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Abstract 

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, 

despite substantial advances in diagnosis and treatment. People who suffer from cardiovascular 

disease often have multiple risk factors and other chronic conditions. Additionally, medical 

events may be strongly influenced by socioeconomic status. Patient information can be obtained 

from electronic medical records (EMRs) that, unlike data from clinical trials and registries, 

provide a broad range of patient characteristics representative of the general population. EMRs 

covering a population of ~1.1 million people in Greater Glasgow & Clyde (GG&C) Health 

Board  NHS over 50 years (the age at which the incidence and prevalence of disease affecting 

older people increase rapidly) were used. Information such as demographics, laboratory tests, 

primary-care prescriptions, hospitalisations and mortality was retrieved. Several steps were 

required to ensure that the extracted information was appropriate for analysis and transformed 

for investigations beyond traditional statistics. Accordingly, data on patients with type-2 

diabetes mellitus (T2DM) were obtained to examine their health trajectories, including, incident 

heart failure and death. Novel risk prediction models were built to help understand the 

development of heart failure (HF) in patients with T2DM. The models were developed using 

random survival forest (RSF) methodology. This research highlights the limitations of 

traditional regression models and demonstrates the improvement of risk prediction with RSF 

methods, which outperformed traditional approaches in both discrimination and calibration. 

State-of-the-art machine learning interpretation was applied to discover key contributing factors 

to the development of heart failure and to all-cause mortality. External validation was applied 

by acquiring EMRs from Hong Kong, Special Administrative Region (SAR) China. The 

inclusion of two diverse populations found little evidence of ethnicity-related differences in risk 

factors. GG&C key risk factors for incident HF were loop diuretics, atrial fibrillation (AF), 

history of coronary artery disease (CAD), older age, lower levels of estimated glomerular 

filtration rate (eGFR), haemoglobin and serum albumin. Similarly, for Hong Kong, key risk 

factors were use of loop diuretics, insulin, lower serum albumin, haemoglobin, lymphocyte 

counts and eGFR. The model based on Hong Kong data showed slightly better performance 

compared to the Glasgow cohort for incident heart failure (C-index 0.88 and 0.87) and all-cause 

mortality (0.85 and 0.83).  
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In both cohorts’ older women were more likely to be prescribed loop diuretics. Whether loop 

diuretics are just a marker of undiagnosed heart failure or whether they accelerate the 

progression of cardiovascular and renal disease is uncertain. Another key similarity was that 

patients had prevalent chronic kidney disease (CKD) events in the prescribed loop diuretics 

groups. Treatment with loop diuretics was strongly associated with all-cause mortality in GG&C 

and Hong Kong. (GG&C: adjusted hazard ratio: 2.93, (95% CI: 2.821 to 3.04); Hong Kong: 

adjusted hazard ratio: 1.75 (95% CI: 1.72 to 1.77). Only a minority of patients prescribed loop 

diuretics had a diagnosis of heart failure, end-stage renal disease or resistant hypertension. 

Finally, further investigation of social deprivation in GG&C underlined that 41% patients with 

T2DM were in the most deprived socioeconomic quintile and that they had a 36% higher rate 

for all-cause mortality compared to those who were least deprived (adjusted HR: 1.36, 95% CI 

1.24–1.50, p < 0.005).  
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Chapter 1 Introduction 

This chapter summarises the research background, problem area and research objectives.  

1.1 Background 

1.1.1 Introduction to Cardiovascular Disease 

Cardiovascular disease is common in middle and older-age adults and the leading cause of death 

globally, taking an estimated 17.9 million lives each year (Di Cesare et al., 2024). The most 

common heart condition in Scotland is coronary artery disease (CAD) (Health Intelligence 

Team, 2024), Glasgow has one of the highest levels of CVD in Western Europe, which has been 

attributed to high rates of smoking, unhealthy diet, obesity and poor lifestyle choices, which are 

all strongly associated with lower educational attainment and socioeconomic deprivation. 

Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing 

atherosclerosis, either because they are more likely to develop high blood pressure 

(hypertension), high levels of blood fat (both cholesterol and triglycerides) and kidney 

dysfunction or because of the effects of dysglycaemia (high blood sugar) itself .   

There are many types of CVD, with atherosclerosis being the most common. Other CVD include 

diseases of the heart valves, irregularity of heart rhythm (e.g. atrial fibrillation or conduction 

system block), infiltration of the heart muscle making it stiff (e.g. with amyloid), thickening of 

the heart muscle due to high blood pressure or problems with heart muscle fibres themselves, 

which is called cardiomyopathy. There are several different types of cardiomyopathies. Dilated 

cardiomyopathy means that the contraction of the heart is weak, leading the left ventricle (the 

heart’s main pumping chamber) to enlarge and dilate (John Hopkins Medicine, 2021). 

Hypertrophic cardiomyopathies cause the heart muscle to become thick and stiff, which impairs 

its pumping action. The prevalence of AF is predicted to double over the next 30 years due to 

changing demographics and the rise of lifestyle risk factors (Jones et al., 2020).  AF is associated 

with underlying CVD with increased risk of death, stroke and heart failure (Michaud and 

Stevenson, 2021). Many patients will have more than one type of CVD and T2DM may 

contribute to or complicate them all.  
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Heart failure is a final common pathway for many different CVD, including hypertension, 

diabetes, atherosclerosis, kidney disease and atrial fibrillation (many patients with heart failure 

will have all of these).  Heart failure is common, often accompanied by exertional breathlessness 

that can be debilitating, associated with high rates of hospitalisation and with a poor prognosis  

(Groenewegen et al., 2020). The diagnosis is often made only very late in the course of the 

disease. Sadly, many patients with heart failure die before the diagnosis is made.  

1.1.2 Clinical Presentation and Pathophysiology  

The clinical presentation of cardiovascular disease varies widely. Table 1 shows the Symptoms 

and Signs.  

Table 1 Cardiovascular Disease Symptoms & Signs 
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A symptom is a manifestation of disease evident to the patient while a sign is a manifestation of 

disease that a health professional perceives. Signs are considered more objective, although 

eliciting them depends on the skills, experience and opinion of the health professional. Signs 

usually develop much later in the course of a disease compared to symptoms; waiting for signs 

to appear can delay diagnosis by days, months or even years. Symptoms are considered more 

subjective but they are the ‘hard’ reality that the patient experiences.  

Symptoms will often be the reason why a person seeks medical advice and assistance. Despite 

the critical importance of acknowledging both symptoms and signs, they are often overlooked 

or underestimated by both patients and clinicians. Patients may dismiss symptoms as 

insignificant, hope they will resolve or attribute them to ageing, especially when symptoms are 

mild or non-specific. For example, fatigue or light headedness might not prompt immediate 

medical attention, even though they can indicate serious underlying CVD. 

Clinicians may miss subtle signs or fail to understand the significance of certain symptoms, 

particularly when they do not fit the classic presentation of a condition. Moreover, many patients 

have trouble in providing a verbal description of their symptoms and there is often great 

variation amongst individuals and even from the same individual over time or depending on 

who they are speaking with. This can lead to miscommunication and misunderstanding and 

complicate the diagnostic process. 

Atherosclerosis, which develops when cholesterol builds up in the arteries causing narrowing, 

that restricts blood flow (Fonarow, 2007), is the most important and common CVD. 

Atherosclerotic disease of the coronary arteries can cause angina, myocardial infarction (heart 

attack), sudden death or heart failure. Atherosclerosis of the arteries to the brain can cause a 

stroke, leading to permanent neurological damage. Stroke is a major cause of disability and 

mortality worldwide (‘Cerebrovascular Disease - AANS’, 2024) . Atherosclerosis of the aorta 

can lead to bulging of the wall (aneurysms), which can rupture leading to catastrophic internal 

bleeding which is often fatal. Atherosclerosis of the arteries to the legs can cause muscles cramps  

(Sanchis-Gomar et al., 2016) during exercise (intermittent claudication) and may jeopardise the 

viability of the limb, requiring amputation (Li et al., 2020). Atherosclerosis is the primary 

underlying cause of CAD and stroke. It is characterised by the accumulation of lipid -rich 

plaques within the arterial wall over years or decades (Figure 1).  
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The process involves: 

• Endothelial Dysfunction: The inner lining of the arteries (endothelium) becomes 

damaged due to factors like hypertension, smoking and high cholesterol. This 

dysfunction makes the endothelium more permeable to lipids and other substances. 

• Lipid Accumulation and Oxidation: Low-density lipoproteins (LDL) penetrate the 

damaged endothelium and accumulate in the arterial wall. These lipids become oxidised, 

which attracts immune cells like macrophages. 

• Formation of Foam Cells: Macrophages engulf oxidised LDL, transforming into foam 

cells. These foam cells accumulate to form fatty streaks, an early sign of atherosclerosis . 

• Plaque Formation: Smooth muscle cells move to the inner layer of the artery, multiply, 

and produce proteins that form a fibrous cap over the lipid core. This plaque can bulge 

into the artery, narrowing it and reducing blood flow. 

• Plaques can cause narrowing of the lumen of the artery restricting blood flow. If this 

occurs in the coronary arteries, it may cause angina during exercise. If it occurs in the 

leg arteries, it may cause muscle cramps during exercise. 

• Plaque haemorrhage: as atherosclerosis develops new, fragile capillaries grow in from 

the vessels that surround the outside wall of the artery (vasa vasora). A similar process 

can cause eye problems in people with diabetes (diabetic retinopathy). If the bleeds are 

small, this attracts macrophages (white blood cells) that come to clean up the mess – but 

Figure 1 Atherosclerosis Progression 
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the fat in the red cell membranes may be oxidised and turn the macrophages into foam 

cells. This may be an important mechanism of plaque growth. Larger bleeds will cause 

the plaque to rupture. 

• Plaque Rupture and Thrombosis: Plaques can become unstable and rupture either 

because of bleeding, a large amount of ‘lipid gruel’ and/or stress to the vessel wall. 

Ulceration through the lining of the vessel exposes the inside of the plaque to the 

bloodstream, triggering the formation of a thrombus (blood clot), which can block the 

artery, leading to a heart attack (myocardial infarction) or stroke. 

Inflammation plays a central role in endothelial dysfunction and the initiation and progression 

of atherosclerosis.   

Atherosclerosis is a consequence of genetics, unhealthy lifestyle choices, co-morbid conditions 

(like hypertension, diabetes, obesity and hyperlipidaemia), environmental factors, cytokine 

activation (i.e. inflammation) and increasing age.  

Some people have single gene defects (for instance familial hypercholesterolaemia) that may 

cause severe atherosclerosis affecting people even in their teenage years. Many people have lots 

of small defects in many genes (polygenic risk) that cumulatively increase the risk of 

atherosclerosis. Genetic propensity to hypertension and T2DM will also increase risk. 

Unhealthy lifestyle choices include smoking (especially tobacco), diets rich in saturated, 

oxidised fat (e.g. clarified butter, cooked fat-rich foods), processed foods (that usually have a 

high salt content), sedentary behaviours and  excessive alcohol consumption. Environmental 

pollution, especially particulate matter from smoking, fires or exhaust fumes is highly 

atherogenic (and carcinogenic). In low-income countries, cooking is often done on an open fire 

inside the house with no conventional chimney, leading to high levels of air pollution. Obesity 

may play a central role in atherosclerosis through its association with hypertension, diabetes, 

diet and sedentary lifestyle. Obesity might also be responsible for low-grade chronic 

inflammation (Verma et al., 2024). Table 2 provides an overview of the major risk factors 

associated with cardiovascular disease (NICE, 2023; Health Intelligence Team, 2024a; Timmis 

et al., 2022; Mills et al., 2020; Segerer and Seeger, 2018; Moran et al., 2022; NICE Guidelines, 

2014), which can be classed as either modifiable or non-modifiable.  
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Diet, physical activity, obesity and smoking, can be altered through lifestyle changes and 

medical interventions. Non-modifiable risk factors include age and sex. Although the genome 

is relatively unmodifiable, the consequences of a genetic disposition to a high cholesterol or 

blood pressure may be readily modified by following a healthy lifestyle and by modern therapy. 

The interplay between these factors determines an individual's overall risk of developing CVD.  

Table 2 Major Risk Factors of Cardiovascular Disease 
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Socioeconomic status (SES) also plays an important role in the natural history of CVD 

(Psaltopoulou et al., 2017).  SES itself is not conventionally classified as a risk factor for CVD 

but is an important determinant of many, including smoking, obesity and lifestyle (Schultz et 

al., 2018). Socioeconomic deprivation is also associated with lower educational attainment and 

poorer access to healthcare services (DD et al., 1997). Addressing socioeconomic disparities is 

essential to reduce the burden of CVD and improve health outcomes at both individual and 

population levels (Foster et al., 2018).  

Ethnic disparities in CVD risk and health outcomes also exist (George et al., 2017), which may 

be attributed to a complex interplay of genetic, cultural and socioeconomic factors. South 

Asians, have a higher risk of CVD compared to those of European ancestry (Razieh et al., 2022). 

Scotland’s population is mostly White (87%) (Scotland Census, 2022) and therefore analyses 

based on national data may conceal important differences in ethnic minority populations.  

The cardiovascular disease continuum, illustrated in Figure 2, starts with a cluster of 

cardiovascular risk factors (Dzau et al., 2006). Once these risk factors occur, there are early 

functional changes in the vascular system (vascular ageing), activation of neuro-endocrine and 

inflammatory pathways, eventually resulting in end-organ damage and either sudden death due 

to an arrhythmia or vascular occlusion or the development of problems such heart failure, renal 

failure, disabling stroke or dementia.  
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The cardiovascular disease continuum validated: Clinical evidence of improved patient outcomes: Part I: Pathophysiology 

and clinical trial evidence (risk factors through stable coronary artery disease). Circulation. 2006; ;114(25):2850-2870. 

doi:10.1161/CIRCULATIONAHA.106.655688 

 

1.1.3 Multimorbidity  

Multimorbidity, defined as the coexistence of two or more chronic conditions (Hassaine et al., 

2020), is increasingly common in patients with CVD (Kraemer, 1995). Multimorbidity makes 

patient management much more complex. Patients may struggle to cope with a greater burden 

of ill health, often exacerbated by depression. Clinicians may struggle because they lack the 

expertise to deal with one or more of the patients’ problems. Treatments may struggle because 

they are contraindicated or ineffective if, for instance the patient has poor kidney function, or 

because treatments may adversely interact with one another. Hypertension, diabetes, obesity and 

CKD often co-exist, making treatment time consuming and complex (Guthrie et al., 2012). 

Among the various comorbid conditions that contribute to the development and progression 

CVD, T2DM stands out as a common, important and potentially modifiable risk factor 

(Ormazabal et al., 2018).  

Figure 2 Cardiovascular Disease Continuum. Adapted from Dzau VJ Antman EM, Black HR, et al. 
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1.1.4 Type 2 Diabetes Mellitus and Heart Failure  

T2DM is the most common form of diabetes worldwide (Einarson et al., 2018), accounting for 

approximately 90% of all cases in the UK. T2DM is characterised by insulin resistance. 

Endogenous insulin levels are usually high but not high enough to normalise blood glucose. 

Insulin resistance is associated with a cluster of metabolic abnormalities collectively known as 

metabolic syndrome and an increased risk of CVD which can be attributed both to shared risk 

factors, such as obesity, sedentary lifestyle and factors associated with and possibly 

consequence of T2DM, such as hypertension and dyslipidaemia. Insulin resistance and chronic 

hyperglycaemia, hallmarks of T2DM, contribute to endothelial dysfunction, plaque formation 

and atherosclerosis (Sattar and Gill, 2014; Ormazabal et al., 2018). Inflammation and oxidative 

stress also play important roles in the pathogenesis of both T2DM and atherosclerosis. Patients 

with T2DM are at increased risk of developing heart failure (HF), a clinical syndrome of cardiac 

dysfunction leading to congestion (JGF et al., 2021), meaning either an excess volume of blood 

(blood is mostly water) in the pulmonary (lung) or systemic venous systems (haemodynamic 

congestion, like water being held back by a dam) or excess water in the tissues, leading to 

pulmonary or peripheral oedema (Clark, 2022). The pathophysiology underlying the 

development of HF in the context of T2D is complex (Anker et al., 2023) but will involve:  

• High insulin levels cause the kidney to retain water and salt (congestion), although this 

may be counteracted by high levels of glucose in the urine, which increases urine 

production and salt excretion. Indeed, a recent treatment for diabetes that increases 

glucose excretion in the urine appears to be a highly effective treatment for heart failure 

(Zannad et al., 2020). 

• Persistently increased glucose levels may cause widespread vascular damage.  

o Increased arterial stiffness will increase the load on the heart 

o damage to the small vessels of the kidney may cause protein leakage and water 

and salt retention leading to hypertension and (initially subclinical) congestion.  

• Hypertension puts an additional load on the heart and can damage the kidney. 

• Atherosclerosis can choke the blood supply to the heart and kidneys and may lead to a 

heart attack, damaging the heart muscle and reducing the heart’s ability to pump blood. 

• Inflammatory pathways may be activated for multiple reasons (Libby et al., 2002). 
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• Classification of HF is based on which side of the heart is affected: left-sided and right-

sided HF, shown in Figure 3.  

 

 

 

 

 

 

Left-sided heart failure is the most common form of heart failure: the left ventricle is the heart's 

main pumping chamber. HF can be further classified as with preserved ejection fraction 

(HFpEF) or reduced ejection fraction (HFrEF). Ejection fraction (EF) is a key measure of heart 

function, representing the percentage of blood the left ventricle pumps out with each heartbeat 

(Savarese et al., 2022). In HFpEF, the left ventricle maintains a normal ejection fraction but 

cannot relax properly during diastole. This impairs the heart's ability to fill with blood between 

beats, causing a backup of blood into the pulmonary veins (pulmonary congestion), leading to 

symptoms such as shortness of breath, only during exercise if congestion is mild but even at rest 

when it becomes severe (Ponikowski et al., 2016). HFrEF occurs when the left ventricle cannot 

contract effectively, which also causes pulmonary congestion.  

The most common cause of right-sided heart failure is left-sided failure. The right ventricle is 

responsible for pumping blood to the lungs for oxygenation. When the right ventricle fails, blood 

backs up into the systemic veins (systemic venous congestion), leading to peripheral oedema 

and enlargement of the liver (Clark, 2022; McDonagh et al., 2023). Cardiac dysfunction and 

congestion usually progress silently over many months or years until some triggering event 

(such as the onset of atrial fibrillation, an infection, a heart attack or a large meal full of salt) 

causes the symptoms and signs of heart failure to become apparent.  

Figure 3 Anatomy of the Heart 
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Even then, the diagnosis is often missed or the patient is put on diuretic treatment because of 

swollen ankles without considering the reason (Lawson et al., 2021). Loop diuretics are 

supportive for manging congestion and fluid overload. However, their use can sometimes mask 

an underlying heart failure diagnosis, delaying appropriate disease-modifying treatment. While 

effective for symptom relief, they do not directly improve cardiovascular outcomes or alter 

disease progression (Cuthbert et al., 2024). 

1.1.5 General Treatment and Management 

Effective management of CVD involves a combination of lifestyle modifications, 

pharmacotherapy and constant monitoring and audit of progress towards targets as 

recommended by clinical practice guidelines. Here we discuss key components of 

cardiovascular treatment and management. 

Clinical guidelines are established to assist clinicians in decision-making for the appropriate 

care and treatment for patients. The guidelines are evidence-based, using systematic reviews, 

clinical trials and other medical literature. The World Health Organisation (WHO) promotes 

global  awareness of cardiovascular disease (Hill-Briggs et al., 2021). WHO guidelines focus 

on population-level interventions, such as promoting healthy diets, physical activity and tobacco 

cessation. Countries have standard guidelines followed by clinicians. The European Society of 

Cardiology (ESC)  updates clinical practice guidelines regularly primarily aimed at cardiologists 

but also now including patients on its committees (Foundation, 2020). The British Heart 

Foundation (BHF) is the biggest funder of research into heart and circulatory diseases in Europe. 

The National Institute for Health and Care Excellence (NICE) in the UK produces evidence-

based guidelines for the management of both CVD and diabetes. These guidelines were formally 

encouraged and developed in the 1990s with committees comprising health professionals and 

patients (Rawlins, 1999; Ryan et al., 1996). However, clinical guidelines usually reflect average 

treatment effects rather than the specific needs of an individual patient. Guidelines are typically 

developed from the perspective of a single disease area. This approach does not sufficiently 

address the complex needs of patients with multiple chronic conditions. The approach may 

overlook specific patient factors such as genetic predispositions, lifestyle factors and individual 

responses to treatments i.e. different ethnicities.  
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As a result, there is growing interest in using ML to support personalised decision-making, by 

identifying high-risk subgroups or predicting individual treatment responses across diverse 

populations. 

Treatments are a cornerstone of both primary and secondary prevention of CVD in patients with 

diabetes. Primary prevention, in addition to treatments aiming to improve glucose control, often 

includes the use of antihypertensive agents, statins, and antiplatelet therapy to manage CVD risk 

factors.  

Secondary prevention may involve more intensive therapies such as beta-blockers, ACE 

inhibitors, and mineralocorticoid receptor agonists as well as intensification of glucose control 

with agents such as SGLT2 inhibitors and GLP-1 receptor agonists, which have been shown to 

reduce cardiovascular events in diabetic patients (Zannad et al., 2020). ML methods can enhance 

this treatment framework by helping to stratify patients based on predicted treatment benefit or 

likelihood of adverse outcomes, thereby refining therapeutic decisions beyond the "one-size-

fits-all" recommendations in current clinical guidelines. 

Despite the valuable guidance provided by clinical guidelines, their population-based 

recommendations highlight the need for more individualised approaches. ML-driven models 

hold promise in bridging this gap, enabling data-driven, patient-specific care strategies in both 

prevention and treatment pathways. 

The management of CVD is mostly initiated when a patient experiences an adverse 

cardiovascular event or during hospitalisation. 80% of heart failure diagnoses are made in 

hospital, despite 40% of patients showing symptoms that warrant earlier assessment. Patients 

diagnosed with T2DM should also be assessed for CVD as most will have other risk factors 

such as hypertension and dyslipidaemia (Moran et al., 2022).  

Laboratory tests are important for identifying some risk factors and to monitor if treatment is 

working. For patients with diabetes, HbA1c levels are monitored to assess long-term glycaemic 

control. Lipid profiles are measured to identify and manage dyslipidaemia. Kidney function 

tests, including serum creatinine and estimated glomerular filtration rate (eGFR), are crucial in 
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detecting and monitoring the progression of diabetic nephropathy. Inflammatory markers such 

as C-reactive protein (CRP) are also associated with an increased risk of cardiovascular events.  

1.1.6 Advances in Cardiovascular Disease Prevention  

Over the last decade, risk scores have been developed, such as Quantified Risk (QRISK3), 

Systematic Coronary Risk Evaluation (SCORE2)  (Collaboration et al., 2021) and Framingham 

Risk Score (FRS). Identification of high risk may trigger early intervention to delay or prevent 

the onset of overt clinical disease. 

QRISK3 is a predictive algorithm developed by clinicians and academics in the UK in order to 

estimate the 10-year risk of developing CVD. It considers various risk factors, including age, 

sex, ethnicity, smoking status, diabetes, family history of CVD, blood pressure, cholesterol 

levels, body mass index (BMI), deprivation and comorbidities. QRISK3 is frequently updated 

and might be widely used in primary care settings. However, it requires manual input of data by 

clinicians. Ethnic groups other than White are not well-represented.  

The accuracy of QRISK3 relies on the quality and completeness of data entered. Incomplete or 

inaccurate data will lead to incorrect risk estimates.  

SCORE2 is a CVD risk prediction algorithm developed by the European Society of Cardiology. 

It estimates the 10-year risk of both fatal and non-fatal cardiovascular events in European 

populations. SCORE2 improved on the original SCORE model by including a wider range of 

age groups and adjusting for contemporary risk profiles. Key factors included age, sex, smoking 

status, systolic blood pressure, total cholesterol, HDL cholesterol. However,  SCORE2 is of 

limited use outside of Europe. Some key factors such as CKD are not included. The FRS 

estimates the risk of cardiovascular events but is based on data from a predominantly white 

American population, which may limit its applicability.  

These risk prediction algorithms are based on survival analyses, which are used to predict the  

time until an event occurs. Many studies utilise the Cox proportional Hazards (CPH) model to 

calculate probability of risk. CPH is essentially a regression model which investigates the 

survival time of patients. The CPH model struggles with high-dimensional data where the 

number of covariates is large relative to the number of events(Jiang et al., 2024). Recently, 
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machine learning (ML) techniques have overcome many limitations of the standard Cox 

proportional hazards model by handling, high-dimensional data, non-linear relationships, time-

varying covariates and complex patient data more effectively. ML also provides higher 

predictive accuracy and can be made interpretable through advanced methods.  

ML-based survival models, such as random survival forests, gradient boosting survival models, 

and deep learning-based methods (e.g., DeepSurv), have shown promise in identifying patients 

at high risk of cardiovascular outcomes using routinely collected EMR data. These models can 

output longitudinal patterns in laboratory values, medication histories and prior comorbidities, 

providing a more dynamic and personalised risk estimation than traditional tools. 

For patients with T2DM, EMRs provide an especially rich source of information. Predictive ML 

models have been used to identify patients at risk of developing heart failure, chronic kidney 

disease progression, or major adverse cardiovascular events. EMR-based models allow for the 

inclusion of real-world, time-updated clinical parameters such as HbA1c trajectories, blood 

pressure variability, renal function changes, and medication adjustments—features that 

traditional static models often overlook. 

Moreover, the integration of these ML tools into clinical decision support systems is 

increasingly feasible through EMR platforms. By offering real-time, patient-specific risk 

estimates at the point of care, these systems can inform preventive strategies, enhance guideline 

adherence, and support shared decision-making between clinicians and patients. 

However, the interpretation and application of these insights require the contextual knowledge 

and judgment of medical experts. This is known as collaborative intelligence, which represents 

the integration between computational decision-making and clinical expertise, harnessing the 

strengths of both to improve healthcare outcomes. For  CVD prevention and management, this 

approach integrates sophisticated algorithms, such as machine learning models, with the  

understanding and experience of healthcare professionals.  
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Conclusion  

Cardiovascular disease is an important global health challenge but diagnosis, even of some of 

its most severe forms, is often missed until it is too late. Few patients have a single 

uncomplicated cardiovascular condition. Problems, including T2DM, commonly conspire to 

drive the development and progression of CVD.  Despite advances in medical research, there is 

a paucity of individualised risk assessment tools for CVD that have been shown to work for 

ethnically diverse populations across continents. New approaches to modelling applied to large 

epidemiologically representative datasets from very different cultures and geographies might 

identify readily available data that produces generalisable results. 

 

1.2 Problem Statement  

CVD is a leading cause of morbidity and mortality, globally. Despite advances in clinical 

guidelines and treatment, there are important gaps in early detection, individualised care and 

management, particularly for patients with multimorbidity, those who are socioeconomically 

deprived or, in a European context, those from ethnic minorities. This research seeks to address 

the following key issues: 

Early Detection and Diagnosis: The variability in symptoms and signs of CVD, coupled with 

the subjective nature of symptom reporting, leads to delays in diagnosis and treatment. This is 

particularly true for atypical presentations, which are often overlooked by both patients and 

clinicians. 

Management of Multimorbidity: The coexistence of multiple chronic conditions, particularly 

T2DM and heart failure, complicates clinical management. Current guidelines often focus on 

single diseases and may not adequately address the complex needs of patients with 

multimorbidity. 

Socioeconomic and Ethnic Disparities: There may be substantial disparities in CVD outcomes 

across different socioeconomic and ethnic groups, which current risk prediction tools and 

clinical guidelines may not adequately reflect.. 
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Standardised vs. Individualised Care: Clinical guidelines are primarily based on population 

averages and may not account for individual patient factors such as genetics, lifestyle and 

specific demographic markers. This can lead to suboptimal treatment strategies for diverse 

patient populations. 

 

1.3 Project Aim 

The aim of this research project is to assess cardiovascular morbidity and mortality  in T2DM 

populations by applying novel artificial intelligence methods for early risk detection.  

This research will help clinicians to identify which patients are at greater risk of incident heart 

failure and/or death. Highlighting such risks to clinicians and patients might improve 

appropriate investigation and treatment, thereby improving patients’ wellbeing and prognosis, 

particularly amongst patients with the greatest socioeconomic disadvantage. 

 

1.4 Research Objectives  

The following objectives of expected achievement from the research project are:  

1. Investigate the use of electronic medical records in T2DM populations and extract 

clinically relevant patient characteristics. Develop an appropriate high-level EMRs 

modelling process plan (Chapter 3.4 Data Preparation).  

2. Apply statistical analysis to confirm clinical variable associations through correlations, 

survival analysis methods and multivariable analyses.  

3. Leverage advanced machine learning methods for risk prediction and artificial 

intelligence interpretation.  

4. Develop a support system for clinicians and patients to improve understanding of the 

relative importance of risk factors and their evolution over time, overall and for an 

individual patient.  

5. Perform external validation in two distinct T2DM populations, accounting for ethnicity 

and diverse patient profiles.  
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1.5 Thesis Structure  

This thesis is structured to provide an introduction and background of the problem, a review of 

the current literature, description of available datasets, before showing analyses and then a final 

discussion and conclusion. The outline of each chapter follows:  

• Chapter 1 gives a general introduction to CVD, clinical presentation and 

pathophysiology, multimorbidity with the focus on T2DM and heart failure. It then 

summarises the general treatment, management of cardiovascular disease and advances 

in CVD prevention.  

• Chapter 2 provides a brief literature review of T2DM as a CVD risk factor, the need for 

risk stratification, an overview of current risk prediction models, limitations, emerging 

approaches and inclusion of at-risk populations i.e. socioeconomically deprived people.  

• Chapter 3 illustrates the EMRs from two diverse populations, it also explains how the 

datasets were extracted and prepared for analysis (Objective 1).  

• Chapter 4 is the first of analysis chapters and predicts incident heart failure in the first 

T2DM population: Glasgow, West of Scotland. Survival analysis machine-learning is 

introduced and interpretation (Objectives 2 and 3) .  

• Chapter 5 carries out external validation for incident heart failure risk prediction  using 

the second T2DM population: Hong Kong. Casual inference is applied and the interface 

of the support system for clinicians is presented addressing Objective 4.   

• Chapter 6 investigates socioeconomic groups in Glasgow, West of Scotland to predict 

mortality, highlighting the need for risk stratification.  

• Chapter 7 analyses the two T2DM populations, focusing on the treatment of loop 

diuretics strongly linked to prognosis.  

• Chapter 8 summarises key findings and provides a discussion of results, strengths, 

limitations, future work and conclusions.  
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Chapter 2 Literature Review  

This chapter examines the development and application of risk prediction models aimed at 

identifying T2DM patients at elevated cardiovascular risk. Additionally, the review addresses 

the importance of including factors such as social deprivation, multimorbidity and population 

diversity in model design. These considerations highlight the need for tailored prediction tools 

that better reflect the complex, multifactorial nature of cardiovascular risk in T2DM patients 

and support precision medicine approaches in clinical practice. 

 

2.1 Taxonomy of Literature Review 

 Taxonomy in Figure 4 presents the structure of the areas explores in the literature review.  

 

Figure 4 Taxonomy of Literature Review 
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2.2 Aetiology of T2DM and Its Role as a Cardiovascular Risk 

Factor 

2.2.1 Understanding T2DM Aetiology 

Insulin is a hormone secreted by islet-cells in the pancreatic gland. Insulin is a key regulator of 

cell uptake of glucose and consequently blood sugar levels. Type 2 diabetes mellitus (T2DM) 

is caused by resistance of cells (especially muscle and fat) to the effects of insulin, Typically, 

insulin levels are raised but the increase in insulin is insufficient to compensate for the insulin 

resistance leading to intermittent or persistent hyperglycaemia (high levels of blood sugar). 

Eventually, the islet-cells may become exhausted, leading to low insulin levels, more often 

encountered in Type 1 diabetes mellitus. T2DM is due to a combination of genetic, 

environmental and lifestyle factors but strongly associated with obesity and ageing (Kolb and 

Martin, 2017). 

Genetics play an important role in the development of T2DM. Some populations, especially 

those of South Asian, African, and Hispanic descent, have a higher risk of developing T2DM 

(Suzuki et al., 2024), but often face barriers to accessing timely and effective care, resulting in 

high rates of poorly managed diabetes. Environmental and lifestyle factors also contribute to the 

development of T2DM. Sedentary behaviour, stress, poor diet and obesity are important risk 

factors that can lead to insulin resistance and impaired glucose metabolism (Zheng et al., 2018). 

Socioeconomic deprivation is also often associated with poorer lifestyle choices and access to 

healthcare (Kyrou et al., 2020), complicating disease management and prevention strategies 

(Gonzalez et al., 2018). Patients with T2DM face an increased risk of adverse cardiovascular 

events, highlighting the need for multifactorial interventions that are beyond blood glucose 

management. Addressing these factors through public health and community interventions is 

essential for reducing the morbidity and mortality burden of T2DM. 

2.2.2 Why T2DM is an Important Risk Factor for Cardiovascular Disease 

Individuals with T2DM have a higher risk of developing cardiovascular disease (Ahmad et al., 

2024) not only because of the deleterious effects of persistently elevated blood glucose and 

insulin and insulin resistance, but also due to associated central obesity, high blood pressure and 

increased cholesterol and triglyceride levels.   



20 

 

These metabolic disorders contribute to endothelial dysfunction (Tziomalos et al., 2010) 

(narrowing of arteries), inflammation and atherosclerosis (Libby et al., 2002) (buildup of fats, 

cholesterol and other substances) which exacerbating CVD progression. Over time, these 

processes accelerate the narrowing and hardening of arteries, which increases the likelihood of 

coronary artery disease, myocardial infarction, stroke, peripheral artery disease and heart failure.  

The United Kingdom Prospective Diabetes Study (UKPDS) and the ADVANCE (Action in 

Diabetes and Vascular Disease) trials demonstrated that T2DM patients are at a greater risk of 

cardiovascular events compared to non-diabetic individuals (Chalmers, 2005). T2DM and 

hypertension are also associated with a decline in kidney function (diabetic nephropathy), which 

is closely related to the development of cardiovascular complications, which may increase the 

risk of heart failure (Marx et al., 2023). This interrelationship highlights the importance of early 

intervention and management in patients with T2DM to reduce the risks associated with 

cardiovascular disease. Even in patients with well-controlled blood glucose, residual 

cardiovascular risk remains due to metabolic disturbances (Guan et al., 2024). Blood glucose 

control alone may be insufficient to prevent the complications of T2DM, emphasising the 

importance of a multi-faceted approach that also targets blood pressure, lipid levels, and lifestyle 

factors to reduce cardiovascular risk. Managing T2DM effectively requires careful monitoring 

and control of risk factors.  

2.2.3 The Need for Risk Stratification Specifically in Populations with T2DM 

General risk prediction models, such as the SCORE2 model (collaboration et al., 2021), were 

developed to estimate 10-year CVD risk across European populations. However, this does not 

account for the unique risk profile of individuals with T2DM, who often have a higher burden 

of cardiovascular and metabolic risk factors. Effective risk stratification allows healthcare 

providers to identify people most vulnerable to adverse events and implement tailored, 

evidence-based interventions that address their unique risk profiles. This is important in diverse 

populations, where genetic, lifestyle and socioeconomic factors further modify the risk profile. 

Harnessing information from multiple risk factors may enhance an individual person, precision 

approach to cardiovascular prevention in T2DM. However, including multiple clinical 

characteristics creates complex and high-dimensional datasets.  
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Applying machine learning to EMRs may identify patterns and relationships that traditional 

analyses may overlook, enhancing risk stratification. This might enable timely, individualised 

interventions that better align with each patient's unique profile, rather than managing average 

risk for all patients.    

