicitly as they
would cancel each other out eventually. With these we are able to calculate our
coefficient matrix as

LG2
0 = −ikf 3e−ikf 2E0

w2
0

√
n1

n2−I132e
2iφ − 1

2I034e
4iφ − 1

2I030
1
2 iI034e

4iφ − 1
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1
2 iI034e

4iφ − 1
2 iI030 −I132e

2iφ + 1
2I034e

2iφ + 1
2I030

−iI341e
iφ + iI343e

3iφ I341e
iφ + I343e

3iφ

 , (6.25)
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hence we get LG2
0eR from Eq. (6.25) as

LG2
0eR = 2kf 3e−ikf E0

w2
0

√
n1

n2

 iI132e
2iφ + iI030

I132e
2iφ − I030

−2I341e
iφ

 . (6.26)

From previous results we have the coefficient matrix for LG0
0 as

LG0
0 = − ikf

2

√
n1

n2
E0e−ikf

I110 + I012 cos (2φ) I012 sin (2φ)
I012 sin (2φ) I110 − I012 cos (2φ)
−2iI321 cosφ −2iI321 sinφ

 , (6.27)

hence we have

LG0
0eL = − ikf

2

√
n1

n2
E0e−ikf

I110 + I012 cos (2φ) I012 sin (2φ)
I012 sin (2φ) I110 − I012 cos (2φ)
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i
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= − ikf
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n1

n2
E0e−ikf

 I110 + I012 cos (2φ) + iI012 sin (2φ)
I012 sin (2φ) + i (I110 − I012 cos (2φ))

−2iI321 cosφ+ 2I321 sinφ

 .
(6.28)

We can construct the strongly focused n=2 skyrmion by adding Eq. (6.26) and
Eq. (6.28). Once we have the expression for the n=2 skyrmion field, calculating
the spin direction vector at each point becomes straightforward. Using Mathe-
matica simulations, we get the point distribution on the spin direction sphere, as
shown in Figure 6.8.

The Poincarana sphere, however, is a bit trickier to get. First, we need to
determine the handedness of a certain field point, which will tell us whether it
corresponds to the plus or minus case. We then apply the appropriate rotational
matrix for that point, as described in subsection 6.4.1. Since both the Poincaré
sphere and the Poincarana sphere are suitable for describing the polarization
distribution, we plot both of them, as shown in Figure 6.9.

In this figure, we can see the polarization distribution after the skyrmion
field has been focused. There are more right-handed polarizations than left-
handed ones, and the symmetry of the field is preserved. Additionally, we clearly
observe the corresponding relations between the parameters in the two spheres,
as discussed in subsection 6.4.2: the height of the representation points on both
spheres is the same, and the polar angle ϕ in the Poincaré sphere is twice of the
polar angle in the Poincarana sphere.
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Figure 6.8: Spin direction sphere simulated for the strongly focused n = 2
skyrmion beam. (a) The colourmap used for the focal plane, where each po-
sition in the focal plane is denoted by a distinct colour. (b) The spin direction
sphere, where the dots on the sphere record the polarization direction of corre-
sponding points in the focal plane. Note that the white dot (on the centre of
the front) represents z-direction, while the black dot (on the centre of the back)
represents −z-direction.
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Figure 6.9: A plot of the Poincaré sphere (a) and the Poincarana sphere (b),
where the blue and red dots on the Poincarana sphere correspond to the left
and right foci of the polarization ellipses projected onto the sphere. The top row
shows the top view of the two spheres, clearly illustrating that the symmetry of
the field is preserved after focusing. The bottom row presents the side views,
where the yellow dot represents the x-direction, and the green dot represents the
y-direction.
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6.6 Conclusion
In this chapter, we introduced a novel approach to describing the polarization dis-
tribution of a general 3D field. We first highlighted the challenges of representing
3D polarization distributions with existing models, then briefly introduced the
Majorana/Poincarana representation and compared it with the familiar Poincaré
sphere representation. We pointed out the equivalence and links between the
two constructions, as well as the key differences between them. Each of these
representations has its advantages and limitations.

We then explained the general concept of our two-sphere method and out-
lined the algorithm. We concluded with the specific case of a focused n = 2
skyrmion beam. We used the Richards-Wolf method to derive the expression for
the strongly focused beam and demonstrated how our two-sphere method can
be employed to describe the polarization distribution. The spherical symmetry
observed in the simulation results validated the approach. Additionally, we com-
pared our results with those in [106], where a complex field method was used to
calculate a strongly focused n = 2 skyrmion. Through careful parameter design,
they achieved a Bloch C-skyrmion.

Finally, we compared the Poincaré sphere representation with the Poincarana
sphere representation for this example, which clearly illustrated the relationships
between the two representations.
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Chapter 7

Summary and conclusions

In this thesis, we investigated various topics related to structured light, with a fo-
cus on the strong focusing of light, which exhibits new properties that do not exist
in the paraxial case. We also concentrated on one particular type of beam with
topological properties: the skyrmion beams. We presented the paraxial skyrmion
model, which exists in a magnetic field, and introduced the transition of this con-
cept to paraxial optics. Based on this, we identified a topological method for
calculating the skyrmion numbers. Additionally, we developed a generalization
of the concept of skyrmions, both geometrically and mathematically. We then
studied a strongly focused skyrmion using the two-sphere method we developed.

In chapter 2, we introduced the background theory of structured light and the
strong focusing system. We discussed the concept of structured light, which can
be described in terms of its amplitude, phase, and polarization. We introduced
the concept of paraxial beams, including their angular spectrum representation,
as well as the fundamental and higher-order modes. The concept of Gouy phase
is emphasized, and the concept of polarization is highlighted, including various
ways of describing this property.

We then introduced the strong focusing system, based on the Richards-Wolf
model, which is used for theoretical calculations throughout this thesis. We
explained the approximations made in this model and the geometrical relations
it employs.

In chapter 3, we investigated the Faraday effect for both paraxial and strongly
focused radially polarized beams. We explained our motivation for transitioning
from the paraxial case to the strongly focused case and provided calculation de-
tails for the strongly focused radially polarized field. Our findings indicate that,
for structured light, the magneto-optical interaction reveals a more intricate pat-
tern termed a secondary Faraday effect, stemming from similar mechanism. This
secondary effect is amplified in strong focusing systems, making it comparable
to the linear Faraday effect. The simulation results are presented alongside some
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preliminary experimental results, which verified our theoretical predictions. We
also outlined a possible future direction for the problem: a complete theoretical
study of the Voigt effect and the Faraday effect as a whole for oblique incidence.
We present our solution for the eigenmodes of this problem.

In chapter 4 We introduced skyrmion beams, a class of structured light
beams with topological features which triggers considerable research interest.
Skyrmionic structures can be found in paraxial light beams with a continuously
varying polarization distribution and can be characterized by the skyrmion num-
ber. In addition to the existing methods of calculating skyrmion numbers, we
proposed a new topological approach for calculating skyrmion numbers. We also
introduced the concept of skyrmion field lines, which are lines of constant polar-
ization.

In chapter 5, we proposed the concept of consistent and mixed-up base mea-
surements and explained both geometrically and mathematically how this can be
understood. We proved that a skyrmion field remains unchanged under mixed-
up base measurements. We demonstrated the topological equivalence between
skyrmions and bimerons, as well as numerous other topological equivalents, by
generalizing the parameters. We pointed out that the definition of singularities
can be generalized with respect to the projections we made. We demonstrated
experimentally that the new topological method provides significantly improved
measurements of the skyrmion number, and the flexibility of using mixed-up base
measurements allows even better results due to the avoidance of the low-intensity
area. Additionally, the measurement is stable against increasing noise ratios.