 

2.3 Risk Prediction Models in T2DM Patients 

2.3.1 Overview of Existing Prediction Models 

There are a variety of risk prediction models for patients with T2DM with the focus on heart 

failure or all-cause mortality as outcomes. Table 3 shows models based on landmark 

randomised clinical trials. Typically, models based on clinical trial data rely upon traditional 

regression modelling and multivariable analysis. However, only patients who fulfil the 

inclusion/exclusion criteria for the trial and who are approached by investigators and are willing 

to give consent are included in such analyses. These highly selected patients may not be 

representative of the general population with T2DM. Moreover, only information of interest to 

investigators is collected, which will rarely include social deprivation scores.  

The RECODE study (Basu et al., 2017) used the Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) multinational trial dataset from United States and Canada to predict all-

cause and CVD mortality for patients with T2DM, with moderate to strong prediction 

performance.  Following this, Italian investigators (Copetti et al., 2021) also used the ACCORD 

trial data to create a risk score called ENFORCE, but the generalisability of the model is limited 

because few participants were from ethnicities other than White. The ACCORD dataset was 

also used to predict incident of heart failure in the WATCH-DM analysis (Segar et al., 2019), 

which improved on the standard cox proportional hazards method, by applying machine-

learning adapted random survival forest for a risk score model, which resulted in better 

discrimination and calibration. However, these models are all limited by the fact  that they are 

based on clinical trial datasets.   
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Table 4 shows risk prediction models for all-cause mortality and heart failure in patients with 

T2DM using data from EMR from the UK, New Zealand, Hong Kong and Singapore.  

The UK-based QResearch and CPRD study focussed specifically on predicting incident heart 

failure in patients with T2DM (Hippisley-Cox and Coupland, 2015), using separate equations 

for men and women over a period of 10-years. This analysis uniquely includes social 

deprivation, family history and HDL/cholesterol ratio as predictors. Despite high-quality 

calibration (R² values of 41.2% in women, 38.7% in men) and ROC statistics close to 0.78, this 

study has limited international generalisability because it cannot account for ethnic or 

geographical diversity outside the UK.  

The PREDICT-1° Diabetes study from New Zealand focuses on cardiovascular disease (CVD) 

risk prediction in T2DM patients over a five-year period (Pylypchuk et al., 2021). This study’s 

moderate C-index suggests there is room for considerable improvement, possibly through the 

inclusion of additional biomarkers (Wells et al., 2017). The model based on the New Zealand 

dataset may also have limited applicability to other regions or populations, especially those with 

different healthcare systems or lifestyle factors affecting CVD risk. The absence of ethnic 

diversity in the UK study and the regional focus of the PREDICT-1° study suggests that the 

models may not be easily transferable to other countries with different demographic and clinical 

characteristics. 

To address the limitations of patient diversity  a study focusing on Asian populations:  Hong 

Kong and Singapore targeted (Quan et al., 2019) similar outcomes (mortality, cerebrovascular 

disease, ischemic heart disease) over a five-year risk prediction period. With an improved C-

index of 0.778 for mortality and lower values for CVD outcomes, this study emphasises the 

influence of demographic and clinical predictors across Asian populations. The large sample 

size provides robust findings. Additionally, another Hong Kong study on all-cause mortality in 

T2DM patients employed multiple predictive models (Lee et al., 2021), including Cox 

Proportional Hazards, random survival forests, and DeepSurv. The model’s performance 

metrics (C-index of 0.75 for mortality and 0.79 for cardiovascular mortality) indicate good 

discriminatory power. The study provides advanced metrics such as the variability of HbA1c 

and fasting blood glucose (FBG), which are rarely considered in other models. However, neither 

of these analyses were validated amongst other ethnicities.  
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Future research could enhance these models by integrating broader socioeconomic, ethnic, racial 

and regional variability across multiple populations to improve generalisability. Additionally, 

integrating machine learning models alongside traditional regression approaches, as seen in the 

Hong Kong study, may offer improved predictive performance through nonlinear interactions. 

 

Studies RECODe United Sates  

(Basu et al., 2017) 

ENFORCE Italy  (Copetti et 

al., 2021) 

WATCH-DM United 

States  (Segar et al., 

2019) 

ALTITUDE (Malachias  

et al., 2020) 

N=Population(s) ACCORD (n=9,635), 

DPPOS (n=1,018), 

Look AHEAD (n=4,760) 

Gargano Mortality Study 

(n=1,019), Foggia Mortality 

Study (n=1,045), ACCORD (n 

= 3,150) 

ACCORD (n = 8,756 

ALLHAT n = 12,063) 

N= 5,509 (with complete 

data) from 36 countries  

and randomised the trial 

Variables Age, HbA1c, BMI, smoking 

status, duration of diabetes, 

eGFR 

 

age, antihypertensive and 

insulin therapy, body mass 

index (BMI), diastolic blood 

pressure (DBP), low-density 

lipoprotein (LDL) cholesterol, 

triglyceride high-density 

lipoprotein cholesterol (HDL-

C) and albumin/creatinine 

ratio (ACR) levels 

Blood pressure, 

HbA1c, lipid levels, 

BMI, eGFR, 

comorbidities 

Age, sex, diabetes status, 

albuminuria, eGFR, 

history of CVD, 

potassium, serum 

creatinine.   

Methods Cox Proportional Hazards Cox Proportional Hazards Random Forest 

Survival 

Cox Proportional 

Hazards Model(s) with 

NT-proBNP and without. 

Outcomes(s) All-cause mortality  

CV mortality  

ESKD 

All-cause mortality Incident Heart Failure All-cause mortality and  

CV composite (CC) 

outcome (CVD death, 

resuscitated cardiac 

arrest, nonfatal 
myocardial,  infarction, 

stroke, or heart failure 

hospitalisation). 

Metrics C-index:  

0.75 

0.79  

0.73 

survival C-index was 0.81 

(95%CI: 0.72–0.89) and  

Validation Cohort: 0.78 

(95%CI: 0.68–0.87) 

(C-index 0.77 [95% CI 

0.75–0.80] 

Validation ALLHAT 

:C-index 0.74 [95% CI 

0.72–0.76]) 

NT-proBNP alone: 

Death: 0.745 

CC outcome: 0.723, Base 

model: Death: 0.744, CC 

outcome: 0.731, Base 

model + NT-proBNP: 

Table 3 Analyses using Data from Landmark Randomised Trials for Risk Prediction in Patients with T2DM 



24 

 

 

Table 4 Analyses using observational data from electronic medical records for Risk Prediction in Patients with T2DM 

Death: 0.779 CC 

outcome: 0.763 

Studies QResearch / CPRD  

(Hippisley-Cox and 

Coupland, 2015) 

PREDICT-

1° Diabetes 

New 

Zealand 

(Pylypchuk 

et al., 2021) 

Hong Kong / 

Singapore study  

(Quan et al., 2019) 

Hong Kong study 

(Lee et al., 2021) 

Swedish Cohort 

Study(Sattar et al., 2023) 

N=Population(s) 437,806 (Derivation 

cohort), 137,028 

(QResearch validation 

cohort), 197,905 

(CPRD validation 

cohort) 

N=46,652 

 

N=678,750 (Hong 

Kong) and 

N=386,425 

(Singapore) 

N= 273,678 Individuals with T2DM: 

679,072 from the Swedish 

National Diabetes 

Register.  Matched 

Controls: 2,643,800 

individuals without 

diabetes 

Variables Age, BMI, systolic 

blood pressure, 

cholesterol/HDL ratio, 

HbA1c, material 

deprivation, ethnicity, 

smoking, diabetes 

duration, type of 

diabetes, atrial 

fibrillation, 

cardiovascular disease, 

chronic renal disease, 

family history of 

premature coronary 

heart disease 

18 

predictors, 

including 

diabetes-

related 

measures 

(e.g., renal 

function), 

demographi

cs, 

medications 

age, duration of 

diabetes, gender, 

smoking status, 

body mass index, 

systolic and 

diastolic blood 

pressure, HbA1c, 

low-density 

lipoprotein-

cholesterol, pre-

existing conditions 

(atrial fibrillation 

and CKD) 

Age, sex, baseline 

comorbidities, 

anaemia, mean values 

of neutrophil-to-

lymphocyte ratio, 

high-density 

lipoprotein-

cholesterol, total 

cholesterol, 

triglyceride, HbA1c 

and fasting blood 

glucose (FBG), 

measures of 

variability of both 

HbA1c and FBG. 

Age,  sex, Glycated 

haemoglobin (HbA1c), 

Systolic blood pressure, 

Estimated glomerular 

filtration rate (eGFR), 

Lipids & Body mass index 

(BMI) and other 

comorbidities 

Methods Cox proportional 

hazards models; 

separate equations for 

men and women 

Cox 

proportional 

hazards, 5-

year, risk 

prediction 

Cox proportional 

hazards models, 

five-year risk 

prediction 

Cox Proportional 

Hazards, random 

survival forests, 

DeepSurv 

Cox proportional hazards 

Outcomes(s) Incident heart failure 

diagnosis 

CVD risk  Mortality, 

cerebrovascular 

All-cause mortality Coronary artery disease, 

Acute myocardial 



25 

 

 

2.3.2 Limitations of Current Models 

Most prediction models for patients with T2DM bring challenges in generalisability and 

interpretability, restricting their clinical adoption, especially when attempting to apply them to 

individual patients.  

Most studies, including those reviewed, use datasets specific to certain regions, ethnicities, or 

healthcare systems, which restricts model performance (Boyd et al., 2023). Risk models should 

be validated in multiple, diverse cohorts and regions to ensure they maintain accuracy and 

reliability across different populations. Recalibrating models in new cohorts and training them 

on multinational datasets should improve generalisability. However, without external 

validation, models are only reliable in patient-groups closely resembling their original dataset 

(Steyerberg et al., 2018).  

Another important limitation is in interpreting risk prediction model results. CPH, provide 

limited interpretability. Patient data involves complex interactions between various risk factors. 

These limitations can lead to oversimplified models that do not accurately reflect the 

complexities of patient health. The cox model struggles with time-dependent predictors, residual 

confounding and interactions between variables, which limit its accuracy in capturing complex 

relationships in medical research. The CPH assumes the relationship between the predictors and 

the outcome (hazard) is constant over time. If this assumption is violated (when the effect of a 

variable changes over time) the model's results may be invalid or misleading.  

disease, ischemic 

heart disease among 

Chinese people with 

T2DM 

infarction, 

Cerebrovascular disease 

and Heart failure 

Metrics Calibration: R² (41.2% 

in women, 38.7% in 

men); D statistic (1.71 

in women, 1.63 in 

men); ROC statistic 

(0.78 in women, 0.77 in 

men) 

C-index = 

0.73,  

C-index for 

mortality: 0.778, 

cerebrovascular 

disease: 0.695, 

ischemic heart 

disease: 0.644 

C-index: 0.75 for 

mortality, 0.79 for CV 

mortality,  

0.73 for ESKD 

Hazard Ratios (HRs): 

HbA1c: Most important 

for atherosclerotic events. 

BMI: Explained >30% of 

HF risk. 

HF risk in T2D (all risk 

factors at target): HR = 

1.50 (95% CI: 1.35–1.67) 
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However, interpretability also becomes more challenging when advanced machine learning 

methods are applied. When these models capture complex, nonlinear interactions, they lack 

clear mechanisms to explain how each predictor contributes to risk.  

Moreover, interpretability is critical for clinical application, as it helps healthcare providers 

understand why a patient is at risk and what factors are modifiable (Holzinger et al., 2019). 

Clinicians are more likely to use models if they can understand the factors driving predictions 

(Tonekaboni et al., 2019).  

Enhancing interpretability of AI models is crucial to improving trust and transparency in 

healthcare applications. Overall, addressing the limitations of generalisability and 

interpretability requires the use of diverse datasets, diligent external validation and applying 

explainable AI methods for model risk prediction.  

The application of machine learning to CVD and T2DM risk prediction has grown considerably 

over the past decade. While literature focused specifically on incident CVD in T2DM 

populations is limited, many studies have successfully applied ML models to predict outcomes 

in either condition separately or in populations with overlapping risk factors. Traditional models 

like CPH remain the benchmark in clinical settings due to their interpretability; however, their 

assumptions of proportional hazards and linearity may not hold in complex, multimorbid 

populations. 

RSF, an ensemble tree-based extension of the random forest algorithm for time-to-event data, 

have shown robustness in handling high-dimensional EMR data, non-linear relationships and 

interactions among variables without requiring variable selection. Other ML approaches such 

as Gradient Boosting Survival Models (e.g., CoxBoost or XGBoost with survival adaptations) 

and neural network ensembles have also been explored. Many of these algorithms offer higher 

discriminative performance compared to traditional models, particularly in large EMR datasets.  

In choosing the appropriate ML method for this thesis, models were evaluated for their ability 

to handle high-dimensional EMR data, accommodate censoring and provide interpretable 

outputs. RSF was prioritised due to their established use in health informatics literature and their 

capacity to capture complex risk patterns in multimorbid populations. The tree-based approach 

is able to capture full patient overview and output the most contributing risk factors.  
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2.3.3 Emerging Approaches in Risk Prediction 

Recently acknowledged interpretable artificial intelligence techniques, such as SHapley 

Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) 

(Ribeiro et al., 2016) provide insights into individual patient predictions. SHAP explains model 

predictions by calculating the contribution of each feature to the final prediction using Shapley 

values from cooperative game theory. LIME generates interpretable explanations for individual 

predictions by building a simplified, interpretable model around the local area of the prediction, 

showing how each feature influences that specific prediction. These techniques introduce 

individualised risk prediction including the reasoning behind contributing risk factors. However, 

such interpretability methods are not yet routinely applied in survival analysis models 

commonly used in clinical studies, although they hold potential for enhancing transparency and 

trust in predictive models.  

Currently there are very few risk calculators available for patients with T2DM. Those available 

require manual input of clinical data and lack supporting tools for interpretation. Most risk 

calculators are focused on CVD (Kengne, 2013; Committee, 2022). For example, the Diabetes 

Lifetime Perspective model (DIAL2) (Østergaard et al., 2023), was developed to provide 

individualised CVD risk for patients with T2DM.  

It estimates life-years gained without CVD events based on competing-risk Cox models and 

validated data from multiple large T2DM European (only) cohorts. However, relying on manual 

input for such calculations is not practical, as it introduces human error and is inefficient, 

limiting the usability and scalability of these tools in real-world clinical settings. 

There is a growing interest in applying casual inference techniques to clinical studies, aiming to 

move beyond associations. These methods, such as propensity score matching, purpose to 

establish causal relationships, interpret response to treatment and reducing confounding in 

observational datasets. For example, causal models allow for the identification of patient -

specific factors that may influence the response to treatment, enabling more tailored and 

effective care (Lundberg et al., 2017). However, despite their popularity in academic research, 

these techniques have yet to be widely adopted in real-world clinical practice.  
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Accurate causal inference requires high-quality data, which may not always be available in real-

world clinical settings (Hernán and Robins, 2016). Causal models can be powerful in controlled 

studies, however their applicability to diverse, real-world populations is sometimes uncertain. 

However, unless used with great care, they have the potential to introduce systematic bias.  

For instance, low blood pressure is a powerful determinant of prognosis for patients with heart 

failure. A treatment called digoxin increases blood pressure. If people taking digoxin are 

matched to people not taking digoxin and matching includes blood pressure, then sicker patients 

taking digoxin will be matched to patients with a more favourable prognosis (higher intrinsic 

blood pressure) and analysis of outcomes may suggest that digoxin is harmful. Matching of 

patients before they received digoxin would be required to avoid this problem. Therefore, it is 

important to assess the applicability of causality in studies. 

 

2.4 Inclusion of At-Risk Populations in Prediction Models 

2.4.1 Social Deprivation and Cardiovascular Risk  

Social deprivation has been linked to diseases and increased mortality rates (Wright et al., 2019). 

Physical, mental and social health are all important aspects of loss of well-being and disease 

(Chandola and Conibere, 2015). Lower income levels are associated with poorer access to 

education and educational attainment, poorer diet (Rosengren et al., 2019), higher rates of 

smoking and alcohol consumption, more sedentary behaviour, poorer access to quality 

healthcare and less successful self-care. This leads in turn to poorer health and increases in 

morbidity and mortality. However, health risk factors related to socioeconomic status may be 

difficult to obtain or inaccurate (pack-years of smoking, alcohol consumption).  Inclusion of 

social deprivation may compensate for the lack of or inaccuracy of data from other sources as 

well as being an important risk factor in its own right, helping to ensure that all aspects of an 

individual's health—both clinical and social—are considered in the model.  

However, factors related to socioeconomic status may at times be difficult to obtain due to 

limited data access associated with patient characteristics.  Inclusion of social deprivation and 

its external factors is essential for predictive models in healthcare.  



29 

 

Understanding whether an individual is socially deprived, alongside clinical factors, provides a 

more defined view of their health risks and can improve the accuracy of prediction models for 

at-risk populations. These models can help ensure that all aspects of an individual's health are 

considered in the decision-making process.  

A large-scale study (Deepali Nagar et al., 2021) in England and Wales using over 3.7 million 

EMRs developed the cox model with the inclusion of ethnicity and socioeconomic status. The 

study illustrated a major disparity in diabetes risk across ethnic groups, with Bangladeshi men 

and women showing the highest adjusted hazard ratios compared to white populations. The 

inclusion of social deprivation allowed the algorithm to capture the compounding effects of 

socioeconomic disadvantage on diabetes risk. Ethnicity is also a key inclusion for risk prediction 

models. Ethnicity is known to improve risk classification in CVD disparities (van Apeldoorn et 

al., 2024a). One study highlights the predictive capacity of five ML models for CVD events and 

ethnicity groups in a cohort of 145,600 diabetes patients in New Zealand  (Nghiem et al., 2024).  

The Gradient Boosting decision tree model performed the best for predicting CVD. Key 

predictors varied by model and ethnic group, with factors like age, area deprivation and prior 

hospitalisations being important across groups. Moreover, this inclusion creates fairness in risk 

assessment for patients with T2DM. Addressing health inequalities, ethnically and 

socioeconomically diverse populations is important.  

Some research shows ML models, while effective in risk prediction, are bias according to the 

population data. For example, models trained on majority populations can underperform for 

minority groups, reinforcing systemic health disparities. This refers to Algorithmic bias: 

differences in the predictive power of models when applied to different subgroups of a 

population (Dang et al., 2024). Therefore, efforts to ensure algorithmic fairness requires the 

integration of socioeconomic status such as deprivation scores or stratifying models by 

demographic subgroups. Addressing fairness in algorithm design is not only an ethical 

imperative but also ensures better health outcomes for underserved populations. 
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2.4.2 Multimorbidity in Risk Prediction Models  

Multimorbidity, the presence of multiple chronic conditions in a single patient, affects the 

accuracy and effectiveness of risk prediction models (Rahimi et al., 2018). Patients with 

multimorbidity often face complex interactions between diseases, making it challenging to 

predict their outcomes based on single-condition models. Including multiple chronic conditions 

into risk prediction models enhances their ability to reflect the true complexity of patient health, 

enabling more accurate assessments and personalised interventions. Precision in diabetes care 

considers all attributes to help understand individual patient profiles for CVD risk prediction. 

Traditional risk scores provide population-level insights but lack the ability to personalise risk 

predictions effectively. These models typically rely on limited number of clinical and 

demographic factors.  This may not fully capture the complexity of contributing factors to 

disease progression in T2DM. ML has emerged as a transformative approach, with the 

integration of diverse and high-dimensional datasets such as EMRs. With the use of 

interpretable and adaptive ML techniques, identification of complex interactions and key 

predictors are useful for producing clinically relevant risk prediction algorithms. These may be 

further deployed to evidence-based support tools for T2DM populations considering various 

outcomes such as heart failure and mortality.  

2.5 Conclusion  

Several risk prediction models for people with T2DM based on multinational randomised trials 

exist, but these are of limited value for clinical practice because they include only patients 

selected and invited to participate and who agree to do so. Many of the studies were population-

specific and there was no advanced interpretability used. Traditional cox proportional hazards 

models have provided a foundation for understanding population-level risks. However, they are 

constrained by their reliance of on linear assumptions and limited inclusion of complex 

variables. This research builds on these limitations by applying advanced ML models and 

interpretation to diverse populations. Implementing risk prediction models specifically for 

T2DM populations, overcoming these limitations is essential. Prediction models based on 

EMRs will reflect more closely the population served but the data may lack the structure, 

granularity or completeness found in trials and registries. Ultimately, a robust model should 

work similarly well when applied to multiple datasets, whether they be trials, registries or EMR.  
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Chapter 3 Descriptive Analytics of Type 2 Diabetes Across Two 

Populations Using Electronic Medical Records 

 

3.1 Introduction 

As data becomes increasingly ubiquitous in our digital world, it is now present in every aspect 

of our lives. Electronic medical records (EMRs) have become the foundation of modern 

healthcare practice and systems, providing a digital solution that ensures patient information is 

accessible, integrated and actionable across various settings. Acquisition of large amounts of 

patient information in EMRs, exponential growth in computing power and the application of 

machine learning has the potential to transform medical research and patient care. In healthcare, 

the growing volume and complexity of data has changed how medical information is recorded, 

stored, used and interpreted. Data are now obtained that tracks a patient’s history, records the 

basis for diagnoses, monitors the response to treatment and records outcomes. Clinicians can 

identify adverse health trends, recognise modifiable risks for timely intervention and monitor 

early indicators of success or failure following treatment. This also encourages the rise of 

precision medicine, using electronic patient records (EPRs) to tailor medical care according to 

the unique characteristics of each patient. However, this wealth of healthcare data also presents 

challenges. Ensuring the accuracy, consistency, reliability and security of EPRs is important for 

many reasons, including ethical and legal. Logical processes and data validation are essential to 

confirm that conclusions drawn from such data are accurate and reliable. Therefore, 

standardised methodologies are crucial. The medical field has already begun to adopt standard 

practices for data handling, but these vary across institutions and regions. These standards 

ensure consistency and interoperability across different datasets, making large-scale analysis 

possible. This chapter outlines the process of obtaining and extracting large quantities of data 

from multiple sources in a reliable and ethical manner. By following established best practices 

and implementing a standardised methodology, this chapter also aims to contribute to the 

growing body of knowledge on how EMRs are leveraged for clinical research, including 

advances in precision medicine. This chapter provides a detailed exploration of the baseline 

characteristics and clinical profiles of individuals with T2DM using EMRs from two distinct 

populations: Scotland and Hong Kong. These insights are essential for tailoring predictive 

models and ensuring their robustness across diverse populations. 
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3.2 Electronic Medical Records (EMRs) 

The development of EMRs represents a fundamental moment in the history of healthcare, a shift 

driven by both technological innovation and the need for greater efficiency in patient care. The 

first steps towards digital record-keeping in healthcare were taken in the 1960s, primarily in the 

United States, where early systems focused on automating hospital administration and billing 

processes. In the 1970s and 1980s, pioneering academic medical centres, such as those at 

Harvard (Barnett et al., 1979) and the Mayo Clinic (Ellsworth et al., 2016), began experimenting 

with computer-stored medical records (Mcdonald and Tierney, 1988), which set the basis for 

more advanced EMR systems. These early EMR prototypes were primarily used in hospital 

settings, with a focus on improving efficiency and reducing errors in patient management. By 

the 1990s there was an adoption of EMRs across the globe. Technological advances enabled 

greater interoperability between systems. By the end of the decade, countries begun 

implementing national strategies to promote the use of EMRs within their healthcare systems.  

Scotland adopted a regionally focused approach by developing the Scottish Care Information 

(SCI) programme, which began in the 1990s. This initiative integrated patient records across 

hospitals, general practices and other healthcare settings, culminating in the creation of the 

Emergency Care Summary (ECS), ensuring that key patient information was available across 

Scotland's healthcare providers to improve continuity of care and patient safety. Some data are 

available nationally, including prescriptions, social deprivation, hospitalisations and deaths, but 

other data, such as blood and pathology tests, are only available at a regional level. Although 

regional data could be aggregated to provide national level data, there are many administrative 

barriers, and it has rarely been attempted or successful. Data are linked and made available in a 

trusted research environment (TRE), which is called a SafeHaven in Scotland.  In Hong Kong, 

the Hospital Authority (HA) initiated the development of its Clinical Management System 

(CMS), also in the 1990s, which laid the foundation for a territory-wide electronic health record 

(EHR) infrastructure. These records are anonymised: patients are assigned anonymous reference 

keys, ensuring individual identities cannot be linked. Sensitive information such as names, 

identification number and addresses are removed or not included in the system. By the 2000s, 

Hong Kong had advanced its system to provide access to patient information across its public 

hospitals and clinics, contributing to better care coordination. 
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3.2.1 Using EMRs for Research and Public Health  

Initially, EMRs were designed to improve the efficiency and accuracy of patient tracking, 

providing healthcare professionals with an overview of patient profiles.  Nowadays,  EMRs are 

crucial for public health and epidemiological research. They provide invaluable insights for 

prevention, treatment monitoring and long-term healthcare planning for populations. 

Observational studies are carried out to draw inferences from the study population which 

represents the general population. By capturing vast amounts of patient data over time, reflecting 

routine clinical care, researchers are able to conduct large-scale studies across diverse 

populations, improving the generalisability of findings.  

3.2.2 Data Integrity in EMRs  

Data integrity is a critical component when working with sensitive patient records, especially in 

healthcare research. Trust in the EMRs, both in terms of data collection and analysis, is essential 

to ensure that the findings are valid and reproducible. Managing EMRs requires patience, 

diligence and commitment to obtaining honest and reliable results. Without these elements, the 

conclusions drawn for clinical research are at risk of being flawed or misleading.  

EMRs preprocessing greatly relies upon the logical processing. Each stage (data extraction, 

transformation and analysis) requires integrity and appropriate handling of patient data. Errors 

at any stage can lead to compromised results, making it vital to possess not only technical skills 

but also acknowledgement of clinical contexts. For example, reading clinical guidelines for 

diabetes diagnosis was important to collect the right data from EMRs. By maintaining these 

principles, the research delivers clinically relevant results while safeguarding patient rights. 

It is also important to ensure data are representative and reflect the real-world context of the 

general patient populations. This included addressing issues such as missing data and 

conducting thorough data validation to certify consistency and completeness. Data integrity in 

this thesis required a simultaneous approach that combined technical expertise and ethical 

responsibility.  
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3.2.3 Data Privacy Acts & Regulations  

The General Data Protection Regulation (GDPR) in the EU, the UK Data Protection Act 2018 

and the Hong Kong Personal Data (Privacy) Ordinance (PDPO) enforce strict regulations on 

how personal data are collected, stored and shared. These laws are designed to protect patient 

confidentiality by enforcing safeguards like anonymisation and encryption to prevent 

unauthorised access to patient identifiable information.  

 

3.3 Data Sources 

3.3.1 Glasgow, West of Scotland  

In Scotland, everyone has free access healthcare through the NHS, including free prescriptions. 

People receive a unique community health index (CHI) identifier linked to all healthcare 

contacts and deaths. This identifier remains constant across various sets of data that might be 

acquired about that individual. These are changed to study IDs for research purposes in the Safe 

Havens. Safe Havens are secure environments that have been broadly used to support access to 

EMRs for research while protecting patient identity and privacy. Safe Havens provide secure 

access to linked, de-identified EMRs (Lee et al., 2021). Deidentification transforms information 

that could identify an individual in a data set with a study identifier (ID) for that individual. 

However, unlike anonymisation, deidentification can be reversed back with secure access. This 

enables large-scale population-level studies. The research  ID is the same across data sources, 

enabling data linkage within multiple data sets. With this advantage, it was important to acquire 

the necessary patient attributes. Selected datasets were examined, queried and visualised for 

deeper understanding. Due to the voluminous collection of the greater Glasgow & Clyde 

population data, several csv files were linked together to form a structured and useable dataset. 

Table 5 presents the clinical data extracted from the available csv files which represent patient 

information.  For the West of Scotland Safehaven in Greater Glasgow & Clyde (GG&C), access 

was granted by the local privacy advisory committee (project code GSH/20/CE/004) (Appendix 

A1). 
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3.3.2 Hong Kong, SAR China  

The second data source for external validation was the Clinical Data Analysis and Reporting 

System (CDARS) from Hong Kong, SAR China. CDARS is a territory-wide EMRs system 

managed by the Hospital Authority of Hong Kong, which provides an integrated platform for 

capturing patient-level data across public healthcare institutions. Since 1995, the system makes 

clinical data available for research and audit purposes (Gao et al., 2021). An important feature 

of CDARS is its emphasis on patient privacy and data security. To protect patient identities, the 

system anonymises personal information by using a unique Reference Key for each patient. This 

Reference Key is generated from identifiable data but is securely encrypted to prevent reverse 

identification, ensuring that individual patient records remain anonymous during research or 

analysis. This encryption process allows researchers to work with patient data while adhering 

to stringent privacy regulations. CDARS links different types of clinical data, including 

inpatient and outpatient records, demographic information. laboratory results, diagnostic 

imaging, prescription records and death records. These data sources are unified in a single 

platform, allowing for the longitudinal tracking of patient histories across different healthcare 

services and episodes of care.  

Table 5 Safe Haven Data Availability 
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The system uses a common patient identifier to ensure that all records from multiple clinical 

encounters are consistently linked to the correct individual, this enables research into patient 

outcomes, disease progression and treatment efficacy.  

Data are typically provided in CSV file format, facilitating the integration of information from 

multiple sources. CDARS has been widely used in previous research studies (Lee et al., 2021; 

Tse et al., 2024; J. Zhou, Lee, Lakhani, et al., 2022; J. Zhou, Lee, Liu, et al., 2022; Lee et al., 

2022; Kwok et al., 2024) for conditions such as chronic obstructive pulmonary disease (COPD), 

diabetes, cardiovascular diseases and cancer. CDARS provides a powerful tool for large-scale 

healthcare research and facilitates comparisons with other EMR systems globally. 

3.3.3 Routinely collected EMRs  

Both Glasgow and Hong Kong's EMRs are routinely collected from healthcare systems, 

capturing real-time data across patient visits and hospitalisations, including laboratory tests and 

prescriptions. Unlike retrospective data, which looks back on past information, or clinical trial 

data, which include only patients who fit the inclusion/exclusion criteria and are willing to give 

informed consent, routinely collected EMRs reflect diverse  healthcare trajectories. EMRs 

provide dynamic and diverse patient data that can be used to identify at-risk populations, 

including ethnic minorities, facilitate early detection of diseases. These EMRs provide broad, 

longitudinal insights into patient populations, including ethnic minorities. Routinely collected 

EMRs allow for early disease detection, population-wide health monitoring and scalability 

(increasing the scope and size of data collection). 
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3.4 Data Preparation 

Data preparation is a critical component of any research involving data.  This becomes a 

challenge when handling complex and extensive EMRs. Preprocessing raw EMRs into a format 

suitable for analysis can be challenging due to the vast amount of unstructured information.  

Large parts of medical records are in written text form and are tedious to use directly without 

appropriate data processing. It is important to adopt a structured and iterative approach to 

understanding the stages of data processing.  In this research, a high-level methodology of 

EMRs modelling process illustrated in Figure 5 is applied.  

This methodology is derived from standard cross-industry process for data mining. Data mining 

involves methods at the intersection of database systems, statistics and machine learning and 

database systems (Asri et al., 2020). It is the process of transforming data to discover patterns 

and useful information in large datasets. Data understanding is key to computing clinically 

relevant results. The first stage of the process was to define the T2DM cohorts. It was important 

to select and filter the right clinical characteristics for this research. Data exploration was key 

to discovering the available patient information from multiple datasets in Safe Haven and 

CDARS. This was followed by extracting the necessary patient information. Data 

transformation consisted of data grouping, categorising and linking the required patient 

characteristics by a unique patient identifier.  

Figure 5 EMR Modelling Process 
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This prepared the data for feature selection, statistical analysis, machine learning modelling and 

interpretation. Clinical expertise input was part of each iteration, introducing the integration of 

collaborative intelligence.  

3.4.1 Statistical & Machine Learning Software  

Statistical and machine learning analyses were performed using Python. This is a versatile and 

multipurpose programming language that is widely available and enables robust processing of 

complex data. Pythons Jupyter Notebook was used, because data are shown at each step as you 

carry out preprocessing, rather than creating large, automated scripts. This functionality is 

important when handling sensitive patient data because it allows transparent data preprocessing. 

Table 6 presents the python libraries imported to conduct data preparation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Python Libraries 



39 

 

3.5  Glasgow Clinical Definitions 

3.5.1 Defining Diabetes Mellitus   

Engagement with clinical experts defined clinical diagnoses and events. The Scottish Care 

Information: the SCI-Diabetes registry is a fully integrated shared EMR to support treatment of 

patients with diabetes in Scotland. Registration occurs automatically when a patient is assigned 

a diagnostic code “[10]” for diabetes in primary or secondary care.  The registry is estimated to 

capture >99% of all patients with diabetes nationally.  This registry was merged with the overall 

population demographics of those who had a record of diabetes, filtered using SafeHaven ID.  

Once merged, several patients had repeated rows, Table 7 presents an example of this.  

 

 

 

Each patient in the registry had a record of “Yes”, suggesting a diagnosis of diabetes. At a later 

date, the type of diabetes may have been recorded. In this case, the patients were noted to have 

an elevated fasting glucose in 2014 and a diagnosis of T2DM in 2017. However, text describing 

diagnosis were sometimes confusing or blank, reducing my confidence in their reliability. It was 

important to learn what the diagnostic codes represented as these were consistent.  

ITEMVALUECODE refers to a coding system for the diabetes registry. Further data 

transformation was carried to ensure each patient had the most relevant date of diagnosis and 

diabetes type.  

Table 8 portrays the final percentage of patients in different diabetes description categories. 

There were several other diagnostic codes in numerical format, which did not indicate type of 

diabetes. These were excluded from the dataset as this analysis focussed only on T2DM, which 

is the most common type and strongly associated with older age and obesity. T2DM is due to 

resistance of tissues to the effects on insulin; these patients typically have insulin levels although 

eventually the pancreatic islet cells that produce insulin may become exhausted so that these 

patients may eventually require treatment with insulin rather than medicines to improve insulin 

resistance.  

Table 7 Diabetes Diagnosis with repeated Rows 
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Type-1 diabetes mellitus is the classical but rarer form that often affects children and young 

adults and is due to failure of the islet cells to produce insulin. These patients are usually treated 

only with insulin. 

 

 

 

 

 

 

 

To reduce complexity, patients were grouped with the help of clinical experts into five 

categories using the diagnostic codes shown in Figure 6.  An example of this is “impaired  

fasting glucose”, “impaired glucose tolerance” and “impaired glucose metabolism and other not 

known” were defined as at “Risk of Type 2 Diabetes”. See Appendix A2: Diagnostic 

Descriptions. As expected, most patients were classified as T2DM. T1DM was excluded, as 

advised by clinical experts, because it is an autoimmune condition leading to a collapse in insulin 

production rather than being driven by modifiable lifestyle factors.  

 

 

 

 

 

Table 8 Percentage of patients in Diabetes Diagnosis Descriptions 

Figure 6 Diabetes Type Categories 
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3.5.2 Ethnicity  

Ethnicity was also grouped in the SCI-diabetes dataset. Ethnicity data was mapped to six 

categories shown in Table 9 (White, Asian, Chinese, Black, Mixed, Other) to standardise 

variations in reporting and enable clearer analysis. Most Glaswegians are of “White” ethnicity.  

 

 

  

Table 9 Ethnicity Groups 
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3.5.3 Scottish Index of Multiple Deprivation  

The Scottish Index of Multiple Deprivation (SIMD) is a measure of deprivation among 6,976 

data zones levels  (The Scottish Government, 2017). SIMD observes the extent to which an area 

is deprived across seven domains: income, employment, education, health, access to services, 

crime and housing. If an area is identified as ‘deprived’, this may reflect low incomes but can 

also mean fewer resources or opportunities. Each patient is given a score 1-5 known as quintiles. 

This score is ranked from the most deprived to the most affluent: 1-5.  

Figure 7 presents patients with diabetes in the five quintiles. 41% are in the highest deprivation 

quintile 1. Only 15% of those with T2DM were in quintile with least deprivation (quintile 5) in 

Glasgow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Socioeconomic Status Quintiles in Patients with Diabetes 
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3.5.4 General Practice Local Enhanced Services (Primary Care) 

In the Glasgow population cohort, the following conditions in Table 10 were extracted from the 

General practice (GP) – local enhanced services (LES) dataset. These GP practices provide 

additional care for specific conditions, including coronary heart disease, diabetes, stroke and 

COPD. Practices can subscribe to different LES services without covering all. For NHS Greater 

Glasgow & Clyde, 82.8% of practices contributed data, covering a broad range of services. Each 

GP LES entry includes the safehavenID, event date, a Read code for the service (READCODE), 

a description and flags indicating whether the entry relates to prescriptions (IsPrescription) or 

numerical values (IsValue). Additionally, values recorded for services are captured (Value1 and 

Value2). The coverage of GP LES records extends up to the end of 2018. Extracting these 

records was labour intensive.  

For smoking (Figure 8), categories were condensed into “Current Smoker” and “Non-smoker”. 

BMI was stored as calculated value or according to recommended categories as advised by the 

NHS in Scotland(NHS BMI, n.d.). There was also missing records of BMI for 30% for the 

Glasgow cohort. BMI record keeping is not important in primary care or secondary care settings 

unless it is for a certain condition. The Scottish diabetes group (Scottish Diabetes Group, 2021) 

reported that 1 in 3 people with diabetes in Scotland did not have a BMI recorded in 2019. The 

missingness of BMI was further investigated in this research. Weight was recorded in kilograms. 

High blood pressure was grouped from various descriptions presented in Figure 9. Essential 

hypertension means a high blood pressure with no known specific cause such as an endocrine 

tumour or renal artery stenosis. 

 

 

 

 

 

 

Table 10 Extracted Primary Care Conditions 
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Figure 8 Smoking Descriptions 

Figure 9 High Blood Pressure Descriptions 
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3.5.5 Prescribing Information System (Medications) 

The Prescribing Information System (PIS) in Scotland supports pharmacoepidemiology and 

pharmacovigilance by providing prescription data for >5.3 million NHS residents (Alvarez-

Madrazo et al., 2016). PIS has tracked reimbursed prescriptions with detailed individual 

prescribing and dispensing records since 2009, linked to the Community Health Index (CHI) 

number described earlier. 

British National Formulary (BNF) codes are used to classify medications. BNF is a 

pharmaceutical reference book with sections and chapters classifying medications. Each 

medicine prescribed is assigned a BNF code, which provides details about the medicine’s 

classification, dosage and formulation. For this research, treatments for diabetes (BNF Chapter 

6) and cardiovascular disease (BNF Chapter 2) were extracted  (Appendix A3).  

Each prescription record in the PIS dataset includes a prescribing date (PRESC_DATE) and a 

dispensing date (DISP_DATE). However, two important observations were made.  Firstly, for 

some prescriptions, the same medication and patient were recorded with the same prescribing 

date but varying dispensing dates, suggesting repeat prescriptions, especially after 2013. 

Secondly, the dispensing date often falls on the last day of the month, likely reflecting when 

pharmacies were applied for reimbursement or were reimbursed rather than the actual date of 

dispensing. To manage this, PRESC_DATE was used for initial prescriptions and DISP_DATE 

was used to calculate spacing for repeat prescriptions. An example of the coding structure is 

presented in Figure 10 for a glucose lowering treatment for diabetes called dapagliflozin. 

Prescriptions were classified based on their active chemicals. This classification helped with 

organising medicines by their active components rather than brand names or formulations, 

especially when some medicines are prescribed as combination tables (for instance angiotensin 

receptor blockers and thiazide diuretics in one tablet).  
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3.5.6 Scottish Care Information Store (Laboratory Tests)  

The Scottish Care Information (SCI) Store is an electronic data repository used by NHS 

Scotland, designed to store and integrate patient data at a regional health board level. It accepts 

a wide variety of clinical reports, including biochemistry, hematology, pathology, microbiology 

and radiology results, as well as other laboratory test types. The SCI Store facilitates the sharing 

of laboratory and diagnostic information for healthcare providers within the region. Table 11 

shows the extracted laboratory tests with their unique READ Codes and their primary purpose 

in this research. 

Figure 10 BNF Code Breakdown 
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Data for laboratory tests required extra pre-processing because there were four large files which 

required integration. For example, for each patient row a column was created for different 

clinical measurements. Table 12 presents an example of the original data format.  Test types 

were identified using the CLINICALCODEVALUE field. 

 

 

 

Table 12 Unstructured Lab test Dataset 

Table 11 Extracted Laboratory Tests 
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A function was created to identify blood tests taken at time 0 (diabetes diagnosis date) or within 

the next 6 months, ensuring the closest test date after a diagnosis of T2DM was extracted. Each 

clinical value was further restructured into separate columns rather than repeated rows, shown 

in Table 13. Rather than impute missing values, clinical experts advised using blood tests in the 

year prior to diagnosis; usually these were done within a few weeks prior to the diagnosis of 

T2DM. The “NaN” refers to patients with a missing clinical measurement at a certain time point.  

 

 

 

 

 

For renal function,  the estimated glomerular filtration rate (eGFR), was calculated from serum 

creatinine levels applying the IDMS-traceable Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) formula(Levey and Stevens, 2010).  CKD-EPI was preferred over the 

Modification of Diet in Renal Disease (MDRD) equation as recommended by recent guidelines 

(Stevens et al., 2010; Griffiths et al., 2023).  

The CKD-EPI formula is:  

ⅇ𝐺𝐹𝑅 = 141 × 𝑚𝑖𝑛 (
𝑆𝐶𝑟

𝑘
, 1)

𝛼

× 𝑚𝑎𝑥 (
𝑆𝐶𝑟

𝑘
, 1)

−1.209

× 0.993𝐴𝑔𝑒  × 𝐴 × 𝐵  

where:  

• 𝑺𝑪𝒓: Serum creatinine (mg/dL)  

• 𝒌: 0.7 for women and 0.9 for men  

• 𝜶: -0329 for women and -0.411 for men 

• Age: Patient’s age at the time of test  

• A: 1.159 if female,  1 otherwise  

• B: 1.159 if African American, 1 otherwise  

Table 13 Reshaping Lab Tests 
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However, this research assumed no African American participants in the study and serum 

creatinine values were standardised and converted as required. Moreover, recent studies suggest 

that eGFR should not be adjusted for ethnicity (Diao et al., 2022). The National Institute for 

Health and Care Excellence (NICE) removed the recommendation for using an ethnicity 

adjustment for people of black African or black Caribbean ethnicity (Griffiths et al., 2023).  

3.5.7  Mortality 

Scottish mortality records are maintained by National Records of Scotland (NRS)(of Scotland, 

2019). Each record (row) represents a death and includes the following details: 

• SafeHaven ID: Used to link with other tables. 

• Date of death. 

• Location of death. 

• Cause of death: Encoded using internation disease classification (ICD) codes, with up to 

ten causes listed per person in order of priority (primary, secondary, tertiary, etc.). 

The duration between date of diabetes diagnosis and date of death was calculated  as shown in 

Appendix A4. 
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3.6 Hong Kong Clinical Definitions  

3.6.1 Socioeconomic Deprivation 

The Comprehensive Social Security Assistance (CSSA) scheme in Hong Kong is a government-

provided financial aid program designed to provide a safety net for individuals and families who 

face financial hardship. It aims to meet the basic living needs of recipients by providing cash 

assistance for essential expenses, such as food, housing and medical care. Eligibility is 

determined by means testing, which assesses the applicant's income and assets to ensure they 

fall below a specified threshold. 

In the context of health studies, CSSA status has been used as an indicator of deprivation or 

socioeconomic disadvantage. Individuals receiving CSSA are considered to be experiencing 

financial hardship, which may correlate with various health outcomes, including higher 

mortality rates due to a greater accumulation of risk factors, more pre-existing health problems 

and poorer access to healthcare.  However, CSSA status had large amounts of missing data, 

there was also a delay in assigning CSSA status shown in Appendix C3. It was unreliable to 

use as a measure of socioeconomic deprivation.  

3.6.2 Missingness of Body Mass Index and Smoker  

Data on BMI was missing in 90% of Hong Kong EMRs (Tsoi et al., 2020). BMI may not be 

recorded at clinical visits unless relevant to the patient's specific medical condition or treatment 

plan. The CDARS system captures data from in-patient, out-patient and A&E settings, but the 

focus is primarily on diagnoses and treatment. There were also very few records reporting 

smoking in the CDARS system. Smoking status may be underreported unless it is directly 

relevant to a patient’s diagnosis or treatment. Smoking data often relies on self-reporting, which 

is not routinely updated. Hong Kong has seen a marked decrease in smoking rates compared to 

many other countries (Smokefree HK, 2024), possibly due to strong public health campaigns 

and high tobacco taxes. Only 10.2% of adults reported that they smoked in 2021 (Socrates Y 

WU1, 2021). For this research, the incomplete reporting of smoking status in CDARS may lead 

to missing data, potentially biasing health outcome studies where smoking is a relevant factor. 

Therefore, smoking status was not included in analysis for Hong Kong. 
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3.6.3 Prescriptions  

In Hong Kong, the electronic prescribing system (EPS) is a core element of the public healthcare 

infrastructure, governed by the Hospital Authority (Hong Kong Authority, 2015). Prescriptions 

are issued electronically, ensuring medications are routinely updated across the public 

healthcare network. Within CDARS there is longitudinal record of prescribed medications, 

which greatly supported this research. A Medicine Formulary system is in place to standardise 

the medications available across public hospitals and clinics (Department of Health, 2020). All 

prescribed medications are associated with standardised medicine codes, which streamline data 

entry and reporting in CDARS. However, in the private sector, prescriptions are still 

predominantly paper-based, meaning data from private clinics and hospitals may not be fully 

integrated into CDARS. This creates gaps in patient medication histories within the database, 

especially for those seeking care outside the public system. Despite this limitation, CDARS 

remains a powerful resource for analysing prescription trends in public healthcare. A custom 

script was developed to compile multiple CSV files into a merged dataset, facilitating the 

analysis of long-term loop diuretic usage across the T2DM cohort. Table 14  presents a snapshot 

of loop diuretic records extracted from the EPS integrated with CDARS. This approach allowed 

investigation of patients prescribed loop diuretics before and after (incident) a diagnosis of 

T2DM.  

 

Each row represents a distinct prescription event, identified by a unique Reference_Key. Key 

fields include: 

• Dispensing Date and Prescription Start/End Dates: These columns show when the 

medication was dispensed and the specific period during which the medication was 

prescribed. 

Table 14 Loop diuretics Records Extracted 
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• Medicine Item Code and Medicine Name: These fields identify the medication, in this 

case, Frusemide (a common loop diuretic), with a specific code (e.g., FRUS03 and 

FRUS01). 

• Route: Indicates the method of administration (e.g., INJECTION or ORAL). 

• Medicine Strength and Dosage: Specify the potency (e.g., 10MG/ML 2ML) and amount 

(e.g., 40.0) per administration. 

• Dosage Unit and Dispensing Duration: Describe the unit form (e.g., TABLET(S)) and 

the frequency or interval of administration (e.g., DAILY or EVERY TWENTY-FOUR 

HOURS). 

• Base Unit and Action Status: Define packaging or measurement details (e.g., AMP, 

TAB) and the status of the prescription (e.g., Issued). 

Additionally, under Hong Kong law, all pharmaceutical products must be registered with the 

Pharmacy and Poisons Board (PPB) (‘PHARMACY & POISONS BOARD OF HONG KONG 

- Pharmacy and Poisons Ordinance’, 2024). This registration checks that medications meet strict 

standards of safety, efficacy and quality before being available to the public. A pharmaceutical 

product is defined as a substance, or combination of substances, used for treating, preventing, 

or diagnosing diseases and it must conform to specific regulatory requirements.  
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3.6.4 Laboratory Tests  

In Hong Kong, LOINC (Logical Observation Identifiers Names and Codes) codes are 

internationally used in clinical laboratory systems to standardise the reporting of laboratory test 

results.  Developed by the Regenstreif Institute (Mok et al., 2013), LOINC provides a universal 

code system that enables interoperability across different healthcare providers and EMRs. This 

standardised coding system provides clarity and accuracy in reporting laboratory values, 

especially critical for population health studies. LOINC codes integrated in CDARS easily 

categorise and analyse laboratory  biomarkers, such as liver enzymes, kidney function tests, 

inflammatory markers, lipid profiles and blood glucose levels. The adoption of LOINC codes 

in Hong Kong aligns the region with international standards. Table 15 presents the extracted 

laboratory tests for this research including LOINIC code and primary purpose.  

 

Table 15 Extracted Laboratory Tests using LOINIC Codes 
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Laboratory Test Imputation  

Many times, patient records are incomplete or missing due to patient dropout, inconsistent 

testing schedules, human error and policy (Certain healthcare policies might not require or 

prioritise the collection of some data points in specific settings or patient groups). Clinical 

studies may exclude relevant patients or skew available data, misrepresenting true clinical 

relationships and leading to unreliable conclusions (van Smeden et al., 2021). Imputation 

reduces these biases by estimating probable values for missing entries (Di et al., 2022), allowing 

the records to be analysed as if it were complete. Methods like single imputation (e.g., mean 

substitution) or more complex approaches, such as multiple imputation (Austin et al., 2021), 

may fill gaps while preserving the variability and structure of the data. Initially, K-Nearest 

Neighbours (KNN) imputation was applied to handle missing laboratory test values in the 

dataset, but it significantly distorted results. KNN imputation works by averaging values from 

the "nearest" cases based on similar patient characteristics. This can create issues in clinical 

datasets, where patients often display high variability due to age, comorbidities, or lifestyle 

factors. KNN may inaccurately assume similarity between patients with different health 

backgrounds, leading to biased imputations. Therefore, the decision was to not impute and use 

a previous laboratory measurement for each patient.  

3.6.5 Mortality  

In Hong Kong, mortality records are systematically collected and maintained by the Census and 

Statistics Department (C&SD) in collaboration with the Department of Health. The data for 

mortality records come primarily from death certificates, which are required by law to be 

registered with the Hong Kong Immigration Department within 24 hours of a death. The records 

provide detailed information, including the date, location and certified cause(s) of death, which 

are using the ICD codes. These records are anonymised and stored within the CDARS system.   
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3.7 Glasgow and Hong Kong Hospitalisations 

In Glasgow hospitalisations are coded using ICD-10 (10th revision)  and in Hong Kong using an 

earlier version, ICD-9 (9th revision). These are standardised diagnostic coding systems 

developed by the World Health Organization (WHO). Figure 11 provides a historical overview 

of the development of ICD codes. The process began with the International List of Causes of 

Death (ILCD) in 1893, created by the International Statistics Institute. Over time, the list 

evolved with multiple revisions to expand and refine the classification of diseases. With ICD-6 

in 1948, WHO officially adopted the system as the "International Classification of Diseases." 

The coding structure continued to improve, with major expansions in ICD-9 and ICD-10, which 

added more detailed categories to support expanding healthcare needs. The latest version, ICD-

11, was introduced in 2022, featuring a restructured coding scheme for greater adaptability and 

more efficient clustering of related conditions. This evolution highlights the ICD’s aim to 

provide a robust framework adaptable to the changing landscape of global health. Table 15 

shows the extracted ICD codes used in both Glasgow and Hong Kong. Stroke events were 

further classified as shown in Table 17 (Kokotailo and Hill, 2005). The evolution of these ICD 

codes demonstrates an internally grounded coding system.  

 Figure 11 Historical Overview of ICD Codes  
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Table 17 Extracted ICD Hospitalisation Codes for Glasgow and Hong Kong 

Table 16 Stroke Categories in ICD-9 & ICD-10 Codes 
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3.7.1 Prevalent & Incident Heart Failure  

Heart failure (HF) is a clinical syndrome rather than a single pathological diagnosis with a robust 

definition (Theresa A McDonagh et al., 2021). Symptoms include breathlessness, ankle swelling 

and fatigue (Groenewegen et al., 2020). Diagnostic codes for heart failure in Glasgow and Hong 

Kong, derived from hospitalisation events, were identified using the international classification 

of disease, tenth revision (ICD-10) system (Table 18). ICD-10 diagnostic codes for various 

types of heart failure were grouped together to produce a data column indicating if a patient 

already had (prevalent) heart failure prior to a diagnosis of T2DM or subsequently developed 

(incident) heart failure.  

Table 18 ICD 10 Codes for Heart Failure 

 

A diagnostic code for heart failure in any diagnostic position, not just the primary position, in a 

hospitalisation record was accepted (Appendix A5). To ensure the heart failure events were 

incident, patients with prevalent heart failure were excluded by applying a 5-year look-back 

period prior to the diabetes diagnosis. 

ICD 10 Codes for Heart Failure  

Diagnostic Code  Description  

I500 Congestive Heart Failure  

I5009 Congestive Heart Failure – no information on ejection fraction  

I5099 Unspecified Heart Failure - no information on Ejection Fraction 

I5091 Heart Failure,  unspecified – Preserved Ejection Fraction  

I5000 Congestive Heart Failure – Reduced Ejection Fraction  

I110 Hypertensive Heart Disease with (Congestive) Heart Failure  

I130 Hypertensive Heart and Renal Disease with (Congestive) Heart Failure 

I132 Hypertensive heart and chronic kidney disease with heart failure and with 

stage 5 chronic kidney disease, or end stage renal disease 

I139 Hypertensive Heart and Renal Disease, Unspecified  
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3.8 Selecting a Study Period  

In EMRs, there is not a specified study period or screening stages of patients. Setting the time 

period for each patient was a sensitive iterative process. Traditionally,  most clinical studies 

investigate data sets from randomised clinical trials. A set period is of dates and expected 

outcomes is provided. However, working with longitudinal population data required additional 

steps. In some cases, patients were misdiagnosed. For example, patients were diagnosed with 

diabetes after their date of death. Most misdiagnosed dates began in the year of the pandemic. 

To overcome complications, time 0 began at the beginning of a first diabetes diagnosis. This 

was anytime between the study period presented in Figure 12. Between both dates, events were 

captured: demographics, prescriptions, laboratory tests and hospitalisations. A function was 

implemented to calculate the number of days between these important clinical characteristics.  

 

 

 

 

 

 

 

 

 

Figure 12 Study Period Representation 
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3.9 Results  

Table 19 shows the baseline characteristics of the T2DM Glasgow, West of Scotland and Hong 

Kong, China SAR Populations. The Glasgow  and Hong Kong cohort has similar age and sex 

distribution, although there are more percentage of women in Hong Kong. Ethnicity differs, 

with the Hong Kong cohort predominantly Chinese (92%) compared to Glasgow’s population 

of 85% white ethnicity. Patients in Glasgow have a higher prevalence of chronic kidney disease 

(5% vs. 1%) and atrial fibrillation (13% vs. 3%) (both p<0.001). Differences in some biomarkers 

show lower total cholesterol and triglycerides but higher neutrophil counts in Glasgow 

compared to Hong Kong (p<0.001 for all). Alanine transaminase (ALT) and aspartate 

transaminase (AST) levels are notably higher in Hong Kong (p<0.001). Metformin use is 

significantly higher in Hong Kong (68% vs. 32%; p<0.001), while insulin and thiazides are more 

frequently prescribed in Glasgow (p<0.001 for both). 

 

Table 19 Baseline Characteristics  

Demographics at Baseline:  Glasgow 
N = 46,031 

Hong Kong 
N= 273,876  

Age (years) 64 (57 – 72) 65 (56 – 75) 

Sex 
Men 

Women 

 
24,664 (54%) 
21,367 (46%) 

 
132,040 (48%) 
141,836 (52%) 

Ethnicity 
Chinese 

White 
Other 

 
N/A 
39, 290 (85%) 
6,741 (15%) 

 
251,966 (92%) 
N/A 
21,910 (8%) 

*Body Mass Index (BMI) 26 (26 – 31)   25 (23 – 26) 
Smoker (Yes) 9,416 (20%) N/A 

Death Record 11,727 (25%) 91,155 (33%) 

Socioeconomic Status (SIMD) 
        
                       Quintile 1 – Most Deprived  
                       Quintile 2 
                       Quintile 3 
                       Quintile 4  
                       Quintile 5 – Least Deprived 

 
 
18,517 (41%) 
8,355 (18%) 
6,360 (14%) 
5,643 (12%) 
7,156 (16%) 

 
64,380 (24%) 
Receiving 
comprehensive 
social security 
assistance 
(CSSA) 

Hypertension (yes) 18,999 (41%) 64,246 (23%) 

Chronic Kidney Disease (yes) 2,549 (6%) 3,381 (1%) 

Hyperkalaemia (yes) 2,336 (5%) N/A 

Atrial Fibrillation (yes) 6,083 (13%) 7,772 (3%) 

COPD (yes) 4,395 (8%) 818 (0.3%) 
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Coronary Heart Disease (yes) 7,106 (16%) 26,423 (10%) 

Myocardial Infarction (yes) 4,545 (11%) N/A 

Peripheral Artery Disease (yes) 1,650 (4%) 346 (0.1%) 

Stroke/TIA (yes) 4,010 (9%) 8,986 (3%) 

Heart Failure (yes) 4,675 (10%) 11,189 (4%) 

Anaemia  2, 302 (5%) 19,425 (6%) 

Haemoglobin A1C (mmoL) 55 (46– 61) 56 (51– 63) 

Haemoglobin (g/L) 
                                                               Men 
                                                               Women                                                                                

 
138 (134 – 151)     
134 (123 – 139)     

 
131 (132 – 139)        
129 (122 – 136) 

Lymphocyte count (x10^9/L)  2.0 (2.0 – 2.3) 1.9 (1.7 – 2.4) 

Neutrophil count (x10^9/L) 5.0 (3.8-5.6) 5.3 (4.4 – 7.1) 

Total Cholesterol (mmol) 4.1 (3.7-5.0)  4.7 (4.3 – 5.2) 

Triglycerides (mmol)  1.5 (1.0 – 2.2) 1.5 (1.1 – 1.9) 
 

Serum Albumin (g/L) 37 (35-39) 
 

40 (38 – 42) 
 

eGFR (mL/min/1.73m2) 
 

54 (44 - 61) 
 

64 (53 – 77) 
 

Potassium (mmol) 4.3 (4.0 – 4.6)  
 

4.2 (4.0 – 4.4)  
 

Alanine Transaminase – ALT (U/L) 
                                                 

22 (16-30)  
 

23 (17 – 30) 
 

Aspartate Transaminase – AST (U/L) 20 (16-26) 
 

25 (21 – 39) 
 

Alkaline Phosphatase (U/L) 89 (72-105) 
 

75 (65 – 87) 
 

Bilirubin (µmol/L) 10 (7 - 13) 
 

10.3 (9.2 – 12.8)  
 

Metformin (yes) 14,545 (32%) 185,881 (68%) 

Sulphonylureas (yes) 10,204 (22%) 173,525 (63%) 

DPP4i (yes) 5,033 (11%) 325 (0.1%) 

GLP1-receptor antagonists (yes) 2,139 (5%) 17  

Insulin (with Glucose-Lowering Agent) 2,801 (6%) 29,697 (11%) 

Statins (yes) 23,802 (52%) 61,401 (22%) 

Beta Blockers  (yes) 10,243 (22%) 92,309 (34%) 

ACEi or ARBS (yes) 20,549 (60%) 121,786 (44%) 

Calcium Channel Blockers 4,309 (9%) 109,225 (40%) 

Thiazides (yes) 12,021 (26%) 52,096 (19%) 

Loop Diuretics 11,403 (25%) 60,152 (22%) 
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3.10 Discussion 

Routinely collected EMRs provide sufficient amount of data for assessing patient health 

trajectories and overall population investigation. This enhances the ability to study large, diverse 

cohorts. Several research studies have highlighted the usability of EMRs. Glasgow and Hong 

Kong capture the key clinical characteristics for disease progression in patients with T2DM. 

The integration of these datasets highlights the advantages of EMRs for cross-population 

comparison and generalisability. It represents the universal patterns of disease burden. Despite 

the similarities in age and sex, the Glasgow cohort consisted of a more ethnically diverse 

population, while the Hong Kong cohort was predominantly Chinese, reflecting the unique 

demographics of these regions.  

Even though, populations were from different regions, the use of standard codes ensured 

consistency and comparability in EMRs. Glasgow relied upon READ Codes for laboratory 

results whereas Hong Kong used LOINC. Although Glasgow and Hong Kong represent distinct 

healthcare settings, the use of standard coding systems like ICD-9 or ICD-10 ensures 

consistency and comparability across their EMRs. Both regions leverage national mortality 

registries to track death outcomes. Scotland’s National Records of Scotland and Hong Kong’s 

Death Registry systematically use ICD codes to standardise mortality data, facilitating robust 

epidemiological comparisons. 

Prescription data, however, reflects regional differences in digital infrastructure. In Scotland, 

medications are managed through the British National Formulary (BNF) prescribing 

information system, where all prescriptions are digitally recorded, enabling comprehensive 

tracking of medication history. In contrast, Hong Kong employs an electronic prescribing 

system (e-Prescription) under the Hospital Authority, which stores medication histories. 

However, this system is not universal across private sectors or smaller healthcare providers. As 

a result, prescription records in Hong Kong may lack the completeness achieved in the UK 

system, where nearly all prescriptions, both in primary and secondary care, are digitised and 

linked to patient records. These differences highlight how standardised systems enhance 

comparability but also show regional contrasts in the completeness of prescription data, 

influencing medication trend analyses. 
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Furthermore, both cohort measurements majority laboratory test was consistent for example, 

hbA1c a threshold of ≥48 mmol/mol is used for diagnosing diabetes in NHS guidelines, NICE 

guidelines and alignment of WHO standards. However, some clinical biomarkers had different 

thresholds. The threshold for CKD diagnosis is also eGFR <60 mL/min/1.73 m², following 

international standards. However, in some studies, a higher threshold for the diagnosis of early-

stage CKD may be used in Hong Kong due to local population characteristics and clinical 

practices.  

Socioeconomic status (SES) is important for  understanding health disparities. The Glasgow 

cohort benefited from rich, detailed records of socioeconomic status, which was collected using 

the Scottish Index of Multiple Deprivation. This enabled further investigation into how 

deprivation influences health outcomes, a risk factor that has been shown to influence CVD 

progression in the UK (Nagar et al., 2021). In contrast, the Hong Kong cohort faced challenges 

with missing or delayed SES information due to issues in the government’s Comprehensive 

Social Security Assistance assignment system. The delay in assigning CSSA status, which 

determines financial aid eligibility, hindered the inclusion of socioeconomic factors in the 

analysis, limiting insights into how SES interacts with health outcomes in Hong Kong. This 

discrepancy highlights the importance of timely and SES data collection for accurate health risk 

modelling and intervention planning. 

Moreover, patients in Glasgow had a higher mortality, where UK studies often report increased 

mortality in patients with T2DM (Lin et al., 2024). In contrast, Hong Kong demonstrated 

relatively lower mortality, which aligns with findings which found that the mortality rates for 

diabetes-related complications in Hong Kong were generally lower than in Western populations 

(Wan et al., 2023).  Hong Kong carries out screening every 1 to 3 years for risk assessments  

(Disease Branch et al., 2021) in T2DM patients whereas Glasgow follows stricter annual 

monitoring protocols using national guidelines (Moran et al., 2022). However, it is important to 

consider that differences in healthcare systems, preventive measures and access to care likely 

contribute to these variations.  
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3.11 Conclusion 

The importance of transparency in processing and transforming EMRs is crucial. Clearly 

defined data sources, methods and justifying each step provides precision to the research results. 

Using EMRs from two distinct populations, GG&C in the United Kingdom and Hong Kong 

SAR, China—allows comparison of predictive models for incident heart failure and for 

mortality for these two very different populations. Substantial data transformation was required 

to prepare patient cohort for statistical analysis and further machine learning implementation. If 

these models perform similarly well, it suggests that they might be generalisable to many other 

geographies, cultures and ethnicities. This chapter demonstrates the value of integrating EMRs 

from distinct populations for understanding disease trajectories and improving predictive 

modelling in T2DM. By accounting for differences in data collection methods and leveraging 

patient data, this work contributes to advancing precision medicine and informing global health 

policy. 
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Chapter 4  “Predicting Incident Heart Failure in Patients with 

Type 2 Diabetes Mellitus: A Machine Learning Approach”. 

Abstract  

Introduction: People with Type 2 diabetes (T2DM) are at increased risk of developing Heart 

Failure (HF). Using general electronic medical records (EMRs), we applied a machine learning 

(ML) approach to identify variables that predict incident HF in patients with T2DM (Narinder 

Kaur et al., 2023). 

Methods: National Health Service Scotland EMRs were linked with the Scottish Care 

Information - Diabetes Registry (SCI-Diabetes), which includes demographic data, blood test 

results, prescriptions, comorbidities from primary and secondary care diagnostic codes and  

deaths. Incident HF was defined by the International Classification of Diseases, 10th Revision 

(ICD-10) codes for hospitalisations, with a look-back period of 5 years to exclude prevalent 

cases. We developed the random survival forest model: a non-parametric decision tree, which 

supports time-to-event data, to predict incident HF. We used Cox proportional hazards models 

to investigate associations between the prescription of loop diuretics and the risk of new-onset 

heart failure. We applied a state-of-the-art ML explainability method called Shapely Additive 

Explanations which interprets the direction of association for each contributing risk factor 

determining a patient’s risk score.  

Results: Of 29,868 patients with T2DM age ≥50 years, 8,120 (27%) had coronary artery 

disease (CAD) at the time of enrolment, and 976 (3%) received a new diagnosis of HF between 

2009-19. Key predictors of incident HF were use of loop diuretics, history of atherosclerosis 

events (myocardial infarction and angina), atrial fibrillation, lower estimated glomerular 

filtration rate (eGFR ) and older age. Individuals prescribed loop diuretics had a 5-fold higher 

risk of incident HF than those who were not (HR: adjusted for age and sex 5.89 [95% CI 5.27 – 

6.58 (<0.005)]). People with greater socioeconomic deprivation were also at greater risk of 

developing HF. The model c-statistic score was 0.87 and the brier score was 0.02 (low values 

indicate greater accuracy) for predicting incident HF. 

Conclusion: A ML model using readily available EMR data accurately predicts incident heart 

failure in patients with T2DM.   
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Patients prescribed loop diuretics are at much greater risk of receiving a diagnosis of heart 

failure, although this might reflect, at least in part, patients with a previously missed diagnosis 

of heart failure.  

4.1 Introduction  

People with T2DM are at increased risk of developing heart failure (HF) (Rosano et al., 2017). 

The pathophysiological mechanisms linking T2DM and HF are complex, involving metabolic, 

hemodynamic and inflammatory processes. Identifying individuals with T2DM who are at 

heightened risk of developing HF is crucial for early intervention and management yet remains 

a challenge in clinical practice. Machine learning (ML) has the advantage of computing several 

patient characteristics on a time-to-event basis, compared to conventional statistics. Previous 

clinical trials have shown insights into the relationships between diabetes and HF but suffer 

from limitations in population representativeness, as trial participants are typically younger and 

have fewer comorbidities with under-representation of ethnic minorities and those with the most 

deprived and most affluent socioeconomic status. Recently, Segar et al developed the WATCH-

DM model (Weight [BMI], Age, HyperTension, Creatinine, HDL-C, Diabetes Mellitus control 

[fasting plasma glucose]) machine learning risk score model using the variables denoted by the 

acronym selected from a total of 147  variables. WATCH-DM was applied to a clinical trial 

dataset called ACCORD (Segar et al., 2019). However, the model is based on patients who were 

required to fulfil the inclusion and exclusion criteria for a trial. Also, those invited to participate 

were selected by clinical experts and because most of those invited declined to participate, the 

results may not be generalisable beyond the trial population. Many people with severe chronic 

conditions are excluded from clinical trials. The incidence of HF may also vary widely by race 

and socioeconomic status. Risk score models for predicting incident HF in patients with T2DM 

should be developed and tested in representative populations but ensuring diverse characteristics 

if the intention is for them to be generalised.  

Survival analysis models, including the Cox proportional hazards model, have long been the 

standard for time-to-event data (Razaghizad et al., 2022) but face challenges with assumptions 

like proportional hazards and handling correlated variables. Alternatively, survival-based  ML 

models, handle high-dimensional data and uncover non-linear relationships, potentially 

improving predictive accuracy.  



66 

 

These models can be paired with interpretability tools, such as SHapley Additive exPlanations 

(SHAP), to ensure clinicians can trust and act on the predictions. Interpretability is important in 

clinical practice to foster healthcare professionals trust in the predictive models, enabling them 

to evaluate and potentially improve on the model and to act more effectively on modifiable risk 

factors.  

 

4.2 Aim 

To identify key predictors of incident HF in a population of patients with T2DM managed by 

NHS Greater Glasgow & Clyde (GG&C) using a machine learning approach.  

 

4.3 Data Sources 

The Glasgow SafeHaven dataset linked with SCI-diabetes (see Chapter 3, section 3.5.6) was 

used for this Chapter. 

 

4.4 Study Patient Information 

We obtained National Health Service (NHS) electronic medical records (EMR) of routinely 

collected health data for GG&C for people aged ≥50 years with an incident diagnosis of T2DM 

between 1st of January 2009 to 31st December 2019. Data were linked with the SCI-diabetes 

(see section 5.3) dataset using the Glasgow SafeHaven trusted research environment. The 

prevalence and incidence of HF was identified using ICD-10 codes in any hospitalisation 

position. Loop diuretic prescriptions were defined by the British National formulary (BNF) 

classification. The decision was made to focus on repeat prescriptions of oral loop diuretics, 

specifically those prescribed for periods exceeding 90 days, as the relevance of occasional, 

isolated prescriptions is uncertain. 

 



67 

 

Patient characteristics include demographic details such as age, sex, socioeconomic status and 

ethnicity. Prevalent comorbidities (chronic kidney disease (CKD), chronic obstructive 

pulmonary disease (COPD), atherosclerotic heart disease, hyperkalaemia, peripheral artery 

disease, stroke, myocardial infarction, atrial fibrillation, and angina) were defined by the 

International Classification of Diseases, 10th Revision (ICD-10) codes.  

The following routinely collected blood tests were captured as close as possible to the time of 

T2DM, with a window of ±6 months: glucose, haemoglobin A1c, haemoglobin, total 

cholesterol, HDL-C, LDL-C, VLDL, triglycerides, serum albumin, serum creatinine, estimated 

glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio, potassium, lymphocytes, 

neutrophils, AST, ALT, alkaline phosphatase and bilirubin. Treatments for diabetes, repeated 

loop diuretics (3 or more consecutive prescriptions), cardiovascular and lipid-lowering 

medications were extracted ±180 days of T2DM diagnosis.  

Figure 13 shows the consort diagram for this analysis. After excluding  duplicate entries , 

47,396 unique patients had a diagnostic label of diabetes. The first record of T2DM was used 

as the incidence date, except for 4,947 (9%) patients who had a test showing impaired glucose 

tolerance or raised fasting plasma glucose and subsequently received treatment for diabetes 

without a formal diagnosis of T2DM; for these patients the date of entry into the database was 

used as the incidence date. Of these, n=1,365 were excluded because they either had Type-1 

diabetes mellitus or were only prescribed insulin (unusual for incident T2DM). Those with 

prevalent heart failure (extracting from ICD codes in patients with a history of heart failure: 

before diabetes diagnosis date)  (n = 627) were excluded, with a look-back period of 5 years. 