In chapter 6, we introduced the concept of the Majorana sphere, a represen-
tation of spinors applied to optics by Hannay, as a tool to describe 3D polarized
beams. The Majorana sphere was later modified into the Poincaré sphere, which
combines the features of both the Majorana sphere and the Poincaré sphere. We
pointed out the connections and equivalence between the Poincaré and Majorana
representations and proposed a two-sphere method to comprehensively describe
general 3D polarization fields. We illustrated the concept with an n = 2 paraxial
skyrmion, focused by the Richards-Wolf system. There are future works that
can be done on this topic, such as the proper definition of the skyrmion number
after focusing to characterize the non-paraxial field, which may be linked to the
overall coverage of both spheres. Additionally, a potential generalization of the
skyrmion field lines to higher dimensions is possible.
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[141] N. Sūgakkai, Encyclopedic Dictionary of Mathematics, Vol. 1. MIT Press,
illustrated, reprint ed., 1993.

[142] S. Kumar Pal, Ruchi, and P. Senthilkumaran, “C-point and v-point singu-
larity lattice formation and index sign conversion methods,” Optics Com-
munications, vol. 393, pp. 156–168, 2017.

[143] M. V. Berry, “Paraxial beams of spinning light,” in Proceedings of SPIE,
International Conference on Singular Optics, vol. 3487, pp. 12–22, 1998.

137


	Thesis cover sheet
	2025yephd
	Abstract
	Acknowledgements
	Author's Declaration
	Publications
	List of Figures
	Introduction
	Introduction to Structured Light and Strong Focusing System
	Introduction
	Structured Light
	Paraxial Optical Fields
	Angular Spectrum Representation of Optical Fields
	Gaussian Beam and Higher Order Beams

	Gouy Phase
	Polarization
	Polarization Ellipse and Stokes Parameters
	The Poincaré Sphere

	Strong Focusing System
	Far Field Approximation
	Aplanatic System


	Faraday Effect for Focused Vector Vortex Beams
	Introduction
	Faraday Effect for Linearly Polarized Beam
	Faraday Effect for Paraxial Vector Vortex Beams
	Simulation Results for Paraxial RPB

	Faraday Effect for Strongly Focused RPB
	Focused Radially Polarized Light
	Gouy phase for strongly focused RPB

	Simulation Results for Strong Focusing Field
	Preliminary Experimental Results and Outlook
	Discussion of the longitudinal component
	Calculation of off-axis incidence

	Conclusions

	An Introduction to skyrmions
	Introduction
	From Magnetic to Optical skyrmions
	Paraxial Optical Skyrmion Beams and Skyrmion Fields
	Skyrmion Potential
	Calculating skyrmion Numbers: From Definition to a Topological Way
	Skyrmion Field Lines
	Conclusions

	Basis Change in Constructing and Measuring of Skyrmion Field
	Introduction
	Base Independence of Skyrmion Field in Consistent Basis Measurements
	Skyrmion Fields in Mixed-up Bases Measurements
	Skyrmion Potential in Mixed-up Bases Measurements
	General Orthonormal States and Their Pauli Matrices
	One Skyrmion Beam and Its Countless Topological Equivalents
	Fixed Skyrmion Beam and Generalized Stokes Parameters
	Rational Map and Geometrical interpretations
	Generalized Singularities
	Generalized Skyrmion Textures

	Skyrmion Number Calculation for Mixed-up Bases Measurements
	Experimental Evaluations
	Conclusions

	A New Method to Describe 3D Polarized Fields
	Introduction
	Hannay-Majorana Sphere
	Constructing the Poincarana Sphere
	Two-Sphere Method
	General Algorithm of the Two Sphere Method
	A Comparison of the Poincaré Sphere and the Poincarana Sphere

	Focused n=2 Paraxial skyrmion Field
	Conclusion

	Summary and conclusions
	Bibliography