Many patients had missing values for BMI, which appeared informative. This is dealt with 

further in chapter 7. Between 1st January 2009 and 31st December 2019, out of 29,868 patients 

included, 965 (3%) developed HF. 
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4.5 Methods  

4.5.1 Laboratory Tests & Correlation Analysis 

Correlation analysis was key to uncovering linear and non-linear relationships, especially 

amongst laboratory tests presented in section 4.6.1  (lipid profile, liver function, kidney function, 

and haematology). Correlations were carried out to reduce highly correlated variables. 

Correlation methods to assess the relationships between variables were used: Spearman Rank, 

Pearson's, and Phi coefficients.  

Figure 13  Consort Diagram of T2DM & Incident HF 
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Spearman is a non-parametric measure of the strength and direction of association that exists 

between two variables measured on at least an ordinal scale. Pearson’s rho measures the strength 

and direction of the relationship between two variables. When one variable changes, the other 

variable changes in the same direction. It assumes both variables are continuous. Phi (or mean 

square contingency coefficient) denoted by φ is a measure of association between two naturally 

dichotomy variables (Baak et al., 2019). This refers to non-linear relationships, measuring 

variables that are completely opposite. Since linear regression assumes a linear relationship 

between the input and output variables, it fails to fit complex datasets accurately. The 

application of Phi correlations due to their ability to capture non-linear relationships was further 

investigated for incident HF. This analysis identified clusters of closely related tests, simplifying 

the selection process by eliminating redundant variables. Throughout the process, expert 

cardiologist input was integral to verifying the sense of computational relationships.  

Figure 14 outlines an example of the phi correlation for five relationships. For example, 

triglyceride concentrations are consistently associated with serum creatinine concentrations, due 

to decreased kidney function. Also, there were high correlations between BMI and a diagnosis 

of hypertension. Correlations were useful to discover interesting relationships amongst blood 

tests. For further data modelling, correlations identified strong associations, although correlation 

tests do not necessarily mean causal relationships amongst variables. In terms of working with 

high-dimensional data advanced feature selection methods were applied to validate the features 

influencing survival probability.  

 

 

 

 

 

 
Figure 14 Phi Correlation Example 
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4.5.2 Survival Analysis  

Survival analysis investigates the time-to-events. It focuses on estimating and interpreting the 

time until an event, such as incident heart failure (Srujana et al., 2022), occurs, considering the 

possibility of censoring due to lack of long-term, or loss to, follow-up. Typically, standard 

machine learning models such as linear regression to do not account for time to event data 

(Prinja et al., 2010).  

Key Concepts in Survival Analysis: 

1. Survival Time: 

o The primary outcome of interest, often denoted as T, represents the time from a 

defined starting point (e.g., diagnosis, treatment initiation) to the occurrence of 

the event of interest (e.g., death, relapse). 

2. Event: 

o The specific outcome or occurrence being studied (e.g., death, disease 

recurrence, machine failure). 

3. Right-Censoring: 

o A unique aspect of survival data where the event of interest has not occurred for 

some subjects during the study period. These subjects are referred to as 

"censored." Types of censoring include right-censoring (most common), left-

censoring, and interval-censoring. 

4. Survival Function: 

o The survival function S(t) represents the probability that the event of interest has 

not occurred by time t (Clark et al., 2003). It is defined as:  

𝑆(𝑡) = 𝑃(𝑇 > 𝑡)  

5. Hazard Function: 

o The hazard function λ(t) represents the instantaneous rate of occurrence of the 

event at time t, given that the subject has survived up to time t. It is defined as:  
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𝜆(𝑡) = 𝑙𝑖𝑚
𝛥𝑡→0

𝑝(𝑡) ≤ 𝑇 < 𝑡 + 𝛥𝑡|(𝑇 ≥ 𝑡)

𝛥𝑡
 

Where:  

• 𝜆(𝑡) is the instantaneous hazard rate at time 𝑡. (Risk of heart failure) 

• 𝑝(𝑡) ≤ 𝑇 < 𝑡 + 𝛥𝑡|(𝑇 ≥ 𝑡)  is the conditional probability that the event occurs 

in the small-time interval,  given that the individual has survived up to time 𝑡. 

• 𝛥𝑡 is the small-time interval 

• 𝑙𝑖𝑚
𝛥𝑡→0

  The limit ensures that the hazard function describes risk at a specific 

moment.  

6. Cox Proportional Hazards Model: 

o A semi-parametric model that assesses the effect of multiple covariates on the 

hazard rate. The model assumes that the covariates have a multiplicative effect 

on the hazard function.  

o The hazard function in the Cox model is given by: 

𝜆(𝑡|𝑋) = 𝜆0(𝑡) ⅇ𝑥𝑝(𝛽, 𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝜌) 

where 𝜆0(𝑡) is the baseline hazard and β represents the coefficients for the 

covariates X. 

4.5.3  Kaplan Meier  

Kaplan Meier plots were applied to investigate patients developing HF when prescribed a loop 

diuretic or not. Kaplan-Meier analysis is a non-parametric statistical method used to estimate 

the survival function from time-to-event data (Bewick et al., 2004). The Kaplan-Meier survival 

curve estimates the probability that a patient will survive (i.e., not experience heart failure) 

beyond a certain time 𝑡. Mathematically, the survival function 𝑆(𝑡) is defined as: 

𝑆(𝑡) =  
𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖ⅇ𝑛𝑡𝑠 𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝑏ⅇ𝑦𝑜𝑛𝑑 𝑡𝑖𝑚ⅇ 𝑡 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖ⅇ𝑛𝑡𝑠 𝑎𝑡 𝑡ℎⅇ 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑖𝑚ⅇ 𝑡 
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The Kaplan-Meier estimator is calculated step-by-step at each time point where an event occurs. 

The time is divided into intervals based on when heart failure events occur. At each event time 

𝑡𝑙 ̇ , the survival probability is calculated as: 

𝑠(𝑡𝑖) = 𝑠(𝑡𝑖 − 1) × (1 −
𝑑𝑖

𝑛𝑖
) 

where:   

• 𝑑𝑖 is the number of events (incident heart failure) at time 𝑡𝑖.  

• 𝑛𝑖 is the number of patients at risk just before time 𝑡𝑖 those who have not yet had the 

event or been censored.  

• 𝑠(𝑡𝑖 − 1) is the survival probability up to the previous event time. 

The survival curve is a step function that decreases with each event, reflecting the reduction in 

the proportion of patients who have not yet experienced the event. Finally, the log-rank test is 

used to compare the survival distributions between the groups (i.e. prescribed loop diuretics vs. 

not prescribed). It is based on comparing the observed and expected number of events in each 

group across the entire study period. Additionally, the cox proportional hazards model 

investigated associations between the prescription of loop diuretics and the risk of incident heart 

failure.  

4.5.4 Penalized Cox Regression  

The standard Cox proportional hazards model fails to estimate the coefficients of several 

features in an analysis because internally it tries to invert a matrix that becomes non-singular 

due to correlations among features. To overcome this, the Elastic Net Cox regression model, 

based on the Cox proportional hazard assumption is used. It performs automatic variable 

selection and regularisation using ridge and lasso regression (Lai et al., 2013). Ridge reduces 

the impact of features that are not important in predicting the outcome. Lasso improves upon 

the ridge method. It eliminates many features and reduces overfitting. Moreover, lasso also has 

constraints in its principles for survival analysis for high-dimensional data. If there is a group 

of variables among which the pairwise correlations are very high, then the lasso tends to 

arbitrarily select only one variable from the group. However, this is not reliable for discovering 

the key prognostic factors for the drivers of disease progression.   
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Figure 15 presents an example of Elastic Net feature selection of the baseline model. The x-

axis represents all variables with reduced coefficients. The coefficient value signifies how much 

the mean of the dependent variable changes given a one-unit shift in the independent variable 

while holding other variables in the model constant. The alpha is a parameter that determines 

how much “weight” is given to both L1 (lasso)  & L2 (ridge) penalties. Alpha is an arbitrary 

hyper-parameter that controls the amount of shrinkage. All coefficients are shrunk almost to 

zero. When alpha values in the Y-axis are decreased, the coefficients value increases.  Higher 

or lower coefficients mean they have effects on target variables. For example, age has a large 

coefficient for a wide range of alpha. Whereas triglycerides start to dominate with a small alpha. 

However, discovering prognostic factors using the elastic net is model specific (Suchting et al., 

2017). There is also a loss of interpretability as coefficients shrunk to zero, which is an essential 

requirement for clinical decision making.  

 

 

 

 

 

 

 

 

4.5.5 Random Survival Forests in Predicting Incident Heart Failure 

For this study, the Y array structure was for  incident heart failure, as illustrated in Figure 16. 

The Y outcome was represented as a record array that included both the occurrence of an 

incident HF event and the duration until the event occurred. The random survival forest (RSF) 

method, was applied to assess all contributing risk factors for the development of HF.   

Figure 15 Elastic Net Feature Selection Baseline Model 
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The RSF model supports time-to-event data and censoring (Ishwaran, Udaya B. Kogalur, et al., 

2008). RSF is a machine learning algorithm that combines the concepts of survival analysis and 

random forest mechanism. It is a non-parametric approach that can handle complex interactions 

and non-linear relationships between predictors and survival outcomes. This method is robust 

to violations of Cox proportional hazards assumption and can handle high-dimensional datasets.  

The RSF model predictor is an ensemble (group) formed by combining the results of many 

survival trees (Ishwaran, Udaya B Kogalur, et al., 2008). The dataset is split into multiple 

random samples. It is an estimator that fits several survival trees on various sub-samples of the 

dataset and uses averaging to improve the predictive accuracy and control over-fitting. In each 

survival tree, the quality of a split is measured by the log-rank splitting rule.  

The log-rank splitting rule is a powerful criterion used in survival trees to determine the optimal 

way to split data at each node. It effectively separates subsets of patients with different survival 

distributions, which is crucial for building accurate and informative survival models.                              

4.5.6 Validation of Machine Learning Model(s) 

To validate the model, the penalized Cox regression approach was applied. The penalty applied 

in penalized Cox regression forces the model to prioritise variables that have the strongest 

association with the outcome while reducing the influence of weaker, less significant predictors. 

In practice, this means that many variables with little or no contribution to predicting heart 

failure are either shrunk to near zero or entirely excluded from the model. This process 

effectively eliminates these less relevant features and focuses on the most significant predictors, 

not to analyse all contributing factors. This approach yields a focused model, suited to 

identifying key risk factors rather than presenting an exhaustive list of contributing variables. 

Figure 16 Y Outcome for incident HF risk prediction 
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4.5.7 Evaluation  

Given the complexity of patient data with censored observations, specialised metrics are 

required to assess the performance of survival models. The prediction errors are measured by 

performance evaluators: c-index and time brier score The concordance index (C-index) is a 

metric in survival analysis that provides an assessment of the model discrimination power to 

predict incident heart failure. It measures the concordance between the predicted and actual 

event times (Alabdallah et al., 2022). A score close to 1.0 means the model is reliable and a 

score close to 0.5 or below the model is predicting at random (not reliable). Defined as:  

𝐶 − 𝑖𝑛𝑑ⅇ𝑥 =
1

|𝑃|
∑ 1

(𝑖,𝑗)∈𝑃

[ℎ̂𝑖 > ℎ̂𝑗] 

Where: 

• 𝑃 is the set of all comparable patient pairs (i.e., where one patient experiences an event 

before the other), 

• ℎ̂𝑖 is the predicted risk or hazard for patient 𝑖. 

• 1[⋅] is the indicator function returning 1 if true and 0 otherwise. 

The time brier score evaluates the accuracy of probabilistic predictions. It is a sum of both a 

calibration component and a discrimination component, with lower scores indicating improved 

model accuracy.  

Defined as:  

𝐵𝑠(𝑡) =
1

𝑁
∑ −𝑤𝑖(𝑡)

𝑁

𝑖=1

⋅ (�̂�𝑖(𝑡) − 𝛿𝑖(𝑡))
2
 

Where:  

• 𝑁 is the number of individuals, 

• �̂�𝑖(𝑡) is the predicted survival probability for individual 𝑖 at time 𝑡, 

• 𝛿𝑖(𝑡) is the event indicator (1 if event occurred before time 𝑡, 0 otherwise), 
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• 𝑤𝑖(𝑡) is a weighting function to handle censoring, typically using Inverse 

Probability of Censoring Weighting (IPCW). 

4.5.8 Interpretability Methods 

Stepwise Backward Selection 

In stepwise backward selection, the RSF model starts with all variables included and then 

systematically removes variables that are found to be less important. The method works by 

fitting a model with all variables and then sequentially removing variables that have the least 

impact on the model's predictive power until only the most important variables are left. Feature 

permutation was the first interpretation method to determine the risk factors of incident HF in 

patients with type 2 diabetes. This method was carried out by measuring how the model score 

decreases when a feature is not available, thus the drop in the model score is indicative of how 

much the model depends on the feature.   

 

Shapely Additive Explanations 

To overcome these limitations, an advanced machine learning interpretability: shapely additive 

explanations (SHAP) was applied. SHAP is a better alternative to feature permutation, based on 

the magnitude of feature attributions rather than the decrease in model performance. Each 

variable is measured independently, avoiding collinearity (highly correlated variables). SHAP 

identified risk factors of incident HF. A numerical value is assigned to each feature that 

represents its contribution to the predicted outcome. The direction is a positive or negative value, 

indicating whether the factor increases or decreases the risk of incident HF. The process was 

repeated until the desired level of model performance was achieved.  

An extended feature of SHAP called the “Tree Explainer” supports tree-based machine learning 

models. TreeExplainer provides an understanding of the global (entire dataset) model structure 

based on many local (individual) explanations.  Local explanations represent an overview of 

each patient profile as shown in Figure 17 compared to traditional black-box prediction 

(Louhichi et al., 2023). Local explanations are critical for personalised insights, especially 

understanding the reasoning behind a risk score for an individual patient.  
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Figure 17 SHAP analysis for local explanation (for individual patient) 
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4.6 Results  

 

4.6.1 Baseline Characteristics of T2DM Patients in Glasgow for 

Incident Heart Failure 

Of 29,868 patients with T2DM aged ≥50 years, the median [quartiles] age was 63 [56 to 70] 

years, 45% were women, 88% were White, 30% were current smokers, 41% were in the most 

deprived quintile of the Scottish population and 5,367 (18%) had established atherosclerotic 

heart disease (AHD). Of those with BMI measured, 50% were classified as obese or severely 

obese. As expected, patients had high blood glucose concentrations and most had an elevated 

HbA1c (42-47 mmol/mol indicates pre-diabetes or well-managed diabetes; >4.8 mmol/mol is 

considered diagnostic for diabetes). On average serum cholesterol and triglycerides were not 

elevated, perhaps because many patients were on lipid lowering therapies. Many patients were 

on anti-hypertensive agents but the dataset does not include blood pressure. On average, renal 

function was impaired with most patients being in chronic kidney disease (CKD) stage III 

(eGFR 30-59 ml/min/1.73m2). Liver function tests, haemoglobin, white cell counts were 

normal, on average. The baseline population characteristics are shown in Table 20.  
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Table 20 Incident Heart Failure in Patients with T2DM prescribed or not prescribed loop diuretics. 

Demographics at Baseline 
(%)  or Median (25/75) 

Overall Glasgow 
Population  
 
 

 
N= 29,868  

Not Prescribed 
Loop Diuretics 
at time of 
enrolment 

 
N = 23,546 

Prescribed 
Loop Diuretics 
at time of 
enrolment 

 
N = 6,322 

P-value 

 
Age, (y) 

 
 
63 (56 – 70) 

 
 
62 (56 – 69) 

 
 
67 (60 – 74) 

 
<0.001 

Sex    <0.001 

Men 
Women 

16,335 (55%) 
13,533 (45%) 

13,495 (57%) 
10,051 (43%) 

2,840 (45%) 
3,482 (55%) 

 

Ethnicity            

                                                                
                                                        White                                                                                                              
                                                        Asian  
                                                        Other  

                                                  Unknown 

 

 
26,332 (88%) 
1,707 (6%) 
1,537 (5%) 

292 (1%) 

 

20,617 (88%) 
1,440 (6%) 
1,251 (5%) 
238 (1%) 

 

5,715 (90%) 
267 (4%) 
286 (5%) 
54 (1%) 

<0.001 

*Body Mass Index (BMI) 
 
BMI Classification   

                                      Normal  
                                            Overweight 
                                                    Obese                
                                    Severely Obese 

                                         Underweight                                     

 30 (27 – 34) 
 
 

4,324 (14%) 
10,241 (34%) 
12,659 (42%) 
2,384 (8%) 

260 (1%) 

 30 (27 – 34) 
 
 

3,468 (15%) 
8,337(35%) 
9,899 (42%) 
1,660 (7%) 

182 (1%) 

 31 (27 – 37) 
 
 

856 (14%) 
1,904 (30%) 
2,760 (44%) 
724 (12%) 

78 (1%) 

 

*Current Smoker (yes)  
9,061 (30%) 

 
7,141 (30%) 

 
1,920 (30%) 

<0.001 

Socioeconomic Status  (SIMD) 
 
                   Quintile 1 – Most Deprived  
                   Quintile 2 

                   Quintile 3 
                   Quintile 4  
                   Quintile 5 – Least Deprived  

 
 
12,009 (41%) 
5,515 (18%) 

4,084 (14%) 
3,539 (12%) 
4,631 (16%) 

 
 
9,315 (40%) 
4,345 (18%) 

2,823 (14%) 
3,200 (12%) 
3,863 (16%) 

 
 
2,784 (44%) 
1,170 (19%) 

884 (14%) 
768 (12%) 
764 (11%) 

0.04 

Comorbidities n(%)  

Atherosclerotic Heart Disease (yes) 5,367 (18%) 3,748 (16%) 1,619 (26%) <0.001 

Angina (yes) 4,156 (14%) 2,831 (12%) 1,325 (14%) 0.12 

Atrial Fibrillation (yes) 3,573 (12%) 2,058 (9%) 1,515 (12%) <0.001 

Chronic Obstructive Pulmonary 

Disease (yes) 
2,865 (9%) 1,742 (7%) 1,123 (10%) 

<0.001 

Chronic Kidney Disease (yes) 1,457 (5%) 730 (3%) 727 (6%) <0.001 

Hyperkalaemia (yes) 1,452 (5%) 789 (3%) 663 (5%) 0.03 

*Hypertension (Primary Care) (yes) 18,251 (60%) 14,086 (60%) 4,165 (66%) <0.001 

Myocardial Infarction (yes) 3,241 (11%) 2,196 (9%) 1,045 (17%) <0.001 

Peripheral Artery Disease (yes) 933 (3%) 581 (2%) 352 (6%) 0.73 

Stroke/TIA (yes) 2,678 (9%) 1,877 (8%) 801 (13%) <0.001 

Lab Tests * 6 months prior to or upon 
a Diabetes Diagnosis 

 

Plasma Glucose (mmoL) 8.8 (6.7 – 10.1)  9.1 (7.1 – 10.4)  9 (6.9 – 10.8)  0.04 

Haemoglobin A1C (mmol/mol) 54 (46– 63) 54 (46– 63) 54 (46 – 63) 0.28 

Haemoglobin (g/L) 

                                                         Men 

                                                    Woman  

 
139 (134 – 152)        

136 (124 – 140)  

 
140 (136 – 152) 

126 (136 – 140) 

 
136 (129 – 149)  

118 (131 – 137) 

<0.001 

Total Cholesterol (mmol) 
4.1 (3.7-5.0)  

 

4.2 (3.7 – 5.1)  

 

4.0 (3.6 – 4.8)  

 

0.14 
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Triglycerides (mmol)  
1.8 (1.3 – 2.3) 
 

1.8 (1.3 – 2.3) 
 

1.8 (1.5 – 2.3) 
 

<0.001 

Serum Albumin (g/L) 
38 (36 – 40) 
 

38 (36 – 40) 
 

37 (34 -  39) 
 

<0.001 

eGFR (mL/min/1.73m2) 
53 (43 – 60) 
 

53 (44 - 60) 
 

49 (39 – 58) 
 

<0.001 

Alanine Transaminase – ALT (U/L) 
                                                 

23 (16 – 31) 
 

24 (17 – 32) 
 

20 (14 -  27)  
 

<0.001 

Aspartate Transaminase – AST (U/L) 
21 (17 – 26) 
 

21 (17 – 26) 
 

19 (16 – 24) 
 

<0.001 

Alkaline Phosphatase (U/L) 
88 (71 – 104) 
 

87 (71 – 102) 
 

91 (72-108) 
 

<0.001 

Neutrophils (x10^9/L) 

 
5.0 (4.1 – 6.0) 
 

5.1 (4.0 – 5.7) 
 

5.0 (3.8 – 5.5) 
 

<0.001 

Lymphocytes (x10^9/L) 

  
2.0 (2.2 – 2.3) 
 

2.0 (1.8 -  2.2)  
 

2.0 (1.6 – 2.4) 
 

<0.001 

Bilirubin ( µmol/L)  
10 (7 – 13) 

 

10 (8 - 13) 

 

10 (7 – 13) 

 

<0.001 

Potassium (mmol) 
4.3 (4.0 – 4.6)  
 

4.3 (4.0 – 4.6) 
 

4.3 (4.0 – 4.7)  
 

<0.001 

Medications +/- 180 days of diabetes 
diagnosis, n (%)  

Metformin (yes) 10,006 (32%) 7,140 (30%) 2,866 (45%) 
0.26 

DPP4i (yes) 4,155 (14%) 3,100 (13%) 1,055 (17%) 
0.18 

Insulin (taken with Glucose-lowering 
Drug) 3,058 (10%) 2,109 (7%) 949 (13%) 

<0.001 

Sulphonylureas (yes) 6,825 (22%) 4,872 (21%) 1,980 (31%) 
0.72 

SGTL2i (yes) 3,681 (12%) 3,093 (13%) 588 (9%) 
<0.001 

Statins (yes) 14,678 (48%) 10,271 (44%) 4,407 (70%) 
<0.001 

Beta Blockers  (yes) 6,498 (21%) 4,616 (19%) 1,882 (30%) 
<0.001 

ACEi or ARBS (yes) 12,737 (63%) 8,693 (59%) 4,044 (78%) 
0.11 

MRAs (yes) 1,354 (4%) 477 (2%) 877 (14%) 
<0.001 

Calcium Channel Blockers 2,344 (8%) 956 (4%) 1,388 (22%) 
<0.001 

Antiplatelets (yes) 6, 852 (22%) 4,872 (21%) 1,980 (31%) 
0.72 

Anticoagulants (yes) 2,344 (8%) 956 (4%) 1,388 (22%) 
0.09 

Thiazides (yes)# 7,823 (26%) 5,818 (25%) 2,005 (32%) 
<0.001 

*Primary Care utilises patient READ CODES 
 

~ It is likely that most patients were switched from thiazide to loop diuretics in the preceding month rather than taking loop 

and thiazide diuretics at the same time as this is an extremely powerful combination that would probably not be tolerated by 

patients unless they had end-stage renal disease or severe heart failure. 
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4.6.2 Incident Heart Failure Risk Prediction Model(s) 

Table 21 presents the key factors predicting incident HF in the first RSF prediction model, 

which included use of loop diuretics, history of atherosclerosis (myocardial infarction, angina, 

stroke, peripheral artery disease), estimated glomerular function ratio (eGFR), higher neutrophil 

counts (suggesting inflammation) and older age. Socioeconomic status of those most deprived 

also contributed to the risk prediction. Model interpretation was carried out utilising shapely 

values. The absolute SHAP value shows us how much a single feature affected the prediction 

displayed on the x-axis. It takes the mean average value for each feature. Here, all the values on 

the left represent the observations that shift the predicted value in the negative direction while 

the points on the right contribute to shifting the prediction in a positive direction.  All the features 

are on the left y-axis. The arrows in red show that increasing values of a variable are associated 

with HF and arrows in blue show that  decreasing values of a variable are associated with HF. 

The second model excluded the strongest risk predictor in the initial analysis, loop diuretics, for 

two reasons. Firstly, loop diuretics might be considered to indicate undiagnosed HF rather than 

being a predictor of incident disease. Secondly, eliminating a strong predictor might reveal new 

predictors that had some association with loop diuretics. Model performance fell substantially 

to 0.79 (C-index) when loop diuretics were excluded from the model but no new strong predictor 

was identified.  

Table 21 Random Forest Survival Baseline Model Results including and excluding Loop diuretics 
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4.6.3 Advanced Cox Regression – Elastic Net  

The Cox Elastic Net model automatically selects the most important variables for predicting the 

development of HF, while down weighting the influence of less important variables. Table 22 

presents the results of an Elastic Net regression model used to predict HF. The model’s C-index 

score was 0.82, indicating strong discriminative ability, and a Time Brier score of 0.02, 

demonstrating excellent calibration and predictive accuracy over time. The top ten predictors of 

incident HF are listed in rank order based on their contribution to the model. Variables marked 

with a red arrow indicate that higher values are associated with an increased risk of heart failure, 

while variables with a blue arrow indicate that lower values are associated with increased risk. 

                                                           

   Table 22 Elastic Net Model Validation 
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4.6.4 Kaplan Meier & Cox Proportional Hazards 

Figure 18 shows that patients with T2DM prescribed a loop diuretic at baseline (in red) had a 

higher probability of receiving a diagnosis of H F. In a Kaplan-Meier analysis, the number of 

individuals at risk of experiencing a HF event may change over time due to censoring. When an 

individual is censored before experiencing a HF event, they are removed from the at -risk 

population at the time of censoring.  

 

 

 

 

 

 

 

The Cox proportional hazards model investigates associations between the prescription of loop 

diuretics and the risk of incident HF, shown in Table 23. Men have a 48% higher risk of a 

diagnosis of HF compared to women (HR = 1.48, 95% CI 1.30 to 1.69; p < 0.005). For older 

age, the risk of heart failure increases by 4% per year (HR = 1.04; 95% CI 1.04 to 1.05; p < 

0.005). Individuals prescribed loop diuretics had a 5-fold higher risk of incident HF than those 

who were not (HR: adjusted for age and sex 5.40 [95% CI 4.72 – 6.17 (<0.005)]). Note that 

there was not an early stepwise increase in the diagnosis of heart failure in those receiving loop 

diuretics at baseline that might be expected if loop diuretics had a close temporal association 

with a diagnosis of heart failure. This observation neither supports nor refutes the concept that 

loop diuretic use is merely a marker for a missed diagnosis of heart failure. 

Figure 18 Kaplan Meier for patients with T2DM prescribed or Not prescribed Loop diuretic 
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4.6.5 Investigation of Comorbidities  

Finally, the initial random survival forest model was re-run (Table 24). Additional 

comorbidities, including atrial fibrillation (AF), coronary artery disease events (ICD-10 codes: 

myocardial infarction, angina, ischemic heart disease) and chronic kidney disease (CKD), were 

included. These conditions are recognised contributors to the pathophysiology of HF, either 

through direct cardiac involvement or through indirect effects on the cardiovascular system. The 

inclusion of these variables improved the model's overall performance, as evidenced by a higher 

concordance index and lower Brier score, signifying better risk discrimination and calibration.  

Of note CKD and low eGFR both predicted a greater risk of incident HF. From a clinical 

perspective, CKD indicates a low eGFR, but clinicians vary on which threshold to use. Some 

will use <30 and others <60 mL/min/1.73m2 and others will also take urinary albumin excretion 

into account. Accordingly, a generalisable model should logically prefer use of eGFR and 

albuminuria rather than be subject to the vagaries of subjective clinical classification. 

Most patients did not have AF, represented by the large blue shape. A minority of patients had 

atrial fibrillation and for some it was a strong predictor of risk (large positive SHAP value). AF 

was a strong predictor of incident HF. AF may be associated with the initiation of loop diuretics 

even in the absence of a diagnosis of HF (Zakeri et al., 2021a) which may partially account for 

its strong predictive association with incident HF. AF may precipitate congestion, leading to the 

initiation of loop diuretics but only some patients receive an immediate diagnosis of HF, whilst 

it is delayed in others.  

 

Table 23 Cox proportional hazards Model to investigate associations between the prescription of Loop diuretics 
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Table 24 Additional Comorbidities included in the Random Survival Forest Baseline Model 
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4.7 Discussion  

This analysis suggests that loop diuretics are a key risk marker for developing HF. Congestion 

(excess water and salt retention) due to cardiac dysfunction is a key feature of the heart failure 

syndrome and cause of symptoms such as exertional breathlessness and ankle swelling. Loop 

diuretics, which promote water and sodium excretion by the kidneys, are the most important 

treatment for congestion, relieving symptoms and signs (Friday et al., 2024). If the reasons for 

initiating loop diuretics are not investigated, the diagnosis of HF may be missed. Patients treated 

with loop diuretics have a higher mortality, whether or not they receive a diagnosis of HF. This 

might be because the diagnosis of HF, a condition with a prognosis worse than many cancers, 

has been missed. Without the correct diagnosis, treatment is unlikely to be optimal. However, 

loop diuretics also increase urinary potassium loss, impair renal function and activate the renin-

angiotensin system, which could drive the progression of cardiovascular disease and increase 

the risk of sudden death. Loop diuretics may serve as both a marker and a potential contributor 

to HF progression. Their use often reflects a more advanced stage of HF, even without a formal 

diagnosis (Mullens et al., 2019; Felker et al., 2020).  

This study included loop diuretics as a risk predictor  for incident heart failure, however the role 

of loop diuretics in the casual pathway remains debatable, as they may indicate undiagnosed 

heart failure rather than serve as an independent predictor. To provide further insights into loop 

diuretics as a risk factor or risk marker for incident HF, the random survival forest model was 

re-run excluding this variable. Exclusion of loop diuretics reduced the model’s overall predictive 

performance. Although other predictors, such as other adverse CVD events, increased in 

importance, none fully compensated for the exclusion of loop diuretics and no new variable 

strongly associated with outcome was identified.  

This analysis included patients with multiple chronic conditions to assess the impact of 

comorbidities on the risk of developing HF. By focusing on individuals with a wide range of 

comorbidities—such as atrial fibrillation, hypertension, hyperkalaemia, chronic kidney disease 

and adverse cardiovascular events—the research captured the cumulative burden these 

conditions impose on cardiovascular health. The risk of developing heart failure increased with 

each additional chronic condition. This highlights the need for integrated care for patients with 

multi-morbidity. 
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The higher cumulative incidence of HF in those prescribed loop diuretics in this study aligns 

with existing knowledge about the complex interplay between diuretic use, kidney function and 

HF risk.  

Patients with kidney dysfunction (eGFR <30ml/min) had a much higher risk of developing HF, 

especially if prescribed loop diuretics (Mullens et al., 2019; Felker et al., 2020). The adverse 

effect of loop diuretics on kidney function may increase with long-term use, or when patients 

are dehydrated, are on other medications that can impair kidney function and in those who 

already have poor kidney function (Guo et al., 2023). Obesity may also be an under-recognised 

risk factor for chronic kidney disease (CKD) (Verma et al., 2023), perhaps because obesity is 

associated with poorer glycaemic control, hypertension, dyslipidaemia and low-level chronic 

inflammation. This analysis shows that most patients with T2DM in GG&C are over-weight, 

obese or severely obese (Chapter 6.7).  

The relationship between HF and impaired kidney function is well-established. Studies like the 

ALLHAT trial (Khayyat-Kholghi et al., 2021) demonstrate that worsening kidney function, 

indicated by a decline in estimated glomerular filtration rate (eGFR), is an important contributor 

to the development of HF. As the heart weakens, its ability to maintain adequate blood flow to 

the kidneys diminishes, leading to impaired kidney function. This reduction in renal perfusion 

exacerbates the cycle of worsening heart failure, as the kidneys' ability to excrete sodium and 

water becomes compromised, contributing to fluid overload and further stressing the heart. 

Rapid declines in kidney function have been identified as strong predictors of incident heart 

failure, even in individuals who initially present with normal renal function (Bueno Junior et 

al., 2023). This highlights the importance of recognising kidney impairment as a risk factor for 

developing  heart failure.  

Identifying heart failure development in patients with T2DM requires time-to-event modelling. 

It accommodates right-censoring, time-dependent risks and interactions between clinical 

factors. The Elastic Net linear regression model highlighted a small number of key predictors 

of incident HF. This method was model-specific and does not fully account for the multitude of 

contributing factors involved in HF development. While powerful in its simplicity and clarity, 

it may overlook some of the complex interactions between variables in large datasets. Elastic 

Net assumes linear relationships only.  
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The RSF model approach implemented in this study excels in integrating and processing a large 

number of variables, including those that may interact in complex and non-linear ways (Miao 

et al., 2015), without the need for manual selection, allowing it to capture a broader and 

potentially more accurate picture of risk. It identified patterns and relationships between 

variables that may not be immediately apparent. This makes the RSF model valuable in clinical 

settings where the richness of data can be fully leveraged to improve predictive accuracy. 

Traditional risk score models, such as the Framingham Heart Failure Risk Score or Systematic 

COronary Risk Evaluation 2 (SCORE2) (Shahlan Kasim et al., 2023), require manual input of 

a limited set of predefined risk factors. These models focus on a narrow range of variables, such 

as age, blood pressure, and cholesterol levels. This may not account for the full spectrum of 

clinical data available in a patient’s medical record. Subsequently, the Cox regression models 

and multivariable techniques, including Elastic Net, do not perform well in this context due to 

issues with collinearity, which compromises the reliability of variable selection and inflates 

variance estimates. In contrast, our approach focuses on the interpretability of the most 

important risk predictors leveraging the full breadth of clinical data stored in EMRs. As the RSF 

model is a tree-based approach, with the use of SHAP, the model risk prediction score is able to 

show the factors making the greatest contribution to the development of heart failure, improving 

on the limited interpretability of traditional models.  

4.8 Conclusion 

Overall, this analysis identifies key risk factors (or risk markers) for the development of incident 

HF in patients with T2DM. The strongest marker was treatment with a LD. It is possible that 

many patients treated with LD have a missed diagnosis of HF but it is also possible that LD 

drive the progression of disease by activating the renin-angiotensin and other neuro-endocrine 

systems and by causing renal and possibly vascular dysfunction. By excluding loop diuretics 

from the predictive model, the overall model performance decreased, confirming its central role 

as a risk factor or risk marker of incident HF. This analysis also emphasised the importance of 

managing multiple chronic conditions, with a focus on patients with comorbidities such as 

chronic kidney disease, atrial fibrillation, and coronary artery disease. The RSF model excelled 

in capturing interactions among variables and contributed to a more accurate and thorough 

assessment of HF risk.  



89 

 

Chapter 5  “Predicting incident Heart Failure in Type-2 diabetes 

Mellitus: External Validation using EMRs in Hong Kong” 

Abstract 

Introduction: The incidence of heart failure (HF) is higher among people with type-2 diabetes 

mellitus (T2DM) compared to the general population. Symptoms and signs of HF often go 

unrecognised until severe. Novel machine-learning (ML) tools may help clinicians to identify 

patients with T2DM who are at high risk of developing HF or already have unrecognised HF. 

Methods: We obtained electronic medical records (EMRs) from a diverse population (Hong 

Kong), including demographics, medical history, blood and urine test results and medications. 

Incident HF was defined as a primary or contributory diagnosis of HF using International 

Classification of Diseases, 9th and 10th Revision codes. We implemented time-dependent 

machine-learning models to predict incident HF. We integrated state-of-the-art artificial 

intelligence interpretability with clinical expertise to provide concise reasoning for a patient's 

increased risk of HF. We carried out propensity score matching and inverse probability 

weighting to investigate causality.  

Results: Of 262,687 patients aged ≥50 years with T2DM, 8,515 (3%) had incident HF between 

2009-19, of whom 3,142 (37%)  had prior coronary artery disease (CAD). For incident HF, the 

baseline model c-statistic and time brier scores were 0.88 and 0.07 respectively (with 1.0 and 

0.0 being perfect scores). Important predictors were treatment with loop diuretics, insulin, lower 

serum albumin, haemoglobin, lymphocyte counts and eGFR and higher serum potassium, total 

cholesterol, neutrophil counts, and alkaline phosphatase. Those prescribed loop diuretics had a 

substantially higher incidence of heart failure (HR adjusted for age and sex: 4.68 [95% CI 4.47 

– 4.90, p < 0.005]). 

Conclusion: Models using readily available patient information predict the risk of incident HF 

for patients with T2DM in Hong Kong. The results are very similar to analyses of EMR from 

patients with T2DM in Scotland, which differs markedly in terms of culture, climate and 

ethnicity, suggesting that these results might be generalisable to diverse populations. 
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5.1 Introduction  

Heart failure (HF) usually goes unrecognised until symptoms are severe.  There is a growing 

awareness that HF is a common complication of T2DM (Ziaeian and Fonarow, 2016). 

Identifying markers that either anticipate the development of HF or alert clinicians to its 

existence is critical for improving early detection and management. There are few reports 

investigating the incidence HF in Chinese populations (Wang et al., 2021; Fu et al., 2023) with 

T2DM but there is a high prevalences of T2DM in Hong Kong, with low public awareness of 

HF (Leung et al., 2015a; Fan et al., 2022).  For this analysis, routinely collected EMRs were 

obtained from a large population of patients with T2DM in Hong Kong to carry out external 

validation. Utilising another diverse T2DM cohort will strengthen this research by applying 

survival-based machine learning risk prediction and interpretation from the previous chapter.  

 

5.2 Aim 

This chapter performs external validation of the incident heart failure risk prediction model 

using a diverse population from Hong Kong, achieving robustness and generalisability.  

 

5.3 Data Sources 

Records of patients aged ≥50 years with any new diagnosis of T2DM between January 1st  2009 

and December 31st  2019 were obtained from the Clinical Data Analysis and Reporting System 

(CDARS), which is a territory-wide electronic health database operated by the Hospital 

Authority (HA) of Hong Kong. Incident cases of HF were identified based on a first 

hospitalisation with HF recorded in any diagnostic position using the International 

Classification of Diseases, 9th Revision (ICD-9) codes.  
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5.4 Patient Information 

From the CDARS record, demographic information, comorbidities, defined by ICD-9 codes, 

recorded at the time or prior to diagnosis, including hypertension, chronic kidney disease 

(CKD), coronary artery disease (CAD), myocardial infarction (MI), peripheral artery disease 

(PAD), atrial fibrillation (AF), chronic obstructive pulmonary disease (COPD) and stroke. 

Smoking was poorly recorded (~10%)  due to the low prevalence in Hong Kong.  

Results of routinely collected blood and urine tests were included in the analysis. The first 

available result in the 6 months after diagnosis was used where available but, if not available, a 

result from the 12 months prior to diagnosis could be used. Tests included haemoglobin A1c, 

haemoglobin, lipid panel (total cholesterol and triglycerides), renal panel (serum potassium, 

creatinine and albumin, estimated glomerular filtration rate (eGFR)), liver function (ALT, AST 

alkaline phosphatase and bilirubin), neutrophils, lymphocytes and potassium.  

(Note that these tests may not be specific for a particular condition, for instance a low serum 

albumin can reflect general illness or specific liver or renal disease and alkaline phosphatase 

can reflect bone as well as liver disease). Treatments for diabetes or cardiovascular and lipid-

lowering medications used at any time within the 6 months after diagnosis of T2DM were 

included.  

Figure 1 shows the consort diagram for this study. Overall, 273,876 patients with a new 

diagnosis of T2DM were identified in public hospital or clinic records over a period of 11 years. 

Of these, 11,189 had a prior history of HF (look-back period of 5 years) and were excluded from 

analyses of incident HF, leaving 2,687 patients eligible for analysis. Only 23,973 patients had a 

record of body mass index (BMI) available and therefore BMI was not included in the primary 

analysis. 
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5.5 Methods  

The methods established in Chapter 4 were adapted and applied to analyse the outcome of 

incident heart failure in the Hong Kong population, to validate the reliability and robustness of 

findings from the Greater Glasgow & Clyde (GG&C) population. 

5.5.1 Clinical Variables   

The clinical variables from section 4.6.2 chosen by clinical experts on heart failure and T2DM 

for the GG&C population analysis were used, whether or not they were associated with incident 

HF to allow comparisons across different populations (see Chapter 7).   

Figure 19 Consort Diagram showing selection of patients from Hong Kong with T2DM to predict 

incident HF 
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5.5.2 Survival Analysis – Kaplan Meier   

A Cox Proportional Hazards model was applied adjusting for age, sex and the most important 

risk predictors. For further insight patients were investigate by age group for the following: 

prescribed LD with HF,  prescribed LD with HF, not prescribed LD with HF and not prescribed 

LD without HF (Neither) .  

5.5.3 Development of Random Survival Forest for Incident Heart Failure Risk Overtime  

The RSF model(s) with interpretation utilised in chapter 4 was implemented for comparison. 

Furthermore, a second RSF model was implemented with the application of propensity score 

matching. This was to reduce confounding by balancing characteristics between patients 

prescribed LD and not prescribed LD.  

Propensity Score Matching (PSM)  

Objective: To estimate the causal effect of loop diuretics on incident heart failure by patients 

prescribed and not prescribed LD with similar propensity scores to reduce confounding. 

• PSM is a method used in an attempt to reduce bias by matching treated and control cases 

based on their propensity scores (Deb et al., 2016).  

• Firstly, the propensity score for each patient is estimated using a logistic regression 

model, which predicts the likelihood of being prescribed loop diuretics based on baseline 

characteristics. These scores were then used to match patients for incident heart failure 

prediction: 

 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑇 = 1|𝑋)) = 𝛽0+1 𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑋𝐾 

Where:  

• T = Treatment indicator (1 if prescribed loop diuretics, 0 if not prescribed). 

• 𝑋 =  Baseline covariates that may be associated with loop diuretic use and risk of 

developing heart failure, such as age, sex, eGFR and prior CVD conditions.  

• 𝛽 = Coefficients estimated from the logistic regression model. 
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The propensity score P is the probability of being prescribed loop diuretics calculated as (using 

logistic regression):  

𝑃(𝑇 = 1|𝑋) =
ⅇ𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2  + ⋯ + 𝐵𝑘𝑋𝑘

1 + ⅇ𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝐵𝑘𝑋𝑘

 

 

• 𝑃(𝑇 = 1|𝑋) is the propensity score, i.e., the probability of receiving loop diuretics T=1 

given the covariates 𝑋 

• ⅇ is the base of the natural logarithm (approximately 2.71828) 

By using these scores for matching, the study ensures that patients prescribed loop diuretics and 

those not prescribed are balanced in terms of their baseline characteristics. 

Matching Procedure 

Once propensity scores are calculated, patients prescribed loop diuretics are matched with 

patients not prescribed based on their scores. The matching is carried out with Nearest-

Neighbour (NN) using the Euclidean distance:  

𝑑(𝑖, 𝑗) = | 𝑃(𝑥𝑖) − 𝑃(𝑥𝑗)| 

• 𝑃(𝑥𝑖) is the propensity score for individual 𝑖 in the prescribed group. 

• 𝑃(𝑥𝑗) is the propensity score for individual 𝑗 in the not prescribed group. 

• 𝑑(𝑖, 𝑗) is the distance between the two individuals’ scores. 

The individual from the not prescribed group closest to the prescribed individual is selected as 

the nearest neighbour. In other terms, for each patient prescribed loop diuretics, find a patient 

who is not prescribed loop diuretics with the closest propensity score Figure 20 illustrates a 

high-level example of the NN matching, where patient profiles are matched based on 

characteristics and propensity score (patient A 0.75 and patient B 0.78). 
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Checking Balance of Covariates (patient characteristics) 

The matched dataset is structured by the standardised mean difference (SMD) which measures 

covariate balance between groups before and after propensity score matching. SMD assesses 

the balance and compare groups. It ensures that matched individuals have similar distributions 

of baseline characteristics. Additionally, to evaluate balance between the treated and untreated 

groups prior to weighting, a Kernel Density Estimation (KDE) plot was generated to compare 

their propensity score distributions. Finally, the RSF model was implemented and shapely 

values were applied to the matched dataset.  

Inverse Probability Weighting (IPW)  

IPW was also applied in the RSF model to further improve confounding in the prediction of 

incident heart failure. IPW involves assigning weights to each individual based on the inverse 

of the probability of receiving loop diuretics. This method helps balance covariates across 

groups. The inclusion of IPW ensures a more robust and unbiased prediction of HF risk, 

accounting for any imbalances in covariates across the Hong Kong T2DM population.  

Figure 20 Nearest Neighbour Matching of Patients 
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5.6 Results  

 

5.6.1 Baseline Characteristics of T2DM Patients in Hong Kong for 

Incident Heart Failure 

Of 262,687 patients aged ≥50 years with T2DM, 8,515 (3%) developed new-onset HF between 

2009-19, of whom 3,142 (37%)  had prior coronary artery disease.  Patients prescribed loop 

diuretics were older, more likely to be women, more likely to have CKD, had lower 

haemoglobin and higher neutrophils counts (Table 25: Note that patients with a diagnosis of 

HF at baseline were excluded from this analysis). 

Table 25 Incident Heart Failure in Hong Kong Patients with T2DM prescribed or not prescribed loop 

diuretics 

 

 
(%)  or Median (25/75) 

Overall Hong 

Kong 
Population  
 
N= 262,687  

Not Prescribed 

Loop Diuretics 
 
N = 210,066 

Prescribed 

Loop Diuretics 
 
N = 52,621 

P-value 

Age, (y) 65 (56 – 75) 63 (55 – 73) 72 (63 – 79) <0.001 

Sex    
<0.001 

 

Men 

Women 

126,843 (48%) 

135,844 (52%) 

 

13,495 (49%) 

10,051 (51%) 

 

24,645 (47%) 

27,976 (53%) 

 

Ethnicity         

 

                                                Asian (Chinese)                      

                                                              Other   

 

 

26,332 (92%) 

23,642 (8%) 

 

 

193,260 (92%) 

16,806  (8%) 

 

 

48,412 (92%) 

4,208 (8%) 

<0.001 

*Body Mass Index (BMI) 
 

  
25 (23 – 26) 

  
24 (23 – 26) 

  
24 (23 – 27) 

 

Comorbidities n(%) 

Coronary Heart Disease (yes) 20,566 (8%) 13,064 (6%) 7,502 (14%) 
<0.001 

Atrial Fibrillation (yes) 4,852 (2%) 2,684 (1%) 2,168 (4%) 
<0.001 

Chronic Obstructive Pulmonary Disease 

(yes) 
629 (0.2%) 328 (0.15%) 301 (0.5%) 

<0.001 

Chronic Kidney Disease (yes) 2,635 (1%) 1,078 (0.5%) 1,557 (3%) <0.001 

Hypertension (yes) 57,000 (22%) 38,132 (18%) 18,868 (36%) <0.001 

Peripheral Artery Disease (yes) 256 (0.1%) 136 (0.06%) 129 (0.02%) 0.73 

Stroke/TIA (yes) 8,017 (3%) 5,517 (3%) 2,500 (5%) <0.001 

Lab Tests within 6 months of Inclusion 
Haemoglobin A1C (mmoL) 56 (51– 63) 56 (51– 62) 56 (50 – 63) 0.28 

Haemoglobin (g/L) 

                                                                  Men 

                                                             Women 

 

131 (132 – 139)        

129 (122 – 136)  

 

131 (134 – 139) 

128 (123 – 135) 

 

130 (129 – 138)  

126 (118 – 134) 

<0.001 

Total Cholesterol (mmol) 
4.8 (4.3 – 5.2)  

 

4.7 (4.2 – 5.1)  

 

4.7 (4.1 – 5.1)  

 

0.14 
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Triglycerides (mmol)  
1.5 (1.1 – 1.9) 

 

1.4 (1.2 – 1.9) 

 

1.1 (1.5 – 2.1) 

 

<0.001 

Serum Albumin (g/L) 
40 (38 – 42) 

 

40 (38 – 42) 

 

37 (40 -  42) 

 

<0.001 

Serum Creatinine  85 (73 – 98) 85 (73 – 97) 87 (75 – 101)  
eGFR (mL/min/1.73m2) 

 

60 (51 – 72) 

 

61 (53 – 73) 

 

59 (51 – 70) 

 

<0.001 

Alanine Transaminase – ALT (U/L) 

                                                 

23 (18 – 31) 

 

24 (18 – 32) 

 

21 (15 -  27)  

 

<0.001 

Aspartate Transaminase – AST (U/L) 
25 (21 – 36) 

 

24 (20 – 30) 

 

25 (21 – 28) 

 

<0.001 

Alkaline Phosphatase (U/L) 
74 (65 – 86) 

 

73 (65 – 83) 

 

76 (66 – 90) 

 

<0.001 

Neutrophils (x10^9/L) 

 

5.3 (4.4 – 7.1) 

 

5.2 (4.4 – 6.9) 

 

5.5 (4.5 – 9.8) 

 

<0.001 

Lymphocytes (x10^9/L)  
1.9 (1.6 – 2.4) 
 

1.9 (1.6-  2.3)  
 

1.9 (1.6 – 2.9) 
 

<0.001 

Potassium (mmol) 
4.2 (4.0 – 4.4)  

 

4.2 (4.0 – 4.4) 

 

4.5 (4.2 – 4.5)  

 

<0.001 

Bilirubin (µmol/L) 
10.3 (9.2 – 12.7)  
 

9.6 (9.2 – 12.4)  
 

11.7 (9.2 – 12.9) 
 

<0.001 

Medications within 6 months of inclusion, n (%) 

Metformin (yes) 
180,516 (69%) 145,712 (69%) 34,804 (66%) 

0.26 

DPP4i (yes) 
311 (0.1%) 247 (0.1%) 64 (0.1%) 

0.18 

Insulin (taken with Glucose-lowering Drug) 
26,573 (10%) 16,690 (8%) 9,9883 (19%) 

<0.001 

Sulphonylureas (yes) 
165,856 (63%) 129,936 (62%) 35,920 (68%) 

0.72 

Statins (yes) 
56,254 (21%) 40,001 (19%) 16,253 (31%) 

<0.001 

Beta Blockers  (yes) 
86,302 (33%) 63,241 (30%) 23,061 (44%) 

<0.001 

ACEi or ARBS (yes) 
113,426 (57%) 84,230 (40%) 29,196 (55%) 

0.11 

Calcium Channel Blockers 
103,617 (40%) 74,998 (36%) 28,619 (54%) 

<0.001 

Thiazides (yes) 
43,912 (17%) 26,782 (13%) 17,130 (33%)* 

<0.001 
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5.6.2 Incident Heart Failure Risk Prediction Model(s)  

Table 26 shows variables strongly associated with incident HF in the first RSF prediction 

model. Older patients, treatment with loop diuretics or insulin, lower serum albumin, ALT, 

haemoglobin and eGFR, a history of CAD, atrial fibrillation, stroke and peripheral artery disease 

were all associated with an increased risk of a new diagnosis of heart failure with a C-index of 

0.88 and time-brier score of 0.02.  

The second model applied the RSF model with causal inference on a dataset matched by 

propensity scores for the prescription of loop diuretics (N=105,242). Key predictors of incident 

HF were use of insulin, lower eGFR, haemoglobin, serum albumin and ALT, atrial fibrillation, 

CAD (which included MI) and stroke.  Model performance decreased to 0.85 (C-index) and 

time brier of 0.07. Survival analysis integrated evaluation metrics are described in chapter 4.  

Modelling was repeated excluding loop diuretic as a variable, in order to balance the 

confounders between patients who were prescribed loop diuretics and those who were not. 

Figure 21 and 22 shows the application of inverse probability weighting (IPW). The X-axis 

represents the propensity scores.  The scores range from 0 to 1. A score of 0 means there is a 

0% probability that the patient receiving loop diuretics. A score of 1 means there is 100% 

probability of the patient receiving loop diuretics. The Y-axis represents the density of subjects 

at each propensity score. The values on the Y-axis are densities. Density represents the 

distribution of the data.  The analysis of patients with complete BMI is shown in Appendix B1. 
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Propensity Score Distribution Before Weighting: 

The treated group (red) has a higher concentration of patients with propensity scores close to 

1.0, indicating that these individuals had a high likelihood of being prescribed loop diuretics 

based on their baseline covariates. Conversely, the untreated group (blue) had a higher density 

of patients with propensity scores near 0, showing that they were less likely to receive the 

treatment. Limited overlap between the red and blue curves, indicating an imbalance between 

the treated and untreated groups before weighting. The untreated group has a higher 

concentration of patients at lower propensity scores, while the treated group is more spread out. 

This imbalance shows that before weighting, the treated and untreated groups had differences 

in baseline characteristics, which could confound the analysis of covariates on incident heart 

failure. Density curves may extend slightly below zero due to kernel density estimation artifacts. 

All true propensity scores in the analysis  lie between 0 and 1.  

Table 26 Results for predicting Incident HF with and without Causal inference 
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After applying IPTW the distribution of propensity scores for both the treated (red) and 

untreated (blue) groups did not improve. This indicates that the weighting did not successfully 

adjust for the differences in baseline covariates between the two groups. This suggests that 

balance has not been achieved to estimate the effect of baseline covariates on incident heart 

failure without the confounding effect of loop diuretics prescription.  

Propensity Score Distribution After Weighting:  

 

 

Figure 21 Propensity Score Distribution Before Weighting 

Figure 22 Propensity Score Distribution After Weighting 
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5.6.3 Cox Proportional Hazards & Age Groups 

Figure 23 Cox Proportional Hazards model confirmed the association of key risk factors for 

incident heart failure in patients with type 2 diabetes. The highest risk factors included insulin 

use, which strongly increased the risk of heart failure (HR = 6.38, p < 0.001), and loop diuretic 

use, which was associated with more than three times the risk. Moderate risk factors included 

age, with older age significantly increasing the risk by quartile (HR = 1.34, p < 0.001), atrial 

fibrillation by 62%, coronary artery disease (HR = 1.51, p < 0.001) Lower eGFR, which was 

associated with a 48% increased risk. Low-risk factors included lymphocyte and neutrophil 

counts in quartiles, which had minimal impact on risk (HR = 1.01 and 1.00, respectively, p < 

0.001) and total cholesterol, which showed no significant effect on heart failure risk.   
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The bar chart in Figure 24 illustrates the percentage of loop diuretic LD usage with and without 

HF  across different age categories. In those aged <55 years, most patients did not have HF and 

were not prescribed LD. Similarly, in those aged 55-64 years, 84.9% had neither condition, 

while 13% were prescribed LD without HF. As age increases, the proportion of patients 

prescribed LD without HF rises, with 21.2% in the 65-75 group and 29.4% in those aged 75 and 

above. In contrast, the percentage of patients with HF, whether prescribed LD or not, remains 

low across all age categories, peaking in the 75+ group where 3.5% were prescribed LD with 

HF and 2.2% were not prescribed LD despite having HF. Overall, LD usage without HF 

increases with age, especially in those over 75.   

 

 

 

 

 

Figure 23 Cox Proportional Hazards Model  

Figure 24 Loop Diuretics Usage by Age Group Bar Chart 
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5.6.4 Novel HF Risk Assessment Support Tool  

Figure 25 shows a prototype interface for individual patient risk assessment in support of a 

precision medicine approach to patient care. A patient’s demographic profile is shown with 

updated information from EMR including prescriptions and hospitalisations. The reasoning for 

risk of incident HF is derived from section 4.5.5 utilising shapely values, highlighting the risk 

factors making the greatest contribution for each individual patient. If a patient’s risk score is 

45.2, it means that, based on the aggregation of SHAP values from various clinical factors, the 

patient has a 45.2% chance of developing heart failure within the prediction window of 5 years. 

This score combines the contribution of all individual risk factors (prescribed loop diuretic, 

hyperkalaemia, etc.), illustrating the patient's risk. By using the RSF model, the survival 

probabilities are extracted at 5 years and converted  into absolute risk (1 – survival probability) 

and then these values are normalised to a 0–100 scale for easier interpretation.  

 

Figure 25 Interface for HF Risk Assessment Tool 
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5.7 Discussion  

This chapter provides external validation of the support tool for predicting incident heart failure 

in Glasow, UK. By investigating diverse EMRs from the Hong Kong, China T2DM population, 

results were validated and causality was introduced into the risk prediction models.   

Firstly, the analysis of incident HF in a T2DM Hong Kong population showed that many patient 

charactistics consistent with those observed in the Glasgow population. In both populations, 

women were more frequently prescribed loop diuretics, which is also confirmed in a propensity-

matched cohort study in the UK (Cuthbert et al., 2024). However, there is no evidence of loop 

diuretics usage in Hong Kong studies. This raises important clinical concerns regarding 

misdiagnoses or over-prescription, especially in older patients or those with mild renal 

impairment. As evidence is a concern, results from this study highlighted individuals prescribed 

loop diuretics were more likely to have experienced CKD events. Even when the prescribed 

population was smaller, those receiving loop diuretics had a higher percentage of CKD events 

compared to those who were not prescribed loop diuretics.  

Few observational studies have found associations between diuretic use and decline in eGFR in 

patients with pre-existing CKD (Fitzpatrick et al., 2022; Emmens et al., 2022). An example of 

this is illustrated in the Epidemiology of Acute Kidney Injury in 3,044,244 Chinese retrospective 

study (L. Zhou et al., 2022). Authors found that exposure to loop diuretics was associated with 

a significantly increased risk of hospital-acquired acute kidney injury, with a hazard ratio (HR) 

of 1.61 (95% CI, 1.55–1.67). This consistency in the prescribing patterns of loop diuretics, as 

well as the associated higher rates of CKD, suggests common clinical approaches and outcomes 

across different healthcare systems and ethnicities. The inclusion of a different ethnicity-based 

population in the risk prediction model was critical. Ethnicity plays an important role in heart 

failure development, many times this is overlooked or undervalued in studies, despite ethnic 

disparities in CVD risk (van Apeldoorn et al., 2024b). Other times, clinical risk prediction 

models are built solely for one population or utilising limited clinical trial datasets. Incident 

heart failure rates vary even among different Asian ethnicity sub-groups (Lam et al., 2016; 

Cheng et al., 2024).  
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Therefore, this research supports the need to investigate diverse patient populations and adapt 

to precision medicine approaches. Such evidence-based support tools are essential, especially 

in cases where certain ethnicities may otherwise be underrepresented or excluded. 

Subsequently, the clinical variable selection remained consistent, allowing for direct 

comparisons. This promotes replicability (Wang et al., 2022): the ability to confirm results in 

different populations and improves the generalisability of the support tool. Majority patient 

characteristics were similar in both populations, where differences were in the order of 

importance.  Interestingly, a key risk factor in this study was insulin use. Insulin is prescribed 

in combination with other anti-diabetic therapies in patients with T2DM. It causes sodium 

retention and hypoglycaemia (Cosmi et al., 2018), both of which may contribute to adverse 

outcomes.  Hypoglycaemia induces stress on the cardiovascular system through mechanisms 

such as increased sympathetic nervous activity and elevated heart rate.  

This relationship was previously explored in a large-scale analysis (Cosmi et al., 2018) 

involving two datasets: one from randomised trials comprising 24,012 HF patients and another 

from an administrative database of 4 million individuals, including 103,857 with HF. By 

applying propensity score matching, resulted showed that patients prescribed insulin had a 

significantly higher risk of all-cause mortality and HF hospitalisation compared to those not 

using insulin. Moreover, the prescription of insulin is given to T2DM patients when they cannot 

produce enough insulin known are insulin resistance. Another study found that elevated fasting 

insulin levels were significantly associated with an increased risk of incident HF (Banerjee et 

al., 2013), independent of other cardiovascular risk factors. Of 4,425 participants, a 10% higher 

risk of HF was observed per standard deviation increase in fasting insulin. The study also linked 

higher fasting insulin levels to structural heart abnormalities, such as increased left atrial size 

and left ventricular mass. However, these previous studies were limited to Cox proportional 

hazards (CPH) method and propensity score matching for risk estimation. In contrast, our 

approach overcomes the limitations of CPH, providing a more robust prediction of incident HF. 

This allows for enhanced evidence-based clinical decision-making.  
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The results from the first RSF risk prediction model highlight several clinical factors, consistent 

with the Glasgow Cohort, strongly associated with an increased risk of incident heart failure, 

including older age, comorbidities such as CAD, atrial fibrillation and stroke, as well as lower 

levels of serum albumin, ALT, haemoglobin and eGFR. These findings show the importance of 

monitoring these risk factors in diverse patients, as they contribute to the development of heart 

failure.  

Recently, PSM is used to address biases in observational data, reduce confounding and 

strengthen the causal interpretation of the findings. Some diabetes patients related studies in 

Hong Kong apply PSM with the CDARS datasets (Lee et al., 2022; J. Zhou, Lee, Liu, et al., 

2022; J. Zhou, Lee, Lakhani, et al., 2022). These studies illustrate the usefulness of PSM in 

some clinical use cases.  

This study utilised PSM by matching patients with similar characteristics of those who were 

prescribed loop diuretics or not. The aim was for a clearer estimation of the causal impact of 

loop diuretics on incident HF risk. Results compared to the initial RSF model without PSM 

decreased in performance, bringing many concerns about the reliability of PSM. This approach 

tries to mimic the conditions of a randomised controlled clinical trial (RCT), by matching 

patients based on clinical characteristics of those prescribed or not prescribed loop diuretics, 

reducing sample size. Clinicians may debate that simulated patient matching does not fully 

capture the complexities of  patient symptoms and signs in clinical practice settings. PSM may 

be somewhat valuable in this study, but not clinically complete (Reiffel, 2020).  

To address the artificial matching of patients, this study also applied IPW which assigns weights 

to each patient based on the inverse probability of receiving loop diuretics or not. This technique 

avoids the exclusion of unmatched patients and enhances precision estimates (Vock et al., 2016). 

Evidently, even after applying IPW results still illustrate the imbalance in the distribution of 

propensity scores. The weighting adjusts for the treatment allocation by giving more weight to 

individuals who are underrepresented in the treated or untreated groups. However, this method 

still highlights a key issue: patients are treated for specific reasons, and the propensity scores 

reflect those underlying treatment decisions. This imbalance in the weighted distribution 

suggests that the treated group is still different from the untreated group, despite the IPW 

weighting.  
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Furthermore, applying PSM  and IPW to study the effect of covariates on incident heart failure 

is problematic because it does not account for immortal time bias. A more appropriate approach 

would involve studying incident loop diuretic use in patients before they were treated. However, 

this would introduce its own challenges, such as immortal time bias, making the current method 

less valid. While the method is valuable for understanding treatment effects in certain settings, 

it may not be suitable for analysing covariate effects on incident heart failure in this case. 

To further assess the relationship of loop diuretics may be a misdiagnosis of heart failure, the 

outcome shifted to focus on incident loop diuretics use with and without heart failure in 

Appendix B2. This change was crucial in confirming that the same risk factors were involved 

in both outcomes. Specifically, the model can effectively predict the development of heart 

failure and identify individuals who are at risk before they reach a stage where they require 

diuretic therapy. This early identification can support clinicians intervene sooner, preventing 

further deterioration in patient health.  

Most importantly, using the Hong Kong cohort for external validation, allows a more defined 

assessment of HF risk for each patient. This approach supports the emerging application of 

precision medicine. The novel support tool developed in this chapter tells a patient’s story with 

information from EMRs and provides an individualised risk assessment. It is a user-friendly risk 

assessment tool for clinicians, ensuring they can quickly access patient information, which can  

help with decision-making. With automation of direct data-capture from EMRs, manual input 

of data is not required. The ability to directly utilise EMRs ensures that the information is 

current. 
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5.8 Conclusion 

Diverse Hong Kong EMRs  improve generalisability and contributes to a robust incident heart 

failure risk prediction support tool. This research also highlights the importance of including 

diverse ethnic populations in predictive models, as shown by the consistency of results between 

the Hong Kong and Glasgow populations. The robust methodology ensures effective application 

across diverse populations. The model accounts for key patient characteristics, such as the 

higher prescription rates of loop diuretics among women and their association with chronic 

kidney disease events. However, PSM was not able to reduce confounding in assessing the true 

effects of risk factors on incident heart failure in those prescribed and not prescribed loop 

diuretics. Overall, this research supports precision medicine approaches and emphasises the 

need for transparent, reliable tools in clinical practice for heart failure prevention and 

management. The novel support tool developed in this analysis could help clinicians to enhance 

personalised patient care by harnessing the full potential of clinical data stored in EMRs.  
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Chapter 6 “Risk Stratification of Socioeconomic Groups in West 

of Scotland to predict Mortality ” 

Abstract 

Background: Patients with type 2 diabetes mellitus (T2DM) have a reduced life-expectancy 

that may be made worse by socioeconomic deprivation (N Kaur et al., 2023). 

Aim: to investigate drivers of prognosis in people with T2DM according to socioeconomic 

status using conventional statistics and a state-of-the-art machine learning (ML) model. 

Methods: We obtained routinely collected electronic medical records (EMR) for patients with 

T2DM aged ≥50 years from the National Health Service (NHS) Scotland. Using Cox 

proportional hazards and random survival forest models, we assessed variations in mortality 

amongst socioeconomic deprivation quintiles, as determined by the Scottish Index of Multiple 

Deprivation (SIMD). The Shapely Additive Explanations (SHAP) interpretability method was 

used to identify key prognostic factors associated with survival within each subgroup.  

Results: of 46,031 people with a newly recorded diagnosis of T2DM between 2009-2019,  

11,727 died within 10 years. Compared to those in the most affluent quintile, patients with 

T2DM in the most deprived quintile had a 36% higher mortality risk (adjusted HR (95%CI): 

1.36, 1.24 – 1.50, p < 0.005). Prescription of loop diuretics, increasing age, decreasing serum 

albumin, alanine transaminase and worsening renal function (c-index 0.83, brier score 0.07) 

were associated with mortality across all quintiles. Chronic obstructive pulmonary disease 

strongly correlated with mortality in the most deprived quintile, strokes in the most affluent.  

Conclusion: Greater socioeconomic deprivation is associated with a worse prognosis in patients 

with T2DM. Readily available clinical information such as age and treatment with loop 

diuretics, allied to commonly available blood test results, predict mortality risk across all 

deprivation groups for people with T2DM. 
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6.1 Introduction  

Developing models to predict prognosis is important for several reasons. Modifiable 

characteristics that are strongly associated with outcome, such as high blood pressure or 

smoking, might be therapeutic targets. Identification of individuals at high risk of events can 

inform healthcare policy, potentially focussing resources on patients at high risk of events, for 

whom more expensive treatments might be more cost-effective. Predictive models are also 

useful for auditing the quality of care. Healthcare systems that deliver better or worse outcomes 

than predicted can be investigated to discover the cause, copying good practice and remedying 

poor practice.  

T2DM is a well-established risk factor for cardiovascular morbidity and mortality (Liane Ong 

et al., 2023). Poor dietary choices, lack of exercise, tobacco use, high blood pressure, high 

cholesterol and impaired kidney function, contribute to the development of many chronic 

conditions, including T2DM. Lower socioeconomic status (SES) is associated with a less 

healthy lifestyle, lower educational opportunity and attainment, lower rates of employment and 

income, poorer housing and less access to healthcare, all of which may increase the risk of 

developing T2DM and exacerbate its adverse effect on health outcomes (Jackson et al., 

2012),,(Kimenai et al., 2022; Moody et al., 2016; Schultz et al., 2018),,(Stringhini et al., 2013). 

Accordingly, it is important to include SES in predictive models, along with other potential 

predictors, to improve identification of high-risk individuals and to investigate possible 

interactions with other risk factors (Tan et al., 2020).  

 

6.2 Aim 

This thesis chapter investigates risk factors for all-cause mortality according to SES in patients 

with new-onset T2DM using a novel approach to identifying key factors.  
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6.3 Study Data  

Scotland has developed and operationalised a system of regional “Safe Havens” that provide 

researchers with secure access to deidentified, routinely collected, NHS electronic medical 

records (EMR) linked to national prescribing, hospitalisation and death records and the Scottish 

Care Information: Diabetes (SCI-Diabetes) registry. Registration into SCI-Diabetes occurs 

automatically when a patient is assigned a Read Code [10] (a coded thesaurus of clinical terms 

used in the NHS since 1985) for diabetes mellitus in a primary or secondary care health care 

information system. The registry is estimated to capture over 99% of all patients assigned a 

diagnostic Read Code for Diabetes (Livingstone et al., 2012). Coding may be extended to 

include patients with a high blood glucose measurement or raised haemoglobin A1c, a measure 

of longer-term blood glucose control. Linking these various sources of data  enables large-scale 

population-level studies.  

 

6.4 Patient Information 

EMR from the Greater Glasgow and Clyde (GG&C) population from 1st of January 2009 to 31st 

December 2019 was used to identify people aged ≥50 years with an incident diagnosis of T2DM 

during this period. Patient characteristics at the time of enrolment includes demographic details 

such as age, sex, socioeconomic status and ethnicity. Socioeconomic status was determined by 

a quintile score based on the Scottish Index of Multiple Deprivation (SIMD), with the first 

quintile containing individuals living in the most deprived areas (data zones) and the fifth 

quintile the least deprived for the entire Scottish population. SIMD measures the extent to which 

an area is deprived across seven domains: income, employment, education, health, access to 

services, crime and housing. The GG&C region has a disproportionately large number of 

residents in the most deprived quintile for the Scottish population. 

Smoking status, diagnosis of hypertension and BMI were extracted from primary care read 

codes. Prevalent comorbidities (chronic kidney disease (CKD), chronic obstructive pulmonary 

disease (COPD), atherosclerotic heart disease, heart failure, hyperkalaemia, peripheral artery 

disease, stroke, myocardial infarction, atrial fibrillation, and angina) were defined by the 

International Classification of Diseases, 10th Revision (ICD-10) codes.  
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The following blood and urine test results closest to the date of enrolment in the SCI-Diabetes 

registry enrolment were identified: glucose, haemoglobin A1c, haemoglobin, total cholesterol, 

triglycerides, serum albumin, serum creatinine, estimated glomerular filtration rate (eGFR), 

urine albumin-to-creatinine ratio, potassium, lymphocytes, neutrophils, AST, ALT, alkaline 

phosphatase and bilirubin. Any of the following treatments dispensed within 6 months of 

inclusion in the SCI-Diabetes registry were recorded; treatments for diabetes, loop diuretics 

(repeat prescribing only unless death occurred within 90-days of first dispensing), 

cardiovascular and lipid-lowering medications.  

Figure 26 shows the consort diagram for this study. After excluding duplicate entries, there 

were 47,396 unique patients with a diagnostic label of diabetes. The first record of T2DM was 

used as the incidence date except for 4,947 (9%) patients who had a test showing impaired 

glucose tolerance or raised fasting plasma glucose and subsequently received treatment for 

diabetes without a formal diagnosis of T2DM; for these patients the date of entry into the 

database was used as the incidence date. Patients treated solely with insulin (n=1,365) were 

excluded as these were likely to have a Type-1 Diabetes Mellitus, as it would be very unusual 

to treat new-onset T2DM with insulin without any oral therapy.  

 

 

 

 

 

 

 

 

 
Figure 26 Consort Diagram for T2DM and Mortality in Glasgow  
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From the study period of 1st January 2009 and 31st December 2019, 46,031 patients were eligible 

for the primary analysis, including 30% with missing body mass index (BMI). A secondary 

analysis for 30,495 individuals with complete BMI records was done. The index date was the 

date of T2DM diagnosis; and the last day of follow-up was December 31st, 2019.  

 

6.5 Methods 

The methods established in Chapter 4 were adapted and applied to analyse the outcome of all-

cause mortality. To investigate patients with different SES, the RSF model was implemented 

for the whole population and each SES group. This approach was selected due to its superior 

performance in capturing complex interactions between variables. Subsequently, the model(s) 

predictive ability was evaluated using survival-based performance metrics: C-index and the 

Time-dependent Brier Score. Time-dependent AUC measures the accuracy of the model's 

predicted probabilities of survival at specific time points. These metrics confirm whether or not 

the model reliably predicts survival outcomes across diverse patient populations. SHAP analysis 

was conducted to provide an understanding of feature importance in predicting incident heart 

failure. SHAP values highlight the variables most strongly associated with outcome. Kaplan 

Meier plots showing survival probability among BMI categories. A bar chart was used to show 

cause-specific mortality.  
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6.6 Results 

6.6.1 Baseline Characteristics  

We identified 46,031 people (median age of 64 years old, men: 54%) who had a newly recorded 

diagnosis of T2DM between 2009 and 2019. During a median of 4 years, 11,727 died.  

Baseline demographics, blood and urine test results, medications,  primary and secondary care 

diagnostic codes and death records are shown in Table 27 (overall population with or without 

BMI). Overall, the median [IQR] age at diagnosis was 64 (57-72) years, with a slight 

preponderance of men (54%). Most were White, 20% were current smokers and 41% were in 

the most deprived SIMD quintile and only 15% were in the most affluent. Of those with a 

recorded BMI, 85% were overweight or obese. The most common cardiovascular condition was 

hypertension (41%), although this may have been an underestimate as about 70% of patients 

were taking anti-hypertensive medicines. The median [IQR] serum cholesterol was fairly low 

(4.1 (3.7-5.0) mmol/L), consistent with a substantial proportion receiving statins (52%). Most 

patients had impaired kidney function with a median [IQR] eGFR of 54 (44 - 61) 

mL/min/1.73m2.  

Only 70% of patients were prescribed a treatment for diabetes within 6 months of diagnosis, 

perhaps reflecting attempts to control blood sugar concentrations by diet and exercise alone. 

The prevalence of heart failure was 10% but 25% of patients were dispensed loop diuretics.  

Table 28 shows the baseline characteristics of patients according to quintile of SIMD. 

Compared to those who were most affluent, patients with the most deprived SES were more 

likely to be women, were more likely to be current smokers and to have COPD, had a higher  

BMI and were more likely to be receiving loop diuretics. However, there was little difference 

in the age of onset of diabetes. Although variations in some other characteristics were highly 

statistically significant across quintiles, the absolute magnitude was often small, owing more to 

the size of the population rather than to clinical meaningful differences. Findings were similar 

for patients whose BMI was available (Appendix C1). Compared to more affluent patients, 

those with the most deprived SES had a 36% higher risk of mortality (HR: adjusted for age and 

sex 1.36 [95% CI 1.24 – 1.50 (<0.005)]).   
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Table 27 Baseline characteristics of patients with T2DM with and without a BMI record 

 
Demographics at Baseline 
(%)  or Median (25/75) 

Overall GG&C 

Population 
N=46,031 
 

With BMI 

Record  
N=30,495 
  

Without BMI 

Record  
N=15,536 
 

Age, (y) 64 (57 – 72) 63 (56 – 70) 66 (58 – 75) 

Sex                                                              Men 
Women 

24,664 (54%) 
21,367 (46%) 

16,715 (55%) 
13,780 (45%) 

7,949 (51%) 
7,587 (49%) 

Ethnicity                                                   White  

                                                                  Asian  

                                                                  Other 

                                                            Unknown    

39,290 (85%) 

338 (5%) 

593 (6%) 

105 (4%) 

26,897 (88%) 

1,725 (6%) 

1,572 (5%) 

301 (1%) 

12,393 (80%) 

577 (4%) 

1,050 (6%) 

1,516 (10%) 

Socioeconomic Status  (SIMD) 

 

                               
                             Quintile 1 – Most Deprived  

                             Quintile 2 

                             Quintile 3 

                             Quintile 4  

                             Quintile 5 – Least Deprived  

 

 

 
18,517 (41%) 

8,355 (18%) 

6,360 (14%) 

5,643 (12%) 

7,156 (16%) 

 

 

 
12,389 (41%) 

5,638 (18%) 

4,162 (13%) 

3,602 (12%) 

4,714 (15%) 

 

 

 
6,128 (39%) 

2,727 (18%) 

2,198 (14%) 

2,041 (13%) 

2,442(16%) 

 
*Body Mass Index (BMI) 

 

 

BMI Classification                               Normal  
                                                       Overweight 

                                                                Obese  

                                                Severely Obese 

                                                     Underweight 
                                                           Unknown 

  
30 (27 – 34) 

 

 

4,408 (10%) 
10,449 (23%) 

12,926 (28%) 

2,444 (5%) 

268 (1%) 
15,536 (33%) 

  
30 (27 – 34) 

 

 

4,408 (14%) 
10,449 (34%) 

12,926 (42%) 

2,444 (8%) 

268 (1%) 
N/A 

  
Missing 

*Current Smoker (yes)  

9,416 (20%) 

 

9,259 (30%) 

 

157 (1%) 

Comorbidities n(%) 

Atherosclerotic Heart Disease (yes) 7,106 (16%) 5,595 (18%) 1,511 (10%) 

Angina (yes) 5,621 (13%) 4,306 (8%) 1,315 (8%) 

Atrial Fibrillation (yes) 6,083 (13%) 3,827 (13%) 2,256 (15%) 

Chronic Obstructive Pulmonary Disease 

(yes) 
4,395 (8%) 2,970 (10%) 1,425 (9%) 

Chronic Kidney Disease (yes) 2,549 (6%) 1,543 (5%) 1,006 (6%) 

Heart Failure (yes) 4,675 (10%) 2,852 (10%) 1,823 (12%) 

Hyperkalaemia (yes) 2,336 (5%) 1,517 (5%) 819 (5%) 

*Hypertension (Primary Care) (yes) 18,999 (41%) 18,634 (61%) 365 (2%) 

Myocardial Infarction (yes) 4,545 (11%) 3,358 (11%) 1,187 (8%) 

Peripheral Artery Disease (yes) 1,650 (4%) 1,074 (4%) 576 (4%) 

Stroke/TIA (yes) 4,010 (9%) 2,755 (10%) 1,255 (8%) 

Plasma Glucose (mmol/L) 8.8(6.7 – 10.1)  9.1 (7.1 – 10.5)  7.9 (6.3 – 9.4)  

Haemoglobin A1C (mmol/L) 55 (46– 61) 54 (46– 63) 56 (44– 56) 

Haemoglobin (g/L) 

                                                                  Men 

                                                             Women 

 
138 (134 – 151)        

134 (123 – 139)  

 
139 (134 – 152) 

134 (124 – 140) 

 
134 (129 – 149)  

134 (120 – 138) 

Total Cholesterol (mmol/L) 
4.1 (3.7-5.0)  
 

4.1 (3.7-5.0)  
 

4.1 (3.9-5.1)  
 

Triglycerides (mmol/L)  
1.5 (1.0 – 2.2) 

 

1.6 (1.1 – 2.3) 

 

1.3 (1.1 – 2.4) 

 

Serum Albumin (g/L) 
37 (35-39) 
 

38 (36 – 40) 
 

36 (34-39) 
 

eGFR (mL/min/1.73m2) 

 

54 (44 - 61) 

 

55 (44 - 62) 

 

53 (42-60) 
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Table 28 Clinical Characteristics of Primary Analysis stratified by Socioeconomic Deprivation Status. 

Overall Population 

N=46,031 

Demographics at 

Baseline (Secondary ) 

 

(%) or Median (25/75) 

 

SIMD  

Quintile 1 

(Most 

Deprived)  

 

SIMD  

Quintile 2  

 

SIMD  

Quintile 3  

 

SIMD  

Quintile 4 

 

SIMD  

Quintile 5 

(Least 

Deprived) 

 

 

N=Scottish Index of 

Multiple Deprivation (SIMD) 

Group 

 

N=18,517  N=8,355  N=6,360  N=5,643 N=7,156 

 

 

 

 

Age (y) 

 

 

 

63 (57 – 71) 

 

 

64 (57 – 72) 

 

 

64 (57 – 73) 

 

 

64 (58 – 73) 

 

 

64 (58-72) 

Sex      

Women 

Men 

8,974 (48%) 

9,543 (52%) 

 

 

4,011 (48%) 

4,344 (52%) 

 

2,887 (45%) 

3,473 (55%) 

 

 

2,470 (44%) 

3,173 (56%) 

3,025 (42%) 

4,131 (58%) 

 

Ethnicity             

 

                                     White  

                                      Asian  

                                      Other 

                                Unknown  

 

 

16,512 (89%) 

485 (4%) 

831 (4%) 

510 (3%) 

 

 

7,223 (86%) 

394 (5%) 

446 (6%) 

292 (3%) 

 

 

5,237 (82%) 

463 (7%) 

393 (7%) 

267(4%) 

 

 

4,642 (82%) 

377 (7%) 

340 (6%) 

284 (5%) 

 

 

5,676 (79%) 

583 (8%) 

433 (7%) 

464 (6%) 

 

*Body Mass Index (BMI) 

 Missingness: 

 

  

31 (27 – 35) 

6,128 (33%) 

  

30 (26 – 32) 

2,727 (33%) 

  

26 (26 – 31) 

2,198 (34%) 

  

29 (26 – 31) 

2,041 (36%) 

 

26 (25 – 30) 

2,442 (34%) 

*Current Smoker (yes)  

4,917 (27%) 

 

1,796 (31%) 

 

1,148 (27%) 

 

748 (13%) 

 

807 (17%) 

Alanine Transaminase – ALT (U/L) 

                                                 

22 (16-30)  

 

23 (15-31) 

 

22 (15-28) 

 

Aspartate Transaminase – AST (U/L) 
20 (16-26) 

 

20 (16-26) 

 

21 (17-26) 

 

Alkaline Phosphatase (U/L) 
89 (72-105) 
 

88 (71-105) 
 

91 (72-108) 
 

Neutrophils (x10^9/L) 

 

5.0 (3.8-5.6) 

 

5.1 (3.8-5.9) 

 

5.0 (3.8 – 5.5) 

 

Lymphocytes (x10^9/L) 

  

2.0 (2-2.3) 

 

2.0 (1.4-2.2) 

 

2.0 (1.6-2.4) 

 

Bilirubin ( µmol/L)  
10 (7 - 13) 

 

10 (7 - 13) 

 

11 (8 - 13) 

 

Potassium (mmol/L) 
4.3 (4.0 – 4.6)  

 

4.3 (4.0 – 4.6) 

 

4.2 (4.0 – 4.6)  

 

Metformin (yes) 
14,545 (32%) 10,266 (34%) 4,279 (28%) 

DPP4i (yes) 
5,033 (11%) 4,269 (14%) 764 (5%) 

Insulin (taken with Glucose-lowering 

Therapies) 2,801 (6%) 1,708 (6%) 1,093 (7%) 

Sulphonylureas (yes) 10,204 (22%) 7,046 (23%) 3,158 (20%) 

SGTL2i (yes) 3,977 (13%) 3,742 (2%) 235 (2%) 

Statins (yes) 23,802 (52%) 15,087 (49%) 8,715 (56%) 

Beta Blockers  (yes) 10,243 (22%) 6,640 (22%) 3,603 (23%) 

ACEi or ARBS (yes) 20,549 (60%) 13,150 (43%) 7,399 (55%) 

MRAs (yes) 2,528 (5%) 1,531 (5%) 997 (6%) 

Calcium Channel Blockers 4,309 (9%) 2,511 (8%) 1,798 (12%) 

Antiplatelets (yes) 10,204 (22%) 7,0406 (23%) 3,158 (20%) 

Anticoagulants (yes) 4,309 (9%) 2,511 (8%) 1,798 (12%) 

Thiazides (yes) 12,021 (26%) 7,969 (26%) 4,052 (26%) 

Loop Diuretic (yes) 
 

11,403  (25%) 6,683 (22%) 4,720 (30%) 
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Comorbidities n(%)  

Atherosclerotic Heart 

Disease (yes) 
3,042 (16%) 1,274 (15%) 1,006 (16%) 790 (14%) 994 (14%) 

Angina (yes) 2,551 (14%) 1,025 (12%) 781 (12%) 574 (10%) 690 (10%) 

Atrial Fibrillation (yes) 2,530 (13%) 1,089 (13%) 866 (14%) 740 (13%) 864 (12%) 

Chronic Obstructive 

Pulmonary Disease (yes) 
2,488 (13%) 766 (9%) 508 (8%) 340 (6%) 293 (4%) 

Chronic Kidney Disease 

(yes) 
1,093 (6%) 453 (5%) 394 (6%) 307 (5%) 302 (4%) 

Heart Failure (yes) 2,065 (11%) 860 (10%) 651 (10%) 520 (9%) 579 (8%) 

Hyperkalaemia (yes) 1,001 (5%) 456 (5%) 301 (5%) 281 (9%) 297 (4%) 

*Hypertension (yes) 7,518 (41%) 3,598 (43%) 2,641 (42%) 2,254 (40%) 2,988 (42%) 

Myocardial Infarction (yes) 1,990 (11%) 824 (10%) 632 (10%) 505 (9%) 594 (8%) 

Peripheral Artery Disease 

(yes) 
833 (4%) 282 (3%) 220 (3%) 175 (3%) 140 (2%) 

Stroke/TIA (yes) 1,721 (9%) 751 (9%) 577 (9%) 462 (8%) 499 (7%) 

Lab Tests within 6 months of inclusion, n (%) 

Plasma Glucose (mmoL) 8.9(6.7 – 10.4)  8.8 (6.7 – 10.1)  9 (6.7– 10.3)  7.9 (6.5 – 11.1)  7.6 (6.4 – 11)  

Haemoglobin A1C (mmoL) 55 (46– 62) 55 (46– 61) 55 (46– 60) 51 (45– 63) 50 (44 – 61) 

Haemoglobin (g/L) 

                                       Men 

                                  Women 

 

139 (134 – 152)  

134 (124 – 140) 

 

139 (134 – 151) 

134 (123 – 139) 

 

140 (134 – 151) 

134 (124 – 140) 

 

140 (134 – 152) 

134 (124 – 140)  

 

140 (134 – 151) 

134 (124 – 140) 

Total Cholesterol (mmol) 
4.1 (3.7 – 5) 

 

4.1 (3.7-5)  

 

4.1 (3.8-5)  

 

4.4 (3.7-5.3)  

 

4.4 (3.7-5.3) 

 

Triglycerides (mmol)  
1.6 (1.6 – 2.3) 

 

1.6 (1 – 2.3) 

 

1.5 (1 – 2.2) 

 

1.6 (1.2 – 2.3) 

 

1.6 (1.1 – 2.2) 

 

Serum Albumin (g/L) 

                                         

37 (35 – 39) 

 

37 (35-40) 

 

37 (35-39) 

 

38 (35-40) 

 

38 (36-40) 

 

eGFR (mL/min/1.73m2) 

 

52 (44 - 60) 

 

54 (44 - 61) 

 

53 (44 – 61) 

 

53 (44 – 61) 

 

53 (44 – 61) 

  

Alanine Transaminase – 

ALT (U/L) 

                                                  

22 (15-30) 

 

21 (16-30) 

 21 (15 – 30)  22 (16-32)  23 (16-32)   
Aspartate Transaminase – 

AST (U/L) 

 

21 (16-26) 

 

 

21 (17-26) 

 

 

20 (16-26) 

 

 

21 (16-27) 

 

 

21 (17-27) 

 

 

Alkaline Phosphate (U/L) 

 

91 (73 -109)  

 

89 (72-106) 

 

86 (71-107) 

 

84 (69-104) 

 

82 (67-101) 

 

Neutrophils (x10^9/L) 

 

4.7 (3.7-6) 

 

4.7 (3.7 – 6) 

 

4.6 (3.6-5.9) 

 

4.5 (3.5-5.8) 

 

4.3 (3.4-5.5) 

 

Lymphocytes (x10^9/L) 

 

1.9 (1.4-2.5) 

 

1.9 (1.5-2.5) 

 

1.9 (1.4-2.4) 

 

1.9 (1.4-2.4) 

 

1.8 (1.4 -2.4)  

 

Bilirubin ( µmol/L) 

 

10 (7 - 13) 

 

10 (8 - 13) 

 

10 (7 - 14) 

 

10 (8 - 14) 

 

11 (8 – 15) 

 

Medications within 6 months of inclusion, n (%) 

Metformin (yes) 6,190 (33%) 2,705 (32%) 2,085 (33%)  1,684 (30%) 1,881 (26%) 

Insulin (with Glucose-

lowering Drug) 1,246 (7%) 503 (6%) 411 (6%) 322 (6%) 319 (4%) 

Sulphonylureas (yes) 4,314 (23%) 1,857 (22%) 1,502 (24%) 1,188 (21%) 1,343 (19%) 

SGTL2i (yes) 1,741 (9%) 758 (9%) 518 (8%) 432 (8%) 528 (11%) 

DPP-4 inhibitor (yes) 
2,125 (11%) 938 (11%) 717 (11%) 549 (10%) 704 (10%) 

Statin (yes) 9,926 (54%) 4,396 (53%) 3,397 (53%) 2,794 (50%) 3,289 (46%) 

Beta Blockers (yes) 4,164 (22%) 1,930 (23%) 1,444 (23%) 1,216 (23%) 1,489 (21%) 

ACEi or ARBS (yes) 8,408 (61%) 3,873 (63%) 2,915 (62%) 2,432 (59%) 2,921 (57%) 

MRAs (yes) 1,098 (6%) 494 (6%) 344 (10%) 281 (5%) 311 (4%) 

Calcium Channel Blockers 

(yes) 1,773 (10%) 776 (10%) 589 (9%) 543 (10%) 628 (9%) 

Antiplatelets (yes) 4,314 (23%) 1,857 (22%) 1,502 (24%) 1,188 (21%) 1,343 (19%) 

Anticoagulants (yes) 1,773 (10%) 776 (9%) 589 (9%) 543 (10%) 628 (9%) 
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Thiazides (yes) 4,848 (26%) 2,241 (27%) 1,643 (26%) 1,462 (26%) 1,827 (26%) 

Loop Diuretic (yes) 
 

4,990 (27%) 2,093 (25%) 1,619 (25%) 1,351 (24%) 1,350 (19%) 

 

6.6.2 Factors Associated with All-cause Mortality 

For each SIMD quintile in Figure 27, the use of loop diuretics (LD), older age, lower serum 

concentrations of albumin and alanine transaminase (ALT) and estimated glomerular filtration 

rate (eGFR) were strong predictors of death. Some differences were also identified, for instance 

chronic obstructive pulmonary disease (COPD) was strongly associated with mortality for the 

most deprived quintiles, whilst a history of stroke was strongly associated with mortality for the 

least deprived quintiles (Appendix C2). 

Patients with a history of heart failure were much more likely to be taking loop diuretics, which 

is expected as loop diuretics are an essential treatment for symptoms and signs of congestion 

due to heart failure. Despite this strong relationship, both loop diuretics and a diagnosis of heart 

failure were associated with mortality, although treatment with loop diuretics was the stronger 

and more consistent predictor. This would be consistent with many, but not all, patients treated 

with loop diuretics having undiagnosed heart failure. Low lymphocyte counts have been 

associated with congestion and could be another early manifestation of heart failure. COPD may 

also reflect misdiagnosed heart failure. A low haemoglobin is common in older people but 

especially those with heart failure and anaemia contributes to the development of heart failure. 

Atrial fibrillation often contributes to the development of heart failure. Low serum albumin and 

transaminase (ALT) and raised alkaline phosphatase might all reflect liver dysfunction due to 

congestion, although a raised alkaline phosphatase might also reflect disordered bone 

metabolism. A low eGFR indicates impaired kidney function, another precipitating factor for 

heart failure. A high cholesterol is associated with an increased risk of coronary artery disease 

and myocardial infarction, important risk factors for left ventricular systolic dysfunction and 

heart failure. In summary, the predictors of prognosis are all associated with factors that increase 

the risk of heart failure, a condition associated with a high mortality. Accordingly, the set of 

predictors is biologically plausible and coherent, with remarkably little variation by SES, even 

though prognosis was worse in those who were most deprived. As for the baseline model SES 

was not an important predictor of all-cause mortality.  
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The fact that blood tests and prescription of loop diuretics were such strong predictors of 

outcome may reflect, at least in part, the accuracy and completeness of such data in the EMR, 

whereas the diagnostic record may be less complete and less accurate. Also, almost all patients 

will have blood tests but only a minority of patients will have a specific diagnosis. 

6.6.3 Model Validation 

The RSF model outperformed the Cox Regression Elastic Net model for both discrimination 

and calibration. Figure 27 compares survival prediction performance of the Elastic Net and RSF 

with tenfold cross-validation. Primary analysis and Secondary excluding patients with missing 

BMI are shown. Model comparison is further carried out by the time-dependent areas under the 

curve (AUC) which measures the ability of a model to discriminate between different event 

times or durations (Figure 28). This shows time-varying prediction accuracy for time-to-event 

models. The RSF has a higher performance of 0.84.  As expected in almost any scientific field, 

the performance even of a good predictive model tails off over time unless the model is updated 

with new information. For each year the AUC shows good performance > 0.82.  

 

 

Figure 27 (Primary analysis) Factors predicting all-cause mortality in patients with T2DM, stratified by SES 

Quintile 
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Figure 28 Survival Prediction of the Elastic Net and Random Survival Forest 

Figure 29 time-dependent AUC validation for Baseline Model (Secondary analysis) 
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6.7 Discussion  

Routinely collected data obtained from EMR can be used to predict survival for patients with 

new-onset T2DM with a fair degree of accuracy. SES predicted outcome in an age and sex 

adjusted model, although not in a fully adjusted multi-variable model, but there were only subtle 

differences in predictive variables when analysed by SIMD quintile. This suggests that the 

association between social deprivation and an adverse prognosis can be explained by other 

variables included in the model.  

The variable rankings varied by SIMD quintile. For instance, loop diuretic use was ranked 

highest in Q1 (most deprived) however dropped to 12th in Q5 (least deprived), suggesting a 

differential association with mortality risk across SES. This variation in rankings implies that 

the strength of association (i.e., the hazard) for specific variables like loop diuretics is not 

uniform across deprivation quintiles. 

Many of the findings are aligned with those of randomised controlled trial (RCTs). However, 

our population includes many who would typically be excluded from RCTs, providing an 

opportunity to identify key differences stratified by the level of social affluence/deprivation. 

Previously, SES has not been investigated in this way or to this extent, which should inform 

future clinical studies. 

Loop diuretics (LD) were a strong predictor of all-cause mortality in patients with T2DM 

regardless of SES. This may be because loop diuretics are a marker of undiagnosed heart failure, 

although it is also possible that loop diuretics accelerate the progression of cardiovascular and 

renal disease and increase the risk of sudden death (Rosano et al., 2017). Similar to the results 

of the analyses presented in this these, in the EMPA-REG OUTCOME trial (Pellicori et al., 

2021) patients with T2DM prescribed LD had higher rates of cardiovascular events and 

mortality even if they were not reported to have HF. A recent study of 198,898 patients with 

cardiovascular disease, also suggested that those receiving loop diuretic therapy had higher 

cardiovascular and all-cause mortality, possibly due to missed heart failure diagnoses, 

association with other serious conditions, or inappropriate use (Friday et al., 2024). Furthermore, 

according to the NICE Guidelines (Moran et al., 2022) loop diuretics can also exacerbate T2DM. 
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Lower serum concentrations of albumin were strongly related to outcome in all SIMD quintiles. 

Albumin is a blood protein synthesised by the liver that has many biological functions but most 

importantly helps keeps the water in the circulation because, in health, it is not filtered across 

the capillary membrane. Low blood levels of albumin may reflect reduced synthesis due to liver 

dysfunction, due either to congestion (heart failure), disease (e.g. alcohol) or malnutrition 

(although this probably only when severe). Renal disease can cause increased loss of albumin 

into the urine; this can be massive (nephrotic syndrome).  

Inflammatory disease and heart failure itself may also lead to albumin leaking out into the 

tissues; there is a lot of albumin in oedema fluid.  

Prolonged bed rest may also cause serum albumin concentration to drop, although it  is unclear 

whether this is due to reduced liver synthesis or increased circulating volume of water. Many 

studies have shown that low serum albumin is associated with a worse prognosis (Cleland et al., 

2014; Eline Bretscher et al., 2022). Low serum concentrations of another routinely available 

marker of liver function, serum alanine aminotransferase (ALT), also predicted prognosis. This 

suggests that reduced liver function rather than liver disease, which would be expected to 

increase ALT, is at play. Other studies of large populations of older people have also shown that 

low serum concentrations of transaminases are associated with a poorer prognosis (Ndrepepa 

and Kastrati, 2019; Ramaty et al., 2014). However, obesity, hyperlipidaemia and T2DM have 

all been associated with mild-to-moderate ALT elevation (Ho et al., 2022), making this 

observation all the more remarkable. Raised plasma concentrations of serum alkaline 

phosphatase, a marker of biliary tract obstruction or several types of bone disease, were also 

associated with a poorer prognosis. The significance of this is unclear. 

Neutrophil to lymphocyte ratio (NLR) is an indicator of systemic inflammation (high 

neutrophils) and congestion (low lymphocytes), with high ratios associated with a poor 

prognosis (Mikolasch et al., 2022). Elevated NLR levels are also associated with COPD 

(Paliogiannis et al., 2018), reflecting the inflammatory nature of the disease. The results of this 

study showed the prevalence of COPD is higher in the most deprived socioeconomic groups. 

COPD is strongly associated with smoking and air pollution, often impairs quality of life and is 

associated with an increased risk of respiratory infections, cardiovascular disease and a poorer 

prognosis (Balbirsingh et al., 2022).  
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Based on the requirements of analysis, the random survival forest was able to identify 

underlying relationships that linear models cannot (Miao et al., 2015). There was no assumption 

of proportional hazards, which is critical in traditional survival models. This method also 

accommodated right-censoring. Most studies limit their methodology to standardised Cox 

regression, although, tree-based models are known to be a lot more reliable for feature selection 

in other clinical settings (Spooner et al., 2020a).  One of the main aspects of this study 

investigates the prognostic drivers of disease based on survival prediction.  

Currently, medical studies utilise multivariable regression which provides direct interpretability 

of coefficients and allows for statistical inference but including specific assumptions which may 

not capture complex interactions.  

To overcome these limitations, the use of SHAP values, offered a model-agnostic approach to 

interpretability, accounting for interactions and providing a unified measure of feature 

importance. SHAP is useful for explaining survival probability predictions, especially for sub-

group analyses and understanding the relative contributions of predictors. Phi correlation was 

also key to discover key clusters between laboratory variables, which has not yet been applied 

in the medical field. Techniques to capture non-linear relationships were used, which are not 

typically practiced in studies. This approach introduces targeted interventions that are tailored 

to the specific factors that are most relevant for each socioeconomic group.   

This study carried out risk estimation, revealing the interpretation of prognostic factors driving 

all-cause mortality in T2DM patients across diverse SES ranks. A survival machine learning 

model could provide valuable assistance in the decision-making process once a thorough patient 

profile is established, including socioeconomic status. It provides fairness (including patients 

from different socioeconomic backgrounds) in risk modelling and addresses systemic biases 

that can arise from socioeconomic disparities. The approach ensures that risk prediction models 

do not inadvertently disadvantage certain socioeconomic groups, improving the reliability and 

generalisability of clinical insights. This also aligns with ethical standards, ensuring that all 

patients, regardless of their SES, receive appropriate care recommendations. 
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Further work is required to include a higher percentage of ethnicities other than White. A 

prospective cohort study between 2006 and 2010 of 500,000 participants using UK Biobank 

data found that South Asians had the highest T2DM prevalence (17.9%), followed by the Black 

(11.7%) and White (5.5%) ethnic groups (Deepali Nagar et al., 2021). However further data 

collection is required to examine environmental factors in clinical studies. External validation 

is necessary to ensure the generalisability of the approach adopted here. Unfortunately, the Hong 

Kong Cohort used throughout this research for external validation did not have a reliable 

measure of SES. See Appendix C3.  

BMI 

More than 80% of patients with a measured BMI were either overweight or obese. It is well 

known that obesity is strongly associated with and a cause of insulin resistance and T2DM. 

Unfortunately, measurement of BMI was missing for >48% patients. Missing data reduces the 

quality and reliability of predictive models and may be informative. A sensitivity analysis 

revealed that including patients without a recorded BMI skewed the risk prediction model 

results. BMI was missing not at random (MNAR) (Heymans and Twisk, 2022). Patients with 

missing BMI values were older, were less likely to have ethnicity recorded had a substantially 

higher mortality (Appendix C4). A previous analysis of the Scottish Diabetes Registry (Read 

et al., 2017) found that individuals with missing BMI data had more comorbidities and lower 

survival rates. BMI data completeness and patient survival are somehow connected. It is likely 

that BMI is more likely to be recorded when the patient is obese and least likely to be recorded 

when it is in the normal range.  

Patients who were obese had a better survival (the obesity paradox (Costanzo et al., 2015; NICE 

Guidelines, 2014) (Appendix C5)). Those in the “Underweight” group had a 50% higher risk 

of all-cause mortality. Patients who were “Obese”, “Severely Obese” or “Overweight” had a 

lower all-cause mortality than those with a “Normal” weight. The poor prognosis of those with 

a missing BMI is consistent with a high proportion of these patients have a normal BMI. A 

similar ‘obesity paradox’ has been noted in older patients with hypertension, CAD, AF or heart 

failure (Cullington et al., 2014). However, amongst younger people, obesity is associated with 

the earlier onset of CVD and a higher mortality. This is a controversial area. Obese people may 

develop CVD at a younger age.  
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Younger age then confers a better prognosis. Alternatively, patients with T2DM who are not 

obese may have a more severe metabolic disease. Obese individuals might receive more medical 

attention and monitoring, potentially leading to earlier detection and management of health 

issues, although there is little evidence to support this hypothesis (Fmedsci et al., 2023). There 

is growing evidence that treatments for obesity reduce cardiovascular risk in patients with 

T2DM. 

 

6.8 Conclusion 

This analysis shows that variables collected in routine EMR can predict the mortality of patients 

with new-onset T2DM with reasonable accuracy. The analysis also shows the prognostic 

importance of socioeconomic deprivation for patients with T2DM, although the risk factors for 

mortality were very similar across SIMD quintiles. In agreement with many previous reports, 

obesity was associated with a better survival, although RCTs suggest that effective treatment of 

obesity reduces risk – leading to a paradox within the obesity paradox. 
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Chapter 7  “Treatment with Loop Diuretics is Strongly Associated 

with Prognosis of Patients with Type-2 Diabetes Mellitus in Two 

Different Geographies” 

Abstract  

Introduction: Type 2 diabetes mellitus (T2DM) is associated with accelerated development of 

atherosclerosis and a reduced life expectancy. Applying machine learning (ML) to 

administrative electronic medical records (EMRs) might identify novel characteristics that 

predict outcome, thereby improving prognostic precision and suggesting new targets for 

investigation and treatment (N Kaur et al., 2024). 

Purpose: We adapted an ML survival analysis approach using random survival forests 

investigate the use of EMRs to predict all-cause mortality in two ethnically and geographically 

different populations; one from the Greater Glasgow & Clyde (GG&C) region in Scotland  and 

the other from Hong Kong. 

Methods: EMRs included information on demographics, prior comorbidities, laboratory 

measurements, medications, and mortality. Multivariable Cox regression and time-dependent 

random forest model were used to identify predictors of all-cause mortality.  Subsequently, we 

applied a state-of-the-art ML interpretability method, to gain further insight into the predictors. 

Results: In GG&C, 46,031 individuals received a new diagnosis of T2DM between 2009 and 

2019. Their median age was 66 (interquartile range: 56 to 75) years. Within 10 years, 11,727 

(25%) had died. In Hong Kong, 273,876 patients with a first-attendance with T2DM at public 

hospitals or clinics were included, with follow-up until December 2019. The median age of the 

patients was 64 (interquartile range of 57 to 72) years. Within 10 years, 91,155 (33%) had died. 

For both T2DM populations, the strongest association with all-cause mortality was use of loop 

diuretics (Figure 1). For GG&C, other important predictors were greater age, lower serum 

albumin, elevated alanine transaminase (ALT), increased alkaline phosphatase, and lower 

estimated glomerular function rate (eGFR) (c-index: 0.83; Brier score: 0.07). For Hong Kong, 

predictive variables were similar and included greater age, lower eGFR, lower haemoglobin and 

lymphocytes, lower serum albumin, and elevated alkaline phosphatase (c-index: 0.85; Brier 

score: 0.06). Multivariable Cox regression adjusting for age, sex and key predictors showed a 
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higher mortality amongst those prescribed loop diuretics compared to those who were not 

(GG&C: adjusted hazard ratio: 2.93, (95% CI: 2.821 to 3.04); Hong Kong: adjusted hazard ratio: 

1.75 (95% CI: 1.72 to 1.77). Only a minority of patients prescribed loop diuretics had a diagnosis 

of heart failure, end-stage renal disease or resistant hypertension. 

Conclusion: Amongst patients with recent-onset T2DM, prescription of loop diuretics was the 

feature most strongly associated with all-cause mortality in both GG&C and Hong Kong. 

Prescription of loop diuretics might be a pharmacological marker of congestion and 

undiagnosed heart failure or might itself have deleterious effects on prognosis. 

 

7.1 Introduction  

This chapter investigates the prescription of loop diuretics for all-cause mortality comparing 

two distinct populations. Identifying markers of an adverse prognosis in patients with type-2 

diabetes mellitus (T2DM) could improve clinical care and identify potential new therapeutic 

targets. Machine learning (ML) enables the analysis of electronic medical records (EMRs) to 

identify novel factors associated with mortality and enhance prognostic precision. It is important 

to validate findings. Often this is done by withholding a random sample of people from the 

population of interest. This can validate the internal consistency of a model within a population 

but does not provide information on whether it can be extrapolated to other populations. Cross-

validation of prognostic models in widely different populations, in terms of geography, 

healthcare systems and ethnicity, provides evidence of the generalisability of the model.  

Accordingly, routinely collected data from EMRs for two large populations of patients with 

T2DM were obtained, one from the Greater Glasgow & Clyde (GG&C) region in the West of 

Scotland and the other from Hong Kong. Of particular interest was prescribing of loop diuretics 

(LD), widely used for managing heart failure, a serious but often undiagnosed complication of 

cardiac dysfunction.  By testing the model's performance in diverse settings, this chapter 

assessed whether the predictive factors identified in Chapter 6 are consistent and relevant across 

different demographic groups for all-cause mortality in patients with T2DM.  
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7.2 Aim 

The main aim of this chapter is to develop separate prediction models for mortality in patients 

with T2DM from GG&C and in Hong Kong using machine learning (ML) and to compare  them, 

with a special focus on LD prescribing.  

 

7.3 Study Data  

In GG&C, a operationalised database called Safe Haven provides de-identified, routinely 

collected, National Health Scotland (NHS) EMRs. The Scottish Care Information (SCI)-

Diabetes registry includes all patients when they are first assigned a Read Code [10] (a coded 

thesaurus of clinical terms used in the NHS since 1985) for diabetes mellitus in a primary or 

secondary care health care information system, which is estimated to capture >99% of all 

patients in Scotland with diabetes mellitus (Livingstone et al., 2012). In order to access the data, 

approval is required from the Local Privacy Advisory Committee of the West of Scotland Safe 

Haven, which requires the application to focus on the population of interest. Accordingly, the 

request was limited to people with diabetes mellitus aged ≥50 years because T2DM is less 

common in younger patients and they have a relatively good medium-term prognosis. In Hong 

Kong, EMRs are extracted from an integrated health database (Clinical Data Analysis and 

Reporting System) operated under the Hospital Authority in Hong Kong. T2DM was defined as 

a primary or secondary diagnoses in public healthcare institutes. Patients are classified in Hong 

Kong using the International Classification of Primary Care (Ho Wong et al., 123AD) (ICPC) 

code T90 (Diabetes; non-insulin-dependent) and ICD-9 250 Code. For both geographies, 

patients aged ≥50 years with a first record of diabetes between 1st of January 2009 to 31st 

December 2019 were enrolled. 
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7.4 Patient Information 

Baseline patient characteristics included age, sex and ethnicity and smoking. However, due to 

only 10% smoking records in the Hong Kong population, it  was excluded from this analysis 

due to unreliability. Common comorbidities in both GG&C and Hong Kong included chronic 

kidney disease (CKD), chronic obstructive pulmonary disease (COPD), coronary artery disease 

(CAD), heart failure, hypertension, peripheral artery disease (PAD), stroke, atrial fibrillation 

(AF) was defined by ICD-9 Codes). Routinely collected laboratory tests included haemoglobin, 

lymphocyte and neutrophil white blood cell counts, haemoglobin A1c, total cholesterol, 

triglycerides, serum albumin, estimated glomerular filtration rate (eGFR), potassium, AST, 

ALT, alkaline phosphatase and bilirubin. Results in the same month as first diagnosis were 

preferred but the time window could be extended to one year if a relevant test was otherwise not 

available. For both GG&C (NICE, 2024a) and Hong Kong (Yang et al., 2022), a Glycated 

Haemoglobin (HbA1c) value of ≥6.5% (48 mmol/mol) was used to define T2DM as advised 

by international guidelines.  

Appendix D1 shows the laboratory tests measured for both populations (NICE, 2024b; SIGN, 

2023; ‘Hong Kong Diabetes Association’, 2024). Mortality was classified using the 

International Classification of Diseases, 9th Revision (ICD-9) and 10th Revision (ICD-10) 

codes obtained from death certificates completed by doctors.  

In GG&C, medicines for diabetes and cardiovascular disease, including lipid -lowering 

medications and loop diuretics were extracted from a Prescribing Information System (PIS) that 

covers all NHS medicines, classified using the British National Formulary (BNF). In Hong 

Kong, medicines for diabetes and cardiovascular disease were extracted directly from the 

Clinical Data Analysis and Reporting System. Table 29 provides a comparison of LD 

dispensing and prescribing practices.  
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           Table 29 Dispensing and Prescribing Loop Diuretics in GG&C and Hong Kong 

Figure 29 shows the consort diagram for both populations in this analysis.   

GG&C: The Scottish Care Information - Diabetes Collaboration population included 47,396 

patients aged 50 years or older from the NHS Greater Glasgow and Clyde (GG&C) region. 

Patients treated with insulin only, who were presumed to have Type-1 Diabetes, were excluded 

(1,365 individuals), leaving 46,031 patients eligible for analysis, with or without an available 

measure of body mass index (BMI).  

Hong Kong Population: A total of 273,876 patients aged 50 years or older with T2DM from 

public hospitals and clinics in Hong Kong were included. All patients were eligible for analysis, 

although some did not have an available measurement of BMI. No patient  was treated with 

insulin alone.  
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7.5 Methods  

The methods outlined in Chapter 4, including the use of random survival forest models, were 

adapted to analyse the outcome of mortality in both GG&C and Hong Kong populations. In 

addition to the random survival forest, Kaplan-Meier survival analysis and Cox proportional 

hazards models were employed to assess all-cause mortality risk across these distinct 

populations. SHAP (SHapley Additive exPlanations) values were used to enhance the 

interpretability of the random survival forest, providing insights into the key factors driving 

mortality predictions at the individual patient level. A table was included to show potential 

reasons for prescribing LD in both populations, which might help explain the association 

between LD and mortality. 

 

Figure 30 Consort Diagram of T2DM in GG&C and Hong Kong 
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7.5.1 Gradient Boosting with Cox Proportional Hazards (CPH) 

To enhance the predictive performance of survival analysis, a hybrid approach was employed 

that combines Gradient Boosting with the Cox Proportional Hazards (CPH) model (Spooner et 

al., 2020). This integrated method improves modelling of survival data, particularly in 

predicting all-cause mortality, while accommodating complex relationships among covariates.  

Gradient Boosting is an ensemble machine learning technique that sequentially combines 

multiple weak learners, typically decision trees, to create a robust predictive model. By 

iteratively fitting the model to the residuals of the previous iteration, Gradient Boosting captures 

complex patterns in the patient data. The basic formulation (Friedman, 2001) of the model is 

represented as follows: 

𝐹(𝑥) = 𝐹0 (𝑥) + ∑ 𝛾𝑚 ℎ𝑚(𝑥)

𝑚

𝑚=1

 

where 𝐹0 (𝑥) is the initial prediction, ℎ𝑚(𝑥) represents the weak learners, 𝛾𝑚  and denotes the 

associated weights. 

Integration with Cox Proportional Hazards  

The integration of Gradient Boosting with the CPH model capitalizes on the strengths of both 

approaches. The Cox model provides a semi-parametric framework that describes the 

relationship between covariates and the hazard function. Gradient boosting survival analysis 

implementation was utilised to fit the model to the training dataset. This approach allowed for 

the effective modelling of the baseline hazard function while including the advantages of 

machine learning to capture non-linear relationships among the covariates. It optimises the 

partial likelihood iteratively, handles high-dimensional data well and includes regularisation to 

prevent overfitting. 

The model was initialised with parameters such as the number of estimators, learning rate, and 

maximum depth of the trees. The fitting process was performed using the training data, which 

consisted of survival times and associated covariates. Following training, the model’s 

performance was evaluated using the concordance index (c-index), which assesses the model's 

ability to rank survival times correctly. 
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7.6 Results  

7.6.1 Baseline Characteristics Results of GG&C and Hong Kong for all-cause mortality  

In GG&C, 46,031 individuals with a new diagnosis of T2DM between 2009 and 2019 were 

included, median age was 64 (interquartile range: 57 to 72) years. Within 10 years, 11,727 (25%) 

had died. In Hong Kong, 273,876 patients with a first-attendance for T2DM at public hospitals 

or clinics were included, with follow-up until December 2019. The median age of the patients 

was 65 (interquartile range of 56 to 75) years. Within 10 years, 91,155 (33%) had died.   

Appendix D2 shows characteristics stratified by sex for each population with and without a 

missing measurement of BMI.  

The Hong Kong T2DM population was predominantly of Chinese ethnicity (92%), were slightly 

older, had a lower median BMI and included a higher proportion of women compared to GG&C, 

of which 85% were of White ethnicity. Patients in the GG&C were more likely to have a record 

of hypertension, CKD, atrial fibrillation, coronary, peripheral or cerebrovascular disease and 

heart failure, which could reflect a higher burden of comorbidities in the GG&C or more 

complete reporting.  

Compared to the GG&C, men and women from Hong Kong had a lower haemoglobin and were 

more likely to fulfil the World Health Organisation’s definition of anaemia (see Table 30), 

which is consistent with previous reports of differences in haemoglobin between people of 

European ancestry and the Chinese population. However, patients from GG&C also had a lower 

eGFR, which may also be associated with a higher prevalence of iron deficiency anaemia. 

Treatment patterns were very different between GG&C and Hong Kong. The principal glucose 

lowering agents in Hong Kong were metformin and sulfonylureas, whereas only slightly more 

than half of patients in GG&C received these agents. The principal anti-hypertensive agents 

used in both GG&C and Hong Kong were ACE inhibitors or ARBs but, in Hong Kong, many 

more were treated with calcium channel blockers, beta-blockers and thiazides. Patients in  

GG&C were much more likely to receive a statin, which might account for the slightly lower 

serum cholesterol concentration for patients from the GG&C compared to Hong Kong. 
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Table 30 Mortality in GG&C and Hong Kong Patients with T2DM 

Categorical data shown as percentages and continuous data as median and quartiles Substantial differences 

between T2DM populations are shown in bold because some differences, although highly statistically 

different, are of doubtful clinical relevance. 

Demographics at Baseline:  GG&C 
N = 46,031 

Hong Kong 
N= 273,876  

P-value 

Age (years) 64 (57 – 72) 65 (56 – 75) <0.001 

Sex 
Men 

Women 

 
24,664 (54%) 

21,367 (46%) 

 
132,040 (48%) 

141,836 (52%) 

<0.001 

Ethnicity 
Chinese 

White 
Other 

 
N/A 

39, 290 (85%) 
6,741 (15%) 

 
251,966 (92%) 

N/A 
21,910 (8%) 

<0.001 

*Body Mass Index (BMI) 26 (26 – 31)   25 (23 – 26) <0.35 

Smoker (Yes)  
9,416 (20%) 

 
N/A 

 
N/A 

Comorbidities n(%) 

Hypertension (yes) 18,999 (41%) 64,246 (23%) <0.001 

Chronic Kidney Disease (yes) 2,549 (6%) 3,381 (1%) <0.001  

Hyperkalaemia (yes) 2,336 (5%) N/A N/A 

Atrial Fibrillation (yes) 6,083 (13%) 7,772 (3%) <0.001 

COPD (yes) 4,395 (8%) 818 (0.3%) <0.001 

Coronary Heart Disease (yes) 7,106 (16%) 26,423 (10%) <0.001 

Myocardial Infarction (yes) 4,545 (11%) N/A N/A 

Peripheral Artery Disease (yes) 1,650 (4%) 346 (0.1%) 0.73 

Stroke/TIA (yes) 4,010 (9%) 8,986 (3%) <0.001 

Heart Failure (yes) 4,675 (10%) 11,189 (4%) <0.001 

Anaemia  2, 302 (5%) 19,425 (6%) <0.001 

Lab Tests within 6 months of inclusion, n (%) 

Haemoglobin A1C (mmoL/mol) 55 (46– 61) 56 (51– 63) 0.28 

Haemoglobin (g/L) 
                                                                

Men                                                           
Women 

 
 

138 (134 – 151)     
134 (123 – 139)     

 
 

131 (132 – 139)        
129 (122 – 136) 

 
 

 
<0.001 

Lymphocyte count (x10^9/L)  2.0 (2.0 – 2.3) 1.9 (1.7 – 2.4) <0.001 

Neutrophil count (x10^9/L) 5.0 (3.8-5.6) 5.3 (4.4 – 7.1) <0.001 

Total Cholesterol (mmol/L) 4.1 (3.7-5.0)  4.7 (4.3 – 5.2) 0.14 

Triglycerides (mmol/L)  1.5 (1.0 – 2.2) 1.5 (1.1 – 1.9) 
 

<0.001 

Serum Albumin (g/L) 37 (35-39) 
 

40 (38 – 42) 
 

<0.001 

eGFR (mL/min/1.73m2) 

 

54 (44 - 61) 

 

64 (53 – 77) 

 

<0.001 

Potassium (mmol/L 4.3 (4.0 – 4.6)  
 

4.2 (4.0 – 4.4)  
 

<0.001 

Alanine Transaminase – ALT (U/L) 
                                                 

22 (16-30)  
 

23 (17 – 30) 
 

<0.001 
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Aspartate Transaminase – AST (U/L) 20 (16-26) 
 

25 (21 – 39) 
 

<0.001 

Alkaline Phosphatase (U/L) 89 (72-105) 
 

75 (65 – 87) 
 

<0.001 

Bilirubin (µmol/L) 10 (7 - 13) 

 

10.3 (9.2 – 12.8)  

 

<0.001 

Medications within 6 months of inclusion, n (%) 

Metformin (yes) 14,545 (32%) 185,881 (68%) <0.001 

Sulphonylureas (yes) 10,204 (22%) 173,525 (63%) <0.001 

DPP4i (yes) 5,033 (11%) 325 (0.1%) <0.001 

GLP1-receptor antagonists (yes) 2,139 (5%) 17  <0.001 

Insulin (with other Glucose-Lowering Agent) 2,801 (6%) 29,697 (11%) <0.001 

Statins (yes) 23,802 (52%) 61,401 (22%) <0.001 

Beta Blockers  (yes) 10,243 (22%) 92,309 (34%) <0.001 

ACEi or ARBS (yes) 20,549 (60%) 121,786 (44%) <0.001 

Calcium Channel Blockers 4,309 (9%) 109,225 (40%) <0.001 

Thiazides (yes) 12,021 (26%) 52,096 (19%) <0.001 

Loop Diuretics 11,403 (25%) 60,152 (22%) <0.001 
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7.6.2 All-Cause Mortality Risk Prediction Model(s)  

For both T2DM populations, using a random survival forest approach, the strongest predictor 

for all-cause mortality was being treated with loop diuretics (Table 31). For GG&C, other 

important predictors were greater age, lower serum albumin, lower alanine transaminase (ALT), 

increased alkaline phosphatase, and lower estimated glomerular function rate (eGFR) (c-index: 

0.83; Brier score: 0.07). For Hong Kong, predictive variables were similar and included greater 

age, lower eGFR, lower haemoglobin and lymphocytes, lower serum albumin, and elevated 

alkaline phosphatase (c-index: 0.85; Brier score: 0.06). 

 

 

 

 

 

Table 31 Results for predicting all-cause mortality in Glasgow and Hong Kong 
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7.6.3 Model Validation: Gradient Boosting with Cox Proportional Hazards 

Table 32 presents the implementation and results of the gradient boosting CPH model for key 

predictors of mortality. The ordering of the risk factors was different. Loop diuretics were the 

strongest predictor of mortality in the GG&C T2DM population followed by age, eGFR, atrial 

fibrillation, serum albumin, ALT, ALP, heart failure event, haemoglobin and lymphocytes. The 

predictive performance was good (c-index: 0.81) in the GG&C T2DM population. 

A maximum tree depth of 4 was used for the Gradient Boosting Cox model. This depth allows 

the algorithm to capture moderate interactions between predictors, which is important given the 

complexity of clinical risk factors. It provides a balance between model expressiveness and 

generalisability, avoiding the overfitting risk associated with deeper trees while outperforming 

very shallow trees (e.g. depth = 1), which are too simplistic. 

For the Hong Kong T2DM population, the strongest predictors were serum albumin, eGFR, 

loop diuretics, older age, haemoglobin, ALP, lymphocytes, ALT, heart failure and total 

cholesterol. The C-Index of 0.84 indicates strong predictive performance. The similarity of the 

variables most strongly associated with mortality in two very different patient T2DM 

populations using two different statistical approaches suggests that the results are reliable.   

 

Table 32 Model Validation using Gradient Boosting with CPH model 
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7.6.4 Kaplan Meier & Cox Proportional Hazards 

Figure 30 and Figure 31 Kaplan Meier plots showing all-cause mortality in the GG&C and 

Hong Kong T2DM populations prescribed LD and with heart failure (blue), prescribed LD but 

without heart failure (orange), not prescribed LD but with heart failure HF (green) and neither 

prescribed LD nor with a diagnosis of heart failure (red).  

GG&C T2DM population: The survival curves show a clear difference in survival probability 

between these groups confirmed by a multivariable log-rank test (p <0.005).  

• Blue Curve: approximately 65% of patients with heart failure who were prescribed LD 

died within 5 years.  

• Orange Curve: approximately 45% of patients prescribed LD but without heart failure 

died within 5 years.  

• Green Curve: approximately 25% of patients who were not prescribed LD but were 

diagnosed with heart failure died within 5 years. 

• Red Curve: approximately 15% of patients who were not prescribed LD nor were 

diagnosed with heart failure died within 5 years. 
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All-cause Mortality: GG&C 

Figure 31 Kaplan Meier plot for all-cause mortality in the GG&C population 
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Hong Kong T2DM population: The prognosis of patients with heart failure and treated with 

loop diuretics was similar in Hong Kong (55%) and GG&C (65%) at 5 years as was the 

prognosis of patients who had neither feature (10% and 15% respectively). However, the 

prognosis of patients with heart failure in Hong Kong was similar whether or not they were 

receiving loop diuretics, which is very different from the outcome in GG&C. Patients treated 

with loop diuretics but without a diagnosis of heart failure had a better prognosis than those with 

heart failure, albeit still markedly impaired, which was somewhat different to the findings from 

GG&C.  

• Blue Curve: approximately 55% of patients with heart failure who were prescribed LD 

died within 5 years.  

• Orange Curve: approximately 25% of patients without heart failure but who were 

prescribed loop diuretics died within 5 years. 

• Green Curve: approximately 55% of patients with heart failure who were not prescribed 

LD died within 5 years.  

• Red Curve (Neither): approximately 10% of patients without heart failure who were 

not prescribed LD died within 5 years.  

  

 

 

 

 

 

 

 

 

All-cause Mortality: Hong Kong 

Figure 32 Kaplan Meier plot for all-cause mortality in Hong Kong 
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To strengthen and confirm results from the RSF model and Kaplan Meier visualisation further 

investigation of loop diuretics was carried out. Figure 32 shows multivariable Cox regression 

adjusting for age and sex, showing a higher mortality amongst those prescribed loop diuretics 

in GG&C compared to those who were not.  Men had a 28% higher mortality compared to 

women. Older age increased risk by 7% by decade.  Figure 33 shows the Hong Kong population 

where the use of LD was associated with a 1.75-fold increase in mortality compared to those 

not on LD. Men had a 51% higher risk compared to women and older age increased risk by 9% 

per year. For both populations the z-values and p-values indicate all variables are significantly 

associated with mortality (p < 0.005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 33 Cox Proportional Hazards: GG&C for All-cause Mortality 
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Figure 34 Cox Proportional Hazards: Hong Kong for All-cause Mortality 
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7.6.5 Potential Reasons for Prescribing Loop Diuretics in GG&C and Hong Kong 

Only a minority of patients prescribed loop diuretics had a diagnosis of heart failure, end -stage 

renal disease or resistant hypertension. Table 33 show the potential reasons for prescribing loop 

diuretics in GG&C and Hong Kong. Columns in blue are not mutually exclusive; a patient could 

have heart failure, end-stage renal disease and hypertension and would therefore count in all 

three columns. Resistant hypertension was defined as ≥3 anti-hypertensive therapies. End-stage 

renal disease was defined as eGFR <30 mL/min/1.73m2.  

In GG&C, of 11,403 patients prescribed a loop diuretic 45% had one or more of the above 

reasons for their use, with heart failure (27%) being the major reason. In Hong Kong, of 60,152 

prescribed a loop diuretic 40% had one or more of the above reasons for their use, with resistant 

hypertension being the major reason.  However, in most cases there was no obvious reason for 

their prescription 

Table 33 Potential reasons for Prescribing Loop diuretics in GG&C and Hong Kong 
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7.7 Discussion  

This analysis of a large number of patients with T2DM drawn from for two very different 

geographical, culturally and ethnically populations shows that a rather similar set of variables 

predicts mortality using different statistical and ML models. These models consistently found 

that age, treatment with loop diuretics, serum albumin and eGFR were amongst the five 

strongest predictors of an adverse prognosis.  

In terms of demographics, the age and sex distribution of the two population was remarkably 

similar, although due to the large number of patients small differences were nonetheless 

statistically significant. However, one key demographic difference was smoking. Hong Kong's 

effective tobacco control measures have contributed to the lowest smoking prevalence among 

high-income regions since 1990, which may have contributed to increased  life expectancy (Ni 

et al., 2021). There were very few records on smoking (10%). Smoking is a well-established  

risk factor for cardiovascular disease and its exclusion from the analysis—represents a 

limitation. This may introduce unmeasured confounding, potentially biasing risk estimates. 

However, including unreliable or sparsely recorded data allows greater noise into the models, 

justifying its exclusion on methodological ground.  

Regarding few records, the Hong Kong population in this study showed less comorbidities than 

the Glasgow population, which may have contributed to slightly better  health outcomes. There 

was 90% missing BMI in the Hong Kong T2DM population, however medical literature 

suggests that Chinese Asians have a lower BMI cut-off for health risks (Wise, 2021) than 

Caucasian populations. This may be tied to differences in body composition across ethnic 

groups.   

At slightly higher proportion of patients in Hong Kong were women. This could be attributed 

to various demographic and cultural factors. The Women's Commission (WoC) of Hong Kong  

(a central body that promotes women’s development and well-being) indicates that women tend 

to have more frequent healthcare visits compared to men (WoC, 2019). Among high-income 

populations, Hong Kong recorded the lowest cardiovascular mortality and one of the lowest 

cancer mortalities in women (Ni et al., 2021). Greater healthcare engagement among women 

may explain their increased representation in this T2DM population.  
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Patients with T2DM were included regardless of co-morbidity or treatment, which may account 

for the high use of loop diuretics and provide insights into why they were prescribed and the 

outcome of patients who are treated with them. Women may be prescribed  loop diuretics more 

than men due to several factors, including greater under-recognition of HF, leading to delayed 

diagnosis and more frequent prescription of diuretics as a symptom-management strategy before 

an official HF diagnosis is confirmed (Zakeri et al., 2021b).  

Furthermore,  in both the UK (Theresa A. McDonagh et al., 2021) and Chinese (Guo et al., 

2016) populations,  women are more likely to present with heart failure with preserved ejection 

fraction (HFpEF), which is a more difficult diagnosis than heart failure with reduced ejection 

Fraction  (HFrEF). Additionally, women tend to live longer and develop comorbid conditions 

like hypertension and atrial fibrillation, which can also lead to increased prescription of diuretics 

(Rosengren, 2024).  

In both GG&C and Hong Kong, patients with HF and taking loop diuretics had the worst 

prognosis and patients taking loop diuretics but without HF had a much worse prognosis than 

those who had neither feature. However, patients with HF who were not taking loop diuretics 

had a very different outcome between the two populations. This was the least common profile 

in both datasets but still comprised several thousand patients, making it likely that the 

observation is real. It is possible that loop diuretic prescriptions were missed in some patients 

from Hong Kong. However, it is also possible that the criteria used to diagnose HF differed 

between these population. Surprisingly, there is no robust definition of HF (Cleland et al., 2021) 

making this a distinct possibility. 

The green and red survival curves overlapping in the Hong Kong cohort suggests that some 

patients with diagnosed heart failure, but not prescribed loop diuretics, have survival trajectories 

nearly identical to patients without heart failure or diuretic use. This could reflect a subgroup of 

patients with milder HF, potential misclassification, or treatment decisions based on low clinical 

risk. 

Furthermore, the differing hazards of all-cause mortality associated with loop diuretics between 

the Glasgow and Hong Kong populations likely reflect variations in prescribing practices, 

disease severity at initiation, and healthcare system context.  
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In Scotland, loop diuretics are frequently prescribed, even in the absence of a formal heart failure 

diagnosis (Friday et al., 2024). In contrast, prescribing patterns in Hong Kong may reflect a 

more selective use, potentially indicating more advanced or acute presentations (Leung et al., 

2015b). These differences highlight  the importance of interpreting medication-related 

associations within the clinical and systemic context of each setting. 

Higher HbA1c and cholesterol levels in the Hong Kong population may be linked to both dietary 

and genetic factors, as well as differences in diabetes management and treatment guidelines 

across regions. For example, East Asians are known to have different responses to certain 

treatments that affect glucose and lipid metabolism (Kodama et al., 2013). They are more insulin 

sensitive than other ethnicities but develop pancreatic beta-cell dysfunction with reduced 

secretion of insulin (do Vale Moreira et al., 2021), resulting in poorer blood glucose control and 

elevated HbA1c levels. In people of European origin, obesity and insulin resistance is the more 

common clinical phenotype.  

This study highlights many similarities and some differences in prescribing for patients with 

T2DM in GG&C and Hong Kong. Patients in Hong Kong were more likely to be prescribed 

treatments to reduce blood glucose, whereas in Glasgow many patients were not started on 

pharmacological therapy in the first 6 months; presumably dietary measures were tried initially. 

The most popular choices for pharmacological control of diabetes in both GG&C and Hong 

Kong were metformin and sulfonylureas. Patients in GG&C were more likely to be prescribed 

statins, perhaps reflecting the higher prevalence of atherosclerotic disease.  

Patients in GG&C were more likely to receive ACEi/ARB but less likely to receive CCB, agents 

that are prescribed predominantly for hypertension (Wong et al., 2008). A similar proportion of 

patients were prescribed loop diuretics in both geographies, overall (25% in GG&C; 22% in 

Hong Kong) and amongst patients with HF (66% and 67% respectively). In summary, despite 

differences in geography, ethnicity, culture and healthcare infrastructure, the treatment of these 

two populations was remarkably similar. 
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7.8 Conclusion 

Applying a novel machine learning approach to EMR for patients with T2DM in GG&C and 

Hong Kong identified a similar set of predictors for mortality and predictive models that 

performed similarly well. This suggests that the models developed should be generalisable to 

other populations. In both GG&C and Hong Kong, treatment with loop diuretics was strongly 

associated with mortality, which is a novel finding for patients with T2DM. This may be because 

many of these patients had undiagnosed heart failure, but inappropriate use of loop diuretics 

might accelerate the progression of CVD and increase the risk of sudden death due to 

hypokalaemia.  
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Chapter 8 Discussion & Conclusions 

 

8.1 Introduction to the Discussion 

This research examined the incidence and prediction of heart failure and all-cause mortality in 

patients with T2DM using EMRs from two from two geographically, ethnically and clinically 

diverse populations. Differences across cohorts was explored, with a focus on cardiovascular 

comorbidities. The significance of prescribing loop diuretics was thoroughly investigated. 

Additionally, the importance of social deprivation was explored in the Glasgow cohort . Through 

a precision medicine approach, this research constructed robust risk prediction models. These 

models were built with survival analysis, including the time-to-event aspect. This allowed for 

risk predictions that account whether or when an event (heart failure or death) is likely to occur. 

Unlike simpler models like logistic regression, which provide only a binary outcome over a 

fixed time, survival analysis handles censored data. It also identified key risk factors for incident 

heart failure and mortality with interpretability through explainable artificial intelligence 

techniques and clinical expertise. 

8.2 Summary of Key Findings 

In both Glasgow and Hong Kong loop diuretics were an important predictor for both incident 

heart failure and mortality, possibly because loop diuretics are a marker of prevalent but 

undiagnosed disease or because loop diuretics accelerate disease progression. In both cohorts, 

older women and those with impaired renal function were more likely to be prescribed loop 

diuretics. The robustness and generalisability of the predictive models varied  slightly between 

populations with slightly greater predictive accuracy in Hong Kong. Models based on 

interpretable machine learning methodology outperformed traditional regression models and 

provided insights into the importance of various risk factors/predictors for an individual patient.  
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8.3 Interpretation of Baseline Characteristics Differences  

The statistical significance of minor differences in the characteristics between large cohorts 

should be interpreted with care (Chapter 7). They may reflect subtle differences in demographic 

profile, genetics, culture and diet and access to healthcare and hence duration of disease before 

diagnosis and may not be clinically meaningful. 

Comparing the Glasgow and Hong Kong populations, age and sex distributions were remarkably 

similar. The Glasgow dataset had richer demographic information, with an excess of patients 

with T2DM in the most deprived quintile of the population. An area-based marker of 

socioeconomic status (SES) was used, rather than individual-level indicators. The area-based 

measure can reflect collective environmental and social characteristics that may directly 

influence health outcomes. For example, more deprived areas may have reduced access to 

healthy food options, green spaces, or recreational facilities, while facing greater exposure to 

fast food options, alcohol and tobacco advertising and other environmental stressors. However, 

area-based measures like SIMD can misclassify individuals, as not everyone in a deprived area 

is personally disadvantaged. Still, they are useful and justified for population-level studies.  

Although there was missing BMI is both populations, Glasgow had better coverage (70% 

complete records). Furthermore, a slightly higher percentage of women in the Hong Kong cohort 

may reflect cultural factors that influence healthcare engagement (Women’s Comission, 2021). 

Hong Kong’s Women’s commission organisation helps increase women’s healthcare 

awareness, which may encourage healthcare utilisation and earlier diagnosis. In the UK, there 

may be delays in the diagnosis of T2DM (Sattar, 2013) and in the detection and management of 

cardiovascular disease (Bakker, 2019). This highlights the need for increased awareness to 

address challenges women face in the diagnosis and treatment of T2DM and cardiovascular 

events. 

Glasgow and the West of Scotland (Health Intelligence Team, 2024b) have high age-adjusted 

rates of cardiovascular disease and COPD compared to the rest of the UK. The prevalence of 

coronary artery disease and COPD was also higher in Glasgow than in Hong Kong in the current 

analysis. Both cardiovascular and respiratory disease (WHO, 2024) are strongly associated with 

smoking (Public Health Scotland, 2024). In the Glasgow cohort, 20% of patients were current 
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smokers. Although data on smoking was only 10%  recorded in the Hong Kong EMRs, 

education and health policy have reduced the prevalence of smoking in Hong Kong to <10% 

(Hackshaw et al., 2018; Socrates Y WU1, 2021).The general adult smoking prevalence in 

Scotland was approximately 11% in 2021, with higher rates (24%) observed in more deprived 

areas, including Greater Glasgow and Clyde (Scottish Government, 2023).  The cohort data and 

general population estimates differ in base definitions, the figures suggest that smoking is likely 

to be more prevalent in the Glasgow cohort than in the general population of Hong Kong. 

Only 10% of patients from Hong Kong and 70% from Glasgow had a recorded value for BMI. 

The substantial amount of missing BMI data is a major limitation. In the Glasgow cohort, most 

patients were overweight or obese. The prognosis of patients with T2DM and a normal BMI or 

who were underweight was much worse than the prognosis of those who were obese.  

Obesity is a stress that increases blood glucose (Klein et al., 2022). The development of T2DM 

in the absence of such a stress might indicate more severe metabolic disease. Patients with 

missing BMI values had a similarly poor prognosis to those who had a normal BMI or were 

underweight, indicating that missing BMI values were informative. Perhaps, when BMI is 

normal it is considered unremarkable and is less likely to be recorded. Asians are reported to be 

at risk of developing T2DM at a lower BMI threshold, possibly due to higher levels of visceral 

adiposity (Ma and Chan, 2013), and therefore BMI classifications for obesity should be ethnicity 

specific.  

There were minor differences in clinical laboratory tests between populations. Blood 

concentrations of HbA1c, total cholesterol, AST and neutrophils were higher in the Hong Kong 

cohort when compared to the Glasgow cohort. Higher HbA1c levels indicates poorer glycaemic 

control among T2DM patients in Hong Kong, which may reflect delays in diagnosis and 

treatment (diet, exercise and pharmacological). A study of T2DM (Wan et al., 2023) from Hong 

Kong and the UK found that poor HbA1c control was associated with worse cardiovascular 

outcomes. A larger proportion of Hong Kong patients fell into the HbA1c (≥8%) subgroup 

compared to the UK cohort. The higher HbA1c levels observed in Asian populations might 

increase the risk of  CVD and higher mortality (Wan et al., 2016), further exacerbated by higher 

serum cholesterol, either due to higher intrinsic values (Seah et al., 2023) or lower rates of statin 

use. Serum AST concentrations were also higher  in Hong Kong which might reflect the effects 
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of T2DM and metabolic syndrome on liver function (“fatty” liver disease) or more liver disease 

due to a higher prevalence of Hepatitis C. Increased neutrophil counts also suggest a higher state 

of inflammation, which has been associated with worse cardiovascular outcomes (He et al., 

2023) in T2DM populations.  

One other important difference was the lower eGFR in the Glasgow cohort. However, other 

reports suggest that some Asian groups with T2DM may be more susceptible to developing 

impaired renal function compared to those of European descent (Wen et al., 2022). In the UK, 

kidney failure is up to five times more common in people from ethnic minority 

backgrounds(Kidney Research UK, 2018). Renal dysfunction is known to be an important risk 

factor for incident heart failure and mortality whether or not patients have T2DM. 

 

8.4 Investigation of Loop Diuretics 

Congestion is an essential feature of heart failure, causing symptoms such as breathlessness and 

swelling of the legs. Loop diuretics increase renal water and salt excretion and are the mainstay 

of treatment of congestion and its symptoms and signs (McDonagh et al., 2023). This research 

highlights that many patients with T2DM are treated with loop diuretics without first receiving 

a diagnosis of heart failure. These patients are not only more likely to be diagnosed with heart 

failure at a later date but also have a prognosis similar to patients with heart failure, although 

they often die without ever receiving such a diagnosis. In the Glasgow cohort, 25% of patients 

were prescribed loop diuretics, compared to 23% in the Hong Kong cohort. Older women were 

more likely to be prescribed loop diuretics than other groups. In both cohorts, those prescribed 

loop diuretics had on average, poorer renal function. The strongest predictor of mortality in both 

populations was loop diuretic use. In both Glasgow and Hong Kong, the exclusion of loop 

diuretics from the predictive model reduced its performance. 

A growing body of evidence confirms that loop diuretic prescriptions often reflect a missed 

diagnosis of HF and that those treated with loop diuretics have, at least in some populations, a 

similar prognosis whether or not they receive a diagnosis of heart failure (Friday et al., 2024; 

Cuthbert et al., 2024). However, it is unclear whether loop diuretics are merely a marker of 

undiagnosed heart failure, or whether they accelerate the progression of cardiovascular disease 
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and renal dysfunction (Amatruda et al., 2022; Wilcox et al., 2020) by activating the renin-

angiotensin-aldosterone (RAAS) and sympathetic nervous systems or whether electrolyte 

disturbances, particularly a low serum potassium, increase the risk of sudden death. All of these 

might be true, the importance of each varying from one patient to the next.  

Women are more likely to have heart failure with preserved ejection fraction (HFpEF) (Sotomi 

et al., 2021), a phenotype that is commonly underdiagnosed because the left ventricular ejection 

fraction is not reduced and heart function may not appear severely impaired to the non-expert 

eye. However further analyses are required to support this idea. Given the increasing emphasis 

on personalised medicine, understanding the role of loop diuretics in underdiagnosed HF 

phenotypes could provide new opportunities to improve outcomes in these high-risk T2DM 

patients. 

The adverse renal effects of loop diuretic therapy are well-established. Loop diuretics can 

provide rapid relief from HF symptoms, but their long-term use is linked to electrolyte 

imbalances, activation of the RAAS and progression of CKD (Amatruda et al., 2022; Wilcox et 

al., 2020). In this research, patients in both Glasgow and Hong Kong who were prescribed LDs 

experienced higher rates of CKD events (Chapter 4 and 5). The pathophysiological link between 

LDs and CKD highlights the importance of regular renal function monitoring in patients with 

T2DM, who are at high risk of renal complications. Current guidelines (McDonagh et al., 2023) 

recommend using LDs appropriately and combining them with RAAS inhibitors to mitigate 

their adverse effects.  Overall, the findings show the need for greater efforts to differentiate HF 

from other conditions and for population-specific research to optimise LD use in diverse 

populations.  

 

8.5 Justification of Risk Prediction Model(s) Methods 

The model(s) in this thesis were thoroughly validated and calibrated. The risk prediction models 

showed only small differences in c-index scores differs between cohorts, with slightly stronger 

predictive performance in Hong Kong compared to the Glasgow cohort for incident heart failure 

(C-index 0.88 and 0.87) and all-cause mortality (0.85 and 0.83). Both models identified similar 

risk factors, including loop diuretics use, older age, lower serum albumin and ALT 
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concentrations, lower haemoglobin, and lower eGFR, coronary artery disease, atrial fibrillation 

and stroke. The consistency of risk factors and model performance in two very different cohorts 

of T2DM, confirm the importance of these clinical variables for predicting outcomes in patients 

with new-onset T2DM. Moreover, many of these risk factors are biologically plausible 

mechanisms underlying disease progression.  

The risk prediction models developed in this research for incident heart failure and mortality 

outperformed others (Basu et al., 2017; Yang et al., 2008; Hippisley-Cox and Coupland, 2015; 

Dong et al., 2024; Quan et al., 2019), the majority of which reported a c-index below 0.80.  

The novelty of this research lies in advancing beyond traditional regression analyses that have 

been the mainstay of previous clinical risk prediction models, despite their limitations  

(Barraclough et al., 2011; Jiang et al., 2024). Harnessing the random survival forest method 

reflects an intentional emphasis on tree-based decision-making over traditional regression 

mechanisms. To date, few studies have confirmed that machine learning-based survival models 

outperform cox regression models for incident of HF (Segar et al., 2019) or mortality (Lee et 

al., 2021). Tree-based methods readily adapt to diverse patient populations (Ishwaran, Udaya B. 

Kogalur, et al., 2008), making them efficient for personalised risk prediction. 

The model developed in this thesis yielded superior discrimination and calibration metrics, 

demonstrated by low time-Brier scores. Applying a second evaluation metric strengthens the 

results rather than relying solely upon the c-index. Complex models may achieve high c-index 

scores by overfitting the data (Hartman et al., 2023), creating a false sense of reliability in model 

performance. The time-Brier score addresses this limitation by assessing both discrimination 

and calibration. This approach to model development ensures that predictions are accurate not 

only in ranking risk but also in reflecting time-to-events. Whereas standard evaluation metrics 

do not account for time-to-events prediction. RSF ensures that predictive accuracy is maintained 

over time, a critical feature for CVD disease progression.  

Subsequently, the use of SHAP (SHapley Additive exPlanations) (Brosula et al., 2024) provided 

patient-specific risk interpretations, overcoming the limitations of conventional regression 

models that fail to capture nonlinear interactions between variables. In this research, the 

inclusion of critical comorbidities such as atrial fibrillation and hyperkalaemia (from the 
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Glasgow cohort) enhanced performance metrics. RSF manages complex EMRs, which 

regression models, constrained by their linear assumptions, struggle to achieve. SHAP explains 

the contributions of specific variables rather than describing association. It focuses on the 

reasoning of each variable on the model’s prediction. SHAP’s ability to explain individual 

contributions (Chapter 4.5.8) makes it valuable in healthcare, where understanding why a 

model predicts a high risk for an individual patient can guide personalised interventions.  

This research also applied causal inference methods, such as propensity score matching and 

inverse probability weighting, to try to address biases associated with loop diuretics 

prescriptions. Propensity matching reduced model performance in the Hong Kong EMRs for 

incident HF. However, propensity matching to investigate the importance of a therapeutic 

intervention that is already in place and that alters prognostically important patient 

characteristics might introduce systematic bias rather than reduce it. Propensity matched 

analyses have rarely been replicated by randomised trials in cardiovascular medicine, perhaps 

because the matching process fails to consider the effects of treatment on other risk markers. 

This might be overcome if the patient characteristics prior to the intervention of interest are used 

for propensity matching, but this is rarely done. 

 

8.6 The Inclusion of Socioeconomic Status  

Socioeconomic deprivation is associated with poorer education, a higher prevalence of 

cardiovascular risk factors (e.g., smoking, alcohol excess, obesity and hypertension), poorer 

access to healthcare and an increased morbidity and mortality rates (Witte et al., 2018; Health 

Scotland, 2015; Wright et al., 2019; Rosengren et al., 2019). In the Glasgow cohort, 41% of 

patients with T2DM were in the most deprived socioeconomic quintile, with a high proportion 

of women, smokers, people with obesity, lung disease and treatment with loop diuretics. Patients 

with T2DM in the most deprived quintile had a 36% higher mortality compared to those in the 

least deprived quintile, even after adjusting for age and sex (HR: 1.36 [95% CI 1.24–1.50, 

p<0.005]). These finding highlights the need to include SES in predictive models. This supports 

algorithmic fairness where most deprived individuals are not excluded. It is also important to 

encourage better SES measurement strategies in populations, as the Hong Kong cohort did not 

have a useable measure of social deprivation.  
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8.7 Strengths and Limitations  

The key strength of this research is applying machine learning-based survival models using 

EMR from two diverse populations. The results appear clinically relevant, robust and 

generalisable. In studies using EMRs with variable data quality and completeness, external 

validation strengthens the reliability of predictions and enhances their applicability to broader 

clinical settings.  

Throughout this research, integrating clinical expertise with computational methods, introduced 

the concept of collaborative intelligence, leveraging the strengths of both approaches, with 

iterative refinement of the risk model. Moreover, the integration of computational decision-

making and clinical expertise helps ensure the model’s clinical validity and acceptance (Sirocchi 

et al., 2024). For example, the correlations analysis in this research was guided by clinicians and 

results were iteratively checked. This evidence also introduced a clinical support tool for heart 

failure risk assessment in patients with T2DM (Chapter 5). 

The tool has not yet been implemented in clinical practice, but it addresses a recognised need 

for early heart failure risk assessment in patients with T2DM. However, the models have some 

limitations that should be considered. Several key variables, including albumin-to-creatinine 

ratio, a key marker of kidney function, BMI, alcohol consumption and blood pressure were 

either not available or were incomplete but with informative missingness. Addition of these 

variable would likely improve the accuracy of the model and increase its value in terms of 

explaining the importance of risk factors, especially those that are modifiable. Information on 

cause of death was lacking in the Hong Kong cohort. However, it was important not to use bias 

imputation methods (Sterne et al., 2009) as these skews results and true patterns may be masked.  

Future research should aim to address these gaps by including these missing variables. 

Moreover, while this thesis showed the potential of AI-driven support tools (Narinder Kaur et 

al., 2024), future work should focus on validating these models across more diverse populations 

and exploring the feasibility of deploying them in real-world healthcare settings. 
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8.8 Future Work  

There are several opportunities for further research. One is the development of AI-powered 

evidence-based support tools that leverage EMRs. The rich data-environment of the NHS 

Safehaven and CDARS EMRs included many patient characteristics, including medical history, 

laboratory results, prescriptions and demographic information, provides a robust foundation for 

creating patient-specific risk prediction models, capable of identifying early indicators of 

disease and guiding targeted interventions for prevention and treatment. To enhance the clinical 

utility of AI models for T2DM, future research should prioritise improving model 

generalisability across more diverse patient populations.  

Leveraging large-scale, longitudinal datasets that capture patient trends over time will be crucial 

for accurately predicting CVD disease progression and complications.  

Time series analysis presents a promising approach in this context, as it allows for the capture 

of temporal patterns and fluctuations in patient data. By integrating time-dependent factors such 

as blood glucose levels, medication adherence and other biomarkers, time series models can 

offer dynamic, evolving risk assessments that adapt to the changing health status of individual 

patients.  

Moreover, conformal prediction, where calibration is conducted on separate training and testing 

sets could further strengthen these models (Angelopoulos and Bates, 2021). This technique 

improves the reliability of predictions by quantifying uncertainty, ensuring that the model's 

confidence aligns with observed data. By integrating both time series analysis and conformal 

prediction into AI-driven clinical decision support tools, the transparency, accuracy and 

interpretability of predictions can be enhanced. This, in turn, would contribute to more precise, 

timely interventions, improving patient outcomes and enabling the effective application of 

precision medicine in managing T2DM and its associated complications. 

Furthermore, these support tools may eventually be deployed into healthcare organisations, 

facilitating widespread adoption and integration into routine clinical practice, thus improving 

decision-making and care delivery across diverse healthcare settings. 
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8.9 Conclusions 

The development of real-time, AI-powered risk model with a user-friendly clinical interface 

holds great promise for informing patients and their clinicians, about outcomes. Moreover, the 

proposed risk model can also provide personalised information about potentially modifiable risk 

factors requiring further investigation and management to improve outcomes. This or similar 

tools for T2DM and many other conditions should now be developed and integrated into existing 

EMR for further validation before deployment at scale. Development of intelligent systems that 

learn to improve prediction will further increase the accuracy of the model and increase the 

utility of decision-support tools to help patients and clinicians to choose the best treatment for 

their needs.  

 

 

 

 

 

 

 

 

 



157 

 

Appendices  

Appendix A Chapter 3  

A1: Data Ethics  

The research project required ethical approval since patient data was examined. Throughout the 

execution of the research project, it was vital to confirm the regulations of The UK Data 

Protection Act 2018. Based on the regulations, patient data was kept precise, adequate and up 

to date throughout the entire research project (NHS, 2019). Lastly, safety of patient data is 

assured by accessing a security server (ISO 27001) with frequent password renewal. Before 

accessing the NHS SafeHaven environment, Medical Research Council – research, GDPR & 

confidentiality training was undertaken in July 2021. Ethical approval was given by NHS 

Greater Glasgow & Clyde (project reference number is GSH/20/CE/004). 

 

A2: Diagnostic Descriptions  

This table represents the categorisation of diagnostic description from SCI Diabetes registry.  

Diagnostic Description  Category  

Type 2 Diabetes Mellitus  Type 2 

o Impaired Glucose Tolerance   

o Impaired Fasting Glucose  

o Impaired Glucose Metabolism and Other Not Known 

Risk of Type 2  

o Diabetes in Remission 

o Diabetes Resolved 

o Other 

o Diseases of exocrine pancreas Secondary - Medicine Induced 

o Induced by steroids. 

o Secondary - Pancreatic Pathology Medicine- or Chemical-induced 

Immune-mediated (LADA) 

o Pancreatitis 

Other Types  
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o Latent Autoimmune Diabetes of Adulthood Malnutrition-related 

diabetes mellitus Gestational Diabetes (Current) Fibrocalculous 

pancreatopathy Haemochromatosis 

o Cystic fibrosis 

o Induced by non-steroid medicines  

o Type 2 diabetes-former diagnosis  

o Stress-induced hyperglycaemia Neoplasia 

o Diabetes not confirmed 

o Not Diabetic 

o No  

o Not defined 

Not Defined  

Type 1 Diabetes Mellitus Type 1  

 

 

A3: Extracting Prescriptions from Glasgow SafeHaven Dataset  

import time 

import pandas as pd 

from datetime import datetime, timedelta 

# Start timing the data loading 

start_time = time.time() 

# Load necessary columns from the CSV file 

pharm_df = pd.read_csv( 

    "/path/to/your/03_Extract_Pharmacy.csv",  

    usecols=['SafeHavenID', 'DISP_DATE', 'PI_BNF_Section_Code', 

'PI_BNF_Section_Description', 'Dispensed_Quantity'],  

    encoding='latin-1', 
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    dtype={ 

        'PI_BNF_Section_Code': 'category', 

        'PI_BNF_Section_Description': 'category' 

    } 

) 

 

# Print the time taken to load the data 

end_time = time.time() 

print(f"Time taken to load: {end_time - start_time:.2f} seconds") 

# Display the shape of the loaded DataFrame 

print(f"Pharmacy DataFrame shape: {pharm_df.shape}") 

 

# Merging with another DataFrame (example) 

# Assuming `df` contains patient event data 

merged_df = pd.merge( 

    df.reset_index(drop=True),  

    pharm_df.reset_index(drop=True),  

    how='left' 

) 

# Check the shape of the merged DataFrame 

print(f"Merged DataFrame shape: {merged_df.shape}") 

# Convert date columns to datetime format 

merged_df['DATE'] = pd.to_datetime(merged_df['DATE']) 
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merged_df['PRESC_DATE'] = pd.to_datetime(merged_df['PRESC_DATE']) 

# Calculate differences in days between diagnosis date and prescription date 

merged_df['presc_days'] = (merged_df['PRESC_DATE'] - merged_df['DATE']).dt.days.abs() 

# Display a summary of prescription years 

merged_df['Presc_Year'] = merged_df['PRESC_DATE'].dt.year 

print(merged_df['Presc_Year'].value_counts()) 

# Output the processed DataFrame for further analysis 

print(merged_df.head()) 

 

A4: Calculating Mortality Outcome  
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A5: Heart Failure at any Diagnostic Position  
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Appendix B Chapter 5 

B1: A Secondary Analysis of Patients with complete BMI only 

This table shows patients with T2DM whom had a complete record of BMI only. In this case 

the most important risk factor for developing heart failure was those with established coronary 

artery disease and older age. There is a clinical hypothesis that those with measured BMI are 

patients who were carefully monitored as there is 90% missingness in the Hong Kong 

population. With a c-index score of 0.90 and time brier of 0.07.  
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B2: Incident Loop Diuretics in Hong Kong 

This table presents incident loop diuretics in Hong Kong patients with T2DM. The table shows 

results for including HF as a variable and excluding HF. Patients who had previous prescriptions 

for loop diuretics prior to their diagnosis of T2DM were excluded from the analysis to ensure 

that the study focused on incident use of loop diuretics following T2DM diagnosis. 3,008 (1.4%) 

patients were newly prescribed loop diuretics. Results show consistency in patient 

characteristics for predicting incident HF.  
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Appendix C Chapter 6 

C1: Clinical characteristics of T2DM patients with a measurement of BMI stratified by 

socioeconomic deprivation status 

Overall Population 

N=30,495 
Demographics at 
Baseline (Secondary ) 

 
(%) or Median (25/75) 
 

SIMD  

Quintile 1 
(Most 
Deprived)  
 

SIMD  

Quintile 2  
 

SIMD  

Quintile 3  
 

SIMD  

Quintile 4 
 

SIMD  
Quintile 5 

(Least 
Deprived) 
 

 
 

P-value 

Overall 

P-value 

Q1 & 
Q5 

N=Scottish Index of 

Multiple Deprivation 

(SIMD) Group 

N=12,389 N=5,628  N=4,162  N=3,602 N=4,714 

 

 

  

 

Age (y) 

 

 

 

63 (57 – 71) 

 

 

63 (57 – 70) 

 

 

63 (57 – 71) 

 

 

63 (57 – 70) 

 

 

64 (58-72) 

0.06 0.05 

Sex        

Women 

Men 

5,892 (46%) 

6,497 (54%) 

 

 

2,635 (45%) 

2,993 (55%) 

 

1,845 (44%) 

2,317 (56%) 

 

 

1,516 (42%) 

2,086 (58%) 

1,892 (40%) 

2,822 (60%) 

 

0.26 0.55 

Ethnicity   

 

                                   White 

                                   Asian 

                                   Other  

                            Unknown  

 

 

11,353 (85%) 

338 (5%) 

593 (6%) 

105 (4%) 

 

 

4,985 (88%) 

296 (5%) 

296 (5%) 

51 (1%) 

 

 

3,552 (85%) 

351 (8%) 

221 (6%) 

38 (1%) 

 

 

3,096 (86%) 

288 (8%) 

185 (5%) 

33 (1%) 

 

 

3,911 (83%) 

452 (10%) 

203 (5%) 

74 (2%) 

0.67 0.15 

*Body Mass Index (BMI) 

 

  

31 (27 – 35) 

  

30 (27 – 34) 

  

30 (26 – 34) 

  

29 (26 – 33) 

 

29 (26-33) 

0.10 0.06 

*Current Smoker (yes)  
4,836 (39%) 

 
1,768 (31%) 

 
1,124 (27%) 

 
739 (21%) 

 
792 (17%) 

<0.001 <0.001 

Comorbidities n(%)   

Atherosclerotic Heart 

Disease (yes) 
2,346 (19%) 1,018 (18%) 809 (20%) 609 (17%) 813 (17%) 

<0.001 <0.001 

Angina (yes) 1,924 (16%) 802 (14%) 586 (14%) 425 (12%) 569 (14%) 
0.13 0.66 

Atrial Fibrillation (yes) 1,593 (13%) 704 (11%) 534 (13%) 442 (12%) 554 (12%) 0.37 <0.001 

Chronic Obstructive 
Pulmonary Disease (yes) 

1,704 (14%) 527 (9%) 345 (8%) 189 (5%) 196 (4%) 
0.45 0.61 

Chronic Kidney Disease 

(yes) 
661 (5%) 279 (5%) 234 (6%) 180 (5%) 189 (4%) 

<0.001 <0.001 

Heart Failure (yes) 1,273 (10%) 551 (10%) 380 (9%) 283 (8%) 365 (8%) 
<0.001 <0.001 

Hyperkalaemia (yes) 645 (5%) 304  (5%) 180 (4%) 183 (5%) 205 (4%) 
<0.001 <0.001 

*Hypertension (yes) 7,372 (40%) 3,540 (63%) 2,583 (38%) 2,204 (39%) 2,935 (60%) 
<0.001 <0.001 

Myocardial Infarction 

(yes) 
1,438 (11%) 622 (11%) 465 (11%) 376 (10%) 457 (10%) 

<0.001 <0.001 

Peripheral Artery Disease 

(yes) 
556 (2%) 186 (1%) 140 (0.4%) 99 (0.3%) 93 (0.3%) 

0.26 0.28 

Stroke/TIA (yes) 1,160 (9%) 548 (11%) 378 (10%) 312 (9%) 357 (10%) <0.001 <0.001 

Lab Tests  within 6 months of inclusion, n (%) 
  

Plasma Glucose (mmoL) 8.2(6.6 – 12)  8.2 (6.6 – 11.5)  8.1(6.6 – 11.5)  8.3 (6.7 – 11.7)  8.1 (6.6 – 11.1)  <0.001 <0.001 

Haemoglobin A1C 

(mmoL) 

53 (46– 67) 53 (45– 65) 53 (45– 65) 53 (45– 64) 52 (45 – 64) <0.001 <0.001 

Haemoglobin (g/L) 

                                           

                                     Men    

                               Woman                                                                                

 

 

144 (132 – 153)  

132 (122 – 142) 

 

 

144 (133 – 154) 

132 (121 – 141) 

 

 

144 (133 – 154) 

132 (121 – 142) 

 

 

145 (134 – 155) 

132 (122 – 141) 

 

 

145 (134 – 155) 

133 (122 – 141) 

<0.001 <0.001 

Total Cholesterol (mmol) 
4.2 (3.6-5.1)  
 

4.2 (3.6-5)  
 

4.2 (3.6-5)  
 

4.3 (3.6-5.1)  
 

4.5 (3.8-5.1) 
 

<0.001 <0.001 

Triglycerides (mmol)  
1.8 (1.3 – 2.6) 

 

1.7 (1.3 – 2.4) 

 

1.7 (1.2 – 2.4) 

 

1.6 (1.2 – 2.3) 

 

1.6 (1.1 – 2.2) 

 

<0.001 <0.001 

Serum Albumin (g/L) 38 (35-40) 38 (35-40) 38 (35-40) 38 (35-40) 38 (36-40) <0.001 <0.001 
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eGFR (mL/min/1.73m2) 
55 (46 – 62) 
 

54 (45 – 61) 
 

54 (45 – 61) 
 

54 (45 – 61) 
 

53 (44 – 61) 
 

<0.001 <0.001 

Alanine Transaminase – 

ALT (U/L) 
                                                  

21 (15-31) 
 

21 (15-31) 
 

21 (15-31) 
 

21 (15-31) 
 

25 (17-35)  
 

<0.001 <0.001 

Aspartate Transaminase 

– AST (U/L) 

20 (16-26) 

 

20 (16-26) 

 

20 (16-26) 

 

20 (16-26) 

 

21 (17-27) 

 

<0.001 <0.001 

Alkaline Phosphate (U/L) 
 

88 (72-109) 
 

86.5 (70-10 
 

85 (70-105) 
 

84 (69-102) 
 

78 (64-94) 
 

<0.001 0.10 

Neutrophils (x10^9/L) 

 

4.8 (3.7-6.1) 

 

4.6 (3.7-5.9) 

 

4.6 (3.6-5.7) 

 

4.6 (3.5-5.6) 

 

4.2 (3.3-5.4) 

 

<0.001 0.10 

Lymphocytes (x10^9/L) 
 

2 (1.5-2.6) 
 

2 (1.5-2.5) 
 

2 (1.5-2.5) 
 

1.9 (1.5-2.5) 
 

1.9 (1.5 -2.4)  
 

<0.001 <0.001 

Bilirubin ( µmol/L) 

 

9 (7 - 13) 

 

10 (7 - 13) 

 

10 (7 - 14) 

 

10 (8 - 14) 

 

11 (8 – 14.5) 

 

<0.001 0.10 

Medications within 6 months of inclusion, n (%) 
  

Metformin (yes) 4,262 (34%) 1,963 (35%) 1,468 (35%)  1,154 (32%) 1,419 (30%) 
0.12 0.24 

Insulin (with Glucose-

lowering Drug) 1,306 (11%) 552 (10%) 424 (10%) 330 (9%) 420 (9%) 

<0.001 0.11 

Sulphonylureas (yes) 4,316 (35%) 1,957 (35%) 1,446 (35%) 1,212 (34%) 1,524 (32%) 
<0.001 0.46 

SGTL2i (yes) 1,612 (13%) 727 (2%) 488 (2%) 412 (1%) 503 (11%) 
<0.001 0.34 

DPP-4 inhibitor (yes) 
1,762 (6%) 796 (3%) 600 (2%) 482 (2%) 629 (2%) 

0.40 <0.001 

Statin (yes) 
11,508 (93%) 5,217 (93%) 3,824 (93%) 3,267 (93%) 4,230 (90%) 

0.65 0.51 

Beta Blockers  (yes) 
3,683 (30%) 1,699 (30%) 1,262 (30%) 1,039 (29%) 1,321 (28%) 

<0.001 <0.001 

ACEi or ARBS (yes) 5,362 (26%) 2,533 (12%) 1,854 (9%) 1,480 (7%) 1,921 (9%) 
0.94 0.34 

MRAs (yes) 655 (5%) 314 (6%) 208 (5%) 163 (5%) 191 (4%) 
<0.001 0.68 

Calcium Channel 

Blockers (yes) 1,021 (8%) 464 (8%) 359 (9%) 357 (10%) 310 (7%) 

0.44 0.51 

Antiplatelets (yes) 4,316 (35%) 1,957 (34%) 1,446 (35%) 1,212 (34%) 1,524 (32%) 
<0.001 0.46 

Anticoagulants (yes) 1,997 (16%) 908 (16%) 662 (16%) 582 (15%) 787 (17%) 
0.44 <0.001 

Thiazides (yes) 
4,156 (34%) 1,990 (35%) 1,421 (33%) 1,192 (33%) 1,606 (34%) 

0.17 0.29 

Loop Diuretic (yes) 
 
2,959 (24%) 1,243 (22%) 929 (22%) 804 (22%) 748 (16%) 

<0.001 <0.001 

*Primary Care utilises patient READ CODES  
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C2: SIMD quintiles for the Secondary cohort showing all prognostic factors predicting 

all-cause mortality. 

These graphs show a bar in the right axis: high is red and low is blue which represents the feature 

value. The absolute SHAP value shows us how much a single feature affected the prediction 

displayed on the x-axis. It takes the mean average value for each feature. Here, all the values on 

the left represent the observations that shift the predicted value in the negative direction while 

the points on the right contribute to shifting the prediction in a positive direction.  All the features 

are on the left y-axis. For example, increased AGE on the x-axis has a high impact.  
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C3: Deprivation Status in Hong Kong 

There were no events in the first four years when analysis by a measure of social deprivation 

was included suggesting a form of immortal time bias due to a delay in assigning SES. Only 

64,380 patients (median age: 74 (67 – 79) years) were assigned a CSSA status, of whom 35,988 

(55%) died within 10 years. Patients who were eventually classified as "Deprived" or “Not 

Deprived” had to survive until this point.  
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C4: Cause-specific mortality in Patients with and without BMI record 
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C5: Kaplan Meier Survival Estimate for All-cause mortality stratified by BMI 

Categories 
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Appendix D Chapter 7 

D1: Laboratory Test Measurements in Glasgow and Hong Kong  
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D2: Sex Differences T2DM with and without BMI in Glasgow and Hong Kong 

Baseline Characteristics of Men with T2DM with and without BMI for Glasgow and 

Hong Kong population 

Men Patients with T2DM Patients with T2DM & BMI 

Population (N=)  

 

Glasgow 

N=24,664 

Hong Kong 

N=132,040 

Glasgow 

N=16,715 

Hong Kong 

N=10,547 
Demographics (%) or Median (25/75)  

 

Age  

 

 

 

63 (56 – 70) 

 

 

64 (55 – 73) 

 

 

62 (56 – 69) 

 

 

71 (65 – 77)  

*Body Mass Index (BMI)   
N/A 

  
N/A 

  
30 (27 – 33) 

 
24 (22 – 27)  

*Current Smoker   

5,258 (21%) 

 

N/A 

 

5,172 (31%) 

 

N/A 

Death within 5 years of T2DM Diagnosis  
4,916 (20%) 

 
19,668 (15%) 

 
1,381 (8%) 

 
554 (5%) 

Comorbidities n (%)   

Atherosclerotic Heart Disease (yes) 4,729 (19%) 14,834 (11%) 3,751 (22%) 
 

1,115 (11%) 

Angina (yes) 3,332 (14%) N/A 2,594 (16%) 
 

N/A 

Atrial Fibrillation (yes) 3,301 (13%) 3,429 (3%) 2,145 (13%) 
 
238 (2%) 

Chronic Obstructive Pulmonary Disease (yes) 1,990 (8%) 591 (0.44%) 1,317 (8%) 
 

70 (1%) 

Chronic Kidney Disease (yes) 1,231 (5%) 1,854 (1%) 738 (4%) 
 
0 

Heart Failure (yes) 2,684 (11%) 5,197 (4%) 1,704 (10%) 
 

291 (3%) 

Hyperkalaemia (yes) 1,060 (4%) N/A 709 (4%) 
 

N/A 

*Hypertension (yes) 9,887 (40%) 28,799 (23%) 9,739 (58%) 
 

2,296 (22%) 

Myocardial Infarction (yes) 2,914 (12%) N/A 2,199 (13%) 
 

N/A 

Peripheral Artery Disease (yes) 1,054 (4%) 204 (0.15%) 694 (4%) 
 

0 

Stroke/TIA (yes) 2,150 (9%) 6,230 (5%) 1,514 (9%) 
 

484 (4%) 

Lab Tests * 6 months prior to or upon a 

Diabetes Diagnosis 
 

 

                                 Plasma Glucose (mmoL) 9 (6.8 – 10.4)  N/A  9 (7.1 – 10.7)  N/A 

Haemoglobin A1C (mmoL) 55 (46– 62) 56 (51– 63) 55 (46– 64) 56 (47 – 63)  

                                           Haemoglobin (g/L) 138 (134 – 151)  131 (123– 139) 139 (134 – 152)  130 (123 – 137) 

Total Cholesterol (mmol) 
4 (3.6 – 4.8)  

 

4.7 (4.2-5.1)  

 

4 (3.5 - 4.8)  

 

4.7 (4.2-5.1)  

 

Triglycerides (mmol)  
1.5 (1 – 2.3) 

 

1.4 (1.1 – 1.9) 

 

1.6 (1.1 – 2.4) 

 

1.4 (1.3 – 2)  

                                       Serum Albumin (g/L) 
38 (36 – 40) 

 

40 (38-42) 

 

38 (36- 40) 

 

40 (38-41) 

 
                                   eGFR (mL/min/1.73m2) 

 

51 (42 – 59) 

 

33 (27 - 39) 

 

51 (43-59) 

 

32 (26 – 37) 

                 Alanine Transaminase – ALT (U/L) 

                                                 

25 (17 - 33)  

 

24 (18-32) 

 

25 (18-34) 

 

23 (18 – 30)  

Aspartate Transaminase – AST (U/L) 
22 (16 – 27)  

 

25 (21-43) 

 

22 (17-27) 

 

61 (24 – 73) 

Alkaline Phosphate 
85 (69 – 101)  
 

74 (65-86) 
 

84 (68-100) 
 

74 (63 – 85)  

Neutrophils 
5.1 (4.2 – 6.3)  

 

5.3 (4.3-7) 

 

5.1 (4 – 5.5) 

 

5.4 (5 – 8)  

Lymphocytes  
2 (2 – 2.3)  
 

2.3 (1.6-2.3) 
 

2 (2.1-2.4) 
 

2 (1.6 – 2.3)  

Bilirubin (µmol/L)  
11 (8 – 14) 

 

9 (9 – 12.4) 

 

11 (8 - 14) 

 

11 (8 – 11) 

Potassium (mmol) 
4.3 (4 – 4.6)  
 

4 (4 – 4.4) 
 

4.3 (4 – 4.6)  
 

4 (4.2 – 4.4) 
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Baseline Characteristics of Woman with T2DM with and without BMI for Glasgow and 

Hong Kong population 

Medications +/- 180 days of diabetes 

diagnosis  

 

Metformin (yes) 
7,872 (32%) 86,534 (66%) 5,532 (33%) 

 

8,312 (21%) 

DPP4i (yes) 
2,747 (11%) 182 (0.13%) 2,319 (14%) 

 
4 (0.3%) 

Insulin (taken with Glucose-lowering Drug) 
1,478 (6%) 14,633 (11%) 893 (5%) 

 

370 (4%) 

Sulphonylureas (yes) 
5,585 (23%) 84,414 (64%) 3,836 (23%) 

 
7,367 (70%) 

SGLT2i (yes) 
2,333 (9%) N/A 2,207 (13%) 

 

N/A 

Statins (yes) 
12,746 (52%) 30,538 (23%) 8,126 (49%) 

 
2,014 (19%) 

Beta Blockers (yes) 
5,299 (21%) 41,677 (32%) 3,603 (23%) 

 

3,620 (34%) 

ACEi or ARBS (yes) 
11,196 (63%) 62,157 (47%) 7,270 (67%) 

 
5,397 (51%) 

Antiplatelets (yes) 
5,585 (23%) N/A 3,836 (23%) 

 

N/A 

Anticoagulants (yes) 
2,329 (9%) N/A 1,387 (8%) 

 

N/A 

Thiazides (yes) 
5,466 (22%) 20,110 (15%) 3,681 (22%) 

 

1,835 (17%) 

Loop Diuretic (yes) 
 

5,256 (21%) 28,014 (21%) 3,045 (18%) 

 

3,350 (32%) 

Women Patients with T2DM Patients with T2DM & BMI 

Population (N=)  
 

Glasgow 
N= 21,367 

Hong Kong 
N=141,836 

Glasgow 
N=13,780 

Hong Kong 
N=13,426 

Demographics (%) or Median (25/75)  

 

Age  
 

 
 

65 (58 – 74) 

 
 

68 (58 – 77) 

 
 

64 (57 – 72) 

 
 

73 (67 – 78) 

*Body Mass Index (BMI)   

N/A 

  

N/A 

  

30.4 (26.4 – 35) 

 

24.4 (22 – 27) 

*Current Smoker (yes)  

4,158 (19%) 

 

N/A 

 

4,087 (30%) 

 

N/A 
Death within 5 years of T2D Diagnosis  

4,346 (20%) 

 

18,306 (13%) 

 

1,200 (9%) 

 

500 (4%) 

Comorbidities n (%) at Diagnosis    

Atherosclerotic Heart Disease (yes) 2,377 (11%) 11,589 (8%) 1,844 (13%) 1,006 (7%) 

Angina (yes) 2,289 (11%) N/A 1,712 (12%) 
 
N/A 

Atrial Fibrillation (yes) 2,782 (13%) 4,343 (3%) 1,682 (12%) 280 (2%) 

Chronic Obstructive Pulmonary Disease (yes) 2,405 (11%) 277 (0.16%) 1,653 (12%) 
19 (0.14%) 

Chronic Kidney Disease (yes) 1,318 (6%) 1,527 (1%) 805 (6%) 
0  

Heart Failure (yes) 1,991 (9%) 5,992 (4%) 1,148 (8%) 
299 (3%) 

Hyperkalaemia (yes) 1,276 (6%) N/A 808 (6%) 
 

N/A 

*Hypertension (yes) 9,112 (65%) 35,447 (25%) 8,895 (64%) 3,259 (24%) 

Myocardial Infarction (yes) 1,631 (8%) N/A 1,159 (8%) 
 
N/A 

Peripheral Artery Disease (yes) 596 (4%) 142 (0.1%) 380 (3%) 
0 

Stroke/TIA (yes) 1,860 (9%) 6,020 (4%) 1,241 (9%) 
490 (4%) 

Lab Tests within 6 months of inclusion, n (%) 
 

                                 Plasma Glucose (mmoL) 8.5 (6.6 – 9.8)  N/A  9 (6.9 - 10.2)  N/A 
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Haemoglobin A1C (mmoL) 54 (46– 60) 56 (51– 63) 54 (46– 62) 56 (51– 63) 

                                           Haemoglobin (g/L) 134 (123 – 139)  122 (129 – 136)  134 (124 – 140)  130 (123 – 136) 

Total Cholesterol (mmol) 
4.3 (4.0-5.3)  

 

4.8 (4.4-5.3)  

 

4.3 (3.9-5.2)  

 

4.8 (4.4-5.3)  

 

Triglycerides (mmol)  
1.5 (1 – 2.2) 

 

1.5 (1.2 – 2.1) 

 

1.6 (1.1 – 2.3) 

 

1.6 (1.2 – 2)  

                                       Serum Albumin (g/L) 
37 (35-39) 
 

40 (38-41) 
 

37 (35-39) 
 

40 (38 – 42) 

                                   eGFR (mL/min/1.73m2) 

 

57 (48 - 64) 

 

37 (31 - 44) 

 

58 (49-65) 

 

35 (30 – 41) 

                 Alanine Transaminase – ALT (U/L) 
                                                 

20 (14-27)  
 

22 (17 – 30) 
 

20 (15-27) 
 

21 (16 – 28) 

Aspartate Transaminase – AST (U/L) 
20 (16-25) 

 

25 (21 – 36) 

 

20 (16-25) 

 

33 (24 – 73)  

Alkaline Phosphate 
93 (75-110) 
 

75 (66 – 87) 
 

93 (75-111) 
 

75 (66 – 86)  

Neutrophils 
5 (3.8-5.1) 

 

5.3 (4.4 – 7.4) 

 

5 (3.1 – 5.5) 

 

5.4 (4.5 – 7.7) 

Lymphocytes  
2 (2-2.3) 
 

2 (1.7 – 2.5) 
 

2 (1.6-2.4) 
 

2 (2 – 3) 

Bilirubin (µmol/L)  
9 (7 - 11) 

 

9 (8.6 – 12.4) 

 

9 (7 - 11) 

 

11 (8 – 11) 

Potassium (mmol) 
4.3 (4 – 4.6)  

 

4.2 (4 – 4.4) 

 

4.3 (4 – 4.6)  

 

4.2 (4 – 4.6)  

Medications within 6 months of inclusion, n (%)  

Metformin 
6,673 (31%) 42,489 (30%) 4,734 (34%) 

 
11,126 (83%) 

DPP4i 
2,286 (11%) 143 (0.1%) 1,950 (14%) 

 

2 (0.01%) 

Insulin (taken with Glucose-lowering Drug) 
1,323 (6%) 15, 064 (11%) 815 (6%) 

 
421 (3.1%) 

Sulphonylureas 
4,619 (22%) 52,725 (37%) 3,210 (23%) 

 

9,391 (70%) 

SGTL2i 
1,644 (8%) N/A 1,535 (11%) 

 
N/A 

Statins 
10,311 (52%) 30,863 (22%) 6,855 (50%) 

 

2,440 (18%) 

Beta Blockers  
4,944 (23%) 50,632 (37%) 3,113 (23%) 

 

5,255 (39%) 

ACEi or ARBS 
9,353 (57%) 59,629 (42%) 5,880 (61%) 

 

5,951 (44%) 

Antiplatelets  
4,619 (22%) N/A 3,210 (23%) 

 

N/A 

Anticoagulants  
1,980 (9%) N/A 1,124 (8%) 

 

N/A 

Thiazides 
6,555 (31%) 27,047 (19%) 4,288 (31%) 

 

3,104 (23%) 

Loop Diuretic 
 
6,147 (29%) 32,138 (23%) 3,638 (26%) 

 
4,244 (32%) 
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